PostgreSQL 18.0文書
目次
	はじめに
		PostgreSQL™とは?
	PostgreSQL™小史
		バークレイ校POSTGRES™プロジェクト
	Postgres95™
	PostgreSQL™


	規約
	より進んだ情報
	バグレポートガイドライン
		バグの特定
	報告すべきこと
	バグ報告先




	I. チュートリアル
		1. さあ始めましょう
		インストール
	構造的な基本事項
	データベースの作成
	データベースへのアクセス


	2. SQL言語
		はじめに
	概念
	新しいテーブルの作成
	テーブルに行を挿入
	テーブルへの問い合わせ
	テーブル間を結合
	集約関数
	更新
	削除


	3. 高度な諸機能
		はじめに
	ビュー
	外部キー
	トランザクション
	ウィンドウ関数
	継承
	まとめ




	II. SQL言語
		4. SQLの構文
		字句の構造
		識別子とキーワード
	定数
	演算子
	特殊文字
	コメント
	演算子の優先順位


	評価式
		列の参照
	位置パラメータ
	添字
	フィールド選択
	演算子の呼び出し
	関数呼び出し
	集約式
	ウィンドウ関数呼び出し
	型キャスト
	照合順序式
	スカラ副問い合わせ
	配列コンストラクタ
	行コンストラクタ
	式の評価規則


	関数呼び出し
		位置表記の使用
	名前付け表記の使用
	混在表記の利用




	5. データ定義
		テーブルの基本
	デフォルト値
	識別列
	生成列
	制約
		検査制約
	非NULL制約
	一意性制約
	主キー
	外部キー
	排他制約


	システム列
	テーブルの変更
		列の追加
	列の削除
	制約の追加
	制約の削除
	列のデフォルト値の変更
	列のデータ型の変更
	列名の変更
	テーブル名の変更


	権限
	行セキュリティポリシー
	スキーマ
		スキーマの作成
	publicスキーマ
	スキーマ検索パス
	スキーマおよび権限
	システムカタログスキーマ
	使用パターン
	移植性


	継承
		警告


	テーブルのパーティショニング
		概要
	宣言的パーティショニング
	継承を用いたパーティショニング
	パーティション除去
	パーティショニングと制約による除外
	宣言的パーティショニングのベストプラクティス


	外部データ
	その他のデータベースオブジェクト
	依存関係の追跡


	6. データ操作
		データの挿入
	データの更新
	データの削除
	更新された行のデータを返す


	7. 問い合わせ
		概要
	テーブル式
		FROM句
	WHERE句
	GROUP BY句とHAVING句
	GROUPING SETS、CUBE、ROLLUP
	ウィンドウ関数処理


	選択リスト
		選択リスト項目
	列ラベル
	DISTINCT


	問い合わせの結合(UNION, INTERSECT, EXCEPT)
	行の並べ替え(ORDER BY)
	LIMITとOFFSET
	VALUESリスト
	WITH問い合わせ（共通テーブル式）
		WITH内のSELECT
	再帰的問い合わせ
	共通テーブル式内マテリアライゼーション
	WITH内のデータ変更文




	8. データ型
		数値データ型
		整数データ型
	任意の精度を持つ数
	浮動小数点データ型
	連番型


	通貨型
	文字型
	バイナリ列データ型
		byteaのhex書式
	byteaのエスケープ書式


	日付/時刻データ型
		日付/時刻の入力
	日付/時刻の出力
	時間帯
	時間間隔の入力
	時間間隔の出力


	論理値データ型
	列挙型
		列挙型の宣言
	順序
	型の安全性
	実装の詳細


	幾何データ型
		座標点
	直線
	線分
	矩形
	経路
	多角形(ポリゴン)
	円


	ネットワークアドレス型
		inet
	cidr
	inetとcidrデータ型の違い
	macaddr
	macaddr8


	ビット列データ型
	テキスト検索に関する型
		tsvector
	tsquery


	UUID型
	XML型
		XML値の作成
	符号化方式の取扱い
	XML値へのアクセス


	JSONデータ型
		JSONの入出力構文
	JSONドキュメントの設計
	jsonb型用包含演算子と存在演算子
	jsonb インデックス
	jsonbの添字
	変換
	jsonpath型


	配列
		配列型の宣言
	配列の値の入力
	配列へのアクセス
	配列の変更
	配列内の検索
	配列の入出力構文


	複合型
		複合型の宣言
	複合型の値の構成
	複合型へのアクセス
	複合型の変更
	問い合わせでの複合型の使用
	複合型の入出力構文


	範囲型
		組み込みの範囲型と多重範囲型
	例
	閉じた境界と開いた境界
	無限の(境界のない)範囲
	範囲の入出力
	範囲と多重範囲のコンストラクタ
	離散的な範囲型
	新しい範囲型の定義
	インデックス
	範囲の制約


	ドメイン型
	オブジェクト識別子データ型
	pg_lsn型
	疑似データ型


	9. 関数と演算子
		論理演算子
	比較関数および演算子
	算術関数と演算子
	文字列関数と演算子
		format


	バイナリ文字列関数と演算子
	ビット文字列関数と演算子
	パターンマッチ
		LIKE
	SIMILAR TO正規表現
	POSIX正規表現


	データ型書式設定関数
	日付/時刻関数と演算子
		EXTRACTとdate_part
	date_trunc
	date_bin
	AT TIME ZONEとAT LOCAL
	現在の日付/時刻
	遅延実行


	列挙型サポート関数
	幾何関数と演算子
	ネットワークアドレス関数と演算子
	テキスト検索関数と演算子
	UUID関数
	XML関数
		XML内容の生成
	XML述語
	XMLの処理
	XMLにテーブルをマップ


	JSON関数と演算子
		JSONデータの処理と生成
	SQL/JSONパス言語
	SQL/JSON問い合わせ関数
	JSON_TABLE


	シーケンス操作関数
	条件式
		CASE
	COALESCE
	NULLIF
	GREATESTおよびLEAST


	配列関数と演算子
	範囲／多重範囲関数と演算子
	集約関数
	ウィンドウ関数
	マージサポート関数
	副問い合わせ式
		EXISTS
	IN
	NOT IN
	ANY/SOME
	ALL
	単独行に関する比較


	行と配列の比較
		IN
	NOT IN
	ANY/SOME (配列)
	ALL (配列)
	行コンストラクタの比較
	複合型の比較


	集合を返す関数
	システム情報関数と演算子
		セッション情報関数
	アクセス権限照会関数
	スキーマ可視性問い合わせ関数
	システムカタログ情報関数
	オブジェクトの情報とアドレス付関数
	コメント情報関数
	データ有効性検証関数
	トランザクションIDとスナップショット情報関数
	コミット済みトランザクション情報関数
	コントロールデータ関数
	バージョン情報関数
	WAL要約情報関数


	システム管理関数
		構成設定関数
	サーバシグナル送信関数
	バックアップ制御関数
	リカバリ制御関数
	スナップショット同期関数
	レプリケーション管理関数
	データベースオブジェクト管理関数
	インデックス保守関数
	汎用ファイルアクセス関数
	勧告的ロック用関数


	トリガ関数
	イベントトリガ関数
		コマンド側での変更を捕らえる
	DDLコマンドで削除されたオブジェクトの処理
	テーブル書き換えイベントの処理


	統計情報関数
		MCVリストの検査




	10. 型変換
		概要
	演算子
	関数
	値の格納
	UNION、CASEおよび関連する構文
	SELECT出力列


	11. インデックス
		はじめに
	インデックスの種類
		B-Tree
	Hash
	GiST
	SP-GiST
	GIN
	BRIN


	複数列インデックス
	インデックスとORDER BY
	複数のインデックスの組み合わせ
	一意インデックス
	式に対するインデックス
	部分インデックス
	インデックスオンリースキャンとカバリングインデックス
	演算子クラスと演算子族
	インデックスと照合順序
	インデックス使用状況の検証


	12. 全文検索
		はじめに
		文書とは何か?
	基本的なテキスト照合
	設定


	テーブルとインデックス
		テーブルを検索する
	インデックスの作成


	テキスト検索の制御
		文書のパース
	問い合わせのパース
	検索結果のランキング
	結果の強調


	追加機能
		文書の操作
	問い合わせを操作する
	自動更新のためのトリガ
	文書の統計情報の収集


	パーサ
	辞書
		ストップワード
	simple辞書
	同義語辞書
	類語辞書
	Ispell辞書
	Snowball辞書


	設定例
	テキスト検索のテストとデバッグ
		設定のテスト
	パーサのテスト
	辞書のテスト


	テキスト検索に好ましいインデックス種類
	psqlサポート
	制限事項


	13. 同時実行制御
		はじめに
	トランザクションの分離
		リードコミッティド分離レベル
	リピータブルリード分離レベル
	シリアライザブル分離レベル


	明示的ロック
		テーブルレベルロック
	行レベルロック
	ページレベルロック
	デッドロック
	勧告的ロック


	アプリケーションレベルでのデータの一貫性チェック
		シリアライザブルトランザクションを用いた一貫性の強化
	明示的なブロッキングロックを用いた一貫性の強化


	直列化失敗の扱い
	警告
	ロックとインデックス


	14. 性能に関するヒント
		EXPLAINの利用
		EXPLAINの基本
	EXPLAIN ANALYZE
	警告


	プランナで使用される統計情報
		単一列統計情報
	拡張統計情報


	明示的なJOIN句でプランナを制御する
	データベースへのデータ投入
		自動コミットをオフにする
	COPYの使用
	インデックスを削除する
	外部キー制約の削除
	maintenance_work_memを増やす
	max_wal_sizeを増やす
	WALアーカイブ処理とストリーミングレプリケーションの無効化
	最後にANALYZEを実行
	pg_dumpに関するいくつかの注意


	永続性がない設定


	15. パラレルクエリ
		パラレルクエリはどのように動くのか
	どのような時にパラレルクエリは使用できるのか？
	パラレルプラン
		パラレルスキャン
	パラレルジョイン
	パラレル集約
	パラレルアペンド
	パラレルプランに関するヒント


	パラレル安全
		関数と集約のためのパラレルラベル付け






	III. サーバの管理
		16. バイナリからのインストール
	17. ソースコードからインストール
		必要条件
	ソースの入手
	AutoconfとMakeによる構築とインストール
		簡易版
	インストール手順
	configureオプション
	configure環境変数


	Mesonを使った構築とインストール
		簡易版
	インストール手順
	meson setupのオプション
	mesonビルドターゲット


	インストール後の設定作業
		共有ライブラリ
	環境変数


	サポートされるプラットフォーム
	プラットフォーム特有の覚書
		Cygwin
	macOS
	MinGW
	Solaris
	Visual Studio




	18. サーバの準備と運用
		PostgreSQL™ユーザアカウント
	データベースクラスタの作成
		セカンダリファイルシステムの使用
	ファイルシステム


	データベースサーバの起動
		サーバ起動の失敗
	クライアント接続の問題


	カーネルリソースの管理
		共有メモリとセマフォ
	systemd RemoveIPC
	リソースの制限
	Linuxのメモリオーバーコミット
	LinuxのHugePages


	サーバのシャットダウン
	PostgreSQL™クラスタのアップグレード処理
		pg_dumpallを介したデータのアップグレード
	pg_upgradeを使用したアップグレード方法
	レプリケーション経由のアップグレード


	サーバのなりすまし防止
	暗号化オプション
	SSLによる安全なTCP/IP接続
		基本的な設定
	OpenSSLの設定
	クライアント証明書の使用
	サーバにおけるSSL関連ファイルの利用
	証明書の作成


	GSSAPIによる安全なTCP/IP接続
		基本的な設定


	SSHトンネルを使った安全なTCP/IP接続
	WindowsにおけるEvent Logの登録


	19. サーバ設定
		パラメータの設定
		パラメータ名とその値
	設定ファイルによるパラメータ操作
	SQLを通じたパラメータ操作
	シェルによるパラメータ操作
	設定ファイルの内容の管理


	ファイルの場所
	接続と認証
		接続設定
	TCP設定
	認証
	SSL


	資源の消費
		メモリ
	ディスク
	カーネル資源使用
	バックグラウンドライタ
	I/O
	ワーカープロセス


	先行書き込みログ（WAL）
		諸設定
	チェックポイント
	アーカイビング
	リカバリ
	アーカイブからのリカバリ
	リカバリターゲット
	WAL要約


	レプリケーション
		送出サーバ群
	プライマリサーバ
	スタンバイサーバ
	サブスクライバー


	問い合わせ計画
		プランナメソッド設定
	プランナコスト定数
	遺伝的問い合わせオプティマイザ
	その他のプランナオプション


	エラー報告とログ出力
		どこにログを出力するか
	いつログを出力するか
	なにをログに出力するか
	CSV書式のログ出力の利用
	JSON書式のログ出力の利用
	プロセスのタイトル


	実行時統計情報
		累積的な問い合わせ及びインデックスの統計情報
	統計情報の監視


	Vacuum作業
		自動Vacuum作業
	コストに基づくVacuum遅延
	デフォルトの動作
	凍結処理


	クライアント接続デフォルト
		文の動作
	ロケールと書式設定
	共有ライブラリのプリロード
	その他のデフォルト


	ロック管理
	バージョンとプラットフォーム互換性
		以前のPostgreSQLバージョン
	プラットフォームとクライアント互換性


	エラー処理
	設定済みのオプション
	独自のオプション
	開発者向けオプション
	短いオプション


	20. クライアント認証
		pg_hba.confファイル
	ユーザ名マップ
	認証方式
	Trust認証
	パスワード認証
	GSSAPI認証
	SSPI認証
	Ident認証
	Peer認証
	LDAP認証
	RADIUS認証
	証明書認証
	PAM認証
	BSD認証
	OAuth認可／認証
	認証における問題点


	21. データベースロール
		データベースロール
	ロールの属性
	ロールのメンバ資格
	ロールの削除
	定義済みロール
	関数のセキュリティ


	22. データベース管理
		概要
	データベースの作成
	テンプレートデータベース
	データベースの設定
	データベースの削除
	テーブル空間


	23. ローカライゼーション
		ロケールのサポート
		概要
	動作
	ロケールの選択
	ロケールプロバイダ
	ICUロケール
	問題点


	照合順序サポート
		概念
	照合順序の管理
	ICU照合順序カスタム


	文字集合サポート
		サポートされる文字集合
	文字集合の設定
	サーバ・クライアント間の自動文字集合変換
	利用可能な文字集合の変換
	推奨文書




	24. 定常的なデータベース保守作業
		定常的なバキューム作業
		バキューム作業の基本
	ディスク容量の復旧
	プランナ用の統計情報の更新
	可視性マップの更新
	トランザクションIDの周回エラーの防止
	自動バキュームデーモン


	定常的なインデックスの再作成
	ログファイルの保守


	25. バックアップとリストア
		SQLによるダンプ
		ダンプのリストア
	pg_dumpallの使用
	大規模データベースの扱い


	ファイルシステムレベルのバックアップ
	継続的アーカイブとポイントインタイムリカバリ（PITR）
		WALアーカイブの設定
	ベースバックアップの作成
	増分バックアップを作成する
	低レベルAPIを使用したベースバックアップの作成
	継続的アーカイブによるバックアップを使用した復旧
	タイムライン
	ヒントと例
	警告




	26. 高可用性、負荷分散およびレプリケーション
		様々な解法の比較
	ログシッピングスタンバイサーバ
		計画
	スタンバイサーバの動作
	スタンバイサーバのためのプライマリの準備
	スタンバイサーバの設定
	ストリーミングレプリケーション
	レプリケーションスロット
	カスケードレプリケーション
	同期レプリケーション
	スタンバイにおける継続的アーカイビング


	フェイルオーバー
	ホットスタンバイ
		ユーザのための概説
	問い合わせコンフリクトの処理
	管理者のための概説
	ホットスタンバイパラメータリファレンス
	警告




	27. データベース活動状況の監視
		標準的なUnixツール
	累積統計システム
		統計情報収集のための設定
	統計情報の表示
	pg_stat_activity
	pg_stat_replication
	pg_stat_replication_slots
	pg_stat_wal_receiver
	pg_stat_recovery_prefetch
	pg_stat_subscription
	pg_stat_subscription_stats
	pg_stat_ssl
	pg_stat_gssapi
	pg_stat_archiver
	pg_stat_io
	pg_stat_bgwriter
	pg_stat_checkpointer
	pg_stat_wal
	pg_stat_database
	pg_stat_database_conflicts
	pg_stat_all_tables
	pg_stat_all_indexes
	pg_statio_all_tables
	pg_statio_all_indexes
	pg_statio_all_sequences
	pg_stat_user_functions
	pg_stat_slru
	統計情報関数


	ロックの表示
	進捗状況のレポート
		ANALYZEの進捗状況のレポート
	CLUSTERの進捗状況のレポート
	COPYの進捗状況のレポート
	CREATE INDEXの進捗状況のレポート
	VACUUMの進捗状況のレポート
	ベースバックアップの進捗状況のレポート


	動的追跡
		動的追跡のためのコンパイル
	組み込み済みのプローブ
	プローブの利用
	新規プローブの定義


	ディスク使用量の監視
		ディスク使用量の決定
	ディスク容量不足の障害




	28. 信頼性と先行書き込みログ（WAL）
		信頼性
	データチェックサム
		オフラインでのチェックサムの有効化


	先行書き込みログ(WAL)
	非同期コミット
	WALの設定
	WALの内部


	29. 論理レプリケーション
		パブリケーション
		レプリカアイデンティティ


	サブスクリプション
		レプリケーションスロットの管理
	例: 論理レプリケーションの設定
	例: レプリケーションスロットの遅延作成


	論理レプリケーションのフェイルオーバー
	行フィルタ
		行フィルタルール
	式の制限
	UPDATE変換
	パーティション化テーブル
	初期データ同期
	複数行フィルタの統合
	例


	列リスト
		例


	生成列のレプリケーション
	コンフリクト
	制限事項
	アーキテクチャ
		初期スナップショット


	監視
	セキュリティ
	構成設定
		パブリッシャー
	サブスクライバー


	アップグレード
		パブリッシャーのアップグレードの準備
	サブスクライバーのアップグレードの準備
	論理レプリケーションクラスタのアップグレード


	簡単な設定


	30. 実行時コンパイル(JIT)
		JITコンパイルとは何か？
		JITにより高速化される処理
	インライン展開(Inlining)
	最適化


	どんなときにJITを使うべきか？
	設定
	拡張性
		拡張のためのインライン展開サポート
	プラグ可能JITプロバイダ




	31. リグレッションテスト
		テストの実行
		一時的なインストレーションに対するテストの実行
	既存のインストレーションに対するテストの実行
	追加のテストスイート
	ロケールと符号化方式
	カスタムサーバ設定
	追加のテスト


	テストの評価
		エラーメッセージの違い
	ロケールの違い
	日付と時刻の違い
	浮動小数点数の違い
	行の順序の違い
	スタック長の不足
	「乱数」 テスト
	設定パラメータ


	各種の比較用ファイル
	TAPテスト
		環境変数


	テストが網羅する範囲の検証
		AutoconfとMakeでのカバレッジ
	Mesonでのカバレッジ






	IV. クライアントインタフェース
		32. libpq — C ライブラリ
		データベース接続制御関数
		接続文字列
	パラメータキーワード


	接続状態関数
	コマンド実行関数
		主要な関数
	問い合わせ結果の情報の取り出し
	他の結果情報の取り出し
	SQLコマンドに含めるための文字列のエスケープ処理


	非同期コマンドの処理
	パイプラインモード
		パイプラインモードの使用
	パイプラインモード関連関数
	いつパイプラインモードを使用するか


	問い合わせ結果をチャンクとして取り出す
	処理中の問い合わせのキャンセル
		キャンセル要求の送信関数
	キャンセル要求を送るための廃れた関数


	近道インタフェース
	非同期通知
	COPYコマンド関連関数
		COPYデータ送信用関数
	COPYデータ受信用関数
	廃れたCOPY用関数


	制御関数
	雑多な関数
	警告処理
	イベントシステム
		イベントの種類
	イベントコールバックプロシージャ
	イベントサポート関数
	イベント事例


	環境変数
	パスワードファイル
	接続サービスファイル
	接続パラメータのLDAP検索
	SSLサポート
		サーバ証明書のクライアント検証
	クライアント証明書
	異なるモードで提供される保護
	SSLクライアントファイル使用方法
	SSLライブラリの初期化


	OAuthサポート
		認証データフック
	デバッグと開発者用の設定


	スレッド化プログラムの振舞い
	libpqプログラムの構築
	サンプルプログラム


	33. ラージオブジェクト
		はじめに
	実装機能
	クライアントインタフェース
		ラージオブジェクトの作成
	ラージオブジェクトのインポート
	ラージオブジェクトのエクスポート
	既存のラージオブジェクトのオープン
	ラージオブジェクトへのデータの書き込み
	ラージオブジェクトからのデータの読み込み
	ラージオブジェクトのシーク
	ラージオブジェクトのシーク位置の入手
	ラージオブジェクトを切り詰める
	ラージオブジェクト記述子を閉じる
	ラージオブジェクトの削除


	サーバ側の関数
	サンプルプログラム


	34. ECPG — C言語による埋め込みSQL
		概念
	データベース接続の管理
		データベースサーバへの接続
	接続の選択
	接続を閉じる


	SQLコマンドの実行
		SQL文の実行
	カーソルの使用
	トランザクションの管理
	プリペアド文


	ホスト変数の使用
		概要
	宣言セクション
	クエリ実行結果の受け取り
	データ型の対応
	非プリミティブSQLデータ型の扱い方
	指示子


	動的SQL
		結果セットを伴わないSQL文の実行
	入力パラメータを伴うSQL文の実行
	結果セットを返却するSQL文の実行


	pgtypes ライブラリ
		文字列
	numeric 型
	日付型
	timestamp型
	interval型
	decimal型
	pgtypeslibのerrno値
	pgtypeslibの特殊な定数


	記述子領域の使用
		名前付きSQL記述子領域
	SQLDA記述子領域


	エラー処理
		コールバックの設定
	sqlca
	SQLSTATE対SQLCODE


	プリプロセッサ指示子
		ファイルのインクルード
	defineおよびundef指示子
	ifdef、ifndef、elif、else、endif指示子


	埋め込みSQLプログラムの処理
	ライブラリ関数
	ラージオブジェクト
	C++アプリケーション
		ホスト変数のスコープ
	外部のCモジュールを用いたC++アプリケーションの開発


	埋め込みSQLコマンド
	Informix™互換モード
		追加の型
	追加または存在しない埋め込みSQL文
	Informix互換SQLDA記述子領域
	追加関数
	追加の定数


	Oracle™互換モード
	内部


	35. 情報スキーマ
		スキーマ
	データ型
	information_schema_catalog_name
	administrable_role_​authorizations
	applicable_roles
	attributes
	character_sets
	check_constraint_routine_usage
	check_constraints
	collations
	collation_character_set_​applicability
	column_column_usage
	column_domain_usage
	column_options
	column_privileges
	column_udt_usage
	columns
	constraint_column_usage
	constraint_table_usage
	data_type_privileges
	domain_constraints
	domain_udt_usage
	domains
	element_types
	enabled_roles
	foreign_data_wrapper_options
	foreign_data_wrappers
	foreign_server_options
	foreign_servers
	foreign_table_options
	foreign_tables
	key_column_usage
	parameters
	referential_constraints
	role_column_grants
	role_routine_grants
	role_table_grants
	role_udt_grants
	role_usage_grants
	routine_column_usage
	routine_privileges
	routine_routine_usage
	routine_sequence_usage
	routine_table_usage
	routines
	schemata
	sequences
	sql_features
	sql_implementation_info
	sql_parts
	sql_sizing
	table_constraints
	table_privileges
	tables
	transforms
	triggered_update_columns
	triggers
	udt_privileges
	usage_privileges
	user_defined_types
	user_mapping_options
	user_mappings
	view_column_usage
	view_routine_usage
	view_table_usage
	views




	V. サーバプログラミング
		36. SQLの拡張
		拡張の作用法
	PostgreSQL™の型システム
		基本型
	コンテナ型
	ドメイン
	疑似データ型
	多様型


	ユーザ定義関数
	ユーザ定義プロシージャ
	問い合わせ言語（SQL）関数
		SQL関数用の引数
	基本型を使用するSQL関数
	複合型を使用するSQL関数
	出力パラメータを持つSQL関数
	出力パラメータを持つSQLプロシージャ
	可変長引数を取るSQL関数
	引数にデフォルト値を持つSQL関数
	テーブルソースとしてのSQL関数
	集合を返すSQL関数
	TABLEを返すSQL関数
	多様SQL関数
	照合順序を持つSQL関数


	関数のオーバーロード
	関数の変動性分類
	手続き型言語関数
	内部関数
	C言語関数
		動的ロード
	C言語関数における基本型
	Version 1 呼び出し規約
	コードの作成
	動的にロードされる関数のコンパイルとリンク
	サーバAPIとABIの安定性に関する手引
	複合型引数
	行（複合型）を返す
	集合を返す
	引数と戻り値の多様性
	共有メモリ
	LWLocks
	カスタム待機イベント
	インジェクションポイント
	カスタム累積統計
	拡張へのC++の利用


	関数最適化に関する情報
	ユーザ定義の集約
		移動集約モード
	多様引数と可変長引数集約
	順序集合の集約
	部分集約
	集約サポート関数


	ユーザ定義の型
		TOASTの考慮


	ユーザ定義の演算子
	演算子最適化に関する情報
		COMMUTATOR
	NEGATOR
	RESTRICT
	JOIN
	HASHES
	MERGES


	インデックス拡張機能へのインタフェース
		インデックスメソッドと演算子クラス
	インデックスメソッドのストラテジ
	インデックスメソッドのサポートルーチン
	例
	演算子クラスと演算子族
	システムの演算子クラスに対する依存性
	順序付け演算子
	演算子クラスの特殊な機能


	関連するオブジェクトを拡張としてパッケージ化
		拡張のファイル
	拡張の再配置性
	拡張設定テーブル
	拡張の更新
	更新スクリプトを利用した拡張のインストール
	拡張のためのセキュリティに関する考慮事項
	拡張の例


	拡張構築基盤


	37. トリガ
		トリガ動作の概要
	データ変更の可視性
	Cによるトリガ関数の作成
	完全なトリガの例


	38. イベントトリガ
		イベントトリガ動作の概要
		login
	ddl_command_start
	ddl_command_end
	sql_drop
	table_rewrite
	中断したトランザクションでのイベントトリガ
	イベントトリガの作成


	C言語によるイベントトリガ関数の書き方
	完全なイベントトリガの例
	テーブル書き換えイベントトリガの例
	データベースログインイベントトリガの例


	39. ルールシステム
		問い合わせツリーとは
	ビューとルールシステム
		SELECTルールの動き
	非SELECT文のビュールール
	PostgreSQL™におけるビューの能力
	ビューの更新について


	マテリアライズドビュー
	INSERT、UPDATE、DELETEについてのルール
		更新ルールの動作
	ビューとの協調


	ルールと権限
	ルールおよびコマンドの状態
	ルール対トリガ


	40. 手続き言語
		手続き言語のインストール


	41. PL/pgSQL — SQL手続き言語
		概要
		PL/pgSQLを使用することの利点
	引数と結果データ型のサポート


	PL/pgSQLの構造
	宣言
		関数引数の宣言
	ALIAS
	型のコピー
	行型
	レコード型
	PL/pgSQL変数の照合


	式
	基本的な文
		代入
	SQLコマンドの実行
	1行の結果を返すコマンドの実行
	動的コマンドの実行
	結果ステータスの取得
	まったく何もしない


	制御構造
		関数からの復帰
	プロシージャからの戻り
	プロシージャを呼び出す
	条件分岐
	単純なループ
	問い合わせ結果による繰り返し
	配列を巡回
	エラーの捕捉
	実行位置情報の取得


	カーソル
		カーソル変数の宣言
	カーソルを開く
	カーソルの使用
	カーソル結果に対するループ


	トランザクション制御
	エラーとメッセージ
		エラーとメッセージの報告
	アサート検査


	トリガ関数
		データ変更によるトリガ
	イベントによるトリガ


	PL/pgSQLの秘訣
		変数置換
	計画のキャッシュ


	PL/pgSQLによる開発向けのヒント
		引用符の扱い
	コンパイル時と実行時の付加的チェック


	Oracle™ PL/SQLからの移植
		移植例
	その他の注意事項
	付録




	42. PL/Tcl — Tcl手続き言語
		概要
	PL/Tcl関数と引数
	PL/Tclにおけるデータの値
	PL/Tclにおけるグローバルデータ
	PL/Tclからのデータベースアクセス
	PL/Tclのトリガ関数
	PL/Tclにおけるイベントトリガ関数
	PL/Tclのエラー処理
	PL/Tclにおける明示的サブトランザクション
	トランザクション制御
	PL/Tclの設定
	Tclプロシージャ名


	43. PL/Perl — Perl手続き言語
		PL/Perl関数と引数
	PL/Perlにおけるデータ値
	組み込み関数
		PL/Perlからのデータベースアクセス
	PL/Perlのユーティリティ関数


	PL/Perlにおけるグローバルな値
	信頼されたPL/Perlおよび信頼されないPL/Perl
	PL/Perlトリガ
	PL/Perlイベントトリガ
	PL/Perlの内部
		設定
	制限および存在しない機能




	44. PL/Python — Python手続き言語
		PL/Python関数
	データ値
		データ型の対応付け
	NullとNone
	配列、リスト
	複合型
	集合を返す関数


	データの共有
	匿名コードブロック
	トリガ関数
	データベースアクセス
		データベースアクセス関数
	エラーの捕捉


	明示的サブトランザクション
		サブトランザクションのコンテキスト管理


	トランザクション制御
	ユーティリティ関数
	Python 2対Python 3
	環境変数


	45. サーバプログラミングインタフェース
		インタフェース関数
	インタフェースサポート関数
	メモリ管理
	トランザクション制御
	データ変更の可視性
	例


	46. バックグラウンドワーカープロセス
	47. ロジカルデコーディング
		ロジカルデコーディングの例
	ロジカルデコーディングのコンセプト
		ロジカルデコーディング
	レプリケーションスロット
	レプリケーションスロットの同期
	出力プラグイン
	スナップショットのエクスポート


	ストリーミングレプリケーションプロトコルインタフェース
	ロジカルデコーディングSQLインタフェース
	ロジカルデコーディング関連のシステムカタログ
	ロジカルデコーディングの出力プラグイン
		初期化関数
	機能
	出力モード
	出力プラグインコールバック
	出力生成関数


	ロジカルデコーディング出力ライタ
	ロジカルデコーディングにおける同期レプリケーションのサポート
		概要
	警告


	ロジカルデコーディングための大規模トランザクションのストリーミング
	ロジカルデコーディングための2相コミット


	48. レプリケーション進捗の追跡
	49. アーカイブモジュール
		初期化関数
	アーカイブモジュールコールバック
		スタートアップコールバック
	チェックコールバック
	アーカイブコールバック
	シャットダウンコールバック




	50. OAuth検証器モジュール
		検証器モジュールを安全に設計する
		検証器の役割
	一般的なコーディングガイドライン
	ユーザの認可（ユーザマップ移譲）


	初期化関数
	OAuth検証器コールバック
		スタートアップコールバック
	検証コールバック
	シャットダウンコールバック






	VI. リファレンス
		I. SQLコマンド
		ABORT — 現在のトランザクションをアボートする
	ALTER AGGREGATE — 集約関数定義を変更する
	ALTER COLLATION — 照合順序の定義を変更する
	ALTER CONVERSION — 変換の定義を変更する
	ALTER DATABASE — データベースを変更する
	ALTER DEFAULT PRIVILEGES — デフォルトのアクセス権限を定義する
	ALTER DOMAIN — 

ドメイン定義を変更する
  
	ALTER EVENT TRIGGER — イベントトリガの定義を変更する
	ALTER EXTENSION — 

拡張の定義を変更する
  
	ALTER FOREIGN DATA WRAPPER — 外部データラッパーの定義を変更する
	ALTER FOREIGN TABLE — 外部テーブルの定義を変更する
	ALTER FUNCTION — 関数定義を変更する
	ALTER GROUP — ロールの名前またはメンバ資格を変更する
	ALTER INDEX — インデックス定義を変更する
	ALTER LANGUAGE — 手続き言語の定義を変更する
	ALTER LARGE OBJECT — ラージオブジェクトの定義を変更する
	ALTER MATERIALIZED VIEW — マテリアライズドビューの定義を変更する
	ALTER OPERATOR — 演算子の定義を変更する
	ALTER OPERATOR CLASS — 演算子クラスの定義を変更する
	ALTER OPERATOR FAMILY — 演算子族の定義を変更する
	ALTER POLICY — 行単位のセキュリティポリシーの定義を変更する
	ALTER PROCEDURE — プロシージャの定義を変更する
	ALTER PUBLICATION — パブリケーションの定義を変更する
	ALTER ROLE — データベースロールを変更する
	ALTER ROUTINE — ルーチンの定義を変更する
	ALTER RULE — ルールの定義を変更する
	ALTER SCHEMA — スキーマ定義を変更する
	ALTER SEQUENCE — 

   シーケンスジェネレータの定義を変更する
  
	ALTER SERVER — 外部サーバの定義を変更する
	ALTER STATISTICS — 

拡張統計オブジェクトの定義を変更する
  
	ALTER SUBSCRIPTION — サブスクリプションの定義を変更する
	ALTER SYSTEM — サーバの設定パラメータを変更する
	ALTER TABLE — テーブル定義を変更する
	ALTER TABLESPACE — テーブル空間の定義を変更する
	ALTER TEXT SEARCH CONFIGURATION — テキスト検索設定の定義を変更する
	ALTER TEXT SEARCH DICTIONARY — テキスト検索辞書の定義を変更する
	ALTER TEXT SEARCH PARSER — テキスト検索パーサの定義を変更する
	ALTER TEXT SEARCH TEMPLATE — テキスト検索テンプレートの定義を変更する
	ALTER TRIGGER — トリガ定義を変更する
	ALTER TYPE — 

型定義を変更する
  
	ALTER USER — データベースロールを変更する
	ALTER USER MAPPING — ユーザマップの定義を変更する
	ALTER VIEW — ビュー定義を変更する
	ANALYZE — データベースに関する統計を収集する
	BEGIN — トランザクションブロックを開始する
	CALL — プロシージャを呼び出す
	CHECKPOINT — 先行書き込みログ（WAL）のチェックポイントを強制的に実行する
	CLOSE — カーソルを閉じる
	CLUSTER — インデックスに従ってテーブルをクラスタ化する
	COMMENT — オブジェクトのコメントを定義する、または変更する
	COMMIT — 現在のトランザクションをコミットする
	COMMIT PREPARED — 二相コミット用に事前に準備されたトランザクションをコミットする
	COPY — ファイルとテーブルの間でデータをコピーする
	CREATE ACCESS METHOD — 新しいアクセスメソッドを定義する
	CREATE AGGREGATE — 新しい集約関数を定義する
	CREATE CAST — 新しいキャストを定義する
	CREATE COLLATION — 新しい照合順序を定義する
	CREATE CONVERSION — 新しい符号化方式変換を定義する
	CREATE DATABASE — 新しいデータベースを作成する
	CREATE DOMAIN — 新しいドメインを定義する
	CREATE EVENT TRIGGER — 新しいイベントトリガを定義する
	CREATE EXTENSION — 拡張をインストールする
	CREATE FOREIGN DATA WRAPPER — 新しい外部データラッパーを定義する
	CREATE FOREIGN TABLE — 新しい外部テーブルを定義する
	CREATE FUNCTION — 新しい関数を定義する
	CREATE GROUP — 新しいデータベースロールを定義する
	CREATE INDEX — 
新しいインデックスを定義する
  
	CREATE LANGUAGE — 新しい手続き言語を定義する
	CREATE MATERIALIZED VIEW — 新しいマテリアライズドビューを定義する
	CREATE OPERATOR — 
新しい演算子を定義する
  
	CREATE OPERATOR CLASS — 
   新しい演算子クラスを定義する
  
	CREATE OPERATOR FAMILY — 新しい演算子族を定義する
	CREATE POLICY — テーブルに新しい行単位のセキュリティポリシーを定義する
	CREATE PROCEDURE — 新しいプロシージャを定義する
	CREATE PUBLICATION — 新しいパブリケーションを定義する
	CREATE ROLE — 新しいデータベースロールを定義する
	CREATE RULE — 
新しい書き換えルールを定義する
  
	CREATE SCHEMA — 新しいスキーマを定義する
	CREATE SEQUENCE — 新しいシーケンスジェネレータを定義する
	CREATE SERVER — 新しい外部サーバを定義する
	CREATE STATISTICS — 拡張統計情報を定義する
	CREATE SUBSCRIPTION — 新しいサブスクリプションを定義する
	CREATE TABLE — 新しいテーブルを定義する
	CREATE TABLE AS — 問い合わせの結果によって新しいテーブルを定義する
	CREATE TABLESPACE — 新しいテーブル空間を定義する
	CREATE TEXT SEARCH CONFIGURATION — 新しいテキスト検索設定を定義する
	CREATE TEXT SEARCH DICTIONARY — 新しいテキスト検索辞書を定義する
	CREATE TEXT SEARCH PARSER — 新しいテキスト検索パーサを定義する
	CREATE TEXT SEARCH TEMPLATE — 新しいテキスト検索テンプレートを定義する
	CREATE TRANSFORM — 新しい変換を定義する
	CREATE TRIGGER — 新しいトリガを定義する
	CREATE TYPE — 新しいデータ型を定義する
	CREATE USER — 新しいデータベースロールを定義する
	CREATE USER MAPPING — 外部サーバのユーザマップを新しく定義する
	CREATE VIEW — 新しいビューを定義する
	DEALLOCATE — プリペアド文の割り当てを解除する
	DECLARE — カーソルを定義する
	DELETE — テーブルから行を削除する
	DISCARD — セッションの状態を破棄する
	DO — 無名コードブロックを実行する
	DROP ACCESS METHOD — アクセスメソッドを削除する
	DROP AGGREGATE — 集約関数を削除する
	DROP CAST — キャストを削除する
	DROP COLLATION — 照合順序を削除する
	DROP CONVERSION — 符号化方式変換を削除する
	DROP DATABASE — データベースを削除する
	DROP DOMAIN — ドメインを削除する
	DROP EVENT TRIGGER — イベントトリガを削除する
	DROP EXTENSION — 拡張を削除する
	DROP FOREIGN DATA WRAPPER — 外部データラッパーを削除する
	DROP FOREIGN TABLE — 外部テーブルを削除する
	DROP FUNCTION — 関数を削除する
	DROP GROUP — データベースロールを削除する
	DROP INDEX — インデックスを削除する
	DROP LANGUAGE — 手続き言語を削除する
	DROP MATERIALIZED VIEW — マテリアライズドビューを削除する
	DROP OPERATOR — 演算子を削除する
	DROP OPERATOR CLASS — 演算子クラスを削除する
	DROP OPERATOR FAMILY — 演算子族を削除する
	DROP OWNED — データベースロールにより所有されるデータベースオブジェクトを削除する
	DROP POLICY — テーブルから行単位のセキュリティポリシーを削除する
	DROP PROCEDURE — プロシージャを削除する
	DROP PUBLICATION — パブリケーションを削除する
	DROP ROLE — データベースロールを削除する
	DROP ROUTINE — ルーチンを削除する
	DROP RULE — 書き換えルールを削除する
	DROP SCHEMA — スキーマを削除する
	DROP SEQUENCE — シーケンスを削除する
	DROP SERVER — 外部サーバの記述子を削除する
	DROP STATISTICS — 拡張統計を削除する
	DROP SUBSCRIPTION — サブスクリプションを削除する
	DROP TABLE — テーブルを削除する
	DROP TABLESPACE — テーブル空間を削除する
	DROP TEXT SEARCH CONFIGURATION — テキスト検索設定を削除する
	DROP TEXT SEARCH DICTIONARY — テキスト検索辞書を削除する
	DROP TEXT SEARCH PARSER — テキスト検索パーサを削除する
	DROP TEXT SEARCH TEMPLATE — テキスト検索テンプレートを削除する
	DROP TRANSFORM — 変換を削除する
	DROP TRIGGER — トリガを削除する
	DROP TYPE — データ型を削除する
	DROP USER — データベースロールを削除する
	DROP USER MAPPING — 外部サーバ用のユーザマップを削除する
	DROP VIEW — ビューを削除する
	END — 現在のトランザクションをコミットする
	EXECUTE — 
   プリペアド文を実行する
  
	EXPLAIN — 問い合わせ文の実行計画を表示する
	FETCH — カーソルを使用して問い合わせから行を取り出す
	GRANT — アクセス権限を定義する
	IMPORT FOREIGN SCHEMA — 外部サーバからテーブル定義をインポートする
	INSERT — テーブルに新しい行を作成する
	LISTEN — 通知を監視する
	LOAD — 共有ライブラリファイルの読み込みを行う
	LOCK — テーブルをロックする
	MERGE — テーブルの行を条件付きでINSERT、UPDATE、DELETEする
	MOVE — カーソルの位置を決める
	NOTIFY — 通知を生成する
	PREPARE — 実行する文を準備する
	PREPARE TRANSACTION — 二相コミット用に現在のトランザクションを準備する
	REASSIGN OWNED — あるデータベースロールにより所有されたデータベースオブジェクトの所有権を変更する
	REFRESH MATERIALIZED VIEW — マテリアライズドビューの内容を置換する
	REINDEX — インデックスを再構築する
	RELEASE SAVEPOINT — 設定済みのセーブポイントを解放する
	RESET — 実行時パラメータの値をデフォルト値に戻す
	REVOKE — アクセス権限を取り消す
	ROLLBACK — 現在のトランザクションをアボートする
	ROLLBACK PREPARED — 二相コミット用に事前に準備されたトランザクションを取り消す
	ROLLBACK TO SAVEPOINT — セーブポイントまでロールバックする
	SAVEPOINT — 現在のトランザクション内に新規にセーブポイントを定義する
	SECURITY LABEL — オブジェクトに適用するセキュリティラベルを定義または変更する
	SELECT — テーブルもしくはビューから行を検索する
	SELECT INTO — 問い合わせの結果からの新しいテーブルを定義する
	SET — 実行時パラメータを変更する
	SET CONSTRAINTS — 現在のトランザクションの制約検査のタイミングを設定する
	SET ROLE — 現在のセッションにおける現在のユーザ識別子を設定する
	SET SESSION AUTHORIZATION — セッションのユーザ識別子、現在のセッションの現在のユーザ識別子を設定する
	SET TRANSACTION — 現在のトランザクションの特性を設定する
	SHOW — 実行時パラメータの値を表示する
	START TRANSACTION — トランザクションブロックを開始する
	TRUNCATE — 1テーブルまたはテーブル群を空にする
	UNLISTEN — 通知の監視を停止する
	UPDATE — テーブルの行を更新する
	VACUUM — 
データベースの不要領域の回収とデータベースの解析（オプション）を行う

	VALUES — 行セットを計算する


	II. PostgreSQLクライアントアプリケーション
		clusterdb — PostgreSQL™データベースをクラスタ化する
	createdb — 新しいPostgreSQL™データベースを作成する
	createuser — 新しいPostgreSQL™のユーザアカウントを定義する
	dropdb — PostgreSQL™データベースを削除する
	dropuser — PostgreSQL™のユーザアカウントを削除する
	ecpg — 埋め込みSQL用Cプリプロセッサ
	pg_amcheck — 一つ以上のPostgreSQL™データベースに破損がないかどうかを検査する
	pg_basebackup — PostgreSQL™クラスタのベースバックアップを取得する
	pgbench — PostgreSQL™に対してベンチマーク試験を行う
	pg_combinebackup — 増分バックアップと依存するバックアップ群からフルバックアップを再構築する
	pg_config — インストールしたバージョンのPostgreSQL™に関する情報を提供する
	pg_dump — 

PostgreSQL™データベースをSQLスクリプトまたは他の形式にエクスポートする
  
	pg_dumpall — PostgreSQL™のデータベースクラスタをスクリプトファイルへ抽出する
	pg_isready — PostgreSQL™サーバの接続状態を検査する
	pg_receivewal — PostgreSQL™サーバから先行書き込みログ（WAL）をストリームする
	pg_recvlogical — PostgreSQL™のストリームのロジカルデコーディングを制御する
	pg_restore — 

pg_dumpによって作成されたアーカイブファイルからPostgreSQL™データベースをリストアする
  
	pg_verifybackup — PostgreSQL™クラスタのベースバックアップの完全性を確認する
	psql — 

      PostgreSQL™の対話的ターミナル
    
	reindexdb — PostgreSQL™データベースのインデックスを再作成する
	vacuumdb — PostgreSQL™データベースの不要領域の回収と解析を行う


	III. PostgreSQLサーバアプリケーション
		initdb — PostgreSQL™のデータベースクラスタを新しく作成する
	pg_archivecleanup — PostgreSQL™ WALアーカイブファイルを消去する
	pg_checksums — PostgreSQL™データベースクラスタのデータチェックサムを有効化、無効化、あるいは検査する
	pg_controldata — PostgreSQL™データベースクラスタの制御情報を表示する
	pg_createsubscriber — 物理レプリカを新しい論理レプリカに変換する
	pg_ctl — PostgreSQL™サーバを初期化、起動、停止、制御する
	pg_resetwal — PostgreSQL™データベースクラスタの先行書き込みログ（WAL）やその他の制御情報を初期化する
	pg_rewind — PostgreSQL™のデータディレクトリを、そこから派生した他のデータディレクトリと同期する
	pg_test_fsync — PostgreSQL™の最も高速なwal_sync_methodを決定する
	pg_test_timing — 時間計測のオーバーヘッドを測定する
	pg_upgrade — PostgreSQL™サーバインスタンスをアップグレードする
	pg_waldump — PostgreSQL™データベースクラスタの先行書き込みログ（WAL）を可読性が高い表現で表示する
	pg_walsummary — WAL要約ファイルの内容を表示する
	postgres — 
PostgreSQL™データベースサーバ





	VII. 内部情報
		51. PostgreSQL内部の概要
		問い合わせの経路
	接続の確立
	構文解析過程
		パーサ
	書き換えプロセス


	PostgreSQL™ルールシステム
	プランナ/オプティマイザ
		実行可能な計画の生成


	エグゼキュータ


	52. システムカタログ
		概要
	pg_aggregate
	pg_am
	pg_amop
	pg_amproc
	pg_attrdef
	pg_attribute
	pg_authid
	pg_auth_members
	pg_cast
	pg_class
	pg_collation
	pg_constraint
	pg_conversion
	pg_database
	pg_db_role_setting
	pg_default_acl
	pg_depend
	pg_description
	pg_enum
	pg_event_trigger
	pg_extension
	pg_foreign_data_wrapper
	pg_foreign_server
	pg_foreign_table
	pg_index
	pg_inherits
	pg_init_privs
	pg_language
	pg_largeobject
	pg_largeobject_metadata
	pg_namespace
	pg_opclass
	pg_operator
	pg_opfamily
	pg_parameter_acl
	pg_partitioned_table
	pg_policy
	pg_proc
	pg_publication
	pg_publication_namespace
	pg_publication_rel
	pg_range
	pg_replication_origin
	pg_rewrite
	pg_seclabel
	pg_sequence
	pg_shdepend
	pg_shdescription
	pg_shseclabel
	pg_statistic
	pg_statistic_ext
	pg_statistic_ext_data
	pg_subscription
	pg_subscription_rel
	pg_tablespace
	pg_transform
	pg_trigger
	pg_ts_config
	pg_ts_config_map
	pg_ts_dict
	pg_ts_parser
	pg_ts_template
	pg_type
	pg_user_mapping


	53. システムビュー
		概要
	pg_aios
	pg_available_extensions
	pg_available_extension_versions
	pg_backend_memory_contexts
	pg_config
	pg_cursors
	pg_file_settings
	pg_group
	pg_hba_file_rules
	pg_ident_file_mappings
	pg_indexes
	pg_locks
	pg_matviews
	pg_policies
	pg_prepared_statements
	pg_prepared_xacts
	pg_publication_tables
	pg_replication_origin_status
	pg_replication_slots
	pg_roles
	pg_rules
	pg_seclabels
	pg_sequences
	pg_settings
	pg_shadow
	pg_shmem_allocations
	pg_shmem_allocations_numa
	pg_stats
	pg_stats_ext
	pg_stats_ext_exprs
	pg_tables
	pg_timezone_abbrevs
	pg_timezone_names
	pg_user
	pg_user_mappings
	pg_views
	pg_wait_events


	54. フロントエンド/バックエンドプロトコル
		概要
		メッセージ処理の概要
	拡張問い合わせの概要
	書式と書式コード
	プロトコルバージョン


	メッセージの流れ
		開始
	簡易問い合わせ
	拡張問い合わせ
	パイプライン化
	関数呼び出し
	COPY操作
	非同期操作
	処理中のリクエストの取り消し
	終了
	SSLセッション暗号化
	GSSAPIセッション暗号化


	SASL認証
		SCRAM-SHA-256認証
	OAUTHBEARER認証


	ストリーミングレプリケーションプロトコル
	論理ストリーミングレプリケーションのプロトコル
		論理ストリーミングレプリケーションのパラメータ
	論理レプリケーションのプロトコルのメッセージ
	論理レプリケーションのプロトコルのメッセージフロー


	メッセージのデータ型
	メッセージの書式
	エラーおよび警報メッセージフィールド
	論理レプリケーションのメッセージ書式
	プロトコル2.0からの変更点の要約


	55. PostgreSQLコーディング規約
		書式
	サーバ内部からのエラーの報告
	エラーメッセージのスタイルガイド
	その他のコーディング規約


	56. 各国語サポート
		翻訳者へ
		必要条件
	概念
	メッセージカタログの作成と保守
	POファイルの編集


	プログラマへ
		仕組み
	メッセージ記述の指針




	57. 手続き言語ハンドラの作成
	58. 外部データラッパーの作成
		外部データラッパー関数
	外部データラッパーのコールバックルーチン
		外部テーブルスキャンのためのFDWルーチン
	外部テーブルの結合をスキャンするためのFDWルーチン
	スキャン/結合後の処理をプラン生成するためのFDWルーチン
	外部テーブル更新のためのFDWルーチン
	TRUNCATEのためのFDWルーチン
	行ロックのためのFDWルーチン
	EXPLAINのためのFDWルーチン
	ANALYZEのためのFDWルーチン
	IMPORT FOREIGN SCHEMAのためのFDWルーチン
	パラレル実行のためのFDWルーチン
	非同期実行のためのFDWルーチン
	パスの再パラメータ化のためのFDWルーチン


	外部データラッパーヘルパ関数
	外部データラッパーの問い合わせプラン作成
	外部データラッパーでの行ロック


	59. テーブルサンプリングメソッドの書き方
		サンプリングメソッドサポート関数


	60. カスタムスキャンプロバイダの作成
		カスタムスキャンパスの作成
		カスタムスキャンパスのコールバック


	カスタムスキャン計画の作成
		カスタムスキャン計画のコールバック


	カスタムスキャンの実行
		カスタムスキャン実行のコールバック




	61. 遺伝的問い合わせオプティマイザ
		複雑な最適化問題としての問い合わせ処理
	遺伝的アルゴリズム
	PostgreSQLの遺伝的問い合わせ最適化（GEQO）
		GEQOを使用した計画候補の生成
	PostgreSQL™ GEQOの今後の実装作業


	さらに深く知るには


	62. テーブルアクセスメソッドのインタフェース定義
	63. インデックスアクセスメソッドのインタフェース定義
		インデックスの基本的API構造
	インデックスアクセスメソッド関数
	インデックススキャン
	インデックスのロック処理に関する検討
	インデックス一意性検査
	インデックスコスト推定関数


	64. 拡張機能の先行書き込みログ（WAL）
		汎用WALレコード
	カスタムWALリソースマネージャ


	65. 組み込みインデックスアクセスメソッド
		B-Treeインデックス
		はじめに
	B-Tree演算子クラスの振る舞い
	B-Treeサポート関数
	実装


	GiSTインデックス
		はじめに
	組み込み演算子クラス
	拡張性
	実装
	例


	SP-GiSTインデックス
		はじめに
	組み込み演算子クラス
	拡張性
	実装
	例


	GINインデックス
		はじめに
	組み込み演算子クラス
	拡張性
	実装
	GINの小技
	制限事項
	例


	BRINインデックス
		はじめに
	組み込み演算子クラス
	拡張性


	ハッシュインデックス
		概要
	実装




	66. データベースの物理的な格納
		データベースファイルのレイアウト
	TOAST
		行外ディスク上のTOAST格納
	行外インメモリのTOAST格納


	空き領域マップ
	可視性マップ
	初期化フォーク
	データベースページのレイアウト
		テーブル行のレイアウト


	ヒープ専用タプル(HOT)


	67. トランザクション処理
		トランザクションと識別子
	トランザクションとロック
	サブトランザクション
	2相トランザクション


	68. システムカタログの宣言と初期内容
		システムカタログの宣言ルール
	システムカタログ初期データ
		データファイル形式
	OIDの割当
	OID参照検索
	配列型の自動作成
	データファイルの編集方法


	BKIファイル形式
	BKIコマンド
	BKIファイルのブートストラップの構成
	BKIの例


	69. プランナは統計情報をどのように使用するか
		行数推定の例
	多変量統計の例
		関数従属性
	多変量N個別値計数
	MCVリスト


	プランナの統計情報とセキュリティ


	70. バックアップマニフェスト書式
		バックアップマニフェストの最上位レベルオブジェクト
	バックアップマニフェストのファイルオブジェクト
	バックアップマニフェストのWAL範囲オブジェクト




	VIII. 付録
		A. PostgreSQL™エラーコード
	B. 日付/時刻のサポート
		日付/時刻入力の解釈
	不正あるいは曖昧なタイムスタンプの扱い
	日付/時刻キーワード
	日付/時刻設定ファイル
	POSIX時間帯の指定
	単位の歴史
	ユリウス日(Julian Date)


	C. SQLキーワード
	D. SQLへの準拠
		サポートされている機能
	サポートされていない機能
	XMLの制限とSQL/XMLへの適合
		問い合わせはXPath 1.0に限定される
	その他の実装の制限




	E. リリースノート
		リリース18
		概要
	バージョン18への移行
	変更点
	謝辞


	以前のリリース


	F. 追加で提供されるモジュールと拡張
		amcheck — テーブルとインデックスの一貫性を検査するツール
		関数
	オプションheapallindexed検証
	amcheckを効果的に使う
	破損の修復


	auth_delay — 認証エラー時に一時停止
		設定パラメータ
	作者


	auto_explain — 低速な問い合わせ実行計画のログ
		設定パラメータ
	例
	作者


	basebackup_to_shell — pg_basebackupモジュール"shell"の例
		設定パラメータ
	作者


	basic_archive — WALアーカイブモジュールの例
		設定パラメータ
	注釈
	作者


	bloom — ブルームフィルタインデックスアクセスメソッド
		パラメータ
	例
	演算子クラスインタフェース
	制限事項
	作者


	btree_gin — GIN演算子クラスとB-tree動作
		使用例
	作者


	btree_gist — GiST演算子クラスとB-tree動作
		使用例
	作者


	citext — 大文字小文字の区別がない文字列型
		原理
	使用方法
	文字列比較の動作
	制限事項
	作者


	cube — 多次元立方体データ型
		構文
	精度
	使用方法
	デフォルト
	注釈
	クレジット


	dblink — 他のPostgreSQLデータベースへ接続する
	dict_int — 整数のための全文検索用の辞書の例
		設定
	使用方法


	dict_xsyn — 類義語の全文検索用の辞書の例
		設定
	使用方法


	earthdistance — 大圏距離を計算する
		cubeを基にした地表距離
	pointを基にした地表距離


	file_fdw — サーバのファイルシステムにあるデータファイルにアクセスする
	fuzzystrmatch — 文字列の類似度と距離を決定する
		Soundex
	Daitch-Mokotoff Soundex
	レーベンシュタイン(Levenshtein)
	Metaphone
	Double Metaphone


	hstore — hstoreキー/値データ型
		hstoreの外部表現
	hstoreの演算子と関数
	インデックス
	例
	統計情報
	互換性
	変換
	作者


	intagg — 整数型の集約子と列挙子
		関数
	使用例


	intarray — 整数の配列を操作する
		intarrayの関数および演算子
	インデックスサポート
	例
	ベンチマーク
	作者


	isn — 国際標準番号（ISBN、EAN、UPC等）のためのデータ型
		データ型
	キャスト
	関数と演算子
	設定パラメータ
	例
	参考文献
	作者


	lo — ラージオブジェクトを管理する
		原理
	使用方法
	制限事項
	作者


	ltree — 階層ツリーを模擬したデータ型
		定義
	演算子と関数
	インデックス
	例
	変換
	作者


	pageinspect — データベースページの低レベルな調査
		一般的な関数
	ヒープ関数
	B-tree関数
	BRIN関数
	GIN関数
	GiST関数
	Hash関数


	passwordcheck — パスワードの強度を検査する
		設定パラメータ


	pg_buffercache — PostgreSQL™のバッファキャッシュの状態を確認する
		pg_buffercacheビュー
	pg_buffercache_numaビュー
	pg_buffercache_summary()関数
	pg_buffercache_usage_counts()関数
	pg_buffercache_evict()関数
	pg_buffercache_evict_relation()関数
	pg_buffercache_evict_all()関数
	サンプル出力
	作者


	pgcrypto — 暗号関数
		汎用ハッシュ関数
	パスワードハッシュ化関数
	PGP暗号化関数
	暗号化そのものを行う関数
	ランダムデータ関数
	OpenSSLサポート関数
	設定パラメータ
	注釈
	作者


	pg_freespacemap — 空き領域マップを検査する
		関数
	サンプル出力
	作者


	pg_logicalinspect — ロジカルデコーディングコンポーネントの調査
		関数
	作者


	pg_overexplain — EXPLAINで詳細をダンプする
		EXPLAIN (DEBUG)
	EXPLAIN (RANGE_TABLE)
	作者


	pg_prewarm — リレーションデータをバッファキャッシュにプリロードする
		関数
	設定パラメータ
	作者


	pgrowlocks — テーブルの行ロックの情報を示す
		概要
	サンプル出力
	作者


	pg_stat_statements — SQL文のプラン生成時と実行時の統計情報を記録する
		pg_stat_statements ビュー
	pg_stat_statements_infoビュー
	関数
	設定パラメータ
	サンプル出力
	作者


	pgstattuple — タプルレベルの統計情報を入手する
		関数
	作者


	pg_surgery — リレーションデータに対して低レベルの手術を行う
		関数
	作者


	pg_trgm — トライグラム一致を使ったテキストの類似度をサポートする
		トライグラム（またはトリグラフ）の概念
	関数と演算子
	GUCパラメータ
	インデックスサポート
	テキスト検索の統合
	参考
	作者


	pg_visibility — 可視性マップ情報とユーティリティ
		関数
	作者


	pg_walinspect — 低レベルのWAL検査
		一般的な関数
	作者


	postgres_fdw — 外部のPostgreSQL™サーバに格納されたデータにアクセスする
		postgres_fdwの外部データラッパーオプション
	関数
	接続管理
	トランザクション制御
	リモート問い合わせの最適化
	リモート問い合わせ実行環境
	バージョン間互換性
	待機イベント
	設定パラメータ
	例
	作者


	seg — 線分または浮動小数点区間のためのデータ型
		原理
	構文
	精度
	使用方法
	注釈
	クレジット


	sepgsql — SELinuxベースでラベルベースの強制アクセス制御（MAC）セキュリティモジュール
		概要
	インストール
	リグレッションテスト
	GUCパラメータ
	機能
	sepgsql関数
	制限事項
	外部リソース
	作者


	spi — サーバプログラミングインタフェース機能/例
		refint — 参照整合性を実装する関数
	autoinc — フィールド自動増分用の関数
	insert_username — 誰がテーブルを変更したかを追跡する関数
	moddatetime — 最終更新時刻を追跡する関数


	sslinfo — クライアントのSSL情報を取得する
		提供される関数
	作者


	tablefunc — テーブルを返す関数(crosstab等)
		提供される関数
	作者


	tcn — テーブルの内容の変更を監視者に通知するトリガ関数
	test_decoding — SQLに基づくWALロジカルデコーディングのためのテストモジュール/モジュール例
	tsm_system_rows — TABLESAMPLEに対するSYSTEM_ROWSサンプリングメソッド
		例


	tsm_system_time — TABLESAMPLEに対するSYSTEM_TIMEサンプリングメソッド
		例


	unaccent — 発音区分記号を取り除く全文検索用辞書
		設定
	使用方法
	関数


	uuid-ossp — UUID生成器
		uuid-ossp関数
	uuid-osspの構築
	作者


	xml2 — XPath問い合わせとXSLT機能
		廃止予定の可能性についてのお知らせ
	関数の説明
	xpath_table
	XSLT関数
	作者




	G. 追加で提供されるプログラム
		クライアントアプリケーション
	サーバアプリケーション


	H. 外部プロジェクト
		クライアントインタフェース
	管理ツール
	手続き言語
	拡張


	I. ソースコードリポジトリ
		Git™を使ってソースを入手する


	J. ドキュメンテーション
		DocBook
	ツールセット
		Fedora、RHEL、およびその派生版でのインストール
	FreeBSDでのインストール
	Debianパッケージ
	macOS
	configureによる検出


	Makeを使って文書を構築する
		HTML
	マニュアルページ
	PDF
	構文検証


	Mesonを使って文書を構築する
	文書の起草
		Emacs


	スタイルガイド
		リファレンスページ




	K. PostgreSQL™の制限
	L. 頭字語
	M. 用語集
	N. 色対応
		いつ色が使われるか
	色を設定する


	O. 廃止または名前が変更された機能
		recovery.confファイルをpostgresql.confに統合
	デフォルトロールの名前を事前定義ロールに変更
	pg_xlogdumpの名前をpg_waldumpに変更
	pg_resetxlogの名前をpg_resetwalに変更
	pg_receivexlogの名前をpg_receivewalに変更


	P. 貢献者


	参考文献
	索引


PostgreSQL 18.0文書

PostgreSQLグローバル開発グループ

製作著作 © 1996–2025 The PostgreSQL Global Development Group, （翻訳）日本PostgreSQLユーザ会

法的告知

  [訳注：日本語は参考程度と解釈してください。]
 

  PostgreSQL™ Database Management System
  (also known as Postgres, formerly known as Postgres95)
 

PostgreSQL™データベース管理システム
（Postgresとしても知られ、以前はPostgres95として知られていました）
 

  Portions Copyright © 1996-2025, PostgreSQL Global Development Group
 

  一部の著作権 © 1996–2025、PostgreSQL Global Development Group
 

  Portions Copyright © 1994, The Regents of the University of California
 

  一部の著作権 © 1994、カリフォルニア大学理事会
 

  Permission to use, copy, modify, and distribute this software and
  its documentation for any purpose, without fee, and without a
  written agreement is hereby granted, provided that the above
  copyright notice and this paragraph and the following two paragraphs
  appear in all copies.
 

  上記の著作権表示、および
  本段落と続く2つの段落を全てのコピーに含めることを条件として、無料かつ
  書面による許可なしに、このソフトウェアとドキュメントの使用、複製、改変、
  頒布をどのような目的にでも許可します。
 

  IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
  PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
  DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS
  SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA
  HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 

  カリフォルニア大学は、いかなる当事者に対しても、利益の喪失を含む、
  直接的、間接的、特別、偶然あるいは必然的にかかわらず生じた
  損害について、たとえカリフォルニア大学がこれらの損害の可能性について
  知らされていたとしても、一切の責任を負いません。
 

  THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE
  PROVIDED HEREUNDER IS ON AN 「AS-IS」 BASIS, AND THE UNIVERSITY OF
  CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
  UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
 

  カリフォルニア大学は、商用目的における暗黙の保証と、特定目的での
  適合性に関してはもとより、これらに限らず、いかなる保証もしません。
  以下に用意されたソフトウェアは「そのまま」を基本原理とし、
  カリフォルニア大学はそれを維持、支援、更新、改良あるいは修正する
  義務を負いません。
 






はじめに





本書はPostgreSQL™のオフィシャルドキュメントです。
PostgreSQL™ソフトウェアの開発と並行して、PostgreSQL™開発者とそれ以外のボランティアにより書かれてきました。
現在のバージョンのPostgreSQL™が公式にサポートする全ての機能を網羅しています。
 


PostgreSQL™の膨大な情報を取り扱いやすくするため、本書はいくつかの部分で構成されています。
それぞれの部分は異なる層のユーザ、あるいはPostgreSQL™の経験の程度が異なるユーザを対象にしています。

  
	

パートI「チュートリアル」は新規ユーザ向けの形式ばらない入門編です。
    

	

パートII「SQL言語」はデータ型や関数などのSQL問い合わせ言語環境に加え、ユーザレベルのパフォーマンスチューニングについても文書化したものです。
PostgreSQL™ユーザは皆、一読すべきです。
    

	

パートIII「サーバの管理」はサーバのインストールと管理について記載しています。
PostgreSQL™サーバを実行しているユーザは全て、個人用やその他用途などの目的にかかわらず、この部分を読むべきです。
    

	

パートIV「クライアントインタフェース」はPostgreSQL™のクライアントプログラム用プログラミングインタフェースについて記載しています。
    

	

パートV「サーバプログラミング」には、上級ユーザ向けのサーバの拡張機能についての情報があります。
ここで取り扱う話題には、ユーザ定義型やユーザ定義関数などがあります。
    

	

パートVI「リファレンス」にはSQLコマンド、クライアントおよびサーバプログラムに関するリファレンス情報があります。
この部分は、コマンドあるいはプログラムの順に並んだ構造的な情報によって他の部分を補助します。
    

	

パートVII「内部情報」にはPostgreSQL™開発者の役に立つかもしれない様々な情報があります。
    




 
PostgreSQL™とは?





PostgreSQL™は、カリフォルニア大学バークレイ校のコンピュータサイエンス学科で開発されたPOSTGRES, Version 4.2™をベースにしたオブジェクトリレーショナルデータベース管理システム（ORDBMS）です。
POSTGRESは後からいくつかの商用データベースで利用できるようになった、多くの概念についての先駆となりました。
  


PostgreSQL™はオリジナルのバークレイ校のソースコードを引き継ぐオープンソースのデータベースです。
標準SQLの大部分やその他の最新の機能をサポートしています。

   
	複雑な問い合わせ
	外部キー
	トリガ
	更新可能ビュー
	トランザクションの一貫性
	多版同時実行制御





またPostgreSQL™は、例えば新規に以下のものを付け加えることで、いろいろな方法でユーザが拡張できます。

   
	データ型
	関数
	演算子
	集約関数
	インデックスメソッド
	手続き言語



  


さらに自由主義的ライセンス条件により、PostgreSQL™は誰にでも、その使用、変更 、配布を個人使用、商用、学術など、目的に限らず無償で可能です。
  


PostgreSQL™小史





現在PostgreSQL™として知られるオブジェクト指向リレーショナルデータベース管理システムは、カリフォルニア大学バークレイ校で作成されたPOSTGRES™パッケージから派生しています。
数十年にわたる開発の背景を持ち、PostgreSQL™は現在最も先端的な、どこからでも入手可能なオープンソースデータベースです。
 


ここで紹介する歴史に関する別の見解は、Joe Hellerstein博士の論文「Looking Back at Postgres」[hell18]（Postgresを振り返る）で見ることができます。
 
バークレイ校POSTGRES™プロジェクト





Michael Stonebraker教授率いるPOSTGRES™プロジェクトにはその後援者としてDefense Advanced Research Projects Agency（DARPA）、 Army Research Office (ARO)、National Science Foundation（NSF）、そしてESL, Inc.が名を連ねていました。
POSTGRES™の実装は1986年から始まりました。
当初のシステムに対する概念は[ston86]で発表され、最初のデータモデルの定義は[rowe87]で紹介されました。
当時のルールシステムの設計は[ston87a]で説明されました。
ストレージ管理の理論や構造は[ston87b]で詳しく示されました。
  


POSTGRES™はそれ以来いくつかの主要なリリースを重ねてきました。
最初の「デモウェア」システムが1987年に使用可能になり、1988年のACM-SIGMODコンファレンスで紹介されました。
[ston90a]で説明されているバージョン1は、1989年6月に一部の外部ユーザにリリースされ、最初のルールシステムに対する批評の結果（[ston89]）を基にルールシステムは再設計（[ston90b]）され、バージョン2が1990年6月に新しいルールシステムを実装してリリースされました。
バージョン3は1991年に登場し、複数ストレージ管理機構、改善された問い合わせエグゼキュータ、書き直しされたルールシステムのサポートが追加されました。
Postgres95™まで引き続いた各リリース（下記を参照）のほとんどの部分では、移植性と信頼性に焦点を合わせていました。
  


POSTGRES™は様々な研究用、そして実際の業務アプリケーションを実装するために使われてきています。
その中には、金融データ分析システム、ジェットエンジン性能分析パッケージ、小惑星追跡データベース、医療情報データベース、いくつかの地図情報処理システム（GIS）などがあります。
POSTGRES™はさらに、いくつかの大学で教材としても使われています。
最後に、Illustra Information Technologies社（後に、 Informix™社に吸収合併され、現在はIBM社所有）がコードを整理し商用化しました。
1992年後半には、POSTGRES™は[ston92]に書かれているSequoia 2000 scientific computing projectの主要なデータ管理システムになりました。
  


1993年に外部ユーザコミュニティの規模はほぼ倍増しました。
データベースの研究に費やされるべき時間がプロトタイプコードの保守とサポートに取られていることが次第に明らかになってきました。
このサポートの重荷を減らすために、バークレイPOSTGRES™プロジェクトはバージョン4.2をもって公式に終了しました。
  

Postgres95™





1994年、Andrew YuとJolly ChenがPOSTGRES™にSQL言語インタプリタを追加しました。
引き続いてPostgres95™がWeb上でリリースされ、オリジナルのPOSTGRES™バークレイコードのオープンソースによる後続として世界への独自の道を歩み始めました。
  


Postgres95™のコードは全てANSI C準拠となるように書き直され、これまでに膨れ上がったコードの25%を整理することで身軽になりました。
多くの内部改造によって性能と保守性が改善されました。
Postgres95™リリース1.0.xは、POSTGRES™バージョン4.2に比べWisconsin Benchmarkで約30〜50%速く動作しました。
バグ修正以外では、下記の大きな改善がありました。

   
	

（サーバに実装された）SQLが問い合わせ言語PostQUELに取って代わりました。
（インタフェースライブラリlibpqはPostQUELにちなんで命名されました。）
PostgreSQL™になる以前は副問い合わせをサポートしていませんでしたが（下記を参照）、Postgres95™ではユーザ定義SQL関数で模倣できました。
集約は再実装されました。
GROUP BY問い合わせ句のサポートも追加されました。
     

	

GNUのReadlineを使った新しいプログラム（psql）が、対話式SQL問い合わせのために用意されました。
これは古いmonitorプログラムにほぼ取って代わるものになりました。
     

	

新しいフロントエンドライブラリ、libpgtclがTclベースのクライアントをサポートしました。
サンプルシェルpgtclshはTclとPostgres95™サーバとインタフェースをとる新規Tclコマンドを提供しました。
     

	

ラージオブジェクトインタフェースがオーバーホールされました。
転置ラージオブジェクトが唯一のラージオブジェクト格納機構でした。
（転置ファイルシステムは削除されました。）
     

	

インスタンスレベルのルールシステムが削除されました。
ルールは書き換えルールとしてまだ利用できました。
     

	

標準SQLの機能やPostgres95™の機能を紹介したチュートリアルがソースコードとともに配布されました。
     

	

GNU makeが（BSD makeの代わりに）構築に使われました。
また、Postgres95™はパッチの当たっていないGCC™でコンパイルできました
（doubleにおけるデータ整列が修正されたおかげです）。
     




  

PostgreSQL™





1996年になると「Postgres95」という名前が時代の試練に耐えられなくなったことが明らかになりました。
そこで、オリジナルのPOSTGRES™とSQLの能力を持つ、より最近のバージョンとの関係を反映する、PostgreSQL™という新しい名前を選びました。
同時に、もともとバークレイPOSTGRES™プロジェクトで始まった連番に戻す番号の6.0で始まるバージョン番号を設定しました。
  


Postgres™は、伝統があることと、人々がPostgreSQL™よりもPostgres™と発音しやすいことから、今でもプロジェクトの正式な名前と考えられています。
  


Postgres95™開発で重視されたのは、サーバのコードに内在する問題点を特定し、原因を理解することでした。
PostgreSQL™においては、全ての分野に目を留めているとしても、保守作業を続けつつ特徴や能力を強化することに重点が移りました。
  


その後PostgreSQL™のそれぞれのリリースで何が起こったかについての詳細は、https://www.postgresql.org/docs/release/で見ることができます。
  


規約





以下の規約はコマンドの概要に対して使用されます。
大括弧（[および]）はオプションである部分を示します。
中括弧（{および}）そして縦線（|）はいずれか1つを選択しなければならないことを意味します。
点々（...）は前にある要素が繰り返されるという意味です。
括弧を含む、その他の記号はすべて文字通りの意味に取ってください。
 


明確性を強調する場面では、SQLコマンドの前には=>を付け、シェルコマンドの前には$を付けます。
とは言っても通常プロンプトは示しません。
 


一般的に管理者とは、サーバのインストールと運営の責にあたる人のことです。
ユーザとは、PostgreSQL™システムの一部でも活用したり、もしくはこれから使用する誰もがその対象です。
これらの用語は厳密に解釈されるものではありません。
本書はシステム管理の手順について特定の固定観念を想定していません。
 

より進んだ情報





ドキュメント、つまり本書の他に、PostgreSQL™についてのその他のリソースがあります。

  
	Wiki
	

PostgreSQL™ wikiはプロジェクトのFAQ（よくある質問）リスト、TODOリスト、およびさらに多くの話題の情報を収容しています。
     

	Webサイト
	

PostgreSQL™のWebサイトには、最新のリリースに関する詳細についてや、PostgreSQL™の利用・操作をする上で生産性をより高める情報があります。
     

	メーリングリスト
	

メーリングリストは、ユーザが質問の答えを得ること、他のユーザと経験を共有すること、開発者に連絡することに適した所です。
詳細はPostgreSQL™のWebサイトで調べてください。
     

	あなた自身！
	

PostgreSQL™はオープンソースプロジェクトです。
つまり、ユーザコミュニティの継続的なサポートに依存しているのです。
PostgreSQL™を使い始めてからは、ドキュメントやメーリングリストを通じて他の人からの助けに頼ることになるでしょう。
知識を得たらそれを今度は貢献することを考えてください。
メーリングリストを講読し質問に回答してください。
もし、ドキュメントに載っていないことを学んだら、それを書いて寄稿してください。
もし、コードに機能を追加したら、それを寄稿してください。
     




 

バグレポートガイドライン





PostgreSQL™に関してバグを発見した場合、ぜひ我々に連絡してください。
最大限の注意を払っても、全てのプラットフォーム、全ての環境でPostgreSQL™の機能全てが正常に動くことは保証できませんので、バグレポートはPostgreSQL™をより信頼性の高いものにするために、大変重要になります。
 


下記の助言は、有効に活用され得るバグレポートを作成する際に、作成者を支援することを狙ったものです。
これに従う義務はありませんが、沿った方がより有益なものとなるでしょう。
 


私たちは、すべてのバグを直ちに修正することを約束することはできません。
そのバグが明確で、重大で、あるいは他の多くのユーザにも影響を与えるものであれば、誰かがすぐに調査する可能性が高くなるでしょう。
また、より新しいバージョンに変えて、そこでも同じようなことが起こるかを確認してもらうように伝える場合もあります。
あるいは、現在計画中の大きな変更が終了するまで、バグを修正できないと判断する場合もあります。
また、単に修正が非常に困難であり、より重要な他の事項があることもあります。
早急に処置が必要な場合は、商用サポートの購入を検討してください。
 
バグの特定





バグ報告を行う前に、ドキュメントを読み、もう一度読み返し、実行しようとしている処理が実行可能かどうか確認してください。
実行可能かどうかが不明な場合は、その旨を報告してください。
それはドキュメントのバグです。
また、ドキュメントに書かれていることと実際の結果が異なる場合にはバグとなります。
以下のような状況が考えられます。
ただし、これらに限定しているわけではありません。

   
	

プログラムが致命的なシグナル、またはオペレーティングシステムのエラーメッセージで終了し、それがプログラム内部の問題を指摘している場合。
（逆に、「disk full」のようなメッセージはプログラムの問題ではありませんから、この場合は自分で修正してください。）
     

	

あるプログラムで、入力された値に対して間違った結果を返す場合。
     

	

（ドキュメントで定義されている）有効な値を入力してもプログラムで受け付けない場合。
     

	

プログラムが、無効な入力値を通知やエラーメッセージなどを表示せずに受け入れる場合。
ただし、無効な入力と思われるものでも、拡張、あるいは過去の経緯による互換性と考えられている可能性があることに注意してください。
     

	

サポートされているプラットフォームで、PostgreSQL™が手順通りにコンパイル、ビルド、インストールできない場合。
     






ここでは、「プログラム」とはバックエンドプロセスだけではなく、すべての実行可能ファイルを意味します。
  


プログラムの実行が遅かったり、リソースを大量に使用するのは必ずしもバグではありません。
アプリケーションを改善するためには、ドキュメントを読んだり、どこかのメーリングリストで尋ねてみたりしてください。
標準SQLの要求に応じない場合も、その機能の互換性を明確にうたっていない限り、バグとは言えません。
  


以降に進む前に、TODOリストやFAQを参照して、そのバグが既知のものかどうか確認してください。
もしTODOリストの情報を読み取ることができなければ、問題を報告してください。
少なくともTODOリストを分かりやすくすることができます。
  

報告すべきこと





バグ報告で最も重要なことは、全ての事実を、そして事実のみを明確に記述することです。
何が起こったのか、または、プログラムのどこが問題か、「何々が起こっているようだ」などの憶測や推測を記述しないでください。
実装にさほど詳しくない方の推測は正しくない場合があり、有効なバグ報告になりません。
実装に精通している方の場合であっても、根拠のある説明は参考情報となりますが、やはり正しい事実が一番役に立ちます。
バグを修正するためには、まず開発者自身がそのバグを再現する必要があります。
ありのままの事実を報告することは、単刀直入（多くの場合は画面からメッセージをコピー&ペーストを行うのみ）ですが、えてして、重要でないだろうと想像したり、省いても理解してもらえるだろうという思い込みによって、重要な情報がもれてしまう場合がかなり多くあります。
  


全てのバグ報告では、下記の内容が記述されていなければいけません。

   
	

問題を再現できるように、プログラムの起動から行った作業を順序通りに記述してください。
例えば、出力がテーブルのデータに依存するならば、単にSELECT文を記述していても、それ以前に行われた、CREATE TABLEやINSERT文が記述されていなければ十分とはいえません。
我々は、ユーザのデータベーススキーマをリバースエンジニアリングするための時間を取ることができませんし、推測してデータを構築したとしても、おそらく間違えることになるでしょう。
     


SQL関連の問題のテストケースの最適な書式は、psqlフロントエンドに直接読み込ませて問題を再現できるファイルを用意することです。
（~/.psqlrcの起動ファイルに何も書かれていないことを確認してください。）
このファイルを簡単に作成するには、pg_dumpを使ってテーブル定義とその状況を再現させるために必要なデータを取り出し、問題の起こった問い合わせを追加します。
サンプルデータの量を減らすことは、推奨されますが必ずしも必要ではありません。
どのような方法であれ、バグが再現できればよいのです。
     


アプリケーションがPHPなど何か別のクライアントインタフェースを使用している場合、問題となる問い合わせを切り出してください。
問題を再現させるために我々がWebサーバをセットアップすることは、おそらくないでしょう。
どのような場合においても、正確な入力ファイルを提供することを忘れないでください。
「大規模ファイル」や「中規模データベース」で発生する問題である、といった推測は行わないでください。
こうした情報は不正確過ぎて役に立ちません。
     

	

得られた出力そのもの。
「うまくいかなかった」、あるいは「クラッシュした」といった報告はしないでください。
エラーメッセージがあるならば、たとえ意味が理解できなくてもそれを報告してください。
オペレーティングシステムのエラーでプログラムが強制終了してしまったら、どのエラーでそうなったのかを報告してください。
何も起こらない場合も、その旨を報告してください。
たとえテストケースの結果がプログラムのクラッシュなど明確な場合でも、我々のプラットフォームで再現できない場合があります。
最も容易な方法は、出力をターミナルからコピーすることです。
     
注記


エラーメッセージを報告する場合、そのメッセージを最大限詳細に取得してください。
psqlでは、前もって\set VERBOSITY verboseを指定してください。
サーバログからメッセージを取りだす場合は、全ての詳細をログに取得できるようにlog_error_verbosity実行時パラメータをverboseに設定してください。
      

注記


致命的なエラーが起こった場合、クライアント側で報告されるエラーメッセージには得られる情報が全て書かれているとは限りません。
データベースサーバのログも見てみてください。
もしログを取っていないならば、取る習慣を付けるいいタイミングです。
      


	

どのような出力を望んでいたのかを記述することも非常に重要です。
ただ単に「このコマンドはこのような出力を返した」や、「期待していた結果ではない」だけでは、再現して結果を検証した際、開発者は、これは期待した通りの正しい結果である、と考えるかもしれません。
送られてきたコマンドの背後にある文脈を全て把握することはできません。
また、特に「SQLではこう書かれていない/Oracleではこのようにならない」というコメントはご遠慮願います。
SQLの正確な動作を探し出すのは楽しい作業ではありませんし、また、世にある他のリレーショナルデータベースの動作全てをPostgreSQLの開発者が把握しているわけでもありません。
（問題がプログラムのクラッシュである場合、この内容は言うまでもなく省略できます。）
     

	

すべてのコマンドラインオプションと起動時のオプション、デフォルトから変更した関連する環境変数や設定ファイル。
ここでも、正確な情報を提供してください。
OSの起動時にデータベースサーバを起動するようにパッケージされたディストリビューションを使用している場合は、それらがどのように実行されているかを確認する必要があります。
     

	

インストールの手順書から変更して実行したすべての内容。
     

	

PostgreSQL™のバージョン。
SELECT version();で、接続しているサーバのバージョンがわかります。
多くの実行可能なプログラムでは--versionオプションも使用できます。
少なくともpostgres --versionとpsql --versionは実行できるはずです。
これらの関数やオプションが使用できない場合、アップグレードが保証されているものよりも、さらに古いバージョンです。
RPMなどパッケージ化されたものを使用している場合は、その旨を連絡し、パッケージに付加されたバージョン番号があれば、それも記載してください。
Git版に対するバグ報告の場合は、その旨も記載し、コミットハッシュの情報も含めてください。
     


18.0よりもバージョンが古い場合、アップグレードすることをお勧めします。
新しいリリースでは多くのバグ修正や改良がなされているからです。
ですので、古めのPostgreSQL™のリリースを使用していて遭遇した不具合が修正されている可能性がかなりあります。
古いPostgreSQL™のリリースを使用しているサイトに対して、我々は限定されたサポートしか提供することができません。
それ以上のサポートが必要であれば、商用サポート契約を結ぶことを検討してください。
     

     

	

プラットフォーム情報。
カーネル名とバージョン、Cライブラリ、プロセッサ、メモリ情報なども含めて報告してください。
多くの場合、ベンダ名とそのバージョンを明記するだけで十分ですが、「Debian」の正確な構成要素を全ての人間が把握している、であるとか、全ての人間がx86_64を使用しているなどの思い込みは止めてください。
インストールに関する問題の場合は、マシンのツール群（コンパイラやmakeなど）の情報も必要となります。
     






バグ報告が長文になってもそれは仕方がないことなので、気にしないでください。
最初に全ての情報を入手できる方が、開発者が事実を聞き出さなければいけない状況よりも良いです。
その一方、ファイルが大きいならば、その情報に誰か興味があるかを最初に尋ねるのが得策かもしれません。
記事には、バグ報告に関するその他のコツの概要があります。
  


問題を解決する入力を見つけ出すための試行錯誤に時間をかけないでください。
これはおそらく問題解決の助けになりません。
バグが即座に修正されない場合、その時間を利用すれば、あなた自身のワークアラウンドを探して共有できます。
繰り返しになりますが、バグがなぜあるのかを解明するのに余計な時間をかける必要はありません。
開発者の方が十分速くそれを見つけ出します。
  


バグ報告をする際、理解しやすい用語を使用してください。
このソフトウェアパッケージ全体は「PostgreSQL」と呼ばれていますが、略して「Postgres」とも呼ばれます。
特にバックエンドプロセスに関して述べる時は、そのように明記し、「PostgreSQLがクラッシュする」とは記述しないでください。
1つのバックエンドプロセスのクラッシュと、その親プロセス「postgres」のクラッシュとはかなり異なります。
1つのバックエンドがダウンしてしまったことを、「サーバがクラッシュした」とは記述しないでください。
その逆の場合にも当てはまります。
また、「psql」対話式フロントエンドなどのクライアントプログラムはバックエンドとは完全に分離されています。
問題がクライアント側かサーバ側かの切り分けを試みてください。
  

バグ報告先





一般論として、バグ報告は<pgsql-bugs@lists.postgresql.org>というバグ報告用メーリングリストに送ってください。
バグ報告の題名には、エラーメッセージの一部分などわかりやすいものを使ってください。
  


その他の方法として、プロジェクトのWebサイトにあるバグ報告フォームの項目を埋める方法があります。
この方法で入力したバグ報告は、<pgsql-bugs@lists.postgresql.org>メーリングリストに送信されます。
  


バグ報告にセキュリティが関連する場合や公開アーカイブからすぐに閲覧できることを好まない場合、pgsql-bugsには送信しないでください。
セキュリティの問題については、非公開で<security@postgresql.org>に報告できます。
  


<pgsql-sql@lists.postgresql.org>や<pgsql-general@lists.postgresql.org>などのユーザ向けのメーリングリストには決してバグ報告を送らないでください。
これらのメーリングリストはユーザからの質問に答えるためのもので、ほとんどの購読者はバグ報告を受け取りたくないと思われます。
さらに重要なのは、これらのリストの購読者によってバグが修正されることはほとんどないということです。
  


また、開発者向けの<pgsql-hackers@lists.postgresql.org>にもバグ報告を送らないでください。
ここはPostgreSQL™の開発に関して議論する場で、バグ報告とは切り離している方が良いとされています。
もしその問題により多くのレビューが必要な場合は、そのバグ報告をpgsql-hackersで議論することになります。
  


ドキュメントに関して問題がある場合は、ドキュメント用のメーリングリスト、<pgsql-docs@lists.postgresql.org>が最適な報告先です。
その際、問題になった箇所がどの部分かを明記してください。
  


また、サポートされていないプラットフォームへの移植に関係するバグ報告である場合は<pgsql-hackers@lists.postgresql.org>に報告してください。
そのプラットフォームへPostgreSQL™を移植するように（報告者と一緒に）最善の努力をします。
  
注記


嘆かわしい量のスパムメールが出回っているため、これらのメーリングリストは購読しない限りモデレータ付きとなっています。
これはEメールが配送されるのにいくらか遅延があることを意味します。
メーリングリストを購読したい場合には、https://lists.postgresql.org/を訪ねて、その指示に従ってください。
   



パート I. チュートリアル






PostgreSQL™のチュートリアルへようこそ。
このチュートリアルは、PostgreSQL™、リレーショナルデータベースの概念、およびSQL言語の紹介を目的としています。
コンピュータの使い方についての一般的な知識を前提としており、特定のUnixやプログラミングの経験は必要ありません。
このチュートリアルは、PostgreSQL™システムの重要なポイントについて実践的な経験を得ることを目的としています。
扱っているトピックを網羅して記述しているものではありません。
   


このチュートリアルを問題なく完了した後、SQL言語に関する理解を深めたい場合はパートII「SQL言語」を、PostgreSQL™用のアプリケーションの開発に関する情報を学習したいのであれば、パートIV「クライアントインタフェース」を読んでください。
また、PostgreSQLの導入を準備、提供、管理される方は、パートIII「サーバの管理」も参照してください。
   


第1章 さあ始めましょう



インストール





PostgreSQL™を使用できるようにするためには、当然ながらインストールしなければなりません。
使用しているオペレーティングシステム配布物内に含まれていたり、システム管理者がインストールしていたりしますので、PostgreSQL™が既にサイトにインストールされている可能性があります。
そのような場合、オペレーティングシステムの文書やシステム管理者からPostgreSQL™へのアクセス方法に関する情報を得なければなりません。
   


PostgreSQL™が既に使用可能かどうかや実験的に使用できるかどうかがわからなければ、独自にインストールできます。
インストールは難しくありません。
良い経験になるでしょう。
PostgreSQL™は、非特権ユーザによって、つまり、スーパーユーザ（root）権限を必要とすることなく、インストールできます。
   


自身でPostgreSQL™をインストールする場合は、インストール手順を17章ソースコードからインストールで確認してください。
そしてインストールが完了してから、本書に戻ってきてください。
適切な環境変数の設定に関する節に正確に従っていることを確認してください。
   


システム管理者がデフォルトの方法で設定していなかった場合、他にも多少の作業をすることになります。
例えば、データベースサーバマシンがリモートマシンの場合、PGHOST環境変数をデータベースサーバマシンの名前に設定する必要があります。
また、PGPORT環境変数の設定も行わなければならないかもしれません。
要するに、アプリケーションプログラムを起動しようとして、データベースに接続できないというエラーが発生する場合には、サイト管理者と相談し、自分が管理者であれば、文書を読んで、環境が適切に設定されていることを確認してください。
これまでの内容を理解できない場合は、次節を読んでください。
   


構造的な基本事項





先に進む前に、PostgreSQL™システム構成の基礎を理解すべきです。
PostgreSQL™の各部分がどのように相互作用しているかを理解することにより、本章の内容がわかりやすくなります。
   


データベースの用語で言うと、PostgreSQL™はクライアント/サーバモデルを使用しています。
PostgreSQL™のセッションは以下の協調動作するプロセス（プログラム）から構成されます。

    
	

サーバプロセス。
これは、データベースファイルを管理し、クライアントアプリケーションからのデータベースの接続を受け付け、クライアントに代わってデータベースに対する処理を行います。
データベースサーバプログラムはpostgresと呼ばれています。
       
      

	

ユーザの、データベース操作を行うクライアント（フロントエンド）アプリケーション。
クライアントアプリケーションはその性質上非常に多様性があります。
テキスト指向のツール、グラフィカルなアプリケーション、データベースにアクセスしWebページを表示するWebサーバ、あるいはデータベースに特化した保守ツールなどがあります。
いくつかのクライアントアプリケーションがPostgreSQL™の配布物に同梱されていますが、ほとんどのクライアントアプリケーションはユーザによって開発されます。
      




   


クライアント/サーバアプリケーションでは典型的なことですが、クライアントとサーバはホストが異なっても構いません。
その場合、クライアントとサーバはTCP/IPネットワーク接続経由で通信を行います。
このことには注意してください。
なぜなら、クライアントマシンからアクセスできるファイルは、データベースサーバマシンではアクセスできない（または、異なるファイル名でアクセスできるだけである）可能性があるからです。
   


PostgreSQL™サーバはクライアントから複数の同時接続を取り扱うことができます。
これを達成するため、サーバは接続ごとに新しいプロセスを開始（「fork」）します。
その時点から、クライアントと新しいサーバプロセスは元のpostgresプロセスによる干渉がない状態で通信を行います。
こうして、スーパーバイザサーバプロセスは常に稼働してクライアントからの接続を待ち続け、一方で、クライアントからの接続と関連するサーバプロセスの起動が行われます。
（もちろんこれは全てユーザからはわかりません。完全性を目的として説明しているだけのことです。）
   

データベースの作成





データベースサーバにアクセスできるかどうかがわかる最初の試験は、データベースの作成を試みることです。
稼働中のPostgreSQL™サーバは多くのデータベースを管理できます。
典型的には、プロジェクトやユーザごとに別々のデータベースが使用されます。
   


サイト管理者により使用できるデータベースが既に作成されている場合もあります。
この場合、この段階を飛ばして、次節まで進んでください。
   


コマンドラインから新しいデータベースを作成するには、以下のコマンドを使用してください。
この例ではmydbという名前です。


$ createdb mydb



この手順で何も応答がなければ、この段階は成功し、本節の残りは飛ばすことができます。
   


以下のようなメッセージが現れた場合、


createdb: command not found



PostgreSQL™が正しくインストールされていません。
全くインストールされていないか、シェルの検索パスに含まれていない可能性があります。
代わりに絶対パスでそのコマンドを実行してみてください。


$ /usr/local/pgsql/bin/createdb mydb



このパスはサイトによって異なるかもしれません。
この問題を解決するには、サイト管理者に連絡するか、インストール取扱説明書を調べてください。
   


他の応答として以下もあります。


createdb: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: No such file or directory
        Is the server running locally and accepting connections on that socket?



これは、サーバが起動していないか、createdbが想定している状態でサーバがリッスンしていないかを示しています。
こちらも、インストール手順を点検するか管理者に相談してください。
   


他の応答として以下もあります。


createdb: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: FATAL:  role "joe" does not exist



ここでjoeのところには、ログインした時のユーザ名が記載されています。
これは、管理者がそのユーザ用のPostgreSQL™ユーザアカウントを作成していない時に起こります。
（PostgreSQL™ユーザアカウントは、オペレーティングシステムのユーザアカウントとは別です。）
自身が管理者なら、アカウントの作成方法に関して21章データベースロールを参照してください。
最初のユーザアカウントを作成するためには、PostgreSQL™をインストールした時のオペレーティングシステムのユーザ（通常postgres）になる必要があります。
PostgreSQL™ユーザアカウントがオペレーティングシステムのユーザ名と異なる名前で用意されているかもしれません。
その場合は、PostgreSQL™のユーザ名を指定するために、-Uスイッチを使用するか、PGUSER環境変数を設定する必要があります。
   


ユーザアカウントを持っているが、データベースを作成するために必要な権限を持っていない場合は、以下のメッセージが現れます。


createdb: error: database creation failed: ERROR:  permission denied to create database



全てのユーザがデータベースを新規に作成できる権限を持っているわけではありません。
PostgreSQL™がデータベースの作成を拒否した場合、サイト管理者からデータベースを作成する権限を付与してもらう必要があります。
これが発生した場合はサイト管理者に相談してください。
自身でPostgreSQL™をインストールしたのであれば、このチュートリアルを実行する時は、サーバを起動したユーザアカウントでログインしてください。

    [1]
   


他の名前のデータベースを作成することもできます。
PostgreSQL™は、与えられたサイトでいくつでもデータベースを作成することを許可しています。
データベース名は、先頭がアルファベット文字から始まる、63バイトまでの長さでなければなりません。
簡単な選択は、現在のユーザ名と同じ名前のデータベースを作成することです。
多くのツールでは、データベース名のデフォルトとしてそれを仮定していますので、これにより入力数を減らすことができます。
このデータベースを作成するには、単純に以下を実行します。


$ createdb


   


データベースを使用しなくなったら、削除できます。
例えば、mydbデータベースの所有者（作成者）であれば、以下のコマンドでそれを廃棄できます。


$ dropdb mydb



（このコマンドでは、データベース名のデフォルトはユーザアカウント名ではありません。
常に指定しなければなりません。）
この動作は、そのデータベースに関する全てのファイルを物理的に削除しますので、取り消すことはできません。
事前に熟考した場合にのみこれを実施してください。
   


createdbやdropdbの詳細は、それぞれcreatedb(1)とdropdb(1)にあります。
   


[1] 

何故これで上手くいくのかについての説明：PostgreSQL™のユーザ名はオペレーティングシステムのユーザアカウントとは分離されています。
データベースに接続するとき、接続に利用するPostgreSQL™のユーザ名を選択します。
選択しなければ、デフォルトで現在のオペレーティングシステムのアカウントと同じ名前となります。
これにより、サーバを開始したオペレーティングシステムのユーザと同じ名前のPostgreSQL™ユーザアカウントが、常に存在するようになっています。
そしてまた、このユーザは常にデータベースを作成する権限を持ちます。
そのユーザとしてログインする代わりに、-Uオプションを毎回使用して、接続するPostgreSQL™のユーザ名を選択できます。
     



データベースへのアクセス





データベースを作成した後、以下によってアクセスできます。

    
	

psqlというPostgreSQL™対話式端末プログラムを実行。
これにより、対話式にSQLコマンドの入力、編集、実行を行うことができます。
      

	

pgAdminのような既存のグラフィカルなフロントエンドツールや、ODBCあるいはJDBCを備えたオフィススイートなどを使用して、データベースの作成や操作を行う。
これらについてはこのチュートリアルでは取り上げません。
      

	

複数の使用可能な言語の1つを使用した、独自のアプリケーションの作成。
これについては、パートIV「クライアントインタフェース」で詳しく説明します。
      






このチュートリアルの例を試すには、psqlから始めることを勧めます。
以下のコマンドを入力することで、mydbデータベースに対して実行できます。


$ psql mydb



データベース名を与えなかった場合、データベース名はデフォルトでユーザアカウント名となります。
この仕組みについては前節でcreatedbを使って既に説明しています。
   


psqlでは、始めに以下のメッセージが表示されます。


psql (18.0)
Type "help" for help.

mydb=>



    
最後の行は以下のようになっているかもしれません。


mydb=#



これは、データベーススーパーユーザであることを示します。
自身でPostgreSQL™のインスタンスをインストールした場合にはこのようになっている可能性が高いです。
スーパーユーザであることは、アクセス制御の支配を受けないことを意味します。
このチュートリアルの実施においては、これは重要ではありません。
   


psqlの起動に問題が発生した場合は、前節に戻ってください。
createdbの診断とpsqlの診断方法は似ており、前者が動作すれば後者も同様に動作するはずです。
   


psqlが最後に出力する行はプロンプトで、psqlが入力を監視していること、psqlが管理する作業領域にSQL問い合わせを入力できることを示しています。
以下のコマンドを試してください。
    


mydb=> SELECT version();
                                         version
-------------------------------------------------------------------​-----------------------
 PostgreSQL 18.0 on x86_64-pc-linux-gnu, compiled by gcc (Debian 4.9.2-10) 4.9.2, 64-bit
(1 row)

mydb=> SELECT current_date;
    date
------------
 2016-01-07
(1 row)

mydb=> SELECT 2 + 2;
 ?column?
----------
        4
(1 row)


   


psqlプログラムは、SQLコマンドではない、多くの内部コマンドを持っています。
それらはバックスラッシュ文字「\」から始まります。
例えば、各種PostgreSQL™ SQLコマンドの構文に関するヘルプを以下のようにして得ることができます。


mydb=> \h


   


psqlを終了するには、以下を入力します。


mydb=> \q



psqlは終了し、コマンドシェルに戻ります。
（他の内部コマンドについてはpsqlのプロンプトで\?を入力してください。）
psqlの完全な能力についてはpsql(1)で説明されています。
このチュートリアルではこれらの機能は明示的に使用しませんが、便利な場合はこれらを使用しても構いません。
   

第2章 SQL言語



はじめに





本章では、SQLを使用した簡単な操作方法について、その概要を説明します。
このチュートリアルは単なる入門用であり、SQLについての完全な教科書ではありません。
[melt93]や[date97]など、SQLを説明した書籍は多くあります。
PostgreSQL™の言語機能の中には標準を拡張したものがあることには注意してください。
   


以下で示す例では、前章で説明したmydbという名前のデータベースを作成し、psqlを起動できるようになっていることを前提としています。
   


このマニュアルで示す例は、PostgreSQL™ソース配布物に含まれており、src/tutorial/以下に展開されます。
（PostgreSQL™のバイナリ配布物ではこのファイルが含まれていないかも知れません。）
このファイルを使用するためには、以下に示すように、まずこのディレクトリに移動し、makeを実行してください。



$ cd .../src/tutorial
$ make




これによりスクリプトが作成され、そして、ユーザ定義の関数と型を含むCのファイルがコンパイルされます。
その後、以下を行うことで、チュートリアルを始めることができます。



$ psql -s mydb

...

mydb=> \i basics.sql




\iは、指定したファイルからコマンドを読み込みます。
psqlの-sオプションによって、シングルステップモードとなり、それぞれの文をサーバに送る前に一時停止します。
本節で使用するコマンドはbasics.sqlファイル内にあります。
   


概念




    
    
    
    
    
    
    
    
    
    


PostgreSQL™はリレーショナルデータベース管理システム（RDBMS）です。
これはリレーションの中に格納されたデータを管理するシステムであることを意味しています。
リレーションは基本的にはテーブルを表す数学用語です。
テーブルにデータを格納することは今日では平凡なことですので、わかりきったものだと思われるかもしれませんが、データベースを構成する方法には他にも多くの方式があります。
Unix互換のオペレーティングシステムのファイルとディレクトリは、階層型データベースの一種と言えます。
より近代的な成果はオブジェクト指向データベースです。
   

    
    
    
    


各テーブルは、行の集合に名前を付けたものです。
あるテーブルの各行は、名前を付けた列の集合ということができます。
各列は特定のデータ型を持ちます。
列は行において固定の順番を持ちますが、SQLはテーブルにある行の順番をまったく保証しないことを覚えておくことは重要です
（しかし、表示用に明示的にソートさせることは可能です）。
   

    
    
    
    


テーブルはデータベースとしてまとめられ、1つのPostgreSQL™サーバインスタンスで管理されるデータベースの集合はデータベースクラスタを構成します。
   

新しいテーブルの作成





テーブル名と、テーブルの全ての列の名前と型を指定することで、新しいテーブルを作成できます。



CREATE TABLE weather (
    city            varchar(80),

    temp_lo         int,           -- 最低気温
    temp_hi         int,           -- 最高気温
    prcp            real,          -- 降水量
    date            date
);




上のコマンドを複数の行に分けてpsqlに入力できます。
psqlは、セミコロンで終わるまでそのコマンドは継続するものと認識します。
   


SQLコマンドでは空白文字（つまり空白、タブ、改行）を自由に使用できます。
つまり、上で示したコマンドとは異なる整列で入力しても良いことを意味します。
全てを1行で入力することさえできます。
連続した2つのハイフン（「--」）はコメントの始まりです。
その後に入力したものは、行末まで無視されます。
SQLはキーワードと識別子に対して大文字小文字を区別しません。
ただし、（上では行っていませんが）識別子が二重引用符で括られていた場合は大文字小文字を区別します。
   


varchar(80)は、80文字までの任意の文字列を格納できるデータ型を指定しています。
intは一般的な整数用の型です。
realは単精度浮動小数点数値を格納する型です。
dateはその名前からわかるとおり日付です。
（わかると思いますが、date型の列の名前もdateになっています。
これはわかりやすいかもしれませんし、逆に混乱を招くかもしれません。
これは好みによります）。
   


PostgreSQL™は標準SQLのデータ型、int、smallint、real、double precision、char(N)、varchar(N)、date、time、timestampやintervalをサポートします。
また、一般的なユーティリティ用の型や高度な幾何データ型もサポートします。
任意の数のユーザ定義のデータ型を使用して、PostgreSQL™をカスタマイズできます。
したがって、標準SQLにおける特殊な場合をサポートするために必要な場所を除き、型名は構文内でキーワードではありません。
   


以下に示す2番目の例では、都市とその地理的な位置情報を格納します。


CREATE TABLE cities (
    name            varchar(80),
    location        point
);



point型は、PostgreSQL™独自のデータ型の一例です。
   

    


最後に、テーブルが不要になった場合や別のものに作り直したい場合、以下のコマンドを使用して削除できることを示します。


DROP TABLE tablename;


   

テーブルに行を挿入





以下のように、INSERT文を使用して、テーブルに行を挿入します。



INSERT INTO weather VALUES ('San Francisco', 46, 50, 0.25, '1994-11-27');




全てのデータ型でどちらかといえばわかりやすい入力書式を使用していることに注意してください。
通常、単純な数値以外の定数は、この例のように、単一引用符（'）で括らなければなりません。
date型で受け付けられるものは実際はかなり柔軟です。
しかし、このチュートリアルの段階では、曖昧さがない書式にこだわることにします。
   


point型では、入力として次のような座標の組み合わせが必要です。


INSERT INTO cities VALUES ('San Francisco', '(-194.0, 53.0)');


   


ここまでの構文では、列の順番を覚えておく必要がありました。
以下に示す他の構文では、列のリストを明示的に与えることができます。


INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
    VALUES ('San Francisco', 43, 57, 0.0, '1994-11-29');



リスト内の列は好きな順番で指定できます。
また、一部の列を省略することもできます。
例えば、降水量がわからない場合は以下のようにできます。


INSERT INTO weather (date, city, temp_hi, temp_lo)
    VALUES ('1994-11-29', 'Hayward', 54, 37);



多くの開発者は、暗黙的な順番に依存するよりも、列のリストを明示的に指定する方が良いやり方だと考えています。
   


以降の節でもデータを使用しますので、上のコマンドを全て入力してください。
   

    


また、COPYを使用して大量のデータを平文テキストファイルからロードすることもできます。
COPYコマンドはINSERTよりも柔軟性はありませんが、この目的に特化していますので、通常、より高速になります。
以下に例を示します。



COPY weather FROM '/home/user/weather.txt';




ここで元となるファイルを表すファイル名は、クライアントではなく、バックエンドプロセスを動かしているマシンで利用できるものでなければなりません。
バックエンドプロセスがこのファイルを直接読み込むからです。
上で挿入したweatherテーブルのデータは、以下のようなファイル（値はタブ文字で区切られています）からも挿入できます。



San Francisco    46    50    0.25    1994-11-27
San Francisco    43    57    0.0    1994-11-29
Hayward    37    54    \N    1994-11-29




COPY(7)にはCOPYコマンドについてのより詳しい説明があります。
   

テーブルへの問い合わせ




    
    
    


テーブルからデータを取り出すために、テーブルへ問い合わせをします。
このためにSQLのSELECT文が使用されます。
この文は選択リスト（返される列のリスト部分）とテーブルリスト（データを取り出すテーブルのリスト部分）、および、省略可能な条件（制限を指定する部分）に分けることができます。
例えば、weatherの全ての行を取り出すには、以下を入力します。


SELECT * FROM weather;



ここで*は「全ての列」の省略形です。
     [2]

したがって、以下のようにしても同じ結果になります。


SELECT city, temp_lo, temp_hi, prcp, date FROM weather;




出力は、以下のようになります。



     city      | temp_lo | temp_hi | prcp |    date
---------------+---------+---------+------+------------
 San Francisco |      46 |      50 | 0.25 | 1994-11-27
 San Francisco |      43 |      57 |    0 | 1994-11-29
 Hayward       |      37 |      54 |      | 1994-11-29
(3 rows)


   


選択リストには、単なる列参照だけではなく式を指定することもできます。
例えば、以下を行うことができます。


SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;



この結果は次のようになります。


     city      | temp_avg |    date
---------------+----------+------------
 San Francisco |       48 | 1994-11-27
 San Francisco |       50 | 1994-11-29
 Hayward       |       45 | 1994-11-29
(3 rows)



AS句を使用した出力列の再ラベル付けの部分に注意してください。
（AS句は省略できます。）
   


必要な行が何かを指定するWHERE句を追加して問い合わせに「条件付け」できます。
WHERE句は論理（真値）式を持ち、この論理式が真となる行のみを返します。
よく使われる論理演算子（AND、OR、NOT）を条件付けに使用できます。
例えば以下は、San Franciscoの雨天時の気象データを取り出します。



SELECT * FROM weather
    WHERE city = 'San Francisco' AND prcp > 0.0;



結果は次のようになります。


     city      | temp_lo | temp_hi | prcp |    date
---------------+---------+---------+------+------------
 San Francisco |      46 |      50 | 0.25 | 1994-11-27
(1 row)


   

    


問い合わせの結果をソートして返すように指定できます。



SELECT * FROM weather
    ORDER BY city;





     city      | temp_lo | temp_hi | prcp |    date
---------------+---------+---------+------+------------
 Hayward       |      37 |      54 |      | 1994-11-29
 San Francisco |      43 |      57 |    0 | 1994-11-29
 San Francisco |      46 |      50 | 0.25 | 1994-11-27




この例では、ソート順は十分に指定されていません。
ですので、San Franciscoの行は順序が異なるかも知れません。
しかし、次のようにすれば常に上記の結果になります。



SELECT * FROM weather
    ORDER BY city, temp_lo;


   

    
    
    


問い合わせの結果から重複行を除くように指定できます。



SELECT DISTINCT city
    FROM weather;





     city
---------------
 Hayward
 San Francisco
(2 rows)




ここでも、結果行の順序は変動するかもしれません。
DISTINCTとORDER BYを一緒に使用することで確実に一貫した結果を得ることができます。
     [3]



SELECT DISTINCT city
    FROM weather
    ORDER BY city;


   


[2] 

SELECT *は即興的な問い合わせで有用ですが、テーブルに列を追加することにより結果が変わってしまいますので、実用システムのコードでは悪いやり方であると一般的には考えられています。
      

[3] 

PostgreSQL™の古めのバージョンを含む一部のデータベースシステムでは、DISTINCTの実装に行の自動順序付けが含まれており、ORDER BYは不要です。
しかし、これは標準SQLにおける要求ではなく、現在のPostgreSQL™ではDISTINCT句が行の順序付けを行うことを保証していません。
      



テーブル間を結合





ここまでの問い合わせは、一度に1つのテーブルにのみアクセスするものでした。
問い合わせは、一度に複数のテーブルにアクセスすることも、テーブル内の複数行の処理を同時に行うようなやり方で、1つのテーブルにアクセスすることも可能です。
一度に複数のテーブル（または同一テーブルの複数インスタンス）にアクセスする問い合わせは、結合問い合わせと呼ばれます。
それらは1つのテーブルからの行を2つ目のテーブルからの行と、どの行同士を組み合わせるかを指定する式により、結び付けます。
例えば、すべての気象データを関連する都市の位置情報と一緒にすべて返すためには、データベースはweatherテーブルの各行のcity列を、citiesテーブルの全ての行のname列と比較することが必要です。
    [4]

これは、以下の問い合わせによって行うことができます。



SELECT * FROM weather JOIN cities ON city = name;





     city      | temp_lo | temp_hi | prcp |    date    |     name      | location
---------------+---------+---------+------+------------+---------------+-----------
 San Francisco |      46 |      50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
 San Francisco |      43 |      57 |    0 | 1994-11-29 | San Francisco | (-194,53)
(2 rows)



   


この結果について2つのことに注目してください。
    
	

Hayward市についての結果行がありません。
これはcitiesテーブルにはHaywardに一致する項目がないからで、結合の際にweatherテーブル内の一致されなかった行は無視されるのです。
これをどうしたら解決できるかは、しばらく後で説明します。
      

	

都市名を持つ2つの列があります。
weatherテーブルとcitiesテーブルからの列のリストが連結されるため、これは正しい動作です。
しかし実際には、これは望ましい結果ではないため、*を使わずに、明示的に出力列のリストを指定することになるでしょう。


SELECT city, temp_lo, temp_hi, prcp, date, location
    FROM weather JOIN cities ON city = name;


      




   


列がすべて異なる名前だったので、パーサは自動的にどのテーブルの列かを見つけることができました。
2つのテーブルで列名が重複している場合は、以下のようにどちらの列を表示させたいかを示すために列名を修飾しなければなりません。



SELECT weather.city, weather.temp_lo, weather.temp_hi,
       weather.prcp, weather.date, cities.location
    FROM weather JOIN cities ON weather.city = cities.name;




結合問い合わせではすべての列名を修飾するのが良いやり方であると一般に考えられています。
そうすれば、テーブルのいずれかに後で重複する名前を持つ列が追加されても、問い合わせが失敗しません。
   


ここまでに示したような結合問い合わせは、以下のような形で表すことができます。



SELECT *
    FROM weather, cities
    WHERE city = name;




この構文はJOIN/ONより以前のもので、SQL-92で導入されました。
テーブルはFROM句に単に列挙され、比較式はWHEREに追加されます。
この古い暗黙の構文と新しい明示的なJOIN/ON構文の結果は同一です。
ですが、問い合わせを読む方にしてみれば、明示的な構文の方がその意味をより理解しやすいです。
結合条件はそれ独自のキーワードにより導入されるのに対して、以前は条件は他の条件と一緒にWHERE句の中に混ざっていました。
   


ここで、どのようにすればHaywardのレコードを得ることができるようになるのかを明らかにします。
実行したい問い合わせは、weatherをスキャンし、各行に対して、cities行に一致する行を探すというものです。
一致する行がなかった場合、citiesテーブルの列の部分を何らかの「空の値」に置き換えたいのです。
この種の問い合わせは外部結合と呼ばれます。
（これまで示してきた結合は内部結合です。）
以下のようなコマンドになります。



SELECT *
    FROM weather LEFT OUTER JOIN cities ON weather.city = cities.name;





     city      | temp_lo | temp_hi | prcp |    date    |     name      | location
---------------+---------+---------+------+------------+---------------+-----------
 Hayward       |      37 |      54 |      | 1994-11-29 |               |
 San Francisco |      46 |      50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
 San Francisco |      43 |      57 |    0 | 1994-11-29 | San Francisco | (-194,53)
(3 rows)




この問い合わせは左外部結合と呼ばれます。
結合演算子の左側に指定したテーブルの各行が最低でも一度出力され、一方で、右側のテーブルでは左側のテーブルの行に一致するもののみが出力されるからです。
右側のテーブルに一致するものがない、左側のテーブルの行を出力する時、右側のテーブルの列は空の値（NULL）で置換されます。
   
練習: 

右外部結合や完全外部結合も存在します。
これらが何を行うかを考えてください。
    


テーブルを自分自身に対して結合させることができます。
これは自己結合と呼ばれます。
例として、他の気象データの気温範囲内にある気象データを全て取り出すことを考えます。
weather各行のtemp_loとtemp_hiを、他のweather行のtemp_loとtemp_hi列とを比較しなければなりません。
以下の問い合わせを使用して行うことができます。



SELECT w1.city, w1.temp_lo AS low, w1.temp_hi AS high,
       w2.city, w2.temp_lo AS low, w2.temp_hi AS high
    FROM weather w1 JOIN weather w2
        ON w1.temp_lo < w2.temp_lo AND w1.temp_hi > w2.temp_hi;





     city      | low | high |     city      | low | high
---------------+-----+------+---------------+-----+------
 San Francisco |  43 |   57 | San Francisco |  46 |   50
 Hayward       |  37 |   54 | San Francisco |  46 |   50
(2 rows)




ここで、結合の左側と右側を区別できるように、weatherテーブルにw1とw2というラベルを付けています。
また、入力量を省くために、他の問い合わせでもこの種の別名を使用できます。
以下に例を示します。


SELECT *
    FROM weather w JOIN cities c ON w.city = c.name;



こういった形の省略はかなりよく行われます。
   


[4] 

これは概念的なモデルでしかありません。
実際の結合は通常、1つひとつの行の組み合わせを比べるよりも、もっと効率的な方法で行われます。
しかし、これはユーザからはわかりません。
     



集約関数





他のほとんどのリレーショナルデータベース製品同様、PostgreSQL™は集約関数をサポートします。
集約関数は複数の入力行から1つの結果を計算します。
例えば、行の集合に対して、count（総数）、sum（総和）、avg（平均）、max（最大）、min（最小）といった演算を行う集約があります。
   


例として、次のように全ての都市の最低気温から最も高い気温を求めることができます。



SELECT max(temp_lo) FROM weather;





 max
-----
  46
(1 row)


   

    
    


どの都市のデータなのかを知りたいとしたら、下記のような問い合わせを試行するかもしれません。




SELECT city FROM weather WHERE temp_lo = max(temp_lo);     -- 間違い




しかし、max集約をWHERE句で使用することができませんので、このコマンドは動作しません。
（WHERE句はどの行を集約処理に渡すのかを決定するものです。したがって、集約関数の演算を行う前に評価されなければならないことは明らかです。
このためにこの制限があります。）
しかし、よくあることですが、問い合わせを書き直すことで、意図した結果が得られます。
これには以下のような副問い合わせを使用します。



SELECT city FROM weather
    WHERE temp_lo = (SELECT max(temp_lo) FROM weather);





     city
---------------
 San Francisco
(1 row)




副問い合わせは、外側の問い合わせで起こることとは別々に集約を計算する独立した演算ですので、この問い合わせは問題ありません。
   

    
    


また、GROUP BY句と組み合わせた集約も非常に役に立ちます。
例えば、以下のコマンドで都市ごとにデータの数と最低気温の最大値を求めることができます。



SELECT city, count(*), max(temp_lo)
    FROM weather
    GROUP BY city;





     city      | count | max
---------------+-------+-----
 Hayward       |     1 |  37
 San Francisco |     2 |  46
(2 rows)




ここには都市ごとに1行の出力があります。
それぞれの集約結果はその都市に一致するテーブル行全体に対する演算結果です。
以下のように、HAVINGを使ってグループ化した行にフィルタをかけることができます。



SELECT city, count(*), max(temp_lo)
    FROM weather
    GROUP BY city
    HAVING max(temp_lo) < 40;





  city   | count | max
---------+-------+-----
 Hayward |     1 |  37
(1 row)




このコマンドは上と同じ計算を行うものですが、全てのtemp_loの値が40未満の都市のみを出力します。
最後になりますが、「S」から始まる名前の都市のみを対象にしたい場合は、以下を行います。



SELECT city, count(*), max(temp_lo)
    FROM weather
    WHERE city LIKE 'S%'            -- [image: 1]
    GROUP BY city;





     city      | count | max
---------------+-------+-----
 San Francisco |     2 |  46
(1 row)


   
	[image: 1] 
	

LIKE演算子はパターンマッチを行います。これについては「パターンマッチ」で説明します。
     




   


集約とSQLのWHEREとHAVING句の間の相互作用を理解することが重要です。
WHEREとHAVINGの基本的な違いは、WHEREが、グループや集約を演算する前に入力行を選択する（したがって、これはどの行を使用して集約演算を行うかを制御します）のに対し、HAVINGは、グループと集約を演算した後に、グループ化された行を選択する、ということです。
したがって、WHERE句は集約関数を持つことはできません。
集約を使用して、どの行をその集約の入力にするのかを決定することは意味をなしません。
一方で、HAVING句は常に集約関数を持ちます
（厳密に言うと、集約を使用しないHAVING句を書くことはできますが、これが有用となることはほぼありません。
同じ条件はWHEREの段階でもっと効率良く使用できます）。
   


前の例ではWHERE内に都市名の制限を適用できます。
集約を行う必要がないからです。
これはHAVINGに制限を追加するよりも効率的です。
なぜならWHEREの検査で失敗する全ての行についてグループ化や集約演算が行われないからです。
   


集約計算に使用する行を選択するもう1つの方法は、集約ごとのオプションであるFILTERを使用することです。



SELECT city, count(*) FILTER (WHERE temp_lo < 45), max(temp_lo)
    FROM weather
    GROUP BY city;





     city      | count | max
---------------+-------+-----
 Hayward       |     1 |  37
 San Francisco |     1 |  46
(2 rows)




FILTERはWHEREによく似ていますが、結び付けられている特定の集約関数の入力からのみ行を削除する点が異なります。
ここでは、count集約はtemp_loが45未満の行のみを数えますが、max集約はすべての行に適用されるため、読み取り値46が検出されます。
   

更新





UPDATEコマンドを使用して、既存の行を更新できます。
11月28日以降の全ての気温の読み取りが2度高くなっていることがわかったとします。
その場合、以下のコマンドによって、データを修正できます。



UPDATE weather
    SET temp_hi = temp_hi - 2,  temp_lo = temp_lo - 2
    WHERE date > '1994-11-28';


   


データの更新後の状態を確認します。


SELECT * FROM weather;

     city      | temp_lo | temp_hi | prcp |    date
---------------+---------+---------+------+------------
 San Francisco |      46 |      50 | 0.25 | 1994-11-27
 San Francisco |      41 |      55 |    0 | 1994-11-29
 Hayward       |      35 |      52 |      | 1994-11-29
(3 rows)


   

削除





DELETEコマンドを使用してテーブルから行を削除できます。
Haywardの気象を対象としなくなったとします。
その場合、以下のコマンドを使用して、テーブルから行を削除できます。


DELETE FROM weather WHERE city = 'Hayward';




Haywardに関する気象データは全て削除されました。



SELECT * FROM weather;





     city      | temp_lo | temp_hi | prcp |    date
---------------+---------+---------+------+------------
 San Francisco |      46 |      50 | 0.25 | 1994-11-27
 San Francisco |      41 |      55 |    0 | 1994-11-29
(2 rows)


   


以下の形式の文には注意しなければなりません。


DELETE FROM tablename;




条件がない場合、DELETEは指定したテーブルの全ての行を削除し、テーブルを空にします。
システムは削除前に確認を求めるようなことは行いません！
   

第3章 高度な諸機能



はじめに





前章では、PostgreSQL™でSQLを使用してデータを保存したりアクセスしたりする基本について説明しました。
ここでは、管理を単純化しデータの喪失や破壊を防止するSQLのいくつかのより高度な機能について説明します。
最後にPostgreSQL™のいくつかの拡張に触れます。
   


本章では折々2章SQL言語にある例に変更や改善を加えますので、その章を読んでおくことは役立ちます。
本章にあるいくつかの例は、tutorialディレクトリのadvanced.sqlに入っています。ここでは繰り返しませんが、このファイルにはロードして使ってみることができるサンプルデータもあります。
（ファイルの使い方は「はじめに」を参照してください。）
   


ビュー





「テーブル間を結合」の問い合わせをもう一度参照してください。
天候の記録と都市の所在場所を結合したリストを得ることが今作っているアプリケーションにとって特に重要なのですが、この結合リストを必要とする度に問い合わせを打ち込みたくはないとしましょう。
この問い合わせに対してビューを作成し、通常のテーブルのように参照できる問い合わせに名前を付けることができます。



CREATE VIEW myview AS
    SELECT name, temp_lo, temp_hi, prcp, date, location
        FROM weather, cities
        WHERE city = name;

SELECT * FROM myview;


   


ビューを自由に利用することは、SQLデータベースの良い設計における重要な項目です。
ビューはテーブル構造の詳細をカプセル化しますので、アプリケーションが発展するに従いテーブル構造が変わったとしても、一貫したインタフェースを保てます。
   


ビューは実テーブルが使用できるほとんどの場所で使えます。
他のビューに対するビューの作成も珍しくはありません。
   

外部キー





2章SQL言語のweatherテーブルとcitiesテーブルを思い出してください。
次のような問題点を考えてみましょう。
citiesテーブルに一致する項目がない行は絶対にweatherテーブルに挿入できなくしたいとします。
これをデータの参照整合性の保全と呼びます。
最も単純なデータベースシステムでこれを実装するとしたら、まずcitiesテーブルに一致する行が存在するかどうかを確認し、それからweatherテーブルに新規レコードを追加する、あるいは拒絶する、といったことになるでしょう。
この手法には多くの問題があること、そしてとても不便であることから、PostgreSQL™に代わって作業させることができます。
   


これらのテーブルの新しい宣言は以下になります。



CREATE TABLE cities (
        name     varchar(80) primary key,
        location point
);

CREATE TABLE weather (
        city      varchar(80) references cities(name),
        temp_lo   int,
        temp_hi   int,
        prcp      real,
        date      date
);




では無効なレコードを挿入してみましょう。



INSERT INTO weather VALUES ('Berkeley', 45, 53, 0.0, '1994-11-28');





ERROR:  insert or update on table "weather" violates foreign key constraint "weather_city_fkey"
DETAIL:  Key (city)=(Berkeley) is not present in table "cities".


   


外部キーの動作はアプリケーションごとに細かく調整できます。
このチュートリアルではこの簡単な例より先には進みませんが、さらに情報がほしい方は5章データ定義をご覧ください。
外部キーを正しく使用するようにすると、間違いなくデータベースアプリケーションの質を向上させますので身に付くように励んでください。
   

トランザクション





トランザクションは全てのデータベースシステムで基礎となる概念です。
トランザクションの基本的要点は複数の手順を単一の「全てか無しか」の操作にまとめ上げることです。
手順の進行途中の状態は他の同時実行中のトランザクションからは見えません。
トランザクションの完結の障害となる何らかのエラーが起こると、それらの手順はどれもデータベースにまったく影響を与えません。
   


例を挙げましょう。ある銀行のデータベースでそこに多数の顧客の口座残高と支店の総預金残高が記録されているとします。
アリスの口座からボブの口座に$100.00の送金があったことを記録したいとします。
ちょっと乱暴に単純化すると、このSQLは次のようになります。



UPDATE accounts SET balance = balance - 100.00
    WHERE name = 'Alice';
UPDATE branches SET balance = balance - 100.00
    WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Alice');
UPDATE accounts SET balance = balance + 100.00
    WHERE name = 'Bob';
UPDATE branches SET balance = balance + 100.00
    WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Bob');


   


書かれているSQLコマンドの詳しいことについて、ここでは重要でありません。
重要な点は、この単純な操作の目的を果たすため、複数の独立した更新手続きが関わっていることです。
銀行職員としてはこれら全ての更新が行われるかもしくはまったく行われないのかいずれかの確証が必要です。
$100.00がアリスの口座から引き落とされずにボブの口座に振り込まれるようなシステムの不備があってはなりません。
一方、$100.00がボブに振り込まれないでアリスの口座から引き落とされたとしたら、アリスはこの銀行のお得意様ではなくなるでしょうね。
操作の途中で一部不都合が発生した場合、結果に影響を与えるいかなる手続きも実行されないという確証が必要です。
更新手続きをトランザクションにグループ化すると、その確証が得られます。
あるトランザクションは他のトランザクションから見て完結するかまったく起こらなかったかという見方から原子的と呼ばれます。
   


もう一方で、いったんトランザクションが完結しデータベースシステムに承認された場合は、確実に恒久的に保存され、たとえ直後にクラッシュが起こったとしても記録は失われないという確証も必要です。
例えばボブが自分の口座から現金を引き落として店舗を立ち去った直後にボブの口座からの引き落とし記録がシステムのクラッシュで消えてしまうことは受け入れられません。
トランザクションが実装されているデータベースでは、あるトランザクションによる全ての更新がそのトランザクションを完結したと通知を行う前に永続的記録装置（すなわちディスク上）にログを書き込むことで保証しています。
   


トランザクションを実装したデータベースの別の重要な特性は、原子的更新という概念に深く関係しています。
複数のトランザクションが同時に動作している時、それぞれのトランザクションは別のトランザクションが行っている未完了の変更を見ることができてはなりません。
例えば、あるトランザクションがすべての支店の残高を集計する作業を行っているとき、アリスの口座がある支店からの引き落としを勘定に入れるけれども、ボブの口座がある支店への振り込みを勘定に入れないというのは受け入れられませんし、その逆も駄目です。
つまり、データベース上での恒久的効果という意味のみならず、一連の操作の過程で可視性ということにおいてもトランザクションは「すべて」か「なし」かでなければなりません。
作業中のトランザクションによる更新は、他のトランザクションからはトランザクションが完結するまで不可視です。
そのトランザクションが完結したその時点で、トランザクションで行った更新の全てが見えるようになります。
   


PostgreSQL™ではトランザクションを構成するSQLコマンドをBEGINとCOMMITで囲んで設定します。
従って、この銀行取引のトランザクションの実際は次のようになります。



BEGIN;
UPDATE accounts SET balance = balance - 100.00
    WHERE name = 'Alice';

-- 等々
COMMIT;


   


トランザクション処理の途中でコミットを行わない（アリスの口座残高が足りなかったような場合）と判断した場合は、COMMITではなくROLLBACKを使用して行った全ての更新を破棄します。
   


PostgreSQL™は実際全てのSQL文をトランザクション内で実行するようになっています。
BEGINを発行しない場合、それぞれの文は暗黙的にBEGINが付いているとみなし、（成功すれば）COMMITで囲まれているものとします。
BEGINとCOMMITで囲まれた文のグループはトランザクションブロックと呼ばれることもあります。
   
注記


いくつかのクライアントライブラリは自動的にBEGINとCOMMITコマンドを発行し、ユーザに尋ねることなくトランザクションブロックが有効になります。
使用しているインタフェースのドキュメントで確認してください。
    



セーブポイントを使用することで、トランザクション内で文を、より粒度を細かく制御することが可能になります。
セーブポイントは、トランザクションを構成するある部分を選択的に破棄する一方、破棄されない残りの部分をコミットします。
SAVEPOINTコマンドでセーブポイントを定義した後、必要であればROLLBACK TOコマンドによりセーブポイントまでロールバックできます。
定義されたセーブポイントとロールバックするポイントとの間の全てのトランザクションのデータベースの変更は破棄されますが、セーブポイント以前の変更は保持されます。
   


セーブポイントまでロールバックした後でもセーブポイントは定義されたままです。このため何度でもそこにロールバックできます。
逆に再度特定のセーブポイントにロールバックする必要がないのであれば、それを解除しシステムリソースを多少とも解放できます。
あるセーブポイントを解除したりセーブポイントにロールバックすることにより、自動的にその後に定義されたすべてのセーブポイントが解除されることに注意してください。
   


これら全てはトランザクションブロック内で起こるので、他のデータベースセッションからは何も見えません。
トランザクションブロックをコミットした場合、他のセッションからはコミットされた行為が1つの単位として見えるようになりますが、ロールバックの行為は決して可視になりません。
   


銀行のデータベースを思い出してください。アリスの口座から$100.00を引き出してボブの口座に振り込むとします。後になってボブではなくウィリーの口座に振り込むべきだったと気が付きました。
この場合セーブポイントを次のように使います。



BEGIN;
UPDATE accounts SET balance = balance - 100.00
    WHERE name = 'Alice';
SAVEPOINT my_savepoint;
UPDATE accounts SET balance = balance + 100.00
    WHERE name = 'Bob';

-- おっと、忘れるところだった。ウィリーの口座を使わなければ。
ROLLBACK TO my_savepoint;
UPDATE accounts SET balance = balance + 100.00
    WHERE name = 'Wally';
COMMIT;


   


この例はもちろん極端に単純化していますが、セーブポイントの使用を通じてトランザクションブロック内で多くの制御を行えることがわかります。
さらには何らかのエラーでシステムがトランザクションブロックを中断状態にした場合、完全にロールバックして再び開始するのを別とすれば、ROLLBACK TOコマンドがトランザクションブロックの制御を取り戻す唯一の手段です。
   

ウィンドウ関数





ウィンドウ関数は現在の行に何らかとも関係するテーブル行の集合に渡って計算を行います。
これは集約関数により行われる計算の形式と似たようなものです。
とは言っても、非ウィンドウ集約呼び出しのように、ウィンドウ関数により行が単一出力行にグループ化されることはありません。
その代わり、行はそれぞれ個別の身元を維持します。
裏側では、ウィンドウ関数は問い合わせ結果による現在行だけでなく、それ以上の行にアクセスできます。
   


これはその部署の平均給与とそれぞれの従業員の給与をどのように比較するかを示した例です。



SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;





  depname  | empno | salary |          avg
-----------+-------+--------+-----------------------
 develop   |    11 |   5200 | 5020.0000000000000000
 develop   |     7 |   4200 | 5020.0000000000000000
 develop   |     9 |   4500 | 5020.0000000000000000
 develop   |     8 |   6000 | 5020.0000000000000000
 develop   |    10 |   5200 | 5020.0000000000000000
 personnel |     5 |   3500 | 3700.0000000000000000
 personnel |     2 |   3900 | 3700.0000000000000000
 sales     |     3 |   4800 | 4866.6666666666666667
 sales     |     1 |   5000 | 4866.6666666666666667
 sales     |     4 |   4800 | 4866.6666666666666667
(10 rows)




最初の3つの出力列は、テーブルempsalaryから直接もたらされ、テーブル内の各行に対し1つの出力行が存在します。4番目の列は、現行の行と同じdepnameの値を持つ全てのテーブル行に渡って取得した平均値を表わしています。
（これは実際、非ウィンドウavg集約関数と同じですが、OVER句によりウィンドウ関数として扱われ、ウィンドウフレームに渡り計算されます。）
   


ウィンドウ関数呼び出しは常に、ウィンドウ関数名と引数の直後に続くOVER句を含みます。
これが通常の関数、または非ウィンドウ集約関数と構文的に区別されるところです。
OVER句は、ウィンドウ関数により処理のため問い合わせの行がどのように分解されるかを厳密に決定します。
OVER内のPARTITION BY句は、行をPARTITION BY式の同じ値を共有するグループ、すなわちパーティションに分割します。
それぞれの行に対し、ウィンドウ関数は現在行と同じパーティションに分類される行に渡って計算されます。
   


OVER内でORDER BYを使用することによりウィンドウ関数で処理される行の順序を制御することもできます。
（ウィンドウのORDER BYは行が出力される順序に一致する必要すらありません。）
ここに例をあげます。



SELECT depname, empno, salary,
       row_number() OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;





  depname  | empno | salary | row_number
-----------+-------+--------+------------
 develop   |     8 |   6000 |          1
 develop   |    10 |   5200 |          2
 develop   |    11 |   5200 |          3
 develop   |     9 |   4500 |          4
 develop   |     7 |   4200 |          5
 personnel |     2 |   3900 |          1
 personnel |     5 |   3500 |          2
 sales     |     1 |   5000 |          1
 sales     |     4 |   4800 |          2
 sales     |     3 |   4800 |          3
(10 rows)




ここで示されたように、row_numberウィンドウ関数は、各パーティション内でORDER BY句で定義された順序（同順位の行は不特定の順序で番号付けされます）に従い、行に連番を割り当てます。
row_numberは明示的なパラメータを必要としません。その動作はすべてOVER句によって決定されるためです。
   


ウィンドウ関数で考慮される行は、そのWHERE、GROUP BY、およびHAVING句でフィルタをかけられた問い合わせのFROM句によって生成された「仮想テーブル」の行です。
例えば、WHERE条件に一致しないため削除された行はウィンドウ関数から見えません。
異なったOVER句を用いて、異なった方法によりデータを分割する複数のウィンドウ関数を問い合わせが含んでも構いません。
しかし、この仮想テーブルで定義された行の同一の集まり上で全てが作動します。
   


ORDER BYは、行の順序付けが重要でない場合、省略可能であることを見てきました。
PARTITION BYも同様に割愛できます。
この場合、全ての行を含む単一のパーティションが存在します。
   


ウィンドウ関数に関連した別の重要な概念があります。
それぞれの行に対して、そのウィンドウフレームと呼ばれる、そのパーティション内の行の集合が存在します。
ウィンドウ関数の中には、パーティション全体ではなく、ウィンドウフレームの行のみに対して作用するものもあります。
デフォルトでは、ORDER BYが指定されると、フレームは、パーティションの始めから現在の行までのすべての行、およびそれより後にあるがORDER BY句に従うと現在の行とおなじ順序になるすべての行から構成されます。
ORDER BYが省略された場合、デフォルトのフレームはそのパーティション内のすべての行を含みます。
     [5]

sumを使用した例を示します。
   

SELECT salary, sum(salary) OVER () FROM empsalary;


 salary |  sum
--------+-------
   5200 | 47100
   5000 | 47100
   3500 | 47100
   4800 | 47100
   3900 | 47100
   4200 | 47100
   4500 | 47100
   4800 | 47100
   6000 | 47100
   5200 | 47100
(10 rows)



上では、OVER句内にORDER BYが存在しませんので、ウィンドウフレームはパーティションと同一です。またパーティションはPARTITION BYもありませんのでテーブル全体となります。言い換えると、総和はそれぞれ、テーブル全体に対して行われ、その結果、各出力行で同じ結果を得ることになります。
しかし以下のように、ORDER BY句を加えると、非常に異なる結果を得ます。
   

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;


 salary |  sum
--------+-------
   3500 |  3500
   3900 |  7400
   4200 | 11600
   4500 | 16100
   4800 | 25700
   4800 | 25700
   5000 | 30700
   5200 | 41100
   5200 | 41100
   6000 | 47100
(10 rows)



ここで、sumは最初の（最も低い）salaryから現在の行まで、現在のものと重複する全てを含んで、計算されます（重複するsalaryに対する結果に注意してください）。
   


ウィンドウ関数は問い合わせのSELECTリストとORDER BY句に限って許可されます。
GROUP BY、HAVING、およびWHERE句などその他の場所では禁止されています。
その理由は、ウィンドウ関数は論理的に、ここに挙げたような句が処理された後に実行されるからです。
またウィンドウ関数は非ウィンドウ集約関数の後に実行されます。
これが意味する所は、ウィンドウ関数の引数に集約関数呼び出しを含めても有効ですが、その逆は成り立たないと言うことです。
   


ウィンドウ演算が行われた後、行にフィルタ処理を行ったりグループ化を行う必要が生じた場合、副SELECTを使用します。
例をあげます。



SELECT depname, empno, salary, enroll_date
FROM
  (SELECT depname, empno, salary, enroll_date,
     row_number() OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
     FROM empsalary
  ) AS ss
WHERE pos < 3;




上記問い合わせは3より小さいrow_numberを持った内部問い合わせからの行のみを表示します（つまり、それぞれの部署に対する最初の2行です）。
   


問い合わせが複数のウィンドウ関数を含む場合、各ウィンドウ関数に異なるOVER句を記述できます。しかし複数の関数で同じウィンドウ処理動作が必要な場合は重複となり、またエラーを招きがちです。
代わりにWINDOW句でウィンドウ処理動作に名前を付け、これをOVER内で参照できます。
以下に例を示します。



SELECT sum(salary) OVER w, avg(salary) OVER w
  FROM empsalary
  WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);


   


ウィンドウ関数についてより詳細は、
    「ウィンドウ関数呼び出し」、
    「ウィンドウ関数」、
    「ウィンドウ関数処理」、および
    SELECT(7)リファレンスページにあります。
   


[5] 

ほかの方法でウィンドウフレームを定義するいくつかのオプションがありますが、このチュートリアルでは扱いません。詳細は、「ウィンドウ関数呼び出し」を参照してください。
      



継承





継承とはオブジェクト指向データベースの概念です。
データベース設計においてこれまでになかった興味深い可能性を広げてくれます。
   


2つのテーブルcities（都市）テーブルとcapitals（州都）テーブルを作ってみましょう。
州都は本来同時に都市でもありますので、全ての都市をリストする時は何もしなくても州都も表示する何らかの方法が必要です。
賢い人なら次のような案を工夫するかもしれません。



CREATE TABLE capitals (
  name       text,
  population real,

  elevation  int,    -- （フィート単位）
  state      char(2)
);

CREATE TABLE non_capitals (
  name       text,
  population real,

  elevation  int     -- （フィート単位）
);

CREATE VIEW cities AS
  SELECT name, population, elevation FROM capitals
    UNION
  SELECT name, population, elevation FROM non_capitals;




問い合わせを続ける分には問題はありませんが、例えば、複数の行を更新する時に醜くなります。
   


より良い解決策は次のような構文です。



CREATE TABLE cities (
  name       text,
  population real,

  elevation  int     -- （フィート単位）
);

CREATE TABLE capitals (
  state      char(2) UNIQUE NOT NULL
) INHERITS (cities);


   


この例では、capitalsテーブルの行は親のcitiesテーブルから全ての列、すなわちname（都市名）、population（人口）そしてelevation（標高）を継承します。
name列のデータ型は、可変長文字列のためにPostgreSQL™が初めから備えているtext型です。
capitalsテーブルは、これに加えて州の略称を示すstate列を持ちます。
PostgreSQL™では、テーブルは関連付けられたテーブルがあればそれぞれから属性を継承できます。
   


以下の問い合わせの例は、州都も含めて、標高500フィート以上に位置する全ての都市を求めるものです。



SELECT name, elevation
  FROM cities
  WHERE elevation > 500;




これは以下を返します。



   name    | elevation
-----------+-----------
 Las Vegas |      2174
 Mariposa  |      1953
 Madison   |       845
(3 rows)


   


その一方、州都ではない標高500フィート以上に位置する都市を見つけ出したい時は次のような問い合わせになります。



SELECT name, elevation
    FROM ONLY cities
    WHERE elevation > 500;





   name    | elevation
-----------+-----------
 Las Vegas |      2174
 Mariposa  |      1953
(2 rows)


   


ここでcitiesの前に置かれたONLYは、継承階層においてcitiesテーブルの下層にあるテーブルではなく、citiesテーブルのみを参照することを意味します。
既に説明したSELECT、UPDATEおよびDELETEなど数多くのコマンドは、このONLY表記をサポートしています。
   
注記


継承は多くの場合で便利ですが、一意性制約や外部キーと統合されていないので万能ではありません。
詳細は「継承」を参照してください。
    


まとめ





SQL初心者向けのこのチュートリアル入門では触れていない多くの機能が、PostgreSQL™にはあります。
これらの機能は、本書の残りで詳しく説明します。
   


もっと多くの入門資料がお望みであれば、PostgreSQLのWebサイトにより多くのリソースがリンクされています。
   

パート II. SQL言語






ここでは、PostgreSQL™でのSQL言語を使用する方法を説明します。
まず最初にSQLの一般的な構文について述べ、テーブルの作成方法、データベースに登録する方法、そして、データベースの問い合わせを行う方法について説明していきます。
本パートの中盤では、SQLコマンドで使用できるデータ型と関数について説明します。
最後に、データベースをチューニングする際に重要となるいくつかの点について説明します。
   


ここでの内容は、初心者のユーザでも先のページを何度も参照することなく、最初から最後まで全てのトピックを理解できるような構成になっています。
これらの章は自己完結型であることを意図しており、上級ユーザは必要に応じて個別に章を読むことができます。
ここでの情報はトピック単位で記述されています。
特定のコマンドの完全な説明を探している読者は、パートVI「リファレンス」を確認することをお勧めします。
   


読者はPostgreSQL™データベースへの接続およびSQLコマンド発行の方法を知っている必要があります。
まだこれらについて慣れていない方は、先にパートI「チュートリアル」を読むことをお勧めします。
SQLコマンドは通常、PostgreSQL™の対話型端末psqlを使用して入力しますが、同様の機能を備えた他のプログラムも使用することができます。
   


第4章 SQLの構文





本章ではSQLの構文について説明します。
本章の内容は、データの定義や変更のためにSQLコマンドを適用する方法について詳しく説明する以後の章を理解する上での基礎となります。
 


この章はSQLデータベース間で異なって実装されたり、またはPostgreSQL™に固有な幾つかの規則と概念を含んでいるので、SQLについて熟知しているユーザも本章を注意深く読むことをお勧めします。
 
字句の構造





SQLの入力は、ひと続きのコマンドからなります。
コマンドはトークンが繋がったもので構成され、最後はセミコロン（「;」）で終わります。
入力ストリームの終了もやはりコマンドを終わらせます。
どのトークンが有効かは特定のコマンドの構文によります。
  


トークンはキーワード、識別子、引用符で囲まれた識別子、リテラル（もしくは定数）、特別な文字シンボルです。
トークンは通常空白（スペース、タブ、改行）で区切られますが、曖昧さがなければ（一般的には特別な文字が他のトークン型と隣接している場合のみ）必要ありません。
  


例えば、以下のものは（構文的に）正しいSQLの入力です。


SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');



この例は1行に1つのコマンドを記述した、3つのコマンドが連続しています（必ずしも1つのコマンドを1行で書く必要はありません。 1行に複数のコマンドを入力することも可能ですし、1つのコマンドを複数行に分けて記述することも可能です）。
   


さらに、入力されたSQLにコメントが付いていても構いません。
コメントはトークンではなく、その効果は空白と同じです。
  


SQL構文は、どのトークンがコマンドを識別し、どれがオペランドでどれがパラメータかに関してはさほど首尾一貫していません。
最初のいくつかのトークンは一般にコマンド名です。
したがって、上記の例において「SELECT」、「UPDATE」、「INSERT」コマンドについて通常説明することになります。
しかし、例えばUPDATEコマンドでは、SETトークンが特定の位置に常に記述されなければなりませんし、この例で使われているINSERTコマンドを完結するためにはVALUESトークンが必要です。
それぞれのコマンドの正確な構文規則はパートVI「リファレンス」で説明されています。
  
識別子とキーワード





上記の例に出てくるSELECT、UPDATE、もしくはVALUESのようなトークンは、キーワードの一例です。
キーワードとは、SQL言語で決まった意味を持っている単語です。
MY_TABLEトークンやAトークンは識別子の一例です。
これらは、使われるコマンドによって、テーブル、列、他のデータベースオブジェクトの名前を識別します。
したがって、単に「名前」と呼ばれることもあります。
キーワードと識別子は同じ字句の構造を持つため、言語を知らなくてはトークンが識別子なのかキーワードなのかわからないということになります。
全てのキーワードのリストは付録C SQLキーワードにあります。
   


SQL識別子とキーワードは、文字（a〜zおよび発音区別符号付き文字と非Latin文字）、アンダースコア（_）で始まらなければいけません。
識別子またはキーワードの中で続く文字は、文字、アンダースコア、数字（0〜9）あるいはドル記号（$）を使用できます。
標準SQLの記述に従うと、ドル記号は識別子内では使用できないことに注意してください。
ですから、これを使用するとアプリケーションの移植性は低くなる可能性があります。
標準SQLでは、数字を含む、あるいはアンダースコアで始まったり終わったりするキーワードは定義されていません。
したがって、この形式の識別子は標準の今後の拡張と競合する可能性に対して安全です。
   

    
    

システムはNAMEDATALEN-1バイトより長い識別子を使いません。
より長い名前をコマンドで書くことはできますが、短く切られてしまいます。
デフォルトではNAMEDATALENは64なので、識別子は最長で63バイトです。
この制限が問題になる場合は、src/include/pg_config_manual.h内のNAMEDATALEN定数の値を変更して増やすことができます。
   

    
    

キーワードと引用符付きでない識別子は大文字と小文字を区別しません。
したがって、


UPDATE MY_TABLE SET A = 5;



は、以下の文と同じ意味になります。


uPDaTE my_TabLE SeT a = 5;



慣習的によく使われる方法では、キーワードを大文字で、名前を小文字で書きます。
例えば下記のようになります。


UPDATE my_table SET a = 5;


   

    
    

識別子には副次的な種類もあります。
区切り識別子あるいは引用符付き識別子です。
任意の文字の連なりを二重引用符（"）で囲んだものです。
区切り識別子は常に識別子であって、キーワードではありません。
ですから、"select"は「select」という名前の列あるいはテーブルを問い合わせるために使えますが、引用符の付かないselectはキーワードとして理解されるので、テーブルもしくは列名が期待される部分では解析エラーを起こします。
引用符付き識別子は下記の例のように書くことができます。


UPDATE "my_table" SET "a" = 5;


   


引用符付き識別子は、コード0の文字以外であればどのような文字でも使えます。
（二重引用符を含めたい場合は、二重引用符を2つ入力します。）
これにより、空白やアンパサンド（&）を含むテーブル名や列名など、この方法がなければ作れないような名前のものを作ることが可能になります。
この場合においても長さの制限は適用されます。
   


引用符が付かない名前は常に小文字に解釈されますが、識別子を引用符で囲むことによって大文字と小文字が区別されます。
例えば、識別子FOO、foo、"foo"はPostgreSQL™によれば同じものとして解釈されますが、"Foo"と"FOO"は、これら3つとも、またお互いに違ったものとして解釈されます。
（PostgreSQL™が引用符の付かない名前を小文字として解釈することは標準SQLと互換性がありません。標準SQLでは引用符の付かない名前は大文字に解釈されるべきだとされています。
したがって標準SQLによれば、fooは"FOO"と同じであるべきで、"foo"とは異なるはずなのです。
もし移植可能なアプリケーションを書きたいならば、特定の名前は常に引用符で囲むか、あるいはまったく囲まないかのいずれかに統一することをお勧めします。）
   


引用符付き識別子には異形があり、コード番号で識別されるエスケープされたUnicode文字を含むことができます。
この異形は、U&（大文字または小文字のUの後にアンパサンド）で始まり、その直後に空白を間に入れずに二重引用符を続けます。
例えば、U&"foo"となります。
（これにより演算子&との不明確性が生じることに注意してください。
この問題を回避するには空白を演算子の前後に入れます。）
引用符の中で、Unicode文字はバックスラッシュとそれに続く4桁16進数の文字コード番号で、またはもう1つの方法として、バックスラッシュに続いてプラス符号、そして続いた6桁16進数の文字コード番号によりエスケープ形式で指定されます。
例えば、識別子"data"は次のように書くことができます。


U&"d\0061t\+000061"



次の少し意味のある例はロシア語の「slon」（象）をキリル文字で書いたものです。


U&"\0441\043B\043E\043D"


   


バックスラッシュ以外のエスケープ文字を使用したい場合、文字列の後にUESCAPE句を使用して指定できます。例をあげます。


U&"d!0061t!+000061" UESCAPE '!'



エスケープ文字には、16進表記用の文字、プラス記号、単一引用符、二重引用符、空白文字以外の任意の単一文字を使用できます。
エスケープ文字はUESCAPEの後に二重引用符ではなく単一引用符で記述していることに注意してください。
   


識別子内にエスケープ文字をそのまま含めるためには、それを2つ記述してください。
   


U+FFFFより大きなコードポイントを持つ文字を構成するUTF-16サロゲートペアを指定するために、4桁と6桁の形式のどちらかを使用できますが、技術的には6桁形式の機能によりこれは不要になります。
（サロゲートペアは直接格納されるわけではなく、一つのコードポイントに結合されます。）
   


サーバ符号化方式がUTF-8でない場合、このエスケープシーケンスの1つで指定されたUnicodeコードポイントは実際のサーバ符号化方式へと変換されます。それが可能でない場合にはエラーが報告されます。
   

定数





PostgreSQL™には、3つの暗黙に型付けされる定数があります。
文字列、ビット文字列、そして数字です。
定数は明示的な型で指定することもでき、その場合はシステムによる、より正確な表現と効率の良い操作が可能になります。
こうした他の方法については、次の副節で説明します。
   
文字列定数




     
     

SQLにおける文字列定数は、単一引用符（'）で括られた任意の文字の並びです。
例えば、'This is a string'です。
文字列定数内に単一引用符を含めるには、2つ続けて単一引用符を記述します。
例えば、'Dianne''s horse'です。
二重引用符(")とは同一ではない点に注意してください。
    


2つの文字列定数が、少なくとも1つの改行を含んだ空白のみで区切られている場合は、2つの定数は連結され、実質的に1つの定数として書かれたように処理されます。
例を示します。


SELECT 'foo'
'bar';



は、


SELECT 'foobar';



と同じです。しかし、


SELECT 'foo'      'bar';



は有効な構文ではありません。
（このちょっとした奇妙な振舞いはSQLで決められているもので、PostgreSQL™ではこの標準に従っています。）
    

C形式エスケープでの文字列定数





PostgreSQL™では、また、「エスケープ」文字列定数を受け付けます。
これは標準SQLの拡張です。
エスケープ文字列定数は、E（大文字でも小文字でもかまいません）を開始単一引用符の直前に記述することで指定されます。
例えばE'foo'です。
（複数行に渡るエスケープ文字列定数では、最初の開始引用符の前にのみEを記述してください。）
エスケープ文字列の中では、バックスラッシュ文字（\）によりC言語のようなバックスラッシュシーケンスが開始し、その中でバックスラッシュとそれに続く文字の組み合わせが（表4.1「バックスラッシュエスケープシーケンス」で示したように）特別なバイト値を表現します。
    
表4.1 バックスラッシュエスケープシーケンス
	バックスラッシュエスケープシーケンス	解釈
	\b	後退
	\f	改ページ
	\n	改行
	\r	復帰
	\t	タブ
	
         \o,
         \oo,
         \ooo
         (o = 0–7)
        	8進数バイト値
	
         \xh,
         \xhh
         (h = 0–9, A–F)
        	16進数バイト値
	
         \uxxxx,
         \Uxxxxxxxx
         (x = 0–9, A–F)
        	16もしくは32ビットの16進数 Unicode 文字値





バックスラッシュの後のそのほかの全ての文字はそのまま扱われます。
従って、バックスラッシュ文字を含ませるときは2つのバックスラッシュ（\\）を記載します。
同時に、エスケープ文字列の中では、単一引用符を、通常の方法の''に加え、\'としても含めることができます。
    


特に8進数や16進数エスケープを用いて作成されるバイトシーケンスが、サーバ文字集合符号化方式において有効な文字で構成されていることはコードを書く人の責任です。
便利な代替手段は、Unicodeエスケープか、「Unicodeエスケープがある文字列定数」で説明するもう一つのUnicodeエスケープ構文を代わりとして使用することです。そうすればサーバが文字変換を可能か検査するでしょう。
    
注意


設定パラメータstandard_conforming_stringsが offの場合、PostgreSQL™はバックスラッシュエスケープを通常の文字列定数とエスケープ文字列定数の両方で認識します。
しかし、PostgreSQL™ 9.1からデフォルトはonになりました。これはバックスラッシュエスケープがエスケープ文字列定数でのみ認識されます。
この振る舞いは標準SQL仕様に即していますが、バックスラッシュエスケープを常に認識するという歴史的な動作に依存しているアプリケーションは動作しなくなるでしょう。
回避策として、このパラメータをoffにすることはできますが、バックスラッシュエスケープの使用を避けるよう移植するのが良いでしょう。
特殊文字を表現するためにバックスラッシュを使用する必要がある場合、Eをつけて文字列定数を記述してください。
    


standard_conforming_stringsの他に、設定パラメータescape_string_warningおよびbackslash_quoteが文字列定数内のバックスラッシュの動作を決定します。
    



コードゼロの文字は文字列定数の中に入れられません。
    

Unicodeエスケープがある文字列定数





PostgreSQL™は同時に、文字コード番号で任意のUnicode文字を指定可能な文字列に対するもう一つのエスケープ構文を提供します。
Unicodeエスケープ文字列定数は、U&（大文字・小文字のUの後にアンパサンド）で始まり、その直後に、空白を間にはさまず、開始引用符が続きます。
例えば、U&'foo'となります。
（これにより演算子&との曖昧性が生じることに注意してください。
この問題を回避するには空白を演算子の前後に入れます。）
引用符の中で、Unicode文字はバックスラッシュとそれに続く4桁16進数の文字コード番号で、またはもう1つの方法として、バックスラッシュに続いてプラス符号、そして続いた6桁16進数の文字コード番号によりエスケープ形式で指定されます。
例えば、文字列'data'は次のように書かれます。


U&'d\0061t\+000061'



次の少し意味のある例はロシア語の「slon」（象）をキリル文字で書いたものです。


U&'\0441\043B\043E\043D'


    


バックスラッシュ以外のエスケープ文字を使用したい場合、文字列の後にUESCAPE句を使用して指定できます。例をあげます。


U&'d!0061t!+000061' UESCAPE '!'



エスケープ文字には、16進表記用の文字、プラス記号、単一引用符、二重引用符、空白文字以外の任意の単一文字を使用できます。
    


識別子内にエスケープ文字をそのまま含めるためには、それを2つ記述してください。
    


U+FFFFより大きなコードポイントを持つ文字を構成するUTF-16サロゲートペアを指定するために、4桁と6桁の形式のどちらかを使用できますが、技術的には6桁形式の機能によりこれは不要になります。
（サロゲートペアは直接格納されるわけではなく、一つのコードポイントに結合されます。）
    


サーバ符号化方式がUTF-8でない場合、このエスケープシーケンスの1つで指定されたUnicodeコードポイントは実際のサーバ符号化方式へと変換されます。それが可能でない場合にはエラーが報告されます。
    


また、文字列定数に対するユニコードエスケープ構文は設定パラメータstandard_conforming_stringsが有効なときのみ動作します。
そうでないとこの構文は、SQL文を構文解釈するクライアントを混乱させ、SQLインジェクションや、それに類似したセキュリティ問題に繋がることさえあるからです。
パラメータがoffに設定されていれば、この構文はエラーメッセージを出して拒絶されます。
    

ドル記号で引用符付けされた文字列定数





文字列定数の標準の構文はたいていの場合便利ですが、対象とする文字列内に多くの単一引用符があると、それらを全て二重にしなければなりませんので理解しづらくなります。
こうした状況においても問い合わせの可読性をより高めるためにPostgreSQL™は、「ドル引用符付け」という他の文字列定数の指定方法を提供します。
ドル引用符付けされた文字列定数は、ドル記号（$）、省略可能な0個以上の文字からなる「タグ」、ドル記号、文字列定数を構成する任意の文字の並び、ドル記号、この引用符付けの始めに指定したものと同じタグ、ドル記号から構成されます。
例えば、「Dianne's horse」という文字列をドル引用符付けを使用して指定する方法を、以下に2つ示します。


$$Dianne's horse$$
$SomeTag$Dianne's horse$SomeTag$



ドル引用符付けされた文字列の内側では、単一引用符をエスケープすることなく使用できることを理解してください。
実際には、ドル引用符付けされた文字列の内側の文字はまったくエスケープが必要なく、文字列定数はすべてそのまま記述できます。
その並びが開始タグに一致しない限り、バックスラッシュもドル記号も特別なものではありません。
    


各入れ子レベルに異なるタグを付けることで、ドル引用符付けされた文字列を入れ子にできます。
これは、関数定義を作成する時に非常によく使用されます。
以下に例を示します。


$function$
BEGIN
    RETURN ($1 ~ $q$[\t\r\n\v\\]$q$);
END;
$function$



ここで、$q$[\t\r\n\v\\]$q$は、ドル引用符付けされた[\t\r\n\v\\]リテラル文字列を表し、PostgreSQL™がこの関数本体を実行する時に認識されます。
しかし、この並びは、外側のドル引用符用の区切り文字$function$に一致しませんので、外側の文字列を対象としている場合は単なる文字の並びとなります。
    


もしあれば、ドル引用符付けされた文字列のタグは、引用符付けされていない識別子と同じ規則に従います。
ただし、タグにドル記号を含めることはできません。
タグは大文字小文字を区別します。
したがって、$tag$String content$tag$は正しいのですが、$TAG$String content$tag$は間違いです。
    


キーワードや識別子の後にドル引用符付けされた文字列を続ける場合は、空白でそれを区切らなければなりません。
さもないと、ドル引用符の区切り文字は、直前の識別子の一部として解釈されます。
    


ドル引用符付けは、標準SQLで定義されていません。
しかし、複雑な文字列リテラルを記述する場合は標準準拠の単一引用符構文よりも便利なことがよくあります。
特に、他の定数の内部に文字列定数を記述するような場合は役に立ちます。
こうした状況は手続き関数の定義でよく必要とされます。
単一引用符構文では、上の例のバックスラッシュはそれぞれ、4個のバックスラッシュで記述しなければなりません。
この4つのバックスラッシュは、元の文字列定数を解析する際に2つに減少され、そして、関数を実行する際に内部の文字列定数が再解析され1つに減少します。
    

ビット文字列定数





ビット文字列定数はB（大文字もしくは小文字）が始まりの引用符の前に付いている（間に空白はありません）通常の文字列定数のように見えます。
例えばB'1001'のようになります。
ビット文字列定数の中で許可される文字は0と1のみです。
    


その他にも、ビット文字列定数はX'1FF'といった具合に、先頭にX（大文字または小文字）を使用して16進表記で指定することもできます。
この表記は、各16進数値をそれぞれ4つの2進数値に置き換えたビット文字列定数と同等です。
    


どちらの形式のビット文字列定数でも、通常の文字列定数と同じように複数行にわたって続けて書くことができます。
ドル引用符付けはビット文字列定数で使用できません。
    

数値定数





数値定数は下記の一般的な形で受け付けられます。


digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits



ここでdigitsは1つ以上の10進数字（0〜9）です。
小数点を使用する場合は、少なくとも1つの数字が小数点の前か後になくてはなりません。
指数記号eの付く形式を使う場合にはeの後に少なくとも1つの数字がなければいけません。
以下に示す視覚的なグループ化のために使われるアンダースコア以外には、空白や他の文字は、定数の中に埋め込むことはできません。
プラスまたはマイナスの符号を先頭につけても、定数の一部とはみなされないことに注意してください。
これらの符号は定数に適用される演算子とみなされます。
    


下記は有効な数値定数のいくつかの例です。



42

3.5

4.

.001

5e2

1.925e-3




    


さらに、以下の形式で非10進整数定数を受け入れます。


0xhexdigits
0ooctdigits
0bbindigits



ここで、hexdigitsは1つ以上の16進数(0-9、A-F)、octdigitsは1つ以上の8進数(0-7)、bindigitsは1つ以上の2進数(0または1)です。
16進数と基数のプレフィックスは、大文字または小文字で指定できます。
小数部のある数字ではなく、整数のみが非10進形式になることに注意してください。
    


以下に、有効な非10進整数定数の例を示します。



0b100101

0B10011001

0o273

0O755

0x42f

0XFFFF




    


視覚的なグループ化のために、数字の間にアンダースコアを挿入できます。
これらは、定数の値にさらなる影響を与えません。
例:



1_500_000_000

0b10001000_00000000

0o_1_755

0xFFFF_FFFF

1.618_034





数値定数または数値グループの先頭または末尾にアンダースコアを使用できません（つまり、小数点や指数記号の直前または直後にアンダースコアを使用できません）し、複数のアンダースコアを続けて使用することもできません。
    

     
     
     

小数点も指数も含まない数値定数の場合、まずその値がinteger型（32ビット）に収まればinteger型であるとみなされます。
そうでない場合、bigint型（64ビット）で収まればbigint型とみなされます。
どちらでもない場合は、numeric型とみなされます。
定数が小数点または指数あるいはその両方を含む場合は、常に最初にnumeric型であるとみなされます。
    


数値定数に最初に割り振られるデータ型は、型解決アルゴリズムの開始点に過ぎません。
ほとんどの場合、定数は文脈に基づいて自動的に最も適切な型に変換されます。
必要であれば、特定のデータ型にキャストして、数値がそのデータ型として解釈されるように強制できます。

例えば、以下のようにして数値をreal型（float4）として処理できます。




REAL '1.23'  -- 文字列書式
1.23::REAL   -- （歴史的な）PostgreSQL書式




実のところ、これらは以下で説明する一般的なキャスト記法の特別な場合です。
    

他の型の定数





任意の型の定数は下記の表記のいずれかを使って入力できます。


type 'string'
'string'::type
CAST ( 'string' AS type )



文字列定数のテキストはtypeと呼ばれる型の入力変換ルーチンへと渡されます。
結果は指示された型の定数です。
明示的な型キャストは、定数がどの型でなければならないかについて曖昧な点がなければ（例えば定数が直接テーブル列に代入されている場合）省略しても構いません。
その場合自動的に型強制されます。
    


文字列定数は通常のSQL記法でもドル引用符付けでも記述できます。
    


     関数のような構文を使って型強制を指定することも可能です。


typename ( 'string' )



しかし、全ての型の名前でこの方法は使用できるというわけではありません。
詳細は「型キャスト」を参照してください。
    


::、CAST()や関数呼び出し構文は、「型キャスト」で説明する通り、任意の式の実行時の型変換を指定するために使うこともできます。
構文的なあいまいさをなくすために、type 'string'という形式は単なるリテラル定数を指定する場合にのみ使うことができます。
この他type 'string'構文には、配列型では動作しないという制限があります。
配列型の定数の型を指定する場合は::かCAST()を使用してください。
    


CAST()構文はSQLに従っています。
type 'string'構文は、標準を一般化したものです。
SQLでは、この構文を数個のデータ型でのみ規定しています。
しかし、PostgreSQL™ではすべての型で使用できます。
::付きの構文は、歴史的にPostgreSQL™で使用されてきました。
関数呼び出し構文も同じく歴史的に使用されているものです。
    


演算子





演算子はNAMEDATALEN-1（デフォルトは63）までの長さの、以下に示すリストに含まれる文字の並びです。



+ - * / < > = ~ ! @ # % ^ & | ` ?






しかし、演算子の名前にはいくつかの制約があります。
    
	

--と/*は演算子名の中に使うことができません。
なぜならこれらはコメントの始まりと解釈されるからです。
      

	

複数文字の演算子名は、その名前が少なくとも下記の文字の1つ以上を含まない限り、+や-で終わることができません。



~ ! @ # % ^ & | ` ?





例えば、@-は演算子名として認められていますが、*-は認められていません。
この制限によりPostgreSQL™は、SQLに準拠する問い合わせをトークン同士の間に空白を要求せず、解析できます。
      




   


非標準SQLの演算子名を使う場合、通常は曖昧さを回避するために、隣り合った演算子を空白で区切る必要があります。
例えば@という前置演算子を定義した場合、X*@Yとは書けません。
PostgreSQL™がこれを確実に1つではなく2つの演算子名として解釈できるように、X* @Yと書く必要があります。
   

特殊文字





英数字ではないいくつかの文字は、演算子であることとは異なる特殊な意味を持っています。
使用方法の詳細はそれぞれの構文要素についてのところで説明します。
本節では、単にその存在を知らせ、これらの文字の目的をまとめるに留めます。

   
	

直後に数字が続くドル記号（$）は、関数定義の本体またはプリペアド文中の位置パラメータを表すために使われます。
他の文脈ではドル記号は識別子名の一部であるかもしれませんし、ドル引用符付けされた文字列定数の一部であるかもしれません。
     

	

括弧（()）は、通常通り式をまとめ優先するという意味を持ちます。
場合によっては括弧は、特定のSQLコマンドの固定構文の一部として要求されることがあります。
     

	

大括弧（[]）は、配列要素を選択するために使われます。
配列に関する詳しい情報は「配列」を参照してください。
     

	

カンマ（,）は、リストの要素を区切るために構文的構成体で使われることがあります。
     

	

セミコロン（;）は、SQLコマンドの終わりを意味します。
文字列定数または引用符付き識別子以外では、コマンドの途中では使うことができません。
     

	

コロン（:）は、配列から「一部分」を取り出すために使われます。
（「配列」を参照してください。）
いくつかのSQL方言（埋め込みSQLなど）では、コロンは変数名の接頭辞として使われます。
     

	

アスタリスク（*）は、いくつかの文脈において、テーブル行や複合型の全てのフィールドを表現するために使用されます。
また、集約関数の引数として使われる場合も特殊な、つまり、その集約が明示的なパラメータをまったく必要としないという意味を持ちます。
     

	

ピリオド（.）は数値定数の中で使われます。
また、スキーマ名、テーブル名、列名を区切るためにも使われます。
     





   

コメント





コメントは二重ハイフンで始まる文字の並びで、行の終わりまで続きます。
例えば以下のようになります。



-- これは標準SQLのコメントです


   


他にも、C言語様式のブロックコメントも使用できます。



/* ネストされた複数行にわたる
 * コメント /* ネストされたブロックコメント */
 */



コメントは/*で始まり、対応する*/で終わります。
これらのブロックコメントはC言語とは異なり、標準SQLで規定されているように入れ子にできます。
したがって、既存のブロックコメントを含む可能性のある大きなコードのブロックをコメントアウトできます。
   


コメントは、その後の構文解析が行われる前に入力ストリームから取り去られ、事実上、空白で置き換えられます。
   

演算子の優先順位





表4.2「演算子の優先順位（高いものから低いものへ）」は、PostgreSQL™の演算子の優先順位と結合性を示しています。
ほとんどの演算子は同じ優先順位を持ち、左結合します。
演算子の優先順位と結合性はパーサに組み込まれています。
複数の演算子のある式を優先順位の規則が意味するのとは異なる順序で解析したい場合には、括弧で囲ってください。
   
表4.2 演算子の優先順位（高いものから低いものへ）
	演算子/要素	結合性	説明
	.	左	テーブル/列名の区切り文字
	::	左	PostgreSQL™方式の型キャスト
	[ ]	左	配列要素選択
	+ -	右	単項加算、単項減算
	COLLATE	左	照合順序選択
	AT	左	AT TIME ZONE, AT LOCAL
	^	左	累乗
	* / %	左	掛け算、割り算、剰余
	+ -	左	加算、減算
	(その他の演算子)	左	その他全ての組み込み、あるいはユーザ定義の演算子
	BETWEEN IN LIKE ILIKE SIMILAR	 	範囲内に包含、集合の要素、文字列の一致
	< > = <= >= <>
	 	比較演算子
	IS ISNULL NOTNULL	 	IS TRUE、IS FALSE、IS
       NULL、IS DISTINCT FROM、その他
	NOT	右	論理否定
	AND	左	論理積
	OR	左	論理和





演算子優先順位の規則は、上記で触れた組み込み演算子と同じ名前を持つユーザ定義演算子にも当てはまります。
例えばもし「+」演算子をある独自のデータ型に定義すると、新しい演算子が何をするかにかかわらず、「+」組み込み演算子と同じ優先順位を持つようになります。
   


次の例のように、OPERATOR構文でスキーマで修飾された演算子名を使用する場合、


SELECT 3 OPERATOR(pg_catalog.+) 4;



OPERATOR構文は、表4.2「演算子の優先順位（高いものから低いものへ）」の「その他の演算子」で示されているデフォルトの優先順位を持つとみなされます。
これは、OPERATOR()にどの特定の演算子が入る場合でも変わりません。
   
注記


9.5より前のPostgreSQL™のバージョンでは少し異なる演算子優先順位規則を使っていました。
特に<=、>=、<>は一般的な演算子として扱われていました。ISテストは高い優先順位を持つとして使われていました。NOT BETWEENとそれに関係する構文は振る舞いが一貫しておらず、BETWEENではなくNOTの優先順位を持つと見なされる場合がありました。
標準SQLにより準拠し、論理的に等しい構文の一貫しない扱いから来る混乱を減らすように、これらの規則は変更されました。
ほとんどの場合、これらの変更により振る舞いが変わることはないでしょうし、もし変わっても恐らく「no such operator」で失敗になるくらいでしょう。後者は括弧を追加することで解決できるでしょう。
しかしながら、稀に問い合わせがパースエラーを返すことなく振る舞いを変える場合があります。
    




評価式





評価式は、例えばSELECTコマンドの目的リストとして、INSERTやUPDATEの新しい列の値として、もしくはいくつかのコマンドの検索条件として様々な文脈の中で使われます。
評価式の結果は、テーブル式の結果（つまりテーブル）から区別するために、スカラと呼ばれることもあります。
したがって、評価式はスカラ式（またはもっと簡単に式）とも呼ばれます。
式の構文によって、基本的な部分から算術、論理、集合などの演算を使って値の計算を行うことができます。
  


評価式は下記のうちのいずれかです。

   
	

定数あるいはリテラル値
     

	

列の参照
     

	

関数定義の本体やプリペアド文における、位置パラメータ参照
     

	

添字付きの式
     

	

フィールド選択式
     

	

演算子の呼び出し
     

	

関数呼び出し
     

	

集約式
     

	

      ウィンドウ関数呼び出し
     

	

型キャスト
     

	

照合順序(collation)式
     

	

スカラ副問い合わせ
     

	

配列コンストラクタ
     

	

行コンストラクタ
     

	

      （副式をグループ化したり優先順位を変更するのに使用される）括弧で囲まれた別の評価式
     




  


これ以外にも、式として分類されるけれども一般的な構文規約には従わない、いくつかの構成要素があります。
これらは一般的に関数あるいは演算子の意味を持ちます。
9章関数と演算子の該当部分で説明されています。
例を挙げるとIS NULL句があります。
  


「定数」で既に定数については説明しました。
続く節では残りのオプションについて説明します。
  
列の参照





列は、下記のような形式で参照できます。


correlation.columnname


   


correlationは、テーブル名（スキーマで修飾されている場合もあります）、あるいはFROM句で定義されたテーブルの別名です。
correlationの名前と区切り用のドットは、もし列名が現在の問い合わせで使われる全てのテーブルを通して一意である場合は省略できます。
（7章問い合わせも参照してください。）
   

位置パラメータ





位置パラメータ参照は、外部からSQL文に渡される値を示すために使用されます。
パラメータはSQL関数定義およびプリペアド問い合わせの中で使用されます。
また、クライアントライブラリの中には、SQLコマンド文字列とデータ値を分離して指定できる機能をサポートするものもあります。
この場合、パラメータは行外データ値を参照するために使用されます。
パラメータ参照の形式は以下のとおりです。


$number


   


例えば、関数 dept の定義が以下のようにされたとします。



CREATE FUNCTION dept(text) RETURNS dept
    AS $$ SELECT * FROM dept WHERE name = $1 $$
    LANGUAGE SQL;




ここで$1は関数が呼び出される時に最初の関数引数の値を参照します。
   

添字





式が配列型の値となる場合、配列値の特定要素は以下のように記述することで抽出できます。


expression[subscript]



また、隣接する複数の要素（「配列の一部分」）は以下のように記述することで抽出できます。


expression[lower_subscript:upper_subscript]



（ここで大括弧[ ]は文字通りに記述してください（訳注：これはオプション部分を表す大括弧ではありません）。）
各subscriptはそれ自体が式であり、最も近い整数値へと丸められます。
   


一般的には、配列expressionは括弧で括らなければなりませんが、添字を付けるそのexpressionが単なる列参照や位置パラメータであった場合、その括弧を省略できます。
また、元の配列が多次元の場合は複数の添字を連結できます。
以下に例を示します。



mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]
(arrayfunction(a,b))[42]




最後の例では括弧が必要です。
配列の詳細は「配列」を参照してください。
   

フィールド選択





式が複合型（行型）の値を生成する場合、行の特定のフィールドは以下のように記述することで抽出できます。


expression.fieldname


   


一般的には、行expressionは括弧で括らなければなりません。
しかし、選択元となる式が単なるテーブル参照や位置パラメータの場合、括弧を省略できます。
以下に例を示します。



mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)).col3




（したがって、修飾された列参照は実際のところ、単なるこのフィールド選択構文の特殊な場合です。）
重要となる特殊な場合としては、複合型のテーブル列からフィールドを抽出するときです。



(compositecol).somefield
(mytable.compositecol).somefield




compositecolがテーブル名でなく列名であること、または2番目の場合のmytableがスキーマ名でなくテーブル名であることを示すため丸括弧が要求されます。
   


.*を記述することで、複合型の全ての値を問い合わせることが可能です。


(compositecol).*



この表記はコンテキストに依存して異なった振る舞いをします。詳細は「問い合わせでの複合型の使用」を参照してください。
   

演算子の呼び出し





演算子の呼び出しには以下の2構文が可能です。
    
	expression operator expression （二項中置演算子）
	operator expression （単項前置演算子）



ここでoperatorトークンは、「演算子」構文規則に従うもの、もしくはキーワードAND、OR、NOTのいずれか、または以下の形式の修飾された演算子名です。


OPERATOR(schema.operatorname)



具体的にどんな演算子が存在し、それが単項か二項かどうかは、システムやユーザによってどんな演算子が定義されたかに依存します。
9章関数と演算子にて、組み込み演算子について説明します。
   

関数呼び出し





関数呼び出しの構文は、関数名（スキーマ名で修飾されている場合があります）に続けてその引数を丸括弧で囲んで列挙したものです。



function_name ([expression [, expression ... ]] )


   


例えば、以下のものは2の平方根を計算します。


sqrt(2)


   


組み込み関数の一覧は9章関数と演算子にあります。
他の関数はユーザが追加できます。
   


あるユーザが他のユーザを信用しないデータベースで問い合わせを発行する場合には、関数呼び出しを書く時に「関数」のセキュリティの事前の対策を守ってください。
   


引数には名前を任意で付与できます。詳細は「関数呼び出し」を見てください。
   
注記


複合型の単一引数をとる関数はフィールド選択の構文を使っても呼び出すことができます。
反対にフィールド選択を関数形式で記述することもできます。
つまり、col(table)やtable.colのどちらを使っても良いということです。
この動作は標準SQLにはありませんが、PostgreSQL™では、これにより「計算されたフィールド」のエミュレートをする関数の利用が可能になるため、提供しています。
詳しくは「問い合わせでの複合型の使用」を参照してください。
    


集約式





集約式は、問い合わせによって選択される行に対して集約関数を適用することを表現します。
集約関数は、例えば入力の合計や平均などのように、複数の入力を単一の出力値にします。
集約式の構文は下記のうちのいずれかです。



aggregate_name (expression [ , ... ] [ order_by_clause ] ) [ FILTER ( WHERE filter_clause ) ]
aggregate_name (ALL expression [ , ... ] [ order_by_clause ] ) [ FILTER ( WHERE filter_clause ) ]
aggregate_name (DISTINCT expression [ , ... ] [ order_by_clause ] ) [ FILTER ( WHERE filter_clause ) ]
aggregate_name ( * ) [ FILTER ( WHERE filter_clause ) ]
aggregate_name ( [ expression [ , ... ] ] ) WITHIN GROUP ( order_by_clause ) [ FILTER ( WHERE filter_clause ) ]




ここで、aggregate_nameは事前に定義された集約（スキーマ名で修飾された場合もあります）、expressionはそれ自体に集約式またはウィンドウ関数呼び出しを含まない任意の値評価式です。
省略可能なorder_by_clauseとfilter_clauseは後述します。
   


集約式の最初の構文は、それぞれの入力行に対して1回ずつ集約を呼び出します。
ALLはデフォルトなので、2つ目の形式は最初の形式と同じです。
3番目の形式は、入力行の中にある式の、全ての重複しない値（複数式では重複しない値集合）の集約を呼び出します。
4番目の形式はそれぞれの入力行に対して1回ずつ集約を呼び出します。具体的な入力値が指定されていないため、これは一般的にcount(*)集約関数でのみ役に立ちます。
最後の形式は順序集合集約関数で使われるもので、順序集合集約関数については後述します。
   


ほとんどの集約関数はNULL入力を無視するため、行内の1つ以上の式がNULLを返す行は破棄されます。
特記されていない限り、すべての組み込み集約がそのような動作になると想定して良いです。
   


例えば、count(*)は入力行の合計数を求めます。
countはNULLを無視しますので、count(f1)はf1が非NULLである入力行の数を求めます。
count(distinct f1)はf1の重複しない非NULL値の数を求めます。
   


通常、入力行は順序を指定されずに集約関数に与えられます。
多くの場合では問題になりません。たとえばminは入力順序に関係なく同一の結果を返します。
しかし一部の集約関数(array_aggおよびstring_aggなど)は入力行の順序に依存した結果を返します。
こうした集約関数を使用する際は、オプションのorder_by_clauseを使用して必要とする順序を指定できます。
order_by_clauseは、「行の並べ替え(ORDER BY)」で説明する問い合わせレベルのORDER BY句と同じ構文を取りますが、その式は常に単なる式であり、出力列名や序数とすることはできません。
以下に例を示します。


WITH vals (v) AS ( VALUES (1),(3),(4),(3),(2) )
SELECT array_agg(v ORDER BY v DESC) FROM vals;
  array_agg
-------------
 {4,3,3,2,1}



jsonbは最後のマッチングキーのみを保持するため、そのキーの順序付けが重要になる場合があります。


WITH vals (k, v) AS ( VALUES ('key0','1'), ('key1','3'), ('key1','2') )
SELECT jsonb_object_agg(k, v ORDER BY v) FROM vals;
      jsonb_object_agg
----------------------------
 {"key0": "1", "key1": "3"}


   


複数の引数を取る集約関数を扱う場合、ORDER BY句はすべての集約引数の後に指定することに注意してください。
例えば、


SELECT string_agg(a, ',' ORDER BY a) FROM table;



であり、


SELECT string_agg(a ORDER BY a, ',') FROM table;  -- incorrect


ではありません。

    後者は構文的には有効なものですが、2つのORDER BYキーを持つ単一引数の集約関数の呼び出しを表しています（2つ目のキーは定数なので役には立ちません）。
   


DISTINCTがorder_by_clauseで指定されている場合、ORDER BY式はDISTINCTリストの列のみを参照できます。
例をあげます。


WITH vals (v) AS ( VALUES (1),(3),(4),(3),(2) )
SELECT array_agg(DISTINCT v ORDER BY v DESC) FROM vals;
 array_agg
-----------
 {4,3,2,1}


   


上記のように集約の通常の引数リストにORDER BYを置くことは、汎用的で統計的な集約への入力行を整列する時に使いますが、その整列は省略可能です。
たいていは集約の計算がその入力行の特定の順序に関してのみ意味を持つために、order_by_clauseが必要な順序集合集約と呼ばれる集約関数の副クラスがあります。
順序集合集約の典型的な例は順位や百分位数の計算を含みます。
順序集合集約では、order_by_clauseは上の構文の最後に示したようにWITHIN GROUP (...)の中に書かれます。
order_by_clauseの式は、通常の集約の引数のように入力行1行につき一度評価され、order_by_clauseの要求に従って整列され、集約関数に入力引数として渡されます。
（非WITHIN GROUP order_by_clauseではない場合はこれとは異なり、集約関数の引数としては扱われません。）
WITHIN GROUPの前に引数の式があれば、order_by_clauseに書かれた集約引数と区別するために直接引数と呼ばれます。
通常の集約引数とは異なり、直接引数は集約の呼び出しの時に一度だけ評価され、入力行1行に一度ではありません。
これは、変数がGROUP BYによりグループ化された場合にのみ、その変数を含むことが可能であることを意味します。この制限は直接引数が集約式の中に全くない場合と同じです。
直接引数は、典型的には1度の集約計算で1つの値だけが意味がある百分位数のようなもので使われます。
直接引数のリストは空でも構いません。この場合、(*)ではなく()と書いてください。
（PostgreSQL™は実際にどちらの綴りも受け付けますが、後者だけが標準SQLに準拠しています。）
   

    
    

順序集合集約の例は以下のとおりです。



SELECT percentile_cont(0.5) WITHIN GROUP (ORDER BY income) FROM households;
 percentile_cont
-----------------
           50489




これは、テーブルhouseholdsからincome列の50番目の百分位数、すなわち中央値を得ます。
ここで0.5は直接引数です。百分位数が行毎に変化する値であったら意味がありません。
   


FILTERが指定されていれば、filter_clauseが真と評価した入力行のみが集約関数に渡されます。それ以外の行は破棄されます。
例えば、


SELECT
    count(*) AS unfiltered,
    count(*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
 unfiltered | filtered
------------+----------
         10 |        4
(1 row)


   


定義済みの集約関数は「集約関数」で説明されています。
ユーザは他の集約関数を追加できます。
   


集約式は、SELECTコマンドの結果リストもしくはHAVING句内でのみ記述できます。
WHEREなどの他の句では許されません。
これらの句は集約結果が形成される前に論理的に評価されるためです。
   


集約式が副問い合わせ（「スカラ副問い合わせ」と「副問い合わせ式」を参照）内に現れた場合、通常、集約は副問い合わせの行全体に対して評価されます。
しかし、その集約の引数(と、もしあればfilter_clause)が上位レベルの変数のみを持つ場合は例外です。
その場合、集約は最も近い外側のレベルに属し、その問い合わせの行全体に対して評価されます。
全体として、その集約式は、その後、その集約を含む副問い合わせでは外部参照となり、その副問い合わせにおける評価に対しては定数として動作します。
結果リストもしくはHAVING句にのみ現れるという制約は、その集約が属する問い合わせレベルに関連して適用されます。
   

ウィンドウ関数呼び出し





ウィンドウ関数呼び出しは、問い合わせにより選択された行のある部分に渡って集約のような機能を実現することを表します。
非ウィンドウ集約関数呼び出しと異なり、これは選択された行を1つの行にグループ化することに束縛されず、各行は別途問い合わせ出力に残ります。
しかしウィンドウ関数は、ウィンドウ関数呼び出しのグループ化指定（PARTITION BYリスト）に従った、現在の行のグループの一部となる行にすべてアクセスできます。
ウィンドウ関数呼び出しの構文は以下のいずれかです。



function_name ([expression [, expression ... ]]) [ FILTER ( WHERE filter_clause ) ] OVER window_name
function_name ([expression [, expression ... ]]) [ FILTER ( WHERE filter_clause ) ] OVER ( window_definition )
function_name ( * ) [ FILTER ( WHERE filter_clause ) ] OVER window_name
function_name ( * ) [ FILTER ( WHERE filter_clause ) ] OVER ( window_definition )



ここで、window_definitionは以下の構文になります。


[ existing_window_name ]
[ PARTITION BY expression [, ...] ]
[ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } ] [, ...] ]
[ frame_clause ]



オプションのframe_clauseは次の中の１つです。


{ RANGE | ROWS | GROUPS } frame_start [ frame_exclusion ]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [ frame_exclusion ]



ここでframe_startおよびframe_endは以下のいずれかです。


UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW
offset FOLLOWING
UNBOUNDED FOLLOWING



そして、frame_exclusionは以下のいずれかです。


EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS


   


ここで、expressionはそれ自身のウィンドウ関数呼び出しを含まない任意の値式を表わします。
   


window_nameは、問い合わせのWINDOW句で定義された名前付きウィンドウ仕様への参照です。
あるいはまた、完全なwindow_definitionをWINDOW句で定義された名前付きウィンドウと同じ構文を使って丸括弧の中に書くことができます。
詳細はSELECT(7)リファレンスページを見てください。
OVER wnameはOVER (wname ...)と厳密には等価でないことを指摘しておくのは価値のあることでしょう。
後者はウィンドウ定義をコピーしたり修正したりすることを示唆しており、参照されるウィンドウ仕様がフレーム句を含む場合には拒絶されます。
   


PARTITION BY句は問い合わせの行をパーティションに纏め、パーティションはウィンドウ関数により別々に処理されます。
PARTITION BYは、その式が常に式であって出力列名や番号ではないという点を除いて、問い合わせレベルのGROUP BY句と同様に動作します。
PARTITION BYがなければ、問い合わせで生じる行すべてが一つのパーティションとして扱われます。
ORDER BY句はパーティションの行がウィンドウ関数により処理される順序を決定します。
問い合わせレベルのORDER BY句と同様に動作しますが、やはり出力列名や番号は使えません。
ORDER BYがなければ、行は不定の順序で処理されます。
   


frame_clauseは、パーティション全体ではなくフレーム上で作動するウィンドウ関数に対して、ウィンドウフレームを構成する行の集合を指定します。
ウィンドウフレームは現在のパーティションの部分集合になります。
フレームの中の行の集合は、どの行が現在の行であるかによって変わります。
フレームはRANGEモード、ROWSモード、GROUPSでも指定できます。
どちらの場合でもframe_startからframe_endまでです。
frame_endを省略した場合のデフォルトはCURRENT ROWです。
   


frame_startがUNBOUNDED PRECEDINGならばフレームがパーティションの最初の行から始まることを意味し、同様に、frame_endがUNBOUNDED FOLLOWINGならばフレームがパーティションの最後の行で終わることを意味します。
   


RANGEあるいはGROUPSモードでは、frame_startがCURRENT ROWならば、フレームが現在行の最初のピア行（ウィンドウのORDER BY句が現在行と同じ順序とみなす行）から始まることを意味し、一方、frame_endがCURRENT ROWならばフレームが現在行の最後の同等なORDER BYピア行で終わることを意味します。
ROWSモードでは、CURRENT ROWは単に現在行を意味します。
   


offset PRECEDINGとoffset FOLLOWINGフレームオプションでは、offsetは一切の変数、集約関数、あるいはウィンドウ関数を含まない式でなければなりません。
offsetの意味はフレームモードに依存します。
    
	

ROWSモードでは、offsetの評価値は非NULL、非負の整数でなければならず、このオプションは現在行の前あるいは後の指定した数の行でフレームが開始あるいは終了することを意味します。
      

	

GROUPSモードでも、offsetの評価値は非NULL、非負の整数でなければならず、このオプションは現在行のピアグループ(peer group)の前あるいは後の指定した数のピアグループでフレームが開始あるいは終了することを意味します。
ここでピアグループは、ORDER BYによる順序付け中で等しい行の集合です。
（ウィンドウ定義でGROUPSモードを使うには、ORDER BY句が存在しなければなりません。）
      

	

RANGEモードでは、ORDER BY句が正確に一つの列を指定することがこれらのオプションによって要求されます。
offsetは現在行の列の値と、フレーム中の前あるいは後ろの行の値の最大の差を指定します。
offset式のデータ型は、順序付けをしている列のデータ型に依存して変わります。
数値型の順序付け列では、典型的には順序付け列と同じですが、日付時間の順序付け列では、intervalになります。
たとえば、順序付け列の型がdateあるいはtimestampなら、RANGE BETWEEN '1 day' PRECEDING AND '10 days' FOLLOWINGと書くことができるでしょう。
ここでもoffsetは非NULLかつ非負である必要があります。
ただし、「非負」の意味はデータ型に依存します。
      





どの場合でも、フレームの最後までの距離はパーティションの最後までの距離に制限されます。
ですからパーティションの最後近くの行では他の場合に比べてフレームには少ない行が含まれるかも知れません。
   


ROWSとGROUPSモードでは、0 PRECEDINGと0 FOLLOWINGはCURRENT ROWと同じであることに注意してください。
データ型固有の意味で「0」が適切ならば、通常RANGEにおいても同様です。
   


フレームの開始、終了オプションで含まれることになる行であっても、frame_exclusionオプションで現在行周辺の行がフレームに含まれないようにできます。
EXCLUDE CURRENT ROWは、現在の行をフレームから除外します。
EXCLUDE GROUPは、現在行とその順序付ピアをフレームから除外します。
EXCLUDE TIESは、現在行そのものを除き、フレームにおける現在行のピアをフレームから除外します。
EXCLUDE NO OTHERSは、現在の行あるいはそのピアを除外しないというデフォルトの挙動を明示的に指定するだけです。
   


デフォルトのフレーム化オプションはRANGE UNBOUNDED PRECEDINGで、RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROWと同じです。
ORDER BYがあると、フレームはパーティションの開始から現在行の最後のORDER BYピア行までのすべての行になります。
ORDER BYが無い場合は、すべての行が現在行のピアとなるので、パーティションのすべての行がウィンドウフレームに含まれることを意味することになります。
   


制限は、frame_startをUNBOUNDED FOLLOWINGとすることができない点、frame_endをUNBOUNDED PRECEDINGとすることができない点、および、上記のframe_startとframe_endのオプションのリストで、frame_endの選択がframe_startの選択よりも先に現れるものであってはならない点です。
例えば、RANGE BETWEEN CURRENT ROW AND offset PRECEDINGは許されません。
しかし、例えば、決してどの行も選択しないとしても、ROWS BETWEEN 7 PRECEDING AND 8 PRECEDINGは許されます。
   


FILTERが指定されていれば、filter_clauseが真と評価した入力行のみがウィンドウ関数に渡されます。それ以外の行は破棄されます。
集約ウィンドウ関数だけがFILTER句を受け付けます。
   


組み込みウィンドウ関数は表9.67「汎用ウィンドウ関数」に記載されています。その他のウィンドウ関数をユーザが追加できます。
また、全ての組み込み、またはユーザ定義の、汎用または統計集約関数もウィンドウ関数として使用できます。
（順序集合と仮想集合集約は現在のところウィンドウ関数として使用できません。）
   


*を使用した構文は、例えばcount(*) OVER (PARTITION BY x ORDER BY y)のように、パラメータのない集約関数をウィンドウ関数として呼び出すために使用されます。
アスタリスク(*)は習慣的にウィンドウ固有の関数には使われません。
ウィンドウ固有の関数は、関数引数リストの中でDISTINCTやORDER BYが使われることを許可しません。
   


ウィンドウ関数呼び出しは問い合わせのSELECTリストとORDER BY句の中でのみ許可されます。
   


さらなるウィンドウ関数についての情報は「ウィンドウ関数」、「ウィンドウ関数」、「ウィンドウ関数処理」にあります。
   

型キャスト





型キャストは、あるデータ型から他のデータ型への変換を指定します。
PostgreSQL™は型キャストに2つの等価な構文を受け付けます。


CAST ( expression AS type )
expression::type



CAST構文はSQLに準拠したものです。
::を使用する構文は、PostgreSQL™で伝統的に使用されている方法です。
   


キャストが既知の型の評価式に適用された場合、それは実行時型変換を表します。
このキャストは、適切な型変換操作が定義されている場合のみ成功します。
「他の型の定数」で示すように、これと定数のキャストの使用との微妙な違いに注意してください。
修飾されていない文字列リテラルに対するキャストは、リテラル定数値の初期に割り当てられる型を表します。
ですから、これは（文字列リテラル定数の内容がそのデータ型の入力構文で受け付けられるのであれば）全ての型で成功します。
   


評価式が生成しなければならない型に曖昧さがない場合（例えばテーブル列への代入時など）、明示的な型キャストは通常は省略できます。
その場合、システムは自動的に型キャストを適用します。
しかし、自動キャストは、システムカタログに「暗黙的に適用しても問題なし」と示されている場合にのみ実行されます。
その他のキャストは明示的なキャスト構文で呼び出す必要があります。
この制限は、知らないうちに変換が実行されてしまうことを防ぐためのものです。
   


また、関数のような構文を使用して型キャストを指定することもできます。


typename ( expression )



しかし、これはその型の名前が関数の名前としても有効な場合にのみ動作します。
例えば、double precision はこの方式で使用できませんが、同等のfloat8は使用できます。
また、interval、time、timestampという名前は、構文が衝突するため、二重引用符で括った場合にのみこの方式で使用できます。
このように、この関数のようなキャスト構文は一貫性がなくなりがちですので、おそらくアプリケーションで使用すべきではありません。
   
注記


この関数のような構文は、実際には単なる関数呼び出しです。
2つの標準的なキャスト構文のうちの1つが実行時変換で使用されると、この構文は登録済みの関数を内部的に呼び出して変換を実行します。
慣習的に、これらの変換関数は自身の出力型と同じ名前を持ち、これにより、「関数のような構文」は背後にある変換用関数を直接呼び出す以上のことを行いません。
移植性を持つアプリケーションが依存すべきものでないことは明確です。
詳細についてはCREATE CAST(7)を参照してください。
    


照合順序式





COLLATE句は式の照合順序規則を上書きします。
適用するため次のように式の後に追記します。


expr COLLATE collation



ここでcollationは識別子で、スキーマ修飾可能です。
COLLATE句は演算子よりも結合優先度が高いです。
必要に応じて括弧で囲うことができます。
   


もし照合順序が何も指定されなければ、データベースシステムは式にある列から照合順序を取得します。もし列に関する照合順序が式になければ、データベースのデフォルトの照合順序を使います。
   


COLLATE句の主な使われ方が2つあります。
1つはORDER BY句での並べ替え順序を上書きするもので、例えば次のようにします。


SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";



もう一つは、計算結果がロケールに依存する関数や演算子の呼び出しについて、照合順序を上書きするもので、例えば次のようにします。


SELECT * FROM tbl WHERE a > 'foo' COLLATE "C";



後者の場合、COLLATE句が、処理対象と想定している入力演算子の引数に対して付与されることに注意してください。
演算子や関数の呼び出しのどの引数に対してCOLLATE句が付与されるかは問題ではありません。演算子や関数により適用される照合順序は対象となる全ての引数を考慮して引き出され、そして明示的に指定されたCOLLATE句がその他の全ての引数に対しての照合順序を上書きするからです。
（しかし、複数の引数に対して一致しないCOLLATE句の付与はエラーとなります。詳細は「照合順序サポート」を参照してください。）
このため、前述の例と同じ結果を次のようにして取得できます。


SELECT * FROM tbl WHERE a COLLATE "C" > 'foo';



ただし、次の例はエラーになります。


SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C";



>演算子の結果に対して照合順序を適用しようとしますが、>演算子は照合不可能なデータ型であるbooleanとなるからです。
   

スカラ副問い合わせ





スカラ副問い合わせは、正確に1行1列を返す、括弧内の通常のSELECT問い合わせです。
（問い合わせの記述方法については7章問い合わせを参照してください。）
そのSELECT問い合わせは実行され、返される単一の値はその値の前後の評価式で使用されます。
1行を超える行や1列を超える列がスカラ副問い合わせ用の問い合わせとして使用された場合はエラーになります。
（しかし、ある実行時に、副問い合わせが行を返さない場合はエラーになりません。
そのスカラ結果はNULLとして扱われます。）
副問い合わせは、その周りの問い合わせ内の値を参照できます。
その値は副問い合わせの評価時には定数として扱われます。
副問い合わせに関する他の式については「副問い合わせ式」も参照してください。
   


例えば、以下は各州の最大都市の人口を検索します。


SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
    FROM states;


   

配列コンストラクタ





配列コンストラクタは、メンバ要素に対する値を用いて配列値を構築する式です。
単純な配列コンストラクタの構成は、ARRAYキーワード、左大括弧[、（カンマで区切った）配列要素値用の式のリストで、最後に右大括弧]です。
以下に例を示します。


SELECT ARRAY[1,2,3+4];
  array
---------
 {1,2,7}
(1 row)



デフォルトで配列要素型は、メンバ式の型と同じで、UNIONやCASE構文と同じ規則を使用して決定されます（「UNION、CASEおよび関連する構文」を参照してください）。
これを明示的に配列コンストラクタを希望する型にキャストすることで書き換えることができます。例をあげます。


SELECT ARRAY[1,2,22.7]::integer[];
  array
----------
 {1,2,23}
(1 row)



これはそれぞれの式を配列要素の型に個別にキャストするのと同じ効果があります。
キャストについてより多くは「型キャスト」を参照してください。
   


多次元配列値は、配列コンストラクタを入れ子にすることで構築できます。
内側のコンストラクタではARRAYキーワードは省略可能です。
例えば、以下は同じ結果になります。



SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
     array
---------------
 {{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],[3,4]];
     array
---------------
 {{1,2},{3,4}}
(1 row)




多次元配列は長方形配列でなければなりませんので、同一レベルの内部コンストラクタは同一次元の副配列を生成しなければなりません。外部ARRAYコンストラクタに適用される全てのキャストは自動的に全ての内部コンストラクタに伝播します。
  


多次元配列コンストラクタの要素は、副ARRAY構文だけでなく、適切な種類の配列を生成するものをとることができます。
以下に例を示します。


CREATE TABLE arr(f1 int[], f2 int[]);

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;
                     array
------------------------------------------------
 {{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)


  


空配列を構築できますが、型を所有しない配列を持つことは不可能なので、空配列を望まれる型に明示的にキャストしなければなりません。例をあげます。


SELECT ARRAY[]::integer[];
 array
-------
 {}
(1 row)


  


また、副問い合わせの結果から配列を構成することも可能です。
この形式の場合、配列コンストラクタはARRAYキーワードの後に括弧（大括弧ではない）で括られた副問い合わせとして記述されます。
以下に例を示します。


SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
                              array
------------------------------------------------------------------
 {2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412}
(1 row)

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
              array
----------------------------------
 {{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row)



副問い合わせは単一の列を返さなければなりません。
副問い合わせの出力列が非配列型であれば、その結果である一次元配列は、副問い合わせの出力列と一致する型を要素型とした、副問い合わせの結果内の各行を要素として持ちます。
副問い合わせの出力列が配列型であれば、その結果は、同じ型で1つ次元の高い配列になります。この場合、副問い合わせの列はすべて同じ次元の配列とならなければなりません。そうでないと結果が長方形になりません。
  


ARRAYで構築された配列値の添字は、常に1から始まります。
配列についての詳細は「配列」を参照してください。
  

行コンストラクタ





行コンストラクタは、そのメンバフィールドに対する値を用いて行値（複合値とも呼ばれます）を構築する式です。
行コンストラクタは、ROWキーワード、左括弧、行のフィールド値用の0個以上の式（カンマ区切り）、最後に右括弧からなります。
以下に例を示します。


SELECT ROW(1,2.5,'this is a test');



ROWキーワードは、2つ以上の式がリスト内にある場合は省略できます。
   


行コンストラクタにはrowvalue.*構文を含めることができます。
これは、SELECTリストの最上位レベルで.*構文が使用された時とまったく同様に、行値の要素の列挙に展開されます（「問い合わせでの複合型の使用」参照）。
たとえば、テーブルtがf1列とf2列を持つ場合、以下は同一です。


SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;


   
注記


PostgreSQL™ 8.2より前では、.*構文は行コンストラクタ内では展開されませんでした。
ROW(t.*, 42)と記述すると、1つ目のフィールドにもう一つの行値を持つ、2つのフィールドからなる行が作成されました。
たいていの場合、新しい動作はより使いやすくなっています。
入れ子状の行値という古い動作が必要であれば、内側の行値には.*を使用せずに、たとえばROW(t, 42)と記述してください。
    



デフォルトでは、ROW式により作成される値は匿名レコード型になります。
必要に応じて、名前付きの複合型、つまりテーブルの行型あるいはCREATE TYPE ASで作成された複合型にキャストできます。
曖昧性を防止するために明示的なキャストが必要となることもあります。
以下に例を示します。


CREATE TABLE mytable(f1 int, f2 float, f3 text);

CREATE FUNCTION getf1(mytable) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;


-- getf1()が1つしか存在しないためキャスト不要。
SELECT getf1(ROW(1,2.5,'this is a test'));
 getf1
-------
     1
(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);

CREATE FUNCTION getf1(myrowtype) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;


-- ここでは、どの関数を呼び出すのかを示すためにキャストが必要。
SELECT getf1(ROW(1,2.5,'this is a test'));
ERROR:  function getf1(record) is not unique

SELECT getf1(ROW(1,2.5,'this is a test')::mytable);
 getf1
-------
     1
(1 row)

SELECT getf1(CAST(ROW(11,'this is a test',2.5) AS myrowtype));
 getf1
-------
    11
(1 row)


  


行コンストラクタを使用すると、複合値を作成し、複合型のテーブル列に格納したり、複合パラメータを受け入れる関数に渡すことができます。
また、「比較関数および演算子」で説明されているように、標準比較演算子を使用して行をテストしたり、「行と配列の比較」で説明されているように、ある行を別の行と比較したり、「副問い合わせ式」で説明されているように、副問い合わせと組み合わせてそれらを使用したりすることもできます。
  

式の評価規則





副式の評価の順序は定義されていません。
特に演算子や関数の入力は、必ずしも左から右などの決まった順序で評価されるわけではありません。
   


さらに、その式の一部を評価しただけで式の結果を決定できる場合には、他の副式がまったく評価されないこともあります。
例えば、


SELECT true OR somefunc();



では、（おそらく）somefunc()は呼び出されないでしょう。
以下の場合も同様です。


SELECT somefunc() OR true;



これは一部のプログラミング言語に見られる、論理演算子での左から右への「短絡評価」とは異なることに注意してください。
   


そのため、副次作用がある関数を複雑な式の一部として使用することは推奨されません。
特に、WHERE句およびHAVING句で副次作用や評価順に依存するのは危険です。
これらの句は、実行計画を作成する過程で頻繁に再処理されるからです。
これらの句のブール式（AND/OR/NOTの組み合わせ）は、ブール代数の規則で許されるあらゆる方式で再編成される可能性があります。
   


評価の順序を強制することが重要であれば、CASE構文（「条件式」を参照）を使用できます。
例えば、次の式はWHERE句で0除算を避ける方法としては信頼性の低いものです。


SELECT ... WHERE x > 0 AND y/x > 1.5;



しかし、次のようにすれば安全です。


SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;



このような方法で使用されるCASE構文は最適化を妨げるものなので、必要な場合にのみ使用してください。
（特に、この例では、y > 1.5*xと代わりに記述することが問題を回避するより優れた方法です。）
   


しかしながら、CASEはそのような問題に対する万能薬ではありません。
上で示したような方法の限界の1つは、定数副式が早く評価されるのを防げないことです。
「関数の変動性分類」に記すように、IMMUTABLEと印をつけられた関数と演算子は、実行される時ではなく問い合わせが計画される時に評価されるかもしれません。
そのため、例えば


SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;



は、たとえテーブルのすべての行がx > 0であり、実行時にはELSE節に決して入らないとしても、プランナが定数副式を単純化しようとするためにゼロによる除算での失敗という結果に終わるでしょう。
   


この特別な例は馬鹿げたものに見えるかもしれませんが、定数を含むことが明らかではない関連する場合が関数の中で実行される問い合わせで起こり得ます。関数の引数とローカル変数は計画作成の都合で定数として問い合わせに入れられることがあるからです。
例えば、PL/pgSQL関数の中では、IF-THEN-ELSE文を使って危険な計算を保護する方がCASE式の中で入れ子にするよりもずっと安全です。
   


同種の別の限界は、その中に含まれる集約式の評価をCASEが防げないことです。なぜなら、SELECTリストやHAVING句の別の式が考慮される前に、集約式が計算されるからです。
例えば、以下の問い合わせは対策を施しているように見えるにも関わらずゼロ除算エラーになり得ます。


SELECT CASE WHEN min(employees) > 0
            THEN avg(expenses / employees)
       END
    FROM departments;



min()とavg()集約は入力行すべてに対して同時に計算されますので、もしemployeesがゼロになる行があれば、min()の結果が検査される機会の前にゼロ除算エラーが起こります。
代わりに、まずは問題のある入力行が集約関数に渡されないようにするためにWHEREまたはFILTER句を使ってください。
   


関数呼び出し





PostgreSQL™では名前付きパラメータを持つ関数について、位置表記と名前付け表記のいずれでも呼び出すことが可能です。
名前付け表記は、パラメータと引数の関連をより明確・確実にするので、多数のパラメータを持つ関数において特に有用です。
位置表記の関数呼び出しでは、関数宣言で定義されたのと同じ並び順で、引数を記述します。
名前付け表記では、引数と関数パラメータは名前で対応付けられ、引数はどのような並び順で書いても構いません。
それぞれの表記で、「関数」に書かれているように、関数の引数の型の効果も考慮してください。
   


どちらの表記でも、関数定義時にデフォルト値を与えられているパラメータについては、呼び出し時に記述される必要はありません。
しかしこれは、名前付け表記で特に有用です。
なぜなら、パラメータ群の任意の組み合わせを省略できるからです。
一方、位置表記のパラメータは右から左へ省略していくことしかできません。
   


PostgreSQL™では、名前付け表記と位置表記の混在表記もサポートしています。この場合、位置表記のパラメータが最初に記述され、その後に名前付け表記のパラメータが記述されることになります。
   


本節の例では、次の関数定義を使って、3通りすべての表記方法について説明します。


CREATE FUNCTION concat_lower_or_upper(a text, b text, uppercase boolean DEFAULT false)
RETURNS text
AS
$$
 SELECT CASE
        WHEN $3 THEN UPPER($1 || ' ' || $2)
        ELSE LOWER($1 || ' ' || $2)
        END;
$$
LANGUAGE SQL IMMUTABLE STRICT;



concat_lower_or_upper関数は、aとbの指定必須となる2つのパラメータを持ちます。
加えて、uppercaseというデフォルトがfalseとなっている省略可能なパラメータを一つ持ちます。
aとbで入力された文字列が結合され、uppercaseパラメータにより大文字か小文字に変換されます。
他のこの関数定義についての詳細は、ここでは重要ではありません（詳細は36章SQLの拡張を参照してください）。
   
位置表記の使用





位置表記は、PostgreSQL™の引数を関数に渡す伝統的な仕組みです。
例を挙げます。


SELECT concat_lower_or_upper('Hello', 'World', true);
 concat_lower_or_upper
-----------------------
 HELLO WORLD
(1 row)



すべての引数を順番通りに指定します。uppercaseがtrueと指定されていますので、結果は大文字です。
別の例を示します。


SELECT concat_lower_or_upper('Hello', 'World');
 concat_lower_or_upper
-----------------------
 hello world
(1 row)



ここではuppercaseパラメータが省略されていますので、そのデフォルト値であるfalseを受け取ることとなり、結果は小文字になります。
位置表記では引数がデフォルト値を持つ限り右側から左の方向で、引数を省略できます。
    

名前付け表記の使用





名前付け表記では、各引数の名前は=>を使用し引数の式と分けて指定されます。
例を挙げます。


SELECT concat_lower_or_upper(a => 'Hello', b => 'World');
 concat_lower_or_upper
-----------------------
 hello world
(1 row)



この場合も、uppercase引数が省略されていますので、暗黙的にfalseに設定されます。
名前付け表記使用の利点の1つとして、引数を任意の順序で指定できる点があります。
以下に例を示します。


SELECT concat_lower_or_upper(a => 'Hello', b => 'World', uppercase => true);
 concat_lower_or_upper
-----------------------
 HELLO WORLD
(1 row)

SELECT concat_lower_or_upper(a => 'Hello', uppercase => true, b => 'World');
 concat_lower_or_upper
-----------------------
 HELLO WORLD
(1 row)


    


":="に基づく古い文法は後方互換性のためにサポートされます。


SELECT concat_lower_or_upper(a := 'Hello', uppercase := true, b := 'World');
 concat_lower_or_upper
-----------------------
 HELLO WORLD
(1 row)


    

混在表記の利用





混在表記は名前付け表記と位置表記を組み合わせたものです。
しかし既に述べたように、名前付けされた引数は位置づけされたパラメータより前に記述することはできません。
例を挙げます。


SELECT concat_lower_or_upper('Hello', 'World', uppercase => true);
 concat_lower_or_upper
-----------------------
 HELLO WORLD
(1 row)



上記の問い合わせでは、aとbが位置で指定され、uppercaseは名前で指定されています。
この例では文書化の目的以外ほとんど意味がありません。
デフォルト値が割り当てられた多くのパラメータを持つ、もっと複雑な関数では、名前付けもしくは混在表記により記述量を大きく減らすことができ、かつ、エラーが紛れ込む可能性を抑えることができます。
   
注記


名前付けと混在呼び出し表記は集約関数の呼び出しでは現在使用できません（が、集約関数がウィンドウ関数として使われる場合には動作します）。
    



第5章 データ定義





本章では、データを保持するためのデータベース構造を作成する方法を説明します。
リレーショナルデータベースでは生データはテーブルに格納されます。
したがって、本章ではテーブルの作成と変更の方法や、テーブルにどのようなデータを格納するかを制御するための機能について重点的に解説します。
さらに、テーブルをスキーマに編成する方法、およびテーブルへの権限の割り当てについても説明します。
そして最後に、継承、テーブルのパーティショニング、ビュー、関数、およびトリガなど、データの格納に影響する機能について簡単に説明します。
 
テーブルの基本





リレーショナルデータベースのテーブルは、紙に書く表によく似ています。
テーブルは行と列からできています。
列の数と順序は固定されており、それぞれの列に名前が付けられています。
行の数は可変です。
つまり行の数とは、その時点でどれだけのデータが格納されているのかを示すものです。
SQLではテーブル内の行の順序は保証されません。
テーブルを読み込むと、明示的に並べ替えが要求されない限り、行は不特定な順序で返されます。
これについては7章問い合わせを参照してください。
さらに、SQLでは行に固有の識別子が割り当てられないので、テーブル内にまったく同一の行がいくつも存在することがあり得ます。
これは、SQLの基礎をなす数学的モデルの帰結ですが、通常は好ましいことではありません。
この問題の対処法については、本章で後述します。
  


それぞれの列にデータ型があります。
データ型によって、列に割り当てられる値が制限されます。
また、列に格納されているデータに意味が割り当てられ、データを計算に使用できるようになります。
例えば、数値型と宣言された列は任意のテキスト文字列は受け付けません。
そして、数値型の列に格納されているデータは算術計算に使用できます。
これに対して、文字列型と宣言された列はほとんど全ての種類のデータを受け付けます。
しかし、文字列の結合といった演算には使用できますが、算術計算には使用できません。
  


PostgreSQL™には、様々なアプリケーションに対応した多数のデータ型の集合が組み込まれています。
またユーザが独自のデータ型を定義することも可能です。
組み込みデータ型のほとんどにはわかりやすい名前と意味が付けられているので、詳しい説明はここでは行わず、8章データ型で行います。
よく使用されるデータ型としては、整数を表すinteger、小数も表すことができるnumeric、文字列を表すtext、日付を表すdate、時刻を表すtime、そして日付と時刻の両方を含むtimestampがあります。
  


テーブルを作成するには、その名の通りCREATE TABLE(7)コマンドを使用します。
このコマンドで最低限指定する必要があるのは、新規テーブル名、列名、各列のデータ型です。
例を示します。


CREATE TABLE my_first_table (
    first_column text,
    second_column integer
);



これで2列からなるmy_first_tableという名前のテーブルが作成されます。
最初の列の名前はfirst_columnで、そのデータ型はtextです。
2番目の列の名前はsecond_columnで、そのデータ型はintegerです。
テーブル名および列名は、「識別子とキーワード」で説明した識別子の構文に従います。
型名も通常は識別子ですが、例外もあります。
列リストはカンマで区切り、括弧で囲むことに注意してください。
  


先ほどの例は、説明が目的であるため現実的ではありません。
通常、テーブルおよび列の名前は、どのようなデータが格納されているかわかるような名前にします。
以下に、より現実的な例を示します。


CREATE TABLE products (
    product_no integer,
    name text,
    price numeric
);



（numeric型は小数を格納することができ、金額を扱う場合はこれが一般的です。）
  
ヒント


相関するテーブルを数多く作成する場合は、テーブルと列の命名規則を一貫させるのが賢明です。
例えば、テーブル名に単数形あるいは複数形どちらの名詞を使用するかという選択肢があります（これは論者によって好みが分かれています）。
   



テーブルに含めることができる列の数には制限があります。
制限は、列の型に応じて250〜1600の間となります。
しかし、これほど多くの列を使用することは稀ですし、そのような場合は設計に問題があることも多いのです。
  


必要のないテーブルができた場合は、DROP TABLE(7)コマンドを使用してそのテーブルを削除できます。
例を示します。


DROP TABLE my_first_table;
DROP TABLE products;



存在しないテーブルを削除しようとすると、エラーになります。
もっともテーブルが存在するかどうかに関係なくスクリプト全体を動作させることができるように、テーブルを作成する前に、エラーメッセージを無視して無条件に削除操作を行うことは、SQLスクリプトファイルではよく行われることです。
（この操作を行いたければ、エラーメッセージの出力を防ぐDROP TABLE IF EXISTSという構文を使用できます。
しかし、これは標準SQLではありません。）
  


既に存在するテーブルを変更する方法については、本章で後述する「テーブルの変更」を参照してください。
  


これまでに説明したツールを使用して、十分に機能するテーブルを作成できます。
本章の残りでは、テーブル定義に機能を追加して、データの整合性、安全性、利便性を確実にする方法について述べていきます。
この時点でテーブルにデータを入力したければ、本章の残りを後回しにして6章データ操作に進んでも構いません。
  


デフォルト値





列にはデフォルトの値を割り当てることができます。
新しく作成された行のいくつかの列に値が指定されていない場合、そうした空欄にはそれぞれの列のデフォルト値が入ります。
データ操作コマンドを使用して、列を（どのような値かを把握する必要なく）デフォルト値に設定するように明示的に要求することもできます。
（データ操作コマンドの詳細については6章データ操作を参照してください。）
  


   
明示的に宣言されたデフォルト値がない場合は、デフォルト値はNULL値になります。
NULL値は不明のデータを表すものとみなすことができるので、通常はこの方法で問題ありません。
  


テーブル定義では、デフォルト値は列データ型の後に列挙されています。
例を示します。


CREATE TABLE products (
    product_no integer,
    name text,
    price numeric DEFAULT 9.99
);


  


デフォルト値を式にすることが可能で、それはデフォルト値が挿入される時はいつでも（テーブルが作成されたときではありません）評価されます。よくある例として、timestamp列が挿入時の時刻に設定されるように、その列はデフォルトのCURRENT_TIMESTAMPを持つことができます。もう1つの例としては、各行に「通番」を割り振る場合です。
PostgreSQL™では、典型的に以下のように記述することにより生成されます。


CREATE TABLE products (
    product_no integer DEFAULT nextval('products_product_no_seq'),
    ...
);



ここで、nextval()関数が、シーケンスオブジェクトから連続した値を生成します（「シーケンス操作関数」を参照してください）。
これは非常によく使われるやり方なので、以下のような特別な短縮記法が用意されています。


CREATE TABLE products (
    product_no SERIAL,
    ...
);



省略形であるSERIALは「連番型」で詳しく述べられています。
  

識別列





識別列は暗黙的なシーケンスにより自動的に生成される特殊な列です。
これはキー値の生成に使用できます。
  


識別列を作成するには、CREATE TABLEのGENERATED ... AS IDENTITY句を使用します。
例を示します。


CREATE TABLE people (
    id bigint GENERATED ALWAYS AS IDENTITY,
    ...,
);



あるいは


CREATE TABLE people (
    id bigint GENERATED BY DEFAULT AS IDENTITY,
    ...,
);



詳細はCREATE TABLE(7)を参照してください。
  


INSERTコマンドが識別列を持つテーブルで実行され、識別列に値が明示的に指定されていない場合、暗黙的なシーケンスによって生成された値が挿入されます。
例えば、上記の定義を使用し、追加の適切な列を想定して、次のように記述すると、


INSERT INTO people (name, address) VALUES ('A', 'foo');
INSERT INTO people (name, address) VALUES ('B', 'bar');



1から始まるid列の値を生成し、結果は次のテーブルデータになります。


 id | name | address
----+------+---------
  1 | A    | foo
  2 | B    | bar



あるいは、値の代わりにキーワードDEFAULTを指定して、以下のようにシーケンスによって生成された値を明示的に要求することもできます。


INSERT INTO people (id, name, address) VALUES (DEFAULT, 'C', 'baz');



同様に、キーワードDEFAULTはUPDATEコマンドでも使用できます。
  


したがって、多くの点で、識別列はデフォルト値のある列のように動作します。
  


識別列の定義のALWAYSおよびBY DEFAULT句は、INSERTおよびUPDATEコマンドでユーザが明示的に指定した値をどのように処理するかを決定します。
INSERTコマンドでは、ALWAYSが選択されている場合、INSERTがOVERRIDING SYSTEM VALUEを指定している場合にのみ、ユーザ指定の値が受け入れられます。
BY DEFAULTを選択すると、ユーザ指定の値が優先されます。
したがって、BY DEFAULTを使用すると、明示的な値によって上書きできるという、デフォルト値により似た動作になります。
一方、ALWAYSでは、誤って明示的な値を挿入することに対する保護が強化されます。
  


識別列のデータ型は、シーケンスでサポートされているデータ型の1つである必要があります。（CREATE SEQUENCE(7)を参照。）
関連付けられたシーケンスの属性は、識別列の作成時に指定するか（CREATE TABLE(7)を参照）、後で変更できます（ALTER TABLE(7)を参照）。
  


識別列は自動的にNOT NULLとマークされます。
ただし、識別列は一意性を保証しません。
（通常、シーケンスは一意な値を戻しますが、シーケンスはリセットにするか、前述のように識別列に値を手動で挿入できます。）
一意性を強制するには、PRIMARY KEYまたはUNIQUE制約を使用する必要があります。
  


テーブル継承階層では、子テーブルの識別列とその属性は、親テーブルの識別列とその属性から独立しています。
子テーブルは、親から自動的に識別列またはその属性を継承しません。
INSERTまたはUPDATEのときにSQL文で書かれたテーブルの列が識別列である場合、その列は識別列として扱われ、対応する識別列の属性が適用されます。
  


パーティションは、パーティションテーブルから識別列を継承します。
各パーティションが独自の識別列を持つことはできません。
識別列の属性はパーティション階層内のすべてのパーティションで一貫しています。
  

生成列





生成列は常に他の列から計算される特別な列です。
ですから、これは列におけるテーブルに対するビューのようなものです。
生成列には格納生成列と仮想生成列の2種類があります。
格納生成列はそれが書かれた（挿入または更新）時に計算され、あたかも通常の列のようにストレージが割り当てられます。
仮想生成列にはストレージは割り当てられず、列が読み出された時に計算されます。
つまり、仮想生成列はビューに似ており、格納生成列はマテリアライズドビューに似ています（常に自動的に更新される点は除きます）。
  


生成列を作るには、CREATE TABLEでGENERATED ALWAYS AS句を使ってください。例を示します。


CREATE TABLE people (
    ...,
    height_cm numeric,
    height_in numeric GENERATED ALWAYS AS (height_cm / 2.54)
);



生成列はデフォルトでは仮想生成列となります。
明示的に選択するためには、キーワードVIRTUALまたはSTOREDを使用してください。
詳細はCREATE TABLE(7)を参照してください。
  


生成列には直接書き込みができません。
INSERTあるいはUPDATEコマンドでは値を生成列に指定できませんが、キーワードDEFAULTが指定できます。
  


デフォルトを備えた列と生成列の違いを考えてみましょう。
列のデフォルトは、他に値が指定されないときに、最初に行が挿入された時に一度だけ評価されます。
生成列は、行が変更された時に常に更新され、上書きはできません。
デフォルトを備えた列はテーブルの他の列を参照することはできませんが、生成式は通常それを行います。
デフォルトを備えた列は揮発性の関数、たとえばrandom()や現在時刻を参照する関数を使用できますが、これは生成列では許されていません。
  


生成列の定義と生成列を伴うテーブルには以下の制限が適用されます。

   
	

生成式は不変関数のみが使用でき、副問い合わせ、あるいは現在の行以外へのいかなる参照も使用できません。
     

	

生成式はほかの生成列を参照できません。
     

	

生成式はtableoid以外のシステム列を参照できません。
     

	

仮想生成列にはユーザ定義型を使用できず、仮想生成列の生成式はユーザ定義の関数または型を参照してはいけません。
つまり、組み込みの関数または型のみ使用できます。
これは、演算子やキャストの基礎となる関数や型などにも間接的に当てはまります。
（この制限は、格納生成列には存在しません。）
     

	

生成列は列デフォルトも識別定義も持てません。
     

	

生成列はパーティションキーの一部にはなれません。
     

	

外部テーブルは生成列を持つことができます。
詳細はCREATE FOREIGN TABLE(7)をご覧ください。
     

	継承とパーティショニングの場合:
	

親列が生成列である場合、その子列も同じ種類（格納または仮想）の生成列でなければなりません。
しかし、子列は異なる生成式を持つことができます。
       


格納生成列の場合、行の挿入または更新時に実際に適用される生成式は、物理的に行が存在するテーブルに関連付けられたものです。
（これは列デフォルトの動作とは異なります。
列デフォルトの場合、問い合わせで指定されたテーブルに関連付けられたデフォルト値が適用されます。）
仮想生成列の場合、テーブルが読まれるときに、問い合わせで指定されたテーブルの生成式が適用されます。
       

	

親列が生成列でない場合、その子列も生成列であってはなりません。
       

	

継承されたテーブルの場合、CREATE TABLE ... INHERITSにGENERATED句を持たない子テーブル継承を書き込むと、そのGENERATED句は自動的に親からコピーされます。
ALTER TABLE ... INHERITは、親列と子列が生成状態に一致していることを要求しますが、それらの生成式が一致することを要求しません。
       

	

パーティション化されたテーブルの場合も同様です。
CREATE TABLE ... PARTITION OFにGENERATED句を持たない子テーブル継承を書き込むと、そのGENERATED句は自動的に親からコピーされます。
ALTER TABLE ... ATTACH PARTITIONは、親列と子列が生成状態に一致していることを要求しますが、それらの生成式が一致することを要求しません。
       

	

多重継承では、一つの親列が生成列なら、すべての親列は生成列でなければなりません。
すべての親列が同じ生成式を持たない場合は、子列の望ましい式を明示的に指定する必要があります。
       







  


生成列の利用の際には以下の追加の考慮が必要です。
   
	

生成列は元になる基底列とは別にアクセス権限を維持します。
ですから、ある特定のロールが生成列を読み出しつつも、元になる基底列からは読み出さないように調整できます。
     


仮想生成列の場合、生成式が漏洩防止（leakproof）関数（CREATE FUNCTION(7)を参照）だけを使用する場合にのみ完全に安全ですが、システムによって強制されるわけではありません。
     

	

生成式で使用される関数の権限は、書き込み時または読み取り時それぞれで、式が実際に実行されるときに確認されます。
これは、あたかも生成列を使用する問い合わせから生成式が直接呼び出されたかのように行われます。
生成列のユーザは、生成式で使用されるすべての関数を呼び出す権限を持っている必要があります。
生成式内の関数は、関数がSECURITY INVOKERまたはSECURITY DEFINERとして定義されているかどうかに応じて、問い合わせを実行するユーザの権限または関数所有者の権限で実行されます。
      
     

	

概念的には、生成列はBEFOREトリガが走った後に更新されます。
ですから、BEFOREトリガの中で基底列に加えられた変更は生成列に反映されます。
しかし逆に生成列をBEFOREトリガの中でアクセスすることは許されません。
     

	

生成列は、CREATE PUBLICATIONのパラメータpublish_generated_columnsに従って、またはCREATE PUBLICATIONコマンドの列リストにそれらを含めることで、論理レプリケーション中に複製できます。
これは現在、格納生成列でのみサポートされています。
詳細は「生成列のレプリケーション」を参照してください。
     




  

制約





データ型は、テーブルに格納するデータの種類を限定するための方法です。
しかし、多くのアプリケーションでは、型が提供する制約では精密さに欠けます。
例えば、製品の価格が入る列には、おそらく正数のみを受け入れるようにする必要があります。
しかし、正数のみを受け入れるという標準のデータ型はありません。
また、他の列や行に関連して列データを制約したい場合もあります。
例えば、製品の情報が入っているテーブルでは、1つの製品番号についての行が2行以上あってはなりません。
  


このような問題を解決するため、SQLでは列およびテーブルに対する制約を定義できます。
制約によってテーブル内のデータを自由に制御できます。
制約に違反するデータを列に格納しようとすると、エラーとなります。
このことは、デフォルト値として定義された値を格納する場合にも適用されます。
  
検査制約





検査制約は最も汎用的な制約の種類です。
これを使用して、特定の列の値が論理値の式を満たす（真の値）ように指定できます。
例えば、製品価格を必ず正数にするには以下のようにします。


CREATE TABLE products (
    product_no integer,
    name text,
    price numeric CHECK (price > 0)
);


   


このように、制約の定義はデフォルト値の定義と同様に、データ型の後にきます。
デフォルト値と制約は任意の順序で列挙できます。
検査制約はCHECKキーワードの後に続く括弧で囲まれた式で構成されます。
検査制約式には、制約される列を含む必要があります。
そうしないと、制約はあまり意味のないものになります。
   


制約に個別に名前を付けることもできます。
名前を付けることで、エラーメッセージがわかりやすくなりますし、変更したい制約を参照できます。
構文は以下のとおりです。


CREATE TABLE products (
    product_no integer,
    name text,
    price numeric CONSTRAINT positive_price CHECK (price > 0)
);



上記のように、名前付き制約の指定はCONSTRAINTキーワードで始め、これに識別子、制約定義と続きます。
（この方法で制約名を指定しない場合は、システムにより名前が付けられます。）
   


検査制約では複数の列を参照することもできます。
例えば、通常価格と割引価格を格納する場合に、必ず割引価格が通常価格よりも低くなるようにしたいとします。


CREATE TABLE products (
    product_no integer,
    name text,
    price numeric CHECK (price > 0),
    discounted_price numeric CHECK (discounted_price > 0),
    CHECK (price > discounted_price)
);


   


最初の2つの制約は上で説明した通りです。
3つ目の制約では新しい構文を使っています。
これは特定の列に付加されるのではなく、カンマで区切られた列リスト内の別個の項目として現れます。
列定義およびこれらの制約定義は、任意の順序で列挙できます。
   


最初の2つの制約を列制約と言います。これに対し、3つ目の制約は列定義とは別個に書かれるので、テーブル制約と言います。
列制約をテーブル制約として書くことはできますが、その逆はできる場合とできない場合があります。なぜなら列制約は、制約に関連付けられている列のみを参照するためです。
（PostgreSQL™はこの規則を強制しません。しかし、作成したテーブル定義を他のデータベースシステムでも動作させたい場合はこの規則に従ってください。）
上の例は、以下のように書くこともできます。


CREATE TABLE products (
    product_no integer,
    name text,
    price numeric,
    CHECK (price > 0),
    discounted_price numeric,
    CHECK (discounted_price > 0),
    CHECK (price > discounted_price)
);



あるいは、次のようにもできます。


CREATE TABLE products (
    product_no integer,
    name text,
    price numeric CHECK (price > 0),
    discounted_price numeric,
    CHECK (discounted_price > 0 AND price > discounted_price)
);



どのようにするかは好みの問題です。
   


列制約と同様に、テーブル制約に名前を割り当てることができます。


CREATE TABLE products (
    product_no integer,
    name text,
    price numeric,
    CHECK (price > 0),
    discounted_price numeric,
    CHECK (discounted_price > 0),
    CONSTRAINT valid_discount CHECK (price > discounted_price)
);


   


検査制約では、検査式が真またはNULL値と評価された場合に、条件が満たされることに注意してください。
ほとんどの式は、演算項目に一つでもNULLがあればNULLと評価されるので、検査制約では制約対象の列にNULL値が入るのを防げません。
列がNULL値を含まないようにするために、次節で説明する非NULL制約を使用できます。
   
注記


PostgreSQL™は、検査対象の新しい行もしくは更新対象行以外のテーブルデータを参照するCHECK制約はサポートしていません。
このルールに違反するCHECK制約は単純なテストでは動いたように見えますが、（関連する他の行が後で更新されたことにより）データベースがその制約条件が偽になるような状態にならないことを保証できません。
これによってデータベースのダンプとリストアの失敗が引き起こされるでしょう。
最終的なデータベース状態が制約に対して一貫した状態であったとしても、制約を満たす順で行がロードされないことによりリストアは失敗することがあります。
可能ならばUNIQUE、EXCLUDE、FOREIGN KEY制約を使って行あるいはテーブルをまたがる制約を表現してください。
    


常に一貫性の保障を維持するのではなく、行挿入の際に一回だけの行の検査が必要なら、その実装のためにカスタムトリガが利用できます。
（pg_dumpはデータのリストア後までトリガを再インストールせず、ダンプ/リストア中は検査が強制されないため、この方法でダンプ/リストア問題を回避できます。）
    

注記


PostgreSQL™はCHECK制約の条件が不変であると仮定します。
つまり同じ入力行に対して常に同じ結果が返るということです。
この仮定によりCHECK制約が挿入あるいは更新時にのみ検査され、他のときには検査されないことが正当化されます。
（他のテーブルデータを参照しないことによる上述の警告はこの制限の本当に特別な場合です。）
    


この仮定に反する一般的な例は、CHECK式でユーザ定義関数を参照し、その関数の振る舞いを変更することです。
PostgreSQL™はこれを禁止しませんが、今やCHECK制約に違反する行がテーブル中に存在することを通知しません。
これによって後でデータベースのダンプとリストアの失敗を引き起こすでしょう。
そのような変更に対処するおすすめの方法は、（ALTER TABLEを使って）制約を削除し、関数定義を調整し、そして制約を再度追加して、それによってテーブル全体の行に対して再チェックを行うことです。
    


非NULL制約





非NULL制約は単純に、列がNULL値を取らないことを指定します。
構文の例は以下のとおりです。


CREATE TABLE products (
    product_no integer NOT NULL,
    name text NOT NULL,
    price numeric
);



以下の例のように、明示的な制約名を指定することもできます。


CREATE TABLE products (
    product_no integer NOT NULL,
    name text CONSTRAINT products_name_not_null NOT NULL,
    price numeric
);


   


非NULL制約は通常、列制約として記述されます。
テーブル制約として記述するための構文は以下のとおりです。


CREATE TABLE products (
    product_no integer,
    name text,
    price numeric,
    NOT NULL product_no,
    NOT NULL name
);



しかし、この構文は標準ではなく、主にpg_dumpでの使用を目的としています。
   


非NULL制約は、チェック制約CHECK (column_name IS NOT NULL)を作成することと機能的には同じですが、PostgreSQL™では明示的な非NULL制約を作成する方がより効率的です。
   


もちろん、1つの列に複数の制約を適用することもできます。
そのためには、次々と制約を書いていくだけです。


CREATE TABLE products (
    product_no integer NOT NULL,
    name text NOT NULL,
    price numeric NOT NULL CHECK (price > 0)
);



順序は関係ありません。
制約がチェックされる順序を必ずしも決定するわけではありません。
   


ただし、1つの列に設定できる明示的な非NULL制約は1つだけです。
   


NOT NULL制約に対し、逆のパターンであるNULL制約があります。
これは、列がNULLでなければならないということではありません。
そのような制約は意味がありません。
この制約は、列がNULLであってもよいというデフォルトの振舞いを選択するだけのものです。
NULL制約は標準SQLに存在しませんので、移植予定のアプリケーションで使用すべきではありません。
（これは、PostgreSQL™と他の一部のデータベースシステムとの互換性のために追加された機能に過ぎません。）
もっとも、スクリプトファイルでの制約の切り替えが簡単であるという理由でこの機能を歓迎するユーザもいます。
例えば、最初に


CREATE TABLE products (
    product_no integer NULL,
    name text NULL,
    price numeric NULL
);



と書いてから、必要な場所にNOTキーワードを挿入できます。
   
ヒント


ほとんどのデータベース設計において、列の多くをNOT NULLとマークする必要があります。
    


一意性制約





一意性制約によって、列あるいは列のグループに含まれるデータが、テーブル内の全ての行で一意であることを確実にします。
列制約の場合の構文は以下のとおりです。


CREATE TABLE products (
    product_no integer UNIQUE,
    name text,
    price numeric
);



また、テーブル制約の場合の構文は


CREATE TABLE products (
    product_no integer,
    name text,
    price numeric,
    UNIQUE (product_no)
);



となります。
   


列の集合に対して一意性制約を定義するには、列名をカンマで区切り、テーブル制約として記述します。


CREATE TABLE example (
    a integer,
    b integer,
    c integer,
    UNIQUE (a, c)
);



これは、指定された列の値の組み合わせがテーブル全体で一意であることを指定しています。
しかし、列の片方が一意である必要はありません（通常一意ではありません）。
   


一意性制約には、通常の方法で名前を割り当てることもできます。


CREATE TABLE products (
    product_no integer CONSTRAINT must_be_different UNIQUE,
    name text,
    price numeric
);


   


一意性制約を追加すると、制約で指定された列または列のグループに対して一意的なBツリーのインデックスが自動的に作られます。
一部の行だけに適用される一意性の制限を一意性制約として作成することはできませんが、そのような制限を一意な部分インデックスを作成することで実現することは可能です。
   


一般的には、制約に含まれるすべての列の値が等しい複数の行がテーブルの中にある場合に、一意性制約に違反します。
この比較において、デフォルトでは2つのNULL値は等しくないとみなされます。
つまり、一意性制約が存在する場合でも、制約が適用される列の少なくとも1つにNULL値を含むような重複行が格納できるということです。
この動作は、次のようにNULLS NOT DISTINCT句を追加することで変更できます。


CREATE TABLE products (
    product_no integer UNIQUE NULLS NOT DISTINCT,
    name text,
    price numeric
);



または


CREATE TABLE products (
    product_no integer,
    name text,
    price numeric,
    UNIQUE NULLS NOT DISTINCT (product_no)
);



デフォルトの動作は、NULLS DISTINCTを使用して明示的に指定できます。
標準SQLによれば、一意性制約でのデフォルトのNULL処理は実装依存で、他の実装では動作が異なります。
そのため、移植可能なアプリケーションを開発する際には注意が必要です。
   

主キー





主キー制約は、列または列のグループがテーブル内の行を一意に識別するものとして利用できることを意味します。
これには値が一意で、かつNULLでないことが必要となります。
つまり、次の2つのテーブル定義は同じデータを受け入れます。


CREATE TABLE products (
    product_no integer UNIQUE NOT NULL,
    name text,
    price numeric
);





CREATE TABLE products (
    product_no integer PRIMARY KEY,
    name text,
    price numeric
);


   


主キーも複数の列に渡ることがあり、その構文は一意性制約に似ています。


CREATE TABLE example (
    a integer,
    b integer,
    c integer,
    PRIMARY KEY (a, c)
);


   


主キーを追加すると、主キーで指定された列または列のグループに対して一意的なBツリーのインデックスが自動的に作られます。
また、その列についてNOT NULLの印が強制されます。
   


1つのテーブルは最大1つの主キーを持つことができます。
（一意性制約はいくつでも存在する可能性があり、それらを非NULL制約と組み合わせても機能的にはほとんど同じですが、主キーとして識別できるのは1つだけです。）
リレーショナルデータベース理論では、全てのテーブルに主キーが1つ必要とされています。
この規則はPostgreSQL™では強制されませんが、たいていの場合はこれに従うことが推奨されます。
   


主キーは文書化、および、クライアントアプリケーションの両方の面で役に立ちます。
例えば、行値の変更が可能なGUIアプリケーションが行を一意的に特定するためには、
おそらくテーブルの主キーを知る必要があります。
他にも主キーが宣言されているときにデータベースシステムがそれを利用する場面がいくつかあります。
例えば、外部キーがそのテーブルを参照するとき、主キーがデフォルトの対象列となります。
   

外部キー





外部キー制約は、列（または列のグループ）の値が、他のテーブルの行の値と一致しなければならないことを指定します。
これによって関連する2つのテーブルの参照整合性が維持されます。
   


これまで何度か例に使用したproductsテーブルについて考えてみます。


CREATE TABLE products (
    product_no integer PRIMARY KEY,
    name text,
    price numeric
);



また、これらの製品に対する注文を格納するテーブルも作成済みだとしましょう。
この注文のordersテーブルには実際に存在する製品の注文のみを格納したいと思っています。
そこで、productsテーブルを参照するordersテーブルに外部キー制約を定義します。


CREATE TABLE orders (
    order_id integer PRIMARY KEY,
    product_no integer REFERENCES products (product_no),
    quantity integer
);



これで、productsテーブルに存在しない非NULLのproduct_no項目を使用して注文を作成することはできなくなります。
   


このような場合に、ordersテーブルのことを参照テーブル、productテーブルのことを被参照テーブルと呼びます。
同様に、参照列と被参照列もあります。
   


上記のコマンドは、次のように短縮することもできます。


CREATE TABLE orders (
    order_id integer PRIMARY KEY,
    product_no integer REFERENCES products,
    quantity integer
);



列リストがないため、被参照テーブルの主キーが被参照列として使用されます。
   


外部キー制約には、通常の方法で名前を割り当てることもできます。
   


外部キーでも、列のグループを制約したり参照したりすることもできます。
これもまた、テーブル制約の形式で記述する必要があります。
以下は、説明のための非現実的な例です。


CREATE TABLE t1 (
  a integer PRIMARY KEY,
  b integer,
  c integer,
  FOREIGN KEY (b, c) REFERENCES other_table (c1, c2)
);



もちろん、制約される列数および型は、被参照列の数および型と一致しなければなりません。
   


時には外部キー制約の「他のテーブル」を同じテーブルにすることが有用です。
これは自己参照外部キーと呼ばれます。
たとえばテーブルの行がツリー構造のノードを表現するようにしたいのであれば、以下のように書くことができるでしょう。


CREATE TABLE tree (
    node_id integer PRIMARY KEY,
    parent_id integer REFERENCES tree,
    name text,
    ...
);



トップレベルのノードはparent_idがNULLなのに対し、非NULLのparent_idはテーブルの有効な行を参照するように制約されることになります。
   


テーブルは複数の外部キー制約を持つことができます。
このことはテーブル間の多対多関係を実装するために使用されます。
例えば、製品と注文に関するそれぞれのテーブルがある場合に、複数の製品にまたがる注文を可能にしたいとします
（上の例の構造では不可能です）。
この場合、次のテーブル構造を使用できます。


CREATE TABLE products (
    product_no integer PRIMARY KEY,
    name text,
    price numeric
);

CREATE TABLE orders (
    order_id integer PRIMARY KEY,
    shipping_address text,
    ...
);

CREATE TABLE order_items (
    product_no integer REFERENCES products,
    order_id integer REFERENCES orders,
    quantity integer,
    PRIMARY KEY (product_no, order_id)
);



最後のテーブルで、主キーと外部キーが重なっていることに注目してください。
   


外部キーが製品に関連付けられていない注文の作成を許可しないことは、既に説明した通りです。
しかし、ある注文で参照していた製品が、注文後に削除されたらどうなるでしょう。
SQLではこのような場合も扱うことができます。
直感的に、いくつかのオプションが考えられます。
    
	参照される製品の削除を許可しない

	注文も一緒に削除する

	他にもありますか？




   


具体例として、上の例の多対多関係に次のポリシーを実装してみましょう。
（order_itemsによって）注文で参照されたままの製品を削除しようとしても、この操作を行えないようにします。
注文が削除されると、注文項目も削除されます。


CREATE TABLE products (
    product_no integer PRIMARY KEY,
    name text,
    price numeric
);

CREATE TABLE orders (
    order_id integer PRIMARY KEY,
    shipping_address text,
    ...
);

CREATE TABLE order_items (
    product_no integer REFERENCES products ON DELETE RESTRICT,
    order_id integer REFERENCES orders ON DELETE CASCADE,
    quantity integer,
    PRIMARY KEY (product_no, order_id)
);


   


デフォルトのON DELETEアクションはON DELETE NO ACTIONであり、これを指定する必要はありません。
これは、被参照テーブルで削除を実行できることを意味します。
しかし、外部キー制約は依然として満たす必要があるため、この操作は通常エラーとなります。
ただし、外部キー制約の確認は、トランザクションの後半に延期することもできます（この章では説明しません）。
その場合、NO ACTION設定を使用することで、制約が確認される前に他のコマンドでその状況を「修正」することができます。
たとえば、被参照テーブルに別の適切な行を挿入したり、参照テーブルで現在浮いている行を削除したりするなどです。
   


RESTRICTはNO ACTIONよりも厳しい設定です。
これは、被参照行が削除されることを防ぎます。
RESTRICTでは、トランザクションの後半まで確認を延期することはできません。
   


CASCADEは、被参照行が削除されるときに、それを参照している行も自動的に削除するように指定します。
   


2つの他のオプションがあります。
SET NULLとSET DEFAULTです。
これらにより、被参照行が削除されるとき、参照行の参照列がそれぞれNULLまたはデフォルト値に設定されます。
ただし、これらはいかなる制約にも従うことを許すものではないことに注意してください。
たとえば、アクションでSET DEFAULTが指定されているが、デフォルト値が外部キー制約を満たさない場合、操作は失敗します。
   


ON DELETEアクションの適切な選択は、関連するテーブルが表すオブジェクトの種類によって異なります。
参照元テーブルが、参照先テーブルによって表されるオブジェクトのコンポーネントであり、独立して存在できないものを表している場合は、CASCADEが適切です。
2つのテーブルが独立したオブジェクトを表している場合は、RESTRICTまたはNO ACTIONが適切です。
実際に両方のオブジェクトを削除するアプリケーションは、このことを明示的に指定し、2つの削除コマンドを実行する必要があります。
前述の例では、受注アイテムは受注の一部であり、受注が削除された場合に自動的に削除されるようにすると便利です。
ただし、製品と受注は異なるため、製品を削除すると一部の受注アイテムが自動的に削除されてしまうのは問題となると考えられます。
外部キー関係がオプションの情報を表す場合は、アクションSET NULLまたはSET DEFAULTが適切です。
たとえば、製品テーブルに製品マネージャへの参照が含まれていて、製品マネージャのエントリが削除された場合、製品の製品マネージャをNULLまたはデフォルトに設定すると便利です。
   


アクションSET NULLおよびSET DEFAULTでは、列リストを使用して、設定する列を指定できます。
通常、外部キー制約のすべての列が設定されます。
サブセットのみを設定すると、特殊な場合に役立ちます。次の例を見てください。


CREATE TABLE tenants (
    tenant_id integer PRIMARY KEY
);

CREATE TABLE users (
    tenant_id integer REFERENCES tenants ON DELETE CASCADE,
    user_id integer NOT NULL,
    PRIMARY KEY (tenant_id, user_id)
);

CREATE TABLE posts (
    tenant_id integer REFERENCES tenants ON DELETE CASCADE,
    post_id integer NOT NULL,
    author_id integer,
    PRIMARY KEY (tenant_id, post_id),
    FOREIGN KEY (tenant_id, author_id) REFERENCES users ON DELETE SET NULL (author_id)
);



列が指定されていない場合、外部キーもtenant_id列をnullに設定しますが、この列は主キーの一部として必要です。
   


ON DELETEと同様に、被参照列が変更（更新）されるときに呼び出されるON UPDATEもあります。
SET NULLとSET DEFAULTに対して列リストを指定できない点を除いて、実行できるアクションは同じです。
この場合、CASCADEは、被参照列の更新された値を参照行にコピーする必要があることを意味します。
また、ON UPDATE NO ACTION（デフォルトです）とON UPDATE RESTRICTには大きな違いがあります。
前者では更新を続行でき、外部キー制約は更新後の状態に対して確認されます。
後者は、更新後の状態が制約を満たしている場合でも、更新が実行されないようにします。
これにより、被参照行が、異なってはいるものの比較結果が等しい値 （たとえば、大文字小文字を区別しない照合順序で文字列型が使用されている場合における、大文字と小文字が異なる文字列）に更新されることを防ぎます。
   


通常、参照行はその参照列のいずれかがnullの場合は外部キー制約を満たす必要がありません。
もしMATCH FULLが外部キー宣言に追加された場合、その参照列の全てがnullの場合にのみ参照行は制約を満たすことから逃れることができます（つまりnullと非nullの組み合わせはMATCH FULL制約に違反することが保証されます）。
もし参照行が外部キー制約を満たさない可能性を排除したい場合は、参照列をNOT NULLとして宣言してください。
   


外部キーは、主キー、または一意性制約を構成する列、または部分インデックスではない一意性インデックスを構成する列全体を参照しなければなりません。
これは、被参照列は常にインデックスがあり、参照する行に一致するかどうかを効率的に検索できることを意味します。
被参照テーブルからの行のDELETEや被参照行のUPDATEは、古い値と一致する行に対して参照テーブルのスキャンが必要となるので、参照行にもインデックスを付けるのは大抵は良い考えです。
これは常に必要という訳ではなく、また、インデックスの方法には多くの選択肢がありますので、外部キー制約の宣言では参照列のインデックスが自動的に作られるということはありません。
   


データの更新および削除について詳しくは、6章データ操作を参照してください。
また、CREATE TABLE(7)のリファレンス文書にある外部キー制約構文の説明も参照してください。
   

排他制約





排他制約によって、2つの行に関して指定された列もしくは式を指定された演算子を利用して比較した場合に、少なくとも演算子の比較の1つが偽もしくはnullを返すことを確実にします。
構文は以下のとおりです。


CREATE TABLE circles (
    c circle,
    EXCLUDE USING gist (c WITH &&)
);


   


詳細はCREATE
TABLE ... CONSTRAINT ... EXCLUDEを参照してください。
   


排他制約を追加すると、制約宣言で指定された種類のインデックスが自動的に作られます。
   


システム列





全てのテーブルには、システムによって暗黙的に定義されたシステム列がいくつかあります。
そのため、システム列の名前はユーザ定義列の名前として使うことはできません。
（これらの制約は名前がキーワードであるかどうかとは関係ありません。
つまり、名前を引用符で囲んでもこの制約を回避することはできません。）
システム列については、あまり意識する必要はありません。
これらが存在することを知っていれば十分です。
  
	tableoid
	

この行を含むテーブルのOIDです。
この列は特に、パーティション化テーブルからの問い合わせで（「テーブルのパーティショニング」を参照してください）、あるいは継承階層からの問い合わせでは便利です（「継承」を参照してください）。
この列がないと、どのテーブルからその行が来たのかわかりにくいからです。
tableoidをpg_classのoid列に結合することでテーブル名を得ることができます。
     

	xmin
	

この行バージョンの挿入トランザクションの識別情報（トランザクションID）です。
（行バージョンとは、行の個別の状態です。
行が更新される度に、同一の論理的な行に対する新しい行バージョンが作成されます。）
     

	cmin
	

挿入トランザクション内の（0から始まる）コマンド識別子です。
     

	xmax
	

削除トランザクションの識別情報（トランザクションID）です。
削除されていない行バージョンではゼロです。
可視の行バージョンでこの列が非ゼロの場合があります。
これは通常、削除トランザクションがまだコミットされていないこと、または、削除の試行がロールバックされたことを意味しています。
     

	cmax
	

削除トランザクション内のコマンド識別子、もしくはゼロです。
     

	ctid
	

テーブル内における、行バージョンの物理的位置を表します。
ctidは行バージョンを素早く見つけるために使うことができますが、行のctidは、行がUPDATEされる、あるいはVACUUM FULLで行が移動されると変わります。
したがって、ctidは長期の行識別子としては使えません。
論理行を識別するためには、主キーを使うべきです。
     





トランザクション識別子も32ビット量です。
長期間使用するデータベースでは、トランザクションIDが一周してしまう可能性があります。
これは、適切な保守作業を行うことで、致命的な問題にはなりません。
詳細は24章定常的なデータベース保守作業を参照してください。
しかし、長期（10億トランザクション以上）にわたってトランザクションIDの一意性に依存することは賢明ではありません。
   


コマンド識別子もまた、32ビット量です。
このため、単一トランザクション内のコマンド数には232（40億）個までというSQLコマンドのハード制限が発生します。
実際、この制限は問題になりません。
これはSQLコマンド数に対する制限であり、処理される行数に対する制限ではないことに注意してください。
また、データベースの内容を実際に変更するコマンドのみがコマンド識別子を消費します。
   

テーブルの変更





テーブルの作成後に間違いに気付いたり、あるいはアプリケーションの要件が変わったりした場合には、テーブルをいったん削除して再度作成できます。
しかし、テーブルにデータを入力済みの場合、あるいはそのテーブルが他のデータベースオブジェクト（例えば外部キー制約）によって参照されている場合、これは良い方法ではありません。
そのため、PostgreSQL™ では既存のテーブルに変更を加えるための一連のコマンドが用意されています。テーブル内のデータを変更するという概念ではないことに注意してください。
ここでは、テーブルの定義や構造を変更することに焦点を合わせます。
  


次のことができます。
   
	列の追加

	列の削除

	制約の追加

	制約の削除

	デフォルト値の変更

	列のデータ型の変更

	列名の変更

	テーブル名の変更






これらの操作は全てALTER TABLE(7)コマンドを使用して行うことができ、そのリファレンスページにはここで説明している内容以上の詳細が記載されています。
  
列の追加





列を追加するには、次のようなコマンドを使用します。


ALTER TABLE products ADD COLUMN description text;



新しい列にはデフォルト値が初期値として入ります（DEFAULT句を指定しない場合はNULL値が入ります）。
   
ヒント


定数のデフォルト値を持つ列を追加する場合、ALTER TABLE文の実行時にテーブルの各行を更新する必要はありません。
その代わり、デフォルト値は次にその行にアクセスされた時に返却され、テーブルが書き換えられた時に適用されるため、ALTER TABLEは巨大なテーブルでも非常に高速になります。
    


もしデフォルト値に揮発性（例えば、clock_timestamp()）がある場合、各行はALTER TABLE実行時に計算した値に更新される必要があります。
潜在的に長時間の更新作業を避けるため、特に列を主にデフォルト以外の値でとにかく埋めたい場合、デフォルトのない列を追加しUPDATEを使用して正しい値を挿入することが望ましいかもしれません。
その上で、後述するように期待するデフォルトを追加してください。
    



次の構文を使用すると、列の制約も同時に定義できます。


ALTER TABLE products ADD COLUMN description text CHECK (description <> '');



実際にはCREATE TABLE内の列の記述に使用されている全てのオプションが、ここで使用できます。
ただしデフォルト値は与えられている制約を満足するものでなくてはならないことに注意してください。満足しない場合はADDが失敗します。一方で、新規の列に正しく値を入れた後で制約を追加できます（下記参照）。
   

列の削除





列を削除するには、次のようなコマンドを使用します。


ALTER TABLE products DROP COLUMN description;



列内にある、どんなデータであれ消去します。
またその列に関連するテーブルの制約も消去されます。
しかし、その列が他のテーブルの外部キー制約として参照されている場合は、PostgreSQL™は暗黙のうちに制約を消去したりはしません。
CASCADEを追加することにより列に依存する全てを消去することを許可できます。


ALTER TABLE products DROP COLUMN description CASCADE;



この背後にある一般的な仕組みに関する説明は「依存関係の追跡」を参照してください。
   

制約の追加





制約を追加するには、テーブル制約の構文が使用されます。
例を示します。


ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;


   


通常テーブル制約として記述しない非NULL制約を追加するためには、次の特別な構文を使用します。


ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;



既に非NULL制約が列にある場合、このコマンドは何もしません。
   


制約は即座に検査されますので、制約を追加する前にテーブル内のデータがこれに従っている必要があります。
   

制約の削除





制約を削除するには、その制約名を知る必要があります。
自分で名前を付けた場合は簡単です。
しかし、自分で名前を付けていない場合はシステム生成の名前が割り当てられているので、それを調べなくてはなりません。
それにはpsqlの\d tablenameコマンドを使用すると便利です。
他のインタフェースにもテーブルの詳細を調べる方法があるかもしれません。
制約名がわかったら、次のコマンドで制約を削除できます。


ALTER TABLE products DROP CONSTRAINT some_name;


   


列の削除の場合と同じく、何か他のものが依存している制約を削除する場合にはCASCADEを付ける必要があります。
例えば、外部キー制約は、参照されている列の一意または主キー制約に依存しています。
   


非NULL制約を削除するには、簡略化された構文を使用できます。


ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;



これは、非NULL制約を追加するためのSET NOT NULL構文を反映しています。
このコマンドは、列に非NULL制約がない場合は何もしません。
（列には非NULL制約を1つしか指定できないことを思い出してください。
このコマンドがどの制約に作用するのかが曖昧になることは決してありません。）
   

列のデフォルト値の変更





列に新しいデフォルトを設定するには、以下のようなコマンドを使用します。


ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;



これはテーブル内の既存の行には何も影響を与えないことに注意してください。これは将来のINSERTコマンドのために単純にデフォルトを変えるだけです。
   


デフォルト値を削除するには次のようにします。


ALTER TABLE products ALTER COLUMN price DROP DEFAULT;



これは、デフォルトをNULLに設定することと同等です。
そのため、定義されていないデフォルト値を削除してもエラーにはなりません。
なぜなら NULL値が暗黙的にデフォルトとなっているからです。
   

列のデータ型の変更





列を異なるデータ型に変換するには以下のようなコマンドを使用してください。


ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);



これは、その列の既存の項目が新しい型に暗黙的キャストにより変換できる場合にのみ成功します。
より複雑な変換が必要な場合、古い値から新しい値をどのように計算するかを指定するUSING句を付けることができます。
   


PostgreSQL™は、（もしあれば）列のデフォルト値を新しい型に、同時に、その列に関連する全ての制約も新しい型に変換しようとします。
しかし、こうした変換は失敗するかもしれませんし、予想を超えた結果になってしまうかもしれません。
型を変更する前にその列に関する制約を全て削除し、後で適切に変更した制約を付け直すことが最善な場合がよくあります。
   

列名の変更





列名を変更するには、次のようにします。


ALTER TABLE products RENAME COLUMN product_no TO product_number;


   

テーブル名の変更





テーブル名を変更するには、次のようにします。


ALTER TABLE products RENAME TO items;


   


権限





オブジェクトが作成されると、所有者が割り当てられます。通常、所有者は作成する文を実行したロールです。ほとんどの種類のオブジェクトについて、初期状態では所有者(またはスーパーユーザ)だけがそのオブジェクトを使用できます。
他のユーザがこのオブジェクトを使用するには、権限が付与されていなければなりません。
  


権限にはいくつかの種類があります。
すなわちSELECT、 INSERT、UPDATE、DELETE、TRUNCATE、REFERENCES、TRIGGER、CREATE、CONNECT、TEMPORARY、 EXECUTE、USAGE、SET、ALTER SYSTEM、MAINTAINです。
特定のオブジェクトに適用可能な権限は、オブジェクトの型（テーブル、関数など）により変わります。
これらの権限の詳細な意味を以下に示します。
以降の節および章でもこれらの権限の使用方法について説明があります。
  


オブジェクトの変更や削除の権限は所有者に固有のもので、それ自体を許可したり取り消したりはできません。
（しかし、すべての権限同様、その権限を所有者のロールのメンバが継承することはできます。「ロールのメンバ資格」をご覧ください。）
  


たとえば次のように、オブジェクトに対する適切な種類のALTERコマンドにより、あるオブジェクトに新しい所有者を割り当てることができます。


ALTER TABLE table_name OWNER TO new_owner;



スーパーユーザはいつでも所有者を変更できます。
通常のロールは、オブジェクトの現在の所有者である（または所有者の権限を継承している）と同時に、新しい所有者のロールにSET ROLEできる場合に限り、所有者を変更できます。
  


権限を割り当てるには、GRANT(7)コマンドを使用します。
例えば、joeという既存のロールとaccountsという既存のテーブルがある場合、このテーブルを更新する権限を付与するには以下のようにします。


GRANT UPDATE ON accounts TO joe;



特定の権限名を指定する代わりにALLを指定すると、その種類のオブジェクトに関連する全ての権限が付与されます。
  


システム内の全てのロールに権限を付与するには、特別な「ロール」名であるPUBLICを使用できます。
また、「グループ」ロールを使用すれば、データベース内に多くのユーザが存在する場合に権限の管理が簡単になります。
詳細は21章データベースロールを参照してください。
  


以前与えられた権限を取り消す(revoke)には、それに相応しい名前のREVOKE(7)コマンドを使用します。


REVOKE ALL ON accounts FROM PUBLIC;


  


普通はオブジェクトの所有者（またはスーパーユーザ）だけが、オブジェクトにおける権限の付与や剥奪ができます。
しかし「with grant option」を付けることで、権限を与えられたユーザが、所有者と同様に他のユーザに権限を付与することが可能になります。
もし後になってグラントオプションが剥奪されると、剥奪されたユーザから（直接もしくは権限付与の連鎖により）権限を与えられていたユーザはすべて、その権限が剥奪されます。
詳細は、GRANT(7)とREVOKE(7)のリファレンスページを参照してください。
  


オブジェクトの所有者は、所有する通常の権限を削除することを選択できます。たとえば、他のものと同様、自身のためにテーブルを読み取り専用にできます。
しかし、所有者は常にすべての付与オプションを持つものとして扱われます。ですから、いつでも自身の権限を再び付与できます。
  


可能な権限は以下です。

   
	SELECT
	

テーブル、ビュー、マテリアライズドビュー、あるいはそれ以外のテーブルのように見えるオブジェクトに対してSELECTをある列、あるいは指定した列（複数可）に許可します。
また、COPY TOの利用を許可します。
この権限はUPDATE、DELETEまたはMERGEにおいて既存の列を参照する場合にも必要になります。
シーケンスにおいてこの権限はcurrval関数の使用を許可します。
ラージオブジェクトにおいてこの権限はオブジェクトの読み出しを許可します。
      

	INSERT
	

テーブル、ビューなどに新しい行をINSERTすることを許可します。
特定の列だけをINSERTコマンドで指定したい場合に、それらの列に許可することができます。
（したがって他の列にはデフォルトが設定されます）。
COPY FROMを利用することもできます。
      

	UPDATE
	

テーブル、ビューなどの列をUPDATEすることを許可します。
（実用的には、単純ではないUPDATEコマンドにはSELECT権限も必要になります。
どの行を更新するかを決定したり、列に対して新しい値を計算するためにテーブルの列を参照しなければならないからです。）
SELECT ... FOR UPDATEとSELECT ... FOR SHAREはSELECT権限に加えてさらにこの権限が必要になります。
シーケンスでこの権限はnextvalとsetval関数の利用を許可します。
ラージオブジェクトでこの権限はオブジェクトへの書き込みあるいは切り詰めを行うことを許可します。
      

	DELETE
	

テーブル、ビューなどの列をDELETEすることを許可します。
（実用的には、簡単ではないDELETEコマンドにはSELECT権限も必要になります。
どの行を削除するかを決定するためにテーブルの列を参照しなければならないからです。）
      

	TRUNCATE
	

テーブルにTRUNCATEを許可します。
      

	REFERENCES
	

テーブルあるいはテーブルの特定の列を参照する外部キー制約を作ることを許可します。
      

	TRIGGER
	

テーブルあるいはビューにトリガを作ることを許可します。
      

	CREATE
	

データベースに対して、データベース内に新しいスキーマとパブリケーションを作ること、信頼できる拡張をデータベース内に作成することを許可します。
      


スキーマに対して、スキーマ内に新しいオブジェクトを作ることを許可します。
既存のオブジェクトの名前を変えるには、オブジェクトを所有するとともにそのオブジェクトを含むスキーマに対してこの権限を持っていなければなりません。
      


テーブル空間に対しては、そのテーブル空間内にテーブル、インデックス、一時ファイルを作ることを許可し、そのテーブル空間をデフォルトのテーブル空間として持つデータベースを作ることを許可します。
      


この権限を剥奪しても既存のオブジェクトの存在、あるいはその配置を変更しないことに注意してください。
      

	CONNECT
	

権限を与えられた者がデータベースに接続することを許可します。
（pg_hba.confが課す制限の検査に加えて）この権限は接続の開始時に検査されます。
      

	TEMPORARY
	

データベース使用中に一時テーブルを作成することを許可します。
      

	EXECUTE
	

関数上に実装された演算子を含めて関数あるいはプロシージャの呼び出しを許可します。
これは関数とプロシージャに適用される唯一のタイプの権限です。
      

	USAGE
	

手続き言語に対して、言語内で関数を作るために言語を使用することを許可します。
これは手続き言語に適用される唯一のタイプの権限です。
      


スキーマに対しては、（オブジェクト自身の権限要件が満たされているものと仮定した上で）スキーマ内に含まれるオブジェクトへのアクセスを許可します。
本質的に、これは権限を授与されたものがスキーマ内のオブジェクトを「検査」することを許可します。
この許可がなくても依然としてオブジェクト名を見ることが可能です。たとえば、システムカタログを問い合わせることによってです。
また、この許可を剥奪した後でも、既存のセッションはすでにこの検査を実施していると主張するかも知れません。
ですからこれはオブジェクトへのアクセスを妨げる完全にセキュアな方法ではありません。
      


シーケンスに対しては、currvalとnextval関数の利用を許可します。
      


型とドメインに対しては、テーブル、関数、および他のスキーマオブジェクトを生成する際に型とドメインを使用することを許可します。
（たとえば問い合わせ中に表れる型の値のような、すべての型の「利用」をこの権限はコントロールするわけではないことに注意してください。
その型に依存するオブジェクトが作られるのを防ぐだけです。
この権限の主な目的は、どのユーザがある型への依存関係を作ることができるかを制御し、後で所有者がこの型を変更するのを防ぐためです。）
      


外部データラッパーに対しては、その外部データラッパーを使って新しいサーバを作ることを許可します。
      


外部サーバに対しては、そのサーバを使って外部テーブルを作ることを許可します。
権限を授与されたものは、そのサーバに結びついたユーザマッピングを作成、変更、削除できます。
      

	SET
	

サーバ構成パラメータを現在のセッション内で新しい値に設定できるようにします。
（この特権はどのパラメータにも付与できますが、通常はスーパーユーザ特権を必要とするパラメータ以外は意味がありません。）
      

	ALTER SYSTEM
	

ALTER SYSTEM(7)コマンドを使用して、サーバ設定パラメータを新しい値に設定できるようにします。
      

	MAINTAIN
	

リレーションに対するVACUUM、ANALYZE、CLUSTER、REFRESH MATERIALIZED VIEW、REINDEX、LOCK TABLE、およびデータベースオブジェクトの統計情報操作機能表9.105「データベースオブジェクト統計情報操作関数」を許可します。
     






他のコマンドで必要となる権限はそれぞれのコマンドのリファレンスページに列挙されています。
  


PostgreSQLはあるタイプのオブジェクトが作成された時に、そのオブジェクトに対する権限をデフォルトでPUBLICに付与します。
テーブル、テーブルの列、シーケンス、外部データラッパー、外部サーバ、ラージオブジェクト、スキーマ、テーブル空間、構成パラメータに対しては、デフォルトではPUBLICに権限を付与しません。
他のタイプのオブジェクトに対しては、PUBLICにデフォルトで付与される権限は次のものです。
CONNECT、TEMPORARY （データベース内で一時テーブルを作成する権限）、関数とプロシージャに対するEXECUTE権限、言語とデータ型（ドメインを含む）に対するUSAGE権限。
もちろんオブジェクトの所有者は、デフォルト、あるいは明示的に与えられた権限をREVOKEできます。
（セキュリティを最大限に高めるためには、REVOKEをオブジェクトを作成したのと同じトランザクション内で発行してください。そうすれば他のユーザがそのオブジェクトを使う隙が存在しません。）
また、デフォルトの権限設定はALTER DEFAULT PRIVILEGES(7)を使って上書きできます。
  


表5.1「ACL短縮形」に、ACL値において権限タイプに使われる1文字の短縮形を示します。
以下に示すpsql(1)コマンドの出力、あるいはシステムカタログのACL列を参照することでこれらの文字を見ることができます。
  
表5.1 ACL短縮形
	権限	短縮形	適用可能なオブジェクトタイプ
	SELECT	r (「read」)	
       LARGE OBJECT,
       SEQUENCE,

       TABLE（およびテーブルのようなオブジェクト）、テーブルの列
      
	INSERT	a (「append」)	TABLE、テーブルの列
	UPDATE	w (「write」)	
       LARGE OBJECT,
       SEQUENCE,
       TABLE,

       テーブルの列
      
	DELETE	d	TABLE
	TRUNCATE	D	TABLE
	REFERENCES	x	TABLE、テーブルの列
	TRIGGER	t	TABLE
	CREATE	C	
       DATABASE,
       SCHEMA,
       TABLESPACE
      
	CONNECT	c	DATABASE
	TEMPORARY	T	DATABASE
	EXECUTE	X	FUNCTION, PROCEDURE
	USAGE	U	
       DOMAIN,
       FOREIGN DATA WRAPPER,
       FOREIGN SERVER,
       LANGUAGE,
       SCHEMA,
       SEQUENCE,
       TYPE
      
	SET	s	PARAMETER
	ALTER SYSTEM	A	PARAMETER
	MAINTAIN	m	TABLE





表5.2「アクセス権限のまとめ」は、前述の短縮形を用いてそれぞれのタイプのSQLオブジェクトで利用可能な権限をまとめています。
また、それぞれのオブジェクトタイプの権限設定を調べる際に利用できるpsqlコマンドを示します。
  
表5.2 アクセス権限のまとめ
	オブジェクトタイプ	すべての権限	デフォルトPUBLIC権限	psqlコマンド
	DATABASE	CTc	Tc	\l
	DOMAIN	U	U	\dD+
	FUNCTION or PROCEDURE	X	X	\df+
	FOREIGN DATA WRAPPER	U	none	\dew+
	FOREIGN SERVER	U	none	\des+
	LANGUAGE	U	U	\dL+
	LARGE OBJECT	rw	none	\dl+
	PARAMETER	sA	none	\dconfig+
	SCHEMA	UC	none	\dn+
	SEQUENCE	rwU	none	\dp
	TABLE（およびテーブルのようなオブジェクト）	arwdDxtm	none	\dp
	テーブルの列	arwx	none	\dp
	TABLESPACE	C	none	\db+
	TYPE	U	U	\dT+




   

あるオブジェクトに与えられている権限はaclitemエントリのリストとして表示されます。
それぞれのエントリは次の形式です。


grantee=privilege-abbreviation[*].../grantor



各aclitemは、特定の許可者によって付与された1人の許可者のすべての権限をリストします。
特定の権限は表5.1「ACL短縮形」の1文字の短縮形で表され、権限が許可オプションで付与された場合は*が追加されます。
たとえば、calvin=r*w/hobbesは、ロールcalvinが許可オプション（*）ありのSELECT（r）と許可オプションなしのUPDATE (w)を持ち、それらがロールhobbesに与えられていることを示します。
別の権限付与者によって権限が与えられている同じオブジェクトに対してcalvinも権限を持っている場合は、別のaclitemエントリとして表示されます。
aclitemの権限授与者フィールドが空であれば、それはPUBLICを表します。
  


ユーザmiriamがテーブルmytableを作成し、以下を行う例を考えます。


GRANT SELECT ON mytable TO PUBLIC;
GRANT SELECT, UPDATE, INSERT ON mytable TO admin;
GRANT SELECT (col1), UPDATE (col1) ON mytable TO miriam_rw;



すると、psqlの\dpコマンドは次のように表示するはずです。


=> \dp mytable
                                  Access privileges
 Schema |  Name   | Type  |   Access privileges    |   Column privileges   | Policies
--------+---------+-------+------------------------+-----------------------+----------
 public | mytable | table | miriam=arwdDxtm/miriam+| col1:                +|
        |         |       | =r/miriam             +|   miriam_rw=rw/miriam |
        |         |       | admin=arw/miriam       |                       |
(1 row)


  


あるオブジェクトに対して「Access privileges」列が空なら、そのオブジェクトがデフォルトの権限を持つことを意味します。
（つまり、関連するシステムカタログの権限エントリがNULLだということです。）
デフォルト権限は常に所有者の全権限を含み、さらに上で説明を示したようにオブジェクトタイプ依存のPUBLICに対する権限を持つことができます。
オブジェクトに対する初回のGRANTあるいはREVOKEにより、デフォルト権限（たとえばmiriam=arwdDxt/miriam）が設定され、次に特定の要求に従って変更されます。
同様に、「Column privileges」に示されるエントリは非デフォルトの権限を持つ列のためだけのものです。
（注意：「デフォルト権限」は常にオブジェクトのタイプの組み込みのデフォルト権限を意味します。
ALTER DEFAULT PRIVILEGESコマンドによって権限が影響を受けるオブジェクトは常にALTERの影響を含む明示的な権限エントリを伴って示されます。）
  


所有者の暗黙的な許可オプションはアクセス権限表示で印を付けられないことに注意してください。
*は許可オプションが明示的に誰かに許可されたときにのみ現れます。
  


「Access privileges」列は、オブジェクトの権限エントリがnullではないが空の場合に(none)と表示されます。
これは、オブジェクトの所有者であるのに特権がまったく付与されていないということを意味します—珍しいシチュエーションですが。
（所有者はこの場合、暗黙の許可オプションを持っているため、自身の特権を再付与することができますが、今のところ何も権限を持っていません。）
  

行セキュリティポリシー





GRANT(7)によって利用できる標準SQLの権限システムに加えて、通常の問い合わせでどの行が戻され、データ更新のコマンドでどの行を挿入、更新、削除できるかをユーザ単位で制限する行セキュリティポリシーをテーブルに定義できます。
この機能は行単位セキュリティとしても知られています。
デフォルトではテーブルには何もポリシーはなく、SQLの権限システムによってテーブルのアクセス権限があるユーザは、テーブル内のすべての行について同じように、問い合わせや更新をできます。
  


テーブルの行セキュリティが有効の場合（ALTER TABLE ... ENABLE ROW LEVEL SECURITYを使います）、行の検索や行の更新のための通常のテーブルアクセスはすべて、行セキュリティポリシーによって許可される必要があります。
（ただし、テーブルの所有者は典型的には行セキュリティポリシーの対象とはなりません。）
テーブルにポリシーが存在しない場合は、デフォルト拒否のポリシーが使われて、どの行も見ることも更新することもできなくなります。
TRUNCATEやREFERENCESなど、テーブル全体に対する操作は行セキュリティの対象とはなりません。
  


行セキュリティポリシーは特定のコマンド、特定のロール、あるいはその両方に対して定義できます。
ポリシーはALLつまりすべてのコマンドに対して適用、あるいはSELECT、INSERT、UPDATE、DELETEに適用することを指定できます。
1つのポリシーを複数のロールに割り当てることができ、通常のロールのメンバ資格と継承の規則が当てはまります。
  


ポリシーでどの行が可視である、あるいは更新可能であるかを指定するために、論理値を返す式が必要です。
ユーザの問い合わせにあるどの条件や関数よりも前に、この式が各行について評価されます。
（この規則の例外は、情報リークがないことが保証されるleakproof関数だけです。
行セキュリティの確認の前にこのような関数を適用することをオプティマイザが選択することがあります。）
式がtrueを返さない行は処理対象になりません。
可視である行と変更可能な行について独立した制御ができるように、別々の式を指定することも可能です。
ポリシーの式は問い合わせの一部分として、問い合わせをしているユーザの権限で実行されます。
ただし、呼び出しユーザが利用できないデータにアクセスするために、セキュリティ定義関数を使うことができます。
  


スーパーユーザ、およびBYPASSRLS属性のあるロールは、テーブルへのアクセス時に、常に行セキュリティシステムを無視します。
テーブルの所有者も通常は行セキュリティを無視しますが、ALTER TABLE ... FORCE ROW LEVEL SECURITYにより、テーブルの所有者も行セキュリティの対象となることができます。
  


行セキュリティの有効化、無効化、およびポリシーのテーブルへの追加は、常に、テーブルの所有者のみの権限です。
  


ポリシーはCREATE POLICY(7)コマンドで作成され、ALTER POLICY(7)コマンドで変更され、DROP POLICY(7)コマンドで削除されます。
テーブルの行セキュリティを有効に、あるいは無効にするにはALTER TABLE(7)コマンドを使います。
  


各ポリシーには名前があり、1つのテーブルに複数のポリシーを定義できます。
ポリシーはテーブルごとに定義されるので、1つのテーブルの各ポリシーは異なる名前でなければなりません。
異なるテーブルであれば、同じ名前のポリシーが存在しても構いません。
  


ある問い合わせに複数のポリシーが適用される場合、（デフォルトの許容（permissive）ポリシーについては）ORまたは（制限（restrictive）ポリシーについては）ANDを使って結合されます。
このORの動作は、あるロールが、それが属するすべてのロールの権限を合わせ持つという規則と類似しています。
許容ポリシーと制限ポリシーについては以下でさらに説明します。
  


簡単な例として、managersロールのメンバだけが行にアクセスでき、かつ自分のアカウントの行のみアクセスできるポリシーをaccountリレーション上に作成する方法を以下に示します。
  

CREATE TABLE accounts (manager text, company text, contact_email text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
    USING (manager = current_user);



上記のポリシーは、上記のUSING句と同じWITH CHECK句を暗黙的に提供するので、制約は、コマンドが選択した行にも適用されますし（ですから、マネージャは、違うマネージャに属する既存の行に対してSELECT、UPDATE、DELETEを発行することはできません）、コマンドが変更した行にも適用されます（ですから、違うマネージャに属する行を、INSERTあるいはUPDATEで作ることはできません）。
  


ロールが指定されなかった場合、あるいは特別なユーザ名PUBLICが指定された場合、ポリシーはシステム上の全ユーザに適用されます。
すべてのユーザがusersテーブルの自分自身の行にだけアクセスできるようにするためには、次の簡単なポリシーが使用できます。
  

CREATE POLICY user_policy ON users
    USING (user_name = current_user);



これは前の例と同じように動きます。
  


テーブルに追加される行に対し、可視である行とは異なるポリシーを使用する場合は、複数のポリシーを組み合わせることができます。
組み合わせたポリシーにより、すべてのユーザがusersテーブルのすべての行を見ることができますが、自分自身の行だけしか更新できません。
  

CREATE POLICY user_sel_policy ON users
    FOR SELECT
    USING (true);
CREATE POLICY user_mod_policy ON users
    USING (user_name = current_user);



SELECTコマンドでは、ORを使って2つのポリシーが組み合わされ、すべての行を検索できる効果をもたらします。
他のコマンドに対しては、二番目のポリシーだけが適用され、以前と効果は同じです。
  


行セキュリティはALTER TABLEで無効にすることもできます。
行セキュリティを無効にしても、テーブルに定義されているポリシーは削除されず、単に無視されるだけになります。
このときは標準SQLの権限システムに従って、すべての行が可視で更新可能になります。
  


以下のより大きな例で、この機能が実運用の環境でいかにして使えるかを示します。
passwdテーブルはUnixのパスワードファイルと同等のものです。
  


-- passwdファイルに基づく簡単な例
CREATE TABLE passwd (
  user_name             text UNIQUE NOT NULL,
  pwhash                text,
  uid                   int  PRIMARY KEY,
  gid                   int  NOT NULL,
  real_name             text NOT NULL,
  home_phone            text,
  extra_info            text,
  home_dir              text NOT NULL,
  shell                 text NOT NULL
);


CREATE ROLE admin;  -- 管理者
CREATE ROLE bob;    -- 一般ユーザ
CREATE ROLE alice;  -- 一般ユーザ


-- テーブルに値を入れる
INSERT INTO passwd VALUES
  ('admin','xxx',0,0,'Admin','111-222-3333',null,'/root','/bin/dash');
INSERT INTO passwd VALUES
  ('bob','xxx',1,1,'Bob','123-456-7890',null,'/home/bob','/bin/zsh');
INSERT INTO passwd VALUES
  ('alice','xxx',2,1,'Alice','098-765-4321',null,'/home/alice','/bin/zsh');


-- テーブルの行単位セキュリティを有効にする
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;


-- ポリシーを作成する
-- 管理者はすべての行を見ることができ、どんな行でも追加できる
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);

-- 一般ユーザはすべての行を見ることができる
CREATE POLICY all_view ON passwd FOR SELECT USING (true);

-- 一般ユーザは自身のレコードを更新できるが、
-- 変更できるのは使用するシェルだけに制限する
CREATE POLICY user_mod ON passwd FOR UPDATE
  USING (current_user = user_name)
  WITH CHECK (
    current_user = user_name AND
    shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh','/bin/tcsh')
  );


-- adminにはすべての通常の権限を付与する
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;

-- 一般ユーザは公開列にSELECTでアクセスできるだけとする
GRANT SELECT
  (user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
  ON passwd TO public;

-- 特定の列についてはユーザによる更新を許可する
GRANT UPDATE
  (pwhash, real_name, home_phone, extra_info, shell)
  ON passwd TO public;



どんなセキュリティ設定でも同じですが、システムが期待通りに動作していることをテストして確認することが重要です。
上の例を利用して、以下ではパーミッションのシステムが適切に動作していることを示します。
  


-- adminはすべての行と列を見ることができる
postgres=> set role admin;
SET
postgres=> table passwd;
 user_name | pwhash | uid | gid | real_name |  home_phone  | extra_info | home_dir    |   shell
-----------+--------+-----+-----+-----------+--------------+------------+-------------+-----------
 admin     | xxx    |   0 |   0 | Admin     | 111-222-3333 |            | /root       | /bin/dash
 bob       | xxx    |   1 |   1 | Bob       | 123-456-7890 |            | /home/bob   | /bin/zsh
 alice     | xxx    |   2 |   1 | Alice     | 098-765-4321 |            | /home/alice | /bin/zsh
(3 rows)


-- Aliceに何ができるか試してみる
postgres=> set role alice;
SET
postgres=> table passwd;
ERROR:  permission denied for table passwd
postgres=> select user_name,real_name,home_phone,extra_info,home_dir,shell from passwd;
 user_name | real_name |  home_phone  | extra_info | home_dir    |   shell
-----------+-----------+--------------+------------+-------------+-----------
 admin     | Admin     | 111-222-3333 |            | /root       | /bin/dash
 bob       | Bob       | 123-456-7890 |            | /home/bob   | /bin/zsh
 alice     | Alice     | 098-765-4321 |            | /home/alice | /bin/zsh
(3 rows)

postgres=> update passwd set user_name = 'joe';
ERROR:  permission denied for table passwd

-- Aliceは自分のreal_nameを変更できるが、他は変更できない
postgres=> update passwd set real_name = 'Alice Doe';
UPDATE 1
postgres=> update passwd set real_name = 'John Doe' where user_name = 'admin';
UPDATE 0
postgres=> update passwd set shell = '/bin/xx';
ERROR:  new row violates WITH CHECK OPTION for "passwd"
postgres=> delete from passwd;
ERROR:  permission denied for table passwd
postgres=> insert into passwd (user_name) values ('xxx');
ERROR:  permission denied for table passwd

-- Aliceは自分のパスワードを変更できる。
-- RLSにより他の行は更新されないが、何も報告されない。
postgres=> update passwd set pwhash = 'abc';
UPDATE 1



ここまでで作成したポリシーはすべて許容ポリシーで、つまり複数のポリシーが適用される場合、それらは論理演算子「OR」を使って結合されるものでした。
意図した場合にのみ行へのアクセスが許されるよう許容ポリシーを構築することは可能ですが、許容ポリシーを制限ポリシーと組み合わせることで、より単純にすることが可能です（制限ポリシーはレコードが満たさなければならないポリシーで、論理演算子「AND」を使って結合されます）。
上記の例に重ねて、管理者がローカルのUnixソケットを通して接続してpasswdテーブルのレコードにアクセスすることを要求する制限ポリシーを追加してみます。
  

CREATE POLICY admin_local_only ON passwd AS RESTRICTIVE TO admin
    USING (pg_catalog.inet_client_addr() IS NULL);



こうすると以下のように、制限ポリシーにより、ネットワーク経由で接続している管理者にはレコードが見えないことがわかります。
  

=> SELECT current_user;
 current_user
--------------
 admin
(1 row)

=> select inet_client_addr();
 inet_client_addr
------------------
 127.0.0.1
(1 row)

=> TABLE passwd;
 user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir | shell
-----------+--------+-----+-----+-----------+------------+------------+----------+-------
(0 rows)

=> UPDATE passwd set pwhash = NULL;
UPDATE 0



一意性制約、主キー制約、外部キー制約などの参照整合性確認は、データの整合性を維持するため、常に行セキュリティを無視します。
スキーマと行単位セキュリティの開発において、このような参照整合性確認により「カバートチャネル(covert channel)」の情報漏洩が起こらないようにするため、注意が必要です。
  


状況によっては、行セキュリティが適用されないことを確実にするのが重要になります。
例えばバックアップを取るとき、行セキュリティのために、何のエラーや警告もなしに一部の行がバックアップされないとすると、破滅的です。
このような状況では、設定パラメータrow_securityをoffにすることができます。
これ自体は行セキュリティを無視するわけではなく、問い合わせの結果がポリシーによって影響を受ける場合にエラーを発生させます。
その後でエラーの原因を調査して解決することができます。
  


上の例では、ポリシーの式はアクセス対象または更新対象の行の現在の値のみを考慮していました。
これは最も単純で、しかも効率の良い場合です。
可能であれば、行セキュリティの適用はこのように動作するよう設計するのが最善です。
ポリシーの決定をするために他の行あるいは他のテーブルを参照する必要がある場合は、ポリシーの式で副SELECTを使う、あるいはSELECTを含む関数を使うことができます。
ただし、そのようなアクセスは注意深く設計しなければ、情報漏洩を起こすような競合条件を作り出す場合があることに注意してください。
例えば、以下のテーブル設計を考えます。
  


-- 権限グループの定義
CREATE TABLE groups (group_id int PRIMARY KEY,
                     group_name text NOT NULL);

INSERT INTO groups VALUES
  (1, 'low'),
  (2, 'medium'),
  (5, 'high');


GRANT ALL ON groups TO alice;  -- aliceが管理者
GRANT SELECT ON groups TO public;


-- ユーザの権限レベルの定義
CREATE TABLE users (user_name text PRIMARY KEY,
                    group_id int NOT NULL REFERENCES groups);

INSERT INTO users VALUES
  ('alice', 5),
  ('bob', 2),
  ('mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;


-- 保護される情報を保持するテーブル
CREATE TABLE information (info text,
                          group_id int NOT NULL REFERENCES groups);

INSERT INTO information VALUES
  ('barely secret', 1),
  ('slightly secret', 2),
  ('very secret', 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;


-- セキュリティのgroup_idが行のgroup_idより大きいか等しいユーザは
-- その行を見ること、更新することが可能
CREATE POLICY fp_s ON information FOR SELECT
  USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE
  USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));


-- informationテーブルを保護するのにRLSのみに依存する
GRANT ALL ON information TO public;



ここでaliceが「slightly secret」の情報を更新したいが、この行の新しい内容に関してmalloryは信頼すべきでないと判断しました。
そこで、彼女は次のようにします。
  

BEGIN;
UPDATE users SET group_id = 1 WHERE user_name = 'mallory';
UPDATE information SET info = 'secret from mallory' WHERE group_id = 2;
COMMIT;



これは安全なように見えます。
malloryが「secret from mallory」の文字列を見ることができる隙はありません。
しかし、ここには競合条件があります。
例えば、malloryが同時に以下を実行していたとしましょう。


SELECT * FROM information WHERE group_id = 2 FOR UPDATE;



ここで彼女のトランザクションがREAD COMMITTEDモードなら、彼女は「secret from mallory」を見ることが可能です。
それは彼女のトランザクションが、aliceのトランザクションの直後にinformationの行にアクセスした場合に発生します。
それはaliceのトランザクションがコミットされるのを待ってブロックされ、次にFOR UPDATE句があるため、更新後の行の内容をフェッチします。
しかし、usersからの暗示的なSELECTでは更新後の行をフェッチしません。
なぜなら、その副SELECTにはFOR UPDATEがないため、usersの行は問い合わせの開始時に取得したスナップショットから読まれるからです。
そのため、ポリシーの式はmalloryの権限レベルの古い値について検査し、更新後の行を見ることを許してしまいます。
  


この問題を回避する方法はいくつかあります。
一つの簡単な答えは行セキュリティポリシーの副SELECTでSELECT ... FOR SHAREを使うことです。
しかし、これは影響を受けるユーザに対し、参照先テーブル（この場合はusers）のUPDATE権限を付与する必要があり、望ましくないかもしれません。
（しかし、もう一つの行セキュリティポリシーを適用して、彼らが実際にその権限を行使することを防ぐことはできます。
また、副SELECTをセキュリティ定義関数内に埋め込むことも可能です。）
また、参照先テーブルに行共有ロックが同時に大量に発生するとパフォーマンス問題が起きるかもしれません。
特にそのテーブルの更新が多いときは問題になるでしょう。
別の解決策で、参照先テーブルの更新が少ない場合に現実的なのは、参照先テーブルの更新時にACCESS EXCLUSIVEロックを取得するものです。
そうすれば、同時実行のトランザクションが行の古い値を調べることはできません。
あるいは、参照先のテーブルの更新をコミットした後、単にすべての同時実行トランザクションが終わるのを待ってから、新しいセキュリティ状況に依存する変更をする、ということもできます。
  


さらなる詳細はCREATE POLICY(7)とALTER TABLE(7)を参照してください。
  

スキーマ





PostgreSQL™データベースクラスタには、1つ以上の名前付きデータベースが含まれます。
ロールおよびいくつかの他のタイプのオブジェクトはクラスタ全体で共有されます。
サーバに接続しているクライアント接続は、単一のデータベース、つまり接続要求で指定したデータベース内のデータにしかアクセスできません。
  
注記


クラスタのユーザは、クラスタ内の全てのデータベースへのアクセス権限を持っているとは限りません。
ロール名を共有するということは、例えばjoeという同じロール名を持つ異なるユーザが同じクラスタ内の2つのデータベースに存在することはできないということです。
しかし、joeが一部のデータベースにのみアクセスできるようにシステムを構成することはできます。
   



データベースには、1つ以上の名前付きスキーマが含まれ、スキーマにはテーブルが含まれます。
スキーマには、データ型、関数および演算子などの他の名前付きオブジェクトも含まれます。
1つのスキーマ内では、同じタイプの2つのオブジェクトが同じ名前を持つことはできません。
さらに、テーブル、シーケンス、インデックス、ビュー、マテリアライズドビュー、外部テーブルは同じ名前空間を共有するため、例えば、インデックスとテーブルが同じスキーマにある場合は、異なる名前を付ける必要があります。
同じオブジェクト名を異なるスキーマで使用しても競合は起こりません。
例えば、schema1とmyschemaの両方のスキーマにmytableというテーブルが含まれていても構いません。
スキーマはデータベースとは異なり厳格に分離されていないので、ユーザは、権限さえ持っていれば接続しているデータベース内のどのスキーマのオブジェクトにでもアクセスすることができます。
  


スキーマの使用が好まれる理由はいくつかあります。

   
	

1つのデータベースを多数のユーザが互いに干渉することなく使用できるようにするため。
     

	

管理しやすくなるよう、データベースオブジェクトを論理グループに編成するため。
     

	

サードパーティのアプリケーションを別々のスキーマに入れることにより、他のオブジェクトの名前と競合しないようにするため。
     






スキーマは、入れ子にできないという点を除き、オペレーティングシステムのディレクトリと似ています。
  
スキーマの作成





スキーマを作成するには、CREATE SCHEMA(7)コマンドを使用します。
スキーマに自由に名前を付けます。
例を示します。


CREATE SCHEMA myschema;


   


スキーマ内にオブジェクトを作成したりこれにアクセスするには、スキーマ名とテーブル名をドットで区切った修飾名を書きます。


schema.table



この方法は、後の章で説明するテーブル変更コマンドやデータアクセスコマンドなど、テーブル名を必要とする場合すべてに使用できます。
（話を簡単にするため、テーブルについてのみ述べます。
しかし型や関数といった名前付きのオブジェクトの他の種類について同様の考え方が適用できます。）
   


実際には、より一般的な以下の構文


database.schema.table



を使用することもできますが、今の所この構文は標準SQLに形式的に準拠するためにのみ存在しています。
記述されるデータベース名は、接続しているデータベースと同じ名前でなければなりません。
   


ですから、新しいスキーマにテーブルを作成するには次のようにします。


CREATE TABLE myschema.mytable (
 ...
);


   


空のスキーマ（全てのオブジェクトが削除されたスキーマ）を削除するには次のようにします。


DROP SCHEMA myschema;



スキーマ内の全オブジェクトも含めてスキーマを削除する場合には次のようにします。


DROP SCHEMA myschema CASCADE;



この背後にある一般的な機構についての詳細は「依存関係の追跡」を参照してください。
   


他のユーザが所有するスキーマを作成したい場合があります（これは他のユーザの活動を明確に定義された名前空間内に制限する方法の1つです）。
そのための構文は次の通りです。


CREATE SCHEMA schema_name AUTHORIZATION user_name;



スキーマ名は省略することもでき、その場合スキーマ名はユーザ名と同じになります。
この構文の便利な使用方法は「使用パターン」に記載されています。
   


pg_で始まるスキーマ名は、システム上の使用のため予約されており、ユーザが作成することはできません。
   

publicスキーマ





前節ではスキーマ名を指定せずにテーブルを作成してきました。
デフォルトでは、このようなテーブル（および他のオブジェクト）は自動的に「public」という名前のスキーマに入れられます。
新しいデータベースには全てこのようなスキーマが含まれています。
そのため、以下の2つの構文は同等です。


CREATE TABLE products ( ... );



および


CREATE TABLE public.products ( ... );


   

スキーマ検索パス





修飾名を書くのは手間がかかりますし、どちらにしても、アプリケーションに特定のスキーマ名を書き込まない方が良いことも多いのです。
そのため、テーブルは多くの場合、テーブル名しか持たない非修飾名として参照されます。
システムは、検索するスキーマのリストである検索パスに従って、どのテーブルを指しているのかを判別します。
検索パスで最初に一致したテーブルが、該当テーブルだと解釈されます。
検索パス内に一致するテーブルがないと、データベースの他のスキーマ内に一致するテーブルがある場合でもエラーが報告されます。
   


同じ名前のオブジェクトを異なるスキーマに作成できる結果、正確に同じオブジェクトを参照する問い合わせを書く作業が、いつも複雑になります。
また、ユーザが悪意を持って、あるいは偶然に他のユーザの問い合わせの挙動を変える可能性をもたらします。
PostgreSQL™内部では非修飾名を問い合わせ中で使うことが一般的なので、search_pathにスキーマを追加することは、CREATEの書き込み権限を持っているすべてのユーザを、実質的に信頼することになります。
あなたが通常の問い合わせを実行する際、あなたの検索パス内のスキーマにオブジェクトを作成できる悪意のあるユーザは、支配権を奪い、あたかもあなたが実行したように任意のSQL関数を実行できます。
   


検索パスの最初に列挙されているスキーマは、「現在のスキーマ」と呼ばれます。
現在のスキーマは、検索される最初のスキーマであると同時に、スキーマ名を指定せずにCREATE TABLEコマンドでテーブルを作成した場合に新しいテーブルが作成されるスキーマでもあります。
   


現行の検索パスを示すには次のコマンドを使用します。


SHOW search_path;



デフォルトの設定では次のように返されます。


 search_path
--------------
 "$user", public



最初の要素は、現行ユーザと同じ名前のスキーマを検索することを指定しています。
そのようなスキーマが存在していない場合、この項目は無視されます。
2番目の要素は、先ほど説明したpublicスキーマを参照しています。
   


実存するスキーマのうち、検索パス内で最初に現れるスキーマが、新規オブジェクトが作成されるデフォルトの場所になります。
これが、デフォルトでオブジェクトがpublicスキーマに作成される理由です。
オブジェクトがスキーマ修飾なしで別の文脈で参照される場合（テーブル変更、データ変更、あるいは問い合わせコマンドなど）、一致するオブジェクトが見つかるまで検索パス内で探索されます。
そのためデフォルト構成では、非修飾のアクセスはpublicスキーマしか参照できません。
   


新しいスキーマをパスに追加するには次のようにします。


SET search_path TO myschema,public;



（$userはまだ必要ないので、ここでは省略しています。）
そして、次のようにしてスキーマ修飾なしでテーブルにアクセスします。


DROP TABLE mytable;



また、myschemaはパス内の最初の要素なので、新しいオブジェクトはデフォルトでここに作成されます。
   


以下のように書くこともできます。


SET search_path TO myschema;



このようにすると、今後は修飾名なしでpublicスキーマにアクセスすることができなくなります。
publicスキーマはデフォルトで存在するということ以外に特別な意味はありません。
他のスキーマと同様に削除することもできます。
   


スキーマ検索パスを操作する他の方法については「システム情報関数と演算子」を参照してください。
   


検索パスはデータ型名、関数名、演算子名についても、テーブル名の場合と同じように機能します。
データ型および関数の名前は、テーブル名とまったく同じように修飾できます。
式で修飾演算子名を書く場合には、特別な決まりがあります。
それは以下のとおりです。


OPERATOR(schema.operator)



この規則は構文が曖昧になることを防ぐためのものです。
以下に例を示します。


SELECT 3 OPERATOR(pg_catalog.+) 4;



実際の場面ではこのような見づらい構文を書かなくて済むように、演算子についても検索パスが使用されています。
   

スキーマおよび権限





ユーザは、デフォルトでは所有していないスキーマのオブジェクトをアクセスすることはできません。
アクセスを許可するには、そのスキーマの所有者がスキーマのUSAGE権限を付与しなければなりません。
デフォルトでは、誰でもpublicにその権限を所有しています。
ユーザにそのスキーマ内のオブジェクトの利用を許可するには、そのオブジェクトに応じて、さらに追加の権限が必要となる場合があります。
   


ユーザが、他のユーザのスキーマ内でオブジェクトを作成することを許可することもできます。
これを許可するには、スキーマに対するCREATE権限を付与する必要があります。
PostgreSQL™ 14以前からアップグレードされたデータベースでは、誰もがpublicスキーマに対するその権限を持っています。
一部の使用パターンでは、その権限を取り消す必要があります:


REVOKE CREATE ON SCHEMA public FROM PUBLIC;



（最初の「public」はスキーマです。2番目の「public」は「全てのユーザ」を意味します。
最初のpublicは識別子で、2番目のpublicはキーワードなので、それぞれ小文字、大文字を使用しています。「識別子とキーワード」のガイドラインを思い出してください。）
   

システムカタログスキーマ





各データベースには、publicおよびユーザ作成のスキーマの他にpg_catalogスキーマが含まれています。
このスキーマにはシステムテーブルと全ての組み込みデータ型、関数および演算子が含まれています。
pg_catalogは常に検索パスに含まれています。
パスに明示的にリストされていない場合は、パスのスキーマを検索する前に暗黙的に検索されます。
これにより組み込みの名前が常に検索されることを保証されます。
しかし、ユーザ定義の名前で組み込みの名前を上書きする場合は、pg_catalogを明示的にパスの最後に置くことができます。
   


システムカタログの名前はpg_で始まりますので、このような名前は使用しないのが得策と言えます。
今後のバージョンでユーザのテーブルと同じ名前のシステムカタログが定義され、競合する事態を避けるためです。
（その結果、デフォルトの検索パスでは、ユーザのテーブル名への非修飾の参照はシステムカタログとして解決されることになります。）
システムカタログは今後もpg_で始まる規則に従うので、ユーザがpg_という接頭辞を使わない限り、非修飾のユーザ定義テーブル名がシステムカタログと競合することはありません。
   

使用パターン





スキーマは様々な方法でデータの編成に使用できます。
セキュアなスキーマの使用パターンは信頼できないユーザが他のユーザの問い合わせの振る舞いを変えるのを防ぎます。
データベースがセキュアなスキーマの使用パターンを使わない場合、セキュアにデータベースを問い合わせたいユーザはセッションの開始毎に防御的なアクションを取るようにします。
具体的には、search_pathに空文字をセットするか、スーパーユーザ以外が書き込み可能なスキーマをsearch_pathから削除することによって、各セッションを開始します。
デフォルト構成で簡単にサポートできるお勧めの使用パターンがいくつかあります。
    
	

通常のユーザをユーザの非公開スキーマに制約します。
このパターンを実装するには、最初にどのスキーマもpublic CREATE権限を持っていないことを確認します。
次に、一時的でないオブジェクトを作成する必要があるすべてのユーザに対して、そのユーザと同じ名前のスキーマを作成します。
たとえば、CREATE SCHEMA alice AUTHORIZATION aliceのようになります。
（デフォルトの検索パスは$userで始まり、これがユーザ名に解決されることを思い出してください。
したがって、各ユーザが個別のスキーマを持っている場合、デフォルトでは独自のスキーマにアクセスします。）
このパターンは、信頼されていないユーザがデータベース所有者であるか、または関連するロールにADMIN OPTIONが付与されていない場合に限りセキュアですが、該当する場合はセキュアなスキーマ使用パターンは存在しません。
      


PostgreSQL™ 15以降では、デフォルト設定がこの使用方法のパターンをサポートしています。
以前のバージョン、または以前のバージョンからアップグレードされたデータベースを使用する場合、publicスキーマからpublic CREATE権限を削除する必要があります（REVOKE CREATE ON SCHEMA public FROM PUBLICを実行します）。
その後、publicスキーマについて、pg_catalogスキーマのオブジェクトと同じ名前のオブジェクトがないかどうかを調査することを検討してください。
      

	

postgresql.confを変更、あるいはALTER ROLE ALL SET search_path = ""を実行することにより、デフォルト検索パスからpublicスキーマを削除します。
それから、publicスキーマ内での作成権限を与えます。
オブジェクトの選択はpublicスキーマ修飾によってのみ行われます。
修飾されたテーブル名による参照は問題ありませんが、publicスキーマ内の関数呼び出しは安全ではないか、あるいは信頼性がありません。
publicスキーマ内に関数や拡張を作る場合は、最初のパターンを代わりに使ってください。
それ以外では、最初のパターン同様、信頼できないユーザがデータベース所有者である場合や、関連するロールにADMIN OPTIONが付与されていない限り、これはセキュアです。
      

	

デフォルト検索パスを維持し、publicスキーマ内の作成権限を与えます。
すべてのユーザがpublicスキーマに暗黙的にアクセスします。
これはスキーマを考慮しない世界からのスムースな移行を可能にしながら、スキーマがまったく利用できない状況をシミュレートします。
しかし、これは決してセキュアなパターンではありません。
このパターンは、データベースに一人、あるいは少数のお互いに信頼できるユーザだけが存在する場合にのみ受け入れ可能です。
PostgreSQL™ 14以前のデータベースをアップグレードした場合はこれがデフォルトです。
      




   


どのパターンでも、共有のアプリケーション（全員が使うテーブル、サードパーティが提供する追加の関数など）をインストールするには、別のスキーマにアプリケーションを入れてください。
他のユーザがアプリケーションにアクセスするために、適切な権限を与えることを忘れないようにしてください。
ユーザはスキーマ名で名前を修飾するか、あるいは追加スキーマを検索パスに入れるかを選択し、これらの追加オブジェクトを参照できます。
   

移植性





標準SQLでは、1つのスキーマ内のオブジェクトを異なるユーザが所有するという概念は存在しません。
それどころか、実装によっては所有者と異なる名前のスキーマを作成することが許可されていない場合もあります。
実際、標準で規定されている基本スキーマサポートのみを実装しているデータベースシステムでは、スキーマという概念とユーザという概念はほとんど同じなのです。
そのため、修飾名とはuser_name.table_nameのことであると思っているユーザはたくさんいます。
PostgreSQL™においても、ユーザごとに1つのスキーマを作成すると、このようになります。
   


また、標準SQLには、publicスキーマという概念もありません。
標準に最大限従うためには、publicスキーマは使用すべきではありません。
   


もちろん、スキーマをまったく実装していなかったり、または、データベース間アクセスを（場合によっては制限付きで）許可することによって名前空間の使用をサポートしているSQLデータベースもあります。
このようなシステムで作業する必要がある場合は、スキーマをまったく使わないようにすることで最大限の移植性を実現できます。
   


継承





PostgreSQL™は、データベース設計者にとって便利なテーブルの継承を実装しています。
（SQL:1999以降は型の継承を定義していますが、ここで述べられている継承とは多くの点で異なっています。）
  


まず例から始めましょう。
市（cities）のデータモデルを作成しようとしていると仮定してください。
それぞれの州にはたくさんの市がありますが、州都（capitals）は1つのみです。
どの州についても州都を素早く検索したいとします。
これは、2つのテーブルを作成することにより実現できます。
1つは州都のテーブルで、もう1つは州都ではない市のテーブルです。
しかし、州都であるか否かに関わらず、市に対するデータを問い合わせたいときには何が起こるのでしょうか？
継承はこの問題を解決できます。
citiesから継承されるcapitalsテーブルを定義するのです。



CREATE TABLE cities (
    name            text,
    population      float,
    elevation       int     -- in feet
);

CREATE TABLE capitals (
    state           char(2)
) INHERITS (cities);




この場合、capitalsテーブルは、その親テーブルであるcitiesテーブルの列をすべて継承します。
州都は1つの追加の列stateを持ち、州を表現します。
  


PostgreSQL™では、1つのテーブルは、0以上のテーブルから継承することが可能です。
また、問い合わせはテーブルのすべての行、またはテーブルのすべての行と継承されたテーブルのすべての行のいずれかを参照できます。
後者がデフォルトの動作になります。
例えば次の問い合わせは、500フィートより高い標高に位置しているすべての市の名前を、州都を含めて検索します。



SELECT name, elevation
    FROM cities
    WHERE elevation > 500;




PostgreSQL™チュートリアルからのサンプルデータ（「はじめに」を参照してください）に対して、この問い合わせは、以下の結果を出力します。



   name    | elevation
-----------+-----------
 Las Vegas |      2174
 Mariposa  |      1953
 Madison   |       845


  


一方、次の問い合わせは、州都ではなく500フィートより高い高度に位置しているすべての市を検索します。



SELECT name, elevation
    FROM ONLY cities
    WHERE elevation > 500;

   name    | elevation
-----------+-----------
 Las Vegas |      2174
 Mariposa  |      1953


  


ここでONLYキーワードは、問い合わせがcitiesテーブルのみを対象にしcities以下の継承の階層にあるテーブルは対象としないことを意味します。
これまで説明したコマンドの多く—SELECT、UPDATEそしてDELETE —がONLYキーワードをサポートしています。
  


また、明示的に子孫テーブルが含まれていることを示すために、テーブル名の後ろに*を書くこともできます:



SELECT name, elevation
    FROM cities*
    WHERE elevation > 500;




*の指定は、その動作が常にデフォルトであるため、必要ありません。
しかし、この構文はデフォルトが変更可能であった古いリリースとの互換性のためにまだサポートされています。
  


ある特定の行がどのテーブルからきたものか知りたいという場合もあるでしょう。
それぞれのテーブルにはtableoidという、元になったテーブルを示すシステム列があります。



SELECT c.tableoid, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;




出力は以下のとおりです。



 tableoid |   name    | elevation
----------+-----------+-----------
   139793 | Las Vegas |      2174
   139793 | Mariposa  |      1953
   139798 | Madison   |       845




（この例をそのまま実行しても、おそらく異なる数値OIDが得られるでしょう。）
pg_classと結合することで、テーブルの実際の名前が分かります。



SELECT p.relname, c.name, c.elevation
FROM cities c, pg_class p
WHERE c.elevation > 500 AND c.tableoid = p.oid;




出力は以下の通りです。



 relname  |   name    | elevation
----------+-----------+-----------
 cities   | Las Vegas |      2174
 cities   | Mariposa  |      1953
 capitals | Madison   |       845


  


同じ効果を得る別の方法は、別名型regclassを使うことで、これによりテーブルのOIDを記号的に表示します。



SELECT c.tableoid::regclass, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;


  


継承はINSERTまたはCOPYによるデータを、継承の階層にある他のテーブルに自動的に伝播しません。
この例では、次のINSERT文は失敗します。


INSERT INTO cities (name, population, elevation, state)
VALUES ('Albany', NULL, NULL, 'NY');



データが、どうにかしてcapitalsテーブルに入ることを期待するかもしれませんが、そのようにはなりません。
INSERTは、いつも指定されたテーブルそれ自体に対してデータを挿入します。
ルール（詳細は39章ルールシステムを参照してください）を使用して挿入を中継できる場合もあります。
しかし、ルールを使用しても上記のような場合は解決できません。
なぜなら、citiesテーブルにstate列が含まれていないため、ルールが適用される前にコマンドを拒否されてしまうからです。
  


親テーブル上の検査制約と非NULL制約は、NO INHERIT句によって明示的に指定されない限り、その子テーブルに自動的に継承されます。
他の種類の制約（一意性制約、主キー、外部キー制約）は継承されません。
  


テーブルは1つ以上の親テーブルから継承可能です。
この場合、テーブルは親テーブルで定義された列の和になります。
子テーブルで宣言された列は、これらの列に追加されることになります。
もし親テーブルに同じ名前の列がある場合、もしくは、親テーブルと子テーブルに同じ名前の列がある場合は、列が「統合」されて子テーブルではただ1つの列となります。
統合されるには列は同じデータ型を持っている必要があります。
異なるデータ型の場合にはエラーとなります。
継承可能な検査制約と非NULL制約は、同じようなやり方で統合されます。
つまり、例えば、列定義のいずれかが非NULL制約の印が付いているならば、統合された列に非NULLという印が付きます。
検査制約は、同じ名前を持っている場合に統合され、それらの条件が異なる場合は統合に失敗します。
  


テーブル継承は、通常、CREATE TABLE文のINHERITS句を使用して、子テーブルを作成する時に確立します。
他にも、互換性を持つ方法で定義済みのテーブルに新しく親子関係を付けることも可能です。
これにはALTER TABLEのINHERIT形式を使用します。
このためには、新しい子テーブルは親テーブルと同じ名前の列を持ち、その列の型は同じデータ型でなければなりません。
また、親テーブルと同じ名前、同じ式の検査制約を持っていなければなりません。
ALTER TABLEのNO INHERIT形式を使用して、同様に継承関係を子テーブルから取り除くことも可能です。
このような継承関係の動的追加、動的削除は、継承関係をテーブルパーティショニング（「テーブルのパーティショニング」を参照）に使用している場合に有用です。
  


後で子テーブルとする予定の、互換性を持つテーブルを簡単に作成する方法の1つは、CREATE TABLEでLIKE句を使用することです。
これは、元としたテーブルと同じ列を持つテーブルを新しく作成します。
新しい子テーブルが必ず親テーブルと一致する制約を持ち、互換性があるものとみなされるように、元となるテーブルでCHECK制約が存在する場合は、LIKEにINCLUDING CONSTRAINTSオプションを指定すべきです。
  


子テーブルが存在する場合親テーブルを削除することはできません。
また、子テーブルでは、親テーブルから継承した列、または検査制約を削除することも変更することもできません。
テーブルとそのすべての子テーブルを削除したければ、CASCADEオプションを付けて親テーブルを削除することが簡単な方法です（「依存関係の追跡」を参照）。
  


ALTER TABLEは、列データ定義と検査制約の変更を継承の階層にあるテーブルに伝えます。
ここでも、他のテーブルに依存する列の削除はCASCADEオプションを使用したときのみ可能となります。
ALTER TABLEは、重複列の統合と拒否について、CREATE TABLE時に適用される規則に従います。
  


継承された問い合わせは、親テーブルのみアクセス権限を検査します。
つまり、例えば、UPDATE権限をcitiesテーブルに付与することは、citiesテーブルを通じてアクセスする場合に、capitalsテーブルにも行の更新権限を付与することを意味します。
これによりデータが親テーブルに（も）あるように見えることが保たれます。
しかし、capitalsテーブルは、追加権限なしに直接更新することはできません。
同様に、親テーブルの行セキュリティポリシー（「行セキュリティポリシー」を参照してください）が、継承された問い合わせの時に子テーブルの行に適用されます。
子テーブルのポリシー（あれば）は、問い合わせにて明示的に指定されたテーブルである時にのみ適用されます。
そしてこの場合、親テーブルに紐付けられたあらゆるポリシーは無視されます。
  


外部テーブル（「外部データ」参照）も通常のテーブルと同様、親テーブルあるいは子テーブルとして継承の階層の一部となりえます。
外部テーブルが継承の階層の一部となっている場合、外部テーブルがサポートしない操作は、その継承全体でもサポートされません。
  
警告





すべてのSQLコマンドが継承階層に対して動作できるとは限らないことに注意してください。
データの検索、データの変更、スキーマの変更のために使用されるコマンド（例えば、SELECT、UPDATE、DELETE、およびほとんどのALTER TABLEの構文が該当しますが、INSERTやALTER TABLE ... RENAMEは含まれません）は通常、デフォルトで子テーブルを含み、また、それを除外するためのONLY記法をサポートしています。
データベースのメンテナンスとチューニングを行うコマンドの大部分（REINDEXなど）は、個々の物理テーブルでのみ機能し、継承階層に対する再帰はサポートしていません。
ただし、VACUUMコマンドとANALYZEコマンドはどちらもデフォルトで子テーブルを含み、それらを除外できるようにONLY記法をサポートしています。
個々のコマンドのそれぞれの動作はそのリファレンスページ（SQLコマンド）に記載されています。
  


継承機能の重大な制限として、インデックス（一意性制約を含む）、および外部キーは、そのテーブルのみに適用され、それを継承した子テーブルには適用されないことがあります。
これは外部キーの参照側、被参照側の両方について当てはまります。
したがって、上の例では

   
	

もし、cities.nameをUNIQUEまたはPRIMARY KEYと宣言しても、citiesテーブルの行と重複した行をcapitalsテーブル内に持つことを禁止することにはなりません。
さらに、これらの重複した行はデフォルトでcitiesテーブルへの問い合わせで現れるでしょう。
事実として、capitalsテーブルはデフォルトで一意性制約を持っていませんし、同一の名前の複数の行を持つことがあり得ます。
capitalsテーブルに一意性制約を追加できますが、これはcitiesテーブルと比較して重複を禁止することにはなりません。
     

	

同じように、cities.name REFERENCESで他のテーブルを参照するようにしても、この制約は自動的にcapitalsに引き継がれるわけではありません。
この場合はcapitalsテーブルに同一のREFERENCES制約を手動で追加すれば問題を回避できます。
     

	

他のテーブルの列にREFERENCES cities(name)を指定すると、他のテーブルが市の名前を持つことはできますが、州都の名前を持つことはできません。
この場合は良い回避策がありません。
     






継承の階層に対して実装されていないいくつかの機能は、宣言的パーティショニングでは実装されています。
従来の継承によるパーティショニングがアプリケーションにとって有用であるかどうかを判断する際に十分注意してください。
  


テーブルのパーティショニング





PostgreSQL™は基本的なテーブルのパーティショニング（分割）をサポートしています。
この節では、データベース設計において、なぜそしてどのようにしてパーティショニングを実装するのかを解説します。
   
概要





パーティショニングとは、論理的には一つの大きなテーブルであるものを、物理的により小さな部品に分割することを指します。
パーティショニングによって得られる利点は以下のようにいくつかあります。
    
	

特定の条件下で問い合わせのパフォーマンスが劇的に向上することがあります。
特にテーブル内のアクセスが集中する行のほとんどが単一または少数のパーティションに存在している場合がそうです。
パーティショニングは実質的にインデックスの上位木レベルの代わりになり、インデックスの頻繁に使われる部分がメモリに収まりやすくなるようにします。
      

	

問い合わせや更新が一つのパーティションの大部分にアクセスする場合、インデックスを使用してテーブル全体にまたがるランダムアクセス読み取りをする代わりに、そのパーティションへのシーケンシャルスキャンを使用することでパフォーマンスが向上します。
      

	

一括挿入や削除について、その使い方のパターンをパーティショニングの設計に組み込んでいれば、それをパーティションの追加や削除で実現することが可能です。
個々のパーティションをDROP TABLEで削除する、あるいはALTER TABLE DETACH PARTITIONを実行することにより、一括の操作をするよりも遥かに高速です。
これらのコマンドはまた、一括のDELETEで引き起こされるVACUUMのオーバーヘッドを完全に回避できます。
      

	

めったに使用されないデータを安価で低速なストレージメディアに移行できます。
      






これらの利益は通常、そうしなければテーブルが非常に大きくなる場合にのみ価値があります。
テーブルがパーティショニングから利益を得られるかどうかの正確な分岐点はアプリケーションに依存しますが、重要なことはテーブルのサイズがデータベースサーバの物理メモリより大きいことです。
    


PostgreSQL™にはパーティショニングについて以下の形式の組み込み機能があります。

     
	範囲パーティショニング
	

テーブルはキー列またはキー列の集合で定義される「範囲」にパーティション分割され、異なるパーティションに割り当てられる値の範囲に重なりがないようになります。
例えば、日付の範囲によってパーティション分割することもあるでしょうし、特定のビジネスオブジェクトの識別子の範囲によって分割することもあるでしょう。
個々の範囲の境界は、下限は境界値を含み、上限は境界値を含まないと理解されています。
たとえば、あるパーティションの境界が1から10で、次の範囲が10から20なら、値10は最初ではなく、二番目のパーティションに所属します。
        

	リストパーティショニング
	

各パーティションに現れるキーの値を明示的に列挙することでテーブルをパーティションに分割します。
        

	ハッシュパーティショニング
	

各パーティションに対して法と剰余を指定することでテーブルをパーティションに分割します。
各パーティションは、パーティションキーのハッシュ値を指定された法で割った際に指定された剰余となる行を保持します。
        






アプリケーションで上記に列挙されていない他の形式のパーティショニングを使用する必要がある場合は、継承やUNION ALLなどの代替方式を代わりに使うことができます。
そのような方式は柔軟性がありますが、組み込みの宣言的パーティショニングによるパフォーマンス上の利益の一部を享受できません。
    

宣言的パーティショニング





PostgreSQL™ではテーブルをパーティションに分割すると宣言できます。
分割されたテーブルはパーティションテーブルと呼ばれます。
この宣言は上で述べたパーティショニング方式を含んでおり、加えてパーティションキーとして使用される列あるいは式のリストからなります。
   


パーティションテーブル自身はストレージを持たない「仮想」テーブルです。
その代わり、ストレージはパーティションテーブルに関連付けられた通常のテーブルであるpartitionsに所属します。
個々のパーティションはパーティション境界によって定義されるデータのサブセットです。
パーティションテーブルに挿入されるすべての行は、パーティションキーの列の値に基づいてパーティションの一つに振り向けられます。
行のパーティションキーを更新し、それが元のパーティション境界を満たさなくなった場合、その行は異なるパーティションに移動されます。
   


パーティションは自身をパーティション化テーブルであると定義することができ、その結果サブパーティショニングとなります。
すべてのパーティションは親のパーティションと同じ列を持たなければなりませんが、パーティションは他のパーティションとは別の独自のインデックス、制約、デフォルト値を持つことができます。
パーティションテーブルおよびパーティションの作成についてのさらなる詳細についてはCREATE TABLE(7)を参照してください。
   


通常のテーブルをパーティションテーブルに変更する、およびその逆はできません。
しかし、既存の通常のテーブルやパーティションテーブルをパーティションテーブルのパーティションとして追加する、あるいはパーティションテーブルからパーティションを削除し、それを独立したテーブルにすることは可能です。
これにより多くの保守プロセスを単純化して効率化できます。
ATTACH PARTITIONおよびDETACH PARTITIONのサブコマンドについての詳細はALTER TABLE(7)を参照してください。
   


外部テーブルの内容がパーティション化のルールを満たすようにするのはユーザの責任なので、入念な考慮が必要ではあるものの、パーティションを外部テーブルとすることができます。
他にもいくつか制限事項があります。
詳細はCREATE FOREIGN TABLE(7)を参照してください。
   
例





大きなアイスクリーム会社のデータベースを構築している場合を考えましょう。
その会社は毎日の最高気温、および各地域でのアイスクリームの売上を計測します。
概念的には次のようなテーブルが必要です。



CREATE TABLE measurement (
    city_id         int not null,
    logdate         date not null,
    peaktemp        int,
    unitsales       int
);




このテーブルの主な利用目的は経営層向けにオンラインの報告書を作成することであるため、ほとんどの問い合わせは単に直前の週、月、四半期のデータにアクセスするだけであることがわかっています。
保存すべき古いデータの量を削減するため、最近3年分のデータのみを残すことに決めました。
各月のはじめに、最も古い月のデータを削除します。
この場合、計測テーブルについての様々な要求のすべてを、パーティショニングを使って満たすことができます。
   


この場合に宣言的パーティショニングを使うには、以下の手順に従います。

    
	

PARTITION BY句を指定して、measurementテーブルをパーティションテーブルとして作成します。
PARTITION BY句にはパーティショニング方式（この場合はRANGE）とパーティションキーとして使う列のリストを記述します。



CREATE TABLE measurement (
    city_id         int not null,
    logdate         date not null,
    peaktemp        int,
    unitsales       int
) PARTITION BY RANGE (logdate);


      

	

パーティションを作成します。
各パーティションの定義では、親のパーティショニング方式およびパーティションキーに対応する境界を指定しなければなりません。
新しいパーティションの値が一つ以上の既存のパーティションの値と重なるような境界を指定するとエラーになることに注意してください。
既存のおよびパーティションのどれにも当てはまらないデータを親テーブルに挿入するとエラーになります。
この場合、適切なパーティションを手作業で追加しなければなりません。
      


こうして作成されたパーティションは、すべての点においてPostgreSQL™の通常のテーブル（あるいは場合によっては外部テーブル）と同じです。
各パーティション毎に別々にテーブル空間や格納パラメータを指定することもできます。
      


この例では、個々のパーティションは一月分のデータを保持し、一度に一月分のデータを削除するという要件を満たしています。
ですからコマンドは以下のようになるかもしれません。



CREATE TABLE measurement_y2006m02 PARTITION OF measurement
    FOR VALUES FROM ('2006-02-01') TO ('2006-03-01');

CREATE TABLE measurement_y2006m03 PARTITION OF measurement
    FOR VALUES FROM ('2006-03-01') TO ('2006-04-01');

...
CREATE TABLE measurement_y2007m11 PARTITION OF measurement
    FOR VALUES FROM ('2007-11-01') TO ('2007-12-01');

CREATE TABLE measurement_y2007m12 PARTITION OF measurement
    FOR VALUES FROM ('2007-12-01') TO ('2008-01-01')
    TABLESPACE fasttablespace;

CREATE TABLE measurement_y2008m01 PARTITION OF measurement
    FOR VALUES FROM ('2008-01-01') TO ('2008-02-01')
    WITH (parallel_workers = 4)
    TABLESPACE fasttablespace;




（境界の上限は境界値を含まないので、隣接したパーティションは境界値を共有できることを思い出してください。）
      


サブパーティショニングの実装が希望なら、同じように以下のように、個々のパーティションを作成するコマンドでPARTITION BY句を指定してください。



CREATE TABLE measurement_y2006m02 PARTITION OF measurement
    FOR VALUES FROM ('2006-02-01') TO ('2006-03-01')
    PARTITION BY RANGE (peaktemp);




measurement_y2006m02のパーティションの作成後、measurementに挿入されるデータでmeasurement_y2006m02に振り向けられるもの（あるいはmeasurement_y2006m02に直接挿入されるデータでそのパーティション制約を満たしているもの）はすべて、peaktemp列に基いてさらにその下のパーティションの一つにリダイレクトされます。
指定するパーティションキーは親のパーティションキーと重なっても構いませんが、サブパーティションの境界を指定するときは、それが受け付けるデータの集合がパーティション自体の境界でできるものの部分集合を構成するように注意してください。
システムは本当にそのようになっているかどうか、検査しようとしません。
      


既存のパーティションにマップされない親テーブルにデータを挿入しようとするとエラーになります。
手動で適切なパーティションを追加しなければなりません。
      


パーティションのパーティション境界条件を記述するテーブル制約を手動で作る必要はありません。
そのような制約は自動的に作られます。
      

	

キー列にインデックスを作成し、またその他のインデックスも必要に応じてパーティションテーブル上に作成します。
（厳密に言えば、キー列のインデックスが必要なわけではありませんが、ほとんどの場合に役に立つでしょう。）
これは個々のパーティションに対応するインデックスを自動的に作るので、作成したすべてのパーティション、あるいは後でアタッチしたパーティションもそのようなインデックスを持ちます。
パーティションテーブルのインデックスあるいは一意性制約はパーティションテーブルがそうであるのと同様、「仮想」です。
実際のデータは個々のパーティションテーブル上の子インデックスにあります。



CREATE INDEX ON measurement (logdate);


      

	

postgresql.confで設定パラメータenable_partition_pruningが無効になっていないことを確認します。
これが無効になっていると、問い合わせが期待通りには最適化されません。
       




   


上記の例では、毎月、新しいパーティションを作ることになりますから、必要なDDLを自動的に生成するスクリプトを作るのが賢明かもしれません。
   

パーティションの保守





最初にテーブルを定義した時に作成したパーティションの集合は、通常はそのまま静的に残ることを意図したものではありません。
古いデータを持つパーティションを削除し、新しいデータの入った新しいパーティションを定期的に作成したいというのが普通です。
パーティショニングのもっとも重要な利点の一つは、パーティショニングがなければ大変なことになるであろうこの作業を、大量のデータを物理的に動かすのではなく、パーティション構造を操作することにより、ほとんど一瞬にして実行できるという、まさにそのことなのです。
    


古いデータを削除する最も単純な方法は、次のように、不要になったパーティションを削除することです。


DROP TABLE measurement_y2006m02;



これはすべてのレコードを個別に削除する必要がないため、数百万行のレコードを非常に高速に削除できます。
ただし、上記のコマンドは親テーブルについてACCESS EXCLUSIVEロックを取得する必要があることに注意してください。
    


別の方法で多くの場合に望ましいのは、パーティションテーブルからパーティションを削除する一方で、パーティションそれ自体はテーブルとしてアクセス可能なまま残すことです。
これには2つの形式があります。



ALTER TABLE measurement DETACH PARTITION measurement_y2006m02;
ALTER TABLE measurement DETACH PARTITION measurement_y2006m02 CONCURRENTLY;




こうすると、データを削除する前に、そのデータについて追加の操作が実行できます。
例えば、COPY、pg_dumpや類似のツールを使ってデータのバックアップをする好機となることが多いでしょう。
また、データを集計してより小さな形式にする、その他のデータ操作を実行する、レポート作成を実行するなどのための好機となるかもしれません。
コマンドの最初の形式はACCESS EXCLUSIVEロックを親テーブルに必要とします。
二番目の形式のようにCONCURRENTLY修飾子を追加すると、デタッチ操作の際にSHARE UPDATE EXCLUSIVEを親テーブルにかけるだけで済みますが、制限の詳細についてはALTER TABLE ... DETACH PARTITIONを参照してください。
   


同様に、新しいデータを扱うために新しいパーティションを追加できます。
上で元のパーティションを作ったのと全く同じように、パーティションテーブル内に空のパーティションを以下のように作成できます。



CREATE TABLE measurement_y2008m02 PARTITION OF measurement
    FOR VALUES FROM ('2008-02-01') TO ('2008-03-01')
    TABLESPACE fasttablespace;




新たなパーティションを作る代わりに、パーティション構造の外で新しいテーブルを作成し、後でパーティションとしてアタッチする方が便利なことがあります。
これにより、パーティションテーブルに現れる前に新しいデータをロードし、チェックし、変換することができます。
さらに、ATTACH PARTITION操作は、CREATE TABLE ... PARTITION OFで必要とされるACCESS EXCLUSIVEロックではなく、パーティションテーブルに対してはSHARE UPDATE EXCLUSIVEロックだけを必要とするので、パーティションテーブルに対する並行操作に対してよりフレンドリーです。
詳しくは、ALTER TABLE ... ATTACH PARTITIONを参照してください。
CREATE TABLE ... LIKEオプションは、親テーブルの定義を長々と繰り返し書くのを避けるのに役立ちます。
例を示します。



CREATE TABLE measurement_y2008m02
  (LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS)
  TABLESPACE fasttablespace;

ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
   CHECK ( logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01' );

\copy measurement_y2008m02 from 'measurement_y2008m02'

-- その他のデータ準備操作を行うこともあります。

ALTER TABLE measurement ATTACH PARTITION measurement_y2008m02
    FOR VALUES FROM ('2008-02-01') TO ('2008-03-01' );


    


ATTACH PARTITIONコマンドを実行するとき、そのパーティションでACCESS EXCLUSIVEロックを保持したまま、テーブルがパーティション制約を検証するためにスキャンされることに注意してください。
上記のように、このスキャンを回避するため、アタッチする前に予想されるパーティション制約に一致するCHECK制約をテーブルに作成することを推奨します。
ATTACH PARTITIONが完了したら、もう不要になったCHECK制約を削除することをお勧めします。
アタッチされるテーブル自体がパーティションテーブルなら、適切なCHECK制約が見つかるか、リーフパーティションに到達するまで個々のサブパーティションは再帰的にロックされスキャンされます。
    


同様に、そのパーティションがDEFAULTパーティションを持っているなら、アタッチ予定のパーティションの制約を含まないCHECK制約を作成することをお勧めします。
これをしておかないと、アタッチ予定のパーティション中にレコードがないことを確認するためにDEFAULTパーティションがスキャンされます。
この操作の間、ACCESS EXCLUSIVEロックがDEFAULTパーティションに保持されます。
DEFAULTパーティション自体がパーティションテーブルなら、個々のパーティションは、上で述べたようにアタッチ予定のテーブルと同じ方法でスキャンされます。
    


前述の通り、階層全体に自動で適用されるようにパーティションテーブル上にインデックスを作成することが可能です。
既存のパーティションだけではなく将来作成されるパーティションもインデックス付けされるため、これはとても便利です。
ただし、一つ制限があり、テーブルパーティションで新しいインデックスを作成する場合はCONCURRENTLY修飾子を使用できません。これによりロック時間が長くなる可能性があります。
これを回避するために、CREATE INDEX ON ONLYを使用してパーティションテーブルを作成できます。
これにより、無効とマークされた新しいインデックスが作成され、既存のパーティションへの自動適用を防止します。
代替に、CONCURRENTLYを使用して各パーティションに個別にインデックスを作成し、ALTER INDEX ... ATTACH PARTITIONを使用して親のパーティションインデックスにアタッチすることができます。
すべてのパーティションのインデックスが親インデックスにアタッチされると、親インデックスは自動的に有効とマークされます。
例を示します。


CREATE INDEX measurement_usls_idx ON ONLY measurement (unitsales);

CREATE INDEX CONCURRENTLY measurement_usls_200602_idx
    ON measurement_y2006m02 (unitsales);
ALTER INDEX measurement_usls_idx
    ATTACH PARTITION measurement_usls_200602_idx;
...




この手法は、UNIQUEとPRIMARY KEY制約でも使用できます。
制約が作成された際にインデックスは暗黙的に作成されます。
例を示します。


ALTER TABLE ONLY measurement ADD UNIQUE (city_id, logdate);

ALTER TABLE measurement_y2006m02 ADD UNIQUE (city_id, logdate);
ALTER INDEX measurement_city_id_logdate_key
    ATTACH PARTITION measurement_y2006m02_city_id_logdate_key;
...


    

制限事項





パーティションテーブルには以下の制限事項があります。
    
	

パーティション化テーブルに一意性制約または主キー制約を作成するには、パーティションキーに式または関数呼び出しが含まれないようにし、制約の列にすべてのパーティションキー列が含まれている必要があります。
この制限は、制約を構成する個々のインデックスが自分自身のパーティション内でのみ一意性を直接強制できるために存在します。
したがって、パーティション構造自体が異なるパーティションに重複がないことを保証する必要があります。
      

	

同様に、排他制約はすべてのパーティションキー列を含める必要があります。
さらに、それらの列が等しいかを比較する必要があります（&&などではありません）。
ここでも、この制限事項はパーティションをまたがる制約を強制できないことに起因しています。
この排他制約にはパーティションキーの一部ではない追加の列を含めてもよく、それらは任意の演算子と比較してもよいです。
      

	

INSERTのBEFORE ROWトリガは、どのパーティションが新しい行の最終目的地であるかを変更することはできません。
      

	

一時リレーションと永続的リレーションを同じパーティションツリーに混合することはできません。
ですから、パーティション化されたテーブルが永続的なら、パーティションも永続的でなければなりません。
同様にパーティション化されたテーブルが一時的なら、パーティションも一時的でなければなりません。
一時リレーションを使う場合は、パーティションツリーのすべてのメンバは同じセッションに由来しなければなりません。
      




    


個々のパーティションは継承を背景にパーティションテーブルに紐付けられています。
しかし、宣言的パーティションテーブルもしくはそれらのパーティションでは継承の一般的な機能の一部（後述）を使用することはできません。
例えば、パーティションテーブルのパーティションは、そのパーティションテーブル以外の親を持つことができませんし、また一般のテーブルはパーティションテーブルをその親にしてパーティションテーブルから継承することはできません。
これはつまり、パーティションテーブルおよびそれらのパーティションは一般のテーブルと継承によって繋がることができないということです。
    


パーティションテーブルとそのパーティションを構成するパーティションの階層は継承の階層でもあるので、tableoidと継承におけるすべての通常の規則が「継承」で説明したとおりに適用されますが、いくつか例外があります。
最も重要な例外を以下に示します。

     
	

パーティションは親に存在しない列を持つことができません。
パーティションをCREATE TABLEで作成する時に列を指定することはできませんし、作成後にALTER TABLEでパーティションに列を追加することもできません。
テーブルをALTER TABLE ... ATTACH PARTITIONでパーティションとして追加できるのは、その列が完全に親と一致している場合のみです。
       

	

パーティションテーブルに対するCHECK制約とNOT NULL制約は、常にすべてのパーティションに継承されます。
このような種別のNO INHERIT制約を作成することはできません。
親テーブルに同じ制約が存在する場合、このような種別の制約を削除することはできません。
       

	

パーティションテーブルに対してのみ制約を追加または削除する場合、パーティションが存在しない限り、ONLYを使用することがサポートされています。
ひとたびパーティションが存在すれば、ONLYを使用すると、UNIQUEおよびPRIMARY KEY以外の制約に対してエラーが発生します。
その代わりに、パーティション自身の制約を追加することや（親テーブルに存在しない場合）削除することが可能です。
       

	

パーティションテーブルは直接データを所有することはないため、TRUNCATE ONLYをパーティションテーブルに対して使用しようとすると、必ずエラーが返されます。
       




    


継承を用いたパーティショニング





組み込みの宣言的パーティショニングは、ほとんどの一般的な利用例に適合しますが、もっと柔軟な方式が便利な状況もあります。
パーティショニングはテーブルの継承を使用して実装することも可能で、これは宣言的パーティショニングではサポートされない以下のような機能が利用できます。

     
	

宣言的パーティショニングの場合、パーティションは正確にパーティションテーブルと同じ列の集合を持たなければなりません。
一方テーブルの継承では、子テーブルは親テーブルに存在しない追加の列を持つかもしれません。
       

	

テーブルの継承では、複数の継承が可能です。
       

	

宣言的パーティショニングではリストパーティショニング、範囲パーティショニングとハッシュパーティショニングしかサポートされませんが、テーブルの継承ではユーザが選択した方法に従ってデータを分割できます。
（ただし、制約による除外が子テーブルを効果的に分離できない場合、問い合わせのパフォーマンスが悪くなるかもしれないことに注意してください。）
       




    
例





この例は、上の宣言的パーティショニングの例と等価な構造のパーティショニングを作成しています。
以下の手順に従います。

      
	

「root」テーブルを作成します。
すべての「子」テーブルはこれを継承します。
このテーブルにデータは含まれません。
子テーブルに同じように適用されるのでなければ、このテーブルにチェック制約を定義しないでください。
このテーブル上にインデックスや一意性制約を定義することにも意味はありません。
以下の例では、rootテーブルは最初に定義したのと同じmeasurementテーブルです。



CREATE TABLE measurement (
    city_id         int not null,
    logdate         date not null,
    peaktemp        int,
    unitsales       int
);


        

	

いくつかの「子」テーブルを作成し、それぞれrootテーブルを継承するものにします。
通常、これらのテーブルはrootから継承したものに列を追加しません。
宣言的パーティショニングの場合と同じく、これらのテーブルはすべての点で普通のPostgreSQL™のテーブル（あるいは外部テーブル）と同じです。
        



CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
...
CREATE TABLE measurement_y2007m11 () INHERITS (measurement);
CREATE TABLE measurement_y2007m12 () INHERITS (measurement);
CREATE TABLE measurement_y2008m01 () INHERITS (measurement);


        

	

子テーブルに、重なり合わないテーブル制約を追加し、各テーブルに許されるキー値を定義します。
        


典型的な例は次のようなものです。


CHECK ( x = 1 )
CHECK ( county IN ( 'Oxfordshire', 'Buckinghamshire', 'Warwickshire' ))
CHECK ( outletID >= 100 AND outletID < 200 )



制約により、異なる子テーブルで許されるキー値に重なりがないと保証されるようにします。
よくある誤りは、次のような範囲制約を設定することです。


CHECK ( outletID BETWEEN 100 AND 200 )
CHECK ( outletID BETWEEN 200 AND 300 )



キー値200がどちらの子テーブルに属するか明らかではないため、これは誤っています。
代わりにこの方法で範囲を定義すべきです。



CREATE TABLE measurement_y2006m02 (
    CHECK ( logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01' )
) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
    CHECK ( logdate >= DATE '2006-03-01' AND logdate < DATE '2006-04-01' )
) INHERITS (measurement);

...
CREATE TABLE measurement_y2007m11 (
    CHECK ( logdate >= DATE '2007-11-01' AND logdate < DATE '2007-12-01' )
) INHERITS (measurement);

CREATE TABLE measurement_y2007m12 (
    CHECK ( logdate >= DATE '2007-12-01' AND logdate < DATE '2008-01-01' )
) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
    CHECK ( logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01' )
) INHERITS (measurement);


        

	

各子テーブルについて、キー列にインデックスを作成し、またその他のインデックスも必要に応じて作成します。


CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);
CREATE INDEX measurement_y2007m11_logdate ON measurement_y2007m11 (logdate);
CREATE INDEX measurement_y2007m12_logdate ON measurement_y2007m12 (logdate);
CREATE INDEX measurement_y2008m01_logdate ON measurement_y2008m01 (logdate);


        

	

アプリケーションでINSERT INTO measurement ...を実行することができ、そのときにデータが適切な子テーブルにリダイレクトされることが望ましいです。
rootテーブルに適当なトリガ関数を追加することでそのような設定にできます。
データが最後の子テーブルにしか追加されないなら、次のような非常に単純なトリガ関数を使うことができます。



CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
    INSERT INTO measurement_y2008m01 VALUES (NEW.*);
    RETURN NULL;
END;
$$
LANGUAGE plpgsql;


        


関数を作成した後で、このトリガ関数を呼ぶトリガを作成します。



CREATE TRIGGER insert_measurement_trigger
    BEFORE INSERT ON measurement
    FOR EACH ROW EXECUTE FUNCTION measurement_insert_trigger();




常に現在の子テーブルに挿入するようにするためには、毎月、トリガ関数を再定義しなくてはいけません。
しかし、トリガ定義を更新する必要はありません。
        


データを挿入したら、サーバが行を追加すべき子テーブルを自動的に決定するようにしたいかもしれません。
これは以下のようなもっと複雑なトリガ関数を作成することにより可能です。



CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
    IF ( NEW.logdate >= DATE '2006-02-01' AND
         NEW.logdate < DATE '2006-03-01' ) THEN
        INSERT INTO measurement_y2006m02 VALUES (NEW.*);
    ELSIF ( NEW.logdate >= DATE '2006-03-01' AND
            NEW.logdate < DATE '2006-04-01' ) THEN
        INSERT INTO measurement_y2006m03 VALUES (NEW.*);
    ...
    ELSIF ( NEW.logdate >= DATE '2008-01-01' AND
            NEW.logdate < DATE '2008-02-01' ) THEN
        INSERT INTO measurement_y2008m01 VALUES (NEW.*);
    ELSE
        RAISE EXCEPTION 'Date out of range.  Fix the measurement_insert_trigger() function!';
    END IF;
    RETURN NULL;
END;
$$
LANGUAGE plpgsql;




トリガ定義は前と同じです。
それぞれのIFテストを子テーブルのCHECK制約と正確に一致させなければならないことに注意してください。
        


この関数は単一月の場合より複雑になりますが、頻繁に更新する必要はありません。なぜなら条件分岐を前もって追加しておくことが可能だからです。
        
注記


実際には、ほとんどの挿入が一番新しい子テーブルに入る場合は、その子を最初に検査することが最善です。
簡単にするため、この例でのほかの部分と同じ順番でのトリガのテストを示しました。
         



挿入を適切な子テーブルにリダイレクトする別の方法は、rootテーブルにトリガではなくルールを設定することです。
例えば次のようにします。



CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE
    ( logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01' )
DO INSTEAD
    INSERT INTO measurement_y2006m02 VALUES (NEW.*);
...
CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE
    ( logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01' )
DO INSTEAD
    INSERT INTO measurement_y2008m01 VALUES (NEW.*);




ルールはトリガに比べるとかなり大きなオーバーヘッドがありますが、このオーバーヘッドは一つの問い合わせに対して一度だけで行ごとではないので、この方法にも一括挿入の状況では利点があります。
ただし、ほとんどの場合はトリガを使う方法の方が良いパフォーマンスを得られます。
        


COPYはルールを無視することに注意してください。
データの挿入にCOPYを使いたい場合は、rootではなく正しい子テーブルにコピーする必要があります。
トリガであればCOPYでも起動されるので、トリガを使う方法であれば通常通りに使用できます。
        


ルールを使う方法のもう一つの欠点は、ルールの集合が挿入日付に対応しきれていない場合に、強制的にエラーにする簡単な方法がないことです。
この場合、データは警告などを出すことなくrootテーブルに入ります。
        

	

設定パラメータconstraint_exclusionがpostgresql.confで無効にされないようにしてください。
他の子テーブルが不要にアクセスされるかもしれません。
        




     


以上のように、複雑なテーブルの階層はたくさんのDDLが必要となります。
上記の例では、毎月新しい子テーブルを作成することになりますが、必要となるDDLを自動的に生成するスクリプトを書くのが賢明です。
     

継承パーティショニングの保守





古いデータを高速に削除するには、不要になった子テーブルを単に削除します。


DROP TABLE measurement_y2006m02;


     


子テーブルを継承階層テーブルから削除するものの、それ自体をテーブルとしてアクセスできるようにするには、次のようにします。



ALTER TABLE measurement_y2006m02 NO INHERIT measurement;


    


新しいデータを扱う新しい子テーブルを追加するには、上で最初の子テーブルを作成したときと同じように空の子テーブルを作成します。



CREATE TABLE measurement_y2008m02 (
    CHECK ( logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01' )
) INHERITS (measurement);




あるいは、新たな子テーブルをテーブル階層に追加する前に作成してデータ投入したい場合もあるでしょう。
これは、親テーブルのクエリから見えるようになる前にデータのロード、確認、変換できるでしょう。



CREATE TABLE measurement_y2008m02
  (LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS);
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
   CHECK ( logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01' );
\copy measurement_y2008m02 from 'measurement_y2008m02'

-- その他のデータ準備操作を行うこともあります。
ALTER TABLE measurement_y2008m02 INHERIT measurement;


    

警告





継承を使用して実装したパーティショニングには以下の注意事項があります。
     
	

すべてのCHECK制約が相互に排他的であることを自動的に確認する手段はありません。
各子テーブルを手作業で作成するよりも、子テーブルを生成し、関連オブジェクトを作成、更新するコードを作成するのが安全でしょう。
       

	

インデックスと外部キー制約は継承上の子ではなく、単一テーブルに適用されます。したがってそれらは警告に気を付ける必要があります。
       

	

ここで示した方法は、行のキー列の値が変わらないか、あるいは、少なくとも他のパーティションへの移動が必要になるような変更はないということを前提としています。
そのような変更をしようとするUPDATEはCHECK制約のためにエラーになります。
このような場合を処理できる必要があるなら、子テーブルに適切なUPDATEトリガを設定することもできますが、構造の管理がずっと複雑になります。
       

	

手動でのVACUUMコマンドおよびANALYZEコマンドは、すべての継承の子テーブルを自動的に処理します。
これを望まない場合は、ONLYキーワードを使用できます。
次のようなコマンドは、


ANALYZE ONLY measurement;



rootテーブルしか処理しません。
       

	

ON CONFLICT句のあるINSERT文は恐らく期待通りに動作しないでしょう。
ON CONFLICTの動作は対象となる指定リレーション上での一意性制約違反の場合にのみ発生するもので、その子リレーションの場合には発生しないからです。
       

	

アプリケーションがパーティショニングのスキームについて明示的に意識しているのでなければ、トリガまたはルールで行を適切な子テーブルに振り向ける必要があります。
トリガを書くのは複雑であり、また宣言的パーティショニングによって内部的に実行されるタプルの振り向けよりずっと遅いでしょう。
       




    


パーティション除去





パーティション除去は、宣言的パーティショニングテーブルに対するパフォーマンスを向上させる問い合わせの最適化技術です。
例えば、



SET enable_partition_pruning = on;                 -- the default
SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';




パーティション除去がなければ、上記の問い合わせはmeasurementテーブルの各パーティションをスキャンするでしょう。
パーティション除去が有効になっているとき、プランナはそれぞれのパーティションの定義を検証し、パーティションが問い合わせのWHEREに一致する行を含んでいないためにスキャンされる必要が無いことを証明します。
プランナはこれを証明すると、問い合わせ計画からそのパーティションを除外（除去）します。
   


EXPLAINコマンドと設定パラメータenable_partition_pruning を使用することによって、パーティションの除去をした計画とそうでない計画の違いを明らかにすることを可能とします。
この種類のテーブル設定に対する典型的な最適化されない計画は以下のようになります。


SET enable_partition_pruning = off;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';
                                    QUERY PLAN
-------------------------------------------------------------------​----------------
 Aggregate  (cost=188.76..188.77 rows=1 width=8)
   ->  Append  (cost=0.00..181.05 rows=3085 width=0)
         ->  Seq Scan on measurement_y2006m02  (cost=0.00..33.12 rows=617 width=0)
               Filter: (logdate >= '2008-01-01'::date)
         ->  Seq Scan on measurement_y2006m03  (cost=0.00..33.12 rows=617 width=0)
               Filter: (logdate >= '2008-01-01'::date)
...
         ->  Seq Scan on measurement_y2007m11  (cost=0.00..33.12 rows=617 width=0)
               Filter: (logdate >= '2008-01-01'::date)
         ->  Seq Scan on measurement_y2007m12  (cost=0.00..33.12 rows=617 width=0)
               Filter: (logdate >= '2008-01-01'::date)
         ->  Seq Scan on measurement_y2008m01  (cost=0.00..33.12 rows=617 width=0)
               Filter: (logdate >= '2008-01-01'::date)




一部のパーティション、もしくはすべてのパーティションで、テーブル全体に対するシーケンシャルスキャンではなく、インデックススキャンが使用される可能性があります。
しかしここで重要なことは、この問い合わせに対する回答のために古いパーティションをスキャンする必要はまったく無いということです。
パーティション除去を有効にしたとき、同じ回答を返す計画で、大幅に安価なものを得ることができます。


SET enable_partition_pruning = on;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';
                                    QUERY PLAN
-------------------------------------------------------------------​----------------
 Aggregate  (cost=37.75..37.76 rows=1 width=8)
   ->  Seq Scan on measurement_y2008m01  (cost=0.00..33.12 rows=617 width=0)
         Filter: (logdate >= '2008-01-01'::date)


   


パーティション除去はパーティションキーによって暗黙的に定義された制約のみで動作し、インデックスの有無では動作しないことに注意してください。
よってキー列のインデックスを定義することは必要ではありません。
あるパーティションでインデックスが必要かどうかは、パーティションをスキャンする問い合わせが通常はパーティションの大部分をスキャンするのか、あるいは小さな部分をスキャンするのかによります。
インデックスは後者において役立ちますが、前者では役立ちません。
   


パーティション除去は与えられた問い合わせの計画時だけでなく、問い合わせの実行時にも可能です。
問い合わせの計画時、句が値のわからない式を含むときにより多くのパーティションを除去できるため便利です。
例えば、PREPARE文中に定義されたパラメータや、副問い合わせから取得される値の利用、ネステッドループ結合の内側でパラメータ化された値の利用です。
実行中のパーティション除去は、次のいずれかの時点で可能です。

    
	

問い合わせ計画の初期化時。
パーティション除去は、パラメータの値が分かる実行の初期化段階時に可能です。
この段階で除去されたパーティションは、問い合わせのEXPLAINやEXPLAIN ANALYZE中に姿を見せることはないでしょう。
EXPLAIN出力中に「Subplans removed」プロパティを観察することによってこの段階で除去されるパーティションの数を特定することが可能です。
問い合わせプランナは、計画に含まれるすべてのパーティションに対してロックを取得します。
ただし、エグゼキュータがキャッシュされた計画を使用する場合、ロックは、実行の初期化段階時にパーティション除去が行われた後に残るパーティション、つまりEXPLAINの出力に表示されるパーティションでのみ取得され、「Subplans Removed」プロパティで参照されるパーティションには取得されません。
      

	

問い合わせ計画の実行時。
パーティション除去では実際に問い合わせの実行をする際にのみ分かる値を用いてパーティションを取り除くことも同様に可能でしょう。
これは、副問い合わせからの値やネステッドループ結合でパラメータ化されたような実行時のパラメータからの値を含みます。
それらのパラメータの値は問い合わせの実行時に何回も変わるかもしれないため、パーティション除去はパーティション除去に使われる実行パラメータの値が変わるたびに行われます。
この段階で除去されたパーティションを特定するには、EXPLAIN ANALYZE出力中のloopsプロパティの慎重な調査が必要です。
異なるパーティションに対応するサブプランは、それぞれ実行時に除去された回数に応じて異なる値を持っているかもしれません。
毎回パーティションが除去される場合、一部は(never executed)と表示されるでしょう。
      




   


パーティション除去はenable_partition_pruning設定を使うことにより無効化できます。
   

パーティショニングと制約による除外





制約による除外はパーティション除去と同様に問い合わせ最適化技術です。
主に従来の継承方法を使用して実装されたパーティショニングのために使用されると同時に
宣言的パーティショニングを含む他の目的に使うことができます。
   


各テーブルの名前の付いたCHECK制約を使用すること（一方でパーティション除去は宣言的パーティショニングの場合にのみ存在するテーブルのパーティション境界を使用します）を除いて、制約による除外はパーティション除去と極めて同様な方法で動作します。
その他の違いは、制約による除外は計画時にのみ適用され実行時にパーティションの削除を試しません。
   


制約による除外はCHECK制約を使用しているためパーティション除去と比べて遅いですが、ときどき利点として使うことができます。
なぜなら、内部のパーティション境界に加えて宣言的パーティションテーブルにも制約は定義できるため、制約による除外は問い合わせ計画から追加のパーティションを取り除けるかもしれません。
   


実のところ、constraint_exclusionのデフォルト（かつ推奨）の設定は、onでもoffでもなく、partitionという中間の設定です。
これによりこの技法は、継承パーティションテーブルに対して動作することになる問い合わせのみに適用されるようになります。
on設定にすると、プランナは、効果のなさそうな単純な問い合わせを含め、すべての問い合わせでCHECK制約を検証します。
   


制約による除外には以下の注意事項が適用されます。

   
	

問い合わせの実行中にも適用できるパーティション除去とは違い、制約による除外は問い合わせ計画時にのみ適用されます。
     

	

制約による除外は問い合わせのWHERE句が定数（または外部から供給されたパラメータ）を含んでいたときにのみ動作します。例えば、CURRENT_TIMESTAMPのような非immutable関数に対する比較は、関数の結果値がどの子テーブルに該当するかを実行時にプランナが知ることが出来ないため、最適化できません。
     

	

パーティショニングの制約を簡単にしておいてください。そうしないとプランナは、子テーブルを使う必要がないことを立証できないでしょう。
前述の例で示したとおり、リストパーティショニングのために簡単な等号条件を使用してください。また範囲パーティショニングのために簡単な範囲テストを使用してください。
手っ取り早い良い方法は、パーティショニングの制約がパーティショニング列とB-treeインデックス作成可能な演算子を用いた定数の比較のみを含んでいることです。
なぜならパーティションキーにはB-treeでインデックス可能な列だけが使用できるからです。
     

	

親テーブルのすべての子テーブルのすべての制約は、制約による除外で試験されます。
よって子テーブルの数が多くなれば問い合わせ計画の時間がかなり増加します。
そのため、従来の継承を基にしたパーティショニングはおそらく100個までの子でうまく動作します。
何千もの子テーブルを使用することは避けてください。
     




   

宣言的パーティショニングのベストプラクティス





不十分な設計によってクエリ計画および実行性能に負の影響がでる可能性があるため
テーブルのパーティション方法の選択は注意して行う必要があります。
   


最も重要な設計の決定の一つは、データを分割するための一つまたは複数の列です。
大抵最適な選択は、パーティションテーブル上で実行されるクエリのWHERE句に最もよく現れる列または列の組み合わせによって分割することです。
パーティション範囲制約と一致し互換性があるWHERE句の項目は、不要なパーティションを取り除く為に使うことができます。
しかしながら、PRIMARY KEYもしくはUNIQUE制約の条件により、他の決定を強いられるかもしれません。
不要なデータの削除も同様にパーティショニング戦略を計画する際に考えるべき要素です。
すべてのパーティションはとても早くデタッチすることができるため、一度に削除される全てのデータが単一のパーティション中に設置されるようにパーティション戦略を設計することが有益かもしれません。
   


テーブルを分割するパーティションの目標数を選択することもまた需要な決定です。
十分なパーティションがないとインデックスは大きくなりデータの局所性が貧しいままであるかもしれず、キャッシュヒット率が低い結果となる可能性があります。
しかしながら非常に多くのパーティションにテーブルを分割することもまた問題の原因となります。
以下に詳しく説明するように、非常に多くのパーティションは、クエリの計画時間が長くなり、クエリの計画および実行の両方の際にメモリ消費が高くなることを意味します。
テーブルを分割する方法を選択するとき、 将来に起こる変化を考慮することもまた重要です。
例えば、顧客毎に一つのパーティションを用意することを選択し、現在大規模な顧客が少数いる場合、数年以内に小規模な顧客を多数代わりに見つける可能性を含めて考慮します。
この場合、LISTによって分割しデータの分割が実用的な数以上に顧客の数が増加しないことを期待するより、HASHによって分割し妥当なパーティション数にすることを選択する方が良いかもしれません。
   


サブパーティショニングは、他のパーティションより巨大になると想定されるパーティションをさらに分割するために役立ちます。
他の選択は、パーティションキー中に複数の列を含む範囲パーティショニングを使うことです。
これらのどちらも容易に大量のパーティション数をもたらす結果になるので、自制することをお勧めします。
   


クエリの計画および実行時のパーティショニングのオーバーヘッドを考慮することが重要です。
典型的なクエリではクエリプランナが少数のパーティションを除いて残り全てのパーティションを除外できるという前提に立てば、クエリプランナは通常最大数千パーティションのパーティション階層を適切に操作できます。
プランナがパーティション除去を行った後に多くのパーティションが残るほど、計画時間は長くなりメモリ消費は高くなります。
大量のパーティションを持っていることについて考慮するもうひとつの理由は、特に多くのセッションが大量のパーティションを参照する場合、ある期間にサーバのメモリ消費が著しく増加するかもしれないことです。
その理由は、各パーティションは参照される各セッションのローカルメモリにメタデータを読み込む必要があるためです。
   


データウェアハウスタイプのワークロードでは、OLTPタイプのワークロードより大量のパーティションを使用するのが当然です。
通常、データウェアハウスでは処理時間の大半をクエリ実行に費やすため、クエリ計画時間はあまり問題になりません。
2種類のワークロードのいずれかでも、大量のデータを再パーティショニングすることは非常に遅いため、初期に適切な決定を下すことが重要です。
計画したワークロードのシミュレーションは、パーティショニング戦略を最適化するためにしばしば役立ちます。
単純に多数のパーティションがより少数のパーティションより優れていることや、少数のパーティションが多数のパーティションより優れていることを前提としないでください。
   


外部データ





PostgreSQL™はSQL/MED仕様を部分的に実装しており、PostgreSQLの外部にあるデータに対して標準的なSQLクエリでアクセスできます。このようなデータは外部データと呼ばれます。(この用語をデータベース内の制約である外部キーと混同しないように気をつけてください。)
   


外部データは外部データラッパーの手助けによりアクセスされます。外部データラッパーは外部データソースと通信できるライブラリであり、接続確立やデータ取得といった詳細を隠蔽します。contribモジュールとして、いくつかの外部データラッパーが利用できます; 付録F 追加で提供されるモジュールと拡張を参照してください。
その他の種類の外部データラッパーは外部製品として見つかるでしょう。既存の外部データラッパーがあなたの用途に合わない場合、独自のラッパーを書くことができます。58章外部データラッパーの作成を参照してください。
   


外部データにアクセスするには、特定の外部データソースへの接続方法をそれを支える外部データラッパーが使用するオプションの組み合わせによって定義する外部サーバオブジェクトを作成する必要があります。その後、外部データの構造を定義する外部テーブルを少なくともひとつ作成する必要があります。外部テーブルは通常のテーブルと同様にクエリの中で使用できますが、外部テーブルはPostgreSQLサーバに格納領域を持ちません。
外部テーブルが使われるたびに、PostgreSQL™は外部ソースからデータを取得することや、更新コマンドの場合には外部ソースへデータを送信することを外部データラッパーに依頼します。
   


外部データへのアクセスは外部データソースからの認証を必要とする場合があります。この情報は、現在のPostgreSQL™ロールに基づいてユーザ名やパスワードといった追加のデータを提供できるユーザマッピングによって提供できます。
   


追加情報は、CREATE FOREIGN DATA WRAPPER(7)、CREATE SERVER(7)、CREATE USER MAPPING(7)、CREATE FOREIGN TABLE(7)、IMPORT FOREIGN SCHEMA(7)を参照してください。
   

その他のデータベースオブジェクト





テーブルにはデータが保持されていますので、リレーショナルデータベース構造ではテーブルが中心オブジェクトとなります。
しかし、データベースにはテーブルの他にもオブジェクトが存在します。
様々なオブジェクトを作成して、データの使用および管理をより効果的に行うことができます。
本章ではこれらのオブジェクトについては説明しませんが、どのようなものがあるかをここに列挙します。
  
	

ビュー
    

	

関数、プロシージャおよび演算子
    

	

データ型およびドメイン
    

	

トリガおよび書き換えルール
    





これらのトピックに関する詳細な情報はパートV「サーバプログラミング」にあります。
  

依存関係の追跡





外部キー制約や、ビュー、トリガ、関数などを使ったテーブルが多数含まれるような複雑なデータベース構造を作成すると、ユーザはそれらのオブジェクト間の暗黙的な依存関係のネットワークも作成していることになります。
例えば、外部キー制約を持つテーブルは、参照するテーブルに依存しています。
  


データベース構造全体の整合性を保つため、PostgreSQL™は、他のオブジェクトと依存関係にあるオブジェクトの削除を許可しません。
例えば、「外部キー」で検討したproductsテーブルを削除しようとしても、ordersテーブルがこのテーブルに依存しているので、以下のようなエラーメッセージが現れます。


DROP TABLE products;

ERROR:  cannot drop table products because other objects depend on it
DETAIL:  constraint orders_product_no_fkey on table orders depends on table products
HINT:  Use DROP ... CASCADE to drop the dependent objects too.



エラーメッセージには役に立つヒントが含まれています。
以下のようにすると、依存する全てのオブジェクトを1つずつ削除する手間を省けます。


DROP TABLE products CASCADE;



これで、全ての依存オブジェクトが削除され、それらに依存するいかなるオブジェクトも削除されます。
この場合、ordersテーブルは削除されずに外部キー制約のみが削除されます。
外部キー制約に依存するものが何もないので、処理がそこで停止します。
（DROP ... CASCADEが何を行うかを知りたい場合は、CASCADEを指定せずにDROPを実行してDETAIL出力を読んでください。）
  


PostgreSQL™では、ほぼ全てのDROPコマンドにCASCADEを指定できます。
もちろん、どのような依存関係が存在するかは、オブジェクトの種類によって異なります。
また、CASCADEではなくRESTRICTと記述することもできます。
これは、他のオブジェクトが依存しているオブジェクトの削除を禁止するというデフォルトの振舞いになります。
  
注記


標準SQLでは、DROPコマンドでRESTRICTまたはCASCADEのいずれかを指定する必要があります。
実際にこの決まり通りのデータベースシステムはありませんが、デフォルトがRESTRICTであるか、CASCADEであるかは、システムによって異なります。
   



DROPコマンドで複数のオブジェクトを羅列した場合、CASCADEは、指定されたグループの外部に依存関係が存在する時のみ要求されます。
例えば、DROP TABLE tab1, tab2と記述したとき、tab2からtab1への外部キー参照の存在は、CASCADEの指定がコマンド成功に必要とされるということを意味しません。
  


ユーザ定義の関数またはプロシージャでは、本体が文字列リテラルとして定義されている場合、PostgreSQL™は引数や結果の型など、関数の外部に可視な属性に関連した依存性については追跡しますが、関数の実体を検査することによってしかわからない依存性は追跡しません。
例えば以下の状況を考えてみます。



CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow',
                             'green', 'blue', 'purple');

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
  'SELECT note FROM my_colors WHERE color = $1'
  LANGUAGE SQL;




（SQL言語による関数についての説明は「問い合わせ言語（SQL）関数」を参照してください。）
PostgreSQL™は関数get_color_noteが型rainbowに依存することは認識します。
例えば、その型を削除すると、関数の引数の型が定義されなくなるため、関数の削除も強制されます。
しかし、PostgreSQL™はget_color_noteがテーブルmy_colorsに依存するとは考えません。
従って、そのテーブルが削除されても関数は削除されません。
この方法には不利な点もありますが、同時に利益もあります。
テーブルがない状態で関数を実行すればエラーを引き起こしますが、それでも関数はある意味で、有効な状態になっています。
そのため、同じ名前の新しいテーブルを作成することで、関数を再び動作させることができます。
  


一方、SQL言語で記述されている関数またはプロシージャでは、本体が標準SQLスタイルで記述されている場合、本体は関数定義時に解析され、パーサによって認識された全ての依存関係が格納されます。
したがって、上記の関数を以下のように記述すると



CREATE FUNCTION get_color_note (rainbow) RETURNS text
BEGIN ATOMIC
  SELECT note FROM my_colors WHERE color = $1;
END;




関数のmy_colorsテーブルへの依存関係がDROPによって認識され、強制されます。
  

第6章 データ操作





前章では、データを保持するためのテーブルやその他の構造の作成方法について説明しました。
今度は、テーブルにデータを挿入してみましょう。
本章では、テーブルのデータの挿入、更新、削除の方法について説明します。
次章ではいよいよ、ずっと見つけられなかったデータをデータベースから抽出する方法について説明します。
 
データの挿入





テーブルは、作成時にはデータを含んでいません。
データベースを利用価値のあるものにするには、まずデータを挿入する必要があります。
データは一度に1行ずつ挿入されます。
ユーザは1つのコマンドで複数行を挿入することもできますが、完全な行でないものを挿入することはできません。
列の値が一部しかわかっていない場合でも、1行全体を作成しなければなりません。
  


新規の行を作成するには、INSERT(7)コマンドを使用します。このコマンドは、テーブル名と列の値を必要とします。
例えば、5章データ定義のproductsテーブルの例で考えてみましょう。


CREATE TABLE products (
    product_no integer,
    name text,
    price numeric
);



行を挿入するためのコマンド例は以下のようになります。


INSERT INTO products VALUES (1, 'Cheese', 9.99);



データ値は、テーブル内で列が存在する順序に従ってカンマで区切って列挙されています。
通常、データ値はリテラル（定数）ですが、スカラ式も使用できます。
  


上記の構文には、テーブル内の列の順序を知っていなければならないという欠点があります。
これを避けるには、列を明示的に列挙する方法があります。
例えば、以下の2つのどちらのコマンドでも上記のコマンドと同等の効果が得られます。


INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99, 1);



多くのユーザは常に列名を列挙する方法が優れていると考えています。
  


値がわからない列については、省略することができます。
省略した列には、デフォルト値が挿入されます。
以下に例を示します。


INSERT INTO products (product_no, name) VALUES (1, 'Cheese');
INSERT INTO products VALUES (1, 'Cheese');



後者はPostgreSQL™の拡張機能です。
これによって、列には左から順に指定されただけの値が挿入され、残りにはデフォルト値が挿入されます。
  


明確にするため、列ごと、あるいは行全体についてデフォルト値を明示的に要求することもできます。


INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', DEFAULT);
INSERT INTO products DEFAULT VALUES;


  


単一コマンドで複数行を挿入することができます。


INSERT INTO products (product_no, name, price) VALUES
    (1, 'Cheese', 9.99),
    (2, 'Bread', 1.99),
    (3, 'Milk', 2.99);


  


また、問い合わせの結果（0行か、1行か、複数行かもしれない）を挿入することもできます。


INSERT INTO products (product_no, name, price)
  SELECT product_no, name, price FROM new_products
    WHERE release_date = 'today';



これにより、挿入する行を計算するためにSQLの問い合わせ機構（7章問い合わせ）の全機能が提供されます。
  
ヒント


一度に大量のデータを挿入する場合はCOPY(7)コマンドの使用を検討してください。
INSERT(7)コマンドほどの柔軟性はありませんが、より効率的です。
大量のデータをロードする性能を向上することについて、詳細は「データベースへのデータ投入」を参照してください。
   



データの更新





既にデータベースに入っているデータを変更することを「更新(update)する」と言います。
個別の行、テーブル内の全ての行、あるいは全ての行のサブセットを更新できます。
各列は、他の列に影響を及ぼすことなく個別に更新できます。
  


既存の行の更新を行うにはUPDATE(7)コマンドを使用してください。
その際には3つの情報が必要となります。
   
	更新するテーブルと列の名前

	更新後の列の値

	更新する行




  


5章データ定義で説明した、一般にSQLでは行に対して一意のIDを指定しないことを思い出してください。
従って、どの行を更新するかを直接指定できない場合があります。
その代わりに、更新される行が満たすべき条件を指定します。
テーブルに主キーを設定している場合に限り（ユーザが宣言したのかどうかには関係なく）、主キーと一致する条件を選択することで確実に個別の行を指定できます。
グラフィカルなデータベースアクセスツールは、この方法を使用して行を個別に更新することを可能にしています。
  


例えば、値段が5である全ての商品の値段を10に更新するには、以下のコマンドを使用します。


UPDATE products SET price = 10 WHERE price = 5;



これによって更新される行の数はゼロであるかもしれませんし、1つ、あるいは多数であるかもしれません。
一致する行がない条件を指定して更新しようとしてもエラーにはなりません。
  


では、上記のコマンドの詳細を見てみましょう。
最初はUPDATEキーワードで、これにテーブル名が続きます。
いつも通り、テーブル名はスキーマで修飾することもできます。
修飾しない場合はパス内から検索されます。
次にSETキーワードがあり、これに列名、等号、そして更新後の列値が続きます。
更新後の列値は、定数だけでなく任意のスカラ式で表すことができます。
例えば、全ての商品の価格を10%上げるには以下のようにします。


UPDATE products SET price = price * 1.10;



このように、新しい値を表す式で行の中の古い値を参照することもできます。
ここでは、WHERE句を省略しました。
WHERE句を省略すると、テーブル内の全ての行が更新されます。
省略しない場合は、WHERE条件に適合する行のみが更新されます。
SET句内の等号が代入を表すのに対し、WHERE句内の等号は比較を表すことに注意してください。
ただし、これによって曖昧さが生じることはありません。
もちろん、必ずしもWHERE条件が等式でなければならないということはありません。
その他にも様々な演算子を使用することができます（9章関数と演算子を参照）。
ただし、式の評価結果は論理値でなければなりません。
  


UPDATEコマンドのSET句に複数の代入式を列挙して、複数の列を更新することもできます。
例を示します。


UPDATE mytable SET a = 5, b = 3, c = 1 WHERE a > 0;


  

データの削除





これまで、テーブルにデータを追加する方法と、データを変更する方法について説明してきました。
残っているのは不要になったデータを削除する方法です。
データの追加が行単位でしか行えないのと同様、削除の場合も、行全体をテーブルから削除するしかありません。
前節で、SQLでは個々の行を直接指定する方法がないということを説明しました。
ですから行の削除の場合も、削除対象となる行の条件を指定することでしかできません。
テーブルに主キーが設定されている場合は、その行を正確に指定できます。
しかし、条件を満たす複数の行、あるいは、テーブル内の全ての行を一度に削除することもできます。
  


行を削除するには、DELETE(7)コマンドを使用します。
構文はUPDATE(7)コマンドによく似ています。
例えば、productsテーブルから価格が10である全ての行を削除するには以下のようにします。


DELETE FROM products WHERE price = 10;


  


単に次のようにすると、


DELETE FROM products;



テーブル内の全ての行が削除されますので注意してください！
プログラマに対する警告です。
  

更新された行のデータを返す





行が更新されるときに、その行のデータを取得できると便利なことがあります。
INSERT、UPDATE、DELETE、MERGEの各コマンドは、いずれもオプションのRETURNING句によりそれが可能となっています。
RETURNINGを使うことで、行を取得するために余分なデータベースへの問い合わせを行うことを避けられ、それ以外の方法で更新された行を確実に特定するのが難しい場合には、これは特に貴重です。
  


RETURNING句で使用できる項目はSELECTコマンドの出力リスト（「選択リスト」参照）と同じです。
コマンドの対象となっているテーブルの列名、あるいはそれらの列を使った値の式を入れることができます。
よく使われる省略記法はRETURNING *で、これは対象テーブルのすべての列を順に返します。
  


INSERTでは、RETURNINGで利用できるデフォルトのデータは、挿入された通りの行です。
単純な挿入では、クライアントが提供したデータを単に繰り返すだけになりますから、あまり役には立ちません。
しかし、計算されたデフォルト値に依存しているときは、これは非常に便利なことがあります。
例えばserialの列を使って一意識別子を提供している場合、以下のようにRETURNINGによって、新しい行に割り当てられたIDを返すことができます。


CREATE TABLE users (firstname text, lastname text, id serial primary key);

INSERT INTO users (firstname, lastname) VALUES ('Joe', 'Cool') RETURNING id;



また、RETURNING句はINSERT ... SELECTでも非常に役に立ちます。
  


UPDATEでは、RETURNINGで利用できるデフォルトのデータは、更新された行の新しい内容です。
例を示します。


UPDATE products SET price = price * 1.10
  WHERE price <= 99.99
  RETURNING name, price AS new_price;


  


DELETEでは、RETURNINGで利用できるデフォルトのデータは、削除された行の内容です。
例を示します。


DELETE FROM products
  WHERE obsoletion_date = 'today'
  RETURNING *;


  


MERGEでは、RETURNINGで利用できるデフォルトのデータは、元となる行の内容と挿入、更新、または削除された対象行の内容です。
元となるものと対象が多くの同じ列を持つことは非常に一般的であるため、RETURNING *を指定すると、多くの重複した列が発生する可能性があります。そのため、元となる行または対象行だけを返すように修飾するのがより有用なことがしばしばあります。
例を示します。


MERGE INTO products p USING new_products n ON p.product_no = n.product_no
  WHEN NOT MATCHED THEN INSERT VALUES (n.product_no, n.name, n.price)
  WHEN MATCHED THEN UPDATE SET name = n.name, price = n.price
  RETURNING p.*;


  


これらの各コマンドでは、変更された行の新旧の内容を明示的に返すこともできます。
例を示します。


UPDATE products SET price = price * 1.10
  WHERE price <= 99.99
  RETURNING name, old.price AS old_price, new.price AS new_price,
            new.price - old.price AS price_change;



この例では、new.priceと書くことは単にpriceと書くことと同じですが、意味をより明確にします。
  


古い値と新しい値を返すこの構文は、INSERT、UPDATE、DELETE、およびMERGEコマンドで使用できますが、通常、古い値はINSERTに対してNULLになり、新しい値はDELETEに対してNULLになります。
ただし、これらのコマンドに対しても有用な状況があります。
例えば、ON CONFLICT DO UPDATE句を持つINSERTでは、競合する行に対して古い値は非NULLになります。
同様に、書き換えルールによってDELETEがUPDATEになった場合、新しい値は非NULLになる可能性があります。
  


対象のテーブルにトリガ（37章トリガ）がある場合、RETURNINGで利用できるデータは、トリガで更新された行です。
従って、トリガによって計算された列を検査するのもRETURNINGの一般的な利用方法の一つです。
  

第7章 問い合わせ





前章までで、テーブルを作成し、これにデータを挿入し、さらに挿入したデータを操作する方法について説明しました。
本章では、データベースからデータを取り出す方法について説明します。
 
概要





データベースからデータを取り出す処理、または、取り出すためのコマンドを問い合わせと言います。
SQLでは、SELECTコマンドを、問い合わせを指定するために使います。
SELECTコマンドの一般的な構文は次の通りです。


[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]



以降の節では、選択リスト、テーブル式、並べ替えの仕様について詳細に説明します。
WITH問い合わせは、より進んだ機能のため最後で扱います。
  


単純な問い合わせの形式は次のようなものです。


SELECT * FROM table1;



table1というテーブルがあるとして、このコマンドはtable1からすべてのユーザ定義の列を全行取り出します。
（検索する方法はクライアントアプリケーションに依存します。
クライアントライブラリは、問い合わせ結果から個々の値を抽出する機能を提供する一方、例えばpsqlプログラムでは、アスキーアートで表組を画面上に表示します。）
選択リストの指定における*は、テーブル式が持つすべての列を提供することを意味します。
選択リストでは、選択可能な列の一部を選択することも、選択可能な列を使用して計算することもできます。
例えば、table1にa、b、cという名前の列がある場合（他の列があっても構いません）、以下のような問い合わせができます。


SELECT a, b + c FROM table1;



（ここではbおよびcは数値型のデータであると仮定しています。）
詳細については「選択リスト」を参照してください。
 


FROM table1は、単純な形のテーブル式で、読み込むテーブルは1つだけです。
一般にテーブル式は基本テーブルや結合そして副問い合わせなどで複雑に構成されることがあります。
しかし、以下のように、テーブル式をすべて省略し、SELECTコマンドを電卓として使用することもできます。


SELECT 3 * 4;



選択リストの式が返す結果が変化する場合、これはさらに有用です。
例えば、関数を次のように呼び出すことができます。


SELECT random();


  


テーブル式





テーブル式はテーブルを計算するためのものです。
テーブル式にはFROM句が含まれており、その後ろにオプションとしてWHERE句、GROUP BY句、HAVING句を付けることができます。
単純なテーブル式は、単にディスク上のいわゆる基本テーブルと呼ばれるテーブルを参照するだけです。
しかし複雑な式では、様々な方法で基本テーブルを修正したり、結合させて使用することができます。
  


テーブル式のオプションWHERE句、GROUP BY句、およびHAVING句は、FROM句で派生したテーブル上に対して次々に変換を実行するパイプラインを指定します。
これらの変換によって仮想テーブルが1つ生成されます。
そしてこの仮想テーブルの行が選択リストに渡され、問い合わせの出力行が計算されます。
  
FROM句





FROM句は、カンマで分けられたテーブル参照リストで与えられる1つ以上のテーブルから、1つのテーブルを派生します。


FROM table_reference [, table_reference [, ...]]




テーブル参照は、テーブル名（スキーマで修飾することもできます）、あるいは、副問い合わせ、JOINによる結合、これらの複雑な組み合わせなどの派生テーブルとすることができます。
FROM句に複数のテーブル参照がある場合、クロス結合されます（テーブルの行のデカルト積が形成されます。下記を参照）。
FROMリストの結果はWHERE句、GROUP BY句、およびHAVING句での変換対象となる中間的な仮想テーブルになり、最終的にはテーブル式全体の結果となります。
   


テーブル参照で、テーブルの継承階層の親テーブルの名前を指定すると、テーブル名の前にONLYキーワードがない場合は、テーブル参照はそのテーブルだけでなくその子テーブルに継承されたすべての行を生成します。
しかし、この参照は名前を指定したテーブルに現れる列のみを生成し、子テーブルで追加された列は無視されます。
   


テーブル名の前にONLYを記述する代わりに、テーブル名の後に*を記述して、子テーブルが含まれることを明示的に指定することができます。
子テーブルを検索するのが今は常にデフォルトの振る舞いですので、この文法を使う本当の理由はもうありません。
しかし、古いリリースとの互換性のためにサポートされています。
   
結合テーブル





結合テーブルは、2つの（実または派生）テーブルから、指定した結合種類の規則に従って派生したテーブルです。
内部結合、外部結合、およびクロス結合が使用可能です。
テーブル結合の一般的な構文は次のとおりです


T1 join_type T2 [ join_condition ]



すべての結合は、互いに結び付けたり、あるいは入れ子にしたりすることができます。
T1とT2のどちらか、あるいは両方が、結合テーブルになることがあります。
括弧でJOIN句を括ることで結合の順序を制御することができます。
括弧がない場合、JOIN句は左から右に入れ子にします。
    
結合の種類
	クロス結合
      
      

      
      
      
	
T1 CROSS JOIN T2



T1およびT2からのすべての可能な行の組み合わせ（つまりデカルト積）に対し、結合されたテーブルはT1のすべての列の後にT2のすべての列が続く行を含みます。
テーブルがそれぞれN行とM行で構成されているとすると、結合されたテーブルの行数は N * M 行となります。
       


FROM T1 CROSS JOIN T2 は FROM T1 INNER JOIN T2 ON TRUE と同じです（下記を参照）。
また FROM T1, T2 とも同じです。
        
注記


３つ以上のテーブルが現れた場合、この後者の等価性は厳密には保たれてはいません。
なぜなら、JOINはカンマより強固に結合するためです。
例えば
FROM T1 CROSS JOIN
T2 INNER JOIN T3
ON condition
は
FROM T1,
T2 INNER JOIN T3
ON condition
と同じではありません。
なぜなら最初のケースではconditionがT1を参照できますが、2番目ではできないからです。
        


       

	限定的な結合
      
      

      
      
      
	
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING ( join column list )
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2



INNERやOUTERは省略可能です。
INNERがデフォルトとなります。
LEFT、RIGHT、FULLは外部結合を意味します。
       


結合条件は、ON句かUSING句で指定するか、またはNATURAL記述で暗黙的に指定します。
結合条件は、以下で詳しく説明するように、2つの元となるテーブルのどの行が「一致するか」を決めます。
       


限定的な結合には次のものがあります。

       
	INNER JOIN（内部結合）
	

T1の各行R1に対して、T2において行R1との結合条件を満たしている各行が、結合されたテーブルに含まれます。
          

	LEFT OUTER JOIN（左外部結合）
         
         

         
         
         
	

まず、内部結合が行われます。
その後、T2のどの行との結合条件も満たさないT1の各行については、T2の列をNULL値として結合行が追加されます。
したがって、連結されたテーブルは常にT1の行それぞれに少なくとも1つの行があります。
          

	RIGHT OUTER JOIN（右外部結合）
         
         

         
         
         
	

まず、内部結合が行われます。
その後、T1のどの行の結合条件も満たさないT2の各行については、T1の列をNULL値として結合行が追加されます。
これは左結合の反対です。
結果のテーブルは、T2の行が常に入ります。
          

	FULL OUTER JOIN（完全外部結合）
	

まず、内部結合が行われます。
その後、T2のどの行の結合条件も満たさないT1の各行については、T2の列をNULL値として結合行が追加されます。
さらに、T1のどの行でも結合条件を満たさないT2の各行に対して、T1の列をNULL値として結合行が追加されます。
          




       


ON句は最も汎用的な結合条件であり、WHERE句で使われるものと同じ論理値評価式となります。
ON式の評価が真となる場合、T1およびT2の対応する行が一致します。
       


USING句は、結合の両側で結合列に同じ名前を使っているという特別な状況の利点を活かすことができる省略形です。
それは、結合テーブルが共通で持つ列名をカンマで区切ったリストから、それぞれの列の等価性を結合条件として生成します。
例えば、T1とT2をUSING (a, b)を使用して結合する場合は、ON T1.a = T2.a AND T1.b = T2.bという結合条件を生成します。
       


さらに、JOIN USINGの出力は、冗長列を抑制します。マッチした列は両方が同じ値を待つので両方を出力する必要がありません。
JOIN ON は T1 からのすべての列と、それに続く T2 からのすべての列を生成します。
JOIN USINGは指定された列のペアのそれぞれについて１つの出力（結合リストでの指定順）、続いてT1の残りの列、その後にT2の残りの列を出力します。
       

        
       
        
        

最後に、NATURALはUSINGの略記形式で、２つの入力テーブルの両方に含まれているすべての列名で構成されるUSINGリストを形成します。
USINGと同様、これらの列は出力テーブルに一度だけ現れます。
共通する列名が存在しない場合、NATURAL JOIN（自然結合）はCROSS JOIN（クロス結合）のように動作します。
       
注記


USINGは、リストされている列のみ結合するのでリレーションの列の変更から適度に安全です。
NATURALは、USINGよりもかなり危険です。
いずれかのリレーションのスキーマ変更により新しくマッチする列名が作られると、結合にその新しい列も使われるようになってしまうからです。
        






まとめとして、 以下のテーブルt1


 num | name
-----+------
   1 | a
   2 | b
   3 | c



および、テーブルt2


 num | value
-----+-------
   1 | xxx
   3 | yyy
   5 | zzz



を想定すると、以下のように様々な結合に関する結果が得られます。


=> SELECT * FROM t1 CROSS JOIN t2;
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
   1 | a    |   3 | yyy
   1 | a    |   5 | zzz
   2 | b    |   1 | xxx
   2 | b    |   3 | yyy
   2 | b    |   5 | zzz
   3 | c    |   1 | xxx
   3 | c    |   3 | yyy
   3 | c    |   5 | zzz
(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
   3 | c    |   3 | yyy
(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
 num | name | value
-----+------+-------
   1 | a    | xxx
   3 | c    | yyy
(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
 num | name | value
-----+------+-------
   1 | a    | xxx
   3 | c    | yyy
(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
   2 | b    |     |
   3 | c    |   3 | yyy
(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
 num | name | value
-----+------+-------
   1 | a    | xxx
   2 | b    |
   3 | c    | yyy
(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
   3 | c    |   3 | yyy
     |      |   5 | zzz
(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
   2 | b    |     |
   3 | c    |   3 | yyy
     |      |   5 | zzz
(4 rows)


    


ONで指定される結合条件には、結合に直接関係しない条件も含めることができます。
これは一部の問い合わせにおいては便利ですが、使用の際には注意が必要です。
例を示します。


=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num AND t2.value = 'xxx';
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
   2 | b    |     |
   3 | c    |     |
(3 rows)



WHERE句の中に制約を記述すると異なる結果になることに注意してください。


=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num WHERE t2.value = 'xxx';
 num | name | num | value
-----+------+-----+-------
   1 | a    |   1 | xxx
(1 row)



この理由はON句の中の制約は結合の前に処理され、一方WHERE句の中の制約は結合の後に処理されることによります。
これは内部結合には影響がありませんが、外部結合には大きな影響があります。
    

テーブルと列の別名





テーブルや複雑なテーブル参照に一時的な名前を付与し、問い合わせの以降の部分では、その名前を使ってテーブルや複雑なテーブル参照を利用することができます。
これをテーブルの別名と呼びます。
    


テーブルの別名を作成するには以下のようにします。


FROM table_reference AS alias



もしくは


FROM table_reference alias



ASキーワードはなくても構わないノイズです。
aliasは任意の識別子になります。
    


テーブルの別名の一般的な適用法は、長いテーブル名に短縮した識別子を割り当てて結合句を読みやすくすることです。
例を示します。


SELECT * FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;


    


現在の問い合わせに関しては、別名がテーブル参照をする時の新しい名前になります。
問い合わせの他の場所で元々の名前でテーブルを参照することはできなくなります。
よって、次の例は有効ではありません。



SELECT * FROM my_table AS m WHERE my_table.a > 5;    -- 間違い


    


テーブルの別名は主に表記を簡単にするためにあります。
しかし次のように、1つのテーブルが自分自身と結合する場合は、必須となります。


SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;


    


括弧は曖昧さをなくすために使われます。
次の例では、最初の文で2つ目のmy_tableのインスタンスにbという別名を付与し、一方、2つ目の文では結合結果に対して別名を付与しています。


SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...
SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...


    


次のような形式でテーブル別名を付けて、テーブル自身と同様にテーブルの列に一時的な名前を付けることができます。


FROM table_reference [AS] alias ( column1 [, column2 [, ...]] )



もし、実際のテーブルが持つ列よりも少ない数の列の別名が与えられる場合、残りの列は改名されません。
この構文は、自己結合あるいは副問い合わせで特に役立ちます。
    


別名がJOIN句の結果に適用される場合、別名はJOIN内で参照される元々の名を隠します。
以下に例を示します。


SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...



は有効なSQLですが、


SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c



は有効ではありません。
テーブルの別名aは、別名cの外側では参照することができません。
    

副問い合わせ





派生テーブルを指定する副問い合わせは括弧で囲む必要があります。
テーブルの別名、およびオプションで列の別名を（「テーブルと列の別名」にあるように）割り当てることができます。
例を示します。


FROM (SELECT * FROM table1) AS alias_name


    


この例はFROM table1 AS alias_nameと同じです。
副問い合わせがグループ化や集約を含んでいる場合は、単純結合にまとめることはできない、より重要な例が発生します。
    


また、副問い合わせをVALUESリストとすることもできます。


FROM (VALUES ('anne', 'smith'), ('bob', 'jones'), ('joe', 'blow'))
     AS names(first, last)



ここでも、テーブルの別名は省略できます。
VALUESリストの列に別名を付与することは省略することもできますが、付与することを勧めます。
詳細は「VALUESリスト」を参照してください。
    


標準SQLによれば、副問い合わせにはテーブル別名を指定する必要があります。
PostgreSQL™では、ASと別名を省略できますが、別のシステムに移植する可能性があるSQLコードでは、別名を書くことをお勧めします。
    

テーブル関数





テーブル関数は、基本データ型（スカラ型）、もしくは複合データ型（テーブル行）からなる行の集合を生成する関数です。
これらは、問い合わせのFROM句内でテーブル、ビュー、副問い合わせのように使用されます。
テーブル関数から返される列は、テーブル、ビュー、副問い合わせの列と同様の手順で、SELECT、JOIN、WHEREの中に含めることができます。
    


テーブル関数はROWS FROM構文を使用することで、それらの返却列を一緒に組み合わせることもできます。
このときの結果の行数は、行数が最大となる関数の結果と同じになり、少ない結果側は多い結果に合わせてnull値で埋められます。
    

function_call [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ... ])]]
ROWS FROM( function_call [, ... ] ) [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ... ])]]



WITH ORDINALITY句が指定されている場合、関数の結果の列にbigint型の列が追加されます。
この列は関数の結果の行を1から数えます。
（これは標準SQLの構文UNNEST ... WITH ORDINALITYの一般化です。）
デフォルトでは、この序数(ordinal)の列はordinalityになります。しかし別の名前をAS句を使用して別名を付与できます。
    


特別なテーブル関数UNNESTは、任意の数の配列パラメータで呼ぶことができます。
そしてそれは、対応する数の列を返し、あたかもUNNEST(「配列関数と演算子」)が各パラメータ毎にROWS FROM構文を使用して結合されているかのようになります。
    

UNNEST( array_expression [, ... ] ) [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ... ])]]



table_aliasが指定されない場合、テーブル名として関数名が使用されます。
ROWS FROM()の場合は最初の関数名が使用されます。
    


列に別名が提供されない場合、基本データ型を返す関数に対しては、列名も関数名と同じになります。
複合型を返す関数の場合は、結果の列は型の個々の属性の名前を取得します。
    


以下に数例示します。


CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
    SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
    WHERE foosubid IN (
                        SELECT foosubid
                        FROM getfoo(foo.fooid) z
                        WHERE z.fooid = foo.fooid
                      );

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);

SELECT * FROM vw_getfoo;


    


呼び出し方法に応じて異なる列集合を返すテーブル関数を定義することが役に立つ場合があります。
これをサポートするために、テーブル関数はOUTパラメータを持たないrecord擬似型を返すものと宣言することができます。
こうした関数を問い合わせで使用する場合、システムがその問い合わせをどのように解析し計画を作成すればよいのかが判断できるように、想定した行構造を問い合わせ自身内に指定しなければなりません。
この構文は次のようになります。
    

function_call [AS] alias (column_definition [, ... ])
function_call AS [alias] (column_definition [, ... ])
ROWS FROM( ... function_call AS (column_definition [, ... ]) [, ... ] )



ROWS FROM()構文を使用しない場合は、column_definitionのリストがFROM項目に取り付けることができる列の別名の代わりとなります。
列の定義内の名前は、列の別名として機能します。
ROWS FROM()構文を使用する場合は、column_definitionリストを個別に各メンバ関数に添付することができます。
またはメンバ関数が1つだけしかなく、かつWITH ORDINALITY句がない場合は、column_definitionリストを、ROWS FROM()の後ろの列別名のリストの場所に書くことができます。
    


以下の例を考えます。


SELECT *
    FROM dblink('dbname=mydb', 'SELECT proname, prosrc FROM pg_proc')
      AS t1(proname name, prosrc text)
    WHERE proname LIKE 'bytea%';



dblink(3)関数（dblinkモジュールの一部）は遠隔問い合わせを実行します。
これは任意の問い合わせで使用できるように、recordを返すものと宣言されています。
実際の列集合は、パーサが例えば*がどのように展開されるかを理解できるように、呼び出した問い合わせ内で指定されなければなりません。
    


ROWS FROMを使用した例:


SELECT *
FROM ROWS FROM
    (
        json_to_recordset('[{"a":40,"b":"foo"},{"a":"100","b":"bar"}]')
            AS (a INTEGER, b TEXT),
        generate_series(1, 3)
    ) AS x (p, q, s)
ORDER BY p;

  p  |  q  | s
-----+-----+---
  40 | foo | 1
 100 | bar | 2
     |     | 3



2つの関数を結合して1つのFROMターゲットにします。
json_to_recordset()は、2つの列(最初のintegerと2番目のtext)を返すように指示されます。
generate_series()の結果は直接使用されます。
ORDER BY句では、列値が整数として並べ替えられます。
    

LATERAL 副問い合わせ





FROMに現れる副問い合わせの前にキーワードLATERALを置くことができます。
こうすると、副問い合わせは先行するFROM項目によって提供される列を参照できます。
（LATERALがない場合、それぞれの副問い合わせは個別に評価され、従ってその他のFROM項目を相互参照できません。）
    


FROMに現れるテーブル関数の前にもキーワードLATERALを置くことが可能ですが、関数に対してこのキーワードは省略可能です。
どんな場合であっても、関数の引数は先行する FROM項目により提供される列の参照を含むことができます。
    


LATERAL項目はFROMリストの最上層、またはJOINツリーの中で表示することができます。
後者の場合、右側にあるJOINの左側のすべての項目を参照することが可能です。
    


FROM項目がLATERAL相互参照を含む場合の評価は以下のようになります。
相互参照される列（複数可）を提供するFROM項目のそれぞれの行、もしくは列を提供する複数のFROM項目の行一式に対し、LATERAL項目は列の行または複数行の一式の値により評価されます。
結果行（複数可）は通常のように演算された行と結合されます。
元となるテーブル（複数可）の列からそれぞれの行、または行の一式に対し反復されます。
    


LATERALの些細な例としては以下があげられます。


SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id = foo.bar_id) ss;



上記は以下のより伝統的なやり方と全く同じ結果をもたらしますので特別に有用ではありません。


SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;



LATERALは、結合される行を計算するために相互参照する列を必須とする場合、第一義的に有用です。
一般的な利用方法は、集合を返す関数に対して引数の値を提供することです。
例えば、vertices(polygon)が多角形の頂点の組みを返す関数だとして、以下のようにしてテーブルに格納されている多角形の互いに近接する頂点を特定できます。


SELECT p1.id, p2.id, v1, v2
FROM polygons p1, polygons p2,
     LATERAL vertices(p1.poly) v1,
     LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND p1.id != p2.id;



この問い合わせは以下のようにも書くことができます。


SELECT p1.id, p2.id, v1, v2
FROM polygons p1 CROSS JOIN LATERAL vertices(p1.poly) v1,
     polygons p2 CROSS JOIN LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND p1.id != p2.id;



そのほか幾つかの同等の定式化が考えられます。
（既に言及したとおり、LATERALキーワードはこの例に於いて必要ではありませんが、明確に示すために使用しました。）
    


LATERAL副問い合わせはLEFT JOINの対象として、しばしば特に重宝します。
たとえLATERAL副問い合わせがそこから行を生成しない場合に於いても元となった行が結果に現れるからです。
たとえば、get_product_names()が製造者により生産された製品名を返すとして、テーブル内のいくつかの製造者が現在製品を製造していない場合、それらは何であるかを以下のようにして見つけることができます。


SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names(m.id) pname ON true
WHERE pname IS NULL;


    


WHERE句





WHERE句の構文は以下の通りです。


WHERE search_condition



ここで、search_conditionにはboolean型を返すどのような評価式（「評価式」を参照）も指定できます。
   


FROM句の処理が終わった後、派生した仮想テーブルの各行は検索条件と照合されます。
条件の結果が真の場合、その行は出力されます。
そうでない（すなわち結果が偽またはNULLの）場合は、その行は捨てられます。
一般的に検索条件は、FROM句で生成されたテーブルの最低１列を参照します。
これは必須ではありませんが、そうしないとWHERE句はまったく意味がなくなります。
   
注記


内部結合の結合条件は、WHERE句でもJOIN句でも記述することができます。
例えば、以下のテーブル式は等価です。


FROM a, b WHERE a.id = b.id AND b.val > 5



および


FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5



また、以下でも同じです。


FROM a NATURAL JOIN b WHERE b.val > 5



どれを使うかは、主にスタイルの問題です。
FROM句のJOIN構文は標準SQLであるにも関わらず、おそらく他のSQLデータベース管理システムへの移植性では劣るでしょう。
外部結合については、FROM句以外に選択の余地はありません。
外部結合のON句またはUSING句は、WHERE条件とは等しくありません。
なぜなら、最終結果での行を除去すると同様に、（一致しない入力行に対する）行の追加となるからです。
    



WHERE句の例を以下に示します。


SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROM t2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10) AND 100

SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)



fdtはFROM句で派生されたテーブルです。
WHERE句の検索条件を満たさなかった行は、fdtから削除されます。
評価式としてのスカラ副問い合わせの使い方に注目してください。
他の問い合わせのように、副問い合わせは複雑なテーブル式を使うことができます。
副問い合わせの中でどのようにfdtが参照されるかにも注意してください。
c1をfdt.c1のように修飾することは、c1が副問い合わせの入力テーブルから派生した列名でもある時にだけ必要です。
列名の修飾は、必須の場合ではなくても、明確にするために役立ちます。
この例は、外側の問い合わせの列名の有効範囲を、どのようにして内側の問い合わせまで拡張するかを示します。
   

GROUP BY句とHAVING句





WHEREフィルタを通した後、派生された入力テーブルをGROUP BY句でグループ化し、また、HAVING句を使用して不要なグループを取り除くことができます。
   

SELECT select_list
    FROM ...
    [WHERE ...]
    GROUP BY grouping_column_reference [, grouping_column_reference]...



GROUP BY句は、列挙されたすべての列で同じ値を所有する行をまとめてグループ化するために使用されます。
列の列挙順は関係ありません。
これは共通する値を持つそれぞれの行の集合をグループ内のすべての行を代表する１つのグループ行にまとめるものです。
これは、出力の冗長度を排除したり、それぞれのグループに適用される集約計算を行うためのものです。
以下に例を示します。


=> SELECT * FROM test1;
 x | y
---+---
 a | 3
 c | 2
 b | 5
 a | 1
(4 rows)

=> SELECT x FROM test1 GROUP BY x;
 x
---
 a
 b
 c
(3 rows)


   


2番目の問い合わせでは、SELECT * FROM test1 GROUP BY xと書くことはできません。
各グループに関連付けられる列yの単一の値がないからです。
GROUP BYで指定した列はグループごとに単一の値を持つので、選択リストで参照することができます。
   


一般的に、テーブルがグループ化されている場合、GROUP BYでリストされていない列は集約式を除いて参照することはできません。
集約式の例は以下の通りです。


=> SELECT x, sum(y) FROM test1 GROUP BY x;
 x | sum
---+-----
 a |   4
 b |   5
 c |   2
(3 rows)



上記でsum() は、グループ全体について単一の値を計算する集約関数です。
使用可能な集約関数の詳細については、「集約関数」を参照してください。
   
ヒント


集約式を使用しないグループ化は、列内の重複しない値の集合を効率良く計算します。
これはDISTINCT句（「DISTINCT」を参照）の使用で同じように達成することができます。
    



別の例を示します。
これは各製品の総売上を計算します
（全製品の総売上ではありません）。


SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
    FROM products p LEFT JOIN sales s USING (product_id)
    GROUP BY product_id, p.name, p.price;



この例では、product_id列、p.name列、p.price列は必ずGROUP BY句で指定する必要があります。
なぜなら、これらは問い合わせ選択リストの中で使われているからです（ただし、以下を参照）。
s.units列はGROUP BYで指定する必要はありません。
これは、製品ごとの売上計算の集約式（sum(...)）の中だけで使われるためです。
この問い合わせは、各製品に対して製品の全販売に関する合計行が返されます。
   


productsテーブルが、例えば、product_idが主キーであるように設定されている場合、nameとprice列は製品ID（product_id）に関数依存しており、このため製品IDグループそれぞれに対してどのnameとpriceの値を返すかに関するあいまいさがありませんので、上の例ではproduct_idでグループ化することで十分です。
   


厳密なSQLでは、GROUP BYは、元となるテーブルの列によってのみグループ化できますが、PostgreSQL™では、GROUP BYが選択リストの列によってグループ化できるように拡張されています。
単純な列名の代わりに、評価式でグループ化することもできます。
   


GROUP BYを使ってグループ化されたテーブルで特定のグループのみ必要な場合、結果から不要なグループを除くのに、WHERE句のようにHAVING句を使うことができます。
構文は以下の通りです。


SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression



HAVING句内の式は、グループ化された式とグループ化されてない式（この場合は集約関数が必要になります）の両方を参照することができます。
   


例を示します。


=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING sum(y) > 3;
 x | sum
---+-----
 a |   4
 b |   5
(2 rows)

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING x < 'c';
 x | sum
---+-----
 a |   4
 b |   5
(2 rows)


   


次に、より現実的な例を示します。


SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
    FROM products p LEFT JOIN sales s USING (product_id)
    WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'
    GROUP BY product_id, p.name, p.price, p.cost
    HAVING sum(p.price * s.units) > 5000;



上の例で、WHERE句は、グループ化されていない列によって行を選択している（この式では最近の4週間の売上のみが真になります）のに対し、HAVING句は出力を売上高が5000を超えるグループに制限しています。
集約式が、問い合わせ内で常に同じである必要がないことに注意してください。
   


ある問い合わせが集約関数を含んでいるがGROUP BY句がない場合でも、グループ化は依然として行われます。
結果は単一グループ行（またはHAVINGで単一行が削除されれば、行が全くなくなるかもしれません）となります。
HAVING句を含んでいれば、集約関数呼び出しやGROUP BY句がまったく存在しなくても同じことが言えます。
   

GROUPING SETS、CUBE、ROLLUP





上述のものよりも複雑なグループ化の操作は、グループ化セットの概念を用いることで可能です。
FROM句とWHERE句によって選択されたデータは、指定されたグループ化セットによってそれぞれグループ化され、単純なGROUP BY句と同じように集約計算され、その後結果が返されます。
例を示します。


=> SELECT * FROM items_sold;
 brand | size | sales
-------+------+-------
 Foo   | L    |  10
 Foo   | M    |  20
 Bar   | M    |  15
 Bar   | L    |  5
(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand), (size), ());
 brand | size | sum
-------+------+-----
 Foo   |      |  30
 Bar   |      |  20
       | L    |  15
       | M    |  35
       |      |  50
(5 rows)


   


GROUPING SETSの各サブリストはゼロ個以上の列または式を指定することが出来ます。
そして、それが直接GROUP BY句で指定したのと同じように解釈されます。
空のグループ化セットは、全行が一つのグループにまで集約されることを意味します（何も入力行が存在しない場合でも出力されます）。
これは、上述したGROUP BY句がない集約関数の場合と同様です。
   


グループ化している列または式の参照は、その列が現われないグループ化セットの結果行ではNULL値に置き換えられます。
特定の出力行が、どのグループ化から生じたかを識別するには表9.66「グループ化演算」を参照して下さい。
   


グループ化セットの中で一般的な２種類については、略記法での指定方法が提供されています。
以下の句は


ROLLUP ( e1, e2, e3, ... )



式の指定されたリストと空のリストを含めたリストのすべてのプレフィックスを表します。
したがって、以下と同等です。


GROUPING SETS (
    ( e1, e2, e3, ... ),
    ...
    ( e1, e2 ),
    ( e1 ),
    ( )
)



これは一般に、階層データに対する分析のために使用されます。例えば、部署、部門、全社合計による総給与を出します。
   




CUBE ( e1, e2, ... )



上の句は、与えられたリストとその可能な部分集合（サブセット）のすべて（すなわち、べき集合）を表します。
したがって


CUBE ( a, b, c )



は以下と同等です。


GROUPING SETS (
    ( a, b, c ),
    ( a, b    ),
    ( a,    c ),
    ( a       ),
    (    b, c ),
    (    b    ),
    (       c ),
    (         )
)


   


CUBE句やROLLUP句の各要素は、個々の式、または括弧で囲まれた要素のサブリスト、どちらかに出来ます。
後者の場合には、サブリストは個々のグループ化セットを生成する目的において一つの単位として扱われます。
例えば


CUBE ( (a, b), (c, d) )



は以下と同等です。


GROUPING SETS (
    ( a, b, c, d ),
    ( a, b       ),
    (       c, d ),
    (            )
)



そして


ROLLUP ( a, (b, c), d )



は以下と同等です。


GROUPING SETS (
    ( a, b, c, d ),
    ( a, b, c    ),
    ( a          ),
    (            )
)


   


CUBEとROLLUP構文は、GROUP BY句の中で直接使用、またはGROUPING SETS句の中で入れ子に出来ます。
GROUPING SETS句が別の内側に入れ子になっている場合、内側の句が外側の句に直接書かれている場合と効果は同じになります。
   


複数の集約項目がGROUP BY句一つで指定されている場合、グループ化セットの最終的なリストは、個々の項目のデカルト積です。
例えば


GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))



は以下と同等です。


GROUP BY GROUPING SETS (
    (a, b, c, d), (a, b, c, e),
    (a, b, d),    (a, b, e),
    (a, c, d),    (a, c, e),
    (a, d),       (a, e)
)


   

    
    

複数の集約項目をまとめて指定する場合、グループ化セットの最終的なセットに重複が含まれる可能性があります。
例えば


GROUP BY ROLLUP (a, b), ROLLUP (a, c)



は以下と同等です。


GROUP BY GROUPING SETS (
    (a, b, c),
    (a, b),
    (a, b),
    (a, c),
    (a),
    (a),
    (a, c),
    (a),
    ()
)



これらの重複が望ましくない場合は、GROUP BYで直接DISTINCT句を使用して削除できます。
したがって、


GROUP BY DISTINCT ROLLUP (a, b), ROLLUP (a, c)



は以下と同等です。


GROUP BY GROUPING SETS (
    (a, b, c),
    (a, b),
    (a, c),
    (a),
    ()
)



これは、SELECT DISTINCTを使用する場合と同じではありません。
出力行に重複が含まれる可能性があるためです。
グループ化されていない列のいずれかにNULLが含まれている場合、同じ列をグループ化するときに使用されるNULLと区別できません。
   
注記


(a, b)という構文は通常行コンストラクタとして式に認識されます。
GROUP BY句の中では、トップレベルの式の場合これは適用されず、(a, b)は上記のような式のリストとして解析されます。
何らかの理由で、グループ化式の中で行コンストラクタが必要になった場合は、ROW(a, b)を使用して下さい。
   


ウィンドウ関数処理





問い合わせがウィンドウ関数（「ウィンドウ関数」、「ウィンドウ関数」と「ウィンドウ関数呼び出し」を参照）を含んでいれば、これらの関数はグループ化、集約およびHAVING条件検索が行われた後に評価されます。
つまり、問い合わせが何らかの集約、GROUP BYまたはHAVINGを使用していれば、ウィンドウ関数により見える行はFROM/WHEREでの本来のテーブル行ではなく、グループ行となります。
   


複数のウィンドウ関数を使用する場合、ウィンドウ定義でPARTITION BYおよびORDER BY句が同じであれば、ORDER BYによって順序が一意に決まらない場合でも、それらすべてのウィンドウ関数は入力行を同じ順序で処理することが保証されます。
ただし、PARTITION BYまたはORDER BYの指定が異なる関数については、その評価については何も保証されません。
（そのような場合、通常ウィンドウ関数の評価の各段階の間で並べ替え処理が必要となり、その並べ替えはORDER BYで等価とみなされる行の順序を保持することは保証されません。）
   


現時点では、ウィンドウ関数は常に事前に並べ替えられたデータを必要とするので、問い合わせ出力はウィンドウ関数のPARTITION BY/ORDER BY句のどれか１つに従って順序付けされます。
とはいえ、これに依存することは薦められません。
確実に結果が特定の方法で並べ替えられるようにしたいのであれば、明示的な最上階層のORDER BYを使用します。
   


選択リスト





前節で示したように、SELECTコマンド中のテーブル式は、テーブルやビューの結合、行の抽出、グループ化などにより中間の仮想テーブルを作ります。
このテーブルは最終的に選択リストによる処理に渡されます。
選択リストは、中間のテーブルのどの列を実際に出力するかを決めます。
  
選択リスト項目





テーブル式が生成するすべての列を出力する*が最も簡単な選択リストです。
そうでなければ、選択リストは、カンマで区切られた（「評価式」で定義された）評価式のリストです。
例えば、以下のような列名のリストであっても構いません。


SELECT a, b, c FROM ...



a、b、cという列名は、FROM句で参照されるテーブルの実際の列名か、あるいは「テーブルと列の別名」で説明したような列名に対する別名です。
グループ化されていなければ、選択リストで使用可能な名前空間はWHERE句と同じです。
グループ化されている場合は、HAVING句と同じとなります。
   


もし、2つ以上のテーブルで同じ名前の列がある場合は、次のように、テーブル名を必ず指定しなければいけません。


SELECT tbl1.a, tbl2.a, tbl1.b FROM ...



複数のテーブルを使用する場合、特定のテーブルのすべての列を求める方法も便利かもしれません。


SELECT tbl1.*, tbl2.a FROM ...



table_name.*という指定方法の詳細については、「問い合わせでの複合型の使用」を参照してください。
   


任意の評価式が選択リストで使われる場合、返されるテーブルは、概念的には新たに仮想的な列を追加したものとなります。
評価式は、それぞれの結果行で、その列参照を置換した行の値としていったん評価されます。
しかし、選択リストの式はFROM句で指定されたテーブル式内の列を参照するものである必要はありません。例えば、定数算術式であっても構いません。
   

列ラベル





選択リスト中の項目は、ORDER BY句の中での参照、もしくはクライアントアプリケーションによる表示での使用など、それに続く処理のために名前を付与できます。
例を示します。


SELECT a AS value, b + c AS sum FROM ...


   


ASを使った出力列名の指定がない場合、システムはデフォルトの列名を付与します。
単純な列参照では参照された列名となります。
関数呼び出しでは関数名となります。
複雑な表現についてはシステムが汎用の名前を生成します。
   


ASキーワードは通常省略できますが、必要な列名がPostgreSQL™キーワードと一致する場合は、あいまいさを避けるためにASと記述するか、列名を二重引用符で括る必要があります。
（付録C SQLキーワードは、列ラベルとしてASを使用する必要があるキーワードを示しています。）
例えば、FROMはそのようなキーワードの1つなので、以下は動きません。


SELECT a from, b + c AS sum FROM ...



しかし、以下はどちらも動きます。


SELECT a AS from, b + c AS sum FROM ...
SELECT a "from", b + c AS sum FROM ...



将来のキーワードの追加に対する最大限の安全性を確保するために、常にASと記述するか、出力列名を二重引用符で囲むことを推奨します。
   
注記


ここでの出力列の名前の指定は、FROM句での名前の指定（「テーブルと列の別名」を参照）とは異なります。
同じ列の名前を2度変更することができますが、渡されるのは選択リストの中で割り当てられたものです。
    


DISTINCT





選択リストが処理された後、結果テーブルの重複行を削除の対象にすることもできます。
これを指定するためには、SELECTの直後にDISTINCTキーワードを記述します。


SELECT DISTINCT select_list ...



（DISTINCTの代わりにALLキーワードを使用して、すべての行が保持されるというデフォルトの動作を指定することができます。）
   


少なくとも1つの列の値が異なる場合、もちろん、それら2行は異なるとみなされます。
NULL値同士は、この比較において等しいとみなされます。
   


また、任意の式を使用して、どの行が別であるかを決定することもできます。


SELECT DISTINCT ON (expression [, expression ...]) select_list ...



ここでexpressionは、すべての行で評価される任意の評価式です。
すべての式が等しくなる行の集合は、重複しているとみなされ、集合の最初の行だけが出力内に保持されます。
DISTINCTフィルタに掛けられる行の順序の一意性を保証できるよう十分な数の列で問い合わせを並べ替えない限り、出力される集合の「最初の行」は予想不可能であることに注意してください。
（DISTINCT ON処理は、ORDER BYによる並べ替えの後に行われます。）
   


DISTINCT ON句は標準SQLではありません。
さらに、結果が不定となる可能性があるため、好ましくないスタイルとみなされることもあります。
GROUP BYとFROM中の副問い合わせをうまく使うことにより、この構文を使わずに済みますが、DISTINCT ON句はしばしば非常に便利な代案となります。
   


問い合わせの結合(UNION, INTERSECT, EXCEPT)





2つの問い合わせの結果は、和、積、差の集合演算を使って結合することができます。
構文は以下の通りです。


query1 UNION [ALL] query2
query1 INTERSECT [ALL] query2
query1 EXCEPT [ALL] query2



query1とquery2は、これまで説明した任意の機能をすべて使用することができる問い合わせです。
  


UNIONは、query2の結果をquery1の結果に付加します（しかし、この順序で実際に行が返される保証はありません）。
さらに、UNION ALLを指定しないと、DISTINCTと同様に、結果から重複している行を削除します。
  


INTERSECTは、query1の結果とquery2の結果の両方に含まれているすべての行を返します。
INTERSECT ALLを使用しないと、重複している行は削除されます。
  


EXCEPTは、query1の結果には含まれているけれども、query2の結果には含まれていないすべての行を返します。
（これが2つの問い合わせの差であると言われることがあります。）
この場合も、EXCEPT ALL を使用しないと、重複している行は削除されます。
  


2つの問い合わせの和、積、差を算出するために、そこの2つの問い合わせは「union互換」でなければいけません。
つまり、その問い合わせが同じ数の列を返し、対応する列は互換性のあるデータ型（「UNION、CASEおよび関連する構文」を参照）でなければなりません。
  


集合演算は組み合わせることができます。以下に例を示します。


query1 UNION query2 EXCEPT query3



これは以下と同じです。


(query1 UNION query2) EXCEPT query3



ここに示すように、括弧を使用して評価の順序を制御できます。
括弧がない場合、UNIONとEXCEPTは左から右に関連付けられますが、INTERSECTはこれらの2つの演算子よりも強く結合します。
つまり、


query1 UNION query2 INTERSECT query3



は以下を意味します。


query1 UNION (query2 INTERSECT query3)



個々のqueryを括弧で囲むこともできます。
これは、queryがLIMITのような、以下の節で説明されている句のいずれかを使用する必要がある場合に重要です。
括弧がないと、構文エラーが発生します。さもなければ、この句は集合演算の入力の1つではなく、集合演算の出力に適用されると解釈されます。
例えば、以下のようになります。


SELECT a FROM b UNION SELECT x FROM y LIMIT 10



は、受け入れられますが、以下を意味します。


(SELECT a FROM b UNION SELECT x FROM y) LIMIT 10



以下ではありません。


SELECT a FROM b UNION (SELECT x FROM y LIMIT 10)


  

行の並べ替え(ORDER BY)





ある問い合わせが1つの出力テーブルを生成した後（選択リストの処理が完了した後）、並べ替えることができます。
並べ替えが選ばれなかった場合、行は無規則な順序で返されます。
そのような場合、実際の順序は、スキャンや結合計画の種類や、ディスク上に格納されている順序に依存します。
しかし、当てにしてはいけません。
明示的に並べ替え手続きを選択した場合にのみ、特定の出力順序は保証されます。
  


ORDER BY句は並べ替えの順番を指定します。


SELECT select_list
    FROM table_expression
    ORDER BY sort_expression1 [ASC | DESC] [NULLS { FIRST | LAST }]
             [, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]



並べ替え式(複数可)は問い合わせの選択リスト内で使用可能な任意の式を取ることができます。
以下に例を示します。


SELECT a, b FROM table1 ORDER BY a + b, c;



複数の式が指定された場合、前の式の値が等しい行を並べ替える際に後の式の値が使用されます。
列指定の後にオプションでASCもしくはDESCを付与することで、並べ替えの方向を昇順、降順にするかを設定することができます。
ASC順がデフォルトです。
昇順では、小さな値を先に出力します。
ここでの「小さい」とは、<演算子によって決定されます。
同様に降順では>演算子で決定されます。
    [6]
  


NULLS FIRSTおよびNULLS LASTオプションを使用して、その並べ替え順においてNULL値を非NULL値の前にするか後にするかを決定することができます。
デフォルトでは、NULL値はあたかもすべての非NULL値よりも大きいとみなして並べ替えます。
と言うことは、NULLS FIRSTはDESC順序付けのデフォルトで、そうでなければNULLS LASTです。
  


この順序づけオプションは、並べ替えで使用される各列に個別に適用されることに注意してください。
例えば、ORDER BY x, y DESCは、ORDER BY x DESC, y DESCと同じではなく、ORDER BY x ASC, y DESCを意味します。
  


sort_expressionは以下のように列ラベルもしくは出力列の番号で指定することができます。


SELECT a + b AS sum, c FROM table1 ORDER BY sum;
SELECT a, max(b) FROM table1 GROUP BY a ORDER BY 1;



両方とも最初の出力列で並べ替えられます。
出力列名は単体でなければなりません。つまり式としては使用できないことに注意してください。
例えば以下は間違いです。



SELECT a + b AS sum, c FROM table1 ORDER BY sum + c;          -- 間違い



これは曖昧さを減らすための制限です。
ORDER BY項目が単純な名前であっても、出力列名とテーブル式による列と同じ名前となる場合、曖昧さはまだ存在します。
この場合、出力列名が使用されます。
ASを使用して他のテーブル列の名前と同じ名前に出力列を変名した場合にのみ混乱が発生します。
  


ORDER BYを、UNION、INTERSECT、EXCEPT組み合わせの結果に適用することができます。
しかしこの場合、出力列の名前または番号でのみ並べ替えることができ、式では並べ替えることができません。
  


[6] 

実際、PostgreSQL™は、ASCとDESCの並べ替え順を決定するために、式のデータ型用のデフォルトのB-tree演算子クラスを使用します。
慣習的に、データ型は<と>演算子をこの並べ替え順になるように設定されます。
しかし、ユーザ定義データ型の設計者は異なるものを選択することができます。
     



LIMITとOFFSET





LIMITおよびOFFSETを使うことで、問い合わせの実行で生成された行の一部だけを取り出すことができます。


SELECT select_list
    FROM table_expression
    [ ORDER BY ... ]
    [ LIMIT { count | ALL } ]
    [ OFFSET start ]


  


限度(limit)数を指定すると、指定した行数より多くの行が返されることはありません（しかし、問い合わせの結果が指定した行数より少なければ、それより少なくなります）。
LIMIT ALLは、LIMIT句を省略した場合と同じです。LIMITの引数がNULLの場合も同様です。
  


OFFSETは、行を返し始める前に飛ばす行数を指定します。
OFFSET 0は、OFFSET句を省略した場合と同じです。OFFSETの引数がNULLの場合も同様です。
  


OFFSETおよびLIMITの両者が指定された場合、OFFSET分の行を飛ばしてから、返されるLIMIT行を数え始めます。
  


LIMITを使用する時は、結果の行を一意な順序に制御するORDER BY句を使用することが重要です。
ORDER BYを使わなければ、問い合わせの行について予測不能な部分集合を得ることになるでしょう。
10番目から20番目の行を問い合わせることもあるでしょうが、どういう並び順での10番目から20番目の行でしょうか？
ORDER BYを指定しなければ、並び順はわかりません。
  


問い合わせオプティマイザは、問い合わせ計画を生成する時にLIMITを考慮します。
そのため、LIMITとOFFSETに指定した値によって、異なった計画（得られる行の順序も異なります）が得られる可能性が高いです。
従って、1つの問い合わせ結果から異なる部分集合を選び出すために、異なるLIMIT/OFFSETの値を使用すると、ORDER BYで結果の順序を制御しなければ、一貫しない結果が生じるでしょう。
これは不具合ではありません。
ORDER BYを使って順序を制御しない限り、SQLは必ずしも特定の順序で問い合わせの結果を渡さないという特性の必然的な結果です。
  


OFFSET句で飛ばされる行を、実際にはサーバ内で計算しなければなりません。
そのため、大きな値のOFFSETは非効率的になることがあります。
  

VALUESリスト





VALUESは、「定数テーブル」を生成する方法を提供します。
それは実際にはディスク上に作成して配置することなく、問い合わせで使用することができます。
構文を以下に示します。


VALUES ( expression [, ...] ) [, ...]



括弧で括られた式のリストがそれぞれ、テーブルの行を生成します。
リストは同一の要素数（つまり、テーブルの列数）を持たなければなりません。
また、各リストで対応する項目のデータ型に互換性がなければなりません。
最終的に各列に割り当てられる実際のデータ型は、UNIONと同様の規則に従って決定されます。
（「UNION、CASEおよび関連する構文」を参照してください。）
  


以下に例を示します。


VALUES (1, 'one'), (2, 'two'), (3, 'three');




これは、2列3行のテーブルを返します。
実質的に、以下と同じです。


SELECT 1 AS column1, 'one' AS column2
UNION ALL
SELECT 2, 'two'
UNION ALL
SELECT 3, 'three';




デフォルトでは、PostgreSQL™はVALUESテーブルの各列にcolumn1、column2といった名前をつけます。
標準SQLではこれらの列名は規定されていませんので、データベースシステムの種類によって異なる名前を付与しています。
そのため、通常はテーブル別名リストを使用して、以下のようにデフォルトの名前を上書きする方がよいでしょう。


=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS t (num,letter);
 num | letter
-----+--------
   1 | one
   2 | two
   3 | three
(3 rows)


  


文法的には、VALUESの後に式のリストがあるものは、以下と同様に扱われます。


SELECT select_list FROM table_expression



そして、SELECTが記述できるところであれば、どこにでも記述することができます。
例えば、UNIONの一部として使用することもできますし、sort_specification (ORDER BY、LIMIT、OFFSET)を付けることもできます。
VALUESはINSERTコマンドの元データとしてもっとも頻繁に使用されます。
次に使用頻度が高いのは副問い合わせとしての使用です。
  


詳しくはVALUES(7)を参照してください。
  

WITH問い合わせ（共通テーブル式）





WITHは、より大規模な問い合わせで使用される補助文を記述する方法を提供します。
これらの文は共通テーブル式(Common Table Expressions)またはCTEとよく呼ばれるものであり、１つの問い合わせのために存在する一時テーブルを定義すると考えることができます。
WITH句内の補助文はそれぞれSELECT、INSERT、UPDATE、DELETE、またはMERGEを取ることができます。
そしてWITH句自身は、これもSELECT、INSERT、UPDATE、DELETE、またはMERGEを取ることができる主文に付与されます。
  
WITH内のSELECT





WITH内のSELECTの基本的な価値は、複雑な問い合わせをより単純な部品に分解することです。
以下に例を示します。



WITH regional_sales AS (
    SELECT region, SUM(amount) AS total_sales
    FROM orders
    GROUP BY region
), top_regions AS (
    SELECT region
    FROM regional_sales
    WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
       product,
       SUM(quantity) AS product_units,
       SUM(amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;




これは販売トップの地域（region）のみから製品ごとの売上高を表示します。
WITH句は、regional_sales、top_regionsという名前の２つの補助文を定義します。
ここで、regional_salesの出力はtop_regions内で使用され、top_regionsはSELECT主問い合わせで使用されます。
この例は WITHなしでも記述できますが、二階層の入れ子のsub-SELECTを必要とします。この方法に従うほうが多少扱いやすいです。
  

再帰的問い合わせ




   
   

オプションのRECURSIVE修飾子は、WITHを、単に構文上の利便性の高めるだけでなく標準的なSQLでは不可能な機能を実現させます。
RECURSIVEを使用すれば、WITH問い合わせが行った自己の結果を参照できるようになります。1から100までの数を合計する非常に単純な問い合わせは以下のようなものです。



WITH RECURSIVE t(n) AS (
    VALUES (1)
  UNION ALL
    SELECT n+1 FROM t WHERE n < 100
)
SELECT sum(n) FROM t;




再帰的WITH問い合わせの汎用形式は常に、非再帰的表現（non-recursive term）、そしてUNION（またはUNION ALL）、そして再帰的表現（recursive term）です。
再帰的表現だけが、その問い合わせ自身の出力への参照を含むことができます。
このような問い合わせは以下のように実行されます。
  
手順7.1 再帰的問い合わせの評価
	

非再帰的表現を評価します。
UNION（ただしUNION ALLは除きます）では、重複行を廃棄します。
その再帰的問い合わせの結果の残っているすべての行を盛り込み、同時にそれらを一時作業テーブルに置きます。
    

	

作業テーブルが空でないのであれば以下の手順を繰り返します。
    
	

再帰自己参照を作業テーブルの実行中の内容で置換し、再帰的表現を評価します。
UNION（ただしUNION ALLは除きます）に対し、重複行と前の結果行と重複する行を破棄します。
その再帰的問い合わせの結果の残っているすべての行を盛り込み、同時にそれらを一時中間テーブルに置きます。
      

	

中間テーブルの内容で作業テーブルの内容を差し替え、中間テーブルを空にします。
      





注記


RECURSIVEでは問い合わせを再帰的(recursively)に指定できますが、内部的にはそのような問い合わせは反復的(iteratively)に評価されます。
   



上記の例で、作業テーブルはそれぞれの手順での単なる単一行で、引き続く作業で1から100までの値を獲得します。
100番目の作業で、WHERE句による出力が無くなり、問い合わせが終了します。
  


再帰的問い合わせは階層的、またはツリー構造データに対処するため一般的に使用されます。
実用的な例は、直接使用する部品を表すテーブル１つのみが与えられ、そこから製品すべての直接・間接部品を見つける次の問い合わせです。



WITH RECURSIVE included_parts(sub_part, part, quantity) AS (
    SELECT sub_part, part, quantity FROM parts WHERE part = 'our_product'
  UNION ALL
    SELECT p.sub_part, p.part, p.quantity * pr.quantity
    FROM included_parts pr, parts p
    WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part


  
検索順





再帰的問い合わせを使用してツリーの巡回順を計算する場合、深さ優先または幅優先のいずれかの順序で結果を順序付ける必要がある場合があります。
これは、他のデータ列と並んで順序付け列を計算し、それを使用して最後に結果を並べ替えることで実行できます。
これは、問い合わせ評価が行を訪問する順序を実際に制御するものではなく、常にSQL実装に依存することに注意してください。
このアプローチは、結果を後で順序付けるための便利な方法を提供するにすぎません。
   


深さ優先順序を作成するには、結果行ごとに、これまでに訪れた行の配列を計算します。
例えば、linkフィールドを使用してテーブルtreeを検索する次の問い合わせを考えてみます。



WITH RECURSIVE search_tree(id, link, data) AS (
    SELECT t.id, t.link, t.data
    FROM tree t
  UNION ALL
    SELECT t.id, t.link, t.data
    FROM tree t, search_tree st
    WHERE t.id = st.link
)
SELECT * FROM search_tree;




深さ優先の順序付け情報を追加するには、次のように記述します。



WITH RECURSIVE search_tree(id, link, data, path) AS (
    SELECT t.id, t.link, t.data, ARRAY[t.id]
    FROM tree t
  UNION ALL
    SELECT t.id, t.link, t.data, path || t.id
    FROM tree t, search_tree st
    WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY path;


   


行を識別するために複数のフィールドを使用する必要がある一般的な場合は、行の配列を使用します。
たとえば、フィールドf1とf2を追跡する必要がある場合は、次のようにします。



WITH RECURSIVE search_tree(id, link, data, path) AS (
    SELECT t.id, t.link, t.data, ARRAY[ROW(t.f1, t.f2)]
    FROM tree t
  UNION ALL
    SELECT t.id, t.link, t.data, path || ROW(t.f1, t.f2)
    FROM tree t, search_tree st
    WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY path;


   
ヒント


追跡する必要があるフィールドが１つだけである一般的な場合では、ROW()構文を削除します。
これで、複合型配列ではなく単純配列で済むので、効率も上がります。
    



幅優先順序を作成するには、検索の深さを追跡する列を追加します。次に例を示します。



WITH RECURSIVE search_tree(id, link, data, depth) AS (
    SELECT t.id, t.link, t.data, 0
    FROM tree t
  UNION ALL
    SELECT t.id, t.link, t.data, depth + 1
    FROM tree t, search_tree st
    WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY depth;




安定した並べ替えを行うには、データ列を2次並べ替え列として追加します。
   
ヒント


再帰的問い合わせ評価アルゴリズムは、幅優先の検索順で出力を生成します。
しかし、これは実装の詳細であり、これに頼るのはおそらく不健全です。
各レベル内の行の順序は確かに未定義であるため、いかなる場合でも明示的な順序付けが望まれるかもしれません。
    



深さ優先または幅優先の並べ替え列を計算するための組み込み構文があります。
例えば、



WITH RECURSIVE search_tree(id, link, data) AS (
    SELECT t.id, t.link, t.data
    FROM tree t
  UNION ALL
    SELECT t.id, t.link, t.data
    FROM tree t, search_tree st
    WHERE t.id = st.link
) SEARCH DEPTH FIRST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

WITH RECURSIVE search_tree(id, link, data) AS (
    SELECT t.id, t.link, t.data
    FROM tree t
  UNION ALL
    SELECT t.id, t.link, t.data
    FROM tree t, search_tree st
    WHERE t.id = st.link
) SEARCH BREADTH FIRST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;



この構文は、上記の手書きの形式に似たものに内部的に拡張されています。
SEARCH句は、深さ優先または幅優先のどちらの検索が必要か、並べ替えのために追跡する列のリスト、並べ替えに使用できる結果データを含む列名を指定します。
この列は、CTEの出力行に暗黙的に追加されます。
   

サイクル検出





再帰的問い合わせを扱う場合、問い合わせの再帰部分が最終的にはタプルを返さないようにすることが重要です。
そうしなければ、問い合わせが永久にループしてしまうからです。
UNION ALLの替わりにUNIONを使用することで、重複する前回の出力行が廃棄され、これを実現できることもあるでしょう。
しかし、各周期が完全に重複している行を含まないこともよくあり、そのような場合は、1つまたは少数のフィールドを検査して、同じ場所に既に到達したかどうかを調べる必要があるかもしれません。
このような状態を取り扱う標準手法は、既に巡回された値の配列を計算することです。
例えば、linkフィールドを使ってテーブルgraphを検索する以下の問い合わせを考えて見ます。



WITH RECURSIVE search_graph(id, link, data, depth) AS (
    SELECT g.id, g.link, g.data, 0
    FROM graph g
  UNION ALL
    SELECT g.id, g.link, g.data, sg.depth + 1
    FROM graph g, search_graph sg
    WHERE g.id = sg.link
)
SELECT * FROM search_graph;




この問い合わせはlink関係が循環を含んでいればループします。
「depth」出力を要求しているので、UNION ALLをUNIONに変えるだけでは、ループを取り除くことができません。
その代わり、linkの特定の経路をたどっている間に、同じ行に到達したかどうかを認識する必要があります。
このループしやすい問い合わせに、pathとis_cycleの２列を加えます。



WITH RECURSIVE search_graph(id, link, data, depth, is_cycle, path) AS (
    SELECT g.id, g.link, g.data, 0,
      false,
      ARRAY[g.id]
    FROM graph g
  UNION ALL
    SELECT g.id, g.link, g.data, sg.depth + 1,
      g.id = ANY(path),
      path || g.id
    FROM graph g, search_graph sg
    WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;




巡回防止の他に、特定行に到達する際に選ばれた「path」 それ自体を表示するため、配列値はしばしば利用価値があります。
  


循環を認識するために検査するために必要なフィールドが複数存在する一般的な状況では、行の配列を使用します。
例えば、フィールドf1とf2を比較する必要があるときは次のようにします。



WITH RECURSIVE search_graph(id, link, data, depth, is_cycle, path) AS (
    SELECT g.id, g.link, g.data, 0,
      false,
      ARRAY[ROW(g.f1, g.f2)]
    FROM graph g
  UNION ALL
    SELECT g.id, g.link, g.data, sg.depth + 1,
      ROW(g.f1, g.f2) = ANY(path),
      path || ROW(g.f1, g.f2)
    FROM graph g, search_graph sg
    WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;


  
ヒント


循環を認識するために検査するために必要なフィールドが１つだけである一般的な場合では、ROW()構文を削除します。
これで、複合型配列ではなく単純配列で済むので、効率も上がります。
   



サイクル検出を簡略化する組み込み構文があります。
上記のクエリは、次のように記述することもできます。


WITH RECURSIVE search_graph(id, link, data, depth) AS (
    SELECT g.id, g.link, g.data, 1
    FROM graph g
  UNION ALL
    SELECT g.id, g.link, g.data, sg.depth + 1
    FROM graph g, search_graph sg
    WHERE g.id = sg.link
) CYCLE id SET is_cycle USING path
SELECT * FROM search_graph;



また、内部的に上記の形式に書き換えられます。
CYCLE句は、最初にサイクル検出のために追跡する列のリストを指定し、次にサイクルが検出されたかどうかを示す列名、最後にパスを追跡する別の列の名前を指定します。
サイクル列とパス列は、CTEの出力行に暗黙的に追加されます。
  
ヒント


サイクル・パス列は、前節で示した深さ優先順序列と同じ方法で計算されます。
問い合わせにはSEARCH句とCYCLE句の両方を含めることができますが、深さ優先検索指定とサイクル検出指定では冗長な計算が作成されるため、CYCLE句を使用してパス列で順序付けるだけの方が効率的です。
幅優先順序が必要な場合は、SEARCHとCYCLEの両方を指定すると便利です。
   



ループするかどうか確信が持てない問い合わせをテストする有益な秘訣として、親問い合わせにLIMITを配置します。
例えば、以下の問い合わせはLIMITがないと永久にループします。



WITH RECURSIVE t(n) AS (
    SELECT 1
  UNION ALL
    SELECT n+1 FROM t
)
SELECT n FROM t LIMIT 100;




これが動作するのは、PostgreSQL™の実装が、実際に親問い合わせで取り出されるのと同じ数のWITH問い合わせの行のみを評価するからです。
この秘訣を実稼働環境で使用することは勧められません。
他のシステムでは異なった動作をする可能性があるからです。
同時に、もし外部問い合わせを再帰的問い合わせの結果を並べ替えたり、またはそれらを他のテーブルと結合するような書き方をした場合、動作しません。
このような場合、外部問い合わせは通常、WITH問い合わせの出力をとにかくすべて取り込もうとするからです。
  


共通テーブル式内マテリアライゼーション





有用なWITH問い合わせの特性は、親問い合わせ、もしくは兄弟WITH問い合わせによりたとえ１回以上参照されるとしても、通常は親問い合わせ実行で１回だけ評価されることです。
したがって、複数の場所で必要な高価な計算は、冗長作業を防止するためWITH問い合わせの中に配置することができます。
他にありうる適用としては、望まれない副作用のある関数の多重評価を避けることです。
しかし、反対の見方をすれば、オプティマイザが親クエリから複数参照されるWITH問い合わせに制約を押し下げることができないということになります。
これは、WITH問い合わせの出力が1つのみに影響する場合、その出力のすべての使用に影響する可能性があるためです。
複数参照されるWITH問い合わせは、親問い合わせが後で破棄するであろう行を抑制せずに、書かれた通りに評価されます。
（しかし、上で述べたように、問い合わせの参照が限定された数の行のみを要求する場合、評価は早期に停止します。）
  


しかし、WITH問い合わせが非再帰で副作用がない（つまり、揮発性（volatile）の関数を含まないSELECTである）場合は、親問い合わせに組み込むことができ、2つの問い合わせレベルを同時に最適化できます。
デフォルトでは、親問い合わせがWITH問い合わせを1回だけ参照する場合にこれが発生しますが、WITH問い合わせを2回以上参照する場合には発生しません。
この決定を上書きするには、MATERIALIZEDを指定してWITH問い合わせの個別の計算を強制するか、NOT MATERIALIZEDを指定して親問い合わせにマージするようにします。
後者を選択すると、WITH問い合わせの計算が重複する危険性がありますが、WITH問い合わせを使用するたびにWITH問い合わせのごく一部しか必要としない場合は、全体の節約になります。
  


これらのルールの簡単な例を次に示します。


WITH w AS (
    SELECT * FROM big_table
)
SELECT * FROM w WHERE key = 123;



このWITH問い合わせは組み込まれ、次のものと同じ実行計画を生成します。


SELECT * FROM big_table WHERE key = 123;



特に、keyインデックスがある場合、key = 123を持つ行のみをフェッチするために使用される可能性があります。
一方で、


WITH w AS (
    SELECT * FROM big_table
)
SELECT * FROM w AS w1 JOIN w AS w2 ON w1.key = w2.ref
WHERE w2.key = 123;



このWITH問い合わせでは実体化され、big_tableの一時的なコピーが生成されます。このコピーはインデックスのメリットなしに、それ自体に結合されます。
この問い合わせは次のように記述すると、より効率的に実行されます。


WITH w AS NOT MATERIALIZED (
    SELECT * FROM big_table
)
SELECT * FROM w AS w1 JOIN w AS w2 ON w1.key = w2.ref
WHERE w2.key = 123;



親の問い合わせの制限をbig_tableのスキャンに直接適用することが出来ます。
  


NOT MATERIALIZEDが望ましくない例を次に示します。


WITH w AS (
    SELECT key, very_expensive_function(val) as f FROM some_table
)
SELECT * FROM w AS w1 JOIN w AS w2 ON w1.f = w2.f;



ここで、WITH問い合わせを生成すると、very_expensive_functionがテーブルの行毎に１回のみ評価され、２回は評価されないことが保証されます。
  


上の例ではSELECTを使用するWITHのみを示しています。
しかし、同じ方法でINSERT、UPDATE、DELETEまたはMERGEに対して付与することができます。
それぞれの場合において、これは主コマンド内で参照可能な一時テーブルを実質的に提供します。
  

WITH内のデータ変更文





データ変更文（INSERT、UPDATE、DELETE、またはMERGE）は、WITH内で使用できます。
これにより同じ問い合わせ内で複数の異なる操作を行うことができます。
以下に例を示します。



WITH moved_rows AS (
    DELETE FROM products
    WHERE
        "date" >= '2010-10-01' AND
        "date" < '2010-11-01'
    RETURNING *
)
INSERT INTO products_log
SELECT * FROM moved_rows;




この問い合わせは実質、productsからproducts_logに行を移動します。
WITH内のDELETEはproductsから指定した行を削除し、そのRETURNING句により削除した内容を返します。
その後、主問い合わせはその出力を読み取り、それをproducts_logに挿入します。
   


上の例の見事なところは、WITH句がINSERT内のsub-SELECTではなく、INSERTに付与されていることです。
これは、データ更新文は最上位レベルの文に付与されるWITH句内でのみ許されているため必要です。
しかし、通常のWITHの可視性規則が適用されますので、sub-SELECTからWITH文の出力を参照することができます。
   


上の例で示したように、WITH内のデータ変更文は通常RETURNING句（「更新された行のデータを返す」を参照）を持ちます。
問い合わせの残りの部分で参照することができる一時テーブルを形成するのは、RETURNING句の出力の出力であって、データ変更文の対象テーブルではありません。
WITH内のデータ変更文がRETURNING句を持たない場合、一時テーブルを形成しませんので、問い合わせの残りの部分で参照することができません。
これにもかかわらずこうした文は実行されます。
特別有用でもない例を以下に示します。



WITH t AS (
    DELETE FROM foo
)
DELETE FROM bar;




この例はfooテーブルとbarテーブルからすべての行を削除します。
クライアントに報告される影響を受けた行数にはbarから削除された行のみが含まれます。
   


データ変更文内の再帰的な自己参照は許されません。
一部の場合において、再帰的なWITHの出力を参照することで、この制限を回避することができます。
以下に例を示します。



WITH RECURSIVE included_parts(sub_part, part) AS (
    SELECT sub_part, part FROM parts WHERE part = 'our_product'
  UNION ALL
    SELECT p.sub_part, p.part
    FROM included_parts pr, parts p
    WHERE p.part = pr.sub_part
)
DELETE FROM parts
  WHERE part IN (SELECT part FROM included_parts);




この問い合わせはある製品の直接的な部品と間接的な部品をすべて削除します。
   


WITH内のデータ変更文は正確に１回のみ実行され、主問い合わせがその出力をすべて（実際にはいずれか）を呼び出したかどうかに関係なく、常に完了します。
これが、前節で説明した主問い合わせがその出力を要求した時のみにSELECTの実行が行われるというWITH内のSELECTについての規則と異なることに注意してください。
   


WITH内の副文はそれぞれと主問い合わせで同時に実行されます。
したがってWITH内のデータ変更文を使用する時、指定したデータ変更文が実際に実行される順序は予測できません。
すべての文は同じスナップショット（13章同時実行制御参照）を用いて実行されます。
このため互いが対象テーブルに行った影響を「見る」ことはできません。これは、行の更新に関する実際の順序が予測できないという影響を軽減し、RETURNINGデータが別のWITH副文と主問い合わせとの間で変更を伝える唯一の手段であることを意味します。
この例を以下に示します。



WITH t AS (
    UPDATE products SET price = price * 1.05
    RETURNING *
)
SELECT * FROM products;




外側のSELECTはUPDATEの動作前の元々の価格を返します。



WITH t AS (
    UPDATE products SET price = price * 1.05
    RETURNING *
)
SELECT * FROM t;




一方こちらでは外側のSELECTは更新されたデータを返します。
   


単一の文で同じ行を２回更新しようとすることはサポートされていません。
変更のうちの１つだけが行われますが、どれが実行されるかを確実に予測することは簡単ではありません（場合によっては不可能です）。
これはまた、同じ文内ですでに更新された行を削除する場合でも当てはまり、更新のみが実行されます。
したがって一般的には単一の文で１つの行を２回変更しようと試みることを避けなければなりません。
具体的には主文または同レベルの副文で変更される行と同じ行に影響を与えるWITH副文を記述することは避けてください。
こうした文の影響は予測することはできません。
   


現状、WITH内のデータ変更文の対象として使用されるテーブルはすべて、複数の文に展開される条件付きルール、ALSOルール、INSTEADルールを持ってはなりません。
   


第8章 データ型





PostgreSQL™にはユーザが使用可能な豊富なデータ型が始めから備わっています。
CREATE TYPE(7)コマンドでPostgreSQL™に対し新しいデータ型を追加できます。
  


表8.1「データ型」に組み込みの汎用データ型をすべて示します。
「別名」欄に列挙された代替名称のほとんどは、歴史的な理由によりPostgreSQL™の内部で使用されている名前です。
他にも、内部で使用されるデータ型、削除予定のデータ型もありますが、ここにはリストされていません。
  
表8.1 データ型
	名前	別名	説明
	bigint	int8	8バイト符号付き整数
	bigserial	serial8	自動増分8バイト整数
	bit [ (n) ]	 	固定長ビット列
	bit varying [ (n) ]	varbit [ (n) ]	可変長ビット列
	boolean	bool	論理値（真/偽）
	box	 	平面上の矩形
	bytea	 	バイナリデータ（「バイトの配列（byte array）」）
	character [ (n) ]	char [ (n) ]	固定長文字列
	character varying [ (n) ]	varchar [ (n) ]	可変長文字列
	cidr	 	IPv4もしくはIPv6ネットワークアドレス
	circle	 	平面上の円
	date	 	暦の日付（年月日）
	double precision	float, float8	倍精度浮動小数点（8バイト）
	inet	 	IPv4もしくはIPv6ホストアドレス
	integer	int, int4	4バイト符号付き整数
	interval [ fields ] [ (p) ]	 	時間間隔
	json	 	テキストのJSONデータ
	jsonb	 	バイナリ JSON データ、展開型
	line	 	平面上の無限直線
	lseg	 	平面上の線分
	macaddr	 	MAC（Media Access Control）アドレス
	macaddr8	 	MAC (Media Access Control) アドレス (EUI-64 形式)
	money	 	貨幣金額
	numeric [ (p,
         s) ]	decimal [ (p,
         s) ]	精度の選択可能な高精度数値
	path	 	平面上の幾何学的経路
	pg_lsn	 	PostgreSQL™ログシーケンス番号
	pg_snapshot	 	ユーザレベルのトランザクションIDスナップショット
	point	 	平面上の幾何学的点
	polygon	 	平面上の閉じた幾何学的経路
	real	float4	単精度浮動小数点（4バイト）
	smallint	int2	2バイト符号付き整数
	smallserial	serial2	自動増分2バイト整数
	serial	serial4	自動増分4バイト整数
	text	 	可変長文字列
	time [ (p) ] [ without time zone ]	 	時刻（時間帯なし）
	time [ (p) ] with time zone	timetz	時間帯付き時刻
	timestamp [ (p) ] [ without time zone ]	 	日付と時刻（時間帯なし）
	timestamp [ (p) ] with time zone	timestamptz	時間帯付き日付と時刻
	tsquery	 	テキスト検索問い合わせ
	tsvector	 	テキスト検索文書
	txid_snapshot	 	ユーザレベルのトランザクションIDスナップショット(廃止予定。pg_snapshotを参照)
	uuid	 	汎用一意識別子
	xml	 	XMLデータ



互換性


次に挙げるデータ型（あるいはその綴り方）はSQLで規定されています。
bigint、bit、bit varying、boolean、char、
character varying、character、varchar、
date、double precision、integer、
interval、numeric、decimal、real、
smallint、time（時間帯付き、なしの両方）、
timestamp（時間帯付き、なしの両方）、xml。
   



それぞれのデータ型はそのデータ型の入出力関数で決定される外部表現を保有しています。
組み込みデータ型の多くには、自明の外部書式があります。
とは言っても、経路のようなPostgreSQL™に特有な型や、あるいは、日付や時刻データ型のように書式を複数選択できる型がいくつかあります。
一部の入出力関数は可逆ではありません。
つまり、出力関数による結果は元の入力と比較した場合精度を失う可能性があります。
  
数値データ型





数値データ型には2、4、8バイト整数と、4、8バイト浮動小数点および精度設定が可能な数があります。
表8.2「数値データ型」に使用可能な型を列挙します。
   
表8.2 数値データ型
	名前	格納サイズ	説明	範囲
	smallint	2バイト	狭範囲の整数	-32768から+32767
	integer	4バイト	典型的に使用する整数	-2147483648から+2147483647
	bigint	8バイト	広範囲整数	-9223372036854775808から+9223372036854775807
	decimal	可変長	ユーザ指定精度、正確	小数点より上は131072桁まで、小数点より下は16383桁まで
	numeric	可変長	ユーザ指定精度、正確	小数点より上は131072桁まで、小数点より下は16383桁まで
	real	4バイト	可変精度、不正確	6桁精度
	double precision	8バイト	可変精度、不正確	15桁精度
	smallserial	2バイト	狭範囲自動整数	1から32767
	serial	4バイト	自動増分整数	1から2147483647
	bigserial	8バイト	広範囲自動増分整数	1から9223372036854775807





数値データ型に対する定数の構文は「定数」で説明しています。
数値データ型には対応する算術演算子と関数の一式が揃っています。
詳細は9章関数と演算子を参照してください。
以降の節でデータ型について詳しく説明します。
   
整数データ型





smallint、integer、bigintは各種範囲の整数、つまり小数点以下の端数がない数を保持します。
許容範囲から外れた値を保存しようとするとエラーになります。
    


integer型は数値の範囲、格納サイズおよび性能において最も釣合いが取れていますので、一般的に使用されます。
smallint型は通常はディスク容量に制限が付いている場合にのみ使用します。
bigint型はintegerの許容範囲では十分ではない場合に使用されるよう設計されています。
    


SQLでは整数の型としてinteger（またはint）とsmallint、bigintのみを規定しています。
int2、int4およびint8は拡張ですが、いくつか他のSQLデータベースシステムでも使われています。
    

任意の精度を持つ数





numeric型は、非常に大きな桁数で数値を格納できます。
通貨金額やその他正確性が求められる数量を保存する時は特に、この型を推奨します。
numericの値での計算は、可能なところ、例えば、足し算、引算、掛け算では、正確な結果（訳注：10進の小数で誤差が生じない、ということ）になります。
とは言っても、numericの値に対する計算は整数型、もしくは次節で説明する浮動小数点データ型に比較し非常に遅くなります。
    


この後の説明では、次の用語を使用します。
numericの精度(precision)とは数字全体の有効桁数です。
すなわち、小数点をはさんでいる両側の桁数の合計です。
numericの位取り(scale)とは、小数点の右側の小数部分の桁数をいいます。
そのため、23.5141という数値の精度は6で位取りは4となります。
整数の位取りは、ゼロであるとみなすことができます。
    


numeric列の数値の最大精度と最大位取りの両方を設定することができます。
numeric型の列を宣言するには次の構文を使います。


NUMERIC(precision, scale)



精度は正でなければならず、位取りは正または負であることができます(以下を参照)。
または、次のように指定します


NUMERIC(precision)



は位取りが0であることを選択します。
精度も位取りも指定せず、


NUMERIC



と記述すると、実装されている限界の精度まで、いかなる精度あるいは位取りの値も格納できる「制約の無い数値」列が作られます。
この類の列は入力値をいかなる特定の位取りにも変換しませんが、宣言された位取りを持つnumeric列は入力値をその位取りに変換します。
（標準SQLはデフォルトとして位取り0を要求していて、つまり、整数の精度に変換されます。
しかし、この方法はあまり役に立たないと思われます。
もし移植性を心配するなら、常に精度と位取りを明示的に設定してください。）
    
注記


明示的にnumeric型宣言で指定される場合の最大精度は1000です。
制約の無いnumeric列は表8.2「数値データ型」で説明する制限に従います。
     



格納される値の位取りが宣言された列の位取りより大きかった場合、システムは指定された小数部の桁まで値を丸めます。
そして、小数点の左側の桁数が、宣言された精度から宣言された位取りを差し引いた数を超える場合にエラーとなります。
例えば、


NUMERIC(3, 1)



として宣言された列は、値を小数第1位に丸め、-99.9から99.9までの値を格納できます。
    


PostgreSQL™ 15以降では、負の位取りを持つnumeric列を宣言することが許可されました。
その場合、値は小数点の左側に丸められます。
精度は、依然として丸められない最大桁数を表します。
したがって、


NUMERIC(2, -3)



として宣言された列は、千に近い値に丸められ、-99000から99000までの値を格納できます。
また、宣言された精度よりも大きな位取りを宣言することも許可されます。
このような列は小数値しか保持できず、小数点のすぐ右の0桁は、少なくとも宣言された位取りから宣言された精度を引いた値である必要があります。
例えば、


NUMERIC(3, 5)



として宣言された列は、小数点以下5桁に丸められ、-0.00999から0.00999までの値を格納できます。
    
注記


PostgreSQL™では、numeric型宣言の位取りを-1000～1000の範囲の任意の値にすることができます。
しかし、標準SQLでは位取りを0～精度の範囲にする必要があります。
この範囲外の位取りを使用すると、他のデータベースシステムに移植できない可能性があります。
     



数値は物理的に先頭や末尾に0を付与されることなく格納されます。
したがって、列の宣言された精度と位取りは最大であり、固定的に割り当てられていません。
（この意味ではnumericはchar(n)よりもvarchar(n)に似ています。）
実際の格納に必要な容量は、10進数4桁のそれぞれのグループに対して2バイトと、3から8バイトのオーバーヘッドです。
    


通常の数値に加え、numeric型はいくつかの特別な値を取ることができます。



Infinity

-Infinity

NaN





これらはIEEE 754標準から引用されたもので、それぞれ「無限大」、「マイナス無限大」そして「非数値」を表します。
SQLコマンドの定数として記述する場合は、例えばUPDATE table SET x = '-Infinity'のように、引用符でくくらなければなりません。
入力の際、これらの文字列は大文字小文字の区別なく認識されます。
無限の値は代わりにinfや-infと綴ることもできます。
    


無限の値は数学的に期待されたとおりに振る舞います。
例えば、Infinityに有限な値を加算した場合やInfinityにInfinityを加算した場合はInfinityになります。しかし、InfinityからInfinityを減算した場合は、解釈が定まらないためNaN(数値では無い)になります。
無限大は制約が無いnumeric列にのみ格納できることに注意してください。これは理論上、いかなる有限な精度も超えているためです。
    


NaN(数値では無い)値は定義されていない計算の結果を表現するために使用されます。
通常、NaN入力を伴う操作は別のNaNを出力します。
その操作の入力がNaNを他の有限もしくは無限の数値型の値に置き換えられた場合に同じ出力が得られる時に限り例外があります。
この時はNaNの代わりにその操作の出力が使われます(この概念では例えば、NaNの0乗は1を出力します)。
    
注記


ほとんどの「非数」の概念の実装において、NaNは（NaNを含む）他の数値と等価にならないとみなされています。
numeric値をソートできる、また、ツリーを基にしたインデックスで使用できるように、PostgreSQL™はNaN同士は等しく、すべてのNaN以外の値よりも大きな値となるものとして扱います。
     



decimalとnumeric型は等価です。
2つのデータ型はともに標準SQLに含まれます。
    


値を丸める際、numeric型は0から離れるように丸めますが、一方で（ほとんどのマシンでは）realやdouble precision型ではその値に最も近い偶数に丸めます。
以下に例を示します。:



SELECT x,
  round(x::numeric) AS num_round,
  round(x::double precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;
  x   | num_round | dbl_round
------+-----------+-----------
 -3.5 |        -4 |        -4
 -2.5 |        -3 |        -2
 -1.5 |        -2 |        -2
 -0.5 |        -1 |        -0
  0.5 |         1 |         0
  1.5 |         2 |         2
  2.5 |         3 |         2
  3.5 |         4 |         4
(8 rows)


    

浮動小数点データ型





realとdouble precisionは不正確な（訳注：10進の小数で誤差が生じる、ということ）可変精度の数値データ型です。
現在サポートされている全てのプラットフォーム上では、これらのデータ型は、使用しているプロセッサ、オペレーティングシステムおよびコンパイラがサポートしていれば、通常は（それぞれ単精度および倍精度の）バイナリ浮動小数点演算用のIEEE規格754の実装です。
    


不正確というのは、ある値はそのままで内部形式に変換されずに近似値として保存されるということです。
ですから、保存しようとする値と抽出しようとする値の間に多少の差異が認められます。
これらのエラーを管理し計算によって補正をどうするかについては、数学とコンピュータ科学の系統すべてに関わることで、以下の点を除き触れません。
     
	

（金銭金額など）正確な記録と計算が必要な時は代わりにnumericを使用してください。
       

	

これらのデータ型で何か重要な件に対し複雑な計算を必要とする時、特に（無限大やアンダーフローのような）境界線におけるある種の振舞いについて信頼を置かなければならないのであれば、実装を注意深く検証しなければなりません。
       

	

2つの浮動小数点値が等価であるのかどうかの比較は予想通りに行かない時もあります。
       




    


現在サポートされている全てのプラットフォームでは、real型は最低6桁の精度を持ち、1E-37から1E+37までの範囲です。
double precision型は最低15桁の精度でおよそ1E-307から1E+308までの範囲です。
大き過ぎたり小さ過ぎる値はエラーの原因になります。
入力値の精度が高過ぎる場合は丸められることがあります。
ゼロに限りなく近い値で、しかもゼロと異なる値として表現できない数値はアンダーフローエラーになります。
    


デフォルトでは、浮動小数の値は最も短い正確な10進数のテキスト形式で出力されます。
生成される10進値は、同じバイナリ精度で表現できる他の値よりも、実際に格納されているバイナリ値に近い値になります。
(ただし、出力値が2つの表現可能な値の厳密な中間になることはありません。これは、入力ルーチンが最も近い偶数に丸める規則を適切に考慮しないという広範囲にわたる不具合を避けるためです。)
この値はfloat8型の値には最大17桁の10進数、float4型の値には最大9桁の10進数を使用します。
    
注記


この最も短く正確な出力フォーマットは従来の丸められた形式よりもはるかに速く値を生成します。
     



PostgreSQL™の古いバージョンで生成された出力との互換性を確保し、出力精度を低くするために、代わりにextra_float_digitsパラメータを使用して丸めた10進数の出力を選択することができます。
値を0に設定した場合は、以前のデフォルト値である6(float4の場合)か15(float8の場合)の有効桁に丸めた値を戻します。
負の値を設定すると、桁数がさらに減少します。たとえば、-2を設定すると、出力はそれぞれ4桁または13桁に丸められます。
    


0より大きいextra_float_digitsの値は、最短の正確なフォーマットを選択します。
    
注記


精密な値を必要とするアプリケーションでは、従来、extra_float_digitsを3に設定して値を取得する必要がありました。
バージョン間の互換性を最大にするためには継続してそのように設定する必要があります。
     



通常の数値に加え、浮動小数点型では以下の特殊な値を取ります。



Infinity

-Infinity

NaN





これらはそれぞれ、IEEE 754の特殊な値、「無限大」、「負の無限大」、「非数値」を表します。
これらの値をSQLコマンドの定数として記述する場合、例えばUPDATE table SET x = '-Infinity'のように引用符でくくる必要があります。
入力の際、これらの文字列は大文字小文字の区別なく認識されます。
無限の値は代わりにinfや-infと綴ることもできます。
    
注記


IEEE 754では、NaNは（NaNを含む）他のすべての浮動小数点値と比べた時に不等でなければならないと規定しています。
浮動小数点値をソートできる、また、ツリーを基にしたインデックスで使用できるように、PostgreSQL™はNaN同士は等しく、すべてのNaN以外の値よりも大きな値となるものとして扱います。
     



また、PostgreSQL™では不正確な数値型についての標準SQLの表記であるfloatとfloat(p)をサポートしています。
ここで、pは2進数桁数で最低限、許容可能な精度を指定します。
PostgreSQL™はfloat(1)からfloat(24)をrealを選択するものとして受け付け、float(25)からfloat(53)をdouble precisionを選択するものとして受け付けます。
許容範囲外のpの値はエラーになります。
精度指定のないfloatはdouble precisionとして解釈されます。
    

連番型



注記


この節ではPostgreSQL固有の自動増分列の作成方法について記述します。
標準SQLの識別列機能を使用する方法は、「識別列」に記述されています。
     



smallserial、serialおよびbigserialデータ型は正確にはデータ型ではなく、テーブルの列に一意の識別子を作成する簡便な表記法です
（他のデータベースでサポートされるAUTO_INCREMENTプロパティに似ています）。
現在の実装では、



CREATE TABLE tablename (
    colname SERIAL
);




は以下を指定することと同じです。



CREATE SEQUENCE tablename_colname_seq AS integer;
CREATE TABLE tablename (
    colname integer NOT NULL DEFAULT nextval('tablename_colname_seq')
);
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;




このように整数列を作成し、その列のデフォルト値が連番ジェネレータから割り当てられるようにしました。
また、NOT NULL制約を適用することによって、NULL値が挿入されないようにします。
（たいていの場合は、重複する値を間違って挿入しないように、UNIQUE制約またはPRIMARY KEY制約も追加することになるでしょうが、これは自動的には行われません。）
最後に、シーケンスは列に「より所有」されるものと印が付きます。
したがって、テーブルの列が削除された場合にシーケンスは削除されます。
    
注記


smallserial、 serialおよびbigserialはシーケンスを使って実装されているため、行の削除が行われていなくとも、列に"穴"や連番の抜けが発生するかもしれません。
また、テーブルへ正常に挿入されていないにも関わらず、シーケンスの値を"消費してしまう"こともあります。
これは、例えば挿入したトランザクションがロールバックされた時に発生することがあります。
詳細は「シーケンス操作関数」のnextval()を参照してください。
      



serial列にシーケンスの次の値を挿入するには、serial列にそのデフォルト値を割り当てるよう指定してください。
これは、INSERT文の列リストからその列を除外する、もしくはDEFAULTキーワードを使用することで行うことができます。
    


serialとserial4という型の名称は等価です。
ともにinteger列を作成します。
bigserialとserial8という型の名称もbigint列を作成することを除いて同じ振舞いをします。
もしテーブルを使用する期間で231以上の識別子を使用すると予測される場合、bigserialを使用すべきです。
smallserialとserial2という型の名称もまた、smallint列を作成することを除いて同じ振舞いをします。
    


serial列用に作成されたシーケンスは、それを所有する列が削除された時に自動的に削除されます。
列を削除せずにシーケンスを削除することができますが、これにより強制的に列のデフォルト式が削除されます。
    



通貨型





money型は貨幣金額を固定精度の小数点で格納します。
表8.3「通貨型」を参照してください。
小数点精度はデータベースのlc_monetary設定で決定されます。この表が示すように範囲は小数点2桁を想定しています。
'$1,000.00'などの典型的な通貨書式の他、整数、浮動小数点リテラルなど様々な書式の入力を受け付けます。
出力形式は通常は後者となりますが、ロケールによって異なります。
   
表8.3 通貨型
	名前	格納サイズ	説明	範囲
	money	8バイト	貨幣金額	-92233720368547758.08 から +92233720368547758.07





このデータ型の出力はロケールにより変動しますので、lc_monetary設定が異なるデータベースにmoneyデータをロードする場合には動作しない可能性があります。
この問題を防ぐためには、ダンプを新しいデータベースにリストアする前に、lc_monetaryがダンプを行ったデータベースと同じまたは等価であることを確認してください。
   


numeric、intそしてbigint型はmoney型にキャストすることができます。real型やdouble precision型は最初にnumeric 型にキャストした後に行なう必要があります。以下に例を示します。


SELECT '12.34'::float8::numeric::money;



しかしこれは推奨されません。浮動小数点数値は丸め誤差の可能性がありますので貨幣を扱うために使用すべきではありません。
   


money型の値は精度を落とすことなくnumericにキャストすることができます。
他の型への変換では精度を落とす可能性があり、また２段階で行う必要があります。


SELECT '52093.89'::money::numeric::float8;


   


money型の値を整数型の値で除算すると、小数部分を0に切り捨てるように実行されます。
四捨五入した結果を得るためには、小数部分を持つ値で割り算するか、割り算を行う前にmoney型の値をnumeric型にキャストし、あとでmoney型に戻します。
（精度を落とすリスクを避けるため、後者の方が好ましいです。）
money型の値を別のmoney型の値で除算すると、結果はdouble precision型（通貨ではなく純粋な数値）になります。
除算では通貨の単位は相殺されます。
   

文字型



表8.4 文字型
	名前	説明
	character varying(n), varchar(n)	上限付き可変長
	character(n), char(n), bpchar(n)	空白で埋められた固定長
	bpchar	variable unlimited length, blank-trimmed
	text	制限なし可変長





表8.4「文字型」はPostgreSQL™で使用可能な汎用文字型を示したものです。
   


SQLは2つの主要な文字データ型を定義しています。
character varying(n)とcharacter(n)です。
ここでnは正の整数です。
これらのデータ型は2つともn文字長（バイト数ではなく）までの文字列を保存できます。
上限を越えた文字列をこれらの型の列に保存しようとするとエラーになります。
ただし、上限を超えた部分にある文字がすべて空白の場合はエラーにはならず、文字列の最大長にまで切り詰められます。
（この一風変わった例外は標準SQLで要求されています。）
しかし、character varying(n)やcharacter(n)に明示的なキャストが行われた場合、文字数の上限を超えた値は、エラーを発生させることなくn文字に切り捨てられます。
（これもまた、標準SQLで要求されています。）
もし宣言された上限よりも文字列が短い時はcharacterの値は空白で埋められ、character varyingの値は単にその短い文字列で保存されます。
   


さらに、PostgreSQL™は、任意の長さの文字列を格納するtext型を提供します。
text型は標準SQLにはありませんが、他のいくつかのSQLデータベース管理システムにもあります。
textはPostgreSQL™ネイティブの文字列データ型であり、文字列を操作するほとんどの組み込み関数には、引数や戻り値にcharacter varyingではなく、textが宣言されています。
多くの目的のために、character varyingはtextに対するドメインであるかのように動作します。
   


型名varcharはcharacter varyingの別名で、（長さ指定子がある）bpcharとcharはcharacterの別名です。
varcharとcharの別名は標準SQLで定義されています。bpcharはPostgreSQL™の拡張です。
   


長さを指定する場合、nはゼロより大きな値でなければならず、10,485,760を超えることはできません。
長さ指定子なしでcharacter varying （またはvarchar）が使用された場合、この型は任意の長さの文字列を受け入れます。
bpcharに長さ指定子がない場合、この型は任意の長さの文字列も受け付けますが、末尾の空白は意味的に重要ではありません。
character（またはchar）に指定子がない場合、この型はcharacter(1)と同じです。
   


character型の値は、指定長nになるまで物理的に空白で埋められ、そのまま格納、表示されます。
しかし、最後の空白は、意味的に重要ではないものとして扱われ、2つのcharacter型の値を比べる際には無視されます。
空白が重要な照合順序では、この挙動は予期しない結果を返す可能性があります。例えば、SELECT 'a '::CHAR(2) collate "C" < E'a\n'::CHAR(2)はCロケールでスペースが改行よりも大きいにも関わらず真を返します。
character値を他の文字列型に変換する際は、文字列の終わりの空白は除去されます。
character varying型とtext型の値の中や、パターンマッチを行なう際、すなわちLIKEや正規表現では、最後の空白は意味的に重要なものですので、注意してください。
   


これらのデータ型のいずれかに格納できる文字はデータベースを作成するときに選択されるデータベース文字集合によって決定されます。
特定の文字集合に関わらず、コード0（時にはNULと呼ばれます）を格納することはできません。
より詳細な情報は「文字集合サポート」を参照ください。
   


短い文字列（126バイトまで）の保存には、実際の文字列に１バイト加えたサイズが必要です。
characterでは空白埋め込み分もこれに含まれます。
より長い文字列では１バイトではなく４バイトのオーバーヘッドになります。
長い文字列はシステムにより自動的に圧縮されますので、ディスク上の物理的必要容量サイズはより小さくなるかもしれません。
また、非常に長い値はより短い列の値への高速アクセスに干渉しないように、バックグラウンドテーブルに格納されます。
いずれの場合にあっても保存できる最長の文字列は約1ギガバイトです。
（データ型宣言に使われるnに許される最大値はこれより小さいものです。
マルチバイト文字符号化方式においては文字数とバイト数はまったく異なっているため、この値の変更は便利ではありません。
特定の上限を設けずに長い文字列を保存したい場合は、適当な上限を設けるよりも、textもしくは長さの指定がないcharacter varyingを使用してください。）
   
ヒント


空白で埋められる型を使用した場合の保存領域の増加、および、長さ制限付きの列に格納する際に長さを検査するためにいくつか余計なCPUサイクルが加わる点を別にして、これら3つの型の間で性能に関する差異はありません。
他の一部のデータベースシステムではcharacter(n)には性能的な優位性がありますが、PostgreSQL™ではこうした利点はありません。
実際には、格納の際に追加のコストがあるため、character(n)は3つの中でもっとも低速です。
多くの場合、代わりにtextかcharacter varyingを使うのがお薦めです。
    



文字列リテラルの構文については「文字列定数」、利用可能な演算子と関数については9章関数と演算子を参照してください。
   
例8.1 文字データ型の使用

CREATE TABLE test1 (a character(4));
INSERT INTO test1 VALUES ('ok');
SELECT a, char_length(a) FROM test1; -- [image: 1]

  a   | char_length
------+-------------
 ok   |           2


CREATE TABLE test2 (b varchar(5));
INSERT INTO test2 VALUES ('ok');
INSERT INTO test2 VALUES ('good      ');
INSERT INTO test2 VALUES ('too long');
ERROR:  value too long for type character varying(5)

INSERT INTO test2 VALUES ('too long'::varchar(5)); -- 明示的な切り捨て
SELECT b, char_length(b) FROM test2;

   b   | char_length
-------+-------------
 ok    |           2
 good  |           5
 too l |           5


	[image: 1] 
	

char_length関数は「文字列関数と演算子」で説明されています。
      







PostgreSQL™には、表8.5「特別な文字データ型」に示すように、この他2つの固定長文字型があります。
これらは一般的な使用を目的としたものではなく、内部的なシステムカタログでのみ使用することを意図しています。
name型は識別子を格納するために使われます。
現在長さは64バイト（63バイトの利用可能文字と終止文字）と定義されていますが、CソースコードにあるNAMEDATALEN定数を使って参照される必要があります。
この長さはコンパイル時に設定されます（そのため特別な用途に合わせ調整できます）。
デフォルトの最大長は今後のリリースで変更される可能性があります。
"char"（二重引用符に注意）は、char(1)とは異なり、1バイトの領域しか使用せず、このため、シングルバイトのASCII文字のみを格納することができます。
過度に単純化した列挙型としてシステムカタログで内部的に使用されます。
   
表8.5 特別な文字データ型
	名前	格納サイズ	説明
	"char"	1バイト	単一バイト内部データ型
	name	64バイト	オブジェクト名用の内部データ型




バイナリ列データ型





byteaデータ型はバイナリ列の保存を可能にします。
表8.6「バイナリ列データ型」を参照してください。
   
表8.6 バイナリ列データ型
	名前	格納サイズ	説明
	bytea	1または4バイトと実際のバイナリ列の長さ	可変長のバイナリ列





バイナリ列はオクテット（またはバイト）の連続です。
バイナリ列は２つの点で文字列と区別されます。
1点目は、バイナリ列はゼロの値のオクテットと他の「表示できない」オクテット（通常10進数表記で32から126の範囲外のオクテット）を保存できるということです。
文字列ではゼロというオクテットは使用できません。
また、データベースで選択している文字集合符号化方式で無効なオクテット値やオクテット値の並びも使用できません。
2点目は、バイナリ列を演算すると実際のバイトが処理されるのに対して、文字列の処理はロケール設定に従うということです。
まとめると、バイナリ列はプログラマが「バイト列そのもの」と考えるものを格納するのに適し、文字列はテキストを格納するのに適しています。
   


bytea型は入出力用に2つの書式をサポートします。
「hex」書式とPostgreSQL™の歴史的な「エスケープ」書式です。
入力ではこれらの両方とも常に受け入れられます。
出力書式はbytea_output設定パラメータに依存し、デフォルトではhexです。
（hex書式はPostgreSQL™ 9.0から導入されたものであることに注意してください。
以前のバージョンや一部のツールではこれを理解しません。）
   


標準SQLは、BLOBまたはBINARY LARGE OBJECTという、異なるバイナリ列型を定義します。
入力書式はbyteaと異なりますが、提供される関数および演算子はほぼ同じです。
   
byteaのhex書式





「hex」書式ではバイナリデータの各バイトを上位4ビット、下位4ビットの順で2桁の16進数に符号化します。
（エスケープ書式と区別するために）文字列全体は\xという並びの後に付けられます。
一部の文脈では、先頭のバックスラッシュを二重にしてエスケープさせる必要があるかもしれません(以下を参照 「文字列定数」)。
これはエスケープ書式でバックスラッシュを二重にしなければならない場合と同じで、詳細は以下に示します。
入力する16進数の桁は大文字でも小文字でも構いません。
数字のペアの間に空白文字を入れることができます。
（しかし桁の組み合わせの間や先頭の\xの間には入れることはできません。）
hex書式は外部のアプリケーションおよびプロトコルの間で広く互換性を持ち、また、エスケープ書式と比べ変換が高速になる傾向があります。
このため使用が好まれます。
   


例


SET bytea_output = 'hex';

SELECT '\xDEADBEEF'::bytea;
   bytea
------------
 \xdeadbeef


   

byteaのエスケープ書式





「エスケープ」書式はbytea型用の伝統的なPostgreSQL™の書式です。
これは、バイナリ列をASCII文字の並びとして表現しASCII文字として表現できないバイトは特殊なエスケープシーケンスとして表現するという方式を取ります。
アプリケーションの見地から文字として表現されたバイトが有意であれば、この表現は簡便です。
しかし現実にはバイナリ列と文字列の間の区別があいまいになりますので、通常は混乱します。
また選択されたこのエスケープ機構自体が多少非効率的です。
このためこの書式はおそらくほとんどの新しいアプリケーションでは避けるべきでしょう。
   


エスケープ書式でbytea値を入力する際に、特定の値のオクテットをエスケープする必要があります。
なお、すべてのオクテットの値をエスケープすることができます。
一般的にあるオクテットをエスケープするには、それをその3桁の8進数に変換し、バックスラッシュを前に付けます。
他にもバックスラッシュ自体(10進数表記のオクテットで92)を二重のバックスラッシュとして表現することができます。
表8.7「オクテットをエスケープしたbyteaリテラル」には、エスケープする必要がある文字と、その適用可能な代替エスケープシーケンスを示しています。
   
表8.7 オクテットをエスケープしたbyteaリテラル
	10進オクテット値	説明	エスケープされた入力表現	例	出力表現
	0	ゼロオクテット	'\000'	'\000'::bytea;	\x00
	39	単一引用符	''''もしくは'\047'	''''::bytea;	\x27
	92	バックスラッシュ	'\\'もしくは'\\134'	'\\'::bytea;	\x5c
	0から31まで、および127から255まで	「表示できない」オクテット	'\xxx' (8進数)	'\001'::bytea;	\x01





実際には、表示できないオクテットに対するエスケープ要求はロケールの設定に依存して異なります。
ロケールの設定によっては、エスケープをしないで済むこともあります。
   


表8.7「オクテットをエスケープしたbyteaリテラル」で示したように、シングルクォートが二重に必要な理由は、SQLコマンド中のあらゆる文字列に当てはまるためです。
一般的な文字列パーサは最も外側のシングルクォートを消費し、シングルクォートのペアを一つの文字データに減らします。
byteaを入力する関数が見るのは単に一つのシングルクォートであり、一個の単純なデータ文字として扱います。
しかし、byteaを入力する関数はバックスラッシュを特別なものとして扱い、表8.7「オクテットをエスケープしたbyteaリテラル」に示されているその他の動作はこの関数で実装されています。
   


一般的な文字列パーサはバックスラッシュのペアを一つの文字データに減らすため、文脈によってはバックスラッシュは上記に見られるように、重ねる必要があります。
「文字列定数」も参照ください。
   


Byteaオクテットはデフォルトではhex書式で出力されます。
bytea_outputをescapeに変えると、「表示できない」オクテットは先頭にバックスラッシュがついた3桁のオクテットの値に変換されます。
ほとんどの「表示可能な」オクテットはクライアント文字集合の標準的な表示で出力されます。例:



SET bytea_output = 'escape';

SELECT 'abc \153\154\155 \052\251\124'::bytea;
     bytea
----------------
 abc klm *\251T




10進数で92(バックスラッシュ)を持つオクテットは出力時に二重になります。
詳細は表8.8「bytea出力のエスケープされたオクテット」を参照してください。
   
表8.8 bytea出力のエスケープされたオクテット
	10進オクテット値	説明	エスケープされた出力表現	例	出力結果
	92	バックスラッシュ	\\	'\134'::bytea	\\
	0から31まで、および127から255まで	「表示できない」オクテット	\xxx（8進数）	'\001'::bytea;	\001
	32から126	「表示できる」オクテット	クライアント文字集合における表現	'\176'::bytea;	~





使用するPostgreSQL™のフロントエンドによっては、bytea文字列をエスケープまたはアンエスケープする追加的な作業が必要になることがあります。
例えば、使用するインタフェースが改行文字や復帰文字を自動的に翻訳してしまう場合、これらの文字もエスケープしなければならないかもしれません。
   


日付/時刻データ型





PostgreSQL™では、表8.9「日付/時刻データ型」に示されているSQLの日付と時刻データ型のすべてがサポートされています。
これらのデータ型で利用できる演算については「日付/時刻関数と演算子」で説明します。
グレゴリオ暦が導入されるより前の年であっても（「単位の歴史」参照）、日付はグレゴリオ暦にしたがって計算されます。
   
表8.9 日付/時刻データ型
	名前	格納サイズ	説明	最遠の過去	最遠の未来	精度
	timestamp [ (p) ] [ without time zone ]	8バイト	日付と時刻両方（時間帯なし）	4713 BC	294276 AD	1マイクロ秒
	timestamp [ (p) ] with time zone	8バイト	日付と時刻両方、時間帯付き	4713 BC	294276 AD	1マイクロ秒
	date	4バイト	日付（時刻なし）	4713 BC	5874897 AD	1日
	time [ (p) ] [ without time zone ]	8バイト	時刻（日付なし）	00:00:00	24:00:00	1マイクロ秒
	time [ (p) ] with time zone	12バイト	時刻（日付なし）、時間帯付き	00:00:00+1559	24:00:00-1559	1マイクロ秒
	interval [ fields ] [ (p) ]	16バイト	時間間隔	-178000000年	178000000年	1マイクロ秒



注記


標準SQLでは、単なるtimestampという記述はtimestamp without time zoneと同じであることを要求します。
PostgreSQL™はこれに準じます。
timestamp with time zoneはtimestamptzと省略することができますが、これはPostgreSQL™の拡張です。
    



time、timestampおよびintervalは秒フィールドに保有されている小数点以下の桁数を指定する精度値pをオプションで受け付けます。
デフォルトでは、精度についての明示的な限界はありません。
pの許容範囲は0から6です。
   


intervalデータ型には追加のオプションがあり、以下の１つの語句を使用して格納されるフィールドの集合を制約します。


YEAR
MONTH
DAY
HOUR
MINUTE
SECOND
YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND



fieldsおよびpが共に指定されると、精度は秒のみに適用されるので、fieldsはSECONDを含まなければならないことに注意してください。
   


time with time zoneは標準SQLで定義されていますが、その定義は、その有用性を疑問視することになりかねない特性を示しています。
ほとんどの場合、date、time、timestamp without time zone、timestamp with time zoneの組み合わせで、すべてのアプリケーションで要求される日付/時刻機能すべてを提供しているはずです。
   
日付/時刻の入力





日付と時刻の入力は、ISO 8601、SQL互換、伝統的なPOSTGRES™、その他を含むほとんどの適正とみなされる書式を受け付けます。
一部の書式では日付の入力における日-月-年の順序が曖昧ですが、これらのフィールドの期待される順序を指定する方式が提供されています。
DateStyleパラメータをMDYに設定すれば、月日年という順で解釈され、DMYに設定すれば日月年という順で、YMDに設定すれば年月日という順で解釈されます。
    


PostgreSQL™は日付/時刻入力の取扱いにおいて標準SQLの要求よりも柔軟です。
日付/時刻の入力における厳密な構文解析規則と、月および週、そして時間帯を含む使用可能なテキストフィールドに関しては付録B 日付/時刻のサポートを参照してください。
    


日付や時刻リテラルの入力では、テキスト文字列のように、単一引用符で囲む必要があることを思い出してください。
詳細は「他の型の定数」を参照してください。
SQLでは下記の構文が要求されます。


type [ (p) ] 'value'



ここで、pは秒フィールドの小数点以下の桁数を与えるオプションの精度の指定です。
精度はtime、timestampおよびinterval型に対して0から6の範囲で設定できます。
値の許容範囲は既に説明しています。
定数指定において精度指定がない場合は、リテラル値の精度がデフォルトとして使われます(ただし、６桁を超えることはありません)。
    
日付





表8.10「日付入力」はdate型で入力可能なものの一部を示します。
    
表8.10 日付入力
	例	説明
	1999-01-08	ISO 8601。すべてのモードで1月8日になります（推奨書式）。
	January 8, 1999	すべてのdatestyle入力モードにおいて曖昧さがありません。
	1/8/1999	MDYモードでは1月8日、DMYモードでは8月1日。
	1/18/1999	MDYモードでは1月18日、他のモードでは拒絶されます。
	01/02/03	
MDYモードでは2003年1月2日、DMYモードでは2003年2月1日、YMDモードでは2001年2月3日。
         
	1999-Jan-08	すべてのモードで1月8日になります。
	Jan-08-1999	すべてのモードで1月8日になります。
	08-Jan-1999	すべてのモードで1月8日になります。
	99-Jan-08	YMDモードで1月8日、他のモードではエラー。
	08-Jan-99	1月8日。ただしYMDモードではエラー。
	Jan-08-99	1月8日。ただしYMDモードではエラー。
	19990108	ISO 8601。すべてのモードで1999年1月8日になります。
	990108	ISO 8601。すべてのモードで1999年1月8日になります。
	1999.008	年と年間通算日
	J2451187	ユリウス日
	January 8, 99 BC	西暦紀元前99年




時刻





ある一日の時刻を表す型はtime [(p) ] without time zoneとtime [ (p) ] with time zoneです。
time単独ではtime without time zoneと同じです。
     


これらの型への有効な入力は、時刻、その後にオプションで時間帯からなります。
（表8.11「時刻入力」と表8.12「時間帯入力」を参照してください。）
time without time zoneへの入力に時間帯が指定された場合、時間帯は警告なく無視されます。
また、日付を指定することもできますが、America/New_Yorkのような夏時間規則を含む時間帯名を使用しているのでなければ、それは無視されます。
夏時間規則のある時間帯名の場合は、標準と夏時間のどちらを適用するかを決定できるように、日付の指定が必要です。
適切な時間帯オフセットはtime with time zone型の値に記録され格納された通りに出力されます。アクティブなタイムゾーンに調整されることはありません。
     
表8.11 時刻入力
	例	説明
	04:05:06.789	ISO 8601
	04:05:06	ISO 8601
	04:05	ISO 8601
	040506	ISO 8601
	04:05 AM	04:05と同じ。AMは値に影響を与えない。
	04:05 PM	16:05と同じ。時の入力は12以下でなければなりません。
	04:05:06.789-8	ISO 8601, UTC オフセットとしてのタイムゾーン
	04:05:06-08:00	ISO 8601, UTC オフセットとしてのタイムゾーン
	04:05-08:00	ISO 8601, UTC オフセットとしてのタイムゾーン
	040506-08	ISO 8601, UTC オフセットとしてのタイムゾーン
	040506+0730	ISO 8601, UTC オフセットとしての小数付き時間のタイムゾーン
	040506+07:30:00	秒まで指定されたUTCオフセット(ISO 8601では未サポート)
	04:05:06 PST	省略形による時間帯の指定。
	2003-04-12 04:05:06 America/New_York	名前による時間帯の指定。



表8.12 時間帯入力
	例	説明
	PST	省略形（米国太平洋標準時間）
	America/New_York	完全な時間帯名
	PST8PDT	POSIX書式の時間帯指定
	-8:00:00	PSTのUTCオフセット
	-8:00	PSTのUTCオフセット(ISO 8601の拡張フォーマット)
	-800	PSTのUTCオフセット(ISO 8601の基本フォーマット)
	-8	PSTのUTCオフセット(ISO 8601の基本フォーマット)
	zulu	UTC用の軍事用略記
	z	zuluの略記(また、ISO 8601)





時間帯の指定方法に関する詳細は「時間帯」を参照してください。
    

タイムスタンプ





タイムスタンプ型への有効な入力は、日付と時刻を連結し、さらにその後にオプションで時間帯、その後にオプションでADもしくはBCからなります。
（他にAD/BCを時間帯の前に付ける方法もありますが、これは推奨される順序ではありません。）
したがって、



1999-01-08 04:05:06



と


1999-01-08 04:05:06 -8:00




は有効な値で、ISO 8601に準拠しています。
また、広く使用されている


January 8 04:05:06 1999 PST



という書式もサポートされます。
     


標準SQLでは、timestamp without time zoneのリテラルとtimestamp with time zoneのリテラルを、時刻の後の「+」もしくは「-」記号と時間帯補正の有無により区別します。
そのため、標準に従うと、



TIMESTAMP '2004-10-19 10:23:54'




はtimestamp without time zoneに、



TIMESTAMP '2004-10-19 10:23:54+02'




はtimestamp with time zoneになります。
PostgreSQL™では、その型を決める前に文字列リテラルの内容を検証しません。
そのため上の例はいずれもtimestamp without time zoneとして扱います。
リテラルが確実にtimestamp with time zoneとして扱われるようにするには、例えば、以下のように正しい明示的な型を指定してください。



TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02'


     


timestamp without time zoneと決定済みの値では、PostgreSQL™は警告なく時間帯情報をすべて無視します。
つまり、結果の値は明示された入力文字列の日付/時刻フィールドから持ち込まれますが、時間帯の調整はなされません。
     


timestamp with time zone値の場合、明示的な時間帯を含む入力された文字列は、その時間帯の適切なオフセットを使用してUTC（協定世界時）に変換されます。
入力文字列に時間帯が指定されていない場合は、システムのTimeZoneパラメータに示されている値が時間帯とみなされ、timezone時間帯用のオフセットを使用してUTCに変換されます。
どちらのケースでも、値は内部的にUTCとして格納され、最初に指定または想定された時間帯は保持されません。
     


timestamp with time zoneの値が出力されると、この値はUTCから現行のtimezoneに変換され、その時間帯のローカル時間として表示されます。
他の時間帯での時間を表示するには、timezoneを変更するか、あるいはAT TIME ZONE構文（「AT TIME ZONEとAT LOCAL」 を参照）を使用します。
     


timestamp without time zoneとtimestamp with time zoneの間の変換では、通常timestamp without time zoneの値はtimezoneのローカル時間としてみなされる、または、指定されるものと想定されます。
AT TIME ZONEを使用する変換では、異なる時間帯を指定できます。
     

特別な値





PostgreSQL™では利便性のために、表8.13「特別な日付/時刻定数」に示されているような特別な日付/時刻入力値をサポートしています。
infinityと-infinityの値は、特別にシステム内部で表現され、変更されずに表示されます。
他のものは、単に簡略化された表記で、読み込まれるときに通常の日付/時刻値に変換されます。
（特にnowとその関連文字列は読み込まれるとすぐにその時点の値に変換されます。）
これらの値はすべて、SQLコマンドで定数として使う場合は、単一引用符でくくらなければなりません。
     
表8.13 特別な日付/時刻定数
	入力文字列	有効な型	説明
	epoch	date, timestamp	1970-01-01 00:00:00+00（Unixシステム時間におけるゼロ）
	infinity	date, timestamp, interval	他のすべてのタイムスタンプより将来
	-infinity	date, timestamp, interval	他のすべてのタイムスタンプより過去
	now	date, time, timestamp	現トランザクションの開始時刻
	today	date, timestamp	今日の午前０時（00:00）
	tomorrow	date, timestamp	明日の午前０時（00:00）
	yesterday	date, timestamp	昨日の午前０時（00:00）
	allballs	time	00:00:00.00 UTC





SQL互換の関数である、CURRENT_DATE、CURRENT_TIME、CURRENT_TIMESTAMP、LOCALTIME、LOCALTIMESTAMPも、対応するデータ型の現在の日付または時間の値を取得するために使用できます。
（「現在の日付/時刻」 を参照してください。）
これらはSQL関数であり、データ入力文字列として認識されないことに注意してください。
     
注意


入力する文字列としてnow、today、tomorrow及びyesterdayはインタラクティブなSQLコマンドの中で利用する時は良いですが、コマンドが保存され後に実行されるような時には驚く挙動になることがあります。例えば、準備された文、ビューや関数の定義です。
文字列は特定の時間の値に変換され、その値が古くなってからもしばらく使い続けられることがあります。
このような状況では、代わりにSQL関数を使用してください。
例えば、'tomorrow'::dateよりもCURRENT_DATE + 1の方が安全です。
      



日付/時刻の出力





日付/時刻型の出力書式は、ISO 8601、SQL（Ingres）、伝統的なPOSTGRES™（Unix date書式）またはGermanの４つのいずれかに設定できます。
デフォルトはISO書式です。
（標準SQLではISO 8601書式の使用が定められています。
「SQL」という出力書式名は歴史的な事故です。）
表8.14「日付/時刻の出力形式」に各出力書式の例を示します。
dateとtimeの書式は、例にあるとおり、それぞれ日付と時刻の部分です。しかし、POSTGRES™ではISO書式の日付部分のみを出力します。(YMDやMDYの場合12-17-1997を返し、DMYの場合17-12-1997を返します。)
    
    
表8.14 日付/時刻の出力形式
	形式指定	説明	例
	ISO	ISO 8601, 標準SQL	1997-12-17 07:37:16-08
	SQL	伝統的な様式	12/17/1997 07:37:16.00 PST
	Postgres	独自の様式	Wed Dec 17 07:37:16 1997 PST
	German	地域限定様式	17.12.1997 07:37:16.00 PST



注記


ISO 8601の仕様では日付と時刻を区切るために大文字のTを使用します。
PostgreSQL™は入力ではこの書式を受け付けますが、上記のように出力ではTではなく空白を使用します。
これは読みやすさのため、そしてRFC 3339や他のデータベースシステムとの整合性を保つためです。
     



SQLとPOSTGRESでは、DMYフィールド順が指定された場合は月の前に日が現れます。
指定がなければ日の前に月が現れます。
（この設定が入力値の解釈にどう影響を与えるのかについては「日付/時刻の入力」を参考にしてください）。
表8.15「日付の順序の慣習」に例を示します。
    
表8.15 日付の順序の慣習
	datestyleの設定	入力の順序	出力例
	SQL, DMY	day（日）/month（月）/year（年）	17/12/1997 15:37:16.00 CET
	SQL, MDY	month（月）/day（日）/year（年）	12/17/1997 07:37:16.00 PST
	Postgres, DMY	day（日）/month（月）/year（年）	Wed 17 Dec 07:37:16 1997 PST





ISO形式ではタイムゾーンはUTCからの符号付きの数値で表現され、グリニッジより東の地域では正の符号が使用されます。
オフセットは時間の整数倍であればhh（時間のみ）、分の整数倍であればhh:mm、それ以外の場合は、hh:mm:ssで表現されます。
（三番目のケースは現代のどのタイムゾーンの標準でもありえませんが、タイムゾーンが標準化される前に適用されたタイムスタンプで動いている場合に現れる可能性があります。）
他の日付スタイルでは、現在の地域で一般的に使われている場合、タイムゾーンは省略形で表現されます。
それ以外の場合はISO 8601の基本フォーマット（hhやhhmm）の符号付き数値のオフセットとして表示されます。
これらのスタイルで表示されるアルファベットの省略形は、TimeZoneの実行時パラメータによって現在選択されているIANAタイムゾーンデータベースエントリから取得されます。
timezone_abbreviations設定の影響は受けません。
    


ユーザはSET DATESTYLEコマンド、postgresql.conf構成ファイルのDateStyleパラメータ、そしてサーバかクライアントのPGDATESTYLE環境変数を使用して、日付/時刻の様式を選択することができます。
    


日付/時刻出力のより柔軟な書式設定方法として、書式設定関数to_char（「データ型書式設定関数」を参照）を使用することもできます。
    

時間帯





時間帯および時間帯の取り決めは地球の幾何学的要素のみでなく政治的決定に影響されます。
世界にまたがる時間帯は1900年代に標準化されたようですが、特に夏時間規則の点で、勝手に変更する傾向が続いています。
PostgreSQL™は歴史的な時間帯ルールについての情報に、広く使われているIANA時間帯データベースを使用します。
将来の時間は、ある与えられた時間帯に対する最新の既知のルールが、将来長きに渡りそのまま遵守が継続されるということを前提としています。
   


PostgreSQL™は典型的な使用法については標準SQLへの互換性に対し最大限の努力をしています。
しかし、標準SQLには、日付と時刻のデータ型と機能に関する混乱が見受けられます。
2つの明らかな問題点を以下に示します。

     
	

date型にはそれに関連する時間帯を持てませんが、time型にはあります。
現実の世界において、時間帯のオフセットが夏時間への切り替えにより年間を通じて変化することから、時刻と同様に日付もそれに結び付けられていないと意味がありません。
       

	

デフォルトの時間帯はUTCからの整数定数オフセットとして指定されています。
したがってDST（夏時間）への切り替えをまたいで日付/時刻演算を行う場合、夏時間を適用することは不可能です。
       




    


このような問題を解決するためには、時間帯を使用する際に日付と時刻の両方を保持できる日付/時刻データ型を使用することを勧めます。
time with time zone型の使用はお勧めしません
（もっともPostgreSQL™では、旧式のアプリケーションや、標準SQLとの互換性のために、time with time zone型の使用をサポートしています）。
PostgreSQL™は、日付または時刻のみを保持するデータ型のすべては使用中の時間帯であると前提しています。
    


すべての時間帯付きの日付と時刻はUTCで内部的に保存されます。
これらはクライアントに表示される前にTimeZone設定パラメータで指定された時間帯におけるローカル時間に変換されます。
    


PostgreSQL™では、3つの形式で時間帯を指定することができます。
     
	

America/New_Yorkなどの完全な時間帯名称。
認識できる時間帯名称はpg_timezone_namesビューに列挙されています（「pg_timezone_names」を参照してください）。
PostgreSQL™はこの目的のためによく使用されているIANA時間帯データを使用します。
したがって、他のソフトウェアでも同じ名前が認識されます。
       

	

PSTなどの時間帯省略形。
こうした指定は、単に特定のUTCからのオフセットを定義します。
一方、完全な時間帯名称では夏時間遷移規則群も組み込まれます。
認識可能な省略形はpg_timezone_abbrevsビューに列挙されています（「pg_timezone_abbrevs」を参照してください）。
TimeZone設定パラメータおよびlog_timezone設定パラメータを時間帯省略形に設定することはできませんが、日付時刻型の入力値やAT TIME ZONE演算子に省略形を使用することができます。
       

	

時間帯名やその省略形に加え、PostgreSQL™は、「POSIX時間帯の指定」に記載されているPOSIX様式の時間帯指定を受付けます。
このオプションは通常、名前付きのタイムゾーンを使用するよりも好ましくありませんが、適切なIANAタイムゾーンのエントリが利用できない場合は必要になるかもしれません。
       






一言で言うと、これは省略形と正式名称との差異です。
省略形はUTCから固定したオフセットを表わすのに対して、多くの正式名称はローカルの夏時間規定を暗示するので、2つのUTCオフセットがあるかもしれません。
例えば2014-06-04 12:00 America/New_Yorkはニューヨークの正午を示しますが、これはこの日について言えば東部夏時間(UTC-4)です。
つまり2014-06-04 12:00 EDTはこれと同時刻を示します。
しかし、2014-06-04 12:00 ESTは、その日に夏時間が使用されていたかどうかに関わらず、東部標準時間(UTC-5)での正午を示します。
    
注記


POSIX形式のタイムゾーン仕様の符号は、ISO-8601の日時の値に含まれる記号とは逆の意味を持ちます。
例えば、2014-06-04 12:00+04のPOSIXタイムゾーンはUTC-4になります。
     



問題を更に複雑にしているのは、一部の管轄は同じ略号を使って、年によって異なるUTCオフセットを表していることです。
例えばモスクワではMSKはある年ではUTC+3を意味しますが、別の年ではUTC+4を意味します。
PostgreSQL™ではそのような略号について、指定の日に何を意味していたか（あるいは最も最近にどういう意味だったか）に従って解釈します。
しかし、ESTの例にあるように、必ずしもその日付における地方常用時を示しているとは限りません。
    


すべての場合において、時間帯名や略号は大文字小文字の区別なく認識されます。
（これはPostgreSQL™の8.2より前のバージョンからの変更です。
以前は、文脈によって大文字小文字が区別される場合と、されない場合がありました。）
    


時間帯名、省略形のどちらもサーバ内に組み込まれるわけではありません。
インストールディレクトリの.../share/timezone/および.../share/timezonesets/の下に保存される構成ファイルから取得されます（「日付/時刻設定ファイル」を参照ください）。
    


TimeZoneはpostgresql.confファイルや19章サーバ設定で説明する他の標準的な方法で設定することができます。
以下に、いくつか特別な設定方法を示します。

     
	

SQLコマンドSET TIME ZONEはセッションの時間帯を設定します。
これはSET TIMEZONE TOの別名ですが、SQL仕様の構文へのより高い互換性があります。
       

	

PGTZ環境変数は、libpqクライアントが接続時にサーバにSET TIME ZONEコマンドを送信するために用いられます。
       




    

時間間隔の入力





interval値は以下の冗長な構文を使って記述されます。



[@] quantity unit [quantity unit...] [direction]




ここで、quantityは（符号付き）時間量、unit（単位）はmicrosecond、millisecond、second（秒）、minute（分）、hour（時）、day（日）、week（週）、month（月）、year（年）、decade（10年単位）、century（100年単位）、millennium（1000年単位）あるいはこれらの単位の簡略形または複数形です。
direction（方向）はagoもしくは空です。
アットマーク（@）はオプションで、付けても付けなくても構いません。
異なる単位における時間量は適切に符号を考慮して暗黙的に足されます。
agoはすべてのフィールドの正負を逆にします。
この構文はまた、IntervalStyleがpostgres_verboseに設定されている場合に時間間隔の出力でも使用されます。
    


日、時、分、および秒の時間量は明示的に単位を指定しなくても構いません。
例えば、'1 12:59:10'は'1 day 12 hours 59 min 10 sec'（1日と12時間59分10秒）と解釈されます。
また年と月の組み合わせはダッシュを使って指定することができます。
例えば、'200-10'は'200 years 10 months'（200年と10か月）と解釈されます。
（実際のところ、標準SQLで許されている簡略形はこれらだけです。
そしてIntervalStyleがsql_standardに設定されている場合には、これらが出力で使用されます。）
    


標準の4.4.3.2節の「指定文字付書式」または4.4.3.3節の「代替書式」のどちらかを使用して、時間間隔値はISO 8601時間間隔として書くこともできます。
指定文字付の書式は以下のようなものです。


P quantity unit [ quantity unit ...] [ T [ quantity unit ...]]



文字列はPで始まらなければならず、また、日と時間を区切るTを含めることができます。
利用可能な単位の省略形を表8.16「ISO 8601における時間間隔単位の省略形」に示します。
単位は省略しても構いませんし、任意の順番で指定できますが、1日より小さな単位はTの後に書かなければなりません。
特にMの意味はTの前にあるか後にあるかに依存します。
     
表8.16 ISO 8601における時間間隔単位の省略形
	省略形	意味
	Y	年
	M	月（日付部分における）
	W	週
	D	日
	H	時間
	M	分（時刻部分における）
	S	秒





別の書式を示します。


P [ years-months-days ] [ T hours:minutes:seconds ]



上の代替書式では、文字列はPから始まらなければなりません。
そして、Tは時間間隔の日付部分と時刻部分とを分割します。
値はISO 8601日付と同様の数字で指定されます。
    


fields指定を使って時間間隔定数を記述する場合、または、fields仕様で定義された時間間隔列に文字列を割り当てる場合、マークされていない時間量の解釈はfieldsに依存します。
例えばINTERVAL '1' YEARは1年と解釈され、一方でINTERVAL '1'は1秒と解釈されます。
同時に、fields仕様によって許可される最下位フィールドの「右側の」フィールド値は警告なしに破棄されます。
例えば、INTERVAL '1 day 2:03:04' HOUR TO MINUTEと書くことで、二番目のフィールドは削除されますが、日付フィールドは削除されません。
    


標準SQLに従うと、時間間隔値のフィールドはすべて同じ符号を持たなければなりません。
このため、先頭の負の符号はすべてのフィールドに適用されます。
例えば時間間隔リテラル'-1 2:03:04'の負の符号は、日付部分にも時、分、秒部分にも適用されます。
PostgreSQL™ではフィールドに異なる符号を持たせることができます。
また伝統的にテキスト形式表現における各フィールドは独立した符号を持つものとして扱われます。
このため、この例では時、分、秒部分は正であるとみなされます。
IntervalStyleがsql_standardに設定されている場合、先頭の符号はすべてのフィールドに適用されるものとみなされます（ただし他に符号がない場合のみです）。
さもなくば、伝統的なPostgreSQL™の解釈が使用されます。
あいまいさを防ぐために、負のフィールドがある場合には個別に明示的な符号を付けることを勧めます。
    


内部的には、interval値は3つの整数フィールドとして格納されます。
月、日、マイクロ秒です。
月の日数は変化したり、 夏時間の移行が含まれる場合は1日が23時間または25時間になったりするため、これらのフィールドは分けて保持されます。
他の単位を使用する時間間隔の入力文字列は、このフォーマットに正規化され、出力用に標準化された方法で再再構成されます。例えば以下のとおりです。



SELECT '2 years 15 months 100 weeks 99 hours 123456789 milliseconds'::interval;
               interval
---------------------------------------
 3 years 3 mons 700 days 133:17:36.789




ここでは、週は「7日」と理解され、別々に保持されていますが、小さな時間単位と大きな時間単位は結合され、正規化されています。
    


入力フィールドの値には小数部分が含まれる場合があります。例えば、'1.5 weeks'や'01:02:03.45'などです。
しかし、intervalは内部的に整数フィールドでのみ格納されるため、小数の位はより小さな単位に変換する必要があります。
月より大きな小数部分の位は月の整数に丸められます。例えば、'1.5 years'は'1 year 6 mons'になります。
週と日の小数部分は、1ヶ月は30日、1日は24時間と想定して整数の日数やマイクロ秒として計算されます。例えば'1.75 months'は1 mon 22 days 12:00:00になります。
出力では秒だけが小数として表示されます。
    


表8.17「時間間隔の入力」は有効なinterval入力のいくつかの例を示しています。
    
表8.17 時間間隔の入力
	例	説明
	1-2	標準SQL書式。1年2ヶ月
	3 4:05:06	標準SQL書式。3日4時間5分6秒
	1 year 2 months 3 days 4 hours 5 minutes 6 seconds	伝統的Postgres書式。1年2月3日4時間5分6秒
	P1Y2M3DT4H5M6S	ISO 8601 「指定文字付き書式」。意味は上と同じ
	P0001-02-03T04:05:06	ISO 8601 「代替書式」。意味は上と同じ




時間間隔の出力





前述のように、PostgreSQL™はinterval値を月、日、マイクロ秒として格納します。
出力の場合、monthsフィールドは12で除算して年と月に変換されます。
daysフィールドはそのまま表示されます。
microseconds フィールドは、時間、分、秒、および小数の秒に変換されます。
したがって、月、分、秒はそれぞれ0~11、0~59、0~59の範囲を超えることはありませんが、表示される年、日、時間のフィールドは非常に大きくなる可能性があります。
（大きな日数または時間の値を次に高いフィールドに移すことが望ましい場合は、justify_daysおよびjustify_hours関数を使用できます）。
    


時間間隔型の出力書式は、SET intervalstyleコマンドを使用して、sql_standard、postgres、postgres_verboseまたはiso_8601の４つのうちの１つを設定できます。
デフォルトはpostgres書式です。
表8.18「時間間隔出力形式の例」はそれぞれの出力形式を示した例です。
    


sql_standard形式は、時間間隔値が標準制約（構成要素に正負が混在していない年数と月数のみ、または日数と時間のみ）を満足する場合、時間間隔リテラル文字列に対し標準SQLに準拠している出力を作成します。
それ以外の場合、出力は、標準的な年数-月数のリテラル文字列の後に日数-時間のリテラル文字列が続いたものになり、正負混在した時間間隔のあいまいさを無くすために明示的な符号が付加されます。
    


postgres書式の出力は、DateStyleパラメータがISOに設定されたとき、PostgreSQL™ 8.4より前のリリースと一致します。
    


postgres_verbose書式の出力は、DateStyleパラメータがISO以外に設定されたとき、PostgreSQL™ 8.4より前のリリースと一致します。
    


iso_8601書式の出力はISO 8601 標準の4.4.3.2節に記述の「format with designators（指名付き書式）」に一致します。
    
表8.18 時間間隔出力形式の例
	形式指定	年-月時間間隔	日-時刻時間間隔	混在した時間間隔
	sql_standard	1-2	3 4:05:06	-1-2 +3 -4:05:06
	postgres	1 year 2 mons	3 days 04:05:06	-1 year -2 mons +3 days -04:05:06
	postgres_verbose	@ 1 year 2 mons	@ 3 days 4 hours 5 mins 6 secs	@ 1 year 2 mons -3 days 4 hours 5 mins 6 secs ago
	iso_8601	P1Y2M	P3DT4H5M6S	P-1Y-2M3D​T-4H-5M-6S





論理値データ型





PostgreSQL™では、標準SQLのboolean型が提供されています。
表8.19「論理値データ型」を参照してください。
boolean型はいくつかの状態を取ることができます。
「真」もしくは「偽」、そして第3の状態はSQLではNULL値で表現される「不明」の状態です。
   
表8.19 論理値データ型
	名前	格納サイズ	説明
	boolean	1バイト	真または偽の状態





論理定数はSQL問い合わせの中で、SQLキーワードのTRUE、FALSEおよびNULLによって表現できます。
   


booleanのデータ型を入力する関数には次の文字列表現を「真」の状態として使うことができます。
    
	true
	yes
	on
	1



「偽」の状態には以下の表現が使用できます。
    
	false
	no
	off
	0



t や nなど、これらの文字列固有の接頭辞も利用できます。
先頭または末尾の空白文字は無視され、大文字小文字の区別は関係ありません。
   


booleanのデータ型を出力する関数は例8.2「boolean型の使用」にあるように、常にtかfを出力します。
   
例8.2 boolean型の使用

CREATE TABLE test1 (a boolean, b text);
INSERT INTO test1 VALUES (TRUE, 'sic est');
INSERT INTO test1 VALUES (FALSE, 'non est');
SELECT * FROM test1;
 a |    b
---+---------
 t | sic est
 f | non est

SELECT * FROM test1 WHERE a;
 a |    b
---+---------
 t | sic est





キーワードであるTRUE とFALSEはSQLクエリの中で論理定数の記述として好ましい(SQL準拠)方式です。
しかし、 「他の型の定数」のリンクで記述されている、以下のような一般的な文字列リテラル定数の構文に従って'yes'::booleanというような文字表現することもできます。
   


パーサは自動的にTRUEとFALSEはboolean型と理解しますが、NULLは他のすべての型に存在するため、boolean型と理解しない点に気をつけてください。
このため、コンテキストによってはNULL::booleanというように、NULLをbooleanに明確にキャストする必要があります。
逆に、解析でリテラルがboolean型でなければならないと推論できるコンテキストでは、文字列リテラルブール値のキャストは省略できます。
   

列挙型





列挙（enum）型は静的、順序付き集合から構成されるデータ型です。
これは、多くのプログラミング言語でサポートされているenum型と同じです。
列挙型の例として、曜日や個々のデータについての状態値の集合が挙げられます。
   
列挙型の宣言





列挙型はCREATE TYPE(7)コマンドを使用して作成されます。
以下に例を示します。



CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');




作成後、他のデータ型とほとんど同じように、列挙型をテーブルや関数定義で使用することができます。


CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
    name text,
    current_mood mood
);
INSERT INTO person VALUES ('Moe', 'happy');
SELECT * FROM person WHERE current_mood = 'happy';
 name | current_mood
------+--------------
 Moe  | happy
(1 row)


    

順序





列挙型内の値の順序はその型が作成された時に値を列挙した順番になります。
列挙型に対して、すべての比較演算子と関連する集約関数がサポートされます。
以下に例を示します。



INSERT INTO person VALUES ('Larry', 'sad');
INSERT INTO person VALUES ('Curly', 'ok');
SELECT * FROM person WHERE current_mood > 'sad';
 name  | current_mood
-------+--------------
 Moe   | happy
 Curly | ok
(2 rows)

SELECT * FROM person WHERE current_mood > 'sad' ORDER BY current_mood;
 name  | current_mood
-------+--------------
 Curly | ok
 Moe   | happy
(2 rows)

SELECT name
FROM person
WHERE current_mood = (SELECT MIN(current_mood) FROM person);
 name
-------
 Larry
(1 row)


     

型の安全性





それぞれの列挙型データ型は別個のもので、他の列挙型と比較することはできません。
以下の例を参照してください。



CREATE TYPE happiness AS ENUM ('happy', 'very happy', 'ecstatic');
CREATE TABLE holidays (
    num_weeks integer,
    happiness happiness
);
INSERT INTO holidays(num_weeks,happiness) VALUES (4, 'happy');
INSERT INTO holidays(num_weeks,happiness) VALUES (6, 'very happy');
INSERT INTO holidays(num_weeks,happiness) VALUES (8, 'ecstatic');
INSERT INTO holidays(num_weeks,happiness) VALUES (2, 'sad');
ERROR:  invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays
  WHERE person.current_mood = holidays.happiness;
ERROR:  operator does not exist: mood = happiness


    


もし本当に上のようなことが必要ならば、独自の演算子を作成するか、問い合わせに明示的なキャストを付けることで行うことができます。



SELECT person.name, holidays.num_weeks FROM person, holidays
  WHERE person.current_mood::text = holidays.happiness::text;
 name | num_weeks
------+-----------
 Moe  |         4
(1 row)



    

実装の詳細





列挙型のラベルは大文字小文字の違いを意識します。
このため、'happy'と'HAPPY'は同じではありません。
同様にラベルの中の空白も重要です。
    


列挙型は主に静的な値のセットを対象としていますが、既存の列挙型に新しい値を加えることや名前を変更することをサポートしています(ALTER TYPE(7)を参照)。
ただし、列挙型を削除して再作成せずに、既存の列挙型からラベルを削除することやソート順が変わる値に変更することはできません。
    


列挙型の値はディスク上では4バイトを占めます。
列挙型の値のテキストラベルの長さは、PostgreSQL™に組み込まれたNAMEDATALEN設定により制限されます。
標準のビルドでは、これは最大63バイトを意味します。
    


列挙型の内部値からテキスト形式のラベルへの変換は、pg_enumシステムカタログ内に保持されます。
このカタログを直接問い合わせることが役に立つ場合があります。
    


幾何データ型





幾何データ型は2次元空間オブジェクトを表現します。
表8.20「幾何データ型」は、PostgreSQL™で使用可能な幾何データ型を列挙したものです。
   
表8.20 幾何データ型
	名前	格納サイズ	説明	表現
	point	16バイト	平面における座標点	(x,y)
	line	24バイト	無限の直線	{A,B,C}
	lseg	32バイト	有限の線分	[(x1,y1),(x2,y2)]
	box	32バイト	矩形	(x1,y1),(x2,y2)
	path	16+16nバイト	閉経路（多角形に類似）	((x1,y1),...)
	path	16+16nバイト	開経路	[(x1,y1),...]
	polygon	40+16nバイト	多角形（閉経路に類似）	((x1,y1),...)
	circle	24バイト	円	<(x,y),r>（中心と半径）





いずれの型でも、個々の座標はdouble precision (float8)の数値として格納されます。
   


拡大縮小、平行移動、回転、交点の算出といった様々な幾何学的操作を行う関数と演算子の集合が豊富に揃っています。
このことについては「幾何関数と演算子」に説明があります。
   
座標点





座標点は幾何データ型の基礎となる2次元構成要素です。
point型の値は次の構文のいずれかで指定されます。



( x , y )
  x , y




ここでxとyは、それぞれの座標を浮動小数点数数値で表したものです。
    


座標点は1番目の構文で出力されます。
    

直線





直線は線形方程式Ax + By + C = 0で表現されます。ここでAとBは同時に0になることはありません。
line型の値は以下の書式で入出力されます。


{ A, B, C }




入力のためには以下の書式を代替として使用することもできます。



[ ( x1 , y1 ) , ( x2 , y2 ) ]
( ( x1 , y1 ) , ( x2 , y2 ) )
  ( x1 , y1 ) , ( x2 , y2 )
    x1 , y1   ,   x2 , y2




ここで(x1,y1)と(x2,y2)はその直線上の2つの異なる点です。
    

線分





線分は終点を示す2つの点の組み合わせで表現されます。
lseg型の値は以下の構文のいずれかで指定されます。



[ ( x1 , y1 ) , ( x2 , y2 ) ]
( ( x1 , y1 ) , ( x2 , y2 ) )
  ( x1 , y1 ) , ( x2 , y2 )
    x1 , y1   ,   x2 , y2




ここで、(x1,y1)と(x2,y2)は線分の終端点です。
    


線分は1番目の構文で出力されます。
    

矩形





矩形は、矩形の対角線の両端の座標点の組み合わせで表されます。
box型の値は以下の構文のいずれかで指定されます。



( ( x1 , y1 ) , ( x2 , y2 ) )
  ( x1 , y1 ) , ( x2 , y2 )
    x1 , y1   ,   x2 , y2




ここで(x1,y1)と(x2,y2)は矩形の対角線の両端です。
    


矩形は2番目の構文で出力されます。
    


任意の対角頂点を入力として指定することができます。
しかし頂点は右上の頂点を最初に、左下の頂点をその後に格納するよう必要に応じて並べ替えられます。
    

経路





経路は接続している座標点のリストで表現されます。
経路は最初の座標点と最後の座標点が接続されていないとみなされる開いている状態か、最初の座標点と最後の座標点が接続されているとみなされる閉じた状態かのいずれかです。
    


path型の値は次の構文のいずれかで指定されます。



[ ( x1 , y1 ) , ... , ( xn , yn ) ]
( ( x1 , y1 ) , ... , ( xn , yn ) )
  ( x1 , y1 ) , ... , ( xn , yn )
  ( x1 , y1   , ... ,   xn , yn )
    x1 , y1   , ... ,   xn , yn




ここで、各座標点は、経路を構成する線分の終端点です。
大括弧（[]）は開経路を、括弧（()）は閉経路を示します。
3番目から4番目の構文のようにもっとも外側の括弧が省略された場合、閉経路と仮定されます。
    


経路は最初または２番目の適切な構文で出力されます。
    

多角形(ポリゴン)





多角形は座標点（多角形の頂点）のリストで表現されます。
多角形は閉経路ととても良く似ています。多角形は領域をその内側に含むと考えますが、閉経路ではそのように考えない点が本質的な意味の違いです。
    


多角形と経路の重要な実装上の違いは、格納された多角形の表現形式に最小の外接矩形が含まれていることです。
これにより、特定の検索操作が高速化されますが、新しい多角形を構築するときに外接矩形の計算のオーバーヘッドが掛かります。
    


polygon型の値は次の構文のいずれかで指定されます。



( ( x1 , y1 ) , ... , ( xn , yn ) )
  ( x1 , y1 ) , ... , ( xn , yn )
  ( x1 , y1   , ... ,   xn , yn )
    x1 , y1   , ... ,   xn , yn




各座標点は多角形の境界を構成する線分の終端点です。
    


多角形は最初の構文で出力されます。
    

円





円は中心座標点と半径で表現されます。
circle型の値は次の構文のいずれかで指定されます。



< ( x , y ) , r >
( ( x , y ) , r )
  ( x , y ) , r
    x , y   , r




ここで(x,y)は円の中心点、rは円の半径です。
    


円は最初の構文で出力されます。
    


ネットワークアドレス型





PostgreSQL™は、表8.21「ネットワークアドレス型」に示すように、IPv4アドレス、IPv6アドレス、MACアドレスを格納するデータ型を提供します。
ネットワークアドレスを格納するには普通のテキストデータ型の代わりにこれらの型を使うことの方が優れています。
なぜなら、これらのデータ型は入力値のエラー検査と専用の演算子と関数を提供しているからです
（「ネットワークアドレス関数と演算子」を参照してください）。
   
表8.21 ネットワークアドレス型
	名前	格納サイズ	説明
	cidr	7もしくは19バイト	IPv4、およびIPv6ネットワーク
	inet	7もしくは19バイト	IPv4もしくはIPv6ホスト、およびネットワーク
	macaddr	6バイト	MACアドレス
	macaddr8	8バイト	MACアドレス（EUI-64 形式）





inetもしくはcidrをソートする時、IPv4アドレスは常にIPv6よりも前にソートされます。
::10.2.3.4や::ffff:10.4.3.2などIPv6アドレス内に埋め込まれた、もしくは関連付けされたIPv4アドレスも同様です。
   
inet





inet型はIPv4もしくはIPv6ホストアドレスとオプションでそのサブネットを１つのフィールドに保持します。
サブネットはホストアドレス内のネットワークアドレスのビット数（「ネットマスク」）により表現されます。
ネットマスクが32でアドレスがIPv4の場合、その値はサブネットを示さず、単一ホストを表します。
IPv6ではアドレス長は128ビットですので、128ビットが一意なホストアドレスを指定します。
ネットワークのみを使用したい場合はinetではなくcidr型を利用してください。
    


このデータ型に対する入力書式はaddress/yです。
ここで、addressはIPv4またはIPv6のアドレス、yはネットマスクのビット数です。
/y部分が省略された場合、ネットマスクはIPv4では32、IPv6では128となり、つまり、その値は単一ホストを表現します。
ネットマスクが単一ホストを表す場合、その表示時、/yの部分は抑制されます。
    

cidr





cidrデータ型はIPv4、IPv6ネットワーク仕様を保持します。
入出力書式はCIDR表記（クラスレスアドレッシング）に従います。
ネットワークを指定する時の書式はaddress/yで、addressがIPv4もしくはIPv6アドレスで表したネットワークの最下位アドレスで、yはネットマスクのビット数です。
yが省略された場合には、従来のクラス付きアドレス番号指定システムに従って計算されますが、入力時に書き込まれたオクテットすべてが含まれるように大きさは確保されます。
指定したネットマスクの右側にビットをセットしたネットワークアドレスを指定するとエラーになります。
    


     表8.22「cidrデータ型入力例」に例をいくつか示します。
    
表8.22 cidrデータ型入力例
	cidr入力	cidr出力	abbrev(cidr)
	192.168.100.128/25	192.168.100.128/25	192.168.100.128/25
	192.168/24	192.168.0.0/24	192.168.0/24
	192.168/25	192.168.0.0/25	192.168.0.0/25
	192.168.1	192.168.1.0/24	192.168.1/24
	192.168	192.168.0.0/24	192.168.0/24
	128.1	128.1.0.0/16	128.1/16
	128	128.0.0.0/16	128.0/16
	128.1.2	128.1.2.0/24	128.1.2/24
	10.1.2	10.1.2.0/24	10.1.2/24
	10.1	10.1.0.0/16	10.1/16
	10	10.0.0.0/8	10/8
	10.1.2.3/32	10.1.2.3/32	10.1.2.3/32
	2001:4f8:3:ba::/64	2001:4f8:3:ba::/64	2001:4f8:3:ba/64
	2001:4f8:3:ba:​2e0:81ff:fe22:d1f1/128	2001:4f8:3:ba:​2e0:81ff:fe22:d1f1/128	2001:4f8:3:ba:​2e0:81ff:fe22:d1f1/128
	::ffff:1.2.3.0/120	::ffff:1.2.3.0/120	::ffff:1.2.3/120
	::ffff:1.2.3.0/128	::ffff:1.2.3.0/128	::ffff:1.2.3.0/128




inetとcidrデータ型の違い





inetデータ型とcidrデータ型との基本的な相違は、inetではネットマスクの右側に0でないビット値を受け付けますが、cidrでは受け付けないことです。
例えば、192.168.0.1/24 はinetでは有効ですが、cidrでは有効ではありません。
    
ヒント


もしinetもしくはcidrの値の出力書式が気に入らないのであれば、関数host、textおよびabbrevを試してください。
        


macaddr





macaddrデータ型は例えばイーサネットカードのハードウェアアドレスとして知られるMACアドレスを保持します（MACアドレスは他の目的でも使われますが）。
入力は以下の形式を受け入れます。

     
	'08:00:2b:01:02:03'
	'08-00-2b-01-02-03'
	'08002b:010203'
	'08002b-010203'
	'0800.2b01.0203'
	'0800-2b01-0203'
	'08002b010203'




これらの例はすべて同一のアドレスを指定します。
aからfまでの桁は大文字小文字どちらでも構いません。
出力は常に最初に示された形式となります。
    


IEEE標準802-2001では、2番目の書式（ハイフンを使用）をMACアドレスの正規の表現と規定しています。
また、ビット反転で表記する最初の書式（コロンを使用）をMSBファーストの表記と規定しています。つまり08-00-2b-01-02-03は10:00:D4:80:40:C0です。
この規約は現在ではほぼ無視され、古びたネットワーク（トークンリングなど）のみに関連するものです。
PostgreSQLではビット反転に関する準備をしていません。
また、すべての受付け可能な書式では正規のLSB順を使用します。
    


残る5つの入力書式はどの標準にも属しません。
    

macaddr8





macaddr8データ型はイーサネットカードのハードウェアアドレスなどで知られるEUI-64形式でデータを格納します（MACアドレスは他の目的にもよく使用されます）。
このデータ型は６バイト長と８バイト長の両方の長さのMACアドレスを受け入れることがき、８バイト長の形式で格納します。
6バイト形式で与えられたMACアドレスは8バイト長の形式では、それぞれ、４番目と５番目のバイトをFFとFEとして格納されます。


IPv6はEUI-48から変換後に７番目のビットに1となるべき設定がなされた修正EUI-64形式を使用する点に注意してください。
 macaddr8_set7bit関数がこの変換生成を提供します。


一般的には（バイト境界上での）16進数の対で構成され、任意に':'、'-' もしくは '.'のいずれかの一貫した記号で分割された入力を受け付けます。
16進数の桁数は16桁（8バイト）か12桁（6バイト）のいずれかである必要があります。
前後の空白は無視されます。


以下の入力形式の例は受け付けられます。

     
	'08:00:2b:01:02:03:04:05'
	'08-00-2b-01-02-03-04-05'
	'08002b:0102030405'
	'08002b-0102030405'
	'0800.2b01.0203.0405'
	'0800-2b01-0203-0405'
	'08002b01:02030405'
	'08002b0102030405'




これらの例はすべて同一のアドレスを指定します。
aからfまでの桁は大文字小文字どちらでも構いません。
出力は常に最初に示された形式となります。
    


上記の最後の6つの形式は標準ではありません。
    


従来のEUI-48形式の48ビットのMACアドレスからIPv6のホスト部を含む修正がなされたEUI-64形式へ変更するためには、以下に示すようにmacaddr8_set7bitを使用します。



SELECT macaddr8_set7bit('08:00:2b:01:02:03');

    macaddr8_set7bit
-------------------------
 0a:00:2b:ff:fe:01:02:03
(1 row)




    


ビット列データ型





ビット列とは1と0のビットが連続したものです。
ビットマスクを格納したり可視化するために使用されます。
SQLのビット型には2つあります。
bit(n)とbit varying(n)です。
ここでnは正の整数です。
   


bit型のデータはnで表される長さに正確に一致しなければなりません。
この長さより長いか短いビット列を格納しようとするとエラーになります。
bit varying型のデータは最大nまでの可変長です。
最大長を超えるビット列は受け付けません。
長さ指定のないbitデータ型はbit(1)データ型と同一で、長さ指定のないbit varyingデータ型は無限長を意味します。
   
注記


ビット列の値を明示的にbit(n)にキャストすると、厳密にnビットになるように、切り捨てられるか右側をゼロ詰めされ、エラーにはなりません。
同様に、ビット列の値を明示的にbit varying(n)にキャストすると、ビット数がnを超える場合は右側が切り捨てられます。
    



ビット列定数に関する構文についての情報は「ビット文字列定数」を参照してください。
ビット論理演算子とビット列操作関数が利用可能ですが、「ビット文字列関数と演算子」を参照してください。
   
例8.3 ビット列データ型の使用

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B'101', B'00');
INSERT INTO test VALUES (B'10', B'101');

ERROR:  bit string length 2 does not match type bit(3)

INSERT INTO test VALUES (B'10'::bit(3), B'101');
SELECT * FROM test;

  a  |  b
-----+-----
 101 | 00
 100 | 101






ビット列の値は8ビット毎に1バイト、さらにビット列長に応じた5または8バイトのオーバーヘッドが必要です。
（しかし、文字列に関する「文字型」で説明したように、長い値は圧縮または行外に移動する可能性があります。）
   

テキスト検索に関する型





PostgreSQL™は、自然言語の文書の集合を通して検索を行い問い合わせに最も合致する文書を見つける機能である全文検索をサポートするために設計された2つのデータ型を提供します。
tsvector型はテキスト検索に最適化された形式で文書を表現します。
tsquery型は同様に問い合わせを表現します。
12章全文検索ではこの機能を詳しく説明します。
また、「テキスト検索関数と演算子」では、関連する関数や演算子を要約します。
   
tsvector





tsvectorの値は重複がない語彙素のソート済みリストです。
語彙素とは同じ単語の変種をまとめるために正規化された単語です（詳細は12章全文検索を参照）。
以下の例に示すようにソートと重複除去は入力の際に自動的になされます。



SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
                      tsvector
----------------------------------------------------
 'a' 'and' 'ate' 'cat' 'fat' 'mat' 'on' 'rat' 'sat'




空白文字または句読点を含む語彙素を表現するには、引用符でくくってください。



SELECT $$the lexeme '    ' contains spaces$$::tsvector;
                 tsvector
-------------------------------------------
 '    ' 'contains' 'lexeme' 'spaces' 'the'




（この例と次の例では、リテラル内で引用符記号を二重にしなければならないことによる混乱を防ぐためにドル引用符付け文字列を使用します。）
引用符およびバックスラッシュが埋め込まれている場合は、以下のように二重にしなければなりません。



SELECT $$the lexeme 'Joe''s' contains a quote$$::tsvector;
                    tsvector
------------------------------------------------
 'Joe''s' 'a' 'contains' 'lexeme' 'quote' 'the'




オプションとして、語彙素に整数の位置を付けることもできます。



SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12'::tsvector;
                                  tsvector
-------------------------------------------------------------------​------------
 'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5 'rat':12 'sat':4




位置は通常、元の単語の文書中の位置を示します。
位置情報を近接順序に使用することができます。
位置の値は1から16383までで、これより大きな値は警告なく16383に設定されます。
同一語彙素に対する重複する位置項目は破棄されます。
    


位置を持つ語彙素はさらに重み付きのラベルを付与することができます。
ラベルはA、B、C、Dを取ることができます。
Dはデフォルトですので、以下のように出力には現れません。



SELECT 'a:1A fat:2B,4C cat:5D'::tsvector;
          tsvector
----------------------------
 'a':1A 'cat':5 'fat':2B,4C




典型的に重みは、例えば、表題の単語には本文の単語と異なる印をつけるといった、文書構造を反映させるために使用されます。
テキスト検索の順序付け関数は異なる重み印に異なる優先度を割り当てることができます。
    


tsvector型自体は単語の正規化を行わないことを理解することは重要です。
与えられる単語はアプリケーションのために適切に正規化されていると仮定しています。
以下に例を示します。



SELECT 'The Fat Rats'::tsvector;
      tsvector
--------------------
 'Fat' 'Rats' 'The'




ほとんどの英文テキスト検索アプリケーションでは、上の単語は正規化されていないとみなされますが、tsvectorは気にしません。
検索用に単語を適切に正規化するために、生の文書テキストは通常to_tsvector経由で渡されます。



SELECT to_tsvector('english', 'The Fat Rats');
   to_tsvector
-----------------
 'fat':2 'rat':3




これについても、詳細は12章全文検索を参照してください。
    

tsquery





tsqueryの値には検索される語彙素が格納されます。
それらは論理演算子& (論理積)、| (論理和)、!(否定)および語句検索演算子<->(FOLLOWED BY)を組み合わせることができます。
FOLLOWED BY演算子には<N>という変化形もあり、Nは２つの検索される語彙素の距離を指定する数値型の定数です。
<->と<1>は同じです。
    


括弧を使用して演算子を強制的にグループ化することができます。
括弧が無い場合、! (NOT)が最も強く結合し、<-> (FOLLOWED BY)が次に強く結合します。
次いで、& (AND)の結合が強く、 | (OR)の結合が最も弱くなります。
    


以下に例を示します：



SELECT 'fat & rat'::tsquery;
    tsquery
---------------
 'fat' & 'rat'

SELECT 'fat & (rat | cat)'::tsquery;
          tsquery
---------------------------
 'fat' & ( 'rat' | 'cat' )

SELECT 'fat & rat & ! cat'::tsquery;
        tsquery
------------------------
 'fat' & 'rat' & !'cat'


    


省略することもできますが、tsquery内の語彙素に1つ以上の重み文字でラベルを付けることができます。
こうすると、これらの重みを持つtsvector語彙素のみに一致するように制限することになります。



SELECT 'fat:ab & cat'::tsquery;
    tsquery
------------------
 'fat':AB & 'cat'


    


同時に、tsquery内の語彙素は、前方一致を指定するため*でラベルを付けることができます。


SELECT 'super:*'::tsquery;
  tsquery
-----------
 'super':*



この問い合わせでは「super」で始まるtsvector中の全ての言葉と一致します。
    


語彙素の引用符規則は前に説明したtsvectorにおける語彙素と同じです。
また、tsvector同様、必要な単語の正規化はtsquery型に変換する前に行う必要があります。
こうした正規化の実行にはto_tsquery関数が簡便です。



SELECT to_tsquery('Fat:ab & Cats');
    to_tsquery
------------------
 'fat':AB & 'cat'




to_tsqueryは他の言葉と同じように接頭辞を扱うことに注意してください。
以下の比較の例ではtrueを返します。



SELECT to_tsvector( 'postgraduate' ) @@ to_tsquery( 'postgres:*' );
 ?column?
----------
 t



これはpostgresにはpostgrの語幹を含んでいるためです。


SELECT to_tsvector( 'postgraduate' ), to_tsquery( 'postgres:*' );
  to_tsvector  | to_tsquery
---------------+------------
 'postgradu':1 | 'postgr':*



これはpostgraduateの語幹の形と一致します。
    


UUID型





uuidデータ型は、RFC 9562:、ISO/IEC 9834-8:2005および関連する標準に従う、汎用一意識別子（UUID）を格納します。
（一部のシステムでは、このデータ型をグローバル一意識別子（GUID）と呼んでいます。）
この識別子は、同一のアルゴリズムを使用しても既知の世界上の他の誰かが同一識別子が生成される可能性がほとんどないように選択されたアルゴリズムで生成された128ビット量の値です。
したがって、分散システムにおいて、これら識別子は、単一データベース内でしか一意にならないシーケンスジェネレータよりも優れた一意性保証を提供します。
   


RFC 9562では、8つの異なるUUIDバージョンが定義されています。
各バージョンには、新しいUUID値を生成するための固有の要件があり、各バージョンには明確な利点と欠点があります。
PostgreSQL™はUUIDv4およびUUIDv7アルゴリズムを使用してUUIDを生成することをサポートします。
また、任意のアルゴリズムを使用してデータベースの外でUUID値を生成することもできます。
オリジンやUUIDバージョンに関係なく、データ型uuidを使用して任意のUUIDを格納できます。
   


UUIDは、小文字の16進数表記桁の並びをいくつかのグループでハイフンで区切って表現されます。
具体的には、8桁のグループが1つ、4桁のグループが3つ、次いで、12桁のグループが1つとなり、合計32桁で128ビットを表します。
この標準形式のUUIDの例を以下に示します。


a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11



また、PostgreSQL™は入力の別形式として、桁を大文字表記したもの、標準形式を中括弧でくくったもの、いくつかまたはすべてのハイフンを省略したもの、４桁ごとのグループの間の任意の箇所にハイフンを付加したものも受け付けます。
以下に例を示します。


A0EEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11}
a0eebc999c0b4ef8bb6d6bb9bd380a11
a0ee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0a11
{a0eebc99-9c0b4ef8-bb6d6bb9-bd380a11}



出力は常に標準形式になります。
   


PostgreSQL™でUUIDを生成する方法は「UUID関数」を確認してください。
   

XML型





xmlデータ型を使用して、XMLデータを格納することができます。
text型のフィールドにXMLデータを格納する方法より、入力された値が整形式かどうかを検査する利点があります。
また、型を安全に操作するサポート関数があります。
「XML関数」を参照してください。
このデータ型を使用するためには、インストレーションがconfigure --with-libxmlで構築されていることが必要です。
   


xml型は、XML標準で定義された整形式の「文書」およびXQueryとXPathデータモデルのより寛容な「文書ノード」を参照して定義される「コンテンツ」フラグメントを格納できます。
大雑把に言うと、これは、コンテンツフラグメントが2つ以上の最上位要素や文字ノードを持つことができることを意味します。
xmlvalue IS DOCUMENTという式を使用して、特定のxml値が完全な文書か単なるコンテンツフラグメントか評価することができます。
   


xmlデータ型の制限と互換性に関する注意事項は、 「XMLの制限とSQL/XMLへの適合」から確認できます。
   
XML値の作成





文字データからxml型の値を生成するためには、xmlparse関数を使用してください。



XMLPARSE ( { DOCUMENT | CONTENT } value)



例：


XMLPARSE (DOCUMENT '<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapter></book>')
XMLPARSE (CONTENT 'abc<foo>bar</foo><bar>foo</bar>')



標準SQLに従って文字列をXML値に変換するためにはこの方法しかありませんが、次のようなPostgreSQL固有の構文も使用することができます。


xml '<foo>bar</foo>'
'<foo>bar</foo>'::xml



   


xml型では文書型定義（DTD）に対して入力値を検証することは、入力値がDTDを指定していたとしても、行いません。

また同様に、現時点ではXML Schemaなどの他のXMLスキーマ言語に対する検証サポートも組み込まれていません。
   


xmlから文字列値を生成するという逆演算ではxmlserialize関数を使用してください。



XMLSERIALIZE ( { DOCUMENT | CONTENT } value AS type [ [ NO ] INDENT ] )



ここで、typeは、character、character varying、text（またはこれらの別名）を取ることができます。
この場合も、標準SQLに従ってxmlと文字列型間の変換を行うためにはこの方法しかありません。
PostgreSQLでは単に値をキャストすることが可能です。
   


INDENTオプションを指定すると、結果は整形されます。NO INDENT(デフォルトです)はオリジナルの入力文字列を単に出力します。
文字列型にキャストすると、同様にオリジナル文字列が生成されます。
   


XMLPARSEやXMLSERIALIZEを使わずに文字列値とxmlとの間をキャストした場合、DOCUMENTかCONTENTかという選択が「XML option」セッション設定パラメータによって決定されます。

このパラメータは標準コマンド


SET XML OPTION { DOCUMENT | CONTENT };



または、よりPostgreSQLらしい構文


SET xmloption TO { DOCUMENT | CONTENT };


を使用して設定することができます。

デフォルトはCONTENTですので、すべての書式のXMLデータを扱うことができます。
   

符号化方式の取扱い





クライアント側、サーバ側、および、これらを経由してやり取りされるXMLデータ内部で複数の文字符号化方式を扱う場合には注意が必要です。
テキストモードを使用してサーバに問い合わせを渡し、そしてクライアントに問い合わせ結果を渡す場合（これが通常のモードです）、PostgreSQLは、クライアントからサーバ、サーバからクライアントでやり取りされるすべての文字データを受信側の文字符号化方式に変換します。
「文字集合サポート」を参照してください。
これには上の例のようなXML値の文字列表現も含まれます。
これは通常、埋め込まれたencoding宣言は変更されずに、クライアント/サーバ間でやり取りされる間に文字データが他方の符号化方式に変換されてしまうので、XMLデータ内のencodingが無効になる可能性があることを意味します。
この動作に対処するため、xml型の入力として表現された文字列に含まれているencoding宣言は無視され、その内容は常にサーバの現在の符号化方式になっているものと仮定されます。
したがって、正しく処理するためには、XMLデータにおける文字列をクライアントの現在の符号化方式で送信しなければなりません。
サーバに送信する前に文書を現在のクライアントの符号化方式に変換するか、クライアントの符号化方式を適切に調節するかは、クライアントの責任です。
出力ではxml型の値はencoding宣言を持ちません。
クライアントはすべてのデータが現在のクライアントの符号化方式であることを前提としなければなりません。
   


バイナリモードを使用して、問い合わせパラメータをサーバに渡し、そして問い合わせ結果をクライアントに返す場合、符号化方式の変換は行われません。
このため状況は異なります。
この場合、XMLデータ内のencoding宣言が認識され、もし存在しなければ、データがUTF-8であると仮定されます。
（XML標準の要求通りです。
PostgreSQLはUTF-16をサポートしていないことに注意してください。）
出力では、データはクライアントの符号化方式を指定したencoding宣言を持ちます。
ただし、もしクライアントの符号化方式がUTF-8の場合はencoding宣言は省略されます。
   


言うまでもありませんが、PostgreSQLを使用したXML処理では、XMLデータの符号化方式、クライアントの符号化方式、サーバの符号化方式が同じ場合にエラーが起こりづらく、より効率的です。
XMLデータは内部的にUTF-8として処理されますので、サーバの符号化方式が同一のUTF-8である場合、最も効率が上がります。
   
注意


サーバ符号化方式がUTF-8でない場合、いくつかのXMLに関係した関数は非ASCIIデータに対して全く機能しないことがあります。
これは特にxmltable()とxpath()に対する問題として知られています。
    


XML値へのアクセス





xmlデータ型は、比較演算子をまったく提供しないというところが他と異なります。
これは、XMLデータに対し、よく定義され、誰にとっても有用な比較アルゴリズムが存在しないためです。
この結果、xml列を検索値と比べて行を取り出すことはできません。
したがって通常XML値には、IDなどの別のキーフィールドを一般的に付属させなければなりません。
XML値の比較を行うもうひとつの方法は、文字列に一度変換することです。
しかし、文字列比較は有用なXML比較方法といえないことに注意してください。
   


xmlデータ型用の比較演算子がありませんので、この型の列に直接インデックスを作成することはできません。
XMLデータを高速に検索することが望まれるなら、その表現を文字列型にキャストし、それをインデックス付けするか、または、XPath式をインデックス付けするかという対策をとることができます。
当然ながら、インデックス付けされた式で検索されるよう実際の問い合わせを調整する必要があります。
   


PostgreSQLのテキスト検索機能を使用して、XMLデータの全文検索速度をあげることもできます。
しかし、PostgreSQL配布物では必要な前処理を未だサポートしていません。
   


JSONデータ型





JSONデータ型はJSON(JavaScript Object Notation)データを格納するためのものです。JSONの仕様はRFC 7159に定義されています。
このようなデータは、text型として格納することもできますが、JSONデータ型は、それぞれ格納された値がJSONルールに従って有効に施行されるという利点があります。
これらのデータ型に格納されたデータのために利用可能な各種JSON固有の関数と演算子もあります。
「JSON関数と演算子」を参照してください。
 


PostgreSQL™には、JSONデータを格納するための2つの型、jsonとjsonbがあります。
これらのデータ型に対して効率的な問い合わせメカニズムを実装するために、PostgreSQL™は「jsonpath型」で説明されているjsonpathデータ型も提供します。
 


json型とjsonb型というデータ型は、ほとんど 同一の入力値セットを受け入れます。
現実的に主要な違いは効率です。
jsonデータ型は入力テキストの正確なコピーで格納し、処理関数を実行するたびに再解析する必要があります。
jsonbデータ型では、分解されたバイナリ形式で格納されます。
格納するときには変換のオーバーヘッドのため少し遅くなりますが、処理するときには、全く再解析が必要とされないので大幅に高速化されます。
また jsonb型の重要な利点はインデックスをサポートしていることです。
 


json型は入力値のコピーを格納しているので、意味的に重要でないトークン間の空白だけでなく、JSONオブジェクト内のキーの順序も維持します。
また、JSONオブジェクト内に同じキーと値が複数含まれていてもすべてのキー／値のペアが保持されます。(この処理関数は最後の値１つを処理させるようにすれば済みます。)
これとは対照的に、jsonbは空白を保持しません。オブジェクトキーの順序を保持せず、重複したオブジェクトキーを保持しません。重複キーを入力で指定された場合は、最後の値が保持されます。
 


一般的に、ほとんどのアプリケーションではJSONデータ型としてjsonb型のほうが望ましいでしょう。ただし、オブジェクトキーを従来のような順序であることを仮定する非常に特殊なニーズが存在するような場合は除きます。
 


RFC 7159は、JSON文字列はUTF8でエンコードすべきと指定しています。
従ってデータベースエンコーディングがUTF8でない限り、厳密にはJSON型がJSON仕様に準拠することはできません。
データベースのエンコーディングで表現できない文字を直接含めようとすると失敗します。逆に、UTF8で許可されずにデータベースのエンコーディングで許可される文字が許されてしまいます。
 


RFC 7159 では、JSON文字列はUnicodeエスケープシーケンス \uXXXX を許可するように記述されています。
json型の入力関数は、データベースエンコーディング方式に関係なくUnicodeエスケープが許可されています。それは、構文上の正しさ(つまり\uに続けて16進数が4桁)だけをチェックしています。
しかし、jsonbの入力関数はより厳しくなります。
データベースエンコーディング方式で表現できない文字のUnicodeエスケープを禁止します。
jsonb型は\u0000も許可しません。(なぜならPostgreSQL™のtext型で表現できないためです。)
また、Unicode基本多言語面以外の文字はUnicodeのサロゲートペアに直すことが要求されています。
有効なUnicodeエスケープは、同等の単一の文字に変換されて格納されます。これはサロゲートペアを単一の文字に変換する処理も含まれています。
 
注記


「JSON関数と演算子」で説明されているJSONの処理関数の多くは、Unicodeエスケープを通常の文字に変換します。
そして、それらの入力はjsonbでないjsonの場合でも記載された同じ種類のエラーになります。
json入力関数がこれらのチェックをしないことは歴史的経緯によるものと言えるかもしれませんが、そのために、表現された文字をサポートしないデータベースエンコーディングで、JSON Unicodeエスケープされた文字を単に格納(処理を必要としない場合)できてしまいます。
  



原文のJSONがjsonb型に変換されるときには、RFC 7159に記載されているプリミティブ型は表8.23「JSONプリミティブ型とPostgreSQL™型の対応表」に記されているようにPostgreSQL™のネイティブな型に変換されます。
そのため、jsonbデータ型には、json型になく、また理論上JSONにはないマイナーな制約があります。それは基礎となるデータ型に付随する制限によって表されます。
特にjsonb型は、PostgreSQL™のnumeric型の範囲外の数を拒否しますが、jsonは拒否しません。
このような処理系で定義される制限はRFC 7159で許可されています。
しかし、それは IEEE 754 倍精度浮動小数点がJSONのnumberプリミティブ型を表すのが一般的であるように、実際には他の実装でこのような問題が発生することの方がはるかに可能性が高いです(RFC 7159が明示的に予測して、許可しています)。
このようなシステムとPostgreSQL™で交換フォーマットとしてJSONを使用する場合は、数値精度を失う危険性があることを把握しておく必要があります。
 


逆に、表に示すようにJSONプリミティブ型の入力フォーマットには、対応するPostgreSQL™型と適合しない、いくつかのマイナーな制限があります。
 
表8.23 JSONプリミティブ型とPostgreSQL™型の対応表
	JSON プリミティブ型	PostgreSQL™型	注釈
	string	text	\u0000は許可されません。
またそのデータベースエンコーディング方式で利用できない文字を表現するユニコードエスケープも許可されません。
	number	numeric	NaN と infinity 値は許可されません
	boolean	boolean	小文字のtrue と false という綴りのみ許可されます
	null	(none)	SQLのNULLとは概念が異なります



JSONの入出力構文





JSON型の入出力構文の仕様はRFC 7159 に規定されています。
  


以下は、すべて有効なjson型(または jsonb型)の式です。



-- シンプルなスカラ/プリミティブ値
-- プリミティブ値は、数値、引用符で括られた文字列、true、 false、またはnullです。
SELECT '5'::json;


-- 0個以上の要素の配列（要素は同じ型である必要はありません）。
SELECT '[1, 2, "foo", null]'::json;


-- キーと値のペアを含むオブジェクト
-- オブジェクトキーは常に引用符で括られた文字列でなければならないことに注意してください。
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;


-- 配列とオブジェクトは任意に入れ子にすることができます。
SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;


  


先に述べたようにJSONの値が入力されたときに、その後、追加の処理を行わずに表示する場合、jsonは入力と同じテキストが出力されます、jsonbでは、空白のような意味を持たない情報を保持しません。
例を示します。ここでは相違点に注意してください。


SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;
                      json
-------------------------------------------------
 {"bar": "baz", "balance": 7.77, "active":false}
(1 row)

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
                      jsonb
--------------------------------------------------
 {"bar": "baz", "active": false, "balance": 7.77}
(1 row)



もう一つ注目に値するのは、jsonbでは、数値はnumeric型の動作に応じて表示され、意味を持たない情報を保持しません。実際には数字はE表記なしで表示されることを意味します。
例を示します。


SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}'::jsonb;
         json          |          jsonb
-----------------------+-------------------------
 {"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)



しかし、この例に見られるようにjsonbは小数の末尾のゼロを保持します。それにも関わらず、等しいかチェックする場合等では、意味的に重要ではありません。
  


JSONの値の作成と処理に使用可能な組み込み関数と演算子のリストについては、「JSON関数と演算子」を参照してください。
  

JSONドキュメントの設計





JSONデータは従来のリレーショナルデータモデルよりもかなり柔軟に表現することができます。そのため、要件が変わりやすい環境では説得力があります。
そして、それは同じアプリケーション内で、両方のアプローチが共存し相互に補完することが可能です。
しかし、最大の柔軟性が要求されるアプリケーションのためでもJSONドキュメントには、まだいくらかの固定構造を持つことを推奨します。
構造は（いくつかのビジネスルールを強制することは宣言的に可能であるが）、一般的に強制されないですが、テーブル内の「ドキュメント」（データ）セットをまとめて予測可能な構造にすることで、簡単に問い合わせを記述することができます。
  


JSONデータはテーブルに格納するとき、他のデータ型と同一の同時実行制御の対象となります。大きな文章を保存することは実行可能ですが、すべての更新が行レベルロックを取得することに留意してください。
更新トランザクション間のロックの競合を減少させるために、管理可能なサイズにJSONドキュメントを制限することを検討してください。
理想的には、JSONドキュメントはビジネスルール上、独立して変更することができない単位までデータを分割すべきです。
  

jsonb型用包含演算子と存在演算子





包含演算子による検査はjsonb型の重要な機能です。
json型には同等の機能セットはありません。
jsonbドキュメントが、その中に指定するドキュメントを含むかどうかを検査します。
これらの例は、特に記載がないかぎりtrueを返します。
  


-- 単純なスカラ/プリミティブ値は、同一の値が含まれています。
SELECT '"foo"'::jsonb @> '"foo"'::jsonb;


-- 左辺の配列に右辺の配列が含まれています。
SELECT '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;


-- 配列要素の順序は重要ではありませんので、これもまた真になります。
SELECT '[1, 2, 3]'::jsonb @> '[3, 1]'::jsonb;


-- 配列要素に重複が含まれているかは問題ではありません。
SELECT '[1, 2, 3]'::jsonb @> '[1, 2, 2]'::jsonb;


-- 右辺の単一ペアを持つオブジェクトが左辺のオブジェクト内に含まれています。
SELECT '{"product": "PostgreSQL", "version": 9.4, "jsonb": true}'::jsonb @> '{"version": 9.4}'::jsonb;


-- 右辺の配列は左辺の配列に含まれません、
-- 類似の配列が、その中のネストに含まれているにも関わらず。

SELECT '[1, 2, [1, 3]]'::jsonb @> '[1, 3]'::jsonb;  -- falseになる


-- しかし、ネストで層を合わせれば含まれるようになります。
SELECT '[1, 2, [1, 3]]'::jsonb @> '[[1, 3]]'::jsonb;


-- 同様に、これも含まれません。

SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"bar": "baz"}'::jsonb;  -- falseになる


-- トップレベルのキーと空のオブジェクトが含まれる。
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"foo": {}}'::jsonb;



一般原則では、オブジェクトにオブジェクトが含まれているかを判断するには、いくつかの条件に一致しない配列要素とキー／値のペアを含むオブジェクトを捨てた後に構造とデータを一致させる必要があります。
しかし、条件に一致するには配列要素の順序は重要ではなく、重複要素は一回のみ有効に評価されることを覚えておく必要があります。
  


構造が一致しなければならないという一般原則の特別な例外として、配列はプリミティブな値を含めることができます。
  


-- この配列はプリミティブな文字列を含みます。
SELECT '["foo", "bar"]'::jsonb @> '"bar"'::jsonb;


-- この例外は相互的ではありません。 -- これは含まれません。

SELECT '"bar"'::jsonb @> '["bar"]'::jsonb;  -- falseになる



jsonb型は、また存在演算子を持ちます。包含の変種です。それは文字列(与えられたtext値)が、jsonb値のオブジェクトキーまたは配列のトップレベルに存在するかどうかを検査します。
これらの例は、特に記載がないかぎりtrueを返します。
  


-- 文字列が配列要素に存在する。
SELECT '["foo", "bar", "baz"]'::jsonb ? 'bar';


-- 文字列がオブジェクトキーに存在する。
SELECT '{"foo": "bar"}'::jsonb ? 'foo';


-- オブジェクト値は考慮されません。

SELECT '{"foo": "bar"}'::jsonb ? 'bar';  -- falseになる


-- オブジェクトはトップレベルから一致するように存在する必要があります。

SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- falseになる


-- 文字列はJSONプリミティブ文字列と一致させることができます。
SELECT '"foo"'::jsonb ? 'foo';



JSONオブジェクトは、関係するキーや要素が多く存在する場合、含むかどうかまたは存在するかどうかのテストに適しています。なぜなら配列とは異なり、リニア検索をする必要がなく、内部的に検索に最適化されています。
  
ヒント


JSONでは包含がネストされるので、適切な問い合わせではサブオブジェクトの明示的な選択を省略することが出来ます。
例を挙げます。
doc列にトップレベルのオブジェクトがあります。
このオブジェクトには、tagsフィールドが含まれ、このフィールドにサブオブジェクトの配列が多く含まれているとします。
以下の問い合わせは、サブオブジェクトが"term":"paris"と"term":"food"の両方を含むエントリを探します。
そのときtags配列の外側にある、それらのキーは無視されます。


SELECT doc->'site_name' FROM websites
  WHERE doc @> '{"tags":[{"term":"paris"}, {"term":"food"}]}';



同じことを達成することは出来ます。例えば、


SELECT doc->'site_name' FROM websites
  WHERE doc->'tags' @> '[{"term":"paris"}, {"term":"food"}]';



しかし、そのアプローチは柔軟性に欠け、効率も落ちます。
   


一方、JSONの存在演算子は、ネストしていません。
JSONの値の最上位に指定されたキーまたは配列要素のみを探します。
   



JSONの様々な包含演算子や存在演算子、他のすべてのJSON演算子と関数は 「JSON関数と演算子」に記載されています。
  

jsonb インデックス





GINインデックスは、多数のjsonbドキュメント(データ)のキーやキー／値ペアを効率的に検索するときに用いることができます。
異なるパフォーマンスと柔軟性のトレードオフを持つ、2つのGIN 「演算子クラス」 が提供されています。
  


jsonb型の問い合わせでサポートしているデフォルトのGIN演算子クラスは、キーが存在するかの演算子として?、?|、?&があり、包含演算子として@>があり、jsonpathマッチング演算子として@?、@@があります。
（これらの演算子の意味の詳細は、表9.48「追加jsonb演算子」を参照してください。）
この演算子クラスのインデックスを作成する例。


CREATE INDEX idxgin ON api USING GIN (jdoc);



デフォルトでないGIN演算子クラスjsonb_path_opsは、キーが存在するかの演算子をサポートしませんが、@>、@?、@@をサポートします。
この演算子クラスのインデックスを作成する例。


CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);


  


サードパーティのWebサービスから、ドキュメント化されたスキーマ定義を持つJSONドキュメントを取得し、格納するテーブルの例を考えてみましょう。
典型的なドキュメントは、次のとおりです。


{
    "guid": "9c36adc1-7fb5-4d5b-83b4-90356a46061a",
    "name": "Angela Barton",
    "is_active": true,
    "company": "Magnafone",
    "address": "178 Howard Place, Gulf, Washington, 702",
    "registered": "2009-11-07T08:53:22 +08:00",
    "latitude": 19.793713,
    "longitude": 86.513373,
    "tags": [
        "enim",
        "aliquip",
        "qui"
    ]
}



テーブル名 apiにjsonb型でjdocをカラム名として格納します。
このカラムにGINインデックスを作成した場合、以下のような問い合わせがインデックスを利用することができます。



-- "company"キー が "Magnafone"値であるものを見つける
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"company": "Magnafone"}';



しかし 次のような問い合わせはインデックスを使用しません。なぜなら、?演算子はインデックス可能ですが、jdocカラムのインデックスが直接適用されていないためです。



-- キー "tags" の配列要素に "qui"が含まれているか見つける
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';



それでも、上記の問い合わせは、式インデックスを適切に使用することでインデックスを使用することができます。一般的な "tags"キーから特定の項目を照会する場合、このようなインデックスを定義すると良いかもしれません。


CREATE INDEX idxgintags ON api USING GIN ((jdoc -> 'tags'));



さて、 WHERE句の jdoc -> 'tags' ? 'qui'は、インデックス式jdoc->'tags'では、?演算子はインデックス可能として認識されます。
（式インデックスに関する詳細情報は「式に対するインデックス」を参照してください。）
  


別のアプローチとして包含を利用する問い合わせがあります。例を示します。



-- キー "tags"に 要素"qui"が含まれるかどうか見つける
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"tags": ["qui"]}';



jdocカラムのシンプルなGINインデックスは、この問い合わせをサポートすることができます。
しかし、前の例では、tagsキーの下にあるデータのみをインデックスに格納していたのに対して、そのようなインデックスは、jdocのすべてのキーと値のコピーを保存しますので、注意が必要です。
シンプルなインデックスアプローチは（それが全てのキーについての問い合わせをサポートしているため）はるかに柔軟ですが、ターゲット式インデックスは単純なインデックスより小さく、検索のときに高速である可能性が高くなります。
  


GINインデックスはjsonpathのマッチングを実行する@?演算子と@@演算子もサポートします。
例は以下の通りです。


SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @? '$.tags[*] ? (@ == "qui")';




SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @@ '$.tags[*] == "qui"';



これらの演算子に対して、GINインデックスは、jsonpathパターンからaccessors_chain == constantの形式の句を抽出し、句内で使われているキーと値に基づいてインデックスサーチをします。
アクセサチェーン(accessors chain)は.key、[*]、[index]アクセサを含みます。
jsonb_ops演算子クラスは.*と.**アクセサもサポートしますが、jsonb_path_ops演算子クラスはサポートしません。
  


jsonb_path_ops演算子クラスは、@>、@?、@@演算子をサポートしているだけですが、デフォルト演算子クラスのjsonb_opsよりも顕著なパフォーマンス上の利点があります。
jsonb_path_opsインデックスは、通常同じデータのjsonb_opsインデックスよりもはるかに小さく、データの中で頻繁に現れるキーを含む場合のような特別な検索には、より良くなります。
そのため、デフォルトの演算子クラスよりも検索性能が良くなります。
  


jsonb_opsとjsonb_path_opsのGINインデックスの技術的差異は、前者はデータのキーと値のための独立したインデックスを作成しますが、後者は、データの値に対してのみインデックスを作成します。
    [7]

基本的に、jsonb_path_opsインデックス項目は、値とキーのハッシュです。例えば、{"foo": {"bar": "baz"}}のインデックスはハッシュ値にfoo、bar、 bazすべてを組み込んで作成されます。
したがって、包含問い合わせのためのインデックス検索は、非常に特定の構造を返すようになっています。
しかしfooがキーとして表示されるかどうかを調べるには全く方法はありません。
一方、jsonb_opsインデックスは個別にはfoo、bar、bazを表す3つのインデックス項目を作成します。
その後、包含問い合わせをおこなうには、これらの項目の3つすべてを含む行を探します。
GINインデックスは、かなり効率的に検索することができますが、特に3つの索引項目のいずれかで、非常に多数の行が単一の場合に、同等のjsonb_path_ops検索よりも遅くなります。
  


jsonb_path_opsアプローチの欠点は、{"a": {}}のような、任意の値を含まないJSON構造のためのインデックスエントリを生成しません。
このような構造を含むドキュメントの検索が要求された場合、それは、フルインデックススキャンを必要とします。それは非常に遅くなります。そのため、
jsonb_path_opsは、多くの場合、そのような検索を実行するのには不適当です。
  


jsonb型は、btree と hash インデックスもサポートします。
これらは通常、JSONドキュメントの完全性をチェックすることが重要な場合のみ有用です。
jsonbのためのbtree順序には、興味深いことはほとんどありませんが、しかし、完全さのために次に示します。


Object > Array > Boolean > Number > String > null

Object with n pairs > object with n - 1 pairs

Array with n elements > array with n - 1 elements



ただし、（歴史的な理由から）空のトップレベル配列はnullより小さいとしてソートされます。
ペアの数が等しいオブジェクトは、順に比較されます。


key-1, value-1, key-2 ...



そのオブジェクトのキーは、その格納順に比較されることに注意してください。
短いキーは長いキーの前に格納されているため、特にこれは、次のような直感的でない結果につながるかもしれません。


{ "aa": 1, "c": 1} > {"b": 1, "d": 1}



同様に、配列と同じ番号を持つ要素を比較する順番。


element-1, element-2 ...



JSONプリミティブ値は基本的にPostgreSQL™データ型と同じルールで比較されます。文字列は、デフォルトのデータベース照合を使用して比較されます。
  

jsonbの添字





jsonbデータ型は要素を取り出したり修正したりするために配列形式の添字表現をサポートします。
入れ子になった値は、jsonb_set関数でのpath引数と同じ規則に従って、添字表現をつなげることで指定できます。
jsonb値が配列であれば、数字の添字はゼロから始まり、負の整数は配列の最後の要素から逆に数えます。
スライス表現はサポートされていません。
添字表現の結果は、必ずjsonbデータ型です。
  


UPDATE文では、jsonb値を修正するSET句内で添字が使えます。
添字のパスは、存在する範囲では影響する値すべてが到達可能でなければなりません。
例えば、パスval['a']['b']['c']は、val、val['a']、val['a']['b']それぞれがオブジェクトであれば、cまでたどることができます。
val['a']またはval['a']['b']が定義されていなければ、空のオブジェクトとして作られ必要に応じて埋められます。
しかしながら、val自身または途中の値の1つでも、文字列、数値、jsonb nullのような非オブジェクトとして定義されていれば、到達できないためエラーが発生し、トランザクションはアボートされます。
  


添字構文の例です。





-- キーでオブジェクトの値を取り出す
SELECT ('{"a": 1}'::jsonb)['a'];


-- キーのパスで入れ子のオブジェクトの値を取り出す
SELECT ('{"a": {"b": {"c": 1}}}'::jsonb)['a']['b']['c'];


-- インデックスで配列要素を取り出す
SELECT ('[1, "2", null]'::jsonb)[1];


-- キーでオブジェクトの値を更新する。'1'の周りの一重引用符に注意。
-- 代入する値もjsonb型でなければならない
UPDATE table_name SET jsonb_field['key'] = '1';


-- これはjsonb_field['a']['b']のいずれかのデータがオブジェクト以外のものであればエラーになる。
-- 例えば、値{"a": 1}はキー'a'の数値を持つ。
UPDATE table_name SET jsonb_field['a']['b']['c'] = '1';


-- WHERE句で添字を使ってデータにフィルタを掛ける。
-- 添字による結果はjsonbなので、それと比較する値もjsonbでなければならない。
-- 二重引用符により"value"も有効なjsonb文字列になる。
SELECT * FROM table_name WHERE jsonb_field['key'] = '"value"';




添字によるjsonbの代入は、まれにjsonb_setとは異なる場合があります。
元のjsonb値がNULLの場合、添字による代入は、添字のキーで暗示されるその型の空のJSON値(オブジェクトまたは配列)であるかのように処理されます。




-- jsonb_fieldがNULLの場合、{"a": 1}になる
UPDATE table_name SET jsonb_field['a'] = '1';


-- jsonb_fieldがNULLの場合、[1]になる
UPDATE table_name SET jsonb_field[0] = '1';




要素が足りない配列に対してインデックスを指定した場合、インデックスが到達可能になって値が設定できるようになるまでNULL要素が追加されます。




-- jsonb_fieldが[]なら、[null, null, 2]になり、
-- jsonb_fieldが[0]なら、[0, null, 2]になる
UPDATE table_name SET jsonb_field[2] = '2';




対応する添字が暗示するように、到達できる最後の存在する要素がオブジェクトか配列である限り、jsonb値は存在しない添字のパスへの代入を受け付けます。
(パスの最後の添字で指定される要素には到達しませんし、何でも構いません。)
入れ子の配列やオブジェクト構造が作られ、前者の場合には、添字のパスにより指定されたように値が代入できるようになるまでnullで埋められます。




-- jsonb_fieldが{}であれば、{"a": [{"b": 1}]}になる
UPDATE table_name SET jsonb_field['a'][0]['b'] = '1';


-- jsonb_fieldが[]であれば、[null, {"a": 1}]になる
UPDATE table_name SET jsonb_field[1]['a'] = '1';



  

変換





異なるプロシージャ言語でjsonb型の変換を実装した追加の拡張が入手可能です。
  


PL/Perl向けの拡張は、jsonb_plperlとjsonb_plperluと呼ばれます。
この拡張を使うとjsonbの値はPerlの配列、ハッシュ、スカラの適切なものにマップされます。
  


PL/Python向けの拡張は、jsonb_plpython3uと呼ばれます。
この拡張を使うと、jsonbの値はPythonの辞書型、リスト、スカラの適切なものにマップされます。
  


上記の拡張のうち、jsonb_plperlは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
残りはインストールするのにスーパーユーザ権限が必要です。
  

jsonpath型





jsonpath型は、PostgreSQL™でJSONデータの効率的な問い合わせをするために、SQL/JSONパス言語のサポートを実装しています。
構文解析されたSQL/JSONパス式のバイナリ表現を提供し、SQL/JSON問い合わせ関数でさらに処理するために、パスエンジンがJSONデータから取得する項目を指定します。
  


SQL/JSONパス述部および演算子のセマンティクスは、SQLに従います。
同時に、JSONデータを処理する自然な方法を提供するために、SQL/JSONのパス構文ではいくつかのJavaScript規則を使用します。
  
	

ドット(.)は、メンバアクセスに使用されます。
    

	

大括弧([])は配列アクセスに使用されます。
    

	

1から始まる通常のSQL配列とは異なり、SQL/JSON配列は0スタートです。
    





SQL/JSONパス式の数値リテラルは、JavaScriptルールに従います。JavaScriptルールは、いくつかの細かい点でSQLやJSONのいずれとも異なります。
例えば、SQL/JSONパスでは.1や1.が有効ですが、JSONでは無効です。
例えば、1_000_000、0x1EEE_FFFF、0o273、0b100101など、10進数でない整数リテラルやアンダースコアの区切り文字がサポートされています。
SQL/JSONパス式では（およびJavaScriptでは、しかし本来のSQLではそうではありません）、基数の接頭辞の直後にアンダースコアの区切り文字を使用できません。
  


SQL/JSONパス式は通常、SQL問い合わせでSQL文字列リテラルとして記述されるため、一重引用符で囲む必要があり、値内で必要な一重引用符は二重にする必要があります(「文字列定数」を参照)。
一部の形式のパス式では、文字列リテラルを含める必要があります。
これらの埋め込み文字列リテラルは JavaScript/ECMAScript規則に従います。二重引用符で囲む必要があり、その中でバックスラッシュエスケープを使用してタイプしにくい文字を表すことができます。
特に、埋め込み文字列リテラル内で二重引用符を記述する方法は\"であり、バックスラッシュを記述する必要がある場合は\\と書く必要があります。
その他の特別なバックスラッシュ構文には、以下のJavaScript文字列で認識されるものが含まれます。
さまざまなASCII制御用文字の\b、\f、\n、\r、\t、\v、2桁の16進数だけで記述された文字コード用の\xNN、4つの16進数のコードポイントで識別されるUnicode文字用の\uNNNNおよび1～6桁の16進数で記述されたUnicode文字コードポイント用の\u{N...}です。
  


パスの式は、次のようなパス要素のシーケンスで構成されます。
   
	

JSONプリミティブ型のパスリテラル。
ユニコードテキスト、数値、true、false、又はnullです。
     

	

パス変数表8.24「jsonpath変数」。
     

	

アクセサ演算子表8.25「jsonpath Accessors」。
     

	

jsonpath演算子とメソッド「SQL/JSONパス演算子とメソッド」。
     

	

括弧。フィルタ式を提供したり、パス評価の順序を定義するために使用できます。
     




  


jsonpath式を使用したSQL/JSON問い合わせ関数の詳細は、「SQL/JSONパス言語」を参照してください。
  
表8.24 jsonpath変数
	変数	説明
	$	
問い合わせ対象(context item)のJSON値を表す変数。
      
	$varname	

名前付き変数。
その値はいくつかのJSON処理関数のパラメータvarsで設定できます。
詳細は表9.51「JSON処理関数」を参照してください。
        
      
	@	フィルタ式のパス評価の結果を表す変数。
      



表8.25 jsonpath Accessors
	アクセサ演算子	説明
	
       
        .key
       

       
        ."$varname"
       

      	
       

指定されたキーを持つオブジェクトメンバを返すメンバアクセサ。
キー名が$で始まる名前付き変数に一致する場合、または識別子のJavaScriptルールを満たさない場合は、文字列リテラルとするため二重引用符で囲む必要があります。
       

      
	
       
        .*
       

      	
       

現在のオブジェクトの最上位レベルになるすべてのメンバの値を返すワイルドカードメンバアクセサ。
       

      
	
       
        .**
       

      	
       

現在のオブジェクトのJSON階層のすべてのレベルを処理し、ネストされたレベルに関わらず全てのメンバ値を返す再帰的なワイルドカードメンバアクセサ。
これはSQL/JSON標準のPostgreSQL™の拡張です。
       

      
	
       
        .**{level}
       

       
        .**{start_level to
        end_level}
       

      	
       

.**と似ていますが、JSON階層の指定したレベルだけを選びます。
ネストレベルは整数で指定します。
レベル0は現在のオブジェクトに対応します。
最下位のネストレベルにアクセスするのに、lastキーワードが使用できます。
これはSQL/JSON標準のPostgreSQL™の拡張です。
       

      
	
       
        [subscript, ...]
       

      	
       

配列要素アクセサ。
subscriptは、indexまたはstart_indexからend_indexまでの2つの形式で指定できます。
最初の形式は、インデックスによって単一の配列要素を返します。
２番目の形式は、指定されたstart_indexとend_indexに対応する要素を含む、インデックスの範囲による配列スライスを返します。
       

       

指定されたindexには、整数だけでなく、自動的に整数にキャストされる単一の数値を返す式を指定できます。
インデックス0は最初の配列要素に対応します。
また、lastキーワードを使用して最後の配列要素を指定することもできます。
これは、長さが不明な配列の処理に役立ちます。
       

      
	
       
        [*]
       

      	
       

全ての配列の要素を返すワイルドカード配列要素アクセサ。
       

      






[7] 

この目的のために、「値」 という用語は配列の要素を含みますが、JSONの専門用語では、オブジェクト内の値と配列の要素が時々違うことがあります。
     



配列





PostgreSQL™ではテーブルの列を可変長多次元配列として定義できます。
あらゆる組み込み型あるいはユーザ定義の基本型、列挙型、複合型、範囲型そしてドメインの配列も作成可能です。
 
配列型の宣言





実際に配列の使い方を説明するために、次のテーブルを作成します。


CREATE TABLE sal_emp (
    name            text,
    pay_by_quarter  integer[],
    schedule        text[][]
);



見ておわかりのように配列データ型は配列要素のデータ型の名前に大括弧（[]）を付けて指定します。
このコマンドはtext型文字列（name）、従業員の四半期の給与を保存するinteger型の一次元配列（pay_by_quarter）、そして従業員の週間スケジュールを保存するtext型の二次元配列（schedule）の列を持つsal_empという名前のテーブルを作成します。
 


CREATE TABLE構文で指定する配列の正確な大きさを指定することができます。



CREATE TABLE tictactoe (
    squares   integer[3][3]
);




とは言っても現在の実装では指定された配列の大きさの制限を無視します。
つまり、長さの指定がない配列と同じ振舞いをします。
 


現在の実装では次元数の宣言も強制していません。
特定の要素型の配列はすべて大きさあるいは次元数とは無関係に同じ型とみなされます。
ですからCREATE TABLEで配列の大きさや次元数を宣言することは、単なる説明です。
実行時の動作に影響を及ぼしません。
 


標準SQLに準拠している、ARRAYキーワードを使用したもう1つの構文を一次元配列に使うことができます。
pay_by_quarterを次のように定義することもできます。


    pay_by_quarter  integer ARRAY[4],



または、もし配列の大きさが指定されない場合は次のようになります。


    pay_by_quarter  integer ARRAY,



しかし、前で触れたようにPostgreSQL™はどんな場合でも大きさの制限を強要しません。
 

配列の値の入力





リテラル定数として配列の値を書き込むには、その要素の値を中括弧で囲み、それぞれの要素の値をカンマで区切ります。
（C言語を知っているならば、構造体を初期化するための構文のようなものと考えてください。）
要素の値を二重引用符でくくることもでき、カンマもしくは中括弧がある時は必ずそのように書かなければなりません。
（詳細は以下に出てきます。）
したがって配列定数の一般的書式は次のようになります。


'{ val1 delim val2 delim ... }'



ここでdelimはそのpg_type項目に記録されている型の区切り文字です。
PostgreSQL™配布物で提供されている標準データ型の内、セミコロン（;）を使用するbox型を除き、すべてはカンマ（,）を使います。
それぞれのvalは配列要素の型の定数か副配列です。
配列定数の例を以下に示します。


'{{1,2,3},{4,5,6},{7,8,9}}'



この定数は整数の3つの副配列を持っている二次元3×3の配列です。
  


配列定数の要素をNULLとするためには、その要素値にNULLと記載してください。
（NULLを大文字で書いても小文字で書いても構いません。）
「NULL」という文字列値を指定したければ、二重引用符でくくって記載しなければなりません。
  


（この種の配列定数は実際「他の型の定数」で説明されている一般型定数の特別の場合に過ぎません。
この定数は元々文字列として扱われていて配列入力ルーチンに渡されます。
明示的な型指定が必要かもしれません。）
  


では、INSERT文をいくつか紹介します。



INSERT INTO sal_emp
    VALUES ('Bill',
    '{10000, 10000, 10000, 10000}',
    '{{"meeting", "lunch"}, {"training", "presentation"}}');

INSERT INTO sal_emp
    VALUES ('Carol',
    '{20000, 25000, 25000, 25000}',
    '{{"breakfast", "consulting"}, {"meeting", "lunch"}}');


  


上に記載した2つの挿入文の結果は次のようになります。



SELECT * FROM sal_emp;
 name  |      pay_by_quarter       |                 schedule
-------+---------------------------+-------------------------------------------
 Bill  | {10000,10000,10000,10000} | {{meeting,lunch},{training,presentation}}
 Carol | {20000,25000,25000,25000} | {{breakfast,consulting},{meeting,lunch}}
(2 rows)


 


多次元配列では、各次元の範囲を合わせなければなりません。
一致しないと以下のようにエラーが発生します。



INSERT INTO sal_emp
    VALUES ('Bill',
    '{10000, 10000, 10000, 10000}',
    '{{"meeting", "lunch"}, {"meeting"}}');
ERROR:  malformed array literal: "{{"meeting", "lunch"}, {"meeting"}}"
DETAIL:  Multidimensional arrays must have sub-arrays with matching dimensions.


 


ARRAY生成子構文も使えます。


INSERT INTO sal_emp
    VALUES ('Bill',
    ARRAY[10000, 10000, 10000, 10000],
    ARRAY[['meeting', 'lunch'], ['training', 'presentation']]);

INSERT INTO sal_emp
    VALUES ('Carol',
    ARRAY[20000, 25000, 25000, 25000],
    ARRAY[['breakfast', 'consulting'], ['meeting', 'lunch']]);



配列要素は通常のSQL定数もしくは演算式であることに注意してください。
例えば文字列リテラルは配列リテラルと同様、二重引用符ではなく単一引用符でくくられます。
ARRAY生成子構文は「配列コンストラクタ」により詳しい説明があります。
 

配列へのアクセス





ではテーブルに対していくつかの問い合わせを行ってみましょう。
初めに、配列の単一要素にアクセスする方法を示します。
この問い合わせは第2四半期に給与が更新された従業員の名前を抽出します。



SELECT name FROM sal_emp WHERE pay_by_quarter[1] <> pay_by_quarter[2];

 name
-------
 Carol
(1 row)




配列の添字番号は大括弧で囲んで記述されます。
デフォルトでPostgreSQL™は配列に対し「1始まり」の振り番規定を採用しています。
つまり要素がn個ある配列はarray[1]で始まり、array[n]で終わります。
 


次の問い合わせは全ての従業員の第3四半期の給与を抽出します。



SELECT pay_by_quarter[3] FROM sal_emp;

 pay_by_quarter
----------------
          10000
          25000
(2 rows)


 


また、配列や副配列の任意の縦方向の部分を切り出すこともできます。
一次元以上の配列についてその一部を表現するには、lower-bound:upper-boundと記述します。
例えばこの問い合わせはBillのその週の初めの2日に最初何が予定されているかを抽出します。



SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill';

        schedule
------------------------
 {{meeting},{training}}
(1 row)




任意の次元を部分として、つまりコロンを含めて記述すると、すべての次元が部分として扱われます。
単一の番号のみ（コロンを持たない）を持つ次元はすべて、1から指定番号までと扱われます。
例えば、[2]は以下の例のように [1:2]と扱われます。



SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill';

                 schedule
-------------------------------------------
 {{meeting,lunch},{training,presentation}}
(1 row)




切り出しのない場合と混乱を避けるため、すべての次元に対し切り出し構文を使用することが最善です。
例えば、[2][1:1]ではなく、[1:2][1:1]のようにします。
 


切り出し指定子のlower-bound、upper-boundは省略可能です。省略された上限または下限は、配列の添字の上限または下限で置き換えられます。
例えば、



SELECT schedule[:2][2:] FROM sal_emp WHERE name = 'Bill';

        schedule
------------------------
 {{lunch},{presentation}}
(1 row)

SELECT schedule[:][1:1] FROM sal_emp WHERE name = 'Bill';

        schedule
------------------------
 {{meeting},{training}}
(1 row)


 


配列自体がNULLもしくはその添字式がNULLとなる場合、配列添字式はNULLを返します。
また、配列の範囲を超える添字の場合もNULLが返されます（この場合はエラーになりません）。
例えば、scheduleが現在[1:3][1:2]次元であれば、schedule[3][3]の参照はNULLとなります。
同様にして、添字として間違った値を指定して配列を参照した場合もエラーではなく、NULLが返されます。
 


同様に、部分配列式も配列自体がNULLもしくはその添字式がNULLとなる場合にNULLを返します。
しかし、現在の配列範囲を完全に超えた部分配列を選択する場合では、部分配列式はNULLではなく空の（0次元）の配列を返します。
（これは切り出しなしの動作に一致せず、歴史的理由で行われるものです。）
要求された部分配列が配列の範囲に重なる場合、NULLを返さずに、警告なく重複部分だけに減少させます。
 


array_dims関数で任意の配列値の現在の次元を取り出せます。



SELECT array_dims(schedule) FROM sal_emp WHERE name = 'Carol';

 array_dims
------------
 [1:2][1:2]
(1 row)




array_dims関数はtext型で結果を返します。
人間が結果を見るためには便利ですが、プログラムにとって都合がよくありません。
次元はarray_upperとarray_lowerでも抽出することができ、それぞれ特定の配列の次元の上限と下限を返します。



SELECT array_upper(schedule, 1) FROM sal_emp WHERE name = 'Carol';

 array_upper
-------------
           2
(1 row)




array_lengthは指定された配列次元の長さを返します。



SELECT array_length(schedule, 1) FROM sal_emp WHERE name = 'Carol';

 array_length
--------------
            2
(1 row)




cardinalityは配列の全次元に渡る要素の総数を返します。
実質的にunnestの呼び出しで生成される行の数です。



SELECT cardinality(schedule) FROM sal_emp WHERE name = 'Carol';

 cardinality
-------------
           4
(1 row)


 

配列の変更





配列の値を全て置き換えることができます。



UPDATE sal_emp SET pay_by_quarter = '{25000,25000,27000,27000}'
    WHERE name = 'Carol';




もしくはARRAY演算構文を用いて次のように書きます。



UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
    WHERE name = 'Carol';




配列の1つの要素を更新することも可能です。



UPDATE sal_emp SET pay_by_quarter[4] = 15000
    WHERE name = 'Bill';




あるいは一部分の更新も可能です。



UPDATE sal_emp SET pay_by_quarter[1:2] = '{27000,27000}'
    WHERE name = 'Carol';




lower-boundやupper-boundが省略された切り出し構文も使用可能ですが、NULLや0次元でない配列の値を更新する場合に限ります（さもなければ、置き換えるべき添字の上限、下限が存在しません）。
 


保存されている配列の値は、存在しない要素に代入することで拡張することができます。
過去に存在した位置と新しく代入された位置との間はNULLで埋められます。
例えば、現在配列myarrayの要素数が4の場合、myarray[6]を割り当てる更新の後6要素を持つことなり、myarray[5]はNULLを含みます。
現在、こうした方法での拡張は、1次元配列でのみ許されます。
多次元配列では行うことができません。
 


添字指定の代入で1始まり以外の添字がある配列を作れます。
例えば添字が-2から7までの値を持つ配列をarray[-2:7]で指定できます。
 


新規の配列の値は連結演算子||を用いて作成することもできます。


SELECT ARRAY[1,2] || ARRAY[3,4];
 ?column?
-----------
 {1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
      ?column?
---------------------
 {{5,6},{1,2},{3,4}}
(1 row)


 


連結演算子を使うと、一次元配列の最初もしくは最後に1つの要素を押し込むことができます。
さらには2つのN-次元配列もしくはN-次元配列とN+1-次元配列にも対応しています。
 


1つの要素が1次元配列の先頭や末尾に押し込まれた時、結果は配列演算項目と同じ下限添字を持つ配列となります。
以下に例を示します。


SELECT array_dims(1 || '[0:1]={2,3}'::int[]);
 array_dims
------------
 [0:2]
(1 row)

SELECT array_dims(ARRAY[1,2] || 3);
 array_dims
------------
 [1:3]
(1 row)


 


等しい次元を持った2つの配列が連結された場合、結果は左側演算項目の外側の次元の下限添字を引き継ぎます。
結果は右側被演算子のすべての要素に左側被演算子が続いた配列となります。
例を挙げます。


SELECT array_dims(ARRAY[1,2] || ARRAY[3,4,5]);
 array_dims
------------
 [1:5]
(1 row)

SELECT array_dims(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]]);
 array_dims
------------
 [1:5][1:2]
(1 row)


 


N-次元配列がN+1-次元配列の最初または最後に押し込まれると、結果は上記と似通った要素配列になります。
それぞれのN-次元副配列は本質的にN+1-次元配列の外側の次元の要素となります。
例を挙げます。


SELECT array_dims(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
 array_dims
------------
 [1:3][1:2]
(1 row)


 


配列はarray_prepend、array_append、もしくはarray_catを使って構築することもできます。
初めの2つは一次元配列にしか対応していませんが、array_catは多次元配列でも使えます。
例を挙げます。



SELECT array_prepend(1, ARRAY[2,3]);
 array_prepend
---------------
 {1,2,3}
(1 row)

SELECT array_append(ARRAY[1,2], 3);
 array_append
--------------
 {1,2,3}
(1 row)

SELECT array_cat(ARRAY[1,2], ARRAY[3,4]);
 array_cat
-----------
 {1,2,3,4}
(1 row)

SELECT array_cat(ARRAY[[1,2],[3,4]], ARRAY[5,6]);
      array_cat
---------------------
 {{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat(ARRAY[5,6], ARRAY[[1,2],[3,4]]);
      array_cat
---------------------
 {{5,6},{1,2},{3,4}}


 


単純な状況では、上で説明した連結演算子はそれぞれの関数を直接実行することよりも望ましいです。
とは言っても、連結演算子は3つの場合すべてに対応するようオーバーロードされていますので、その関数の1つを使うとあいまいさを避けるのに役立つ場合があります。
例えば、以下のような状況を考えてください。




SELECT ARRAY[1, 2] || '{3, 4}';  -- 型指定のないリテラルは配列と見なされる
 ?column?
-----------
 {1,2,3,4}


SELECT ARRAY[1, 2] || '7';                 -- これも同様
ERROR:  malformed array literal: "7"


SELECT ARRAY[1, 2] || NULL;                -- 修飾されていないNULLも同様
 ?column?
----------
 {1,2}
(1 row)


SELECT array_append(ARRAY[1, 2], NULL);    -- これがやりたかった事かも
 array_append
--------------
 {1,2,NULL}




上の例では、パーサは連結演算子の一方の側に整数の配列を見つけ、もう一方の側に型の決まらない定数を見つけます。
パーサが定数の型を解決するのに使う発見的手法は、演算子のもう一方の入力と同じ型(この場合には整数の配列)だと仮定することです。
そのため、連結演算子はarray_appendではなく、array_catと推定されます。
これが誤った選択である場合には、定数を配列の要素の型にキャストすることで直せるかもしれません。ですが、array_appendを明示的に使うのが好ましい解決法であるかもしれません。
 

配列内の検索





配列内のある値を検索するにはそれぞれの値が検証されなければなりません。
もし配列の大きさがわかっているならば手作業でも検索できます。
例を挙げます。



SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR
                            pay_by_quarter[2] = 10000 OR
                            pay_by_quarter[3] = 10000 OR
                            pay_by_quarter[4] = 10000;




とは言ってもこの方法では大きい配列では大変な作業となりますし、配列の大きさが不明な場合この方法は使えません。
代わりになる方法が「行と配列の比較」で説明されています。
上の問い合わせは以下のように書くことができます。



SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);




さらに配列で行の値が全て10000に等しいものを見つけることもできます。



SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);



 


代わりとして、generate_subscripts関数を使うことができます。
以下はその例です。



SELECT * FROM
   (SELECT pay_by_quarter,
           generate_subscripts(pay_by_quarter, 1) AS s
      FROM sal_emp) AS foo
 WHERE pay_by_quarter[s] = 10000;




この関数は表9.70「添え字生成関数」に記載されています。
 


&&演算子を使って配列を検索することもできます。
この演算子は左辺が右辺と重なるかどうかを調べます。
例えば、



SELECT * FROM sal_emp WHERE pay_by_quarter && ARRAY[10000];




この演算子やその他の配列の演算子は「配列関数と演算子」により詳しく書かれています。
「インデックスの種類」に書いてあるように、適切なインデックスにより高速化されます。
 


関数array_positionやarray_positionsを使って、配列内の特定の値を検索することもできます。
前者は配列内で初めてその値が現れる添字を返し、後者は配列内でその値が現れる添字すべての配列を返します。
例えば、以下の通りです。



SELECT array_position(ARRAY['sun','mon','tue','wed','thu','fri','sat'], 'mon');
 array_position
----------------
              2
(1 row)

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
 array_positions
-----------------
 {1,4,8}
(1 row)


 
ヒント


配列は集合ではありません。
特定の配列要素に検索をかけることはデータベース設計が誤っている可能性があります。
配列の要素とみなされるそれぞれの項目を行に持つ別のテーブルを使うことを検討してください。
この方が検索がより簡単になり要素数が大きくなっても規模的拡張性があります。
  


配列の入出力構文





配列の値の外部表現は配列の要素の型に対するI/O変換ルールに基づいて解釈された項目と配列の構造を示す装飾項目で構成されています。
装飾は配列の値を中括弧（{と}）で囲んだものと次の項目との間を区切り文字で区切ったものです。
区切り文字は通常カンマ（,）ですが他の文字でも構いません。
配列の要素の型typdelimを設定することで決まります。
PostgreSQL™配布物における標準のデータ型の中でセミコロン（;）を使うbox型を除いて、すべてはカンマを使います。
多次元配列ではそれぞれの次元（行、面、立体など）はそれ自身の階層において中括弧、同じ階層の中括弧でくくられた次の塊との間に区切り文字が書かれていなければなりません。
  


空の文字列や中括弧や区切り文字、二重引用符、バックスラッシュ、空白、NULLという単語が含まれていると、配列出力処理は要素の値を二重引用符でくくります。
要素の値に組み込まれている二重引用符とバックスラッシュはバックスラッシュでエスケープされます。
数値データ型に対しては二重引用符が出現しないと想定するのが安全ですが、テキストデータ型の場合引用符がある場合とない場合に対処できるようにしておくべきです。
  


デフォルトでは配列の次元の下限インデックス値は1に設定されています。
他の下限値を持つ配列を表現したければ、配列定数を作成する前に明示的に配列添字範囲を指定することで実現できます。
修飾項目はそれぞれの配列次元の上限と下限をコロン（:）で区切って前後を大括弧（[]）でくくった形式になっています。
代入演算子（=）の後に配列次元修飾項目が続きます。
例を示します。


SELECT f1[1][-2][3] AS e1, f1[1][-1][5] AS e2
 FROM (SELECT '[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}'::int[] AS f1) AS ss;

 e1 | e2
----+----
  1 |  6
(1 row)



1とは異なる下限を持つ場合にのみ、配列出力関数はその結果に明示的な次元を含めます。
  


要素に指定された値がNULL（またはその亜種）の場合、要素はNULLとして扱われます。
引用符やバックスラッシュがあると、これは無効となり、「NULL」という文字列リテラルを入力することができます。
また、8.2以前のPostgreSQL™との後方互換性のため、array_nulls設定パラメータをoffにして、NULLをNULLとして認識しないようにすることができます。
  


前に示したように配列に値を書き込む場合は独立した配列要素を二重引用符でくくります。
配列値パーサが配列要素値によって混乱を来さないように必ずこの形式を守ってください。
例えば、中括弧、カンマ（もしくはデータ型の区切り文字）、二重引用符、バックスラッシュもしくは前後に付いた空白を含む要素は必ず二重引用符でくくらなければなりません。
空文字列やNULLという単語自体も同様に引用符でくくらなければなりません。
二重引用符もしくはバックスラッシュを引用符付きの配列要素に付け加えたい場合、その直前にバックスラッシュを付けます。
別の方法として、配列構文とみなされかねない全てのデータ文字を保護するために、引用符を使用しないでバックスラッシュでエスケープしても構いません。
  


括弧の右側もしくは左側それぞれの前と後に空白を追加することができます。
同様に独立した項目の文字列の前後に空白を付け加えることもできます。
これらすべての場合において空白は無視されます。
とは言っても二重引用符で囲まれた要素の中の空白、もしくは要素の空白文字以外により両側がくくられているものは無視されません。
  
ヒント


SQLコマンドの中で配列値を書く時、配列リテラル構文よりもARRAY生成子構文（「配列コンストラクタ」を参照）の方が往々にして扱いやすい場合があります。
ARRAYでは、個々の要素値は、配列のメンバでない場合と同じ方法で記述されます。
  



複合型





複合型は、行もしくはレコードの構造を表現します。
本質的には、これは単なるフィールド名とそのデータ型のリストです。
PostgreSQL™では、単純な型において使用される方法と多くは同じ方法で複合型を使用できます。
例えば、テーブルの列は複合型の型のものとして宣言することができます。
 
複合型の宣言





複合型の宣言の例を以下に2つ示します。


CREATE TYPE complex AS (
    r       double precision,
    i       double precision
);

CREATE TYPE inventory_item AS (
    name            text,
    supplier_id     integer,
    price           numeric
);



この構文は、フィールド名とその型のみを指定できるという点を除き、CREATE TABLEと同等です。
現在は、制約（NOT NULLなど）を含めることはできません。
ASキーワードが重要であることに注意してください。
これがないと、システムはCREATE TYPEの意味を異なって解釈し、おかしな構文エラーを引き起こします。
 


定義済みの型を使用して、以下のようにテーブルや関数を生成することができます。



CREATE TABLE on_hand (
    item      inventory_item,
    count     integer
);

INSERT INTO on_hand VALUES (ROW('fuzzy dice', 42, 1.99), 1000);




また、関数においては以下のように利用できます。



CREATE FUNCTION price_extension(inventory_item, integer) RETURNS numeric
AS 'SELECT $1.price * $2' LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;



 


テーブルを生成する時には、テーブルの行型を表現するために、テーブル名と同じ名前の複合型も自動的に生成されます。
例えば、以下のように


CREATE TABLE inventory_item (
    name            text,
    supplier_id     integer REFERENCES suppliers,
    price           numeric CHECK (price > 0)
);



テーブルを作成すると、上述のものと同じinventory_itemという複合型が副次的に作成され、同様に使用することができるようになります。
しかし、現在の実装には、次のような重要な制限があることに注意してください。
複合型には制約が関連付けられませんので、テーブル定義に含まれる制約は、テーブルの外部に作成される複合型には適用されません。
（これを回避するためには、複合型を含むドメインを作成し、ドメインのCHECK制約として望みの制約を適用します。）
 

複合型の値の構成





複合型をリテラル定数として記述するには、フィールド値をカンマで区切り、それらを括弧で括ります。
フィールド値を二重引用符で括ることができ、また、値にカンマや括弧を含む場合は二重引用符で括らなければなりません。
（より詳細については後で説明します。）
したがって、複合型の定数の一般的な書式は以下のようになります。


'( val1 , val2 , ... )'



以下に例を示します。


'("fuzzy dice",42,1.99)'



これは、上述のinventory_item型の値として有効なものです。
フィールドをNULLにするには、リスト中の該当位置を空にします。
例えば、以下の定数は3番目のフィールドにNULLを指定しています。


'("fuzzy dice",42,)'



NULLではなく空文字列にしたいのであれば、以下のように引用符を二重に記述します。


'("",42,)'



これにより、最初のフィールドは非NULLの空文字列に、3番目のフィールドはNULLになります。
  


（実際には、こうした定数は「他の型の定数」で説明した、一般的な型の定数の特殊な場合に過ぎません。
定数はまず、文字列として扱われ、複合型の入力変換処理に渡されます。
定数をどの型に変換するかを示すため、明示的な型指定が必要になることもあります。）
  


また、ROW式構文も、複合値を生成する際に使用することができます。
複数の階層に渡る引用符について考慮する必要がないため、おそらくほとんどの場合、これは文字列リテラル構文よりも簡単に使用できます。
上記において、既にこの方法を使用しています。


ROW('fuzzy dice', 42, 1.99)
ROW('', 42, NULL)



式の中に2つ以上のフィールドがある場合には、ROWキーワードは実際には省略することができます。
ですので、以下のように簡略化することができます。


('fuzzy dice', 42, 1.99)
('', 42, NULL)



ROW構文については「行コンストラクタ」でより詳細に説明します。
 

複合型へのアクセス





複合型の列のフィールドにアクセスするには、テーブル名からフィールドを選択する場合とほぼ同様に、ドットとフィールド名を記述します。
実際、テーブル名からの選択とかなり似ていますので、パーサを混乱させないように括弧を使用しなければならないことがしばしばあります。
例えば、on_handというテーブルの例からサブフィールドを選択しようとした場合、以下のように書くかもしれません。



SELECT item.name FROM on_hand WHERE item.price > 9.99;




これは、SQLの構文規則に従ってitemがon_handの列名ではなくテーブル名として解釈されるため、動作しません。
以下のように記述しなければなりません。



SELECT (item).name FROM on_hand WHERE (item).price > 9.99;




また、テーブル名も使用しなければならない場合（例えば複数テーブルに対する問い合わせ）、以下のようになります。



SELECT (on_hand.item).name FROM on_hand WHERE (on_hand.item).price > 9.99;




これで、括弧で括られたオブジェクトは正しくitem列への参照として解釈され、サブフィールドはそこから選択できるようになります。
 


似たような構文上の問題は、複合型からフィールドを選択する時、常に発生します。
例えば、複合型の値を返す関数の結果から1つだけフィールドを選択する場合、以下のように記述しなければなりません。



SELECT (my_func(...)).field FROM ...




追加の括弧がないと、これは構文エラーを生成します。
 


「問い合わせでの複合型の使用」でより詳細に説明する通り、*という特別なフィールド名は「すべてのフィールド」を意味します。
 

複合型の変更





複合型の列への挿入と更新についての適切な構文の例をいくつか示します。
まず、列全体を挿入、更新する例です。



INSERT INTO mytab (complex_col) VALUES((1.1,2.2));

UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;




最初の例ではROWを省略し、2番目の例ではROWを使用しています。
どちらの方法でも行うことができます。
 


以下のようにして、複合型の列の個々のサブフィールドを更新することができます。



UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;




ここで、SET直後の列名の周りに括弧を記述する必要がないこと（実際には記述できないこと）、しかし、等号の右で同じ列を参照する場合には括弧が必要なことに注意してください。
 


また、INSERTの対象としてサブフィールドを指定することもできます。



INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1.1, 2.2);




列のサブフィールド全ての値を与えていなければ、残りのサブフィールドはNULL値になります。
 

問い合わせでの複合型の使用





問い合わせ内での複合型に関連して様々な特別な構文規則や動作があります。
これらの規則により便利なショートカットが提供されますが、その背後にある論理を知らないと混乱を招くかもしれません。
  


PostgreSQL™では、問い合わせでのテーブル名（または別名）の参照は、実質的にはテーブルの現在行の複合型の値への参照と同じになります。
例えば、前に示したinventory_itemというテーブルがあるとして、次のように記述することができます。


SELECT c FROM inventory_item c;



この問い合わせは単一の複合型の値の列を生成するので、出力は以下のようになります。


           c
------------------------
 ("fuzzy dice",42,1.99)
(1 row)



ただし、単純な名前はテーブル名より先に列名に対してマッチさせられるので、この例は問い合わせのテーブルにcという名前の列がないから動作したに過ぎないことに注意してください。
  


通常のtable_name.column_nameという列名修飾の構文は、フィールド選択をテーブルの現在行の複合型の値に対して適用していると考えることもできます。
（効率の問題から、実際にはそのような実装にはなっていません。）
  




SELECT c.* FROM inventory_item c;



上記のSQLについて、標準SQLではテーブルの内容が別々の列に展開されて、次のような結果になることを定めています。


    name    | supplier_id | price
------------+-------------+-------
 fuzzy dice |          42 |  1.99
(1 row)



つまりこれは、問い合わせが以下であったかのように動作するということです。


SELECT c.name, c.supplier_id, c.price FROM inventory_item c;



PostgreSQL™では、この展開の動作をすべての複合型の値の式に適用します。
ただし、前に説明したように、.*をつける値が単純なテーブル名でないときは、必ずそれを括弧で括る必要があります。
例えば、myfunc()が列a、b、cからなる複合型を返す関数だとすると、次の２つの問い合わせは同じ結果を返します。


SELECT (myfunc(x)).* FROM some_table;
SELECT (myfunc(x)).a, (myfunc(x)).b, (myfunc(x)).c FROM some_table;


  
ヒント


PostgreSQL™では、上の１番目の構文を２番目の構文に実際に変換することで列の展開を処理します。
従って、この例ではどちらの構文を使ってもmyfunc()は各行に対して３回ずつ呼び出されます。
それが高価な関数でそのような事態を避けたいなら、次のような問い合わせにすることもできます。


SELECT m.* FROM some_table, LATERAL myfunc(x) AS m;



LATERAL FROM項目の中に関数を置くと、関数は1行につき2度以上は呼び出されません。
m.*はまだm.a, m.b, m.cに展開されますが、その変数はFROM項目の出力の単なる参照です。
(LATERALキーワードはここでは省略可能ですが、関数がsome_tableからxを入手していることを明確にするために書きました。)
   



composite_value.*の構文は、それがSELECTの出力リスト、INSERT/UPDATE/DELETE/MERGEのRETURNINGリスト、VALUES句あるいは行コンストラクタの最上位に記述された場合、この種の列展開がされます。
それ以外の場合（これらの構文の内側に入れ子になっている場合を含みます）は、複合型の値に.*を付加しても、値は変わりません。
なぜなら、それは「すべての列」を意味するため、同じ複合型の値が繰り返し生成されるからです。
例えば、somefunc()が複合型の値の引数をとるとして、以下の問い合わせは同じです。



SELECT somefunc(c.*) FROM inventory_item c;
SELECT somefunc(c) FROM inventory_item c;




どちらの場合もinventory_itemの現在行が単一の複合型の値の引数として関数に渡されます。
このような場合に.*は何もしませんが、それをつけることにより、複合型の値であることを意図しているのが明確になるので、つけるのは良い習慣です。
特に、パーサがc.*のcを列名ではなくテーブル名あるいは別名を参照するものとみなす一方、.*がないとcがテーブル名なのか列名なのか明らかではなく、実際には、cという名前の列があれば列名としての解釈が優先されてしまいます。
  


これらの考え方を示す別の例をあげると、以下の３つの問い合わせは同じ意味になります。


SELECT * FROM inventory_item c ORDER BY c;
SELECT * FROM inventory_item c ORDER BY c.*;
SELECT * FROM inventory_item c ORDER BY ROW(c.*);



これらのORDER BY句はすべて行の複合型の値を指定しており、「複合型の比較」で説明される規則に従って行を並べ替えた結果になります。
ただし、inventory_itemにcという名前の列がある場合は、最初の例はその列によってのみ並べ替えられるので、他の２つとは異なるものになります。
以前に示したのと同じ列名であるとしたら、以下の問い合わせも上記のものと同じになります。


SELECT * FROM inventory_item c ORDER BY ROW(c.name, c.supplier_id, c.price);
SELECT * FROM inventory_item c ORDER BY (c.name, c.supplier_id, c.price);



（最後の例はキーワードROWを省略した行コンストラクタを使用しています。）
  


複合型の値に関連したもう一つの特別な構文的動作は、複合型の値のフィールドを取り出す時に関数的記法を使用できることです。
これを簡単に説明するなら、field(table)という記法とtable.fieldという記法は相互に交換可能です。
例えば、以下の問い合わせは同等です。



SELECT c.name FROM inventory_item c WHERE c.price > 1000;
SELECT name(c) FROM inventory_item c WHERE price(c) > 1000;




さらに、複合型の引数を１つだけとる関数があるとして、それをどちらの記法でも呼び出すことができます。
以下の問い合わせはすべて同等です。



SELECT somefunc(c) FROM inventory_item c;
SELECT somefunc(c.*) FROM inventory_item c;
SELECT c.somefunc FROM inventory_item c;


  


この関数的記法とフィールド記法の同等性により、複合型に対する関数を使用して「計算されたフィールド」を実装することができます。
   
   
   
   

上の最後の問い合わせを使用するアプリケーションは、somefuncがテーブルの真の列ではないことを直接には意識する必要がありません。
  
ヒント


このような動作になるため、複合型の引数を一つだけとる関数に、その複合型に含まれるフィールドと同じ名前をつけることは賢明ではありません。
曖昧なときには、フィールド名の構文が使われていれば、フィールド名の解釈が選ばれ、関数呼び出しの構文が使われていれば、関数が選ばれます。
しかしながら、11より前のPostgreSQL™のバージョンでは、呼び出し構文が関数呼び出しとしてしか扱えない場合を除いて、常にフィールド名の解釈を選んでいました。
関数としての解釈を強制する一つの方法は、関数名をスキーマ修飾する、つまりschema.func(compositevalue)とすることです。
   


複合型の入出力構文





複合型の外部テキスト表現は、個々のフィールド用のI/O変換規則に従って解釈される項目群と、複合構造を意味する修飾から構成されます。
この修飾は、値全体を括る括弧（(および)）と隣接した項目間のカンマ（,）で構成されます。
括弧の外側の空白文字は無視されますが、括弧の内部ではフィールド値の一部とみなされます。
ただし、空白に意味があるかないかについては、そのフィールドのデータ型用の入力変換規則に従います。
例えば、


'(  42)'



括弧内の空白文字は、そのフィールド型が整数の場合は無視されますが、テキストの場合は無視されません。
  


前述の通り、複合型の値を記述する時には、個々のフィールド値を二重引用符で括ることができます。
もし、フィールド値が複合型値用のパーサを混乱させる場合には、これは必須です。
具体的には、括弧、カンマ、二重引用符、バックスラッシュを含むフィールドの場合、二重引用符で括る必要があります。
引用符で括った複合型のフィールド値内に二重引用符やバックスラッシュが存在する場合、その前にバックスラッシュを付けてください
（また、引用符で括った複合型のフィールド値内に二重の引用符の組み合わせがあると、これは二重引用符を表す文字として解釈されます。
これは、SQLリテラル文字列内の単一引用符の規則と同じです）。
そのままでは複合型に対する構文として解釈されてしまう、全てのデータ文字を保護する他の方法として、引用符付けをせずにバックスラッシュによるエスケープを使用することができます。
  


完全な空フィールド値（カンマや括弧の間にまったく文字がないもの）はNULLを表します。
NULLではなく空文字列を値として記述するには "" と記述してください。
  


複合型の出力処理では、もしフィールド値が空文字列の場合や括弧、カンマ、二重引用符、バックスラッシュ、空白文字を含む場合には、そのフィールド値を二重引用符で括って出力します。
（空白文字に対するこの処理は重要ではありませんが、可読性を高めます。）
フィールド値内に埋め込まれた二重引用符やバックスラッシュは二重化されます。
  
注記


SQLコマンド内部に記述したものは、まず文字列リテラルとして、その後、複合型として解釈されることを覚えておいてください。
これは必要なバックスラッシュの数を倍にします（エスケープ文字列構文が使用されることを仮定しています）。
例えば、複合型の値の中に二重引用符とバックスラッシュを持つtextフィールドに挿入するには、以下のように書かなければなりません。


INSERT ... VALUES ('("\"\\")');



文字列リテラルプロセッサが第1レベルのバックスラッシュを取り除くため、複合型値のパーサに渡されるものは ("\"\\") のようになります。
そして、textデータ型の入力関数に渡される文字列は"\になります。
（もし、例えばbyteaといった、その入力関数もバックスラッシュを特別に扱うデータ型を扱っている場合、1つのバックスラッシュを複合型のフィールドに格納するためにコマンド内に8個ものバックスラッシュが必要になります。）
ドル引用符付け（「ドル記号で引用符付けされた文字列定数」を参照）を使用して、このバックスラッシュの二重化を防ぐことができます。
  

ヒント


SQLコマンド内に複合型の値を書く時、通常、ROW生成構文の方が複合型のリテラル構文より作業が簡単です。
ROWによる記述では、複合型のメンバ以外の記述方法と同じ方法で個々のフィールド値を記述することができます。
  



範囲型





範囲型は、ある要素型(その範囲の派生元型と呼ばれます)の値の範囲を表わすデータ型です。
例えば、timestampの範囲は、会議室が予約されている時間の範囲を表すのに使うことができるでしょう。
この場合、データ型はtsrange(「timestamp range」の短縮)で、timestampが派生元型となります。
派生元型には完全な順序がなければなりません。これは、要素の値が範囲の前、中間、後のどこにあるのか明確に定義されている必要があるからです。
 


範囲型は、一つの範囲内の多くの要素の値を表現できる、また、範囲の重なりなどの概念が明確に表現できる、などの理由で便利です。
スケジューリングのために時刻と日付の範囲を使うのがもっとも簡単な例ですが、価格の範囲、機器による測定値の範囲などといったものにも利用できるでしょう。
 


すべての範囲型には、対応する多重範囲型があります。
多重範囲は、連続していない、空でない、NULLでない範囲の順序付きリストです。
ほとんどの範囲演算子は多重範囲でも機能し、いくつかの独自の機能を持っています。
 
組み込みの範囲型と多重範囲型





PostgreSQLには、以下の組み込みの範囲型があります。
  
	

int4range—integerの範囲、int4multirange—対応する多重範囲
      

	

int8range—bigintの範囲、int8multirange—対応する多重範囲
      

	

numrange—numericの範囲、nummultirange—対応する多重範囲
      

	

tsrange—timestamp without time zoneの範囲、tsmultirange—対応する多重範囲
      

	

tstzrange—timestamp with time zoneの範囲、tstzmultirange—対応する多重範囲
      

	

daterange—dateの範囲、datemultirange—対応する多重範囲
      





この他にも、独自の範囲型を定義することができます。詳しくはCREATE TYPE(7)を参照してください。
 

例






CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
    (1108, '[2010-01-01 14:30, 2010-01-01 15:30)');


-- 含有
SELECT int4range(10, 20) @> 3;


-- 重なり
SELECT numrange(11.1, 22.2) && numrange(20.0, 30.0);


-- 上限の取得
SELECT upper(int8range(15, 25));


-- 共通部分の計算
SELECT int4range(10, 20) * int4range(15, 25);


-- 範囲は空か
SELECT isempty(numrange(1, 5));




範囲型についての演算子と関数の完全なリストについては、表9.58「範囲演算子」と表9.60「範囲関数」を参照してください。
  

閉じた境界と開いた境界





空でない範囲には必ず2つの境界、つまり下限値と上限値があります。
これらの値の間にある値はすべてその範囲に含まれます。
閉じた境界とは、その境界値自体が範囲に含まれることを意味し、開いた境界とは、その境界値が範囲に含まれないことを意味します。
  


範囲を文字列の形式で表すとき、閉じた下限値は「[」で、開いた下限値は「(」で表します。
同様に、閉じた上限値は「]」で、開いた上限値は「)」で表します。
(詳しくは 「範囲の入出力」を参照してください。)
  


関数lower_incおよびupper_incはそれぞれ、範囲の下限値と上限値が閉じているかどうかを検査します。
  

無限の(境界のない)範囲





例えば、(,3]のように、範囲の下限値は省略することができ、このとき、上限値より小さいすべての値はその範囲に含まれることになります。
同じように、範囲の上限値も省略することができ、このときは、下限値より大きいすべての値がその範囲に含まれることになります。
下限値と上限値が両方とも省略されたときは、その要素型のすべての値がその範囲に含まれるとみなされます。
省略された閉じた境界は自動的に開いた境界に変換されます。例えば、[,]は(,)に変換されます。
省略された値を+/-無限大と考えることができますが、特殊な範囲型の値であり、いかなる範囲の要素型の+/-無限大の値も超えていると考えられます。
  


「無限大」の概念がある要素型では、それを明示的な境界値として使用できます。
例えば、timestampの範囲で[today,infinity)は特殊なtimestamp値、infinityを含みませんが、一方、[today,infinity]は[today,)や[today,]と同じようにinfinityを含みます。
  


関数lower_infおよびupper_infはそれぞれ範囲の下限値と上限値が無限大かどうかを検査します。
  

範囲の入出力





範囲値の入力は、以下の形式の一つに従わなければなりません。


(lower-bound,upper-bound)
(lower-bound,upper-bound]
[lower-bound,upper-bound)
[lower-bound,upper-bound]
empty



前にも述べたとおり、丸括弧と大括弧は下限値と上限値が開いているか閉じているかを表します。
最後の形式がemptyであることに注意してください。これは空の範囲(範囲に含まれる値が1つもない)を表します。
  


lower-boundは、その派生元型の有効な入力値となる文字列か、あるいは省略して下限値がないことを指定するかのいずれかです。
同様に、upper-boundは、その派生元型の有効な入力値となる文字列か、あるいは省略して上限値がないことを指定するかのいずれかです。
  


境界値は"(二重引用符)で括ることができます。
これは特に境界値が丸括弧、大括弧、カンマ、二重引用符、あるいはバックスラッシュを含んでいる場合に必要となります。そうしなければ、これらの文字は範囲の構文の一部とみなされてしまうからです。
二重引用符あるいはバックスラッシュを引用符で括られた境界値の中に入れるには、その直前にバックスラッシュを入れてください。
(また、SQLの文字列リテラルと同じように、二重引用符で括られた境界値の中で二重引用符を2つ続けることで1つの二重引用符を表すこともできます。)
あるいは、引用符で括る代わりに、範囲の構文の一部とみなされるすべての文字をバックスラッシュでエスケープする、ということもできます。
なお、境界値として空文字列を指定するには""と書いてください。何も書かないと、境界値が無限大であることになってしまいます。
  


境界値の前後に空白文字を入れることができますが、括弧内にある空白文字はすべて下限値あるいは上限値の一部とみなされます。
(このことは、要素型によっては重要かもしれませんし、重要でないかもしれません。)
  
注記


これらの規則は、複合型のリテラルにフィールド値を記述する時と非常によく似ています。
詳細な解説は「複合型の入出力構文」を参照してください。
   



  例：



-- 3を含み、7を含まない。その間の数はすべて含まれる
SELECT '[3,7)'::int4range;


-- 3も7も含まないが、その間の数はすべて含まれる
SELECT '(3,7)'::int4range;


-- 1つの値、4だけを含む
SELECT '[4,4]'::int4range;


-- 含まれる点は何もない('empty'に正規化される)
SELECT '[4,4)'::int4range;


  


多重範囲の入力は、カンマで区切られた0個以上の有効範囲を含む中カッコ({および})です。
カッコとカンマの前後に空白を使用できます。
これは配列構文を連想させることを意図したものですが、多重範囲ははるかに単純で、次元が1つしかなく、内容を引用符で囲む必要はありません。
（ただし、範囲の境界は前述のように引用符で囲むことができます。）
  


例えば、


SELECT '{}'::int4multirange;
SELECT '{[3,7)}'::int4multirange;
SELECT '{[3,7), [8,9)}'::int4multirange;


  

範囲と多重範囲のコンストラクタ





範囲型には、その範囲型と同じ名前のコンストラクタ関数があります。
コンストラクタ関数を使うと、境界値の指定で余計な引用を使わずに済むので、リテラルの定数で範囲を記述するよりも便利なことが多いでしょう。
コンストラクタ関数は2つ、または3つの引数をとります。
引数が2つの形式では、（閉じた下限値、開いた上限値）という標準的な形式の範囲を生成します。引数が3つの形式では、3番目の引数で指定した形式の境界の範囲を生成します。
3番目の引数は、以下の文字列のいずれかでなければなりません。
「()」、「(]」、「[)」、または「[]」。
例えば、




-- 完全な形式では、下限値、上限値、そして境界が閉じているか開いているかを
-- 示す文字列の引数を指定する
SELECT numrange(1.0, 14.0, '(]');


-- 3番目の引数が省略されると、'[)'を指定したのと同じになる
SELECT numrange(1.0, 14.0);


-- ここでは'(]'を指定しているが、int8rangeは離散的な範囲型(下記参照)なので
-- 正規化された形式に変換されて表示される
SELECT int8range(1, 14, '(]');


-- 境界値にNULLを指定すると、範囲の上限、あるいは下限がないことになる
SELECT numrange(NULL, 2.2);


  


各範囲型には、多重範囲型と同じ名前の多重範囲コンストラクタもあります。
コンストラクタ関数は、すべて適切な型の範囲である0個以上の引数を取ります。
例えば、



SELECT nummultirange();
SELECT nummultirange(numrange(1.0, 14.0));
SELECT nummultirange(numrange(1.0, 14.0), numrange(20.0, 25.0));


  

離散的な範囲型





離散的な範囲とは、integerやdateのように明確に定義された「ステップ」のある要素型の範囲のことです。
このような型において、2つの要素の間に有効な値が1つもないとき、その2つの要素は隣接している、と言います。
これは連続的な範囲と対照的です。連続的な範囲では、任意の2つの値について、それらの間に別の値を見つけることが、いつでも(あるいは、ほとんどいつでも)可能です。
例えば、numeric型やtimestamp型の範囲は連続的です。
(timestampの精度は限界があるので、理論的には離散的として取り扱うことも可能ですが、ステップの大きさについて関心がないのが普通ですから、連続的であると考える方が良いでしょう。)
  


離散的な範囲型に関するもう1つの考え方は、各要素の値について、「次」あるいは「前」の値というのものが明確に考えられるか、ということです。
これを知っていれば、範囲の境界の閉じた表現、あるいは開いた表現について、その値の次、あるいは前の値を使って、表現を変換することができます。
例えば、整数の範囲型[4,8]と(3,9)は同じ値の集合を意味しますが、これがnumericの範囲型であったならそうではありません。
  


離散的な範囲型はその要素型で使いたいステップのサイズを認識する正規化関数を持つべきです。
正規化関数は同等な値の範囲型を、同一の表現に、特に、閉じた境界、開いた境界について一定の形式に変換します。
正規化関数が指定されない場合、異なる形式の範囲は必ず等しくないものとして扱われます。これは例え、それらが現実的に同じ値の集合であったとしても、等しくないとされます。
  


組み込みの範囲型であるint4range、int8range、およびdaterangeはいずれも閉じた下限値と開いた上限値、つまり[)の正規化形式を使います。
しかし、ユーザ定義の範囲型はこれとは別の方式を使うことができます。
  

新しい範囲型の定義





独自の範囲型を定義することもできます。
もっともありそうな理由は、組み込みの範囲型では、その派生元型についての範囲型が提供されていない、ということでしょう。
例えば、float8を派生元型とする新しい範囲型を定義するには次のようにします。



CREATE TYPE floatrange AS RANGE (
    subtype = float8,
    subtype_diff = float8mi
);

SELECT '[1.234, 5.678]'::floatrange;




float8には意味のある「ステップ」がないので、この例では正規化関数を定義していません。
  


独自の範囲を定義すると、対応する多重範囲型が自動的に取得されます。
  


独自の範囲型を定義すると、派生元型とは異なるB-tree演算子クラスや照合順を指定でき、どの値が指定の範囲に入るかを決定するソート順を変更することもできます。
  


派生元型が、連続的ではなく離散的な値を持つと考えられる場合は、CREATE TYPEコマンドでcanonical(正規化)関数を指定する必要があります。
正規化関数は、範囲の値を入力として受け取り、それと同等な範囲の値を返さなければなりません。戻り値は、入力値とは異なる境界値と形式になっているかもしれません。
同じ値の集合を表す範囲、例えば、整数の範囲である[1, 7]と[1, 8)の正規化出力は、同一である必要があります。
異なる形式の同等な値が、いつでも同じ形式の同じ値に変換されるのであれば、正規化出力の形式は何であってもかまいません。
正規化関数は、閉じた境界、開いた境界の形式を調整するだけではありません。派生元型が格納できるよりも大きなサイズのステップを使いたい場合は境界値を丸めることもあります。
例えばtimestampの範囲型をステップのサイズを1時間として定義することができます。このとき、正規化関数は1時間の倍数になっていない境界値を丸める必要があります。あるいは、その代わりにエラーを投げることもできます。
  


また、GiSTまたはSP-GiSTインデックスと一緒に使われる範囲型は、派生元型の差分、つまりsubtype_diff関数を定義すべきです。
(そのインデックスはsubtype_diffがなくても機能しますが、差分関数が提供されている時に比べると、あまり効果的でないことが多いでしょう。)
派生元型の差分関数は、2つの派生元型の入力値をとり、その差分(つまり、X引くY)をfloat8型の値として返します。
上の例では、通常のfloat8のマイナス演算子が呼び出す関数float8miを使うことができますが、それ以外の派生元型では何らかの型変換が必要となるでしょう。
差分をいかにして数字で表現するかについて、創造的な発想も必要になるかもしれません。
可能な限りにおいて、subtype_diff関数は、選択した演算子クラスと照合順が示唆するソート順と矛盾しないようにすべき、つまり、ソート順で、1番目の引数が2番目の引数より上に来る場合は、必ず差分関数の結果は正になるべきです。
  


subtype_diff関数の単純化されすぎていない例を以下に示します。
  

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
'SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
    subtype = time,
    subtype_diff = time_subtype_diff
);

SELECT '[11:10, 23:00]'::timerange;



範囲型の作成について、より詳細な情報はCREATE TYPE(7)を参照してください。
  

インデックス





範囲型のテーブル列にGiSTおよびSP-GiSTインデックスを作成することができます。
GiSTインデックスは、多重範囲型のテーブル列に対しても作成できます。
例えば、GiSTインデックスを作成するには、


CREATE INDEX reservation_idx ON reservation USING GIST (during);



範囲型に関するGiSTあるいはSP-GiSTインデックスがあると、以下の範囲演算子を含む検索を高速に実行できます。
=、&&、<@、@>、<<、>>、-|-、&<、および&>。
多重範囲型に関するGiSTインデックスは、同じ多重範囲演算子のセットを含む問い合わせを高速にできます。
範囲型に関するGiSTインデックスと多重範囲型に関するGiSTインデックスは、以下の範囲型から多重範囲型へ、および多重範囲型から範囲型への演算子を含む問い合わせを高速にできます。
&&、<@、@>、<<、>>、-|-、&<、および&>。
より詳細な情報は表9.58「範囲演算子」を参照してください。
  


さらに、範囲型のテーブル列にB-treeおよびハッシュインデックスを作ることもできます。
これらのインデックスについては、基本的に、等値演算のみが有効な範囲の演算です。
範囲の値についてB-treeのソート順が、<および>演算子について定義されていますが、現実にはこの順序はあまり意味がなく、有効ではありません。
範囲型のB-treeとハッシュのサポートは実際にインデックスを作ることよりも、むしろ、検索時に内部的にソートやハッシュをできるようにするのが主な目的です。
  

範囲の制約





UNIQUEはスカラ値には自然な制約ですが、範囲型には通常は適当ではありません。
代わりに排他(exclude)制約を使うことの方が適切なことが多いです（CREATE TABLE ... CONSTRAINT ... EXCLUDEを参照してください）。
排他制約により、範囲型について「重なりがない」などといった制約を指定することができます。
例えば、



CREATE TABLE reservation (
    during tsrange,
    EXCLUDE USING GIST (during WITH &&)
);




この制約は、テーブル上で重なりのある値が同時に存在することを防ぎます。



INSERT INTO reservation VALUES
    ('[2010-01-01 11:30, 2010-01-01 15:00)');
INSERT 0 1

INSERT INTO reservation VALUES
    ('[2010-01-01 14:45, 2010-01-01 15:45)');
ERROR:  conflicting key value violates exclusion constraint "reservation_during_excl"
DETAIL:  Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00")).


  


btree_gistの拡張を使って通常のスカラのデータ型について排他制約を定義することができます。
これをさらに範囲の排他と組み合わせることで大きな柔軟性を得ることができます。
例えば、btree_gistをインストールした時、次の制約は範囲の重なりについて、会議室の部屋番号も同じ時にのみ拒絶します。



CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (
    room text,
    during tsrange,
    EXCLUDE USING GIST (room WITH =, during WITH &&)
);

INSERT INTO room_reservation VALUES
    ('123A', '[2010-01-01 14:00, 2010-01-01 15:00)');
INSERT 0 1

INSERT INTO room_reservation VALUES
    ('123A', '[2010-01-01 14:30, 2010-01-01 15:30)');
ERROR:  conflicting key value violates exclusion constraint "room_reservation_room_during_excl"
DETAIL:  Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00")) conflicts
with existing key (room, during)=(123A, ["2010-01-01 14:00:00","2010-01-01 15:00:00")).

INSERT INTO room_reservation VALUES
    ('123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
INSERT 0 1


  


ドメイン型





ドメインは他の基となる型を元にしたユーザ定義のデータ型です。
オプションとして基となる型が許可する型のサブセットの有効な値を制限する制約を持つことができます。
他は基となる型のように振る舞います。—例えば、基となる型に適用できる演算子や関数はドメイン型でも動作します。
ビルトインもしくはユーザが定義した基本型や列挙型、配列型、複合化型、範囲型もしくは他のドメインが基となる型になれます。
   


例として正の整数のみを許容する整数型のドメインを作成します。


CREATE DOMAIN posint AS integer CHECK (VALUE > 0);
CREATE TABLE mytable (id posint);
INSERT INTO mytable VALUES(1);   -- works
INSERT INTO mytable VALUES(-1);  -- fails


   


基となる型の演算子や関数にドメインの値が適用されると、ドメインは自動的に基となる型にダウンキャストされます。
このため、例えば、mytable.id - 1の結果はposintではなく、integer型として考えられます。
ドメイン制約の再チェックが発生するのでposint型にキャストするために(mytable.id - 1)::posintと記述することができます。
このケースでは、式にidの値として1が与えられると結果はエラーになるでしょう。
明確なキャストを書かずにドメイン型の変数やフィールドに基となる型の値を代入することが許容されていますが、ドメインの制約はチェックされます。
   


より詳細な情報はCREATE DOMAIN(7)を確認ください。
   

オブジェクト識別子データ型





オブジェクト識別子（OID）はPostgreSQL™の内部で様々なシステムテーブルの主キーとして使用されます。
oidデータ型はオブジェクト識別子を表します。
oidには別名型もいくつかあります。
reg何とかとそれぞれ名付けられたoidの様々なエイリアスの型は表8.26「オブジェクト識別子データ型」からその概要を見ることができます。
   


oidデータ型は現在、符号なし4バイト整数として実装されています。
このため、大きなデータベース内でデータベース単位での一意性や個別の大きなテーブルで一意性を提供するためには十分な大きさではありません。
   


oidデータ型自体は、比較以外の演算はほとんど行いません。
しかし、整数としてキャストすることもでき、その場合標準の整数演算子を使用して操作することができます。
（これを行うと、符号付きと符号なしの間で混乱が起きかねないことに注意してください。）
   


OIDの別名データ型は、専用の入出力ルーチン以外には演算を行いません。
これらのルーチンでは、oid型が使用するような未加工の数値ではなく、システムオブジェクト用のシンボル名を受け入れたり表示したりできます。
別名データ型により、オブジェクトのOID値の検索が簡単になります。
例えば、mytableテーブルに関連したpg_attribute行を確認するには、以下のように記述することができます。


SELECT * FROM pg_attribute WHERE attrelid = 'mytable'::regclass;



次のように記述する必要はありません。


SELECT * FROM pg_attribute
  WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable');



後者もそう悪くないように見えますが、これは過度に単純化されています。
異なるスキーマにmytableテーブルが複数ある場合には、正しいOIDを選択するために、より複雑な副SELECTが必要となります。
regclass入力変換ではスキーマパスの設定に従ってテーブル検索を扱いますので、自動的に「正しい検索」を行います。
同様に、テーブルのOIDをregclassにキャストすることは、数値のOIDのシンボル表示に便利です。
   
表8.26 オブジェクト識別子データ型
	名前	参照	説明	値の例
	oid	すべて	数値オブジェクト識別子	564182
	regclass	pg_class	リレーション名	pg_type
	regcollation	pg_collation	照合名	"POSIX"
	regconfig	pg_ts_config	テキスト検索設定	english
	regdictionary	pg_ts_dict	テキスト検索辞書	simple
	regnamespace	pg_namespace	名前空間名	pg_catalog
	regoper	pg_operator	演算子名	+
	regoperator	pg_operator	引数の型を持つ演算子	*(integer,​integer)
         or -(NONE,​integer)
	regproc	pg_proc	関数名	sum
	regprocedure	pg_proc	引数の型を持つ関数	sum(int4)
	regrole	pg_authid	ロール名	smithee
	regtype	pg_type	データ型の名前	integer





名前空間でグループ化されたオブジェクトのOID別名型はすべてスキーマ修飾名を受け入れ、出力時にスキーマ修飾名を表示します。
ただし、現在の検索パスでオブジェクトが見つけられなければ、修飾せずに出力します。
例えば、myschema.mytableはregclassという入力を(そのようなテーブルがあれば)許容します。
この値の出力は現在の検索パス次第でmyschema.mytableもしくは単にmytableと出力されるでしょう。
regprocとregoper別名型は、一意な（オーバーロードしていない）名前のみを入力として受け入れるため、これらの使用には限度があります。
ほとんどの場合、regprocedureまたはregoperatorを使用するのが適切です。
regoperatorの場合、単項演算子は未使用のオペランドをNONEと記述することによって指定されます。
   


これらの型の入力を許容する関数はトークンの間に空白を入れることを許容し、二重引用符で囲まれたものを除き大文字は小文字に折りたたみます。
これはオブジェクト名がSQLで記述される方法と同じような文法のルールとするための動作です。
逆に出力する関数は有効なSQL識別子となるように必要に応じて二重引用符を使用します。
例えば、Foo(Fが大文字)という２つの整数型の引数を持つ関数のOIDは' "Foo" ( int, integer ) '::regprocedureとして入力できます。
出力は"Foo"(integer,integer)のようになります。
関数名も引数の型名も共にスキーマ修飾することもできます。
   


PostgreSQL™に組み込まれている多くの関数はテーブルやそれ以外の種類のデータベースオブジェクトのOIDを受け入れ、利便性のために regclass(もしくは適切なOIDのエイリアスである型)を取るものとして定義されています。
これはオブジェクトのOIDをわざわざ手動で調べる必要が無く、単にその名前を文字列として入力すれば良いことを意味します。
例えば、 nextval(regclass)関数はシーケンスリレーションのOIDを引数に取りますが、このように呼び出すことができます。



nextval('foo')              シーケンスfooへの操作
nextval('FOO')              上と同じ
nextval('"Foo"')            シーケンスFooへの操作
nextval('myschema.foo')     myschema.fooへの操作
nextval('"myschema".foo')   上と同じ
nextval('foo')              fooのサーチパスの検索


   
注記


そのような関数の引数を装飾のない文字列として記載した場合、それはregclass型(もしくは適切な型)の定数になります。
これは実際には単にOIDなので、スキーマの再割り当てなどで後からリネームされたとしても最初に識別されたオブジェクトを追跡します。
この「早期バインディング(early binding)」の動作は列のデフォルトを参照する列やビューにとっては望ましい動作です。
しかし、オブジェクトの参照を実行時に行う「遅延バインディング(late binding)」が望ましいこともあります。
遅延バインディングの動作とするためには、定数はregclassの代わりにtextの定数として配置してください。


nextval('foo'::text)      foo is looked up at runtime



to_regclass()関数とその兄弟は実行時に参照させるために使用することもできます。
詳細は表9.76「システムカタログ情報関数」を参照ください。
    



regclassのもう一つの実用的な使用例はそのようなOIDを直接提供しないinformation_schemaビューにリストされたテーブルのOIDを参照することです。
例えば、テーブルのOIDを必要とするpg_relation_size()関数を呼び出したい場合を考えます。
上記のルールを考慮すると、正しい方法は以下のとおりです。


SELECT table_schema, table_name,
       pg_relation_size((quote_ident(table_schema) || '.' ||
                         quote_ident(table_name))::regclass)
FROM information_schema.tables
WHERE ...



quote_ident()関数は必要に応じて二重引用符をつけます。
より簡単そうに思われる


SELECT pg_relation_size(table_name)
FROM information_schema.tables
WHERE ...



という方法は推奨されません。
テーブルがサーチパスの範囲外にあったり、引用符付けを必要とする名前であった場合に失敗するためです。
   


ほとんどのOID別名型のさらなる属性は依存性の作成です。
これらの型の1つの定数が格納された式内に存在する場合（列のデフォルト式やビューなど）、参照されるオブジェクトへの依存性を生成します。
例えば、列がnextval('my_seq'::regclass)というデフォルト式を持つ場合、PostgreSQL™はデフォルト式がmy_seqシーケンスに依存することを理解します。
システムは先にこのデフォルト式が削除されない限り、このシーケンスを削除させません。
代わりにnextval('my_seq'::text)を使用しても依存性は作成されません。
(このプロパティの例外はregroleです。
ストアド式では、この型の定数は使用できません。)
   


システムが使用するもう1つの識別子の型はxid、すなわちトランザクション（略してxact）識別子です。
これはxminシステム列およびxmaxシステム列のデータ型です。
トランザクション識別子は32ビット長です。
文脈によっては64ビットに変形したxid8が使われます。
xidの値と違い xid8の値は厳密に単調増加し、データベースクラスタのライフタイムの中で再利用されることはありません。
詳細は「トランザクションと識別子」を参照してください。
   


システムが使用する3つ目の識別子はcid、すなわちコマンド識別子です。
これはcminシステム列およびcmaxシステム列のデータ型です。
コマンド識別子も32ビット長です。
   


システムが使用する最後の識別子はtid、すなわちタプル識別子（行識別子）です。
これはctidシステム列のデータ型です。
タプルIDはテーブル内の行の物理的位置を識別するための組（ブロック番号、ブロック内のタプルインデックス）です。
   


（システム列の詳細は「システム列」で説明します。）
   

pg_lsn型





pg_lsn型はWALの位置を示すLSN(Log Sequence Number)データを格納するために使用します。
この型はXLogRecPtrを示すPostgreSQL™の内部的なシステムの型です。
   


内部的にはLSNは64bit整数型で、先行書き込みログ（WAL）ストリームのバイト位置を表現します。
LSNは例えば、16/B374D848のように２つのスラッシュで分けられた8桁の16進数で表示されます。
pg_lsnは例えば、=や>などの標準の比較演算子をサポートしています。
2つのLSNは-演算子を使い引き算することも可能で、結果はこれらの2つの先行書き込みログ（WAL）の位置のbytes差分です。
また、バイト数はそれぞれ+(pg_lsn,numeric)や-(pg_lsn,numeric)演算子を使って加算、減算ができます。
計算されたLSNはpg_lsn型の範囲、つまり、0/0とFFFFFFFF/FFFFFFFFの間にあるべきであることに注意してください。
   

疑似データ型





PostgreSQL™型システムには、疑似データ型と総称される特殊用途のエントリが多数含まれます。
疑似データ型は列データ型としては使用できませんが、関数の引数や結果データ型を宣言するために使用できます。
これらの使用可能な疑似データ型は、ある関数の振舞いが、特定のSQLデータ型の値を単に取得したり返したりする操作に対応していない場合に便利です。
表8.27「疑似データ型」に既存の疑似データ型を列挙します。
   
表8.27 疑似データ型
	名前	説明
	any	関数がどのような入力データ型でも受け入れることを示します。
	anyelement	関数がどのような入力データ型でも受け入れることを示します(「多様型」を参照)。
	anyarray	関数がどのような配列データ型でも受け入れることを示します（「多様型」を参照してください）。
	anynonarray	関数がどのような非配列データ型でも受け入れることを示します（「多様型」を参照してください）。
	anyenum	関数が何らかの列挙データ型を受け入れることを示します（「多様型」および「列挙型」を参照してください）。
	anyrange	関数が範囲データ型を受け入れることを示します(「多様型」 と 「範囲型」を参照してください)。
	anymultirange	関数が多重範囲型を受け入れることを示します(「多様型」と「範囲型」を参照してください)。
	anycompatible	関数が複数の引数を一般的なマルチデータ型に自動的に昇格させるどのようなデータ型でも受け入れることを示します(「多様型」)を参照してください)。
	anycompatiblearray	関数が複数の引数を一般的なデータ型に自動的に昇格させるどのような配列のデータ型でも受け入れることを示します(「多様型」を参照してください)。
	anycompatiblenonarray	関数が複数の引数を一般的なデータ型に自動的に昇格させるどのような非配列のデータ型でも受け入れることを示します(「多様型」を参照ください)。 
	anycompatiblerange	関数が複数の引数を一般的なデータ型に自動的に昇格させるどのような範囲データ型でも受け入れることを示します(「多様型」と「範囲型」を参照ください)。  
	anycompatiblemultirange	関数が複数の引数を一般的なデータ型に自動的に昇格するすべての多重範囲データ型を受け入れることを示します。(「多様型」と「範囲型」を参照ください)。
	cstring	関数がヌル終端のC文字列を受け入れる、もしくは返すことを示します。
	internal	関数がサーバ内部用データ型を受け入れる、もしくは返すことを示します。
        
	language_handler	
手続き言語呼び出しハンドラはlanguage_handlerを返すものとして宣言されます。
        
	fdw_handler	
外部データラッパーハンドラはfdw_handlerを返すものとして宣言されます。
        
	table_am_handler	テーブルアクセスメソッドのハンドラはtable_am_handlerを返すものとして宣言されます。
	index_am_handler	インデックスアクセスメソッドのハンドラは index_am_handlerを返すものとして宣言されます。
	tsm_handler	テーブルサンプリング方式のハンドラはtsm_handlerを返すものとして宣言されます。
	record	未指定の行型の引数を取る、あるいは返す関数を指定します。
	trigger	トリガ関数はtriggerを返すものとして宣言されます。
        
	event_trigger	イベントトリガ関数はevent_triggerを返すものとして宣言されます。
	pg_ddl_command	イベントトリガが使用できるDDLコマンドの表現を指定します。
	void	関数が値を返さないことを示します。
        
	unknown	未解決の型を特定します。例えば、修飾されていない文字列リテラルのような型です。





C言語で作成された関数（それが組み込みか動的にロードされるかに関係なく）は、これらの疑似データ型のどれでも受け入れたり返したりするように宣言することができます。
引数型として疑似データ型が使用されても関数が安全に機能するように、関数の作成時に気を付ける必要があります。
   


手続き型言語で作成された関数では、実装する言語によって許可された疑似データ型のみを使用できます。
現在、ほとんどの手続き型言語では疑似データ型を引数型として使用することが原則として禁止されており、結果型としてのvoidとrecord（および関数がトリガまたはイベントトリガとして使用される場合のtriggerまたはevent_trigger）のみが許可されています。
また、一部の関数は、多様な疑似型を使用する多様関数をサポートしています。
これについては、前述の「多様型」で詳細に説明されています。
   


internal疑似データ型は、データベースシステムによって内部的にのみ呼び出される関数を宣言する場合に使用され、SQL問い合わせでの直接呼び出しには使用できません。
関数に少なくとも1つのinternal型の引数があると、これをSQLから呼び出すことはできません。
この制限の影響からデータ型の安全性を保持するためには、次のコーディング規則に従うことが重要です。
internal引数が少なくとも1つある場合を除き、internalを返すと宣言される関数を作成すべきではありません。
   

第9章 関数と演算子





PostgreSQL™は組み込みデータ型に対して数多くの関数と演算子を用意しています。
この章ではそのほとんどについて説明しますが、特殊用途の関数はマニュアルの関連する節に記載しています。
また、パートV「サーバプログラミング」で解説しているように、ユーザは独自の関数と演算子を定義することもできます。
psqlの\dfコマンドと\doコマンドはそれぞれ全ての使用可能な関数と演算子をリストするのに使用されます。
  


この章全体で関数と演算子の引数と戻り値のデータ型の記述は以下のようになります。


repeat ( text, integer ) text



つまり関数repeatは、一つのテキスト型と一つの整数型の引数を取り、テキスト型の結果を返します。
また、右矢印を使ってある例の結果を示します。ですから、以下のようになります。


repeat('Pg', 4) PgPgPgPg


  


もし移植性が気になるのであれば、最も基本的な算術および比較演算子と、いくつかの明示的に印を付けた関数を除き、本章で説明する大多数の関数と演算子は、標準SQLで規定されていない点に注意してください。
この拡張機能のいくつかは、他のSQLデータベース管理システムにも備わっており、多くの場合この機能には各種実装間で互換性と整合性があります。
  
論理演算子





    通常の論理演算子が使用できます。

    
    

    
    

    
    

    
    

    
    

    
    



boolean AND boolean boolean
boolean OR boolean boolean
NOT boolean boolean




SQLはtrue、false、そして「不明」を意味するnullの3値の論理システムを使用します。
以下の真理値表を参照してください。

    
	a	b	a AND b	a OR b
	TRUE	TRUE	TRUE	TRUE
	TRUE	FALSE	FALSE	TRUE
	TRUE	NULL	NULL	TRUE
	FALSE	FALSE	FALSE	FALSE
	FALSE	NULL	FALSE	NULL
	NULL	NULL	NULL	NULL




    
	a	NOT a
	TRUE	FALSE
	FALSE	TRUE
	NULL	NULL



   


AND演算子とOR演算子は可換です。
つまり、結果に影響を与えることなく左右のオペランドを交換することができます。
（しかし、左オペランドが右オペランドよりも先に評価されるという保証はありません。副式の評価順についてのより詳細は「式の評価規則」を参照してください。）
   


比較関数および演算子





表9.1「比較演算子」に示すように、通常の比較演算子が使用可能です。
   
表9.1 比較演算子
	演算子	説明
	
        datatype < datatype
        boolean
       	小なり
	
        datatype > datatype
        boolean
       	大なり
	
        datatype <= datatype
        boolean
       	等しいかそれ以下
	
        datatype >= datatype
        boolean
       	等しいかそれ以上
	
        datatype = datatype
        boolean
       	等しい
	
        datatype <> datatype
        boolean
       	等しくない
	
        datatype != datatype
        boolean
       	等しくない



注記


<>が標準SQLにおける「等しくない」の記法です。
!=はその別名で、構文解析のごく初期に<>に変換されます。
ですから!=演算子と<>演算子に異なる処理を行わせる実装はできません。
    



これらの比較演算子は、数値、文字列、日付、時刻データ型などの自然な順序付けを持つすべての組み込みデータ型に用意されています。
更に、要素となるデータ型が比較可能なら、配列、複合データ型、範囲は比較可能です。
   


通常関連性のあるデータ型も比較することができます。
たとえばinteger >bigintも可能です。
ある場合にはこれらの比較は「型をまたがる」比較演算子で直接実装されています。そうした演算子がなければ、パーサはより一般的ではない型をより一般的な型に変換して後者の比較演算子に適用します。
   


上で示したように、全ての比較演算子は二項演算子で、boolean型の値を返します。
ですから1 < 2 < 3のような式は（ブール値と3を比較する<演算子がないので）無効です。
下で示すBETWEEN述語を使って範囲検査を行ってください。
   


表9.2「比較述語」に示すように、比較述語がいくつかあります。
これらは演算子と同様に振る舞いますが、標準SQLによって強制される特別の構文があります。
   
表9.2 比較述語
	

述語
       

       

説明
       

       

例
       

	
        datatype BETWEEN datatype AND datatype
        boolean
       

       

間にある（範囲の端点を含む）。
       

       
        2 BETWEEN 1 AND 3
        t
       

       
        2 BETWEEN 3 AND 1
        f
       

	
        datatype NOT BETWEEN datatype AND datatype
        boolean
       

       

間にない（BETWEENの否定）。
       

       
        2 NOT BETWEEN 1 AND 3
        f
       

	
        datatype BETWEEN SYMMETRIC datatype AND datatype
        boolean
       

       

2つの端点値をソートした上で、間にある。
       

       
        2 BETWEEN SYMMETRIC 3 AND 1
        t
       

	
        datatype NOT BETWEEN SYMMETRIC datatype AND datatype
        boolean
       

       

2つの端点値をソートした上で、間にない。
       

       
        2 NOT BETWEEN SYMMETRIC 3 AND 1
        f
       

	
        datatype IS DISTINCT FROM datatype
        boolean
       

       

NULLを比較可能な値とした上で、等しくない。
       

       
        1 IS DISTINCT FROM NULL

        t (NULLではなく)
       

       
        NULL IS DISTINCT FROM NULL

        f (NULLではなく)
       

	
        datatype IS NOT DISTINCT FROM datatype
        boolean
       

       

NULLを比較可能な値とした上で、等しい。
       

       
        1 IS NOT DISTINCT FROM NULL

        f (NULLではなく)
       

       
        NULL IS NOT DISTINCT FROM NULL

        t (NULLではなく)
       

	
        datatype IS NULL
        boolean
       

       

値がNULLかどうか検査する。
       

       
        1.5 IS NULL
        f
       

	
        datatype IS NOT NULL
        boolean
       

       

値がNULLではないかどうか検査する。
       

       
        'null' IS NOT NULL
        t
       

	
        datatype ISNULL
        boolean
       

       

値がNULLかどうか検査する。（非標準構文）
       

	
        datatype NOTNULL
        boolean
       

       

値がNULLではないかどうか検査する。（非標準構文）
       

	
        boolean IS TRUE
        boolean
       

       

論理式の結果が真となるかどうか検査する。
       

       
        true IS TRUE
        t
       

       
        NULL::boolean IS TRUE

        f (NULLではなく)
       

	
        boolean IS NOT TRUE
        boolean
       

       

論理式の結果が偽または不明となるかどうか検査する。
       

       
        true IS NOT TRUE
        f
       

       
        NULL::boolean IS NOT TRUE

        t (NULLではなく)
       

	
        boolean IS FALSE
        boolean
       

       

論理式の結果が偽となるかどうか検査する。
       

       
        true IS FALSE
        f
       

       
        NULL::boolean IS FALSE

        f (NULLではなく)
       

	
        boolean IS NOT FALSE
        boolean
       

       

論理式の結果が真または不明となるかどうか検査する。
       

       
        true IS NOT FALSE
        t
       

       
        NULL::boolean IS NOT FALSE

        t (NULLではなく)
       

	
        boolean IS UNKNOWN
        boolean
       

       

論理式の結果が不明となるかどうか検査する。
       

       
        true IS UNKNOWN
        f
       

       
        NULL::boolean IS UNKNOWN

        t (NULLではなく)
       

	
        boolean IS NOT UNKNOWN
        boolean
       

       

論理式の結果が真または偽となるかどうか検査する。
       

       
        true IS NOT UNKNOWN
        t
       

       
        NULL::boolean IS NOT UNKNOWN

        f (NULLではなく)
       





    
    

BETWEEN述語は範囲の検査を次のように単純にします。


a BETWEEN x AND y



は


a >= x AND a <= y


と同じです。

BETWEENは範囲内に含まれるとして端点値を扱うことに注意してください。
BETWEEN SYMMETRICは、ANDの左側の引数が右側の引数より小さいか、もしくは等しいという必要性が無い点を除きBETWEENと同様です。
この条件を満たしていない場合、2つの引数は自動的に交換されますので、常に空ではない範囲となります。
   


BETWEENの変種は通常の比較演算子を使って実装されており、比較可能なすべてのデータ型に対して使用できます。
   
注記


BETWEEN構文中でANDを使用すると、ANDを論理演算子として使うこととの曖昧さが生じます。
これを解決するために、BETWEEN句の第2引数としては限定された式の種類のみが利用できます。
BETWEEN中で複雑な副式を使用する必要がある場合は、副式を括弧で囲んでください。
    


    
    

入力のどちらかがNULLの場合、通常の比較演算子は真や偽ではなく（「不明」を意味する）nullを生成します。
例えば7 = NULLはnullになります。7 <> NULLも同様です。
この動作が適切でない場合は、IS [ NOT ] DISTINCT FROM述語を使用してください。


a IS DISTINCT FROM b
a IS NOT DISTINCT FROM b



非NULLの入力では、IS DISTINCT FROMは<>演算子と同じです。
しかし、入力がどちらもNULLの場合、これは偽を返し、片方の入力のみがNULLの場合は真を返します。
同様に、IS NOT DISTINCT FROMは非NULL入力では=と同じですが、両方の入力がNULLであれば真を、片方のみがNULLの場合は偽を返します。
このように、これらの述語はNULLを「不明な値」ではなく、通常の値かのように動作します。
   

    
    
    
    

値がNULLかNULLでないかを検証するには次の述語を使います。


expression IS NULL
expression IS NOT NULL



あるいは、これと同等の、非標準の述語も使えます。


expression ISNULL
expression NOTNULL


    
    
   


NULLとNULLとは「等しい」関係にはありませんので、expression = NULLと記述してはいけません。
（NULL値は不明の値を表しているため、不明な値同士が同じかどうかは識別できません。）
   
ヒント


アプリケーションによっては、expression = NULLが、expressionがNULL値と評価されるのであれば真を返すことを期待することがあります。
これらのアプリケーションを標準SQLに準拠するように変更することを強くお勧めします。
しかし、それができなければtransform_null_equalsを使用することで対応することができます。
これを有効にした場合、PostgreSQL™はx = NULL句をx IS NULLに変換します。
   



expressionが行値の場合、行式自体がNULLまたは、行のフィールドすべてがNULLの場合にIS NULLは真となります。
一方IS NOT NULLは、行式自体が非NULLかつ、行のフィールドすべてが非NULLの場合に真となります。
この動作により、IS NULLおよびIS NOT NULLは行値評価式に対し常に反対の結果を返すわけではありません。
特に、NULLと非NULLの値の両方を含む行値式はどちらの試験でも偽を返します。
たとえば、



SELECT ROW(1,2.5,'this is a test') = ROW(1, 3, 'not the same');

SELECT ROW(table.*) IS NULL FROM table;  -- detect all-null rows

SELECT ROW(table.*) IS NOT NULL FROM table;  -- detect all-non-null rows

SELECT NOT(ROW(table.*) IS NOT NULL) FROM TABLE; -- detect at least one null in rows




場合によっては、row IS DISTINCT FROM NULLあるいはrow IS NOT DISTINCT FROM NULLと記述する方が望ましいことがあるでしょう。
これらは単に行全体の値がNULLかどうかを検査し、行のフィールドについての追加的検査を全く行わないからです。
   

    
    
    
    
    
    

論理値も次の述語で検証できます。


boolean_expression IS TRUE
boolean_expression IS NOT TRUE
boolean_expression IS FALSE
boolean_expression IS NOT FALSE
boolean_expression IS UNKNOWN
boolean_expression IS NOT UNKNOWN



これらは、常に真か偽を返し、演算項目がNULLであってもNULL値を返すことはありません。
NULL値が入力されると、「不明」という論理値として扱われます。
IS UNKNOWNとIS NOT UNKNOWNが、入力式が論理値型でなければならないという点を除き、それぞれ実質的にIS NULLとIS NOT NULLと同じであることに注意してください。
   


表9.3「比較関数」に示すように、比較に関連した関数がいくつか使用可能です。
   
表9.3 比較関数
	

関数
       

       

説明
       

       

例
       

	
        
        num_nonnulls ( VARIADIC "any" )
        integer
       

       

非NULLの引数の数を返す。
       

       
        num_nonnulls(1, NULL, 2)
        2
       

	
        
        num_nulls ( VARIADIC "any" )
        integer
       

       

NULL引数の数を返す。
       

       
        num_nulls(1, NULL, 2)
        1
       





算術関数と演算子





PostgreSQL™の数多くの型に対する算術演算子が用意されています。
標準算術表現法が存在しない型（例えば、日付/時刻データ型）については、後続する節で実際の動作を説明します。
   


表9.4「算術演算子」は標準の数値型で使用可能な算術演算子を示しています。
特に説明がない限り、numeric_typeを受け付けると表示されている演算子はすべてのsmallint、integer、bigint、numeric、real、double precisionデータ型で利用可能です。
integral_typeを受け付けると表示されている演算子はすべてのsmallint、integer、bigintデータ型で利用可能です。
特に説明がない限り、それぞれの演算子は引数と同じデータ型を返します。
integer + numericのように、複数の引数データ型が使われる呼び出しは、このリストの後で現れる型を使って解決されます。
   
表9.4 算術演算子
	

演算子
       

       

説明
       

       

例
       

	
        numeric_type + numeric_type
        numeric_type
       

       

和
       

       
        2 + 3
        5
       

	
        + numeric_type
        numeric_type
       

       

単項和（演算なし）
       

       
        + 3.5
        3.5
       

	
        numeric_type - numeric_type
        numeric_type
       

       

差
       

       
        2 - 3
        -1
       

	
        - numeric_type
        numeric_type
       

       

否定
       

       
        - (-4)
        4
       

	
        numeric_type * numeric_type
        numeric_type
       

       

積
       

       
        2 * 3
        6
       

	
        numeric_type / numeric_type
        numeric_type
       

       

商（整数型では、除算によってゼロへ余りが切り捨てられます）
       

       
        5.0 / 2
        2.5000000000000000
       

       
        5 / 2
        2
       

       
        (-5) / 2
        -2
       

	
        numeric_type % numeric_type
        numeric_type
       

       

剰余（余り）。smallint、integer、bigint、numericで利用可能
       

       
        5 % 4
        1
       

	
        numeric ^ numeric
        numeric
       

       
        double precision ^ double precision
        double precision
       

       

累乗
       

       
        2 ^ 3
        8
       

       

典型的な数学的用法とは違って、デフォルトでは^は左から右に適用されます。
       

       
        2 ^ 3 ^ 3
        512
       

       
        2 ^ (3 ^ 3)
        134217728
       

	
        |/ double precision
        double precision
       

       

平方根
       

       
        |/ 25.0
        5
       

	
        ||/ double precision
        double precision
       

       

立方根
       

       
        ||/ 64.0
        4
       

	
        @ numeric_type
        numeric_type
       

       

絶対値
       

       
        @ -5.0
        5.0
       

	
        integral_type & integral_type
        integral_type
       

       

ビットごとのAND
       

       
        91 & 15
        11
       

	
        integral_type | integral_type
        integral_type
       

       

ビットごとのOR
       

       
        32 | 3
        35
       

	
        integral_type # integral_type
        integral_type
       

       

ビットごとの排他的論理和
       

       
        17 # 5
        20
       

	
        ~ integral_type
        integral_type
       

       

ビットごとのNOT
       

       
        ~1
        -2
       

	
        integral_type << integer
        integral_type
       

       

ビットごとの左シフト
       

       
        1 << 4
        16
       

	
        integral_type >> integer
        integral_type
       

       

ビットごとの右シフト
       

       
        8 >> 2
        2
       






表9.5「算術関数」に使用可能な算術関数を示します。
これら関数の多くは、異なる引数型を持つ複数の形で提供されています。
特に記述がある場合を除き、すべての形式の関数はその引数と同じデータ型を返します。
複数の型をまたがる場合は上記の演算子のところで説明したのと同じ方法で解決されます。
double precisionデータに対する関数のほとんどはホストシステムのCライブラリの上層に実装されています。このため、精度と境界近くの場合の振舞いはホストシステムに依存して変わります。
  
表9.5 算術関数
	

関数
       

       

説明
       

       

例
       

	
        
        abs ( numeric_type )
        numeric_type
       

       

絶対値
       

       
        abs(-17.4)
        17.4
       

	
        
        cbrt ( double precision )
        double precision
       

       

立方根
       

       
        cbrt(64.0)
        4
       

	
        
        ceil ( numeric )
        numeric
       

       
        ceil ( double precision )
        double precision
       

       

引数より大きいか等しく、引数に最も近い整数
       

       
        ceil(42.2)
        43
       

       
        ceil(-42.8)
        -42
       

	
        
        ceiling ( numeric )
        numeric
       

       
        ceiling ( double precision )
        double precision
       

       

引数より大きいか等しく、引数に最も近い整数（ceilと同じ）
       

       
        ceiling(95.3)
        96
       

	
        
        degrees ( double precision )
        double precision
       

       

ラディアンを度に変換
       

       
        degrees(0.5)
        28.64788975654116
       

	
        
        div ( y numeric,
        x numeric )
        numeric
       

       

y/xの整数商
（0に向かって切り捨て）
       

       
        div(9, 4)
        2
       

	
        
        erf ( double precision )
        double precision
       

       

誤差関数
       

       
        erf(1.0)
        0.8427007929497149
       

	
        
        erfc ( double precision )
        double precision
       

       

相補誤差関数（1-erf(x)、大きな入力における精度の損失なし）
       

       
        erfc(1.0)
        0.15729920705028513
       

	
        
        exp ( numeric )
        numeric
       

       
        exp ( double precision )
        double precision
       

       

指数（eを底とする指定のべき乗）
       

       
        exp(1.0)
        2.7182818284590452
       

	
        
        factorial ( bigint )
        numeric
       

       

階乗
       

       
        factorial(5)
        120
       

	
        
        floor ( numeric )
        numeric
       

       
        floor ( double precision )
        double precision
       

       

引数より小さいか等しく、引数に最も近い整数
       

       
        floor(42.8)
        42
       

       
        floor(-42.8)
        -43
       

	
        
        gamma ( double precision )
        double precision
       

       

ガンマ関数
       

       
        gamma(0.5)
        1.772453850905516
       

       
        gamma(6)
        120
       

	
        
        gcd ( numeric_type, numeric_type )
        numeric_type
       

       

最大公約数（余りなく入力を割る最大の正の整数）。
両方の入力が0なら0を返す。
integer、bigint、numericで利用可能
       

       
        gcd(1071, 462)
        21
       

	
        
        lcm ( numeric_type, numeric_type )
        numeric_type
       

       

最小公倍数（両方の入力の整数倍となる最小の厳密な正の数）。
両方の入力が0なら0を返す。
integer、bigint、numericで利用可能
       

       
        lcm(1071, 462)
        23562
       

	
        
        lgamma ( double precision )
        double precision
       

       

ガンマ関数の絶対値の自然対数
       

       
        lgamma(1000)
        5905.220423209181
       

	
        
        ln ( numeric )
        numeric
       

       
        ln ( double precision )
        double precision
       

       

自然対数
       

       
        ln(2.0)
        0.6931471805599453
       

	
        
        log ( numeric )
        numeric
       

       
        log ( double precision )
        double precision
       

       

10を底とした対数
       

       
        log(100)
        2
       

	
        
        log10 ( numeric )
        numeric
       

       
        log10 ( double precision )
        double precision
       

       

10を底とした対数（logと同じ）
       

       
        log10(1000)
        3
       

	
        log ( b numeric,
        x numeric )
        numeric
       

       

bを底としたxの対数
       

       
       log(2.0, 64.0)
       6.0000000000000000
       

	
        
        min_scale ( numeric )
        integer
       

       

与えられた値を正確に表現するのに必要な最小の桁数（小数点以下の10進の桁数）
       

       
        min_scale(8.4100)
        2
       

	
        
        mod ( y numeric_type,
        x numeric_type )
        numeric_type
       

       

y/xの剰余。
smallint、integer、bigint、numericで利用可能
       

       
        mod(9, 4)
        1
       

	
        
        pi (  )
        double precision
       

       

πの近似値
       

       
        pi()
        3.141592653589793
       

	
        
        power ( a numeric,
        b numeric )
        numeric
       

       
        power ( a double precision,
        b double precision )
        double precision
       

       

       aのb乗
       

       
        power(9, 3)
        729
       

	
        
        radians ( double precision )
        double precision
       

       

度をラディアンに変換
       

       
        radians(45.0)
        0.7853981633974483
       

	
        
        round ( numeric )
        numeric
       

       
        round ( double precision )
        double precision
       

       

最も近い整数へ丸めます。
numericの場合、小数点以下を四捨五入します。
double precisionでは端数処理の振る舞いはプラットフォーム依存です。
しかし、最も普通の規則は「最近接偶数への丸め(round to nearest even)」です。
       

       
        round(42.4)
        42
       

	
        round ( v numeric, s integer )
        numeric
       

       

vを小数点第s位まで丸めます。
小数点以下を切り上げて端数を処理します。
       

       
        round(42.4382, 2)
        42.44
       

       
        round(1234.56, -1)
        1230
       

	
        
        scale ( numeric )
        integer
       

       

引数の位取り（小数点以下の10進の桁数）
       

       
        scale(8.4100)
        4
       

	
        
        sign ( numeric )
        numeric
       

       
        sign ( double precision )
        double precision
       

       

引数の符号(-1, 0,あるいは +1)
       

       
        sign(-8.4)
        -1
       

	
        
         sqrt ( numeric )
         numeric
       

       
         sqrt ( double precision )
         double precision
       

       

平方根
       

       
        sqrt(2)
        1.4142135623730951
       

	
        
        trim_scale ( numeric )
        numeric
       

       

後方のゼロを削除することにより値の桁数（小数点以下の10進桁数）を減じる
       

       
        trim_scale(8.4100)
        8.41
       

	
        
        trunc ( numeric )
        numeric
       

       
        trunc ( double precision )
        double precision
       

       

整数へ切り捨て（ゼロに向かって）
       

       
        trunc(42.8)
        42
       

       
        trunc(-42.8)
        -42
       

	
        trunc ( v numeric, s integer )
       numeric
       

       

vを小数点以下s桁で切り捨て
       

       
        trunc(42.4382, 2)
        42.43
       

	
        
        width_bucket ( operand numeric, low numeric, high numeric, count integer )
        integer
       

       
        width_bucket ( operand double precision, low double precision, high double precision, count integer )
        integer
       

       

lowからhighまでの範囲に広がる等幅でバケット数countのヒストグラムにおいて、operandが割り当てられるバケット番号を返す。
バケットには、包含的な下限と排他的な上限があります。
入力がlowより小さい場合は0を返し、入力がhigh以上の場合はcount+1を返します。
low>highなら、振る舞いは鏡に写したように逆になり、バケット1がlowのすぐ下になり、包含的な境界が上側になります。
       

       
        width_bucket(5.35, 0.024, 10.06, 5)
        3
       

       
        width_bucket(9, 10, 0, 10)
        2
       

	
        width_bucket ( operand anycompatible, thresholds anycompatiblearray )
       integer
       

       

包含的なバケットの最小値を示す配列が与えられた時に、operandが割り当てられるバケット番号を返す。
最初の下限値よりも小さい入力値に対しては0を返します。
operandと配列要素は標準の比較演算子を持つ型であればどのような型でも構いません。
thresholds配列はソートされていなければならず、小さいものが最初です。
さもなければ予想外の結果となるでしょう。
       

       
        width_bucket(now(), array['yesterday', 'today', 'tomorrow']::timestamptz[])
        2
       






表9.6「乱数関数」に乱数を生成する関数を示します。
  
表9.6 乱数関数
	

関数
       

       

説明
       

       

例
       

	
        
        random ( )
        double precision
       

       

0.0 <= x < 1.0の範囲の乱数値を返す
       

       
        random()
        0.897124072839091
       

	
        
        random ( min integer, max integer )
        integer
       

       
        random ( min bigint, max bigint )
        bigint
       

       
        random ( min numeric, max numeric )
        numeric
       

       

min <= x max の範囲の乱数を返します。
型がnumericの場合、結果はmin またはmax のいずれか大きい方と同じ小数桁数の小数部を持ちます。
       

       
        random(1, 10)
        7
       

       
        random(-0.499, 0.499)
        0.347
       

	
        

         random_normal (
         [ mean double precision
         [, stddev double precision ]] )
         double precision
       

       

指定されたパラメータを使用した標準偏差での乱数値を返します。
meanのデフォルト値は0.0、stddevのデフォルト値は1.0です。
       

       
        random_normal(0.0, 1.0)
        0.051285419
       

	
        
        setseed ( double precision )
        void
       

       

今後のrandom()とrandom_normal()呼び出しで使用されるシード(種)を設定します。引数は-1.0から1.0までの境界を含む値でなければなりません。
       

       
        setseed(0.12345)
       






表9.6「乱数関数」にリストされているrandom()とrandom_normal()関数は、決定論的な擬似乱数生成器を使用しています。
高速ですが、暗号用途には適していません。より安全な代替手段についてはpgcryptoモジュールを参照してください。
setseed()が呼び出されると、現在のセッション内での以後の一連のこれらの関数の呼び出し結果はsetseed()を同じ引数で再実行することによって再現可能となります。
同じセッション内でsetseed()をそれ以前に呼び出していない場合は、これらの関数のいずれかの最初の呼び出しによってプラットフォーム依存の乱数ビットのソースからシードを入手します。
  


使用可能な三角関数を表9.7「三角関数」に示します。
それぞれの三角関数には、角度の単位をラディアンにするものと度にするものの2種類があります。
  
表9.7 三角関数
	

関数
       

       

説明
       

       

例
       

	
        
        acos ( double precision )
        double precision
       

       

逆余弦関数、結果はラディアン
       

       
        acos(1)
        0
       

	
        
        acosd ( double precision )
        double precision
       

       

逆余弦関数、結果は度
       

       
        acosd(0.5)
        60
       

	
        
        asin ( double precision )
        double precision
       

       

逆正弦関数、結果はラディアン
       

       
        asin(1)
        1.5707963267948966
       

	
        
        asind ( double precision )
        double precision
       

       

逆正弦関数、結果は度
       

       
        asind(0.5)
        30
       

	
        
        atan ( double precision )
        double precision
       

       

逆正接関数、結果はラディアン
       

       
        atan(1)
        0.7853981633974483
       

	
        
        atand ( double precision )
        double precision
       

       

逆正接関数、結果は度
       

       
        atand(1)
        45
       

	
        
        atan2 ( y double precision,
        x double precision )
        double precision
       

       

y/xの逆正接関数、結果はラディアン
       

       
        atan2(1, 0)
        1.5707963267948966
       

	
        
        atan2d ( y double precision,
        x double precision )
        double precision
       

       

y/xの逆正接関数、結果は度
       

       
        atan2d(1, 0)
        90
       

	
        
        cos ( double precision )
        double precision
       

       

余弦関数、引数はラディアン
       

       
        cos(0)
        1
       

	
        
        cosd ( double precision )
        double precision
       

       

余弦関数、引数は度
       

       
        cosd(60)
        0.5
       

	
        
        cot ( double precision )
        double precision
       

       

余接関数、引数はラディアン
       

       
        cot(0.5)
        1.830487721712452
       

	
        
        cotd ( double precision )
        double precision
       

       

余接関数、引数は度
       

       
        cotd(45)
        1
       

	
        
        sin ( double precision )
        double precision
       

       

正弦関数、結果はラディアン
       

       
        sin(1)
        0.8414709848078965
       

	
        
        sind ( double precision )
        double precision
       

       

正弦関数、結果は度
       

       
        sind(30)
        0.5
       

	
        
        tan ( double precision )
        double precision
       

       

正接関数、引数はラディアン
       

       
        tan(1)
        1.5574077246549023
       

	
        
        tand ( double precision )
        double precision
       

       

正接関数、引数は度
       

       
        tand(45)
        1
       




注記


度単位の角度を扱う別の方法は、前に示した単位変換関数radians()とdegrees()を使うことです。
しかし、角度を使う方法の方が、sind(30)のような特別な場合の丸め誤差を避けられるため、推奨されます。
   



表9.8「双曲線関数」に利用可能な双曲線関数を示します。
  
表9.8 双曲線関数
	

関数
       

       

説明
       

       

例
       

	
        
        sinh ( double precision )
        double precision
       

       

双曲線正弦
       

       
        sinh(1)
        1.1752011936438014
       

	
        
        cosh ( double precision )
        double precision
       

       

双曲線余弦
       

       
        cosh(0)
        1
       

	
        
        tanh ( double precision )
        double precision
       

       

双曲線正接
       

       
        tanh(1)
        0.7615941559557649
       

	
        
        asinh ( double precision )
        double precision
       

       

逆双曲線正弦
       

       
        asinh(1)
        0.881373587019543
       

	
        
        acosh ( double precision )
        double precision
       

       

逆双曲線余弦
       

       
        acosh(1)
        0
       

	
        
        atanh ( double precision )
        double precision
       

       

逆双曲線正接
       

       
        atanh(0.5)
        0.5493061443340548
       





文字列関数と演算子





本節では文字列の値の調査や操作のための関数と演算子について説明します。
ここでの文字列とはcharacterデータ型、character varyingデータ型、およびtextデータ型の値を含みます。
補足説明のない限り、下記に挙げている全ての関数はtext型を受付、また戻り値型として返すように宣言されています。
それらはcharacter varyingデータ型も同じように受け付けます。
character型の値は関数あるいは演算子に適用される前にtextに変換され、character値の末尾の空白が削除されることになります。
   


SQLでは引数の区切りにカンマではなくキーワードを使用する文字列関数をいくつか定義しています。
詳細については表9.9「SQL文字列関数と演算子」を参照してください。
またPostgreSQL™は、これらの関数に対して通常の関数呼び出し構文を使用するバージョンを提供します（表9.10「その他の文字列操作関数と演算子」を参照してください）。
   
注記


文字列連結演算子（||）は表9.9「SQL文字列関数と演算子」で示されるように、少なくともひとつの入力が文字列型であれば、依然として非文字列入力を受け付けます。
その他の場合には非文字列入力を受け付けるために、textへの明示的な変換を行うことが可能です。
    

表9.9 SQL文字列関数と演算子
	

関数/演算子
       

       

説明
       

       

例
       

	
        
        
        text || text
        text
       

       

2つの文字列を結合します。
       

       
        'Post' || 'greSQL'
        PostgreSQL
       

	
        text || anynonarray
        text
       

       
        anynonarray || text
        text
       

       

非文字列の入力をテキストに変換したのちに2つの文字列を結合します。
（非文字列の入力は配列型であってはいけません。配列の||演算子との間で曖昧性が生じるからです。
配列のテキストあるいは類似のものを結合する場合は明示的にtextにキャストしてください。）
       

       
        'Value: ' || 42
        Value: 42
       

	
        
        btrim ( string text
        [, characters text ] )
        text
       

       

stringからcharacters（空白一文字がデフォルト）に現れる文字のみを含む最長の文字列を先頭と末尾から取り除きます。
       

       
        btrim('xyxtrimyyx', 'xyz')
        trim
       

	
        
        
         text IS [NOT] [form] NORMALIZED
        boolean
       

       

文字列が指定したUnicode正規形の範囲かどうかをチェックします。
オプションのformキーワードは正規形を指定します。NFC (デフォルトです)、NFD、NFKCあるいはNFKDです。
この式はサーバエンコーディングがUTF8のときだけ使用できます。
この式を用いた正規形のチェックは、しばしばすでに正規化されている可能性のある文字列を正規化するよりも高速であることに注意してください。
       

       
        U&'\0061\0308bc' IS NFD NORMALIZED
        t
       

	
        
        bit_length ( text )
        integer
       

       

文字列中のビット数を返します（octet_lengthの8倍です。）
       

       
        bit_length('jose')
        32
       

	
        
        
        
        
        
        char_length ( text )
        integer
       

       
        
        character_length ( text )
        integer
       

       

文字列中の文字数を返します。
       

       
        char_length('josé')
        4
       

	
        
        lower ( text )
        text
       

       

データベースのロケールのルールに従い、文字列をすべて小文字に変換します。
       

       
        lower('TOM')
        tom
       

	
        
        lpad ( string text,
        length integer
        [, fill text ] )
        text
       

       

文字fill（デフォルトは空白文字）を文字列の前に追加して、stringをlengthの長さにします。
stringが既にlengthの長さを超えている場合は（右側が）切り捨てられます。
       

       
        lpad('hi', 5, 'xy')
        xyxhi
       

	
        
        ltrim ( string text
        [, characters text ] )
        text
       

       

stringからcharacters（空白一文字がデフォルト）に現れる文字のみを含む最長の文字列を先頭から取り除きます。
       

       
        ltrim('zzzytest', 'xyz')
        test
       

	
        
        
        normalize ( text
        [, form ] )
        text
       

       

文字列を指定したUnicode正規形に変換します。
オプションのformキーワードは正規形を指定します。NFC (デフォルトです)、NFD、NFKCあるいはNFKDです。
この式はサーバエンコーディングがUTF8のときだけ使用できます。
       

       
        normalize(U&'\0061\0308bc', NFC)
        U&'\00E4bc'
       

	
        
        octet_length ( text )
        integer
       

       

文字列のバイト数を返します。
       

       
        octet_length('josé')

5（サーバエンコーディングがUTF8の場合）
       

	
        
        octet_length ( character )
        integer
       

       

文字列のバイト数を返します。
このバージョンの関数は直接character型を受け付けるので、末尾の空白を削除しません。
       

       
        octet_length('abc '::character(4))
        4
       

	
        
        overlay ( string text PLACING newsubstring text FROM start integer [ FOR count integer ] )
        text
       

       

stringのstart文字目からcount文字をnewsubstringで置き換えます。
countを省略するとnewsubstringの長さがデフォルトになります。
       

       
        overlay('Txxxxas' placing 'hom' from 2 for 4)
        Thomas
       

	
        
        position ( substring text IN string text )
        integer
       

       

string中のsubstringで指定する文字列の最初の開始位置を返します。0ならその文字列は存在しません。
       

       
        position('om' in 'Thomas')
        3
       

	
        
        rpad ( string text,
        length integer
        [, fill text ] )
        text
       

       

文字fill（デフォルトは空白文字）を文字列に追加して、stringをlengthの長さにします。
stringが既にlengthの長さを超えている場合は切り捨てられます。
       

       
        rpad('hi', 5, 'xy')
        hixyx
       

	
        
        rtrim ( string text
         [, characters text ] )
        text
       

       

stringからcharacters（空白一文字がデフォルト）に現れる文字のみを含む最長の文字列を末尾から取り除きます。
       

       
        rtrim('testxxzx', 'xyz')
        test
       

	
        
        substring ( string text [ FROM start integer ] [ FOR count integer ] )
        text
       

       

startが指定されていればstart番目の文字で始まるstringの部分文字列を返します。
countが指定されていればcount数の文字を取り出します。
少なくともstartかcountのどちらかを指定してください。
       

       
        substring('Thomas' from 2 for 3)
        hom
       

       
        substring('Thomas' from 3)
        omas
       

       
        substring('Thomas' for 2)
        Th
       

	
        substring ( string text FROM pattern text )
        text
       

       

POSIX正規表現にマッチする最初の部分文字列を返します。「POSIX正規表現」を参照してください。
       

       
        substring('Thomas' from '...$')
        mas
       

	
        substring ( string text SIMILAR pattern text ESCAPE escape text )
        text
       

       
        substring ( string text FROM pattern text FOR escape text )
        text
       

       

SQL正規表現にマッチする最初の部分文字列を返します。「SIMILAR TO正規表現」を参照してください。
最初の形式はSQL:2003以降で指定されています。2番目の形式はSQL:1999でのみ指定されており、廃れていると考えるべきでしょう。
       

       
        substring('Thomas' similar '%#"o_a#"_' escape '#')
        oma
       

	
        
        trim ( [ LEADING | TRAILING | BOTH ]
        [ characters text ] FROM
        string text )
        text
       

       

stringからcharacters（空白一文字がデフォルト）に現れる文字のみを含む最長の文字列を先頭、末尾、あるいはその両方（BOTHがデフォルト）から取り除きます。
       

       
        trim(both 'xyz' from 'yxTomxx')
        Tom
       

	
        trim ( [ LEADING | TRAILING | BOTH ] [ FROM ]
        string text [,
        characters text ] )
        text
       

       

これはtrim()の非標準構文です。
       

       
        trim(both from 'yxTomxx', 'xyz')
        Tom
       

	
        
        unicode_assigned ( text )
        boolean
       

       

文字列中のすべての文字がUnicodeコードポイントに割り当てられている場合はtrueを返し、そうでない場合はfalseを返します。
この関数はサーバのエンコーディングがUTF8の場合にのみ使用できます。
       

	
        
        upper ( text )
        text
       

       

データベースのロケールのルールに従い、文字列をすべて大文字に変換します。
       

       
        upper('tom')
        TOM
       






この他、表9.10「その他の文字列操作関数と演算子」に列挙する文字列操作関数と演算子が使えます。
（そのいくつかは、表9.9「SQL文字列関数と演算子」で列挙した標準SQLの文字列関数を実装するため、内部的に使用されます。）
また、「パターンマッチ」で説明するしたパターンマッチ演算子と、12章全文検索で説明する全文検索用の演算子もあります。
   
表9.10 その他の文字列操作関数と演算子
	

関数/演算子
       

       

説明
       

       

例
       

	
        
        
        text ^@ text
        boolean
       

       

最初の文字列が2番目の文字列で始まる場合に真を返します（starts_with()関数と同じです）。
       

       
        'alphabet' ^@ 'alph'
        t
       

	
        
        ascii ( text )
        integer
       

       

引数の最初の文字の数値コードを返します。
UTF8符号化方式ではその文字のUnicodeコードポイントを返します。
その他のマルチバイト符号化方式の場合、引数はASCII文字でなくてはなりません。
       

       
        ascii('x')
        120
       

	
        
        chr ( integer )
        text
       

       

与えられたコードの文字を返します。
UTF8符号化方式では、引数はUnicodeコードポイントと見なされます。
その他のマルチバイト符号化方式の場合、引数は指定のASCII文字でなくてはなりません。
chr(0)は禁止されています。テキストデータ型はその文字を格納できないからです。
      

      
        chr(65)
        A
       

	
        
        concat ( val1 "any"
         [, val2 "any" [, ...] ] )
        text
       

       

引数をテキスト形式にしたものを結合します。
NULL引数は無視されます。
       

       
        concat('abcde', 2, NULL, 22)
        abcde222
       

	
        
        concat_ws ( sep text,
        val1 "any"
        [, val2 "any" [, ...] ] )
        text
       

       

最初の引数以外をセパレータとともに結合します。
最初の引数はセパレータ文字列として使われ、NULLにすべきではありません。
それ以外のNULLの引数は無視されます。
       

       
        concat_ws(',', 'abcde', 2, NULL, 22)
        abcde,2,22
       

	
        
        format ( formatstr text
        [, formatarg "any" [, ...] ] )
        text
       

       

引数の書式をフォーマット文字列に従って整形します。
「format」を参照してください。
この関数はC言語関数のsprintfと似ています。
       

       
        format('Hello %s, %1$s', 'World')
        Hello World, World
       

	
        
        initcap ( text )
        text
       

       

それぞれの単語の第一文字を大文字に、残りは小文字に変換します。
ここで単語とは、英数字以外の文字で区切られた、英数字からなる文字の並びのことです。
       

       
        initcap('hi THOMAS')
        Hi Thomas
       

	
        
        casefold ( text )
        text
       

       

照合順序に従い、入力文字列の大文字小文字変換（case folding）を行います。
casefoldによる大文字小文字変換は、lowerやupperなどによる大文字小文字変換と似ています。
ただし、後者の変換の目的は大文字と小文字を区別した特定の形式に変換することであるのに対し、前者の変換の目的は大文字と小文字を区別しない文字列のマッチングを容易にすることです。
この関数は、サーバ符号化方式がUTF8の場合にのみ使用できます。
       

       

通常は単純に小文字に変換しますが、照合順序によっては例外があります。
例えば、一部の文字には小文字の種類が3つ以上ある場合や、大文字に変換する場合があります。
       

       

この変換により文字列の長さが変わることがあります。
例えば、照合順序PG_UNICODE_FASTでは、ß（U+00DF）をssに変換します。
       

       

casefoldは、Unicodeのデフォルトの大文字小文字を区別しないマッチングに使用できます。
入力文字列の正規化された形式を常に保持するわけではありません（normalizeを参照してください）。
       

       

libcプロバイダはこの大文字小文字変換をサポートしていないので、casefoldはlowerと同じです。
       

	
        
        left ( string text,
        n integer )
        text
       

       

文字列の先頭からn文字を返します。
nが負数の場合、文字列の末尾から|n|文字を切り取った文字列を返します。
       

       
        left('abcde', 2)
        ab
       

	
        
        length ( text )
        integer
       

       

文字列内の文字数を返します。
       

       
        length('jose')
        4
       

	
        
        md5 ( text )
        text
       

       

引数のMD5ハッシュ計算し、16進数で結果を返します。
       

       
        md5('abc')
        900150983cd24fb0​d6963f7d28e17f72
       

	
        
        parse_ident ( qualified_identifier text
        [, strict_mode boolean DEFAULT true ] )
        text[]
       

       

qualified_identifierを識別子の配列に分割し、個々の識別子に引用符があればそれを削除します。
デフォルトでは、最後の識別子の後に続く余分な文字はエラーとされますが、2番目のパラメータがfalseの場合は、そのような余分な文字は無視されます。
（この動作は、関数のようなオブジェクトに対して名前を解析するときに便利でしょう。）
この関数は、長すぎる識別子を切り詰めないことに注意してください。
切り詰めが必要なときは、その結果をname[]にキャストすることができます。
       

       
        parse_ident('"SomeSchema".someTable')
        {SomeSchema,sometable}
       

	
        
        pg_client_encoding ( )
        name
       

       

現在のクライアントの符号化方式の名前を返します。
       

       
        pg_client_encoding()
        UTF8
       

	
        
        quote_ident ( text )
        text
       

       

与えられた文字列を、SQL問い合わせ文字列で識別子として使用できるように、適切な引用符を付けて返します。
引用符は、必要な場合（すなわち、文字列に識別子として使用できない文字が含まれる場合や、大文字変換される場合）にのみ追加されます。
埋め込まれた引用符は、適切に二重化されます。
例41.1「動的問い合わせの中の値の引用符付け」も参照してください。
       

       
        quote_ident('Foo bar')
        "Foo bar"
       

	
        
        quote_literal ( text )
        text
       

       

与えられた文字列を、SQL問い合わせ文字列で文字リテラルとして使用できるように、適切な引用符を付けて返します。
埋め込まれた単一引用符およびバックスラッシュは、適切に二重化されます。
quote_literalはNULL入力に対してNULLを返すことに注意してください。引数がNULLとなる可能性がある場合、よりquote_nullableの方がしばしば適しています。
例41.1「動的問い合わせの中の値の引用符付け」も参照してください。
       

       
        quote_literal(E'O\'Reilly')
        'O''Reilly'
       

	
        quote_literal ( anyelement )
        text
       

       

与えられた値をテキストに変換し、そしてリテラルとして引用符付けします。
埋め込まれた単一引用符とバックスラッシュは適切に二重化されます。
       

       
        quote_literal(42.5)
        '42.5'
       

	
        
        quote_nullable ( text )
        text
       

       

与えられた文字列を、SQL問い合わせ文字列で文字列リテラルとして使用できるように、適切な引用符を付けて返します。
また、引数がNULLの場合、NULLを返します。
埋め込まれた単一引用符およびバックスラッシュは適切に二重化されます。
例41.1「動的問い合わせの中の値の引用符付け」も参照してください。
       

       
        quote_nullable(NULL)
        NULL
       

	
        quote_nullable ( anyelement )
        text
       

       

与えられた値をテキストに変換し、そしてリテラルとして引用符付けします。引数がNULLの場合はNULLを返します。
埋め込まれた単一引用符とバックスラッシュは適切に二重化されます。
       

       
        quote_nullable(42.5)
        '42.5'
       

	
        
        regexp_count ( string text, pattern text
         [, start integer
         [, flags text ] ] )
        integer
       

       

stringに対してPOSIX正規表現patternがマッチした回数を返します。「POSIX正規表現」を参照してください。
       

       
        regexp_count('123456789012', '\d\d\d', 2)
        3
       

	
        
        regexp_instr ( string text, pattern text
         [, start integer
         [, N integer
         [, endoption integer
         [, flags text
         [, subexpr integer ] ] ] ] ] )
        integer
       

       

POSIX正規表現patternのN番目の一致が発生するstring内の位置を返します。一致がない場合は0を返します。「POSIX正規表現」を参照してください。
       

       
        regexp_instr('ABCDEF', 'c(.)(..)', 1, 1, 0, 'i')
        3
       

       
        regexp_instr('ABCDEF', 'c(.)(..)', 1, 1, 0, 'i', 2)
        5
       

	
        
        regexp_like ( string text, pattern text
         [, flags text ] )
        boolean
       

       

POSIX正規表現patternの一致がstring内にあるかどうかをチェックします。「POSIX正規表現」を参照してください。
       

       
        regexp_like('Hello World', 'world$', 'i')
        t
       

	
        
        regexp_match ( string text, pattern text [, flags text ] )
        text[]
       

       

stringに対してPOSIX正規表現patternで最初にマッチした部分文字列を返します。より詳細は「POSIX正規表現」を参照してください。
       

       
        regexp_match('foobarbequebaz', '(bar)(beque)')
        {bar,beque}
       

	
        
        regexp_matches ( string text, pattern text [, flags text ] )
        setof text[]
       

       

stringに対してPOSIX正規表現patternで最初にマッチした部分文字列、あるいはgフラグが設定されている場合には、一致したすべての部分文字列を返します。より詳細は「POSIX正規表現」を参照してください。
       

       
        regexp_matches('foobarbequebaz', 'ba.', 'g')
        


 {bar}
 {baz}


       

	
        
        regexp_replace ( string text, pattern text, replacement text
         [, flags text ] )
        text
       

       

stringに対してPOSIX正規表現patternで最初の一致、あるいはgが指定された場合にはすべての一致の結果部分文字列を返します。「POSIX正規表現」を参照してください。
       

       
        regexp_replace('Thomas', '.[mN]a.', 'M')
        ThM
       

	
        regexp_replace ( string text, pattern text, replacement text,
         start integer
         [, N integer
         [, flags text ] ] )
        text
       

       

stringのstart番目の文字から検索を始めて、POSIX正規表現patternでN番目に一致する部分文字列、またはNが0の場合は一致するすべての部分文字列を置換します。
Nを省略すると、デフォルトで1になります。
「POSIX正規表現」を参照してください。
       

       
        regexp_replace('Thomas', '.', 'X', 3, 2)
        ThoXas
       

       
        regexp_replace(string=>'hello world', pattern=>'l', replacement=>'XX', start=>1, "N"=>2)
        helXXo world
       

	
        
        regexp_split_to_array ( string text, pattern text [, flags text ] )
        text[]
       

       

POSIX正規表現を区切り文字に使ってstringを分割し、結果の配列を生成します。
「POSIX正規表現」を参照してください。
       

       
        regexp_split_to_array('hello world', '\s+')
        {hello,world}
       

	
        
        regexp_split_to_table ( string text, pattern text [, flags text ] )
        setof text
       

       

POSIX正規表現を区切り文字に使ってstringを分割します。
詳しくは「POSIX正規表現」を参照してください。
       

       
        regexp_split_to_table('hello world', '\s+')
        


 hello
 world


       

	
        
        regexp_substr ( string text, pattern text
         [, start integer
         [, N integer
         [, flags text
         [, subexpr integer ] ] ] ] )
        text
       

       

POSIX正規表現patternのN番目に一致するstring内の部分文字列を返します。一致しない場合はNULLを返します。
「POSIX正規表現」を参照してください。
       

       
        regexp_substr('ABCDEF', 'c(.)(..)', 1, 1, 'i')
        CDEF
       

       
        regexp_substr('ABCDEF', 'c(.)(..)', 1, 1, 'i', 2)
        EF
       

	
        
        repeat ( string text, number integer )
        text
       

       

指定されたnumberの数だけstringを繰り返します。
       

       
        repeat('Pg', 4)
        PgPgPgPg
       

	
        
        replace ( string text,
        from text,
        to text )
        text
       

       

stringに出現する全てのfrom部分文字列をto部分文字列に置換します。
       

       
        replace('abcdefabcdef', 'cd', 'XX')
        abXXefabXXef
       

	
        
        reverse ( text )
        text
       

       

文字列中の文字を逆順にします。
       

       
        reverse('abcde')
        edcba
       

	
        
        right ( string text,
         n integer )
        text
       

       

文字列の末尾からn文字を返します。
nが負数の場合は、文字列の先頭から|n|文字だけ切り取った文字列を返します。
       

       
        right('abcde', 2)
        de
       

	
        
        split_part ( string text,
        delimiter text,
        n integer )
        text
       

       

stringをdelimiterで分割し、その結果からn番目のフィールド（1から始まるように数える）を返します。
nが負なら最後から|n|番目のフィールドを返します。
       

       
        split_part('abc~@~def~@~ghi', '~@~', 2)
        def
       

       
        split_part('abc,def,ghi,jkl', ',', -2)
        ghi
       

	
        
        starts_with ( string text, prefix text )
        boolean
       

       

stringがprefixで始まっていれば真を返します。
       

       
        starts_with('alphabet', 'alph')
        t
       

	
        
        string_to_array ( string text, delimiter text [, null_string text ] )
        text[]
       

       

stringをdelimiterで区切り、結果のフィールドをtext配列に格納します。
delimiterがNULLなら、stringの各文字が配列の別々の要素になります。
delimiterが空文字なら、stringは単一のフィールドとして扱われます。
null_stringが指定され、NULLでなければ、その文字列にマッチするフィールドはNULLで置き換えられます。
array_to_stringも参照してください。
       

       
        string_to_array('xx~~yy~~zz', '~~', 'yy')
        {xx,NULL,zz}
       

	
        
        string_to_table ( string text, delimiter text [, null_string text ] )
        setof text
       

       

stringをdelimiterで区切り、結果のフィールドをtextの行集合として返します。
delimiterがNULLなら、結果はstringの各文字が別々の行になります。
delimiterが空文字なら、stringは単一のフィールドとして扱われます。
null_stringが指定され、NULLでなければ、その文字列にマッチするフィールドはNULLで置き換えられます。
       

       
        string_to_table('xx~^~yy~^~zz', '~^~', 'yy')
        


 xx
 NULL
 zz


       

	
        
        strpos ( string text, substring text )
        integer
       

       

string中の指定したsubstringの最初の開始位置を返します。substringが存在しなければゼロを返します。
（position(substring in string)と同じですが、引数の順序が逆であることに注意してください。）
       

       
        strpos('high', 'ig')
        2
       

	
        
        substr ( string text, start integer [, count integer ] )
        text
       

       

stringのstart番目の文字から始まり、指定されている場合はcount文字だけ連続したが部分文字列を取り出します。
（substring(string from from for count)と同じです。）
       

       
        substr('alphabet', 3)
        phabet
       

       
        substr('alphabet', 3, 2)
        ph
       

	
        
        to_ascii ( string text )
        text
       

       
        to_ascii ( string text,
        encoding name )
        text
       

       
        to_ascii ( string text,
        encoding integer )
        text
       

       

stringを他の名前あるいは数で指定される符号化方式から、ASCIIに変換します。
encodingが省略されるとデータベースの符号化方式を指定したと見なします（これは実用的には唯一有用なケースです。）
この変換は主にアクセントを削除するのが目的です。
LATIN1、LATIN2、LATIN9、WIN1250符号化方式からの変換のみをサポートします。
（他のより柔軟な解決方法としては、unaccentモジュールを参照してください。）
       

       
        to_ascii('Karél')
        Karel
       

	
        
        to_bin ( integer )
        text
       

       
        to_bin ( bigint )
        text
       

       

数を2の補数で表す同等の2進数表現に変換します。
       

       
        to_bin(2147483647)
        1111111111111111111111111111111
       

       
        to_bin(-1234)
        11111111111111111111101100101110
       

	
        
        to_hex ( integer )
        text
       

       
        to_hex ( bigint )
        text
       

       

数を2の補数で表す同等の16進数表現に変換します。
       

       
        to_hex(2147483647)
        7fffffff
       

       
        to_hex(-1234)
        fffffb2e
       

	
        
        to_oct ( integer )
        text
       

       
        to_oct ( bigint )
        text
       

       

数を2の補数で表す同等の8進数表現に変換します。
       

       
        to_oct(2147483647)
        17777777777
       

       
        to_oct(-1234)
        37777775456
       

	
        
        translate ( string text,
        from text,
        to text )
        text
       

       

from集合内の文字と一致するstringにある全ての文字は、to集合内のそれに対応する文字に置き換えられます。
もしfromがtoより長い場合、fromで指定される余分な文字に一致するものは削除されます。
       

       
        translate('12345', '143', 'ax')
        a2x5
       

	
        
        unistr ( text )
        text
       

       

引数のエスケープされたUnicode文字を評価します。
Unicode文字は、\XXXX (16進4桁)、\+XXXXXX (16進6桁)、\uXXXX (16進4桁)、\UXXXXXXXX(16進8桁)で指定できます。
バックスラッシュを指定するには、2つのバックスラッシュを書きます。
それ以外の文字はそのまま扱われます。
       


       

サーバのエンコーディングがUTF-8でなければ、これらのエスケープシーケンスで指定されるUnicodeコードポイントがサーバの実際のエンコーディングに変換されます。
変換不可能ならばエラーが報告されます。
       


       

この関数はUnicodeエスケープシーケンス（「Unicodeエスケープがある文字列定数」参照）に対する（非標準の）代替を提供します。
       


       
        unistr('d\0061t\+000061')
        data
       

       
        unistr('d\u0061t\U00000061')
        data
       






concat、concat_wsおよびformat関数はVariadicです。従って、キーワードVARIADICで標しをつけられた配列のように、値を連結またはフォーマットした形で受け渡すことが可能です（「可変長引数を取るSQL関数」を参照してください）。
配列の要素は関数に対して分割された通常の引数のように扱われます。
もしvariadic配列引数がNULLであれば、concatおよびconcat_wsはNULLを返しますが、formatはNULLを要素を持たない配列と扱います。
   


「集約関数」内のstring_agg集約関数と、文字列とbytea型を変換するための表9.13「テキスト/バイナリ文字列変換関数」内の関数も参照してください。
   
format





関数formatは、C関数のsprintf同様の形式で、フォーマット文字列に従ってフォーマットされた出力を生成します。
    



format(formatstr text [, formatarg "any" [, ...] ])



formatstrは結果がどのようにフォーマットされるかを指定するフォーマット文字列です。
フォーマット指示子が使用されている箇所を除き、フォーマット文字列のテキストは結果に直接コピーされます。
フォーマット指示子は文字列中のプレースホルダとして振舞い、その後に引き続く関数引数がどのようにフォーマットされ、どのように結果に挿入されるかを定義します。
それぞれのformatarg引数はそのデータ型に対する通常の出力規定に従ってテキストに変換され、その後フォーマット指示子に従って、結果文字列に挿入されます。
    


フォーマット指示子は%文字で始まり、以下の形式をとります。


%[position][flags][width]type



ここで要素フィールドとは以下になっています。

     
	position (省略可能)
	

n$の形式の文字列で、nは出力する引数のインデックスです。
インデックス１はformatstrの後の最初の引数です。
positionが省略されると、一連の中の次の引数がデフォルトとして使用されます。
        

	flags (省略可能)
	

フォーマット指示子の出力がどのようにフォーマットされるかを制御する追加の任意の要素です。
現在、サポートされているflagはマイナス記号(-)のみで、フォーマット指示子の出力が左詰めになるようにします。
これはwidthフィールドが同時に指定されていない場合は効果がありません。
        

	width (省略可能)
	

フォーマット指示子の出力を表示する最小文字数を指定します。
出力は、幅を満たすのに必要な空白が左または右（flagの-による）に埋め込まれます。
幅が小さすぎても出力が切り詰められることはなく、単に無視されます。
幅は次のいずれかでも指定できます。それらは、正の整数、幅としての次の関数引数として使用する星印 (*)、またはn番目の関数引数を幅として使用する*n$という形式の文字列です。
        


幅を関数引数から取得する場合、その引数はフォーマット指示子の値に使用される引数より先に消費されます。
幅の引数が負の場合、フィールド長abs(width)の範囲内で結果は（あたかもflagで-が指定されたように）左詰めになります。
        

	type (必須)
	

フォーマット指示子の出力を生成するのに使用されるフォーマット変換の型。
以下の型がサポートされています。
         
	

sは引数の値を単純文字列にフォーマットします。
NULL値は空文字列として扱われます。
           

	

Iは、引数をSQLの識別子として取り扱い、必要ならそれを二重引用符で括ります。
NULL値はエラーです（quote_identと同等です）。
           

	

Lは引数値をSQLリテラルとして引用符が付けられます。
NULL値は引用符無しの文字列NULLとなります（quote_nullableと同等です）。
           




        




    


上記で説明したフォーマット指示子に加え、特別の並びの%%がリテラル%文字を出力するために使用することもできます。
    


基本的なフォーマット変換の例を幾つか下記に紹介します。



SELECT format('Hello %s', 'World');
Result: Hello World

SELECT format('Testing %s, %s, %s, %%', 'one', 'two', 'three');
Result: Testing one, two, three, %

SELECT format('INSERT INTO %I VALUES(%L)', 'Foo bar', E'O\'Reilly');
Result: INSERT INTO "Foo bar" VALUES('O''Reilly')

SELECT format('INSERT INTO %I VALUES(%L)', 'locations', 'C:\Program Files');
Result: INSERT INTO locations VALUES('C:\Program Files')


    


widthフィールドとflagの-を使用した例を以下に示します。



SELECT format('|%10s|', 'foo');
Result: |       foo|

SELECT format('|%-10s|', 'foo');
Result: |foo       |

SELECT format('|%*s|', 10, 'foo');
Result: |       foo|

SELECT format('|%*s|', -10, 'foo');
Result: |foo       |

SELECT format('|%-*s|', 10, 'foo');
Result: |foo       |

SELECT format('|%-*s|', -10, 'foo');
Result: |foo       |


    


以下の例はpositionフィールドの使い方を示しています。



SELECT format('Testing %3$s, %2$s, %1$s', 'one', 'two', 'three');
Result: Testing three, two, one

SELECT format('|%*2$s|', 'foo', 10, 'bar');
Result: |       bar|

SELECT format('|%1$*2$s|', 'foo', 10, 'bar');
Result: |       foo|


    


標準C関数sprintfとは違って、PostgreSQL™のformat関数は、同一のフォーマット文字列の中でpositionフィールドがあるフォーマット指示子と、それがないフォーマット指示子の混在を許容します。
positionフィールドが無いフォーマット指示子は常に最終の引数が消費された後に次の引数を使用します。
さらに、format関数はフォーマット文字列で使用されるべき全ての関数引数を要求しません。
例を示します。



SELECT format('Testing %3$s, %2$s, %s', 'one', 'two', 'three');
Result: Testing three, two, three


    


%I および %Lのフォーマット指示子は特に動的SQL命令を安全に構築する場合に便利です。
例41.1「動的問い合わせの中の値の引用符付け」を参照してください。
    


バイナリ文字列関数と演算子





本節ではバイナリ文字列、すなわちbytea型の値を調べたり操作するための関数と演算子について説明します。
これらの多くは前節で説明されているテキスト文字列関数と、目的と構文という意味で同じです。
   


SQLでは、引数の区切りにカンマではなくキーワードを使う文字列関数を、いくつか定義しています。
詳細は表9.11「SQLバイナリ文字列関数と演算子」を参照してください。
またPostgreSQL™は、これらの関数に対して通常の関数呼び出し構文を使用するバージョンを提供します（表9.12「その他のバイナリ文字列関数」を参照してください）。
   
表9.11 SQLバイナリ文字列関数と演算子
	

関数/演算子
       

       

説明
       

       

例
       

	
        
        
        bytea || bytea
        bytea
       

       

2つのバイナリ文字列を結合します。
       

       
        '\x123456'::bytea || '\x789a00bcde'::bytea
        \x123456789a00bcde
       

	
        
        bit_length ( bytea )
        integer
       

       

文字列中のビット数を返します（octet_lengthの8倍）。
       

       
        bit_length('\x123456'::bytea)
        24
       

	
        
        btrim ( bytes bytea,
        bytesremoved bytea )
        bytea
       

       

bytesからbytesremovedに現れるバイトのみを含む最長の文字列を先頭と末尾から取り除きます。
       

       
        btrim('\x1234567890'::bytea, '\x9012'::bytea)
        \x345678
       

	
         
         ltrim ( bytes bytea,
         bytesremoved bytea )
         bytea
        

        

bytesの先頭からbytesremovedに現れるバイトだけを含む最長の文字列を削除します。
        

        
         ltrim('\x1234567890'::bytea, '\x9012'::bytea)
         \x34567890
        

	
        
        octet_length ( bytea )
        integer
       

       

バイナリ文字列中のバイト数を返します。
       

       
        octet_length('\x123456'::bytea)
        3
       

	
        
        overlay ( bytes bytea PLACING newsubstring bytea FROM start integer [ FOR count integer ] )
        bytea
       

       

bytesのstart番目のバイトからcountバイトをnewsubstringで置き換えます。
countを省略するとnewsubstringの長さがデフォルトになります。
       

       
        overlay('\x1234567890'::bytea placing '\002\003'::bytea from 2 for 3)
        \x12020390
       

	
        
        position ( substring bytea IN bytes bytea )
        integer
       

       

bytes中のsubstringで指定する最初の文字列開始位置を返します。その文字列が存在しなければ0を返します。
       

       
        position('\x5678'::bytea in '\x1234567890'::bytea)
        3
       

	
         
         rtrim ( bytes bytea,
         bytesremoved bytea )
         bytea
        

        

bytesからbytesremovedに現れるバイトのみを含む最長の文字列を末尾から取り除きます。
        

        
         rtrim('\x1234567890'::bytea, '\x9012'::bytea)
         \x12345678
        

	
        
        substring ( bytes bytea [ FROM start integer ] [ FOR count integer ] )
        bytea
       

       

startが指定されていればstart番目の文字で始まるbytesの部分文字列を返します。
countが指定されていればcount数の文字で停止します。
少なくともstartかcountのどちらかを指定してください。
       

       
        substring('\x1234567890'::bytea from 3 for 2)
        \x5678
       

	
        
        trim ( [ LEADING | TRAILING | BOTH ]
        bytesremoved bytea FROM
        bytes bytea )
        bytea
       

       

bytesからbytesremovedに現れるバイトのみを含む最長の文字列を先頭、末尾、あるいはその両方（BOTHがデフォルト）から取り除きます。
       

       
        trim('\x9012'::bytea from '\x1234567890'::bytea)
        \x345678
       

	
        trim ( [ LEADING | TRAILING | BOTH ] [ FROM ]
        bytes bytea,
        bytesremoved bytea )
        bytea
       

       

これはtrim()の非標準構文です。
       

       
        trim(both from '\x1234567890'::bytea, '\x9012'::bytea)
        \x345678
       






この他、表9.12「その他のバイナリ文字列関数」に列挙するバイナリ文字列操作関数が使えます。
そのいくつかは、表9.11「SQLバイナリ文字列関数と演算子」で列挙した標準SQLの文字列関数を実装するため、内部的に使用されます。
   
表9.12 その他のバイナリ文字列関数
	

関数
       

       

説明
       

       

例
       

	
        
        
        bit_count ( bytes bytea )
        bigint
       

       

バイナリ文字列中のセットされているビットの数を返します（「popcount」としても知られています）。
       

       
        bit_count('\x1234567890'::bytea)
        15
       

	
        
        crc32 ( bytea )
        bigint
       

       

バイナリ文字列のCRC-32値を計算します。
       

       
        crc32('abc'::bytea)
        891568578
       

	
        
        crc32c ( bytea )
        bigint
       

       

バイナリ文字列のCRC-32C値を計算します。
       

       
        crc32c('abc'::bytea)
        910901175
       

	
        
        get_bit ( bytes bytea,
        n bigint )
        integer
       

       

バイナリ文字列のn番目のビットを取り出します。
       

       
        get_bit('\x1234567890'::bytea, 30)
        1
       

	
        
        get_byte ( bytes bytea,
        n integer )
        integer
       

       

バイナリ文字列のn番目のバイトを取り出します。
       

       
        get_byte('\x1234567890'::bytea, 4)
        144
       

	
        
        
        
        
        length ( bytea )
        integer
       

       

バイナリ文字列のバイト数を返します。
       

       
        length('\x1234567890'::bytea)
        5
       

	
        length ( bytes bytea,
        encoding name )
        integer
       

       

与えられたencodingのテキストであると見なしてバイナリ文字列中の文字数を返します。
       

       
        length('jose'::bytea, 'UTF8')
        4
       

	
        
        md5 ( bytea )
        text
       

       

バイナリ文字列のMD5ハッシュ計算し、16進数で結果を返します。
       

       
        md5('Th\000omas'::bytea)
        8ab2d3c9689aaf18​b4958c334c82d8b1
       

	
        
        reverse ( bytea )
        bytea
       

       

バイナリ文字列のバイトの順序を反転します。
       

       
        reverse('\xabcd'::bytea)
        \xcdab
       

	
        
        set_bit ( bytes bytea,
        n bigint,
        newvalue integer )
        bytea
       

       

バイナリ文字列のn番目のビットをnewvalueにします。
       

       
        set_bit('\x1234567890'::bytea, 30, 0)
        \x1234563890
       

	
        
        set_byte ( bytes bytea,
        n integer,
        newvalue integer )
        bytea
       

       

バイナリ文字列のn番目のバイトをnewvalueにします。
       

       
        set_byte('\x1234567890'::bytea, 4, 64)
        \x1234567840
       

	
        
        sha224 ( bytea )
        bytea
       

       

バイナリ文字列のSHA-224 ハッシュを計算します。
       

       
        sha224('abc'::bytea)
        \x23097d223405d8228642a477bda2​55b32aadbce4bda0b3f7e36c9da7
       

	
        
        sha256 ( bytea )
        bytea
       

       

バイナリ文字列のSHA-256 ハッシュを計算します。
       

       
        sha256('abc'::bytea)
        \xba7816bf8f01cfea414140de5dae2223​b00361a396177a9cb410ff61f20015ad
       

	
        
        sha384 ( bytea )
        bytea
       

       

バイナリ文字列のSHA-384 ハッシュを計算します。
       

       
        sha384('abc'::bytea)
        \xcb00753f45a35e8bb5a03d699ac65007​272c32ab0eded1631a8b605a43ff5bed​8086072ba1e7cc2358baeca134c825a7
       

	
        
        sha512 ( bytea )
        bytea
       

       

バイナリ文字列のSHA-512 ハッシュを計算します。
       

       
        sha512('abc'::bytea)
        \xddaf35a193617abacc417349ae204131​12e6fa4e89a97ea20a9eeee64b55d39a​2192992a274fc1a836ba3c23a3feebbd​454d4423643ce80e2a9ac94fa54ca49f
       

	
        
        substr ( bytes bytea, start integer [, count integer ] )
        bytea
       

       

start番目の文字で始まるbytesの部分文字列を取り出します。
countが指定されていればcount数バイトを取り出します。
（substring(bytes from start for count)と同じです。）
       

       
        substr('\x1234567890'::bytea, 3, 2)
        \x5678
       






get_byteとset_byteはバイナリ文字列の先頭バイトを0バイトとして数えます。
get_bitとset_bitは各バイト内で右からビットを数えます。例えばビット0は先頭バイトの最下位ビットとなり、ビット15は第二バイトの最上位ビットとなります。
  


歴史的な理由により、md5は16進のエンコード値をtext型で返すのに対し、SHA-2関数はbyteaを返します。
両者の間の変換を行うには、関数encodeとdecodeを使ってください。
たとえば、16進のエンコードのテキスト表現を得るには、encode(sha256('abc'),'hex')、byteaを得るにはdecode(md5('abc'), 'hex')としてください。
  

   
   
   
   

異なる文字集合（文字符号化方式）間で文字列を変換する関数と、テキスト形式の任意のバイナリデータを表現する関数を表9.13「テキスト/バイナリ文字列変換関数」で示します。
引数あるいは結果のtext型はデータベースのデフォルト文字符号化方式で表現され、bytea型の引数あるいは結果は別の引数で指定する文字符号化方式名で表現されます。
  
表9.13 テキスト/バイナリ文字列変換関数
	

関数
      

      

説明
      

      

例
      

	
       
       convert ( bytes bytea,
       src_encoding name,
       dest_encoding name )
       bytea
      

      

文字符号化方式src_encodingのバイナリ文字列で表現したテキストを文字符号化方式dest_encodingのバイナリ文字列に変換します。（利用可能な変換は「利用可能な文字集合の変換」を参照してください。）
      

      
       convert('text_in_utf8', 'UTF8', 'LATIN1')
       \x746578745f696e5f75746638
      

	
       
       convert_from ( bytes bytea,
       src_encoding name )
       text
      

      

文字符号化方式src_encodingのバイナリ文字列で表現したテキストをデータベース文字符号化方式のテキストに変換します。（利用可能な変換は「利用可能な文字集合の変換」を参照してください。）
      

      
       convert_from('text_in_utf8', 'UTF8')
       text_in_utf8
      

	
       
       convert_to ( string text,
       dest_encoding name )
       bytea
      

      

text文字列（データベース文字符号化方式で表現）を文字符号化方式dest_encodingのバイナリ文字列に変換します。（利用可能な変換は「利用可能な文字集合の変換」を参照してください。）
      

      
       convert_to('some_text', 'UTF8')
       \x736f6d655f74657874
      

	
       
       encode ( bytes bytea,
       format text )
       text
      

      

バイナリデータをテキスト表現形式に符号化します。サポートされているformat値は、base64、escape、hexです。
      

      
       encode('123\000\001', 'base64')
       MTIzAAE=
      

	
       
       decode ( string text,
       format text )
       bytea
      

      

テキスト表現からバイナリデータに復号します。
format値はencodeと同じです。
      

      
       decode('MTIzAAE=', 'base64')
       \x3132330001
      






encodeとdecode関数は以下のテキスト形式をサポートしています。

   
	base64
     
	

base64形式はRFC 2045 6.8節のものです。
RFCに従い、符号化された行は76文字に分割されます。
しかし、MIME CRLF行端指示子ではなくて単に改行が行端として使われます。
decode関数はキャリッジ・リターン、改行、空白、タブ文字を無視します。
行端パディング文字が不正な場合を含み、decodeに不正なbase64のデータが与えられるとエラーが生じます。
      

	escape
     
	

escape形式はゼロバイトとハイビットがセットされたバイトを8進エスケープシーケンス(\nnn)に変換し、バックスラッシュを二重化します。
他のバイト値は文字通りに表現されます。
バックスラッシュの後が二番目のバックスラッシュあるいは3つの8進数のどちらでもなければ、decode関数はエラーを生じます。他のバイト値はそのまま受け付けます。
      

	hex
     
	

hex形式はデータの各々の4ビットを、それぞれのバイトの上位桁を最初にして、0からfの16進数で表現します。
encode関数はa-fの16進数を小文字で出力します。
最小のデータ単位は8ビットなので、encodeが返す文字数は常に偶数です。
decode関数はa-fの文字が大文字でも小文字でも受け付けます。
decode関数は、奇数の文字数を含み、不正な16進データを与えられるとエラーが生じます。
      




  


さらに、bytea型から整数値にキャストすることも整数値からbytea型にキャストすることも可能です。
整数値をbyteaにキャストすると、整数型の幅に応じて、2、4、または8バイトで生成されます。
結果は整数の2の補数表現で、最上位バイトが先頭になります。
いくつかの例を示します。


1234::smallint::bytea          \x04d2
cast(1234 as bytea)            \x000004d2
cast(-1234 as bytea)           \xfffffb2e
'\x8000'::bytea::smallint      -32768
'\x8000'::bytea::integer       32768



byteaを整数にキャストする場合、byteaの長さが整数型の幅を超えるとエラーが発生します。
  


「集約関数」内の集約関数string_aggと「サーバ側の関数」内のラージオブジェクト関数も参照してください。
  

ビット文字列関数と演算子





本節ではbit型とbit varying型の値であるビット文字列を調べたり操作するための関数と演算子について説明します。
（この表ではbit型だけが言及されていますが、bit varying型も同じように使用できます。）
ビット文字列は表9.1「比較演算子」で示す通常の比較演算子および表9.14「ビット文字列演算子」で言及している演算子もサポートします。
   
表9.14 ビット文字列演算子
	

演算子
       

       

説明
       

       

例
       

	
        bit || bit
        bit
       

       

結合
       

       
        B'10001' || B'011'
        10001011
       

	
        bit & bit
        bit
       

       

ビット単位のAND（入力は同じ長さでなければなりません）
       

       
        B'10001' & B'01101'
        00001
       

	
        bit | bit
        bit
       

       

ビット単位のOR（入力は同じ長さでなければなりません）
       

       
        B'10001' | B'01101'
        11101
       

	
        bit # bit
        bit
       

       

ビット単位の排他的論理和（入力は同じ長さでなければなりません）
       

       
        B'10001' # B'01101'
        11100
       

	
        ~ bit
        bit
       

       

ビット単位の否定
       

       
        ~ B'10001'
        01110
       

	
        bit << integer
        bit
       

       

ビット単位の左シフト（文字列長は保存されます）
       

       
        B'10001' << 3
        01000
       

	
        bit >> integer
        bit
       

       

ビット単位の右シフト（文字列長は保存されます）
       

       
        B'10001' >> 2
        00100
       






バイナリ文字列で利用可能な関数のいくつかは、表9.15「ビット文字列関数」で示すようにビット文字列でも利用可能です。
   
表9.15 ビット文字列関数
	

関数
       

       

説明
       

       

例
       

	
        
        bit_count ( bit )
        bigint
       

       

ビット文字列中のセットされているビットの数を返します（「popcount」としても知られています）。
       

       
        bit_count(B'10111')
        4
       

	
        
        bit_length ( bit )
        integer
       

       

ビット文字列中のビット数を返します。
       

       
        bit_length(B'10111')
        5
       

	
        
        
        length ( bit )
        integer
       

       

ビット文字列中のビット数を返します。
       

       
        length(B'10111')
        5
       

	
        
        octet_length ( bit )
        integer
       

       

ビット文字列中のバイト数を返します。
       

       
        octet_length(B'1011111011')
        2
       

	
        
        overlay ( bits bit PLACING newsubstring bit FROM start integer [ FOR count integer ] )
        bit
       

       

bitsのstart番目のビットからcountビットをnewsubstringで置き換えます。
countを省略するとnewsubstringの長さがデフォルトになります。
       

       
        overlay(B'01010101010101010' placing B'11111' from 2 for 3)
        0111110101010101010
       

	
        
        position ( substring bit IN bits bit )
        integer
       

       

bits中のsubstringで指定する最初の文字列開始位置を返します。その文字列が存在しなければ0を返します。
       

       
        position(B'010' in B'000001101011')
        8
       

	
        
        substring ( bits bit [ FROM start integer ] [ FOR count integer ] )
        bit
       

       

start番目の文字で始まるbitsの部分文字列を取り出します。
countが指定されていればcount数ビットを取り出します。
少なくともstartかcountのどちらかを指定してください。
       

       
        substring(B'110010111111' from 3 for 2)
        00
       

	
        
        get_bit ( bits bit,
        n integer )
        integer
       

       

ビット文字列のn番目のビットを取り出します。文字列の最初(一番左)のビットを0として数えます。
       

       
        get_bit(B'101010101010101010', 6)
        1
       

	
        
        set_bit ( bits bit,
        n integer,
        newvalue integer )
        bit
       

       

ビット文字列のn番目のビットをnewvalueにします。文字列の最初(一番左)のビットを0として数えます。
       

       
        set_bit(B'101010101010101010', 6, 0)
        101010001010101010
       






さらに、bit型から整数値にキャストすることも整数からbit型にキャストすることも可能です。
整数からbit(n)にキャストすると最右端のnビットがコピーされます。
その整数より文字列幅が広いビットにキャストすると左のビットが符号拡張されます。
以下に例を示します。


44::bit(10)                    0000101100
44::bit(3)                     100
cast(-44 as bit(12))           111111010100
'1110'::bit(4)::integer        14



単に「bit」にキャストすることはbit(1)にキャストすることを意味することに注意してください。つまり、単に整数の最下位ビットのみが渡されることになります。
   

パターンマッチ





PostgreSQL™には、パターンマッチを行うに際して3つの異なった手法があります。伝統的なSQLのLIKE演算子、これより新しいSIMILAR TO演算子（SQL:1999で追加されました）、およびPOSIX様式の正規表現です。
基本の「この文字列はこのパターンに一致するか？」を別としても、一致した部分文字列を取り出したり置換したり、そして一致部分で文字列を分割する関数が用意されています。
   
ヒント


上記の手法では検索できないようなパターンマッチが必要な場合は、PerlもしくはTclでユーザ定義関数を作成することを検討してください。
    

注意


ほとんどの正規表現検索はとても速く実行されますが、正規表現は処理するのに任意の時間とメモリを使う可能性があります。
悪意のあるソースから正規表現検索パターンを受け取ることに用心してください。
そうしなければならないのであれば、文のタイムアウトを強制するのが賢明です。
    


SIMILAR TOがPOSIX書式の正規表現と同じ多くの機能を提供するので、SIMILAR TOパターンを使う検索は同様のセキュリティ問題を抱えています。
    


LIKE検索は、他の2つの方法よりずっと単純ですので、悪意があるかもしれないパターンのソースで使うのにはより安全です。
    



SIMILAR TOとPOSIX書式の正規表現は、非決定論的照合順序をサポートしていません。
必要なら、LIKEを使用するか別の照合順序を式に適用することで、この制限事項に対応してください。
   
LIKE




string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]



LIKE式は供給されたpatternにstringが一致すれば真を返します。
（想像される通り、NOT LIKE式はLIKE式が真を返す場合には偽を返し、その逆もまた同じです。
同等の式としてNOT (string LIKE pattern)とも表現できます。）
    


patternがパーセント記号もしくはアンダースコアを含んでいない場合patternは自身の文字列そのものです。この場合LIKE式は等号演算子のように振舞います。
patternの中にあるアンダースコア（_）は任意の一文字との一致を意味し、パーセント記号（%）は0文字以上の並びとの一致を意味します。
    


例を示します。


'abc' LIKE 'abc'    true
'abc' LIKE 'a%'     true
'abc' LIKE '_b_'    true
'abc' LIKE 'c'      false


   


LIKEパターンマッチングは、大文字と小文字を区別しない照合や句読点を無視する照合など、非決定論的照合順序をサポートします（「非決定論的な照合順序」を参照）。
したがって、大文字と小文字を区別しない照合順序では、次のようになります。


'AbC' LIKE 'abc' COLLATE case_insensitive    true
'AbC' LIKE 'a%' COLLATE case_insensitive     true



特定の文字を無視する照合順序や、一般的に異なる長さの文字列を等しいと見なす照合順序では、セマンティクスが少し複雑になる可能性があります。
次の例を考えてみましょう。


'.foo.' LIKE 'foo' COLLATE ign_punct    true
'.foo.' LIKE 'f_o' COLLATE ign_punct    true
'.foo.' LIKE '_oo' COLLATE ign_punct    false



マッチングの仕組みとして、パターンがワイルドカードと非ワイルドカード文字列（ワイルドカードは_と%です）の並びに分割されます。
たとえば、パターンf_oはf, _, oと分割され、パターン_ooは_, ooと分割されます。
ワイルドカードがそれぞれ1文字または任意の数の文字と一致し、ワイルドカード以外の区分が該当する照合順序で等しくなるように分割できる場合、入力文字列はパターンと一致します。
そのため、例えば、'.foo.' LIKE 'f_o' COLLATE ign_punctはtrueになります。
これは、.foo.が.f, o, o.と分割でき、'.f' = 'f' COLLATE ign_punctとなり、'o'はワイルドカード_と一致し、'o.' = 'o' COLLATE ign_punctとなるからです。
しかし、'.foo.' LIKE '_oo' COLLATE ign_punctはfalseになります。
これは、.foo.は最初の文字が任意の文字で、残りの文字列がooと等しくなるように分割することができないためです。
（1文字のワイルドカードは、照合順序に関係なく、常に1文字のみに一致することに注意してください。
したがって、この例では、_は.に一致しますが、入力文字列の残りの部分はパターンの残りの部分と一致しません。）
   


LIKEによるパターン一致は常に文字列全体に対して行われます。
従って、文字列内の任意位置における並びと一致させたい場合には、パーセント記号を先頭と末尾に付ける必要があります。
   


他の文字の一致に使用するのではなく、アンダースコアやパーセント記号そのものを一致させたい場合には、patternの中のそれぞれのアンダースコアとパーセント記号の前にエスケープ文字を付けなければなりません。
デフォルトのエスケープ文字はバックスラッシュですが、ESCAPE句で他の文字を指定することができます。エスケープ文字そのものを一致させるにはエスケープ文字を2つ書きます。
   
注記


standard_conforming_stringsパラメータをoffにしている場合、リテラル文字列定数に記述するバックスラッシュを二重にする必要があります。
詳細は「文字列定数」を参照してください。
    



同時にESCAPE ''と記述することでエスケープ文字を選択しないことも可能です。
これにより、事実上エスケープ機構が働かなくなります。つまり、パターン内のアンダースコアおよびパーセント記号の特別な意味を解除することはできなくなります。
   


標準SQLによれば、ESCAPEは（デフォルトがバックスラッシュとなるのではなく）エスケープ文字が存在しないことを意味します。長さゼロのESCAPEは使用できません。
ですからこの点でPostgreSQL™は少し非標準な振る舞いをします。
   


現在のロケールに従って大文字小文字を区別しない一致を行うのであれば、LIKEの代わりにILIKEキーワードを使うことができます。
（しかし、これは非決定的照合順序ではサポートされません。）
これは標準SQLではなく、PostgreSQL™の拡張です。
   


~~演算子はLIKE式と等価で、~~*はILIKEに対応します。
またNOT LIKEおよびNOT ILIKEを表す!~~および!~~*演算子があります。
これら全ての演算子はPostgreSQL™固有のものです。
パーサは実際にはLIKEなどをこれらの演算子に変換するため、こうした演算子名はEXPLAINの出力などで見ることができます。
   


LIKE、ILIKE、NOT LIKE、NOT ILIKE句は一般にPostgreSQL™の構文上は演算子として扱われます。
たとえば、式 演算子 ANY(副問い合わせ)構文で使用できます。しかし、ESCAPE句はこれには含むことはできません。
状況によっては背後の演算子名を代わりに使わなければならない場合もあります。
   


単に文字列の先頭からの開始が必要なだけのケースであれば、そこから開始演算子^@とそれに対応するstarts_with関数もあります。
   

SIMILAR TO正規表現




string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]



SIMILAR TO演算子は、そのパターンが与えられた文字列に一致するかどうかにより、真もしくは偽を返します。
これは、標準SQLの正規表現定義を使用してパターンを解釈するという点以外は、LIKEに類似しています。
SQLの正規表現は、LIKE表記と一般的な(POSIX)正規表現の表記とを混ぜ合わせたようなものになっています。
   


LIKEと同様、SIMILAR TO演算子は、そのパターンが文字列全体に一致した場合のみ真を返します。これは、パターンが文字列の一部分であっても一致する、一般的な正規表現の動作とは異なっています。
また、LIKEと同様、SIMILAR TOでは、%および_を、それぞれ任意の文字列および任意の単一文字を意味するワイルドカード文字として使用します（これらは、POSIX正規表現での.*および.に相当します）。
   


LIKEから取り入れた上記の機能に加え、SIMILAR TOでは、以下のようにPOSIX正規表現から取り入れたパターンマッチメタ文字もサポートしています。

   
	

|は、二者択一（2つの選択肢のうちいずれか）を意味します。
     

	

*は、直前の項目の0回以上の繰り返しを意味します。
     

	

+は、直前の項目の1回以上の繰り返しを意味します。
     

	

?は、直前の項目の0回もしくは1回の繰り返しを意味します。
     

	

{m}は、直前の項目の正確なm回の繰り返しを意味します。
     

	

      {m,}は、直前の項目のm回以上の繰り返しを意味します。
     

	

{m,n}は、直前の項目のm回以上かつn回以下の繰り返しを意味します。
     

	

丸括弧()は、項目を1つの論理項目にグループ化することができます。
     

	

大括弧式[...]は、POSIX正規表現と同様に文字クラスを指定します。
     






SIMILAR TOではピリオド（.）はメタ文字ではないことに注意してください。
   


LIKEと同様、バックスラッシュは全てのメタ文字の特殊な意味を無効にします。
異なるエスケープ文字をESCAPEで指定することもできますし、ESCAPE ''と書くことにより、エスケープ機能を無効にすることもできます。
   


標準SQLによれば、ESCAPEは（デフォルトがバックスラッシュとなるのではなく）エスケープ文字が存在しないことを意味します。長さゼロのESCAPEは使用できません。
ですからこの点でPostgreSQL™は少し非標準な振る舞いをします。
   


他の非標準の拡張としては、エスケープ文字に続く文字あるいは数字を用いてPOSIX正規表現で定義されたエスケープシーケンスへのアクセスを提供するというのがあります。
以下の表9.20「正規表現文字エントリエスケープ」、表9.21「正規表現クラス省略エスケープ」、表9.22「正規表現制約エスケープ」を参照してください。
   


例を示します。


'abc' SIMILAR TO 'abc'          true
'abc' SIMILAR TO 'a'            false
'abc' SIMILAR TO '%(b|d)%'      true
'abc' SIMILAR TO '(b|c)%'       false
'-abc-' SIMILAR TO '%\mabc\M%'  true
'xabcy' SIMILAR TO '%\mabc\M%'  false


   


3つのパラメータを持つsubstring関数を使用して、SQL正規表現パターンに一致する部分文字列を取り出すことができます。
標準SQLの構文にしたがって、この関数は次のように書くことができます。


substring(string similar pattern escape escape-character)



あるいは今では廃れたSQL:1999の構文を使って次のように書くことができます。


substring(string from pattern for escape-character)



あるいは単なる3引数関数として次のように書くこともできます。


substring(string, pattern, escape-character)



SIMILAR TOと同様、指定したパターンがデータ文字列全体に一致する必要があります。一致しない場合、関数は失敗し、NULLを返します。
マッチするデータのうちの対象とする部分文字列に対応するパターンの部分を示すために、エスケープ文字の後に二重引用符（"）を繋げたものを2つパターンに含める必要があります。
マッチが成功すると、これらの区切り文字で囲まれたパターンの部分に一致するテキストが返されます。
   


エスケープ文字と二重引用符による区切りは実際にはsubstringのパターン引数を3つの独立した正規表現に分割します。
たとえば3つのセクションのどこかに置いた垂直線（|）はそのセクションにしか影響を及ぼしません。
また、どのパターンにデータ文字列がマッチするかについて曖昧さがある場合は、最初と3番目の正規表現は、可能な最大のテキストではなく、最小のテキストにマッチするものとして定義されます。
（POSIX用語では、最初と3番目の正規表現は非貪欲（non-greedy）に強制されます。）
   


標準SQLへの拡張として、PostgreSQL™は、二重引用符による区切りが一個だけ存在することを許容し、その場合は3番目の正規表現が空として扱われます。
あるいは、二重引用符による区切りがないことも許容し、その場合は最初と3番目の正規表現は空として扱われます。
   


例：#"を使用して返される文字列を区切ります。


substring('foobar' similar '%#"o_b#"%' escape '#')   oob
substring('foobar' similar '#"o_b#"%' escape '#')    NULL


   

POSIX正規表現





表9.16「正規表現マッチ演算子」に、POSIX正規表現を使ったパターンマッチに使用可能な演算子を列挙します。
   
表9.16 正規表現マッチ演算子
	

演算子
       

       

説明
       

       

例
       

	
        text ~ text
        boolean
       

       

文字列が正規表現にマッチ、大文字小文字の区別あり
       

       
        'thomas' ~ 't.*ma'
        t
       

	
        text ~* text
        boolean
       

       

文字列が正規表現にマッチ、大文字小文字の区別なし
       

       
        'thomas' ~* 'T.*ma'
        t
       

	
        text !~ text
        boolean
       

       

文字列が正規表現にマッチしない、大文字小文字の区別あり
       

       
        'thomas' !~ 't.*max'
        t
       

	
        text !~* text
        boolean
       

       

文字列が正規表現にマッチしない、大文字小文字の区別なし
       

       
        'thomas' !~* 'T.*ma'
        f
       






POSIX正規表現は、パターンマッチという意味合いでは、LIKEおよびSIMILAR TO演算子よりもさらに強力です。
egrep、sed、あるいはawkのような多くのUnixツールはここで解説しているのと類似したパターンマッチ言語を使用しています。
    


正規表現とは文字列の集合（正規集合）の簡略された定義である文字が連なっているものです。
ある文字列が正規表現で記述された正規集合の要素になっていれば、その文字列は正規表現にマッチしていると呼ばれます。
LIKEと同様、正規表現言語で特殊文字とされているもの以外、パターン文字は文字列と完全にマッチされます。とは言っても、正規表現はLIKE関数が使用するのとは異なる特殊文字を使用します。
LIKE関数のパターンと違って正規表現は、明示的に正規表現が文字列の最初または最後からと位置指定されていない限り文字列内のどの位置でもマッチを行えます。
    


例を示します。


'abcd' ~ 'bc'     true
'abcd' ~ 'a.c'    true — dot matches any character
'abcd' ~ 'a.*d'   true — * repeats the preceding pattern item
'abcd' ~ '(b|x)'  true — | means OR, parentheses group
'abcd' ~ '^a'     true — ^ anchors to start of string
'abcd' ~ '^(b|c)' false — would match except for anchoring


    


POSIXパターン言語について以下により詳しく説明します。
    


2つのパラメータを持つsubstring関数、substring(string from pattern)を使用して、POSIX正規表現パターンにマッチする部分文字列を取り出すことができます。
この関数は、マッチするものがない場合にはNULLを返し、ある場合はパターンに最初にマッチしたテキストの一部を返します。
しかし、丸括弧を持つパターンの場合、最初の丸括弧内部分正規表現（左丸括弧が最初に来るもの）にマッチするテキストの一部が返されます。
この例外を起こさずにパターン中に丸括弧を使用したいのであれば、常に正規表現全体を丸括弧で囲むことができます。
パターン内の抽出対象の部分文字列より前に丸括弧が必要な場合、後述の捕捉されない丸括弧を参照してください。
    


例を示します。


substring('foobar' from 'o.b')     oob
substring('foobar' from 'o(.)b')   o


   


regexp_count関数は、POSIX正規表現パターンが文字列とマッチした箇所の数をカウントします。
この関数はregexp_count(string,pattern[,start[,flags]])という構文を持ちます。
patternはstringで検索されます。
通常は文字列の先頭から検索されますが、startパラメータが指定されている場合は、その文字インデックスから検索が開始されます。
flagsパラメータは、オプションのテキスト文字列であり、関数の動作を変更する0個以上の単一文字フラグを含みます。
 たとえば、flagsにiを含めると、大文字と小文字を区別しないマッチングを指定します。
サポートされているフラグは表9.24「ARE埋め込みオプション文字」で説明されています。
    


例を示します。


regexp_count('ABCABCAXYaxy', 'A.')          3
regexp_count('ABCABCAXYaxy', 'A.', 1, 'i')  4


    


regexp_instr関数は、文字列に対するPOSIX正規表現パターンのN番目のマッチの開始位置または終了位置を返します。
マッチがない場合は0を返します。
構文は、regexp_instr(string, pattern [, start [, N [, endoption [, flags [, subexpr
 ]]]]])を持ちます。
patternはstring内で検索されます。通常は文字列の先頭から検索されますが、startパラメータが指定されている場合は、その文字インデックスから検索が開始されます。
Nが指定されている場合は、パターンのN番目の一致が検索されます。
それ以外の場合は、最初の一致が検索されます。
endoptionパラメータが省略されているか0が指定されている場合、関数は一致の最初の文字の位置を返します。
それ以外の場合は、endoptionは1である必要があり、関数は一致の次の文字の位置を返します。
flagsパラメータは、関数の動作を変更する0個以上の単一文字フラグを含むオプションのテキスト文字列です。
サポートされているフラグは表9.24「ARE埋め込みオプション文字」で説明されています。
カッコで囲まれた部分式を含むパターンでは、subexprは対象の部分式を示す整数です。
結果は、その部分式に一致する部分文字列の位置を示します。
部分式は先頭のカッコの順に番号が付けられます。
subexprが省略されているか0の場合、結果はカッコで囲まれた部分式に関係なく、一致全体の位置を示します。
    


例を示します。


regexp_instr('number of your street, town zip, FR', '[^,]+', 1, 2)
                                   23
regexp_instr(string=>'ABCDEFGHI', pattern=>'(c..)(...)', start=>1, "N"=>1, endoption=>0, flags=>'i', subexpr=>2)
                                   6


    


regexp_like関数は、POSIX正規表現パターンの一致が文字列内にあるかどうかをチェックし、ブール値trueまたはfalseを返します。
構文はregexp_like（string,pattern[,flags]）です。
flagsパラメータは、関数の動作を変更する0個以上の単一文字フラグを含むオプションのテキスト文字列です。
サポートされているフラグは表9.24「ARE埋め込みオプション文字」で説明されています。
フラグが指定されていない場合、この関数は~演算子と同じ結果になります。
iフラグのみが指定されている場合、~*演算子と同じ結果になります。
    


例を示します。


regexp_like('Hello World', 'world')       false
regexp_like('Hello World', 'world', 'i')  true


    


regexp_match関数はPOSIX正規表現パターンを文字列にマッチさせた結果、一致した最初の部分文字列のテキスト配列を返します。
regexp_match(string, pattern [, flags ])の構文になります。
マッチするものがなければ、結果はNULLとなります。
マッチする部分があり、かつpatternが丸括弧で括られた部分文字列を含まない場合、結果はパターン全体にマッチする部分文字列を含む単一要素のテキスト配列となります。
マッチする部分があり、かつpatternが丸括弧で括られた部分文字列を含む場合、結果はテキスト配列で、そのn番目の要素はpatternのn番目に丸括弧で括られた部分文字列にマッチする部分文字列となります（「捕捉されない」丸括弧は数えません。詳細は以下を参照してください）。
flagsパラメータは、関数の動作を変更するゼロもしくは複数の単一文字フラグを含むオプションのテキスト文字列です。
有効なフラグは表9.24「ARE埋め込みオプション文字」に記載されています。
    


例を示します。


SELECT regexp_match('foobarbequebaz', 'bar.*que');
 regexp_match
--------------
 {barbeque}
(1 row)

SELECT regexp_match('foobarbequebaz', '(bar)(beque)');
 regexp_match
--------------
 {bar,beque}
(1 row)


   
ヒント


部分文字列全体を一致させたい、またはNULLを一致させたくないという一般的なケースでは、最善の解決策はregexp_substr()を使用することです。
しかし、regexp_substr()はPostgreSQL™バージョン15以降にしか存在しません。
古いバージョンで作業する場合、以下のようにregexp_match()の結果の最初の要素を抽出することができます。


SELECT (regexp_match('foobarbequebaz', 'bar.*que'))[1];
 regexp_match
--------------
 barbeque
(1 row)


     



regexp_matches関数はPOSIX正規表現パターンを文字列にマッチさせた結果、一致した部分文字列のテキスト配列の集合を返します。
構文はregexp_matchと同じです。
この関数は、マッチするものがないときは行を返しませんが、マッチするものがあり、gフラグが指定されていないときは1行だけ、マッチするものがN個あり、gフラグが指定されているときはN行を返します。
返される各行は上でregexp_matchについて説明したのと全く同じで、マッチする部分文字列全体、またはpatternの丸括弧で括られた部分文字列にマッチする部分文字列を含むテキスト配列です。
regexp_matchesは表9.24「ARE埋め込みオプション文字」に示すすべてのフラグに加え、最初のマッチだけでなくすべてのマッチを返すgを受け付けます。
    


例を示します。


SELECT regexp_matches('foo', 'not there');
 regexp_matches
----------------
(0 rows)

SELECT regexp_matches('foobarbequebazilbarfbonk', '(b[^b]+)(b[^b]+)', 'g');
 regexp_matches
----------------
 {bar,beque}
 {bazil,barf}
(2 rows)


   
ヒント


最初にマッチするものだけが必要なときはregexp_match()を使う方がより簡単で効率的ですから、regexp_matches()はほとんどの場合gフラグを指定して使われるでしょう。
しかし、regexp_match()はPostgreSQL™のバージョン10以上でのみ利用できます。
古いバージョンを使う時によくある手法は、以下の例のように、副SELECTの中にregexp_matches()の呼び出しを入れることです。


SELECT col1, (SELECT regexp_matches(col2, '(bar)(beque)')) FROM tab;



これはregexp_match()と同じく、マッチするものがあればテキスト配列を生成し、マッチしなければNULLとなります。
副SELECTを使わなければ、マッチするものがないテーブル行については問い合わせの出力が生成されず、多くの場合に期待される動作と異なります。
    



regexp_replace関数は、POSIX正規表現パターンに一致する部分文字列を新規テキストと置換します。
構文は、regexp_replace(string, pattern, replacement [, flags ])、またはregexp_replace(string, pattern, replacement, start [, N [, flags ]])です。
patternに一致しない場合は、元のstring文字列がそのまま返されます。
一致すると、一致した部分文字列をreplacement文字列で置換したstringが返されます。
replacement文字列に\n（nは1から9までの数字）を入れて、パターン内のn番目の丸括弧つき部分表現に一致する元の部分文字列を挿入することができます。
また、\&を入れて、パターン全体と一致する部分文字列を挿入することもできます。
置換テキスト内にバックスラッシュそのものを挿入する必要がある時は\\と記述します。
通常stringの先頭からpatternが文字列内で検索されますが、start引数が与えられるとその文字インデックスから検索されます。
デフォルトでは、最初に一致したパターンのみが置き換えられます。
Nが指定され、それがゼロよりも大きい時は、N番目に一致したパターンが置き換えられます。
gフラグが指定されているか、Nがゼロに指定されている場合は、start位置以降で一致するすべてのパターンが置き換えられます。
（gフラグはNが指定されている時は無視されます。）
flagsパラメータは、関数の動作を変更するゼロもしくはそれ以上の1文字フラグを含むオプションのテキスト文字列です。
有効なフラグ（gを除く）は表9.24「ARE埋め込みオプション文字」に記述されています。
    


例を示します。


regexp_replace('foobarbaz', 'b..', 'X')
                                   fooXbaz
regexp_replace('foobarbaz', 'b..', 'X', 'g')
                                   fooXX
regexp_replace('foobarbaz', 'b(..)', 'X\1Y', 'g')
                                   fooXarYXazY
regexp_replace('A PostgreSQL function', 'a|e|i|o|u', 'X', 1, 0, 'i')
                                   X PXstgrXSQL fXnctXXn
regexp_replace(string=>'A PostgreSQL function', pattern=>'a|e|i|o|u', replacement=>'X', start=>1, "N"=>3, flags=>'i')
                                   A PostgrXSQL function


   


regexp_split_to_table関数はPOSIX正規表現パターンを区切り文字として使用し、文字列を分割します。regexp_split_to_table(string, pattern [, flags ])の構文になります。
patternにマッチしない場合、関数はstringを返します。
少なくともひとつのマッチがあれば、それぞれのマッチに対して関数は最後のマッチの終わり（あるいは文字列の始め）から最初のマッチまでのテキストを返します。
もはやマッチしなくなると最後のマッチの終わりから文字列の最後までテキストを返します。
flagsパラメータは、関数の動作を変更するゼロもしくは複数の単一文字フラグを含むオプションのテキスト文字列です。
regexp_split_to_tableは表9.24「ARE埋め込みオプション文字」で記載されているフラグをサポートします。
    


regexp_split_to_array関数は、regexp_split_to_arrayがその結果をtext配列で返すことを除いて、regexp_split_to_tableと同じ動作をします。
regexp_split_to_array(string, pattern [, flags ])の構文になります。
パラメータはregexp_split_to_tableのものと同じです。
    


例を示します。


SELECT foo FROM regexp_split_to_table('the quick brown fox jumps over the lazy dog', '\s+') AS foo;
  foo
-------
 the
 quick
 brown
 fox
 jumps
 over
 the
 lazy
 dog
(9 rows)

SELECT regexp_split_to_array('the quick brown fox jumps over the lazy dog', '\s+');
              regexp_split_to_array
-----------------------------------------------
 {the,quick,brown,fox,jumps,over,the,lazy,dog}
(1 row)

SELECT foo FROM regexp_split_to_table('the quick brown fox', '\s*') AS foo;
 foo
-----
 t
 h
 e
 q
 u
 i
 c
 k
 b
 r
 o
 w
 n
 f
 o
 x
(16 rows)


   


最後の例が明らかにしているように、regexp分割関数は文字列の最初あるいは終わり、もしくは前のマッチの直後に発生する長さを持たないマッチを無視します。
他の正規表現関数で実装されたregexpマッチの厳格な定義にこれは相容れませんが、実務上は最も使い勝手の良い動作です。
Perlのような他のソフトウェアシステムも似たような定義を使用します。
   


regexp_substr関数は、POSIX正規表現パターンと一致する部分文字列を返します。
一致しない場合はNULLを返します。
regexp_substrstring,pattern[,start[,N[,flags[,subexpr]]]])の構文となっています。
patternはstring内で検索されます。通常は文字列の先頭から検索されますが、startパラメータが指定されている場合は、その文字インデックスから検索が開始されます。
Nが指定されている場合は、パターンのN番目に一致するものが返されます。
指定されていない場合は、最初に一致するものが返されます。
flagsパラメータは、関数の動作を変更する0個以上の単一文字フラグを含むオプションのテキスト文字列です。
サポートされているフラグは表9.24「ARE埋め込みオプション文字」で説明されています。
カッコで囲まれた部分式を含むパターンの場合、subexprは対象となる部分式を示す整数です。
結果はその部分式に一致する部分文字列になります。
部分式には、先頭のカッコの順に番号が付けられます。
subexprが省略されているか0の場合、結果はカッコで囲まれた部分式に関係なく全体に一致します。
    


例を示します。


regexp_substr('number of your street, town zip, FR', '[^,]+', 1, 2)
                                    town zip
regexp_substr('ABCDEFGHI', '(c..)(...)', 1, 1, 'i', 2)
                                   FGH


    
正規表現の詳細





PostgreSQL™の正規表現はHenry Spencerにより書かれたソフトウェアパッケージを使用して実装されています。
以下に説明する正規表現の多くの部分は同氏のマニュアルから一字一句複製したものです。
   


POSIX 1003.2の定義によると、正規表現（RE）には2つの形式があるとされます。拡張REもしくはERE（大まかにいってegrepに代表されるもの）、および基本REもしくはBRE（大まかにいってedに代表されるもの）です。
PostgreSQL™は両方の形式をサポートし、さらに、POSIX標準にはないけれどもPerlやTclなどのプログラミング言語で利用できることから広く使用されるようになった、いくつかの拡張もサポートしています。
本書では、非POSIX拡張を使用したREを高度なREもしくはAREと呼びます。AREはEREの正確な上位セットですが、BREとは複数の記法上の非互換な点があります（さらに非常に多くの制限が課されています）。
まず、AREとERE形式について説明し、そして、AREにのみ適用される機能の注意を、さらにBREとの違いについて説明します。
   
注記


PostgreSQL™は常に、まず正規表現はARE規則に従うと推測します。
しかし、REパターンの前に、「正規表現メタ構文」に記載されているような埋め込みオプションを追加することにより、より限られたERE、あるいはBRE規則を選択することができます。
これは、POSIX1003.2の規則を正確に期待しているアプリケーションとの互換性に関して有用です。
    



正規表現は|で区切られた、1つまたは複数のブランチとして定義されます。
ブランチのいずれか1つにマッチすればマッチしたことになります。
   


ブランチはゼロ個以上の量化アトムもしくは制約の連結です。
最初のものにマッチに、次に第２番目のものにマッチを、というふうにマッチします。なお、空のブランチは空文字列にマッチします。
   


量化アトムとは、単一の量指定子が後ろに付くアトムのことです。
量指定子がないと、アトムにマッチするものがマッチしたことになります。
量指定子がある場合、アトムとのマッチが何回あるかでマッチしたことになります。
アトムは、表9.17「正規表現のアトム」に示したもののいずれかを取ることができます。
  表9.18「正規表現量指定子」に設定可能な量指定子とその意味を示します。
   


制約は空文字に、特定の条件に合う場合のみにマッチします。
アトムを使用できるところには制約を使用することができます。ただしその後に量指定子を付けることはできません。
単純な制約を表9.19「正規表現制約」に示します。後で他のいくつかの制約を説明します。
   
表9.17 正規表現のアトム
	アトム	説明
	 (re) 	（ここでre は任意の正規表現で、）reとのマッチに適合するもです。 マッチは可能である報告用と意味づけられます。
	 (?:re) 	上と同じ。ただし、マッチは報告用と意味づけられません。（「捕捉されない」括弧の集合）（AREのみ）
	 . 	任意の1文字にマッチします。
	 [chars] 	
        ブラケット式。
        charsのいずれか1つにマッチします
       （詳細は「ブラケット式」を参照してください）。
       
	 \k 	（ここでkは英数字以外です。）普通の文字として指定した文字にマッチします。例えば、\\はバックスラッシュ文字です。
	 \c 	ここでcは英数字です
       （おそらく他の文字が後に続きます）。
       エスケープです。
       「正規表現エスケープ」を参照してください
       （AREのみ、EREとBREではこれはcにマッチします）。
       
	 { 	直後に数字以外がある場合、左中括弧{にマッチします。
直後に数字が続く場合、バウンド（後述）の始まりです。
	 x 	ここでxは他に意味を持たない1文字です。
xにマッチします。





REはバックスラッシュ\を終端とすることはできません。
   
注記


もしstandard_conforming_stringsパラメータをoffにしていた場合、リテラル文字列定数に記述するバックスラッシュは2倍必要となります。
  詳細は「文字列定数」を参照してください。
    

表9.18 正規表現量指定子
	量指定子	マッチ
	 * 	アトムの0個以上複数の並びにマッチ
	 + 	アトムの1個以上複数の並びにマッチ
	 ? 	アトムの0個または1個の並びにマッチ
	 {m} 	アトムの正確にm個の並びにマッチ
	 {m,} 	アトムのm個以上の並びにマッチ
	
       {m,n} 	 アトムのm個以上n以下の並びにマッチ。
mはnを超えることはできません。
	 *? 	*の最短マッチを行うバージョン
	 +? 	+の最短マッチを行うバージョン
	 ?? 	?の最短マッチを行うバージョン
	 {m}? 	{m}の最短マッチを行うバージョン
	 {m,}? 	{m,}の最短マッチを行うバージョン
	
       {m,n}? 	{m,n}の最短マッチを行うバージョン





{...}を使用する形式はバウンドとして知られています。
バウンド内のmとnという数は符号なし10進整数であり、0以上255以下の値を取ることができます。
   


最短マッチを行う量指定子（AREのみで使用可能）は、対応する通常の（欲張りの）ものと同じものにマッチしますが、最大のマッチではなく最小のマッチを取ります。
詳細は「正規表現マッチ規則」を参照してください。
   
注記


量指定子の直後に量指定子を続けることはできません。例えば**は無効です。
量指定子から式や副式を始めることはできず、また、^や|の直後に付けることもできません。
    

表9.19 正規表現制約
	制約	説明
	 ^ 	文字列の先頭にマッチ
	 $ 	文字列の末尾にマッチ
	 (?=re) 	先行肯定検索は、reにマッチする部分文字列が始まる任意の場所にマッチします（AREのみ）。
	 (?!re) 	先行否定検索は、reにマッチしない部分文字列が始まる任意の場所にマッチします（AREのみ）。
	 (?<=re) 	 後方肯定検索はreにマッチする部分文字列が終わる任意の場所にマッチします（AREのみ）。
	 (?<!re) 	 後方否定検索reにマッチしない部分文字列が終わる任意の場所にマッチします（AREのみ）。





先行検索制約および後方検索制約には後方参照（「正規表現エスケープ」を参照）を含めることはできません。また、その中の括弧は全て取り込むものではないとみなされます。
   

ブラケット式





ブラケット式とは、[]内の文字のリストです。
通常これはそのリスト内の任意の1文字にマッチします（しかし、以降を参照してください）。
リストが^から始まる場合、そのリストの残りにはない任意の1文字にマッチします。
リスト内の2文字が-で区切られていた場合、これは2つ（を含む）の間にある文字範囲全体を表す省略形となります。例えば、ASCIIにおける[0-9]は全ての数字にマッチします。
例えばa-c-eといった、終端を共有する2つの範囲は不正です。
範囲は並びの照合順に非常に依存しています。ですので、移植予定のプログラムではこれに依存してはなりません。
   


このリストに]そのものを含めるには、それを先頭文字（もしそれが使用されれば^の後）にしてください。
-そのものを含めるには、それを先頭もしくは末尾の文字とするか、範囲の2番目の終端としてください。
-を範囲の最初の終端で使用するには、[.と.]でそれを囲み、照合要素（後述）にしてください。
これら文字と、[（次段落を参照）のなんらかの組み合わせ、およびエスケープ（AREのみ）を例外として、他の全ての特殊文字はブラケット式内では特殊な意味を持ちません。
特に、\はEREとBRE規則に従う場合は特別でなくなります。しかし、AREでは（エスケープの始まりとして）特別な意味を持ちます。
   


ブラケット式内に、照合要素（文字、単一文字であるかのように照合する複数文字の並び、もしくはそれぞれの照合並びの名前）が[.と.]の間にあると、その照合要素の文字の並びを意味します。
この並びはブラケット式のリストの一要素として取り扱われます。
このことにより、ブラケット式は要素を照合する複数文字を含むブラケット式を1文字以上にマッチさせることができます。例えば、照合並びがch照合要素を含む場合、正規表現[[.ch.]]*cはchchccという文字の最初の5文字にマッチします。
   
注記


今のところ、PostgreSQL™は複数文字照合要素をサポートしません。
この情報は将来の振舞いの可能性を説明したものです。
    



ブラケット式内の[=と=]の間に照合要素は同値クラスです。全ての照合要素の文字の並びが自身を含むものと等価であることを示します。
（他に等価な照合要素がある場合、[.と.]で囲まれたかのように扱われます。）
例えば、[[=o=]]、[[=^=]]および[o^]が全て同意語であれば、oと^は同値クラスのメンバです。
同値クラスは範囲の終端にはなりません。
   


ブラケット式内では、[:と:]の間にある文字クラスの名称は、そのクラスに属する全ての文字のリストを意味します。
文字クラスは範囲の終端位置としては使用できません。
POSIX標準は以下の文字クラス名を定義しています。
alnum（文字と数字）、alpha（文字）、blank（空白とタブ）、cntrl（制御文字）、digit（数字）、graph（空白以外の印字可能文字）、lower（小文字）、print（空白を含む印字可能文字）、punct（句読点）、space（空白）、upper（大文字）、xdigit（16進数）です。
これらの標準文字クラスの振る舞いは7-bit ASCII集合の範囲であれば一般にどのプラットフォームでも同じです。
与えられた非ASCII文字がこれらの文字クラスに属すると考えられるかどうかは、正規表現関数または演算子（「照合順序サポート」参照）で使用される照合順、あるいはデフォルトとしてはデータベースのLC_CTYPEロケール（「ロケールのサポート」）の設定によります。
非ASCII文字の分類は、たとえ似たような名前のロケールであってもプラットフォームによって異なることがありえます。
（ただしCロケールでは、すべての非ASCII文字はこれらのクラスのどれにも所属しないものとされます。）
これらの標準クラスに加え、PostgreSQL™ではalnumと同様だがアンダースコア(_)文字を加えたword文字クラス、そして7-bit ASCII集合を正確に含むascii文字クラスが定義されています。
   


ブラケット式には2つの特殊な場合があります。[[:<:]]と[[:>:]]というブラケット式は、先頭と終端の単語がそれぞれ空文字であることにマッチする制約です。
単語は、単語文字が前後に付かない単語文字の並びとして定義されます。
単語文字とはword文字クラスに所属するすべての文字、すなわちすべての文字、数字、アンダースコアです。
これは、POSIX 1003.2との互換性はありますが、そこでは定義されていない式です。ですので、他システムへ移植予定のソフトウェアでの使用には注意が必要です。
通常後述の制約エスケープの方がよく使われます。これはもはや標準ではありませんが、入力しやすいものです。
   

正規表現エスケープ





エスケープとは、\から始まり英数字がその後に続く特殊な並びです。
エスケープには、文字エントリ、クラス省略、制約エスケープ、後方参照といった様々な変種があります。
\の後に英数字が続くけれども、有効なエスケープを構成しない並びはAREでは不正です。
EREにはエスケープはありません。ブラケット式の外側では、\の後に英数字が続く並びは単に普通の文字としてその文字を意味します。ブラケット式の内側では、\は普通の文字です。
（後者はEREとARE間の非互換性の1つです。）
   


文字エントリエスケープは非印字文字やRE内でその他の不便な文字の指定を簡略化するために存在します。
これらを表9.20「正規表現文字エントリエスケープ」に示します。
   


クラス省略エスケープは、あるよく使用される文字クラスの省略形を提供します。
これらを表9.21「正規表現クラス省略エスケープ」に示します。
   


制約エスケープは、指定した条件に合う場合に空文字にマッチする制約をエスケープとして表したものです。
これらを表9.22「正規表現制約エスケープ」に示します。
   


後方参照（\n）は、直前に括弧で囲まれた副式によってマッチされた、n番目の同一文字列にマッチします（表9.23「正規表現後方参照」を参照してください）。
  例えば、([bc])\1はbbもしくはccにマッチしますが、bcやcbにはマッチしません。REでは副式全体は後方参照の前になければなりません。
副式は開括弧の順番で番号付けされます。
取り込まない括弧は副式を定義しません。
後方参照は参照される副式にマッチした文字列のみを考慮し、そこに含まれる制約は考慮しません。
たとえば、(^\d)\1は22にマッチします。
   
表9.20 正規表現文字エントリエスケープ
	エスケープ	説明
	 \a 	C言語と同じ警報（ベル）文字
	 \b 	C言語と同じバックスペース
	 \B 	 バックスラッシュの必要な二重化回数を減らすためのバックスラッシュ（\）の同義語
	 \cX 	（ここでXは任意の文字で）その下位5ビットがXと同一、その他のビットが0となる文字 
	 \e 	照合順名がESCとなる文字、それに失敗したら、033という8進数値を持つ文字。
	 \f 	C言語と同じ改ページ
	 \n 	C言語と同じ改行
	 \r 	C言語と同じ復帰
	 \t 	C言語と同じ水平タブ
	 \uwxyz 	（ここでwxyzは正確に4桁の16進数で）その16進数での値が0xwxyzという文字
       
	 \Ustuvwxyz 	（ここでstuvwxyzは正確に8桁の16進数で）その16進数での値が0xstuvwxyzという文字
       
	 \v 	C言語と同じ垂直タブ
	 \xhhh 	（ここでhhhは任意の16進数の並びで）その文字の16進数値が0xhhhとなる文字（使用される16進数の桁数にかかわらず単一の文字）
       
	 \0 	その値が0（NULLバイト）となる文字
	 \xy 	（ここでxyは正確に2桁の8進数で、後方参照ではない）その値が0xyとなる文字
	 \xyz 	（ここでxyzは正確に3桁の8進数で、後方参照ではない）その値が0xyzとなる文字





16進数の桁とは0-9、a-f、A-Fです。
8進数の桁とは0-7です。
   


ASCIIの範囲(0-127)外の値を指定した数字のエントリエスケープは、その意味がデータベースエンコーディングに依存します。
エンコーディングがUTF-8の場合、エスケープ値はユニコード符号位置に相当します。例えば、\u1234は文字U+1234を意味します。
その他のマルチバイトエンコーディングでは、文字エントリエスケープはたいてい文字のバイト値の連結を指定します。
エスケープ値がデータベースエンコーディングでのいかなる正当な文字にも対応しない場合、エラーは起こりませんが、いかなるデータにもマッチしません。
   


この文字エントリエスケープは常に普通の文字と解釈されます。
例えば、\135はASCIIの]となり、\135はブラケット式の終端にはなりません。
   
表9.21 正規表現クラス省略エスケープ
	エスケープ	説明
	 \d 	[[:digit:]]のようなすべての数字にマッチします。
	 \s 	[[:space:]]のようなすべての空白文字にマッチします。
	 \w 	[[:word:]]のようなすべての単語文字にマッチします。
	 \D 	[^[:digit:]]のようなすべての非数字にマッチします。
	 \S 	[^[:space:]]のようなすべての非空白文字にマッチします。
	 \W 	[^[:word:]]のようなすべての非単語文字にマッチします。





クラス省略エスケープはブラケット式の中でも使えますが、上に示した定義はそのコンテキストでは構文的に正しいとは言えません。
たとえば[a-c\d]は[a-c[:digit:]]と同様です。
   
表9.22 正規表現制約エスケープ
	エスケープ	説明
	 \A 	文字列の先頭にのみマッチします（^との違いについては「正規表現マッチ規則」を参照してください）。
	 \m 	 単語の先頭にのみマッチします。 
	 \M 	 単語の末尾にのみマッチします。 
	 \y 	 単語の先頭もしくは末尾にのみマッチします。
	 \Y 	単語の先頭もしくは末尾以外の場所にのみマッチします。
	 \Z 	文字列の末尾にのみマッチします（$との違いについては「正規表現マッチ規則」を参照してください）。





    単語は前述の[[:<:]]と[[:>:]]の規定通りに定義されます。ブラケット式内では制約エスケープは不正です。
   
表9.23 正規表現後方参照
	エスケープ	説明
	 \m 	（ここでmは非ゼロの数です。）副式のm番目への後方参照
	 \mnn 	（ここでmは非ゼロの数です。nnでさらに桁を指定します。mnn10進数値は取り込み括弧の数よりも多くてはなりません。）副式のmnn番目への後方参照



注記


8進数の文字エントリエスケープと後方参照の間には曖昧性があります。上でヒントとして示したようにこれは以下の発見的手法で解決されます。
先頭の0は常に8進数エスケープを示します。
その後に数字が続かない単一の非ゼロ数字は常に後方参照として解釈されます。
ゼロから始まらない複数数字の並びは、適切な副式の後にあれば（つまり、その番号が後方参照用の範囲内にあれば）後方参照として解釈されます。さもなくば、8進数として解釈されます。
    


正規表現メタ構文





上述の主構文の他に、特殊な形式や雑多な構文的な機能が使用可能です。
   


REは、2つの特殊な決定子前置詞のどちらかから始まります。
REが***:から始まるものであれば、REの残りはAREと解釈されます。
(PostgreSQL™はREをAREとして推測するため、通常は影響を受けません。ただし、正規表現関数に対してflagsパラメータを指定されたEREやBREモードでは影響を受けます。)
REが***=から始まるものであれば、REの残りは、全ての文字を普通の文字とみなしたリテラル文字列と解釈されます。
   


AREは埋め込みオプションから始められます。(?xyz)という並びで残りのREに影響するオプションを指定します（ここでxyzは1つ以上の英字です）。
このオプションは、事前に決定されたオプションを上書きします。— 特に、正規表現演算子、もしくは正規表現関数に与えられたflagsパラメータにより示される大文字小文字の区別を上書きします。
使用可能なオプション文字を表9.24「ARE埋め込みオプション文字」に示します。
これらの同じオプション文字が、正規表現関数のflagsパラメータで使用されることに注意して下さい。
   
表9.24 ARE埋め込みオプション文字
	オプション	説明
	 b 	 残りのREはBRE 
	 c 	 大文字小文字を区別するマッチ（演算子で規定される大文字小文字の区別よりこの指定が優先されます）。 
	 e 	 残りのREはERE 
	 i 	 大文字小文字を区別しないマッチ（「正規表現マッチ規則」を参照）（演算子で規定される大文字小文字の区別よりこの指定が優先されます）。 
	 m 	 nの歴史的な同義語 
	 n 	 改行を区別するマッチ（「正規表現マッチ規則」を参照）
	 p 	 部分的な改行を区別するマッチ（「正規表現マッチ規則」を参照）
	 q 	 残りのREはリテラル（「引用符付けされた」）文字列、全て普通の文字
	 s 	 改行を区別しないマッチ（デフォルト）
	 t 	 厳しめの構文（デフォルト、後述） 
	 w 	 部分的な改行区別の逆（「ワイアード」）マッチ（「正規表現マッチ規則」を参照）
	 x 	 拡張構文（後述） 





埋め込みオプションはその並びの終端)で有効になります。
AREの先頭（もし***:決定子があればその後）でのみ利用可能です。
   


全ての文字が意味を持つ、通常の（厳しめの）RE構文に加え、x埋め込みオプションを指定することで利用できる拡張構文があります。
拡張構文では、RE内の空白文字は無視され、#とその後の改行（もしくはREの終端）の間の全ての文字も同様です。
これにより、段落付けや複雑なREのコメント付けが可能になります。
基本規則に対して3つの例外があります。

    
	

直前に\が付いた空白文字もしくは#は保持されます。
      

	

ブラケット式内の空白文字もしくは#は保持されます。
      

	

(?:などの複数文字シンボルでは、空白文字とコメントは不正です。
      






ここでの空白文字とは、空白、タブ、改行、スペース文字クラスに属する文字です。
   


最後に、AREのブラケット式の外側では、(?#ttt)という並びは完全に無視されるコメントになります（ここでtttは）を含まない任意のテキストです）。
繰り返しになりますが、これは(?:などの複数文字シンボルの文字間では使用できません。
こうしたコメントは実用性というより歴史的所産です。そのため、この使用は勧めません。代わりに拡張構文を使用してください。
   


初めに***=決定子が指定され、ユーザの入力がREではなくリテラルとして扱われる場合、これらのメタ構文拡張は使用できません。
   

正規表現マッチ規則





REが文字列の中の1つ以上の部分文字列とマッチする場合において、REは最初にマッチが始まった部分文字列とマッチします。
その位置からまた1つ以上の部分文字列とマッチした際は、正規表現は最短マッチを行わない（欲張り型）か最短マッチを行う（非欲張り型）かによって、最長マッチもしくは最短マッチの文字列のどちらかにマッチします
   


REが最長マッチかどうかは以下の規則によって決まります。
    
	

ほとんどのアトムと全ての制約は欲張り属性を持ちません（これらは変動する量のテキストにまったくマッチしないからです）。
      

	

REを括弧で括ることは欲張りかどうかを変更しません。
      

	

{m}もしくは{m}?といった固定繰り返し数の量指定子を持つ量指定付きアトムは、アトム自身と同一の欲張りさを持ちます（まったく持たない可能性もあります）。
      

	

他の通常の量指定子（{m,n}、mとnが等しい場合も含みます）を持つ量指定付きアトムは欲張り型です（最長マッチを使用します）。
      

	

他の非欲張り型量指定子（{m,n}?、mとnが等しい場合も含みます）を持つ量指定付きアトムは非欲張り型です（最短マッチを使用します）。
      

	

最上位レベルの|演算子を持たないREであるブランチは、最初の欲張り属性を持つ量指定付きアトムと同一の欲張り属性を持ちます。
      

	

|演算子で接続された2つ以上のブランチからなるREは常に欲張り型です。
      




   


上の規則は、個々の量指定付きアトムだけではなく、量指定付きアトムを複数含むブランチやRE全体の欲張り属性に関連します。
つまり、ブランチやRE全体が全体として最長または最短の部分文字列にマッチするという方法でマッチ処理が行われます。
全体のマッチの長さが決まると、特定の部分式にマッチする部分がその部分式の欲張り属性によって決まります。この時、RE内でより前にある部分式が後にある部分式よりも高い優先度を持ちます。
   


この意味の例を示します。


SELECT SUBSTRING('XY1234Z', 'Y*([0-9]{1,3})');
Result: 123
SELECT SUBSTRING('XY1234Z', 'Y*?([0-9]{1,3})');
Result: 1



最初の例では、Y*が欲張り型であるため、REは全体として欲張り型です。
マッチはYの位置から始まり、そこから可能な限り最長の文字列にマッチします。つまりY123となります。
出力は括弧で括られた部分、つまり123となります。
2番目の例では、Y*?が非欲張り型のため、REは全体として非欲張り型です。
マッチはYの位置から始まり、そこから可能な限り最短の文字列にマッチします。つまりY1となります。
部分式[0-9]{1,3}は欲張り型ですが、決定されたマッチする全体の長さを変更することはできません。したがって、強制的に1にマッチすることになります。
   


まとめると、REが欲張り型部分式と非欲張り型部分式の両方を持つ場合、全体のマッチ長はRE全体に割り当てられる属性に応じて、最長マッチ長か最短マッチ長のどちらかになります。
部分式に割り当てられた属性は、部分式の中でどれだけの量をその部分式の中で「消費」できるかのみに影響します。
   


{1,1}および{1,1}?量指定子を副式もしくはRE全体に使用して、それぞれ、欲張りか欲張りでないかを強制することが可能です。
RE全体に対してはその要素から推論されるものと異なる欲張りさの属性が必要な場合に、これは便利です。
例として、数字をいくつか含む文字列を数字とその前後の部分に分けようとしているとします。
次のようにしてみるかもしれません。


SELECT regexp_match('abc01234xyz', '(.*)(\d+)(.*)');
Result: {abc0123,4,xyz}



上手くいきませんでした。最初の.*が欲張りで、可能なだけ「消費」してしまい、\d+は最後の可能な場所で最後の数字にマッチします。
欲張りでなくすることで直そうとするかもしれません。


SELECT regexp_match('abc01234xyz', '(.*?)(\d+)(.*)');
Result: {abc,0,""}



またもや上手くいきませんでした。今度は、REが全体として欲張りでなくなってしまい、できる限り早く全体に渡るマッチを終わらせてしまうからです。
RE全体として欲張りにすることで欲しいものが得られます。


SELECT regexp_match('abc01234xyz', '(?:(.*?)(\d+)(.*)){1,1}');
Result: {abc,01234,xyz}



REの全体に渡る欲張りさをその要素の欲張りさと別に制御すれば、可変長のパターンを非常に柔軟に扱えます。
   


マッチが長いか短いかを判断する時には、マッチの長さは照合要素ではなく文字列で測られます。
空文字列はまったくマッチする要素がない文字列よりも長いと考えられます。
例えば、bb*はabbbcの真中の3文字とマッチし、(week|wee)(night|knights)はweeknightsの全ての10文字とマッチし、abcに対して(.*).*がマッチされると、括弧内の部分正規表現は3つの文字全てにマッチし、bcに対して(a*)*がマッチされると、全体のREと括弧内の正規表現は空文字列にマッチします。
   


もし大文字小文字を区別しないマッチが指定されると、アルファベット文字の大文字小文字の区別がまったくなくなったのと同じ効果を与えます。
ブラケット式の外側にアルファベットの大文字小文字が混ざった通常の文字が出てきた場合、例えば、xが[xX]となるように大文字小文字ともにブラケット式に実質的に転換されます。
ブラケット式の中に現れた時は、（例えば）[x]が[xX]となり、また[^x]が[^xX]となるように、全ての大文字小文字それぞれの対がブラケット式に追加されます。
   


改行を区別するマッチが指定されると、.と^を使用するブラケット式は（REが明示的に改行を含まない限りマッチが行をまたがらないようにするために）改行文字にマッチしなくなります。また、^と$はそれぞれ改行直後と直前の空文字列にマッチし、さらに、それぞれ文字列の先頭と末尾にマッチします。
しかし、AREエスケープの\Aと\Zは、継続して、文字列の先頭と末尾のみにマッチします。
また、文字クラス短縮形\Dと\Wこのモードが何であれ改行にマッチします。
（PostgreSQL™ 14より前では、改行敏感モードのときはこれらは改行にマッチしませんでした。
古い挙動で動かすには[^[:digit:]]あるいは[^[:word:]]と書いてください。）
   


部分的に改行を区別するマッチが指定されると、.とブラケット式は改行を区別するマッチを行うようになりますが、^と$は変更されません。
   


部分的に改行を区別する逆マッチが指定されると、^と$は改行を区別するマッチを行うようになりますが、.とブラケット式は変更されません。
これはあまり有用ではありません。対称性のために提供されています。
   

制限と互換性





本実装ではREの長さに関する制限はありません。
しかし、移植性を高めたいプログラムでは、256バイトを超えるREを使用すべきではありません。POSIX互換の実装ではそうしたREでは混乱する可能性があります。
   


AREの機能のうち、POSIX EREと実質的な非互換性があるのは、\がブラケット式の内側で特殊な意味を失わないという点のみです。
他の全てのARE機能は、POSIX EREでは不正、未定義、未指定な効果となる構文を使用しています。決定子の***構文などはBREおよびEREのPOSIX構文にはありません。
   


多くのARE拡張はPerlから拝借したものです。
しかし、いくつかは整理され、Perlの拡張のいくつかは存在しません。
注意すべき非互換性には、\b、\B、改行の取り扱いに関する特殊な措置の欠落、改行を区別するマッチに影響する点について補足したブラケット式の追加、括弧と先行・後方検索制約内の後方参照についての制限、最長/最短（最初にマッチするではなく）マッチのセマンティクスがあります。
   

基本正規表現





BREはEREといくつかの面において異なります。
BREにおいては、|、+、?は普通の文字であり、それらの機能と等価なものはありません。
バウンドの区切りは\{と\}であり、{と}自身は普通の文字です。
副式を入れ子にするための括弧は\(と\)であり、(と)自身は普通の文字です。
^は、REの先頭にある場合や括弧内の副式の先頭の場合を除き、普通の文字です。
$は、REの末尾にある場合や括弧内の副式の末尾の場合を除き、普通の文字です。
また、*はREの先頭にある場合や括弧内の副式の先頭にある場合には普通の文字になります（その前に^が付いている可能性もあります）。
最後に、1桁の後方参照を使用することができ、また、BREにおいては、\<と\>はそれぞれ[[:<:]]と[[:>:]]と同義です。
その他のエスケープはBREでは使用できません。
   

標準SQLおよびXQueryとの違い





SQL:2008以降、標準SQLには正規表現演算子と、XQuery正規表現標準に従ってパターンマッチングを実行する関数が含まれています。
     
	LIKE_REGEX

	OCCURRENCES_REGEX

	POSITION_REGEX

	SUBSTRING_REGEX

	TRANSLATE_REGEX





PostgreSQL™は現在これらの演算子や関数を実装していません。
表9.25「同等の正規表現関数」に示すように、それぞれの場合でほぼ同等の機能を得ることができます。
（この表では両側のさまざまなオプション句を省略しています。）
    
表9.25 同等の正規表現関数
	標準SQL	PostgreSQL™
	string LIKE_REGEX pattern	regexp_like(string, pattern) or string ~ pattern
	OCCURRENCES_REGEX(pattern IN string)	regexp_count(string, pattern)
	POSITION_REGEX(pattern IN string)	regexp_instr(string, pattern)
	SUBSTRING_REGEX(pattern IN string)	regexp_substr(string, pattern)
	TRANSLATE_REGEX(pattern IN string WITH replacement)	regexp_replace(string, pattern, replacement)





PostgreSQLで提供されているものと同様の正規表現関数は、他の多くのSQL実装でも利用できますが、標準SQL関数はそれほど広く実装されていません。
正規表現構文の詳細のいくつかは、実装によって異なる可能性があります。
    


標準SQLの演算子と関数は、上で述べたARE構文に極めて近いXQuery正規表現を使用しています。
既存のPOSIXベースの正規表現機能とXQueryの正規表現の主な違いには以下のものが含まれます。

     
	

XQueryの文字クラス減算はサポートされていません。
この機能の例としては、[a-z-[aeiou]]のようにして英語の子音のみにマッチさせるというのがあります。
       

	

XQueryの文字クラス短縮形\c、\C、\i、\Iはサポートされていません。
       

	

\p{UnicodeProperty}あるいはその逆である\P{UnicodeProperty}を使ったXQueryの文字クラス要素はサポートされていません。
       

	

POSIXは有効なロケール（演算子あるいは関数のCOLLATE句で制御できます）にしたがい、\w（表9.21「正規表現クラス省略エスケープ」参照）のような文字クラスを解釈します。
XQueryはこれらのクラスをUnicodeの文字属性を参照してこれらのクラスを決定します。
ですからUnicodeルールに従うロケールを使用してのみ同等の振る舞いを得ることができます。
       

	

標準SQL（XQuery自身ではなく）はPOSIXが提供するより多様な「newline」の亜種を提供しようとしています。
上で述べた改行に敏感なマッチオプションはASCII NL（\n）だけを改行として考慮します。
しかしSQLはCR （\r）、CRLF （\r\n）（Windowsスタイルの改行）、LINE SEPARATOR (U+2028)のようなUnicodeのみの文字も改行として扱うことを求めています。
とりわけ、SQLにおいては、.と\sは\r\nを2文字ではなく、1文字として数える必要があります。
       

	

表9.20「正規表現文字エントリエスケープ」で示す文字エントリエスケープのうち、XQueryは\n、\r、\tだけをサポートしています。
       

	

XQueryはブラケット式内の文字クラスとして[:name:]構文をサポートしていません。
       

	

XQueryには先行検索制約および後方検索制約がありませんし、表9.22「正規表現制約エスケープ」に記述された制約エスケープもありません。
       

	

「正規表現メタ構文」に記述されたメタ構文形式はXQueryには存在しません。
       

	

XQueryで定義された正規表現フラグ文字はPOSIX（表9.24「ARE埋め込みオプション文字」）のオプション文字に関連していますが、同じではありません。
iとqオプションは同じように振る舞いますが、その他は違います。
        
	

XQueryのs（ピリオドが改行にマッチすることを許容する）とm（^と$が改行位置でマッチすることを許容する）フラグは、POSIXのn、p、wフラグと同じ挙動を提供しますが、POSIXのsとmフラグの挙動とは一致しません。
ピリオドが改行にマッチするのはPOSIXではデフォルトの挙動ですが、XQueryではそうでないことに留意してください。
          

	

XQueryのx（パターン中の空白を無視する）フラグはPOSIXの拡張モードフラグとは著しく異なります。
POSIXのxフラグは#でパターン中のコメントを始めることもできます。
POSIXはバックスラッシュ以降の空白文字を無視しません。
          




       




    



データ型書式設定関数





PostgreSQL™の書式設定関数は多彩なデータ型（日付/時刻データ型、整数データ型、浮動小数点数データ型、数値データ型）を整形された文字列に変換したり、整形された文字列を特定のデータ型に変換する強力なツールの一式を提供しています。
表9.26「書式設定関数」にこれらを列挙しています。
これら関数は共通の呼び出し規約を踏襲しています。最初の引数は整形される値で2番目の引数は入力書式または出力書式を定義するテンプレートです。
   
表9.26 書式設定関数
	

関数
       

       

説明
       

       

例
       

	
        
        to_char ( timestamp, text )
        text
       

       
        to_char ( timestamp with time zone, text )
        text
       

       

与えられた書式設定にしたがってタイムスタンプを文字列に変換します。
       

       
        to_char(timestamp '2002-04-20 17:31:12.66', 'HH12:MI:SS')
        05:31:12
       

	
        to_char ( interval, text )
        text
       

       

与えられた書式設定にしたがって時間間隔を文字列に変換します。
       

       
       to_char(interval '15h 2m 12s', 'HH24:MI:SS')
       15:02:12
       

	
        to_char ( numeric_type, text )
        text
       

       

与えられた書式設定にしたがって数値を文字列に変換します。integer、bigint、numeric、real、double precisionで利用可能です。
       

       
        to_char(125, '999')
        125
       

       
        to_char(125.8::real, '999D9')
        125.8
       

       
        to_char(-125.8, '999D99S')
        125.80-
       

	
        
        to_date ( text, text )
        date
       

       

与えられた書式設定にしたがって文字列を日付に変換します。
       

       
        to_date('05 Dec 2000', 'DD Mon YYYY')
        2000-12-05
       

	
        
        to_number ( text, text )
        numeric
       

       

与えられた書式設定にしたがって文字列を数値に変換します。
       

       
        to_number('12,454.8-', '99G999D9S')
        -12454.8
       

	
        
        to_timestamp ( text, text )
        timestamp with time zone
       

       

与えられた書式設定にしたがって文字列をタイムスタンプに変換します。
（表9.33「日付/時刻関数演算子」のto_timestamp(double precision)もご覧ください。）
       

       
        to_timestamp('05 Dec 2000', 'DD Mon YYYY')
        2000-12-05 00:00:00-05
       




ヒント


to_timestampとto_dateは、単純なキャストでは変換できない入力フォーマットを処理するために存在します。
ほとんどの標準的日付および時刻のフォーマットに対しては、入力文字列を必要なデータ型に単純にキャストすれば動作し、その方がずっと簡単です。
同様に、to_numberも標準的な数値表現に対しては不要です。
    



to_char用の出力テンプレート文字列には、値に基づいて認識され、適切に整形されたデータで置き換えられるパターンがあります。
テンプレートパターンではない全てのテキストは単にそのままコピーされます。
同様に、（その他の関数用の）入力テンプレート文字列では、テンプレートパターンは入力されたデータ文字列で供給される値を特定します。
テンプレート文字列中にテンプレートパターンではない文字があれば、（テンプレート文字列の文字と同じかどうかにかかわらず）入力文字列データ中の該当文字は単にスキップされます。
   


表9.27「日付/時刻型の書式テンプレートパターン」に、日付/時刻型の値の書式に使用可能なテンプレートパターンを示します。
  
表9.27 日付/時刻型の書式テンプレートパターン
	パターン	説明
	HH	時 (01–12)
	HH12	時 (01–12)
	HH24	時 (00–23)
	MI	分 (00–59)
	SS	秒 (00–59)
	MS	ミリ秒 (000–999)
	US	マイクロ秒 (000000–999999)
	FF1	10分の1秒 (0–9)
	FF2	100分の1秒 (00–99)
	FF3	ミリ秒 (000–999)
	FF4	10分の1ミリ秒 (0000–9999)
	FF5	100分の1ミリ秒 (00000–99999)
	FF6	マイクロ秒 (000000–999999)
	SSSS, SSSSS	深夜0時からの秒数 (0–86399)
	AM、am、PMまたはpm	午前/午後の指定（ピリオドなし）
	A.M.、a.m.、P.M.またはp.m.	午前/午後の指定（ピリオドあり）
	Y,YYY	カンマ付き年（4桁以上）
	YYYY	年（4桁以上）
	YYY	年の下3桁
	YY	年の下2桁
	Y	年の下1桁
	IYYY	ISO 8601週番号年（4桁以上）
	IYY	ISO 8601週番号年の下3桁
	IY	ISO 8601週番号年の下2桁
	I	ISO 8601週番号年の下1桁
	BC、bc、
        AD、またはad	紀元前後の指定（ピリオドなし）
	B.C.、b.c.、
        A.D.、またはa.d.	紀元前後の指定（ピリオド付き）
	MONTH	大文字での完全な月名（9文字になるように空白文字を埋める）
	Month	大文字で書き始める完全な月名（9文字になるように空白文字を埋める）
	month	小文字での完全な月名（9文字になるように空白文字を埋める）
	MON	大文字での短縮形の月名（英語では3文字、ローカライズ化された場合は可変長）
	Mon	大文字で書き始める短縮形の月名（英語では3文字。ローカライズ化された場合は可変長）
	mon	小文字での短縮形の月名（英語では3文字。ローカライズ化された場合は可変長）
	MM	月番号(01–12)
	DAY	大文字での完全な曜日名（9文字になるように空白文字を埋める）
	Day	大文字で書き始める完全な曜日名（9文字になるように空白文字を埋める）
	day	小文字での完全な曜日名（9文字になるように空白文字を埋める）
	DY	短縮形の大文字での短縮形の曜日名（英語では3文字。ローカライズ化された場合は可変長）
	Dy	大文字で書き始める短縮形の曜日名（英語では3文字。ローカライズ化された場合は可変長）
	dy	小文字での短縮形の曜日名（英語では3文字。ローカライズ化された場合は可変長）
	DDD	通年の日にち番号 (001–366)
	IDDD	ISO 8601週番号年の日にち番号（001–371：通年 第１日は最初のISO週の月曜日）
	DD	月内の日にち番号 (01–31)
	D	曜日番号、日曜日（1）から土曜日（7）まで
	ID	ISO 8601の曜日番号、月曜日（1）から日曜日（7）まで
	W	月中の週番号 (1–5)（その月の初日がある週が第1週）
	WW	年間を通じた週番号 (1–53)（元日のある週が第1週）
	IW	ISO 8601週番号年の年間を通じた週番号（01–53;新年の最初の木曜日がある週が第1週）
	CC	世紀（2桁。21世紀は2001-01-01から開始）
	J	ユリウス日（紀元前4714年11月24日現地時間午前零時からの整数による通算経過日。「ユリウス日(Julian Date)」参照）
	Q	四半期
	RM	大文字ローマ数字による月（I–XII、Iは1月）
	rm	小文字ローマ数字による月（i–xii、iは1月）
	TZ	大文字の時間帯省略形
	tz	小文字の時間帯省略形
	TZH	time-zoneの時間
	TZM	time-zoneの分
	OF	UTCからの時間帯オフセット（HHあるいはHH:MM）





どのようなテンプレートパターンに対しても、その振舞いを変更するために修飾子を適用できます。
例えば、FMMonthはFM修飾子の付いたMonthパターンです。
表9.28「日付/時刻書式用のテンプレートパターン修飾子」に、日付/時刻書式の修飾子パターンを示します。
   
表9.28 日付/時刻書式用のテンプレートパターン修飾子
	修飾子	説明	例
	FM接頭辞	字詰めモード（先頭の0、およびを空白のパディングを無効）	FMMonth
	TH接尾辞	大文字による序数接尾辞	DDTH、例えば12TH
	th接尾辞	小文字による序数接尾辞	DDth、例えば12th
	FX接頭辞	固定書式のグローバルオプション（使用上の注意事項を参照）	FX Month DD Day
	TM接頭辞	翻訳モード（lc_timeに基づき、ローカライズ化された曜日、月名を使います）	TMMonth
	SP接尾辞	スペルモード（未実装）	DDSP





日付/時刻型書式の使用上の注意事項は次のとおりです。

    
	

FMは、先頭にはゼロ、末尾には空白を追加してパターンを固定長にする機能を無効にします。
PostgreSQL™では、FMはその次に記述されたものだけを変更します。一方Oracleでは、FMはそれに続く全ての記述に対して影響し、FM修飾詞を繰り返すと、ゼロや空白を埋めるモードのオンとオフが切り替わります。
      

	

FMが指定されているかどうかに関わらずTMは末尾の空白を抑止します。
      

	

to_timestampとto_dateは入力中の大文字小文字の区別を無視します。
例えばMON、Mon、monはすべて同じ文字列として受け付けます。
TM修飾子を使うと関数の入力照合順のルールにしたがって大文字小文字の変換が行われます。（「照合順序サポート」参照。）
      

	

FXオプションが使用されていない限り、to_timestampとto_dateは入力文字列内最初の連続した空白と、日付と時間の値の周辺の複数の空白を無視します。
例えば、to_timestamp('2000    JUN', 'YYYY MON')とto_timestamp('2000 - JUN', 'YYYY-MON')は動作しますが、to_timestamp('2000    JUN','FXYYYY MON')はエラーを返します。
後者のto_timestampは単一のスペースだけがあることを期待するからです。
FXはテンプレートの第1項目として指定される必要があります。
      

	

FXオプションが使用されていない限り、to_timestampとto_dateのテンプレート文字列中の区切り文字（空白あるいは記号文字（訳注：原文は"non-letter/non-digit character"））は入力文字中のすべての単一の区切り文字とマッチするか、あるいはマッチしない場合はスキップします。
たとえば、to_timestamp('2000JUN', 'YYYY///MON')とto_timestamp('2000/JUN', 'YYYY MON')は動作しますが、to_timestamp('2000//JUN', 'YYYY/MON')は入力文字列中の区切り文字の数がテンプレート中の区切り文字の数を上回っているため、エラーを返します。
      


FXが指定されていると、テンプレート文字列中の区切り文字は正確に入力文字列中の一文字とマッチします。
しかし、入力文字列の文字はテンプレート文字列中の区切り文字と一致する必要はないことに注意してください。
たとえば、to_timestamp('2000/JUN', 'FXYYYY MON')は動作しますが、to_timestamp('2000/JUN', 'FXYYYY  MON')はテンプレート文字列中の二番目の空白が入力文字列中の文字Jを消費するため、エラーを返します。
      

	

TZHテンプレートパターンは符号付きの数字とマッチします。
FXオプションが無い場合、マイナス符号は曖昧で、区切り文字として解釈されるかも知れません。
この曖昧さは次のようにして解消されます。
テンプレート文字列中のTZHの前の区切り文字の数が入力文字列中のマイナス符号の前の区切り文字の数よりも少なければ、そのマイナス符号はTZHの一部として解釈されます。
そうでない場合、マイナス記号が値の区切り記号と見なされます。
たとえば、to_timestamp('2000 -10', 'YYYY TZH')では-10がTZHにマッチしますが、to_timestamp('2000 -10', 'YYYY  TZH')では10がTZHにマッチします。
      

	

to_charテンプレートには、通常のテキストを入れることができ、それはそのまま出力されます。
部分文字列を二重引用符で括ることで、部分文字列にテンプレートパターンがあったとしても、強制的にリテラルテキストとして解釈させることができます。
例えば、'"Hello Year "YYYY'ではYYYYは年データに置換されてしまいますが、Year内のYは置換されません。
to_date、to_number、to_timestampでは、二重引用符で括られた文字の数だけ入力された文字をスキップします。例えば"XX"は2文字の入力文字（それがXXであるかどうかにかかわらず）をスキップします。
      
ヒント


PostgreSQL™ 12より前では、記号文字（訳注：原文は"non-letter or non-digit"）を使って入力文字列中の任意のテキストをスキップすることが可能でした。
たとえば、to_timestamp('2000y6m1d', 'yyyy-MM-DD')は動作しました。
現在は、この目的のために非記号文字（訳注：原文は"letter characters"）だけを使うことができます。
たとえば、to_timestamp('2000y6m1d', 'yyyytMMtDDt')とto_timestamp('2000y6m1d', 'yyyy"y"MM"m"DD"d"')は、y、m、dをスキップします。
        


	

出力に二重引用符を付けたい場合、'\"YYYY Month\"'のようにその前にバックスラッシュを付けなければなりません。
バックスラッシュは、二重引用符の外側では特別扱いされません。
二重引用符の内側では、バックスラッシュによって次の文字が何であれ文字通りに扱われるようになります。
（しかし、次の文字が二重引用符であるか、あるいは別のバックスラッシュでない限り、これは特別な効果をもたらしません。）
      

	

to_timestampにおいてto_date、YYYの様に4桁未満の年書式が指定され、かつ与えられる年が4桁未満だった場合、年は2020年に最も近くなるよう調整されます。例えば、95の場合は1995年になります。
      

	

to_timestampおよびto_dateにおいて負の年はBCを表します。
負の年と明示的なBCフィールドの両方を記述すると、再びADになります。
すべての形のゼロ年はBC 1として扱われます。
      

	

to_timestampとto_dateでは、4桁より多い年を処理する際にYYYY変換に制限があります。
YYYYの後には数字以外の文字かテンプレートを使用しなければなりません。
そうしないと、年は常に4桁と解釈されます。
例えば（20000年として）、to_date('200001130', 'YYYYMMDD')は4桁の年として解釈されます。
代わりに、to_date('20000-1130', 'YYYY-MMDD')やto_date('20000Nov30', 'YYYYMonDD')のように、年の後に非数字の区切り文字を使用してください。
      

	

to_timestampおよびto_dateにおいてYYY、YYYY、もしくはY,YYYフィールドが存在するとCC（世紀）フィールドは受け入れられますが、無視されます。
CCがYYもしくはYと共に使用されると、結果は指定された世紀のその年として計算されます。
世紀が指定され、年が指定されないときは、その世紀の最初の年と想定されます。
      

	

to_timestampおよびto_dateにおいて、曜日の名前や数字（DAY、Dおよび関連したフィールドの型）は受け付けられますが、結果を計算するという目的においては無視されます。
同じことは四半期（Q）フィールドにも当てはまります。
      

	

to_timestampおよびto_dateにおいて、
ISO 8601週番号日は（グレゴリオ暦の日付とは異なって）以下の２つの方法のうちのひとつで指定できます。
       
	

年、通年の週番号、曜日番号。
例えば、to_date('2006-42-4', 'IYYY-IW-ID')は、日付2006-10-19を返します。
曜日番号を省略した場合、1（月曜日）と想定されます。
         

	

年と通年の日付番号。例えば、to_date('2006-291', 'IYYY-IDDD')も2006-10-19を返します。
         




      


ISO 8601週番号とグレゴリオ暦日のフィールドを混在して使用して日付を構築する試みは無意味なことで、エラーの原因になります。
ISO 8601週番号年の文脈では、「月」、あるいは「月内の日付番号」は意味を持ちません。
グレゴリオ暦の年の文脈では、ISO週番号は意味を持ちません。
      
注意


to_dateはグレゴリオとISO週番号日のフィールドの混在を拒否しますが、to_charはそうではありません。YYYY-MM-DD (IYYY-IDDD)のような出力書式指定が有用な場合があるからです。
しかし、IYYY-MM-DDのような書き方は避けてください。年の初めの近くで驚くべき結果になるでしょう。
(より詳細な情報は「EXTRACTとdate_part」を参照してください。)
       


	

to_timestampにおいて、ミリ秒（MS）およびマイクロ秒（US）フィールドは小数点の後の秒の桁として使用されます。
例えば、to_timestamp('12.3', 'SS.MS')は3ミリ秒ではなく300ミリ秒です。なぜなら変換においてこれは12 + 0.3秒と計算されるからです。
従ってSS.MS書式に対して入力値12.3、12.30、12.300は同じミリ秒数を指定することになります。
3ミリ秒が必要な場合には12:003のようにしなければなりません。この時、変換において12 + 0.003 = 12.003秒と計算します。
      


もう少し複雑な例を挙げます。
to_timestamp('15:12:02.020.001230', 'HH24:MI:SS.MS.US')は15時間12分と2秒+20ミリ秒+1230マイクロ秒 = 2.021230秒です。
      

	

to_char(..., 'ID')の曜日番号付けはextract(isodow from ...)関数に一致しますが、to_char(..., 'D')の曜日番号付けはextract(dow from ...)の曜日番号付けに一致しません。
      

	

to_char(interval)関数は、HHとHH12を12時間の時計に表示されるように整形します。
例えば0時間と36時間はいずれも12として出力します。
一方HH24は時間の値をそのまま出力し、intervalの値であれば23を超えることも可能です。
      




   


表9.29「数値書式用のテンプレートパターン」に、数値の書式設定に使用可能なテンプレートパターンを示します。
  
表9.29 数値書式用のテンプレートパターン
	パターン	説明
	9	数字の位置（必要ないときは表示しない）
	0	数字の位置（必要ないときでも表示する）
	.（ピリオド）	小数点
	, (カンマ)	千単位で区切る符号
	PR	負の値の角括弧表示
	S	符号付き値（ロケールを使用）
	L	通貨記号（ロケールを使用）
	D	小数点（ロケールを使用）
	G	グループ区切り文字（ロケールを使用）
	MI	（数値 < 0であれば）指定位置にマイナス記号
	PL	（数値 > 0であれば）指定位置にプラス記号
	SG	指定された位置にプラス/マイナス記号
	RNまたはrn	ローマ数字（1から3999までの値）
	THまたはth	序数接尾辞
	V	指定桁でのシフト（注意事項を参照）
	EEEE	科学技術表記法用の指数





数値型書式の使用上の注意事項は次のとおりです。

    
	

0は、それが先頭あるいは末尾のゼロであっても必ず表示する数字の位置を指定します。
9も数字の位置を指定しますが、先頭のゼロであればそれは空白で置換され、また末尾のゼロで字詰めモードが指定されているときは削除されます。
（to_number()では、これら2つのパターン文字は同じ意味になります。）
      

	

フォーマットが提供する小数点以下の桁数がフォーマットされる数値よりも少ない場合、to_char()は指定された小数点以下の桁数に数値を丸めます。
      

	

パターン文字S、L、D、Gはそれぞれ現在のロケールで定義された符号、通貨記号、小数点、3桁区切り文字を表します（lc_monetaryおよびlc_numericを参照）。
パターン文字のピリオドとカンマはいずれもその文字そのものを表し、ロケールとは関係なく小数点と3桁区切り文字の意味を持ちます。
      

	

to_char()のパターンで符号について明示的な条件付けがない場合、符号のために一桁が予約され、それは数に繋げられます（すぐ左側に置かれます）。
Sがいくつかの9のすぐ左に置かれた場合、同様に数に繋げられます。
      

	

SG、PL、またはMIで整形された符号は、数値と関連付けられません。
例えば、to_char(-12, 'MI9999')は'-  12'となる一方、to_char(-12, 'S9999')は'  -12'となります。
（Oracleの実装では9の前にMIが置かれてはならず、9の後にMIが置かれることを要求しています。）
      

	

THはゼロ未満の値と小数は変換しません
      

	

PL、SG、およびTHはPostgreSQL™の拡張です。
      

	

to_numberにおいて、LあるいはTHのように非データテンプレートが使われた場合には、それがデータ文字（すなわち、数字、符号、10進小数点あるいはカンマ）でない限りテンプレートパターンにマッチするかどうかにかかわらず、該当する数分だけの入力文字がスキップされます。
例えば、THは2つの非データ文字をスキップします。
      

	

Vをto_charにつけると、入力値を10^n倍します。
ここでnはVに続く桁数です。
Vをto_numberにつけると、同じように割り算をします。
Vは入力文字列または出力文字列内の暗黙の小数点の位置を示すものと考えることができます。
to_charおよびto_numberは、小数点とVとの組み合わせをサポートしません（例えば、99.9V99とはできません）。
      

	

EEEE(科学技術表記)は、桁と小数点のパターンを除き、他の書式パターンや修飾子と組み合わせて使うことはできず、また必ず書式文字列の最後に位置しなければなりません(例えば、9.99EEEEは正しい表記となります)。
      

	

to_number()において、RNパターンはローマ数字（標準形式）を数字に変換します。
入力では大文字と小文字が区別されないため、RNとrnは同等です。
RNは、他の書式パターンやFMを除く修飾子と組み合わせて使用することはできません。
FMは、to_char()でのみ適用され、to_number()では無視されます。
      




   


すべてのテンプレートについて、その動作を変えるために、いくつかの修飾子を適用できます。
例えば、FM99.99はFM修飾子が付いた99.99パターンです。
表9.30「数値の書式用テンプレートパターン修飾子」に、数値の書式用の修飾子パターンを示します。
   
表9.30 数値の書式用テンプレートパターン修飾子
	修飾子	説明	例
	FM接頭辞	字詰めモード（末尾の0と空白の埋め字を無効にする）	FM99.99
	TH接尾辞	大文字による序数接尾辞	999TH
	th接尾辞	小文字による序数接尾辞	999th





表9.31「to_charの例」に、to_char関数を使用した例をいくつか示します。
  
表9.31 to_charの例
	式	結果
	to_char(current_timestamp, 'Day, DD  HH12:MI:SS')	'Tuesday  , 06  05:39:18'
	to_char(current_timestamp, 'FMDay, FMDD  HH12:MI:SS')	'Tuesday, 6  05:39:18'
	to_char(current_timestamp AT TIME ZONE
        'UTC', 'YYYY-MM-DD"T"HH24:MI:SS"Z"')	'2022-12-06T05:39:18Z',
        ISO 8601 extended format
	to_char(-0.1, '99.99')	'  -.10'
	to_char(-0.1, 'FM9.99')	'-.1'
	to_char(-0.1, 'FM90.99')	'-0.1'
	to_char(0.1, '0.9')	' 0.1'
	to_char(12, '9990999.9')	'    0012.0'
	to_char(12, 'FM9990999.9')	'0012.'
	to_char(485, '999')	' 485'
	to_char(-485, '999')	'-485'
	to_char(485, '9 9 9')	' 4 8 5'
	to_char(1485, '9,999')	' 1,485'
	to_char(1485, '9G999')	' 1 485'
	to_char(148.5, '999.999')	' 148.500'
	to_char(148.5, 'FM999.999')	'148.5'
	to_char(148.5, 'FM999.990')	'148.500'
	to_char(148.5, '999D999')	' 148,500'
	to_char(3148.5, '9G999D999')	' 3 148,500'
	to_char(-485, '999S')	'485-'
	to_char(-485, '999MI')	'485-'
	to_char(485, '999MI')	'485 '
	to_char(485, 'FM999MI')	'485'
	to_char(485, 'PL999')	'+485'
	to_char(485, 'SG999')	'+485'
	to_char(-485, 'SG999')	'-485'
	to_char(-485, '9SG99')	'4-85'
	to_char(-485, '999PR')	'<485>'
	to_char(485, 'L999')	'DM 485'
	to_char(485, 'RN')	'        CDLXXXV'
	to_char(485, 'FMRN')	'CDLXXXV'
	to_char(5.2, 'FMRN')	'V'
	to_char(482, '999th')	' 482nd'
	to_char(485, '"Good number:"999')	'Good number: 485'
	to_char(485.8, '"Pre:"999" Post:" .999')	'Pre: 485 Post: .800'
	to_char(12, '99V999')	' 12000'
	to_char(12.4, '99V999')	' 12400'
	to_char(12.45, '99V9')	' 125'
	to_char(0.0004859, '9.99EEEE')	' 4.86e-04'




日付/時刻関数と演算子





表9.33「日付/時刻関数演算子」は、日付/時刻型の値の処理で使用可能な関数を示しています。詳細は、以下の副節で説明します。
表9.32「日付/時刻演算子」は、（+、*等の）基本的な算術演算子の振舞いを説明しています。
書式設定関数については「データ型書式設定関数」を参照してください。
「日付/時刻データ型」を参照して、日付/時刻データ型についての背景となっている情報に精通していなければなりません。
  


加えて表9.1「比較演算子」で示す通常の比較演算子が日付/時刻型で利用できます。
日付とタイムスタンプ（時間帯付きあるいは時間帯なし）はすべて互換性がありますが、時刻（時間帯付きあるいは時間帯なし）と時間間隔は同じデータ型の値同士だけが比較可能です。
時間帯なしのタイムスタンプと時間帯付きのタイムスタンプを比較する際には、前者の値はTimeZone設定パラメータで指定された時間帯にあるものと仮定され、後者の値（すでに内部的にはUTCです）と比較するためにUTCに変換されます。
同様に、タイムスタンプと比較する際には、日付の値はTimeZone時間帯の午前零時であると見なされます。
  


以下のtimeもしくはtimestamp型の入力を受け取る関数および演算子は全て、実際には2つの種類があります。1つはtime with time zone型またはtimestamp with time zone型を取るもので、もう1つはtime without time zone型もしくはtimestamp without time zone型を取るものです。
簡略化のため、これらの種類の違いは個別に示していません。
また、+と*演算子は可換な2項をとります（例えばdate + integerとinteger + date）。こうした組み合わせは片方のみ示します。
  
表9.32 日付/時刻演算子
	

演算子
        

        

説明
        

        

例
        

	
         date + integer
         date
        

        

日付に日数を加算
        

        
         date '2001-09-28' + 7
         2001-10-05
        

	
         date + interval
         timestamp
        

        

時刻間隔を日付に加算
        

        
         date '2001-09-28' + interval '1 hour'
         2001-09-28 01:00:00
        

	
         date + time
         timestamp
        

        

日付に時刻を加算
        

        
         date '2001-09-28' + time '03:00'
         2001-09-28 03:00:00
        

	
         interval + interval
         interval
        

        

時間間隔を加算
        

        
         interval '1 day' + interval '1 hour'
         1 day 01:00:00
        

	
         timestamp + interval
         timestamp
        

        

時間間隔をタイムスタンプに加算
        

        
         timestamp '2001-09-28 01:00' + interval '23 hours'
         2001-09-29 00:00:00
        

	
         time + interval
         time
        

        

時間間隔を時分に加算
        

        
         time '01:00' + interval '3 hours'
         04:00:00
        

	
         - interval
         interval
        

        

時間間隔の符号を反転
        

        
         - interval '23 hours'
         -23:00:00
        

	
         date - date
         integer
        

        

日付を減算し、経過日数を返す
        

        
         date '2001-10-01' - date '2001-09-28'
         3
        

	
         date - integer
         date
        

        

日付から日数を減算
        

        
         date '2001-10-01' - 7
         2001-09-24
        

	
         date - interval
         timestamp
        

        

日付から時間間隔を減算
        

        
         date '2001-09-28' - interval '1 hour'
         2001-09-27 23:00:00
        

	
         time - time
         interval
        

        

時分を減算
        

        
         time '05:00' - time '03:00'
         02:00:00
        

	
         time - interval
         time
        

        

時分から時刻間隔を減算
        

        
         time '05:00' - interval '2 hours'
         03:00:00
        

	
         timestamp - interval
         timestamp
        

        

タイムスタンプから時刻間隔を減算
        

        
         timestamp '2001-09-28 23:00' - interval '23 hours'
         2001-09-28 00:00:00
        

	
         interval - interval
         interval
        

        

時間間隔を減算
        

        
         interval '1 day' - interval '1 hour'
         1 day -01:00:00
        

	
         timestamp - timestamp
         interval
        

        

タイムスタンプを減算（justify_hours()と同様に24時間間隔を日数に変換）
        

        
         timestamp '2001-09-29 03:00' - timestamp '2001-07-27 12:00'
         63 days 15:00:00
        

	
         interval * double precision
         interval
        

        

時間間隔にスカラを乗算
        

        
         interval '1 second' * 900
         00:15:00
        

        
         interval '1 day' * 21
         21 days
        

        
         interval '1 hour' * 3.5
         03:30:00
        

	
         interval / double precision
         interval
        

        

時間間隔をスカラで除算
        

        
         interval '1 hour' / 1.5
         00:40:00
        




表9.33 日付/時刻関数演算子
	

関数
        

        

説明
        

        

例
        

	
         
         age ( timestamp, timestamp )
         interval
        

        

引数間の減算。日数だけでなく年と月を使用した「言葉による」結果を生成
        

        
         age(timestamp '2001-04-10', timestamp '1957-06-13')
         43 years 9 mons 27 days
        

	
         age ( timestamp )
         interval
        

        

current_date（午前零時時点）から引数を減算
        

        
         age(timestamp '1957-06-13')
         62 years 6 mons 10 days
        

	
         
         clock_timestamp ( )
         timestamp with time zone
        

        

現在の日付と時刻（文実行中に変化する）。「現在の日付/時刻」を参照。
        

        
         clock_timestamp()
         2019-12-23 14:39:53.662522-05
        

	
         
         current_date
         date
        

        

現在の日付。「現在の日付/時刻」を参照
        

        
         current_date
         2019-12-23
        

	
         
         current_time
         time with time zone
        

        

現在の時刻。「現在の日付/時刻」を参照。
        

        
         current_time
         14:39:53.662522-05
        

	
         current_time ( integer )
         time with time zone
        

        

精度を限定した現在の時刻。「現在の日付/時刻」を参照。
        

        
         current_time(2)
         14:39:53.66-05
        

	
         
         current_timestamp
         timestamp with time zone
        

        

現在の日付と時刻（現在のトランザクションの開始時）。「現在の日付/時刻」を参照。
        

        
         current_timestamp
         2019-12-23 14:39:53.662522-05
        

	
         current_timestamp ( integer )
         timestamp with time zone
        

        

精度を限定した現在の日付と時刻（現在のトランザクションの開始時）。「現在の日付/時刻」を参照。
        

        
         current_timestamp(0)
         2019-12-23 14:39:53-05
        

	
         
         date_add ( timestamp with time zone, interval [, text ] )
         timestamp with time zone
        

        

intervalをtimestamp with timezoneに加算し、3番目の引数が指定する名前を持つタイムゾーン、または省略されている場合は現在のTimeZone設定に従って、時刻と夏時間の調整を計算します。
2つの引数を持つ形式は、timestamp with timezone+interval演算子と同じです。
        

        
         date_add('2021-10-31 00:00:00+02'::timestamptz, '1 day'::interval, 'Europe/Warsaw')
         2021-10-31 23:00:00+00
        

	
         date_bin ( interval, timestamp, timestamp )
         timestamp
        

        

指定した起源に合わせて指定の時間間隔に切り捨てます。「date_bin」を参照してください。
        

        
         date_bin('15 minutes', timestamp '2001-02-16 20:38:40', timestamp '2001-02-16 20:05:00')
         2001-02-16 20:35:00
        

	
         
         date_part ( text, timestamp )
         double precision
        

        

タイムスタンプの部分フィールドの取得（extractと同じ）。「EXTRACTとdate_part」を参照。
        

        
         date_part('hour', timestamp '2001-02-16 20:38:40')
         20
        

	
         date_part ( text, interval )
         double precision
        

        

時間間隔の部分フィールドの取得（extractと同じ）。「EXTRACTとdate_part」を参照。
        

        
         date_part('month', interval '2 years 3 months')
         3
        

	
         
         date_subtract ( timestamp with time zone, interval [, text ] )
         timestamp with time zone
        

        

intervalをtimestamp with timezoneから減算し、3番目の引数が指定する名前を持つタイムゾーン、または省略されている場合は現在のTimeZone設定に従って、時刻と夏時間の調整を計算します。
2つの引数を持つ形式は、timestamp with timezone-interval演算子と同じです。
        

        
         date_subtract('2021-11-01 00:00:00+01'::timestamptz, '1 day'::interval, 'Europe/Warsaw')
         2021-10-30 22:00:00+00
        

	
         
         date_trunc ( text, timestamp )
         timestamp
        

        

指定された精度で切り捨て。「date_trunc」参照。
        

        
         date_trunc('hour', timestamp '2001-02-16 20:38:40')
         2001-02-16 20:00:00
        

	
         date_trunc ( text, timestamp with time zone, text )
         timestamp with time zone
        

        

指定された時間帯において指定された精度で切り捨て。「date_trunc」参照
        

        
         date_trunc('day', timestamptz '2001-02-16 20:38:40+00', 'Australia/Sydney')
         2001-02-16 13:00:00+00
        

	
         date_trunc ( text, interval )
         interval
        

        

指定された精度で切り捨て。「date_trunc」参照。
        

        
         date_trunc('hour', interval '2 days 3 hours 40 minutes')
         2 days 03:00:00
        

	
         
         extract ( field from timestamp )
         numeric
        

        

タイムスタンプの部分フィールドの取得。「EXTRACTとdate_part」を参照。
        

        
         extract(hour from timestamp '2001-02-16 20:38:40')
         20
        

	
         extract ( field from interval )
         numeric
        

        

時間間隔の部分フィールドの取得。「EXTRACTとdate_part」を参照。
        

        
         extract(month from interval '2 years 3 months')
         3
        

	
         
         isfinite ( date )
         boolean
        

        

日付が有限（+/-無限でない）かどうかの検査
        

        
         isfinite(date '2001-02-16')
         true
        

	
         isfinite ( timestamp )
         boolean
        

        

タイムスタンプが有限（+/-無限でない）かどうかの検査
        

        
         isfinite(timestamp 'infinity')
         false
        

	
         isfinite ( interval )
         boolean
        

        

日付が有限（+/-無限大でない）かどうかの検査
        

        
         isfinite(interval '4 hours')
         true
        

	
         
         justify_days ( interval )
         interval
        

        

30日周期を月単位に変換して時間間隔を調整
        

        
         justify_days(interval '1 year 65 days')
         1 year 2 mons 5 days
        

	
         
         justify_hours ( interval )
         interval
        

        

間隔を調整し、24時間を日に変換
        

        
         justify_hours(interval '50 hours 10 minutes')
         2 days 02:10:00
        

	
         
         justify_interval ( interval )
         interval
        

        

justify_daysおよびjustify_hoursを使用し、さらに符号による調整を行っての時間間隔の調整
        

        
         justify_interval(interval '1 mon -1 hour')
         29 days 23:00:00
        

	
         
         localtime
         time
        

        

現在の時刻。「現在の日付/時刻」を参照。
        

        
         localtime
         14:39:53.662522
        

	
         localtime ( integer )
         time
        

        

精度を限定した現在の時刻。「現在の日付/時刻」を参照。
        

        
         localtime(0)
         14:39:53
        

	
         
         localtimestamp
         timestamp
        

        

現在の日付と時刻（現在のトランザクションの開始時）。「現在の日付/時刻」を参照。
        

        
         localtimestamp
         2019-12-23 14:39:53.662522
        

	
         localtimestamp ( integer )
         timestamp
        

        

精度を限定した現在の日付と時刻（現在のトランザクションの開始時）。「現在の日付/時刻」を参照。
        

        
         localtimestamp(2)
         2019-12-23 14:39:53.66
        

	
         
         make_date ( year int,
         month int,
         day int )
         date
        

        

年、月、日フィールドから日付を作成（負の年はBCを意味します）
        

        
         make_date(2013, 7, 15)
         2013-07-15
        

	
         make_interval ( [ years int
         [, months int
         [, weeks int
         [, days int
         [, hours int
         [, mins int
         [, secs double precision
         ]]]]]]] )
         interval
        

        

年、月、週、日、時間、分、秒フィールドから時間間隔を作成。それぞれがデフォルトでゼロになる
        

        
         make_interval(days => 10)
         10 days
        

	
         
         make_time ( hour int,
         min int,
         sec double precision )
         time
        

        

時、分、秒フィールドから時刻を作成
        

        
         make_time(8, 15, 23.5)
         08:15:23.5
        

	
         
         make_timestamp ( year int,
         month int,
         day int,
         hour int,
         min int,
         sec double precision )
         timestamp
        

        

年、月、日、時、分、秒フィールドから時刻を作成（負の年はBCを意味します）
        

        
         make_timestamp(2013, 7, 15, 8, 15, 23.5)
         2013-07-15 08:15:23.5
        

	
         
         make_timestamptz ( year int,
         month int,
         day int,
         hour int,
         min int,
         sec double precision
         [, timezone text ] )
         timestamp with time zone
        

        

年、月、日、時、分、秒フィールドから時間帯付きの時刻を作成（負の年はBCを意味する）。
timezoneが指定されていなければ、現在の時間帯が使われる。
例ではセッションの時間帯がEurope/Londonであると仮定。
        

        
         make_timestamptz(2013, 7, 15, 8, 15, 23.5)
         2013-07-15 08:15:23.5+01
        

        
         make_timestamptz(2013, 7, 15, 8, 15, 23.5, 'America/New_York')
         2013-07-15 13:15:23.5+01
        

	
         
         now ( )
         timestamp with time zone
        

        

現在の日付と時刻（現在のトランザクションの開始時）。「現在の日付/時刻」を参照。
        

        
         now()
         2019-12-23 14:39:53.662522-05
        

	
         
         statement_timestamp ( )
         timestamp with time zone
        

        

現在の日付と時刻（現在の文の開始時）。「現在の日付/時刻」を参照。
        

        
         statement_timestamp()
         2019-12-23 14:39:53.662522-05
        

	
         
         timeofday ( )
         text
        

        

現在の日付と時刻（clock_timestampと似ているが、text型文字列として返す）。「現在の日付/時刻」を参照。
        

        
         timeofday()
         Mon Dec 23 14:39:53.662522 2019 EST
        

	
         
         transaction_timestamp ( )
         timestamp with time zone
        

        

現在の日付と時刻（現在のトランザクションの開始時）。「現在の日付/時刻」を参照。
        

        
         transaction_timestamp()
         2019-12-23 14:39:53.662522-05
        

	
         
         to_timestamp ( double precision )
         timestamp with time zone
        

        

Unixエポック時間（1970-01-01 00:00:00+00からの経過秒数）をtimestamp with time zoneに変換
        

        
         to_timestamp(1284352323)
         2010-09-13 04:32:03+00
        





    

これらの関数に加え、OVERLAPS SQL演算子がサポートされています。


(start1, end1) OVERLAPS (start2, end2)
(start1, length1) OVERLAPS (start2, length2)



この式は、2つの時間間隔（その両端で定義されます）が重なる時に真を返します。重ならない場合は偽を返します。
両端は2つの日付、時刻、タイムスタンプとして、もしくは、日付/時刻/タイムスタンプとそれに続く時間間隔として指定できます。
値の組み合わせで指定する場合、開始と終了のいずれを先に記述しても構いません。OVERLAPSは与えられた値のうち、早い方を開始として扱います。
各時間間隔は、start <= time < endという半開区間として見なされます。ただし、startとendが同じ値の場合には単一の時間点となります。
これは、例えば端点のみが共通である2つの時間間隔は、重ならないということを意味します。
   

SELECT (DATE '2001-02-16', DATE '2001-12-21') OVERLAPS
       (DATE '2001-10-30', DATE '2002-10-30');
Result: true
SELECT (DATE '2001-02-16', INTERVAL '100 days') OVERLAPS
       (DATE '2001-10-30', DATE '2002-10-30');
Result: false
SELECT (DATE '2001-10-29', DATE '2001-10-30') OVERLAPS
       (DATE '2001-10-30', DATE '2001-10-31');
Result: false
SELECT (DATE '2001-10-30', DATE '2001-10-30') OVERLAPS
       (DATE '2001-10-30', DATE '2001-10-31');
Result: true



timestampまたはtimestamp with time zoneの値にintervalの値を加える際には（あるいはintervalの値を引く際には）、interval値の月、日、マイクロ秒のフィールドが順に適用されます。
まず、非ゼロの月フィールドが示す日数の分だけtimestampの日付を先に進める、もしくは後に戻し、新しい月の最終日を超えてしまわない限り月内の日付を同じに保ちます。月の最後の日を超えてしまうようなら、その月の最終日が使われます。
（たちえば、3月31日に1ヶ月を加えると4月30日になりますが、3月31日に2ヶ月を加えると5月31日になります。）
次に、日フィールド分だけtimestampの日付を先に進める、もしくは後に戻します。
この両方の処理において、現地時刻は同じに保ちます。
最後に、非ゼロのマイクロ秒フィールドがあれば、そのまま加算、もしくは減算します。
DSTと認識される時間帯におけるtimestamp with time zone値の演算を行う際には、（たとえば）interval '1 day'を加算、もしくは減算することは、interval '24 hours'を加算、もしくは減算するのと同じ結果になるとは限りません。
例えば、セッションの時間帯が America/Denverに設定されている時には以下のようになります。


SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '1 day';
Result: 2005-04-03 12:00:00-06
SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '24 hours';
Result: 2005-04-03 13:00:00-06



その理由はAmerica/Denver時間帯で2005-04-03 02:00:00に夏時間への変更され、1時間スキップされたためです。
  


異なる月では日数が異なりますのでageで返されるmonthsフィールドにはあいまいさがあります。
PostgreSQL™のやり方は月をまたがる２つの日付の計算において、日付の早いほうの月を使用します。
例えば、age('2004-06-01', '2004-04-30')は4月を使用して1 mon 1 dayを得ます。5月は31日あり、4月は30日のため、もし5月を使用するなら結果は1 mon 2 daysとなるでしょう。
  


日付とタイムスタンプの引き算は複雑になることがあります。
引き算をする概念的に単純な方法は、それぞれの値を秒数にEXTRACT(EPOCH FROM ...)で変換してから、結果を引き算する方法です。この結果は2つの値の間の秒数になります。
これは各月の日数、時間帯の変更、夏時間の調整に対して調整されるでしょう。
「-」演算子での日付やタイムスタンプの引き算は値の間の(24時間の)日数と時間/分/秒を、同様に調整して返します。
age関数は年、月、日、時間/分/秒をフィールド毎に引き算し、負のフィールドの値を調整します。
以下の問い合わせは上の各方法の違いを説明する例です。
例の結果はtimezone = 'US/Eastern'で生成されました。2つの日付の間には夏時間の変更があります。
  

SELECT EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') -
       EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00');
Result: 10537200.000000
SELECT (EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') -
        EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00'))
        / 60 / 60 / 24;
Result: 121.9583333333333333
SELECT timestamptz '2013-07-01 12:00:00' - timestamptz '2013-03-01 12:00:00';
Result: 121 days 23:00:00
SELECT age(timestamptz '2013-07-01 12:00:00', timestamptz '2013-03-01 12:00:00');
Result: 4 mons

EXTRACTとdate_part




EXTRACT(field FROM source)



extract関数は、日付/時刻の値から年や時などの部分フィールドを抽出します。
sourceはtimestamp、date、time、interval型の値式でなければなりません。
（timestampとtimeは、タイムゾーンの有無に関わらず指定できます。）
fieldはsourceの値からどのフィールドを抽出するかを選択する識別子もしくは文字列です。
すべての入力データ型に対してすべてのフィールドが有効であるとは限りません。
たとえば、1日より小さいフィールドはdateから抽出できませんし、1日以上のフィールドはtimeから抽出できません。
extract関数はnumeric型の値を返します。
   


以下は有効なフィールド名です。

    
    
	century
	

世紀。
interval値の場合、年フィールドを100で割った値
       

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');
Result: 20
SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 21
SELECT EXTRACT(CENTURY FROM DATE '0001-01-01 AD');
Result: 1
SELECT EXTRACT(CENTURY FROM DATE '0001-12-31 BC');
Result: -1
SELECT EXTRACT(CENTURY FROM INTERVAL '2001 years');
Result: 20


	day
	

月内の日（1–31）。
interval値の場合は日数
       

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 16
SELECT EXTRACT(DAY FROM INTERVAL '40 days 1 minute');
Result: 40


	decade
	

年フィールドを10で割ったもの
       

SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 200


	dow
	

日曜日（0）から土曜日（6）までの曜日
       

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 5



extract関数の曜日番号はto_char(...,'D')関数のそれとは異なる点に注意してください。
       

	doy
	

年内での通算日数（1–365/366）
       

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 47


	epoch
	

timestamp with time zone型の値においては、1970-01-01 00:00:00 UTCからの秒数（負の数はその前）。dateとtimestamp型の値においては、時間帯と夏時間を考慮しないローカルタイムの1970-01-01 00:00:00からの秒数。interval型の値ではその時間間隔における合計の秒数。
       

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40.12-08');
Result: 982384720.120000
SELECT EXTRACT(EPOCH FROM TIMESTAMP '2001-02-16 20:38:40.12');
Result: 982355920.120000
SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');
Result: 442800.000000



to_timestampで経過秒数をtimestamp with time zoneに変換することができます。
       

SELECT to_timestamp(982384720.12);
Result: 2001-02-17 04:38:40.12+00



to_timestampをdateあるいはtimestampの値から取り出したエポックに適用すると、誤解を招く結果が得られるかもしれないことに注意してください。結果は実質的に元の値がUTCで与えられていると見なしますが、実際は違うかもしれません。
       

	hour
	

時間フィールド（TIMESTAMPの場合は0–23、INTERVALの場合は無制限）。
       

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 20


	isodow
	

月曜日（1）から日曜日（7）までの曜日
       

SELECT EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40');
Result: 7



日曜日を除きdowと同一です。
これはISO 8601曜日番号付けに一致します。
       

	isoyear
	

その日付に該当するISO 8601週番号年。
       

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');
Result: 2005
SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');
Result: 2006



すべてのISO 8601週番号年は1月4日を含む週の月曜日から開始されます。従って、1月上旬、または12月下旬でISO年がグレゴリオ年と異なる可能性があります。
より詳細はweekフィールドを参照してください。
       

	julian
	

日付またはタイムスタンプに対応するユリウス日。
ローカル午前零時でないタイムスタンプは、小数値になります。
詳細は「ユリウス日(Julian Date)」を参照してください。
       

SELECT EXTRACT(JULIAN FROM DATE '2006-01-01');
Result: 2453737
SELECT EXTRACT(JULIAN FROM TIMESTAMP '2006-01-01 12:00');
Result: 2453737.50000000000000000000


	microseconds
	

端数部分も含む秒フィールドに、1,000,000を乗じた値。秒の整数部を含むことに注意。
       

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');
Result: 28500000


	millennium
	

千年紀。
interval値の場合、年フィールドを1000で割った値
       

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 3
SELECT EXTRACT(MILLENNIUM FROM INTERVAL '2001 years');
Result: 2



1900年代の年は第2ミレニアムです。第3ミレニアムは2001年1月1日から始まりました。
       

	milliseconds
	

端数部分も含む秒フィールドに、1000を乗た値。秒の整数部を含むことに注意してください。
       

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');
Result: 28500.000


	minute
	

分フィールド (0–59)
       

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 38


	month
	

年内の月の番号(1~12)。interval値の場合、月数を12で割った余り(0~11)
       

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months');
Result: 3
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');
Result: 1


	quarter
	

その日付が含まれる年の四半期（1–4）。
interval値の場合、月フィールドを3で除算して1を加算した値
       

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 1
SELECT EXTRACT(QUARTER FROM INTERVAL '1 year 6 months');
Result: 3


	second
	

端数を含んだ秒フィールド
       

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 40.000000
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');
Result: 28.500000


	timezone
	

秒単位のUTCからの時間帯オフセット。正の値はUTCより東の時間帯に対応し、負の値はUTCより西の時間帯に対応。
(技術的に言えば、PostgreSQL™はうるう秒を制御しないためUTCを使用していない。)
       

	timezone_hour
	

時間帯オフセットの時の成分。
       

	timezone_minute
	

時間帯オフセットの分の成分。
       

	week
	

ISO 8601週番号。
定義ではISO週は月曜日から始まり、その年の1月4日を含む週をその年の第1週としています。
つまり、年の最初の木曜日がある週がその年の第1週となります。
       


ISO週番号システムでは、1月の早い日にちは前年の第52週もしくは第53週となることがあり、12月の遅い日にちには次年の最初の週の一部となることがあります。
例えば、2005-01-01は2004年の第53週であり、2006-01-01は2005年の第52週の一部です、一方2012-12-31は2013年の第1週の一部となります。
整合性のある結果を得るため、isoyearフィールドとweekを併用することを推奨します。
       


interval値の場合、週フィールドは単純に整数の日にちを7で除算した数値になります。
       

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 7
SELECT EXTRACT(WEEK FROM INTERVAL '13 days 24 hours');
Result: 1


	year
	

年フィールド。AD零年が存在しないことは忘れないでください。このためADの年からBCの年を減ずる時には注意が必要です。
       

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2001





   


interval値を処理する場合、extract関数は、interval出力関数で使用される解釈と一致するフィールド値を生成します。
これは、非正規化されたINTERVALでの表示から始めた場合、驚くべき結果を生じる可能性があります。
例えば次のようになります。


SELECT INTERVAL '80 minutes';
Result: 01:20:00
SELECT EXTRACT(MINUTES FROM INTERVAL '80 minutes');
Result: 20


   
注記


入力値が+/-無限大の場合、extractは単調増加フィールド（timestamp入力についてはepoch、julian、year、isoyear、decade、century、millenniumに、interval入力についてはepoch、hour、day、year、decade、century、millennium）に対し、+/-無限大を返します。
その他のフィールドに対してはNULLが返されます。
PostgreSQL™の9.6より前のバージョンでは、入力が無限大のすべての場合に対してゼロを返していました。
    



extract関数は主に演算処理を意図しています。
日付/時刻の値を表示する目的での書式については「データ型書式設定関数」を参照してください。
   


date_part関数は伝統的なIngres™上で設計されたもので、標準SQLのextract関数と等価です。


date_part('field', source)



ここでfieldパラメータが名前ではなく文字列値である必要があることに注意してください。
date_partで有効なフィールド名はextractと同じです。
歴史的な理由により、date_part関数はdouble precision型の結果を返します。
場合によってはこれによって精度が失われることがあります。
extractを代わりに使うことをお勧めします。
   

SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40');
Result: 16
SELECT date_part('hour', INTERVAL '4 hours 3 minutes');
Result: 4


date_trunc





date_trunc関数は概念的に数値に対するtrunc関数と類似しています。
   



date_trunc(field, source [, time_zone ])



sourceは、データ型timestamp、timestamp with time zoneもしくはintervalの値式です。
（date型とtime型の値はそれぞれ自動的にtimestampもしくはintervalにキャストされます。）
fieldは、入力値の値をどの精度で切り捨てるかを選択します。
同様に戻り値はtimestamp、timestamp with time zoneもしくはinterval型で、指定した精度より下のすべてのフィールドがゼロに設定（日と月については1に設定）されます。
   


fieldの有効値には次のものがあります。
    
	microseconds
	milliseconds
	second
	minute
	hour
	day
	week
	month
	quarter
	year
	decade
	century
	millennium


   


入力値がtimestamp with time zone型の値なら、特定の時間帯を考慮して切り捨てが行われます。たとえば、日を切り捨てると値はその時間帯での真夜中になります。
デフォルトでは切り捨ては現在のTimeZoneの設定に従いますが、別の時間帯を指定することができるようにオプションのtime_zone引数が提供されています。
時間帯名は「時間帯」に記述されている方法で指定できます。
   


timestamp without time zoneあるいはintervalの入力を処理している間は時間帯は指定できません。
これらは額面通りの値で扱われます。
   


例（現地タイムゾーンはAmerica/New_Yorkと仮定します）：


SELECT date_trunc('hour', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-02-16 20:00:00
SELECT date_trunc('year', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-01-01 00:00:00
SELECT date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00');
Result: 2001-02-16 00:00:00-05
SELECT date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00', 'Australia/Sydney');
Result: 2001-02-16 08:00:00-05
SELECT date_trunc('hour', INTERVAL '3 days 02:47:33');
Result: 3 days 02:00:00


   

date_bin





関数date_binは、指定した原点に揃えて入力のタイムスタンプを指定した時間間隔(stride)に「分類」します。
   



date_bin(stride, source, origin)



sourceはtimestampあるいはtimestamp with time zone型の値式です。
（date型の値はtimestampに自動キャストされます。）
strideはinterval型の値式です。
戻り値は同様に、timestampあるいはtimestamp with time zone型で、sourceが置かれた箱の開始位置に印を付けています。
   


例を示します。


SELECT date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17', TIMESTAMP '2001-01-01');
Result: 2020-02-11 15:30:00
SELECT date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17', TIMESTAMP '2001-01-01 00:02:30');
Result: 2020-02-11 15:32:30


   


完全な単位(1分、1時間など)の場合は、これは類似のdate_truncの呼び出しと同じ結果を与えます。
違いは、date_binは任意の間隔へと切り捨てられることです。
   


stride間隔はゼロより大きくなければならず、かつ月単位あるいはそれよりも大きくてはいけません。
   

AT TIME ZONEとAT LOCAL





AT TIME ZONE構文を使用することにより、time stamp without time zoneからtime stamp with time zoneへ、あるいはtime with time zoneの値を異なる時間帯に変換することができます。
表9.34「AT TIME ZONEとAT LOCAL異型」にその種類を示します。
   
表9.34 AT TIME ZONEとAT LOCAL異型
	

演算子
        

        

説明
        

        

例
        

	
         timestamp without time zone AT TIME ZONE zone
         timestamp with time zone
        

        

与えられた時間帯なしタイムスタンプを指定された時間帯にあるとして時間帯ありタイムスタンプに変換します。
        

        
         timestamp '2001-02-16 20:38:40' at time zone 'America/Denver'
         2001-02-17 03:38:40+00
        

	
         timestamp without time zone AT LOCAL
         timestamp with time zone
        

        

与えられた時間帯なしタイムスタンプをセッションのTimeZone値の時間帯を持つ時間帯ありタイムスタンプに変換します。
        

        
         timestamp '2001-02-16 20:38:40' at local
         2001-02-17 03:38:40+00
        

	
         timestamp with time zone AT TIME ZONE zone
         timestamp without time zone
        

        

与えられた時間帯付きタイムスタンプを、時刻がその時間帯にあるものとして時間帯なしタイムスタンプに変換します。
        

        
         timestamp with time zone '2001-02-16 20:38:40-05' at time zone 'America/Denver'
         2001-02-16 18:38:40
        

	
         timestamp with time zone AT LOCAL
         timestamp without time zone
        

        

与えられた時間帯ありタイムスタンプをセッションのTimeZone値の時間帯にあるとして時間帯なしタイムスタンプに変換します。
        

        
         timestamp with time zone '2001-02-16 20:38:40-05' at local
         2001-02-16 18:38:40
        

	
         time with time zone AT TIME ZONE zone
         time with time zone
        

        

与えられた時間帯付き時刻を新しい時間帯に変換します。
日付が指定されないので、現在の有効なUTCオフセットを目的の時間帯のために使用します。
        

        
         time with time zone '05:34:17-05' at time zone 'UTC'
         10:34:17+00
        

	
         time with time zone AT LOCAL
         time with time zone
        

        

与えられた時刻with time zoneを新しい時間帯に変換します。
日付が与えられていないので、セッションのTimeZone値に現在有効なUTCオフセットを使用します
        

        

セッションのTimeZoneがUTCに設定されていると仮定します。
        

        
         time with time zone '05:34:17-05' at local
         10:34:17+00
        






これらの式では、設定する時間帯zoneは、（'America/Los_Angeles'のような）テキスト値、または（INTERVAL '-08:00'のような）時間間隔で指定することができます。
テキストの場合、「時間帯」に示した方法で時間帯名称を指定することができます。
時間間隔を使うのはUTCからの固定のオフセットを持つ時間帯でのみ有用なので、一般的に非常に有用であるとは言えません。
   


構文AT LOCALは、AT TIME ZONE localの省略形として使用できます。
ここで、localはセッションのTimeZone値です。
   


以下に例を示します（現在の時間帯（TimeZone）をAmerica/Los_Angelesと想定しています）。


SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'America/Denver';
Result: 2001-02-16 19:38:40-08
SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE 'America/Denver';
Result: 2001-02-16 18:38:40
SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'Asia/Tokyo' AT TIME ZONE 'America/Chicago';
Result: 2001-02-16 05:38:40
SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT LOCAL;
Result: 2001-02-16 17:38:40
SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE '+05';
Result: 2001-02-16 20:38:40
SELECT TIME WITH TIME ZONE '20:38:40-05' AT LOCAL;
Result: 17:38:40



最初の例は、時間帯のない値に時間帯を追加し、現在のTimeZone設定を使ってその値を表示します。
2番目の例は、time stamp with time zone値を指定した時間帯に変換し、その値をwithout a time zoneで返しています。
これは、TimeZone設定とは異なる値の格納と表示を可能にします。
3番目の例は、東京時間をシカゴ時間に変換します。
4番目の例は、タイムスタンプをTimeZone設定で指定された現在のタイムゾーンにシフトし、タイムゾーンなしで値を返します。
5番目の例は、「時間帯」および付録B 日付/時刻のサポートで説明されているように、POSIX様式のタイムゾーン指定の記号がISO-8601日時リテラルの記号とは反対の意味を持つことを示しています。
   


第6の例は警告を含みます。
入力値に日付が関連付けられていないため、変換はセッションの現在の日付を使用して行われます。
したがって、この静的な例は、'America/Los_Angeles'がサマータイムを使用しているため、表示される年の時期によっては誤った結果を示す可能性があります。
   


関数timezone(zone, timestamp)は、SQL準拠の構文timestamp AT TIME ZONE zoneと等価です。
   


関数timezone(zone, time)は、SQL準拠の構文time AT TIME ZONE zoneと等価です。
   


関数timezone(timestamp)は、SQL準拠の構文timestamp AT LOCALと等価です。
   


関数timezone(time)は、SQL準拠の構文time AT LOCALと等価です。
   

現在の日付/時刻





PostgreSQL™は、現在の日付時刻に関した値を返す多くの関数を提供します。
これらの標準SQL関数はすべて、現在のトランザクションの開始時刻に基づいた値を返します。


CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME(precision)
CURRENT_TIMESTAMP(precision)
LOCALTIME
LOCALTIMESTAMP
LOCALTIME(precision)
LOCALTIMESTAMP(precision)


    


CURRENT_TIMEおよびCURRENT_TIMESTAMP関数では、時間帯を伴う値を扱います。一方、LOCALTIMEおよびLOCALTIMESTAMP関数では、時間帯を伴わない値を扱います。
    


CURRENT_TIME、CURRENT_TIMESTAMP、LOCALTIME、およびLOCALTIMESTAMP関数では、精度のパラメータをオプションで取ることができ、それに合わせて秒フィールドの端数桁を丸める結果をもたらします。
精度のパラメータがない場合、結果は使用可能な最大精度で出力されます。
    


例を示します。


SELECT CURRENT_TIME;
Result: 14:39:53.662522-05
SELECT CURRENT_DATE;
Result: 2019-12-23
SELECT CURRENT_TIMESTAMP;
Result: 2019-12-23 14:39:53.662522-05
SELECT CURRENT_TIMESTAMP(2);
Result: 2019-12-23 14:39:53.66-05
SELECT LOCALTIMESTAMP;
Result: 2019-12-23 14:39:53.662522


   


これらの関数は現在のトランザクションの開始時刻を返すため、その値はトランザクションが実行されている間は変化しません。
これは仕様であると考えられており、その意図は、単一のトランザクションが一貫性のある「現在」時刻の概念を持ち、同一トランザクション内の複数の変更が同一のタイムスタンプを持つようにすることにあります。
   
注記


他のデータベースシステムでは、これらの値をより頻繁に増加させることがあります。
    



PostgreSQL™はまた、関数を呼び出した時の実際の現在時刻や現在の文の開始時刻を返す関数も提供します。
非標準SQLの時間関数の全一覧を以下に示します。


transaction_timestamp()
statement_timestamp()
clock_timestamp()
timeofday()
now()


   


transaction_timestamp()はCURRENT_TIMESTAMPと等価ですが、明確に何を返すかを反映する名前になっています。
statement_timestamp()は現在の文の実行開始時刻を返すものです（より具体的にいうと、直前のコマンドメッセージをクライアントから受け取った時刻です）。
statement_timestamp()およびtransaction_timestamp()はトランザクションの最初の文では同じ値を返しますが、その後に引き続く文では異なる可能性があります。
clock_timestamp()は実際の現在時刻を返しますので、その値は単一のSQL文であっても異なります。
timeofday()はPostgreSQL™の歴史的な関数です。
clock_timestamp()同様、実際の現在時刻を返しますが、timestamp with time zone型の値ではなく、整形されたtext文字列を返します。now()はtransaction_timestamp()と同じもので、伝統的なPostgreSQL™関数です。
   


すべての日付/時刻型はまた、特殊なリテラル値 nowを受け付け、これは現在の日付と時刻（ここでも、トランザクションの開始時刻として解釈されます）を表します。
したがって、下記の３つの実行結果は全て同じものとなります。


SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP 'now';  -- but see tip below


   
ヒント


たとえばテーブルの列にDEFAULT句を指定するのに、後から評価される値を指定する際に3番目の形式は使わないでください。
システムはnowという定数を解析すると、すぐにそれをtimestampに変換するので、デフォルト値が必要が時には、テーブルが作成された時刻が使われます。
最初の2つの形式は関数呼び出しなので、デフォルト値が使用されるまで評価されません。
ですから、これらの関数は列の挿入時間をデフォルトとする、望ましい振舞いをします。
（「特別な値」も見てください。）
     


遅延実行





以下の関数は、サーバプロセスの実行を遅延させるために使用可能です。


pg_sleep ( double precision )
pg_sleep_for ( interval )
pg_sleep_until ( timestamp with time zone )




pg_sleepは、指定された秒数が経過するまで、現在のセッションのプロセスを休止させます。
小数秒の遅延を指定することができます。
pg_sleep_forはintervalでより長い休止時間を指定する便利な関数です。
pg_sleep_untilは特定の起床時刻が望まれる場合に便利な関数です。
以下に例を示します。



SELECT pg_sleep(1.5);
SELECT pg_sleep_for('5 minutes');
SELECT pg_sleep_until('tomorrow 03:00');


   
注記


休止時間の有効な分解能はプラットフォームに依存します。0.01秒が一般的な値です。
休止による遅延は最短で指定した時間と同じになります。
サーバの負荷などが要因となり、より長くなる可能性があります。
特に、pg_sleep_untilは指定した時刻ちょうどに起床する保証はありませんが、それより早く起床することはありません。
     

警告


pg_sleepまたはその亜種を呼び出す時、セッションが必要以上のロックを保持していないことを確実にしてください。
さもないと、他のセッションが休止中のプロセスを待機しなければならないかもしれません。そのためシステム全体の速度が低下することになるかもしれません。
     



列挙型サポート関数





列挙型（「列挙型」で解説）に対し、特に列挙型の値をハードコーディングせず簡潔なプログラミングを可能にするいくつかの関数があります。
それらの関数は表9.35「列挙型サポート関数」で一覧されています。
例は以下のようにして列挙型が作成されていることを想定しています。



CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow', 'green', 'blue', 'purple');



  
表9.35 列挙型サポート関数
	

関数
       

       

説明
       

       

例
       

	
        
        enum_first ( anyenum )
        anyenum
       

       

入力列挙型の最初の値を返します。
       

       
        enum_first(null::rainbow)
        red
       

	
        
        enum_last ( anyenum )
        anyenum
       

       

入力列挙型の最後の値を返します。
       

       
        enum_last(null::rainbow)
        purple
       

	
        
        enum_range ( anyenum )
        anyarray
       

       

入力列挙型の全ての値を順序付き配列として返します。
       

       
        enum_range(null::rainbow)
        {red,orange,yellow,​green,blue,purple}
       

	
        enum_range ( anyenum, anyenum )
        anyarray
       

       

与えられた２つの列挙型値の範囲を、順序配列として返します。
値は同一の列挙型に拠らなければなりません。
１番目のパラメータがNULLの場合、結果は列挙型の最初の値から始まります。
２番目のパラメータがNULLの場合、結果は列挙型の最後の値で終わります。
       

       
        enum_range('orange'::rainbow, 'green'::rainbow)
        {orange,yellow,green}
       

       
        enum_range(NULL, 'green'::rainbow)
        {red,orange,​yellow,green}
       

       
        enum_range('orange'::rainbow, NULL)
        {orange,yellow,green,​blue,purple}
       






enum_rangeの２引数の形式を除き、これらの関数は、渡された特定の値を無視することに注意してください。関数は宣言されたデータ型のみ配慮します。
その型のNULLまたは特定の値を渡すことができ、同一の結果が得られます。
例で使われているような直書きした型名に対してではなく、テーブル列もしくは関数引数にこれらの関数を適用することがより一般的です。
   

幾何関数と演算子





point、box、lseg、line、path、polygon、およびcircle幾何データ型には、PostgreSQLが元々サポートしている関数と演算子が豊富に揃っています（表9.36「幾何データ演算子」、表9.37「幾何データ型関数」、および表9.38「幾何型変換関数」を参照してください）。
   
表9.36 幾何データ演算子
	

演算子
       

       

説明
       

       

例
       

	
        geometric_type + point
        geometric_type
       

       

最初の引数の各々の点に二番目のpointの座標を加え、平行移動します。
point、box、path、circleで利用可能です。
       

       
        box '(1,1),(0,0)' + point '(2,0)'
        (3,1),(2,0)
       

	
        path + path
        path
       

       

2つの開経路を結合します。（どちらかの経路が閉じていればNULLを返します。）
       

       
        path '[(0,0),(1,1)]' + path '[(2,2),(3,3),(4,4)]'
        [(0,0),(1,1),(2,2),(3,3),(4,4)]
       

	
        geometric_type - point
        geometric_type
       

       

最初の引数の各々の点に二番目のpointの座標を減算し、平行移動します。
point、box、path、circleで利用可能です。
       

       
        box '(1,1),(0,0)' - point '(2,0)'
        (-1,1),(-2,0)
       

	
        geometric_type * point
        geometric_type
       

       

最初の引数の各々の点に2番目のpointの座標を乗じます。（点を実数部と虚数部で表現する複素数として扱い、標準複素乗法を行います。）
2番目のpointをベクトルと解釈すると、これはオブジェクトの大きさと原点からの距離をベクトルの長さで拡大し、x軸に対する角度分原点周りで反時計方向に回転させたものになります。
point、box
[a]
path、circleで利用可能です。
       

       
        path '((0,0),(1,0),(1,1))' * point '(3.0,0)'
        ((0,0),(3,0),(3,3))
       

       
        path '((0,0),(1,0),(1,1))' * point(cosd(45), sind(45))
        ((0,0),​(0.7071067811865475,0.7071067811865475),​(0,1.414213562373095))
       

	
        geometric_type / point
        geometric_type
       

       

最初の引数の各々の点を2番目のpointの座標で除算します。（点を実数部と虚数部で表現する複素数として扱い、標準複素除法を行います。
2番目のpointをベクトルと解釈すると、これはオブジェクトの大きさと原点からの距離をベクトルの長さで縮小し、x軸に対する角度分原点周りで時計方向に回転させたものになります。
point、box[a]、path、circleで利用可能です。
       

       
        path '((0,0),(1,0),(1,1))' / point '(2.0,0)'
        ((0,0),(0.5,0),(0.5,0.5))
       

       
        path '((0,0),(1,0),(1,1))' / point(cosd(45), sind(45))
        ((0,0),​(0.7071067811865476,-0.7071067811865476),​(1.4142135623730951,0))
       

	
        @-@ geometric_type
        double precision
       

       

全長を計算します。lseg、pathで利用可能です。
       

       
        @-@ path '[(0,0),(1,0),(1,1)]'
        2
       

	
        @@ geometric_type
        point
       

       

中心点を計算します。
box、lseg、polygon、circleで利用可能です。
       

       
        @@ box '(2,2),(0,0)'
        (1,1)
       

	
        # geometric_type
        integer
       

       

点の数を返します。
path、polygonで利用可能です。
       

       
        # path '((1,0),(0,1),(-1,0))'
        3
       

	
        geometric_type # geometric_type
        point
       

       

交点を計算します。交点がなければNULLを返します。
lseg、lineで利用可能です。
       

       
        lseg '[(0,0),(1,1)]' # lseg '[(1,0),(0,1)]'
        (0.5,0.5)
       

	
        box # box
        box
       

       

2つの矩形の共通部を計算します。
共通部がなければNULLを返します。
       

       
        box '(2,2),(-1,-1)' # box '(1,1),(-2,-2)'
        (1,1),(-1,-1)
       

	
        geometric_type ## geometric_type
        point
       

       

最初のオブジェクトから2番目のオブジェクトへの2番目のオブジェクト上の最近点を計算します。
以下の型の対で利用可能です。
        (point, box),
        (point, lseg),
        (point, line),
        (lseg, box),
        (lseg, lseg),
        (line, lseg).
       

       
        point '(0,0)' ## lseg '[(2,0),(0,2)]'
        (1,1)
       

	
        geometric_type <-> geometric_type
        double precision
       

       

オブジェクト間の距離を計算します。
7つのすべての幾何型、pointと他のすべての幾何型との組み合わせ、そして次の型の組み合わせで利用できます。
(box、lseg)、(lseg、line)、(polygon、circle)(そして可換の組み合わせ)。
       

       
        circle '<(0,0),1>' <-> circle '<(5,0),1>'
        3
       

	
        geometric_type @> geometric_type
        boolean
       

       

最初のオブジェクトは2番目のオブジェクトを含んでいるか？
次の型の組み合わせで利用できます。
        (box、point)、
        (box、box)、
        (path、point)、
        (polygon、point)、
        (polygon、polygon)、
        (circle、point)、
        (circle、circle)。
       

       
        circle '<(0,0),2>' @> point '(1,1)'
        t
       

	
        geometric_type <@ geometric_type
        boolean
       

       

最初のオブジェクトは2番目のオブジェクトに含まれているかあるいはその上にあるか？
次の型の組み合わせで利用できます。
        (point、 box)、
        (point、 lseg)、
        (point、 line)、
        (point、 path)、
        (point、 polygon)、
        (point、 circle)、
        (box、 box)、
        (lseg、 box)、
        (lseg、 line)、
        (polygon、 polygon)、
        (circle、 circle)。
       

       
        point '(1,1)' <@ circle '<(0,0),2>'
        t
       

	
        geometric_type && geometric_type
        boolean
       

       

これらのオブジェクトは重なり合っているか？
（共通の点があれば真となります。）
box、polygon、circleで利用可能です。
       

       
        box '(1,1),(0,0)' && box '(2,2),(0,0)'
        t
       

	
        geometric_type << geometric_type
        boolean
       

       

最初のオブジェクトは完全に2番目のオブジェクトの左にあるか？
point、box、polygon、circleで利用可能です。
       

       
        circle '<(0,0),1>' << circle '<(5,0),1>'
        t
       

	
        geometric_type >> geometric_type
        boolean
       

       

最初のオブジェクトは完全に2番目のオブジェクトの右にあるか？
point、box、polygon、circleで利用可能です。
       

       
        circle '<(5,0),1>' >> circle '<(0,0),1>'
        t
       

	
        geometric_type &< geometric_type
        boolean
       

       

最初のオブジェクトは2番目のオブジェクトの右にはみ出していないか？
box、polygon、circleで利用可能です。
       

       
        box '(1,1),(0,0)' &< box '(2,2),(0,0)'
        t
       

	
        geometric_type &> geometric_type
        boolean
       

       

最初のオブジェクトは2番目のオブジェクトの左にはみ出していないか？
box、polygon、circleで利用可能です。
       

       
        box '(3,3),(0,0)' &> box '(2,2),(0,0)'
        t
       

	
        geometric_type <<| geometric_type
        boolean
       

       

最初のオブジェクトは完全に2番目のオブジェクトの下にあるか？
point、box、polygon、circleで利用可能です。
       

       
        box '(3,3),(0,0)' <<| box '(5,5),(3,4)'
        t
       

	
        geometric_type |>> geometric_type
        boolean
       

       

最初のオブジェクトは完全に2番目のオブジェクトの上にあるか？
point、box、polygon、circleで利用可能です。
       

       
        box '(5,5),(3,4)' |>> box '(3,3),(0,0)'
        t
       

	
        geometric_type &<| geometric_type
        boolean
       

       

最初のオブジェクトは2番目のオブジェクトの上にはみ出していないか？
box、polygon、circleで利用可能です。
       

       
        box '(1,1),(0,0)' &<| box '(2,2),(0,0)'
        t
       

	
        geometric_type |&> geometric_type
        boolean
       

       

最初のオブジェクトは2番目のオブジェクトの下にはみ出していないか？
box、polygon、circleで利用可能です。
       

       
        box '(3,3),(0,0)' |&> box '(2,2),(0,0)'
        t
       

	
        box <^ box
        boolean
       

       

最初のオブジェクトは2番目のオブジェクトの下か？
（辺が接しているのを許容します）
       

       
        box '((1,1),(0,0))' <^ box '((2,2),(1,1))'
        t
       

	
        box >^ box
        boolean
       

       

最初のオブジェクトは2番目のオブジェクトの上か？
（辺が接しているのを許容します）
       

       
        box '((2,2),(1,1))' >^ box '((1,1),(0,0))'
        t
       

	
        geometric_type ?# geometric_type
        boolean
       

       

これらのオブジェクトは交差しているか？
次の型の組み合わせで利用できます。
        (box、 box)、
        (lseg、 box)、
        (lseg、 lseg)、
        (lseg、 line)、
        (line、 box)、
        (line、 line)、
        (path、 path)。
       

       
        lseg '[(-1,0),(1,0)]' ?# box '(2,2),(-2,-2)'
        t
       

	
        ?- line
        boolean
       

       
        ?- lseg
        boolean
       

       

線は水平か？
       

       
        ?- lseg '[(-1,0),(1,0)]'
        t
       

	
        point ?- point
        boolean
       

       

点は水平に並んでいるか？
（つまりy座標が同じであるということです。）
       

       
        point '(1,0)' ?- point '(0,0)'
        t
       

	
        ?| line
        boolean
       

       
        ?| lseg
        boolean
       

       

線は垂直か？
       

       
        ?| lseg '[(-1,0),(1,0)]'
        f
       

	
        point ?| point
        boolean
       

       

点は垂直に並んでいるか？
（つまりx座標が同じであるということです。）
       

       
        point '(0,1)' ?| point '(0,0)'
        t
       

	
        line ?-| line
        boolean
       

       
        lseg ?-| lseg
        boolean
       

       

（指定された）2つの線は垂直か？
       

       
        lseg '[(0,0),(0,1)]' ?-| lseg '[(0,0),(1,0)]'
        t
       

	
        line ?|| line
        boolean
       

       
        lseg ?|| lseg
        boolean
       

       

線は平行か？
       

       
        lseg '[(-1,0),(1,0)]' ?|| lseg '[(-1,2),(1,2)]'
        t
       

	
        geometric_type ~= geometric_type
        boolean
       

       

オブジェクトは同じか？
point、box、polygon、circleで利用可能です。
       

       
        polygon '((0,0),(1,1))' ~= polygon '((1,1),(0,0))'
        t
       

	[a] boxをこれらの演算子で「回転」してもその頂点を動かすだけです。
原点に対して矩形の辺は平行のままです。ですから矩形の大きさは保存されません。真の回転ならば保存します。





注意


「同じを示す」~=演算子はpoint、box、polygon、およびcircle型に対し通常の等価概念を示すことに注意してください。これらのいくつかの型は=演算子を持ちますが、=は面積の等しさのみを比較します。これらの型で利用可能であれば、その他のスカラ比較演算子（<=など）は同様に面積を比較します。
    

注記


PostgreSQL™の14より前では、点の下／上の厳密比較演算子point <<| pointおよびpoint |>> pointは、それぞれ<^および>^という名前でした。
これらの名前はまだ利用できますが、削除予定であり最終的にはなくなるでしょう。
    

表9.37 幾何データ型関数
	

関数
       

       

説明
       

       

例
       

	
        
        area ( geometric_type )
        double precision
       

       

面積を計算します。
box、path、circleで利用可能です。
入力pathは閉じていなければなりません。さもなければNULLが返ります。
またpathが自分自身と交わっていれば、結果は無意味なものになります。
       

       
        area(box '(2,2),(0,0)')
        4
       

	
        
        center ( geometric_type )
        point
       

       

中心点を計算します。
box、circleで利用可能です。
       

       
        center(box '(1,2),(0,0)')
        (0.5,1)
       

	
        
        diagonal ( box )
        lseg
       

       

矩形の対角線を線分として取り出します。
(lseg(box)と同じです。)
       

       
        diagonal(box '(1,2),(0,0)')
        [(1,2),(0,0)]
       

	
        
        diameter ( circle )
        double precision
       

       

円の直径を計算します。
       

       
        diameter(circle '<(0,0),2>')
        4
       

	
        
        height ( box )
        double precision
       

       

矩形の高さを計算します。
       

       
        height(box '(1,2),(0,0)')
        2
       

	
        
        isclosed ( path )
        boolean
       

       

閉経路か？
       

       
        isclosed(path '((0,0),(1,1),(2,0))')
        t
       

	
        
        isopen ( path )
        boolean
       

       

開経路か？
       

       
        isopen(path '[(0,0),(1,1),(2,0)]')
        t
       

	
        
        length ( geometric_type )
        double precision
       

       

全長を計算します。
lseg、pathで利用可能です。
       

       
        length(path '((-1,0),(1,0))')
        4
       

	
        
        npoints ( geometric_type )
        integer
       

       

点の数を返します。
path、polygonで利用可能です。
       

       
        npoints(path '[(0,0),(1,1),(2,0)]')
        3
       

	
        
        pclose ( path )
        path
       

       

経路を閉じた状態に変換します。
       

       
        pclose(path '[(0,0),(1,1),(2,0)]')
        ((0,0),(1,1),(2,0))
       

	
        
        popen ( path )
        path
       

       

経路を開いた状態に変換します。
       

       
        popen(path '((0,0),(1,1),(2,0))')
        [(0,0),(1,1),(2,0)]
       

	
        
        radius ( circle )
        double precision
       

       

円の半径を計算します。
       

       
        radius(circle '<(0,0),2>')
        2
       

	
        
        slope ( point, point )
        double precision
       

       

2つの点で描いた直線の傾きを計算します。
       

       
        slope(point '(0,0)', point '(2,1)')
        0.5
       

	
        
        width ( box )
        double precision
       

       

矩形の幅を計算します。
       

       
        width(box '(1,2),(0,0)')
        1
       




表9.38 幾何型変換関数
	

関数
       

       

説明
       

       

例
       

	
        
        box ( circle )
        box
       

       

円に内接する矩形を計算します。
       

       
        box(circle '<(0,0),2>')
        (1.414213562373095,1.414213562373095),​(-1.414213562373095,-1.414213562373095)
       

	
        box ( point )
        box
       

       

点を空の矩形に変換します。
       

       
        box(point '(1,0)')
        (1,0),(1,0)
       

	
        box ( point, point )
        box
       

       

2つの対角する点を矩形に変換します。
       

       
        box(point '(0,1)', point '(1,0)')
        (1,1),(0,0)
       

	
        box ( polygon )
        box
       

       

多角形の外接矩形を計算します。
       

       
        box(polygon '((0,0),(1,1),(2,0))')
        (2,1),(0,0)
       

	
        
        bound_box ( box, box )
        box
       

       

2つの矩形の外接矩形を計算します。
       

       
        bound_box(box '(1,1),(0,0)', box '(4,4),(3,3)')
        (4,4),(0,0)
       

	
        
        circle ( box )
        circle
       

       

矩形を含む最小の円を計算します。
       

       
        circle(box '(1,1),(0,0)')
        <(0.5,0.5),0.7071067811865476>
       

	
        circle ( point, double precision )
        circle
       

       

中心と半径から円を作成します。
       

       
        circle(point '(0,0)', 2.0)
        <(0,0),2>
       

	
        circle ( polygon )
        circle
       

       

多角形を円に変換します。
円の中心は多角形の点の位置の平均で、半径は中心から多角形の点の平均距離です。
       

       
        circle(polygon '((0,0),(1,3),(2,0))')
        <(1,1),1.6094757082487299>
       

	
        
        line ( point, point )
        line
       

       

2点を通過する直線に変換します。
       

       
        line(point '(-1,0)', point '(1,0)')
        {0,-1,0}
       

	
        
        lseg ( box )
        lseg
       

       

矩形の対角線を線分として取り出します。
       

       
        lseg(box '(1,0),(-1,0)')
        [(1,0),(-1,0)]
       

	
        lseg ( point, point )
        lseg
       

       

2つの点から線分を作ります。
       

       
        lseg(point '(-1,0)', point '(1,0)')
        [(-1,0),(1,0)]
       

	
        
        path ( polygon )
        path
       

       

同じ点のリストで多角形を閉経路に変換します。
       

       
        path(polygon '((0,0),(1,1),(2,0))')
        ((0,0),(1,1),(2,0))
       

	
        
        point ( double precision, double precision )
        point
       

       

座標から点を作ります。
       

       
        point(23.4, -44.5)
        (23.4,-44.5)
       

	
        point ( box )
        point
       

       

矩形の中心点を計算します。
       

       
        point(box '(1,0),(-1,0)')
        (0,0)
       

	
        point ( circle )
        point
       

       

円の中心点を計算します。
       

       
        point(circle '<(0,0),2>')
        (0,0)
       

	
        point ( lseg )
        point
       

       

線分の中心を計算します。
       

       
        point(lseg '[(-1,0),(1,0)]')
        (0,0)
       

	
        point ( polygon )
        point
       

       

多角形の中心を計算します。
（多角形の点の位置の平均です。）
       

       
        point(polygon '((0,0),(1,1),(2,0))')
        (1,0.3333333333333333)
       

	
        
        polygon ( box )
        polygon
       

       

矩形を4点の多角形に変換します。
       

       
        polygon(box '(1,1),(0,0)')
        ((0,0),(0,1),(1,1),(1,0))
       

	
        polygon ( circle )
        polygon
       

       

円を12点の多角形に変換します。
       

       
        polygon(circle '<(0,0),2>')
        ((-2,0),​(-1.7320508075688774,0.9999999999999999),​(-1.0000000000000002,1.7320508075688772),​(-1.2246063538223773e-16,2),​(0.9999999999999996,1.7320508075688774),​(1.732050807568877,1.0000000000000007),​(2,2.4492127076447545e-16),​(1.7320508075688776,-0.9999999999999994),​(1.0000000000000009,-1.7320508075688767),​(3.673819061467132e-16,-2),​(-0.9999999999999987,-1.732050807568878),​(-1.7320508075688767,-1.0000000000000009))
       

	
        polygon ( integer, circle )
        polygon
       

       

円をn点の多角形に変換します。
       

       
        polygon(4, circle '<(3,0),1>')
        ((2,0),​(3,1),​(4,1.2246063538223773e-16),​(3,-1))
       

	
        polygon ( path )
        polygon
       

       

同じ点のリストで閉経路を多角形に変換します。
       

       
        polygon(path '((0,0),(1,1),(2,0))')
        ((0,0),(1,1),(2,0))
       






あたかもpointは添字0、1を有する配列であるかのように、pointの２つの構成要素にアクセスすることができます。
例えば、t.pがpoint列の場合、SELECT p[0] FROM tという式でX座標を抽出できます。また、UPDATE t SET p[1] = ...でY座標を変更できます。
同様に、box型またはlseg型の値も、2つのpoint型の値の配列のように扱えます。
    

ネットワークアドレス関数と演算子





IPネットワークアドレス型であるcidrとinetは表9.1「比較演算子」に示す通常の比較演算子に加え、表9.39「IPアドレス演算子」と表9.40「IPアドレス関数」で示す特定目的の演算子と関数をサポートしています。
  


すべてのcidr値は暗黙的にinetにキャストできます。ですから以下で示すinetで使える演算子と関数はcidrでも使えます。
（inetとcidr用の別々の関数があるのは、この両者で振る舞いが異なっているべきである場合があるからです。）
またinet値をcidrにキャストすることが許されています。
これが行われると、ネットマスクの右側のすべてのビットは有効なcidr値を作るために暗黙的にゼロになります。
  
表9.39 IPアドレス演算子
	

演算子
       

       

説明
       

       

例
       

	
        inet << inet
        boolean
       

       

サブネットが完全にサブネットに含まれているか？
この演算子と次の4つの演算子はサブネットの包含をテストします。
それらは2つのアドレスのネットワーク部分だけを考慮し（ネットマスクの右のビットは無視されます）、ネットワークが他のネットワークと同一か、あるいはサブネットであるかどうかを決定します。
       

       
        inet '192.168.1.5' << inet '192.168.1/24'
        t
       

       
        inet '192.168.0.5' << inet '192.168.1/24'
        f
       

       
        inet '192.168.1/24' << inet '192.168.1/24'
        f
       

	
        inet <<= inet
        boolean
       

       

サブネットがサブネットに含まれているか、あるいは同じか？
       

       
        inet '192.168.1/24' <<= inet '192.168.1/24'
        t
       

	
        inet >> inet
        boolean
       

       

サブネットが完全にサブネットを含んでいるか？
       

       
        inet '192.168.1/24' >> inet '192.168.1.5'
        t
       

	
        inet >>= inet
        boolean
       

       

サブネットがサブネットを含んでいるか、あるいは同じか？
       

       
        inet '192.168.1/24' >>= inet '192.168.1/24'
        t
       

	
        inet && inet
        boolean
       

       

サブネットが他を含んでいるか、あるいは同じか？
       

       
        inet '192.168.1/24' && inet '192.168.1.80/28'
        t
       

       
        inet '192.168.1/24' && inet '192.168.2.0/28'
        f
       

	
        ~ inet
        inet
       

       

ビット否定を計算します。
       

       
        ~ inet '192.168.1.6'
        63.87.254.249
       

	
        inet & inet
        inet
       

       

ビット積を計算します。
       

       
        inet '192.168.1.6' & inet '0.0.0.255'
        0.0.0.6
       

	
        inet | inet
        inet
       

       

ビット和を計算します。
       

       
        inet '192.168.1.6' | inet '0.0.0.255'
        192.168.1.255
       

	
        inet + bigint
        inet
       

       

オフセットをアドレスに加算します。
       

       
        inet '192.168.1.6' + 25
        192.168.1.31
       

	
        bigint + inet
        inet
       

       

オフセットをアドレスに加算します。
       

       
        200 + inet '::ffff:fff0:1'
        ::ffff:255.240.0.201
       

	
        inet - bigint
        inet
       

       

アドレスからオフセットを減算します。
       

       
        inet '192.168.1.43' - 36
        192.168.1.7
       

	
        inet - inet
        bigint
       

       

2つのアドレスの差を計算します。
       

       
        inet '192.168.1.43' - inet '192.168.1.19'
        24
       

       
        inet '::1' - inet '::ffff:1'
        -4294901760
       




表9.40 IPアドレス関数
	

関数
       

       

説明
       

       

例
       

	
        
        abbrev ( inet )
        text
       

       

表示用テキスト省略形を作成します。
（結果はinet出力関数が生成するものと同じです。明示的にtextにキャストしたもの（歴史的な理由でネットマスク部分が抑止されていません）と比べると「省略」されているだけです。
       

       
        abbrev(inet '10.1.0.0/32')
        10.1.0.0
       

	
        abbrev ( cidr )
        text
       

       

表示用テキスト省略形を作成します。
（ネットマスクの右側のすべてのゼロオクテットを削除することによって省略形にします。表8.22「cidrデータ型入力例」に他の例があります。）
       

       
        abbrev(cidr '10.1.0.0/16')
        10.1/16
       

	
        
        broadcast ( inet )
        inet
       

       

アドレスのネットワーク部のネットワークブロードキャストアドレスを計算します。
       

       
        broadcast(inet '192.168.1.5/24')
        192.168.1.255/24
       

	
        
        family ( inet )
        integer
       

       

アドレスファミリーを返します。IPv4なら4で、IPv6なら6です。
       

       
        family(inet '::1')
        6
       

	
        
        host ( inet )
        text
       

       

IPアドレスをテキストとして返します。ネットマスクは無視されます。
       

       
        host(inet '192.168.1.0/24')
        192.168.1.0
       

	
        
        hostmask ( inet )
        inet
       

       

アドレスのネットワークに対するホストマスクを計算します。
       

       
        hostmask(inet '192.168.23.20/30')
        0.0.0.3
       

	
        
        inet_merge ( inet, inet )
        cidr
       

       

与えられたネットワークを両方含む最小のネットワークを計算します。
       

       
        inet_merge(inet '192.168.1.5/24', inet '192.168.2.5/24')
        192.168.0.0/22
       

	
        
        inet_same_family ( inet, inet )
        boolean
       

       

アドレスが同じIPファミリーに属しているかどうかを判定します。
       

       
        inet_same_family(inet '192.168.1.5/24', inet '::1')
        f
       

	
        
        masklen ( inet )
        integer
       

       

ネットマスクのビット長を返します。
       

       
        masklen(inet '192.168.1.5/24')
        24
       

	
        
        netmask ( inet )
        inet
       

       

アドレスのネットワークに対するネットワークマスクを計算します。
       

       
        netmask(inet '192.168.1.5/24')
        255.255.255.0
       

	
        
        network ( inet )
        cidr
       

       

ネットマスクの右側をすべてゼロにしてアドレスのネットワーク部を返します。
（これは値をcidrにキャストするのと同じです。）
       

       
        network(inet '192.168.1.5/24')
        192.168.1.0/24
       

	
        
        set_masklen ( inet, integer )
        inet
       

       

ネットマスク長をinet値に設定します。
アドレスの部分は変更しません。
       

       
        set_masklen(inet '192.168.1.5/24', 16)
        192.168.1.5/16
       

	
        set_masklen ( cidr, integer )
        cidr
       

       

ネットマスク長をcidr値に設定します。
新しいネットマスクの右側のアドレスビットは0に設定されます。
       

       
        set_masklen(cidr '192.168.1.0/24', 16)
        192.168.0.0/16
       

	
        
        text ( inet )
        text
       

       

省略形ではないIPアドレスとネットマスク長をテキストとして返します。
（これはtextに明示的にキャストするのと同じ効果があります。）
       

       
        text(inet '192.168.1.5')
        192.168.1.5/32
       




ヒント


関数abbrev、host、およびtext、は主として、代替のIPアドレスの整形表示を提供する目的のものです。
   



MACアドレス型であるmacaddrとmacaddr8は、表9.1「比較演算子」で示す通常の比較演算子と表9.41「MACアドレス関数」で示す特定目的のための関数をサポートします。
加えて上記のIPアドレス用に示したのと同様に、ビットごとの論理演算子~、&、|(NOT、AND、OR)をサポートします。
  
表9.41 MACアドレス関数
	

関数
       

       

説明
       

       

例
       

	
        
        trunc ( macaddr )
        macaddr
       

       

アドレスの終わりの３バイトをゼロに設定します。
残りの前の部分は（PostgreSQL™には含まれないデータを使って）特定の製造業者に関連付けることもできます。
       

       
        trunc(macaddr '12:34:56:78:90:ab')
        12:34:56:00:00:00
       

	
        trunc ( macaddr8 )
        macaddr8
       

       

アドレスの終わりの5バイトをゼロに設定します。
残りの前の部分は（PostgreSQL™には含まれないデータを使って）特定の製造業者に関連付けることもできます。
       

       
        trunc(macaddr8 '12:34:56:78:90:ab:cd:ef')
        12:34:56:00:00:00:00:00
       

	
        
        macaddr8_set7bit ( macaddr8 )
        macaddr8
       

       

7番目のビットを1にし、修正EUI-64と呼ばれる形式にして、IPv6アドレスに含められるようにします。
       

       
        macaddr8_set7bit(macaddr8 '00:34:56:ab:cd:ef')
        02:34:56:ff:fe:ab:cd:ef
       





テキスト検索関数と演算子





表9.42「テキスト検索演算子」、表9.43「テキスト検索関数」および表9.44「テキスト検索デバッグ関数」は全文検索用に提供されている関数と演算子を要約しています。PostgreSQL™のテキスト検索機能の詳細は12章全文検索を参照してください。
  
表9.42 テキスト検索演算子
	

演算子
       

       

説明
       

       

例
       

	
        tsvector @@ tsquery
        boolean
       

       
        tsquery @@ tsvector
        boolean
       

       

tsvectorがtsqueryの条件に合うか？
（引数は任意の順で与えることができます。）
       

       
        to_tsvector('fat cats ate rats') @@ to_tsquery('cat & rat')
        t
       

	
        text @@ tsquery
        boolean
       

       

テキスト文字列はto_tsvector()の暗黙的な呼び出し後にtsqueryの条件に合うか？
       

       
        'fat cats ate rats' @@ to_tsquery('cat & rat')
        t
       

	
        tsvector || tsvector
        tsvector
       

       

2つのtsvectorを連結します。
両方の入力が語彙素の位置を含んでいるなら2番目の入力の位置はそれにしたがって調整されます。
       

       
        'a:1 b:2'::tsvector || 'c:1 d:2 b:3'::tsvector
        'a':1 'b':2,5 'c':3 'd':4
       

	
        tsquery && tsquery
        tsquery
       

       

2つのtsqueryの論理積を取り、両方の入力問い合わせにマッチする文書にマッチする問い合わせを生成します。
       

       
        'fat | rat'::tsquery && 'cat'::tsquery
        ( 'fat' | 'rat' ) & 'cat'
       

	
        tsquery || tsquery
        tsquery
       

       

2つのtsqueryの論理和を取り、どちらかの入力問い合わせにマッチする文書にマッチする問い合わせを生成します。
       

       
        'fat | rat'::tsquery || 'cat'::tsquery
        'fat' | 'rat' | 'cat'
       

	
        !! tsquery
        tsquery
       

       

tsqueryの否定を取り、入力問い合わせにマッチしない文書にマッチする問い合わせを生成します。
       

       
        !! 'cat'::tsquery
        !'cat'
       

	
        tsquery <-> tsquery
        tsquery
       

       

2つの入力問い合わせが連続する語彙素にマッチする場合にマッチする語句問い合わせを作成します。
       

       
        to_tsquery('fat') <-> to_tsquery('rat')
        'fat' <-> 'rat'
       

	
        tsquery @> tsquery
        boolean
       

       

最初のtsqueryは2番目を含んでいるか？
（これは結合演算子を無視して、単に一方の問い合わせ中のすべての語彙素が他方に現れるかどうかだけを考慮します。）
       

       
        'cat'::tsquery @> 'cat & rat'::tsquery
        f
       

	
        tsquery <@ tsquery
        boolean
       

       

最初のtsqueryは2番目に含まれているか？
（これは結合演算子を無視して、単に一方の問い合わせ中のすべての語彙素が他方に現れるかどうかだけを考慮します。）
       

       
        'cat'::tsquery <@ 'cat & rat'::tsquery
        t
       

       
        'cat'::tsquery <@ '!cat & rat'::tsquery
        t
       






表に示された演算子に加え、表9.1「比較演算子」で示す通常の比較演算子型tsvectorおよびtsqueryに対して利用できます。
これらはテキスト検索に対してそれほど有用ではありませんが、例えばこれらの型の列に一意インデックスを作成することを可能にします。
    
表9.43 テキスト検索関数
	

関数
       

       

説明
       

       

例
       

	
        
        array_to_tsvector ( text[] )
        tsvector
       

       

文字列の配列をtsvectorに変換します。
与えられた文字列はそれ以上処理せずに語彙素としてそのまま使用されます。
配列要素は空文字列やNULLであってはなりません。
       

       
        array_to_tsvector('{fat,cat,rat}'::text[])
        'cat' 'fat' 'rat'
       

	
        
        get_current_ts_config ( )
        regconfig
       

       

（default_text_search_configで設定された）現在のテキスト検索設定のOIDを返します。
       

       
        get_current_ts_config()
        english
       

	
        
        length ( tsvector )
        integer
       

       

tsvectorにある語彙素の数を返します。
       

       
        length('fat:2,4 cat:3 rat:5A'::tsvector)
        3
       

	
        
        numnode ( tsquery )
        integer
       

       

tsqueryにある語彙素の数と演算子の数の和を返します。
       

       
        numnode('(fat & rat) | cat'::tsquery)
        5
       

	
        
        plainto_tsquery (
        [ config regconfig, ]
        query text )
        tsquery
       

       

指定されたデフォルト設定にしたがって単語を正規化してテキストをtsqueryに変換します。
文字列中の句読点はすべて無視されます。（句読点は問い合わせ演算子を決定しません。）
結果の問い合わせはテキスト中の非ストップワードをすべて含む文書にマッチします。
       

       
        plainto_tsquery('english', 'The Fat Rats')
        'fat' & 'rat'
       

	
        
        phraseto_tsquery (
        [ config regconfig, ]
        query text )
        tsquery
       

       

指定されたデフォルト設定にしたがって単語を正規化してテキストをtsqueryに変換します。
文字列中の句読点はすべて無視されます。（句読点は問い合わせ演算子を決定しません。）
結果の問い合わせはテキスト中の非ストップワードをすべて含む句にマッチします。
       

       
        phraseto_tsquery('english', 'The Fat Rats')
        'fat' <-> 'rat'
       

       
        phraseto_tsquery('english', 'The Cat and Rats')
        'cat' <2> 'rat'
       

	
        
        websearch_to_tsquery (
        [ config regconfig, ]
        query text )
        tsquery
       

       

指定されたデフォルト設定にしたがって単語を正規化してテキストをtsqueryに変換します。
引用符で囲まれた一連の語は句の検査に変換されます。
「or」はOR演算子を生成するものとして扱われ、ダッシュはNOT演算子として扱われます。
それ以外の句読点は無視されます。
これにより通常のweb検索ツールに近い振る舞いをします。
       

       
        websearch_to_tsquery('english', '"fat rat" or cat dog')
        'fat' <-> 'rat' | 'cat' & 'dog'
       

	
        
        querytree ( tsquery )
        text
       

       

tsqueryのインデックス付可能な部分の表現を生成します。
空あるいはTはインデックス付できる部分が無い問い合わせであることを意味します。
       

       
        querytree('foo & ! bar'::tsquery)
        'foo'
       

	
        
        setweight ( vector tsvector, weight "char" )
        tsvector
       

       

vectorの各要素に指定したweightを割り当てます。
       

       
        setweight('fat:2,4 cat:3 rat:5B'::tsvector, 'A')
        'cat':3A 'fat':2A,4A 'rat':5A
       

	
        
        setweight ( vector tsvector, weight "char", lexemes text[] )
        tsvector
       

       

vectorの各要素にlexemesで列挙したweightを割り当てます。
語彙素の文字列は、処理されることなく、そのまま語彙素として扱われます。
ベクトルのどの語彙素にも一致しない文字列は無視されます。
       

       
        setweight('fat:2,4 cat:3 rat:5,6B'::tsvector, 'A', '{cat,rat}')
        'cat':3A 'fat':2,4 'rat':5A,6A
       

	
        
        strip ( tsvector )
        tsvector
       

       

位置と重みをtsvectorから削除します。
       

       
        strip('fat:2,4 cat:3 rat:5A'::tsvector)
        'cat' 'fat' 'rat'
       

	
        
        to_tsquery (
        [ config regconfig, ]
        query text )
        tsquery
       

       

指定されたデフォルト設定にしたがって単語を正規化してテキストをtsqueryに変換します。
単語は有効なtsquery演算子と組み合わされていなければなりません。
       

       
        to_tsquery('english', 'The & Fat & Rats')
        'fat' & 'rat'
       

	
        
        to_tsvector (
        [ config regconfig, ]
         document text )
        tsvector
       

       

指定されたデフォルト設定にしたがって単語を正規化してテキストをtsvectorに変換します。
位置情報が結果に含まれます。
       

       
        to_tsvector('english', 'The Fat Rats')
        'fat':2 'rat':3
       

	
        to_tsvector (
        [ config regconfig, ]
        document json )
        tsvector
       

       
        to_tsvector (
        [ config regconfig, ]
        document jsonb )
        tsvector
       

       

指定されたデフォルト設定にしたがって正規化してJSON文書中の文字列値をtsvectorに変換します。
そして結果は文書中の順序にしたがって結合されます。
位置情報は、あたかも文字列値の各々の対の間にストップワードが存在するかのように生成されます。
（入力がjsonbの場合、JSONオブジェクトのフィールドの「ドキュメント順」は実装依存であることに注意してください。例中の差異を見てください。）
       

       
        to_tsvector('english', '{"aa": "The Fat Rats", "b": "dog"}'::json)
        'dog':5 'fat':2 'rat':3
       

       
        to_tsvector('english', '{"aa": "The Fat Rats", "b": "dog"}'::jsonb)
        'dog':1 'fat':4 'rat':5
       

	
        
        json_to_tsvector (
        [ config regconfig, ]
        document json,
        filter jsonb )
        tsvector
       

       
        
        jsonb_to_tsvector (
        [ config regconfig, ]
        document jsonb,
        filter jsonb )
        tsvector
       

       

filterによって要求された項目をJSON文書から検索し、指定されたデフォルト設定にしたがって正規化してtsvectorに変換します。
そして結果は文書中の順序にしたがって結合されます。
位置情報は、あたかも文字列値の各々の対の間にストップワードが存在するかのように生成されます。
（入力がjsonbの場合、JSONオブジェクトのフィールドの「ドキュメント順」は実装依存であることに注意してください。例中の差異を見てください。）
filterは0個以上の以下のキーワードを含むjsonbの配列でなければなりません：
"string" (すべての文字列値を含めます)、"numeric" (すべての数値を含めます)、"boolean" (すべての論理値を含めます)、"key" (すべてのキーを含めます)、"all" (すべてを含めます)。
特別な場合として、filterはこれらのキーワードのどれかである単純なJSON値とすることもできます。
       

       
        json_to_tsvector('english', '{"a": "The Fat Rats", "b": 123}'::json, '["string", "numeric"]')
        '123':5 'fat':2 'rat':3
       

       
        json_to_tsvector('english', '{"cat": "The Fat Rats", "dog": 123}'::json, '"all"')
        '123':9 'cat':1 'dog':7 'fat':4 'rat':5
       

	
        
        ts_delete ( vector tsvector, lexeme text )
        tsvector
       

       

vectorから与えられたlexemeを削除します。
lexeme文字列は、それ以上の処理を行わずに、現状のままのlexemeとして扱われます。
       

       
        ts_delete('fat:2,4 cat:3 rat:5A'::tsvector, 'fat')
        'cat':3 'rat':5A
       

	
        ts_delete ( vector tsvector, lexemes text[] )
        tsvector
       

       

vectorからlexemes中のすべての語彙素を削除します。
lexemes内の文字列は、それ以上の処理を行わずに、そのまま語彙素として扱われます。
vector内のどの語彙素とも一致しない文字列は無視されます。
       

       
        ts_delete('fat:2,4 cat:3 rat:5A'::tsvector, ARRAY['fat','rat'])
        'cat':3
       

	
        
        ts_filter ( vector tsvector, weights "char"[] )
        tsvector
       

       

vectorからweightsを持つ要素だけを検索します。
       

       
        ts_filter('fat:2,4 cat:3b,7c rat:5A'::tsvector, '{a,b}')
        'cat':3B 'rat':5A
       

	
        
        ts_headline (
        [ config regconfig, ]
        document text,
        query tsquery
        [, options text ] )
        text
       

       

document中のqueryにマッチするものを省略形で表示します。
documentはtsvectorではなくて生のテキストでなければなりません。
問い合わせのマッチ処理を行う前に、指定した、あるいはデフォルトの設定にしたがって単語が正規化されます。
「結果の強調」にこの関数の使い方が記述されています。可能なoptionsについても言及されています。
       

       
        ts_headline('The fat cat ate the rat.', 'cat')
        The fat <b>cat</b> ate the rat.
       

	
        ts_headline (
        [ config regconfig, ]
        document json,
        query tsquery
        [, options text ] )
        text
       

       
        ts_headline (
        [ config regconfig, ]
        document jsonb,
        query tsquery
        [, options text ] )
        text
       

       

JSON document中に出現する文字列値にqueryがマッチしたものを省略形で表示します。
詳細は「結果の強調」を見てください。
       

       
        ts_headline('{"cat":"raining cats and dogs"}'::jsonb, 'cat')
        {"cat": "raining <b>cats</b> and dogs"}
       

	
        
        ts_rank (
        [ weights real[], ]
        vector tsvector,
        query tsquery
        [, normalization integer ] )
        real
       

       

vectorがqueryにどれほどマッチするかのスコアを計算します。
詳細は「検索結果のランキング」を見てください。
       

       
        ts_rank(to_tsvector('raining cats and dogs'), 'cat')
        0.06079271
       

	
        
        ts_rank_cd (
        [ weights real[], ]
        vector tsvector,
        query tsquery
        [, normalization integer ] )
        real
       

       

被覆密度アルゴリズムを用いてvectorがqueryにどれほどマッチするかのスコアを計算します。
詳細は「検索結果のランキング」を見てください。
       

       
        ts_rank_cd(to_tsvector('raining cats and dogs'), 'cat')
        0.1
       

	
        
        ts_rewrite ( query tsquery,
        target tsquery,
        substitute tsquery )
        tsquery
       

       

query中に出現するtargetをsubstituteに置き換えます。
詳細は「問い合わせの書き換え」を見てください。
       

       
        ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'foo|bar'::tsquery)
        'b' & ( 'foo' | 'bar' )
       

	
        ts_rewrite ( query tsquery,
        select text )
        tsquery
       

       

SELECTを実行して取得したターゲットと代替を使用してqueryの一部を置き換えます。
詳細は「問い合わせの書き換え」を見てください。
       

       
        SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases')
        'b' & ( 'foo' | 'bar' )
       

	
        
        tsquery_phrase ( query1 tsquery, query2 tsquery )
        tsquery
       

       

連続する語彙素でquery1とquery2のマッチを検索する語句問い合わせを作成します。
（<->演算子と同じです。）
       

       
        tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'))
        'fat' <-> 'cat'
       

	
        tsquery_phrase ( query1 tsquery, query2 tsquery, distance integer )
        tsquery
       

       

語彙素が正確にdistanceだけ離れているquery1とquery2へのマッチを検索する語句問い合わせを作成します。
       

       
        tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10)
        'fat' <10> 'cat'
       

	
        
        tsvector_to_array ( tsvector )
        text[]
       

       

tsvectorを語彙素の配列に変換します。
       

       
        tsvector_to_array('fat:2,4 cat:3 rat:5A'::tsvector)
        {cat,fat,rat}
       

	
        
        unnest ( tsvector )
        setof record
        ( lexeme text,
        positions smallint[],
        weights text )
       

       

1行につき1語彙素でtsvectorを行の集合に変換します。
       

       
        select * from unnest('cat:3 fat:2,4 rat:5A'::tsvector)
        


 lexeme | positions | weights
--------+-----------+---------
 cat    | {3}       | {D}
 fat    | {2,4}     | {D,D}
 rat    | {5}       | {A}


       




注記


オプションのregconfig引数を受け付ける全てのテキスト検索関数は、その引数が省略された場合default_text_search_configで指定された設定を使用します。
   



表9.44「テキスト検索デバッグ関数」の関数は、日常のテキスト検索操作では通常使用されないので、別の表にしました。
これらは主に新しいテキスト検索設定の開発およびデバッグに役立ちます。
  
表9.44 テキスト検索デバッグ関数
	

関数
       

       

説明
       

       

例
       

	
        
        ts_debug (
        [ config regconfig, ]
        document text )
        setof record
        ( alias text,
        description text,
        token text,
        dictionaries regdictionary[],
        dictionary regdictionary,
        lexemes text[] )
       

       

指定した、あるいはデフォルトの設定にしたがってdocumentから正規化されたトークンを取り出し、各トークンがどのように処理されたかの情報を返します。
詳細は「設定のテスト」を見てください。
       

       
        ts_debug('english', 'The Brightest supernovaes')
        (asciiword,"Word, all ASCII",The,{english_stem},english_stem,{}) ...
       

	
        
        ts_lexize ( dict regdictionary, token text )
        text[]
       

       

入力トークンが辞書にあれば代替の語彙素の配列、辞書にあるがストップワードである場合には空の配列、未知の単語ならNULLを返します。
詳細は「辞書のテスト」を見てください。
       

       
        ts_lexize('english_stem', 'stars')
        {star}
       

	
        
        ts_parse ( parser_name text,
        document text )
        setof record
        ( tokid integer,
        token text )
       

       

名前で指定したパーサを使ってdocumentからトークンを取り出します。
詳細は「パーサのテスト」を見てください。
       

       
        ts_parse('default', 'foo - bar')
        (1,foo) ...
       

	
        ts_parse ( parser_oid oid,
        document text )
        setof record
        ( tokid integer,
        token text )
       

       

OIDで指定されたパーサを使ってdocumentからトークンを取り出します。
詳細は「パーサのテスト」を見てください。
       

       
        ts_parse(3722, 'foo - bar')
        (1,foo) ...
       

	
        
        ts_token_type ( parser_name text )
        setof record
        ( tokid integer,
        alias text,
        description text )
       

       

名前で指定したパーサが認識できるトークンの型を記述するテーブルを返します。
詳細は「パーサのテスト」を見てください。
       

       
        ts_token_type('default')
        (1,asciiword,"Word, all ASCII") ...
       

	
        ts_token_type ( parser_oid oid )
        setof record
        ( tokid integer,
        alias text,
        description text )
       

       

OIDで指定したパーサが認識できるトークンの型を記述するテーブルを返します。
詳細は「パーサのテスト」を見てください。
       

       
        ts_token_type(3722)
        (1,asciiword,"Word, all ASCII") ...
       

	
        
        ts_stat ( sqlquery text
        [, weights text ] )
        setof record
        ( word text,
        ndoc integer,
        nentry integer )
       

       

単一のtsvector列を返さなければならないsqlqueryを実行し、データに含まれる別個の語彙素に関する統計情報を返します。
詳細は「文書の統計情報の収集」をご覧ください。
       

       
        ts_stat('SELECT vector FROM apod')
        (foo,10,15) ...
       





UUID関数





表9.45「UUID生成関数」は、UUIDの生成に使用できるPostgreSQL™の関数を示しています。
  
表9.45 UUID生成関数
	
       

関数
       

       

説明
        

       

例
       

       
	
       
        gen_random_uuid
        uuid
       

       
        uuidv4
        uuid
       

       

バージョン4（ランダム）のUUIDを生成します。
       

       
        gen_random_uuid()
        5b30857f-0bfa-48b5-ac0b-5c64e28078d1
       

       
        uuidv4()
        b42410ee-132f-42ee-9e4f-09a6485c95b8
       

      
	
       
        uuidv7
        ( [ shift interval ] )
        uuid
       

       

バージョン7（時間順）のUUIDを生成します。
タイムスタンプは、ミリ秒精度のUNIXタイムスタンプ+サブミリ秒のタイムスタンプ+ランダム値を使用して計算されます。
オプションのパラメータshiftは、計算されたタイムスタンプを指定されたintervalだけシフトします。
       

       
        uuidv7()
        019535d9-3df7-79fb-b466-fa907fa17f9e
       

      



注記


uuid-osspモジュールは、UUIDを生成するための他の標準アルゴリズムを実装した追加の関数を提供します。
   



表9.46「UUID抽出関数」は、UUIDから情報を抽出するために使用できるPostgreSQL™関数を示しています。
  
表9.46 UUID抽出関数
	
       

関数
       

       

説明
       

       

例
       

      
	
       
        uuid_extract_timestamp
        ( uuid )
        timestamp with time zone
       

       

この関数は、UUIDバージョン1と7からtimestamp with time zoneを抽出します。
他のバージョンでは、この関数はNULLを返します。
抽出されたタイムスタンプは必ずしもUUIDが生成された時間と正確に同じではありません。
これはUUIDを生成した実装に依存します。
       

       
        uuid_extract_timestamp('019535d9-3df7-79fb-b466-​fa907fa17f9e'::uuid)
         2025-02-23 21:46:24.503-05
       

      
	
       
        uuid_extract_version
        ( uuid )
        smallint
       

       

この関数は、RFC 9562に記述されている種類のUUIDからバージョンを抽出します。
他の種類については、この関数はNULLを返します。
例えば、gen_random_uuidによって生成されたUUIDに対して、この関数は4を返します。
       

       
        uuid_extract_version('41db1265-8bc1-4ab3-992f-​885799a4af1d'::uuid)
        4
       

       
        uuid_extract_version('019535d9-3df7-79fb-b466-​fa907fa17f9e'::uuid)
        7
       

      





PostgreSQL™は表9.1「比較演算子」で示すUUIDのための通常の比較演算子を提供しています。
  


PostgreSQL™のUUIDデータ型の詳細は「UUID型」を参照してください。
  

XML関数





この節で説明される関数および擬似関数式は、xml型の値に対して機能します。
xml型についての情報は「XML型」を参照してください。
xml型のやりとりを変換するxmlparseおよびxmlserialize擬似関数式はこの節ではなく、そこに記載されています。
  


これらの関数の大半はPostgreSQL™がconfigure --with-libxmlでビルドされていることを必要としています。
  
XML内容の生成





SQLデータからXML内容を生成するために関数と擬似関数式の一式が提供されています。
そのようなものとして、クライアントアプリケーションが問い合わせ結果を処理のためXML文書に書式化するのにこれらは特に適しています。
   
xmltext




xmltext ( text ) xml



関数xmltextは、入力引数を内容とする単一のテキストノードを持つXML値を返します。
アンパサンド(&)、左右の山カッコ(< >)、引用符("")などの定義済みのエンティティはエスケープされます。
    


例：


SELECT xmltext('< foo & bar >');
         xmltext
-------------------------
 &lt; foo &amp; bar &gt;


    

xmlcomment




xmlcomment ( text ) xml



関数xmlcommentは指定のテキストを内容とするXMLコメントを含んだXML値を作成します。
テキストは「--」を含むこと、または「-」で終結することはできません。さもないと結果として構築されるXMLコメントは有効になりません。
引数がNULLならば結果もNULLになります。
    


例：


SELECT xmlcomment('hello');

  xmlcomment
--------------
 <!--hello-->


    

xmlconcat




xmlconcat ( xml [, ...] ) xml



関数xmlconcatは、個々のXML値のリストを結合し、XMLの内容断片を含む単一の値を作成します。
NULL値は削除され、NULL以外の引数が存在しないときのみ結果はNULLになります。
    


例：


SELECT xmlconcat('<abc/>', '<bar>foo</bar>');

      xmlconcat
----------------------
 <abc/><bar>foo</bar>


    


XML宣言が提示されている場合は次のように組み合わされます。
全ての引数の値が同一のXML version宣言を持っていれば、そのversionが結果に使用されます。さもなければversionは使用されません。
全ての引数の値でstandaloneの宣言値が「yes」であれば、その値が結果に使用されます。
全ての引数の値にstandalone宣言値があり、その中で１つでも「no」がある場合、それが結果に使用されます。
それ以外の場合は、結果はstandalone宣言を持ちません。
standalone宣言を必要とするが、standalone宣言がないという結果になった場合には、version 1.0のversion宣言が使用されます。
これはXMLがXML宣言においてversion宣言を含むことを要求するためです。
encoding宣言は無視され、全ての場合で削除されます。
    


例：


SELECT xmlconcat('<?xml version="1.1"?><foo/>', '<?xml version="1.1" standalone="no"?><bar/>');

             xmlconcat
-----------------------------------
 <?xml version="1.1"?><foo/><bar/>


    

xmlelement




xmlelement ( NAME name [, XMLATTRIBUTES ( attvalue [ AS attname ] [, ...] ) ] [, content [, ...]] ) xml



xmlelement式は与えられた名前、属性、および内容を持つXML要素を生成します。
構文中に示すnameとattname項目は単純な識別子で値ではありません。
attvalueとcontent項目は式で、PostgreSQL™の任意のデータ型を出力できます。
XMLATTRIBUTES中の引数はXML要素の属性を生成します。content値は結合して内容を構成します。
    


例：


SELECT xmlelement(name foo);

 xmlelement
------------
 <foo/>

SELECT xmlelement(name foo, xmlattributes('xyz' as bar));

    xmlelement
------------------
 <foo bar="xyz"/>

SELECT xmlelement(name foo, xmlattributes(current_date as bar), 'cont', 'ent');

             xmlelement
-------------------------------------
 <foo bar="2007-01-26">content</foo>


    


有効なXML名ではない要素名と属性名は、シーケンス_xHHHH_により障害となる文字を置換することでエスケープされます。ここで、HHHHは16進数によるその文字のUnicode文字コード番号です。
例をあげます。


SELECT xmlelement(name "foo$bar", xmlattributes('xyz' as "a&b"));

            xmlelement
----------------------------------
 <foo_x0024_bar a_x0026_b="xyz"/>


    


属性値が列参照の場合、明示的な属性名を指定する必要はありません。この場合、デフォルトで列名が属性名として使用されます。
その他の場合には、属性は明示的な名前で与えられなければなりません。
従って、以下の例は有効です。


CREATE TABLE test (a xml, b xml);
SELECT xmlelement(name test, xmlattributes(a, b)) FROM test;



しかし、以下の例は有効ではありません。


SELECT xmlelement(name test, xmlattributes('constant'), a, b) FROM test;
SELECT xmlelement(name test, xmlattributes(func(a, b))) FROM test;


    


もし要素内容が指定されればそのデータ型に従って書式化されます。
もし内容そのものがxml型であれば、複合XML文書が構築されます。
例をあげます。


SELECT xmlelement(name foo, xmlattributes('xyz' as bar),
                            xmlelement(name abc),
                            xmlcomment('test'),
                            xmlelement(name xyz));

                  xmlelement
----------------------------------------------
 <foo bar="xyz"><abc/><!--test--><xyz/></foo>




そのほかの型の内容は有効なXML文字データにフォーマットされます。
これは特に文字<、>、および&がエンティティに変換されることを意味します。
バイナリデータ（データ型はbytea）は、設定パラメータxmlbinaryの設定にしたがって、base64もしくは16進符号化方式で表現されます。
個々のデータ型に対する特定の動作は、「SQLとXMLのデータ型および値のマッピング」で説明されているように、SQL:2006以降で指定された型をPostgreSQLデータ型に調整するため発展すると期待されます。
    

xmlforest




xmlforest ( content [ AS name ] [, ...] ) xml



xmlforest式は与えられた名前と内容を使用し、要素のXMLフォレスト（シーケンス）を生成します。
xmlelementでは、各nameは単純な識別子でなければなりませんが、content式はどんな型のデータも持つことができます。
    


例：


SELECT xmlforest('abc' AS foo, 123 AS bar);

          xmlforest
------------------------------
 <foo>abc</foo><bar>123</bar>


SELECT xmlforest(table_name, column_name)
FROM information_schema.columns
WHERE table_schema = 'pg_catalog';

                                xmlforest
------------------------------------​-----------------------------------
 <table_name>pg_authid</table_name>​<column_name>rolname</column_name>
 <table_name>pg_authid</table_name>​<column_name>rolsuper</column_name>
 ...




第２の例に見られるように、内容の値が列参照の場合、要素名は省略可能です。この時は、列名がデフォルトで使用されます。
そうでない時は、名前が指定されなければなりません。
    


有効なXML名ではない要素名は上のxmlelementで説明した通りエスケープされます。
同様にして、既にxml型であるものを除き、内容データは有効なXML内容になるようにエスケープされます。
    


XMLフォレストは２つ以上の要素からなる場合、有効なXML文書ではないことに注意してください。
したがって、xmlelement内にxmlforest式をラップすることが有用なことがあります。
    

xmlpi




xmlpi ( NAME name [, content ] ) xml



xmlpi式はXML処理命令を作成します。
xmlelementでは、各nameは単純な識別子でなければなりませんが、content式はどんな型のデータも持つことができます。
contentが存在するときは、それは?>という文字シーケンスを含んではいけません。
    


例：


SELECT xmlpi(name php, 'echo "hello world";');

            xmlpi
-----------------------------
 <?php echo "hello world";?>


    

xmlroot




xmlroot ( xml, VERSION {text|NO VALUE} [, STANDALONE {YES|NO|NO VALUE} ] ) xml



xmlroot式はXML値のルートノードの属性を変更します。
versionが指定されていると、ルートノードのversion宣言での値を変更し、standalone設定が指定されていると、ルートノードのstandalone宣言での値を変更します。
    



SELECT xmlroot(xmlparse(document '<?xml version="1.1"?><content>abc</content>'),
               version '1.0', standalone yes);

                xmlroot
----------------------------------------
 <?xml version="1.0" standalone="yes"?>
 <content>abc</content>


    

xmlagg




xmlagg ( xml ) xml



ここで説明している他の関数とは異なり、xmlagg関数は集約関数です。
これはxmlconcatが行うように、入力値を連結する集約関数ですが、単一行内の複数の式にまたがった連結ではなく、複数行にまたがった連結を行います。
集約関数についての追加情報は「集約関数」を参照してください。
    


例：


CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, '<foo>abc</foo>');
INSERT INTO test VALUES (2, '<bar/>');
SELECT xmlagg(x) FROM test;
        xmlagg
----------------------
 <foo>abc</foo><bar/>


    


連結の順序を決定するため、「集約式」に記述されているようにORDER BY句を集計呼び出しに追加することができます。
以下は例です。



SELECT xmlagg(x ORDER BY y DESC) FROM test;
        xmlagg
----------------------
 <bar/><foo>abc</foo>


    


下記は以前のバージョンで推奨されていた、非標準的な方法例です。特定のケースでは依然として有用かもしれません。



SELECT xmlagg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
        xmlagg
----------------------
 <bar/><foo>abc</foo>


    


XML述語





この節で記述されている式は、xml値の属性をチェックします。
    
IS DOCUMENT




xml IS DOCUMENT boolean



式IS DOCUMENTは引数XML値が適切なXML文書であれば真を返し、そうでなければ（つまり、内容の断片）偽を返すか、もしくは引数がNULLであればNULLを返します。
文書と内容の断片の差異については「XML型」を参照してください。
    

IS NOT DOCUMENT




xml IS NOT DOCUMENT boolean



式IS NOT DOCUMENTは引数XML値が適切なXML文書であれば偽を返し、そうでなければ（つまり、内容の断片）真を返すか、もしくは引数がNULLであればNULLを返します。
    

XMLEXISTS




XMLEXISTS ( text PASSING [BY {REF|VALUE}] xml [BY {REF|VALUE}] ) boolean



関数xmlexistsは渡されたXML値をコンテキスト項目としてXPath 1.0式（第一引数）を評価します。
この関数は評価が空のノード集合を生成する場合には偽を返し、それ以外の値を返すならば真を返します。
もしどれかの引数がNULLであった場合はNULLを返します。
コンテキスト項目として渡される非NULLの値は、内容の断片や非XML値ではなく、XML文書でなければなりません。
    


例:
     

SELECT xmlexists('//town[text() = ''Toronto'']' PASSING BY VALUE '<towns><town>Toronto</town><town>Ottawa</town></towns>');

 xmlexists
------------
 t
(1 row)


    


PostgreSQL™はBY REF句とBY VALUE句を受け付けますが、「その他の実装の制限」で説明されているように無視します。
    


標準SQLではxmlexists関数はXML問い合わせ言語における式を評価しますが、「問い合わせはXPath 1.0に限定される」で説明されているように、PostgreSQL™はXPath 1.0の式だけを受け付けます。
    

xml_is_well_formed




xml_is_well_formed ( text ) boolean
xml_is_well_formed_document ( text ) boolean
xml_is_well_formed_content ( text ) boolean



これらの関数はtext文字列が整形式かどうかをチェックし、論理値で結果を返します。
xml_is_well_formed_documentは文書が整形式かをチェックし、一方xml_is_well_formed_contentは内容が整形式かをチェックします。
xml_is_well_formedは、xmloptionパラメータ値がDOCUMENTに設定されていれば前者を、CONTENTが設定されていれば後者のチェックを実施します。
これは、xml_is_well_formedは単純なxml型へのキャストが成功するかの判断に有用であり、その他の２つの関数はXMLPARSEの対応による変換が成功するかの判断に有用であることを意味します。
    


例：



SET xmloption TO DOCUMENT;
SELECT xml_is_well_formed('<>');
 xml_is_well_formed
--------------------
 f
(1 row)

SELECT xml_is_well_formed('<abc/>');
 xml_is_well_formed
--------------------
 t
(1 row)

SET xmloption TO CONTENT;
SELECT xml_is_well_formed('abc');
 xml_is_well_formed
--------------------
 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://postgresql.org/stuff">bar</pg:foo>');
 xml_is_well_formed_document
-----------------------------
 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://postgresql.org/stuff">bar</my:foo>');
 xml_is_well_formed_document
-----------------------------
 f
(1 row)




最後の例は、名前空間が正しく一致しているかのチェックも含むことを示しています。
    


XMLの処理





データ型xmlの値を処理するため、PostgreSQLはXPath 1.0式を評価する関数xpathおよびxpath_existsと、テーブル関数XMLTABLEを提供しています。
   
xpath




xpath ( xpath text, xml xml [, nsarray text[] ] ) xml[]



関数xpathは、XML値xmlに対し、XPath 1.0式xpath(テキストとして指定)を評価します。
そして、XPath式で作成されたノード集合に対応するXML値の配列を返します。
もし、XPath式がノード集合ではなくスカラ値を返す場合、単一要素の配列が返されます。
    


2番目の引数は整形済XML文書でなければなりません。特に、単一のルートノード要素を持たなければなりません。
    


オプショナルな関数の３番目の引数は名前空間マッピング配列です。
この配列は、第２軸が２に等しい長さをもつ２次元text配列です（つまり、それは配列の配列で、それぞれは正確に２つの要素からなります）。
それぞれの配列のエントリの最初の要素は名前空間の名前（別名）で、２番目は名前空間のURIです。
この配列内で提供される別名がXML文書自身で使用されるものと同じであることは必要ではありません（言い換えると、XML文書内およびxpath関数の両方の文脈の中で、別名はローカルです）。
    


例:


SELECT xpath('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>',
             ARRAY[ARRAY['my', 'http://example.com']]);

 xpath
--------
 {test}
(1 row)


    


デフォルト(匿名)名前空間を取り扱うためには、以下のようなことを実施してください。


SELECT xpath('//mydefns:b/text()', '<a xmlns="http://example.com"><b>test</b></a>',
             ARRAY[ARRAY['mydefns', 'http://example.com']]);

 xpath
--------
 {test}
(1 row)


    

xpath_exists




xpath_exists ( xpath text, xml xml [, nsarray text[] ] ) boolean



関数xpath_existsは、xpath関数の特別な形式です。
この関数は、XPath 1.0を満足する個別のXML値を返す代わりに、問い合わせがそれを満足するかどうか（具体的には空のノード集合以外の値を返すかどうか）を論理値で返します。
この関数は、名前空間にマッピングされた引数をもサポートする点を除き、標準のXMLEXISTS述語と同じです。
    


例：


SELECT xpath_exists('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>',
                     ARRAY[ARRAY['my', 'http://example.com']]);

 xpath_exists
--------------
 t
(1 row)


    

xmltable




XMLTABLE (
    [ XMLNAMESPACES ( namespace_uri AS namespace_name [, ...] ), ]
    row_expression PASSING [BY {REF|VALUE}] document_expression [BY {REF|VALUE}]
    COLUMNS name { type [PATH column_expression] [DEFAULT default_expression] [NOT NULL | NULL]
                  | FOR ORDINALITY }
            [, ...]
) setof record



xmltable式は、与えられたXML値、行を抽出するXPathフィルタ、オプションの列定義の集合に基づいてテーブルを生成します。
関数と構文的に似ていますが、これは問い合わせ中のFROM句におけるテーブルとしてのみ使用できます。
    


オプションのXMLNAMESPACES句はカンマで区切られた名前空間のリストを与えます。
各々のnamespace_uriはtext式で、namespace_nameは単純な識別子です。
これは文書とその別名で使用されるXML名前空間を指定します。
デフォルトの名前空間指定は現在のところサポートされていません。
    


必須のrow_expression引数は評価されるXPath 1.0式(textで与えます)で、XMLノード集合を得るためにdocument_expressionをそのコンテキスト項目として渡します。
このノードはxmltableが出力行に変換します。
document_expressionがNULLであるか、row_expressionが空のノード集合あるいはノード集合以外の値を生成するなら行は出力されません。
    


document_expressionはrow_expressionのためのコンテキスト項目を提供します。
それは整形式XMLの文書でなければならず、フラグメントやフォレストは受け付けられません。
「その他の実装の制限」で説明されているように、BY REF句とBY VALUE句は受け付けられますが、無視されます。
    


標準SQLではxmltable関数はXML問い合わせ言語の式を評価しますが、「問い合わせはXPath 1.0に限定される」で説明されているようにPostgreSQL™ではXPath 1.0式だけを受け付けます。
    


必須のCOLUMNS句は、出力テーブルに現れる列を指定します。
形式については上記の構文サマリを参照してください。
各列には名前が必須で、データ型についても同様です。（FOR ORDINALITYが指定された場合を除きます。その場合は暗黙的にintegerが想定されます。）
パス、デフォルト値、NULLを許すかどうかの句は省略できます。
    


FOR ORDINALITYと印がつけられた列には、row_expressionの結果ノード集合から取得されたノードの順序に対応する1から始まる行番号が入ります。
FOR ORDINALITYの印が付けられるのは最大でも1列です。
    
注記


XPath 1.0はノード集合内のノードの順序を指定しません。ですから、結果が特定の順序になっていることに依存するコードは実装依存となります。
詳細は「XPathが1.0であることによる制限」をご覧ください。
     



列のcolumn_expressionはXPath 1.0式で、row_expressionの結果における現在のノードをそのコンテキスト項目としてrow_expressionの結果に対応する各行について評価されて、列の値を得ます。
column_expression が与えられなかった場合は、暗黙的なパスとして列名が使用されます。
    


列のXPath式が非XML値（XPath 1.0における文字列、論理値、倍精度浮動小数点数に限られます）を返し、その列がxml以外のPostgreSQL型なら、あたかも値の文字列表現をPostgreSQL型にアサインしたように列に値がセットされます。
（値が論理値の場合、出力列型が数値カテゴリに属するならその文字列表現は1または0になり、それ外ならtrueまたはfalseになります。）
    


列のXPath表現が空ではないXMLノードの集合を返し、列のPostgreSQL型がxmlである場合には、式が文書あるいはフォームの内容なら、列には正確に式の結果がアサインされます。
     [8]
    


xml出力列にアサインされた非XMLの結果は、結果の値が文字列値となる単一のテキストノードであるコンテントを生成します。
それ以外の型の列にアサインされたXMLの結果は複数のノードを持たないかも知れませんし、エラーを生じするかも知れません。
正確に一つのノードだけが存在するなら、列にはあたかもノードの文字列値（XPath 1.0 string関数の定義されているように） がPostgreSQL型にアサインされたように設定されます。
    


ある要素と、その子孫に含まれるすべてのテキストノードをドキュメントの順に結合したものがXML要素の文字列値です。
テキストノードの子孫を持たない要素の文字列値は空文字列です。（ NULLではありません。）
すべてのxsi:nil属性は無視されます。
非テキスト要素の間にある空白のみからなるtext()2つのノードは保存され、text()の先頭の空白は平坦化されないことに注意してください。
XPath 1.0 string関数が、他のXMLノード型と非XML値の文字列値を定義するルールのために参照されるかも知れません。
    


ここで示した変換ルールは、「SQLとXMLのデータ型および値のマッピング」で説明されているように、正確に標準SQLに従っているわけではありません。
    


パス式がある行に対して空のノード集合（典型的にはマッチしなかった場合）を返した時は、default_expressionが指定されている場合を除き、列にはNULLが設定されます。
そしてその式を評価した結果から生じる値が使用されます。
    


xmltableが呼び出されて直ちに評価されるのと異なり、default_expressionはその列に対してデフォルトが必要になるたびに評価されます。
式が安定（stable）または不変（immutable）とみなされる場合、評価は繰り返し行われないかもしれません。
これはdefault_expressionの中でnextvalのような揮発性関数を使用できることを意味します。
    


列にはNOT NULLの印をつけることができます。
NOT NULLの列のcolumn_expressionが何にもマッチせず、DEFAULTがない、あるいはdefault_expressionの評価結果もNULLになるという場合はエラーが報告されます。
    


例：
  

CREATE TABLE xmldata AS SELECT
xml $$
<ROWS>
  <ROW id="1">
    <COUNTRY_ID>AU</COUNTRY_ID>
    <COUNTRY_NAME>Australia</COUNTRY_NAME>
  </ROW>
  <ROW id="5">
    <COUNTRY_ID>JP</COUNTRY_ID>
    <COUNTRY_NAME>Japan</COUNTRY_NAME>
    <PREMIER_NAME>Shinzo Abe</PREMIER_NAME>
    <SIZE unit="sq_mi">145935</SIZE>
  </ROW>
  <ROW id="6">
    <COUNTRY_ID>SG</COUNTRY_ID>
    <COUNTRY_NAME>Singapore</COUNTRY_NAME>
    <SIZE unit="sq_km">697</SIZE>
  </ROW>
</ROWS>
$$ AS data;

SELECT xmltable.*
  FROM xmldata,
       XMLTABLE('//ROWS/ROW'
                PASSING data
                COLUMNS id int PATH '@id',
                        ordinality FOR ORDINALITY,
                        "COUNTRY_NAME" text,
                        country_id text PATH 'COUNTRY_ID',
                        size_sq_km float PATH 'SIZE[@unit = "sq_km"]',
                        size_other text PATH
                             'concat(SIZE[@unit!="sq_km"], " ", SIZE[@unit!="sq_km"]/@unit)',
                        premier_name text PATH 'PREMIER_NAME' DEFAULT 'not specified');

 id | ordinality | COUNTRY_NAME | country_id | size_sq_km |  size_other  | premier_name
----+------------+--------------+------------+------------+--------------+---------------
  1 |          1 | Australia    | AU         |            |              | not specified
  5 |          2 | Japan        | JP         |            | 145935 sq_mi | Shinzo Abe
  6 |          3 | Singapore    | SG         |        697 |              | not specified




以下の例では、複数のtext()ノードの結合、列名のXPathフィルタとしての使用、空白文字、XMLコメント、処理命令の取扱いを示します。

  

CREATE TABLE xmlelements AS SELECT
xml $$
  <root>
   <element>  Hello<!-- xyxxz -->2a2<?aaaaa?> <!--x-->  bbb<x>xxx</x>CC  </element>
  </root>
$$ AS data;

SELECT xmltable.*
  FROM xmlelements, XMLTABLE('/root' PASSING data COLUMNS element text);
         element
-------------------------
   Hello2a2   bbbxxxCC


    


以下の例では、XMLNAMESPACES句を使ってXMLドキュメントやXPath式で使われる追加の名前空間のリストを指定する方法を示します。

  

WITH xmldata(data) AS (VALUES ('
<example xmlns="http://example.com/myns" xmlns:B="http://example.com/b">
 <item foo="1" B:bar="2"/>
 <item foo="3" B:bar="4"/>
 <item foo="4" B:bar="5"/>
</example>'::xml)
)
SELECT xmltable.*
  FROM XMLTABLE(XMLNAMESPACES('http://example.com/myns' AS x,
                              'http://example.com/b' AS "B"),
             '/x:example/x:item'
                PASSING (SELECT data FROM xmldata)
                COLUMNS foo int PATH '@foo',
                  bar int PATH '@B:bar');
 foo | bar
-----+-----
   1 |   2
   3 |   4
   4 |   5
(3 rows)


    


XMLにテーブルをマップ





以下の関数はリレーショナルテーブルの内容をXML値にマップします。
これらはXMLエクスポート機能と考えることができます。


table_to_xml ( table regclass, nulls boolean,
               tableforest boolean, targetns text ) xml
query_to_xml ( query text, nulls boolean,
               tableforest boolean, targetns text ) xml
cursor_to_xml ( cursor refcursor, count integer, nulls boolean,
                tableforest boolean, targetns text ) xml


   


table_to_xmlは、パラメータtableとして渡された名前付きのテーブルの内容をマップします。
regclass型はオプションのスキーマ修飾と二重引用符を含む、通常の表記法を使用しテーブルを特定する文字列を受け付けます。（詳細は「オブジェクト識別子データ型」を参照してください。）
query_to_xmlは、パラメータqueryとしてテキストが渡された問い合わせを実行し、結果セットをマップします。
cursor_to_xmlは、パラメータcursorで指定されたカーソルから提示された行数を取得します。
それぞれの関数により結果値がメモリに構築されるため、この異形は巨大なテーブルをマップする必要がある場合推奨されます。
   


tableforestが偽であれば、結果のXML文書は以下のようになります。


<tablename>
  <row>
    <columnname1>data</columnname1>
    <columnname2>data</columnname2>
  </row>

  <row>
    ...
  </row>

  ...
</tablename>




tableforestが真であれば、結果は以下のようなXML文書の断片です。


<tablename>
  <columnname1>data</columnname1>
  <columnname2>data</columnname2>
</tablename>

<tablename>
  ...
</tablename>

...




テーブル名が利用できないとき、つまり、問い合わせ、またはカーソルをマップする時は、最初の書式では文字列tableが使用され、２番目の書式ではrowが使用されます。
   


これらどの書式を選択するのかはユーザ次第です。
最初の書式は適切なXML文書で、多くのアプリケーションにおいて重要です。
第２の書式は、後に結果値が１つの文書に再び組み立てられる場合、cursor_to_xml関数内でより有用になる傾向があります。
上記で説明したXML内容を作成する関数、特にxmlelementは結果を好みにかえるために使用することができます。
   


データの値は上記関数xmlelementで説明したのと同じ方法でマップされます。
   


パラメータnullsは出力にNULL値が含まれる必要があるかを決定します。
もし真であれば列内のNULL値は以下のように表現されます。


<columnname xsi:nil="true"/>



ここでxsiはXMLスキーマインスタンスに対するXML名前空間接頭辞です。
適切な名前空間宣言が結果値に追加されます。
もし偽の場合、NULL値を含む列は単に出力から削除されます。
   


パラメータtargetnsは結果の希望するXML名前空間を指定します。
特定の名前空間が必要なければ、空文字列を渡す必要があります。
   


以下の関数は、対応する上記関数により行われたマッピングを記述するXMLスキーマ文書を返します。


table_to_xmlschema ( table regclass, nulls boolean,
                     tableforest boolean, targetns text ) xml
query_to_xmlschema ( query text, nulls boolean,
                     tableforest boolean, targetns text ) xml
cursor_to_xmlschema ( cursor refcursor, nulls boolean,
                      tableforest boolean, targetns text ) xml



一致するXMLデータマッピングとXMLスキーマ文書を取得するため、同じパラメータが渡されることが不可欠です。
   


以下の関数は、XMLデータマッピングとそれに対応するXMLスキーマがお互いにリンクされた、１つの文書（またはフォレスト）を作成します。
これらは自己完結した、自己記述的な結果を希望する場合に便利です。


table_to_xml_and_xmlschema ( table regclass, nulls boolean,
                             tableforest boolean, targetns text ) xml
query_to_xml_and_xmlschema ( query text, nulls boolean,
                             tableforest boolean, targetns text ) xml


   


さらに、以下の関数がスキーマ全体、または現在のデータベース全体の類似マッピングを作成するため利用できます。


schema_to_xml ( schema name, nulls boolean,
                tableforest boolean, targetns text ) xml
schema_to_xmlschema ( schema name, nulls boolean,
                      tableforest boolean, targetns text ) xml
schema_to_xml_and_xmlschema ( schema name, nulls boolean,
                              tableforest boolean, targetns text ) xml

database_to_xml ( nulls boolean,
                  tableforest boolean, targetns text ) xml
database_to_xmlschema ( nulls boolean,
                        tableforest boolean, targetns text ) xml
database_to_xml_and_xmlschema ( nulls boolean,
                                tableforest boolean, targetns text ) xml




これらの関数は現在のユーザが読めないテーブルは無視します。
加えてデータベース中全体に渡る関数は現在のユーザがUSAGE（検索）権限を持たないスキーマを無視します。
   


これらはメモリ内に作成される必要がある、多くのデータを生成する潜在的可能性があることに注意してください。
巨大なスキーマ、またはデータベースの内容マッピングを要求する際は、その代わりにテーブルを別々にマップすること、さらにはカーソル経由とすることさえ、検討することは無駄ではありません。
   


スキーマ内容マッピングの結果は以下のようになります。



<schemaname>

table1-mapping

table2-mapping

...

</schemaname>



ここで、テーブルマッピング書式は上で説明したとおりtableforestパラメータに依存します。
   


データベース内容マッピング書式は以下のようになります。



<dbname>

<schema1name>
  ...
</schema1name>

<schema2name>
  ...
</schema2name>

...

</dbname>



ここで、スキーママッピングは上記のとおりです。
   


これらの関数で作成された出力を使用する１つの例として、例9.1「SQL/XML出力をHTMLに変換するXSLTスタイルシート」は、テーブルデータの表形式への翻訳を含むtable_to_xml_and_xmlschemaからHTML文書への出力の変換をおこなうXSLTスタイルシートを示します。
同じようにして、これらの関数の結果は他のXML基準書式に変換されます。
   
例9.1 SQL/XML出力をHTMLに変換するXSLTスタイルシート

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
    xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"
    xmlns="http://www.w3.org/1999/xhtml"
>

  <xsl:output method="xml"
      doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
      doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
      indent="yes"/>

  <xsl:template match="/*">
    <xsl:variable name="schema" select="//xsd:schema"/>
    <xsl:variable name="tabletypename"
                  select="$schema/xsd:element[@name=name(current())]/@type"/>
    <xsl:variable name="rowtypename"
                  select="$schema/xsd:complexType[@name=$tabletypename]/xsd:sequence/xsd:element[@name='row']/@type"/>

    <html>
      <head>
        <title><xsl:value-of select="name(current())"/></title>
      </head>
      <body>
        <table>
          <tr>
            <xsl:for-each select="$schema/xsd:complexType[@name=$rowtypename]/xsd:sequence/xsd:element/@name">
              <th><xsl:value-of select="."/></th>
            </xsl:for-each>
          </tr>

          <xsl:for-each select="row">
            <tr>
              <xsl:for-each select="*">
                <td><xsl:value-of select="."/></td>
              </xsl:for-each>
            </tr>
          </xsl:for-each>
        </table>
      </body>
    </html>
  </xsl:template>

</xsl:stylesheet>






[8] 

トップレベルにおいて複数の要素ノードを含むか、あるいは要素の外側の非空白テキストであるような結果は、コンテントフォームの例です。
XPathの結果はそのどちらでもないフォームであることがあり得ます。
たとえば、それを含む要素から選択された属性ノードを返す場合です。
XPath 1.0のstring関数で定義されているように、そうした結果は、許可されないノードを文字列値で置き換えたコンテントフォームに設定されます。
      



JSON関数と演算子





この節では次のことを説明します。

   
	

JSONデータを処理、生成する関数と演算子
     

	

SQL/JSONパス言語
     

	

SQL/JSON問い合わせ関数
     




  


SQL環境内のJSONデータ型にネイティブサポートを提供するために、PostgreSQL™SQL/JSONデータモデルを実装しています。
このモデルは、一連の項目で構成されます。
各項目は、SQLスカラ値、追加のSQL/JSON NULL値、およびJSON配列とオブジェクトを使用する複合データ構造を保持できます。
モデルは、JSON規格RFC 7159で暗黙的に指定されているデータモデルを形式化したものです。
  


SQL/JSONでは、トランザクションをサポートをしながら、通常のSQLデータと一緒にJSONデータをハンドルすることができます。以下のものが含まれます：

  
	

JSONデータをデータベースにアップロードし、それを文字またはバイナリ文字列として通常のSQL列に保存します。
    

	

リレーショナルデータからJSONオブジェクトと配列を生成します。
    

	

SQL/JSON問い合わせ関数およびSQL/JSONパス言語式を使用してJSONデータを照会します。
    




  


SQL/JSON標準を更に学ぶためには、[sqltr-19075-6]をご覧ください。
PostgreSQL™でサポートされているJSON型の詳細に関しては、「JSONデータ型」をご覧ください。
  
JSONデータの処理と生成





表9.47「jsonとjsonb演算子」にJSONデータ型(「JSONデータ型」を参照)で使用可能な演算子を示します。
加えて表9.1「比較演算子」で示す通常の比較演算子がjsonbで利用できますが、jsonでは利用できません。
比較演算子は「jsonb インデックス」で概要が示されているように示すBツリー操作用の順序付け規則にしたがいます。
レコードの値をJSONに集約するjson_agg集約関数、値の対をJSONオブジェクトに集約するjson_object_agg集約関数、およびそれらのjsonb版のjsonb_aggとjsonb_object_aggについては「集約関数」も参照して下さい。
  
表9.47 jsonとjsonb演算子
	

演算子
       

       

説明
       

       

例
       

	
        json -> integer
        json
       

       
        jsonb -> integer
        jsonb
       

       

JSON配列のn番目の要素を取り出します。
（配列要素はゼロから始まりますが、負の整数は最後から数えられます。）
       

       
        '[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json -> 2
        {"c":"baz"}
       

       
        '[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json -> -3
        {"a":"foo"}
       

	
        json -> text
        json
       

       
        jsonb -> text
        jsonb
       

       

与えられたキーでJSONオブジェクトフィールドを取り出します。
       

       
        '{"a": {"b":"foo"}}'::json -> 'a'
        {"b":"foo"}
       

	
        json ->> integer
        text
       

       
        jsonb ->> integer
        text
       

       

JSON配列のn番目の要素をtextとして取り出します。
       

       
        '[1,2,3]'::json ->> 2
        3
       

	
        json ->> text
        text
       

       
        jsonb ->> text
        text
       

       

与えられたキーでJSONオブジェクトフィールドをtextとして取り出します。
       

       
        '{"a":1,"b":2}'::json ->> 'b'
        2
       

	
        json #> text[]
        json
       

       
        jsonb #> text[]
        jsonb
       

       

指定したパスにおけるJSONの副オブジェクトを取り出します。パス要素はフィールドキーあるいは配列のインデックスでも構いません。
       

       
        '{"a": {"b": ["foo","bar"]}}'::json #> '{a,b,1}'
        "bar"
       

	
        json #>> text[]
        text
       

       
        jsonb #>> text[]
        text
       

       

指定したパスにおけるJSONの副オブジェクトをtextとして取り出します。
       

       
        '{"a": {"b": ["foo","bar"]}}'::json #>> '{a,b,1}'
        bar
       




注記


JSON入力が要求と一致する正しい構造をしていなければ、フィールド/要素/パス抽出演算子は失敗するのではなくNULLを返します。例えばそのような要素が存在しない場合です。
   



ほかにjsonbだけで利用可能な演算子もいくつか存在します。
それらを表9.48「追加jsonb演算子」に示します。
「jsonb インデックス」には、インデックス付されたjsonbデータを効率的に検索するためにこれらの演算子をどのように利用できるかについて書いてあります。
  
表9.48 追加jsonb演算子
	

演算子
       

       

説明
       

       

例
       

	
        jsonb @> jsonb
        boolean
       

       

最初のJSON値は二番目を含んでいるか？
（包含の詳細は「jsonb型用包含演算子と存在演算子」を参照してください。）
       

       
        '{"a":1, "b":2}'::jsonb @> '{"b":2}'::jsonb
        t
       

	
        jsonb <@ jsonb
        boolean
       

       

最初のJSON値は二番目に含まれているか？
       

       
        '{"b":2}'::jsonb <@ '{"a":1, "b":2}'::jsonb
        t
       

	
        jsonb ? text
        boolean
       

       

そのテキスト文字列はトップレベルのキーあるいは配列要素としてJSON値中に存在しているか？
       

       
        '{"a":1, "b":2}'::jsonb ? 'b'
        t
       

       
        '["a", "b", "c"]'::jsonb ? 'b'
        t
       

	
        jsonb ?| text[]
        boolean
       

       

テキスト配列中のどれかの文字列がトップレベルのキーあるいは配列要素として存在しているか？
       

       
        '{"a":1, "b":2, "c":3}'::jsonb ?| array['b', 'd']
        t
       

	
        jsonb ?& text[]
        boolean
       

       

テキスト配列のすべての文字列がトップレベルのキーあるいは配列要素として存在しているか？
       

       
        '["a", "b", "c"]'::jsonb ?& array['a', 'b']
        t
       

	
        jsonb || jsonb
        jsonb
       

       

2つのjsonb値を結合します。
2つの配列を結合するとそれらのキーの和を持つ配列を生成します。
キーが重複している場合は2番目のオブジェクトの値が使用されます。
それ以外の場合には非配列入力を単一の要素を持つ配列に変換し、次に2つの配列として取り扱います。
再帰操作は行いません。トップレベルの配列あるいはオブジェクト構造だけがマージされます。
       

       
        '["a", "b"]'::jsonb || '["a", "d"]'::jsonb
        ["a", "b", "a", "d"]
       

       
        '{"a": "b"}'::jsonb || '{"c": "d"}'::jsonb
        {"a": "b", "c": "d"}
       

       
        '[1, 2]'::jsonb || '3'::jsonb
        [1, 2, 3]
       

       
        '{"a": "b"}'::jsonb || '42'::jsonb
        [{"a": "b"}, 42]
       

       

一つの要素を持つとして配列を他の配列に追加するには、例のように配列の追加のレイヤ中に含めてください。
       

       
        '[1, 2]'::jsonb || jsonb_build_array('[3, 4]'::jsonb)
        [1, 2, [3, 4]]
       

	
        jsonb - text
        jsonb
       

       

キー（及びその値）をJSONオブジェクトから削除します。あるいはマッチする文字列値をJSON配列から削除します。
       

       
        '{"a": "b", "c": "d"}'::jsonb - 'a'
        {"c": "d"}
       

       
        '["a", "b", "c", "b"]'::jsonb - 'b'
        ["a", "c"]
       

	
        jsonb - text[]
        jsonb
       

       

左のオペランドからマッチするすべてのキーあるいは配列要素を削除します。
       

       
        '{"a": "b", "c": "d"}'::jsonb - '{a,c}'::text[]
        {}
       

	
        jsonb - integer
        jsonb
       

       

指定したインデックス（負の整数は最後から数えます）の配列要素を削除します。
JSON値が配列でなければエラーが生じます。
       

       
        '["a", "b"]'::jsonb - 1 
        ["a"]
       

	
        jsonb #- text[]
        jsonb
       

       

指定パスのフィールドあるいは配列要素を削除します。パス要素はフィールドキーあるいは配列インデックスが指定できます。
       

       
        '["a", {"b":1}]'::jsonb #- '{1,b}'
        ["a", {}]
       

	
        jsonb @? jsonpath
        boolean
       

       

JSONパスは指定されたJSON値に対して何らかの項目を返すか?（これは標準SQLのJSONパス式でのみ有用であり、述語チェック式では有効ではありません。述語チェック式は常に値を返すからです。）
       

       
        '{"a":[1,2,3,4,5]}'::jsonb @? '$.a[*] ? (@ > 2)'
        t
       

	
        jsonb @@ jsonpath
        boolean
       

       

指定されたJSON値に対するJSONパス述語チェックの結果を返します（これは、標準SQLのJSONパス式ではなく、述部チェック式でのみ有用です。パス結果が単一のブール値でない場合はNULLを返すためです）。
       

       
        '{"a":[1,2,3,4,5]}'::jsonb @@ '$.a[*] > 2'
        t
       




注記


jsonpath演算子の@?および@@演算子は以下のエラーを抑止します。
オブジェクトフィールドあるいは配列要素の欠如、期待しないJSON要素型、日付時刻及び数値エラー。
以下に示すjsonpath関連の関数もこれらのエラーを抑止するようにすることもできます。
この振る舞いは、異なる構造のJSON文書集合を検索する際に役に立つかも知れません。
   



表9.49「JSON作成関数」に、json値およびjsonb値を作成するために利用可能な関数を示します。

このテーブルの一部の関数は、返されるデータ型を指定するRETURNING句を持っています。
これはjson、jsonb、bytea、文字列型（text、char、varchar）、あるいはjsonからその型へのキャストがある型のいずれかでなければなりません。
デフォルトではjson型が返されます。
  
表9.49 JSON作成関数
	

関数
       

       

説明
       

       

例
       

	
        
        to_json ( anyelement )
        json
       

       
        
        to_jsonb ( anyelement )
        jsonb
       

       

SQL値をjsonあるいはjsonbに変換します。
配列と複合型は再帰的に配列とオブジェクトに変換されます。（多次元配列はJSONにおける配列の配列になります。）
それ以外は、そのSQLデータ型からjsonにキャストがあれば、キャスト関数が変換のために用いられます。[a]

そうでなければスカラJSON値が生成されます。
数値、論理値、NULL以外のスカラには、有効なJSON文字列値にするための必要なエスケープ処理が施されたテキスト表現が使われます。
       

       
        to_json('Fred said "Hi."'::text)
        "Fred said \"Hi.\""
       

       
        to_jsonb(row(42, 'Fred said "Hi."'::text))
        {"f1": 42, "f2": "Fred said \"Hi.\""}
       

	
        
        array_to_json ( anyarray [, boolean ] )
        json
       

       

SQL配列をJSON配列に変換します。
追加の論理引数が真であるときに改行がトップレベルの配列要素の間に加えられる以外は、その振る舞いはto_jsonと同じです。
       

       
        array_to_json('{{1,5},{99,100}}'::int[])
        [[1,5],[99,100]]
       

	
        
         json_array (
         [ { value_expression [ FORMAT JSON ] } [, ...] ]
         [ { NULL | ABSENT } ON NULL ]
         [ RETURNING data_type [ FORMAT JSON [ ENCODING UTF8 ] ] ])
        

        
         json_array (
         [ query_expression ]
         [ RETURNING data_type [ FORMAT JSON [ ENCODING UTF8 ] ] ])
        

        

JSON配列を、一連のvalue_expression引数、またはquery_expressionの結果のいずれかから構成します。
query_expressionは、単一の列を返すSELECT問い合わせである必要があります。
ABSENT ON NULLが指定されている場合、NULL値は無視されます。
query_expressionが使用されている場合、常にそうなります。
        

        
         json_array(1,true,json '{"a":null}')
         [1, true, {"a":null}]
        

        
         json_array(SELECT * FROM (VALUES(1),(2)) t)
         [1, 2]
       

	
        
        row_to_json ( record [, boolean ] )
        json
       

       

SQL複合値をJSONオブジェクトに変換します。
追加の論理引数が真であるときに改行がトップレベルの配列要素の間に加えられる以外は、その振る舞いはto_jsonと同じです。
       

       
        row_to_json(row(1,'foo'))
        {"f1":1,"f2":"foo"}
       

	
        
        json_build_array ( VARIADIC "any" )
        json
       

       
        
        jsonb_build_array ( VARIADIC "any" )
        jsonb
       

       

異なる型から構成される可能性のあるJSON配列をvariadic引数リストから作成します。
各々の引数はto_jsonあるいはto_jsonbに従って変換されます。
       

       
        json_build_array(1, 2, 'foo', 4, 5)
        [1, 2, "foo", 4, 5]
       

	
        
        json_build_object ( VARIADIC "any" )
        json
       

       
        
        jsonb_build_object ( VARIADIC "any" )
        jsonb
       

       

variadic引数リストからJSONオブジェクトを作成します。
慣例により引数リストは代替キーと値が交互に並んだものです。
キー引数はテキストに強制的に変換されます。
値引数はto_jsonあるいはto_jsonbに従って変換されます。
       

       
        json_build_object('foo', 1, 2, row(3,'bar'))
        {"foo" : 1, "2" : {"f1":3,"f2":"bar"}}
       

	
         
         json_object (
         [ { key_expression { VALUE | ':' }
          value_expression [ FORMAT JSON [ ENCODING UTF8 ] ] }[, ...] ]
         [ { NULL | ABSENT } ON NULL ]
         [ { WITH | WITHOUT } UNIQUE [ KEYS ] ]
         [ RETURNING data_type [ FORMAT JSON [ ENCODING UTF8 ] ] ])
        

        

指定されたすべてのキー/値ペアのJSONオブジェクトを構築します。
キー/値ペアが指定されていない場合は、空のオブジェクトを構築します。
key_expressionは、textタイプに変換されるJSONキーを定義するスカラ式です。
NULLにすることも、JSONタイプにキャストを持つタイプに属することもできません。
WITH UNIQUE KEYSが指定されている場合は、重複key_expressionがあってはなりません。
ABSENT ON NULLが指定されている場合、NULLと評価されるvalue_expressionは出力から除外されます。
NULL ON NULLが指定されているか、その句が省略されている場合、キーはNULLの値で含まれます。
        

        
         json_object('code' VALUE 'P123', 'title': 'Jaws')
         {"code" : "P123", "title" : "Jaws"}
       

	
        
        json_object ( text[] )
        json
       

       
        
        jsonb_object ( text[] )
        jsonb
       

       

テキスト配列からJSONオブジェクトを作成します。
配列は、偶数個の要素からなる1次元（キー／値の対が交互に並んでいるものと扱われます）あるいは内側の配列が2つの要素を持つ2次元（2つの要素がキー／値のペアとして扱われます）のいずれかでなければなりません。
すべての値はJSON文字列に変換されます。
       

       
        json_object('{a, 1, b, "def", c, 3.5}')
        {"a" : "1", "b" : "def", "c" : "3.5"}
       

        json_object('{{a, 1}, {b, "def"}, {c, 3.5}}')
        {"a" : "1", "b" : "def", "c" : "3.5"}
       

	
        json_object ( keys text[], values text[] )
        json
       

       
        jsonb_object ( keys text[], values text[] )
        jsonb
       

       

この形のjson_objectは2つの別々の配列からキーと値の対を取ります。
他の点ではすべて、引数1つの形と同じです。
       

       
        json_object('{a,b}', '{1,2}')
        {"a": "1", "b": "2"}
       

	
        
         
         json (
         expression
         [ FORMAT JSON [ ENCODING UTF8 ]]
         [ { WITH | WITHOUT } UNIQUE [ KEYS ]] )
         json
        

        

指定されたtextまたはbytea文字列（UTF8エンコーディング）をJSON値に変換します。
expressionがNULLの場合、SQLのNULL値が返されます。
WITH UNIQUEが指定された場合、expressionは重複するオブジェクトキーを含んではなりません。
        

        
         json('{"a":123, "b":[true,"foo"], "a":"bar"}')
         {"a":123, "b":[true,"foo"], "a":"bar"}
        

       
	
        
        
        json_scalar ( expression )
       

       

指定されたSQLスカラ値をJSONスカラ値に変換します。
入力がNULLの場合、SQLのNULLが返されます。
入力が数値またはブール値の場合、対応するJSONの数値またはブール値が返されます。
それ以外の場合は、JSONの文字列が返されます。
       

       
        json_scalar(123.45)
        123.45
       

       
        json_scalar(CURRENT_TIMESTAMP)
        "2022-05-10T10:51:04.62128-04:00"
      

	
       
        json_serialize (
        expression [ FORMAT JSON [ ENCODING UTF8 ] ]
        [ RETURNING data_type [ FORMAT JSON [ ENCODING UTF8 ] ] ] )
       

       

SQL/JSON式を文字列またはバイナリ文字列に変換します。
expressionは、任意のJSON型、任意の文字列型、またはUTF8エンコーディングのbyteaです。
RETURNINGで使用される戻り型は、任意の文字列型またはbyteaです。
デフォルトはtextです。
       

       
        json_serialize('{ "a" : 1 } ' RETURNING bytea)
        \x7b20226122203a2031207d20
      

	[a] 

たとえばhstore拡張にはhstoreからjsonへのキャストがあり、JSON生成関数で変換されたhstore値は、原始的な文字列値としてではなく、JSONオブジェクトとして表示されます。
         







表9.50「SQL/JSONテスト用関数」には、JSONをテストするためのSQL/JSON機能の詳細が記載されています。
  
表9.50 SQL/JSONテスト用関数
	

関数の呼び出し形式
       

       

説明
       

       

例
      

	
        
        expression IS [ NOT ] JSON
        [ { VALUE | SCALAR | ARRAY | OBJECT } ]
        [ { WITH | WITHOUT } UNIQUE [ KEYS ] ]
       

       

この述語は、expressionが指定された型のJSONとして解析できるかどうかをテストします。
SCALAR、ARRAY、またはOBJECTが指定されている場合、テストはJSONがその特定の型のものであるかどうかを示します。
WITH UNIQUE KEYSが指定されている場合、expressionのオブジェクトもテストされ、重複キーがあるかどうかが確認されます。
       

       


SELECT js,
  js IS JSON "json?",
  js IS JSON SCALAR "scalar?",
  js IS JSON OBJECT "object?",
  js IS JSON ARRAY "array?"
FROM (VALUES
      ('123'), ('"abc"'), ('{"a": "b"}'), ('[1,2]'),('abc')) foo(js);
     js     | json? | scalar? | object? | array?
------------+-------+---------+---------+--------
 123        | t     | t       | f       | f
 "abc"      | t     | t       | f       | f
 {"a": "b"} | t     | f       | t       | f
 [1,2]      | t     | f       | f       | t
 abc        | f     | f       | f       | f


       

       


SELECT js,
  js IS JSON OBJECT "object?",
  js IS JSON ARRAY "array?",
  js IS JSON ARRAY WITH UNIQUE KEYS "array w. UK?",
  js IS JSON ARRAY WITHOUT UNIQUE KEYS "array w/o UK?"
FROM (VALUES ('[{"a":"1"},
 {"b":"2","b":"3"}]')) foo(js);
-[ RECORD 1 ]-+--------------------
js            | [{"a":"1"},        +
              |  {"b":"2","b":"3"}]
object?       | f
array?        | t
array w. UK?  | f
array w/o UK? | t


      






表9.51「JSON処理関数」にjsonとjsonb値を処理するのに使える関数を示します。
  
表9.51 JSON処理関数
	

関数
       

       

説明
       

       

例
       

	
        
        json_array_elements ( json )
        setof json
       

       
        
        jsonb_array_elements ( jsonb )
        setof jsonb
       

       

トップレベルのJSON配列をJSON値の集合に展開します。
       

       
        select * from json_array_elements('[1,true, [2,false]]')
        


   value
-----------
 1
 true
 [2,false]


       

	
        
        json_array_elements_text ( json )
        setof text
       

       
        
        jsonb_array_elements_text ( jsonb )
        setof text
       

       

トップレベルのJSON配列をtext値の集合に展開します。
       

       
        select * from json_array_elements_text('["foo", "bar"]')
        


   value
-----------
 foo
 bar


       

	
        
        json_array_length ( json )
        integer
       

       
        
        jsonb_array_length ( jsonb )
        integer
       

       

トップレベルのJSON配列の要素数を返します。
       

       
        json_array_length('[1,2,3,{"f1":1,"f2":[5,6]},4]')
        5
       

       
        jsonb_array_length('[]')
        0
       

	
        
        json_each ( json )
        setof record
        ( key text,
        value json )
       

       
        
        jsonb_each ( jsonb )
        setof record
        ( key text,
        value jsonb )
       

       

トップレベルのJSONオブジェクトをキー／値のペアの集合に展開します。
       

       
        select * from json_each('{"a":"foo", "b":"bar"}')
        


 key | value
-----+-------
 a   | "foo"
 b   | "bar"


       

	
        
        json_each_text ( json )
        setof record
        ( key text,
        value text )
       

       
        
        jsonb_each_text ( jsonb )
        setof record
        ( key text,
        value text )
       

       

トップレベルのJSONオブジェクトをキー／値のペアの集合に展開します。
戻り値のvalueはtext型です。
       

       
        select * from json_each_text('{"a":"foo", "b":"bar"}')
        


 key | value
-----+-------
 a   | foo
 b   | bar


       

	
        
        json_extract_path ( from_json json, VARIADIC path_elems text[] )
        json
       

       
        
        jsonb_extract_path ( from_json jsonb, VARIADIC path_elems text[] )
        jsonb
       

       

指定したパスにおけるJSONの副オブジェクトを取り出します。
（これは#>演算子と機能的に同じですが、パスをvariadicリストで書き出す方がより便利な場合があります。）
       

       
        json_extract_path('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}', 'f4', 'f6')
        "foo"
       

	
        
        json_extract_path_text ( from_json json, VARIADIC path_elems text[] )
        text
       

       
        
        jsonb_extract_path_text ( from_json jsonb, VARIADIC path_elems text[] )
        text
       

       

指定したパスにおけるJSONの副オブジェクトをtextとして取り出します。
（これは機能的には#>>演算子と同じです。）
       

       
        json_extract_path_text('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}', 'f4', 'f6')
        foo
       

	
        
        json_object_keys ( json )
        setof text
       

       
        
        jsonb_object_keys ( jsonb )
        setof text
       

       

トップレベルのJSONオブジェクト中のキーの集合を返します。
       

       
        select * from json_object_keys('{"f1":"abc","f2":{"f3":"a", "f4":"b"}}')
        


 json_object_keys
------------------
 f1
 f2


       

	
        
        json_populate_record ( base anyelement, from_json json )
        anyelement
       

       
        
        jsonb_populate_record ( base anyelement, from_json jsonb )
        anyelement
       

       

トップレベルのJSONオブジェクトをbase引数である複合型を持つ行に展開します。
JSONオブジェクトは出力行型の列名と一致するフィールドが検査されます。
（出力列名と関連のないフィールドは無視されます。）
典型的な使い方としては、baseの値が単にNULLで、これはオブジェクトフィールドと一致しない出力列にはNULLがセットされることを意味します。
しかし、baseがNULLでないなら、それが持つ値が一致しない列に使われます。
       

       

JSON値を出力列のSQL型に変換する際に以下のルールが順に適用されます。
        
	

すべての場合にJSONのNULL値はSQLのNULLに変換されます。
          

	

出力列がjson型あるいはjsonb型なら、JSON値は単にそのまま複製されます。
          

	

出力行が複合(行)型でJSON値がJSONオブジェクトなら、これらのルールを再帰的に適用することによって、オブジェクトのフィールドが出力行型の列に変換されます。
          

	

同様に、出力行が配列型でJSON値がJSON配列なら、これらのルールを再帰的に適用することによって、JSON配列の要素が出力配列の要素に変換されます。
          

	

それ以外の場合で、JSON値が文字列なら、その文字列の内容が列のデータ型に対応する入力変換関数に送られます。
          

	

さもなければ、通常のJSON値のテキスト表現が列のデータ型に対応する入力変換関数に送られます。
          




       

       

これらの関数の例ではJSON定数を使用していますが、典型的な使用法はそのjsonまたはjsonb列をFROM句の別のテーブルから外側に参照することです。
FROM句でjson_populate_recordを書くのは良い練習になります。
すべての取り出された列を重複した関数呼び出しなしに利用できるからです。
       

       
        create type subrowtype as (d int, e text);
        create type myrowtype as (a int, b text[], c subrowtype);
       

       
        select * from json_populate_record(null::myrowtype,
         '{"a": 1, "b": ["2", "a b"], "c": {"d": 4, "e": "a  b c"}, "x": "foo"}')
        


 a |   b       |      c
---+-----------+-------------
 1 | {2,"a b"} | (4,"a b c")


       

	
        
        jsonb_populate_record_valid ( base anyelement, from_json json )
        boolean
       

       

jsonb_populate_recordをテストする関数。
与えられた入力JSONオブジェクトに対してjsonb_populate_recordがエラーなしで終了する場合、すなわち有効な入力ならtrueを、そうでない場合はfalseを返します。
       

       
        create type jsb_char2 as (a char(2));
       

       
        select jsonb_populate_record_valid(NULL::jsb_char2, '{"a": "aaa"}');
        


 jsonb_populate_record_valid
-----------------------------
 f
(1 row)



        select * from jsonb_populate_record(NULL::jsb_char2, '{"a": "aaa"}') q;
        


ERROR:  value too long for type character(2)


        select jsonb_populate_record_valid(NULL::jsb_char2, '{"a": "aa"}');
        


 jsonb_populate_record_valid
-----------------------------
 t
(1 row)



        select * from jsonb_populate_record(NULL::jsb_char2, '{"a": "aa"}') q;
        


 a
----
 aa
(1 row)


       

	
        
        json_populate_recordset ( base anyelement, from_json json )
        setof anyelement
       

       
        
        jsonb_populate_recordset ( base anyelement, from_json jsonb )
        setof anyelement
       

       

トップレベルのJSONオブジェクトをbase引数である複合型を持つ行の集合に展開します。
JSON配列の個々の要素は上のjson[b]_populate_recordで説明したように処理されます。
       

       
        create type twoints as (a int, b int);
       

       
        select * from json_populate_recordset(null::twoints, '[{"a":1,"b":2}, {"a":3,"b":4}]')
        


 a | b
---+---
 1 | 2
 3 | 4


       

	
        
        json_to_record ( json )
        record
       

       
        
        jsonb_to_record ( jsonb )
        record
       

       

トップレベルのJSONオブジェクトをAS句で定義した複合型を持つ行に展開します。
（recordを返すすべての関数では、呼び出す問い合わせは明示的にAS句でレコードの構造を定義しなければなりません。）
上のjson[b]_populate_recordで説明した方法で、出力レコードはJSONオブジェクトのフィールドで満たされます。
入力レコード値がないので、一致しない列は常にNULLで満たされます。
       

       
        create type myrowtype as (a int, b text);
       

       
        select * from json_to_record('{"a":1,"b":[1,2,3],"c":[1,2,3],"e":"bar","r": {"a": 123, "b": "a b c"}}') as x(a int, b text, c int[], d text, r myrowtype)
        


 a |    b    |    c    | d |       r
---+---------+---------+---+---------------
 1 | [1,2,3] | {1,2,3} |   | (123,"a b c")


       

	
        
        json_to_recordset ( json )
        setof record
       

       
        
        jsonb_to_recordset ( jsonb )
        setof record
       

       

トップレベルのJSON配列をAS句で定義した複合型を持つ行に展開します。
（recordを返すすべての関数では、呼び出す問い合わせは明示的にAS句でレコードの構造を定義しなければなりません。）
上のjson[b]_populate_recordで説明した方法で、JSON配列の要素は処理されます。
       

       
        select * from json_to_recordset('[{"a":1,"b":"foo"}, {"a":"2","c":"bar"}]') as x(a int, b text)
        


 a |  b
---+-----
 1 | foo
 2 |


       

	
        
        jsonb_set ( target jsonb, path text[], new_value jsonb [, create_if_missing boolean ] )
        jsonb
       

       

pathで指定された要素をnew_valueで置き換えてtargetを返します。
create_if_missingが真なら（デフォルトです）、pathで指定された項目が無い時にnew_valueが追加されます。
パス中のすべての初期のステップは存在しなければならず、さもなければtargetは変わらないままに返却されます。
パスの位置についての演算子については、pathの中にある負の整数はJSON配列の終わりから数えます。
パスの最後のステップが範囲外の配列のインデックスで、create_if_missingが真のときは、インデックスが負なら配列の最初に、正なら配列の最後に新しい値が追加されます。
       

       
        jsonb_set('[{"f1":1,"f2":null},2,null,3]', '{0,f1}', '[2,3,4]', false)
        [{"f1": [2, 3, 4], "f2": null}, 2, null, 3]
       

       
        jsonb_set('[{"f1":1,"f2":null},2]', '{0,f3}', '[2,3,4]')
        [{"f1": 1, "f2": null, "f3": [2, 3, 4]}, 2]
       

	
        
        jsonb_set_lax ( target jsonb, path text[], new_value jsonb [, create_if_missing boolean [, null_value_treatment text ]] )
        jsonb
       

       

new_valueがNULLでないなら、jsonb_setと同じ振る舞いをします。
そうでなければnull_value_treatmentにしたがいます。
null_value_treatmentは、'raise_exception'、'use_json_null'、'delete_key'、'return_target'のいずれかでなければなりません。
デフォルトは'use_json_null'です。
       

       
        jsonb_set_lax('[{"f1":1,"f2":null},2,null,3]', '{0,f1}', null)
        [{"f1": null, "f2": null}, 2, null, 3]
       

       
        jsonb_set_lax('[{"f1":99,"f2":null},2]', '{0,f3}', null, true, 'return_target')
        [{"f1": 99, "f2": null}, 2]
       

	
        
        jsonb_insert ( target jsonb, path text[], new_value jsonb [, insert_after boolean ] )
        jsonb
       

       

new_valueを挿入してtargetを返します。
pathで指定した項目が配列要素で、insert_afterが偽（デフォルトです）ならばnew_valueはその項目の前に挿入され、insert_afterが真であれば後に挿入されます。
pathで指定した項目がオブジェクトフィールドならば、オブジェクトがすでにそのキーを含んでいない場合にのみnew_valueが挿入されます。
パス中のすべての初期のステップは存在しなければならず、さもなければtargetは変わらないままに返却されます。
pathについての演算子について言うと、path内の負の整数はJSON配列の終わりから数えます。
パスの最後のステップが範囲外の配列のインデックスで、インデックスが負なら配列の最初に、正なら配列の最後に新しい値が追加されます。
       

       
        jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"')
        {"a": [0, "new_value", 1, 2]}
       

       
        jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"', true)
        {"a": [0, 1, "new_value", 2]}
       

	
        
        json_strip_nulls ( target json [,strip_in_arrays boolean ] )
        json
       

       
        
        jsonb_strip_nulls ( target jsonb [,strip_in_arrays boolean ] )
        jsonb
       

       

NULL値を持つすべてのオブジェクトフィールドを、指定されたJSON値から再帰的に削除します。
strip_in_arraysがtrue（デフォルトはfalse）の場合、NULL配列要素も削除されます。
それ以外の場合は削除されません。
単独のNULL値は決して削除されません。
       

       
        json_strip_nulls('[{"f1":1, "f2":null}, 2, null, 3]')
        [{"f1":1},2,null,3]
       

       
        jsonb_strip_nulls('[1,2,null,3,4]', true);
        [1,2,3,4]
       

       
	
        
        jsonb_path_exists ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] )
        boolean
       

       

JSONパスが指定したJSON値に対して項目を返すかどうかをチェックします。
（これは、述語チェック式ではなく、標準SQLのJSONパス式でのみ有用です。
なぜなら、それらは常に値を返すからです。）
varsが指定されるなら、それはJSONオブジェクトでなければならず、そのフィールドはjsonpath式に置き換えられる名前を持つ値を提供します。
silent引数が指定されていてtrueなら、この関数は@?と@@演算子が生成するのと同じエラーを抑止します。
       

       
        jsonb_path_exists('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, "max":4}')
        t
       

	
        
        jsonb_path_match ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] )
        boolean
       

       

指定したJSON値のJSONパス述語チェックの結果をSQL論理値で返します。
（これは、パス結果が単一の論理値でない場合、失敗するかNULLを返すため、標準SQLのJSONパス述語ではなく、述語チェック式でのみ有用です）。
オプションのvarsとsilent引数は、jsonb_path_existsと同じように動作します。
       

       
        jsonb_path_match('{"a":[1,2,3,4,5]}', 'exists($.a[*] ? (@ >= $min && @ <= $max))', '{"min":2, "max":4}')
        t
       

	
        
        jsonb_path_query ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] )
        setof jsonb
       

       

指定されたJSON値のJSONパスによって戻されるすべてのJSON項目を戻します。
標準SQLのJSONパス式の場合、targetから選択されたJSON値を返します。
述語チェック式の場合、述語チェックの結果を返します。
結果はtrue、false、nullのいずれかです。
オプションのvarsとsilent引数はjsonb_path_existsと同じように動作します。
       

       
        select * from jsonb_path_query('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, "max":4}')
        


 jsonb_path_query
------------------
 2
 3
 4


       

	
        
        jsonb_path_query_array ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] )
        jsonb
       

       

指定されたJSON値のJSONパスによって返されるすべてのJSON項目を、JSON配列として返します。
パラメータはjsonb_path_queryと同じです。
       

       
        jsonb_path_query_array('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, "max":4}')
        [2, 3, 4]
       

	
        
        jsonb_path_query_first ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] )
        jsonb
       

       

指定されたJSON値のJSONパスによって返される最初のJSON項目を返します。
結果がない場合はNULLです。
パラメータはjsonb_path_queryと同じです。
       

       
        jsonb_path_query_first('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, "max":4}')
        2
       

	
        
        jsonb_path_exists_tz ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] )
        boolean
       

       
        
        jsonb_path_match_tz ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] )
        boolean
       

       
        
        jsonb_path_query_tz ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] )
        setof jsonb
       

       
        
        jsonb_path_query_array_tz ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] )
        jsonb
       

       
        
        jsonb_path_query_first_tz ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] )
        jsonb
       

       

これらの関数は、時間帯を考慮する日時値の比較をサポートすることを除いて、上で述べた、_tz接尾を除いた片割れの関数のように動作します。
以下の例では日付のみの値2015-08-02を時間帯付きタイムスタンプとして解釈することが必要で、結果はTimeZone設定に依存します。
この依存性のために、これらの関数は安定(stable)、として印付けされており、インデックスにはこれらの関数は使えないことを意味します。
これらの関数の片割れは不変(immutable)なので、インデックスで使えます。しかし、そうした比較を要求されるとエラーを吐きます。
       

       
        jsonb_path_exists_tz('["2015-08-01 12:00:00-05"]', '$[*] ? (@.datetime() < "2015-08-02".datetime())')
        t
       

	
        
        jsonb_pretty ( jsonb )
        text
       

       

与えられたJSON値を整形されたインデント付きテキストに変換します。
       

       
        jsonb_pretty('[{"f1":1,"f2":null}, 2]')
        


[
    {
        "f1": 1,
        "f2": null
    },
    2
]


       

	
        
        json_typeof ( json )
        text
       

       
        
        jsonb_typeof ( jsonb )
        text
       

       

トップレベルのJSON値の型をテキスト文字列として返します。
可能な型は次のとおりです。
object、array、string、number、boolean、null。
（nullの結果をSQLのNULLと混同してはいけません。以下の例をご覧ください。）
       

       
        json_typeof('-123.4')
        number
       

       
        json_typeof('null'::json)
        null
       

       
        json_typeof(NULL::json) IS NULL
        t
       





SQL/JSONパス言語





SQL/JSONパス式は、XMLコンテンツへのアクセスで使用されるXPath式同様、JSON値から取り出す項目を指定します。
PostgreSQL™ではパス式はjsonpathデータ型として実装されており、「jsonpath型」で説明されているすべての要素を使うことができます。
  


JSON問い合わせ関数と演算子は与えられたパス式をpath engineに渡して評価します。
式が問い合わせ対象のJSONデータにマッチすれば、関連するSQL/JSON項目が返却されます。
一致しない場合、結果はNULL、false、または関数によって異なるエラーになります。
パス式はSQL/JSONパス言語で書かれ、算術式と関数を含むことができます。
  


パス式はjsonpathデータ型で認められた一連の要素からなります。
パス式は通常左から右へと評価されますが、括弧を使って演算の順序を変更することができます。
評価が成功すれば、一連のJSON項目が生成され、評価結果が指定した計算を完了したJSON問い合わせ関数に戻されます。
  


問い合わせ対象（context item）のJSONデータを参照するには、パス式内で$値を使います。
パスの最初の要素は常に$でなければなりません。
複数のアクセサ演算子をその後に記述することもできます。
この後に、JSON構造のレベルを1つずつ下ってコンテキスト項目のサブ項目を取得するアクセサ演算子を1つ以上指定することができます。
各アクセサ演算子は、前の評価ステップの結果に作用し、各入力項目から0個、1個、または複数の出力項目を生成します。
  


たとえば、次のようなパースしたいGPSトラッカーからのJSONデータがあるとします。


SELECT '{
  "track": {
    "segments": [
      {
        "location":   [ 47.763, 13.4034 ],
        "start time": "2018-10-14 10:05:14",
        "HR": 73
      },
      {
        "location":   [ 47.706, 13.2635 ],
        "start time": "2018-10-14 10:39:21",
        "HR": 135
      }
    ]
  }
}' AS json \gset



（上記の例は、psqlにコピー&ペーストして、以下の例の設定を行うことができます。
そうすると、psqlは:'json'を適切に引用符付けされた文字列定数に展開し、JSON値を含めます。）
  


使用可能なトラックセグメントを取り出すには、.keyアクセサ演算子を使用して、周辺のJSONオブジェクトを下っていく必要があります。
例:


=> select jsonb_path_query(:'json', '$.track.segments');
                                                                         jsonb_path_query
-----------------------------------------------------------​-----------------------------------------------------------​---------------------------------------------
 [{"HR": 73, "location": [47.763, 13.4034], "start time": "2018-10-14 10:05:14"}, {"HR": 135, "location": [47.706, 13.2635], "start time": "2018-10-14 10:39:21"}]


  


配列の内容を取り出すには、典型的には[*]演算子を使います。
次の例は、使用可能なすべてのトラックセグメントの位置座標を返します。


=> select jsonb_path_query(:'json', '$.track.segments[*].location');
 jsonb_path_query
-------------------
 [47.763, 13.4034]
 [47.706, 13.2635]



ここでは、JSON入力値($)全体から始め、.trackアクセサが"track"オブジェクトキーに関連付けられたJSONオブジェクトを選択し、.segmentsアクセサがそのオブジェクト内の"segments"キーに関連付けられたJSON配列を選択し、[*]アクセサがその配列の各要素を（一連の項目を生成しながら）選択し、.locationアクセサがそれらのオブジェクトのそれぞれの中の"location"キーに関連付けられたJSON配列を選択しました。
この例では、それらのオブジェクトのそれぞれに"location"キーがありましたが、もしそうでなければ、.locationアクセッサは単にその入力項目に対して何の出力も生成しなかったでしょう。
  


最初のセグメントの座標だけを返すには、[]アクセサ演算子の中で対応する添え字を指定することができます。
JSON配列インデックスは0スタートであることに注意してください。


=> select jsonb_path_query(:'json', '$.track.segments[0].location');
 jsonb_path_query
-------------------
 [47.763, 13.4034]


  


各段階でのパス評価結果は「SQL/JSONパス演算子とメソッド」に列挙されている一つ以上のjsonpath演算子とメソッドで処理することができます。
各々のメソッド名の前にピリオドを付けなければなりません。
たとえば配列の大きさを得ることができます。


=> select jsonb_path_query(:'json', '$.track.segments.size()');
 jsonb_path_query
------------------
 2



パス式内のjsonpath演算子とメソッドを使用する他の例については以下の「SQL/JSONパス演算子とメソッド」を参照してください。
  


パスには、SQLのWHERE句のように働くフィルタ式を含めることもできます。
フィルタ式はクェスチョンマークで始まり、カッコ内に条件を記述します。



? (condition)


  


フィルタ式はそれを適用するパス評価段階の直後に指定しなければなりません。
この段階の結果は、指定した条件を満たす項目だけが含まれるようにフィルタされます。
SQL/JSONは3値論理を定義しており、条件はtrue、false、unknownのどれかを生成します。
unknownは値はSQLのNULLと同じ役割を果たし、is unknown述語で評価できます。
その後の評価段階ではtrueを返すフィルタ式に対応する項目だけが使われます。
  


フィルタ式内で利用できる関数と演算子は表9.53「jsonpathフィルタ式要素」にリストされています。
フィルタ式内では、考慮する必要のある値は@変数で示します。（つまり以前のパスステップの結果の一つです。）
コンポーネント項目を取得するためにアクセサ演算子を@の後に記述することができます。
  


たとえば130より高いすべての心拍数を取り出したいとします。
これを実現するには、次のようにします。


=> select jsonb_path_query(:'json', '$.track.segments[*].HR ? (@ > 130)');
 jsonb_path_query
------------------
 135


  


そうした値を持つセグメントの開始時刻を得たい場合は、開始時刻を選択する前に無関係のセグメントを取り除く必要があります。
そうすることにより前の段階にフィルタ式が適用されるので、その条件で適用されるパスは異なります。


=> select jsonb_path_query(:'json', '$.track.segments[*] ? (@.HR > 130)."start time"');
   jsonb_path_query
-----------------------
 "2018-10-14 10:39:21"


  


必要なら複数のフィルタ式を順に使用することができます。
次の例では、関連する座標と高い心拍数値を持つ位置を含むすべてのセグメントの開始時間を選択します。


=> select jsonb_path_query(:'json', '$.track.segments[*] ? (@.location[1] < 13.4) ? (@.HR > 130)."start time"');
   jsonb_path_query
-----------------------
 "2018-10-14 10:39:21"


  


異なる入れ子レベルに対してフィルタ式を適用することもできます。
次の例では、まず位置ですべてのセグメントをフィルタし、もしあれば高い心拍数値を返します。


=> select jsonb_path_query(:'json', '$.track.segments[*] ? (@.location[1] < 13.4).HR ? (@ > 130)');
 jsonb_path_query
------------------
 135


  


フィルタ式をネストして、フィルタ式を相互にネストすることもできます。
次の例では、トラックに高心拍数値のセグメントが含まれている場合はそのサイズを返し、それ以外の場合は空のシーケンスを返します。


=> select jsonb_path_query(:'json', '$.track ? (exists(@.segments[*] ? (@.HR > 130))).segments.size()');
 jsonb_path_query
------------------
 2


  
標準SQLとの違い





PostgreSQL™のSQL/JSONパス言語の実装はSQL/JSON標準と次の点が異なります。
   
ブール述語チェック式





標準SQLの拡張として、PostgreSQL™パス式はブール述語になりますが、標準SQLでは述語はフィルタ内でのみ許されます。
標準SQLのパス式は、問い合わせられたJSON値の関連する要素を返しますが、述語チェック式は述語の単一の3値jsonb結果true、false、nullを返します。
たとえば、次の標準SQLフィルタ式を記述できます。


=> select jsonb_path_query(:'json', '$.track.segments ?(@[*].HR > 130)');
                                jsonb_path_query
-----------------------------------------------------------​----------------------
 {"HR": 135, "location": [47.706, 13.2635], "start time": "2018-10-14 10:39:21"}



類似述語チェック式は単にtrueを返し、一致が存在することを示します。


=> select jsonb_path_query(:'json', '$.track.segments[*].HR > 130');
 jsonb_path_query
------------------
 true


     
注記


述語チェック式は@@演算子（およびjsonb_path_match関数）で必要であり、@?演算子（またはjsonb_path_exists関数）では使用すべきではありません。
      


正規表現の解釈





「SQL/JSON正規表現」で述べるように、like_regexフィルタで使用される正規表現パターンの解釈には些細な違いがあります。
     


厳密モードと非厳密モード





JSONデータを問い合わせる際、パス式は実際のJSONデータ構造に一致しないかも知れません。
存在しないオブジェクトのメンバあるいは配列要素へのアクセスは構造上のエラーとして定義されています。
SQL/JSONパス式には構造上のエラーを扱うための2つのモードがあります。
    
	

非厳密(lax)モード（デフォルト）— パスエンジンは指定したパスを問い合わせデータに暗黙的に適合させます。
以下に説明するように修正できない構造エラーは抑制され、一致は生成されません。
     

	

厳密(strict)モード — 構造上のエラーがあるとエラーが発生します。
     





非厳密モードは、JSONデータが期待されるスキーマに沿わないときにJSON文書とパス式のマッチングを助けます。
あるオペランドが操作の要件に合わないときにはそれをSQL/JSON配列にまとめたり、あるいは操作を行う前にそれをSQL/JSONシーケンスに展開することもできます。
また非厳密モードにおいては、比較演算子は自動的にオペランドを展開し、SQL/JSON配列をそのまま比較することができます。
大きさ1の配列はその単独要素と同じものとして扱われます。
自動展開は以下の場合に行われません。
    
	

それぞれ配列の型、要素数を返すtype()、size()をパス式が含む。
      

	

問い合わせ対象のJSONデータが入れ子の配列を含む。
この場合はもっとも外側の配列のみが展開され、内側の配列は変わりません。
ですから、それぞれの評価段階において1レベルのみに暗黙的な展開が行われます。
      




   


たとえば、上述のGPSデータに問い合わせする場合、非厳密モードでは配列のセグメントを含んでいるという事実から抽出できます。


=> select jsonb_path_query(:'json', 'lax $.track.segments.location');
 jsonb_path_query
-------------------
 [47.763, 13.4034]
 [47.706, 13.2635]


   


厳密モードでは、指定されたパスは問い合わせ対象のJSONドキュメントの構造と正確に一致する必要があるため、このパス式を使用するとエラーが発生します。


=> select jsonb_path_query(:'json', 'strict $.track.segments.location');
ERROR:  jsonpath member accessor can only be applied to an object



非厳密モードと同じ結果を得るには、segments配列を明示的に展開する必要があります。


=> select jsonb_path_query(:'json', 'strict $.track.segments[*].location');
 jsonb_path_query
-------------------
 [47.763, 13.4034]
 [47.706, 13.2635]


   


非厳密モードの展開動作は、驚くべき結果をもたらす可能性があります。
たとえば、.**アクセサを使用する次の問い合わせは、すべてのHR値を2回選択します。


=> select jsonb_path_query(:'json', 'lax $.**.HR');
 jsonb_path_query
------------------
 73
 135
 73
 135



これは.**アクセサがsegmentsとその各々の要素の両方を検索するからです。
一方、.HRアクセサは非厳密モードでは自動的に配列を展開します。
予期しない結果を避けるには、.**アクセサを厳密モードでのみ使うことをお勧めします。
次の問い合わせはHRの各値を一度だけ検索します。


=> select jsonb_path_query(:'json', 'strict $.**.HR');
 jsonb_path_query
------------------
 73
 135


   


配列の展開は予期しない結果をもたらす可能性もあります。
location配列をすべて選択する次の例を考えてみましょう。


=> select jsonb_path_query(:'json', 'lax $.track.segments[*].location');
 jsonb_path_query
-------------------
 [47.763, 13.4034]
 [47.706, 13.2635]
(2 rows)



予想どおり、配列全体が返されます。
しかし、フィルタ式を適用すると、配列が展開され、各項目が評価されて、式に一致する項目のみが返されます。


=> select jsonb_path_query(:'json', 'lax $.track.segments[*].location ?(@[*] > 15)');
 jsonb_path_query
------------------
 47.763
 47.706
(2 rows)



これは、完全な配列がpath式によって選択されるという事実にもかかわらずです。
厳密モードを使用して、配列の選択を復元します。


=> select jsonb_path_query(:'json', 'strict $.track.segments[*].location ?(@[*] > 15)');
 jsonb_path_query
-------------------
 [47.763, 13.4034]
 [47.706, 13.2635]
(2 rows)


   

SQL/JSONパス演算子とメソッド





表9.52「jsonpath演算子とメソッド」にjsonpathで利用可能な演算子とメソッドを示します。
単項演算子とメソッドは以前のパスステップから生じた複数の値に適用できますが、二項演算子（加算など）は単一の値にしか適用できないことに注意してください。
非厳密モードでは、配列に適用されるメソッドは配列内の各値に対して実行されます。
例外は.type()と.size()で、配列自分自身に適用されます。
   
表9.52 jsonpath演算子とメソッド
	

演算子/メソッド
       

       

説明
       

       

例
       

	
        number + number
        number
       

       

加算
       

       
        jsonb_path_query('[2]', '$[0] + 3')
        5
       

	
        + number
        number
       

       

単項のプラス（演算なし）。加算と違って、複数の値に渡って適用できます。
       

       
        jsonb_path_query_array('{"x": [2,3,4]}', '+ $.x')
        [2, 3, 4]
       

	
        number - number
        number
       

       

減算
       

       
        jsonb_path_query('[2]', '7 - $[0]')
        5
       

	
        - number
        number
       

       

負符号。減算と違って、複数の値に渡って適用できます。
       

       
        jsonb_path_query_array('{"x": [2,3,4]}', '- $.x')
        [-2, -3, -4]
       

	
        number * number
        number
       

       

乗算
       

       
        jsonb_path_query('[4]', '2 * $[0]')
        8
       

	
        number / number
        number
       

       

除算
       

       
        jsonb_path_query('[8.5]', '$[0] / 2')
        4.2500000000000000
       

	
        number % number
        number
       

       

剰余（残り）
       

       
        jsonb_path_query('[32]', '$[0] % 10')
        2
       

	
        value . type()
        string
       

       

JSON項目の型（json_typeofを参照）
       

       
        jsonb_path_query_array('[1, "2", {}]', '$[*].type()')
        ["number", "string", "object"]
       

	
        value . size()
        number
       

       

JSON項目の大きさ（配列の要素数。配列でなければ1）
       

       
        jsonb_path_query('{"m": [11, 15]}', '$.m.size()')
        2
       

	
        value . boolean()
        boolean
       

       

JSONのブール値、数値、または文字列から変換されたブール値。
       

       
        jsonb_path_query_array('[1, "yes", false]', '$[*].boolean()')
        [true, true, false]
       

	
        value . string()
        string
       

       

JSONのブール値、数値、文字列、または日時から変換された文字列値。
       

       
        jsonb_path_query_array('[1.23, "xyz", false]', '$[*].string()')
        ["1.23", "xyz", "false"]
       

       
        jsonb_path_query('"2023-08-15 12:34:56"', '$.timestamp().string()')
        "2023-08-15T12:34:56"
       

	
        value . double()
        number
       

       

JSON数値あるいは文字列から変換した概算の浮動小数点数
       

       
        jsonb_path_query('{"len": "1.9"}', '$.len.double() * 2')
        3.8
       

	
        number . ceiling()
        number
       

       

引数より大きいか等しく、与えられた数に最も近い整数
       

       
        jsonb_path_query('{"h": 1.3}', '$.h.ceiling()')
        2
       

	
        number . floor()
        number
       

       

引数より小さいか等しく、与えられた数に最も近い整数
       

       
        jsonb_path_query('{"h": 1.7}', '$.h.floor()')
        1
       

	
        number . abs()
        number
       

       

与えられた数の絶対値
       

       
        jsonb_path_query('{"z": -0.3}', '$.z.abs()')
        0.3
       

	
        value . bigint()
        bigint
       

       

JSONの数値または文字列から変換された大きな整数値。
       

       
        jsonb_path_query('{"len": "9876543219"}', '$.len.bigint()')
        9876543219
       

	
        value . decimal( [ precision [ , scale ] ] )
        decimal
       

       

JSONの数値または文字列から変換された丸められた10進数値（精度および位取りは整数値である必要があります）。
       

       
        jsonb_path_query('1234.5678', '$.decimal(6, 2)')
        1234.57
       

	
        value . integer()
        integer
       

       

JSONの数値または文字列から変換された整数値。
       

       
        jsonb_path_query('{"len": "12345"}', '$.len.integer()')
        12345
       

	
        value . number()
        numeric
       

       

JSONの数値または文字列から変換されたNumeric値。
       

       
        jsonb_path_query('{"len": "123.45"}', '$.len.number()')
        123.45
       

	
        string . datetime()
        datetime_type

（注記を参照）
       

       

文字列から変換した日時値
       

       
        jsonb_path_query('["2015-8-1", "2015-08-12"]', '$[*] ? (@.datetime() < "2015-08-2".datetime())')
        "2015-8-1"
       

	
        string . datetime(template)
        datetime_type

（注記を参照）
       

       

指定のto_timestampテンプレートを使って文字列から変換した日時値
       

       
        jsonb_path_query_array('["12:30", "18:40"]', '$[*].datetime("HH24:MI")')
        ["12:30:00", "18:40:00"]
       

	
        string . date()
        date
       

       

文字列から変換された日付値。
       

       
        jsonb_path_query('"2023-08-15"', '$.date()')
        "2023-08-15"
       

	
        string . time()
        time without time zone
       

       

文字列から変換した時間帯のない時刻値
       

       
        jsonb_path_query('"12:34:56"', '$.time()')
        "12:34:56"
       

	
        string . time(precision)
        time without time zone
       

       

文字列から変換された時間帯のない時間の値。分数の秒は指定された精度に調整されます。
       

       
        jsonb_path_query('"12:34:56.789"', '$.time(2)')
        "12:34:56.79"
       

	
        string . time_tz()
        time with time zone
       

       

文字列から変換されたタイムゾーン値を持つ時間。
       

       
        jsonb_path_query('"12:34:56 +05:30"', '$.time_tz()')
        "12:34:56+05:30"
       

	
        string . time_tz(precision)
        time with time zone
       

       

文字列から変換された時間帯を持つ時間。分数の秒は指定された精度に調整されます。
       

       
        jsonb_path_query('"12:34:56.789 +05:30"', '$.time_tz(2)')
        "12:34:56.79+05:30"
       

	
        string . timestamp()
        timestamp without time zone
       

       

文字列から変換された時間帯なしのタイムスタンプ
       

       
        jsonb_path_query('"2023-08-15 12:34:56"', '$.timestamp()')
        "2023-08-15T12:34:56"
       

	
        string . timestamp(precision)
        timestamp without time zone
       

       

文字列から変換された時間帯なしのタイムスタンプ値。分数の秒数は指定された精度に調整されます。
       

       
        jsonb_path_query('"2023-08-15 12:34:56.789"', '$.timestamp(2)')
        "2023-08-15T12:34:56.79"
       

	
        string . timestamp_tz()
        timestamp with time zone
       

       

文字列から変換された時間帯を持つタイムスタンプ。
       

       
        jsonb_path_query('"2023-08-15 12:34:56 +05:30"', '$.timestamp_tz()')
        "2023-08-15T12:34:56+05:30"
       

	
        string . timestamp_tz(precision)
        timestamp with time zone
       

       

文字列から変換された時間帯を持つタイムスタンプ値。分数の秒数は指定された精度に調整されます。
       

       
        jsonb_path_query('"2023-08-15 12:34:56.789 +05:30"', '$.timestamp_tz(2)')
        "2023-08-15T12:34:56.79+05:30"
       

	
        object . keyvalue()
        array
       

       

以下の3つのフィールドを含むオブジェクトの配列で表現したオブジェクトのキー/値ペア。
"key"、"value"、"id"。
"id"はキー/値ペアが属するオブジェクトのユニーク識別子です。
       

       
        jsonb_path_query_array('{"x": "20", "y": 32}', '$.keyvalue()')
        [{"id": 0, "key": "x", "value": "20"}, {"id": 0, "key": "y", "value": 32}]
       




注記


datetime()とdatetime(template)の結果型はdate、timetz、time、timestamptz、あるいはtimestampです。
両方のメソッドは結果型を動的に決定します。
     


datetime()メソッドは入力文字列をdate、timetz、time、timestamptz、timestampのISO形式に対して順にマッチを試みます。
最初にマッチした形式で停止し、関連するデータ型を出力します。
     


datetime(template)メソッドは与えられたテンプレート文字列にあるフィールドに従って結果型を決定します。
     


datetime()とdatetime(template)はto_timestampSQL関数と同じ解析ルール(参照「データ型書式設定関数」)を用いますが、3つの例外があります。
一番目に、これらのメソッドは一致しないテンプレートパターンを許容しません。二番目に次の区切り文字のみを許容します。負符号、ピリオド、斜線（スラッシュ）、カンマ、アポストロフィー、セミコロン、コロン、空白、です。
三番目にテンプレート文字列中の区切り文字は正確に入力文字列と一致しなければなりません。
     


異なる日時型の比較が必要なら、暗黙的なキャストが適用されます。
date値はtimestampあるいはtimestamptzにキャストできます。
timestampはtimestamptzに、timeはtimetzにキャストできます。
しかし、これらの変換は最初のものを除くすべてが現在のTimeZone設定に依存します。ですから時間帯を認識するjsonpath関数中でのみ実行可能です。
同様に、文字列を日付/時刻型に変換する他の日付/時刻関連のメソッドも、現在のTimeZone設定を含む可能性があるこのキャストを行います。
したがって、これらの変換は、timezoneを意識したjsonpath関数内でのみ実行できます。
     



表9.53「jsonpathフィルタ式要素」に利用可能なフィルタ式要素を示します。
   
表9.53 jsonpathフィルタ式要素
	

述語/値
       

       

説明
       

       

例
       

	
        value == value
        boolean
       

       

等値比較（これと他の比較演算子はすべてのJSONスカラ値で使えます）
       

       
        jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ == 1)')
        [1, 1]
       

       
        jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ == "a")')
        ["a"]
       

	
        value != value
        boolean
       

       
        value <> value
        boolean
       

       

非等値比較
       

       
        jsonb_path_query_array('[1, 2, 1, 3]', '$[*] ? (@ != 1)')
        [2, 3]
       

       
        jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ <> "b")')
        ["a", "c"]
       

	
        value < value
        boolean
       

       

未満比較
       

       
        jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ < 2)')
        [1]
       

	
        value <= value
        boolean
       

       

以下比較
       

       
        jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ <= "b")')
        ["a", "b"]
       

	
        value > value
        boolean
       

       

より大きい比較
       

       
        jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ > 2)')
        [3]
       

	
        value >= value
        boolean
       

       

以上比較
       

       
        jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ >= 2)')
        [2, 3]
       

	
        true
        boolean
       

       

JSON定数真
       

       
        jsonb_path_query('[{"name": "John", "parent": false}, {"name": "Chris", "parent": true}]', '$[*] ? (@.parent == true)')
        {"name": "Chris", "parent": true}
       

	
        false
        boolean
       

       

JSON定数偽
       

       
        jsonb_path_query('[{"name": "John", "parent": false}, {"name": "Chris", "parent": true}]', '$[*] ? (@.parent == false)')
        {"name": "John", "parent": false}
       

	
        null
        value
       

       

JSON定数null（SQLとは違ってnullとの比較は通常通り動作することに注意してください。）
       

       
        jsonb_path_query('[{"name": "Mary", "job": null}, {"name": "Michael", "job": "driver"}]', '$[*] ? (@.job == null) .name')
        "Mary"
       

	
        boolean && boolean
        boolean
       

       

論理AND
       

       
        jsonb_path_query('[1, 3, 7]', '$[*] ? (@ > 1 && @ < 5)')
        3
       

	
        boolean || boolean
        boolean
       

       

論理OR
       

       
        jsonb_path_query('[1, 3, 7]', '$[*] ? (@ < 1 || @ > 5)')
        7
       

	
        ! boolean
        boolean
       

       

論理NOT
       

       
        jsonb_path_query('[1, 3, 7]', '$[*] ? (!(@ < 5))')
        7
       

	
        boolean is unknown
        boolean
       

       

論理条件がunknownであるかどうかを検査します。
       

       
        jsonb_path_query('[-1, 2, 7, "foo"]', '$[*] ? ((@ > 0) is unknown)')
        "foo"
       

	
        string like_regex string [ flag string ]
        boolean
       

       

最初のオペランドが2番目のオペランドで与えられる正規表現にマッチするかどうか検査します。
オプションでflag文字列で記述される変更を伴います。（「SQL/JSON正規表現」を参照してください。）
       

       
        jsonb_path_query_array('["abc", "abd", "aBdC", "abdacb", "babc"]', '$[*] ? (@ like_regex "^ab.*c")')
        ["abc", "abdacb"]
       

       
        jsonb_path_query_array('["abc", "abd", "aBdC", "abdacb", "babc"]', '$[*] ? (@ like_regex "^ab.*c" flag "i")')
        ["abc", "aBdC", "abdacb"]
       

	
        string starts with string
        boolean
       

       

2番目の文字列が1番目のオペランドの最初の部分文字列かどうかを検査します。
       

       
        jsonb_path_query('["John Smith", "Mary Stone", "Bob Johnson"]', '$[*] ? (@ starts with "John")')
        "John Smith"
       

	
        exists ( path_expression )
        boolean
       

       

パス式が少なくとも一つのSQL/JSON項目とマッチするかどうかを検査します。
パス式がエラーとなる場合はunknownを返します。2番目の例は厳密モードでキーが存在しないエラーを回避するためにこれを使っています。
       

       
        jsonb_path_query('{"x": [1, 2], "y": [2, 4]}', 'strict $.* ? (exists (@ ? (@[*] > 2)))')
        [2, 4]
       

       
        jsonb_path_query_array('{"value": 41}', 'strict $ ? (exists (@.name)) .name')
        []
       





SQL/JSON正規表現





SQL/JSONパス式ではlike_regexフィルタを使ってテキストを正規表現にマッチさせることができます。
たとえば、次のSQL/JSONパス式問い合わせは、英語の母音で始まる配列内のすべての文字列に大文字小文字を無視してマッチするでしょう。


$[*] ? (@ like_regex "^[aeiou]" flag "i")


    


オプションのflag文字列は一つ以上の文字を含むことができます。
iは大文字小文字を無視したマッチ、mは^と$で改行にマッチ、sは.が改行にマッチ、qはパターン全体を参照します。（振る舞いを単純な部分文字列マッチとします）
    


SQL/JSON標準は正規表現の定義を、XQuery標準を使用するLIKE_REGEX演算子から借りています。
PostgreSQLは今の所LIKE_REGEX演算子をサポートしていません。
ですから、like_regexフィルタは「POSIX正規表現」で説明されているPOSIX正規表現で実装されています。
このことにより、「標準SQLおよびXQueryとの違い」で列挙されているSQL/JSON標準の振る舞いとの小さな違いが生じます。
しかし、ここで述べているフラグ文字の非互換性はSQL/JSONには適用されないことに注意してください。SQL/JSONは、XQueryのフラグ文字をPOSIXエンジンが期待するのと一致するように解釈するからです。
    


like_regexのパターン引数は「jsonpath型」で説明されているルールにしたがって書かれたJSONパス文字列リテラルであることに注意してください。
これは、正規表現で使用するすべてのバックスラッシュを二重に書かなければならないことを意味します。
たとえば、数字のみを含むroot文書の文字列値にマッチさせるには以下のようにします。


$.* ? (@ like_regex "^\\d+$")


    


SQL/JSON問い合わせ関数





表9.54「SQL/JSON問い合わせ関数」で記述されたSQL/JSON関数JSON_EXISTS()、JSON_QUERY()、JSON_VALUE()は、JSON文書への問い合わせに使用できます。
これらの各関数は、path_expression（SQL/JSONパス問い合わせ）をcontext_item（文書）に適用します。
path_expressionの内容の詳細については、「SQL/JSONパス言語」を参照してください。
path_expressionはリファレンス変数にすることもできます。その値は、各関数でサポートされているPASSING句でそれぞれの名前で指定されます。
context_itemには、jsonbの値、または文字の並びにキャストできるjsonbを指定できます。
  
表9.54 SQL/JSON問い合わせ関数
	

関数の呼び出し形式
       

       

説明
       

       

例
      

	
        


JSON_EXISTS (
context_item, path_expression
[ PASSING { value AS varname } [, ...]]
[{ TRUE | FALSE | UNKNOWN | ERROR } ON ERROR ]) boolean


       

     	

context_itemに適用されたSQL/JSON path_expressionが項目を生成する場合は真を返し、それ以外の場合は偽を返します。
       

	

ON ERROR句は、path_expressionの評価中にエラーが発生した場合の動作を指定します。
ERRORを指定すると、適切なメッセージとともにエラーを引き起こします。
他のオプションにはboolean値であるFALSEまたはTRUE、あるいは実際にはSQL NULLであるUNKNOWNの値を返すものがあります。
ON ERROR句が指定されていない場合のデフォルトでは、boolean値のFALSEを返します。
       




       

例：
       

       
        JSON_EXISTS(jsonb '{"key1": [1,2,3]}', 'strict $.key1[*] ? (@ > $x)' PASSING 2 AS x)
        t
       

       
        JSON_EXISTS(jsonb '{"a": [1,2,3]}', 'lax $.a[5]' ERROR ON ERROR)
        f
       

       
        JSON_EXISTS(jsonb '{"a": [1,2,3]}', 'strict $.a[5]' ERROR ON ERROR)
        


ERROR:  jsonpath array subscript is out of bounds


      

	
        


JSON_QUERY (
context_item, path_expression
[ PASSING { value AS varname } [, ...]]
[ RETURNING data_type [ FORMAT JSON [ ENCODING UTF8 ] ] ]
[ { WITHOUT | WITH { CONDITIONAL | [UNCONDITIONAL] } } [ ARRAY ] WRAPPER ]
[ { KEEP | OMIT } QUOTES [ ON SCALAR STRING ] ]
[ { ERROR | NULL | EMPTY { [ ARRAY ] | OBJECT } | DEFAULT expression } ON EMPTY ]
[ { ERROR | NULL | EMPTY { [ ARRAY ] | OBJECT } | DEFAULT expression } ON ERROR ]) jsonb


      

     	

SQL/JSONpath_expressionをcontext_itemに適用した結果を返します。
       

	

デフォルトでは、結果はjsonb型の値として返されますが、RETURNING句を使って、結果が正常に強制される他の型を返すことができます。
       

	

パス式が複数の結果を返す場合、それらの値を適切なJSON文字列にするために、WITH WRAPPER句を使用してこれらの値をラップする必要があります。
なぜなら、デフォルトの動作は、WITHOUT WRAPPERが指定されているかのようにラップしないからです。
WITH WRAPPER句は、デフォルトではWITH UNCONDITIONAL WRAPPERを意味すると解釈されます。これは、単一の結果値であってもラップされることを意味します。
複数の値が存在する場合にのみラッパーを適用するには、WITH CONDITIONAL WRAPPERを指定します。
WITHOUT WRAPPERが指定されていて、結果に複数の値が含まれると、エラーとして扱われます。
       

	

結果がスカラ文字列の場合、デフォルトでは戻り値は引用符で囲まれ、有効なJSON値になります。
これは、KEEP QUOTESを指定することで明示的にできます。
逆に、OMIT QUOTESを指定することで引用符を省略できます。
結果が有効なJSON値である保証には、WITH WRAPPERも指定されている場合、OMIT QUOTESは指定できません。
       

	

ON EMPTY句は、path_expressionを評価した結果空の集合が生成される場合の動作を指定します。
ON ERROR句は、path_expressionを評価した際、結果値をRETURNING型に強制した際、またはpath_expression評価で空の集合が返されON EMPTY式を評価した際にエラーが発生する場合の動作を指定します。
       

	

ON EMPTYとON ERRORの両方で、ERRORを指定すると、適切なエラーとともにメッセージがスローされます。
他のオプションにはSQL NULL、空の配列（EMPTY [ARRAY]）、空のオブジェクト（EMPTY OBJECT）、jsonbまたはRETURNINGで指定されたタイプに強制できるユーザ指定の式（DEFAULT expression）があります。
ON EMPTYあるいはON ERROR句が指定されていない場合のデフォルトでは、SQL NULL値を返します。
       




       

例：
       

       
        JSON_QUERY(jsonb '[1,[2,3],null]', 'lax $[*][$off]' PASSING 1 AS off WITH CONDITIONAL WRAPPER)
        3
       

       
        JSON_QUERY(jsonb '{"a": "[1, 2]"}', 'lax $.a' OMIT QUOTES)
        [1, 2]
       

       
        JSON_QUERY(jsonb '{"a": "[1, 2]"}', 'lax $.a' RETURNING int[] OMIT QUOTES ERROR ON ERROR)
        


ERROR:  malformed array literal: "[1, 2]"
DETAIL:  Missing "]" after array dimensions.


       

      
	
        


JSON_VALUE (
context_item, path_expression
[ PASSING { value AS varname } [, ...]]
[ RETURNING data_type ]
[ { ERROR | NULL | DEFAULT expression } ON EMPTY ]
[ { ERROR | NULL | DEFAULT expression } ON ERROR ]) text


       

     	

SQL/JSON path_expressionをcontext_itemに適用した結果を返します。
       

	

JSON_VALUE()を使用するのは、抽出された値が単一のSQL/JSONスカラ項目であると予想される場合のみです。複数の値の取得はエラーとして扱われます。
抽出された値がオブジェクトまたは配列であると予想される場合は、代わりにJSON_QUERY関数を使用します。
       

	

デフォルトでは、結果は単一のスカラ値である必要があり、text型の値として返されます。
ただし、RETURNING句は、結果が正常に強制できる他の型として使用できます。
       

	

ON ERROR句とON EMPTY句のセマンティクスは、JSON_QUERYの説明で説明したものと似ていますが、エラーを発生する代わりに返される値の集合が異なります。
       

	

JSON_VALUEによって返されるスカラ文字列は、JSON_QUERYでOMIT QUOTESを指定するのと同じように、常に引用符が削除されることに注意してください。
       




       

例：
       

       
        JSON_VALUE(jsonb '"123.45"', '$' RETURNING float)
        123.45
       

       
        JSON_VALUE(jsonb '"03:04 2015-02-01"', '$.datetime("HH24:MI YYYY-MM-DD")' RETURNING date)
        2015-02-01
       

       
        JSON_VALUE(jsonb '[1,2]', 'strict $[$off]' PASSING 1 as off)
        2
       

       
        JSON_VALUE(jsonb '[1,2]', 'strict $[*]' DEFAULT 9 ON ERROR)
        9
       

      



注記


context_item式は、まだjsonb型でない場合、暗黙キャストによってjsonbに変換されます。
ただし、その変換中に発生する解析エラーは、無条件に発生します。つまり、（指定または暗黙的な）ON ERROR句に従って処理されません。
   

注記


path_expressionがSQLnullを返す場合、JSON_VALUE()はSQL NULLを返します。一方、JSON_QUERY()はJSON nullをそのまま返します。
   


JSON_TABLE





JSON_TABLEはJSONデータを問い合わせ、結果を通常のSQLテーブルとしてアクセスできるリレーショナルビューとして表示するSQL/JSON関数です。
JSON_TABLEは、SELECT、UPDATE、またはDELETEのFROM句内で使用できます。また、MERGE文のデータソースとしても使用できます。
  


JSONデータを入力として、JSON_TABLEはJSONパス式を使用して、提供されたデータの一部を抽出し、構築されたビューの行パターンとして使用します。
行パターンで指定された各SQL/JSON値は、構築されたビューの別々の行のソースとして機能します。
  


行パターンを列に分割するために、JSON_TABLEは作成されたビューのスキーマを定義するCOLUMNS句を提供します。
各列に対して、個別のJSONパス式を指定して、行パターンに対して評価されるようにできます。これは、指定された出力行の特定の列の値になります。
  


行パターンのネストされたレベルに格納されたJSONデータは、NESTED PATH句を使用して抽出できます。
各NESTED PATH句は、行パターンのネストされたレベルからのデータを使用して1つ以上の列を生成するために使用できます。
これらの列は、最上位のCOLUMNS句と同様のCOLUMNS句を使用して指定できます。
NESTED COLUMNSから構成される行は子行（child rows）と呼ばれ、親のCOLUMNS句で指定された列から構成される行に対して結合され、最終的なビューの行が得られます。
子列自体はNESTED PATH指定を含むことができ、任意のネストレベルにあるデータを抽出することができます。
同じレベルにある複数のNESTED PATHによって生成された列は、互いに兄弟（siblings）と見なされ、親行と結合された後の行はUNIONを使用して結合されます。
  


JSON_TABLEが生成する行は、それを生成した行に横方向に結合されるため、JSONデータを保持する元のテーブルに構築されたビューを明示的に結合する必要はありません。
  


構文は次のとおりです。
  

JSON_TABLE (
    context_item, path_expression [ AS json_path_name ] [ PASSING { value AS varname } [, ...] ]
    COLUMNS ( json_table_column [, ...] )
    [ { ERROR | EMPTY [ARRAY]} ON ERROR ]
)



ここでjson_table_columnは次のとおりです。

  name FOR ORDINALITY
  | name type
        [ FORMAT JSON [ENCODING UTF8]]
        [ PATH path_expression ]
        [ { WITHOUT | WITH { CONDITIONAL | [UNCONDITIONAL] } } [ ARRAY ] WRAPPER ]
        [ { KEEP | OMIT } QUOTES [ ON SCALAR STRING ] ]
        [ { ERROR | NULL | EMPTY { [ARRAY] | OBJECT } | DEFAULT expression } ON EMPTY ]
        [ { ERROR | NULL | EMPTY { [ARRAY] | OBJECT } | DEFAULT expression } ON ERROR ]
  | name type EXISTS [ PATH path_expression ]
        [ { ERROR | TRUE | FALSE | UNKNOWN } ON ERROR ]
  | NESTED [ PATH ] path_expression [ AS json_path_name ] COLUMNS ( json_table_column [, ...] )



各構文要素について、以下でさらに詳しく説明します。
  
	
     context_item, path_expression [ AS json_path_name ] [ PASSING { value AS varname } [, ...]]
    
	

context_itemは問い合わせの入力ドキュメントを指定し、path_expressionは問い合わせを定義するSQL/JSONパス式であり、json_path_nameはpath_expressionのオプションの名前です。
オプションのPASSING句は、path_expressionで言及されている変数にデータ値を提供します。
前述の要素を使用して入力データを評価した結果はrow patternと呼ばれ、構築されたビューの行値のソースとして使用されます。
    

	
     COLUMNS ( json_table_column [, ...] )
    
	

構築されたビューのスキーマを定義するCOLUMNS句。
この句では、各列に対して、行パターンに対してJSONパス式を適用することによって得られるSQL/JSON値を指定できます。
json_table_columnには、次の種類があります。
    
	
     name FOR ORDINALITY
    
	

1から始まる連続した行番号を提供する序数列を追加します。
各NESTED PATH（下記参照）は、ネストされた序数列に対してそれぞれ独自のカウンタを持ちます。
    

	
     name type
          [FORMAT JSON [ENCODING UTF8]]
          [ PATH path_expression ]
    
	

指定されたtypeに強制変換した後、ビューの出力行にpath_expressionを適用して得られたSQL/JSON値を挿入します。
    


FORMAT JSONを指定すると、値が有効なjsonオブジェクトであることが明示的に指定されます。
FORMAT JSONを指定するのは、typeがbpchar、bytea、character varying、name、json、jsonb、text、またはこれらの型のドメインのいずれかである場合に限られます。
    


オプションで、WRAPPERとQUOTES句を指定して出力をフォーマットすることもできます。
引用符なしのリテラルは有効なjson値を構成しないため、QUOTESを指定すると、FORMAT JSONが上書きされることに注意してください。
    


オプションで、ON EMPTYとON ERROR句を使用して、JSONパス評価の結果が空の場合と、JSONパスの評価中あるいはSQL/JSON値を指定された型に強制変換したときにエラーが発生した場合に対して、エラーを発生するか、指定された値を返すかをそれぞれ指定できます。
どちらもデフォルトはNULLです。
    
注記


この句は内部的にJSON_VALUEまたはJSON_QUERYと同じ意味になります。
後者は、指定された型がスカラ型でない場合、またはFORMAT JSON、WRAPPER、またはQUOTES句のいずれかが存在する場合です。
     


	
       name type
       EXISTS [ PATH path_expression ]
    
	

指定されたtypeに強制変換した後、ビューの出力行にpath_expressionを適用して得られたブール値を挿入します。
    


この値は、PATH式を行パターンに適用した結果、値が生成されるかどうかに対応します。
    


指定されたtypeはboolean型からのキャストを持つべきです。
    


オプションでON ERRORを使用して、JSONパス評価中にエラーが発生した場合、またはSQL/JSON値を指定された型に強制変換した場合に、エラーを発生するか、指定された値を返すかを指定できます。
デフォルトは、ブール値FALSEを返します。
    
注記


この句は内部的にはJSON_EXISTSと同じ意味に変換されます。
     


	
      NESTED [ PATH ] path_expression [ AS json_path_name ]
          COLUMNS ( json_table_column [, ...] )
    
	

行パターンのネストされたレベルからSQL/JSON値を抽出し、COLUMNS副句で定義された1つ以上の列を生成し、それらの列に抽出されたSQL/JSON値を挿入します。
COLUMNS副句のjson_table_column式は、親のCOLUMNS句と同じ構文を使用します。
    


NESTED PATH構文は再帰的です。
したがって、複数のNESTED PATH副構文を互いに指定することで、複数のネストされたレベルを下に移動できます。
これにより、SQL文内で複数のJSON_TABLE式を連鎖させるのではなく、単一の関数呼び出しでJSONオブジェクトと配列の階層をネスト解除できます。
    



注記


上記のjson_table_columnの各種類において、PATH句が省略された場合、パス式$.nameが使用されます。
ここで、nameは指定された列名です。
     


	
     AS json_path_name
    
	

オプションのjson_path_nameは、指定されたpath_expressionの識別子として機能します。
名前は一意でなければならず、列名と区別する必要があります。
    

	
     { ERROR | EMPTY } ON ERROR
    
	

オプションのON ERRORは、最上位のpath_expressionを評価する際のエラー処理方法を指定するために使用できます。
エラーを発生する場合はERRORを使用し、空のテーブル、つまり0行を含むテーブルを返す場合はEMPTYを使用します。
この句は、列の評価時に発生するエラーには影響しないことに注意してください。
この場合の動作は、ON ERROR句が指定された列に対して指定されているかどうかによって異なります。
    



Examples


以下の例では、次のテーブルにJSONデータを含めます。



CREATE TABLE my_films ( js jsonb );

INSERT INTO my_films VALUES (
'{ "favorites" : [
   { "kind" : "comedy", "films" : [
     { "title" : "Bananas",
       "director" : "Woody Allen"},
     { "title" : "The Dinner Game",
       "director" : "Francis Veber" } ] },
   { "kind" : "horror", "films" : [
     { "title" : "Psycho",
       "director" : "Alfred Hitchcock" } ] },
   { "kind" : "thriller", "films" : [
     { "title" : "Vertigo",
       "director" : "Alfred Hitchcock" } ] },
   { "kind" : "drama", "films" : [
     { "title" : "Yojimbo",
       "director" : "Akira Kurosawa" } ] }
  ] }');



     


次の問い合わせは、JSON_TABLEを使用して、my_filmsテーブル内のJSONオブジェクトを、通常の列を伴って元のJSONに含まれるキーkind、title、およびdirectorの列を含むビューに変換する方法を示しています。



SELECT jt.* FROM
 my_films,
 JSON_TABLE (js, '$.favorites[*]' COLUMNS (
   id FOR ORDINALITY,
   kind text PATH '$.kind',
   title text PATH '$.films[*].title' WITH WRAPPER,
   director text PATH '$.films[*].director' WITH WRAPPER)) AS jt;





 id |   kind   |             title              |             director
----+----------+--------------------------------+----------------------------------
  1 | comedy   | ["Bananas", "The Dinner Game"] | ["Woody Allen", "Francis Veber"]
  2 | horror   | ["Psycho"]                     | ["Alfred Hitchcock"]
  3 | thriller | ["Vertigo"]                    | ["Alfred Hitchcock"]
  4 | drama    | ["Yojimbo"]                    | ["Akira Kurosawa"]
(4 rows)



     


上記の問い合わせを次のように変更すると、トップレベルのJSONパス式で指定されたフィルタでPASSING引数の使用方法と、個々の列に対するさまざまなオプションが表示されます。



SELECT jt.* FROM
 my_films,
 JSON_TABLE (js, '$.favorites[*] ? (@.films[*].director == $filter)'
   PASSING 'Alfred Hitchcock' AS filter
     COLUMNS (
     id FOR ORDINALITY,
     kind text PATH '$.kind',
     title text FORMAT JSON PATH '$.films[*].title' OMIT QUOTES,
     director text PATH '$.films[*].director' KEEP QUOTES)) AS jt;





 id |   kind   |  title  |      director
----+----------+---------+--------------------
  1 | horror   | Psycho  | "Alfred Hitchcock"
  2 | thriller | Vertigo | "Alfred Hitchcock"
(2 rows)



     


以下は、タイトルとディレクターの列を生成するためにNESTED PATHを使用する上記の問い合わせの修正版で、親の列idとkindにどのように結合されるかを示しています。



SELECT jt.* FROM
 my_films,
 JSON_TABLE ( js, '$.favorites[*] ? (@.films[*].director == $filter)'
   PASSING 'Alfred Hitchcock' AS filter
   COLUMNS (
    id FOR ORDINALITY,
    kind text PATH '$.kind',
    NESTED PATH '$.films[*]' COLUMNS (
      title text FORMAT JSON PATH '$.title' OMIT QUOTES,
      director text PATH '$.director' KEEP QUOTES))) AS jt;





 id |   kind   |  title  |      director
----+----------+---------+--------------------
  1 | horror   | Psycho  | "Alfred Hitchcock"
  2 | thriller | Vertigo | "Alfred Hitchcock"
(2 rows)



     


次の問い合わせは、ルートパスにフィルタを指定しない場合と同じです。



SELECT jt.* FROM
 my_films,
 JSON_TABLE ( js, '$.favorites[*]'
   COLUMNS (
    id FOR ORDINALITY,
    kind text PATH '$.kind',
    NESTED PATH '$.films[*]' COLUMNS (
      title text FORMAT JSON PATH '$.title' OMIT QUOTES,
      director text PATH '$.director' KEEP QUOTES))) AS jt;





 id |   kind   |      title      |      director
----+----------+-----------------+--------------------
  1 | comedy   | Bananas         | "Woody Allen"
  1 | comedy   | The Dinner Game | "Francis Veber"
  2 | horror   | Psycho          | "Alfred Hitchcock"
  3 | thriller | Vertigo         | "Alfred Hitchcock"
  4 | drama    | Yojimbo         | "Akira Kurosawa"
(5 rows)



     


次に異なるJSONオブジェクトを入力として使用する別の問い合わせを示します。
これは、NESTEDパスである$.movies[*]と$.books[*]との間のUNION”兄弟結合”（sibling join）を示しています。
また、NESTEDレベルでのFOR ORDINALITY列（列movie_id、book_id、およびauthor_id）の使用を示しています。



SELECT * FROM JSON_TABLE (
'{"favorites":
    [{"movies":
      [{"name": "One", "director": "John Doe"},
       {"name": "Two", "director": "Don Joe"}],
     "books":
      [{"name": "Mystery", "authors": [{"name": "Brown Dan"}]},
       {"name": "Wonder", "authors": [{"name": "Jun Murakami"}, {"name":"Craig Doe"}]}]
}]}'::json, '$.favorites[*]'
COLUMNS (
  user_id FOR ORDINALITY,
  NESTED '$.movies[*]'
    COLUMNS (
    movie_id FOR ORDINALITY,
    mname text PATH '$.name',
    director text),
  NESTED '$.books[*]'
    COLUMNS (
      book_id FOR ORDINALITY,
      bname text PATH '$.name',
      NESTED '$.authors[*]'
        COLUMNS (
          author_id FOR ORDINALITY,
          author_name text PATH '$.name'))));





 user_id | movie_id | mname | director | book_id |  bname  | author_id | author_name
---------+----------+-------+----------+---------+---------+-----------+--------------
       1 |        1 | One   | John Doe |         |         |           |
       1 |        2 | Two   | Don Joe  |         |         |           |
       1 |          |       |          |       1 | Mystery |         1 | Brown Dan
       1 |          |       |          |       2 | Wonder  |         1 | Jun Murakami
       1 |          |       |          |       2 | Wonder  |         2 | Craig Doe
(5 rows)



     


シーケンス操作関数





本節ではシーケンスオブジェクトに対し演算を行う関数について説明します。
シーケンスオブジェクトは、シーケンスジェネレータ、あるいは単にシーケンスとも呼ばれます。
シーケンスオブジェクトは特殊な一行だけのテーブルで、CREATE SEQUENCE(7)で作成されます。
シーケンスオブジェクトは一般的にテーブルの行に一意の識別子を生成するために使用されます。
表9.55「シーケンス関数」に列挙されているシーケンス関数は、シーケンスオブジェクトから連続したシーケンス値を取得するための、簡易でマルチユーザに対応した関数です。
  
表9.55 シーケンス関数
	

関数
       

       

説明
       

	
        
        nextval ( regclass )
        bigint
       

       

シーケンスを次の値に進めてその値を返します。
これは原子的に行われます。複数のセッションがnextvalを同時に実行しても、各々のシーケンスは異なったシーケンス値を安全に返します。
シーケンスオブジェクトがデフォルト値を伴って作成されると、後続のnextval呼び出しは1から始まる次の値を返します。
それ以外の動作は適切なパラメータをCREATE SEQUENCE(7)コマンドで使うことによって得られます。
      

       

この関数はシーケンスオブジェクトのUSAGEあるいはUPDATE権限が必要です。
       

	
        
        setval ( regclass, bigint [, boolean ] )
        bigint
       

       

シーケンスオブジェクトの現在の値をセットします。オプションでis_calledをセットします。
2つのパラメータを持つ形式では、シーケンスのlast_valueフィールドを指定した値にセットし、is_calledフィールドをtrueに設定します。これは次のnextvalが値を返す前にシーケンスを増分することを意味します。
currvalで報告される値も指定した値に設定されます。
3つのパラメータを持つ形式では、is_calledはtrueあるいはfalseに設定されます。
trueは2つのパラメータを持つ形式と同じ効果を持ちます。
falseに設定されていると、次のnextvalはまさに指定した値を返し、後続のnextvalがシーケンスの増加を開始します。
更に、この場合はcurrvalが報告する値は変化しません。たとえば次ようになります。



SELECT setval('myseq', 42);           次のnextvalは43を返す
SELECT setval('myseq', 42, true);     同上
SELECT setval('myseq', 42, false);    次のnextvalは42を返す



setvalが返した値はその2番目の引数と単に同じです。
       

       

この関数はシーケンスのUPDATE権限が必要です。
       

	
        
        currval ( regclass )
        bigint
       

       

現在のセッションでこのシーケンスに対して直近のnextvalによって得られた値を返します。
（このセッションでnextvalが呼ばれていなければエラーが報告されます。）
これはセッションローカルな値を返すので、他のセッションがnextvalを呼び出したかどうかに関わらず予測可能な値を返します。
       

       

この関数はシーケンスのUSAGEあるいはSELECT権限が必要です。
       

	
        
        lastval ()
        bigint
       

       

現在のセッションでこのシーケンスに対して直近のnextvalによって得られた値を返します。
この関数は、現在のセッションでnextvalが直近に適用されたシーケンス名を参照する引数を取ることを除き、currvalと同じです。
このセッションでnextvalが呼ばれていないのにlastvalを呼び出すのはエラーです。
       

       

この関数はシーケンスのUSAGEあるいはSELECT権限が必要です。
       




注意


同一のシーケンスから数値を取得する同時実行トランザクション同士のブロックを防止するため、nextvalで得られる値は、呼び出しているトランザクションが後でアボートした際に再利用目的での回収は行われません。
これは、トランザクションのアボートあるいはデータベースのクラッシュによって、割り当てられるシーケンスの値に欠番ができることがある、ということを意味します。
これはトランザクションのアボートがなくても起こります。
例えばON CONFLICT句のあるINSERTでは、挿入される予定のタプルについて、必要となるすべてのnextvalの呼び出しも含めて計算し、その後でON CONFLICTのルールを代わりに使用することになる競合について検知します。
従って、PostgreSQL™のシーケンスオブジェクトは「欠番のない」シーケンスを得るために使うことはできません。
   


同様に、setvalが行ったシーケンス状態の変更は直ちに他のトランザクションから可視になり、トランザクションがロールバックしても元には戻りません。
   


nextvalやsetvalの呼び出しを含むトランザクションがコミットする前にデータベースクラスタがクラッシュすると、そのシーケンスの状態は永続的な記憶装置に格納されないかもしれず、クラスタが再起動した後にそのシーケンスが元の状態のままなのか、更新された状態になっているのかは定かではありません。
コミットされていないトランザクションは可視ではないので、これはデータベース内のシーケンスの利用に関して言えば無害です。
しかし、シーケンス値をデータベースの外での永続的な利用を目的として使う場合は、nextvalの呼び出しが確実にコミットされてから利用してください。
   



シーケンス関数により操作されるシーケンスはregclass引数で指定されますが、それはpg_classシステムカタログ内にある、そのシーケンスの単なるOIDです。
しかしながら、手作業でOIDを検索する必要はなく、regclassデータ型の入力変換器が代わってその作業を行ってくれます。
詳細は「オブジェクト識別子データ型」を見てください。
  

条件式





本節ではPostgreSQL™で使用可能なSQL準拠の条件式について説明します。
  
ヒント


ここで説明する条件式より発展した機能を求める場合は、より表現の豊富なプログラム言語でストアドプロシージャを記述することで解決されます。
   

注記


COALESCE、GREATEST、LEASTは構文的には関数に似ていますが通常の関数ではなく、明示的なVARIADIC配列引数と一緒には使えません。
    

CASE





SQLのCASE式は他のプログラミング言語のif/else構文に類似した汎用条件式です。



CASE WHEN condition THEN result
     [WHEN ...]
     [ELSE result]
END




CASE句は式が有効な位置であればどこでも使用可能です。
それぞれのconditionとはboolean型の結果を返す式です。
もしconditionの結果が真であれば、CASE式の値は、conditionに続くresultとなります。そして、CASE式の残りは処理されません。
もしconditionの結果が偽であれば後に続く全てのWHEN句が同じようにして調べられます。
WHENのconditionの1つも真でない場合、CASE式の値はELSE句のresultになります。
ELSE句が省略され、どのconditionも真でない場合、結果はNULLです。
  


以下に例を示します。


SELECT * FROM test;

 a
---
 1
 2
 3


SELECT a,
       CASE WHEN a=1 THEN 'one'
            WHEN a=2 THEN 'two'
            ELSE 'other'
       END
    FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other


   


全てのresult式のデータ型は単一の出力型に変換可能でなければなりません。
詳細は「UNION、CASEおよび関連する構文」を参照してください。
  


以下のように、上記の一般的な形式と異なるCASE式の「単純な」形式が存在します。



CASE expression
    WHEN value THEN result
    [WHEN ...]
    [ELSE result]
END




最初のexpressionが計算され、そしてそれに等しいものが見つかるまでWHEN句のそれぞれのvalue式と比較されます。
等しいものが見つからない場合、ELSE句のresult（もしくはNULL値）が返されます。
これはC言語のswitch文に似ています。
  


上の例は簡略形CASE構文を使って次のように書くことができます。


SELECT a,
       CASE a WHEN 1 THEN 'one'
              WHEN 2 THEN 'two'
              ELSE 'other'
       END
    FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other


   


CASE式は、結果を決定するために不必要などんな副式をも評価しません。
例えば、以下は0除算エラーを防ぐための方法です。


SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;


   
注記


「式の評価規則」で説明したとおり、式の副式が異なる時点で評価される様々な状況があります。そのため「CASEは必要な副式のみを評価する」という原則は厳格なものではありません。
例えば、定数1/0副式は、実行時には決して入らないCASE節の中にあったとしても、通常は計画時にゼロによる除算での失敗という結果に終わります。
    


COALESCE




COALESCE(value [, ...])



COALESCE関数は、NULLでない自身の最初の引数を返します。
全ての引数がNULLの場合にのみNULLが返されます。データを表示目的で取り出す際、NULL値をデフォルト値で置き換えるためによく使用されています。以下に例を示します。


SELECT COALESCE(description, short_description, '(none)') ...



これはdescriptionがNULLでなければそれを返します。
そうでない場合（NULLの場合）は、short_descriptionがNULLでなければそれを返します。
それ以外の場合（short_descriptionもNULLの場合）は(none)が返ります。
  


引数はすべて共通の型に変換できる必要があり、それが結果の型になります。（詳細は「UNION、CASEおよび関連する構文」を参照してください。）
   


CASE式同様、COALESCEは結果を決定するために必要な引数のみを評価します。つまり、非NULL引数が見つかれば、その右側にある引数は評価されません。
この標準SQL関数は、他のいくつかのデータベースで使用されているNVLおよびIFNULLと類似の機能を提供します。
   

NULLIF




NULLIF(value1, value2)



NULLIF関数は、value1がvalue2と等しい場合、NULL値を返します。
その他の場合はvalue1を返します。
これを使って、上記のCOALESCEの例の逆演算を実行できます


SELECT NULLIF(value, '(none)') ...



この例では、valueが(none)ならばNULLが返ります。
さもなくばvalueを返します
  


2つの引数は比較可能な型でなければなりません。
具体的には、あたかもvalue1 = value2と書いたように比較されるので、適当な=演算子が使用できなければなりません。
  


結果は最初の引数と同じ型ですが、微妙な場合があります。
実際に返却されるのは=演算子が暗示する最初の引数で、場合によっては2番目の引数にマッチするように昇格されています。
たとえばNULLIF(1, 2.2)はnumericを出力します。なぜならinteger = numeric演算子はなく、numeric = numericがあるだけだからです。
  

GREATESTおよびLEAST




GREATEST(value [, ...])


LEAST(value [, ...])



GREATESTとLEAST関数は任意の数の式のリストから最大値もしくは最小値を選択します。
評価される全ての式は共通の型に変換できる必要があり、それが結果の型になります（詳細は「UNION、CASEおよび関連する構文」を参照してください）。
   


引数リストの中のNULL値は無視されます。
全ての式がNULLと評価された場合に限って結果はNULLになります。
（これは標準SQLからの逸脱です。
標準によれば、結果値は、いずれかの引数がNULLの場合はNULLになります。
他の一部のデータベースでは、このように動作します。）
   


配列関数と演算子





表9.56「配列演算子」に、配列型専用に利用可能な演算子を示します。
これらに加えて表9.1「比較演算子」で示す通常の比較演算子が配列で利用できます。
比較演算子は配列の内容をその要素のデータ型用のデフォルトのB-tree比較関数を要素単位で比較し、最初にどの要素に違いがあったかに基づいてソートします。
多次元配列では配列の要素は行優先順にアクセスされます。（最後の添字が最初に変化します。）
2つの配列の内容が同じで次元数が異なる場合は、どの次元で最初に違いがあったかによってソート順が決まります。
  
表9.56 配列演算子
	

演算子
       

       

説明
       

       

例
       

	
        anyarray @> anyarray
        boolean
       

       

最初の配列が2番目を含んでいるか？すなわち、2番目の配列の各要素は最初の配列のいくつかの要素と同じであるか？
（重複は特に考慮されないので、ARRAY[1]とARRAY[1,1]はそれぞれがお互いに相手を含んでいると見なされます。）
       

       
        ARRAY[1,4,3] @> ARRAY[3,1,3]
        t
       

	
        anyarray <@ anyarray
        boolean
       

       

最初の配列は2番目に含まれているか？
       

       
        ARRAY[2,2,7] <@ ARRAY[1,7,4,2,6]
        t
       

	
        anyarray && anyarray
        boolean
       

       

配列は重なり合っているか？すなわち、共通の要素を持っているか？
       

       
        ARRAY[1,4,3] && ARRAY[2,1]
        t
       

	
        anycompatiblearray || anycompatiblearray
        anycompatiblearray
       

       

2つの配列を結合します。
nullあるいは空の配列の結合は無処理です。そうでない場合は、配列は同じ次元数を持っていなければなりません。
（最初の例にあるように）。さもなければ次元数でひとつ違わなければなりません（2番目の例にあるように）。
配列の要素型が異なる場合は、共通の型へと置き換えられます（「UNION、CASEおよび関連する構文」参照）。
       

       
        ARRAY[1,2,3] || ARRAY[4,5,6,7]
        {1,2,3,4,5,6,7}
       

       
        ARRAY[1,2,3] || ARRAY[[4,5,6],[7,8,9.9]]
        {{1,2,3},{4,5,6},{7,8,9.9}}
       

	
        anycompatible || anycompatiblearray
        anycompatiblearray
       

       

配列（空か一次元の配列でなければなりません）の先頭に要素を結合します。
       

       
        3 || ARRAY[4,5,6]
        {3,4,5,6}
       

	
        anycompatiblearray || anycompatible
        anycompatiblearray
       

       

配列（空か一次元の配列でなければなりません）の最後に要素を結合します。
       

       
        ARRAY[4,5,6] || 7
        {4,5,6,7}
       






配列演算子の振舞いの詳細は「配列」を参照してください。
どの演算子がインデックス付きの操作をサポートしているかのより詳細については「インデックスの種類」を参照してください。
  


表9.57「配列関数」に配列型で使用可能な関数を示します。
これらの関数の情報と例については「配列」を参照してください。
  
表9.57 配列関数
	

関数
       

       

説明
       

       

例
       

	
        
        array_append ( anycompatiblearray, anycompatible )
        anycompatiblearray
       

       

配列の最後に要素を追加します。（anycompatiblearray || anycompatible演算子と同じです。）
       

       
        array_append(ARRAY[1,2], 3)
        {1,2,3}
       

	
        
        array_cat ( anycompatiblearray, anycompatiblearray )
        anycompatiblearray
       

       

2つの配列を結合します。（anycompatiblearray || anycompatiblearray演算子と同じです。）
       

       
        array_cat(ARRAY[1,2,3], ARRAY[4,5])
        {1,2,3,4,5}
       

	
        
        array_dims ( anyarray )
        text
       

       

配列の次元をテキスト表現で返します。
       

       
        array_dims(ARRAY[[1,2,3], [4,5,6]])
        [1:2][1:3]
       

	
        
        array_fill ( anyelement, integer[]
          [, integer[] ] )
        anyarray
       

       

与えられた値のコピーで満たされた2番目の引数で指定した次元の長さを持つ配列を返します。
オプションの3番目の引数は各次元の下限値を与えます（デフォルトはすべて1です）。
       

       
        array_fill(11, ARRAY[2,3])
        {{11,11,11},{11,11,11}}
       

       
        array_fill(7, ARRAY[3], ARRAY[2])
        [2:4]={7,7,7}
       

	
        
        array_length ( anyarray, integer )
        integer
       

       

要求された配列の次元の大きさを返します。
（空、あるいは配列の次元が見つからない場合は0ではなくNULLを生成します。）
       

       
        array_length(array[1,2,3], 1)
        3
       

       
        array_length(array[]::int[], 1)
        NULL
       

       
        array_length(array['text'], 2)
        NULL
       

	
        
        array_lower ( anyarray, integer )
        integer
       

       

要求された配列の次元の下限を返します。
       

       
        array_lower('[0:2]={1,2,3}'::integer[], 1)
        0
       

	
        
        array_ndims ( anyarray )
        integer
       

       

配列の次元数を返します。
       

       
        array_ndims(ARRAY[[1,2,3], [4,5,6]])
        2
       

	
        
        array_position ( anycompatiblearray, anycompatible [, integer ] )
        integer
       

       

2番目の引数が最初に配列に現れた添字を返します。存在しなければNULLを返します。
3番目の引数が与えられるとその添字から検索が始まります。
配列は一次元でなければなりません。
比較はIS NOT DISTINCT FROMの意味論で行われるので、NULLを検索することができます。
       

       
        array_position(ARRAY['sun', 'mon', 'tue', 'wed', 'thu', 'fri', 'sat'], 'mon')
        2
       

	
        
        array_positions ( anycompatiblearray, anycompatible )
        integer[]
       

       

2番目の引数が最初の引数として与えられた配列に現れるすべての添字を配列で返します。
配列は一次元でなければなりません。
比較はIS NOT DISTINCT FROMの意味論で行われるので、NULLを検索することができます。
配列がNULLのときのみNULLが返ります。
値が配列中に見つからなければ空の配列が返ります。
       

       
        array_positions(ARRAY['A','A','B','A'], 'A')
        {1,2,4}
       

	
        
        array_prepend ( anycompatible, anycompatiblearray )
        anycompatiblearray
       

       

配列の先頭に要素を追加します。（anycompatible || anycompatiblearray演算子と同じです。）
       

       
        array_prepend(1, ARRAY[2,3])
        {1,2,3}
       

	
        
        array_remove ( anycompatiblearray, anycompatible )
        anycompatiblearray
       

       

与えられた値と等しい要素を配列から削除します。
配列は一次元でなければなりません。
比較はIS NOT DISTINCT FROMの意味論で行われるので、NULLを削除することができます。
       

       
        array_remove(ARRAY[1,2,3,2], 2)
        {1,3}
       

	
        
        array_replace ( anycompatiblearray, anycompatible, anycompatible )
        anycompatiblearray
       

       

2番目の引数と等しい要素を3番目の引数で置き換えます。
       

       
        array_replace(ARRAY[1,2,5,4], 5, 3)
        {1,2,3,4}
       

	
        
        array_reverse ( anyarray )
        anyarray
       

       

配列の最初の次元を逆にします。
       

       
        array_reverse(ARRAY[[1,2],[3,4],[5,6]])
        {{5,6},{3,4},{1,2}}
       

	
        
        array_sample ( array anyarray, n integer )
        anyarray
       

       

arrayからランダムに選択されたn個のアイテムの配列を返します。
nはarrayの最初の次元の長さを超えることはできません。
arrayが多次元の場合、「item」は指定された最初の添字を持つスライスです。
       

       
        array_sample(ARRAY[1,2,3,4,5,6], 3)
        {2,6,1}
       

       
        array_sample(ARRAY[[1,2],[3,4],[5,6]], 2)
        {{5,6},{1,2}}
       

	
        
        array_shuffle ( anyarray )
        anyarray
       

       

配列の1次元目をランダムにシャッフルします。
       

       
        array_shuffle(ARRAY[[1,2],[3,4],[5,6]])
        {{5,6},{1,2},{3,4}}
       

	
        
        array_sort (
          array anyarray
          [, descending boolean
          [, nulls_first boolean
          ]] )
        anyarray
       

       

配列の最初の次元をソートします。
ソート順序は、その配列の要素型のデフォルトソート順序によって決定されます。
ただし、要素型が照合可能な場合は、array引数にCOLLATE句を追加することで、使用する照合順序を指定できます。
       

       

descendingがtrueの場合、ソートは降順になり、それ以外の場合は昇順になります。
省略した場合、デフォルトは昇順になります。
nulls_firstがtrueの場合は非NULL値の前にNULL値が表示され、それ以外の場合は非NULL値の後にNULL値が表示されます。
省略した場合、nulls_firstはdescendingと同じ値を持つとみなされます。
       

       
        array_sort(ARRAY[[2,4],[2,1],[6,5]])
        {{2,1},{2,4},{6,5}}
       

	
        
        array_to_string ( array anyarray, delimiter text [, null_string text ] )
        text
       

       

配列要素をテキスト表現に変換しdelimiter文字列で区切って結合します。
NULLでないnull_stringが与えられると、NULL配列要素をその文字列で表現します。さもなければ無視されます。
string_to_arrayも参照してください。
       

       
        array_to_string(ARRAY[1, 2, 3, NULL, 5], ',', '*')
        1,2,3,*,5
       

	
        
        array_upper ( anyarray, integer )
        integer
       

       

要求された配列の次元の上限を返します。
       

       
        array_upper(ARRAY[1,8,3,7], 1)
        4
       

	
        
        cardinality ( anyarray )
        integer
       

       

配列中の要素数を返します。配列が空なら0が返ります。
       

       
        cardinality(ARRAY[[1,2],[3,4]])
        4
       

	
        
        trim_array ( array anyarray, n integer )
        anyarray
       

       

最後のn要素を削除して配列を短縮します。
配列が複数次元なら、最初の次元だけが短縮されます。
       

       
        trim_array(ARRAY[1,2,3,4,5,6], 2)
        {1,2,3,4}
       

	
        
        unnest ( anyarray )
        setof anyelement
       

       

配列を行の集合に展開します。
配列要素は格納順に読み出されます。
       

       
        unnest(ARRAY[1,2])
        


 1
 2


       

       
        unnest(ARRAY[['foo','bar'],['baz','quux']])
        


 foo
 bar
 baz
 quux


       

	
        unnest ( anyarray, anyarray [, ... ] )
        setof anyelement, anyelement [, ... ]
       

       

複数の配列（異なるデータ型の可能性があります）を行の集合に展開します。
配列の長さが同じでなければ、短い配列にはNULLが詰められます。
これは問い合わせのFROM句でのみ許されます。「テーブル関数」を参照してください。
       

       
        select * from unnest(ARRAY[1,2], ARRAY['foo','bar','baz']) as x(a,b)
        


 a |  b
---+-----
 1 | foo
 2 | bar
   | baz


       






配列を使用する集約関数array_aggについて、「集約関数」も参照してください。
   

範囲／多重範囲関数と演算子





範囲型の概要については「範囲型」をご覧ください。
  


表9.58「範囲演算子」に、範囲型専用に利用可能な演算子を示します。
表9.59「多重範囲演算子」に、多重範囲(multirange)型専用に利用可能な演算子を示します。
これらに加えて表9.1「比較演算子」で示す通常の比較演算子が範囲型と多重範囲型で利用できます。
この比較演算子は最初に範囲の下限で順序付けし、それが等しい場合にのみ上限を比較します。
多重範囲型の演算子は各範囲を、等しくならなくなるまで比較します。
これは通常有用な全順序付けにはなりませんが、範囲に対して一意インデックスを構成することができる演算子が提供されます。
  
表9.58 範囲演算子
	

演算子
       

       

説明
       

       

例
       

	
        anyrange @> anyrange
        boolean
       

       

最初の範囲は2番目を含んでいるか？
       

       
        int4range(2,4) @> int4range(2,3)
        t
       

	
        anyrange @> anyelement
        boolean
       

       

範囲はその要素を含んでいるか？
       

       
        '[2011-01-01,2011-03-01)'::tsrange @> '2011-01-10'::timestamp
        t
       

	
        anyrange <@ anyrange
        boolean
       

       

最初の範囲は2番目に含まれるか？
       

       
        int4range(2,4) <@ int4range(1,7)
        t
       

	
        anyelement <@ anyrange
        boolean
       

       

その要素は範囲に含まれるか？
       

       
        42 <@ int4range(1,7)
        f
       

	
        anyrange && anyrange
        boolean
       

       

範囲は重なり合っているか？すなわち共通の要素があるか？
       

       
        int8range(3,7) && int8range(4,12)
        t
       

	
        anyrange << anyrange
        boolean
       

       

最初の範囲は厳密に2番目の左か？
       

       
        int8range(1,10) << int8range(100,110)
        t
       

	
        anyrange >> anyrange
        boolean
       

       

最初の範囲は厳密に2番目の右か？
       

       
        int8range(50,60) >> int8range(20,30)
        t
       

	
        anyrange &< anyrange
        boolean
       

       

最初の範囲は2番目の右を被覆していないか？
       

       
        int8range(1,20) &< int8range(18,20)
        t
       

	
        anyrange &> anyrange
        boolean
       

       

最初の範囲は2番目の左を被覆していないか？
       

       
        int8range(7,20) &> int8range(5,10)
        t
       

	
        anyrange -|- anyrange
        boolean
       

       

範囲は隣接しているか？
       

       
        numrange(1.1,2.2) -|- numrange(2.2,3.3)
        t
       

	
        anyrange + anyrange
        anyrange
       

       

範囲の和を計算します。範囲は和の結果が単一の範囲になるように、重なり合っているか、隣接していなければなりません。（ただしrange_merge()を参照してください。）
       

       
        numrange(5,15) + numrange(10,20)
        [5,20)
       

	
        anyrange * anyrange
        anyrange
       

       

範囲の共通部分を計算します。
       

       
        int8range(5,15) * int8range(10,20)
        [10,15)
       

	
        anyrange - anyrange
        anyrange
       

       

範囲の差を計算します。
差が単一の範囲にならないように、2番目の範囲は最初の範囲に含まれていてはいけません。
       

       
        int8range(5,15) - int8range(10,20)
        [5,10)
       




表9.59 多重範囲演算子
	

演算子
       

       

説明
       

       

例
       

	
        anymultirange @> anymultirange
        boolean
       

       

最初の多重範囲は2番目を含んでいるか？
       

       
        '{[2,4)}'::int4multirange @> '{[2,3)}'::int4multirange
        t
       

	
        anymultirange @> anyrange
        boolean
       

       

多重範囲は範囲を含んでいるか？
       

       
        '{[2,4)}'::int4multirange @> int4range(2,3)
        t
       

	
        anymultirange @> anyelement
        boolean
       

       

多重範囲は要素を含んでいるか？
       

       
        '{[2011-01-01,2011-03-01)}'::tsmultirange @> '2011-01-10'::timestamp
        t
       

	
        anyrange @> anymultirange
        boolean
       

       

範囲は多重範囲を含んでいるか？
       

       
        '[2,4)'::int4range @> '{[2,3)}'::int4multirange
        t
       

	
        anymultirange <@ anymultirange
        boolean
       

       

最初の多重範囲は2番目に含まれているか？
       

       
        '{[2,4)}'::int4multirange <@ '{[1,7)}'::int4multirange
        t
       

	
        anymultirange <@ anyrange
        boolean
       

       

多重範囲は範囲に含まれているか？
       

       
        '{[2,4)}'::int4multirange <@ int4range(1,7)
        t
       

	
        anyrange <@ anymultirange
        boolean
       

       

範囲は多重範囲に含まれているか？
       

       
        int4range(2,4) <@ '{[1,7)}'::int4multirange
        t
       

	
        anyelement <@ anymultirange
        boolean
       

       

要素は多重範囲に含まれているか？
       

       
        4 <@ '{[1,7)}'::int4multirange
        t
       

	
        anymultirange && anymultirange
        boolean
       

       

多重範囲は重なっているか？すなわち、共通に持つ要素があるか？
       

       
        '{[3,7)}'::int8multirange && '{[4,12)}'::int8multirange
        t
       

	
        anymultirange && anyrange
        boolean
       

       

多重範囲は範囲と重なり合うか？
       

       
        '{[3,7)}'::int8multirange && int8range(4,12)
        t
       

	
        anyrange && anymultirange
        boolean
       

       

範囲は多重範囲と重なり合うか？
       

       
        int8range(3,7) && '{[4,12)}'::int8multirange
        t
       

	
        anymultirange << anymultirange
        boolean
       

       

最初の多重範囲は厳密に2番目の左か？
       

       
        '{[1,10)}'::int8multirange << '{[100,110)}'::int8multirange
        t
       

	
        anymultirange << anyrange
        boolean
       

       

多重範囲は厳密に範囲の左か？
       

       
        '{[1,10)}'::int8multirange << int8range(100,110)
        t
       

	
        anyrange << anymultirange
        boolean
       

       

範囲は厳密に多重範囲の左か？
       

       
        int8range(1,10) << '{[100,110)}'::int8multirange
        t
       

	
        anymultirange >> anymultirange
        boolean
       

       

最初の多重範囲は厳密に2番目の右か？
       

       
        '{[50,60)}'::int8multirange >> '{[20,30)}'::int8multirange
        t
       

	
        anymultirange >> anyrange
        boolean
       

       

多重範囲は厳密に範囲の右か？
       

       
        '{[50,60)}'::int8multirange >> int8range(20,30)
        t
       

	
        anyrange >> anymultirange
        boolean
       

       

範囲は厳密に多重範囲の右か？
       

       
        int8range(50,60) >> '{[20,30)}'::int8multirange
        t
       

	
        anymultirange &< anymultirange
        boolean
       

       

最初の多重範囲は2番目の右を被覆していないか？
       

       
        '{[1,20)}'::int8multirange &< '{[18,20)}'::int8multirange
        t
       

	
        anymultirange &< anyrange
        boolean
       

       

多重範囲は範囲の右を被覆していないか？
       

       
        '{[1,20)}'::int8multirange &< int8range(18,20)
        t
       

	
        anyrange &< anymultirange
        boolean
       

       

範囲は多重範囲の右を被覆していないか？
       

       
        int8range(1,20) &< '{[18,20)}'::int8multirange
        t
       

	
        anymultirange &> anymultirange
        boolean
       

       

最初の多重範囲は2番目の左を被覆していないか？
       

       
        '{[7,20)}'::int8multirange &> '{[5,10)}'::int8multirange
        t
       

	
        anymultirange &> anyrange
        boolean
       

       

多重範囲は範囲の左を被覆していないか？
       

       
        '{[7,20)}'::int8multirange &> int8range(5,10)
        t
       

	
        anyrange &> anymultirange
        boolean
       

       

範囲は多重範囲の左を被覆していないか？
       

       
        int8range(7,20) &> '{[5,10)}'::int8multirange
        t
       

	
        anymultirange -|- anymultirange
        boolean
       

       

それらの多重範囲は隣接しているか？
       

       
        '{[1.1,2.2)}'::nummultirange -|- '{[2.2,3.3)}'::nummultirange
        t
       

	
        anymultirange -|- anyrange
        boolean
       

       

多重範囲は範囲に連接しているか？
       

       
        '{[1.1,2.2)}'::nummultirange -|- numrange(2.2,3.3)
        t
       

	
        anyrange -|- anymultirange
        boolean
       

       

範囲は多重範囲に連接しているか？
       

       
        numrange(1.1,2.2) -|- '{[2.2,3.3)}'::nummultirange
        t
       

	
        anymultirange + anymultirange
        anymultirange
       

       

多重範囲の和を計算します。
多重範囲は重なり合っている必要も、隣接している必要もありません。
       

       
        '{[5,10)}'::nummultirange + '{[15,20)}'::nummultirange
        {[5,10), [15,20)}
       

	
        anymultirange * anymultirange
        anymultirange
       

       

多重範囲の間の共通部分を計算します。
       

       
        '{[5,15)}'::int8multirange * '{[10,20)}'::int8multirange
        {[10,15)}
       

	
        anymultirange - anymultirange
        anymultirange
       

       

多重範囲の間の差を計算します。
       

       
        '{[5,20)}'::int8multirange - '{[10,15)}'::int8multirange
        {[5,10), [15,20)}
       






空の範囲あるいは多重範囲が含まれる場合、「左」「右」「隣接」演算子は常に偽を返します。つまり、空の範囲は他の範囲の前でも後ろでもないと見なされます。
  


他の場所では、空の範囲と多重範囲は加法単位元として扱われます。
空の値との和は自分自身です。
空の値を引いたものは自分自身です。
空の多重範囲は空の範囲と正確に同じ特徴を持ちます。
すべての範囲は空の範囲を含みます。
すべての多重範囲はいくらでも空の範囲を含むことができます。
  


範囲の和と差演算子は、結果の範囲に2つの隣接しない副範囲が含まれる場合には失敗します。
そのような範囲は表現できないからです。
多重範囲引数を取り、多重範囲を返す別の和と差の演算子があり、引数が隣接していなくても失敗しません。
隣接しないかもしれない範囲の和あるいは差の演算が必要なら、まず範囲を多重範囲にキャストすることによってエラーを避けることができます。
  


表9.60「範囲関数」に範囲型で利用可能な関数を示します。
表9.61「多重範囲関数」に多重範囲型で利用可能な関数を示します。
  
表9.60 範囲関数
	

関数
       

       

説明
       

       

例
       

	
        
        lower ( anyrange )
        anyelement
       

       

範囲の下限を取り出します。（範囲が空か下限がない場合NULLとなります。）
       

       
        lower(numrange(1.1,2.2))
        1.1
       

	
        
        upper ( anyrange )
        anyelement
       

       

範囲の上限を取り出します。（範囲が空か上限がない場合はNULLとなります。）
       

       
        upper(numrange(1.1,2.2))
        2.2
       

	
        
        isempty ( anyrange )
        boolean
       

       

範囲は空か？
       

       
        isempty(numrange(1.1,2.2))
        f
       

	
        
        lower_inc ( anyrange )
        boolean
       

       

範囲の下限は境界を含むか？
       

       
        lower_inc(numrange(1.1,2.2))
        t
       

	
        
        upper_inc ( anyrange )
        boolean
       

       

範囲の上限は境界を含むか？
       

       
        upper_inc(numrange(1.1,2.2))
        f
       

	
        
        lower_inf ( anyrange )
        boolean
       

       

範囲に下限があるか? （-Infinityの下限は偽を返します。）
       

       
        lower_inf('(,)'::daterange)
        t
       

	
        
        upper_inf ( anyrange )
        boolean
       

       

範囲に上限はあるか? （Infinityの上限は偽を返します。）
       

       
        upper_inf('(,)'::daterange)
        t
       

	
        
        range_merge ( anyrange, anyrange )
        anyrange
       

       

与えられた両方の範囲を含む最小の範囲を計算します。
       

       
        range_merge('[1,2)'::int4range, '[3,4)'::int4range)
        [1,4)
       




表9.61 多重範囲関数
	

関数
       

       

説明
       

       

例
       

	
        
        lower ( anymultirange )
        anyelement
       

       

多重範囲の下限を取り出します（多重範囲が空か下限がない場合はNULLとなります）。
       

       
        lower('{[1.1,2.2)}'::nummultirange)
        1.1
       

	
        
        upper ( anymultirange )
        anyelement
       

       

多重範囲の上限を取り出します。（多重範囲が空か上限がない場合はNULLとなります。）
       

       
        upper('{[1.1,2.2)}'::nummultirange)
        2.2
       

	
        
        isempty ( anymultirange )
        boolean
       

       

多重範囲は空か？
       

       
        isempty('{[1.1,2.2)}'::nummultirange)
        f
       

	
        
        lower_inc ( anymultirange )
        boolean
       

       

多重範囲の下限は境界を含むか？
       

       
        lower_inc('{[1.1,2.2)}'::nummultirange)
        t
       

	
        
        upper_inc ( anymultirange )
        boolean
       

       

多重範囲の上限は境界を含むか？
       

       
        upper_inc('{[1.1,2.2)}'::nummultirange)
        f
       

	
        
        lower_inf ( anymultirange )
        boolean
       

       

多重範囲は下限があるか? （-Infinityの下限は偽を返します。）
       

       
        lower_inf('{(,)}'::datemultirange)
        t
       

	
        
        upper_inf ( anymultirange )
        boolean
       

       

多重範囲は上限があるか? （Infinityの上限は偽を返します。）
       

       
        upper_inf('{(,)}'::datemultirange)
        t
       

	
        
        range_merge ( anymultirange )
        anyrange
       

       

与えられた多重範囲全体を含む最小の範囲を計算します。
       

       
        range_merge('{[1,2), [3,4)}'::int4multirange)
        [1,4)
       

	
        
        multirange ( anyrange )
        anymultirange
       

       

ちょうど与えられた範囲を含む多重範囲を返す。
       

       
        multirange('[1,2)'::int4range)
        {[1,2)}
       

	
        
        unnest ( anymultirange )
        setof anyrange
       

       

複数範囲を昇順の集合に展開します。
       

       
        unnest('{[1,2), [3,4)}'::int4multirange)
        


 [1,2)
 [3,4)


       






lower_inc、upper_inc、lower_inf、upper_infはすべて空の多重範囲に対して偽を返します。
  

集約関数





集約関数は入力値の集合から単一の結果を計算します。
表9.62「汎用集約関数」に組み込みの汎用的な集約関数を、表9.63「統計処理用の集約関数」に統計集約関数を示します。
表9.64「順序集合集約関数」には組み込みのグループ内順序集合集約関数を、一方表9.65「仮想集合集約関数」には組み込みのグループ内仮想集合用の順序集約関数を示します。
表9.66「グループ化演算」には、集約関数と密接に関係するグループ化演算を示します。
集約関数の特殊な構文に関する考察は「集約式」で説明されています。
また、初歩的な情報については「集約関数」を参照して下さい。
  


部分モードをサポートする集約関数は並列集約など、様々な最適化に有用です。
  


以下のすべての集約は、オプションのORDER BY句を受け付けます（「集約式」で概説）。この句は出力が順序に影響される集約にのみ追加されました。
  
表9.62 汎用集約関数
	

関数
       

       

説明
       
	部分モード
	
        
        any_value ( anyelement )
        same as input type
       

       

NULL以外の入力値から任意の値を返します。
       
	可
	
        
        array_agg ( anynonarray ORDER BY input_sort_columns )
        anyarray
       

       

NULLも含めてすべての入力値を収集して配列に格納します。
       
	可
	
        array_agg ( anyarray ORDER BY input_sort_columns )
        anyarray
       

       

すべての入力配列を結合して次元が1高い配列に格納します。
（入力配列はすべて同じ次元数を持ち、空もしくはNULLであってはいけません。）
       
	可
	
        
        
        avg ( smallint )
        numeric
       

       
        avg ( integer )
        numeric
       

       
        avg ( bigint )
        numeric
       

       
        avg ( numeric )
        numeric
       

       
        avg ( real )
        double precision
       

       
        avg ( double precision )
        double precision
       

       
        avg ( interval )
        interval
       

       

すべての非NULL入力値の平均（算術平均）を計算します。
       
	可
	
        
        bit_and ( smallint )
        smallint
       

       
        bit_and ( integer )
        integer
       

       
        bit_and ( bigint )
        bigint
       

       
        bit_and ( bit )
        bit
       

       

全ての非NULLの入力値のビット積を計算します。
       
	可
	
        
        bit_or ( smallint )
        smallint
       

       
        bit_or ( integer )
        integer
       

       
        bit_or ( bigint )
        bigint
       

       
        bit_or ( bit )
        bit
       

       

全ての非NULLの入力値のビット和を計算します。
       
	可
	
        
        bit_xor ( smallint )
        smallint
       

       
        bit_xor ( integer )
        integer
       

       
        bit_xor ( bigint )
        bigint
       

       
        bit_xor ( bit )
        bit
       

       

すべての非NULL入力値のビット毎の排他的論理和を計算します。
順序付けられない値の集合のチェックサムとして有用かもしれません。
       
	可
	
        
        bool_and ( boolean )
        boolean
       

       

全ての入力が真ならば真、そうでなければ偽を返します。
       
	可
	
        
        bool_or ( boolean )
        boolean
       

       

入力のどれかが真ならば真、そうでなければ偽を返します。
       
	可
	
        
        count ( * )
        bigint
       

       

入力行数を返します。
       
	可
	
        count ( "any" )
        bigint
       

       

非NULLの入力行数を返します。
       
	可
	
        
        every ( boolean )
        boolean
       

       

これは標準SQLのbool_andと等価です。
       
	可
	
        
        json_agg ( anyelement ORDER BY input_sort_columns )
        json
       

       
        
        jsonb_agg ( anyelement ORDER BY input_sort_columns )
        jsonb
       

       

NULLも含めてすべての入力値を収集し、JSON配列に格納します。
入力はto_jsonあるいはto_jsonbでJSONに変換されます。
       
	非
	
        
        json_agg_strict ( anyelement )
        json
       

       
        
        jsonb_agg_strict ( anyelement )
        jsonb
       

       

NULLをスキップして、すべての入力値をJSON配列に収集します。
値はto_JSONまたはto_JSONに従ってjsonbに変換されます。
       
	非
	
        
        json_arrayagg (
        [ value_expression ]
        [ ORDER BY sort_expression ]
        [ { NULL | ABSENT } ON NULL ]
        [ RETURNING data_type [ FORMAT JSON [ ENCODING UTF8 ] ] ])
       

       

json_arrayと同じように動作しますが、集約関数として動作するため、1つのvalue_expressionパラメータのみを使用します。
ABSENT ON NULLが指定されている場合、NULL値は無視されます。
ORDER BYが指定されている場合、要素は入力順ではなく、配列の順に表示されます。
       

       
        SELECT json_arrayagg(v) FROM (VALUES(2),(1)) t(v)
        [2, 1]
       
	非
	
         
         json_objectagg (
         [ { key_expression { VALUE | ':' } value_expression } ]
         [ { NULL | ABSENT } ON NULL ]
        [ { WITH | WITHOUT } UNIQUE [ KEYS ] ]
        [ RETURNING data_type [ FORMAT JSON [ ENCODING UTF8 ] ] ])
        

        

json_objectのように動作しますが、集約関数として動作するため、1つのkey_expressionと1つのvalue_expression引数のみを使用します。
        

        
         SELECT json_objectagg(k:v) FROM (VALUES ('a'::text,current_date),('b',current_date + 1)) AS t(k,v)
         { "a" : "2022-05-10", "b" : "2022-05-11" }
       
	非
	
        
        json_object_agg ( key
         "any", value
         "any"
         ORDER BY input_sort_columns )
        json
       

       
        
        jsonb_object_agg ( key
         "any", value
         "any"
         ORDER BY input_sort_columns )
        jsonb
       

       

すべてのキー／値ペアをJSONオブジェクトに格納します。
キー引数はテキストに変換されます。値引数はto_jsonあるいはto_jsonbにしたがって変換されます。
値はNULLでも構いませんが、キーはNULLにはできません。
       
	非
	
        
        json_object_agg_strict (
         key "any",
         value "any" )
        json
       

       
        
        jsonb_object_agg_strict (
         key "any",
         value "any" )
        jsonb
       

       

すべてのキー／値ペアをJSONオブジェクトに格納します。
キー引数はテキストに変換されます。値はto_jsonあるいはto_jsonbにしたがって変換されます。
keyはNULLにはできません。
valueがNULLなら、そのエントリはスキップされます。
       
	非
	
        
        json_object_agg_unique (
         key "any",
         value "any" )
        json
       

       
        
        jsonb_object_agg_unique (
         key "any",
         value "any" )
        jsonb
       

       

すべてのキー／値ペアをJSONオブジェクトに格納します。
キー引数はテキストに変換されます。値はto_jsonあるいはto_jsonbにしたがって変換されます。
値はNULLでも構いませんが、キーはNULLにはできません。
重複キーがある場合、エラーが発生します。
       
	非
	
        
        json_object_agg_unique_strict (
         key "any",
         value "any" )
        json
       

       
        
        jsonb_object_agg_unique_strict (
         key "any",
         value "any" )
        jsonb
       

       

すべてのキー／値ペアをJSONオブジェクトに格納します。
キー引数はテキストに変換されます。値はto_jsonあるいはto_jsonbにしたがって変換されます。
keyはNULLにはできません。
valueがNULLなら、そのエントリはスキップされます。
重複キーがある場合、エラーが発生します。
       
	非
	
        
        max ( see text )
        same as input type
       

       

非NULL入力値の最大を計算します。
数値、文字列、日時、列挙型およびbytea、inet、interval、money、oid、pg_lsn、tid、xid8、およびこれらすべての配列でも同様に利用できます。
       
	可
	
        
        min ( see text )
        same as input type
       

       

非NULL入力値の最小を計算します。
数値、文字列、日時、列挙型およびbytea、inet、interval、money、oid、pg_lsn、tid、xid8、およびこれらすべての配列でも同様に利用できます。
       
	可
	
        
        range_agg ( value
         anyrange )
        anymultirange
       

       
        range_agg ( value
         anymultirange )
        anymultirange
       

       

非NULL入力の和を計算します。
       
	非
	
        
        range_intersect_agg ( value
         anyrange )
        anyrange
       

       
        range_intersect_agg ( value
         anymultirange )
        anymultirange
       

       

非NULL入力の共通部分を計算します。
       
	非
	
        
        string_agg ( value
         text, delimiter text )
        text
       

       
        string_agg ( value
         bytea, delimiter bytea
         ORDER BY input_sort_columns )
        bytea
       

       

非NULL入力を結合して文字列に格納します。
最初の値以降、各値の前にdelimiterで指定した値が（NULLでなければ）追加されます。
       
	可
	
        
        sum ( smallint )
        bigint
       

       
        sum ( integer )
        bigint
       

       
        sum ( bigint )
        numeric
       

       
        sum ( numeric )
        numeric
       

       
        sum ( real )
        real
       

       
        sum ( double precision )
        double precision
       

       
        sum ( interval )
        interval
       

       
        sum ( money )
        money
       

       

非NULL入力値の合計を計算します。
       
	可
	
        
        xmlagg ( xml ORDER BY input_sort_columns )
        xml
       

       

非NULLのXML入力値を結合します。（「xmlagg」参照。）
       
	非





上記の関数は、count関数を除き、1行も選択されなかった場合NULL値を返すことに注意してください。
特に、行の選択がないsum関数は、予想されるであろうゼロではなくNULLを返し、そしてarray_aggは、入力行が存在しない場合に、空配列ではなくNULLを返します。
必要であれば、NULLをゼロまたは空配列と置換する目的でcoalesce関数を使うことができます。
  


集約関数array_agg、json_agg、jsonb_agg、json_agg_strict、jsonb_agg_strict、json_object_agg、jsonb_object_agg、json_object_agg_strict、jsonb_object_agg_strict、json_object_agg_unique、jsonb_object_agg_unique、json_object_agg_unique_strict、jsonb_object_agg_unique_strict、string_agg、およびxmlagg、そして類似のユーザ定義の集約関数は、入力値の順序に依存した意味のある別の結果値を生成します。
この並び順はデフォルトでは指定されませんが、「集約式」に記述されているように、集計呼び出し中にORDER BY句を書くことで制御可能となります。別の方法として、並べ替えられた副問い合わせから入力値を供給することでも上手くいきます。
例をあげます。



SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;




外側の問い合わせのレベルで結合などの追加処理がある場合、この方法は失敗するかもしれないことに注意して下さい。
なぜなら、集約の計算の前に副問い合わせの出力を並べ替える必要があるかも知れないからです。
  
注記


bool_and、bool_or論理集約関数は標準SQLの集約関数every、anyまたはsomeに対応します。
PostgreSQL™はeveryをサポートしますが、any、あるいはsomeはサポートしません。
anyとsomeの標準の構文には曖昧さがあるからです。


SELECT b1 = ANY((SELECT b2 FROM t2 ...)) FROM t1 ...;



ここで、副問い合わせが論理値での１行を返す場合、ANYは副問い合わせを導入するもの、もしくは集約関数であるものいずれかとみなすことができます。
従って、これらの集約関数に標準の名前を付けることはできません。
    

注記


他のSQLデータベース管理システムでの作業に親しんだユーザは、count集約関数がテーブル全体に適用される場合の性能に失望するかも知れません。
次のような問い合わせ：


SELECT count(*) FROM sometable;



はテーブルサイズに比例した労力が必要です。
PostgreSQL™はテーブル全体か、そのテーブルの全ての行を含んだインデックス全体のスキャンを必要とします。
   



統計解析処理によく使用される集約関数を表9.63「統計処理用の集約関数」に示します。
（これらは、より一般的に使用される集約関数との混乱を防ぐために別出ししました。）
numeric_typeを受け付けると表示されている関数は、smallint、integer、bigint、numeric、real、double precisionのすべての型で利用可能です。
説明の部分におけるNは、すべての入力式が非NULLの入力行の個数を表します。
すべての場合にて、例えばNが0の時など計算が無意味である場合にはNULLが返されます。
  
表9.63 統計処理用の集約関数
	

関数
       

       

説明
       
	部分モード
	
        
        
        
        corr ( Y double precision, X double precision )
        double precision
       

       

相関係数を計算します。
       
	可
	
        
        
        
        covar_pop ( Y double precision, X double precision )
        double precision
       

       

母共分散を計算します。
       
	可
	
        
        
        
        covar_samp ( Y double precision, X double precision )
        double precision
       

       

標本の共分散を計算します。
       
	可
	
        
        regr_avgx ( Y double precision, X double precision )
        double precision
       

       

独立変数の平均値を計算します。
        sum(X)/N.
       
	可
	
        
        regr_avgy ( Y double precision, X double precision )
        double precision
       

       

従属変数の平均値を計算します。
        sum(Y)/N.
       
	可
	
        
        regr_count ( Y double precision, X double precision )
        bigint
       

       

両方の入力が非NULLとなる行数を計算します。
       
	可
	
        
        
        
        regr_intercept ( Y double precision, X double precision )
        double precision
       

       

(X, Y)の組み合わせで決まる、最小二乗法による線形方程式のY切片を計算します。
       
	可
	
        
        regr_r2 ( Y double precision, X double precision )
        double precision
       

       

相関係数の二乗を計算します。
       
	可
	
        
        
        
        regr_slope ( Y double precision, X double precision )
        double precision
       

       

(X, Y)の組み合わせで決まる、最小二乗法による線型方程式の勾配を計算します。
       
	可
	
        
        regr_sxx ( Y double precision, X double precision )
        double precision
       

       

独立変数の「二乗和」、sum(X^2) - sum(X)^2/Nを計算します。
       
	可
	
        
        regr_sxy ( Y double precision, X double precision )
        double precision
       

       

独立変数と従属変数の「積の和」、sum(X*Y) - sum(X) * sum(Y)/Nを計算します。
       
	可
	
        
        regr_syy ( Y double precision, X double precision )
        double precision
       

       

従属変数の「積の和」、sum(Y^2) - sum(Y)^2/Nを計算します。
       
	可
	
        
        
        
        stddev ( numeric_type )

         引数がdouble precisionあるいはrealに対してはdouble precision、それ以外はnumeric
       

       

これはstddev_sampの歴史的な別名です。
       
	可
	
        
        
        
        stddev_pop ( numeric_type )

         引数がdouble precisionあるいはrealに対してはdouble precision、それ以外はnumeric
       

       

入力値の母標準偏差を計算します。
       
	可
	
        
        
        
        stddev_samp ( numeric_type )

         引数がdouble precisionあるいはrealに対してはdouble precision、それ以外はnumeric
       

       

入力値の標本標準偏差を計算します。
       
	可
	
        
        variance ( numeric_type )

         引数がdouble precisionあるいはrealに対してはdouble precision、それ以外はnumeric
       

       

これはvar_sampの歴史的な別名です。
       
	可
	
        
        
        
        var_pop ( numeric_type )

         引数がdouble precisionあるいはrealに対してはdouble precision、それ以外はnumeric
       

       

入力値の母分散（母標準偏差の二乗）を計算します。
       
	可
	
        
        
        
        var_samp ( numeric_type )

         引数がdouble precisionあるいはrealに対してはdouble precision、それ以外はnumeric
       

       

入力値の標本分散（標本標準偏差の二乗）を計算します。
       
	可





表9.64「順序集合集約関数」に順序集合集約構文を使う集約関数を示します。
これらの関数は「逆分散」関数として参照されることがあります。
これらの集約入力はORDER BYで導入され、集約ではないdirect argumentを取ることもでき、一度だけ計算されます。
これらの関数は集約入力のNULL値を無視します。
fractionパラメータを取る関数では、その値は0と1の間でなければなりません。そうでなければエラーが生じます。
ただしNULLのfraction値は単にNULLの結果をもたらします。
  
表9.64 順序集合集約関数
	

関数
       

       

説明
       
	部分モード
	
        
        
        mode () WITHIN GROUP ( ORDER BY anyelement )
        anyelement
       

       

集約引数の最頻値、最も頻出する値（複数の同じ度数の結果があれば、任意に選んだ最初のもの）を計算します。
集約引数はソート可能な型でなければなりません。
       
	非
	
        
        
        percentile_cont ( fraction double precision ) WITHIN GROUP ( ORDER BY double precision )
        double precision
       

       
        percentile_cont ( fraction double precision ) WITHIN GROUP ( ORDER BY interval )
        interval
       

       

連続百分位数、引数の値の順序付け集合中で指定されたfractionに対応する値を計算します。
これは必要なら隣り合う入力項目を補間します。
       
	非
	
        percentile_cont ( fractions double precision[] ) WITHIN GROUP ( ORDER BY double precision )
        double precision[]
       

       
        percentile_cont ( fractions double precision[] ) WITHIN GROUP ( ORDER BY interval )
        interval[]
       

       

複数の連続百分位数を計算します。
結果はfractionsパラメータと同じ次元数の配列です。各非NULL要素は（必要なら隣り合う入力項目を補間して）その百分位数に対応する値で置き換えられます。
       
	非
	
        
        
        percentile_disc ( fraction double precision ) WITHIN GROUP ( ORDER BY anyelement )
        anyelement
       

       

離散百分位数を計算します。集約引数の順序付け集合中で、その位置が指定したfractionと等しいか越えた最初の値です。
集約引数はソート可能な型でなければなりません。
       
	非
	
        percentile_disc ( fractions double precision[] ) WITHIN GROUP ( ORDER BY anyelement )
        anyarray
       

       

複数の離散百分位数を計算します。
結果はfractionsパラメータと同じ次元数の配列です。各非NULL要素はその百分位数に対応する値で置き換えられます。
集約引数はソート可能な型でなければなりません。
       
	非





表9.65「仮想集合集約関数」に列挙されている「仮想集合」集約は、それぞれ「ウィンドウ関数」で定義されている同じ名前のウィンドウ関数と関連します。
どの場合も、集約結果は、argsから構築される「仮想的な」行に対して、関連するウィンドウ関数が返す値で、そのような行がsorted_argsから計算されるソートされた行のグループに追加される場合を想定します。
これらの関数に対してargsで与えられる直接引数のリストは、sorted_argsで与えられる集約された引数の数と型に一致しなければなりません。
ほとんどの組み込み集約とは異なり、この集約はSTRICTではありません、すなわち、NULLを含む入力行を落としません。
NULL値はORDER BY節で指定されるルールに従って並べられます。
  
表9.65 仮想集合集約関数
	

関数
       

       

説明
       
	部分モード
	
        
        
        rank ( args ) WITHIN GROUP ( ORDER BY sorted_args )
        bigint
       

       

重複する行のギャップを含む仮想の行の順位を計算します。すなわち、ピアグループの先頭の行の番号です。
       
	非
	
        
        
        dense_rank ( args ) WITHIN GROUP ( ORDER BY sorted_args )
        bigint
       

       

重複する行のギャップなしの仮想の行の順位を計算します。この関数は実効的にピアグループを数えます。
       
	非
	
        
        
        percent_rank ( args ) WITHIN GROUP ( ORDER BY sorted_args )
        double precision
       

       

仮想行の相対的な順位を計算します。すなわち、(rank - 1) / (total rows - 1)です。
ですから値の範囲は境界を含んで0から1までです。
       
	非
	
        
        
        cume_dist ( args ) WITHIN GROUP ( ORDER BY sorted_args )
        double precision
       

       

現在行の相対順位を計算します。すなわち、(仮想行より先行する、あるいはピアの行数) / (合計行数)です。
ですから範囲は1/Nから1です。
       
	非



表9.66 グループ化演算
	

関数
       

       

説明
       

	
        
        GROUPING ( group_by_expression(s) )
        integer
       

       

どのGROUP BY式が現在のグループ化セットに含まれないかを示す整数のビットマスクを返します。
最も右側の引数が最下位ビットになるようにビットが割り当てられます。
各ビットは対応する式が結果の行を生成するグループ化セットのグループ化条件に含まれていれば0、そうでなければ1です。
       






表9.66「グループ化演算」で示すグループ化演算はグループ化セット（「GROUPING SETS、CUBE、ROLLUP」参照）と一緒に使われ、結果の行を区別するものです。
GROUPING関数の引数は実際には評価されませんが、関連する問い合わせのGROUP BY句にある式と正確に一致する必要があります。
例えば以下のようになります。


=> SELECT * FROM items_sold;
 make  | model | sales
-------+-------+-------
 Foo   | GT    |  10
 Foo   | Tour  |  20
 Bar   | City  |  15
 Bar   | Sport |  5
(4 rows)

=> SELECT make, model, GROUPING(make,model), sum(sales) FROM items_sold GROUP BY ROLLUP(make,model);
 make  | model | grouping | sum
-------+-------+----------+-----
 Foo   | GT    |        0 | 10
 Foo   | Tour  |        0 | 20
 Bar   | City  |        0 | 15
 Bar   | Sport |        0 | 5
 Foo   |       |        1 | 30
 Bar   |       |        1 | 20
       |       |        3 | 50
(7 rows)



ここで、最初の4行のグループ化値0はこれらがグループ化列に対して正常にグループ化されたことを示します。
値1はmodelが最後とその一つ前の行ではグループ化されなかったことを、値3はmakeもmodelも最後の行でグループ化されなかったことを意味します（ですから最後の行はすべての入力行に対する集約になっています）。
   

ウィンドウ関数





ウィンドウ関数は現在の問い合わせ行に関連した行集合に渡っての計算処理機能を提供します。
この機能の手引きは「ウィンドウ関数」を、文法の詳細は「ウィンドウ関数呼び出し」を参照してください。
  


組み込みウィンドウ関数は表9.67「汎用ウィンドウ関数」に一覧されています。
これらの関数は必ずウィンドウ関数構文で呼び出されなければなりません。つまり、OVER句が必要です。
  


これらの関数に加え、すべての組み込み、またはユーザ定義の汎用集約関数または統計集約関数もウィンドウ関数として使用できます(ただし順序集合や仮想集合集約はそうではありません)。組み込み集約関数一覧は「集約関数」を参照してください。
集約関数は、呼び出しの後にOVER句が続いた場合のみウィンドウ関数として動作します。それ以外の場合は、非ウィンドウの集約関数として動作し、集合全体に対して1行だけを返します。
  
表9.67 汎用ウィンドウ関数
	

関数
       

       

説明
       

	
        
        row_number ()
        bigint
       

       

１から数える現在行のパーティション内での行番号を返します。
       

	
        
        rank ()
        bigint
       

       

ギャップを含んだ現在行の順位を返します。すなわちピアグループの先頭行のrow_numberと同じになります。
       

	
        
        dense_rank ()
        bigint
       

       

ギャップを含まない現在行の順位。この関数は実質的にピアのグループ数を数えます。
       

	
        
        percent_rank ()
        double precision
       

       

現在行の相対順位、すなわち (rank - 1) / (パーティションの総行数 - 1)を返します。
したがってこの値は境界を含み0から1となります。
       

	
        
        cume_dist ()
        double precision
       

       

現在行の相対順位、すなわち (現在行より先行する行およびピアの行数) / (パーティションの総行数)を返します。
したがってこの値は1/Nから1となります。
       

	
        
        ntile ( num_buckets integer )
        integer
       

       

できるだけ等価にパーティションを分割した、1から引数値までの整数を返します。
       

	
        
        lag ( value anycompatible
          [, offset integer
          [, default anycompatible ]] )
        anycompatible
       

       

パーティション内の現在行よりoffset行だけ前の行で評価されたvalueを返します。
該当する行がない場合、その代わりとしてdefault(valueと互換性のある型でなければなりません)を返します。
offsetとdefaultは共に現在行について評価されます。
省略された場合、offsetはデフォルトで1となり、defaultはNULLになります。
       

	
        
        lead ( value anycompatible
          [, offset integer
          [, default anycompatible ]] )
        anycompatible
       

       

パーティション内の現在行よりoffset行だけ後の行で評価されたvalueを返します。
該当する行がない場合、その代わりとしてdefault(valueと互換性のある型でなければなりません)を返します。
offsetとdefaultは共に現在行について評価されます。
省略された場合、offsetはデフォルトで1となり、defaultはNULLになります。
       

	
        
        first_value ( value anyelement )
        anyelement
       

       

ウィンドウフレームの最初の行である行で評価されたvalueを返します。
       

	
        
        last_value ( value anyelement )
        anyelement
       

       

ウィンドウフレームの最後の行である行で評価されたvalueを返します。
       

	
        
        nth_value ( value anyelement, n integer )
        anyelement
       

       

ウィンドウフレームの（１から数えて）n番目の行である行で評価されたvalueを返します。行が存在しない場合はNULLを返します。
       






表9.67「汎用ウィンドウ関数」に列挙された関数はすべて、対応するウィンドウ定義のORDER BY句で指定されるソート順に依存します。
ORDER BYの列だけを考慮した場合に重複する行はピアと呼ばれます。
4つの順位付け関数（cume_distを含む）は、すべてのピア行に対して同じ答えになるように定義されています。
  


first_value、last_value、nth_value関数は「ウィンドウフレーム」内の行のみを考慮することに注意してください。
デフォルトで、ウィンドウフレームにはパーティションの先頭から現在の行の最終ピアまでの行が含まれます。
これはlast_value、または時々nth_valueでは有用ではない結果を得ることになりがちです。
OVER句に適切なフレーム指定(RANGE、GROUP、もしくはROWS)を加えることで、フレームを再定義することができます。
フレーム指定についての詳細は「ウィンドウ関数呼び出し」を参照してください。
  


集約関数をウィンドウ関数として使用する場合、現在の行のウィンドウフレーム内の行に渡って集約処理を行います。
ORDER BYおよび、デフォルトのウィンドウフレーム定義を使用した集約では、「中間和」のような動作を行います。これが望まれる場合もあれば、望まれない場合もあります。
パーティション全体に渡る集約処理を行うためには、ORDER BYを省略するかROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWINGを使用してください。
他のフレーム指定を使用することで様々な結果を得ることができます。
  
注記


標準SQLは、lead、lag、first_value、last_value、およびnth_valueに対しRESPECT NULLS、またはIGNORE NULLSオプションを定義します。
これはPostgreSQL™に実装されていません。動作は常に標準のデフォルトと同一です。つまり、RESPECT NULLSです。
同様にして、標準のnth_valueに対するFROM FIRST、またはFROM LASTオプションは実装されていません。デフォルトのFROM FIRST動作のみに対応しています。
（ORDER BY順序付けを逆に行うことで、FROM LASTの結果を得ることができます。）
   


マージサポート関数





PostgreSQL™には、各行に対して行われたアクションを識別するためにMERGE(7)コマンドのRETURNINGリストで使用されるマージサポート関数が1つ含まれています。
詳細は表9.68「マージサポート関数」を参照してください。
  
表9.68 マージサポート関数
	

関数
      

      

説明
      

	
       
       merge_action ( )
       text
      

      

現在の行に対して実行されたマージアクションコマンドを返します。
これは'INSERT'、'UPDATE'、または'DELETE'になります。
      






例：


MERGE INTO products p
  USING stock s ON p.product_id = s.product_id
  WHEN MATCHED AND s.quantity > 0 THEN
    UPDATE SET in_stock = true, quantity = s.quantity
  WHEN MATCHED THEN
    UPDATE SET in_stock = false, quantity = 0
  WHEN NOT MATCHED THEN
    INSERT (product_id, in_stock, quantity)
      VALUES (s.product_id, true, s.quantity)
  RETURNING merge_action(), p.*;

 merge_action | product_id | in_stock | quantity
--------------+------------+----------+----------
 UPDATE       |       1001 | t        |       50
 UPDATE       |       1002 | f        |        0
 INSERT       |       1003 | t        |       10


  


この関数はMERGEコマンドのRETURNINGリストでのみ使用可能であることに注意してください。
問い合わせの他の部分で使用するとエラーになります。
  

副問い合わせ式





本節ではPostgreSQL™で使用できるSQL準拠の副問い合わせについて説明します。
本節で記載した全ての式は結果として論理値（真/偽）を返します。
  
EXISTS




EXISTS (subquery)



EXISTSの引数は、任意のSELECT文、つまり副問い合わせです。
副問い合わせはそれが何らかの行を返すか否かの決定のために評価されます。
もし1つでも行を返すのであれば、EXISTSの結果は「true（真）」となり、副問い合わせが行を返さない場合、EXISTSの結果は「false（偽）」となります。
  


副問い合わせは、取り囲んでいる問い合わせから変数を参照することができ、その値は副問い合わせの評価時には定数として扱われます。
  


この副問い合わせは通常、最後まで実行されず、少なくとも１つの行が返されたかどうかを判定し得るに足りる時点まで実行されます。
（シーケンス関数を呼び出すような）副作用のある副問い合わせを記述することは配慮不足です。副作用が生じるかどうかは予想できません。
  


結果は何らかの行が返されるのかのみに依存し、それらの行の内容には依存しないことから、副問い合わせの出力リストは通常重要ではありません。
よく使われるコーディング規約は、全てのEXISTSテストをEXISTS(SELECT 1 WHERE ...)といった形式で記述することです。
とは言っても、INTERSECTを使う副問い合わせのようにこの規則には例外があります。
  


以下の簡単な例はcol2上の内部結合に似ていますが、たとえtab2の行といくつか一致したとしてもtab1のそれぞれの行に対して最大限１つの出力行を生成します。


SELECT col1
FROM tab1
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tab1.col2);


  

IN




expression IN (subquery)



右辺は括弧で括られた副問い合わせで、正確に１列を返すものでなければなりません。
左辺式は評価され、副問い合わせの結果行と比較されます。
副問い合わせの行のどれかと等しい場合、INの結果は「true（真）」です。
（副問い合わせが行を返さない場合を含め）等しい行が見つからない場合、結果は「false（偽）」です。
  


左辺の式がNULLを生じる場合、または右側の値に等しいものがなくて少なくとも1つの右辺の行がNULLを持つ場合、IN構文の結果は偽ではなくNULLとなることに注意してください。
これは、NULL値の論理的な組み合わせに対するSQLの標準規則に従うものです。
  


EXISTSと同様、副問い合わせが完全に評価されることを前提としてはなりません。
  

row_constructor IN (subquery)



INのこの形式の左辺は、「行コンストラクタ」で説明する、行のコンストラクタです。
右辺は括弧で括られた副問い合わせで、左辺の行にある式の数と正確に同じ数の列を返さなければなりません。
左辺の式は副問い合わせの結果のそれぞれの行に対し、行に関して評価、比較が行われます。
副問い合わせの行に等しいものが見つかった場合、IN の結果は「true（真）」となります。
（副問い合わせが行を返さない場合を含め）等しい行が見つからない場合、結果は「false（偽）」です。
  


通常通り、行にあるNULL値はSQLの論理式の標準規則で結合されます。
２つの行は対応する全ての構成要素が非NULLかつ等しい場合に等しいとみなされます。
１つでも対応する構成要素が非NULLかつ等しくないものがあれば、２つの行は等しくないとみなされます。
それ以外の場合、その行の比較結果は不明（NULL）です。
行毎の結果すべてが不等もしくはNULLの場合、少なくとも１つのNULLがあると、INの結果はNULLとなります。
  

NOT IN




expression NOT IN (subquery)



右辺は括弧で括られた副問い合わせで、正確に１つの列を返さなければなりません。
左辺の式は副問い合わせ結果の行それぞれに対して評価、比較されます。
等しくない副問い合わせの行だけがある（副問い合わせが行を返さない場合を含む）と、NOT INの結果は「true（真）」です。
等しい行が1つでもあれば、結果は「false（偽）」です。
  


左辺の式でNULLが生じる場合、または右辺の値に等しいものがなく、少なくとも１つの右辺の式がNULLを生み出す場合、NOT IN構文の結果は真ではなくNULLとなることに注意してください。
これは、NULL値の論理的な組み合わせに対するSQLの標準規則に従うものです。
  


EXISTSと同様、副問い合わせが完全に評価されることを前提としてはなりません。
  

row_constructor NOT IN (subquery)



NOT INのこの形式の左辺は、「行コンストラクタ」で説明する行コンストラクタです。
右辺は括弧で括られた副問い合わせで、左辺の行にある式の数と正確に同じ数の列を返さなければなりません。
左辺の式は副問い合わせの結果のそれぞれの行に対し、評価、比較が行われます。
副問い合わせの行に不等のもののみが見つかった場合（副問い合わせが行を返さない場合を含む）、NOT INの結果は「true（真）」となります。
等しい行が１つでも見つかった場合、結果は「false（偽）」です。
  


通常通り、行にあるNULL値はSQLの論理式の標準規則で結合されます。
2つの行は対応する全ての構成要素が非NULLかつ等しい場合に等しいとみなされます。
１つでも構成要素が非NULLかつ等しくない場合、２つの行は等しくないとみなされます。
それ以外の場合、その行の比較結果は不明（NULL）です。
行毎の結果すべてが不等もしくはNULLの場合、少なくとも1つのNULLがあると、NOT INの結果はNULLとなります。
  

ANY/SOME




expression operator ANY (subquery)
expression operator SOME (subquery)



右辺は括弧で括られた副問い合わせで、正確に1つの列を返さなければなりません。
左辺の式は副問い合わせの結果行それぞれに対して、指定されたoperatorを使用して評価、比較されます。なお、operatorは結果として論理値を生成する必要があります。
真の結果が１つでもあると、ANYの結果は「true（真）」です。
真の結果がない（副問い合わせが行を返さない場合を含む）と、結果は「false（偽）」です。
  


SOMEはANYの同義語です。
INは= ANYと等価です。
  


成功がなく、右辺の行が演算子の結果として１つでもNULLを生成した場合、ANY構文の結果は偽ではなくNULLになることに注意してください。
これは、NULL値の論理的な組み合わせに対するSQLの標準規則に従うものです。
  


EXISTSと同様、副問い合わせが完全に評価されることを前提としてはなりません。
  

row_constructor operator ANY (subquery)
row_constructor operator SOME (subquery)



ANYのこの形式の左辺は、「行コンストラクタ」で説明されている行コンストラクタです。
右辺は括弧で括られた副問い合わせで、左辺の行にある式の数と正確に同じ数の列を返さなければなりません。
左辺の式は副問い合わせの結果のそれぞれの行に対し、与えられたoperatorを使用して行に関する評価、比較が行われます。
比較の結果、副問い合わせの行のどれかに対して真となる場合、ANYの結果は「true（真）」です。
比較の結果、副問い合わせの全ての行に対して偽となる場合（副問い合わせが行を返さないという場合も含む）、結果は「false（偽）」です。
いかなる副問い合わせ行との比較の結果も偽を返さず、かつ、少なくとも１つの比較がNULLを返す場合、結果はNULLになります。
  


行コンストラクタ比較の意味についての詳細は「行コンストラクタの比較」を参照して下さい。
  

ALL




expression operator ALL (subquery)



右辺は括弧で括られた副問い合わせで、正確に１つの列を返さなければなりません。
左辺の式は副問い合わせの結果行それぞれに対して、指定されたoperatorを使用して評価、比較されます。なお、operatorは結果として論理値を生成する必要があります。
全ての行が真になる場合（副問い合わせが行を返さない場合を含む）、ALLの結果は「true（真）」です。
1つでも偽の結果があると、結果は「false（偽）」です。
比較がどの行でも偽を返さず、かつ、少なくとも1つの行でNULLを返した場合、結果はNULLとなります。
  


   NOT INは<> ALLと等価です。
  


EXISTSと同様、副問い合わせが完全に評価されることを前提としてはなりません。
  

row_constructor operator ALL (subquery)



ALLのこの形式の左辺は、「行コンストラクタ」で説明する行コンストラクタです。
右辺は括弧で括られた副問い合わせで、左辺の行にある式の数と正確に同じ数の列を返さなければなりません。
左辺の式は副問い合わせの結果のそれぞれの行に対し、与えられたoperatorを使用して行に関する評価、比較が行われます。
比較した結果、すべての副問い合わせ行に対して真を返す場合（副問い合わせが行を返さないという場合も含む）、ALLの結果は「true（真）」となります。
比較した結果、いずれかの副問い合わせ行で偽を返す場合、この結果は「false（偽）」となります。
比較結果がすべての副問い合わせ行に対して偽を返さず、少なくとも１行でNULLを返す場合、結果はNULLとなります。
  


行コンストラクタに関する比較の意味については「行コンストラクタの比較」を参照してください。
  

単独行に関する比較




row_constructor operator (subquery)



左辺は、「行コンストラクタ」で説明されている行コンストラクタです。
右辺は括弧で括られた副問い合わせで、左辺の行とまったく同じ数の列を返さなければなりません。さらに、副問い合わせは複数行を返すことはできません。
（行をまったく返さない場合、結果はNULLとみなされます。）
左辺は副問い合わせの結果の単一行に対し行全体で評価、比較が行われます。
  


行コンストラクタに関する比較の意味についての詳細は「行コンストラクタの比較」を参照してください。
  


行と配列の比較





本節では、値のグループ間で複数の比較を行う、さまざまな特殊化したコンストラクトについて説明します。
この形式は構文的には、前節の副問い合わせ形式と関係しています。しかし、副問い合わせを含みません。
配列副式を含む形式はPostgreSQL™の拡張ですが、それ以外はSQL準拠です。
本節で記載した全ての式形式は結果として論理値（真/偽）を返します。
  
IN




expression IN (value [, ...])



右辺は括弧で括られた式のリストです。
左辺の式の結果が右辺の式のいずれかと等しい場合、結果は「true（真）」になります。
これは以下の省略形です。



expression = value1
OR
expression = value2
OR
...


  


左辺の式がNULLを生じる場合、または右側の値に等しいものがなくて少なくとも1つの右辺の行がNULLを持つ場合、IN構文の結果は偽ではなくNULLとなることに注意してください。
これは、NULL値の論理的な組み合わせに対するSQLの標準規則に従うものです。
  

NOT IN




expression NOT IN (value [, ...])



右辺は括弧で括られた式のリストです。
左辺の式の結果が右辺の式の全てと等しくない場合、結果は「真」です。
これは以下の省略形です。



expression <> value1
AND
expression <> value2
AND
...


  


左辺の式でNULLが生じる場合、または右辺の値に左辺の式と等しいものがなく、かつ少なくとも1つの右辺の式がNULLを生じる場合、NOT IN構文の結果は、一部の人が予想する真ではなく、NULLとなることに注意してください。
これは、NULL値の論理的な組み合わせに対するSQLの標準規則に従うものです。
  
ヒント


全ての場合において、x NOT IN yはNOT (x IN y)と等価です。
しかし、INを使用するよりもNOT INを使用する方が初心者がNULL値による間違いをしやすくなります。
可能な限り条件を肯定的に表現することが最善です。
  


ANY/SOME (配列)




expression operator ANY (array expression)
expression operator SOME (array expression)



右辺は括弧で括られた式で、配列値を返さなければなりません。
左辺の式は配列要素それぞれに対して、指定されたoperatorを使用して評価、比較されます。なお、operatorは結果として論理値を生成する必要があります。
真の結果が１つでもあると、ANYの結果は「true（真）」です。
真の結果がない（配列の要素数がゼロである場合を含む）と、結果は「false（偽）」です。
  


配列式がNULL配列を生成する場合、ANYの結果はNULLになります。
左辺式がNULLとなる場合、ANYの結果は通常NULLになります（STRICTでない比較演算子では異なる結果になるかもしれません）。
また、右辺の配列にNULL要素が含まれ、かつ、比較の結果、真が得られなかった場合、ANYの結果は偽ではなくNULLになります（ここでも、STRICTな演算子の場合です）。
これは、NULLに対する、SQLの論理値組み合わせに関する標準規則に従うものです。
  


SOMEはANYの同義語です。
  

ALL (配列)




expression operator ALL (array expression)



右辺は括弧で括られた式で、配列値を返さなければなりません。
左辺の式は配列の要素それぞれに対して、指定されたoperatorを使用して評価、比較されます。なお、operatorは結果として論理値を生成する必要があります。
全ての比較が真になる場合（配列の要素数がゼロである場合を含む）、ALLの結果は「true（真）」です。
1つでも偽の結果があると、結果は「false（偽）」です。
  


配列式がNULL配列を生成する場合、ALLの結果はNULLになります。
左辺式がNULLとなる場合、ALLの結果は通常NULLになります（厳格でない比較演算子では異なる結果になるかもしれません）。
また、右辺の配列にNULL要素が含まれ、かつ、比較の結果、偽が得られなかった場合、ALLの結果は真ではなくNULLになります（ここでも、厳格な演算子の場合です）。
これは、NULLに対する、SQLの論理値組み合わせに関する標準規則に従うものです。
  

行コンストラクタの比較




row_constructor operator row_constructor



「行コンストラクタ」で説明されているように、両辺は行コンストラクタです。
2つの行コンストラクタは同じ数のフィールドを持つ必要があります。
指定された演算子は、対応するフィールドの各ペアに適用されます。
（フィールドのタイプが異なる場合があるため、これは、各ペアに対して異なる特定の演算子を選択できることを意味します。）
選択される演算子はすべて、B-ツリー演算子クラスのメンバ、またはB-ツリー演算子クラスの=メンバの否定子である必要があります。
つまり、行コンストラクタ比較は、演算子が=、<>、<、<=、>、>=の場合、またはこれらのいずれかに類似したセマンティクスを持つ場合にのみ可能です。
  


=と<>の場合、他と動作が多少異なります。
2つの行は対応する全ての構成要素が非NULLかつ等しい場合に等しいとみなされます。
１つでも構成要素が非NULLかつ等しくない場合、2つの行は等しくないとみなされます。
それ以外の場合、その行の比較結果は不明（NULL）です。
  


<、<=、>、>=の場合、行の要素は左から右に比較されます。そして、不等またはNULLの組み合わせが見つかったところで停止します。
要素の組み合わせのどちらかがNULLであった場合、行比較の結果は不明（NULL）です。さもなくば、要素の組み合わせの比較により結果が決まります。
例えば、ROW(1,2,NULL) < ROW(1,3,0)は、３番目の要素の組み合わせまで進まないため、NULLではなく真を返します。
  

row_constructor IS DISTINCT FROM row_constructor



このコンストラクトは<>行比較と類似していますが、NULL入力に対してNULLを生成しない点が異なります。
その代わりに、全てのNULL値は非NULL値と等しくない（DISTINCT FROM）ものとみなされ、また、２つのNULLは等しい（NOT DISTINCT）ものとみなされます。
したがって、結果は真か偽のいずれかで、NULLにはなりません。
  

row_constructor IS NOT DISTINCT FROM row_constructor



このコンストラクトは=行比較と類似していますが、NULL入力に対してNULLを生成しません。
代わりに、NULL値を、すべての非NULLの値に対して不等（DISTINCT FROM）とみなし、２つのNULLを等しいもの（NOT DISTINCT）とみなします。
したがって、結果は常に真か偽となり、NULLになることはありません
  

複合型の比較




record operator record



SQL仕様では、結果が2つのNULL値、またはNULLと非NULLの比較に依存するのであれば、行の観点からの比較はNULLを返すことを要求されています。
PostgreSQL™は、(「行コンストラクタの比較」にあるように)２つの行コンストラクタの出力の比較を行う時、または副問い合わせの出力に対し(「副問い合わせ式」にあるように)行コンストラクタの比較を行う時のみこれを実施します。
２つの複合型の値が比較されるほかの状況では、２つのNULLフィールドの値は等しいと考えられ、NULLは非NULLより大きいとみなされます。
複合型に対して、これは一貫した並べ替えとインデックス付け動作担保のため必要です。
  


各辺が評価され、行単位で比較が行なわれます。
複合型の比較はoperatorが=、<>、<、<=、>、>=またはそのいずれかと類似の意味を持つ場合に許されます。
(正確には、演算子はB-tree演算子クラスのメンバである場合、またはB-tree演算子クラスの=メンバの否定子である場合に行比較演算子となり得ます。)
上記の演算子のデフォルトの動作は、行コンストラクタに対するIS [ NOT ] DISTINCT FROMと同じです（「行コンストラクタの比較」参照）。
  


デフォルトのB-tree演算子クラスを持たない要素を含む行の一致をサポートするために、いくつかの演算子が複合型の比較のために定義されています。
それは*=、*<>、*<、*<=、*>、*>=です。
上記の演算子は2つの行の内部バイナリ表現を比較します。
2つの行の等価演算子での比較が真であっても、2つの行はバイナリ表現が異なるかもしれません。
上記の比較演算子での行の順序は決定論的ですが、それ以外は意味がありません。
上記の演算子はマテリアライズドビューで内部的に使われ、レプリケーションやB-Treeの重複除去(「重複排除」参照)のような他の特定の目的のためには有用かもしれませんが、問い合わせを書くのに一般的に有用であるようには意図していません。
  


集合を返す関数





本節では、場合により複数行を返す関数について説明します。
このクラスで最も広く用いられている関数は、表9.69「連続値生成関数」、および表9.70「添え字生成関数」にて詳細が触れられている、連続値生成関数です。
他方、より特化された集合を返す関数の記述がこのマニュアルの他の場所にあります。
集合を返す関数を複数組み合わせる方法については「テーブル関数」を参照してください。
  
表9.69 連続値生成関数
	

関数
       

       

説明
       

	
        
        generate_series ( start integer, stop integer [, step integer ] )
        setof integer
       

       
        generate_series ( start bigint, stop bigint [, step bigint ] )
        setof bigint
       

       
        generate_series ( start numeric, stop numeric [, step numeric ] )
        setof numeric
       

       

startからstopまで、刻みstepで連続する値を生成します。
stepのデフォルトは1です。
       

	
        generate_series ( start timestamp, stop timestamp, step interval )
        setof timestamp
       

       
        generate_series ( start timestamp with time zone, stop timestamp with time zone, step interval [, timezone text ] )
        setof timestamp with time zone
       

       

startからstopまで、刻みstepで連続する値を生成します。
時間帯を認識する形式では、timezone引数、あるいはもしそれが省略されているなら現在のTimeZone設定によって指定される時間帯にしたがって時刻と夏時間調整が計算されます。
       






stepが正の場合、startがstopよりも大きいと０行が返ります。
反対に、stepが負の場合は、startがstopよりも小さいと０行が返ります。
また、どれかの入力がNULLの場合も０行が返ります。
stepが０の時はエラーになります。
以下にいくつか例を示します。


SELECT * FROM generate_series(2,4);
 generate_series
-----------------
               2
               3
               4
(3 rows)

SELECT * FROM generate_series(5,1,-2);
 generate_series
-----------------
               5
               3
               1
(3 rows)

SELECT * FROM generate_series(4,3);
 generate_series
-----------------
(0 rows)

SELECT generate_series(1.1, 4, 1.3);
 generate_series
-----------------
             1.1
             2.4
             3.7
(3 rows)


-- この例は日付に整数を足し込む演算子に依存します。
SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);
   dates
------------
 2004-02-05
 2004-02-12
 2004-02-19
(3 rows)

SELECT * FROM generate_series('2008-03-01 00:00'::timestamp,
                              '2008-03-04 12:00', '10 hours');
   generate_series
---------------------
 2008-03-01 00:00:00
 2008-03-01 10:00:00
 2008-03-01 20:00:00
 2008-03-02 06:00:00
 2008-03-02 16:00:00
 2008-03-03 02:00:00
 2008-03-03 12:00:00
 2008-03-03 22:00:00
 2008-03-04 08:00:00
(9 rows)

-- this example assumes that TimeZone is set to UTC; note the DST transition:
SELECT * FROM generate_series('2001-10-22 00:00 -04:00'::timestamptz,
                              '2001-11-01 00:00 -05:00'::timestamptz,
                              '1 day'::interval, 'America/New_York');
    generate_series
------------------------
 2001-10-22 04:00:00+00
 2001-10-23 04:00:00+00
 2001-10-24 04:00:00+00
 2001-10-25 04:00:00+00
 2001-10-26 04:00:00+00
 2001-10-27 04:00:00+00
 2001-10-28 04:00:00+00
 2001-10-29 05:00:00+00
 2001-10-30 05:00:00+00
 2001-10-31 05:00:00+00
 2001-11-01 05:00:00+00
(11 rows)


  
表9.70 添え字生成関数
	

関数
       

       

説明
       

	
        
        generate_subscripts ( array anyarray, dim integer )
        setof integer
       

       

指定した配列のdim次元で有効な添え字を構成する連番を生成します。
       

	
        generate_subscripts ( array anyarray, dim integer,  reverse boolean )
        setof integer
       

       

指定した配列dim次元で有効な添え字を構成する連番を生成します。
reverseが真の場合、連番は逆順に返されます。
       






generate_subscriptsは、指定した配列の指定した次数で有効な添え字からなる集合を生成するために便利な関数です。
要求された次数を持たない配列またはどれかの入力がNULLなら0行が返ります。
いくつかの例を以下に示します。


-- basic usage:
SELECT generate_subscripts('{NULL,1,NULL,2}'::int[], 1) AS s;
 s
---
 1
 2
 3
 4
(4 rows)


-- 配列、添え字とその添え字が示す値を表示するには
-- 副問い合わせが必要です。
SELECT * FROM arrays;
         a
--------------------
 {-1,-2}
 {100,200,300}
(2 rows)

SELECT a AS array, s AS subscript, a[s] AS value
FROM (SELECT generate_subscripts(a, 1) AS s, a FROM arrays) foo;
     array     | subscript | value
---------------+-----------+-------
 {-1,-2}       |         1 |    -1
 {-1,-2}       |         2 |    -2
 {100,200,300} |         1 |   100
 {100,200,300} |         2 |   200
 {100,200,300} |         3 |   300
(5 rows)


-- 2次元配列の入れ子を解きます。
CREATE OR REPLACE FUNCTION unnest2(anyarray)
RETURNS SETOF anyelement AS $$
select $1[i][j]
   from generate_subscripts($1,1) g1(i),
        generate_subscripts($1,2) g2(j);
$$ LANGUAGE sql IMMUTABLE;
CREATE FUNCTION
SELECT * FROM unnest2(ARRAY[[1,2],[3,4]]);
 unnest2
---------
       1
       2
       3
       4
(4 rows)


  


FROM句の関数の後にWITH ORDINALITYが付いている場合、1から始まり関数の出力の行毎に1増えていくbigint列が関数の出力列に追加されます。
これはunnest()のような集合を返す関数の場合に最も役に立ちます。




-- WITH ORDINALITYの付いた集合を返す関数
SELECT * FROM pg_ls_dir('.') WITH ORDINALITY AS t(ls,n);
       ls        | n
-----------------+----
 pg_serial       |  1
 pg_twophase     |  2
 postmaster.opts |  3
 pg_notify       |  4
 postgresql.conf |  5
 pg_tblspc       |  6
 logfile         |  7
 base            |  8
 postmaster.pid  |  9
 pg_ident.conf   | 10
 global          | 11
 pg_xact         | 12
 pg_snapshots    | 13
 pg_multixact    | 14
 PG_VERSION      | 15
 pg_wal          | 16
 pg_hba.conf     | 17
 pg_stat_tmp     | 18
 pg_subtrans     | 19
(19 rows)


  

システム情報関数と演算子





本節で説明する関数は、PostgreSQL™のインストレーションに関するさまざまな情報を取得するために使用されます。
   
セッション情報関数





表9.71「セッション情報関数」に、セッションおよびシステムの情報を抽出する関数を示します。
  


本節で列挙されている関数のほかに、同様にシステム情報を提供する統計システムに関連した数多くの関数があります。
「統計情報関数」にさらに情報があります。
  
表9.71 セッション情報関数
	

関数
       

       

説明
       

	
        
        current_catalog
        name
       

       
        
        current_database ()
        name
       

       

現在のデータベースの名前を返します。
（データベースは標準SQLでは「カタログ」と呼ばれています。ですから標準での記述はcurrent_catalogとなります。）
       

	
        
        current_query ()
        text
       

       

クライアントから送信された現在実行中問い合わせのテキスト（複数の文を含むことあります）を返します。
       

	
        
        current_role
        name
       

       

current_userと同じです。
       

	
        
        
        current_schema
        name
       

       
        current_schema ()
        name
       

       

検索パスの先頭にあるスキーマの名前を返します。（検索パスが空ならNULL値を返します。）
これはターゲットスキーマを指定せずに作成されるすべてのテーブルあるいは名前付きのオブジェクトで使われるスキーマです。
       

	
        
        
        current_schemas ( include_implicit boolean )
        name[]
       

       

現在有効な検索パス中にあるすべてのスキーマの名前を優先順に配列で返します。
（現在のsearch_path設定にある項目で、存在する検索可能なスキーマに関連しないものは無視されます。）
論理値引数が真ならpg_catalogのような暗黙的に検索されるシステムスキーマは結果に含まれます。
       

	
        
        
        current_user
        name
       

       

現在の実行コンテキストのユーザ名を返します。
       

	
        
        inet_client_addr ()
        inet
       

       

現在のクライアントのIPアドレスを返します。UNIXドメインソケット経由の接続ならNULLが返ります。
       

	
        
        inet_client_port ()
        integer
       

       

現在のクライアントのIPポート番号を返します。UNIXドメインソケット経由の接続ならNULLが返ります。
       

	
        
        inet_server_addr ()
        inet
       

       

サーバが受け付けている現在の接続のIPアドレスを返します。UNIXドメインソケット経由の接続ならNULLが返ります。
       

	
        
        inet_server_port ()
        integer
       

       

サーバが受け付けている現在の接続のIPポート番号を返します。UNIXドメインソケット経由の接続ならNULLが返ります。
       

	
        
        pg_backend_pid ()
        integer
       

       

現在のセッションに結びついているサーバプロセスのプロセスIDを返します。
       

	
        
        pg_blocking_pids ( integer )
        integer[]
       

       

指定したサーバプロセスIDによるロック取得をブロックしているプロセスIDを配列で返します。そのようなサーバプロセスが存在しないかあるいはブロックしていない場合は空の配列が返ります。
       

       

あるサーバプロセスが別のサーバプロセスをブロックするのは、ブロックされるプロセスのロック要求と競合するロックを保持している場合（ハードブロック）、あるいは、ブロックされるプロセスのロック要求と競合するロックを待っていて、かつロック待ちキュー内でより前方にいる場合（ソフトブロック）です。
パラレルクエリを使っている場合、実際のロックを子ワーカープロセスが保持または待っている場合であっても、この結果には必ずクライアントから可視のプロセスID（つまり、pg_backend_pidの結果）が示されます。
そのような仕様なので、この結果には重複するPIDが含まれることもあります。
また、プリペアドのトランザクションが競合するロックを保持している場合、この関数の結果ではプロセスIDがゼロとして示されることにも注意して下さい。
       

       

頻繁にこの関数を呼び出すとデータベースの性能に影響があるかも知れません。ロックマネージャの共有状態への短期的な排他ロックの取得が必要だからです。
       

	
        
        pg_conf_load_time ()
        timestamp with time zone
       

       

サーバ設定ファイルが最後に読み込まれた時の時刻を返します。
現在のセッションがそのときに活動中だった場合、これはそのセッション自身が設定ファイルを再読み込みした時刻になります。（ですからその結果はセッションによって少し異なるかもしれません。）
それ以外の場合は、postmasterプロセスが設定ファイルを再読み込みした時刻になります。
       

	
        
        
        
        
        
        
        
        pg_current_logfile ( [ text ] )
        text
       

       

ログ収集機構が現在使用しているログファイルのパス名を返します。
パスにはlog_directoryディレクトリとログファイルの名前が含まれます。
ログ収集が無効ならば戻り値はNULLになります。
複数のログファイルがそれぞれ異なる形式で存在する場合、引数なしのpg_current_logfileは、順序リスト（stderr、csvlog、jsonlog）の最初に出てくる形式のファイルのパスを返します。
これらの形式のログファイルがないときはNULLが返されます。
特定のファイル形式を要求するには、オプションパラメータの値としてcsvlog、jsonlog、またはstderrをオプション引数の値として渡してください。
指定のログ形式がlog_destinationで設定されていない場合は、戻り値がNULLとなります。
結果はcurrent_logfilesファイルの内容を反映します。
       

       

デフォルトではこの関数の実行はスーパーユーザとpg_monitorロールの権限を持つロールに限定されますが、他のユーザに関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_get_loaded_modules ()
        setof record
        ( module_name text,
        version text,
        file_name text )
       

       

現在のサーバセッションにロードされているロード可能なモジュールの一覧を返します。
module_nameフィールドとversionフィールドは、モジュール作成者がPG_MODULE_MAGIC_EXTマクロを使用して値を指定しない限り、NULLになります。
file_nameフィールドは、モジュール（共有ライブラリ）のファイル名を示します。
       

	
        
        pg_my_temp_schema ()
        oid
       

       

現在のセッションの一時スキーマのOIDを返します。（一時テーブルをまだ１つも作成しておらず）存在しなければゼロを返します。
       

	
        
        pg_is_other_temp_schema ( oid )
        boolean
       

       

指定したOIDが他のセッションの一時スキーマのOIDであれば、真を返します。
（例えば、他のセッションの一時テーブルをカタログ表示から除外したい場合などで有用です。）
       

	
        
        pg_jit_available ()
        boolean
       

       

JITコンパイラ拡張が利用可能で(30章実行時コンパイル(JIT)参照)、jit設定パラメータがonなら真を返します。
       

	
        
        pg_numa_available ()
        boolean
       

       

サーバがNUMAサポート付きでコンパイルされている場合はtrueを返します。
       

	
        
        pg_listening_channels ()
        setof text
       

       

今のセッションにおいて現在待ち受け中の非同期通知チャンネル名の集合を返します。
       

	
        
        pg_notification_queue_usage ()
        double precision
       

       

非同期通知キューの最大サイズのうち、処理待ちの通知によって占められている現在の割合（0から1まで）を返します。
詳細はLISTEN(7)とNOTIFY(7)をご覧ください。
       

	
        
        pg_postmaster_start_time ()
        timestamp with time zone
       

       

サーバの起動時刻を返します。
       

	
        
        pg_safe_snapshot_blocking_pids ( integer )
        integer[]
       

       

指定のサーバプロセスIDによる安全なスナップショットの取得をブロックしているセッションのサーバプロセスIDの配列を返します。そのようなサーバプロセスがないか、ブロックされていない場合は空の配列が返ります。
       

       

SERIALIZABLEトランザクションを実行しているセッションは、SERIALIZABLE READ ONLY DEFERRABLEトランザクションが述語ロックの取得をすべて回避しても安全であると決定するまで、後者がスナップショットを取得するのをブロックします。
シリアライザブルトランザクションおよび遅延可能トランザクションについてのさらなる情報については「シリアライザブル分離レベル」を参照してください。
       

       

この関数を頻繁に呼び出すと、短時間に述語ロックマネージャの共有状態にアクセスする必要があるため、データベースのパフォーマンスに若干の影響が出るかもしれません。
       

	
        
        pg_trigger_depth ()
        integer
       

       

PostgreSQL™のトリガの現在の入れ子の深さを返します。(直接的であれ間接的であれ、トリガ内部から呼ばれていなければ0を返します)。
       

	
        
        session_user
        name
       

       

セッションのユーザ名を返します。
       

	
        
        system_user
        text
       

       

認証方式と、データベースロールが割り当てられる前にユーザが認証サイクル中に提示したID(存在する場合)を戻します。
ユーザが認証されている場合はauth_method:identityとして表示します。ユーザが認証されていない場合（たとえばTrust認証が使用されている場合）はNULLとして表示します。
       

	
        
        user
        name
       

       

current_userと等価です。
       




注記


current_catalog、current_role、current_schema、current_user、session_userおよびuserはSQLにおいて特殊な構文上の地位を持っており、最後に括弧を付けずに呼び出さなければなりません。
PostgreSQLではcurrent_schemaの場合括弧を使用することができますが、他は使えません。
    



session_userは、通常、現在のデータベース接続を開始したユーザです。しかし、スーパーユーザはこの設定をSET SESSION AUTHORIZATION(7)を使用して変更することができます。
current_userは、権限の検査に適用されるユーザ識別子です。
通常はセッションユーザと同じですが、SET ROLE(7)を使用して変更可能です。
SECURITY DEFINER属性を持つ関数の実行中にも変わります。
Unix用語で言うと、セッションユーザは「実ユーザ」で、現在のユーザは「実効ユーザ」です。
current_roleとuserはcurrent_userの同義語です。
（標準SQLではcurrent_roleとcurrent_userを区別していますが、PostgreSQL™ではユーザとロールを1種類のエンティティに統合しているため、両者に区別はありません。）
   

アクセス権限照会関数





表9.72「アクセス権限照会関数」に列挙した関数を使用して、ユーザはオブジェクトのアクセス権限をプログラムから問い合わせることができます。
権限についての詳細は、「権限」を参照してください。
これらの関数では権限を検査されるユーザは名前かOID(pg_authid.oid)で指定できます。
名前がpublicとして与えられるとPUBLIC仮想ロールの権限が検査されます。
また、user引数を完全に省略できます。この場合はcurrent_userを指定したと見なされます。
検査されるオブジェクトも名前かOIDで指定できます。
名前で指定する時は関連するスキーマ名を含んでも構いません。
対象となるアクセス権限はテキスト文字列で指定します。その文字列はオブジェクト型（たとえばSELECT）へと評価されなければならない適切なアクセスキーワードで指定します。
その権限が許可オプションで保持されるかどうかをテストするためにオプションでWITH GRANT OPTIONを権限型に追加できます。
また、複数の権限型をカンマで区切って列挙できます。この場合はどれかの権限が保持されていれば結果は真となります。
（権限文字列は大文字小文字の区別がなく、追加の空白を権限文字列の間に入れることができますが、権限名の中に入れることはできません。）


SELECT has_table_privilege('myschema.mytable', 'select');
SELECT has_table_privilege('joe', 'mytable', 'INSERT, SELECT WITH GRANT OPTION');


  
表9.72 アクセス権限照会関数
	

関数
       

       

説明
       

	
        
        has_any_column_privilege (
          [ user name or oid, ]
          table text or oid,
          privilege text )
        boolean
       

       

ユーザがテーブルのどれか１つの列に対して権限を所有しているか？
テーブル全体あるいは列レベルの権限が少なくとも１つの列に与えられていれば成功します。
可能な権限型はSELECT、INSERT、UPDATE、REFERENCESです。
       

	
        
        has_column_privilege (
          [ user name or oid, ]
          table text or oid,
          column text or smallint,
          privilege text )
        boolean
       

       

ユーザがテーブルの指定された（１つの）列に対して権限を所有しているか？
テーブル全体あるいはその列に対して列レベルの権限が与えられていれば成功します。
名前かアトリビュート番号(pg_attribute.attnum)で列を指定できます。
可能な権限型はSELECT、INSERT、UPDATE、REFERENCESです。
       

	
        
        has_database_privilege (
          [ user name or oid, ]
          database text or oid,
          privilege text )
        boolean
       

       

ユーザはデータベースに対する権限があるか？
可能な権限型はCREATE、CONNECT、TEMPORARY、TEMP (TEMPORARYと同じです)です。
       

	
        
        has_foreign_data_wrapper_privilege (
          [ user name or oid, ]
          fdw text or oid,
          privilege text )
        boolean
       

       

現在のユーザは外部データラッパーに対する権限があるか？
可能な権限型はUSAGEだけです。
       

	
        
        has_function_privilege (
          [ user name or oid, ]
          function text or oid,
          privilege text )
        boolean
       

       

ユーザは関数に対する権限があるか？
可能な権限型はEXECUTEだけです。
       

       

関数をOIDではなく名前で指定する場合、regprocedureデータ型（「オブジェクト識別子データ型」を参照）と同じ入力が可能です。
例を示します。


SELECT has_function_privilege('joeuser', 'myfunc(int, text)', 'execute');


       

	
        
        has_language_privilege (
          [ user name or oid, ]
          language text or oid,
          privilege text )
        boolean
       

       

ユーザは言語に対する権限があるか？
可能な権限型はUSAGEだけです。
       

	
        
        has_largeobject_privilege (
          [ user name or oid, ]
          largeobject oid,
          privilege text )
        boolean
       

       

ユーザはラージオブジェクトに対する権限があるか？
可能な権限型はSELECTとUPDATEです。
       

	
        
        has_parameter_privilege (
          [ user name or oid, ]
          parameter text,
          privilege text )
        boolean
       

       

ユーザに構成パラメータに対する権限があるか?
パラメータ名では大文字と小文字が区別されません。
使用可能な権限タイプはSETおよびALTER SYSTEMです。
       

	
        
        has_schema_privilege (
          [ user name or oid, ]
          schema text or oid,
          privilege text )
        boolean
       

       

ユーザはスキーマに対する権限があるか？
可能な権限型はCREATEとUSAGEです。
       

	
        
        has_sequence_privilege (
          [ user name or oid, ]
          sequence text or oid,
          privilege text )
        boolean
       

       

ユーザはシーケンスに対する権限があるか？
可能な権限型はUSAGE、SELECT、UPDATEです。
       

	
        
        has_server_privilege (
          [ user name or oid, ]
          server text or oid,
          privilege text )
        boolean
       

       

ユーザは外部サーバに対する権限があるか？
可能な権限型はUSAGEだけです。
       

	
        
        has_table_privilege (
          [ user name or oid, ]
          table text or oid,
          privilege text )
        boolean
       

       

ユーザはテーブルに対する権限があるか？
可能な権限型はSELECT、INSERT、UPDATE、DELETE、TRUNCATE、REFERENCES、TRIGGER、MAINTAINです。
       

	
        
        has_tablespace_privilege (
          [ user name or oid, ]
          tablespace text or oid,
          privilege text )
        boolean
       

       

ユーザはテーブル空間に対する権限があるか？
可能な権限型はCREATEです。
       

	
        
        has_type_privilege (
          [ user name or oid, ]
          type text or oid,
          privilege text )
        boolean
       

       

ユーザにデータ型に対する権限があるか？
可能な権限型はUSAGEだけです。
OIDではなく名前で型を指定する際は、可能な入力はregtypeデータ型に対するのと同じものです（「オブジェクト識別子データ型」参照）。
       

	
        
        pg_has_role (
          [ user name or oid, ]
          role text or oid,
          privilege text )
        boolean
       

       

ユーザにロールに対する権限があるか？
可能な権限型はMEMBER、USAGEとSETです。
特定の権限が与えられているかどうかにかかわらず、MEMBERは直接あるいは間接的にそのロールのメンバであることを示します。（すなわち、SET ROLEを実行する権限です）
SETがSET ROLEコマンドを用いてロールに変更を加えることができるかどうかを示すのに対し、USAGEは、そのロールの権限がSET ROLEを実行することなく、直ちに利用可能であることを示します。
WITH ADMIN OPTIONまたはWITH GRANT OPTIONは、ADMIN権限が保持されているかどうかに関係なく、これらのいずれの権限にもテストのために追加できます（これら6つの綴りはすべて同じテストを行います）。
この関数はuserをpublicに設定する特別なケースを許可しません。
PUBLIC仮想ロールは実在するロールのメンバには決してなれないからです。
       

	
        
        row_security_active (
          table text or oid )
        boolean
       

       

現在のユーザと環境のコンテキストにおいて、指定のテーブルに対して行単位セキュリティは有効か？
       






アクセス権限のカタログ表現であるaclitem型で利用可能な演算子を表9.73「aclitem演算子」に示します。
アクセス権限値を解釈する方法に関する情報は「権限」をご覧ください。
  
表9.73 aclitem演算子
	

演算子
        

        

説明
        

        

例
        

	
         
         aclitem = aclitem
         boolean
        

        

aclitemは等しいか？
（aclitem型には通常の比較演算子の組がありません。等値だけです。
同じようにaclitemの配列は等値比較だけが可能です。）
        

        
         'calvin=r*w/hobbes'::aclitem = 'calvin=r*w*/hobbes'::aclitem
         f
        

	
         
         aclitem[] @> aclitem
         boolean
        

        

配列は指定した権限を含んでいるか？
（これはaclitemを与えられる側と与える側にマッチする配列のエントリを含んでいて、少なくとも指定した権限の集合を持つ場合に真となります。）
        

        
         '{calvin=r*w/hobbes,hobbes=r*w*/postgres}'::aclitem[] @> 'calvin=r*/hobbes'::aclitem
         t
        

	
         aclitem[] ~ aclitem
         boolean
        

        

これは@>の廃止予定の別名です。
        

        
         '{calvin=r*w/hobbes,hobbes=r*w*/postgres}'::aclitem[] ~ 'calvin=r*/hobbes'::aclitem
         t
        






表9.74「aclitem関数」にaclitem型を管理する追加の関数を示します。
   
表9.74 aclitem関数
	

関数
       

       

説明
       

	
        
        acldefault (
          type "char",
          ownerId oid )
        aclitem[]
       

       

ownerIdのOIDを持つロールに所属するtype型のオブジェクトのデフォルト権限を持つaclitem配列を作成します。
これはオブジェクトのACL権限がNULLであるときに想定されるアクセス権限を示します。
（デフォルトアクセス権限については「権限」で述べています。）
typeパラメータは以下のどれかでなければなりません。
'c'でCOLUMN、'r'でTABLEおよびテーブルに見えるオブジェクト、's'でSEQUENCE、'd'でDATABASE、'f'でFUNCTIONあるいはPROCEDURE、'l'でLANGUAGE、'L'でLARGE OBJECT、'n'でSCHEMA、'p'でPARAMETER、't'でTABLESPACE、'F'でFOREIGN DATA WRAPPER、'S'でFOREIGN SERVER、'T'でTYPEあるいはDOMAINを表します。
       

	
        
        aclexplode ( aclitem[] )
        setof record
        ( grantor oid,
        grantee oid,
        privilege_type text,
        is_grantable boolean )
       

       

行の集合としてaclitem配列を返します。
アクセス権を与えられる側が仮想ロールPUBLICなら、grantee列でgranteeはゼロで表現されます。
各々の与えられた権限はSELECT、INSERTなどで表現されます。(完全なリストは表5.1「ACL短縮形」を参照してください）。
各々の権限は別々の行に分解され、privilege_type列には一つのキーワードだけが現れることに注意してください。
       

	
        
        makeaclitem (
          grantee oid,
          grantor oid,
          privileges text,
          is_grantable boolean )
        aclitem
       

       

与えられた属性でaclitemを作成します。
privilegesは、結果中に設定されるSELECT、INSERTなどのカンマで区切られた権限名のリストです。
（権限文字列の大文字小文字の区別は無視されます。権限文字の間に余分な空白が合っても構いませんが、権限文字列中に空白があってはいけません。）
       





スキーマ可視性問い合わせ関数





表9.75「スキーマ可視性照会関数」に、特定のオブジェクトが、現行スキーマの検索パスにおいて可視かどうかを判別する関数を示します。
例えば、あるテーブルを含むスキーマが検索パス内に存在し、検索パス内の前方に同じ名前のテーブルがない場合、そのテーブルは可視であると言います。
つまり、これは、テーブルが明示的なスキーマ修飾なしで名前によって参照可能であるということです。
ですから全ての可視テーブルの名前を列挙するには以下のようにします。


SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);



関数および演算子では、パスの前方に同じ名前かつ同じ引数のデータ型を持つオブジェクトが存在しなければ、検索パス内のオブジェクトは可視と言えます。
演算子クラスと（演算子）族では、名前と関連するインデックスアクセスメソッドが考慮されます。
  
表9.75 スキーマ可視性照会関数
	

関数
       

       

説明
       

	
        
        pg_collation_is_visible ( collation oid )
        boolean
       

       

照合順序が検索パスにおいて可視か？
       

	
        
        pg_conversion_is_visible ( conversion oid )
        boolean
       

       

変換が検索パスにおいて可視か？
       

	
        
        pg_function_is_visible ( function oid )
        boolean
       

       

関数が検索パスにおいて可視か？
（これはプロシージャと集約にも使えます。）
       

	
        
        pg_opclass_is_visible ( opclass oid )
        boolean
       

       

演算子クラスが検索パスにおいて可視か？
       

	
        
        pg_operator_is_visible ( operator oid )
        boolean
       

       

演算子が検索パスにおいて可視か？
       

	
        
        pg_opfamily_is_visible ( opclass oid )
        boolean
       

       

演算子族が検索パスにおいて可視か？
       

	
        
        pg_statistics_obj_is_visible ( stat oid )
        boolean
       

       

統計情報オブジェクトが検索パスにおいて可視か？
       

	
        
        pg_table_is_visible ( table oid )
        boolean
       

       

テーブルが検索パスにおいて可視か？
（これはビュー、マテリアライズドビュー、インデックス、シーケンス、外部テーブルを含むべての形式のリレーションで使用できます。）
       

	
        
        pg_ts_config_is_visible ( config oid )
        boolean
       

       

テキスト検索設定が検索パスにおいて可視か？
       

	
        
        pg_ts_dict_is_visible ( dict oid )
        boolean
       

       

テキスト検索辞書が検索パスにおいて可視か？
       

	
        
        pg_ts_parser_is_visible ( parser oid )
        boolean
       

       

テキスト検索パーサが検索パスにおいて可視か？
       

	
        
        pg_ts_template_is_visible ( template oid )
        boolean
       

       

テキスト検索テンプレートが検索パスにおいて可視か？
       

	
        
        pg_type_is_visible ( type oid )
        boolean
       

       

型（またはドメイン）が検索パスにおいて可視か？
       






これらの関数は全て、検査するオブジェクトを識別するために、オブジェクトのOIDを必要とします。
オブジェクトを名前でテストする場合、OID別名型（regclass、regtype、regprocedure、regoperator、regconfig、またはregdictionary）を使用すると便利です。
例えば、以下のようにします。


SELECT pg_type_is_visible('myschema.widget'::regtype);



ただし、このようなやり方でスキーマ修飾されていない型名をテストしても、あまり意味がないことに注意してください。名前が認識されれば、それは必ず可視ということになります。
   

システムカタログ情報関数





表9.76「システムカタログ情報関数」に、システムカタログから情報を抽出する関数を列挙します。
  
表9.76 システムカタログ情報関数
	

関数
       

       

説明
       

	
        
        format_type ( type oid, typemod integer )
        text
       

       

型OIDと型修飾子で決まるデータ型のSQL名を返します。
型修飾子が不明な場合はNULLを型修飾子に渡してください。
       

	
        
        pg_basetype ( regtype )
        regtype
       

       

型OIDで識別されるドメイン型の基本型のOIDを返します。
引数がドメイン以外の型のOIDの場合、引数をそのまま返します。
引数が有効な型OIDでない場合、NULLを返します。
ドメイン依存の連鎖がある場合、基本型が見つかるまで再帰します。
       

       

CREATE DOMAIN mytext AS textと仮定します。
       

       
        pg_basetype('mytext'::regtype)
        text
       

	
        
        pg_char_to_encoding ( encoding name )
        integer
       

       

指定されたエンコード名を、一部のシステムカタログテーブルで使用されている内部識別子を表す整数に変換します。
不明なエンコード名が指定された場合は-1を返します。
       

	
        
        pg_encoding_to_char ( encoding integer )
        name
       

       

システムカタログテーブル内のエンコーディングの内部識別子として使用されている整数を、読み取り可能な文字列に変換します。
無効なエンコーディング番号が指定されている場合は、空の文字列を返します。
       

	
        
        pg_get_catalog_foreign_keys ()
        setof record
        ( fktable regclass,
          fkcols text[],
          pktable regclass,
          pkcols text[],
          is_array boolean,
          is_opt boolean )
       

       

PostgreSQL™システムカタログ中に存在する外部キー関係を記述するレコードの集合を返します。
fktable列は参照するカタログの名前を示し、fkcols列は参照する列の名前を示します。
同様に、pktableは参照されるカタログの名前を示し、pkcolsは参照される列の名前を示します。
is_arrayが真なら、最後の参照列は配列で、各要素は参照カタログにマッチします。
is_optが真なら、参照される列は有効な参照の代わりにゼロを含んでも構いません。
       

	
        
        pg_get_constraintdef ( constraint oid [, pretty boolean ] )
        text
       

       

制約を作成したコマンドを再構築します。
（これは逆コンパイルで構成したもので、元のコマンドのテキストではありません。）
       

	
        
        pg_get_expr ( expr pg_node_tree, relation oid [, pretty boolean ] )
        text
       

       

列のデフォルト値のような、システムカタログに格納された内部表現式を逆コンパイルします。
式に変数が含まれている場合は2番目の引数として参照されているリレーションのOIDを指定してください。変数が含まれていない場合は、ゼロを渡しておけば十分です。
       

	
        
        pg_get_functiondef ( func oid )
        text
       

       

関数あるいはプロシージャの作成コマンドを再構築します。
（これは逆コンパイルによる再構築で、元のコマンドのテキストではありません。）
結果は完全なCREATE OR REPLACE FUNCTIONあるいはCREATE OR REPLACE PROCEDURE文です。
       

	
        
        pg_get_function_arguments ( func oid )
        text
       

       

CREATE FUNCTION中に現れる形で関数あるいはプロシージャの引数のリストを再構築します。
（デフォルト値を含みます。）
       

	
        
        pg_get_function_identity_arguments ( func oid )
        text
       

       

ALTER FUNCTIONのようなコマンド中に現れる形で関数あるいはプロシージャの引数のリストを再構築します。
この形式ではデフォルト値は省略します。
       

	
        
        pg_get_function_result ( func oid )
        text
       

       

CREATE FUNCTION中に現れる形で関数のRETURNS句を再構築します。
プロシージャに対してNULLを返します。
       

	
        
        pg_get_indexdef ( index oid [, column integer, pretty boolean ] )
        text
       

       

インデックスを作成するコマンドを再構築します。
（これは逆コンパイルによる再構築で、元のコマンドのテキストではありません。）
columnが渡されていてゼロでないなら、その列の定義だけが再構築されます。
       

	
        
        pg_get_keywords ()
        setof record
        ( word text,
        catcode "char",
        barelabel boolean,
        catdesc text,
        baredesc text )
       

       

サーバが認識するSQLキーワードを記述するレコードの集合を返します。
word列にはキーワードが含まれます。
catcode列にはカテゴリコードが含まれます。Uは非予約キーワード、Cは列名になり得るキーワード、Tは型あるいは関数名になり得るキーワード、Rは完全な予約キーワードです。
barelabel列は、キーワードが「bare」列ラベルとしてSELECTリスト中で使えるならtrueで、ASの後にのみ使えるのならfalseです。
catdesc列にはキーワードカテゴリを記述する、ローカライズ化されることもある文字列が含まれます。
baredesc列にはキーワードの列ラベル状態を記述する、ローカライズ化されることもある文字列が含まれます。
       

	
        
        pg_get_partkeydef ( table oid )
        text
       

       

パーティション化テーブルのパーティションキーの定義を、CREATE TABLEのPARTITION BY句の形式で再構成します。(これは逆コンパイルされた再構成であり、コマンドのオリジナルテキストではありません。
)
       

	
        
        pg_get_ruledef ( rule oid [, pretty boolean ] )
        text
       

       

ルールを作成するコマンドを再構築します。
（これは逆コンパイルによる再構築で、元のコマンドのテキストではありません。）
       

	
        
        pg_get_serial_sequence ( table text, column text )
        text
       

       

列に関連するシーケンスの名前を返します。
列に関連するシーケンスが存在しなければ、NULLを返します。
列が識別列の場合、関連するシーケンスは識別列に対して内部的に作成されたシーケンスとなります。
SERIAL型（serial、smallserial、bigserial）の一つを使って作られた列については、そのSERIAL列の定義に対して作られたシーケンスとなります。
後者の場合、この関連付けはALTER SEQUENCE OWNED BYで修正または削除することができます。
（この関数はおそらくpg_get_owned_sequenceと呼ばれるべきだったのでしょうが、現在の名前はそれが主にserial列またはbigserial列と一緒に使われていたという事実によります。）
最初の入力パラメータはテーブル名で、スキーマを付けることもできます。
２番目のパラメータは列名です。
最初のパラメータは普通はスキーマとテーブルですので、二重引用符付の識別子としては解釈されません。
つまり、デフォルトで小文字に変換されます。
一方２番目のパラメータは単なる列名であり、二重引用符付として解釈され、その大文字小文字は保持されます。
この関数は、シーケンス関数（「シーケンス操作関数」を参照）に渡すことができるよう適切な書式で値を返します。
       

       

典型的な使用法は識別列またはSERIAL列のシーケンスの現在値を読み取ることです。例を示します。


SELECT currval(pg_get_serial_sequence('sometable', 'id'));


       

	
        
        pg_get_statisticsobjdef ( statobj oid )
        text
       

       

拡張統計情報オブジェクトを作成するコマンドを再構築します。
（これは逆コンパイルによる再構築で、元のコマンドのテキストではありません。）
       

	
        
pg_get_triggerdef ( trigger oid [, pretty boolean ] )
        text
       

       

トリガを作成するコマンドを再構築します。
（これは逆コンパイルによる再構築で、元のコマンドのテキストではありません。）
       

	
        
        pg_get_userbyid ( role oid )
        name
       

       

OIDで指定されるロール名を返します。
       

	
        
        pg_get_viewdef ( view oid [, pretty boolean ] )
        text
       

       

ビューあるいはマテリアライズドビューの背後にあるSELECTコマンドを再構築します。
（これは逆コンパイルによる再構築で、元のコマンドのテキストではありません。）
       

	
        pg_get_viewdef ( view oid, wrap_column integer )
        text
       

       

ビューあるいはマテリアライズドビューの背後にあるSELECTコマンドを再構築します。
（これは逆コンパイルによる再構築で、元のコマンドのテキストではありません。）
この関数形式では整形するオプションは常に有効で、列数よりも短く保つように長い行は折り返されます。
       

	
        pg_get_viewdef ( view text [, pretty boolean ] )
        text
       

       

ビューあるいはマテリアライズドビューの背後にあるSELECTコマンドを再構築します。ビューのOIDではなく、テキスト形式の名前を使います。
（これは廃止予定です。OIDのバージョンを使ってください。）
       

	
        
        pg_index_column_has_property ( index regclass, column integer, property text )
        boolean
       

       

インデックス列が名前付きのプロパティを持つかどうかを検査します。
共通のインデックス列プロパティは表9.77「インデックス列の属性」に列挙されています。
（拡張アクセスメソッドはインデックスに対して追加のプロパティ名を持てることに注意してください。）
プロパティ名が不明あるいは特定のオブジェクトに適用されない場合、OIDあるいは列番号が有効なオブジェクトを特定しない場合はNULLが返ります。
       

	
        
        pg_index_has_property ( index regclass, property text )
        boolean
       

       

インデックスが名前付きのプロパティを持つかどうかを検査します。
共通のインデックスプロパティは表9.78「インデックスの属性」に列挙されています。
（拡張アクセスメソッドはインデックスに対して追加のプロパティ名を持てることに注意してください。）
プロパティ名が不明あるいは特定のオブジェクトに適用されない場合、OIDが有効なオブジェクトを特定しない場合はNULLが返ります。
       

	
        
        pg_indexam_has_property ( am oid, property text )
        boolean
       

       

インデックスアクセスメソッドが名前付きのプロパティを持つかどうかを検査します。
アクセスメソッドプロパティは表9.79「インデックスアクセスメソッドの属性」に列挙されています。
プロパティ名が不明あるいは特定のオブジェクトに適用されない場合、OIDが有効なオブジェクトを特定しない場合はNULLが返ります。
       

	
        
        pg_options_to_table ( options_array text[] )
        setof record
        ( option_name text,
        option_value text )
       

       

pg_class.reloptionsあるいはpg_attribute.attoptionsの値で表現されるストレージオプションの集合を返します。
       

	
        
        pg_settings_get_flags ( guc text )
        text[]
       

       

指定されたGUCに関連付けられたフラグの配列を返します。
存在しない場合はNULLを返します。
GUCが存在しても表示するフラグがない場合、結果は空の配列になります。
表9.80「GUC Flags」にリストされている最も有用なフラグのみが公開されます。
       

	
        
        pg_tablespace_databases ( tablespace oid )
        setof oid
       

       

指定したテーブル空間に格納されるオブジェクトを持つデータベースのOIDの集合を返します。
この関数が何らかの行を返すならば、そのテーブル空間は空ではなく、削除できません。
特定のオブジェクトがそのテーブル空間にあるかどうかを確認するには、pg_tablespace_databasesで識別されるデータベースに接続してpg_classカタログを検索する必要があります。
       

	
        
        pg_tablespace_location ( tablespace oid )
        text
       

       

テーブル空間が配置されているファイルシステムのパスを返します。
       

	
        
        pg_typeof ( "any" )
        regtype
       

       

渡された値のデータ型のOIDを返します。
これはトラブル解決作業、または動的にSQL問い合わせを生成するのに便利です。
この関数は、OIDの別名型であるregtypeを返すものとして宣言されます（「オブジェクト識別子データ型」を参照）。つまり、比較目的のOIDと同一ですが、型名として表示されます。
       

       
        pg_typeof(33)
        integer
       

	
        
        COLLATION FOR ( "any" )
        text
       

       

渡された値の照合順序の名前を返します。
値は必要ならば引用符付きでスキーマ修飾されます。
引数式から照合順序が生じなければ、NULLが返ります。
引数が照合可能なデータ型でなければ、エラーが生じます。
       

       
        collation for ('foo'::text)
        "default"
       

       
        collation for ('foo' COLLATE "de_DE")
        "de_DE"
       

	
        
        to_regclass ( text )
        regclass
       

       

テキスト形式のリレーション名をOIDに変換します。
同様の結果はその文字列をregclass型にキャストすることによっても得られます。（「オブジェクト識別子データ型」参照。）
しかしこの関数は名前が見つからない場合にエラーを起こすのではなく、NULLを返します。
       

	
        
        to_regcollation ( text )
        regcollation
       

       

テキスト形式の照合順名をOIDに変換します。
同様の結果はその文字列をregcollation型にキャストすることによっても得られます。（「オブジェクト識別子データ型」参照。）
しかしこの関数は名前が見つからない場合にエラーを起こすのではなく、NULLを返します。
       

	
        
        to_regnamespace ( text )
        regnamespace
       

       

テキスト形式のスキーマ名をOIDに変換します。
同様の結果はその文字列をregnamespace型にキャストすることによっても得られます。（「オブジェクト識別子データ型」参照。）
しかしこの関数は名前が見つからない場合にエラーを起こすのではなく、NULLを返します。
       

	
        
        to_regoper ( text )
        regoper
       

       

テキスト形式の演算子名をOIDに変換します。
同様の結果はその文字列をregoper型にキャストすることによっても得られます。（「オブジェクト識別子データ型」参照。）
しかしこの関数は名前が見つからない、あるいは曖昧な場合にエラーを起こすのではなく、NULLを返します。
       

	
        
        to_regoperator ( text )
        regoperator
       

       

テキスト形式の演算子名（パラメータ型付き）をOIDに変換します。
同様の結果はその文字列をregoperator型にキャストすることによっても得られます。（「オブジェクト識別子データ型」参照。）
しかしこの関数は名前が見つからない場合にエラーを起こすのではなく、NULLを返します。
       

	
        
        to_regproc ( text )
        regproc
       

       

テキスト形式の関数名またはプロシージャ名をOIDに変換します。
同様の結果はその文字列をregproc型にキャストすることによっても得られます。（「オブジェクト識別子データ型」参照。）
しかしこの関数は名前が見つからない、あるいは曖昧な場合にエラーを起こすのではなく、NULLを返します。
       

	
        
        to_regprocedure ( text )
        regprocedure
       

       

テキスト形式の関数名またはプロシージャ名（引数型付き）をOIDに変換します。
同様の結果はその文字列をregprocedure型にキャストすることによっても得られます。（「オブジェクト識別子データ型」参照。）
しかしこの関数は名前が見つからない場合にエラーを起こすのではなく、NULLを返します。
       

	
        
        to_regrole ( text )
        regrole
       

       

テキスト形式のロール名をOIDに変換します。
同様の結果はその文字列をregrole型にキャストすることによっても得られます。（「オブジェクト識別子データ型」参照。）
しかしこの関数は名前が見つからない場合にエラーを起こすのではなく、NULLを返します。
       

	
        
        to_regtype ( text )
        regtype
       

       

文字列を解析し、可能性のある型名を抽出し、その名前を型OIDに変換します。
文字列の構文エラーはエラーになりますが、文字列がカタログにない構文的に有効な型名である場合、結果はNULLになります。
文字列をregtype（「オブジェクト識別子データ型」参照）にキャストすることで同様の結果が得られますが、名前が見つからない場合はエラーになります。
       

	
        
        to_regtypemod ( text )
        integer
       

       

テキスト文字列を構文解析し、可能性のある型名を抽出し、型修飾子があればそれを変換します。
文字列内に構文エラーがあるとエラーになりますが、文字列がカタログにない構文的に有効な型名である場合は、結果はNULLになります。
型修飾子が存在しない場合は、結果は-1です。
       

       

to_regtypemodはto_regtypeと組み合わせて、format_typeに適切な入力を生成することができます。
これにより、型名を表す文字列を正規化することができます。
       

       
        format_type(to_regtype('varchar(32)'), to_regtypemod('varchar(32)'))
        character varying(32)
       






データベースオブジェクトを再構築（逆コンパイル）する関数の多くにオプションのprettyフラグがあり、trueなら結果が「整形」されるようになっています。
整形によって不必要な括弧が抑止され、見やすさのために空白は追加されます。
整形形式は見やすいですが、デフォルト形式は将来のバージョンのPostgreSQL™でも同じように解釈される可能性が高いです。
ですから、整形された出力をダンプ目的で使わないでください。
pretty引数にfalseを渡すとパラメータを省略したとの同じ結果が得られます。
  
表9.77 インデックス列の属性
	名前	説明
	asc	前方スキャンで列は昇順にソートされるか？
      
	desc	前方スキャンで列は降順にソートされるか？
      
	nulls_first	前方スキャンで列はNULLを先頭にしてソートするか？
      
	nulls_last	前方スキャンで列はNULLを最後にしてソートするか？
      
	orderable	列は定義済みのソート順を所有しているか？
      
	distance_orderable	列は「距離」の演算子の順序に従ってスキャンできるか？例えばORDER BY col <-> 定数など
      
	returnable	列の値をインデックスオンリースキャンで返すことができるか？
      
	search_array	列はcol = ANY(array)の検索をネイティブにサポートしているか？
      
	search_nulls	列はIS NULLおよびIS NOT NULLの検索をサポートしているか？
      



表9.78 インデックスの属性
	名前	説明
	clusterable	インデックスをCLUSTERコマンドで使うことができるか？
      
	index_scan	インデックスは通常の（ビットマップでない）スキャンをサポートしているか？
      
	bitmap_scan	インデックスはビットマップスキャンをサポートしているか？
      
	backward_scan	スキャンの途中でスキャン方向を変更できるか（マテリアライゼーションを必要とせずにカーソルの FETCH BACKWARDをサポートするため）？
      



表9.79 インデックスアクセスメソッドの属性
	名前	説明
	can_order	アクセスメソッドはCREATE INDEXにおいてASC、DESCおよび関連するキーワードをサポートしているか？
      
	can_unique	アクセスメソッドは一意インデックスをサポートしているか？
      
	can_multi_col	アクセスメソッドは複数列にまたがるインデックスをサポートしているか？
      
	can_exclude	アクセスメソッドは排他制約をサポートしているか？
      
	can_include	アクセスメソッドがCREATE INDEXのINCLUDE句をサポートしているか？



表9.80 GUC Flags
	フラグ	説明
	EXPLAIN	このフラグを持つパラメータはEXPLAIN (SETTINGS)コマンドに含まれます。
      
	NO_SHOW_ALL	このフラグを持つパラメータはSHOW ALLコマンドから除外されます。
      
	NO_RESET	このフラグを持つパラメータはRESETコマンドをサポートしません。
      
	NO_RESET_ALL	このフラグを持つパラメータはRESET ALLコマンドから除外されます。
      
	NOT_IN_SAMPLE	このフラグを持つパラメータはデフォルトではpostgresql.confに含まれません。
      
	RUNTIME_COMPUTED	このフラグを持つパラメータは実行時に計算されます。
      




オブジェクトの情報とアドレス付関数





表9.81「オブジェクト情報とアドレスの関数」にデータベースオブジェクトの識別とアドレスに関連する関数を示します。
  
表9.81 オブジェクト情報とアドレスの関数
	

関数
       

       

説明
       

	
        
        pg_get_acl ( classid oid, objid oid, objsubid integer )
        aclitem[]
       

       

カタログOID、オブジェクトOID、およびサブオブジェクトIDで指定されたデータベースオブジェクトのACLを返します。
この関数は、未定義のオブジェクトに対してはNULL値を返します。
       

	
        
        pg_describe_object ( classid oid, objid oid, objsubid integer )
        text
       

       

カタログOID、オブジェクトOID、もしくはサブオブジェクトOID（たとえばテーブル中の列番号。オブジェクト全体を参照している場合は0）で指定されたデータベースオブジェクトのテキストによる説明を返します。
この説明はサーバの設定に依存しますが、人が読んでわかる、そして翻訳も可能になることを目的としたのもです。
これはpg_dependカタログに格納されたオブジェクトの識別判断の際に有用です。
この関数は、未定義オブジェクトに対してNULL値を返します。
       

	
        
        pg_identify_object ( classid oid, objid oid, objsubid integer )
        record
        ( type text,
        schema text,
        name text,
        identity text )
       

       

カタログOID、オブジェクトOID、そしてサブオブジェクトIDにより指定されるデータベースオブジェクトを一意に特定するために十分な情報を含む行を返します。
この情報は機械による読み取りを目的としており、決して翻訳されません。
typeはデータベースオブジェクトの型を識別するものです。
schemaはオブジェクトが所属するスキーマの名前ですが、スキーマに所属しないオブジェクト型の場合はNULLになります。
nameは（必要なら引用符で括った）オブジェクトの名前ですが、（適切ならスキーマ名と合わせて）オブジェクトの一意識別子として使用できる場合にのみ指定し、それ以外の場合はNULLにします。
identityは完全なオブジェクトの識別で、オブジェクトの型に依存した正確なフォーマットを持っています。
フォーマット内の各部分はスキーマ修飾されており、必要に応じて引用符で括られます。
未定義オブジェクトはNULL値で識別されます。
       

	
        
        pg_identify_object_as_address ( classid oid, objid oid, objsubid integer )
        record
        ( type text,
        object_names text[],
        object_args text[] )
       

       

カタログOID、オブジェクトOID、そしてサブオブジェクトIDにより指定されるデータベースオブジェクトを一意に特定するために充分な情報を含む行を返します。
返される情報は現在のサーバに依存しません。
つまり、他のサーバで全く同じ名前を付けられたオブジェクトを識別するために使うことができます。
typeはデータベースオブジェクトの型を識別するものです。
object_namesとobject_argsは文字列の配列で、それらが組み合わされてオブジェクトへの参照を構成します。
これらの3つの値は、オブジェクトの内部アドレスを取得するためにpg_get_object_addressに渡すことができます。
       

	
        
        pg_get_object_address ( type text, object_names text[], object_args text[] )
        record
        ( classid oid,
        objid oid,
        objsubid integer )
       

       

型、オブジェクト名および引数の配列で指定されたデータベースオブジェクトを一意に特定するために十分な情報を含む行を返します。
返される値は、pg_dependなどのシステムカタログで使用されるもので、pg_identify_objectやpg_describe_objectなど他のシステム関数に渡すことができます。
classidはオブジェクトを含むシステムカタログのOIDです。
objidはオブジェクト自体のOIDです。
objsubidはオブジェクトのサブID、なければ0です。
この関数はpg_identify_object_as_addressの逆関数です。
未定義オブジェクトはNULL値で識別されます。
       






pg_get_aclは、特定のカタログを参照せずにデータベースオブジェクトに関連する権限を取得および検査するのに役立ちます。
たとえば、現在のデータベース内のオブジェクトに付与されているすべての権限を取得するには次のようにします。


postgres=# SELECT
    (pg_identify_object(s.classid,s.objid,s.objsubid)).*,
    pg_catalog.pg_get_acl(s.classid,s.objid,s.objsubid) AS acl
FROM pg_catalog.pg_shdepend AS s
JOIN pg_catalog.pg_database AS d
    ON d.datname = current_database() AND
       d.oid = s.dbid
JOIN pg_catalog.pg_authid AS a
    ON a.oid = s.refobjid AND
       s.refclassid = 'pg_authid'::regclass
WHERE s.deptype = 'a';
-[ RECORD 1 ]-----------------------------------------
type     | table
schema   | public
name     | testtab
identity | public.testtab
acl      | {postgres=arwdDxtm/postgres,foo=r/postgres}


   

コメント情報関数





表9.82「コメント情報関数」に示される関数は、COMMENT(7)コマンドによって以前に保存されたコメントを抽出します。
指定されたパラメータに対するコメントが存在しない場合、NULL値が返されます。
   
表9.82 コメント情報関数
	

関数
       

       

説明
       

	
        
        col_description ( table oid, column integer )
        text
       

       

テーブルのOIDと列番号で指定されたテーブル列のコメントを返します。
（obj_descriptionはテーブル列には使えません。列は自身のOIDを持たないからです。）
       

	
        
        obj_description ( object oid, catalog name )
        text
       

       

OIDとそれを含むシステム型で指定されるデータベースオブジェクトのコメントを返します。
たとえばobj_description(123456, 'pg_class')はOID 123456のテーブルのコメントを返します。
       

	
        obj_description ( object oid )
        text
       

       

OIDだけで指定されるデータベースオブジェクトのコメントを返します。
これは廃止予定です。異なるシステムカタログに渡ってOIDが一意であるという保証はないからです。ですから、間違ったコメントが返されるかも知れません。
       

	
        
        shobj_description ( object oid, catalog name )
        text
       

       

OIDとそれを含むシステム型で指定されるデータベース共有オブジェクトのコメントを返します。
これは共有オブジェクト（すなわちデータベース、ロール、テーブル空間）のコメントを取り出すために使うのを除くとobj_descriptionと同じです。
システムカタログによってはクラスタ内ですべてのデータベースに対して広域的で、その中のオブジェクトの説明も広域的に格納されています。
       





データ有効性検証関数





表9.83「データ有効性検証関数」で示した関数は、与えられた入力データの有効性をチェックするのに役立ちます。
   
表9.83 データ有効性検証関数
	

関数
       

       

説明
       

       

例
       

	
        
        pg_input_is_valid (
          string text,
          type text
        )
        boolean
       

       

指定された文字列が指定されたデータ型に対して有効な入力かどうかをテストし、真または偽を返します。
       

       

この関数は、データ型の入力関数が無効な入力を「ソフト」エラーとして報告するように更新されている場合にのみ、機能します。
そうでない場合、無効な入力は、文字列が直接その型にキャストされたかのように、トランザクションを中断します。
        

        
         pg_input_is_valid('42', 'integer')
         t
        

        
         pg_input_is_valid('42000000000', 'integer')
         f
        

        
         pg_input_is_valid('1234.567', 'numeric(7,4)')
         f
       

	
        
        pg_input_error_info (
          string text,
          type text
        )
        record
        ( message text,
        detail text,
        hint text,
        sql_error_code text )
       

       

指定された文字列が指定されたデータタイプに対して有効な入力かどうかをテストします。
有効でない場合は、スローされたであろうエラーの詳細を結果します。
入力が有効な場合、結果はNULLになります。
入力はpg_input_is_validと同じです。
       

       

この関数は、データ型の入力関数が無効な入力を「ソフト」エラーとして報告するように更新されている場合にのみ、機能します。
そうでない場合、無効な入力は、文字列が直接その型にキャストされたかのように、トランザクションを中断します。
       

       
        SELECT * FROM pg_input_error_info('42000000000', 'integer')
        


                       message                        | detail | hint | sql_error_code
------------------------------------------------------+--------+------+----------------
 value "42000000000" is out of range for type integer |        |      | 22003


       





トランザクションIDとスナップショット情報関数





表9.84「トランザクションIDとスナップショット情報関数」で示される関数はサーバトランザクション情報をエクスポートできる形式で提供します。
これら関数の主な使用目的は２つのスナップショット間でどのトランザクションがコミットされたのかを特定するためです。
   
表9.84 トランザクションIDとスナップショット情報関数
	

関数
       

       

説明
       

	
        
        age  ( xid )
        integer
       

       

指定されたトランザクションIDと現在のトランザクションカウンタの間のトランザクション数を返します。
       

	
        
        mxid_age  ( xid )
        integer
       

       

指定されたマルチトランザクションIDと現在のマルチトランザクションカウンタの間のマルチトランザクションIDの数を返します。
       

	
        
        pg_current_xact_id ()
        xid8
       

       

現在のトランザクションのIDを返します。
現在トランザクションにIDがない場合(データベースの更新を実行していないため)、新しいIDが割り当てられます。
詳細は「トランザクションと識別子」を参照してください。
サブトランザクションで実行された場合、トップ-レベルトランザクションIDが返却されます。
詳細は「サブトランザクション」を参照してください。
       

	
        
        pg_current_xact_id_if_assigned ()
        xid8
       

       

現在のトランザクションIDを返します。もしまだ割り当てられていなければNULLを返します。
（トランザクションが読み取り専用なら、無駄なXIDの消費を避けるためにこの関数を使うのが最良です。）
サブトランザクションで実行された場合、トップ-レベルトランザクションIDが返却されます。
       

	
        
        pg_xact_status ( xid8 )
        text
       

       

最近のトランザクションのコミット状態について報告します。
トランザクションが最近のもので、システムがそのトランザクションのコミット状態を保持している場合は、トランザクションの状態はin progress、committedあるいはabortedとして報告されます。
トランザクションが古く、その参照がシステムに残っておらず、コミット状態の情報が破棄されている場合は、この関数はNULLを返します。
COMMITの進行中にアプリケーションとデータベースが切断されたときに、アプリケーションはトランザクションがコミットされたか中断されたかを知るためにこれを使うことができます。
プリペアドのトランザクションはin progressとして報告されること、そして指定のIDがプリペアドのトランザクションかどうかを確認する必要がある場合は、アプリケーションはpg_prepared_xactsを調べなければならないことに注意してください。
       

	
        
        pg_current_snapshot ()
        pg_snapshot
       

       

どのトランザクションIDがin-progressなのかを表示するデータ構造である現在のsnapshotを返します。
スナップショットにはトップレベルのトランザクションIDだけが含まれます。
サブトランザクションIDは表示されません。詳細は「サブトランザクション」をご覧ください。
       

	
        
        pg_snapshot_xip ( pg_snapshot )
        setof xid8
       

       

スナップショットに含まれるin-progressのトランザクションIDの集合を返します。
       

	
        
        pg_snapshot_xmax ( pg_snapshot )
        xid8
       

       

スナップショットのxmaxを返します。
       

	
        
        pg_snapshot_xmin ( pg_snapshot )
        xid8
       

       

スナップショットのxminを返します。
       

	
        
        pg_visible_in_snapshot ( xid8, pg_snapshot )
        boolean
       

       

このスナップショットによると与えられたトランザクションIDが可視か（すなわちスナップショットが取得される前に完了していたか）？
この関数は副トランザクションID（subxid）に対しては正しい答えを返さないことに注意してください。
詳細は「サブトランザクション」を参照してください。
       

	
        
        pg_get_multixact_members ( multixid xid )
        setof record
        ( xid xid,
        mode text )
       

       

指定されたマルチトランザクションIDの各メンバのトランザクションIDとロックモードを返します。
ロックモードforupd、fornokeyupd、sh、およびkeyshは、「行レベルロック」で説明されているように、それぞれ行レベルロックFOR UPDATE、FOR NO KEY UPDATE、FOR SHARE、およびFOR KEY SHAREに対応します。
さらに2つのモードがマルチトランザクションに固有です。
nokeyupdはキー列を変更しない更新で使用され、updはキー列を変更する更新または削除で使用されます。
       






内部トランザクションID型（xid）は32ビット幅なので40億トランザクション毎に周回します。
とは言っても、表9.84「トランザクションIDとスナップショット情報関数」に示される関数は、age、mxid_age、pg_get_multixact_membersを除き、インストールしてから稼働を終えるまでには周回しないxid8型の64ビット形式を使用しており、必要に応じてxidにキャストして変換できます。
詳細は「トランザクションと識別子」を参照してください。
これらの関数で使用されるデータ型、pg_snapshotはある特定の時間におけるトランザクションIDの可視性に関する情報を格納します。
構成要素は表9.85「スナップショット構成要素」に記載されています。
pg_snapshotのテキスト表現はxmin:xmax:xip_listです。
たとえば10:20:10,14,15はxmin=10, xmax=20, xip_list=10, 14, 15であることを意味します。
   
表9.85 スナップショット構成要素
	名前	説明
	xmin	

現在実行中で最も小さいトランザクションID。
xminより小さい全てのトランザクションはコミットされて可視となっているか、またはロールバックされて消滅しています。
       
	xmax	

完了した最も大きなトランザクションIDの一つ大きなID。
xmaxと等しいかより大きい全てのトランザクションIDはスナップショットの時点で未完了であり、従って不可視です。
       
	xip_list	

スナップショット時の実行中のトランザクションです。
xmin <= X <xmaxで、このリストにないトランザクションIDはスナップショット時点ですでに完了しており、コミット状態によって可視あるいはデッドのどちらかです。
リストには副トランザクションのトランザクションID（subxids）は含まれません。
       





PostgreSQL™リリースの13より前ではxid8型がなく、これらの関数の変種は、64ビットのXIDを表現するためにbigintを、スナップショットデータ型に対応する別のtxid_snapshot型を使っていました。
これらの古い関数ではtxidが名前に含まれています。
過去互換性のためにこれらはまだサポートされていますが、将来のリリースでは削除されるかも知れません。
表9.86「廃止予定のトランザクションIDとスナップショット情報関数」を参照してください。
   
表9.86 廃止予定のトランザクションIDとスナップショット情報関数
	

関数
       

       

説明
       

	
        
        txid_current ()
        bigint
       

       

pg_current_xact_id()参照。
       

	
        
        txid_current_if_assigned ()
        bigint
       

       

pg_current_xact_id_if_assigned()参照。
       

	
        
        txid_current_snapshot ()
        txid_snapshot
       

       

pg_current_snapshot()参照。
       

	
        
        txid_snapshot_xip ( txid_snapshot )
        setof bigint
       

       

pg_snapshot_xip()参照。
       

	
        
        txid_snapshot_xmax ( txid_snapshot )
        bigint
       

       

pg_snapshot_xmax()参照。
       

	
        
        txid_snapshot_xmin ( txid_snapshot )
        bigint
       

       

pg_snapshot_xmin()参照。
       

	
        
        txid_visible_in_snapshot ( bigint, txid_snapshot )
        boolean
       

       

pg_visible_in_snapshot()参照。
       

	
        
        txid_status ( bigint )
        text
       

       

pg_xact_status()参照。
       





コミット済みトランザクション情報関数





表9.87「コミットされたトランザクションに関する情報関数」に示す関数はいつ過去のトランザクションがコミットされたかの情報を提供します。
track_commit_timestamp設定オプションが有効のときにだけ、かつそれが有効になった後にコミットされたトランザクションについてのみ意味のある情報を提供します。
コミット時刻情報は通常、バキューム時に削除されます。
   
表9.87 コミットされたトランザクションに関する情報関数
	

関数
       

       

説明
       

	
        
        pg_xact_commit_timestamp ( xid )
        timestamp with time zone
       

       

トランザクションのコミットタイムスタンプを返します。
       

	
        
        pg_xact_commit_timestamp_origin ( xid )
        record
        ( timestamp timestamp with time zone,
         roident oid)
       

       

トランザクションのコミットタイムスタンプとレプリケーション原点を返します。
       

	
        
        pg_last_committed_xact ()
        record
        ( xid xid,
        timestamp timestamp with time zone,
        roident oid )
       

       

直近にコミットしたトランザクションのトランザクションID、コミットタイムスタンプ、レプリケーション原点を返します。
       





コントロールデータ関数





表9.88「制御データ関数」に示す関数は、カタログのバージョンなどといったinitdbの実行時に初期化される情報を表示します。
それらはまた、先行書き込みログ（WAL）とチェックポイント処理についての情報も示します。
この情報はクラスタ全体に渡るもので、どれか１つのデータベースに特有のものではありません。
これらの関数はpg_controldata(1)アプリケーションと同じ情報源から、ほぼ同じ情報を提供します。
   
表9.88 制御データ関数
	

関数
       

       

説明
       

	
        
        pg_control_checkpoint ()
        record
       

       

表9.89「pg_control_checkpointの出力列」に示すように現在のチェックポイントの状態に関する情報を返します。
       

	
        
        pg_control_system ()
        record
       

       

表9.90「pg_control_systemの出力列」に示すように現在の制御ファイルの状態に関する情報を返します。
       

	
        
        pg_control_init ()
        record
       

       

表9.91「pg_control_init Output Columns」に示すようにクラスタの初期化状態に関する情報を返します。
       

	
        
        pg_control_recovery ()
        record
       

       

表9.92「pg_control_recoveryの出力列」に示すようにリカバリ状態に関する情報を返します。
       




表9.89 pg_control_checkpointの出力列
	列名	データ型
	checkpoint_lsn	pg_lsn
	redo_lsn	pg_lsn
	redo_wal_file	text
	timeline_id	integer
	prev_timeline_id	integer
	full_page_writes	boolean
	next_xid	text
	next_oid	oid
	next_multixact_id	xid
	next_multi_offset	xid
	oldest_xid	xid
	oldest_xid_dbid	oid
	oldest_active_xid	xid
	oldest_multi_xid	xid
	oldest_multi_dbid	oid
	oldest_commit_ts_xid	xid
	newest_commit_ts_xid	xid
	checkpoint_time	timestamp with time zone



表9.90 pg_control_systemの出力列
	列名	データ型
	pg_control_version	integer
	catalog_version_no	integer
	system_identifier	bigint
	pg_control_last_modified	timestamp with time zone



表9.91 pg_control_init Output Columns
	列名	データ型
	max_data_alignment	integer
	database_block_size	integer
	blocks_per_segment	integer
	wal_block_size	integer
	bytes_per_wal_segment	integer
	max_identifier_length	integer
	max_index_columns	integer
	max_toast_chunk_size	integer
	large_object_chunk_size	integer
	float8_pass_by_value	boolean
	data_page_checksum_version	integer
	default_char_signedness	boolean



表9.92 pg_control_recoveryの出力列
	列名	データ型
	min_recovery_end_lsn	pg_lsn
	min_recovery_end_timeline	integer
	backup_start_lsn	pg_lsn
	backup_end_lsn	pg_lsn
	end_of_backup_record_required	boolean




バージョン情報関数





表9.93「バージョン情報関数」に示す関数は、バージョン情報を出力します。
   
表9.93 バージョン情報関数
	

関数
       

       

説明
       

	
        
        version ()
        text
       

       

PostgreSQL™サーバのバージョンを説明する文字列を返します。
情報はserver_versionからも得られます。
機械読み取り可能なバージョンはserver_version_numを使ってください。
ソフトウェア開発者は文字列バージョンを解析するのではなく、server_version_num (8.2以降で利用可能)かPQserverVersionを使うべきです。
       

	
        
        unicode_version ()
        text
       

       

PostgreSQL™が使用するUnicodeのバージョンを表す文字列を返します。
       

	
        
        icu_unicode_version ()
        text
       

       

サーバが ICU サポート付きで構築された場合はICUが使用するUnicodeのバージョンを表す文字列を返し、そうでない場合はNULLを返します。
       





WAL要約情報関数





表9.94「WAL要約情報関数」に示す関数は、WAL要約の状態に関する情報を出力します。
summarize_walを参照してください。
   
表9.94 WAL要約情報関数
	

関数
       

       

説明
       

	
        
        pg_available_wal_summaries ()
        setof record
        ( tli bigint,
        start_lsn pg_lsn,
        end_lsn pg_lsn )
       

       

pg_wal/summariesの下にあるデータディレクトリ内のWAL要約ファイルに関する情報を返します。
1行に1つのWAL要約ファイルを出力します。
各ファイルは、指定されたLSN範囲内の指定されたTLIに関するWALを要約します。
この関数は、開始LSNが既知の先行バックアップに基づいて増分バックアップを実行するために、サーバ上に十分なWAL要約があるかどうかを判断するのに役立つかもしれません。
       

	
        
        pg_wal_summary_contents ( tli bigint, start_lsn pg_lsn, end_lsn pg_lsn )
        setof record
        ( relfilenode oid,
        reltablespace oid,
        reldatabase oid,
        relforknumber smallint,
        relblocknumber bigint,
        is_limit_block boolean )
       

       

TLIで識別され、開始LSNと終了LSNの範囲の単一のWAL要約ファイルの内容に関する情報を返します。
is_limit_blockが偽の場合の各行は、残りの出力列で識別されるブロックが、このファイルによって要約されたレコードの範囲内で少なくとも1つのWALレコードによって変更されたことを示します。
is_limit_blockが真である各行は、(a) リレーションフォークがWALレコードの関連する範囲内でrelblocknumberで指定された長さに切り詰められたか、(b) リレーションフォークがWALレコードの関連する範囲内で作成または削除されたことを示します。
この場合、relblocknumberは0になります。
       

	
        
        pg_get_wal_summarizer_state ()
        record
        ( summarized_tli bigint,
        summarized_lsn pg_lsn,
        pending_lsn pg_lsn,
        summarizer_pid int )
       

       

WAL要約処理の進捗に関する情報を返します。
インスタンスが開始されてからWAL要約処理が一度も実行されていない場合、summarized_tliとsummarized_lsnはそれぞれ0と0/0になります。それ以外の場合は、ディスクに書き込まれた最後のWAL要約ファイルのTLIと終了LSNになります。
WAL要約処理が現在動作している場合、pending_lsnは消費した最後のレコードの終了LSNで、必ずsummarized_lsnの以上になり、WAL要約処理が動作していない場合、summarized_lsnと等しくなります。
summarizer_pidはWAL要約処理が動作している場合はプロセスのPIDです。動作していない場合のPIDはNULLです。
       

       

特別な例外として、wal_level=minimalで生成されたWALで実行された場合、WAL要約処理はWALレベルファイルの生成を拒否します。これは、このような要約をインクリメンタルバックアップの基礎として使用するのは安全ではないためです。
このケースでは、要約が生成されているかのように上記のフィールドが進み続けますが、ディスクには何も書き込まれません。
wal_levelがreplica以上に設定されている間に生成されたWALに要約処理が到達すると、ディスクへの要約の書き込みを再開します。
       






システム管理関数





本節で説明する関数は、PostgreSQL™インストレーションの制御と監視を行うために使用されます。
   
構成設定関数





表9.95「構成設定関数」は、実行時設定パラメータの問い合わせや変更に使用できる関数を示しています。
   
表9.95 構成設定関数
	

関数
       

       

説明
       

       

例
       

	
        
        current_setting ( setting_name text [, missing_ok boolean ] )
        text
       

       

現在のsetting_nameの設定値を返します。
そのような設定がなければ、missing_okが渡され、それがtrueでない限りcurrent_settingはエラーを引き起こします（この場合はNULLが返ります）。
この関数はSQLコマンドのSHOW(7)に関連します。
       

       
        current_setting('datestyle')
        ISO, MDY
       

	
        
        set_config (
          setting_name text,
          new_value text,
          is_local boolean )
        text
       

       

setting_nameパラメータにnew_valueを設定し、その値を返します。
is_localが渡され、それがtrueなら新しい値は現在のトランザクションの間にのみ適用されます。
現在のセッションで以降に新しい値を適用したければ、代わりにfalseとしてください。
このコマンドはSQLコマンドのSET(7)に関連します。
       

       

set_configはnew_valueに対してNULL値を受け入れます。
しかし、設定値をNULLにすることはできないため、設定をデフォルト値にリセットする要求として解釈されます。
       

       
        set_config('log_statement_stats', 'off', false)
        off
       





サーバシグナル送信関数





表9.96「サーバシグナル送信関数」に示す関数は、制御用シグナルを他のサーバプロセスに送信します。
これらの関数の使用は、デフォルトでスーパーユーザのみに制限されていますが、注記された例外を除き、GRANTを使用して他のユーザにアクセスを許可できます。
   


これらのそれぞれの関数はシグナルの送付が成功の場合trueを返し、シグナルの送付に失敗したときにはfalseを返します。
   
表9.96 サーバシグナル送信関数
	

関数
       

       

説明
       

	
        
        pg_cancel_backend ( pid integer )
        boolean
       

       

指定したプロセスIDを持つバックエンドプロセスの現在のセッションの問い合わせを取り消します。
呼び出し側のロールがキャンセルされるバックエンドのロールのメンバであるか、pg_signal_backendの権限を与えられている場合に実行できます。
ただし、スーパーユーザのバックエンドはスーパーユーザのみが取り消せます。
例外として、pg_signal_autovacuum_workerの権限を持つロールは、スーパーユーザのバックエンドともみなされる自動バキュームワーカープロセスをキャンセルすることが許可されています。
       

	
        
        pg_log_backend_memory_contexts ( pid integer )
        boolean
       

       

指定プロセスIDのバックエンドのメモリコンテキストを記録することを要求します。
この関数はバックエンドとロガー以外の外部プロセスに要求を送ることができます。
メモリコンテキストはLOGメッセージレベルでログされます。
ログは、ログ設定（詳細は「エラー報告とログ出力」を参照）に基づきサーバログに現れますが、client_min_messagesに関わらずクライアントには送られません。
       

	
        
        pg_reload_conf ()
        boolean
       

       

PostgreSQL™のすべてのサーバプロセスに構成ファイルの再読み込みをさせます。
（これはSIGHUPシグナルをpostmasterプロセスに送ることによって始まり、postmasterは続いてSIGHUPを子に送ります。）
再ロードする前に、pg_file_settings、pg_hba_file_rules、pg_ident_file_mappingsビューを使用して、構成ファイルにエラーがないか確認することができます。
       

	
        
        pg_rotate_logfile ()
        boolean
       

       

ログファイルマネージャにシグナルを送って新しいファイルに直ちに切り替えさせます。
これは組み込みのログ収集機構が実行中のみ動作します。でないとログマネージャサブプロセスが存在しないからです。
       

	
        
        pg_terminate_backend ( pid integer, timeout bigint DEFAULT 0 )
        boolean
       

       

バックエンドが指定したプロセスIDを持つセッションを終了させます。
呼び出し側のロールが終了されるバックエンドのロールのメンバであるか、pg_signal_backendの権限を与えられている場合に実行できます。
ただし、スーパーユーザのバックエンドはスーパーユーザのみが終了できます。
例外として、pg_signal_autovacuum_workerの権限を持つロールは、スーパーユーザのバックエンドともみなされる自動バキュームワーカープロセスを終了させることが許可されています。
       

       

timeoutが与えられないか、ゼロなら、この関数はプロセスが実際に終了したかどうかに関わらず、この関数はシグナルの送付が成功したことのみを意味するtrueを返します。
timeoutが指定され、ゼロよりも大きければ、この関数はプロセスが実際に終了するか、指定時間が経過するまで待ちます。
プロセスが終了したら、この関数はtrueを返します。
タイムアウトの場合は、警告が出力され、falseが返ります。
       






pg_cancel_backendとpg_terminate_backendは（それぞれ、SIGINTまたはSIGTERM）シグナルをプロセス識別子で特定されたバックエンドプロセスに送ります。
使用中のバックエンドのプロセス識別子はpg_stat_activityビューのpid列から、もしくは、（Unixではps、Windows™ではTask Managerにより）サーバ上のpostgresプロセスをリストすることで見つけられます。
実行中のバックエンドのロールはpg_stat_activityのusename列から確認することができます。
   


バックエンドプロセスのメモリコンテキストのログを取るためにpg_log_backend_memory_contextsを利用できます。
例を示します。


postgres=# SELECT pg_log_backend_memory_contexts(pg_backend_pid());
 pg_log_backend_memory_contexts
--------------------------------
 t
(1 row)



各々のメモリコンテキストについて一つのメッセージがログされます。例を示します。


LOG:  logging memory contexts of PID 10377
STATEMENT:  SELECT pg_log_backend_memory_contexts(pg_backend_pid());
LOG:  level: 1; TopMemoryContext: 80800 total in 6 blocks; 14432 free (5 chunks); 66368 used
LOG:  level: 2; pgstat TabStatusArray lookup hash table: 8192 total in 1 blocks; 1408 free (0 chunks); 6784 used
LOG:  level: 2; TopTransactionContext: 8192 total in 1 blocks; 7720 free (1 chunks); 472 used
LOG:  level: 2; RowDescriptionContext: 8192 total in 1 blocks; 6880 free (0 chunks); 1312 used
LOG:  level: 2; MessageContext: 16384 total in 2 blocks; 5152 free (0 chunks); 11232 used
LOG:  level: 2; Operator class cache: 8192 total in 1 blocks; 512 free (0 chunks); 7680 used
LOG:  level: 2; smgr relation table: 16384 total in 2 blocks; 4544 free (3 chunks); 11840 used
LOG:  level: 2; TransactionAbortContext: 32768 total in 1 blocks; 32504 free (0 chunks); 264 used
...
LOG:  level: 2; ErrorContext: 8192 total in 1 blocks; 7928 free (3 chunks); 264 used
LOG:  Grand total: 1651920 bytes in 201 blocks; 622360 free (88 chunks); 1029560 used



同じ親に100よりも多い子コンテキストがあると、最初の100子コンテキストがログされ、残りのコンテキストについてはサマリが付加されます。
この関数を頻繁に呼び出すと、大きなオーバーヘッドを引き起こす可能性があることに注意してください。
大量のログメッセージが生成される可能性があるからです。
   

バックアップ制御関数





表9.97「バックアップ制御関数」に示されている関数はオンラインバックアップの作成を支援します。
これらの関数はリカバリ中には実行できません(pg_backup_start、pg_backup_stop、pg_wal_lsn_diffを除きます)。
   


これらの関数の正しい使用方法については、「継続的アーカイブとポイントインタイムリカバリ（PITR）」を参照してください。
   
表9.97 バックアップ制御関数
	

関数
       

       

説明
       

	
        
        pg_create_restore_point ( name text )
        pg_lsn
       

       

先行書き込みログ（WAL）中に後でリカバリターゲットとして使用できる名前付けされたマーカーレコードを作成し、関連する先行書き込みログ（WAL）の位置を返します。
与えられた名前はリカバリをどこまで進めるかを指定するためにrecovery_target_nameとともに利用できます。
同じ名前で複数のリストアポイントを作成するのは避けてください。リカバリターゲットが一致した最初のところでリカバリが停止するからです。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_current_wal_flush_lsn ()
        pg_lsn
       

       

先行書き込みログ（WAL）の現在のフラッシュ位置を取得します。（下の注釈を参照してください。）
       

	
        
        pg_current_wal_insert_lsn ()
        pg_lsn
       

       

現在の先行書き込みログ（WAL）の挿入位置を取得します。（下の注釈を参照してください。）
       

	
        
        pg_current_wal_lsn ()
        pg_lsn
       

       

現在の先行書き込みログ（WAL）の書き込み位置を取得します。（下の注釈を参照してください。）
       

	
        
        pg_backup_start (
          label text
          [, fast boolean
          ] )
        pg_lsn
       

       

サーバがオンラインバックアップを開始するのを準備します。
必須パラメータはユーザが任意に定義したバックアップラベルだけです。
（通常、格納に使用するバックアップダンプファイルにちなんだ名前が付けられます。）
オプションの2番目のパラメータがtrueとして与えられると、pg_backup_startを可能な限り素早く実行することが指定されます。
これによりI/O操作の急上昇をもたらして同時に実行中のすべての問い合わせを遅くする即時チェックポイントが強制されます。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_backup_stop (
          [wait_for_archive boolean
          ] )
        record
        ( lsn pg_lsn,
        labelfile text,
        spcmapfile text )
       

       

オンラインバックアップの実行を終了します。
バックアップラベルファイルとテーブル空間マップファイルの必要な内容は関数の結果の一部として返され、バックアップ領域内のファイルに書き込まれなければなりません。
これらのファイルはライブデータディレクトリに書き込まれてはなりません（ライブデータディレクトリに書き込まれるとクラッシュ時にPostgreSQLの再起動に失敗します）。
       

       

オプションでboolean型パラメータがあります。
falseの場合、この関数はバックアップの完了後、WALがアーカイブされるのを待たずに、即座に戻ります。
この動作はWALのアーカイブを独立して監視するバックアップソフトウェアに対してのみ有用です。
それ以外の場合、バックアップを一貫性のあるものにするために必要なWALが欠けるためにバックアップが役立たなくなるかもしれません。
デフォルトあるいはこのパラメータがtrueのとき、アーカイブが有効なら、pg_backup_stopはWALがアーカイブされるまで待機します。
（スタンバイでは、これはつまりarchive_mode = alwaysのときのみ待機するということです。
プライマリでの書き込み活動が少ないときは、セグメントの変更を即座に起こさせるためにプライマリでpg_switch_walを実行するのが有効かもしれません。）
       

       

プライマリで実行された場合、この関数はまた、先行書き込みログ（WAL）の格納領域にバックアップ履歴ファイルを作成します。
履歴ファイルにはpg_backup_startで付与されたラベル、バックアップの先行書き込みログ（WAL）の位置の開始位置、終了位置、バックアップ開始時刻、終了時刻が含まれます。
終了位置を記録した後、現在の先行書き込みログ（WAL）の挿入位置は自動的に、次の先行書き込みログ（WAL）ファイルに進みます。
従って、終了先行書き込みログ（WAL）ファイルをすぐにアーカイブし、バックアップを完了させることができます。
       

       

この関数の結果は単一レコードです。
lsn列はバックアップの終了先行書き込みログ（WAL）の位置です（これもまた無視可能です）。
2番目の列はバックアップラベルファイルの内容を返し、3番目の列はテーブル空間マップファイルの内容を返します。
これらはバックアップの一部として保存されなければならず、リストアプロセスの一部で必要となるものです。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_switch_wal ()
        pg_lsn
       

       

サーバに対して新しい先行書き込みログ（WAL）ファイルへ強制スイッチを行い、それによってその現在のファイルがアーカイブされるようにします。
（継続的アーカイブを利用中だと仮定します。）
結果は今ちょうど終了した先行書き込みログ（WAL）ファイル内の終了先行書き込みログ（WAL）ファイルの場所プラス1です。
最後の先行書き込みログ（WAL）ファイルのスイッチ以降先行書き込みログ（WAL）ファイル活動がなければ、pg_switch_walは何もせず、現在使用中の先行書き込みログ（WAL）ファイルの先頭位置を返します。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_walfile_name ( lsn pg_lsn )
        text
       

       

先行書き込みログ（WAL）ファイルの位置を、その位置を保持しているWALファイルの名前に変換します。
       

	
        
        pg_walfile_name_offset ( lsn pg_lsn )
        record
        ( file_name text,
        file_offset integer )
       

       

先行書き込みログ（WAL）の位置を、その位置を保持しているWALファイルの名前とそのファイル内のバイトオフセットに変換します。
       

	
        
        pg_split_walfile_name ( file_name text )
        record
        ( segment_number numeric,
        timeline_id bigint )
       

       

WALファイル名からシーケンス番号とタイムラインIDを抽出します。
       

	
        
        pg_wal_lsn_diff ( lsn1 pg_lsn, lsn2 pg_lsn )
        numeric
       

       

2つの先行書き込みログ（WAL）の位置のバイト単位の差分(lsn1 - lsn2)を計算します。
これはpg_stat_replicationや表9.97「バックアップ制御関数」内の関数でレプリケーションの遅延を取得するために使用することができます。
       






pg_current_wal_lsnは、上記の関数で使用されるのと同じ書式で現在の先行書き込みログ（WAL）の書き込み位置を表示します。
同様にpg_current_wal_insert_lsnは、現在の先行書き込みログ（WAL）の挿入位置を表示し、pg_current_wal_flush_lsnはトランザクションログの現在のフラッシュ位置を表示します。
挿入位置は 「論理的」な任意の時点の先行書き込みログ（WAL）の終了位置です。
一方、書き込み位置は、サーバの内部バッファから書き出された実際の終了位置、またフラッシュ位置は永続的ストレージへの書き込みが保証される位置です。
書き込み位置はサーバ外部から検証可能なものの終端です。通常は、部分的に完了した先行書き込みログ（WAL）ファイルのアーカイブ処理を行いたい場合に必要とされるものです。
挿入およびフラッシュ位置はサーバをデバッグする際に主に使用されます。
これらはどちらも読み取りのみの操作であり、スーパーユーザ権限を必要としません。
   


pg_walfile_name_offsetを使用して、pg_lsn値から、対応する先行書き込みログ（WAL）ファイル名とバイトオフセットを取り出すことができます。
以下に例を示します。


postgres=# SELECT * FROM pg_walfile_name_offset((pg_backup_stop()).lsn);
        file_name         | file_offset
--------------------------+-------------
 00000001000000000000000D |     4039624
(1 row)



同様に、pg_walfile_nameは先行書き込みログファイル名のみを抽出します。
   


pg_split_walfile_nameは、ファイルオフセットとWALファイル名からLSNを計算するのに有用です。例を示します。


postgres=# \set file_name '000000010000000100C000AB'
postgres=# \set offset 256
postgres=# SELECT '0/0'::pg_lsn + pd.segment_number * ps.setting::int + :offset AS lsn
  FROM pg_split_walfile_name(:'file_name') pd,
       pg_show_all_settings() ps
  WHERE ps.name = 'wal_segment_size';
      lsn
---------------
 C001/AB000100
(1 row)


   

リカバリ制御関数





表9.98「リカバリ情報関数」に示される関数は、スタンバイサーバの現在のステータス情報を提供します。
これらの関数はリカバリ中、および通常稼働時に実行することができるでしょう。
   
表9.98 リカバリ情報関数
	

関数
       

       

説明
       

	
        
        pg_is_in_recovery ()
        boolean
       

       

まだリカバリ実施中であれば真を返します。
       

	
        
        pg_last_wal_receive_lsn ()
        pg_lsn
       

       

ストリーミングレプリケーションにより受信されディスクに同期書き込みされた、先行書き込みログ（WAL）の最後の位置を返します。
ストリーミングレプリケーションがまだ実行中の場合、この関数の戻り値は単調に増加します。
リカバリが完了した場合は、受信されディスクに書き込まれた最後のWALレコードの位置の値のまま変化しません。
ストリーミングレプリケーションが無効、もしくは開始されていない場合、この関数はNULLを返します。
       

	
        
        pg_last_wal_replay_lsn ()
        pg_lsn
       

       

リカバリ中に再生された最後の先行書き込みログ（WAL）の位置を返します。
リカバリがまだ実行中の場合、この関数の戻り値は単調に増加します。
リカバリが完了した場合は、リカバリ時に適用された最後のWALレコードの値のまま変化しません。
サーバがリカバリ処理無しに正常に開始された場合、この関数はNULLを返します。
       

	
        
        pg_last_xact_replay_timestamp ()
        timestamp with time zone
       

       

リカバリ中に再生された最後のトランザクションのタイムスタンプを返します。
このタイムスタンプは、プライマリにて該当するトランザクションがコミット、もしくはアボートされた際のWALレコードが生成された時刻です。
リカバリ中に何のトランザクションも再生されていない場合、この関数はNULLを返します。
リカバリがまだ実行中の場合、この関数の戻り値は単調に増加します。
リカバリが完了している場合、この関数の戻り値はリカバリ中に再生した最後のトランザクションの時間のまま変化しません。
サーバがリカバリ処理無しに正常に開始された場合、この関数はNULLを返します。
       

	
        
        pg_get_wal_resource_managers ()
        setof record
        ( rm_id integer,
        rm_name text,
        rm_builtin boolean )
       

       

システムに現在ロードされているWALリソースマネージャを返します。
列rm_builtinは、それが組み込みのリソースマネージャか、拡張によってロードされたカスタムリソースマネージャかを示します。
       






表9.99「リカバリ制御関数」に示す関数は、リカバリの進行を制御する関数です。
これらの関数はリカバリ中のみ実行することが可能です。
   
表9.99 リカバリ制御関数
	

関数
       

       

説明
       

	
        
        pg_is_wal_replay_paused ()
        boolean
       

       

リカバリの中断が要求された場合は真を返します。
       

	
        
        pg_get_wal_replay_pause_state ()
        text
       

       

リカバリの休止状態を返します。
休止が要求されていないければ、戻り値はnot pausedです。
休止が要求されていてリカバリがまだ休止していなければ、戻り値はpause requestedです。
リカバリが実際に休止していれば、戻り値はpausedです。
       

	
        
        pg_promote ( wait boolean DEFAULT true, wait_seconds integer DEFAULT 60 )
        boolean
       

       

スタンバイサーバをプライマリ状態に昇格します。
waitにtrue（デフォルト）を設定すると、この関数は昇格が完了するか、wait_seconds秒が経過するまで待ち、昇格に成功すればtrue、さもなければfalseを返します。
waitにfalseを設定すると、この関数は昇格を起こすためにpostmasterにSIGUSR1を送信した後、直ちにtrueを返します。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_wal_replay_pause ()
        void
       

       

リカバリの中断を要求します。
要求しても、それは直ちにリカバリが中断することを意味しません。
リカバリが実際に中断していることを保証したければ、 pg_get_wal_replay_pause_state()が返すリカバリ中断状態をチェックする必要があります。
pg_is_wal_replay_paused()は要求が行われたかどうかを返すことに注意してください。
リカバリが中断している間、データベースへの変更は適用されません。
ホットスタンバイが動作中はすべての新しい問い合わせはデータベースの一貫した同じスナップショットを参照することになり、リカバリが再開するまでそれ以上の問い合わせの衝突は起きません。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_wal_replay_resume ()
        void
       

       

リカバリが中断中なら再開します。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       






pg_wal_replay_pauseとpg_wal_replay_resumeは昇格が進行中は実行できません。
リカバリ中断中に昇格が引き起こされると中断状態は終了し、昇格が継続します。
   


ストリーミングレプリケーションが無効の場合、停止状態は特に問題なく永久に継続します。
ストリーミングレプリケーションの進行中は、WALレコードの受信が継続され、停止時間、WALの生成速度、ディスクの残存容量によりますが、ディスク溢れが発生する可能性があります。
   

スナップショット同期関数





PostgreSQL™はデータベースのセッションに対して、それらのスナップショットを同期させることが可能です。
スナップショットは、そのスナップショットを使用しているトランザクションにどのデータが可視かを決定します。
同期スナップショットは、2つ以上のセッションにおいて、全く同じデータベース内容を見たい場合に必要となります。
単に2つのセッションが独立してそれぞれのトランザクションを開始するだけでは、第3のトランザクションのコミットが、2つのトランザクションのSTART TRANSACTIONの狭間で実行され、そのため一方のトランザクションではそのコミット結果が見え、他方では見えないという可能性が常にあります。
   


このような問題を解決するため、PostgreSQL™ではトランザクションが使用しているスナップショットをエクスポートできるようになっています。エクスポートしたトランザクションが開かれ続けている限り、他のトランザクションがそれをインポートすることができ、
そしてこれにより最初のトランザクションと正確に同じとなるデータベースの可視性を保証されます。ただし、これらの(スナップショットを共有している)トランザクションによって発生したデータベースへの変更は、コミットされていないトランザクションによる変更と同様に、(スナップショットを共有している)他のトランザクションには見えないままです。
つまり、既存データに対しては同期されますが、それら自身による変更については通常の振る舞いをします。
   


スナップショットは、表9.100「スナップショット同期関数」に示すpg_export_snapshot関数を用いてエクスポートされ、SET TRANSACTION(7)コマンドを用いてインポートされます。
   
表9.100 スナップショット同期関数
	

関数
       

       

説明
       

	
        
        pg_export_snapshot ()
        text
       

       

現在のトランザクションのスナップショットを保存し、それを識別するtext文字列を返します。
この文字列は（データベースの外側で）スナップショットを取り込みたいクライアントに渡さなければなりません。
エクスポートしたトランザクションが終わるまでの間のみ、そのスナップショットをインポートすることができます。
       

       

必要ならばトランザクションは複数のスナップショットをエクスポートできます。
これはREAD COMMITTEDのトランザクションにおいてのみ有用であることに注意してください。
REPEATABLE READおよびそれ以上の分離レベルのトランザクションでは終了まで同じスナップショットを使うからです。
一旦スナップショットをエクスポートしたトランザクションでは、PREPARE TRANSACTION(7)による準備を使用することができなくなります。
       

	
        
        pg_log_standby_snapshot ()
        pg_lsn
       

       

bgwriterやcheckpointerがログするのを待たずに、実行中のトランザクションのスナップショットを取得し、それをWALに書き込みます。
これは、ロジカルデコーディングのスタンバイに対して便利です。ロジカルのスロットの作成は、このようなレコードがスタンバイで再生されるまで待たなければならないからです。
       





レプリケーション管理関数





表9.101「レプリケーション管理関数」に示す関数はレプリケーション機能を制御したり、情報を取得したりするためのものです。
基盤となっている機能の情報に関しては「ストリーミングレプリケーション」、「レプリケーションスロット」、48章レプリケーション進捗の追跡を参照してください。
これらの関数のレプリケーションオリジンでの使用はデフォルトでスーパーユーザにのみ許可されていますが、GRANTコマンドを使って他のユーザに許可することもできます。
これらの関数のレプリケーションスロットでの使用はスーパーユーザとREPLICATION権限を持つユーザに限定されています。
   


これらの関数の多くには、レプリケーションプロトコルに等価なコマンドがあります。
「ストリーミングレプリケーションプロトコル」を参照してください。
   


「バックアップ制御関数」、「リカバリ制御関数」、「スナップショット同期関数」に書かれている関数もレプリケーションに関係するものです。
   
表9.101 レプリケーション管理関数
	

関数
       

       

説明
       

	
        
        pg_create_physical_replication_slot ( slot_name name [, immediately_reserve boolean, temporary boolean ] )
        record
        ( slot_name name,
        lsn pg_lsn )
       

       

slot_nameという名前の新しい物理レプリケーションスロットを作成します。
2番目のパラメータはオプションで、trueの場合、このレプリケーションスロットのLSNが即座に予約されることを指定します。
それ以外の場合はLSNはストリーミングレプリケーションのクライアントから最初に接続された時に予約されます。
物理スロットからのストリーミングの変更はストリーミングレプリケーションプロトコルでのみ可能です。「ストリーミングレプリケーションプロトコル」を参照してください。
3番目のパラメータtemporaryはオプションで、trueに設定されるとそのスロットは永続的にディスクに保存されるものではなく、現在のセッションによってのみ用いられることを意図していることを指定します。
一時的なスロットはエラーが発生したときも解放されます。
この関数の呼び出しは、レプリケーションプロトコルコマンドCREATE_REPLICATION_SLOT ... PHYSICALと同じ効果があります。
       

	
        
        pg_drop_replication_slot ( slot_name name )
        void
       

       

slot_nameで指定した名前の物理的または論理レプリケーションスロットを削除します。
レプリケーションプロトコルコマンドDROP_REPLICATION_SLOTと同様です。
       

	
        
        pg_create_logical_replication_slot ( slot_name name, plugin name [, temporary boolean, twophase boolean, failover boolean ] )
        record
        ( slot_name name,
        lsn pg_lsn )
       

       

出力プラグインpluginを使ってslot_nameという名前の新しい論理（デコーディング）レプリケーションスロットを作ります。
3番目のオプションパラメータtemporaryをtrueに設定すると、このスロットを永続的にディスクに保存するべきではなく、現在のセッションでのみ使われることを意図します。
また、一時スロットはエラーが起きると解放されます。
オプションの4つ目の引数twophaseがtrueならば、準備されたトランザクションのデコードがこのスロットで可能になります。
オプションの5番目の引数failoverがtrueならば、このスロットがスタンバイに同期化できるようになり、フェイルオーバー後に論理レプリケーションを再開できるようになります。
この関数の呼び出しはレプリケーションプロトコルコマンドのCREATE_REPLICATION_SLOT ... LOGICALと同じ効果があります。
       

	
        
        pg_copy_physical_replication_slot ( src_slot_name name, dst_slot_name name [, temporary boolean ] )
        record
        ( slot_name name,
        lsn pg_lsn )
       

       

src_slot_nameという名前の既存の物理レプリケーションスロットをdst_slot_nameという名前の物理レプリケーションスロットにコピーします。
コピーされた物理スロットはソーススロットと同じLSNからWALの保存を開始します。
temporaryはオプションです。
temporaryを省略すると、ソーススロットと同じ値を使用します。
無効化されたスロットのコピーは許可されません。
       

	
        
        pg_copy_logical_replication_slot ( src_slot_name name, dst_slot_name name [, temporary boolean [, plugin name ]] )
        record
        ( slot_name name,
        lsn pg_lsn )
       

       

src_slot_nameという名前の既存の論理レプリケーションスロットをdst_slot_nameという名前の論理レプリケーションスロットにコピーします。オプションで出力プラグインと永続性を変更します。
コピーされた論理スロットはソース論理スロットと同じLSNから開始します。
temporaryとpluginはどちらもオプションです。
省略するとソース論理スロットと同じ値が使用されます。
ソース論理スロットのfailoverオプションはコピーされず、デフォルトでfalseに設定されます。
これは、スロットが同期中のスタンバイにフェイルオーバーした後、論理レプリケーションを継続できないリスクを回避するためです。
無効になったスロットのコピーは許可されません。
       

	
        
        pg_logical_slot_get_changes ( slot_name name, upto_lsn pg_lsn, upto_nchanges integer, VARIADIC options text[] )
        setof record
        ( lsn pg_lsn,
        xid xid,
        data text )
       

       

変更が最後に消費された時点から開始して、スロットslot_nameの変更を返します。
upto_lsnとupto_nchangesがNULLならばロジカルデコーディングはWALの最後まで続きます。
upto_lsnが非NULLであれば、デコードは指定されたLSNより前にコミットされたトランザクションのみを含みます。
upto_nchangesが非NULLであれば、デコードにより生成された行の数が指定された値を越えたときに、デコードは止まります。
しかしながら、新しいトランザクションの各コミットをデコードして生成された行を追加した後でしかこの制限は確認されませんので、実際に返される行の数は大きいかもしれないことに注意してください。
指定されたスロットがロジカルフェイルオーバースロットである場合、関数はsynchronized_standby_slotsで指定された全ての物理的スロットがWAL受信を確認するまで結果しません。
       

	
        
        pg_logical_slot_peek_changes ( slot_name name, upto_lsn pg_lsn, upto_nchanges integer, VARIADIC options text[] )
        setof record
        ( lsn pg_lsn,
        xid xid,
         data text )
       

       

変更が消費されないということを除いて、pg_logical_slot_get_changes()関数と同じように振る舞います。すなわち、将来の呼び出しでは再び同じものが返ります。
       

	
        
        pg_logical_slot_get_binary_changes ( slot_name name, upto_lsn pg_lsn, upto_nchanges integer, VARIADIC options text[] )
        setof record
        ( lsn pg_lsn,
        xid xid,
        data bytea )
       

       

変更はbyteaとして返されるということを除いてpg_logical_slot_get_changes()関数と同じように振る舞います。
       

	
        
        pg_logical_slot_peek_binary_changes ( slot_name name, upto_lsn pg_lsn, upto_nchanges integer, VARIADIC options text[] )
        setof record
        ( lsn pg_lsn,
        xid xid,
        data bytea )
       

       

変更はbyteaとして返されることを除いてpg_logical_slot_peek_changes()関数と同じように振る舞います。
       

	
        
        pg_replication_slot_advance ( slot_name name, upto_lsn pg_lsn )
        record
        ( slot_name name,
        end_lsn pg_lsn )
       

       

slot_nameという名前のレプリケーションスロットの現在の確認された位置を進めます。
スロットは後方には動きませんし、現在の挿入位置を超えて進むこともありません。
スロットの名前と前に進んだ実際の位置を返します。
前に進んだ場合は更新されたスロットに関する情報がこの後のチェックポイントで書き出されます。
クラッシュが発生すると、そのスロットは以前の位置に戻るかもしれません。
指定されたスロットがロジカルフェイルオーバースロットである場合、関数はsynchronized_standby_slotsで指定された全ての物理的スロットがWAL受信を確認するまで結果を返しません。
       

	
        
        pg_replication_origin_create ( node_name text )
        oid
       

       

指定した外部名でレプリケーション起点を作成し、割り当てられた内部IDを返します。
名前は512バイト以下である必要があります。
       

	
        
        pg_replication_origin_drop ( node_name text )
        void
       

       

以前に作成されたレプリケーション起点を、それに関連するすべての再生の進捗も含めて削除します。
       

	
        
        pg_replication_origin_oid ( node_name text )
        oid
       

       

レプリケーション起点を名前で検索し、内部IDを返します。
相当するレプリケーション起点が見つからない場合はNULLを返します。
       

	
        
        pg_replication_origin_session_setup ( node_name text )
        void
       

       

現在のセッションに、指定の起点から再生中であると印を付け、再生の進捗が追跡できるようにします。
起点が選択されていない場合にのみ使うことができます。
元に戻すにはpg_replication_origin_session_resetを使って下さい。
       

	
        
        pg_replication_origin_session_reset ()
        void
       

       

pg_replication_origin_session_setup()の効果を取り消します。
       

	
        
        pg_replication_origin_session_is_setup ()
        boolean
       

       

現在のセッションでレプリケーション起点が選択されていれば真を返します。
       

	
        
        pg_replication_origin_session_progress ( flush boolean )
        pg_lsn
       

       

現在のセッションで設定されたレプリケーション起点の再生位置を返します。
パラメータflushにより、対応するローカルトランザクションがディスクにフラッシュされていることが保証されるかどうかを決定します。
       

	
        
        pg_replication_origin_xact_setup ( origin_lsn pg_lsn, origin_timestamp timestamp with time zone )
        void
       

       

現在のトランザクションに、指定のLSNおよびタイムスタンプでコミットしたトランザクションを再生中であると印をつけます。
事前にレプリケーション起点がpg_replication_origin_session_setupを使って選択されている場合にのみ呼び出せます。
       

	
        
        pg_replication_origin_xact_reset ()
        void
       

       

pg_replication_origin_xact_setup()の効果を取り消します。
       

	
        
        pg_replication_origin_advance ( node_name text, lsn pg_lsn )
        void
       

       

指定したノードのレプリケーションの進捗を、指定の位置に設定します。
これは主に設定変更の後で初期位置や新しい位置を設定するときなどに役立ちます。
この関数を不注意に使うと、レプリケーションデータが一貫性を失うかもしれないことに注意して下さい。
       

	
        
        pg_replication_origin_progress ( node_name text, flush boolean )
        pg_lsn
       

       

指定したレプリケーション起点の再生位置を返します。
パラメータflushにより、対応するローカルトランザクションがディスクにフラッシュされていることが保証されるかどうかを決定します。
       

	
        
        pg_logical_emit_message ( transactional boolean, prefix text, content text [, flush boolean DEFAULT false] )
        pg_lsn
       

       
        pg_logical_emit_message ( transactional boolean, prefix text, content bytea [, flush boolean DEFAULT false] )
        pg_lsn
       

       

ロジカルデコーディングのメッセージを送出します
これは汎用的なメッセージをWALを通してロジカルデコーディングのプラグインに渡すのに使うことができます。
パラメータtransactionalは、メッセージが現在のトランザクションの一部なのか、あるいはすぐに書き込み、ロジカルデコーディングがレコードを読んだらすぐにデコードされるべきものなのかを指定します。
prefixパラメータは文字通りの接頭辞で、ロジカルデコーディングのプラグインが、自分にとって関心のあるメッセージを容易に認識できるように使われます。
contentパラメータはメッセージの内容で、テキストまたはバイナリ形式で与えられます。
flush（デフォルトはfalse）は、メッセージを即座にWALに吐き出すかどうかを制御します。
flushはtransactionalでは効果がありません。メッセージのWALレコードはトランザクションと共に吐き出されるからです。
       

	
        
        pg_sync_replication_slots ()
        void
       

       

プライマリサーバからスタンバイサーバへの論理フェイルオーバーレプリケーションスロットを同期します。
この機能は、スタンバイサーバでのみ実行できます。
一時的に同期されたスロットは、ロジカルデコーディングに使用できず、昇格後に破棄する必要があります。
詳細は「レプリケーションスロットの同期」を参照してください。
この関数は主にテストおよびデバッグを目的としているため、注意深く使用する必要があることに注意してください。
また、sync_replication_slotsが有効で、スロットの同期を実行するためにスロット同期ワーカーがすでに実行中の場合、この関数は実行できないことに注意してください。
       


       注意


関数の実行後に、スタンバイ側でhot_standby_feedbackが無効になったり、primary_slot_nameに設定された物理スロットが削除されたりすると、同期スロットの必要な行がプライマリサーバのVACUUM処理によって削除され、同期スロットが無効になる可能性があります。
        


      




データベースオブジェクト管理関数





表9.102「データベースオブジェクトサイズ関数」で示された関数はデータベースオブジェクトのディスク領域の使用状況を計算したり、使用結果の表示あるいは理解を補助します。
bigintの結果はバイト単位の大きさです。
関数に存在するオブジェクト以外のOIDが渡されるとNULLが返ります。
   
表9.102 データベースオブジェクトサイズ関数
	

関数
       

       

説明
       

	
        
        pg_column_size ( "any" )
        integer
       

       

個々のデータ値を格納するのに使用されるバイト数を表示します。
テーブルの列の値に直接適用すると、圧縮が行われていればそれを反映します。
       

	
        
        pg_column_compression ( "any" )
        text
       

       

個々の可変長値で使われた圧縮アルゴリズムを表示します。
値が圧縮されていなければ、NULLを返します。
       

	
        
        pg_column_toast_chunk_id ( "any" )
        oid
       

       

ディスク上のTOAST化された値のchunk_idを表示します。
値が非TOAST化されていたり、あるいはディスク上にない場合はNULLを返します。
TOASTについてのより詳しい情報は「TOAST」を参照してください。
       

	
        
        pg_database_size ( name )
        bigint
       

       
        pg_database_size ( oid )
        bigint
       

       

名前あるいはOIDで指定したデータベースによって使われている全ディスクスペースを計算します。
この関数を使うには、指定したデータベースにCONNECT権限（デフォルトで付与されています）を持っているか、pg_read_all_statsロールの権限を持っていなければいけません。
       

	
        
        pg_indexes_size ( regclass )
        bigint
       

       

指定したテーブルに付与されたインデックスで使用されている全ディスクスペースを計算します。
       

	
        
        pg_relation_size ( relation regclass [, fork text ] )
        bigint
       

       

指定したリレーションの一つの「fork」で使用されているディスクスペースを計算します。
（大抵の目的には、すべてのフォークのサイズを合計する高レベルのpg_total_relation_sizeあるいはpg_table_sizeを使う方が便利です。）
引数1つではリレーションの主データフォークのサイズを返します。
2番目の引数で対象となるのがどのフォークであるかを指定できます。
        
	

mainはリレーションの主データフォークのサイズを返します。
          

	

fsmを指定すると、リレーションに関連した空き領域マップ(「空き領域マップ」を参照)のサイズを返します。
          

	

vmを指定すると、リレーションに関連した可視性マップ(「可視性マップ」を参照)のサイズを返します。
          

	

initを指定すると、あれば、リレーションに関連した初期化フォークのサイズを返します。
          




       

	
        
        pg_size_bytes ( text )
        bigint
       

       

（pg_size_prettyが返す）人間が読めるフォーマットのサイズをバイトに変換します。
有効な値は、bytes、B、kB、MB、GB、TB、PBです。
       

	
        
        pg_size_pretty ( bigint )
        text
       

       
        pg_size_pretty ( numeric )
        text
       

       

バイトサイズを、サイズ単位(バイト、kB、MB、GB、TB、PBのうちの適切なもの)を使った、より人間が読みやすい形式に変換します。
単位は10のべき乗ではなく、2のべき乗であることに注意してください。ですから1kBは1024バイトで、1MBは10242 = 1048576バイト、などとなります。
       

	
        
        pg_table_size ( regclass )
        bigint
       

       

指定テーブルが使用している、インデックスを含まないディスクスペースを計算します。（ただしあればTOASTテーブル、空き領域マップ、可視性マップを含みます。）
       

	
        
        pg_tablespace_size ( name )
        bigint
       

       
        pg_tablespace_size ( oid )
        bigint
       

       

名前あるいはOIDで指定されたテーブル空間で使用されているディスクスペースを計算します。
現在のデータベースのデフォルトテーブル空間でない限り、この関数を使うには、指定したテーブル空間にCREATE権限を持っているか、pg_read_all_statsロールの権限を持っていなければいけません。
       

	
        
        pg_total_relation_size ( regclass )
        bigint
       

       

指定テーブルが使用している、インデックスとTOASTデータを含む全ディスクスペースを計算します。
結果はpg_table_size + pg_indexes_sizeと等価です。
       






上記の関数において、テーブルやインデックスをregclass引数として受け取って処理するものがありますが、この引数は単にpg_classシステムカタログにあるテーブルやインデックスのOIDです。
ただし、regclassデータ型が自動で入力変換を行うため、ユーザが手動で該当するOIDを調べる必要はありません。
詳細は「オブジェクト識別子データ型」を参照してください。
   


表9.103「データベースオブジェクト位置関数」 に示される関数は、データベースオブジェクトに関連する特定のディスクファイルを確認する際の手助けとなります。
   
表9.103 データベースオブジェクト位置関数
	

関数
       

       

説明
       

	
        
        pg_relation_filenode ( relation regclass )
        oid
       

       

指定されたリレーションに現在割り当てられている「ファイルノード」番号を返します。
ファイルノードは、リレーションに使用しているファイル名の基本要素です。(詳しくは「データベースファイルのレイアウト」を参照して下さい。)
ほとんどのリレーションについては、結果はpg_class.relfilenodeと同じになります。ただし、いくつかのシステムカタログではrelfilenodeがゼロになるため、これらのシステムカタログの正しいファイルノードを取得するには、この関数を使用しなければなりません。
この関数は、ビューの様にストレージに格納されないリレーションが指定された場合はNULLを返します。
       

	
        
        pg_relation_filepath ( relation regclass )
        text
       

       

リレーションのファイルパス名全体（データベースクラスタのデータディレクトリ、PGDATAからの相対）を返します。
       

	
        
        pg_filenode_relation ( tablespace oid, filenode oid )
        regclass
       

       

与えられたテーブル空間OIDとファイルノードに格納されているリレーションのOIDを返します。
これは本質的にpg_relation_filepathの逆マッピングです。
データベースのデフォルトテーブル空間内のテーブルに対しては、テーブル空間は0と指定できます。
指定された値に対応する現在のデータベースにリレーションがない、または一時的なリレーションとして扱われている場合はNULLを返します。
       






表9.104「照合順序管理関数」に照合順序の管理に使用される関数の一覧を示します。
   
表9.104 照合順序管理関数
	

関数
       

       

説明
       

	
        
        pg_collation_actual_version ( oid )
        text
       

       

オペレーティングシステムに現在インストールされている照合順序オブジェクトの実際のバージョンを返します。
これがpg_collation.collversionと異なると、その照合順序に依存しているオブジェクトは再構築の必要があるかも知れません。
ALTER COLLATION(7)も参照してください。
       

	
        
        pg_database_collation_actual_version ( oid )
        text
       

       

オペレーティングシステムに現在インストールされている照合順序オブジェクトの実際のバージョンを返します。
これがpg_database.datcollversionと異なると、その照合順序に依存しているオブジェクトは再構築の必要があるかも知れません。
ALTER DATABASE(7)も参照してください。
       

	
        
        pg_import_system_collations ( schema regnamespace )
        integer
       

       

オペレーティングシステム上にあるすべてのロケールに基づき、システムカタログpg_collationに照合順序を追加します。
これはinitdbが使用しているもので、より詳細については「照合順序の管理」を参照してください。
その後にオペレーティングシステムに追加のロケールをインストールした場合、この関数を再度実行して、その新しいロケールの照合順序を追加することができます。
pg_collationの既存のエントリにマッチするロケールはスキップされます。
（しかし、オペレーティングシステム上にもはや存在しなくなったロケールに基づく照合順序オブジェクトはこの関数では削除されません。）
schemaパラメータは通常はpg_catalogですが、必ずしもそうでなければならないわけではなく、照合順序をどれか他のスキーマにインストールすることもできます。
この関数は新しく作成された照合順序オブジェクトの数を返します。
この関数の利用はスーパーユーザにのみ限定されています。
       






表9.105「データベースオブジェクト統計情報操作関数」に統計情報の操作に使用される関数の一覧を示します。
これらの関数はリカバリ中には実行できません。
    
警告


これらの統計情報操作関数による変更は、autovacuum（または手動のVACUUMまたはANALYZE）によって上書きされる可能性があるため、一時的なものとみなすべきでしょう。
     


   
表9.105 データベースオブジェクト統計情報操作関数
	

関数
       

       

説明
       

	
        
        pg_restore_relation_stats (
        VARIADIC kwargs "any" )
        boolean
       

        

テーブルレベルの統計情報を更新します。
通常、これらの統計情報は自動的に収集されるか、VACUUM(7)またはANALYZE(7)の一部として更新されるため、この関数を呼び出す必要はありません。
ただし、リストア後にANALYZEがまだ実行されていない場合に、オプティマイザがより適切な計画を選択できるようにするために有用です。
        

        

追跡される統計情報はバージョンごとに変わる可能性があるため、引数はargnameとargvalueのペアとして次の形式で渡されます。


SELECT pg_restore_relation_stats(
    'arg1name', 'arg1value'::arg1type,
    'arg2name', 'arg2value'::arg2type,
    'arg3name', 'arg3value'::arg3type);


        

        

例えば、テーブルmytableのrelpagesおよびreltuplesの値を設定するには次のようにします。


SELECT pg_restore_relation_stats(
    'schemaname', 'myschema',
    'relname',    'mytable',
    'relpages',   173::integer,
    'reltuples',  10000::real);


        

        

引数schemanameとrelnameは必須であり、テーブルを指定します。
その他の引数は、pg_classの列に対応する統計情報の名前と値です。
現在サポートされているリレーション統計情報は、integer型の値を持つrelpages、real型の値を持つreltuples、integer型の値を持つrelallvisible、およびinteger型の値を持つrelallfrozenです。
        

        

さらに、この関数は、統計情報取得元のサーババージョンを指定するinteger型の引数名versionを受け入れます。
これは、古いバージョンのPostgreSQL™から統計情報を引き継ぐ際に役立つことが期待されています。
        

        

軽微なエラーはWARNINGとして報告されて無視され、残りの統計情報を引き続き復元します。
指定されたすべての統計情報が正常に復元された場合はtrueを返し、それ以外の場合はfalseを返します。
        

        

呼び出し元は、テーブルに対するMAINTAIN権限を持っているか、データベースの所有者である必要があります。
        

       
	
        
         
         pg_clear_relation_stats ( schemaname text, relname text )
         void
        

        

テーブルが新しく作成されたかのように、指定されたリレーションに対するテーブルレベルの統計情報を空にします。
        

        

呼び出し元は、テーブルに対するMAINTAIN権限を持っているか、データベースの所有者である必要があります。
        

       
	
        
        pg_restore_attribute_stats (
        VARIADIC kwargs "any" )
        boolean
       

        

列レベルの統計情報を作成または更新します。
通常、これらの統計情報は自動的に収集されるか、VACUUM(7)またはANALYZE(7)の一部として更新されるため、この関数を呼び出す必要はありません。
ただし、リストア後にANALYZEがまだ実行されていない場合に、オプティマイザがより適切な計画を選択できるようにするために有用です。
        

        

追跡される統計情報はバージョンごとに変わる可能性があるため、引数はargnameとargvalueのペアとして次の形式で渡されます。


SELECT pg_restore_attribute_stats(
    'arg1name', 'arg1value'::arg1type,
    'arg2name', 'arg2value'::arg2type,
    'arg3name', 'arg3value'::arg3type);


        

        

たとえば、テーブルmytableの属性col1にavg_widthおよびnull_fracの値を設定するには、次のようにします。


SELECT pg_restore_attribute_stats(
    'schemaname', 'myschema',
    'relname',    'mytable',
    'attname',    'col1',
    'inherited',  false,
    'avg_width',  125::integer,
    'null_frac',  0.5::real);


        

        

必要な引数は、テーブルを指定するtext型の値を持つschemanameとrelname、列を指定するtext型の値を持つattnameまたはsmallint型の値を持つattnum、および統計情報に子テーブルの値を含めるかどうかを指定するinheritedです。
その他の引数は、pg_statsの列に対応する統計情報の名前と値です。
        

        

さらに、この関数は、統計情報取得元のサーババージョンを指定するinteger型の引数名versionを受け入れます。
これは、古いバージョンのPostgreSQL™から統計情報を移植する際に役立つことが期待されています。
        

        

軽微なエラーはWARNINGとして報告されて無視され、残りの統計情報を引き続き復元します。
指定されたすべての統計情報が正常に復元された場合はtrueを返し、それ以外の場合はfalseを返します。
        

        

呼び出し元は、テーブルに対するMAINTAIN権限を持っているか、データベースの所有者である必要があります。
        

       
	
        
         
         pg_clear_attribute_stats (
         schemaname text,
         relname text,
         attname text,
         inherited boolean )
         void
        

        

テーブルが新しく作成されたかのように、指定されたリレーションと属性に対する列レベルの統計情報を空にします。
        

        

呼び出し元は、テーブルに対するMAINTAIN権限を持っているか、データベースの所有者である必要があります。
        

       





表9.106「パーティション情報関数」にパーティション化テーブルの構造に関する情報を提供する関数を示します。
   
表9.106 パーティション情報関数
	

関数
       

       

説明
       

	
        
        pg_partition_tree ( regclass )
        setof record
        ( relid regclass,
        parentrelid regclass,
        isleaf boolean,
        level integer )
       

       

1行1パーティションで与えられたパーティション化テーブルあるいはパーティション化インデックスのパーティションツリー内のテーブルあるいはインデックスの情報を表示します。
提供される情報にはパーティションOID、その直接の親のOID、パーティションが葉かどうかを示す真偽値、階層内のレベルを表す整数が含まれます。
レベル値は与えられたテーブルあるいはインデックスがパーティションツリーの根としての役割を持つことを表す0で始まり、1ならその直下のパーティション、2ならそのまた下のパーティションなどとなります。
リレーションが存在しない、あるいはパーティションでない、もしくはパーティション化テーブルでない場合は行を返しません。
       

	
        
        pg_partition_ancestors ( regclass )
        setof regclass
       

       

パーティション自身を含む、与えられたパーティションの先祖リレーションを列挙します。
リレーションが存在しない、あるいはパーティションでない、もしくはパーティション化テーブルでない場合は行を返しません。
       

	
        
        pg_partition_root ( regclass )
        regclass
       

       

与えられたリレーションが所属するパーティションツリーの最上位の親を返します。
リレーションが存在しない、あるいはパーティションでない、もしくはパーティション化テーブルでない場合はNULLを返します。
       






たとえばパーティション化テーブルmeasurementに含まれるデータの全体サイズを確認するには、次の問い合わせが利用できます。


SELECT pg_size_pretty(sum(pg_relation_size(relid))) AS total_size
  FROM pg_partition_tree('measurement');


   

インデックス保守関数





表9.107「インデックス保守関数」にインデックスの保守タスクに使用可能な関数を示します。
（これらの保守業務は通常自動バキュームが自動的に行うことに注意してください。これらの関数は特別な場合にのみ必要になります。）
これらの関数はリカバリ中は実行できません。
これらの関数の使用はスーパーユーザと対象のインデックスの所有者に限定されます。
   
表9.107 インデックス保守関数
	

関数
       

       

説明
       

	
        
        brin_summarize_new_values ( index regclass )
        integer
       

       

指定されたBRINインデックスを検査してベーステーブル内のインデックスによって現在要約されていないページ範囲を探します。
そのような範囲があれば、テーブルのページをスキャンして新しい要約インデックスタプルを作成します。
インデックスに挿入された新しいページ範囲要約の数を返します。
       

	
        
        brin_summarize_range ( index regclass, blockNumber bigint )
        integer
       

       

指定のブロックを含むページ範囲が、まだ要約されていなければ、要約します。
これはbrin_summarize_new_valuesと似ていますが、指定されたテーブルブロック番号のみを対象としてページ範囲を処理するところだけが異なります。
       

	
        
        brin_desummarize_range ( index regclass, blockNumber bigint )
        void
       

       

指定のテーブルブロックを含むページ範囲を要約するBRINインデックスタプルが存在する場合、それを削除します。
       

	
        
        gin_clean_pending_list ( index regclass )
        bigint
       

       

指定GINインデックスの「処理待ち」リストのエントリをメインのインデックスデータ構造に一括で移動します。
処理待ちリストから削除されたページ数を返します。
fastupdateオプションが無効で作成されたGINインデックスが引数なら、削除は起こらず結果がゼロになります。そのインデックスには処理待ちリストがないからです。
処理待ちリストとfastupdateオプションの詳細については「GIN高速更新手法」と「GINの小技」をご覧ください。
       





汎用ファイルアクセス関数





表9.108「汎用ファイルアクセス関数」で示されている関数はサーバをホスティングしているマシン上のファイルに対し、ネイティブのアクセスを提供します。
ユーザがスーパーユーザか、pg_read_server_filesロールを与えられていない限り、データベースクラスタディレクトリとlog_directoryに存在するファイルのみがアクセス可能です。
クラスタディレクトリ内のファイルに対して相対パスを、そしてログファイルに対してはlog_directory構成設定に一致するパスを使用してください。
   


ユーザに対してEXECUTE権限をpg_read_file()あるいは関連する関数に与えることは、サーバの上データベースサーバプロセスが読めるすべてのファイルを読めるようにすることになることに注意してください。これらの関数はデータベース内のすべての権限チェックをすり抜けます。
このことは、たとえばそのようなアクセス権を持つユーザは、認証情報が格納されたpg_authidテーブルの中身を読むことができますし、同様にデータベース内のすべてのテーブルデータを読むことができるということを意味します。
ですからこれらの関数にアクセス権限を与えるのは慎重に考慮したほうが良いでしょう。
   


これらの関数に権限を付与する場合、オプションパラメータを示すテーブルエントリは、ほとんどの場合、異なるパラメータリストを持つ複数の物理的な関数として実装されることに注意してください。
使用する場合は、各関数に対して個別に権限を付与する必要があります。
psqlの\dfコマンドは、実際の関数シグネチャが何であるかをチェックするのに役立ちます。
   


これらの関数の一部はオプションでmissing_okパラメータをとり、ファイルまたはディレクトリが存在しない場合の動作を指定できます。
trueの場合、関数はNULLを返すか、適切な場合には空の結果集合を返します。
falseの場合はエラーが発生します。
（「ファイルが見つかりません」以外の失敗条件は、どのケースでもエラーとして報告されます。）
デフォルトはfalseです。
   
表9.108 汎用ファイルアクセス関数
	

関数
       

       

説明
       

	
        
        pg_ls_dir ( dirname text [, missing_ok boolean, include_dot_dirs boolean ] )
        setof text
       

       

指定されたディレクトリ内のすべてのファイル（およびディレクトリと他の特殊ファイル）の名前を返します。
include_dot_dirsは「.」と「..」が結果集合に含まれるかどうかを指定します。
デフォルト(false)ではそれらを除外しますが、それらを含めると、missing_okがtrueの場合は、空のディレクトリと存在しないディレクトリを区別するために役立つでしょう。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_ls_logdir ()
        setof record
        ( name text,
        size bigint,
        modification timestamp with time zone )
       

       

サーバのログディレクトリ内の各通常ファイルについて、名前、サイズ、最終更新時刻（mtime）を返します。
ドットで始まるファイル名、ディレクトリ名その他の特殊なファイルは含まれません。
       

       

デフォルトではこの関数の実行はスーパーユーザとpg_monitorロールの権限を持つロールに限定されますが、他のユーザに関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_ls_waldir ()
        setof record
        ( name text,
        size bigint,
        modification timestamp with time zone )
       

       

先行書き込みログ（WAL）ディレクトリ内の各ファイルについて、名前、サイズ、最終更新時刻（mtime）を返します。
ドットで始まるファイル名、ディレクトリ名その他の特殊なファイルは含まれません。
       

       

デフォルトではこの関数の実行はスーパーユーザとpg_monitorロールの権限を持つロールに限定されますが、他のユーザに関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_ls_logicalmapdir ()
        setof record
        ( name text,
        size bigint,
        modification timestamp with time zone )
       

       

サーバのpg_logical/mappingsディレクトリ内の各通常ファイルについて、名前、サイズ、最終更新時刻（mtime）を返します。
ドットで始まるファイル名、ディレクトリ名その他の特殊なファイルは含まれません。
       

       

デフォルトではこの関数の実行はスーパーユーザとpg_monitorロールのメンバに限定されますが、他のユーザに関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_ls_logicalsnapdir ()
        setof record
        ( name text,
        size bigint,
        modification timestamp with time zone )
       

       

サーバのpg_logical/snapshotsディレクトリ内の各通常ファイルについて、名前、サイズ、最終更新時刻（mtime）を返します。
ドットで始まるファイル名、ディレクトリ名その他の特殊なファイルは含まれません。
       

       

デフォルトではこの関数の実行はスーパーユーザとpg_monitorロールのメンバに限定されますが、他のユーザに関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_ls_replslotdir ( slot_name text )
        setof record
        ( name text,
        size bigint,
        modification timestamp with time zone )
       

       

サーバのpg_replslot/slot_name内の各ファイルについて、名前、サイズ、最終更新時刻（mtime）を返します。
slot_nameは、関数の入力として提供されているレプリケーションスロットの名前です。
ドットで始まるファイル名、ディレクトリ名その他の特殊なファイルは含まれません。
       

       

デフォルトではこの関数の実行はスーパーユーザとpg_monitorロールのメンバに限定されますが、他のユーザに関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_ls_summariesdir ()
        setof record
        ( name text,
        size bigint,
        modification timestamp with time zone )
       

       

サーバのWAL要約ディレクトリ（pg_wal/summaries）内の各ファイルについて、名前、サイズ、および最終更新時間（mtime）を返します。
ドットで始まるファイル名、ディレクトリ、その他の特殊ファイルは含まれません。
       

       

デフォルトではこの関数の実行はスーパーユーザとpg_monitorロールのメンバに限定されますが、他のユーザに関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_ls_archive_statusdir ()
        setof record
        ( name text,
        size bigint,
        modification timestamp with time zone )
       

       

WALアーカイブステータスディレクトリ(pg_wal/archive_status)内の各ファイルについて、名前、サイズ、最終更新時刻（mtime）を返します。
ドットで始まるファイル名、ディレクトリ名その他の特殊なファイルは含まれません。
       

       

デフォルトではこの関数の実行はスーパーユーザとpg_monitorロールのメンバに限定されますが、他のユーザに関数を実行するEXECUTE権限を与えることができます。
       

	

        
        pg_ls_tmpdir ( [ tablespace oid ] )
        setof record
        ( name text,
        size bigint,
        modification timestamp with time zone )
       

       

指定されたtablespace内の一時ファイルディレクトリ内の各ファイルについて、名前、サイズ、最終更新時刻（mtime）を返します。
tablespaceが与えられなければpg_defaultテーブル空間が検査されます。
ドットで始まるファイル名、ディレクトリ名その他の特殊なファイルは含まれません。
       

       

デフォルトではこの関数の実行はスーパーユーザとpg_monitorロールのメンバに限定されますが、他のユーザに関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_read_file ( filename text [, offset bigint, length bigint ] [, missing_ok boolean ] )
        text
       

       

与えられたoffsetから始まり、最大lengthバイト（先にファイルの終りに到達すればこれより少なくなります）テキストファイルの全部または一部分を返します。
offsetが負の場合にはファイルの終りから数えた位置から読み出します。
offsetとlengthが省略された場合、ファイル全体が返されます。
ファイルから読み込まれたバイトは、そのサーバの符号化方式での文字列として解釈されます。
読み込んだバイト列がその符号化方式において有効でない場合にはエラーが投げられます。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_read_binary_file ( filename text [, offset bigint, length bigint ] [, missing_ok boolean ] )
        bytea
       

       

ファイルの一部あるいは全部を返します。
結果がtextではなくてbytea値となり、任意のバイナリデータを読み出すことができることを除き、pg_read_fileと同じです。
従って符号化方式の検査は行われません。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

       

convert_from関数と組み合わせることで、この関数を、指定した符号化方式でファイルを読み込んでデータベース符号化方式に変換することができます。


SELECT convert_from(pg_read_binary_file('file_in_utf8.txt'), 'UTF8');


       

	
        
        pg_stat_file ( filename text [, missing_ok boolean ] )
        record
        ( size bigint,
        access timestamp with time zone,
        modification timestamp with time zone,
        change timestamp with time zone,
        creation timestamp with time zone,
        isdir boolean )
       

       

ファイル容量、最終アクセス時刻、最終更新時刻、最後にファイルステータスを変更した時刻（これはUnixプラットフォームのみ）、ファイル作成時刻（Windowsのみ）および、ディレクトリかどうかを示すフラグを返します。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       





勧告的ロック用関数





表9.109「勧告的ロック用関数」に示す関数は勧告的ロックを管理します。
これらの関数の適切な使用方法についての詳細は、「勧告的ロック」を参照してください。
   


これらの関数はすべて単一の64ビットキー値か2つの32ビットキー値（これらのキー空間は重なり合わないことに注意してください）で識別されるアプリケーション定義のリソースをロックするために使うことを意図しています。
他のセッションがすでに同じリソース識別子とコンフリクトするロックを保持していたら、関数はリソースが利用可能になるまで待つか、その関数にとって適切ならばfalseを結果として返します。
ロックは共有はあるいは排他のどちらも可能です。共有ロックは同じリソースに対して他の共有ロックとコンフリクトしません。排他ロックとだけコンフリクトします。
ロックはセッションレベル（ロックは解放されるまで保持するかセッションの終了まで保持します）あるいはトランザクションレベル（ロックは現在のトランザクションが終了するまで保持します。手動で解放する方法はありません）で取得できます。
複数のセッションレベルロック要求は積み重ねられます。これにより、同じリソース識別子が3回ロックされると、セッション終了前にそのリソースを解放するアンロック要求が3回発行されなければならなくなります。
   
表9.109 勧告的ロック用関数
	

関数
       

       

説明
       

	
        
        pg_advisory_lock ( key bigint )
        void
       

       
        pg_advisory_lock ( key1 integer, key2 integer )
        void
       

       

必要なら待ってからセッションレベルの排他勧告的ロックを獲得します。
       

	
        
        pg_advisory_lock_shared ( key bigint )
        void
       

       
        pg_advisory_lock_shared ( key1 integer, key2 integer )
        void
       

       

必要なら待ってからセッションレベルの共有勧告的ロックを獲得します。
       

	
        
        pg_advisory_unlock ( key bigint )
        boolean
       

       
        pg_advisory_unlock ( key1 integer, key2 integer )
        boolean
       

       

事前に獲得したセッションレベルの排他的勧告ロックを解放します。
ロックの解放に成功した場合、trueを返します。
ロックを保持していない場合、falseを返し、さらに、SQL警告がサーバから報告されます。
       

	
        
        pg_advisory_unlock_all ()
        void
       

       

現在のセッションで保持するセッションレベルの勧告的ロックをすべて解放します。
（この関数は、クライアントとの接続が不用意に切れた場合でも、セッション終了時に暗黙的に呼び出されます。）
       

	
        
        pg_advisory_unlock_shared ( key bigint )
        boolean
       

       
        pg_advisory_unlock_shared ( key1 integer, key2 integer )
        boolean
       

       

事前に獲得したセッションレベルの共有勧告的ロックを解放します。
ロックの解放に成功した場合、trueを返します。
ロックを保持していない場合、falseを返し、さらに、SQL警告がサーバから報告されます。
       

	
        
        pg_advisory_xact_lock ( key bigint )
        void
       

       
        pg_advisory_xact_lock ( key1 integer, key2 integer )
        void
       

       

必要なら待ってからトランザクションレベルの排他勧告的ロックを獲得します。
       

	
        
        pg_advisory_xact_lock_shared ( key bigint )
        void
       

       
        pg_advisory_xact_lock_shared ( key1 integer, key2 integer )
        void
       

       

必要なら待ってからトランザクションレベルの共有勧告的ロックを獲得します。
       

	
        
        pg_try_advisory_lock ( key bigint )
        boolean
       

       
        pg_try_advisory_lock ( key1 integer, key2 integer )
        boolean
       

       

可能ならセッションレベルの排他勧告的ロックを獲得します。
これは直ちにロックを取得してtrueを返すか、直ちにロックを取得できない場合は待たずにfalseを返します。
       

	
        
        pg_try_advisory_lock_shared ( key bigint )
        boolean
       

       
        pg_try_advisory_lock_shared ( key1 integer, key2 integer )
        boolean
       

       

可能ならセッションレベルの共有勧告的ロックを獲得します。
これは直ちにロックを取得してtrueを返すか、直ちにロックを取得できない場合は待たずにfalseを返します。
       

	
        
        pg_try_advisory_xact_lock ( key bigint )
        boolean
       

       
        pg_try_advisory_xact_lock ( key1 integer, key2 integer )
        boolean
       

       

可能ならトランザクションレベルの排他勧告的ロックを獲得します。
これは直ちにロックを取得してtrueを返すか、直ちにロックを取得できない場合は待たずにfalseを返します。
       

	
        
        pg_try_advisory_xact_lock_shared ( key bigint )
        boolean
       

       
        pg_try_advisory_xact_lock_shared ( key1 integer, key2 integer )
        boolean
       

       

可能ならトランザクションレベルの共有勧告的ロックを獲得します。
これは直ちにロックを取得してtrueを返すか、直ちにロックを取得できない場合は待たずにfalseを返します。
       






トリガ関数





多くの場合トリガにはユーザ記述のトリガ関数が必要になりますが、PostgreSQL™はユーザ定義トリガで直接使用できる小数の組み込みの取り化関数を提供しています。
これらは表9.110「組み込みトリガ関数」にまとめられています。
（追加の組み込みトリガ関数があり、外部キー制約と遅延インデックス制約を実装しています。
ユーザがこれらを直接必要とすることはないので、ここには記述されていません。）
  


トリガ作成についてのより詳細はCREATE TRIGGER(7)を参照してください。
  
表9.110 組み込みトリガ関数
	

関数
       

       

説明
       

       

使用例
       

	
        
        suppress_redundant_updates_trigger ( )
        trigger
       

       

do-nothing更新操作を抑止します。
詳細は以下を参照してください。
       

       
        CREATE TRIGGER ... suppress_redundant_updates_trigger()
       

	
        
        tsvector_update_trigger ( )
        trigger
       

       

関連付けされた平文文書列から自動的にtsvector列を更新します。
使用するテキスト検索設定はトリガ引数で指定します。
詳細は「自動更新のためのトリガ」をご覧ください。
       

       
        CREATE TRIGGER ... tsvector_update_trigger(tsvcol, 'pg_catalog.swedish', title, body)
       

	
        
        tsvector_update_trigger_column ( )
        trigger
       

       

関連付けされた平文文書列から自動的にtsvector列を更新します。
使用するテキスト検索設定はテーブルのregconfig列が用いられます。
詳細は「自動更新のためのトリガ」をご覧ください。
       

       
        CREATE TRIGGER ... tsvector_update_trigger_column(tsvcol, tsconfigcol, title, body)
       






行レベルBEFORE UPDATEトリガとしてsuppress_redundant_updates_trigger関数が適用されると、実際には行の中でデータを変更しない更新が行われるのを防ぎます。
これはデータが変更されるかどうかに関わらず、物理的に行の更新を行う通常の振る舞いを置き換えます。
（この通常の動作は、検査を必要としないため更新をより迅速に行い、場合によっては便利です。）
    


理想的には、通常実際レコード内のデータを変更しない更新の実行を避けるべきです。
冗長な更新により、特に変更対象の多くのインデックスが存在する場合、無視できない不要な時間にかかるコストが発生することがあります。
また、最後にはバキュームしなければならなくなる不要行が場所を取ることになります。
しかし、こうした状況をクライアント側で判定することは常に簡単ではありません。
また、可能であったとしても、それを検知するための式の記述はエラーを招きがちです。
他の方法として、suppress_redundant_updates_triggerを使用することがあります。
これはデータを変更しない更新をスキップします。
しかしこの関数は注意して使用しなければなりません。
このトリガはレコードごとに小さな、しかし僅かではない時間がかかります。
このため、更新が影響するレコードのほとんどが実際に変更された場合、このトリガは平均すると更新の実行を低速にします。
    


suppress_redundant_updates_trigger関数は以下のようにテーブルに追加できます。


CREATE TRIGGER z_min_update
BEFORE UPDATE ON tablename
FOR EACH ROW EXECUTE FUNCTION suppress_redundant_updates_trigger();



ほとんどの場合、行を変更するかも知れない他のトリガを置き換えないために、それぞれの行に対しこのトリガを最後に起動させる必要があります。
トリガは名前順に起動されることを判っているとして、テーブル上に存在する可能性のある他のトリガの名前の後に続くようトリガ名を選択できます。
（それで例中に「z」接頭辞があります。）
    

イベントトリガ関数





PostgreSQL™はイベントトリガについての情報を取得するために以下のヘルパ関数を提供しています。
   


イベントトリガについての詳細は38章イベントトリガを参照して下さい。
   
コマンド側での変更を捕らえる




pg_event_trigger_ddl_commands () setof record



pg_event_trigger_ddl_commandsがddl_command_endイベントトリガに付与された関数から起動されると、各ユーザの操作によって実行されたDDLコマンドの一覧を返します。
それ以外の環境から呼び出された場合はエラーが発生します。
pg_event_trigger_ddl_commandsは、実行された基となるコマンドのそれぞれについて1行を返します。
1つのSQL文として実行されるいくつかのコマンドに対して、複数の行が返されることもあります。
この関数は以下の列を返します。

    
	名前	型	説明
	classid	oid	オブジェクトが属するカタログのOID
	objid	oid	カタログ内のオブジェクトのOID
	objsubid	integer	オブジェクトのサブID（例えば、列の列番号）
	command_tag	text	コマンドのタグ
	object_type	text	オブジェクトの型
	schema_name	text	

オブジェクトが属するスキーマの名前（あれば）。
なければNULL。
引用符づけされない。
        
	object_identity	text	

オブジェクトの識別をテキスト表現したもので、スキーマ修飾される。
識別内に存在する各識別子は、必要なら引用符で括られる。
        
	in_extension	boolean	コマンドが拡張のスクリプトの一部なら真
	command	pg_ddl_command	

コマンドを内部形式で完全に表現したもの。
これを直接出力することはできないが、コマンドについて他の情報を得るために、他の関数に渡すことができる。
        



   

DDLコマンドで削除されたオブジェクトの処理




pg_event_trigger_dropped_objects () setof record



関数pg_event_trigger_dropped_objectsは、それが呼ばれたsql_dropイベントのコマンドにより削除された全てのオブジェクトのリストを返します。
それ以外の状況で呼ばれた場合、エラーが生じます。
この関数は以下の列を返します。

    
	名前	型	説明
	classid	oid	オブジェクトが所属するカタログのOID
	objid	oid	カタログ内に所有するオブジェクトのOID
	objsubid	integer	オブジェクトのサブID（例えば、列の列番号）
	original	boolean	これが削除のルートオブジェクトの一つなら真
	normal	boolean	

このオブジェクトへと至る依存関係グラフで、通常の依存があるなら真
        
	is_temporary	boolean	

オブジェクトが一時オブジェクトであったなら真
        
	object_type	text	オブジェクトの型
	schema_name	text	

オブジェクトが所属しているスキーマの名前（あれば）。
なければNULL。
引用符づけされない。
        
	object_name	text	

スキーマと名前の組み合わせがオブジェクトに対する一意の識別子として使用可能な場合はオブジェクトの名前。そうでないときはNULL。
引用符は適用されず、名前は決してスキーマで修飾されない。
        
	object_identity	text	

オブジェクト識別のテキスト表現で、スキーマ修飾される。
識別内に存在する各識別子は必要であれば引用符で括られる。
        
	address_names	text[]	

object_typeおよびaddress_argsと一緒にpg_get_object_address()で使うことで、同じ種類で全く同じ名前のオブジェクトを含むリモートサーバ内のオブジェクトアドレスを再作成できる配列。
        
	address_args	text[]	

address_namesの補足。
        



   


関数pg_event_trigger_dropped_objectsは以下のようにイベントトリガとして使用可能です。


CREATE FUNCTION test_event_trigger_for_drops()
        RETURNS event_trigger LANGUAGE plpgsql AS $$
DECLARE
    obj record;
BEGIN
    FOR obj IN SELECT * FROM pg_event_trigger_dropped_objects()
    LOOP
        RAISE NOTICE '% dropped object: % %.% %',
                     tg_tag,
                     obj.object_type,
                     obj.schema_name,
                     obj.object_name,
                     obj.object_identity;
    END LOOP;
END;
$$;
CREATE EVENT TRIGGER test_event_trigger_for_drops
   ON sql_drop
   EXECUTE FUNCTION test_event_trigger_for_drops();


    

テーブル書き換えイベントの処理





表9.111「テーブル書き換え情報関数」に示す関数は、table_rewriteイベントが呼び出されたばかりのテーブルについての情報を提供します。
それ以外の状況で呼び出された場合はエラーが発生します。
   
表9.111 テーブル書き換え情報関数
	

関数
       

       

説明
       

	
        
        pg_event_trigger_table_rewrite_oid ()
        oid
       

       

書き換えようとされているテーブルのOIDを返します。
       

	
        
        pg_event_trigger_table_rewrite_reason ()
        integer
       

       

書き換えの理由を説明するコードを返します。
値は、次の値から作成されたビットマップです：1（テーブルの永続性が変更された）、2（列のデフォルト値が変更された）、4（列に新しいデータ型ある）および8（テーブルアクセスメソッドが変更された）。
       






これらの関数はイベントトリガ中で次のように使用できます。


CREATE FUNCTION test_event_trigger_table_rewrite_oid()
 RETURNS event_trigger
 LANGUAGE plpgsql AS
$$
BEGIN
  RAISE NOTICE 'rewriting table % for reason %',
                pg_event_trigger_table_rewrite_oid()::regclass,
                pg_event_trigger_table_rewrite_reason();
END;
$$;

CREATE EVENT TRIGGER test_table_rewrite_oid
                  ON table_rewrite
   EXECUTE FUNCTION test_event_trigger_table_rewrite_oid();


    


統計情報関数





PostgreSQL™はCREATE STATISTICSコマンドを使って定義した複雑な統計を調べる関数を提供しています。
   
MCVリストの検査




pg_mcv_list_items ( pg_mcv_list ) setof record



pg_mcv_list_itemsは複数列MCVリストに格納されたすべての項目を列挙します。
この関数は次の列を返します。

    
	名前	型	説明
	index	integer	MCVリスト内の項目のインデックス
	values	text[]	MCV項目に格納された値
	nulls	boolean[]	NULL値を識別するフラグ
	frequency	double precision	このMCV項目の頻度
	base_frequency	double precision	このMCV項目のベース頻度



   


pg_mcv_list_items関数は次のように使用することができます。



SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
                pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts';




pg_mcv_list型の値はpg_statistic_ext_data.stxdmcv列からのみ得られます。
   


第10章 型変換





意図的かどうかにかかわらず、SQLの問い合わせでは1つの式の中に異なる型を混ぜ合わせた式を持つことができます。
PostgreSQL™は、異なる型が混在する式の評価に関して幅広い能力を持っています。



多くの場合、ユーザは型変換機構の詳細を理解する必要はありません。
しかし、PostgreSQL™によって暗黙的に行われる変換は問い合わせの結果に影響を及ぼします。
必要に応じて、明示的な型変換を用いて結果を目的とするものに合わせることができます。



本章では、PostgreSQL™の型変換機構とその規定について紹介します。
特定のデータ型、使用できる関数と演算子についての情報については、8章データ型と9章関数と演算子の関連する節を参照してください。

概要





SQLは強く型付けされた言語です。
つまり、各データ項目は、その動作と許される使用方法を決定するデータ型を所有しています。
PostgreSQL™には、他のSQLの実装よりもより一般的で柔軟性のある、拡張可能な型システムがあります。
このために、PostgreSQL™でのほとんどの型変換の動作は、特定の目的について勝手に作り上げられることなく一般的な規則で管理されています。
これにより、ユーザ定義型についても型の混在する式を使用できます。



PostgreSQL™のスキャナ/パーサは字句要素を、整数、非整数値、文字列、識別子、キーワードという5個の基礎カテゴリに分解します。
ほとんどの非数値型定数は、まず文字列にクラス分けされます。
SQL言語定義では、文字列で型の名前を指定することを許していて、パーサが正しい手順に沿って処理を始められるようにPostgreSQL™も採用しています。
例えば、以下のような問い合わせを考えてみましょう。



SELECT text 'Origin' AS "label", point '(0,0)' AS "value";

 label  | value
--------+-------
 Origin | (0,0)
(1 row)




この問い合わせは、textとpointという2つの型を指定したリテラル定数を持ちます。
文字列リテラルに型が指定されていない場合、後述するように、後の段階で解決されるようにとりあえず場所を確保するための型であるunknownが割り当てられます。



PostgreSQL™のパーサには、個別の型変換規則が必要な4つの基礎的なSQL構成要素があります。


	

関数呼び出し

	

PostgreSQL™型システムの大部分は、高度な関数群によって構築されています。
関数は複数の引数を取ることができます。
PostgreSQL™では関数のオーバーロードが可能ですので、関数名だけでは呼び出すべき関数を一意に識別できません。
パーサは、提供される引数のデータ型に基づいて、正しい関数を選択しなければなりません。


	

演算子

	

PostgreSQL™では、（引数が2つの）中置演算子と同様に、（引数が1つの）前置演算子を持つ式が使用できます。
関数と同様、演算子もオーバーロード可能ですので、正しい演算子を選択する時に同じ問題が存在します。


	

値の格納

	

SQLのINSERTとUPDATE文は式の結果をテーブルに格納します。
文内の式は対象となる列の型に一致する、または、変換できるものである必要があります。


	

UNION、CASE、および関連する構文

	

UNIONを構成するSELECT文からの選択結果は全て、ある1つの列集合として現れなければいけませんので、各SELECT句の結果型は統一された集合に一致し変換できる必要があります。
同様に、CASE構文が全体として既知の出力型を持つようになるために、CASE構文の結果式は共通の型に変換される必要があります。
ARRAY[]のような他のいくつかの構文やGREATEST関数、LEAST関数は、同様に副式に対して共通の型の決定を要求します。








システムカタログには、どのデータ型の間にどのような変換、すなわちキャストがあるのか、また、その変換をどのように実行するのかに関する情報を格納します。
ユーザはCREATE CAST(7)コマンドを使用してキャストを追加できます。
（これは通常新しいデータ型を定義する時にまとめて行われます。
組み込み型間のキャスト集合は注意深く作成されており、変更しないことが最善です。）



暗黙のキャストを持つデータ型間の処理において、適切なキャスト処理のより良い決定を行えるようパーサは追加の自律機構を備えています。
データ型は、boolean、numeric、string、bitstring、datetime、timespan、geometric、network、及びユーザ定義を含むいくつかの基本的な型カテゴリに分けられます。
（一覧は表52.65「typcategoryのコード」を参照してください。ですが、独自の型カテゴリを作成するのも可能なことに注意してください。）
各カテゴリには、候補となる型の選択があった場合に、優先される1つ以上の優先される型がある場合があります。
優先される型と利用可能な暗黙のキャストを注意して選択すれば、曖昧な式（複数の解析結果候補を持つもの）が有効な方法で解決されることを保証することが可能です。



全ての型変換規則は次のようないくつかの基本的な考え方に基づいて設計されています。


	

暗黙的な変換は、意外な、あるいは予想できない結果を決して生成させてはなりません。


	

暗黙的な型変換を必要としない問い合わせの場合、パーサやエグゼキュータに余計なオーバーヘッドがあるべきではありません。
つまり、問い合わせ文がきちんとまとめられ、型が既に一致するものになっていれば、パーサ内で余計な時間を費やさず、また、問い合わせに不要な暗黙的な型変換関数が使用されないように、問い合わせは処理されるべきです。


	

さらに、もし問い合わせが関数のために暗黙的な変換を通常要求しており、そして、ユーザが正しい引数型を持つ関数を新しく定義した場合、パーサはこの新しい関数を使うべきであり、もはや古い関数を使うために暗黙的な変換を行わないようにすべきです。








演算子





演算式に参照される特定の演算子は、以下の手順を用いて決定されます。
関連する演算子の優先順位によりどの下位式をどの演算子の入力と見なすかが決定されますので、この手順はこの優先順位により間接的な影響を受けることに注意してください。
詳細は「演算子の優先順位」を参照してください。
  
手順10.1 演算子における型の解決
	

pg_operatorシステムカタログから、調査の対象とする演算子を選択します。
スキーマ修飾がされていない演算子名が使用される場合（通常の場合）、現行の検索パスで可視になっていて、同一の名前と引数の数を持つ演算子が調査対象であるとみなされます
（「スキーマ検索パス」を参照してください）。
修飾された演算子名が与えられている場合、指定されたスキーマの演算子のみが調査対象とみなされます。

	

検索パスで引数のデータ型が同じである複数の演算子を検出した場合、そのパスで最初に検出された演算子のみを調査対象とみなします。
引数のデータ型が異なる演算子は、検索パス内の位置に関係なく、同じように調べられます。




	

正確に入力引数型を受け付ける演算子があるかどうか検査します。
該当する演算子があれば（調査される演算子の集合内で正確に一致するものは1つしかあり得ません）、それを使用します。
正確に一致するものがない場合、信用できないユーザにオブジェクトの作成を許可しているスキーマで見つかる演算子を、(典型的なものではないですが)修飾された名前で
  [9]

呼び出す時にセキュリティの危険が発生します。
そのような状況では、強制的に正確に一致するように引数をキャストしてください。

	

二項演算子の1つの引数がunknown型であった場合、この検査のもう片方の引数と同一の型であると仮定します。
2つのunknown入力、もしくはunknown入力を伴う前置演算子が呼び出された場合、この段階で対を見つけることはありません。


	

二項演算子の1つの引数がunknown型であり、もう1つがドメイン型の場合、次に両側でドメインの基本型を厳密に受け付ける演算子があるかを確認します。




	

最もよく合うものを検索します。

	

演算子の候補のうち、入力値のデータ型が一致せず、また、（暗黙的な変換を使用して）一致するように変換できないものを破棄します。
unknownリテラルは、上記の目的で何にでも変換可能とみなされます。
1つの候補しか残らない場合、それを使います。
それ以外の場合は次の段階に進みます。


	

入力引数のいずれかがドメイン型であれば、以降の段階すべてでドメインの基本型であるかのように扱います。
これにより、曖昧な演算子を解決するのを目的としてその基本型であるかのようにドメインが振る舞うことが確実になります。


	

全ての候補を検索し、入力型に最も正確に合うものを残します。
正確に合うものが何もなければ全ての候補を残します。
1つの候補しか残らない場合、それを使います。
それ以外の場合は次の段階に進みます。


	

全ての候補を検索し、型変換が必要とされる所で（入力データ型カテゴリの）優先される型を受け付けるものを残します。
優先される型を受け付けるものが何もなければ全ての候補を残します。
1つの候補しか残らない場合、それを使います。
それ以外の場合は次の段階に進みます。


	

入力引数でunknownのものがあった場合、それらの残った候補に引数位置で受け入れられる型カテゴリを検査します。
各位置において、候補がstringカテゴリを受け付ける場合は、そのカテゴリを選択します。
（unknown 型のリテラルは文字列のようなものですので、この文字列への重み付けは適切です。）
そうでなければ、もし残った全ての候補が同じ型カテゴリを受け入れる場合はそのカテゴリを選択します。
そうでもなければ、さらに手掛かりがなければ正しい選択が演繹されることができませんので、失敗となります。
ここで、選択された型カテゴリを受け付けない演算子候補は破棄されます。
さらに、それらカテゴリ内の優先される型を受け付ける候補が1つでもある場合、その引数の優先されない型を受け付ける候補は破棄されます。
これらの検査をどれも通らなかったら全ての候補を残します。
1つの候補しか残らない場合、それを使います。
それ以外の場合は次の段階に進みます。


	

もしunknownと既知の型の引数の両方があり、そして全ての既知の型の引数が同じ型を持っていた場合、unknown引数も同じ型であると仮定し、
どの候補がunknown引数の位置にある型を受け付けることができるかを検査します。
正確に1つの候補がこの検査を通過した場合、それを使います。それ以外は失敗します。








以下に例を示します。

例10.1 平方根演算子の型解決


平方根演算子として、double precisionを引数とするものが標準カタログ内に1つのみ定義されています（|/を前に付けます）。
スキャナは、以下の問い合わせ式の引数にまずinteger型を割り当てます。


SELECT |/ 40 AS "square root of 40";
 square root of 40
-------------------
 6.324555320336759
(1 row)




パーサはオペランドを型変換し、問い合わせは以下と等価になります。



SELECT |/ CAST(40 AS double precision) AS "square root of 40";





例10.2 文字列連結演算子の型解決


文字列類似構文は、文字列の作業の他、複雑な拡張型の作業にも使用されます。
型の指定がない文字列は、類似演算子候補に一致します。



例えば、以下は指定がない引数が1つあります。


SELECT text 'abc' || 'def' AS "text and unknown";

 text and unknown
------------------
 abcdef
(1 row)





この場合、パーサは両引数でtextを取る演算子があるかどうかを検索します。
この演算子は存在しますので、第二引数はtext型として解釈されるものと仮定されます。



以下は型の指定がない2つの値の連結です。


SELECT 'abc' || 'def' AS "unspecified";

 unspecified
-------------
 abcdef
(1 row)





この場合、問い合わせ内に型が指定されていませんので、どの型を使用すべきかについての初期の指針がありません。
ですから、パーサは全ての演算子候補を検索し、文字列カテゴリとビット列カテゴリ入力を受け付ける候補を見つけます。
使用できる場合は文字列カテゴリが優先されますので、文字列カテゴリが選択され、それから文字列に対して優先される型であるtextが、不明のリテラルを解決する型として使用されます。



例10.3 絶対値と否定演算子の型解決


PostgreSQL™の演算子カタログには、前置演算子@用に複数の項目があります。
これは全て各種数値データ型に対する絶対値計算を実装するものです。
その1つは、数値カテゴリの優先される型であるfloat8型用の項目です。
したがって、PostgreSQL™は、unknownの入力があった場合にこれを使用します。


SELECT @ '-4.5' AS "abs";
 abs
-----
 4.5
(1 row)



ここでシステムは、選択した演算子を適用する前に、unknown型のリテラルをfloat8へ暗黙的に型変換します。
以下のようにfloat8が使用され、他の型が使用されていないことを検証できます。


SELECT @ '-4.5e500' AS "abs";

ERROR:  "-4.5e500" is out of range for type double precision





一方、前置演算子~（ビット否定）は、整数データ型のみで定義され、float8用は定義されていません。
ですから、~における上と同様の場合では、以下のような結果になります。


SELECT ~ '20' AS "negation";

ERROR:  operator is not unique: ~ "unknown"
HINT:  Could not choose a best candidate operator. You might need to add
explicit type casts.



これは、システムが、複数の~演算子候補のうちどれが優先されるかを決定することができなかったため発生します。
明示的なキャストを使用することで補助することができます。


SELECT ~ CAST('20' AS int8) AS "negation";

 negation
----------
      -21
(1 row)





例10.4 配列包含演算子の型解決


一方は既知でありもう一方は未知である入力を伴った演算子の解決のもう一つの例です。


SELECT array[1,2] <@ '{1,2,3}' as "is subset";

 is subset
-----------
 t
(1 row)



PostgreSQL™の演算子カタログは、<@中置演算子のためのいくつかのエントリを持っていますが、
数値型配列を左側に受け付けることができるのは配列包含(anyarray <@ anyarray)と範囲包含(anyelement <@ anyrange)の2つのみです。
これらの多様な擬似データ型(「疑似データ型」を参照)は優先されると見なされないため、このような方法ではパーサは曖昧さを解決することができません。
しかし、ステップ 3.fでは、未知の型のリテラルを別の入力と同じ型であると仮定するために数値配列とみなします。
今のところ2つのうち一つの演算子だけがマッチできるため、配列包含が選択されます。(範囲包含が選択された場合、演算子の右側にある文字列は正しい範囲型のリテラルではないため、エラーとなるでしょう。)



例10.5 ドメイン型の独自の演算子


利用者はときどきドメイン型にのみ適用される演算子を宣言しようとします。
これは可能ですが、思ったほど便利ではありません。演算子の解決規則がドメイン基本型に適用される演算子を選ぶように設計されているからです。
例として、以下を考えてください。


CREATE DOMAIN mytext AS text CHECK(...);
CREATE FUNCTION mytext_eq_text (mytext, text) RETURNS boolean AS ...;
CREATE OPERATOR = (procedure=mytext_eq_text, leftarg=mytext, rightarg=text);
CREATE TABLE mytable (val mytext);

SELECT * FROM mytable WHERE val = 'foo';



この問い合わせには独自の演算子を使いません。
パーサはまずmytext = mytext演算子（ステップ 2.a）があるか確認しますが、ありません。次にドメイン基本型textを考慮してtext = text演算子（ステップ 2.b）があるか確認すると、あります。そのためunknown型はtextとして解決され、text = text演算子が使われます。
独自の演算子を使う唯一の方法は、リテラルを明示的にキャストすることだけです。


SELECT * FROM mytable WHERE val = text 'foo';



これにより、「正確な一致」規則に従ってmytext = text演算子がすぐに見つかります。
もし、「最善の一致」規則に達した場合、ドメイン型の演算子を積極的に差別します。
そうでなければ、そのような演算子は非常に多くの「曖昧な演算子」の失敗を引き起こします。キャストの規則はドメインをその基本型からもしくは基本型へキャスト可能と考え、ドメイン演算子は基本型の似たような名前の演算子とすべて同じ状況で利用できると考えられるからです。





[9] 

信用できないユーザにオブジェクトの作成を許可するスキーマを含む検索パスは、安全なスキーマ使用パターンではありませんので、スキーマで修飾されていない名前では危険は起こりません。
   



関数





関数呼び出しによって参照される特定の関数は、以下の手順に従って解決されます。
  
手順10.2 関数における型の解決
	

pg_procシステムカタログから、調査の対象とする関数を選択します。
スキーマ修飾がされていない関数名が使用される場合、現行の検索パスで可視になっていて、同一の名前と引数の数を持つ関数が調査対象であるとみなされます
（「スキーマ検索パス」を参照してください）。
修飾された関数名が与えられている場合、指定されたスキーマの関数のみが調査対象とみなされます。

	

検索パスで、引数のデータ型が同じである複数の関数を検出した場合、そのパスで最初に検出された関数のみを調査対象とみなします。
引数のデータ型が異なる関数は、検索パス内の位置に関係なく、同じように調べられます。


	

もし関数がVARIADIC型の配列パラメータを伴って定義されており、そしてVARIADICキーワードを用いずに呼ばれた場合は、呼び出しに適合するよう、一つかそれ以上の要素の型に配列のパラメータを置き換えた形で扱われます。
このような拡張後は、その関数は実際の引数の型を持つので、他の非可変長の引数を持つ関数と同一になるかもしれません。この場合、検索パスで先に見つかった関数が使われます。また、同じスキーマに2つの関数が見つかった場合は非可変長の関数が優先されます。



信用できないユーザにオブジェクトの作成を許可しているスキーマで見つかる可変長引数の関数を、修飾された名前で
  [10],
呼び出す時にセキュリティの危険が発生します。
悪意のあるユーザは、支配権を奪い、あたかもあなたが実行したかのように任意のSQL関数を実行できます。
VARIADICキーワードを持つ呼び出しを代わりに使ってください。そうすればこの危険は避けられます。
VARIADIC "any"パラメータにデータを入れての呼び出しには、しばしば同等のVARIADICキーワードを含む定式化がありません。
この呼び出しを安全に行うには、関数のスキーマは信用できるユーザだけがオブジェクトを作成できるようにしなければなりません。


	

パラメータにデフォルト値を持つ関数は、デフォルト指定可能なパラメータ位置のうち、0以上が省略されたどのような呼び出しに対しても適合すると見なされます。
もし呼び出し時にこのような関数が2つ以上適合した場合、検索パスで先に見つかったものが使用されます。
もし、デフォルト指定のない位置に同じパラメータ型を持つ関数（もしそれらが異なるデフォルト指定のあるパラメータのセットを持っていればあり得ます）が同じスキーマに2つ以上あった時は、システムはどの関数を使うべきか決定できず、呼び出しにより適合するものが見つからなければ「ambiguous function call」エラーが結果として返るでしょう。



信用できないユーザにオブジェクトの作成を許可しているスキーマで見つかる関数を修飾された名前で[10]呼び出す時に、これは濫用の危険を起こします。
悪意のあるユーザは、既存の関数の名前で、その関数のパラメータを複製し、デフォルト値を持つ新しいパラメータを追加した関数を作成できます。
これは元の関数への新しい呼び出しを妨げます。
この危険を未然に防ぐには、関数を信用できるユーザだけがオブジェクトを作成できるスキーマに置いてください。




	

正確に入力引数型を受け付ける関数があるかどうか検査します。
該当する関数があれば（調査される関数の集合内で正確に一致するものは1つしかあり得ません）、それを使用します。
正確に一致するものがない場合、信用できないユーザにオブジェクトの作成を許可しているスキーマで見つかる関数を、修飾された名前で[10]呼び出す時にセキュリティの危険が発生します。
そのような状況では、強制的に正確に一致するように引数をキャストしてください。
（unknownを含む場合は、この段階で一致するものは決して見つかりません。）


	

正確に一致するものが存在しなかった場合、その関数呼び出しが特別な型変換要求であるかどうかを確認します。
これは、関数呼び出しがただ1つの引数を取り、関数名が何らかのデータ型の（内部的な）名前と同一である場合に発生します。
さらに、その関数の引数は、unknown型のリテラルか指定されたデータ型へのバイナリ変換可能な型か、型の入出力関数を適用することで指定された型に変換可能な型（つまり、変換が標準文字列型との間の変換である）であるかのいずれかでなければなりません。
これらの条件に合う場合、関数呼び出しはCAST仕様の形式と同様に扱われます。
  [11]


	

最適なものを検索します。

	

関数の候補のうち、入力値のデータ型が一致せず、また、（暗黙的な変換を使用して）一致するように変換できないものを破棄します。
unknownリテラルは、上記の目的で何にでも変換可能とみなされます。
1つの候補しか残らない場合、それを使います。
それ以外の場合は次の段階に進みます。


	

入力引数のいずれかがドメイン型であれば、以降の段階すべてでドメインの基本型であるかのように扱います。
これにより、曖昧な関数を解決するのを目的としてその基本型であるかのようにドメインが振る舞うことを確実にします。


	

全ての候補を検索し、入力型に最も正確に合うものを残します。
正確に合うものが何もなければ全ての候補を残します。
1つの候補しか残らない場合、それを使います。
それ以外の場合は次の段階に進みます。


	

全ての候補を検索し、型変換が必要とされるところで（入力データ型カテゴリの）優先される型を受け付けるものを残します。
優先される型を受け付けるものが何もなければ全ての候補を残します。
1つの候補しか残らない場合、それを使います。
それ以外の場合は次の段階に進みます。


	

入力引数でunknownのものがあった場合、それらの残った候補に引数位置で受け入れられる型カテゴリを検査します。
各位置で候補がstringカテゴリを受け付ける場合は、そのカテゴリを選択します。
（unknown 型のリテラルは文字列のようなものですので、この文字列への重み付けは適切です。）
そうでなければ、もし残った全ての候補が同じ型カテゴリを受け入れる場合はそのカテゴリを選択します。
そうでもなければ、さらに手掛かりがなければ正しい選択が演繹されることができませんので、失敗となります。
ここで、選択された型カテゴリを受け付けない演算子候補は破棄されます。
さらに、このカテゴリ内の優先される型を受け付ける候補が1つでもある場合、その引数の優先されない型を受け付ける候補は破棄されます。
これらの検査をどれも通らなかったら全ての候補を残します。
1つの候補しか残らない場合、それを使います。
それ以外の場合は次の段階に進みます。


	

もしunknownと既知の型の引数の両方があり、そして全ての既知の型の引数が同じ型を持っていた場合、unknown引数も同じ型であると仮定し、
どの候補がunknown引数の位置にある型を受け付けることができるかを検査します。
正確に1つの候補がこの検査を通過した場合、それを使います。それ以外は失敗します。








この「最善一致」規則は演算子と関数の型解決で同一であることに注意してください。
以下に例を示します。

例10.6 丸め関数引数の型解決


2つの引数を取るround関数は1つしかありません。
第1引数としてnumeric型、第2引数としてinteger型を取ります。
ですから、以下の問い合わせは自動的に、integer型の第1引数をnumericに変換します。



SELECT round(4, 4);

 round
--------
 4.0000
(1 row)




問い合わせはパーサによって実質以下のように変形されます。


SELECT round(CAST (4 AS numeric), 4);





小数点を持つ数値定数はまずnumericに割り当てられますので、以下の問い合わせでは型変換が不要です。そのためかなり効率的になる可能性があります。


SELECT round(4.0, 4);





例10.7 可変長引数の関数の解決



CREATE FUNCTION public.variadic_example(VARIADIC numeric[]) RETURNS int
  LANGUAGE sql AS 'SELECT 1';
CREATE FUNCTION




この関数は、必須ではないですがVARIADICキーワードを受け付けます。
整数の引数と数値の引数の両方を許容します。



SELECT public.variadic_example(0),
       public.variadic_example(0.0),
       public.variadic_example(VARIADIC array[0.0]);
 variadic_example | variadic_example | variadic_example
------------------+------------------+------------------
                1 |                1 |                1
(1 row)




しかしながら、1番目と2番目の呼び出しは、もし利用可能なら、より特定の関数を優先します。



CREATE FUNCTION public.variadic_example(numeric) RETURNS int
  LANGUAGE sql AS 'SELECT 2';
CREATE FUNCTION

CREATE FUNCTION public.variadic_example(int) RETURNS int
  LANGUAGE sql AS 'SELECT 3';
CREATE FUNCTION

SELECT public.variadic_example(0),
       public.variadic_example(0.0),
       public.variadic_example(VARIADIC array[0.0]);
 variadic_example | variadic_example | variadic_example
------------------+------------------+------------------
                3 |                2 |                1
(1 row)




もしデフォルトの設定で最初の関数だけが存在しているなら、1番目と2番目の呼び出しは安全ではありません。
ユーザは、2番目や3番目の関数を作成することで、それらを妨害できます。
引数の型を厳密に一致させVARIADICキーワードを使うのなら、3番目の呼び出しは安全です。



例10.8 部分文字列関数の型解決


substr関数は複数存在します。
その1つはtextとinteger型を取ります。
型の指定がない文字列定数で呼び出した場合、システムは優先されるカテゴリstring（すなわちtext型）の引数を受け付ける候補関数を選択します。



SELECT substr('1234', 3);

 substr
--------
     34
(1 row)





文字列がvarchar型と宣言された場合、これはテーブルから取り出した場合が考えられますが、パーサはそれをtextになるように変換しようと試みます。


SELECT substr(varchar '1234', 3);

 substr
--------
     34
(1 row)




これは以下になるようにパーサによって変換されます。


SELECT substr(CAST (varchar '1234' AS text), 3);





注記


パーサはpg_castカタログからtextとvarcharがバイナリ互換、つまり、何らかの物理的な変換を行うことなく片方を受け付ける関数にもう片方を渡すことができることを知ります。
したがって、この場合実際に挿入される型変換呼び出しはありません。






また、integer型の引数でこの関数が呼び出された場合、パーサはそれをtextに変換しようと試みます。


SELECT substr(1234, 3);
ERROR:  function substr(integer, integer) does not exist
HINT:  No function matches the given name and argument types. You might need
to add explicit type casts.




integerはtextへの暗黙的なキャストを持たないため、これは失敗します。
成功させるには、以下のように明示的なキャストを行います。


SELECT substr(CAST (1234 AS text), 3);

 substr
--------
     34
(1 row)







[10] 

信用できないユーザにオブジェクトの作成を許可するスキーマを含む検索パスは、安全なスキーマ使用パターンではありませんので、スキーマで修飾されていない名前では危険は起こりません。
   

[11] 

この処理の理由は、実際にはキャスト関数が存在しない状況において、関数形態のキャスト仕様をサポートすることです。
キャスト関数が存在する場合、慣習的に出力型に因んで名付けられます。
ですので、特殊な状況を持つ必要はありません。
詳細な解説についてはCREATE CAST(7)を参照してください。
   



値の格納





以下の手順に従って、テーブルに挿入される値は対象とする列のデータ型に変換されます。
  
手順10.3 値の格納における型変換
	

対象に正確に一致するかどうかを検査します。


	

なければ、式を対象の型に変換してみます。
もし2つの型の間の代入キャストがpg_castカタログ（CREATE CAST(7)を参照してください）に登録されている場合、これは可能です。
あるいは、もし式がunknown型リテラルの場合、リテラル文字列の内容は対象の型の入力変換ルーチンに与えられます。


	

対象の型に対してサイズ調整キャストがあるかどうかを検査します。
サイズ調整キャストは、ある型からその同じ型へのキャストです。
pg_castカタログに1つ見つかった場合は、格納先の列に収納する前に式に適用します。
こうしたキャストを実装する関数は、常にinteger型のパラメータを1つ余計に取ります。
このパラメータは、格納先の列のatttypmod値を受け付けます
（atttypmodの解釈方法はデータ型によって異なりますが、典型的にはそれの宣言された長さです）。
また、キャストが明示的か暗黙的かを示す、第三のbooleanパラメータを取ることもできます。
サイズ検査や切り詰めなど、長さに依存したセマンティクスの適用について、キャスト関数が責任を持ちます。




例10.9 character格納における型変換


character(20)として宣言された対象の列への以下の文では、対象の大きさが正確に調整されることを示します。



CREATE TABLE vv (v character(20));
INSERT INTO vv SELECT 'abc' || 'def';
SELECT v, octet_length(v) FROM vv;

          v           | octet_length
----------------------+--------------
 abcdef               |           20
(1 row)





ここで実際に起こったのは、デフォルトで||演算子がtextの連結として解決できるように、2つのunknownリテラルがtextに解決されたということです。
そして演算子のtext型の結果は対象の列の型に合うようにbpchar（「空白が埋められる文字」, characterデータ型の内部名）に変換されます。
（しかし、textからbpcharへバイナリ変換可能ですので、この型変換のために実際の関数呼び出しは挿入されません。）
最後に、bpchar(bpchar, integer, boolean)サイズ調整関数がシステムカタログの中から見つかり、演算子の結果と格納する列の長さを適用します。
この型特有の関数は必要とされる長さを検査し、空白の埋め込みを行います。




UNION、CASEおよび関連する構文





UNION SQL構文は、似ていない可能性がある型を1つの検索結果になるように適合させなければなりません。
解決アルゴリズムは1つのunion問い合わせの出力列ごとに適用されます。
INTERSECT構文とEXCEPT構文は、UNIONと同じ方法で、似ていない可能性がある型の解決を行います。
CASE、ARRAY、VALUESを含むいくつかの構文とGREATEST、LEAST関数は同一のアルゴリズムを使用して、その要素式を適合させ、結果のデータ型を選択します。

手順10.4 UNION、CASEおよび関連する構文の型解決
	

もし全ての入力値が同一型であり、unknownではない場合、その型として解決されます。


	

入力のいずれかがドメイン型であれば、以降の段階すべてでドメインの基本型であるかのように扱います。
  [12]


	

もし全ての入力値がunknown型だった場合、text型（文字列カテゴリの優先される型）として解決されます。
そうでない場合、unknown入力は残りの規則のために無視されます。


	

もしunknownではない入力値が全て同じ型カテゴリでなければ失敗します。


	

最初のunknownではない入力データ型を候補の型として選択します。
それから、他のunknownではない入力データ型をそれぞれ左から右へ考慮します。
  [13]

候補の型が暗黙的にある別の型に変換できるが、その逆はできない場合、その別の型を新しい候補の型として選択します。
それから残りの入力の考慮を続けます。
この処理のある段階で、優先される型が選択されれば、追加の入力の考慮を止めます。


	

入力値をすべて最終的な候補の型に変換します。
指定された入力型から候補の型への暗黙の変換が存在しない場合は失敗します。






以下に例を示します。

例10.10 Unionにおける指定された型の型解決



SELECT text 'a' AS "text" UNION SELECT 'b';

 text
------
 a
 b
(2 rows)



ここで、unknown型のリテラル'b'はtextへと解決されます。



例10.11 簡単なUnionにおける型解決



SELECT 1.2 AS "numeric" UNION SELECT 1;

 numeric
---------
       1
     1.2
(2 rows)



numeric型のリテラル1.2とinteger型の値1は、暗黙的にnumericにキャスト可能です。
したがって、この型が使用されます。



例10.12 転置されたUNIONにおける型解決



SELECT 1 AS "real" UNION SELECT CAST('2.2' AS REAL);

 real
------
    1
  2.2
(2 rows)



ここで、real型を暗黙的にinteger型にキャストすることはできませんが、integer型を暗黙的にreal型にキャストすることはできるため、UNIONの結果データ型はreal型として解決されます。



例10.13 入れ子のUNIONにおける型解決



SELECT NULL UNION SELECT NULL UNION SELECT 1;

ERROR:  UNION types text and integer cannot be matched



この失敗は、PostgreSQL™が複数のUNIONを二項演算の入れ子として扱うために起こります。すなわち、この入力は以下と同じです。


(SELECT NULL UNION SELECT NULL) UNION SELECT 1;



内側のUNIONは、上に挙げた規則に従って、型textになるものとして解決されます。
すると、外側のUNIONは型textとintegerの入力を受け取ることになりますので、上のようなエラーになります。
一番左のUNIONが望む結果型の入力を少なくとも1つ確実に受け取るようにすることで、この問題を修正できます。



INTERSECTとEXCEPT操作は同様に二項演算として解決されます。
しかしながら、この節のその他の構文は入力をすべて解決の段階の1つで考慮します。





[12] 

演算子や関数に対するドメイン入力の取り扱いとある程度似ていて、この振舞いにより、利用者が注意して入力をすべて厳密な型であると明示的にもしくは暗黙的に保証する限り、ドメイン型をUNIONや類似の構成体に保存できます。
そうでなければ、ドメインの基本型が使われます。
   

[13] 

歴史的な理由により、CASEは(もしあれば)そのELSE句を「最初の」入力として扱い、THEN句はその後で考慮します。
それ以外の場合では「左から右」は問い合わせテキスト内で式が現れる順を意味します。
   



SELECT出力列





これまでの節で挙げた規則は、SELECTコマンドの単純な出力列として現れる型の指定されていないリテラルを除いて、SQL問い合わせでunknownでないデータ型をすべての式に割り当てることになります。
例えば、以下で



SELECT 'Hello World';




文字列リテラルをどの型とみなすべきかを示すものは何もありません。
この状況ではPostgreSQL™はリテラルの型をtextとして解決することになります。



SELECTがUNION(またはINTERSECT、またはEXCEPT)構文の片方である場合やINSERT ... SELECTの中に現れる場合は、これまでの節で挙げた規則が優先しますので、この規則は適用されません。
型の指定されていないリテラルの型は、1番目の場合にはUNIONの他の側から、2番目の場合には対象とする列から取られるでしょう。



RETURNINGリストは、この目的のためにSELECT出力リストと同様に扱われます。

注記


PostgreSQL™ 10より前では、この規則は存在せず、SELECT出力リストの中の型の指定されていないリテラルは型unknownのままでした。
これは様々な悪い結果をもたらしましたので、変更されました。
 


第11章 インデックス





インデックスは、データベースの性能を向上させるための一般的な方法です。
データベースサーバでインデックスを使用すると、インデックスを使用しない場合に比べてかなり速く、特定の行を検出し抽出することができます。
しかし、インデックスを使用すると、データベースシステム全体にオーバーヘッドを追加することにもなるため、注意して使用する必要があります。
 
はじめに





次のようなテーブルを考えてみましょう。


CREATE TABLE test1 (
    id integer,
    content varchar
);



アプリケーションはこの形式の多くの問い合わせを発行します。


SELECT content FROM test1 WHERE id = constant;



事前に準備を行っていなければ、システムで一致する項目を全て検出するためには、test1テーブル全体を1行ごとにスキャンする必要があります。
test1に数多くの行があり、その問い合わせで返されるのが数行（おそらく0行か1行）しかない場合、これは明らかに効率が悪い方法と言えます。
システムがインデックスをid列上で維持するように指示されていれば、一致する行を検出するのにより効率の良い方法を使うことができます。
例えば、検索ツリーを数層分検索するだけで済む可能性もあります。
  


ほとんどのノンフィクションの本で、同じような手法が使われています。
読者が頻繁に調べる用語および概念は、その本の最後にアルファベット順に索引としてまとめられています。
その本に興味を持った読者は、索引（インデックス）を調べ、比較的速く簡単に該当するページを開くことができるため、見たい場所を探すために本全部を読む必要はありません。
読者がよく調べそうな項目を予想するのが作者の仕事であるように、どのインデックスが実用的であるかを予測するのはデータベースプログラマの仕事です。
  


上述のようにid列にインデックスを作成する場合は、以下のようなコマンドが使用できます。


CREATE INDEX test1_id_index ON test1 (id);



test1_id_indexというインデックス名には、何を選んでも構いませんが、そのインデックスを何のために作成したかを後で思い出せるような名前を選ぶべきです。
  


インデックスを削除するには、DROP INDEXコマンドを使用します。
テーブルのインデックスは、いつでも追加および削除できます。
  


いったんインデックスを作成すれば、それ以上の処理は必要はありません。
システムは、テーブルが変更される時インデックスを更新し、シーケンシャルスキャンよりもインデックススキャンを行うことがより効率的と判断した場合、問い合わせでインデックスを使用します。
しかし、問い合わせプランナで情報に基づいた判断をするためには、定期的にANALYZEコマンドを実行し、統計情報を更新する必要があるかもしれません。
インデックスが使われているかどうか、およびプランナがインデックスを使わないと判断した状況および理由を調べる方法については、14章性能に関するヒントを参照してください。
  


インデックスは、UPDATEやDELETEコマンドの検索条件でも使用できます。
さらに、インデックスは結合問い合わせでも使用されます。
したがって、結合条件で記述されている列にインデックスを定義すれば、結合を伴った問い合わせにかかる時間もかなり短縮できます。
  


一般に、PostgreSQL™のインデックスは、以下の形式の1つ以上のWHERE句またはJOIN句を含む問い合わせを最適化するために使用できます。



indexed-column indexable-operator comparison-value




ここで、indexed-columnはインデックスが定義されている列または式であれば何でもかまいません。
indexable-operatorは、インデックスの演算子クラスのメンバである演算子です。
（詳細は後述。）
また、comparison-valueは揮発性でなく、インデックスのテーブルを参照しない式であれば何でもかまいません。
  


場合によっては、問い合わせプランナは、別のSQL構造からこの形式のインデックス可能な句を抽出できます。
単純な例は、元の句が以下の通りであり、



comparison-value operator indexed-column




元のoperatorにインデックスの演算子クラスのメンバである交代演算子がある場合、インデックス可能な形式に切り替えることができます。
  


大規模テーブルに対するインデックス作成が長時間にわたる可能性があります。
デフォルトでPostgreSQL™はインデックス作成と並行してテーブルを読み取る（SELECT文）ことができますが、書き込み（INSERT、UPDATE、DELETE）はインデックス作成が終わるまでブロックされます。
これは多くの運用環境では受け入れられません。
インデックス作成中でも並行して書き込みできるようにすることができますが、いくつか注意しなければならないことがあります。
インデックスの同時作成の情報を参照してください。
  


インデックスが作成された後、システムでは、テーブルとインデックスとの間で常に同期を取っておく必要があります。
これにより、データ操作の処理にオーバーヘッドが加わります。
インデックスはまた、ヒープ専用タプルの作成を防いでしまいます。
したがって、めったに使用されないインデックスや、まったく使用されなくなったインデックスは、削除しておいた方が良いでしょう。
  


インデックスの種類





PostgreSQL™では、B-tree、Hash、GiST、SP-GiST、GIN、BRIN、そしてブルーム拡張といった複数の種類のインデックスを使用可能です。
インデックスの各種類は、異なる種類のインデックス可能な句に最も適した、異なるアルゴリズムを使用します。
デフォルトでCREATE INDEXコマンドは、B-treeインデックスを作成し、それは最も一般的な状況に適合します。
他のインデックスの種類は、キーワードUSINGの後にインデックス種類名を記述することで選択されます。
例えば、ハッシュインデックスを作成するには、次のようにします。


CREATE INDEX name ON table USING HASH (column);


  
B-Tree





B-treeインデックスは、ある順番でソート可能なデータに対する等価性や範囲を問い合わせることを扱うことができます。
具体的には、PostgreSQL™の問い合わせプランナは、インデックスの付いた列を次の演算子を使用して比較する場合に、B-treeインデックスの使用を検討します。



<   <=   =   >=   >




また、BETWEENやINなどのこれらの演算子の組み合わせと等価な式もB-treeインデックス検索で実装することができます。
インデックスの付いた列に対するIS NULLやIS NOT NULLでもB-treeインデックスを使用することができます。
  


オプティマイザは、パターンマッチ演算子LIKE、~を含む問い合わせでも、そのパターンが定数であり、先頭文字列を指定しているのであればB-treeインデックスを使用することができます。
例えば、col LIKE 'foo%'またはcol ~ '^foo'では使用されますが、col LIKE '%bar'では使用されません。
しかし、データベースがCロケールを使用していない場合、パターンマッチ問い合わせのインデックス付けをサポートする特別な演算子クラスでインデックスを作成しなければなりません。
後述の「演算子クラスと演算子族」を参照してください。
なお、ILIKEと~*でもB-treeインデックスを使用することができますが、パターンが英字以外の文字、つまり、大文字小文字の違いの影響がない文字で始まる場合のみです。
  


B-treeインデックスをソートされた順序でデータを受けとるために使用することもできます。
これは常に単純なスキャンとソート処理より高速になるものではありませんが、よく役に立つことがあります。
  

Hash





ハッシュインデックスは、インデックスの付いた列の値から算出される32ビットのハッシュコードを格納します。
したがって、ハッシュインデックスは単純な等価性比較のみを扱うことができます。
問い合わせプランナでは、インデックスの付いた列を以下の等号演算子を使用して比較する場合は常に、ハッシュインデックスの使用を検討します。



=


  

GiST





GiSTインデックスは単一種類のインデックスではなく、多くの異なるインデックス戦略を実装することができる基盤です。
したがって、具体的なGiSTインデックスで使用できる演算子はインデックス戦略（演算子クラス）によって異なります。
例えば、PostgreSQL™の標準配布物には、複数の二次元幾何データ型用のGiST演算子クラスが含まれており、以下の演算子を使用してインデックス付けされた問い合わせをサポートします。



<<   &<   &>   >>   <<|   &<|   |&>   |>>   @>   <@   ~=   &&




（これらの演算子の意味については「幾何関数と演算子」を参照してください。）
標準配布物に含まれるGiST演算子クラスは表65.1「組み込みGiST演算子クラス」に記載されています。
他の多くのGiST演算子クラスがcontrib群や別のプロジェクトとして利用可能です。
詳細は「GiSTインデックス」を参照してください。
  


GiSTインデックスは以下のような「最近傍」検索を最適化する機能も持ちます。


SELECT * FROM places ORDER BY location <-> point '(101,456)' LIMIT 10;




これは指定された対象地点に最も近い１０箇所を見つけ出します。
この場合も、これができるかどうかは使用される特定の演算子クラスに依存します。
このように利用できる演算子は表65.1「組み込みGiST演算子クラス」の「順序付け演算子」列に表示されています。
  

SP-GiST





SP-GiSTインデックスは、GiSTインデックスと同様に様々な種類の検索を支援する基盤を提供します。
SP-GiSTインデックスは広域な異なる不均衡でディスクベースのデータ構造、つまり、四分木、kd木、基数木のような実装を認めます。
例えば、PostgreSQL™標準配布物には、以下の演算子を使用する問い合わせに対するインデックスをサポートする2次元の点用のSP-GiST用の演算子クラスが含まれています。



<<   >>   ~=   <@   <<|   |>>




（これらの演算子の意味については「幾何関数と演算子」を参照してください。）
標準配布物に含まれるSP-GiST演算子クラスは表65.2「組み込みSP-GiST演算子クラス」に記載されています。
詳細は 「SP-GiSTインデックス」を参照してください。
  


GiSTと同様に、SP-GiSTは「最近傍」検索をサポートします。
距離の順序付けをサポートするSP-GiST演算子クラスの場合、対応する演算子は表65.2「組み込みSP-GiST演算子クラス」の「順序付け演算子」列に一覧表示されます。
  

GIN





GINは「転置インデックス」であり、配列などのように複数の要素を持つデータ値に適しています。
転置インデックスは各要素値に対して別々のエントリを持っており、特定の要素値の存在について検査する問い合わせを効率的に処理できます。
  


GiSTやSP-GiST同様、GINも多くの異なるユーザ定義のインデックス戦略を持つことができ、GINが使用できる具体的な演算子はインデックス戦略によって変化します。
例えば、PostgreSQL™標準配布物には、配列用のGIN演算子クラスが含まれており、これらは、以下の演算子を使用するインデックスによる問い合わせをサポートします。



<@   @>   =   &&




（これらの演算子の意味については「配列関数と演算子」を参照してください。）
標準配布物に含まれるGIN演算子クラスは表65.3「組み込みGIN演算子クラス」に記載されています。
他の多くのGIN演算子クラスはcontrib群または別のプロジェクトで利用可能です。
詳細は「GINインデックス」を参照してください。
  

BRIN





BRINインデックス(ブロックレンジインデックス(Block Range INdex)を縮めたものです)はテーブルの連続的な物理ブロックの範囲に格納された値についての要約を格納します。
したがって、これらの値は、テーブル行の物理的な順序とよく相関している列に最も効果的です。
GiST、SP-GiST、GINと同じように、BRINは多くの異なるインデックス戦略をサポートし、BRINインデックスが使用できる具体的な演算子はインデックス戦略によって変化します。
線形のソート順を持つデータ型では、インデックス付けされたデータは各ブロックレンジの列の中の値の最小値と最大値に対応しています。
これは以下の演算子を使用したインデックスによる問い合わせをサポートします。



<   <=   =   >=   >




標準配布物に含まれるBRIN演算子クラスは表65.4「組み込みBRIN演算子クラス」に記載されています。
詳細は「BRINインデックス」を参照してください。
  


複数列インデックス





インデックスは、テーブルの2つ以上の列に定義することができます。
例えば、以下のようなテーブルがあるとします。


CREATE TABLE test2 (
  major int,
  minor int,
  name varchar
);



（例えば、/devディレクトリの内容をデータベースに保持していて）頻繁に下記のような問い合わせを発行するとします。


SELECT name FROM test2 WHERE major = constant AND minor = constant;



このような場合、majorおよびminorという２つの列に1つのインデックスを定義する方が適切かもしれません。


CREATE INDEX test2_mm_idx ON test2 (major, minor);


  


現在、B-tree、GiST、GINおよびBRINインデックス型でのみ、複数キー列インデックスをサポートしています。
複数キー列を持つことができるかどうかは、INCLUDE列をインデックスに追加できるかどうかとは無関係です。
インデックスはINCLUDE列を含めて最大32列まで持つことができます。
（この上限は、PostgreSQL™を構築する際に変更可能です。
pg_config_manual.hファイルを参照してください。）
  


複数列に対するB-treeインデックスは、インデックス対象列の任意の部分集合を含む問い合わせ条件で使用できますが、もっともインデックスの効率が良いのは、先頭（左側）の列に制約がある場合です。
正確な規則は、先頭の列に対する等価制約、および等価制約を持たない先頭の列に対する不等式制約は、常にスキャン対象のインデックス範囲を制限するために使用されるということです。
これらの列の右側の列に対する制約はインデックスで検査されるため、常にテーブルへのアクセスを適切に抑えますが、必ずしもスキャンしなければならないインデックスの範囲を減らすわけではありません。
B-treeインデックススキャンでスキップスキャン最適化を効果的に適用できる場合は、インデックス検索を繰り返してインデックスを辿るときに、すべての列制約が適用されます。
これにより、（問い合わせの述語に含まれるもっとも重要度の低いインデックス列より前に位置する）1つまたは複数の列に従来の等価制約がない場合でも、読まなければならないインデックスの範囲を減らすことができます。
スキップスキャンは、インデックス列において取り得るすべての値と一致する動的な等価制約を内部的に生成することで機能しています（ただし、問い合わせの述語に含まれる等価制約のない列に対してのみ適用され、かつ生成された制約が問い合わせの述語に含まれる後続の列制約と組み合わせて使用できる場合に限ります）。
  


たとえば、(x, y)に対するインデックスと問い合わせ条件WHERE y = 7700では、B-treeインデックススキャンでスキップスキャン最適化を適用できる場合があります。
これは通常、問い合わせプランナがそのテーブルで使用可能なインデックスを考慮した時に、WHERE x = N AND y = 7700の検索を、Nで取り得るすべての値（または実際にインデックスに格納されているすべてのxの値）に対して繰り返す方法が最速であると想定している場合に発生します。
この方法は通常、xの個別値が非常に少なく、ほとんどのインデックスをスキップしてスキャンする（ほとんどのリーフページには関連するタプルが含まれないため）とプランナが期待する場合にのみ採用されます。
xの個別値が多い場合、インデックス全体のスキャンが必要になる状況になりうるため、ほとんどの場合プランナはインデックスを使用するよりもシーケンシャルスキャンを好みます。
  


スキップスキャンの最適化は、問い合わせの述語に有用な制約が少なくともいくつかあるB-treeスキャン中に、選択的に適用することもできます。
たとえば、(a, b, c)にインデックスがあり、WHERE a = 5 AND b >= 42 AND c < 77という問い合わせ条件がある場合、インデックスはa = 5およびb = 42の最初のエントリからa = 5の最後のエントリまでスキャンする必要があるかもしれません。
c >= 77のインデックスエントリはテーブルレベルでフィルタリングする必要はありませんが、インデックス内でスキップすると効果がある場合とない場合があります。
スキップが行われると、スキャンは新しいインデックス検索を開始し、現在のa = 5とb = Nのグループの末尾（つまり、a = 5 AND b = N AND c >= 77の最初のタプルが現れるインデックスの位置）から、次のグルーピングの開始位置（つまり、a = 5 AND b = N + 1の最初のタプルが現れるインデックスの位置）まで位置を変更します。
  


複数列GiSTインデックスは、インデックス対象列の任意の部分集合を含む問い合わせ条件で使用することができます。
他の列に対する条件は、インデックスで返される項目を制限します。
しかし、先頭列に対する条件が、インデックスのスキャン量を決定するもっとも重要なものです。
先頭列の個別値がわずかな場合、他の列が多くの個別値を持っていたとしても、相対的にGiSTインデックスは非効率的になります。
  


複数列GINインデックスは、インデックス対象列の任意の部分集合を含む問い合わせ条件で使用することができます。
B-treeやGiSTと異なり、インデックス検索の効果はどのインデックス列が問い合わせ条件で使用されているかに関係なく同じです。
  


複数列BRINインデックスは、インデックス対象列の任意の部分集合を含む問い合わせ条件で使用することができます。
GINと同様に、またB-treeやGiSTとは異なり、インデックス検索の効果はどのインデックス列が問い合わせ条件で使用されているかに関係なく同じです。
一つのテーブルに対して複数列BRINインデックスを一つ持つ代わりに複数のBRINインデックスを持つ唯一の理由は、異なるpages_per_rangeストレージパラメータを持つためです。
  


当然ながら、インデックス種類に対して適切な演算子を各列に使用しなければなりません。
他の演算子を含む句は考慮されません。
  


複数列インデックスは慎重に使用する必要があります。
多くの場合、単一列のインデックスで十分であり、また、その方がディスク領域と時間を節約できます。
テーブルの使用方法が極端に様式化されていない限り、4つ以上の列を使用しているインデックスは、不適切である可能性が高いでしょう。
異なるインデックス構成の利点に関するこの他の説明について「複数のインデックスの組み合わせ」および「インデックスオンリースキャンとカバリングインデックス」も参照してください。
  

インデックスとORDER BY





単に問い合わせによって返される行を見つけ出すだけではなく、インデックスは、その行を指定した順番で取り出すことができます。
これにより、別途ソート処理を行うことなく、問い合わせのORDER BY指定に従うことが可能です。
PostgreSQL™が現在サポートするインデックスの種類の中で、B-treeのみがソート出力を行うことができます。
他の種類のインデックスでは指定なし、または、実装固有の順序でマッチした行を返します。
  


プランナは、ORDER BY指定を満足させるために、指定に一致し利用可能なインデックスでスキャンするか、または、テーブルを物理的な順番でスキャンし明示的なソートを行うかを考慮します。
テーブルの大部分のスキャンが必要な問い合わせでは、後に発生するシーケンシャルなアクセスパターンのために要求されるディスクI/Oが少ないため、インデックスを使用するよりも、明示的なソートの方が高速です。
数行を取り出す必要がある場合のみ、インデックスの方が有用になります。
ORDER BYとLIMIT nが組み合わされた場合が、重要かつ特別です。
先頭のn行を識別するために、明示的なソートを全データに対して行う必要があります。
しかし、もしORDER BYに合うインデックスが存在すれば、残りの部分をスキャンすることなく、先頭のn行の取り出しを直接行うことができます。
  


デフォルトでは、B-treeインデックスは項目を昇順で格納し、NULLを最後に格納します。
（テーブルTIDはそれ以外が等しいエントリの中で勝ちを決める列として扱われます）。
これは、x列に対するインデックスの前方方向のスキャンでORDER BY x（より冗長にいえばORDER BY x ASC NULLS LAST）を満たす出力を生成することを意味します。
また、インデックスを後方方向にスキャンすることもでき、この場合、ORDER BY x DESC（より冗長にいえばORDER BY x DESC NULLS FIRST。NULLS FIRSTがORDER BY DESCのデフォルトだからです。）を満たす出力を生成します。
  


インデックスを作成する時に、以下のようにASC、DESC、NULLS FIRST、NULLS LASTオプションを組み合わせて指定することにより、B-treeインデックスの順序を調整することができます。


CREATE INDEX test2_info_nulls_low ON test2 (info NULLS FIRST);
CREATE INDEX test3_desc_index ON test3 (id DESC NULLS LAST);



昇順かつNULL先頭という順で格納されたインデックスは、スキャンされる方向に依存してORDER BY x ASC NULLS FIRSTまたはORDER BY x DESC NULLS LASTを満たすことができます。
  


4つの全方向を提供する理由が何か、後方方向へのスキャンの可能性があることを考慮した2方向で、すべての種類のORDER BYを網羅できるのではないかと疑問を持つかもしれません。
単一列に対するインデックスでは、このオプションは実際冗長ですが、複数列に対するインデックスでは有用になります。
(x, y)という2つの列に対するインデックスを仮定します。
これを前方方向にスキャンすればORDER BY x, yを満たし、後方方向にスキャンすればORDER BY x DESC, y DESCを満たします。
しかし、ORDER BY x ASC, y DESCをよく使用しなければならないアプリケーションが存在する可能性があります。
簡素なインデックスからこの順序を取り出す方法がありません。
しかし、インデックスが(x ASC, y DESC)または(x DESC, y ASC)として定義されていれば、取り出すことができます。
  


明確なことですが、デフォルト以外のソート順を持つインデックスはかなり特殊な機能です。
しかし、特定の問い合わせにおいては恐ろしいほどの速度を向上させることがあります。
こうしたインデックスを維持する価値があるかどうかは、特殊なソート順を要求する問い合わせを使用する頻度に依存します。
  

複数のインデックスの組み合わせ





単一のインデックススキャンは、インデックスの列をその演算子クラスの演算子で使用する問い合わせ句と、それをAND結合したものでのみ使用されます。
例えば、(a, b)というインデックスとWHERE a = 5 AND b = 6という問い合わせでは、インデックスが使用されます。
しかし、WHERE a = 5 OR b = 6のような問い合わせではインデックスは直接使用されません。
  


幸いにも、PostgreSQL™は、単一のインデックススキャンでは実装できない場合を扱うために、複数のインデックス（同じインデックスの複数回使用を含む）を組み合わせる機能を持ちます。
システムは複数のインデックススキャンを跨がる、AND条件およびOR条件を形成できます。
例えば、
WHERE x = 42 OR x = 47 OR x = 53 OR x = 99という問い合わせは、問い合わせ句の1つを使用してx上のインデックスをスキャンする4つのスキャンに分割することができます。
その後、これらのスキャンの結果はOR演算でまとめられ、結果を生成します。
他の例としてxとyに別個のインデックスがある場合を考えます。
WHERE x = 5 AND y = 6のような問い合わせに対して取り得る実装は、適切な問い合わせ句で各インデックスを使用し、インデックスの結果をANDでまとめ、結果行を識別することです。
  


複数のインデックスを組み合わせるために、システムは必要なインデックスそれぞれをスキャンし、インデックス条件に適合するものと報告されたテーブル行の位置を与えるためにメモリ上にビットマップを準備します。
その後、このビットマップは問い合わせで必要とされたように、ANDまたはOR演算されます。
最後に、実際のテーブル行がアクセスされ、返されます。
テーブル行は物理的な順番でアクセスされます。
ビットマップにこの順番で格納されているからです。
これは、元のインデックスの順序が失われていることを意味します。
そのため、もし問い合わせがORDER BY句を持つ場合、この他のソート手続きが必要となります。
この理由、および、追加のインデックススキャンそれぞれのために余計な時間が加わることから、プランナは追加のインデックスが同様に使用できる場合であっても、単純なインデックススキャンを選択することがあります。
  


もっとも単純なアプリケーション以外のほとんどすべてのアプリケーションでは、インデックスの有用な組み合わせはいろいろあります。
このため、データベース開発者は妥協点を探してどのようなインデックスを提供するかを決定しなければなりません。
複数列インデックスが最善な場合がありますし、別々のインデックスを作成し、インデックスの組み合わせ機能に依存する方が優れている場合もあります。
例えば、作業にx列のみを含む場合とy列のみを含む場合、両方の列を含む場合が混在する問い合わせが含まれる場合、xとyに対し、別個に2つのインデックスを作成し、両方の列を使用する問い合わせを処理する時にインデックスの組み合わせに依存することを選ぶことができます。
また、(x, y)に対する複数列インデックスを作成することもできます。
両方の列を含む問い合わせでは、通常このインデックスの方がインデックスの組み合わせよりも効率的です。
しかし、「複数列インデックス」で説明した通り、yのみを含む問い合わせはあまり有用ではありません。
どの程度有用かどうかは、B-treeインデックスのスキップスキャン最適化がどれほど効果的か次第です。
xの個別値が数百個以下である場合、スキップスキャンはyの値をかなり効率的に検索するでしょう。
(x, y)に対する複数列インデックスとyに対する別のインデックスの組み合わせもかなりよく役に立ちます。
xのみを含む問い合わせでは、複数列インデックスを使用することができます。
しかし、これはより大きくなりますので、xのみのインデックスよりも低速になります。
最後の別方法は、3つのインデックスすべてを作成することです。
しかしこれはおそらく、テーブルの検索頻度が更新頻度よりもかなり高く、3種類の問い合わせすべてが良く使用される場合のみ合理的です。
問い合わせの中の1つの頻度が他よりも少なければ、おそらく良く使用される種類にもっとも合うように2つだけインデックスを作成した方がよいでしょう。
  

一意インデックス





インデックスは、列値の一意性や、複数列を組み合わせた値の一意性を強制するためにも使用できます。


CREATE UNIQUE INDEX name ON table (column [, ...]) [ NULLS [ NOT ] DISTINCT ];



現在、一意インデックスとして宣言できるのはB-treeインデックスのみです。
  


一意インデックスが宣言された場合、同じインデックス値を有する複数のテーブル行は許されなくなります。
デフォルトでは、一意列のNULL値は同じ値とはみなされず、列に複数のNULLが許可されます。
NULLS NOT DISTINCTオプションはこれを変更し、インデックスでNULLが同等として扱われるようにします。
複数列の一意インデックスは、インデックス列の全てが複数の行で同一の場合のみ拒絶されます。
  


PostgreSQL™では、テーブルに一意性制約または主キーが定義されると、自動的に一意インデックスを作成します。
このインデックスが、主キーや一意性制約（適切ならば複数列のインデックスで）となる列に対して作成され、この制約を強制する機構となります。
  
注記


手作業で一意列に対しインデックスを作成する必要はありません。
これは、単に自動作成されるインデックスを二重にするだけです。
   


式に対するインデックス





インデックス列は、基礎をなすテーブルにある列である必要はなく、そのテーブルの１つ以上の列から計算される関数やスカラ式とすることもできます。
この機能は、ある演算結果に基づいた高速テーブルアクセスを行う時に有用です。
  


例えば、大文字小文字を区別せずに比較するための一般的な方法である、lower関数での使用例を以下に示します。


SELECT * FROM test1 WHERE lower(col1) = 'value';



lower(col1)関数の結果にインデックスが定義されていれば、この問い合わせでインデックスを使用することができます。


CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));


  


このインデックスをUNIQUEと宣言したとすると、col1の値が同一となる行だけでなく、col1の大文字小文字だけが違う行の生成を防ぐことになります。
したがって、式に対するインデックスを使用して、単なる一意性制約では定義できないような制約を強制することができます。
  


別の例として、以下のような問い合わせが頻繁に行われる場合を考えます。


SELECT * FROM people WHERE (first_name || ' ' || last_name) = 'John Smith';



この場合、以下のようなインデックスを作成する価値があるでしょう。


CREATE INDEX people_names ON people ((first_name || ' ' || last_name));


  


２番目の例に示すようにCREATE INDEXコマンドの構文は通常、インデックス式を括弧で括る必要があります。
最初の例のように、式が単なる関数呼び出しの場合には括弧を省略することができます。
  


派生した式が、行挿入と非HOT更新の度に計算されなければならないので、インデックス式は相対的に見て維持が高価です。
しかし、インデックス式はインデックス内にすでに格納されているため、インデックスを使用する検索の間は再計算されません。
上の両方の例では、システムは問い合わせを単なるWHERE indexedcolumn = 'constant'と理解しますので、この検索速度は他の単純なインデックス問い合わせと同じです。
したがって、式に対するインデックスは取り出し速度が挿入、更新速度より重要な場合に有用です。
  

部分インデックス





部分インデックスとは、テーブルの部分集合に構築されるインデックスです。
部分集合は、（部分インデックスの述語と呼ばれる）条件式で定義されます。
部分インデックスには、その述語を満たすテーブル行のみに対するエントリが含まれます。
部分インデックスは特別な機能です。
しかし、これらが有用となる状況が複数あります。
  


部分インデックスを利用する主な目的は、頻出値に対してインデックスを作成しないようにすることです。
（テーブル全体の行のうち、数パーセント以上を占める）頻出値を検索する問い合わせでは、いかなる場合でもインデックスを使用しないため、インデックスにそれらの行を持ち続けることは全く意味がありません。
これによりインデックスのサイズが小さくなりますので、インデックスを使用する問い合わせが速くなります。
また、インデックスを更新する必要のないケースも生じるため、テーブルを更新する作業の多くも速くなります。
例11.1「頻出値を除外するための部分インデックスの作成」にこの概念に基づいた用例を示します。
  
例11.1 頻出値を除外するための部分インデックスの作成


ウェブサーバのアクセスログをデータベースに格納しているとします。
多くのアクセスは、社内のIPアドレスの範囲内から発信されています。
しかし、範囲外のアドレス（例えば、社員がダイアルアップ接続している場所）からの発信もあります。
主に範囲外からのアクセスをIPアドレスで検索する場合、社内のサブネットに該当するIPアドレスの範囲にインデックスを作成する必要はないでしょう。
   


以下のようなテーブルがあると想定します。


CREATE TABLE access_log (
    url varchar,
    client_ip inet,
    ...
);


   


この例に適する部分インデックスを作成するには、以下のようなコマンドを使用します。


CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet '192.168.100.0' AND
           client_ip < inet '192.168.100.255');


   


このインデックスを使用できる問い合わせの典型的な例は、以下のようなものです。


SELECT *
FROM access_log
WHERE url = '/index.html' AND client_ip = inet '212.78.10.32';



この問い合わせのIPアドレスは部分インデックスでカバーされています。
以下の問い合わせは、インデックスから除外されているIPアドレスを使用しているので、部分インデックスを使用できません。


SELECT *
FROM access_log
WHERE url = '/index.html' AND client_ip = inet '192.168.100.23';


   


このような部分インデックスを使用するには、あらかじめ頻出値が何であるかを知っている必要があることに注意してください。
値の分布が変わらない場合に、このような部分インデックスが最善です。
データの分布が新しくなった場合はインデックスの再作成によって調整できますが、これはメンテナンス作業を増やしてしまいます。
   




部分インデックスを使用する有効な他の方法としては、一般的な問い合わせに必要のない値をインデックスから取り除くことです。
例11.2「必要のない値を除外するための部分インデックスの作成」を参照してください。
この方法の利点は上で示したものと同じです。
ただ、この方法を使用すると、インデックススキャンが適している場合でも、「必要のない」値へのインデックスを介したアクセスが防止されてしまいます。
以上のことから明白なように、このようなケースで部分インデックスを作成する際は、細心の注意を払い、十分な検証を行う必要があります。
  
例11.2 必要のない値を除外するための部分インデックスの作成


請求済み注文書および未請求注文書からなる、１つのテーブルがあるとします。
そして、未請求注文書の方がテーブル全体に対する割合が小さく、かつその部分へのアクセス数が最も多かったとします。
このような場合、未請求の行のみにインデックスを作成することにより、性能を向上させることができます。
インデックスの作成には、以下のようなコマンドを使用します。


CREATE INDEX orders_unbilled_index ON orders (order_nr)
    WHERE billed is not true;


   


このインデックスを使用する問い合わせの例としては、次のものが考えられます。


SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;



しかし、このインデックスは、order_nrをまったく使用しない問い合わせでも使用することができます。
以下は、その例です。


SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;



この問い合わせでは、システムがインデックス全体を検索する必要があるため、amount列に部分インデックスを作成した場合ほど効率は良くありません。
しかし、未請求注文書データが比較的少ない場合は、この部分インデックスを未請求注文書を検出するためだけに使用した方が効率が良い可能性があります。
   


以下の問い合わせでは、このインデックスを使用できないことに注意してください。


SELECT * FROM orders WHERE order_nr = 3501;



注文番号3501は請求済みかもしれませんし、未請求かもしれないからです。
   




例11.2「必要のない値を除外するための部分インデックスの作成」でもわかるように、インデックスが付けられた列名と、述語で使用されている列名は、一致している必要はありません。
PostgreSQL™では、インデックス付けされるテーブルの列だけが含まれているのなら、任意の述語で部分インデックスを使用できます。
しかし、この述語は、インデックスを使用させたい問い合わせの条件と一致する必要があることに留意してください。
正確に言うと、部分インデックスを問い合わせで使用できるのは、インデックスの述語が問い合わせのWHERE条件に数学的に当てはまるとシステムが判断できる場合のみです。
PostgreSQL™には、異なった形式で記述された述語が数学的に同等のものであると判断できるような、洗練された定理証明機能はありません。
（そのような汎用的な定理証明機能の作成は、非常に困難であるだけではなく、おそらく実際の利用にはあまりにも実行速度が遅過ぎるでしょう。）
システムでは、例えば「x < 1」は「x < 2」を意味するというような、単純な比較演算子の意味は認識可能です。
しかし、それ以外の場合は、述語条件は問い合わせのWHERE条件と完全に一致している必要があります。
一致していない場合は、インデックスは使用可能と認識されません。
一致するかどうかは、実行時ではなく、問い合わせ計画作成時に判定されます。
したがって、パラメータ付きの問い合わせでは部分インデックスは動作しません。
たとえば、「x < ?」と指定されたパラメータを持つ、プリペアド問い合わせでは、どのようなパラメータ値であっても「x < 2」を表しません。
  


部分インデックスの考えられる３つ目の用法では、問い合わせでインデックスをまったく使用しません。
この考え方は、テーブルの部分集合に一意インデックスを作成するというものです。
例11.3「一意な部分インデックスの作成」を参照してください。
これにより、インデックスの述語を満たさない行を制約することなく、その述語を満たす行での一意性を強制します。
  
例11.3 一意な部分インデックスの作成


テストの結果が格納されているテーブルがあるとします。
与えられた件名（subject）および対象（target）の組み合わせに対して、「成功」のエントリが確実に1つしかないようにします。
「失敗」のエントリは、複数あっても構いません。
以下に、これを実行する一例を示します。


CREATE TABLE tests (
    subject text,
    target text,
    success boolean,
    ...
);

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
    WHERE success;



これは、成功するテストが少なく、失敗するテストが多い場合に特に有効な手法です。
また、IS NULL制限を使用して一意の部分インデックスを作成することにより、ひとつの列にNULL値をひとつのみ許可できます。
   




最後に、部分インデックスは、システムの問い合わせ計画の選択を変更するためにも使用できます。
特殊なデータ分布を持つデータ集合では、システムが実際には使用すべきでないインデックスを使用してしまうことがあります。
このような場合、特定の問い合わせでは使用することができないインデックスを設定することができます。
通常、PostgreSQL™はインデックスの使用について適切な選択を行います（例えば、頻出値の検索にはインデックスを使用しませんので、前述の例はインデックスのサイズを実際に小さくするだけのもので、インデックスの使用を制限するためには必要はありません）。
まったく不適切な計画を選択するようであれば、バグとして報告してください。
  


部分インデックスを作成するには、少なくとも問い合わせプランナと同等の知識を持っていること、特に、インデックスが有益となる状況を理解している必要があることに留意してください。
このような知識を得るためには、PostgreSQL™でインデックスがどのように機能するかを理解し、経験を積むことが必要です。
ほとんどの場合、通常のインデックスと比べて、部分インデックスを使用する利点は微細です。
例11.4「パーティショニングの代わりに部分インデックスを使用しない」のように、かなり逆効果な場合があります。
  
例11.4 パーティショニングの代わりに部分インデックスを使用しない


例えば、重複しない部分インデックスの大きなセットを作りたいと思うかもしれません。



CREATE INDEX mytable_cat_1 ON mytable (data) WHERE category = 1;
CREATE INDEX mytable_cat_2 ON mytable (data) WHERE category = 2;
CREATE INDEX mytable_cat_3 ON mytable (data) WHERE category = 3;
...
CREATE INDEX mytable_cat_N ON mytable (data) WHERE category = N;




これは良くないアイディアです！ほとんどの場合、以下のように宣言された、部分的でない単一のインデックスを使用する方が良いでしょう。



CREATE INDEX mytable_cat_data ON mytable (category, data);




（「複数列インデックス」で説明されている理由から、最初にcategory列を指定します。）
この大きなインデックスでの検索は、小さなインデックスでの検索よりも2,3ツリーレベルを下に移動する必要がありますが、部分インデックスの適切な1つを選択するためにプランナがおこなう作業よりも、ほぼ確実にコストが削減できます。
この問題の核心は、システムが部分インデックス間の関係を理解していないことと、現在の問い合わせに適用出来るかどうかそれぞれ苦労してテストすることです。
   


テーブルが非常に大きくて、単一のインデックスが本当に悪いアイデアである場合は、代わりにパーティショニングを使用する必要があります（「テーブルのパーティショニング」を参照してください）。
このメカニズムにより、テーブルとインデックスが重複していないことが、システムで認識されるため、パフォーマンスが大幅に向上します。
   




部分インデックスの詳細については、[ston89b]、[olson93]、および[seshadri95]を参照してください。
  

インデックスオンリースキャンとカバリングインデックス





PostgreSQL™におけるすべてのインデックスは二次的なインデックス、つまり各インデックスはテーブルの主要なデータ領域（PostgreSQL™の用語ではテーブルのヒープと呼ばれます）とは別に格納されています。
このことは、通常のインデックススキャンにおいて、各行の検索にはインデックスとヒープの両方からデータを取得する必要があることを意味します。
さらに、指定のインデックス可能なWHERE条件に適合するインデックスのエントリは、通常、インデックス内の近い位置にあるのに対し、そこから参照されるテーブルの行はヒープ内のあらゆるところにあるかもしれません。
このため、インデックススキャンにおけるヒープアクセスの部分では、ヒープに対する多くのランダムアクセスがありますが、これは遅い可能性があり、特に伝統的な回転型メディアでは遅くなります。
（「複数のインデックスの組み合わせ」で説明したように、ビットマップインデックスはヒープアクセスをソートした順で行うことでこのコストを緩和しようとするものですが、それはある程度までしかできません。）
  


このパフォーマンス問題を解決するため、PostgreSQL™はインデックスオンリースキャンをサポートします。
これは、問い合わせに対してヒープアクセスをせずにインデックスのみで回答できるものです。
基本的な考え方は、関連するヒープのエントリを参照せずに、各インデックスエントリから直接に値を返すというものです。
この方法が使用できるためには2つの基本的な制限があります。

   
	

インデックスの種類がインデックスオンリースキャンをサポートしている必要があります。
B-treeインデックスはいつでもインデックスオンリースキャンをサポートしています。
GiSTとSP-GiSTは一部の演算子クラスでインデックスオンリースキャンをサポートしていますが、サポートしない演算子クラスもあります。
他のインデックスの種類はインデックスオンリースキャンをサポートしていません。
根本的な必要条件は、インデックスが各インデックスのエントリに対応する元のデータ値を物理的に格納していなければならない、あるいはそれを再構築できる必要がある、ということです。
その反例として、GINインデックスでは、各インデックスエントリが通常は元のデータ値の一部しか保持していないため、インデックスオンリースキャンをサポートすることができません。
     

	

問い合わせはインデックスに格納されている列だけを参照しなければなりません。
例えばテーブルの列xとyにインデックスがあり、そのテーブルにはさらに列zがある場合、次の問い合わせはインデックスオンリースキャンを使用できます。


SELECT x, y FROM tab WHERE x = 'key';
SELECT x FROM tab WHERE x = 'key' AND y < 42;



しかし、以下の問い合わせはインデックスオンリースキャンを使用できません。


SELECT x, z FROM tab WHERE x = 'key';
SELECT x FROM tab WHERE x = 'key' AND z < 42;



（以下で説明するように、式インデックスや部分インデックスは、この規則を複雑にします。）
     




  


この2つの基本的な要件が満たされるなら、問い合わせで要求されるすべてのデータ値はインデックスから利用できるので、インデックスオンリースキャンが物理的に可能になります。
しかし、PostgreSQL™のすべてのテーブルスキャンにおいて、さらなる必要条件があります。
それは、13章同時実行制御で説明するように、検索された各行が問い合わせのMVCCスナップショットに対して「可視」であることを確認しなければならない、ということです。
可視性の情報はインデックスのエントリには格納されず、ヒープのエントリにのみあります。
そのため、一見すると、すべての行検索はいずれにせよヒープアクセスが必要なように思われます。
そして、テーブルの行が最近に更新された場合は、まさにその通りなのです。
しかし、あまり更新されないデータについてはこの問題を回避する方法があります。
PostgreSQL™ではテーブルのヒープの各ページについて、そのページに格納されているすべての行が、十分に古く、すべての現在および将来のトランザクションに対して可視であるかどうかを追跡しています。
この情報はテーブルの可視性マップのビットに格納されます。
インデックスオンリースキャンでは、候補となるインデックスのエントリを見つけた後、対応するヒープページの可視性マップのビットを検査します。
それがセットされていれば、行が可視であることがわかるので、それ以上の作業をすることなく、データを返すことができます。
セットされていない場合は、それが可視かどうかを調べるためにヒープエントリにアクセスする必要があり、そのため標準的なインデックススキャンに対するパフォーマンス上の利点はありません。
うまくいく場合であっても、この方法はヒープアクセスと引き換えに可視性マップにアクセスします。
しかし、可視性マップはヒープに比べ、4桁の規模で小さいため、アクセスに必要な物理的I/Oははるかに少ないです。
ほとんどの状況では、可視性マップは常にメモリ内にキャッシュされて残っています。
  


要するに、2つの基本的条件が満たされていればインデックスオンリースキャンが可能ですが、テーブルのヒープページのかなりの部分に対し、その全可視のビットがセットされている場合にのみ、性能が向上します。
しかし大部分の行が変化しないテーブルは一般的であり、現実にはこの種のスキャンは非常に有効です。
  

   
   

インデックスオンリースキャンの機能を有効に利用するため、カバリングインデックスの作成を選択できます。
これは、頻繁に実行する特定の種類の問い合わせに必要な列を含めるように特別に設計されたインデックスです。
問い合わせは通常、検索対象の列よりも多くの列を取得する必要があるため、PostgreSQL™はいくつかの列を単に「ペイロード」として検索キーの一部ではないインデックスを作成できます。
これは追加の列リストをINCLUDE句に加えることで実行出来ます。
例えば、次のような問い合わせをよく実行する場合を考えます。


SELECT y FROM tab WHERE x = 'key';



このような問い合わせを高速化する伝統的な手法は、xのみにインデックスを作成することです。
しかし、次のようなインデックス定義では、


CREATE INDEX tab_x_y ON tab(x) INCLUDE (y);



yはヒープにアクセスしなくてもインデックスから取得できるため、この問い合わせをインデックスオンリースキャンとして処理できます。
  


y列はインデックスの検索キーの一部ではないため、インデックスが処理できるデータ型である必要はありません。
単にインデックスに格納されているだけで、インデックス機構によって解釈されることはありません。
また、インデックスが一意インデックスの場合は、


CREATE UNIQUE INDEX tab_x_y ON tab(x) INCLUDE (y);



x列のみに一意性条件が適用されます。
xとyの組み合わせではありません。
（INCLUDE句は、インデックスを設定するための代替構文を提供するUNIQUEやPRIMARY KEYの制約として書くことも出来ます。）
  


キー以外のペイロード列、特に幅の広い列をインデックスに追加することについては慎重になることが賢明です。
インデックス型の最大サイズを超えるタプルをインサートしようとすると失敗します。
いかなる場合でもキー以外の列が重複データだったり、インデックスサイズが膨張すると、検索が遅くなる可能性があります。
それから、覚えておくべきもう一つの小さなポイントは、インデックスオンリースキャンがヒープへのアクセスが必要がないほどテーブルがゆっくり変化しない限り、インデックスにペイロード列を含めることにほとんど意味が無いことです。
とにかくヒープタプルを訪れなければならなくなった場合は、そこから列値を取得するためにそれ以上のコストはかかりません。
他の制限は、式を列に含めることは、現在のところサポートされていません。また、列を含めるサポートは現在のところB-treeとGiSTとSP-GiSTインデックスのみサポートされています。
  


INCLUDE機能がない以前のPostgreSQL™では、ペイロード列を通常のインデックス列としてカバリングインデックスを作成することがありました。


CREATE INDEX tab_x_y ON tab(x, y);



これは、yをWHERE句の一部で使用するつもりがなかったとしても書いています。
余分な列が末尾の列である限り、これはうまく機能します。
それらを先頭側の列にすることは、「複数列インデックス」で説明されている理由から賢明ではありません。
しかし、この方法では、キー列に一意性を強制するインデックスがサポートされません。
  


末尾消去は、常に上位のB-treeレベルから非キーの列を削除します。
ペイロード列として、それらはインデックススキャンを導くためには使われません。
また、この消去プロセスは、キー列の残りのプレフィックスが、最下位のB-treeレベルのタプルを記述するのに十分である場合、１つ以上の後続キー列も削除します。
実際上、INCLUDE句を使用しないカバリングインデックスは、実質的に上位レベルにペイロードが含まれるカラムの格納を避けられます。
ただし、ペイロード列を非キー列として明示的に定義すると確実に上位レベルのタプルが小さくなります。
  


原則として、インデックスオンリースキャンは式インデックスでも使うことができます。
例えば、xがテーブルの列で、f(x)上にインデックスがある場合、次の問い合わせをインデックスオンリースキャンとして実行できるはずです。


SELECT f(x) FROM tab WHERE f(x) < 1;



そして、関数f()の計算が高価なら、この方法は非常に魅力的です。
しかしPostgreSQL™のプランナは現在のところ、このような場合についてあまり賢くありません。
プランナは、問い合わせで必要となるすべての列がインデックスから利用可能な場合にのみ、その問い合わせが潜在的にインデックスオンリースキャンで実行可能と考えます。
この例では、f(x)という文脈でしかxは必要になりませんが、プランナはそのことに気付かないため、インデックスオンリースキャンは不可能であると結論します。
インデックスオンリースキャンは十分に価値があると思われるなら、含める列としてxを追加することで回避できます。
例をあげます。


CREATE INDEX tab_f_x ON tab (f(x)) INCLUDE (x);



目的がf(x)の再計算を避けることの場合、さらなる注意として、プランナはインデックス可能なWHERE句にないf(x)の使用を必ずしもインデックス列とマッチしないという事があります。
上記のような単純な問い合わせの場合は通常は正しく処理できるでしょうが、結合を含む問い合わせでは駄目でしょう。
これらの欠点はPostgreSQL™の将来のバージョンで解決されるかもしれません。
  


部分インデックスもインデックスオンリースキャンとの間に興味深い関係があります。
例11.3「一意な部分インデックスの作成」に示す部分インデックスを考えます。


CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
    WHERE success;



原則として、次のような問い合わせに対して、このインデックスを使ったインデックスオンリースキャンが可能です。


SELECT target FROM tests WHERE subject = 'some-subject' AND success;



しかし、WHERE句で参照されるsuccessがインデックスの結果列として利用できないという問題があります。
それにも関わらず、インデックスオンリースキャンが可能です。
なぜなら、このプランではWHERE句のその部分を実行時に再検査する必要がない、つまりインデックス内にあるすべてのエントリは必ずsuccess = trueなので、プラン内でこれを明示的に検査する必要がないからです。
PostgreSQL™のバージョン9.6およびそれ以降ではこのような場合を認識し、インデックスオンリースキャンを生成可能ですが、それより古いバージョンではできません。
  

演算子クラスと演算子族





インデックス定義では、インデックスの各列に演算子クラスを指定することができます。


CREATE INDEX name ON table (column opclass [ ( opclass_options ) ] [sort options] [, ...]);



演算子クラスにより、その列のインデックスで使用される演算子が特定されます。
例えば、int4型に対するB-treeインデックスには、int4_opsクラスを使用します。
この演算子クラスには、int4型の値用の比較関数が含まれています。
実際には、通常、列のデータ型のデフォルト演算子クラスで十分です。
演算子クラスを持つ主な理由は、いくつかのデータ型では、複数の有意義なインデックスの振舞いがあり得るということです。
例えば、複素数データ型を、絶対値でソートしたいかもしれませんし、実数部でソートしたいかもしれません。
この処理は、そのデータ型の2つの演算子クラスを定義した上で、インデックスを作成する際に適切なクラスを選択することで、実行可能です。
演算子クラスは基本的なソート順を決定します。
（これはソートオプションCOLLATE、ASC/DESC、NULLS FIRST/NULLS LASTを付けることで変更できます。）
  


以下のように、デフォルトの演算子クラスとは別に、組み込み演算子クラスがいくつかあります。

   
	

text_pattern_ops、varchar_pattern_ops、bpchar_pattern_ops演算子クラスは、それぞれ、text、varchar、char型上のB-treeインデックスをサポートします。
デフォルトの演算子クラスとの違いは、ロケール特有の照合規則に従わずに、文字同士を厳密に比較する点です。
これらの演算子クラスを、標準「C」ロケールを使用しないデータベースにおける、パターンマッチ式（LIKEやPOSIX正規表現）を含む問い合わせでの使用に適したものにします。
例えば、以下のようにvarcharのインデックスを作成できます。


CREATE INDEX test_index ON test_table (col varchar_pattern_ops);



また、通常の<、<=、>、または>=比較を含む問い合わせでインデックスを使いたい場合も、デフォルトの演算子クラスでインデックスを作成しなければならないことに注意してください。
こうした問い合わせではxxx_pattern_ops演算子クラスを使用することができません。（しかし、通常の等価比較はこれらの演算子クラスを使用することができます。）
同じ列に対して異なる演算子クラスを使用して複数のインデックスを作成することができます。
Cロケールを使用する場合は、xxx_pattern_ops演算子クラスは必要ありません。
Cロケールでのパターンマッチ問い合わせでは、デフォルト演算子クラスを使用したインデックスが使用できるためです。
     




  


以下の問い合わせは、定義済みの演算子クラスを全て返します。



SELECT am.amname AS index_method,
       opc.opcname AS opclass_name,
       opc.opcintype::regtype AS indexed_type,
       opc.opcdefault AS is_default
    FROM pg_am am, pg_opclass opc
    WHERE opc.opcmethod = am.oid
    ORDER BY index_method, opclass_name;


  


実際のところ演算子クラスは、演算子族と呼ばれる、より大きな構造の一部でしかありません。
複数のデータ型が似たような動作を行う場合、データ型を跨る演算子を定義し、インデックスで使用可能とすることが有用な場合がよくあります。
このためには、各型に対する演算子クラスが同一の演算子族にまとめられている必要があります。
データ型を跨る演算子は演算子族の要素です。演算子族内の1つの演算子クラスに結びついているわけではありません。
  


以下は前述の問い合わせを拡張したバージョンで、各演算子クラスが属する演算子族を示します。


SELECT am.amname AS index_method,
       opc.opcname AS opclass_name,
       opf.opfname AS opfamily_name,
       opc.opcintype::regtype AS indexed_type,
       opc.opcdefault AS is_default
    FROM pg_am am, pg_opclass opc, pg_opfamily opf
    WHERE opc.opcmethod = am.oid AND
          opc.opcfamily = opf.oid
    ORDER BY index_method, opclass_name;


  


以下の問い合わせは、定義済みの演算子族と各演算子族に含まれる演算子をすべて表示します。


SELECT am.amname AS index_method,
       opf.opfname AS opfamily_name,
       amop.amopopr::regoperator AS opfamily_operator
    FROM pg_am am, pg_opfamily opf, pg_amop amop
    WHERE opf.opfmethod = am.oid AND
          amop.amopfamily = opf.oid
    ORDER BY index_method, opfamily_name, opfamily_operator;


  
ヒント


psql(1)には\dAc、\dAf、\dAoコマンドがあり、これらのクエリのもう少し洗練されたバージョンを提供します。
   


インデックスと照合順序





インデックスはインデックス列当たり１つの照合順序のみをサポートすることができます。
複数の照合順序を考慮しなければならない場合、複数のインデックスが必要になるかもしれません。
  


以下の文を考えてみます。


CREATE TABLE test1c (
    id integer,
    content varchar COLLATE "x"
);

CREATE INDEX test1c_content_index ON test1c (content);



このインデックスは自動的に背後にある列の照合順序を使用することになり、


SELECT * FROM test1c WHERE content > constant;



という形式の問い合わせでは、この比較はデフォルトで列の照合順序を使用しますので、このインデックスを使用することになります。
しかし、このインデックスは何らかの他の照合順序を含む問い合わせを高速化することはできません。
このため


SELECT * FROM test1c WHERE content > constant COLLATE "y";



という形式の問い合わせも考慮しなければならない場合は、以下のように"y"照合順序をサポートする追加のインデックスを作成することになります。


CREATE INDEX test1c_content_y_index ON test1c (content COLLATE "y");


  

インデックス使用状況の検証





PostgreSQL™では、インデックスのメンテナンスやチューニングは必要ありませんが、どのインデックスが実際の問い合わせで使われているかを確認することは、やはり重要です。
個々のコマンドでのインデックスの使用状況は、EXPLAIN(7)コマンドで検証できます。
この目的のための用例を「EXPLAINの利用」に示します。
また、「累積統計システム」に示す通り、稼働中のサーバにおけるインデックス使用状況の全体的な統計情報を取り出すこともできます。
  


どのインデックスを作成すべきかを判断するための一般的な手順を定めることは困難です。
前節では、例として典型的なケースをいくつか記述してきました。
十分な検証がしばしば必要です。
本節の残りで、検証のためのヒントをいくつか説明しておきます。
  
	

まず、必ずANALYZE(7)コマンドを実行してください。
このコマンドにより、テーブル内の値の分布に関する統計情報を収集します。
この情報は、問い合わせにより返される行数を推測する際に必要となります。
推測された行数は、可能な各問い合わせ計画に実際のコストを割り当てるために、プランナで必要となります。
実際の統計情報が欠如している場合、何らかのデフォルト値が仮定されますが、このデフォルト値は、ほぼ間違いなく不正確です。
したがって、ANALYZEコマンドを実行せずに、アプリケーションのインデックス使用状況を検証しても、あまり意味がありません。
より詳細な情報は「プランナ用の統計情報の更新」と「自動バキュームデーモン」を参照してください。
    

	

検証には、実際に使用するデータを使ってください。
テストデータを使ってインデックスを作成した場合、テストデータに必要なインデックスはわかりますが、それ以上はわかりません。
    


非常に小さなテストデータを使用することも、結果に特に致命的な影響を与えます。
100,000行から1,000行を選択する場合は、インデックスが使用される可能性がありますが、100行から1行を選択する場合はインデックスはまず使用されません。
なぜなら、100行はおそらく1つのディスクページに収まるため、1ページを逐次読み取るよりも高速な計画は存在しないからです。
    


また、アプリケーションがまだ実動していない場合、テストデータを作成しなければならないことがよくありますが、その際にも注意が必要です。
非常に類似した値や、完全にランダムな値、またはソートされた順序で値が挿入されている場合は、その統計情報は、実際のデータの分布とかけ離れたものになってしまいます。
    

	

インデックスが使用されていない場合、テストのためにインデックスを強制的に使用するようにすると便利です。
様々な計画の種類を無効にすることを設定できる実行時パラメータがあります
（「プランナメソッド設定」を参照してください）。
例えば、最も基本的な計画であるシーケンシャルスキャン（enable_seqscan）およびネステッドループ結合（enable_nestloop）を無効に設定すると、システムは別の計画を使用するように強制されます。
そのような設定を行っても、システムがシーケンシャルスキャンやネステッドループ結合を選択する場合は、インデックスを使用しない理由としておそらくもっと根本的な理由があるということになります。
例えば、問い合わせの条件がインデックスに適合しない、などが考えられます。
（どのような問い合わせで、どのようなインデックスを使用できるかは、前節までで説明済みです。）
    

	

強制的にインデックスを使うように設定することで、インデックスを使用するようになった場合は、次の2つの可能性が考えられます。
システムの判断が正しく、インデックスの使用が実際には適切ではないという可能性と、問い合わせ計画のコスト推定が実情を反映していない可能性です。
したがって、インデックスを使った問い合わせの実行時間と、使わない場合の実行時間を計測する必要があります。
この場合、EXPLAIN ANALYZEコマンドが便利です。
    

	

コスト推定が間違っていると判明した場合、やはり2つの可能性が考えられます。
総コストは、各計画ノードの行単位のコストに、計画ノードの推定選択度を掛けることで算出されます。
計画ノードのコスト推定は、実行時パラメータによって設定することができます
（「プランナコスト定数」を参照してください）。
推定選択度が不正確であるのは、統計情報が不十分であるのが原因です。
統計情報収集用のパラメータを調節することによって、この状況を改善することができるかもしれません。
（ALTER TABLE(7)を参照してください）。
    


コストを適切に調節できない場合は、明示的にインデックスの使用を強制する必要が考えられます。
あるいは、PostgreSQL™開発者に問題の調査を依頼することになるかもしれません。
    




第12章 全文検索



はじめに





全文検索(または単にテキスト検索)は、問い合わせを満たす自然言語の文書を識別し、更には問い合わせとの関連性の順に並べ替えることができます。
もっとも一般的な検索は、与えられた検索語を含む文書を探し、問い合わせとの類似性の順に返す、というものです。
問い合わせと類似性の記法は非常に柔軟で、特定の用途に適合できます。
もっとも単純な検索では、問い合わせは単語の集合として、類似性は文書中の問い合わせ対象の単語の頻度として扱います。
  


テキスト検索演算子は、データベースシステムに長年存在していました。PostgreSQL™は、テキストデータ型用に、~,~*, LIKE,ILIKEの各演算子を持っています。しかし、近代的な情報システムに必要な以下の本質的な特徴を欠いています。
  
	

英語にさえ、言語学的なサポートがありません。
派生語、たとえばsatisfiesに対してsatisfyを容易に扱えないため、正規表現は十分ではありません。
satisfyを探すときは、たぶんあなたはsatisfiesも探したいでしょうが、それらを含む文書は探せないかもしれません。
ORを使えば複数の派生語を検索することができますが、退屈で間違いやすいです（ある種の単語は数千の派生語を持つことがあります）。
    

	

検索結果を順序付け(順位付け)することができません。その結果、数千の合致する文書が見つかったような場合に非効率的です。
    

	

インデックスをサポートしないので毎回検索時にすべての文書を処理しなければならず、遅いです。
    





全文検索のインデックス付けでは、文書を前もって処理しておき、後で素早く検索するために、インデックスを保存しておくことができます。前処理には以下があります。
  
	

文書からトークンを解析します。
トークンを色々なクラス、たとえば数、単語、複合単語、電子メールアドレスに分けて識別することが有効です。そうすれば、扱いを変えることができます。
原則として、トークンのクラスは、特定の用途に依存します。しかし、ほとんどの目的には、あらかじめ定義されたクラスの集合を使うのが適当です。
PostgreSQL™は、パーサを使ってこの処理段階を実行します。
標準搭載のパーサが提供されますが、特別な用途にはカスタム仕様のパーサを作ることもできます。
    

	

トークンを語彙素(lexemes)に変換します。
語彙素はトークンと同じ文字列ですが、違う形態の同じ単語が同じになるように 正規化されています。
たとえば、正規化においてはほぼ常に大文字を小文字に変換し、(英語のsまたはesのような)接尾辞を取り除くことが多いです。
これにより、可能性のあるすべての変種を地道に入力すること無く、同じ単語の変化形を検索できます。
また、このステップでは、あまりにありふれていて、検索の役に立たないストップワードを取り除くことが多いです。
(つまり、トークンは文書テキストの未加工の断片そのものであり、語彙素はインデックス付けや検索に有用と思われる単語です。)
PostgreSQL™は、辞書を使ってこのステップを実行します。
いろいろな標準辞書が提供されています。特定の用途向けにカスタム辞書を作ることもできます。
    

	

検索に最適化された前処理済の文書を保存します。
たとえば、個々の文書は、正規化された語彙素の整列済の配列として表現されます。
語彙素とともに、適合性ランキング用に、位置情報を格納しておくことがしばしば望まれます。そうすることにより、問い合わせの語を「高密度」に含んでいる文書を、まばらに含む文書よりも高くランクづけすることができます。
    





辞書を使ってトークンの正規化を細かく制御できます。
適当な辞書を用意すれば次のようなことができます。
  
	

インデックスしたくないストップワードの定義
    

	

Ispellを使って、同義語を単一の単語に関連づける
    

	

類語辞書(thesaurus)を使って、成句を単一の単語に関連づける
    

	

Ispell辞書を使って、単語の変種を正規の単語に関連づける
    

	

Snowball語幹規則を使って、単語の変種を正規の単語に関連づける
    





前処理した文書を格納するために、データ型tsvectorが提供されています。また、処理済問い合わせを表現するためにtsquery型も提供されています(「テキスト検索に関する型」)。
これらのデータ型のために、多数の関数と演算子が利用できますが(「テキスト検索関数と演算子」)、もっとも重要なのは、「基本的なテキスト照合」で紹介している@@演算子です。
全文検索はインデックス(「テキスト検索に好ましいインデックス種類」)を使って高速化できます。
  
文書とは何か?





文書は全文検索システムにおける検索の単位です。
たとえば、雑誌記事やメールのメッセージです。
テキスト検索エンジンは、文書をパースし、語彙素(キーワード)とそれが含まれる親文書の関連を格納できなければなりません。
後で、この関連を使って問い合わせ語を含む文書を検索するのに使います。
   


PostgreSQL™での検索においては、ドキュメントはデータベースのテーブルの行内のテキストフィールドか、あるいはそのようなフィールドの組み合わせ(結合)でもよいです。そうしたフィールドはおそらく複数のテーブルに格納されていたり、動的に獲得されるものであったりします。
言い換えると、文書はインデックス付けのために複数の異なる部分から構成されても良く、それらが全体としてはひとまとまりに格納されていなくても良いのです。例を示します。



SELECT title || ' ' ||  author || ' ' ||  abstract || ' ' || body AS document
FROM messages
WHERE mid = 12;

SELECT m.title || ' ' || m.author || ' ' || m.abstract || ' ' || d.body AS document
FROM messages m, docs d
WHERE m.mid = d.did AND m.mid = 12;


   
注記


実際には、これらの例の問い合わせでは、coalesceを使って、一部NULLが含まれているためにドキュメント全体がNULLになってしまうのを防ぐべきです。
    



別な方法としては、ファイルシステム上に文書を単純なテキストファイルとして格納することです。
この場合、データベースは、フルテキストインデックスを格納し、検索を実行するために使うことができます。ファイルシステムから文書を取り出すためには、何かのユニークな識別子を使います。
しかし、データベースの外にあるファイルを取り出すには、スーパーユーザの許可か、特殊な関数のサポートが必要です。そういうわけでたいていの場合はPostgreSQL™の中にすべてのデータを保持するのよりも不便です。
また、すべてのデータをデータベースに保持することにより、文書のインデックス付けと表示の際に文書のメタデータにアクセスすることが容易になります。
   


テキスト検索という目的のため、各々の文書は前処理されてtsvector形式に変換しておかなければなりません。
検索とランキングはすべて文書のtsvector表現上で実行されます — オリジナル文書は、ユーザに表示のため選択された場合にのみ取り出される必要があります。
というわけで、ここではtsvectorを文書と見なすことがよくあります。といっても、tsvectorは完全な文書の縮小表現でしかありません。
   

基本的なテキスト照合





PostgreSQL™における全文検索は、tsvector(文書)が、tsquery(問い合わせ)に一致したらtrueを返す照合演算子@@に基づいています。どちらのデータ型を先に書いても構いません。



SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat & rat'::tsquery;
 ?column?
----------
 t

SELECT 'fat & cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector;
 ?column?
----------
 f


   


上記の例でわかるように、tsqueryは、tsvectorと違って、単なるテキストではありません。
tsqueryは正規化済の語彙素である検索表現を含み、AND, OR, NOT, FOLLOWED BY演算子を使って複数の表現を組み合わせても構いません。
(詳細は「tsquery」を見てください。)
主にテキスト中の単語を正規化することにより、ユーザが入力したテキストを適切なtsqueryに変換するのに便利な関数to_tsquery、plainto_tsquery、phraseto_tsqueryがあります。
同様に、文書文字列をパースして正規化するためにto_tsvectorが利用できます。
というわけで、実際にはテキスト検索照合はこんな感じになります。



SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat & rat');
 ?column?
----------
 t




この照合は、もしつぎのように書くとうまくいかないことに注意してください。



SELECT 'fat cats ate fat rats'::tsvector @@ to_tsquery('fat & rat');
 ?column?
----------
 f




というのも、単語ratsに対して正規化が行われないからです。
tsvectorの要素は、すでに正規化されている語彙素であることになっているので、ratsはratに一致しません。
   


また、@@演算子は、textを入力として受付けるので、簡単に使うときには、明示的にテキスト文字列をtsvectorまたはtsqueryに変換することを省略できます。応用として以下のものがあります。



tsvector @@ tsquery
tsquery  @@ tsvector
text @@ tsquery
text @@ text


   


最初の2つについてはすでに説明しました。
text @@ tsqueryという形式は、to_tsvector(x) @@ yと同じです。
text @@ textという形式は、to_tsvector(x) @@plainto_tsquery(y)と同じです。
   


tsquery内において、演算子 & (AND) は、マッチと見なされるには引数の両方がドキュメント内に現れる必要があるということを指定します。
同様に、演算子 | (OR) では、引数の少なくとも一方が現れる必要があり、また演算子 ! (NOT) は、マッチと見なされるには引数が現れてはならないことを指定します。
例えば、fat & ! ratという問い合わせは、fatは含むがratは含まないドキュメントとマッチします。
   


句の検索は、tsquery演算子 <-> (FOLLOWED BY)を使うことで可能です。
この演算子は、その引数にマッチする語が隣接していて、かつ指定と同じ順序である場合にのみマッチします。
例を示します。



SELECT to_tsvector('fatal error') @@ to_tsquery('fatal <-> error');
 ?column?
----------
 t

SELECT to_tsvector('error is not fatal') @@ to_tsquery('fatal <-> error');
 ?column?
----------
 f




FOLLOWED BY演算子にはもっと汎用的なバージョンがあり、それは<N>という構文で使います。
ここでNは整数で、マッチする語彙素の位置の差を表します。
<1>は<->と同じですが、<2>ではマッチする語の間にちょうど1つ、他の語彙素が現れることを許容する、という具合です。
phraseto_tsquery関数は、この演算子を利用して、ストップワードを含む複数語の句にマッチ可能なtsqueryを構築するものです。
例を示します。



SELECT phraseto_tsquery('cats ate rats');
       phraseto_tsquery
-------------------------------
 'cat' <-> 'ate' <-> 'rat'

SELECT phraseto_tsquery('the cats ate the rats');
       phraseto_tsquery
-------------------------------
 'cat' <-> 'ate' <2> 'rat'


   


ときに役立つことがある特別な場合として、<0>を2つのパターンが同じ語にマッチすることを要求するために使うことができます。
   


tsquery演算子を入れ子にして管理するために括弧を使うことができます。
括弧がない場合、|の結合が最も弱く、次が&、その次が<->で、!が最も強く結合します。
   


FOLLOWED BYの中ではマッチの正確な位置が重要ですので、AND/OR/NOT演算子は、FOLLOWED BY演算子の引数の中で使われる場合にはそうでない場合と微妙に異なる意味になることに言及しておく価値はあります。
例えば、通常!xはxをどこにも含まない文書とのみマッチします。
しかし、!x <-> yは、xの直後にあるのでなければyとマッチします。文書の他のところでのxの出現は、マッチを邪魔しません。
もう一つの例は、x & yは通常xとyの両方が文書のどこかに現れることだけを要求しますが、(x & y) <-> zは、xとyが同じ場所、zの直前でマッチすることを要求します。
そのため、この問い合わせはx <-> z & y <-> zとは異なった振る舞いをします。後者は2つの別の文字列、x zとy zを含む文書にマッチします。
(xとyが同じ場所でマッチすることはあり得ませんので、上に書いたこの特別な問い合わせは、役に立ちません。しかし、接頭辞マッチパターンのようにより複雑な状況では、この形の問い合わせは役に立つかもしれません。)
   

設定





今までのはすべて単純なテキスト検索の例でした。
すでに述べたように、全文検索機能を使えば、もっと色々なことができます。
インデックス付けの際に特定の単語をスキップ(ストップワード)、同義語(synonym)処理、賢いパース処理、すなわち、単に空白区切りに基づくパース処理以上のものです。
この機能はテキスト検索設定で制御します。
PostgreSQL™には、多くの言語用の設定があらかじめ組み込まれていますが、ユーザ設定を容易に作ることもできます。
(psqlの\dFコマンドで、利用できる設定を表示できます。)
   


インストールの際には、適当な設定が選ばれ、default_text_search_configがpostgresql.conf中にセットされます。
クラスタ全体で同じ設定を使用する場合はpostgresql.confの設定値を利用できます。
クラスタの設定とは異なるが、あるデータベースの中で同じ設定を使う場合には、ALTER DATABASE ... SETを利用します。
さもなければ、セッション単位でdefault_text_search_configを設定できます。
   


設定に依存するテキスト検索関数は、オプションでregconfig引数を持っており、使用する設定を明示的に指定できます。default_text_search_configは、この引数が省略されたときだけ使用されます。
   


カスタムテキスト検索設定を作り易くするため、設定はより単純なデータベースオブジェクトから作られます。PostgreSQL™のテキスト検索機能は、4つの設定関連のデータベースオブジェクトを提供しています。
   
	

テキスト検索パーサは、文書をトークンに分解し、トークンを分類します(たとえば、単語とか数のように)。
    

	

テキスト検索辞書はトークンを正規化された形式に変換し、ストップワードを排除します。
    

	

テキスト検索テンプレートは、現在の辞書が利用する関数を提供します。
（辞書は、単にテンプレートと、その引数の集合を指定するだけです。）
    

	

テキスト検索設定は、パーサと使用する辞書の集合を選択し、パーサが生成したトークンを正規化します。
    





テキスト検索パーサとテンプレートは、低レベルのC関数で作ります。したがって、新しく開発するためにはCのプログラミング能力と、データベースにインストールするためのスーパーユーザ権限が必要になります。
(PostgreSQL™の配布物のcontrib/には、追加パーサとテンプレートの例があります。)
辞書と設定は、単に配下のパーサとテンプレートのパラメータを設定し、両者を結び付けるだけなので、新しい辞書と設定を作るために特別な権限は必要ありません。
この章の後でカスタム辞書と設定を作る例が登場します。
   



テーブルとインデックス





前節の例では、単純な文字列定数を使った全文検索照合を説明しました。この節では、テーブルのデータを検索する方法、そしてインデックスを使う方法を示します。
  
テーブルを検索する





インデックスがなくても全文検索をすることは可能です。bodyフィールド中のfriendという単語を含む行のtitleを印刷する単純な問い合わせは次のようになります。



SELECT title
FROM pgweb
WHERE to_tsvector('english', body) @@ to_tsquery('english', 'friend');




同時に、これは、friends、friendlyのように、関連する単語を見つけ出します。これらはすべて同じ正規化された語彙素に帰結するからです。
   


上の問い合わせはenglish設定を使って文字列をパースして正規化することを指定しています。別の方法としては、設定パラメータを省略することができます。



SELECT title
FROM pgweb
WHERE to_tsvector(body) @@ to_tsquery('friend');




この問い合わせはdefault_text_search_configで設定された設定を使用します。
   


もっと複雑な例として、createとtableをtitleまたはbodyに含む文書のうち新しい順に10個選ぶというものを示します。



SELECT title
FROM pgweb
WHERE to_tsvector(title || ' ' || body) @@ to_tsquery('create & table')
ORDER BY last_mod_date DESC
LIMIT 10;




細かいことですが、この例では、二つのうち一つのフィールドにNULLを含む行を探すために必要なcoalesce関数の呼び出しを省略しています。
   


これらの問い合わせはインデックスなしでも動きますが、たまに実行する一時的な問い合わせ用を除くと、たいていの用途には遅すぎます。
実用上は、インデックスを作成することが必要なのが普通です。
   

インデックスの作成





テキスト検索を高速化するために、GINインデックス(「テキスト検索に好ましいインデックス種類」)を作ることができます。



CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', body));




2引数バージョンのto_tsvectorを使っていることに注意してください。
設定名を指定するテキスト検索関数だけが、式インデックス(「式に対するインデックス」)で使えます。
これは、インデックス内容が、default_text_search_configの影響を受けないためです。
もし影響を受けるとすると、異なるテキスト検索設定で作られたtsvectorを持つエントリの間でインデックス内容が首尾一貫しなくなるからです。そして、どのエントリがどのようにして作られたのか、推測する方法はないでしょう。
そのようなインデックスを正しくダンプ、リストアするのは不可能でしょう。
   


上記のインデックスでは、2引数バージョンのto_tsvectorが使われているので、同じ設定名の2引数バージョンのto_tsvectorを使う問い合わせ参照だけがそのインデックスを使います。
すなわち、WHERE to_tsvector('english', body) @@ 'a & b'はインデックスが使えますが、WHERE to_tsvector(body) @@ 'a & b'は使えません。
これにより、インデックスエントリを作ったときの設定と、同じ設定のときだけインデックスが使われることが保証されます。
   


他の列によって設定名が指定されたより複雑な式インデックスを作ることができます。例えば、



CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector(config_name, body));




ここで、config_nameはpgwebテーブルの列です。
これによって、各々のインデックスエントリで使用された設定を記録しつつ、同じインデックスの中で異なる設定を混在させることができます。
これは、例えば文書の集まりが異なる言語の文書を含む場合に有用です。
ここでも、インデックスを使うよう考慮されている問い合わせは、合致するように書かれなければなりません。例えば、WHERE to_tsvector(config_name, body) @@ 'a & b'。
   


インデックスには、列を連結することさえできます。



CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));


   


別の方法として、to_tsvectorの出力を保持する別のtsvector列を作る方法があります。
この列を元のデータに合わせて自動的に更新し続けるには、格納された生成列を使います。
この例では、titleとbodyを連結、coalesceを使って、一つのフィールドがNULLであっても他のフィールドがインデックス付けされることを保証しています。



ALTER TABLE pgweb
    ADD COLUMN textsearchable_index_col tsvector
               GENERATED ALWAYS AS (to_tsvector('english', coalesce(title, '') || ' ' || coalesce(body, ''))) STORED;




そして、GINインデックスを作って検索速度を上げます。



CREATE INDEX textsearch_idx ON pgweb USING GIN (textsearchable_index_col);




これで、高速全文検索を実行する準備ができました。



SELECT title
FROM pgweb
WHERE textsearchable_index_col @@ to_tsquery('create & table')
ORDER BY last_mod_date DESC
LIMIT 10;


   


別列方式が式インデックスに勝る点の一つは、インデックスを使うために問い合わせの中でテキスト検索設定を明示的に指定する必要がないことです。
上の例で示したように、問い合わせはdefault_text_search_configに依存できます。
もう一つの利点は、インデックスの合致を検証するためにto_tsvectorを再実行する必要がないのでより高速だという事です。
(この点はGINインデックスを使うときよりも、GiSTインデックスを使う場合に重要です。「テキスト検索に好ましいインデックス種類」参照。)
しかしながら、式インデックス方式はセットアップがより容易で、tsvector表現を明示的に保存する必要がないので、ディスクスペースの消費が少ないです。
   


テキスト検索の制御





全文検索を実装するためには、文書からtsvectorを、そしてユーザの問い合わせからtsqueryを作成する関数が存在しなければなりません。
また、結果を意味のある順で返す必要があります。そこで、問い合わせとの関連性で文書を比較する関数も必要になってきます。
結果を体裁良く表示できることも重要です。
PostgreSQL™はこれらすべての機能を提供しています。
  
文書のパース





PostgreSQL™は、文書をtsvectorデータ型に変換するto_tsvector関数を提供しています。
   

to_tsvector([ config regconfig, ] document text) returns tsvector



to_tsvectorは、テキスト文書をパースしてトークンにし、トークンを語彙素に変換、文書中の位置とともに語彙素をリストとして持つtsvectorを返します。文書は、指定したものか、あるいはデフォルトのテキスト検索設定にしたがって処理されます。単純な例を示します。



SELECT to_tsvector('english', 'a fat  cat sat on a mat - it ate a fat rats');
                  to_tsvector
-----------------------------------------------------
 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4


   


上に示す例では、結果のtsvectorで、a、on、itという単語が含まれないこと、ratsという単語がratになっていること、句読点記号-が無視されていることがわかります。
   


to_tsvector関数は、文書をトークンに分解して、そのトークンに型を割り当てるパーサを内部的に呼び出しています。
それぞれのトークンに対して辞書(「辞書」)のリストが検索されます。ここで、辞書のリストはトークンの型によって異なります。
最初の辞書は、トークンを認識し、トークンを表現する一つ以上の正規化された語彙素を出力します。
例えば、ある辞書はratsはratの複数形であることを認識しているので、ratsはratになります。
ある単語はストップワード(「ストップワード」)として認識されます。これは、あまりにも多く出現し検索の役に立たないため、無視されるものです。
先の例では、a、on、およびitがそれです。
もしリスト中の辞書のどれもがトークンを認識しなければ、そのトークンは無視されます。
先の例では、句読点の-がそうです。なぜなら、実際にはそのトークン型(Space symbols)に対して辞書が割り当てられておらず、空白トークンは決してインデックス付けされないことを意味します。
パーサ、辞書、そしてどのトークンがインデックス付けされるかという選択は、テキスト検索設定(「設定例」)によって決められます。
同じデータベース中に多くの異なった設定を持つことができ、多くの言語用に定義済の設定が用意されています。
先の例では、英語用として、デフォルトのenglish設定を使っています。
   


関数setweightを使ってtsvectorのエントリに与えられた重みのラベルを与えることができます。ここで重みは、A, B, C, Dのどれかの文字です。
重みの典型的な使い方は、文書の各部分がどこから来たのかをマークすることです。たとえば、タイトルから来たのか、本文から来たのかなどです。
後でこの情報は検索結果のランキングに利用できます。
   


to_tsvector(NULL)はNULLを返すので、NULLになる可能性のある列に対してはcoalesceを使うことをお勧めします。構造化された文書からtsvectorを作るための推奨できる方法を示します。



UPDATE tt SET ti =
    setweight(to_tsvector(coalesce(title,'')), 'A')    ||
    setweight(to_tsvector(coalesce(keyword,'')), 'B')  ||
    setweight(to_tsvector(coalesce(abstract,'')), 'C') ||
    setweight(to_tsvector(coalesce(body,'')), 'D');




ここでは、完成したtsvectorの語彙素に対して、ラベル付けのためにsetweightを使っています。そして、tsvectorの連結演算子||を使って、ラベルづけされたtsvectorの値をマージします。(詳細は「文書の操作」を参照してください。)
   

問い合わせのパース





PostgreSQL™は、問い合わせをtsqueryに変換する関数to_tsquery、plainto_tsquery、phraseto_tsquery、websearch_to_tsqueryを提供しています。
to_tsqueryは、plainto_tsqueryとphraseto_tsqueryのいずれよりも多くの機能を提供していますが、入力のチェックはより厳格です。
websearch_to_tsqueryは、webサーチエンジンで使われているものに似た別の構文を使うto_tsqueryの簡易バージョンです。
   

to_tsquery([ config regconfig, ] querytext text) returns tsquery



to_tsqueryは、querytextからtsqueryとしての値を生成します。
querytextは、tsquery演算子& (AND), | (OR)、! (NOT)、<-> (FOLLOWED BY)で区切られる単一のトークンから構成されなければなりません。
これらの演算子は括弧でグループ化できます。
言い換えると、to_tsqueryの入力は、「tsquery」で述べられているtsquery入力の一般規則にしたがっていなければなりません。
違いは、基本的なtsqueryの入力はトークンの表面的な値を受け取るのに対し、to_tsqueryは指定した、あるいはデフォルトの設定を使ってトークンを語彙素へと正規化し、設定にしたがって、ストップワードであるようなトークンを破棄します。
例を示します。



SELECT to_tsquery('english', 'The & Fat & Rats');
  to_tsquery
---------------
 'fat' & 'rat'




基本的なtsqueryの入力では、各々の語彙素に重みを付加することにより、同じ重みを持つtsvectorの語彙素のみに照合するようにすることができます。例を示します。



SELECT to_tsquery('english', 'Fat | Rats:AB');
    to_tsquery
------------------
 'fat' | 'rat':AB




また、明示的な前方一致検索のため、*を語彙素に与えることもできます。



SELECT to_tsquery('supern:*A & star:A*B');
        to_tsquery
--------------------------
 'supern':*A & 'star':*AB




このような語彙素は、与えられた文字列で始まるtsvector中のどんな単語にも照合するでしょう。
   


to_tsqueryは、単一引用符で囲まれた語句を受け付けることもできます。これは主に、設定の中にそういった語句を持つ同義語辞書を含んでいるときに有用です。以下の例では、ある同義語の中にsupernovae stars : snという規則が含まれています。



SELECT to_tsquery('''supernovae stars'' & !crab');
  to_tsquery
---------------
 'sn' & !'crab'




引用符がない場合は、to_tsqueryは、AND、ORあるいはFOLLOWED BY演算子で区切られていないトークンに対して構文エラーを引き起こします。
   

plainto_tsquery([ config regconfig, ] querytext text) returns tsquery



plainto_tsqueryは整形されていないテキストquerytextを、tsqueryの値に変換します。
テキストはパースされ、to_tsvectorとしてできる限り正規化されます。
そして、tsquery演算子& (AND) が存続した単語の間に挿入されます。
   


例：



SELECT plainto_tsquery('english', 'The Fat Rats');
 plainto_tsquery
-----------------
 'fat' & 'rat'




plainto_tsqueryは、入力中のtsquery演算子も、重み付けラベルも、前方一致ラベルも認識しないことに注意してください。



SELECT plainto_tsquery('english', 'The Fat & Rats:C');
   plainto_tsquery
---------------------
 'fat' & 'rat' & 'c'




ここでは、入力中のすべての句読点が破棄されています。
   

phraseto_tsquery([ config regconfig, ] querytext text) returns tsquery



phraseto_tsqueryはplainto_tsqueryとほぼ同じ動作をしますが、残った語の間に& (AND) 演算子ではなく、<-> (FOLLOWED BY) 演算子を挿入するところが違います。
また、ストップワードを単に無視するのでなく、<->演算子の代わりに<N>演算子を挿入することで、意味のあるものとします。
FOLLOWED BY演算子は、単にすべての語彙素が存在することだけでなく、語彙素の順序についても確認するため、この関数は語彙素の正確な順序について検索するときに役立ちます。
   


例を示します。



SELECT phraseto_tsquery('english', 'The Fat Rats');
 phraseto_tsquery
------------------
 'fat' <-> 'rat'




plainto_tsqueryと同じく、phraseto_tsquery関数もその入力内のtsquery演算子、重み付けラベル、前方一致ラベルを認識しません。



SELECT phraseto_tsquery('english', 'The Fat & Rats:C');
      phraseto_tsquery
-----------------------------
 'fat' <-> 'rat' <-> 'c'


   

websearch_to_tsquery([ config regconfig, ] querytext text) returns tsquery



websearch_to_tsqueryは、問い合わせとして、単純で整形されていないテキストが代わりに使えるような構文を使ってquerytextからtsqueryを作り出します。
plainto_tsqueryおよびphraseto_tsqueryと違って、ある種の演算子を理解します。
更にこの関数は決して構文エラーを引き起こさないので、ユーザ入力をそのまま検索で使用することができます。
以下の構文をサポートします。

    
	

引用符なしのテキスト:引用符の内側にないテキストは、あたかもplainto_tsqueryで処理されたように&演算子で区切られます。
      

	

"引用符内のテキスト":引用符内のテキストは、あたかもphraseto_tsqueryで処理されたように<->で区切られた表現に変換されます。
      

	

OR:単語「or」は|演算子に変換されます。
      

	

-:ダッシュは!演算子に変換されます。
      






その他の句読点は無視されます。
ですので、plainto_tsqueryやphraseto_tsqueryと同様、websearch_to_tsquery関数はtsquery演算子、重み付けラベルや前方一致ラベルを入力として認識しません。
   


例を示します。


SELECT websearch_to_tsquery('english', 'The fat rats');
 websearch_to_tsquery
----------------------
 'fat' & 'rat'
(1 row)

SELECT websearch_to_tsquery('english', '"supernovae stars" -crab');
       websearch_to_tsquery
----------------------------------
 'supernova' <-> 'star' & !'crab'
(1 row)

SELECT websearch_to_tsquery('english', '"sad cat" or "fat rat"');
       websearch_to_tsquery
-----------------------------------
 'sad' <-> 'cat' | 'fat' <-> 'rat'
(1 row)

SELECT websearch_to_tsquery('english', 'signal -"segmentation fault"');
         websearch_to_tsquery
---------------------------------------
 'signal' & !( 'segment' <-> 'fault' )
(1 row)

SELECT websearch_to_tsquery('english', '""" )( dummy \\ query <->');
 websearch_to_tsquery
----------------------
 'dummi' & 'queri'
(1 row)


    

検索結果のランキング





ランキングはある問い合わせに対して、どの程度文書が関連しているかを計測しようとするものです。合致している文書が多数あるとき、もっとも関連している文書が最初に表示されるようにするためです。
PostgreSQL™は、2つの定義済ランキング関数を提供しています。それらは、辞書情報、近接度情報、構造的情報を加味します。すなわち、問い合わせの用語がどの位の頻度で文書に出現するか、文書中でどの程度それらの用語が近接しているか、どの用語が含まれる文書部位がどの程度重要なのかを考慮します。
しかし、関連度という概念は曖昧で、用途に強く依存します。
異なる用途は、ランキングのために追加の情報を必要とするかも知れません。たとえば、文書の更新時刻などです。
組み込みのランキング関数は例に過ぎません。
利用者の目的に応じて、自分用のランキング関数を作ったり、その結果を追加の情報と組み合わせることができます。
   


今のところ、二種類のランキング関数が利用可能です。

    
	
       

       ts_rank([ weights float4[], ] vector tsvector, query tsquery [, normalization integer ]) returns float4
      
	

それらの語彙素にマッチした頻度に基づくベクトルのランク。
       

	
      

       ts_rank_cd([ weights float4[], ] vector tsvector, query tsquery [, normalization integer ]) returns float4
      
	

この関数は、1999年の"Information Processing and Management"ジャーナルに掲載されたClarke, Cormack, Tudhopeの"Relevance Ranking for One to Three Term Queries"で述べられている方法で、与えられた文書ベクトルと問い合わせの被覆密度(cover density)ランクを計算します。
被覆密度は互いにマッチする語彙素の近接度を考慮に入れる点を除いてts_rankのランク付けと似ています。
       


この関数は、計算を実行するために語彙素の位置情報を必要とします。
ですから、tsvector内の「剥き出しの」語彙素は無視します。
入力に剥き出しでない語彙素がなければ、 結果は0です。
(strip関数とtsvector内の位置情報についてのより詳しい情報は「文書の操作」を参照してください。)
       





   


これらの関数では、単語がどの程度ラベル付けに依存するかを、単語ごとに指定する機能がweightsオプションパラメータによって提供されています。
重み配列で、それぞれのカテゴリの単語がどの程度重み付けするかを指定します。その順は以下のようになっています。



{D-weight, C-weight, B-weight, A-weight}




weightsを与えない場合は、次のデフォルト値が使われます。



{0.1, 0.2, 0.4, 1.0}




重みの典型的な使い方は、文書のタイトルやアブストラクトのような特定の場所にある単語をマーク付けするような使い方です。そうすることにより、文書の本体に比べてそこにある単語がより重要なのか、そうでないのか、扱いを変えることができます。
   


文書が長ければ、それだけ問い合わせ用語を含む確率が高くなるため、文書のサイズを考慮にいれることは理にかなっています。たとえば、5つの検索語を含む100語の文書は、たぶん5つの検索語を含む1000語の文書よりも関連性が高いでしょう。
ランキング関数には、どちらも整数型の正規化オプションがあります。これは、文書の長さがランクに影響を与えるのかどうか、与えるとすればどの程度か、ということを指定します。
この整数オプションは、いくつかの挙動を制御するので、ビットマスクになっています。複数の挙動を|で指定できます(例：2|4)。

    
	

0(デフォルト):文書の長さを無視します
      

	

1:ランクを(1 + log(文書の長さ))で割ります
      

	

2:ランクを文書の長さで割ります
      

	

4:ランクをエクステントの間の調和平均距離で割ります(これはts_rank_cdのみで実装されています)
      

	

8: ランクを文書中の一意の単語の数で割ります
      

	

16: ランクをlog(文書中の一意の単語の数)+1 で割ります
      

	

32: ランクをランク自身+1 で割ります
      






2以上のフラグビットが指定された場合には、変換は上記に列挙された順に行われます。
   


これは重要なことですが、ランキング関数はグローバル情報を一切使わないので、時には必要になる1%から100%までの均一な正規化はできません。
正規化オプション32(rank/(rank+1))を適用することにより、すべてのランクを0から1に分布させることができます。しかし、もちろんこれは表面的な変更に過ぎません。検索結果のならび順に影響を与えるものではありません。
   


マッチする順位の高い10位までを選ぶ例を示します。



SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
                     title                     |   rank
-----------------------------------------------+----------
 Neutrinos in the Sun                          |      3.1
 The Sudbury Neutrino Detector                 |      2.4
 A MACHO View of Galactic Dark Matter          |  2.01317
 Hot Gas and Dark Matter                       |  1.91171
 The Virgo Cluster: Hot Plasma and Dark Matter |  1.90953
 Rafting for Solar Neutrinos                   |      1.9
 NGC 4650A: Strange Galaxy and Dark Matter     |  1.85774
 Hot Gas and Dark Matter                       |   1.6123
 Ice Fishing for Cosmic Neutrinos              |      1.6
 Weak Lensing Distorts the Universe            | 0.818218




同じ例を正規化ランキングを使ったものを示します。



SELECT title, ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */ ) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE  query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
                     title                     |        rank
-----------------------------------------------+-------------------
 Neutrinos in the Sun                          | 0.756097569485493
 The Sudbury Neutrino Detector                 | 0.705882361190954
 A MACHO View of Galactic Dark Matter          | 0.668123210574724
 Hot Gas and Dark Matter                       |  0.65655958650282
 The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
 Rafting for Solar Neutrinos                   | 0.655172410958162
 NGC 4650A: Strange Galaxy and Dark Matter     | 0.650072921219637
 Hot Gas and Dark Matter                       | 0.617195790024749
 Ice Fishing for Cosmic Neutrinos              | 0.615384618911517
 Weak Lensing Distorts the Universe            | 0.450010798361481


   


ランキングは、I/Oに結び付けられていて遅い可能性のある、一致する各文書のtsvectorへのアクセスが必要なので、高価な処理であるかもしれません。
不幸なことに、実際の問い合わせでは往々にして大量の検索結果が生じるため、これはほとんど不可避であると言えます。
   

結果の強調





検索結果を表示する際には、文書の該当部分を表示し、どの程度問い合わせと関連しているかを示すのが望ましいです。
通常、検索エンジンは、強調表示された検索語を含む文書の断片を表示します。
PostgreSQL™はこの機能を実装したts_headline関数を提供しています。
   

ts_headline([ config regconfig, ] document text, query tsquery [, options text ]) returns text



ts_headlineは、問い合わせと一緒に文書を受け取り、問い合わせが注目した文書中の語句を抜粋して返します。
具体的には、関数は問い合わせを使用して関連するテキスト断片を選択し、単語の位置が問い合わせの制限に合わない場合であっても、問い合わせ内に出現するすべての単語を強調表示します。
文書をパースするのに使われる設定をconfigで指定できます。configが省略された場合は、default_text_search_config設定が使われます。
   


options文字列を指定する場合は、一つ以上のoption=valueのペアをカンマで区切ったものでなければなりません。
利用可能なオプションは以下の通りです。

    
	

MaxWords, MinWords (整数): この数字を使って見出しの最大の長さと最小の長さを指定します。
デフォルトは35と15です。
      

	

ShortWord (整数): この長さか、それ以下の長さの単語は、検索語でない限り、見出しの最初と最後から削除されます。
デフォルト値の3は、常用される英語の冠詞を取り除きます。
      

	

HighlightAll (論理値): trueなら文書全体が見出しとして使われ、前の3つのパラメータは無視されます。
デフォルトはfalseです。
      

	

MaxFragments (整数): 表示するテキスト断片の最大数です。
デフォルト値の0は断片化を起こさない見出しの生成の選択となります。
0より大きい場合は断片化を基本とした見出しの生成の選択となります(下記参照)。
      

	

StartSel, StopSel (文字列): 文書中に現れる問い合わせ単語を区切るこの文字列は、他の抜粋される単語と区別されます。
デフォルト値は「<b>」と「</b>」であり、HTML出力には適切でしょう（ただし、下の警告を参照してください）。
      

	

FragmentDelimiter (文字列): 複数の断片が表示される時、その断片はこの文字列で区切られます。
デフォルトは「 ... 」です。
      





    
警告: クロスサイトスクリプティング（XSS）の安全性


ts_headlineの出力は、Webページに直接含めるのに安全であることは保証されません。
HighlightAllがfalse（デフォルト）の場合、一部のシンプルXMLタグがドキュメントから削除されますが、すべてのHTMLマークアップが削除されることは保証されません。
したがって、信頼できない入力を扱う場合、クロスサイトスクリプト（XSS）攻撃のような攻撃に対する効果的な防御は提供されません。
そのような攻撃から守るためには、入力ドキュメントからすべてのHTMLマークアップを削除するか、出力に対してHTMLサニタイザーを使用する必要があります。
     




これらのオプション名は大文字小文字の区別なく認識されます。
空白やカンマを含む場合には、文字列の値を二重引用符で括ってください。
   


断片化を起こさない見出しの生成では、ts_headlineは与えられたqueryとの一致を見つけて、見出しの許される長さ以内でより多くの問い合わせの単語のある一致を優先して一つ選びます。
断片化を基本とした見出しの生成では、ts_headlineは問い合わせの一致を見つけて、各一致を最大でMaxWords個の単語からなる「断片」に分割します。このとき、より多くの問い合わせの単語を含む断片を優先します。そして、可能であれば周囲の単語を含むよう断片を「広げます」。
それゆえ、問い合わせの一致が文書の長い部分に渡る場合や複数の一致を表示するのが望ましい場合には、断片化を基本としたモードがより有用です。
どちらのモードでも、もし問い合わせの一致が特定されなかった場合は、文書中の最初のMinWords個の単語から成る一つの断片が表示されます。
   


例を示します。



SELECT ts_headline('english',
  'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
  to_tsquery('english', 'query & similarity'));
                        ts_headline
------------------------------------------------------------
 containing given <b>query</b> terms                       +
 and return them in order of their <b>similarity</b> to the+
 <b>query</b>.

SELECT ts_headline('english',
  'Search terms may occur
many times in a document,
requiring ranking of the search matches to decide which
occurrences to display in the result.',
  to_tsquery('english', 'search & term'),
  'MaxFragments=10, MaxWords=7, MinWords=3, StartSel=<<, StopSel=>>');
                        ts_headline
------------------------------------------------------------
 <<Search>> <<terms>> may occur                            +
 many times ... ranking of the <<search>> matches to decide


   


ts_headlineは、tsvectorの要約ではなく、元の文書を使います。ですので遅い可能性があり、注意深く使用する必要があります。
   


追加機能





この節では、全文検索に関連する便利な追加の関数と演算子を説明します。
  
文書の操作





「文書のパース」に、もとのテキスト形式の文書がどのようにしてtsvectorに変換されるのか書いてあります。また、PostgreSQL™ではtsvector形式に変換済の文書を操作する関数と演算子が提供されています。
   
	
     
     

      tsvector || tsvector
     
	

tsvectorの結合演算子で、2つのベクトルの語彙素と位置情報を合成し、ベクトルを返します。
位置と重み付けラベルは、結合では維持されます。
右辺のベクトルの位置は左辺のベクトルの一番大きな位置情報のオフセットになります。その結果、この関数の結果は、元の2つの文書文字列を結合したものにto_tsvectorを適用したものとほぼ同じになります。
(まったく同じと言うわけではありません。左辺の引数の最後から取り除かれたストップワードは結果に影響を与えないのに対し、テキストの結合が行われた場合は、右辺の引数にある語彙素位置に影響を与えるからです。)
      


to_tsvectorを適用する前のテキストを結合するよりも、ベクトルを結合することの利点の一つは、文書の異なる部分をパースするために、異なる設定を使うことができることです。なお、setweight関数は与えられたベクトルのすべての語彙素を同じ方法でマーク付けするため、もしも文書に異なる部分に別の重み付けを行いたいなら、結合する前に文書をパースしてsetweightを適用することが必要です。
      

	
     

      setweight(vector tsvector, weight "char") returns tsvector
     
	

setweightは、A, B, C, Dのいずれかの与えられたweightを入力のベクトル中の位置にラベル付けし、そのコピーを返します。
(Dは新しいベクトルのデフォルトで、出力する際には表示されません。)
これらのラベルはベクトルが結合される際に保存されるので、ランキング関数によって文書中の異なる部分の語を別々に重み付けできます。
      


なお、重み付けラベルは語彙素ではなく位置に与えられることに注意してください。
入力のベクトルから位置が削除されていると、setweightは何もしません。
      

	
     

      length(vector tsvector) returns integer
     
	

ベクトル中に格納されている語彙素の数を返します。
      

	
     

      strip(vector tsvector) returns tsvector
     
	

入力のベクトルと同じ語彙素のリストを持つが、位置と重みの情報が全くないベクトルを返します。
その結果は、通常は情報を削除されていないベクトルよりもずっと小さくなりますが、有用性も低くなります。
また、tsquery演算子<-> (FOLLOWED BY)は情報を削除した入力とマッチすることはありません。
なぜなら語彙素が発生する間の距離を決定できないからです。
      





tsvectorに関連した関数の完全なリストが表9.43「テキスト検索関数」にあります。
   

問い合わせを操作する





「問い合わせのパース」は、元のテキストがいかにしてtsquery値に変換されるかを解説しています。またPostgreSQL™は、tsquery形式に変換済の問い合わせを操作するために使用できる関数と演算子を提供しています。
   
	
      tsquery && tsquery
     
	

2つの問い合わせをANDで結合したものを返します。
      

	
      tsquery || tsquery
     
	

2つの問い合わせをORで結合したものを返します。
      

	
      !! tsquery
     
	

与えられた問い合わせの否定を返します。
      

	
      tsquery <-> tsquery
     
	

1番目の問い合わせにマッチし、その直後に2番目の問い合わせにマッチするものを検索する問い合わせを、tsquery演算子<-> (FOLLOWED BY) を使って返します。
例を示します。



SELECT to_tsquery('fat') <-> to_tsquery('cat | rat');
          ?column?
----------------------------
 'fat' <-> ( 'cat' | 'rat' )


      

	
     

      tsquery_phrase(query1 tsquery, query2 tsquery [, distance integer ]) returns tsquery
     
	

1番目の問い合わせにマッチし、その後にちょうどdistance個の語彙素の距離で2番目の問い合わせにマッチするものを検索する問い合わせを、tsquery演算子<N>を使って返します。
例を示します。



SELECT tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10);
  tsquery_phrase
------------------
 'fat' <10> 'cat'


      

	
     

      numnode(query tsquery) returns integer
     
	

tsquery中のノード(語彙素と演算子)の数を返します。この関数は、問い合わせが意味のあるものか(返却値 > 0)、ストップワードだけを含んでいるか(返却値 0)を判断するのに役に立ちます。例を示します。



SELECT numnode(plainto_tsquery('the any'));
NOTICE:  query contains only stopword(s) or doesn't contain lexeme(s), ignored
 numnode
---------
       0

SELECT numnode('foo & bar'::tsquery);
 numnode
---------
       3


      

	
     

      querytree(query tsquery) returns text
     
	

インデックス検索の際に使用できるtsqueryの部分を返します。この関数は、たとえばストップワードのみ、あるいは否定語だけのように、インデックス検索できない問い合わせを検出するのに役立ちます。例を示します。



SELECT querytree(to_tsquery('defined'));
 querytree
-----------
 'defin'

SELECT querytree(to_tsquery('!defined'));
 querytree
-----------
 T


      



問い合わせの書き換え





ts_rewrite関連の関数は、与えられたtsqueryから目的の副問い合わせ部分を探し、それを代わりの副問い合わせに置き換えます。
本質的には、この操作は、部分文字列置き換えのtsquery版です。
置き換え候補と置き換え内容の組は、問い合わせ書き換えルールであると考えることができます。
そのような書き換えルールの集合は、強力な検索ツールとなり得ます。
たとえば、同義語(たとえばnew york, big apple, nyc, gotham)を使って問い合わせをより広範囲にしたり、逆によりホットな話題にユーザを導くために問い合わせを狭い範囲に絞ったりすることができます。
この機能と、同義語辞書(「類語辞書」)の間には、機能的な重複があります。
しかし、再インデックス付けすることなしに、その場で書き換えルールを変更できるのに対し、同義語辞書の更新が有効になるためには、再インデックス付けを行わなければなりません。
    
	
       ts_rewrite (query tsquery, target tsquery, substitute tsquery) returns tsquery
      
	

この形式の ts_rewrite は、単純に単一の書き換えルールを適用します。query中に表れるtargetは、substituteですべて置き換えられます。例を示します。



SELECT ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'c'::tsquery);
 ts_rewrite
------------
 'b' & 'c'


       

	
       ts_rewrite (query tsquery, select text) returns tsquery
      
	

この形式のts_rewriteは、開始queryと、テキスト文字列で与えられるSQLのselectコマンドを受け取ります。
selectは、tsquery型の2つの列を出力しなければなりません。
現在のquery値は、selectのそれぞれの結果行中の最初の列の結果(ターゲット)が、2番目の列の結果(置き換え値)に、置き換えられます。
例を示します。



CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery);
INSERT INTO aliases VALUES('a', 'c');

SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases');
 ts_rewrite
------------
 'b' & 'c'


       


なお、複数の書き換えルールを適用する際は、適用する順番が重要です。ですから、実際には並べ替えのキーを適用するORDER BYを問い合わせに入れておくのがよいでしょう。
       





天文学上の実際的な例を考えてみます。テーブル駆動の書き換えルールを使って、supernovaeを展開します。



CREATE TABLE aliases (t tsquery primary key, s tsquery);
INSERT INTO aliases VALUES(to_tsquery('supernovae'), to_tsquery('supernovae|sn'));

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases');
           ts_rewrite
---------------------------------
 'crab' & ( 'supernova' | 'sn' )




テーブルを更新するだけで、書き換えルールを変更することができます。



UPDATE aliases
SET s = to_tsquery('supernovae|sn & !nebulae')
WHERE t = to_tsquery('supernovae');

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases');
                 ts_rewrite
---------------------------------------------
 'crab' & ( 'supernova' | 'sn' & !'nebula' )


    


書き換えルールが多くなると、書き換えが遅くなる可能性があります。なぜなら、書き換えの対象になるものを求めて、すべてのルールをチェックするからです。
明らかに使われないルールを取り除くために、tsqueryの包含演算子を使うことができます。
以下の例では、元の問い合わせにマッチするルールだけを選ぶことができます。



SELECT ts_rewrite('a & b'::tsquery,
                  'SELECT t,s FROM aliases WHERE ''a & b''::tsquery @> t');
 ts_rewrite
------------
 'b' & 'c'


    


自動更新のためのトリガ



注記


この節で説明する方法は、「インデックスの作成」で説明するように、格納された生成列の使用に置き換えられました。
    



tsvector形式の文書を格納するために別の列を使う場合、文書の内容を格納した列が変更されたときにtsvectorを格納した列を更新するトリガを作っておく必要があります。この目的のために、2つの組み込み関数を利用できます。自分で関数を書くこともできます。
   

tsvector_update_trigger(tsvector_column_name,​ config_name, text_column_name [, ... ])
tsvector_update_trigger_column(tsvector_column_name,​ config_column_name, text_column_name [, ... ])



これらのトリガ関数は、1つ以上のテキスト列から、CREATE TRIGGERコマンドで指定されたパラメータの制御により、tsvector列を自動的に計算します。使い方の例を示します。



CREATE TABLE messages (
    title       text,
    body        text,
    tsv         tsvector
);

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE FUNCTION
tsvector_update_trigger(tsv, 'pg_catalog.english', title, body);

INSERT INTO messages VALUES('title here', 'the body text is here');

SELECT * FROM messages;
   title    |         body          |            tsv
------------+-----------------------+----------------------------
 title here | the body text is here | 'bodi':4 'text':5 'titl':1

SELECT title, body FROM messages WHERE tsv @@ to_tsquery('title & body');
   title    |         body
------------+-----------------------
 title here | the body text is here




このトリガを作っておくことにより、 title またはbodyへの変更は、アプリケーションで考慮しなくても自動的にtsvに反映されます。
   


トリガの最初の引数は更新対象のtsvectorの列名でなければなりません。
2番目の引数は、変換を実行する際に使用されるテキスト検索の設定です。
tsvector_update_triggerでは、設定の名前は単に2番目のトリガ引数で与えられます。
上で示すように、スキーマ修飾されていなければなりません。search_pathの変更がトリガの振る舞いに影響を与えないためです。
tsvector_update_trigger_columnでは、2番目のトリガ引数は別のテーブル列の列名です。この列の型はregconfigでなければなりません。
この方法により、設定を行単位で変えることができます。残りの引数はテキスト型(text, varchar, charのいずれか)の列の名前です。
与えられた順に、文書中に取り込まれます。
NULL値はスキップされます(ただし、それ以外の列はインデックス付けされます)。
   


これらの組み込みトリガの制限事項として、すべての列を同じようにしか扱えないというものがあります。
それぞれの列を違うように扱うには — たとえば本文とタイトルの重みを変えるとか —、カスタムトリガを書く必要があります。
トリガ言語としてPL/pgSQLを使った例を示します。



CREATE FUNCTION messages_trigger() RETURNS trigger AS $$
begin
  new.tsv :=
     setweight(to_tsvector('pg_catalog.english', coalesce(new.title,'')), 'A') ||
     setweight(to_tsvector('pg_catalog.english', coalesce(new.body,'')), 'D');
  return new;
end
$$ LANGUAGE plpgsql;

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
    ON messages FOR EACH ROW EXECUTE FUNCTION messages_trigger();


   


tsvector値をトリガ内で作るときには、設定名を明示的に与えることが重要であることを銘記しておいてください。そうすれば、default_text_search_configが変更されても列の内容は影響を受けません。これを怠ると、ダンプしてリストアすると検索結果が変わってしまうような問題が起きる可能性があります。
   

文書の統計情報の収集





ts_stat関数は、設定をチェックしたり、ストップワードの候補を探すのに役立ちます。
   

ts_stat(sqlquery text, [ weights text, ]
        OUT word text, OUT ndoc integer,
        OUT nentry integer) returns setof record



sqlqueryは単一のtsvector列を返すSQL問い合わせのテキスト値です。ts_statは問い合わせを実行し、tsvectorデータに含まれる語彙素(単語)各々の統計情報を返します。返却される列は以下のものです。

    
	

word text — 語彙素の値
      

	

ndoc integer — 単語が含まれる文書(tsvector)の数
      

	

nentry integer — 含まれる単語の数
      






weightsが与えられていたら、その重みを持つものだけがカウントされます。
   


たとえば、文書中もっとも頻繁に現れる単語の上位10位を探すには以下のようにします。



SELECT * FROM ts_stat('SELECT vector FROM apod')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;




同じ例で、重みがAかBの単語だけをカウントするには、以下のようにします。



SELECT * FROM ts_stat('SELECT vector FROM apod', 'ab')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;


   


パーサ





テキスト検索パーサは、もとの文書テキストを分割してトークンに変換し、それぞれのトークンの型を識別する役割を持っています。ここで、可能な型の集合は、パーサ自身が定義します。
パーサは文書をまったく変更しないことに注意してください — それは、単に可能な単語の境界を識別するだけです。
このような制限があるため、カスタム辞書を作るのに比べ、用途限定のカスタムパーサを作る必要性は少ないです。
今のところ、PostgreSQL™はたった一つの組み込みパーサを提供しています。これは広い範囲の用途に対して有用であると考えられています。
  


組み込みのパーサはpg_catalog.defaultというものです。
表12.1「デフォルトパーサのトークン型」に示す23のトークンを理解します。
  
表12.1 デフォルトパーサのトークン型
	別名	説明	例
	asciiword	単語、すべてのASCII文字	elephant
	word	単語、すべての文字	mañana
	numword	単語、文字、数字	beta1
	asciihword	ハイフンでつながれた単語、すべてのASCII	up-to-date
	hword	ハイフンでつながれた単語、すべての文字	lógico-matemática
	numhword	ハイフンでつながれた単語、すべての文字、数字	postgresql-beta1
	hword_asciipart	ハイフンでつながれた単語の一部、すべての ASCII	postgresql-beta1のpostgresql
	hword_part	ハイフンでつながれた単語の一部、すべての文字	lógico-matemáticaのlógicoまたはmatemática
	hword_numpart	ハイフンでつながれた単語の文字+数字の部分	postgresql-beta1のbeta1
	email	電子メールアドレス	foo@example.com
	protocol	プロトコルヘッダ	http://
	url	URL	example.com/stuff/index.html
	host	ホスト名	example.com
	url_path	URL中のパス名	URL中の/stuff/index.html
	file	ファイルまたはパス名	URL中でない/usr/local/foo.txt
	sfloat	科学技術表記	-1.234e56
	float	10進表記	-1.234
	int	符号付き整数	-1234
	uint	符号なし整数	1234
	version	バージョン番号	8.3.0
	tag	XMLタグ	<a href="dictionaries.html">
	entity	XMLエンティティ	&amp;
	blank	空白記号	(他のものに解釈できない空白または句読点)



注記


パーサにとっての「文字」は、データベースのロケールの設定、特にlc_ctypeによって決まります。
基本的なASCIIのみを含む単語は、別のトークン型として報告されます。ときには、それらを他と区別することが有用だからです。
ヨーロッパのたいていの言語では、word と asciiwordは、同じように扱われます。
   


emailはRFC 5322で定義された有効なメールアドレス文字をすべてサポートしている訳ではありません。
特に、メールアドレスのユーザ名としてサポートされる英数字以外の文字はピリオド、ダッシュ、アンダースコアのみです。
   


tagは、W3C勧告で定義されているXMLのすべての有効なタグ名をサポートしているわけではありません。
特に、サポートされているタグ名は、ASCII文字、アンダースコアまたはコロンで始まり、文字、数字、ハイフン、アンダースコア、ピリオドおよびコロンのみを含むものです。
tagは、<!--で始まり、-->で終わるXMLコメントやXML宣言も含みます（ただし、これは<?xで始まり、>で終わるものをすべて含むことに注意してください）。
   



パーサがテキストの同じ部分から重複したトークンを生成することはあり得ます。たとえば、ハイフン付の単語は、単語全体と、各部分の両方を報告します。例を示します。



SELECT alias, description, token FROM ts_debug('foo-bar-beta1');
      alias      |               description                |     token
-----------------+------------------------------------------+---------------
 numhword        | Hyphenated word, letters and digits      | foo-bar-beta1
 hword_asciipart | Hyphenated word part, all ASCII          | foo
 blank           | Space symbols                            | -
 hword_asciipart | Hyphenated word part, all ASCII          | bar
 blank           | Space symbols                            | -
 hword_numpart   | Hyphenated word part, letters and digits | beta1




この挙動は好ましいのものです。単語全体と、各々の部分の両方に対して検索ができるからです。初歩的な別の例を示します。



SELECT alias, description, token FROM ts_debug('http://example.com/stuff/index.html');
  alias   |  description  |            token
----------+---------------+------------------------------
 protocol | Protocol head | http://
 url      | URL           | example.com/stuff/index.html
 host     | Host          | example.com
 url_path | URL path      | /stuff/index.html


  

辞書





辞書は、検索の対象とならない単語(ストップワード)を削除するために使われます。
また、同じ単語から派生した異なる形態の単語が照合するようにするために、単語を正規化するためにも使われます。
正規化された単語は語彙素と呼ばれます。
検索の品質を向上するという面以外にも、正規化とストップワードの削除は、tsvector表現の文書のサイズを小さくし、結果として性能を向上させます。正規化は常に言語学的な意味を持つとは限らず、通常は用途の意味論に依存します。
  


   正規化の例を示します。

   
	

言語学的 — Ispell辞書は入力された単語を正規化された形式に変換しようとします。語幹辞書は単語の終了部を削除します。
     

	

以下のようなURLが同一のURLに一致するように正規化することができます。

      
	
         http://www.pgsql.ru/db/mw/index.html
        

	
         http://www.pgsql.ru/db/mw/
        

	
         http://www.pgsql.ru/db/../db/mw/index.html
        




     

	

色の名前は、16進値に変換できます。例：
      red, green, blue, magenta -> FF0000, 00FF00, 0000FF, FF00FF
     

	

数をインデックス付けする際には、可能な範囲を縮小するために、端数を削除することができます。たとえば、もし正規化後に小数点未満2桁を保持するならば、3.14159265359、3.1415926、3.14は同じことになります。
     





  


辞書は、トークンを入力し、以下を返すプログラムです。
   
	

入力が辞書に登録されていれば語彙素の配列(一つのトークンが一つ以上の語彙素を生成する可能性があることに注意してください)
     

	

元々のトークンを新規のトークンに置き換え、それに続く辞書にその新規トークン渡す場合は、TSL_FILTERフラグセットを伴う単一の語彙素(このような置き換え機能をもつ辞書はフィルタリング辞書と呼ばれます)
     

	

辞書が入力を認識しないが、ストップワードであることは認識する場合は空の配列
     

	

辞書が入力トークンを認識しない場合はNULL
     




  


PostgreSQL™は、多くの言語に定義済の辞書を提供しています。
また、カスタムパラメータを使った新しい辞書を作るために使えるテンプレートもいくつかあります。
定義済の辞書のテンプレートについては、以下で述べています。
今あるテンプレートが適当でないのなら、新しいものを作ることもできます。例は、PostgreSQL™の配布物のcontrib/をご覧下さい。
  


テキスト検索設定は、パーサと、パーサの出力トークンを処理する辞書の集合を結び付けます。パーサが返却する各々のトークン型に対して、設定で辞書のリストを指定します。パーサがあるトークン型を見つけると、ある辞書が単語を認識するまでリスト中の辞書が順番に調べられます。
ストップワードであるか、あるいはどの辞書もトークンを認識しない場合はそれは捨てられ、インデックス付けや検索の対象となりません。
通常、非NULLを返す最初の辞書の出力が結果を決めることになり、他の残りの辞書は参照されません。しかし、フィルタリング辞書は与えられたワードを変更し、それを続く辞書へ渡すことができます。
  


辞書をリストする一般的な方法は、まずもっとも範囲の狭い、特定用途向の辞書を配置し、次にもっと一般的な辞書を置き、最後にSnowball語幹処理やsimple辞書のような、すべてを認識する非常に一般的な辞書を置くことです。
たとえば、天文学向の検索では(astro_en設定)では、asciiword (ASCII単語)型を天文学用語の同義語辞書、一般的な英語辞書、そしてSnowball英語語幹辞書に結び付けることができます。



ALTER TEXT SEARCH CONFIGURATION astro_en
    ADD MAPPING FOR asciiword WITH astrosyn, english_ispell, english_stem;


  


フィルタリング辞書は、リスト中の好きな場所へ配置できます。(役に立たなくなるリストの最後を除きます。)
フィルタリング辞書は、後続の辞書の処理を単純化するために、一部の文字の正規化を行うのに有用です。
例えば、フィルタリング辞書はunaccentモジュールで実施される様な、アクセント記号が付与された文字からアクセント記号を取り除くのに使用することができます。
  
ストップワード





ストップワードは、ほとんどすべての文書に現れるような非常に一般的で、ほかのものと同じようには扱う価値のない単語です。
ですから、全文検索の際には無視して構いません。
たとえば、すべての英語のテキストはaやtheのような単語を含んでおり、インデックスの中にそれらを入れても役に立ちません。
しかし、ストップワードはtsvector中の位置に影響を与えるので、結局ランキングにも影響があります。



SELECT to_tsvector('english', 'in the list of stop words');
        to_tsvector
----------------------------
 'list':3 'stop':5 'word':6




位置1, 2, 4は、ストップワードのために失われています。
ストップワードの有無により、文書のために計算されたランクは非常に影響を受けます。



SELECT ts_rank_cd (to_tsvector('english', 'in the list of stop words'), to_tsquery('list & stop'));
 ts_rank_cd
------------
       0.05

SELECT ts_rank_cd (to_tsvector('english', 'list stop words'), to_tsquery('list & stop'));
 ts_rank_cd
------------
        0.1



   


ストップワードをどのように扱うかは、特定の辞書に任されています。
例えば、ispell辞書はまず単語を正規化し、そして、ストップワードのリストを検索します。一方、Snowball語幹抽出はまずストップワードのリストを検査します。
動作が異なる理由は、ノイズが紛れ込む可能性を減らすことです。
   

simple辞書





simple辞書テンプレートは、入力トークンを小文字に変換し、ストップワードのファイルに対してチェックすることによって動作します。
もしファイルの中にあれば、空の配列が返却され、そのトークンは捨てられます。
そうでないときは、小文字形式の単語が正規化された語彙素として返却されます。
別の方法としては、ストップワードではないものは、認識できないものとすることもできます。そうすることにより、それらをリスト中の次の辞書に渡すことができます。
   


simpleテンプレートを使った辞書定義の例を示します。



CREATE TEXT SEARCH DICTIONARY public.simple_dict (
    TEMPLATE = pg_catalog.simple,
    STOPWORDS = english
);




ここで、englishは、ストップワードファイルのベースネームです。
ファイルのフルネームは、$SHAREDIR/tsearch_data/english.stopです。$SHAREDIRは、PostgreSQL™インストール先の共有データディレクトリです。これは、よく/usr/local/share/postgresqlに置いてあります(よくわからない場合はpg_config --sharedirを使ってください)。
ファイル形式は、単に1行ごとに単語を書くだけです。
空行と、後方の空白は無視されます。大文字は小文字に変換されます。このファイルの内容に関する処理はこれだけです。
   


これで辞書のテストができます。



SELECT ts_lexize('public.simple_dict', 'YeS');
 ts_lexize
-----------
 {yes}

SELECT ts_lexize('public.simple_dict', 'The');
 ts_lexize
-----------
 {}


   


また、ストップワードファイルの中に見つからないときに、小文字に変換した単語を返す代わりに、NULLを返すことを選ぶこともできます。
この挙動は、辞書のAcceptパラメータをfalseに設定することで選択されます。
さらに例を続けます。



ALTER TEXT SEARCH DICTIONARY public.simple_dict ( Accept = false );

SELECT ts_lexize('public.simple_dict', 'YeS');
 ts_lexize
-----------


SELECT ts_lexize('public.simple_dict', 'The');
 ts_lexize
-----------
 {}


   


デフォルト設定のAccept = trueでは、simple辞書は、辞書リストの最後に置かなければ意味がありません。なぜなら、後続の辞書にトークンを渡すことがないからです。逆にAccept = falseは、後続の辞書が少なくとも一つはあるときに意味があります。
   
注意


ほとんどの辞書の形式は、ストップワードファイルのように設定ファイルに依存します。これらのファイルは必ずUTF-8エンコーディングにしてください。サーバのエンコーディングがUTF-8でない場合は、サーバに読み込まれる際に実際のデータベースエンコーディングに変換されます。
    

注意


通常、辞書の設定ファイルはデータベースセッションの中で最初に使われる際に、一度だけ読み込まれます。
設定ファイルを変更し、現在使われているセッションの中で新しい内容が読み込まれるようにしたい場合は、その辞書に対してALTER TEXT SEARCH DICTIONARYを発行してください。
これは実際にはどんなパラメータ値をも変更しない「ダミー」の更新でよいです。
    


同義語辞書





この辞書テンプレートは、単語を同義語に置き換える辞書を作るために使われます。
語句はサポートされていません(そのためには類語テンプレート(「類語辞書」)を使ってください)。
同義語辞書は、言語学的な問題、たとえば、英語語幹辞書が「Paris」という単語を「pari」に縮小してしまうのを防ぎます。
Paris parisという行を同義語辞書に登録し、english_stem辞書の前に置くようにするだけでよいのです。
下記はその例です。



SELECT * FROM ts_debug('english', 'Paris');
   alias   |   description   | token |  dictionaries  |  dictionary  | lexemes
-----------+-----------------+-------+----------------+--------------+---------
 asciiword | Word, all ASCII | Paris | {english_stem} | english_stem | {pari}

CREATE TEXT SEARCH DICTIONARY my_synonym (
    TEMPLATE = synonym,
    SYNONYMS = my_synonyms
);

ALTER TEXT SEARCH CONFIGURATION english
    ALTER MAPPING FOR asciiword
    WITH my_synonym, english_stem;

SELECT * FROM ts_debug('english', 'Paris');
   alias   |   description   | token |       dictionaries        | dictionary | lexemes
-----------+-----------------+-------+---------------------------+------------+---------
 asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}


   


synonymテンプレートに必要なパラメータはSYNONYMSだけで、その設定ファイルのベースネームです — 上の例ではmy_synonymsです。
ファイルのフルネームは、$SHAREDIR/tsearch_data/my_synonyms.syn となります(ここで$SHAREDIRは、PostgreSQL™をインストールした際の、共有データディレクトリです)。
ファイルの形式は、置き換え対象の1単語につき1行で、単語には空白で区切られた同義語が後に続きます。
空行、後方の空白は無視されます。
   


synonymテンプレートはまた、CaseSensitiveというオプションパラメータを持っており、デフォルトはfalseです。
CaseSensitiveがfalseの時は、同義語ファイル中の単語は入力トークンと同様に小文字に変換されます。
trueの時は、単語とトークンは小文字に変換されずそのまま比較されます。
   


アスタリスク(*)は設定ファイル中の同義語の最後に付与することができます。
これは同義語を接頭語とすることを意味します。
アスタリスクは、エントリがto_tsvector()で使用される場合には無視されますが、to_tsquery()で使用される場合、結果は前方一致を伴った問い合わせになるでしょう。(詳しくは「問い合わせのパース」を見てください。)
例えば、$SHAREDIR/tsearch_data/synonym_sample.synに以下の様なエントリをもっていたとします。


postgres        pgsql
postgresql      pgsql
postgre pgsql
gogle   googl
indices index*



この場合、次のような結果を得ることになります。


mydb=# CREATE TEXT SEARCH DICTIONARY syn (template=synonym, synonyms='synonym_sample');
mydb=# SELECT ts_lexize('syn', 'indices');
 ts_lexize
-----------
 {index}
(1 row)

mydb=# CREATE TEXT SEARCH CONFIGURATION tst (copy=simple);
mydb=# ALTER TEXT SEARCH CONFIGURATION tst ALTER MAPPING FOR asciiword WITH syn;
mydb=# SELECT to_tsvector('tst', 'indices');
 to_tsvector
-------------
 'index':1
(1 row)

mydb=# SELECT to_tsquery('tst', 'indices');
 to_tsquery
------------
 'index':*
(1 row)

mydb=# SELECT 'indexes are very useful'::tsvector;
            tsvector
---------------------------------
 'are' 'indexes' 'useful' 'very'
(1 row)

mydb=# SELECT 'indexes are very useful'::tsvector @@ to_tsquery('tst', 'indices');
 ?column?
----------
 t
(1 row)


   

類語辞書





類語辞書(TZと略されることがあります)は、単語と語句の関係情報を集めたものです。つまり、広義用語(BT)、狭義用語(NT)、優先用語、非優先用語、関連用語などです。
   


基本的には、類語辞書は、非優先用語を優先用語に置き換え、オプションで元の用語もインデックス付けのため保存します。
PostgreSQL™の現在の類語辞書の実装は、同義語辞書を拡張し、語句のサポートを追加したものです。
類語辞書は、以下のようなフォーマットの設定ファイルを必要とします。



# this is a comment
sample word(s) : indexed word(s)
more sample word(s) : more indexed word(s)
...




ここで、コロン(:)は、語句とその置き換え対象の区切りです。
   


類語辞書は、副辞書(辞書設定で指定します)を、一致する語句をチェックする前に入力テキストを正規化するために使います。
副辞書はただ一つだけ選べます。
副辞書が単語を認識できない場合はエラーが報告されます。
その場合は、その単語の利用を止めるか、副辞書にそのことを教えなければなりません。
アスタリスク(*)をインデックス付けされた単語の先頭に置くことにより、副辞書の適用をスキップできます。しかしながら、すべてのサンプルの単語は、副辞書に認識されなければなりません。
   


複数の類語が照合するときは、類語辞書はもっとも長いものを選びます。そして、語句は、最後の定義を使って分解されます。
   


特定のストップワードを副辞書に認識するように指定することはできません。その代わり、ストップワードが出現する位置を?でマークします。
たとえば、aとtheが副辞書によればストップワードだったとします。



? one ? two : swsw




は、a one the twoとthe one a twoに照合します。そして、両方ともswswに置き換えられます。
   


類語辞書は語句を認識することができるので、状態を記憶してパーサと連携を保たなければなりません。
類語辞書は、この機能を使って次の単語を引き続き処理するのか、単語の蓄積を止めるのかを決定します。
類語辞書の設定は注意深く行わなければなりません。
たとえば、類語辞書がasciiwordトークンだけを扱うようになっている場合、one 7のような類語辞書の定義は、トークン型uintが類語辞書にアサインされていないので動きません。
   
注意


類語辞書はインデックス付けの際に利用されるので、類語辞書を設定変更すると、再インデックス付けが必要になります。他のほとんどの辞書では、ストップワードを追加あるいは削除するような小さな変更は、インデックス付けを必要としません。
    

類語設定





新しい類語辞書を定義するには、thesaurusテンプレートを使います。例を示します。



CREATE TEXT SEARCH DICTIONARY thesaurus_simple (
    TEMPLATE = thesaurus,
    DictFile = mythesaurus,
    Dictionary = pg_catalog.english_stem
);




ここで、
    
	

thesaurus_simpleは新しい辞書の名前です。
      

	

mythesaurusは、類語設定ファイルのベースネームです。
(フルパスは、$SHAREDIR/tsearch_data/mythesaurus.thsとなります。ここで、$SHAREDIRはインストール時の共有データディレクトリです。)
      

	

類語正規化で使用するpg_catalog.english_stemは副辞書です(ここでは、Snowball英語語幹辞書)。
副辞書にはそれ用の設定(たとえばストップワード)があることに注意してください。ここではそれは表示していません。
      






これで、類語辞書thesaurus_simpleを、設定中の希望のトークンにバインドすることができるようになります。例を示します。



ALTER TEXT SEARCH CONFIGURATION russian
    ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
    WITH thesaurus_simple;


   

類語の例





天文学の単語の組合わせを含む単純な天文学用のthesaurus_astro類語を考えます。



supernovae stars : sn
crab nebulae : crab




以下で辞書を作り、トークン型を天文学類語辞書と英語の語幹辞書に結び付けます。



CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
    TEMPLATE = thesaurus,
    DictFile = thesaurus_astro,
    Dictionary = english_stem
);

ALTER TEXT SEARCH CONFIGURATION russian
    ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
    WITH thesaurus_astro, english_stem;




さあ、これでどのように動くか試せます。ts_lexizeは類語をテストする目的にはあまり有用ではありません。なぜなら、それは入力を単一のトークンとして扱うからです。
その代わりに、plainto_tsqueryとto_tsvectorを使って入力文字列を複数のトークンに分解します。



SELECT plainto_tsquery('supernova star');
 plainto_tsquery
-----------------
 'sn'

SELECT to_tsvector('supernova star');
 to_tsvector
-------------
 'sn':1




原則として、引数を引用符で囲めばto_tsqueryが使えます。



SELECT to_tsquery('''supernova star''');
 to_tsquery
------------
 'sn'




english_stem語幹辞書を同義語辞書の定義時に指定したので、supernova starがthesaurus_astro中のsupernovae starsに照合していることに注意してください。
語幹処理がeとsを削除しています。
   


置き換え後の語句とオリジナルの語句の両方をインデックス付けするには、定義の右項にオリジナルを追加するだけで良いです。



supernovae stars : sn supernovae stars

SELECT plainto_tsquery('supernova star');
       plainto_tsquery
-----------------------------
 'sn' & 'supernova' & 'star'


   


Ispell辞書





Ispell辞書テンプレートは、形態論辞書を提供します。これによって、言語学的に多様な単語の形態を同じ語彙素に変換することができます。
たとえば、英語Ispell辞書は、検索語bankの語形変化と活用変化、たとえばbanking, banked, banks, banks', bank'sに照合します。
   


PostgreSQL™の標準配布には、Ispellの設定ファイルは含まれていません。
多くの言語用の辞書がIspellで入手できます。
また、より新しい辞書のフォーマットもサポートされています — MySpell(OO < 2.0.1)とHunspell(OO >= 2.0.2)。
多数の辞書のリストが OpenOffice Wikiで入手できます。
   


Ispell辞書を作るには、以下の手順を実行します。
   
	

辞書の設定ファイルをダウンロードします。
OpenOffice™の拡張ファイルは拡張子.oxtがあります。
.affファイルと.dicファイルを抽出し、拡張子を.affixと.dictに変更する必要があります。
一部の辞書ファイルでは、以下のコマンドで文字をUTF-8の符号化に変換する必要もあります（例えば、ノルウェー語の辞書では次のようになります）。


iconv -f ISO_8859-1 -t UTF-8 -o nn_no.affix nn_NO.aff
iconv -f ISO_8859-1 -t UTF-8 -o nn_no.dict nn_NO.dic


     

	

ファイルを$SHAREDIR/tsearch_dataディレクトリにコピーします。
     

	

以下のコマンドでファイルをPostgreSQLにロードします。


CREATE TEXT SEARCH DICTIONARY english_hunspell (
    TEMPLATE = ispell,
    DictFile = en_us,
    AffFile = en_us,
    Stopwords = english);


     





ここで、DictFile, AffFile, およびStopWordsは、辞書のベースネーム、接辞ファイル、ストップワードファイルを指定します。
ストップワードファイルは、上で説明したsimple辞書と同じ形式です。
ほかのファイルの形式はここでは説明されませんが、上にあげたウェブサイトに説明があります。
   


Ispell辞書は通常限られた数の単語を認識します。ですので、なんでも認識できるSnowball辞書のような、より適用範囲の広い辞書による後処理が必要です。
   


Ispellの.affixファイルは次のような構造になっています。


prefixes
flag *A:
    .           >   RE      # As in enter > reenter
suffixes
flag T:
    E           >   ST      # As in late > latest
    [^AEIOU]Y   >   -Y,IEST # As in dirty > dirtiest
    [AEIOU]Y    >   EST     # As in gray > grayest
    [^EY]       >   EST     # As in small > smallest


   


そして、.dictファイルは次のような構造になっています。


lapse/ADGRS
lard/DGRS
large/PRTY
lark/MRS


   


.dictファイルのフォーマットは次の通りです。


basic_form/affix_class_name


   


.affixファイルで、すべてのaffix(接辞)フラグは次のフォーマットで記述されています。


condition > [-stripping_letters,] adding_affix


   


ここで、condition(条件)は正規表現の形式と同じような形式になります。
[...]および[^...]のグループ化を使うことができます。
例えば[AEIOU]Yは、単語の最後の文字が"y"で、その前の文字が"a"、"e"、"i"、"o"、"u"のいずれかであることを意味します。
[^EY]は最後の文字が"e"でも"y"でもないことを意味します。
   


Ispell辞書を使って複合語を分割することができます。これは優れた機能です。
接辞ファイルは、複合語形式の候補になる辞書中の単語に印を付けるcompoundwords controlled文を使う特別なフラグを指定しなければならないことに注意してください。



compoundwords  controlled z




ノルウェー語の例をいくつか示します。



SELECT ts_lexize('norwegian_ispell', 'overbuljongterningpakkmesterassistent');
   {over,buljong,terning,pakk,mester,assistent}
SELECT ts_lexize('norwegian_ispell', 'sjokoladefabrikk');
   {sjokoladefabrikk,sjokolade,fabrikk}


   


MySpellのフォーマットはHunspellの部分集合です。
Hunspellの.affixファイルは以下のような構造になっています。


PFX A Y 1
PFX A   0     re         .
SFX T N 4
SFX T   0     st         e
SFX T   y     iest       [^aeiou]y
SFX T   0     est        [aeiou]y
SFX T   0     est        [^ey]


   


接辞(affix)クラスの1行目はヘッダです。
接辞ルールのフィールドはヘッダの後に列挙されます。
   
	

パラメータ名（PFXまたはSFX）
     

	

フラグ（接辞クラスの名前）
     

	

単語の先頭（接頭辞）から、あるいは終わり（接尾辞）から文字を削除する
     

	

接辞を追加する
     

	

正規表現の形式と類似の形式の条件
     





.dictファイルはIspellの.dictファイルと同じように見えます。


larder/M
lardy/RT
large/RSPMYT
largehearted


   
注記


MySpellは複合語をサポートしていません。
Hunspellは複合語の高度なサポートを提供しています。
いまのところ、PostgreSQL™はHunspellの基本的な複合語操作しかサポートしていません。
    


Snowball辞書





Snowball辞書テンプレートは、有名な「英語用のポーターの語幹アルゴリズム」を発明したMartin Porterのプロジェクトに基づいています。
Snowballは今では多くの言語用の語幹アルゴリズムを提供しています(詳細はSnowballのサイトを参照してください)。
各々のアルゴリズムにより、その言語において単語の共通部分を取りだし、基本部もしくは語幹の綴りに縮退させることができます。
Snowball辞書には、どの語幹処理を使うかを識別する言語パラメータが必須で、加えて、オプションで無視すべき単語のリストを保持するストップワードファイルを指定することもできます。
(PostgreSQL™の標準的なストップワードファイルもまたSnowball projectから提供されています。)
たとえば、以下と同じ組み込みの定義があります。



CREATE TEXT SEARCH DICTIONARY english_stem (
    TEMPLATE = snowball,
    Language = english,
    StopWords = english
);




ストップワードファイルの形式はすでに説明されているものと同じです。
   


Snowball辞書は、単純化できるかどうかに関係なく、すべての単語を認識するので、辞書リストの最後に置く必要があります。
他の辞書の前に置くのは意味がありません。Snowball辞書は決してトークンを次の辞書に渡さないからです。
   


設定例





テキスト検索設定は、文書をtsvectorに変換する必要なすべてのオプションを指定します。すなわち、テキストをトークンに分解するパーサ、そしてトークンを語彙素に変換する辞書です。
to_tsvectorまたはto_tsqueryを呼び出すたびに、処理を進めるためにテキスト検索設定が必要になります。
設定パラメータのdefault_text_search_configは、デフォルトの設定を指定します。これは、明示的な設定が省略されたときにテキスト検索関数が使用します。
postgresql.confに設定するか、個々のセッションでSETコマンドを使って設定できます。
   


既定のテキスト検索設定がいくつか利用できます。また、カスタム設定を作るのも容易です。
テキスト検索オブジェクトを管理する機能を実現するために、SQLコマンドが一通り用意されています。テキスト検索オブジェクトに関する情報を表示するpsqlコマンドもいくつか用意されています(「psqlサポート」)。
   


例として、組み込みのenglish設定のコピーを用いて、新しいpg設定を作ります。



CREATE TEXT SEARCH CONFIGURATION public.pg ( COPY = pg_catalog.english );


   


PostgreSQL固有の同義語リストを使い、それを$SHAREDIR/tsearch_data/pg_dict.synに格納します。ファイルの内容は以下のようになります。



postgres    pg
pgsql       pg
postgresql  pg




同義語辞書を次のように定義します。



CREATE TEXT SEARCH DICTIONARY pg_dict (
    TEMPLATE = synonym,
    SYNONYMS = pg_dict
);




次に、Ispell™辞書のenglish_ispellを登録します。これにはそれ自身の設定ファイルがあります。



CREATE TEXT SEARCH DICTIONARY english_ispell (
    TEMPLATE = ispell,
    DictFile = english,
    AffFile = english,
    StopWords = english
);




ここで、pg設定に単語用のマッピングを設定します。



ALTER TEXT SEARCH CONFIGURATION pg
    ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
                      word, hword, hword_part
    WITH pg_dict, english_ispell, english_stem;




組み込み設定が扱っているいくつかのトークンに関しては、インデックス付けと検索に扱わないことにします。



ALTER TEXT SEARCH CONFIGURATION pg
    DROP MAPPING FOR email, url, url_path, sfloat, float;


   


これでここまで作った設定を試すことができます。



SELECT * FROM ts_debug('public.pg', '
PostgreSQL, the highly scalable, SQL compliant, open source object-relational
database management system, is now undergoing beta testing of the next
version of our software.
');


   


次に、セッションの中で新しい設定を使うようにします。この設定は、publicスキーマの中に作られています。



=> \dF
   List of text search configurations
 Schema  | Name | Description
---------+------+-------------
 public  | pg   |

SET default_text_search_config = 'public.pg';
SET

SHOW default_text_search_config;
 default_text_search_config
----------------------------
 public.pg


  

テキスト検索のテストとデバッグ





カスタムテキスト検索設定の挙動は複雑になりがちで、結果として混乱を招くことになります。
この節では、テキスト検索オブジェクトのテストの際に役に立つ関数を説明します。
完全な設定でテストすることも、パーサと辞書を別々にテストすることも可能です。
  
設定のテスト





ts_debug関数により、テキスト検索設定の容易なテストができます。
  

ts_debug([ config regconfig, ] document text,
         OUT alias text,
         OUT description text,
         OUT token text,
         OUT dictionaries regdictionary[],
         OUT dictionary regdictionary,
         OUT lexemes text[])
         returns setof record



ts_debugは、パーサが生成し、設定された辞書が処理したdocumentのすべてのトークンの情報を表示します。その際、configで指定した設定が使われます。引数が省略されるとdefault_text_search_configが使われます。
  


ts_debugは、パーサが認識したテキスト中のトークンを1行につき一つ返します。
返却される列は以下です。

    
	

       alias text — トークン型の短縮名
      

	

       description text — トークン型の説明
      

	

       token text — トークンテキスト
      

	

       dictionaries regdictionary[] — 設定によってこのトークン型用に選択された辞書
      

	

       dictionary regdictionary — トークンを認識した辞書。もし認識した辞書がなければ NULL
      

	

       lexemes text[] — トークンを認識した辞書が生成した語彙素。もしどの辞書も認識しなければNULL。空の配列({})が返った場合は、ストップワードとして認識されたことを示す
      




  


簡単な例を示します。



SELECT * FROM ts_debug('english', 'a fat  cat sat on a mat - it ate a fat rats');
   alias   |   description   | token |  dictionaries  |  dictionary  | lexemes
-----------+-----------------+-------+----------------+--------------+---------
 asciiword | Word, all ASCII | a     | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              |
 asciiword | Word, all ASCII | fat   | {english_stem} | english_stem | {fat}
 blank     | Space symbols   |       | {}             |              |
 asciiword | Word, all ASCII | cat   | {english_stem} | english_stem | {cat}
 blank     | Space symbols   |       | {}             |              |
 asciiword | Word, all ASCII | sat   | {english_stem} | english_stem | {sat}
 blank     | Space symbols   |       | {}             |              |
 asciiword | Word, all ASCII | on    | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              |
 asciiword | Word, all ASCII | a     | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              |
 asciiword | Word, all ASCII | mat   | {english_stem} | english_stem | {mat}
 blank     | Space symbols   |       | {}             |              |
 blank     | Space symbols   | -     | {}             |              |
 asciiword | Word, all ASCII | it    | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              |
 asciiword | Word, all ASCII | ate   | {english_stem} | english_stem | {ate}
 blank     | Space symbols   |       | {}             |              |
 asciiword | Word, all ASCII | a     | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              |
 asciiword | Word, all ASCII | fat   | {english_stem} | english_stem | {fat}
 blank     | Space symbols   |       | {}             |              |
 asciiword | Word, all ASCII | rats  | {english_stem} | english_stem | {rat}


  


もう少し高度なデモをお見せするために、まず英語用のpublic.english設定と、Ispell辞書を作ります。
  

CREATE TEXT SEARCH CONFIGURATION public.english ( COPY = pg_catalog.english );

CREATE TEXT SEARCH DICTIONARY english_ispell (
    TEMPLATE = ispell,
    DictFile = english,
    AffFile = english,
    StopWords = english
);

ALTER TEXT SEARCH CONFIGURATION public.english
   ALTER MAPPING FOR asciiword WITH english_ispell, english_stem;


SELECT * FROM ts_debug('public.english', 'The Brightest supernovaes');
   alias   |   description   |    token    |         dictionaries          |   dictionary   |   lexemes
-----------+-----------------+-------------+-------------------------------+----------------+-------------
 asciiword | Word, all ASCII | The         | {english_ispell,english_stem} | english_ispell | {}
 blank     | Space symbols   |             | {}                            |                |
 asciiword | Word, all ASCII | Brightest   | {english_ispell,english_stem} | english_ispell | {bright}
 blank     | Space symbols   |             | {}                            |                |
 asciiword | Word, all ASCII | supernovaes | {english_ispell,english_stem} | english_stem   | {supernova}



この例では、単語Brightestは、ASCII word (別名はasciiword)として認識されています。
このトークン型のための辞書リストはenglish_ispell とenglish_stemです。この単語はenglish_ispellに認識され、名詞brightへと縮退されています。
単語supernovaesはenglish_ispell辞書には認識されず、次の辞書に渡され、幸い認識されました(実際には、english_stemはSnowball辞書で、何でも認識します。それで、この辞書は辞書リストの最後に置かれているわけです)。
  


単語Theは、english_ispell辞書によってストップワード(「ストップワード」)として認識されており、インデックス付けされません。空白も捨てられます。この設定では空白に関する辞書が提供されていないからです。
  


明示的に見たい列を指定することにより、出力の幅を減らすことができます。



SELECT alias, token, dictionary, lexemes
FROM ts_debug('public.english', 'The Brightest supernovaes');
   alias   |    token    |   dictionary   |   lexemes
-----------+-------------+----------------+-------------
 asciiword | The         | english_ispell | {}
 blank     |             |                |
 asciiword | Brightest   | english_ispell | {bright}
 blank     |             |                |
 asciiword | supernovaes | english_stem   | {supernova}


  

パーサのテスト





次にあげた関数により、テキスト検索パーサを直接テストすることができます。
  

ts_parse(parser_name text, document text,
         OUT tokid integer, OUT token text) returns setof record
ts_parse(parser_oid oid, document text,
         OUT tokid integer, OUT token text) returns setof record



ts_parseは与えられたdocumentをパースし、パーサが生成したトークンを1行に1個もつ一連のレコードを返します。それぞれのレコードには、割り当てられたトークン型を示すtokidと、テキストのトークンであるtokenが含まれます。
例を示します。



SELECT * FROM ts_parse('default', '123 - a number');
 tokid | token
-------+--------
    22 | 123
    12 |
    12 | -
     1 | a
    12 |
     1 | number


  

ts_token_type(parser_name text, OUT tokid integer,
              OUT alias text, OUT description text) returns setof record
ts_token_type(parser_oid oid, OUT tokid integer,
              OUT alias text, OUT description text) returns setof record



ts_token_typeは、指定したパーサが認識できるトークン型を記述したテーブルを返します。各々のトークン型に対し、パーサがトークン型をラベル付けするのに使用する整数tokid、設定コマンド中のトークンの名前であるalias、簡単な説明であるdescriptionが含まれます。
例を示します。



SELECT * FROM ts_token_type('default');
 tokid |      alias      |               description
-------+-----------------+------------------------------------------
     1 | asciiword       | Word, all ASCII
     2 | word            | Word, all letters
     3 | numword         | Word, letters and digits
     4 | email           | Email address
     5 | url             | URL
     6 | host            | Host
     7 | sfloat          | Scientific notation
     8 | version         | Version number
     9 | hword_numpart   | Hyphenated word part, letters and digits
    10 | hword_part      | Hyphenated word part, all letters
    11 | hword_asciipart | Hyphenated word part, all ASCII
    12 | blank           | Space symbols
    13 | tag             | XML tag
    14 | protocol        | Protocol head
    15 | numhword        | Hyphenated word, letters and digits
    16 | asciihword      | Hyphenated word, all ASCII
    17 | hword           | Hyphenated word, all letters
    18 | url_path        | URL path
    19 | file            | File or path name
    20 | float           | Decimal notation
    21 | int             | Signed integer
    22 | uint            | Unsigned integer
    23 | entity          | XML entity


   

辞書のテスト





ts_lexize関数は辞書のテストを支援します。
   

ts_lexize(dict regdictionary, token text) returns text[]



ts_lexizeは、入力tokenが辞書に認識されれば語彙素の配列を返します。辞書に認識され、それがストップワードである場合には空の配列を返します。認識されなければNULLを返します。
   


例:



SELECT ts_lexize('english_stem', 'stars');
 ts_lexize
-----------
 {star}

SELECT ts_lexize('english_stem', 'a');
 ts_lexize
-----------
 {}


   
注記


ts_lexize関数には、テキストではなく単一のトークンを与えます。これを間違えると次のようになります。



SELECT ts_lexize('thesaurus_astro', 'supernovae stars') is null;
 ?column?
----------
 t




類語辞書thesaurus_astroは語句supernovae starsを認識しますが、ts_lexizeはしません。なぜなら、入力をテキストではなく、単一のトークンとして扱うからです。
類語辞書をテストするには、plainto_tsqueryまたはto_tsvectorを使ってください。例を示します。



SELECT plainto_tsquery('supernovae stars');
 plainto_tsquery
-----------------
 'sn'


    



テキスト検索に好ましいインデックス種類





全文検索を高速化するために、2種類のインデックスが使えます。
GINとGiSTです。
全文検索でインデックスが必須ではありませんが、日常的に検索される列には、インデックスを使った方が良いでしょう。
  


このようなインデックスを作成するには、次のいずれかを実行します。

   
	
     
     

      CREATE INDEX name ON table USING GIN (column);
     
	

GIN (Generalized Inverted Index)インデックスを作ります。
columnはtsvector型でなければなりません。
      

	
     
     

      CREATE INDEX name ON table USING GIST (column [ { DEFAULT | tsvector_ops } (siglen = number) ] );
     
	

GiST (Generalized Search Tree)インデックスを作ります。columnは tsvector またはtsquery 型です。
オプションの整数パラメータsiglenは署名の長さをバイト単位で決定します(詳細は以下を参照してください)。
      




  


GINインデックスの方がより好ましいテキスト検索インデックス形式です。
転置インデックスなので、マッチした位置の圧縮されたリストと合わせて各単語(語彙素)へのインデックスエントリを含みます。
複数単語での検索は最初のマッチを見つけることができ、その後、追加の単語がない行を削除するのにインデックスを使えます。
GINインデックスはtsvector値の単語(語彙素)のみを格納しており、重み付けラベルは格納していません。
そのため、重みを含む問い合わせを使う場合には、テーブル行の再検査が必要です。
  


GiSTインデックスは、非可逆です。つまり、インデックスは間違った結果を返すかも知れないので、間違った結果を排除するために、テーブルの行をチェックすることが必要です。
(PostgreSQL™はこの処理が必要とされた時に自動的に行います。)
GiSTインデックスが非可逆なのは、インデックス中の各文書が固定長の署名によって表現されているからです。
署名のバイト単位の長さはオプションの整数のパラメータsiglenの値で決まります。
(siglenが指定されない場合)デフォルトの署名の長さは124バイトで、最大の署名の長さは2024バイトです。
署名は、各々の単語をハッシュして単一なビットにして、これらのビットをnビットの文書署名にORし、nビットの列中のビットにすることで実現されています。
2つの単語が同じビット位置を生成すると、間違った一致が起こります。
問い合わせ対象のすべての単語が照合すると(それが正しいか間違っているかは別として)、その照合が正しいものかどうかテーブルの行を取得して調べなければなりません。
長い署名では、インデックスはより大きくなってしまいますが、(インデックスのより小さな部分とより少ないヒープページをスキャンすることで)検索がより正確になります。
  


GiSTインデックスはカバリングにできます、すなわちINCLUDE句を使えます。
列には、GiST演算子クラスを持たないデータ型をINCLUDEで含めることができます。
含まれる属性は圧縮されずに格納されます。
  


非可逆性は、間違った照合によるテーブルからの不必要なデータ取得のため、性能を劣化させます。
テーブルへのランダムアクセスは遅いので、GiSTインデックスの有用性は制限されています。
誤った照合がどの位あるかという可能性はいくつか要因によりますが、とりわけユニークな単語の数に依存します。ですから、辞書を使ってユニークな単語の数を減らすことをお勧めします。
  


GINインデックスの構築時間はmaintenance_work_memを増やすことによってしばしば改善することができることに注意してください。一方GiSTインデックスの構築時間にはあまりそのパラメータは効きません。
  


大きなデータをパーティショニングし、GIN、GiSTインデックスを適切に使うことによってオンラインの更新を伴いながら、非常に高速な検索を実現することができます。
パーティショニングは、以下のどちらかの方法でデータベースレベルで実現できます。(1)テーブルの継承を使う。(2)文書を複数のサーバに分散させ、外部の検索結果を集約する。たとえば外部データアクセスを使います。
2の方法は、ランキング関数がローカルな情報しか使わないため可能です。
  

psqlサポート





psqlでテキスト検索設定オブジェクトに関する情報は、コマンドの集まりを使って取得できます。


\dF{d,p,t}[+] [PATTERN]



オプションの+により、より詳細な情報を生成します。
  


オプションパラメータのPATTERNはテキスト検索オブジェクトの名前にすることができます。
オプションとしてスキーマ修飾することができます。
PATTERNが省略されると、すべての可視的なオブジェクトが表示されます。
PATTERNは正規表現を与えることができ、さらにスキーマとオブジェクト名に対して別々のパターンを与えることができます。
次の例はこれを説明するものです。



=> \dF *fulltext*
       List of text search configurations
 Schema |  Name        | Description
--------+--------------+-------------
 public | fulltext_cfg |





=> \dF *.fulltext*
       List of text search configurations
 Schema   |  Name        | Description
----------+----------------------------
 fulltext | fulltext_cfg |
 public   | fulltext_cfg |




以下のコマンドが利用できます。
  
	\dF[+] [PATTERN]
	

テキスト検索設定を表示します(+追加で詳細表示)。


=> \dF russian
            List of text search configurations
   Schema   |  Name   |            Description
------------+---------+------------------------------------
 pg_catalog | russian | configuration for russian language

=> \dF+ russian
Text search configuration "pg_catalog.russian"
Parser: "pg_catalog.default"
      Token      | Dictionaries
-----------------+--------------
 asciihword      | english_stem
 asciiword       | english_stem
 email           | simple
 file            | simple
 float           | simple
 host            | simple
 hword           | russian_stem
 hword_asciipart | english_stem
 hword_numpart   | simple
 hword_part      | russian_stem
 int             | simple
 numhword        | simple
 numword         | simple
 sfloat          | simple
 uint            | simple
 url             | simple
 url_path        | simple
 version         | simple
 word            | russian_stem


     

	\dFd[+] [PATTERN]
	

テキスト検索辞書を表示します(+追加で詳細表示)。


=> \dFd
                             List of text search dictionaries
   Schema   |      Name       |                        Description
------------+-----------------+-----------------------------------------------------------
 pg_catalog | arabic_stem     | snowball stemmer for arabic language
 pg_catalog | armenian_stem   | snowball stemmer for armenian language
 pg_catalog | basque_stem     | snowball stemmer for basque language
 pg_catalog | catalan_stem    | snowball stemmer for catalan language
 pg_catalog | danish_stem     | snowball stemmer for danish language
 pg_catalog | dutch_stem      | snowball stemmer for dutch language
 pg_catalog | english_stem    | snowball stemmer for english language
 pg_catalog | estonian_stem   | snowball stemmer for estonian language
 pg_catalog | finnish_stem    | snowball stemmer for finnish language
 pg_catalog | french_stem     | snowball stemmer for french language
 pg_catalog | german_stem     | snowball stemmer for german language
 pg_catalog | greek_stem      | snowball stemmer for greek language
 pg_catalog | hindi_stem      | snowball stemmer for hindi language
 pg_catalog | hungarian_stem  | snowball stemmer for hungarian language
 pg_catalog | indonesian_stem | snowball stemmer for indonesian language
 pg_catalog | irish_stem      | snowball stemmer for irish language
 pg_catalog | italian_stem    | snowball stemmer for italian language
 pg_catalog | lithuanian_stem | snowball stemmer for lithuanian language
 pg_catalog | nepali_stem     | snowball stemmer for nepali language
 pg_catalog | norwegian_stem  | snowball stemmer for norwegian language
 pg_catalog | portuguese_stem | snowball stemmer for portuguese language
 pg_catalog | romanian_stem   | snowball stemmer for romanian language
 pg_catalog | russian_stem    | snowball stemmer for russian language
 pg_catalog | serbian_stem    | snowball stemmer for serbian language
 pg_catalog | simple          | simple dictionary: just lower case and check for stopword
 pg_catalog | spanish_stem    | snowball stemmer for spanish language
 pg_catalog | swedish_stem    | snowball stemmer for swedish language
 pg_catalog | tamil_stem      | snowball stemmer for tamil language
 pg_catalog | turkish_stem    | snowball stemmer for turkish language
 pg_catalog | yiddish_stem    | snowball stemmer for yiddish language


     

	\dFp[+] [PATTERN]
	

テキスト検索パーサを表示します(+追加で詳細表示)。


=> \dFp
        List of text search parsers
   Schema   |  Name   |     Description
------------+---------+---------------------
 pg_catalog | default | default word parser
=> \dFp+
    Text search parser "pg_catalog.default"
     Method      |    Function    | Description
-----------------+----------------+-------------
 Start parse     | prsd_start     |
 Get next token  | prsd_nexttoken |
 End parse       | prsd_end       |
 Get headline    | prsd_headline  |
 Get token types | prsd_lextype   |

        Token types for parser "pg_catalog.default"
   Token name    |               Description
-----------------+------------------------------------------
 asciihword      | Hyphenated word, all ASCII
 asciiword       | Word, all ASCII
 blank           | Space symbols
 email           | Email address
 entity          | XML entity
 file            | File or path name
 float           | Decimal notation
 host            | Host
 hword           | Hyphenated word, all letters
 hword_asciipart | Hyphenated word part, all ASCII
 hword_numpart   | Hyphenated word part, letters and digits
 hword_part      | Hyphenated word part, all letters
 int             | Signed integer
 numhword        | Hyphenated word, letters and digits
 numword         | Word, letters and digits
 protocol        | Protocol head
 sfloat          | Scientific notation
 tag             | XML tag
 uint            | Unsigned integer
 url             | URL
 url_path        | URL path
 version         | Version number
 word            | Word, all letters
(23 rows)


     

	\dFt[+] [PATTERN]
	

テキスト検索テンプレートを表示します(+追加で詳細表示)。


=> \dFt
                           List of text search templates
   Schema   |   Name    |                        Description
------------+-----------+-----------------------------------------------------------
 pg_catalog | ispell    | ispell dictionary
 pg_catalog | simple    | simple dictionary: just lower case and check for stopword
 pg_catalog | snowball  | snowball stemmer
 pg_catalog | synonym   | synonym dictionary: replace word by its synonym
 pg_catalog | thesaurus | thesaurus dictionary: phrase by phrase substitution


     




制限事項





PostgreSQL™のテキスト検索機能の制限事項は以下です。
   
	各々の語彙素の長さは2キロバイト未満でなければなりません

	tsvectorの長さ (語彙素 + 位置)は1Mバイト未満でなければなりません

	語彙素の数は264未満でなければなりません

	tsvectorの位置量は、0より大きくかつ16,383以下でなければなりません

	tsquery演算子<N>におけるマッチの距離は16,384より大きくすることはできません

	語彙素の位置情報は256以下でなければなりません

	tsquery中のノードの数(語彙素 + 演算子)は32,768未満でなければなりません




  


比較対象として述べておくと、PostgreSQL™ 8.1のドキュメントは10,441のユニークな単語を含み、全部の単語数は335,420で、最頻出の単語「postgresql」は655の文書中に6,127回出現しました。
  


別の例です — PostgreSQL™メーリングリストのアーカイブは910,989のユニークな単語を含み、461,020のメッセージ中に57,491,343の語彙素がありました。
  

第13章 同時実行制御





本章では同時に2つ以上のセッションが同じデータにアクセスしようとした場合、PostgreSQL™データベースシステムがどう振舞うかについて説明します。
このような状況でデータの整合性を確実に保つ一方、全てのセッションに対して効果的なアクセスを許可するようにすることが目的です。
データベースアプリケーションを開発する方は、本章で扱われている内容を熟知していなければなりません。
  
はじめに





PostgreSQL™は、データへの同時アクセスを管理するために高度な開発者向けツール群を提供します。
内部的に、データ一貫性は多版方式（多版型同時実行制御MVCC）を使用して管理されています。
つまり、処理の基礎となっているデータの現在の状態にかかわらず、各SQL文は遡ったある時点におけるスナップショット（データベースバージョン）を参照する、というものです。
これは、同時に並行しているトランザクションが同じ行を更新することによって引き起こす整合性を欠いたデータの参照を文にさせないようにし、それぞれのデータベースセッションに対してトランザクションの分離を提供します。
MVCCは、マルチユーザ環境で理想的な性能を得るために、伝統的なデータベースシステムで行われるようなロック手法を避けることで、ロックの競合を最小化します。
   


ロックではなく同時実行制御のMVCCモデルを使用する主な利点は、MVCCでは問い合わせ（読み込み）ロックの獲得と、書き込みロックの獲得が競合しないことです。
したがって、読み込みは書き込みを絶対にブロックしませんし、書き込みも読み込みをブロックすることがありません。
革新的なシリアライザブルスナップショット分離 (SSI)レベルの使用を通した最も厳密なトランザクションの分離レベルを提供する場合にもPostgreSQL™はこれの保証を維持します。
   


全般的に完全なトランザクションの分離を必要とせず、明示的に競合する点を管理することを望むアプリケーションのために、PostgreSQL™ではテーブルレベルおよび行レベルのロック機能も使用可能です。
とはいえ、MVCCを適切に使用すると通常ロックよりも性能が向上します。
さらに、アプリケーションが定義した勧告的ロックは単一トランザクションに拘束されないロックの獲得機構を提供します。
   


トランザクションの分離





標準SQLの規格では、トランザクションの分離について4つのレベルを定義しています。
標準規格で定義されているもののうち最も厳密なものはシリアライザブルです。
1セットのシリアライザブルなトランザクションを同時実行した場合には、ある順番でひとつずつそれらを実行した場合と同じ結果となることが保証されるものです。本文で詳しく述べます。
他の3レベルは、同時実行しているトランザクション間の相互作用に起因する、各レベルで発生してはならない現象面に基づき定義されます。
標準規格のシリアライザブルの定義では、このレベルではこれらの現象が起こりえないと述べています。
(これは驚くことではありません。トランザクションの効果がひとつずつ実行された場合と一貫性を持たなければならないとしたら、相互作用によって発生した現象はどうやっても見つけ出すことはできないでしょう。)
   


各種レベルにおける禁止される現象を以下に示します。

    
	

ダーティリード
       
      
	

同時に実行されている他のトランザクションが書き込んで未だコミットしていないデータを読み込んでしまう。
       

	

反復不能読み取り
       
      
	

トランザクションが、以前読み込んだデータを再度読み込み、そのデータが（最初の読み込みの後にコミットした）別のトランザクションによって更新されたことを見出す。
       

	

ファントムリード
       
      
	

トランザクションが、複数行のある集合を返す検索条件で問い合わせを再実行した時、別のトランザクションがコミットしてしまったために、同じ検索条件で問い合わせを実行しても異なる結果を得てしまう。
       

	

直列化異常
       
      
	

複数のトランザクションを正常にコミットした結果が、それらのトランザクションを1つずつあらゆる可能な順序で実行する場合とは一貫性がない。
       




   

    
    

標準SQLおよびPostgreSQLで実装されているトランザクション分離レベルを表13.1「トランザクション分離レベル」に示します。
   
表13.1 トランザクション分離レベル
	

分離レベル
        	

ダーティリード
        	

反復不能読み取り
        	

ファントムリード
        	

直列化異常
        
	

リードアンコミッティド
        	

許容されるが、PostgreSQLでは発生しない
        	

可能性あり
        	

可能性あり
        	

可能性あり
        
	

リードコミッティド
        	

安全
        	

可能性あり
        	

可能性あり
        	

可能性あり
        
	

リピータブルリード
        	

安全
        	

安全
        	

許容されるが、PostgreSQLでは発生しない
        	

可能性あり
        
	

シリアライザブル
        	

安全
        	

安全
        	

安全
        	

安全
        





PostgreSQL™では、4つの標準トランザクション分離レベルを全て要求することができます。
しかし、内部的には3つの分離レベルしか実装されていません。
つまり、PostgreSQLのリードアンコミッティドモードは、リードコミッティドのように動作します。
これは、PostgreSQLの多版型同時実行制御という仕組みに標準の分離レベルを関連付ける実際的な方法がこれしかないからです。
   


このテーブルはまた、PostgreSQLのリピータブルリードの実装ではファントムリードが起こらないことを示しています。
標準SQLでは、ある分離レベルで発生してはならない異常が指定されているので、これは許されています。
より高度な保障は許容されます。
利用可能な分離レベルでの動作については、以下の副節で詳しく説明します。
   


トランザクションのトランザクション分離レベルを設定するにはSET TRANSACTION(7)コマンドを使用してください。
   
重要


いくつかのPostgreSQL™データ型と関数はトランザクションの振る舞いに関して特別の規則があります。
特に、シーケンスに対しての変更は（従い、serialを使用して宣言された列のカウンタ）は直後に全ての他のトランザクションで可視となり、変更を行ったトランザクションが中止されるとロールバックはできません。
「シーケンス操作関数」および「連番型」を参照してください。
     

リードコミッティド分離レベル





PostgreSQL™ではリードコミッティドがデフォルトの分離レベルです。
トランザクションがこの分離レベルを使用すると、SELECT問い合わせ（FOR UPDATE/SHARE句を伴わない）はその問い合わせが実行される直前までにコミットされたデータのみを参照し、クエリの実行中にまだコミットされていないデータや、その問い合わせの実行中に別の同時実行トランザクションがコミットした更新は参照しません。
結果として、SELECT問い合わせはその問い合わせが実行を開始した時点のデータベースのスナップショットを参照することになります。
しかしSELECT文は、自分自身のトランザクション内で実行され更新された結果はたとえまだコミットされていなくても参照します。
単一のトランザクション内であっても、SELECT文を2回連続して発行した場合、最初のSELECT文が開始した後で2番目のSELECT文が開始する前に他のトランザクションが更新をコミットすると、最初とその次に発行したSELECT問い合わせは異なるデータを参照してしまうことにも注意してください。
   


UPDATE、DELETE、SELECT FOR UPDATE、およびSELECT FOR SHAREコマンドは対象行を検索する際にSELECTコマンドと同じように振舞います。
これらのコマンドは、問い合わせが開始された時点で既にコミットされた対象行のみを検出します。
しかし、その対象行は、検出されるまでに、同時実行中の他のトランザクションによって、既に更新（もしくは削除あるいはロック）されてしまっているかもしれません。
このような場合更新されるべき処理は、最初の更新トランザクションが（それがまだ進行中の場合）コミットもしくはロールバックするのを待ちます。
最初の更新処理がロールバックされるとその結果は無視されて、2番目の更新処理で元々検出した行の更新を続行できます。
最初の更新処理がコミットされると、2番目の更新処理では、最初の更新処理により行が削除された場合はその行を無視します。
行が削除されなかった時の更新処理は、最初のコミットで更新された行に適用されます。
コマンドの検索条件（WHERE句）は、更新された行がまだその検索条件に一致するかどうかの確認のため再評価されます。
検索条件と一致している場合、2番目の更新処理は、更新された行を使用して処理を開始します。
SELECT FOR UPDATEおよびSELECT FOR SHAREの場合、ロックされクライアントに返されるのは、更新されるバージョンの行であることを意味します。
   


ON CONFLICT DO UPDATE句のあるINSERTは同じように動作します。
リードコミッティドモードでは、挿入を提案された各行が挿入または更新されます。
無関係なエラーが発生しなければ、それら2つの結果のうち1つが保証されます。
まだその結果がINSERTに対して可視になっていない他のトランザクションに起因する競合では、慣習的な意味でそのコマンドに対して可視のバージョンの行が存在しないにも関わらず、UPDATE句がその行に対して動作します。
   


ON CONFLICT DO NOTHING句のあるINSERTでは、INSERTのスナップショットに対してその結果が可視になっていない他のトランザクションの結果のために、行の挿入が処理されないかもしれません。
ここでも、問題になるのはリードコミッティドモードのときだけです。
   


MERGEを使用すると、ユーザはINSERT、UPDATEおよびDELETEサブコマンドの様々な組み合わせを指定できます。
INSERTおよびUPDATEサブコマンドを指定したMERGEコマンドは、ON CONFLICT DO UPDATE句を指定したINSERTに似ていますが、INSERTまたはUPDATEのいずれかが発生することを保証するものではありません。
MERGEがUPDATEまたはDELETEを試行し、行が同時に更新されるものの、結合条件が現在のターゲットタプルと現在のソースタプルに適用される場合、MERGEはUPDATEまたはDELETEコマンドと同じように動作し、更新された行バージョンに対してアクションを実行します。
ただし、MERGEは複数のアクションを指定でき、それらは条件付きにすることができるため、各アクションの条件は更新されたバージョンの行に対して最初のアクションから再評価されます。
最初に一致したアクションがアクションリストの後の方に現れる場合でも同様です。
一方、行が同時に更新されて結合条件が失敗した場合、MERGEは次にNOT MATCHED BY SOURCEおよびNOT MATCHED [BY TARGET]アクションを評価し、それぞれの種類で最初に成功するアクションを実行します。
行が同時に削除された場合、MERGEはNOT MATCHED [BY TARGET]アクションを評価し、その中で最初に成功するアクションを実行します。
MERGEがINSERTを試行し、一意なインデックスが存在し、重複した行が同時に挿入された場合、一意性違反エラーが発生します。MERGEはMATCHED条件の評価を再開してこのようなエラーを回避しようとはしません。
   


このような仕組みにより、更新コマンドが、一貫しないスナップショットを参照する可能性があります。
つまり、自分が更新を試みているのと同じ行に対して同時に更新するコマンドの結果は参照できますが、それらのコマンドがデータベース中の他の行に対して更新した結果は参照しません。
このような動作をするために複雑な検索条件を含む問い合わせにリードコミッティドモードを使用することは適切ではありません。
しかし、より単純な検索条件の場合、このモードの使用が適しています。
例えば、ある口座から別の口座に$100を送金することを考えてみます。



BEGIN;
UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;
COMMIT;




別のトランザクションが同時に口座番号7534の残高を変更しようとした場合、口座の行の更新されたバージョンに対して2番目の文が開始されることは明らかに望まれるところです。
各コマンドは事前に決定していた行に対してのみ処理を行うため、行の更新されたバージョンを見せることによって、何の問題となる不整合も引き起こしません。
   


より複雑な使用法により、リードコミッティドモードでは好ましくない結果を生成する場合があります。
例えば、別のコマンドによってDELETEの制約条件からデータが同時に追加・削除される場合を考えます。
例えば、websiteは2行のテーブルで、website.hitsの値には9と10があるとします。



BEGIN;
UPDATE website SET hits = hits + 1;

-- 別のセッションから DELETE FROM website WHERE hits = 10; を実行します
COMMIT;




UPDATEの前後の両方でwebsite.hits = 10の行があるにも関わらず、DELETEは何もしません。
なぜこうなるのかと言うと、更新前の行値9は読み飛ばされ、またUPDATEが完了してDELETEがロックを獲得した時点では、新しい行値は10ではなく11となり、判定条件にもはやマッチしなくなっているからです。
   


リードコミッティドモードは、それぞれのコマンドをその時点までにコミットされた全てのトランザクションを含む新規スナップショットを伴って開始するので、同一のトランザクション内でそれに続くコマンドは、いかなる場合でもコミットされた同時実行トランザクションの結果を参照します。
上記問題の要点は単一のコマンドがデータベースの厳密に一貫性のある見え方を見るか否かです。
   


リードコミッティドモードで提供されている部分的なトランザクション分離は、多くのアプリケーションでは適切です。
またこのモードは高速で、使い方も簡単ですが、全ての場合に対して十分ではありません。
複雑な問い合わせや更新を行うアプリケーションは、リードコミッティドモードが提供する以上のより厳正なデータベースの厳密に一貫性のある見え方を必要とします。
   

リピータブルリード分離レベル





リピータブルリード分離レベルは、トランザクションが開始される前までにコミットされたデータのみを参照します。
コミットされていないデータや、そのトランザクションの実行中に別のトランザクションでコミットされた変更を参照しません。
（しかし、その問い合わせと同じトランザクション内で行われた過去の更新は、まだコミットされていませんが、参照します。）
これは標準SQLの規格で求められるものよりもより強く保証するもので、直列化異常を除いて、表13.1「トランザクション分離レベル」で述べている現象をすべて防ぎます。
上で述べたように、これは標準規格によって明示的に許容されているもので、標準ではそれぞれの分離レベルが提供しなくてはならない最小の保護のみが示されています。
   


リピータブルリードのトランザクション内の問い合わせは、トランザクション内の現在の文の開始時点ではなく、トランザクションの最初のトランザクション制御以外の文の開始時点のスナップショットを見る、という点でこのレベルはリードコミッティドと異なります。
従って、単一トランザクション内の連続するSELECT文は、同じデータを参照します。つまり、自身のトランザクションが開始した後にコミットされた他のトランザクションによる変更を参照しません。
   


このレベルを使ったアプリケーションでは、直列化の失敗によるトランザクションの再実行に備えておく必要があります。
   


UPDATE、DELETE、MERGE、SELECT FOR UPDATE、およびSELECT FOR SHAREコマンドでは、SELECTと同じように対象行を検索します。
これらのコマンドでは、トランザクションが開始された時点で既にコミットされている対象行のみを検出します。
しかし、その対象行は、検出されるまでに、同時実行中の他のトランザクションによって、既に更新（もしくは削除あるいはロック）されている可能性があります。
このような場合、リピータブルリードトランザクションは、最初の更新トランザクションが（それらがまだ進行中の場合）コミットもしくはロールバックするのを待ちます。
最初の更新処理がロールバックされると、その結果は無視され、リピータブルリードトランザクションでは元々検出した行の更新を続行できます。
しかし、最初の更新処理がコミット（かつ、単にロックされるだけでなく、実際に行が更新または削除）されると、リピータブルリードトランザクションでは、以下のようなメッセージを出力してロールバックを行います。



ERROR:  could not serialize access due to concurrent update




これは、リピータブルリードトランザクションでは、トランザクションが開始された後に別のトランザクションによって更新されたデータを変更またはロックすることができないためです。
   


アプリケーションがこのエラーメッセージを受け取った場合、現在のトランザクションを中止して、トランザクション全体を始めからやり直されなければなりません。
2回目では、トランザクションはコミットされた変更を含めてデータベースの最初の状態とみなすので、新しいバージョンの行を新しいトランザクションにおける更新の始点としても、論理的矛盾は起こりません。
   


再実行する必要があるかもしれないのは、更新トランザクションのみです。
読み込み専用トランザクションでは直列化の衝突は決して起こりません。
   


リピータブルリードモードでは、全てのトランザクションがデータベースの一貫した不変のビューの状態を参照することが保証されます。
しかし、このビューは常にいくつかの同じレベルの同時実行トランザクションの直列（一度に一つずつの）実行と一貫性を持つとは限りません。
例えば、このレベルの読み取りのみのトランザクションは、バッチが完了したことを示すために更新された制御レコードを参照できますが、
制御レコードのより以前のバージョンを読み取るため、論理的にそのバッチの一部となる詳細なレコードの1つを参照することはできません。
この分離レベルで実行するトランザクションによりビジネスルールを強制しようとすることは、競合するトランザクションをブロックするために注意深く明示的なロックを持たないと、正確に動作しないことが多くあります。
   


リピータブルリード分離レベルは、学術的なデータベースの文献や他のデータベース製品のいくつかではスナップショット分離として知られる技術を用いて実装されています。
同時実行性の面で劣る伝統的なロック技術を使うシステムと比較すると振舞いや性能の違いが観察されるかもしれません。
他のシステムでは、リピータブルリードとスナップショット分離を異なる振舞いをする別の分離レベルとして提供しているかもしれません。
2つの技術を区別する許容される現象は、標準SQLが制定されるまではデータベース研究者により定式化されておらず、この文書の範囲を超えます。
詳細な取り扱いについては[berenson95]を参照してください。
   
注記


PostgreSQL™ version 9.1より前までは、シリアライザブル分離レベルの要求はここで説明した通りの動作をそのまま提供していました。
以前のシリアライザブルの動作を維持するためには、リピータブルリードを要求しなければならなくなりました。
    


シリアライザブル分離レベル





シリアライザブル分離レベルは、最も厳しいトランザクションの分離性を提供します。
このレベルではトランザクションが同時にではなく、次から次へと、あたかも順に実行されているように逐次的なトランザクションの実行を全てのコミットされたトランザクションに対しエミュレートします。
しかし、このレベルを使ったアプリケーションでは、リピータブルリードレベルと同様に、直列化の失敗によるトランザクションの再実行に備えておく必要があります。
実際、この分離レベルは、（ある時点で）逐次実行可能なすべてのトランザクションにおいて、シリアライザブルトランザクションの同時実行の組が一貫性のないような振る舞いをしていないかも監視することを除き、リピータブルリードと全く同じ動きをします。
この監視では、リピータブルリードが示すものを越えてブロックすることはありませんが、監視によりいくらかのオーバーヘッドがあり、直列化異常を引き起こすような状態の検知は、直列化の失敗を引き起こすでしょう。
   


例えば、以下の初期データを持つmytabというテーブルを考えてみます。


 class | value
-------+-------
     1 |    10
     1 |    20
     2 |   100
     2 |   200



ここでシリアライザブルトランザクションAが以下を計算し、


SELECT SUM(value) FROM mytab WHERE class = 1;



そして、valueにその結果（30）を、class = 2の行として新たに挿入したとします。
同時にシリアライザブルトランザクションBが以下を計算し、


SELECT SUM(value) FROM mytab WHERE class = 2;



その結果300を得、そして、この結果をclass = 1の新たな行として挿入したとします。
その後、両方のトランザクションがコミットを試みます。
もし一方の処理がリピータブルリード分離レベルで実行していれば、両方のコミットが許されるでしょう。
しかし、この結果と一貫する実行順序が存在しないため、シリアライザブルトランザクションを使用した場合は、ひとつのトランザクションがコミットを許され、他方は次のメッセージとともにロールバックされることになります。



ERROR:  could not serialize access due to read/write dependencies among transactions




この理由は、もしAがBよりも前に実行されていた場合、Bの総和は300ではなく330と計算され、また同様に逆の順序で実行されたとすればAで計算される総和が異なる結果になるからです。
   


異常を防止するためにシリアライザブルトランザクションを使用するのであれば、恒久的なユーザテーブルから読み取られたいかなるデータも、それを読んだトランザクションがコミットされるまで有効とは認められない点は重要です。
このことは読み取り専用トランザクションにも当てはまりますが、遅延可能な読み取り専用トランザクション内で読み込まれたデータは例外で、読み込まれてすぐに有効とみなされます。
なぜなら、遅延可能なトランザクションはすべてのデータを読み込む前にこのような問題がないことを保証されているスナップショットを取得できるまで待機するからです。
それ以外の全ての場合において、後に中止されたトランザクション内で読み込まれた結果をアプリケーションは信用してはならず、アプリケーションはトランザクションが成功するまで再試行すべきです。
   


真の直列性を保証するためにPostgreSQL™では、述語ロックを使います。
述語ロックでは、トランザクションが最初に実行されたとしたら、それによる書き込みが同時実行トランザクションによる読み取り結果にいつ影響を及ぼしたかの決定を可能にするロックを保持します。
PostgreSQL™では、これらのロックはブロッキングを引き起こさないため、デッドロックの要因とならないものです。
それらは、同時実行中のシリアライザブルトランザクションが、直列化異常につながる組み合わせであることを識別しフラグを立てることに使用されます。
それとは対照的に、データの一貫性を保証したいリードコミッティドあるいはリピータブルリードトランザクションでは、テーブル全体のロック（そのテーブルを使用しようとしている他のユーザをブロックするかもしれません）を必要とするかもしれませんし、あるいは、他のトランザクションをブロックするだけでなくディスク・アクセスを引き起こすSELECT FOR UPDATEあるいはSELECT FOR SHAREを使用するかもしれません。
   


PostgreSQL™の述語ロックは、他のほとんどのデータベースシステムと同様、トランザクションによって実際にアクセスされたデータを元にしています。
これらは、pg_locksシステムビューにmodeがSIReadLockのデータとして現れます。
問い合わせの実行期間中に獲得される個別のロックは、問い合わせが使用した計画に依存するでしょう。
また、ロックを追跡するために使用されるメモリの消耗を防ぐために、トランザクションの過程において、多数のよりきめの細かいロック（例えばタプル・ロック）が結合されて、より少数のよりきめの粗いロック（例えばページ・ロック）になるかもしれません。
直列化異常につながるような競合が継続して生じないことを検知すると、READ ONLYトランザクションは、それが完了する前にSIReadロックを解放できるかもしれません。
実際、READ ONLYトランザクションは、よく開始時点でその事実を確証し、どんな述語ロックもとらないこともあります。
SERIALIZABLE READ ONLY DEFERRABLEトランザクションを明示的に要求した場合には、この事実を確証できるまでブロックします。
（これは、シリアライザブルトランザクションはブロックするけれども、リピータブルリードトランザクションはブロックしない唯一のケースです。）
他方で、SIReadロックは、しばしば読み取りと書き込みが重なっているトランザクションが完了するまで、トランザクションのコミットが終わっても保持される必要があります。
   


シリアライザブルトランザクションの一貫した使用は開発を単純化することができます。
正常にコミットされた同時実行のシリアライザブルトランザクションのどんな集合も、あたかもそれらが一度に一つずつ実行されたのと同じ結果になることが保証されるので、単独で実行されたときに単一トランザクションが正しく動作するよう書かれていると実証できるなら、他のトランザクションが何をしているかの情報が全く無くとも、複数シリアライザブルトランザクションが混在する中で正しく動作するかコミットに成功しないかであると確証を持つことができます。
この技術を使用する環境では、直列化の失敗（常にSQLSTATE値が'40001'で返る）を扱うための、汎用的な手段を持っていることが重要です。
なぜなら、どのトランザクションが読み取り/書き込みの依存性に影響し、直列化異常を防ぐためにロールバックさせる必要があるかということを、正確に予測することは非常に困難だからです。
読み取り/書き込みの依存性を監視したり、直列化異常で終了したトランザクションを再起動することはコストがかかります。
しかしながら、このコストと、明示的なロックとSELECT FOR UPDATEまたはSELECT FOR SHAREを使用したブロッキングとで比較検討すると、シリアライザブルトランザクションはいくつかの環境において最良な実行を選択することになります。
   


PostgreSQL™のシリアライザブルトランザクション分離レベルが同じ結果を生む実行順序があることを証明できるときだけ、同時のトランザクションのコミットを許すとはいえ、本当のシリアル実行では起こらないエラーが常に防げるわけではありません。
特に、たとえそのキーが生成されていないことを挿入しようとする前に明示的に調査した後でも重複しているシリアライザブルトランザクションとの競合が原因で一意性制約違反を見ることになる可能性があります。
これは潜在的に競合しているキーを挿入する全てのシリアライザブルトランザクションで確実に挿入できるかどうか最初に明示的に調査することで防ぐことができます。
例えば、ユーザに新しいキーを聞いてからまずselectでそれがすでに存在しているか確かめるアプリケーション、もしくは存在している中で一番大きなキーを選択しそれに1を足すことで新しいキーを生成するアプリケーションを想像してみてください。
もしいくつかのシリアライザブルトランザクションがこのプロトコルに沿わずに直接新しいキーを挿入すれば、たとえそれがシリアル実行の同時トランザクションでは起こりえないケースでも一意性制約違反が報告されることになります。
   


同時実行制御のためにシリアライザブルトランザクションを使用する場合、最適な性能のためには、以下の問題を考慮すべきです。

    
	

可能であればトランザクションをREAD ONLYとして宣言してください。
      

	

もし必要ならばコネクションプールを使用して、活動中の接続数を制御してください。
これは常に重要な性能上の考慮点ですが、シリアライザブルトランザクションを使用した多忙なシステムにおいては、特に重要になる可能性があります。
      

	

完全性のために必要とされる以上のものを1つのトランザクションに入れないようにしてください。
      

	

必要以上に長く「トランザクション内で待機状態」で接続したまま放置しておかないようにしてください。
長引くセッションを自動的に切断するために、設定パラメータidle_in_transaction_session_timeoutを使うことができます。
      

	

シリアライザブルトランザクションにより自動的に提供される保護により、不必要な、明示的なロック、SELECT FOR UPDATEおよびSELECT FOR SHAREを取り除いてください。
      

	

述語ロックのテーブルがメモリ不足になると、複数のページレベルの述語ロックを単一のリレーションレベルの述語ロックへと結合するようシステムが強いられ、直列化失敗の発生割合が増加する恐れがあります。
これは、max_pred_locks_per_transaction、max_pred_locks_per_relation、max_pred_locks_per_pageのいずれか、あるいは、すべてを増やすことにより回避できます。
      

	

シーケンシャルスキャンは常にリレーションレベルでの述語ロックを必要とします。
これによって、直列化失敗の頻度が増える可能性があります。
random_page_costを縮小および（または）cpu_tuple_costを増加することによりインデックススキャンの使用を促進することは有用かもしれません。
トランザクションのロールバックや再実行の減少を、問い合わせ実行時間の全体的な変化と比較検討するようにしてください。
      




   


シリアライザブル分離レベルは、学術的なデータベースの文献ではシリアライザブルスナップショット分離として知られる技術を使って実装されています。シリアライザブルスナップショット分離は、スナップショット分離の上に直列化異常の確認を追加することで構築されています。
伝統的なロック技術を使う他のシステムと比較すると振舞いや性能の違いが観察されるかもしれません。
詳細な情報は[ports12]を参照してください。
   


明示的ロック





PostgreSQL™は、テーブル内のデータに対する同時アクセスを制御するために様々な種類のロックモードを備えています。
これらのモードは、MVCCでは必要な動作を得られない場合、アプリケーション制御のロックに使用できます。
また、ほとんどのPostgreSQL™コマンドでは、参照されるテーブルがそのコマンドの実行中に別の方法で削除もしくは変更されていないことを確実にするために、適切なモードのロックを自動的に獲得します。
（例えば、TRUNCATEコマンドは、同じテーブルに対する他の操作と同時に安全に実行することはできないので、それを確実に実行するため、そのテーブルのACCESS EXCLUSIVEロックを獲得します。）
   


現在のデータベースサーバに残っているロックの一覧を確認するには、pg_locksシステムビューを使用してください。
ロック管理サブシステムの状況監視についての詳細は27章データベース活動状況の監視を参照してください。
   
テーブルレベルロック





以下のリストに、使用可能なロックモードとそれらがPostgreSQL™で自動的に使用される文脈を示します。
また、LOCK(7)コマンドを使用して、こうしたロックを明示的に獲得することもできます。
これらのロックモードは、たとえその名前に「row（行）」という言葉が付いていても、全てテーブルレベルのロックであることに注意してください。
ロックモードの名前は歴史的なものです。
これらの名前は、各ロックモードの代表的な使用方法をある程度表しています。
しかし、意味的には全て同じです。
ロックモード間における唯一の実質的な差異は、どのモードがどのモードと競合するかというロックモードの組み合わせです（表13.2「ロックモードの競合」を参照してください）。
2つのトランザクションで、競合するモードのロックを同時に同一テーブル上に保持することはできません
（しかし、トランザクションは自分自身とは決して競合しません。
例えば、ACCESS EXCLUSIVEロックを獲得し、その後同じテーブルにACCESS SHAREロックを獲得できる可能性があります）。
競合しないロックモードは、多くのトランザクションで同時に保持できます。
特に、ロックモードには、自己競合するもの（例えば、ACCESS EXCLUSIVEは同時に複数のトランザクションで保持することは不可能）と、自己競合しないもの（例えば、ACCESS SHAREは複数のトランザクションで保持可能）があることに注意してください。
   
テーブルレベルロックモード
	
        ACCESS SHARE (AccessShareLock)
       
	

         ACCESS EXCLUSIVEロックモードとのみ競合します。
        


SELECTコマンドにより、参照されるテーブルに対してこのモードのロックが獲得されます。
通常、テーブルの読み取りのみで変更を行わない問い合わせであれば全て、このロックモードを獲得します。
        

	
        ROW SHARE (RowShareLock)
       
	

EXCLUSIVEおよびACCESS EXCLUSIVEロックモードと競合します。
        


（明示的なFOR ...ロックオプションなしで参照される他のすべてのテーブルで取得されるACCESS SHAREロックに加え）SELECTコマンドは、FOR UPDATE、FOR NO KEY UPDATE、FOR SHARE、またはFOR KEY SHAREオプションのいずれかが指定されているすべてのテーブルでこのモードのロックを取得します。
        

	
        ROW EXCLUSIVE (RowExclusiveLock)
       
	

SHARE、SHARE ROW EXCLUSIVE、EXCLUSIVE、およびACCESS EXCLUSIVEロックモードと競合します。
        


UPDATE、DELETE、INSERTおよびMERGEコマンドは、（参照される他の全てのテーブルに対するACCESS SHAREロックに加えて）対象となるテーブル上にこのモードのロックを獲得します。
通常、このロックモードは、テーブルのデータを変更する問い合わせにより獲得されます。
        

	
        SHARE UPDATE EXCLUSIVE (ShareUpdateExclusiveLock)
       
	

SHARE UPDATE EXCLUSIVE、SHARE、SHARE ROW EXCLUSIVE、EXCLUSIVE、およびACCESS EXCLUSIVEロックモードと競合します。
このモードにより、同時実行されるスキーマの変更およびVACUUMコマンドの実行から、テーブルを保護します。
        


（FULLなしの）VACUUM、ANALYZE、CREATE INDEX CONCURRENTLY、CREATE STATISTICS、COMMENT ON、REINDEX CONCURRENTLY、ある種のALTER INDEX、ALTER TABLEの変種で取得されます（完全な詳細はこれらのコマンドの文書を見てください）。
        

	
        SHARE (ShareLock)
       
	

ROW EXCLUSIVE、SHARE UPDATE EXCLUSIVE、SHARE ROW EXCLUSIVE、EXCLUSIVE、およびACCESS EXCLUSIVEロックモードと競合します。
このモードは、同時実行されるデータ変更からテーブルを保護します。
        


（CONCURRENTLYなしの）CREATE INDEXによって獲得されます。
        

	
        SHARE ROW EXCLUSIVE (ShareRowExclusiveLock)
       
	

ROW EXCLUSIVE、SHARE UPDATE EXCLUSIVE、
SHARE、SHARE ROW EXCLUSIVE、EXCLUSIVE、およびACCESS EXCLUSIVEロックモードと競合します。
このモードは、1つのセッションだけが一度にそれを保持できるよう、自己排他的に同時のデータ変更からテーブルを保護します。
        


CREATE TRIGGER、および、ALTER TABLEのいくつかの形式により獲得されます。
        

	
        EXCLUSIVE (ExclusiveLock)
       
	

ROW SHARE、ROW EXCLUSIVE、
SHARE UPDATE EXCLUSIVE、SHARE、
SHARE ROW EXCLUSIVE、EXCLUSIVE、およびACCESS EXCLUSIVEロックモードと競合します。
このモードは、同時実行されるACCESS SHAREのみを許可します。
つまり、このロックモードを保持するトランザクションと並行して実行できる処理は、テーブルの読み取りだけです。
        


REFRESH MATERIALIZED VIEW CONCURRENTLYにより獲得されます。
        

	
        ACCESS EXCLUSIVE (AccessExclusiveLock)
       
	

全てのモードのロック（ACCESS
         SHARE、ROW SHARE、ROW
         EXCLUSIVE、SHARE UPDATE
         EXCLUSIVE、SHARE、SHARE
         ROW EXCLUSIVE、EXCLUSIVE、および
         ACCESS EXCLUSIVE）と競合します。
このモードにより、その保持者以外にテーブルにアクセスするトランザクションがないことを保証されます。
        


DROP TABLE、TRUNCATE、REINDEX、CLUSTER、VACUUM FULL、（CONCURRENTLYなしの）REFRESH MATERIALIZED VIEWコマンドによって獲得されます。
ALTER INDEXとALTER TABLEの多くの形式もこのレベルでロックを獲得します。
これはまた、明示的にモードを指定しないLOCK TABLE文のデフォルトのロックモードです。
        



ヒント


ACCESS EXCLUSIVEロックのみが、SELECT（FOR UPDATE/SHAREなし）文をブロックします。
      



通常ロックは獲得した後、トランザクションの終わりまで保持されます。
しかし、ロックがセーブポイントの確立後に獲得された場合、セーブポイントがロールバックされると、ロックは即座に解放されます。
これは、ROLLBACKがセーブポイント以降に行われたすべてのコマンドの効果を取り消すという原則と整合性が取れています。
PL/pgSQL例外ブロック内で獲得されたロックに対しても同様です。
そのブロックからエラーで抜けた後、獲得されたロックは解放されます。
   
表13.2 ロックモードの競合
	要求するロックモード	既存のロックモード
	ACCESS SHARE	ROW SHARE	ROW EXCL.	SHARE UPDATE EXCL.	SHARE	SHARE ROW EXCL.	EXCL.	ACCESS EXCL.
	ACCESS SHARE	 	 	 	 	 	 	 	X
	ROW SHARE	 	 	 	 	 	 	X	X
	ROW EXCL.	 	 	 	 	X	X	X	X
	SHARE UPDATE EXCL.	 	 	 	X	X	X	X	X
	SHARE	 	 	X	X	 	X	X	X
	SHARE ROW EXCL.	 	 	X	X	X	X	X	X
	EXCL.	 	X	X	X	X	X	X	X
	ACCESS EXCL.	X	X	X	X	X	X	X	X




行レベルロック





テーブルレベルロックに加えて、行レベルロックがあります。PostgreSQL™が自動的に使う文脈付きで以下に行レベルロックの一覧があります。
行レベルロックの競合の完全な表については表13.3「行レベルロックの競合」を参照してください。
トランザクションは異なる副トランザクション内であっても、同じ行に対して競合するロックを保持できることに注意してください。
しかし、それ以外では、二つのトランザクションは同じ行に対して競合するロックを決して保持できません。
行レベルロックは、データの問い合わせには影響を与えません。
行レベルロックは、同じ行に対する書き込みとロックだけをブロックします。
テーブルレベルロックと同じように、行レベルロックはトランザクションの終わり、または、セーブポイントへのロールバックで解放されます。

    
行レベルロックモード
	
        FOR UPDATE
       
	

FOR UPDATEによりSELECT文により取り出された行が更新用であるかのようにロックされます。
これにより、それらは現在のトランザクションが終わるまで、他のトランザクションがロック、変更、削除できなくなります。
すなわち、これらの行に対してUPDATE、DELETE、SELECT FOR UPDATE、SELECT FOR NO KEY UPDATE、SELECT FOR SHARE、SELECT FOR KEY SHAREをしようとする他のトランザクションは現在のトランザクションが終わるまでブロックされます。逆に言えば、SELECT FOR UPDATEは同じ行に対して上記のコマンドを実行している同時実行トランザクションを待ち、それから更新された行をロックして返します(行が削除されていれば、行は返しません)。
しかし、REPEATABLE READもしくはSERIALIZABLEトランザクション内では、ロックする行がトランザクションの開始した後に変更された場合にはエラーが返ります。
これ以上の説明は「アプリケーションレベルでのデータの一貫性チェック」を参照してください。
        


FOR UPDATEロックモードは行に対するDELETEでも、ある列の値を変更するUPDATEでも獲得されます。
現時点では、UPDATEの場合に考慮される列の集合は、外部キーとして使うことのできる一意のインデックス（つまり部分インデックスや式インデックスは考慮されません）があるものですが、これは将来変わるかもしれません。
        

	
        FOR NO KEY UPDATE
       
	

獲得するロックが弱い以外はFOR UPDATEと同じように振る舞います。このロックは同じ行のロックを獲得しようとするSELECT FOR KEY SHAREコマンドをブロックしません。
このロックモードはFOR UPDATEロックを獲得しないUPDATEによっても獲得されます。
        

	
        FOR SHARE
       
	

取り出された各行に対して排他ロックではなく共有ロックを獲得する以外は、FOR NO KEY UPDATEと同じように振る舞います。
共有ロックは、他のトランザクションがこれらの行に対してUPDATE、DELETE、SELECT FOR UPDATE、SELECT FOR NO KEY UPDATEを実行するのをブロックしますが、SELECT FOR SHAREやSELECT FOR KEY SHAREを実行するのを阻害しません。
        

	
        FOR KEY SHARE
       
	

獲得するロックが弱い以外はFOR SHAREと同じように振る舞います。SELECT FOR UPDATEはブロックされますが、SELECT FOR NO KEY UPDATEはブロックされません。
キー共有ロックは、他のトランザクションがDELETEやキー値を変更するUPDATEを実行するのをブロックしますが、それ以外のUPDATEや、SELECT FOR NO KEY UPDATE、SELECT FOR SHARE、SELECT FOR KEY SHAREを阻害しません。
        





PostgreSQL™では、メモリ上に変更された行の情報を記憶しないため、同時にロックできる行数の上限はありません。
しかし、行をロックする際に、ディスクに書き込む作業が発生するかもしれません。
例えばSELECT FOR UPDATEは、選択された行をロックしたものと印を付けるために変更を行いますので、ディスクにその結果を書き込むことになります。
    
表13.3 行レベルロックの競合
	要求するロックモード	現在のロックモード
	FOR KEY SHARE	FOR SHARE	FOR NO KEY UPDATE	FOR UPDATE
	FOR KEY SHARE	 	 	 	X
	FOR SHARE	 	 	X	X
	FOR NO KEY UPDATE	 	X	X	X
	FOR UPDATE	X	X	X	X




ページレベルロック





テーブルと行ロックに加え、ページレベルの共有/排他ロックがあり、これらは共有バッファプールにあるテーブルページへの読み書きのアクセスを管理するために使用されます。
これらのロックは、行が取得された後や更新された後に即座に解除されます。
アプリケーション開発者は通常ページレベルロックを考慮する必要はありませんが、ロックについて全てを説明したかったためここで取り上げました。
    

デッドロック





明示的なロックの使用は、デッドロックの原因となる可能性があります。
デッドロックとは、2つ（もしくはそれ以上）のトランザクションにおいて、それぞれが、他方のトランザクションが必要とするロックを所持してしまうことです。
例えば、トランザクション1がテーブルAに排他ロックを獲得していて、次にテーブルBに排他ロックを獲得しようとする際に、トランザクション2が既にテーブルBに排他ロックを獲得済みであって、今からテーブルAに排他ロックを獲得しようと試みる場合、どちらのトランザクションも処理を進められません。
PostgreSQL™では、自動的にデッドロック状況を検知し、関係するトランザクションの一方をアボートすることにより、この状況を解決し、もう一方のトランザクションの処理を完了させます
（どちらのトランザクションをアボートするかを正確に予期するのは難しく、これに依存すべきではありません）。
    


デッドロックは行レベルロックの結果として発生する可能性があります
（したがって、明示的なロック処理を使用していなくても発生する可能性があります）。
2つの同時実行トランザクションがあるテーブルを変更する状況を考えてみます。
1つ目のトランザクションは以下を実行します。



UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 11111;




これは、指定した口座番号の行に対し行レベルロックを獲得します。
次に2番目のトランザクションが以下を実行します。



UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 22222;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111;




1つ目のUPDATE文は指定された行に対する行レベルロックの獲得に成功し、この行の更新に成功します。
しかし、2つ目のUPDATE文は、更新対象の行がロックされていることを検知し、ロックを獲得したトランザクションが完了するまで待機します。
トランザクション2は、ここで、続きを実行する前にトランザクション1が完了するのを待機しています。
さて、トランザクション1がここで以下を実行します。



UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;




トランザクション1は指定した行の行レベルロックを獲得しようとしますが、これは不可能です。
トランザクション2がそのロックを既に獲得しているからです。
そのため、トランザクション2が完了するのを待機することになります。
こうして、トランザクション1はトランザクション2でブロックされ、トランザクション2はトランザクション1でブロックされる、つまり、デッドロック状態です。
PostgreSQL™はデッドロック状態を検知し、片方のトランザクションを中断させます。
    


デッドロックを防ぐ最も良い方法は、データベースを使用する全てのアプリケーションが、整合性のある順序で複数のオブジェクトに対するロックを獲得することです。
前に示したデッドロックの例で、もし両方のトランザクションで同じ順序で行を更新していたらデッドロックは起こりません。
また、トランザクション内のオブジェクトに対して獲得した最初のロックが、そのオブジェクトが必要とする最も制限的なモードであることを確実に保証すべきです。
このことが事前に検証できない場合、デッドロックによりアボートするトランザクションを再試行すれば、デッドロックをデータベースを稼働させながらでも処理できます。
    


デッドロック状況が検出されなければ、テーブルレベルロックもしくは行レベルロックを要求するトランザクションは、競合するロックが解放されるまで、無期限に待機します。
したがって、アプリケーションで長時間（例えば、ユーザの入力待ち）トランザクションを開いたまま保持しておくのは、推奨されません。
    

勧告的ロック





PostgreSQL™は、アプリケーション独自の意味を持つロックを生成する手法を提供します。
これは、その使用に関してシステムによる制限がないこと、つまり、正しい使用に関してはアプリケーションが責任を持つことから勧告的ロックと呼ばれます。
勧告的ロックは、MVCC方式に合わせづらいロック戦略で有用に使用することができます。
例えば、勧告的ロックのよくある利用として、いわゆる「フラットファイル」データ管理システムで典型的な、悲観的なロック戦略を模擬することです。
この用途のためにテーブル内にフラグを格納することもできますが、勧告的ロックの方が高速で、テーブルの膨張を防ぐことができます。
また、セッション終了時にサーバによる自動整理を行うこともできるようになります。
    


PostgreSQL™には、セッションレベルとトランザクションレベルという2つの勧告的ロックの獲得方法があります。
セッションレベルで獲得すると、勧告的ロックは明示的に解放されるか、セッションが終了するまで保持されます。
標準のロック要求と異なり、セッションレベル勧告的ロックはトランザクションという意味には従いません。
ロックがトランザクション期間中に獲得され、そのトランザクションを後でロールバックしたとしても、ロールバック後も保持されます。
そして、呼び出し元のトランザクションが後で失敗したとしてもロック解除は有効です。
所有するプロセスの中で、同一のセッションレベルのロックを複数回獲得することもできます。
この場合、個々のロック要求に対して、ロックを実際に解放する前に対応するロック解除要求がなければなりません。
一方トランザクションレベルのロックはより通常のロックに似たように動作します。
それらは、処理の終わりに自動的に解放されますので、明示的なロック解放操作はありません。
短期間の勧告的ロックを利用する場合は、セッションレベルの動作よりもこの動作の方が便利なことが多くあります。
同じ勧告的ロック識別子に対するセッションレベルのロックとトランザクションレベルのロック要求は、想像通り互いをブロックします。
セッションがすでに指定された勧告的ロックを保持している場合、他のセッションがそのロックを待機していたとしても、追加の要求は常に成功します。
これは保持されているロックと新しい要求がセッションレベルかトランザクションレベルかに関わらず、この文は当てはまります。
    


PostgreSQL™におけるすべてのロックと同様に、現時点ですべてのセッションで保持されている勧告的ロックの全一覧はpg_locksシステムビューにあります。
    


勧告的ロックと通常のロックは共有メモリプールに割り当てられ、その容量はmax_locks_per_transactionとmax_connections設定変数により決定されます。
このメモリを浪費しないように注意が必要です。
さもないと、サーバはロック獲得をまったく許可することができなくなります。
これは、サーバで許可できる勧告的ロック数に上限があることを意味します。
サーバの設定によりますが、通常、1万から10万程度になります。
    


特に明示的な順序付けとLIMIT句を持つ問い合わせでは、この勧告ロックモードを使用する幾つかの場合において、SQL式が評価される順序を考慮し獲得されたロックを制御することに気を配らなければなりません。
以下に例を示します。



SELECT pg_advisory_lock(id) FROM foo WHERE id = 12345; -- 問題なし
SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100; -- 危険！
SELECT pg_advisory_lock(q.id) FROM
(
  SELECT id FROM foo WHERE id > 12345 LIMIT 100
) q; -- 問題なし



上の例では、ロック獲得関数が実行される前にLIMIT が適用されることを保障できないため、2番目の形式は危険です。
これにより、アプリケーションが想定していないなんらかのロックが生成される可能性があります。
そのため、（セッションが終了するまで）解放に失敗することになります。
アプリケーションから見ると、こうしたロックはただの飾りですが、pg_locksからは参照され続けます。
    


勧告的ロックを扱うための関数については、「勧告的ロック用関数」で説明します。
    


アプリケーションレベルでのデータの一貫性チェック





データの参照範囲は各ステートメントで変化するので、リードコミッティドトランザクションを使用して、データ保全性に関するビジネスルールを強化するのは非常に難しいことです。また、書き込み競合が生じる場合、単一のステートメントでさえステートメントのスナップショットに限定されないかもしれません。
   


リピータブルリードトランザクションは実行全体にわたってデータの安定した参照範囲を持ちますが、MVCCスナップショットをデータ完全性チェックに使用することによる、読み取り/書き込み競合として知られるものを含む、微妙な問題があります。
1つのトランザクションがデータを書き、同時に実行するトランザクションが、同じデータ（書き込みの前に、あるいはその書き込みの後にも）を読むことを試みる場合、それは別のトランザクションの働きを見ることができません。
その後、読み手は、どれが最初にスタートしたか、あるいは、どれが最初にコミットしたかにかかわらず最初に実行したように見えます。
そのままいけば問題はありませんが、読み手がさらにデータを書けば、同時に実行したトランザクションがそれを読んだ場合、上で述べたトランザクションのどちらかの前に走ったように見えるトランザクションとなってしまいます。
最後に実行したように見えるトランザクションが実際には最初にコミットしていた場合、トランザクションの実行順のグラフには循環が容易に出現します。
そのような循環が出現する時、完全性のチェックはなにかしらの支援がなければ正しく動作しません。
   


「シリアライザブル分離レベル」により述べたように、シリアライザブルトランザクションは、危険なパターンの読み取り/書き込み競合のための非ブロッキング監視を加えたリピータブルリードトランザクションです。
明白に実行順が循環を引き起こすパターンが検知された場合、含まれていたトランザクションのうちの1つは循環を断ち切るためにロールバックされます。
   
シリアライザブルトランザクションを用いた一貫性の強化





シリアライザブルトランザクション分離レベルが、データの一貫性を必要とするすべての書き込みおよびすべての読み取りに使用される場合、一貫性を確実にするために必要なことは他にありません。
一貫性を保証するためにシリアライザブルトランザクションを使用するよう書かれている他の環境からのソフトウェアは、PostgreSQL™でこの点に関して「正しく動く」べきです。
    


この技術を使用した場合、アプリケーションソフトウェアが直列化失敗でロールバックしたトランザクションを自動的に再試行するようなフレームワークを備えている場合、アプリケーションプログラマにとって不必要な負担を生み出さないようにするでしょう。
default_transaction_isolationをserializableにセットすることはよい考えかもしれません。
他のトランザクション分離レベルは使用されないことを保証する処置を講ずる、そうでなければ、不注意に完全位チェックを失わないよう、トリガでトランザクション分離レベルのチェックをすることも賢明でしょう。
    


実行に関する提言は「シリアライザブル分離レベル」を参照してください。
    
警告: シリアライザブルトランザクションとデータレプリケーション


シリアライザブルトランザクションを使用する整合性保護レベルは、まだホットスタンバイモード(「ホットスタンバイ」)や論理レプリケーションには拡張されていません。
そのために、ホットスタンバイや論理レプリケーションを使用する場合は、プライマリにおけるリピータブルリードと明示的なロック処理の利用が望まれるかもしれません。
     


明示的なブロッキングロックを用いた一貫性の強化





非シリアライザブルの書き込みが可能な場合、
ある行の現時点の有効性を確実なものとし、同時更新を避けるためには、SELECT FOR UPDATE文やSELECT FOR SHARE文、適切なLOCK TABLE文を使用する必要があります。
（SELECT FOR UPDATE文およびSELECT FOR SHARE文は返ってきた行のみを同時に起こる更新からロックし、LOCK TABLEはテーブル全体をロックします。）
これはPostgreSQL™に他の環境からアプリケーションを移植する時に考慮されなければなりません
    


他の環境から切り替えた場合のさらなる注意点としては、同時実行トランザクションが選択された行を更新しないか削除しないということをSELECT FOR UPDATEが保証しないという事実です。
PostgreSQL™でそれをするためには、値を変更する必要がなくても、実際に行を更新しなければなりません。
SELECT FOR UPDATEは、他のトランザクションが同じロックを獲得すること、または、ロックされた行に影響するUPDATEまたはDELETEを実行することを一時的にブロックします。
しかしトランザクションがコミットするかロールバックして一度このロックを獲得すると、ロックが獲得されている間に、行の実際のUPDATEが行われなかった場合、ブロックされたトランザクションは、競合した操作を続けることになります。
    


非シリアライザブルMVCCにおいては全体的な有効性チェックに特別な考慮を払わなければなりません。
例えば銀行のアプリケーションで、1つのテーブルにある全ての貸方の合計が、別のテーブルにある借方の合計と同じであることを、二つのテーブルが常に更新されているときに、チェックする必要があるとします。
2つの連続するSELECT sum(...)コマンドの結果を比べると、2番目の問い合わせは、おそらく最初の問い合わせによってカウントされなかったトランザクションの結果を含んでいるため、リードコミッティドモードでは信頼のおける処理を実行できないことがわかります。
1つのリピータブルリードトランザクションで2つの合計を出力すると、リピータブルリードトランザクションが開始される前にコミットされたトランザクション結果のみの正確な状況を得ることができます。
しかし、その結果がもたらされた時点でもなお妥当であるかどうかは、実際には疑わしいかもしれません。
整合性チェックを行う前にリピータブルリードトランザクション自身が変更を行った場合、そのチェックの有効性はさらに疑わしくなります。
これにより、トランザクション開始後に行われる変更の全てだけでなく、何か別のものが含まれるためです。
このような場合、注意深い人であれば、現状を確実に把握するためにチェックに必要な全てのテーブルをロックするでしょう。
SHAREモード（もしくはそれ以上）のロックにより、現在のトランザクションでの変更を除き、ロックされたテーブルにコミットされていない変更が存在しないことを保証されます。
    


同時に、明示的なロック処理を使用して、同時に変更が実行されるのを防ごうとする場合、リードコミッティドモードを使用するか、または、リピータブルリードモードの場合は、問い合わせを実行する前にロックを獲得するよう留意してください。
リピータブルリードトランザクションにおいて獲得されたロックは、テーブルに変更をかける他のトランザクションが現在実行されていないことを保証します。
しかし、トランザクションの参照しているスナップショットが、ロックの獲得より前に取得されたものであれば、そのスナップショットは現時点においてコミットされている変更より前のテーブルのものである可能性があります。
リピータブルリードトランザクションのスナップショットは、実際にはその最初の問い合わせもしくはデータ変更コマンド（SELECT、INSERT、UPDATE、DELETEまたはMERGE）が開始された時点で取得されます。
したがって、スナップショットを取得する前に、明示的にロックを獲得できます。
    


直列化失敗の扱い





リピータブルリード分離レベルとシリアライザブル分離レベルはどちらも、直列化異常を防止するように設計されたエラーを生成する可能性があります。
前述のように、これらのレベルを使用するアプリケーションは、直列化エラーが原因で失敗したトランザクションを再試行するように準備する必要があります。
このようなエラーのメッセージテキストは細かい状況によって異なりますが、常にSQLSTATEコードは40001(serialization_failure)となります。
   


デッドロック障害を再試行することも推奨されます。
これらはSQLSTATEコード40P01(deadlock_detected)を持ちます。
   


場合によっては、SQLSTATEコード23505(unique_violation)を持つ一意キーの失敗、およびSQLSTATEコード23P01(exclusion_violation)を持つ排他制約の失敗を再試行することも適切です。
たとえば、現在格納されているキーを検査した後にアプリケーションが主キー列に新しい値を選択した場合、別のアプリケーション・インスタンスが同じ新しいキーを同時に選択したため、一意キーの失敗が発生する可能性があります。
これは実質的に直列化の失敗ですが、サーバは挿入された値と前の読み取りとの間の関係を「参照」できないため、直列化の失敗を検出しません。
また、原則として直列化の問題が根本原因であると判断するのに十分な情報があるにもかかわらず、サーバが一意キーまたは排他制約のエラーを発行する場合もあります。
serialization_failureエラーを無条件に再試行することをお薦めしますが、これらの他のエラー・コードを再試行する場合は、一時的な失敗ではなく永続的なエラー条件を表す可能性があるため、より注意が必要です。
   


どのSQLを発行するか、どの値を使用するかを決定するすべてのロジックを含む完全なトランザクションを再試行することが重要です。
したがって、PostgreSQL™は自動再試行機能を提供していません。
なぜなら、自動再試行機能は正当性を保証できないからです。
   


トランザクションの再試行は、再試行されたトランザクションが完了することを保証するものではありません。
複数回の再試行が必要になる場合があります。
競合が非常に高い場合は、トランザクションの完了に多くの試行が必要になる可能性があります。
競合する準備済トランザクションが関係する場合は、準備済トランザクションがコミットまたはロールバックされるまで進行できない可能性があります。
   

警告





DDLコマンドの中には、現在はTRUNCATEとテーブルを書き換える形のALTER TABLEだけですが、MVCCセーフでないものがあります。
これは、DDLコマンドをコミットする前に取得したスナップショットを使っていると、切り詰めまたは書き換えのコミット後に、同時実行トランザクションに対してテーブルが空に見えることを意味しています。
該当するテーブルにDDLコマンドが開始する前にアクセスしなかったトランザクションにとってのみ、これは問題となるでしょう—開始前にアクセスしたトランザクションは少なくともACCESS SHAREテーブルロックを保持しており、そのトランザクションが完了するまでDDLコマンドはブロックされるでしょう。
ですので、対象のテーブルに対する連続した問い合わせで、このコマンドはテーブルの内容の見かけ上の不整合の原因とはなりません。しかし、対象のテーブルとデータベース内の他のテーブルの内容の間の可視の不整合の原因となるかもしれません。
   


シリアライザブルトランザクション分離レベルのサポートは、まだホットスタンバイレプリケーションは対象に加えられていません(「ホットスタンバイ」で述べます)。
ホットスタンバイモードで現在サポートされた最も厳しい分離レベルはリピータブルリードです。
プライマリ上でシリアライザブルトランザクション中にデータベースに永続的な書き込みを行えば、スタンバイはすべて最終的に一貫した状態に達するだろうということは保証されるでしょうが、スタンバイ上で実行されたリピータブルリードトランザクションは、ときどきプライマリのトランザクションの任意の連続する実行と一致しない過渡状態を見ることがあるでしょう。
   


システムカタログへの内部のアクセスは現在のトランザクションの分離レベルを使っては行われません。
これは、テーブルのような新しく作られたデータベースオブジェクトが、たとえシステムカタログが含む行が可視でないとしても、並行するリピータブルリードトランザクションやシリアライザブルトランザクションに対して可視であることを意味します。
対照的に、明示的にシステムカタログを確認する問い合わせは、より高い分離レベルで並行して作られているデータベースオブジェクトを表す行を見ることはできません。
   

ロックとインデックス





PostgreSQL™は、テーブルデータへのノンブロック読み込み/書き込みアクセスを備えています。しかし現在、この機能はPostgreSQL™で実装されている全てのインデックスアクセスメソッドに対して実装されているわけではありません。
各種のインデックスでは下記のように扱われます。

    
	

B-treeインデックス、GiSTおよびSP-GiSTインデックス
      
	

読み込み/書き込みアクセスに短期の共有/排他モードのページレベルロックを使います。
ロックは、インデックス行が挿入または取り出されるとただちに解放されます。
これらのインデックス種類は、デッドロック状態になることなく、最も高い同時実行性を提供します。
       

	

       ハッシュインデックス
      
	

読み込み/書き込みアクセスに共有/排他モードのハッシュバケットレベルロックを使います。
ロックは、バケット全体が処理された後に解放されます。
バケットレベルロックは、インデックスレベルのロックよりも同時実行性に優れていますが、1つのインデックス操作よりも長くロックが保持されますので、デッドロックに陥りやすくなります。
       

	

       GINインデックス
      
	

読み込み/書き込みアクセスに短期の共有/排他モードのページレベルロックを使います。
ロックは、インデックス行が挿入または取り出されるとただちに解放されます。
しかし、GINによりインデックス付けされた値の挿入は、通常1行当たり複数のインデックスキーの挿入をもたらすことに注意してください。
そのため、GINは単一の値を挿入する時にさらに多くの作業を行います。
       




   


現時点では、B-treeインデックスは同時実行アプリケーションにおいて最善の性能を提供します。
これはまた、ハッシュインデックスよりも多くの機能を持つため、スカラデータのインデックスが必要な同時実行アプリケーションで推奨するインデックス型です。
非スカラデータを扱う場合、B-treeを使用することができないことは明確です。
この場合は代わりにGiST、SP-GiSTもしくはGINインデックスを使用すべきです。
   

第14章 性能に関するヒント





問い合わせの性能は多くの要因に影響されます。
ユーザが制御できるものもありますが、背後にあるシステム設計に起因する根本的な要因もあります。
本章ではPostgreSQL™の性能を理解し、チューニングするためのヒントを提供します。
  
EXPLAINの利用





PostgreSQL™は受理した問い合わせから問い合わせ計画を作り出します。
問い合わせの構造と含まれるデータの性質に適した正しい問い合わせ計画を選択することが、良い性能を得るために非常に重要になります。
ですので、システムには優れた計画の選択を試みる複雑なプランナが存在します。
EXPLAINコマンドを使えば、任意の問い合わせに対してプランナがどのような問い合わせ計画を作ったのかわかります。
問い合わせ計画を読みこなすには、ある程度の経験が必要です。
本節ではその基本を提供しようと考えます。
   


本節の例は、v18の開発版ソースを用いてVACUUM ANALYZEを実行した後でリグレッションテストデータベースから取り出したものです。
実際にこの例を試すと、似たような結果になるはずですが、おそらく推定コストや行数は多少異なることになるでしょう。
ANALYZEによる統計情報は厳密なものではなくランダムなサンプリングを行った結果であり、また、コストは本質的にプラットフォームに何かしら依存するためです。
   


例では、簡潔で人が読みやすいEXPLAINのデフォルトの「text」出力書式を使用します。
今後の解析でEXPLAINの出力をプログラムに渡すことを考えているのであれば、代わりに機械読み取りが容易な出力書式（XML、JSON、YAML）のいずれかを使用する必要があります。
   
EXPLAINの基本





問い合わせ計画は計画ノードのツリー構造です。
ツリー構造の最下層ノードはスキャンノードで、テーブルから行そのものを返します。
シーケンシャルスキャン、インデックススキャン、ビットマップインデックススキャンといったテーブルアクセスメソッドの違いに応じ、スキャンノードの種類に違いがあります。
また、VALUES句やFROM内の集合を返す関数など独自のスキャンノード種類を持つ、テーブル行を元にしないものがあります。
問い合わせが結合、集約、ソートなど、行そのものに対する操作を必要としている場合、スキャンノードの上位に更に、これらの操作を行うためのノードが追加されます。
これらの操作の実現方法にも通常複数の方法がありますので、異なった種類のノードがここに出現することもあり得ます。
EXPLAINには計画ツリー内の各ノードにつき1行の出力があり、基本ノード種類とプランナが生成したその計画ノードの実行に要するコスト推定値を示します。
さらに、ノードの追加属性を表示するためにノードの要約行からインデント付けされた行が出力される可能性があります。
最初の1行目（最上位ノード）には、計画全体の実行コスト推定値が含まれます。
プランナはこの値が最小になるように動作します。
   


どのような出力となるのかを示すためだけに、ここで簡単な例を示します。



EXPLAIN SELECT * FROM tenk1;

                         QUERY PLAN
-------------------------------------------------------------
 Seq Scan on tenk1  (cost=0.00..445.00 rows=10000 width=244)


   


この問い合わせにはWHERE句がありませんので、テーブル行をすべてスキャンしなければなりません。
このためプランナは単純なシーケンシャルスキャン計画を使用することを選びました。
（左から右に）括弧で囲まれた数値には以下のものがあります。

    
	

初期処理の推定コスト。
出力段階が開始できるようになる前に消費される時間、例えば、SORTノードで実行されるソート処理の時間です。
      

	

全体推定コスト。
これは計画ノードが実行完了である、つまりすべての利用可能な行を受け取ることを前提として示されます。
実際には、ノードの親ノードはすべての利用可能な行を読む前に停止する可能性があります（以下のLIMITの例を参照）。
      

	

この計画ノードが出力する行の推定数。ここでも、ノードが実行を完了することを前提としています。
      

	

この計画ノードが出力する行の（バイト単位での）推定平均幅。
      




   


コストはプランナのコストパラメータ（「プランナコスト定数」参照）によって決まる任意の単位で測定されます。
取り出すディスクページ単位でコストを測定することが、伝統的な方式です。
つまり、seq_page_costを慣習的に1.0に設定し、他のコストパラメータを相対的に設定します。
本節の例では、デフォルトのコストパラメータで実行しています。
   


上位ノードのコストには、すべての子ノードのコストもその中に含まれていることを理解することは重要です。
このコストはプランナが関与するコストのみ反映する点もまた重要です。
とりわけ、出力値をテキスト形式に変換したり、クライアントに送信したりするために要する時間はこのコストでは考慮されません。
これらは実際の経過時間の重要な要素となる可能性がありますが、計画を変更しても変えることができないため、プランナはこれらのコストを無視します。
（全ての正しい計画は同じ行セットを出力するものと期待されます。）
   


rowsの値は、計画ノードによって処理あるいはスキャンされた行数を表しておらず、ノードによって発行された行数を表すので、多少扱いにくくなっています。
該当ノードに適用されるすべてのWHERE句条件によるフィルタ処理の結果、スキャンされる行より少ない行数になることがよくあります。
理想的には、最上位の行数の推定値は、実際に問い合わせによって返され、更新され、あるいは削除された概算の行数となります。
   


例に戻ります。



EXPLAIN SELECT * FROM tenk1;

                         QUERY PLAN
-------------------------------------------------------------
 Seq Scan on tenk1  (cost=0.00..445.00 rows=10000 width=244)


   


これらの数値はとても素直に導かれます。以下を実行すると、



SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenk1';




tenk1には345のディスクページと10000の行があることがわかります。
推定コストは（ディスクページ読み取り * seq_page_cost）+（スキャンした行 * cpu_tuple_cost）と計算されます。
デフォルトでは、seq_page_costは1.0、cpu_tuple_costは0.01です。
ですから、推定コストは(345 * 1.0) + (10000 * 0.01) = 445となります。
   


では、WHERE条件を加えて、問い合わせを変更してみます。



EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 7000;

                         QUERY PLAN
------------------------------------------------------------
 Seq Scan on tenk1  (cost=0.00..470.00 rows=7000 width=244)
   Filter: (unique1 < 7000)




EXPLAINの出力が、Seq Scan計画ノードに付随する「フィルタ」条件として適用されるWHERE句を表示していることに注意してください。
これは、この計画ノードがスキャンした各行に対してその条件を検査することを意味し、その条件を通過したもののみが出力されます。
WHERE句があるため、推定出力行数が小さくなっています。
しかし、依然として10000行すべてをスキャンする必要があるため、コストは小さくなっていません。
実際には、WHERE条件を検査するためにCPU時間が余計にかかることを反映して、ほんの少し（正確には10000 * cpu_operator_cost）ですがコストが上昇しています。
   


この問い合わせが選択する実際の行数は7000です。
しかし、rowsの推定行数は概算値に過ぎません。
この実験を2回実行した場合、多少異なる推定値を得るかもしれません。
もっと言うと、これはANALYZEコマンドを行う度に変化することがあり得ます。
なぜなら、ANALYZEで生成される統計情報は、テーブルのランダムな標本から取り出されるからです。
   


では、条件をより強く制限してみます。



EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100;

                                  QUERY PLAN
-------------------------------------------------------------------​-----------
 Bitmap Heap Scan on tenk1  (cost=5.06..224.98 rows=100 width=244)
   Recheck Cond: (unique1 < 100)
   ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..5.04 rows=100 width=0)
         Index Cond: (unique1 < 100)




ここでは、プランナは2段階の計画を使用することを決定しました。
子の計画ノードは、インデックスを使用して、インデックス条件(index condition)に合う行の場所を検索します。
そして、上位計画ノードが実際にテーブル自体からこれらの行を取り出します。
行を別々に取り出すことは、シーケンシャルな読み取りに比べ非常に高価です。
しかし、テーブルのすべてのページを読み取る必要はありませんので、シーケンシャルスキャンより安価になります。
（2段階の計画を使用する理由は、別々に行を取り出すコストを最小にするために、上位の計画ノードがインデックスにより識別された行の位置を読み取る前に物理的な順序でソートすることです。
ノードで記載されている「bitmap」は、ソートを行う機構の名前です。）
   


ここでWHERE句に別の条件を付与してみましょう。



EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND stringu1 = 'xxx';

                                  QUERY PLAN
-------------------------------------------------------------------​-----------
 Bitmap Heap Scan on tenk1  (cost=5.04..225.20 rows=1 width=244)
   Recheck Cond: (unique1 < 100)
   Filter: (stringu1 = 'xxx'::name)
   ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..5.04 rows=100 width=0)
         Index Cond: (unique1 < 100)




追加されたstringu1 = 'xxx'条件は出力行数推定値を減らしますが、同じ行集合にアクセスしなければなりませんので、コストは減りません。
これは、このインデックスがunique1列に対してのみ存在していて、stringu1の句をインデックス条件として適用できないためです。
代わりに、インデックスによって取り出される行に対するフィルタとして適用されます。
これにより、追加の検査分を反映するため、コストは実際には少し上がります。
   


場合によってはプランナは「単純な」インデックススキャン計画を選択します。



EXPLAIN SELECT * FROM tenk1 WHERE unique1 = 42;

                                 QUERY PLAN
-------------------------------------------------------------------​----------
 Index Scan using tenk1_unique1 on tenk1  (cost=0.29..8.30 rows=1 width=244)
   Index Cond: (unique1 = 42)




この種の計画では、テーブル行はインデックス順で取り出されます。
このため読み取りがより高価になりますが、この場合取り出す行数が少ないため、改めて行位置をソートし直すための追加コストは割に合いません。
単一の行のみを取り出す問い合わせでは、この計画種類がよく現れます。
また、ORDER BYを満たすために必要となる余分な必要なソート処理がないため、インデックスの順序に一致するORDER BY条件を持つ問い合わせでよく使用されます。
この例では、ORDER BY unique1を追加すると、要求された順序がインデックスによってすでに暗黙的に提供されているため、同じ計画が使用されます。
   


プランナはORDER BY句をいくつかの方法で実装できます。
上の例ではこのようなORDER BY句を暗黙的に実装できることを示しています。
プランナは明示的なSortステップを追加もします。



EXPLAIN SELECT * FROM tenk1 ORDER BY unique1;

                            QUERY PLAN
-------------------------------------------------------------------
 Sort  (cost=1109.39..1134.39 rows=10000 width=244)
   Sort Key: unique1
   ->  Seq Scan on tenk1  (cost=0.00..445.00 rows=10000 width=244)




ソートキーで必要な接頭辞の順序がプランの一部で保証されている場合、インクリメンタルソート(Incremental Sort)ステップを使用することを決定できます。



EXPLAIN SELECT * FROM tenk1 ORDER BY hundred, ten LIMIT 100;

                                              QUERY PLAN
-------------------------------------------------------------------​-----------------------------
 Limit  (cost=19.35..39.49 rows=100 width=244)
   ->  Incremental Sort  (cost=19.35..2033.39 rows=10000 width=244)
         Sort Key: hundred, ten
         Presorted Key: hundred
         ->  Index Scan using tenk1_hundred on tenk1  (cost=0.29..1574.20 rows=10000 width=244)




通常のソートと比較して、インクリメンタルソートは、結果セット全体がソートされる前にタプルを戻すことができます。
これにより、特にLIMITがある問い合わせで最適化が可能になります。
また、メモリ使用量が削減され、ソートがディスクにオーバーフローする可能性が減少しますが、結果セットを複数のソートバッチに分割するオーバーヘッドが増加という代償を払うことになります。
   


WHERE句で参照される複数の列に対して別々のインデックスが存在する場合、プランナはインデックスをANDやORで組み合わせて使用することを選択する可能性があります。



EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;

                                     QUERY PLAN
-------------------------------------------------------------------​------------------
 Bitmap Heap Scan on tenk1  (cost=25.07..60.11 rows=10 width=244)
   Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
   ->  BitmapAnd  (cost=25.07..25.07 rows=10 width=0)
         ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..5.04 rows=100 width=0)
               Index Cond: (unique1 < 100)
         ->  Bitmap Index Scan on tenk1_unique2  (cost=0.00..19.78 rows=999 width=0)
               Index Cond: (unique2 > 9000)




しかし、これは両方のインデックスを参照する必要があります。
そのため、インデックスを1つ使用し、他の条件についてはフィルタとして扱う方法と比べて常に勝るとは限りません。
含まれる範囲を変更すると、それに伴い計画も変わることが分かるでしょう。
   


以下にLIMITの影響を示す例を示します。



EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;

                                     QUERY PLAN
-------------------------------------------------------------------​------------------
 Limit  (cost=0.29..14.28 rows=2 width=244)
   ->  Index Scan using tenk1_unique2 on tenk1  (cost=0.29..70.27 rows=10 width=244)
         Index Cond: (unique2 > 9000)
         Filter: (unique1 < 100)


   


これは上と同じ問い合わせですが、すべての行を取り出す必要がないためLIMITを付けています。
プランナはどうすべきかについて考えを変えました。
インデックススキャンノードの総コストと総行数があたかも実行完了したかのように表示されていることに注意してください。
しかしLimitノードが、これらの行の1/5だけを取り出した後で停止することが想定されています。
そのため総コストは1/5程度のみとなり、これが問い合わせの実際の推定コストとなります。
この計画は、以前の計画にLimitノードを追加することより好まれます。
以前の計画へのLimit追加でのLimitはビットマップスキャンの起動コストを払うことを避けることができないため、総コストは25単位を超えてしまうからです。
   


今まで説明に使ってきた列を使って2つのテーブルを結合してみましょう。



EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

                                      QUERY PLAN
-------------------------------------------------------------------​-------------------
 Nested Loop  (cost=4.65..118.50 rows=10 width=488)
   ->  Bitmap Heap Scan on tenk1 t1  (cost=4.36..39.38 rows=10 width=244)
         Recheck Cond: (unique1 < 10)
         ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..4.36 rows=10 width=0)
               Index Cond: (unique1 < 10)
   ->  Index Scan using tenk2_unique2 on tenk2 t2  (cost=0.29..7.90 rows=1 width=244)
         Index Cond: (unique2 = t1.unique2)


   


この計画では、入力または子として２つのテーブルスキャンを持つネステッドループ結合ノードがあります。
計画のツリー構造を反映して、ノード要約行はインデント付けされます。
結合の先頭、「外部」、子は以前に説明したものと似たビットマップスキャンです。
そのコストと行数は、該当ノードにunique1 < 10 WHERE句が適用されるため、SELECT ... WHERE unique1 < 10で得られたものと同じです。
この段階ではt1.unique2 = t2.unique2句は関係しておらず、外部スキャンにおける出力行数に影響していません。
ネステッドループ結合ノードは、外部の子から得られた行毎に、その２番目または「内部の」子を一回実行します。
現在の外部の行からの列の値は内部スキャンに組み込まれます。
ここで、外部行からのt1.unique2の値が利用できますので、上述の単純なSELECT ... WHERE t2.unique2 = constantの場合に示したものと似た計画とコストが得られます。
（実際、推定コストは、t2に対するインデックススキャンが繰り返される間に発生することが想定されるキャッシュの結果、上で示した値よりわずかに低くなります。）
ループノードのコストは、外部スキャンのコストと、各々の外部の行に対して内部スキャンが繰り返されることによるコスト（ここでは10 * 7.90）を加え、さらに結合処理を行うための少々のCPU時間を加えたものになります。
   


この例では、結合の出力行数は2つのスキャンの出力行数の積に等しくなっていますが、いつもそうなるわけではありません。
2つのテーブルに関係するWHERE句は、入力スキャン時ではなく、結合を行う際に適用されるからです。
以下が例です。



EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t2.unique2 < 10 AND t1.hundred < t2.hundred;

                                         QUERY PLAN
-------------------------------------------------------------------​--------------------------
 Nested Loop  (cost=4.65..49.36 rows=33 width=488)
   Join Filter: (t1.hundred < t2.hundred)
   ->  Bitmap Heap Scan on tenk1 t1  (cost=4.36..39.38 rows=10 width=244)
         Recheck Cond: (unique1 < 10)
         ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..4.36 rows=10 width=0)
               Index Cond: (unique1 < 10)
   ->  Materialize  (cost=0.29..8.51 rows=10 width=244)
         ->  Index Scan using tenk2_unique2 on tenk2 t2  (cost=0.29..8.46 rows=10 width=244)
               Index Cond: (unique2 < 10)




条件t1.hundred < t2.hundredはtenk2_unique2インデックスの中では試験されません。
このため結合ノードで適用されます。
これは結合ノードの推定出力行数を減らしはしますが、入力スキャンには影響しません。
   


ここではプランナが、具体化計画ノードをその上に挿入することで、結合の内部リレーションの「具体化」を選択していることに注意してください。
これは、たとえネステッドループ結合ノードが外部リレーションから各行につき一度、そのデータを10回読む必要があったとしても、t2インデックススキャンが一度だけ行なわれることを意味します。
具体化ノードはそのデータを読んだときにメモリに保存し、その後の読み出しではそのデータをメモリから返します。
   


外部結合を扱う時、「結合フィルタ」および通常の「フィルタ」の両方が付随する結合計画ノードが現れる可能性があります。
結合フィルタ条件は外部結合のON句を元にしますので、結合フィルタ条件に合わない行がNULLで展開された行として発行され続けます。
しかし通常のフィルタ条件が外部結合規則の後に適用され、条件に合わない行は削除されます。
内部結合では、これらのフィルタ種類の間に意味的な違いはありません。
   


問い合わせの選択性を少し変更すると、非常に異なる結合計画が得られるかもしれません。



EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

                                        QUERY PLAN
-------------------------------------------------------------------​-----------------------
 Hash Join  (cost=226.23..709.73 rows=100 width=488)
   Hash Cond: (t2.unique2 = t1.unique2)
   ->  Seq Scan on tenk2 t2  (cost=0.00..445.00 rows=10000 width=244)
   ->  Hash  (cost=224.98..224.98 rows=100 width=244)
         ->  Bitmap Heap Scan on tenk1 t1  (cost=5.06..224.98 rows=100 width=244)
               Recheck Cond: (unique1 < 100)
               ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..5.04 rows=100 width=0)
                     Index Cond: (unique1 < 100)


   


ここでプランナはハッシュ結合の使用を選択しました。
片方のテーブルの行がメモリ内のハッシュテーブルに格納され、もう片方のテーブルがスキャンされた後、各行に対して一致するかどうかハッシュテーブルを探索します。
再度、インデントが計画の構造が表されていることに注意してください。
tenk1に対するビットマップスキャンはハッシュノードへの入力です。
外部の子計画から行を読み取り、各行に対してハッシュテーブルを検索します。
   


他にも、以下に示すようなマージ結合という結合があり得ます。



EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

                                        QUERY PLAN
-------------------------------------------------------------------​-----------------------
 Merge Join  (cost=0.56..233.49 rows=10 width=488)
   Merge Cond: (t1.unique2 = t2.unique2)
   ->  Index Scan using tenk1_unique2 on tenk1 t1  (cost=0.29..643.28 rows=100 width=244)
         Filter: (unique1 < 100)
   ->  Index Scan using onek_unique2 on onek t2  (cost=0.28..166.28 rows=1000 width=244)


   


マージ結合は、結合キーでソートされる入力データを必要とします。
この例では、各入力がインデックススキャンを使用して正しい順序で行にアクセスすることでソートされますが、シーケンシャルスキャンとソートも使用できます。
（多くの行をソートする場合、インデックススキャンでは非シーケンシャルなディスクアクセスが必要となるため、シーケンシャルスキャンとソートの方がインデックススキャンより優ります。）
   


「プランナメソッド設定」に記載したenable/disableフラグを使用して、プランナが最も良いと考えている戦略を強制的に無視させる方法により、異なった計画を観察することができます。
（非常に原始的なツールですが、利用価値があります。
「明示的なJOIN句でプランナを制御する」も参照してください。）
例えば、マージ結合が前の例の最善の結合タイプであると確信できない場合は、以下を試みることができます。



SET enable_mergejoin = off;

EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

                                        QUERY PLAN
-------------------------------------------------------------------​-----------------------
 Hash Join  (cost=226.23..344.08 rows=10 width=488)
   Hash Cond: (t2.unique2 = t1.unique2)
   ->  Seq Scan on onek t2  (cost=0.00..114.00 rows=1000 width=244)
   ->  Hash  (cost=224.98..224.98 rows=100 width=244)
         ->  Bitmap Heap Scan on tenk1 t1  (cost=5.06..224.98 rows=100 width=244)
               Recheck Cond: (unique1 < 100)
               ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..5.04 rows=100 width=0)
                     Index Cond: (unique1 < 100)




これは、このケースではハッシュ結合がマージ結合よりも50%近く高価になるとプランナが考えていることを示しています。
当然ながら、次の疑問はこれが正しいかどうかでしょう。
以下で説明するように、EXPLAIN ANALYZEを使って調べることができます。
   


enable/disableフラグを使用して計画ノード型を無効化する場合、そのフラグの多くは、対応する計画ノードの使用を妨げるだけで、プランナがその計画ノード型を使用することを完全に禁止するわけではありません。
これは、与えられた問い合わせの計画を作成する機能をプランナが維持するための設計です。
作成された計画に無効化したノードが含まれている場合、EXPLAINの出力にはその事実が示されます。



SET enable_seqscan = off;
EXPLAIN SELECT * FROM unit;

                       QUERY PLAN
---------------------------------------------------------
 Seq Scan on unit  (cost=0.00..21.30 rows=1130 width=44)
   Disabled: true


   


unitテーブルにはインデックスがなく、他にテーブルデータを読み取る方法がないため、問い合わせプランナが使用できるのはシーケンシャルスキャンのみです。
   

    

一部の問い合わせ計画には、元の問い合わせ内の副SELECTから発生する 副計画（subplans）が含まれています。
このような問い合わせは、通常の結合プランに変換できる場合もありますが、変換できない場合は、次のような計画が生成されます。



EXPLAIN VERBOSE SELECT unique1
FROM tenk1 t
WHERE t.ten < ALL (SELECT o.ten FROM onek o WHERE o.four = t.four);

                               QUERY PLAN
-------------------------------------------------------------------​------
 Seq Scan on public.tenk1 t  (cost=0.00..586095.00 rows=5000 width=4)
   Output: t.unique1
   Filter: (ALL (t.ten < (SubPlan 1).col1))
   SubPlan 1
     ->  Seq Scan on public.onek o  (cost=0.00..116.50 rows=250 width=4)
           Output: o.ten
           Filter: (o.four = t.four)




このかなり人工的な例は、二つの点を説明するのに役立ちます。すなわち、外側の計画階層からの値は副計画に渡すことができて（ここではt.fourが渡されます）、副SELECTの結果は外側の計画で利用できます。
これらの結果値は、EXPLAINで(subplan_name).colNのような記法で表示され、これは副SELECTのN番目の出力列を指します。
   

    

上の例で、ALL演算子は、外側の問い合わせの各行に対して副計画を実行します（高い推定コストの原因となります）。
一部の問い合わせでは、それを回避するためにハッシュされた副計画（hashed subplan）を使用できます。



EXPLAIN SELECT *
FROM tenk1 t
WHERE t.unique1 NOT IN (SELECT o.unique1 FROM onek o);

                                         QUERY PLAN
-------------------------------------------------------------------​-------------------------
 Seq Scan on tenk1 t  (cost=61.77..531.77 rows=5000 width=244)
   Filter: (NOT (ANY (unique1 = (hashed SubPlan 1).col1)))
   SubPlan 1
     ->  Index Only Scan using onek_unique1 on onek o  (cost=0.28..59.27 rows=1000 width=4)
(4 rows)




ここでは、副計画が1回実行され、その出力がメモリ内のハッシュテーブルに置かれ、次に外側のANY演算子によって検査されます。
これには、副SELECTが外側の問い合わせの変数を参照しないことと、ANYの比較演算子がハッシュ適用できることが必要です。
   

    

外側の問い合わせの変数を参照しないことに加えて、副SELECTが複数行を返せない場合は、代わりにinitplanとして次のように計画作成されます。



EXPLAIN VERBOSE SELECT unique1
FROM tenk1 t1 WHERE t1.ten = (SELECT (random() * 10)::integer);

                             QUERY PLAN
------------------------------------------------------------​--------
 Seq Scan on public.tenk1 t1  (cost=0.02..470.02 rows=1000 width=4)
   Output: t1.unique1
   Filter: (t1.ten = (InitPlan 1).col1)
   InitPlan 1
     ->  Result  (cost=0.00..0.02 rows=1 width=4)
           Output: ((random() * '10'::double precision))::integer




initplanは外側の計画の実行ごとに1回だけ実行され、その結果は外側の計画の後の行で再利用するために保存されます。
したがって、この例ではrandom()は1回だけ評価され、t1.10のすべての値がランダムに選択された同じ整数と比較されます。
これは、副SELECT構造がない場合とは大きく異なります。
   

EXPLAIN ANALYZE





EXPLAINのANALYZEオプションを使用して、プランナが推定するコストの精度を点検することができます。
このオプションを付けるとEXPLAINは実際にその問い合わせを実行し、計画ノードごとに実際の行数と要した実際の実行時間を、普通のEXPLAINが示すものと同じ推定値と一緒に表示します。
例えば、以下のような結果を得ることができます。



EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

                                                           QUERY PLAN
-------------------------------------------------------------------​--------------------------------------------------------------
 Nested Loop  (cost=4.65..118.50 rows=10 width=488) (actual time=0.017..0.051 rows=10.00 loops=1)
   Buffers: shared hit=36 read=6
   ->  Bitmap Heap Scan on tenk1 t1  (cost=4.36..39.38 rows=10 width=244) (actual time=0.009..0.017 rows=10.00 loops=1)
         Recheck Cond: (unique1 < 10)
         Heap Blocks: exact=10
         Buffers: shared hit=3 read=5 written=4
         ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..4.36 rows=10 width=0) (actual time=0.004..0.004 rows=10.00 loops=1)
               Index Cond: (unique1 < 10)
               Index Searches: 1
               Buffers: shared hit=2
   ->  Index Scan using tenk2_unique2 on tenk2 t2  (cost=0.29..7.90 rows=1 width=244) (actual time=0.003..0.003 rows=1.00 loops=10)
         Index Cond: (unique2 = t1.unique2)
         Index Searches: 10
         Buffers: shared hit=24 read=6
 Planning:
   Buffers: shared hit=15 dirtied=9
 Planning Time: 0.485 ms
 Execution Time: 0.073 ms




「actual time」値は実時間をミリ秒単位で表されていること、cost推定値は何らかの単位で表されていることに注意してください。
ですからそのまま比較することはできません。
注目すべきもっとも重要な点は通常、推定行数が実際の値と合理的に近いかどうかです。
この例では、推定はすべて正確ですが、現実的にはあまりありません。
   


問い合わせ計画の中には、何回も副計画ノードを実行する可能性のあるものがあります。
例えば、上述のネステッドループの計画では、内部インデックススキャンは外部の行ごとに一度行われます。
このような場合、loops値はそのノードを実行する総回数を報告し、表示される実際の時間と行数は1実行当たりの平均です。
これで値を表示された推定コストと比較できるようになります。
loops値をかけることで、そのノードで実際に費やされた総時間を得ることができます。
上の例では、tenk2に対するインデックススキャンの実行のために合計0.030ミリ秒要しています。
   


場合によっては、EXPLAIN ANALYZEは計画ノードの実行時間と行数以上の実行統計情報をさらに表示します。
例えば、ソートとハッシュノードでは以下のような追加情報を提供します。



EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2 ORDER BY t1.fivethous;

                                                                 QUERY PLAN
-------------------------------------------------------------------​-------------------------------------------------------------------​------
 Sort  (cost=713.05..713.30 rows=100 width=488) (actual time=2.995..3.002 rows=100.00 loops=1)
   Sort Key: t1.fivethous
   Sort Method: quicksort  Memory: 74kB
   Buffers: shared hit=440
   ->  Hash Join  (cost=226.23..709.73 rows=100 width=488) (actual time=0.515..2.920 rows=100.00 loops=1)
         Hash Cond: (t2.unique2 = t1.unique2)
         Buffers: shared hit=437
         ->  Seq Scan on tenk2 t2  (cost=0.00..445.00 rows=10000 width=244) (actual time=0.026..1.790 rows=10000.00 loops=1)
               Buffers: shared hit=345
         ->  Hash  (cost=224.98..224.98 rows=100 width=244) (actual time=0.476..0.477 rows=100.00 loops=1)
               Buckets: 1024  Batches: 1  Memory Usage: 35kB
               Buffers: shared hit=92
               ->  Bitmap Heap Scan on tenk1 t1  (cost=5.06..224.98 rows=100 width=244) (actual time=0.030..0.450 rows=100.00 loops=1)
                     Recheck Cond: (unique1 < 100)
                     Heap Blocks: exact=90
                     Buffers: shared hit=92
                     ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..5.04 rows=100 width=0) (actual time=0.013..0.013 rows=100.00 loops=1)
                           Index Cond: (unique1 < 100)
                           Index Searches: 1
                           Buffers: shared hit=2
 Planning:
   Buffers: shared hit=12
 Planning Time: 0.187 ms
 Execution Time: 3.036 ms




ソートノードは使用されるソート方式（具体的にはソートがメモリ内かディスク上か）および必要なメモリまたはディスクの容量を表示します。
ハッシュノードでは、ハッシュバケット数とバッチ数、ハッシュテーブルで使用されるメモリのピーク容量が表示されます。
（バッチ数が１を超える場合、同時にディスクの使用容量も含まれますが、表示はされません。）
   


インデックススキャンノード（およびビットマップインデックススキャンとインデックスオンリースキャンノード）には、すべてのノード実行とloopsにわたる検索の合計数を報告する「Index Searches」の行が表示されます。



EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE thousand IN (1, 500, 700, 999);
                                                            QUERY PLAN
-------------------------------------------------------------------​---------------------------------------------------------------
 Bitmap Heap Scan on tenk1  (cost=9.45..73.44 rows=40 width=244) (actual time=0.012..0.028 rows=40.00 loops=1)
   Recheck Cond: (thousand = ANY ('{1,500,700,999}'::integer[]))
   Heap Blocks: exact=39
   Buffers: shared hit=47
   ->  Bitmap Index Scan on tenk1_thous_tenthous  (cost=0.00..9.44 rows=40 width=0) (actual time=0.009..0.009 rows=40.00 loops=1)
         Index Cond: (thousand = ANY ('{1,500,700,999}'::integer[]))
         Index Searches: 4
         Buffers: shared hit=8
 Planning Time: 0.029 ms
 Execution Time: 0.034 ms




ここでは、4つの個別のインデックス検索を必要とするビットマップインデックススキャンノードがあります。
このスキャンは、述語のIN構文におけるintegerの値につき一度、tenk1_thous_tenthousインデックスのルートページからインデックスを検索する必要がありました。
ただし、インデックス検索の数は、問い合わせの述語とそれほど単純に対応していないことがよくあります。



EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE thousand IN (1, 2, 3, 4);
                                                            QUERY PLAN
-------------------------------------------------------------------​---------------------------------------------------------------
 Bitmap Heap Scan on tenk1  (cost=9.45..73.44 rows=40 width=244) (actual time=0.009..0.019 rows=40.00 loops=1)
   Recheck Cond: (thousand = ANY ('{1,2,3,4}'::integer[]))
   Heap Blocks: exact=38
   Buffers: shared hit=40
   ->  Bitmap Index Scan on tenk1_thous_tenthous  (cost=0.00..9.44 rows=40 width=0) (actual time=0.005..0.005 rows=40.00 loops=1)
         Index Cond: (thousand = ANY ('{1,2,3,4}'::integer[]))
         Index Searches: 1
         Buffers: shared hit=2
 Planning Time: 0.029 ms
 Execution Time: 0.026 ms




この異なるINを含む問い合わせでは、1つのインデックス検索しか実行されていません。
このIN構文では、同じtenk1_thous_tenthousインデックスリーフページ上にお互い隣り合って格納されているインデックスタプルと一致する値を使用しているため、（元の問い合わせと比較して）インデックスを探索する時間が短くなりました。
   


「Index Searches」の行は、スキップスキャン最適化を適用してインデックスをより効果的に探索するB-treeインデックススキャンでも役立ちます。


EXPLAIN ANALYZE SELECT four, unique1 FROM tenk1 WHERE four BETWEEN 1 AND 3 AND unique1 = 42;
                                                              QUERY PLAN
-------------------------------------------------------------------​---------------------------------------------------------------
 Index Only Scan using tenk1_four_unique1_idx on tenk1  (cost=0.29..6.90 rows=1 width=8) (actual time=0.006..0.007 rows=1.00 loops=1)
   Index Cond: ((four >= 1) AND (four <= 3) AND (unique1 = 42))
   Heap Fetches: 0
   Index Searches: 3
   Buffers: shared hit=7
 Planning Time: 0.029 ms
 Execution Time: 0.012 ms




ここでは、tenk1テーブルのfour列とunique1列にある複数列インデックスのtenk1_four_unique1_idxを使用するインデックスオンリースキャンノードがあります。
このスキャンでは3回の検索が実行され、それぞれ1つのインデックスリーフページを読みます。「four = 1 AND unique1 = 42」、「four = 2 AND unique1 = 42」、そして「four = 3 AND unique1 = 42」です。
このインデックスは、先頭の列（four列）には異なる値が4つしかありませんが、2番目であり最後の列（unique1列）には多くの異なる値が含まれるため、「複数列インデックス」で説明されているように、スキップスキャンの対象として一般的に適しています。
   


他の種類の追加情報はフィルタ条件によって除外される行数があります。



EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE ten < 7;

                                               QUERY PLAN
-------------------------------------------------------------------​--------------------------------------
 Seq Scan on tenk1  (cost=0.00..470.00 rows=7000 width=244) (actual time=0.030..1.995 rows=7000.00 loops=1)
   Filter: (ten < 7)
   Rows Removed by Filter: 3000
   Buffers: shared hit=345
 Planning Time: 0.102 ms
 Execution Time: 2.145 ms




特に結合ノードで適用されるフィルタ条件ではこれらの数が有用です。
「Rows Removed」行は、少なくともスキャンされた１行、結合ノードにおける結合組み合わせの可能性がフィルタ条件によって拒絶された時にのみ現れます。
   


「非可逆」インデックススキャンはフィルタ条件に似た状況です。
例えば、特定の点を含有する多角形の検索を考えてみます。



EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)';

                                              QUERY PLAN
-------------------------------------------------------------------​-----------------------------------
 Seq Scan on polygon_tbl  (cost=0.00..1.09 rows=1 width=85) (actual time=0.023..0.023 rows=0.00 loops=1)
   Filter: (f1 @> '((0.5,2))'::polygon)
   Rows Removed by Filter: 7
   Buffers: shared hit=1
 Planning Time: 0.039 ms
 Execution Time: 0.033 ms




プランナは（ほぼ正確に）、インデックススキャンを考慮するには例のテーブルが小さ過ぎるとみなします。
このため、フィルタ条件によってすべての行が拒絶される、普通のシーケンシャルスキャンとなります。
しかしインデックススキャンの使用を強制するのであれば、以下のようにします。



SET enable_seqscan TO off;

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)';

                                                        QUERY PLAN
-------------------------------------------------------------------​-------------------------------------------------------
 Index Scan using gpolygonind on polygon_tbl  (cost=0.13..8.15 rows=1 width=85) (actual time=0.074..0.074 rows=0.00 loops=1)
   Index Cond: (f1 @> '((0.5,2))'::polygon)
   Rows Removed by Index Recheck: 1
   Index Searches: 1
   Buffers: shared hit=1
 Planning Time: 0.039 ms
 Execution Time: 0.098 ms




ここで、インデックスが１つの候補行を返し、それがインデックス条件の再検査により拒絶されることが分かります。
多角形の含有試験ではGiSTインデックスが「非可逆」であるため、これは発生します。
実際には対象と重なる多角形を持つ行を返し、そしてこれらの行が正確に含有関係であることを試験しなければなりません。
   


EXPLAINには、与えられた問い合わせのプランニング中と実行中に行われるI/O操作に関して追加の詳細情報を提供するBUFFERSオプションがあります。
表示されるバッファ数は、与えられたノードとその全ての子ノードについて、ヒット、読み取り、ダーティ化、そして書き込みが行われた個別のバッファの数を示します。
ANALYZEオプションは暗黙的にBUFFERSオプションを有効化します。
これが望ましくない場合は、BUFFERSを明示的に無効化できます。



EXPLAIN (ANALYZE, BUFFERS OFF) SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;

                                                           QUERY PLAN
-------------------------------------------------------------------​--------------------------------------------------------------
 Bitmap Heap Scan on tenk1  (cost=25.07..60.11 rows=10 width=244) (actual time=0.105..0.114 rows=10.00 loops=1)
   Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
   Heap Blocks: exact=10
   ->  BitmapAnd  (cost=25.07..25.07 rows=10 width=0) (actual time=0.100..0.101 rows=0.00 loops=1)
         ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..5.04 rows=100 width=0) (actual time=0.027..0.027 rows=100.00 loops=1)
               Index Cond: (unique1 < 100)
               Index Searches: 1
         ->  Bitmap Index Scan on tenk1_unique2  (cost=0.00..19.78 rows=999 width=0) (actual time=0.070..0.070 rows=999.00 loops=1)
               Index Cond: (unique2 > 9000)
               Index Searches: 1
 Planning Time: 0.162 ms
 Execution Time: 0.143 ms


   


EXPLAIN ANALYZEが実際に問い合わせを実行しますので、EXPLAINのデータを出力することを優先して問い合わせの出力が破棄されたとしても、何らかの副作用が通常通り発生することに注意してください。
テーブルを変更すること無くデータ変更問い合わせの解析を行いたければ、以下の例のように、実行後コマンドをロールバックしてください。



BEGIN;

EXPLAIN ANALYZE UPDATE tenk1 SET hundred = hundred + 1 WHERE unique1 < 100;

                                                           QUERY PLAN
-------------------------------------------------------------------​-------------------------------------------------------------
 Update on tenk1  (cost=5.06..225.23 rows=0 width=0) (actual time=1.634..1.635 rows=0.00 loops=1)
   ->  Bitmap Heap Scan on tenk1  (cost=5.06..225.23 rows=100 width=10) (actual time=0.065..0.141 rows=100.00 loops=1)
         Recheck Cond: (unique1 < 100)
         Heap Blocks: exact=90
         Buffers: shared hit=4 read=2
         ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..5.04 rows=100 width=0) (actual time=0.031..0.031 rows=100.00 loops=1)
               Index Cond: (unique1 < 100)
               Index Searches: 1
               Buffers: shared read=2
 Planning Time: 0.151 ms
 Execution Time: 1.856 ms

ROLLBACK;


   


この例で分かるように、問い合わせがINSERT、UPDATE、DELETE、MERGEである場合、テーブル変更を行うための実作業は最上位のInsert、Update、Delete、Merge計画ノードで行われます。
このノード以下にある計画ノードは、古い行の検索、新しいデータの計算、あるいはその両方を行います。
このため、前に述べたものと同じ種類のビットマップテーブルスキャンがあり、その出力が更新される行を格納するUpdateノードに渡されることが分かります。
データ変更ノードが実行時間の多くを費やす可能性があります（現在これが一番多くの時間を費やしています）が、プランナは現在その作業を考慮してコスト推定に何も加えません。
これは、行われる作業がすべての正確な問い合わせ計画の作業と同一であるためであり、このため計画の決定に影響を与えません。
   


UPDATE、DELETE、MERGEコマンドがパーティションテーブルや継承階層に影響する場合には、出力は以下のようになるでしょう。



EXPLAIN UPDATE gtest_parent SET f1 = CURRENT_DATE WHERE f2 = 101;

                                       QUERY PLAN
-------------------------------------------------------------------​---------------------
 Update on gtest_parent  (cost=0.00..3.06 rows=0 width=0)
   Update on gtest_child gtest_parent_1
   Update on gtest_child2 gtest_parent_2
   Update on gtest_child3 gtest_parent_3
   ->  Append  (cost=0.00..3.06 rows=3 width=14)
         ->  Seq Scan on gtest_child gtest_parent_1  (cost=0.00..1.01 rows=1 width=14)
               Filter: (f2 = 101)
         ->  Seq Scan on gtest_child2 gtest_parent_2  (cost=0.00..1.01 rows=1 width=14)
               Filter: (f2 = 101)
         ->  Seq Scan on gtest_child3 gtest_parent_3  (cost=0.00..1.01 rows=1 width=14)
               Filter: (f2 = 101)




この例では、Updateノードは3つの子テーブルを考慮しますが、元の問い合わせに記述されていたパーティションテーブルを考慮しません（そこにデータ格納されることはないため）。
そのため、テーブル毎に3つの入力スキャン副計画があります。
明確にするため、Updateノードには対応する副計画と同じ順に更新される特定の対象テーブルを示す注釈が付けられています。
   


EXPLAIN ANALYZEで表示されるPlanning timeは、解析された問い合わせから問い合わせ計画を生成し最適化するのに掛かった時間です。
解析と書き換えは含みません。
   


EXPLAIN ANALYZEで表示されるExecution time（実行時間）にはエグゼキュータの起動、停止時間、発行される何らかのトリガの実行時間も含まれますが、解析や書き換え、計画作成の時間は含まれません。
BEFOREトリガがあればその実行時間は関連するInsert、Update、Deleteノード用の時間に含まれます。
しかし、AFTERトリガは計画全体が完了した後に発行されますので、AFTERトリガの実行時間は計上されません。
また、各トリガ（BEFORE、AFTERのいずれか）で費やされる総時間は別々に表示されます。
しかし、遅延制約トリガはトランザクションが終わるまで実行されませんので、EXPLAIN ANALYZEでは考慮されないことに注意してください。
   


最上位ノードに表示される時間には、問い合わせの出力データを表示可能な形式に変換したり、それをクライアントに送信したりするのに要する時間は含まれません。
EXPLAIN ANALYZEはデータをクライアントに送信することはありませんが、SERIALIZEオプションを指定することで、問い合わせの出力データを表示可能な形式に変換し、そのために必要な時間を測定するように指示できます。
その時間は分けて表示され、また、それは合計のExecution timeにも含まれます。
   

警告





EXPLAIN ANALYZEにより測定される実行時間が同じ問い合わせを普通に実行する場合と大きくそれる可能性がある、２つの重大な点があります。
１つ目は、出力行がクライアントに配信されませんので、ネットワーク転送コストが含まれないことです。
I/O変換のコストも、SERIALIZEが指定されない限り、含まれません。
２つ目は、EXPLAIN ANALYZEによって加わる測定オーバーヘッドが大きくなることが、特にgettimeofday()オペレーティングシステムコールが低速なマシンであり得ることです。
pg_test_timing(1)を用いて、使用中のシステムの時間測定にかかるオーバーヘッドを測ることができます。
   


EXPLAINの結果を試験を行ったものと大きく異なる状況の推定に使ってはいけません。
例えば、小さなテーブルの結果は、巨大なテーブルに適用できるとは仮定できません。
プランナの推定コストは線形ではなく、そのため、テーブルの大小によって異なる計画を選択する可能性があります。
極端な例ですが、テーブルが1ディスクページしか占めない場合、インデックスが使用できる、できないに関係なく、ほとんど常にシーケンシャルスキャン計画を得ることになります。
プランナは、どのような場合でもテーブルを処理するために1ディスクページ読み取りを行うので、インデックスを参照するための追加的ページ読み取りを行う価値がないことを知っています。
（上述のpolygon_tblの例でこれが起こることを示しています。）
   


実際の値と推定値がうまく合わないが本当は間違ったものがない場合があります。
こうした状況の１つは、LIMITや同様な効果により計画ノードの実行が短時間で終わる時に起こります。
例えば、以前に使用したLIMIT問い合わせでは



EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;

                                                          QUERY PLAN
-------------------------------------------------------------------​------------------------------------------------------------
 Limit  (cost=0.29..14.33 rows=2 width=244) (actual time=0.051..0.071 rows=2.00 loops=1)
   Buffers: shared hit=16
   ->  Index Scan using tenk1_unique2 on tenk1  (cost=0.29..70.50 rows=10 width=244) (actual time=0.051..0.070 rows=2.00 loops=1)
         Index Cond: (unique2 > 9000)
         Filter: (unique1 < 100)
         Rows Removed by Filter: 287
         Index Searches: 1
         Buffers: shared hit=16
 Planning Time: 0.077 ms
 Execution Time: 0.086 ms




インデックススキャンノードの推定コストと行数が実行完了したかのように表示されます。
しかし現実では、Limitノードが２行を取り出した後に行の要求を停止します。
このため実際の行数は２行のみであり、実行時間は提示された推定コストより小さくなります。
これは推定間違いではなく、単なる推定値と本当の値を表示する方法における矛盾です。
   


またマージ結合には、注意しないと混乱を招く測定上の乱れがあります。
マージ結合は他の入力が使い尽くされ、ある入力の次のキー値が他の入力の最後のキー値より大きい場合、その入力の読み取りを停止します。
このような場合、これ以上一致することはあり得ず、最初の入力の残りをスキャンする必要がありません。
この結果、子のすべては読み取られず、LIMITの説明のようになります。
また、外部（最初）の子が重複するキー値を持つ行を含む場合、内部（２番目）の子はバックアップされ、そのキー値が一致する行部分を再度スキャンされます。
EXPLAIN ANALYZEはこうした繰り返される同じ内部行の排出を実際の追加される行と同様に計上します。
外部で多くの重複がある場合、内部の子計画ノードで繰り返される実際の行数は、内部リレーションにおける実際の行数より非常に多くなることがあり得ます。
   


実装上の制限のため、BitmapAndおよびBitmapOrノードは常に実際の行数をゼロと報告します。
   


通常EXPLAINはプランナが生成したすべてのプランノードを表示します。
しかし、プラン時にパラメータ値が入手できずそのノードが行を生成できないために、エグゼキュータがあるノードが実行不要であると判断できるケースがあります。
（今の所、これはパーティションテーブルをスキャンしているAppendあるいはMergeAppendノードの子ノードでのみ起きることがあります。）
これが起きると、これらのプランノードはEXPLAINの出力から削除され、Subplans Removed: Nという注釈が代わりに表示されます。
   



プランナで使用される統計情報



単一列統計情報





前節で説明した通り、問い合わせプランナは、より良い問い合わせ計画を選択するために問い合わせによって取り出される行数の推定値を必要としています。
本節では、システムがこの推定に使用する統計情報について簡単に説明します。
  


統計情報の1つの構成要素は、各テーブルとインデックスの項目の総数と、各テーブルとインデックスが占めるディスクブロック数です。
この情報はpg_classのreltuplesとrelpages列に保持されます。
以下のような問い合わせによりこれを参照することができます。



SELECT relname, relkind, reltuples, relpages
FROM pg_class
WHERE relname LIKE 'tenk1%';

       relname        | relkind | reltuples | relpages
----------------------+---------+-----------+----------
 tenk1                | r       |     10000 |      345
 tenk1_hundred        | i       |     10000 |       11
 tenk1_thous_tenthous | i       |     10000 |       30
 tenk1_unique1        | i       |     10000 |       30
 tenk1_unique2        | i       |     10000 |       30
(5 rows)




ここで、tenk1とそのインデックスには10000行が存在し、そして、（驚くには値しませんが）インデックスはテーブルよりもかなり小さなものであることがわかります。
  


効率を上げるため、reltuplesとrelpagesは処理の度には更新されず、したがって通常は多少古い値のみ所有しています。
これらはVACUUM、ANALYZE、CREATE INDEXなどの一部のDDLコマンドによって更新されます。
テーブル全体をスキャンしないVACUUM、ANALYZE操作（一般的な状況です）は、スキャンされたテーブルの部分に基づいてreltuples値を漸次更新し、概算値を生成します。
いずれの場合でもプランナは、現在の物理的なテーブルサイズに合わせるためにpg_classから検索した値を調整して、より高精度な近似値を得ます。
  


ほとんどの問い合わせは、検証される行を制限するWHERE句によって、テーブル内の行の一部のみを取り出します。
したがって、プランナはWHERE句の選択性、つまりWHERE句の各条件にどれだけの行が一致するかを推定する必要があります。
この処理に使用される情報はpg_statisticシステムカタログ内に格納されます。
pg_statistic内の項目は、ANALYZEとVACUUM ANALYZEコマンドによって更新され、また１から更新がかかったとしても常に概算値になります。
  


統計情報を手作業で確認する場合、pg_statisticを直接参照するのではなく、pg_statsビューを参照する方が良いでしょう。
pg_statsはより読みやすくなるように設計されています。
さらに、pg_statsは誰でも読み取ることができますが、pg_statisticはスーパーユーザのみ読み取ることができます。
（これは、非特権ユーザが統計情報から他人のテーブルの内容に関わる事項を読み取ることを防止します。
pg_statsビューは現在のユーザが読み取ることができるテーブルに関する行のみを表示するよう制限されています。）
例えば、以下を行うことができます。



SELECT attname, inherited, n_distinct,
       array_to_string(most_common_vals, E'\n') as most_common_vals
FROM pg_stats
WHERE tablename = 'road';

 attname | inherited | n_distinct |          most_common_vals
---------+-----------+------------+------------------------------------
 name    | f         | -0.5681108 | I- 580                        Ramp+
         |           |            | I- 880                        Ramp+
         |           |            | Sp Railroad                       +
         |           |            | I- 580                            +
         |           |            | I- 680                        Ramp+
         |           |            | I- 80                         Ramp+
         |           |            | 14th                          St  +
         |           |            | I- 880                            +
         |           |            | Mac Arthur                    Blvd+
         |           |            | Mission                       Blvd+
...
 name    | t         |    -0.5125 | I- 580                        Ramp+
         |           |            | I- 880                        Ramp+
         |           |            | I- 580                            +
         |           |            | I- 680                        Ramp+
         |           |            | I- 80                         Ramp+
         |           |            | Sp Railroad                       +
         |           |            | I- 880                            +
         |           |            | State Hwy 13                  Ramp+
         |           |            | I- 80                             +
         |           |            | State Hwy 24                  Ramp+
...
 thepath | f         |          0 |
 thepath | t         |          0 |
(4 rows)




同じ列に対して2行が表示されていることに注意してください。
1つはroadテーブルが始まる継承階層(inherited=t)全体に相当し、もう1つはroadテーブル自身(inherited=f)のみを含むものです。
（簡潔にするために、name列について最頻値は最初の10個のみを示しました。）
  


ANALYZEによりpg_statisticに格納される情報量、具体的には、それぞれの列に対するmost_common_vals内とhistogram_bounds配列のエントリの最大数は、ALTER TABLE SET STATISTICSコマンドによって列ごとに、default_statistics_target設定パラメータを設定することによってグローバルに設定することができます。
現在のデフォルトの上限は100エントリです。
この上限を上げることで、特に、少し変わったデータ分布を持つ列でより正確なプランナの推定が行われますが、pg_statisticにより多くの容量が必要になり、多少推定計算にかかる時間が多くなります。
反対に上限を下げることは、単純なデータ分布の列に対して順当です。
  


プランナによる統計情報の使用に関する詳細については69章プランナは統計情報をどのように使用するかを参照してください。
  

拡張統計情報





問い合わせ句で使われている複数列に相関性があることにより、悪い実行計画を実行する遅いクエリがしばしば観察されます。
プランナは通常複数の条件がお互いに独立であるとみなしますが、列の値に相関性がある場合はそれは成り立ちません。
通常の列ごとの統計情報は、それが個々の列ごとであるという性質上、列をまたがる相関性に関する知識を把握することはできません。
しかしながら、PostgreSQL™は、多変量統計情報を計算することができ、それによってそうした情報を把握することができます。
   


列の組み合わせの数は非常に大きいため、自動的に多変量統計情報を計算するのは現実的ではありません。
代わりに、サーバが興味のある列の集合にまたがる統計情報を得るように指示する目的で、拡張統計情報オブジェクト（しばしば単に統計情報オブジェクトと呼ばれます）を作成することができます。
   


統計情報オブジェクトはCREATE STATISTICSで作成します。
そうしたオブジェクトを作っても、単に統計情報として興味があることを示すカタログエントリが作られるだけです。
実際のデータ収集は、ANALYZE （手動のコマンドを起動あるいはバックグラウンドでの自動ANALYZE）が行います。
収集したデータは、pg_statistic_ext_dataカタログで参照することができます。
   


通常の単一列統計情報の計算に使うのと同じテーブル行のサンプルに基づき、ANALYZEは、拡張統計情報を計算します。
（前節で述べたように）テーブルあるいはそのテーブルの対象となる列統計情報の増やすと、サンプルのサイズも増えるので、より大きな統計情報の対象を使うと、通常、より精度の高い拡張統計情報を得られますが、計算に費やす時間も増えます。
   


次の副節では、現在サポートしている拡張統計情報の種類を説明します。
   
関数従属性





もっとも単純な拡張統計情報は、データベースの正規形の定義で使われる考え方である、関数従属性を追跡します。
aの値に関する知識がbの値を決定するのに十分であるとき、列bは列aに関数的に従属していると言います。
これはすなわち、同じaの値を持ちながら、異なるbの値を持つ二つの行は存在しないということです。
完全に正規化されたデータベースでは、関数従属性は主キーと超キーにのみ存在します。
実際には様々な理由でデータの集合は完全には正規化されません。
性能上の理由により非正規化するというのが典型的な例です。
完全に正規化されたデータベースにおいても、ある列の間に部分的な相関関係が存在することがあり、これは部分的関数従属性として表現されます。
    


ある問い合わせでは、関数従属性が存在することが見積もりの精度に直接影響を与えます。
問い合わせに独立した列と依存する列の両方に関する条件が含まれていると、依存する列に関する条件はそれ以上結果サイズを小さくしません。
しかし関数従属性に関する知識がなければ、クエリプランナはそれらの条件が独立であると見なし、結果サイズの過少見積もりすることになります。
    


プランナに関数従属性について知らせるために、ANALYZEは列をまたがる依存性の強さを収集することができます。
すべての列の集合間の依存性度合いを調査するのは、受け入れられないほど高価になります。
そこでデータ収集は、dependenciesオプションで定義された統計情報オブジェクトの中に一緒に現れた列のグループに制限されます。
ANALYZEおよび後々のクエリプランニングにおける不必要なオーバーヘッドを避けるために、強い相関関係のある列のグループのみを対象に、dependencies統計情報を作成することをお勧めします。
    


関数従属性統計情報の収集例です。


CREATE STATISTICS stts (dependencies) ON city, zip FROM zipcodes;

ANALYZE zipcodes;

SELECT stxname, stxkeys, stxddependencies
  FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid)
  WHERE stxname = 'stts';
 stxname | stxkeys |             stxddependencies
---------+---------+------------------------------------------
 stts    | 1 5     | {"1 => 5": 1.000000, "5 => 1": 0.423130}
(1 row)



ここでは、列1（zip code）が完全に列5（city）を決定しているので、係数は1.0です。
一方、cityはzip codeを42%しか決定していないので、一つ以上のzip codeで表現されている多くのcity(58%)が存在するということになります。
    


関数従属する列を伴うクエリの選択率を計算する際、過小評価を行わないように、プランナは依存性係数を使って条件ごとの選択率を調整します。
    
関数従属性の制限事項





今のところ、列と定数を比較する単純な等価条件と、定数のIN句を考慮する際にしか関数従属性は適用されません。
二つの列を比較する、あるいは列を式と比較する等価条件、範囲句、LIKEその他の条件の見積もりを改善するのには使われません。
     


関数従属性を含めた見積もりでは、プランナは関係する列に対する複数の条件が同時に成り立つ、つまり冗長であるとみなします。
それらの条件が同時に成り立たなければ、正しい見積もりは0行となりますが、その可能性は考慮されません。
たとえば次のクエリを見てください。


SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '94105';



プランナは、選択率が変わらないという正しい推定に基づきcity句を無視します。
しかし、同じ前提を


SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '90210';



が満たす行が0行であるにもかかわらず、同じ推測をします。
関数従属性統計情報は、これを結論付けるだけの十分な情報を提供しません。
     


多くの実用的な場合には、この前提は通常満たされます。
たとえば、あるアプリケーションには、クエリの中で両立するcityとZIP codeだけを許すGUIが備わっているかもしれません。
もしそうでなければ、関数従属性は実行可能なオプションではないかもしれません。
     


多変量N個別値計数





単一列統計情報は、それぞれの列で異なる値の数を保持します。
たとえば、GROUP BY a, bのように、二つ以上の列を組み合わせての異なる値の数の見積もりは、プランナに単一列の統計情報だけしか与えられない場合は、しばしば間違ったものになり、プランナは悪いプランの選択をしてしまいます。
    


見積もり改善のために、列のグループに対してANALYZEはN個別統計情報を収集することができます。
以前述べたのと同様に、可能なすべての列のグループに対してこれを行なうのは現実的ではありません。
ndistinctオプションで定義された統計オブジェクト中に一緒に現れる列のグループに対してのみデータを
収集します。
列リストの中から、可能な二つ以上の列の組み合わせそれぞれに対してデータが収集されます。
    


先ほどの例の続きで、ZIP codeのテーブルのN個別値計数は次のようになります。


CREATE STATISTICS stts2 (ndistinct) ON city, state, zip FROM zipcodes;

ANALYZE zipcodes;

SELECT stxkeys AS k, stxdndistinct AS nd
  FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid)
  WHERE stxname = 'stts2';
-[ RECORD 1 ]------------------------------------------------------​--
k  | 1 2 5
nd | {"1, 2": 33178, "1, 5": 33178, "2, 5": 27435, "1, 2, 5": 33178}
(1 row)



この例では、33178の異なる値を持つ列の組み合わせが三つあることを示しています。
ZIP codeとstate、ZIP codeとcity、cityとstateです。（これらが等しいという事実は、ZIP codeだけがテーブル中でユニークであることから期待されます。）
一方、cityとstateの組み合わせには、27435だけの異なる値があります。
    


グループ化で実際に使用する列の組み合わせで、かつグループ数の見積もり間違いによって悪いプランをもたらすものに対してだけ、ndistinct統計情報オブジェクトを作ることをお勧めします。
さもないと、ANALYZEサイクルは単に無駄になります。
    

多変量MCVリスト





列ごとに格納される別なタイプの統計値は最頻値リスト(most-common value list)です。
個々の列ごとには非常に正確な推測を可能にしますが、複数列に渡る条件を持つ問い合わせについては重大な誤った推定をもたらすことがあります。
    


こうした推定を改善するために、列の組み合わせのMCVリストをANALYZEで収集することができます。
関数従属性とN個別値係数同様、考えられるすべての列のグループに対してこれを行うのは実用的ではありません。
MCVリストでは（関数従属性とN個別値係数と違って）列の頻値を格納するのでなおさらです。
ですからmcvオプションで定義された統計情報オブジェクト中に共通して現れる列のグループのデータだけが収集されます。
    


前述の例を続けましょう。ZIPコードのテーブルのMCVリストは次のようになるでしょう。（単純な形式の統計情報とは違って、MCVの内容を解析する関数が必要になります）



CREATE STATISTICS stts3 (mcv) ON city, state FROM zipcodes;

ANALYZE zipcodes;

SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
                pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts3';

 index |         values         | nulls | frequency | base_frequency
-------+------------------------+-------+-----------+----------------
     0 | {Washington, DC}       | {f,f} |  0.003467 |        2.7e-05
     1 | {Apo, AE}              | {f,f} |  0.003067 |        1.9e-05
     2 | {Houston, TX}          | {f,f} |  0.002167 |       0.000133
     3 | {El Paso, TX}          | {f,f} |     0.002 |       0.000113
     4 | {New York, NY}         | {f,f} |  0.001967 |       0.000114
     5 | {Atlanta, GA}          | {f,f} |  0.001633 |        3.3e-05
     6 | {Sacramento, CA}       | {f,f} |  0.001433 |        7.8e-05
     7 | {Miami, FL}            | {f,f} |    0.0014 |          6e-05
     8 | {Dallas, TX}           | {f,f} |  0.001367 |        8.8e-05
     9 | {Chicago, IL}          | {f,f} |  0.001333 |        5.1e-05
   ...
(99 rows)



これによると市と州のもっとも頻度の高い組み合わせはDCのWashingtonで、（サンプルにおける）実際の頻度は約0.35%でした。
比較の基準となる組み合わせの頻度（単純な列ごとの頻度から計算されたもの）はたった0.0027%で、2桁の過少見積になっています。
    


そのグループの誤推定値が間違った計画をもたらしてしまうような、条件の中で実際に一緒に使われる列の組み合わせについてのみMCV統計情報オブジェクトを作成することが望ましいです。
さもないと、ANALYZEとプラン処理は単に無駄になってしまいます。
    



明示的なJOIN句でプランナを制御する





明示的なJOIN構文を使って問い合わせプランナをある程度制御できます。
どうしてこういうことが問題になるのか、まずその背景を見る必要があります。
  


単純な問い合わせ、例えば


SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;



では、プランナは自由に与えられたテーブルを任意の順で結合することができます。
例えば、WHERE条件のa.id = b.idを使ってまずAとBを結合し、他のWHERE条件を使ってその結合テーブルにCを結合するといった計画を立てることができます。
あるいは、BとCを結合し、その結果にAを結合することもできます。
あるいは、AとCを結合し、その結果にBを結合することもできるでしょう。
しかし、それでは効率が良くありません。
なぜなら、結合の最適化を行うために適用できる条件がWHERE句にないので、AとCの全デカルト積が作られるからです。
（PostgreSQL™のエグゼキュータでは、結合はすべて2つのテーブルの間で行われるため、このようにして1つひとつ結果を作っていかなければなりません。）
重要なのは、これらの違った結合の方法は意味的には同じ結果なのですが、実行コストは大きく異なる可能性があるということです。
ですから、プランナは最も効率の良い計画を探すために可能な計画をすべて検査します。
  


結合の対象がせいぜい2、3個のテーブルなら心配するほど結合の種類は多くありません。
しかし、テーブル数が増えると可能な結合の数は指数関数的に増えていきます。
10程度以上にテーブルが増えると、すべての可能性をしらみつぶしに探索することはもはや実用的ではなくなります。
6や7個のテーブルでさえも、計画を作成する時間が無視できなくなります。
テーブルの数が多過ぎる時は、PostgreSQL™のプランナはしらみつぶしの探索から、限られた可能性だけを探索する遺伝的確率的な探索へと切り替わります。
（切り替えの閾値はgeqo_threshold実行時パラメータで設定されます。）
遺伝的探索は短い時間で探索を行いますが、必ずしも最適な計画を見つけるとは限りません。
  


外部結合が含まれるような問い合わせでは、通常の（内部）結合よりプランナの選択の余地が小さくなります。
例えば、次のような問い合わせを考えます。


SELECT * FROM a LEFT JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);



この問い合わせの検索条件は前述の例と表面的には似ているように思えますが、BとCの結合結果の行に適合しないAの各行が出力されなければならないため、意味的には異なります。
したがって、ここではプランナには結合順に関して選択の余地がありません。
まずBとCを結合し、その結果にAを結合しなければならないのです。
そういうわけで、この問い合わせでは計画を立てるのに要する時間は前の例よりも短くなります。
その他の場合、プランナが安全な結合順を複数決定できる可能性があります。
例えば、以下を考えてみます。


SELECT * FROM a LEFT JOIN b ON (a.bid = b.id) LEFT JOIN c ON (a.cid = c.id);



この場合、Aを先にBと結合してもCと結合しても有効です。
現時点では、FULL JOINのみが完全に結合順を制限します。
LEFT JOINやRIGHT JOINを含む、ほとんどの実環境では、何らかの拡張に再調整することができます。
  


明示的な内部結合構文（INNER JOIN、CROSS JOIN、装飾のないJOIN）は、意味的にはFROM内の入力リレーションの列挙と同じです。
したがって、結合順を制約しません。
  


ほとんどの種類のJOINは完全に結合順を制約しませんが、PostgreSQL™問い合わせプランナに、すべてのJOIN句に対してとりあえず結合順を制限させることができます。
例えば、以下の3つの問い合わせは論理的には同一です。


SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);



しかし、プランナにJOINの順番を守るように伝えた場合、2番目と3番目の問い合わせは最初のものよりも短い時間で計画を立てることができます。
この効果はたった3つのテーブルでは気にするほどのものではありませんが、多くのテーブルを結合する際には最後の頼みの綱になるかもしれません。
  


プランナを強制的に明示的なJOINに潜在する結合順に従わせるには、join_collapse_limit実行時パラメータを1に設定してください。
（以下で他の取り得る値について説明します。）
  


検索時間を節約するために、結合順を完全に束縛する必要はありません。
なぜなら、単純なFROMリストの項目内にJOIN演算子を使っても構わないからです。
例えば、次の例です。


SELECT * FROM a CROSS JOIN b, c, d, e WHERE ...;



join_collapse_limit = 1とした場合、プランナは強制的に他のテーブルと結合する前にAとBを結合しますが、それ以外については特に拘束はありません。
この例では、結合順の候補は5の階乗分の1に減ります。
  


こうした方法でプランナの検索に制約を加えることは、計画作成時間の短縮とプランナに対する優れた問い合わせ計画への方向付けの両方のために有用な技法です。
プランナが劣った結合順をデフォルトで選択するのであれば、JOIN構文経由でより良い順番を選択するように強制することができます。
ただし、より良い順番を理解しているという前提があります。
これには実験することを勧めます。
  


計画作成時間に影響する密接に関連した問題として、副問い合わせをその親問い合わせに折り畳むことがあります。
例えば、以下を考えてみます。


SELECT *
FROM x, y,
    (SELECT * FROM a, b, c WHERE something) AS ss
WHERE somethingelse;



こうした状況は、結合を含むビューを使用する際に現れます。
そのビューのSELECTルールはビューを参照するところに挿入され、上のような問い合わせを生成します。
通常、プランナは副問い合わせを親問い合わせに折り畳み、以下を生成します。


SELECT * FROM x, y, a, b, c WHERE something AND somethingelse;



これは通常、副問い合わせの計画を別途作成するより優れた計画を作成します。
（例えば、外部のWHERE条件はXをAに結合するようになり、まずAの多くの行が取り除かれます。
これにより、副問い合わせの完全な論理的出力が不要になります。）
しかし、同時に計画作成時間が増加します。
この場合、2つの3通りの結合問題から5通りの結合問題になります。
候補数は指数関数的に増加するため、これは大きな違いになります。
プランナは大規模な結合検索問題で行き詰まらないように、もしfrom_collapse_limit個のFROM項目が親問い合わせで発生してしまう場合は副問い合わせの折り畳みを抑制します。
この実行時パラメータの値を上下に調整することで計画作成時間と計画の質をトレードオフすることができます。
  


両者はほとんど同じことを行うため、from_collapse_limitとjoin_collapse_limitは似たような名前になっています。
片方は副問い合わせの「平坦化」をプランナがいつ行うかを制御し、もう片方は明示的な結合の平坦化をいつ行うかを制御します。
通常、join_collapse_limitをfrom_collapse_limitと同じ値に設定する（明示的な結合と副問い合わせの動作を同じにする）か、join_collapse_limitを1に設定する（明示的な結合で結合順を制御したい場合）かのどちらかを行います。
しかし、計画作成時間と実行時間の間のトレードオフを細かく調整するつもりであれば、これらを別の値に設定しても構いません。
  

データベースへのデータ投入





データベースにデータを初期投入するために、大量のテーブル挿入操作を行う必要がままあります。
本節では、この作業を効率良く行うためのちょっとした提言を示します。
  
自動コミットをオフにする





複数回のINSERTを実行するのであれば、自動コミットを無効にして最後に1回だけコミットしてください。
（普通のSQLでは、これはBEGINを開始時に、COMMITを最後に発行することを意味します。
クライアント用ライブラリの中にはこれを背後で実行するものもあります。
その場合は、要望通りにライブラリが行っているかどうかを確認しなければなりません。）
各挿入操作で個別にコミットすることを許すと、PostgreSQL™は行を追加する度に多くの作業をしなければなりません。
1つのトランザクションですべての挿入を行うことによるもう1つの利点は、1つの行の挿入に失敗した場合、その時点までに挿入されたすべての行がロールバックされることです。
その結果、一部のみがロードされたデータの対処に困ることはありません。
   

COPYの使用





単一コマンドですべての行をロードするために一連のINSERTコマンドではなく、COPYを使用してください。
COPYコマンドは行を大量にロードすることに最適化されています。
このコマンドはINSERTに比べ柔軟性に欠けていますが、大量のデータロードにおけるオーバーヘッドを大きく低減します。
COPYコマンドでテーブルにデータを投入する場合、コマンドは1つなので、自動コミットを無効にする必要はありません。
   


COPYを使用できない場合、準備されたINSERT文をPREPAREを使用して作成し、必要な回数だけEXECUTEを実行する方が良いでしょう。
これにより、繰り返し行われるINSERTの解析と計画作成分のオーバーヘッドを省くことになります。
この機能のための方法はインタフェースによって異なります。
このインタフェースの文書の「準備された文」を参照してください。
   


COPYを使用した大量の行のロードは、ほとんどすべての場合において、INSERTを使用するロードよりも高速です。
たとえ複数の挿入を単一トランザクションにまとめたとしても、またその際にPREPAREを使用したとしても、これは当てはまります。
   


COPYは、前もって行われるCREATE TABLEまたはTRUNCATEコマンドと同一トランザクションで行った場合に、最速です。
この場合、エラーが起きた場合に新しくロードされるデータを含むファイルがとにかく削除されますので、WALを書き出す必要がありません。
しかし、wal_levelがminimalに設定されている場合のみにこの方法は当てはまります。
この他の場合には、すべてのコマンドをWALに書き出さなければならないためです。
   

インデックスを削除する





新規に作成したテーブルをロードする時、最速の方法は、テーブルを作成し、COPYを使用した一括ロードを行い、そのテーブルに必要なインデックスを作成することです。
既存のデータに対するインデックスを作成する方が、各行がロードされる度に段階的に更新するよりも高速です。
   


既存のテーブルに大量のデータを追加しているのであれば、インデックスを削除し、テーブルをロード、その後にインデックスを再作成する方がよいかもしれません。
もちろん、他のユーザから見ると、インデックスが存在しない間データベースの性能は悪化します。
また、一意性インデックスを削除する前には熟考しなければなりません。
一意性制約によるエラー検査がその期間行われないからです。
   

外部キー制約の削除





インデックスの場合と同様、外部キー制約は一行一行検査するよりも効率的に、「まとめて」検査することができます。
従って、外部キー制約を削除し、データをロード、そして、制約を再作成する方法は有用となることがあります。
ここでも、データロードの速度と、制約が存在しない間のエラー検査がないという点とのトレードオフがあります。
   


外部キー制約をすでに持つテーブルにデータをロードする時、新しい行はそれぞれ(行の外部キー制約を検査するトリガを発行しますので)サーバの待機中トリガイベントのリスト内に項目を要求します。
数百万の行をロードすると、トリガイベントのキューが利用可能なメモリをオーバーフローさせてしまい、耐えられないほどのスワッピングが発生してしまう、最悪はそのコマンドが完全に失敗してしまう可能性があります。
したがって単に好ましいだけでなく、大量のデータをロードする時には外部キーを削除し再度適用することが必要かもしれません。
一時的な制約削除が受け入れられない場合に他に取り得る手段は、ロード操作をより小さなトランザクションに分割することだけかもしれません。
   

maintenance_work_memを増やす





大規模なデータをロードする時maintenance_work_mem設定変数を一時的に増やすことで性能を向上させることができます。
これは、CREATE INDEXコマンドとALTER TABLE ADD FOREIGN KEYの速度向上に役立ちます。
COPY自体には大して役立ちませんので、この助言は、上述の技法の片方または両方を使用している時にのみ有用です。
   

max_wal_sizeを増やす





大規模なデータをロードする時max_wal_size設定変数を一時的に増やすことで高速化することができます。
大量のデータをPostgreSQL™にロードすることで、通常のチェックポイントの頻度（checkpoint_timeout設定変数により指定されます）よりも頻繁にチェックポイントが発生するためです。
チェックポイントが発生すると、すべてのダーティページ（ディスクに未書き込みの変更済みメモリページ）はディスクにフラッシュされなければなりません。
大量のデータロードの際に一時的にmax_wal_sizeを増加させることで、必要なチェックポイント数を減らすことができます。
   

WALアーカイブ処理とストリーミングレプリケーションの無効化





大量のデータをWALアーカイブ処理またはストリーミングレプリケーションを使用するインストレーションにロードする時、増加する大量のWALデータを処理するより、ロードが完了した後に新しくベースバックアップを取る方が高速です。
ロード中のWALログの増加を防ぐためには、wal_levelをminimalに、archive_modeをoffに、max_wal_sendersをゼロに設定することにより、アーカイブ処理とストリーミングレプリケーションを無効にしてください。
しかし、これらの変数を変更するにはサーバの再起動が必要となり、以前取得したベースバックアップがアーカイブリカバリやスタンバイサーバで使用できなくなりデータ消失につながる可能性があるため、注意してください。
   


こうすると、アーカイブやWAL送信にWALデータを処理する時間を避けることの他に、実際のところ、特定のコマンドをより高速にします。
wal_levelがminimalの場合、現在のサブトランザクション（またはトップレベルトランザクション）が変更するテーブルやインデックスを作成または切り詰めた場合、WALへの書き出しは全く予定されないためです。
（これらは最後にfsyncを実行することで、WALへの書き込みより安価にクラッシュした場合の安全性を保証することができます。）
   

最後にANALYZEを実行





テーブル内のデータ分布を大きく変更した時は毎回、ANALYZEを実行することを強く勧めます。
これは、テーブルに大量のデータをまとめてロードする場合も含まれます。
ANALYZE（またはVACUUM ANALYZE）を実行することで、確実にプランナがテーブルに関する最新の統計情報を持つことができます。
統計情報が存在しない、または古い場合、プランナは、そのテーブルに対する問い合わせの性能を損なわせる、お粗末な問い合わせ計画を選択する可能性があります。
自動バキュームデーモンが有効な場合、ANALYZEが自動的に実行されます。
詳細は「プランナ用の統計情報の更新」および「自動バキュームデーモン」を参照してください。
   

pg_dumpに関するいくつかの注意





pg_dumpで生成されるダンプスクリプトは自動的に上のガイドラインのいくつかを適用します（すべてではありません）。
pg_dumpダンプをできる限り高速にリストアするには、手作業で更に数作業が必要です。
（これらは作成時に適用するものではなく、ダンプを復元する時に適用するものです。
psqlを使用してテキスト形式のダンプをロードする時とpg_dumpのアーカイブファイルからpg_restoreを使用してロードする時にも同じことが適用できます。）
   


デフォルトでは、pg_dumpはCOPYを使用します。
スキーマとデータのダンプ全体を生成する場合、インデックスと外部キー制約を作成する前にデータをロードすることに注意してください。
ですので、この場合、ガイドラインのいくつかは自動的に行われます。
残された作業は以下のとおりです。
    
	

maintenance_work_memおよびmax_wal_sizeを適切な（つまり通常よりも大きな）値に設定します。
      

	

WALアーカイブ処理またはストリーミングレプリケーションを使用する場合は、リストア時にこれを無効にすることを検討してください。
このためにはダンプをロードする前にarchive_modeをoffに、wal_levelをminimalに、max_wal_sendersをゼロに設定してください。
その後それらを正しい値に戻し、新規にベースバックアップを取ってください。
      

	

pg_dumpとpg_restoreで、並列ダンプとリストア方式を実験して、利用する並列なジョブの最適な数を見つけて下さい。
-jオプションでダンプとリストアを並列に行なうのは逐次方式よりも大きく性能を向上させるでしょう。
      

	

ダンプ全体を単一トランザクションとしてリストアすべきかどうか検討してください。
このためにはpsqlまたはpg_restoreに-1または--single-transactionコマンドラインオプションを指定してください。
このモードを使用する場合、たとえ小さなエラーであっても、エラーがあればリストア全体がロールバックされます。
データ同士の関連性がどの程度あるかに依存しますが、手作業での整理の際には好まれるかと思います。さもなくばあまり勧めません。
単一トランザクションで実行し、WALアーカイブを無効にしている場合、COPYコマンドは最も高速に行われます。
      

	

データベースサーバで複数のCPUが利用できるのであれば、pg_restoreの--jobsオプションの利用を検討してください。
これによりデータのロードとインデックスの作成を同時に行うことができます。
      

	

この後でANALYZEを実行してください。
      




   


データのみのダンプもCOPYコマンドを使用しますが、インデックスの削除と再作成を行いません。
また、通常は外部キー制約を変更しません。

     [14]


したがって、データのみのダンプをロードする時、上の技法を使用したければ自らインデックスと外部キーを削除、再作成しなければなりません。
データをロードする時にmax_wal_sizeを増やすことも有用です。
しかし、maintenance_work_memを増やすことは考えないでください。
これは、後でインデックスと外部キーを手作業で再作成する時に行う方がよいでしょう。
また、実行した後でANALYZEを行うことを忘れないでください。
詳細は「プランナ用の統計情報の更新」および「自動バキュームデーモン」を参照してください。
   



[14] 

--disable-triggersオプションを使用して、外部キーを無効にさせることができます。
しかし、これは外部キー制約を遅らせるのではなく、除去することに注意してください。
そのため、これを使用すると不正なデータを挿入することができてしまいます。
      



永続性がない設定





永続性とは、サーバがクラッシュしたり電源が落ちたりしたとしても、コミットされたトランザクションが記録されていることを保証するデータベースの機能です。
しかし、永続性はデータベースに多くのオーバーヘッドを与えます。
このためこの保証を必要としないサイトでは、PostgreSQL™をかなり高速に実行するように設定することができます。
以下に、こうした状況で性能を向上させるために行うことができる設定変更を示します。
後述の注意を除き、データベースソフトウェアがクラッシュした場合でも、永続性は保証されています。
突然のオペレーティングシステムのクラッシュだけが、この設定を使用した時のデータ損失、破損の危険性を引き起こします。

    
	

データベースクラスタのデータディレクトリをメモリ上のファイルシステム（つまりRAMディスク）に設定します。
これはすべてのデータベースによるディスクI/Oを取り除きますが、データ量が利用可能なメモリ（およびスワップも使われるかもしれません）量までに制限されます。
      

	

fsyncを無効にします。
データをディスクにフラッシュする必要がありません。
      

	

synchronous_commitを無効にします。
コミット毎にディスクにWAL書き出しを強制する必要がありません。
この設定は、データベースがクラッシュした場合、トランザクション損失（データ破損ではありません）の危険性があります。
      

	

full_page_writesを無効にします。
部分的なページ書き出しから保護する必要がありません。
      

	

max_wal_sizeおよびcheckpoint_timeoutを増加させます。
これによりチェックポイントの頻度が減少しますが、/pg_walで必要とする容量が増加します。
      

	

WAL書き出しを回避するためには、テーブルがクラッシュに対して安全ではなくなりますが、ログを取らないテーブルを作成してください。
      




   

第15章 パラレルクエリ





PostgreSQL™は、クエリの応答をより速くするために、複数のCPUを活用するクエリプランを生成することができます。
この機能は、パラレルクエリとして知られています。
多くのクエリはパラレルクエリの恩恵にあずかることができません。
その理由は、現在の実装の制限によるもの、あるいは直列にクエリを実行するよりも速いと思われるクエリプランが存在しないため、のどちらかです。
しかし、パラレルクエリの恩恵にあずかることのできるクエリでは、パラレルクエリによる高速化は、しばしばかなりのものとなります。
多くのクエリではパラレルクエリを使用すると2倍以上速くなり、中には4倍かそれ以上に速くなるものもあります。
大量のデータにアクセスするが、返却する行が少ないクエリが典型的には最大の恩恵にあずかります。
この章では、パラレルクエリの利用を希望しているユーザが、そこから何が期待できるのかを理解できるようにするために、パラレルクエリの動作の詳細と、どのような状況でユーザがパラレルクエリを使用できるのか説明します。
  
パラレルクエリはどのように動くのか





あるクエリの最速の実行戦略がパラレルクエリであるとオプティマイザが決定すると、GatherまたはGather Mergeノードを含むクエリプランを作成します。
単純な例を示します。



EXPLAIN SELECT * FROM pgbench_accounts WHERE filler LIKE '%x%';
                                     QUERY PLAN
-------------------------------------------------------------------​------------------
 Gather  (cost=1000.00..217018.43 rows=1 width=97)
   Workers Planned: 2
   ->  Parallel Seq Scan on pgbench_accounts  (cost=0.00..216018.33 rows=1 width=97)
         Filter: (filler ~~ '%x%'::text)
(4 rows)


   


どの場合でも、GatherまたはGather Mergeノードは、正確に一つの子ノードを持ちます。
子プランは、プランの中で並列に実行される部分です。
GatherまたはGather Mergeノードがプランツリーの中で最上位にある場合は、クエリ全体が並列に実行されます。
GatherまたはGather Mergeノードがプランツリーの他の部分にある場合は、その部分だけが並列に実行されます。
上の例では、クエリはただ一つのテーブルにアクセスするので、Gatherノード自身以外では、たった一つのプランノードだけが存在します。
そのプランノードはGatherノードの子ノードなので、並列に実行されます。
   


EXPLAINを使って、プランナが選択したワーカーの数を見ることができます。
クエリの実行中にGatherノードに到達すると、ユーザのセッションに対応しているプロセスは、プランナが選択したワーカーと同じ数のバックグラウンドワーカープロセスを要求します。
プランナが使用を検討するバックグラウンドワーカーの数は、最大でもmax_parallel_workers_per_gatherに制限されます。
ある時点で存在できるバックグラウンドワーカーの数は、max_worker_processesとmax_parallel_workersの両方を満たすように制限されます。
ですから、あるパラレルクエリが、プラン時よりも少ない数のワーカープロセスによって実行されたり、まったくワーカープロセスなしに実行されることがあり得ます。
最適なプランは利用可能なワーカーの数に依存することもあるので、これは低い性能をもたらす結果になるかもしれません。
これがしばしば起こるようなら、max_worker_processesとmax_parallel_workersを増やしてより多くのワーカーが同時に実行できるようにするか、 max_parallel_workers_per_gatherを減らして、プランナがより少ない数のワーカーを要求するようにすることを考慮してください。
   


与えられたパラレルクエリから起動されたすべてのバックグラウンドワーカープロセスは、そのプランの一部を実行します。
リーダーはそうしたプランの部分を実行するだけでなく、追加の任務が与えられます。
つまり、ワーカーが生成したすべてのタプルを読み込まなければなりません。
プラン中のパラレル部分が少数のタプルしか生成しない場合は、リーダーは追加のワーカーとほぼ同じように振る舞い、クエリの実行を高速化します。
反対にプラン中のパラレル部分が大量のタプルを生成する場合は、リーダーはワーカーが生成したタプルの読み込みと、GatherノードあるいはGather Mergeより上位のプランノードが要求する追加の処理ステップに忙殺されるかもしれません。
そのような場合は、リーダーはプランの並列実行部分のごく一部しか処理しません。
   


プランの並列部分の最上位ノードがGatherではなくてGather Mergeなら、プランの並列部分を実行する各プロセスはタプルをソート順に生成し、リーダーはソート順を保存するマージを実行していることを意味します。
対照的に、Gatherは、ワーカーから都合の良い順でタプルを読み込むので、ソート順が存在しているとしても、それを壊してしまいます。
   


どのような時にパラレルクエリは使用できるのか？





どのような状況においても、プランナにパラレルクエリプランを生成させなくしてしまう設定があります。
とにかくパラレルクエリプランを生成させるためには、次に示すように設定しなければなりません。
  
	

max_parallel_workers_per_gatherは0より大きい値に設定しなければなりません。
max_parallel_workers_per_gatherで設定した数以上のワーカーは使用されないという一般原則に含まれる個別のケースです。
      





加えて、システムはシングルユーザモードで動いていてはいけません。
この場合はデータベースシステム全体が一つのプロセスとして動いているので、バックグラウンドワーカーが使えません。
  


一般にパラレルクエリプランが生成可能な場合でも、以下のうち一つでも真であると、プランナはクエリに対するパラレルクエリプランを生成しません。
  
	

クエリがデータを書き込むか、データベースの行をロックする場合。
クエリがデータ更新操作をトップレベルあるいはCTE内で含むと、そのクエリに対するパラレルプランは生成されません。
例外として、新しいテーブルを作成したりデータを追加したりする次のコマンドでは、そのクエリのSELECT部分に対してパラレルプランが使用できます。

        
	CREATE TABLE ... AS

	SELECT INTO

	CREATE MATERIALIZED VIEW

	REFRESH MATERIALIZED VIEW




      

	

クエリが実行中に一時停止する場合。
クエリの一部あるいは増分の実行が発生するとシステムが判断すると、パラレルプランは生成されません。
たとえば、DECLARE CURSORで作られるカーソルは、決してパラレルプランを使用しません。
同様に、FOR x IN query LOOP .. END LOOPのPL/pgSQLループは、決してパラレルプランを使用しません。
パラレルクエリが実行中に、ループの中のコードを実行しても安全かどうか、パラレルクエリシステムが判断できないからです。
      

	

クエリがPARALLEL UNSAFEとマーク付されている関数を使っています。
ほとんどのシステム定義の関数はPARALLEL SAFEです。
しかし、ユーザ定義関数はデフォルトでPARALLEL UNSAFEとマーク付されます。
「パラレル安全」の説明をご覧ください。
      

	

クエリが、すでにパラレル実行している別のクエリの内部で走っている場合。
たとえば、パラレルクエリから呼ばれている関数自身がSQLクエリを発行すると、そのクエリは決してパラレルプランを使用しません。
これは現在の実装の制限によるものですが、この制限を取り外すのは好ましくないかもしれません。
なぜなら、単一のクエリが非常に大きな数のプロセスを使用する結果となることがあり得るからです。
      





あるクエリに対してパラレルクエリプランが生成された場合でも、実行時にプランを並列に実行できないような状況があります。
この状況においては、まるでGatherノードが存在しなかったかのように、リーダーはGatherノード以下部分のプランのすべてを自分自身で実行します。
これは、以下の条件のどれかが当てはまると起こります。
  
	

バックグラウンドワーカー数の合計がmax_worker_processesを超えてはいけない、という制限によってバックグラウンドワーカーが得られない場合。
      

	

パラレルクエリ目的で起動されたバックグラウンドワーカー数の合計がmax_parallel_workersを超えてはいけない、という制限によってバックグラウンドワーカーが得られない場合。
      

	

クライアントが0ではないフェッチカウント付きのExecuteメッセージを送信した場合。
拡張問い合わせプロトコルの説明をご覧ください。
現在のlibpqにはそのようなメッセージを送る方法がないため、これはlibpqに依存しないクライアントを使った時にだけ起こります。
これが頻繁に起こるようなら、順次実行したときに最適ではないプランが生成されるのを防ぐために、それが起こりそうなセッションの中で、max_parallel_workers_per_gatherを0に設定すると良いかもしれません。
      




パラレルプラン





各々のワーカーは完了すべきプランのパラレル部分を実行するので、単に通常のクエリプランを適用し、複数のワーカーを使って実行することはできません。
それぞれのワーカーが結果セットの全体のコピーを生成するので、クエリは通常よりも決して速くなりませんし、不正な結果を生成してしまいます。
そうではなくて、プランのパラレル部分は、クエリオプティマイザの内部で部分プランとして知られているものでなくてはなりません。
すなわち、プランを実行する各プロセスが、要求される個々の出力行が、協調動作するプロセスの正確に１個だけによって生成されることが保証されているような方法で、出力行の一部だけを生成します。
一般に、これはクエリの処理対象のテーブルに対するスキャンは、パラレル対応のスキャンでなければならないことを意味します。
  
パラレルスキャン





今のところ、次に示すパラレル対応のテーブルスキャンがサポートされています。

  
	

パラレルシーケンシャルスキャンでは、テーブルのブロックは範囲に分割され、協調するプロセス間で共有されます。
各ワーカープロセスは、ブロックの追加範囲を要求する前に、与えられたブロックの範囲のスキャンを完了します。
      

	

パラレルビットマップヒープスキャンでは、一つのプロセスがリーダーに選ばれます。
そのプロセスは、一つ以上のインデックスをスキャンし、アクセスする必要のあるブロックを示すビットマップを作成します。
次にこれらのブロックは、パラレルシーケンシャルスキャン同様、協調するプロセスに割り当てられます。
つまり、ヒープスキャンは並列であるものの、対応するインデックススキャンは並列ではありません。
      

	

パラレルインデックススキャンあるいはパラレルインデックスオンリースキャンでは、協調するプロセスは、交代でインデックスからデータを読み込みます。
今のところ、パラレルインデックススキャンは、btreeインデックスのみでサポートされています。
個々のプロセスは単一のインデックスブロックを要求し、スキャンしてそのブロックから参照されているすべてのタプルを返却します。
他のプロセスは同時に他のインデックスからタプルを返却することができます。
並列btreeスキャンの結果は、ワーカー内におけるソート順の結果で返却されます。
      






btree以外のインデックススキャンのような他のスキャンタイプは、将来パラレルスキャンをサポートするかもしれません。
  

パラレルジョイン





非パラレルプランと同様、処理対象のテーブルは、1個以上の他のテーブルとネステッドループ、ハッシュ結合、マージ結合で結合することができます。
結合の内側は、パラレルワーカー中で実行しても安全だという条件下で、プランナがサポートするどのような非パラレルプランであっても構いません。
結合タイプによっては内側がパラレルプランであってもよいです。
  
	

ネステッドループ結合では、内側は常に非パラレルです。
外側タプルとこのようなインデックスで値を探すループは共同するプロセス間で分割されるので、全体で実行されても内側がインデックススキャンであるなら、これは効率的です。
      

	

マージ結合では、内側は常に非パラレルプランで、それゆえに全体で実行されます。
特にソート実行を要する場合、全ての共同プロセスで処理と結果データが重複するので、これは非効率的と考えられます。
      

	

（parallelが付かない）ハッシュ結合では、内側は全ての共同プロセスがハッシュテーブルの同じコピーを作ることで、全体で実行されます。
ハッシュテーブルが大きかったり、そのプランが高価である場合、これは非効率的と考えられます。
パラレルハッシュ結合では、内側は共有ハッシュテーブルの構築処理を共同プロセス間で分割するパラレルハッシュです。
      




パラレル集約





PostgreSQL™は、ふたつのステージで集約処理を行うことによってパラレル集約処理をサポートします。
まず、クエリのパラレル部分に参加している個々のプロセスが集約ステップを実行し、それぞれのプロセスが認識しているグループに対する部分的な結果を生成します。
これはPartial Aggregateノードとしてプラン中に反映されています。
次に、GatherまたはGather Mergeノードを通じて部分的な結果がリーダーに転送されます。
最後に、リーダーは、すべてのワーカーにまたがる結果を再集約して、最終的な結果を生成します。
これは、Finalize Aggregateノードとしてプラン中に反映されています。
  


Finalize Aggregateノードはリーダープロセスで実行されるので、入力行数の割には、比較的多数のグループを生成するクエリは、クエリプランナはあまり好ましくないものとして認識します。
たとえば最悪の場合、Finalize Aggregateノードが認識するグループ数は、Partial Aggregateですべてのワーカープロセスが認識する入力行数と同じだけの数になります。
こうした場合には、明らかにパラレル集約を利用する性能上の利点がないことになります。
クエリプランナはプラン処理中にこれを考慮するので、このシナリオでパラレル集約を採用することはまずありません。
  


どんな状況でもパラレル集約がサポートされているわけではありません。
個々の集約は並列処理安全で、結合関数(combine function)を持っていなければなりません。
その集約がinternal型の遷移状態を持っているならば、シリアライズ関数とデシリアライズ関数を持っていなければなりません。
更なる詳細はCREATE AGGREGATE(7)をご覧ください。
パラレル集約は、集約関数呼び出しがDISTINCTあるいはORDER BY句を含む場合、また 順序集合集約、あるいはクエリがGROUPING SETSを実行する場合にはサポートされません。
パラレル集約は、クエリの中で実行されるすべての結合が、プラン中の並列実行部分の一部であるときにのみ利用できます。
  

パラレルアペンド





PostgreSQL™が複数のソースから一つの結果セットへの行の連結を必要とするときはいつでも、AppendまたはMergeAppendプランノードが使われます。
これは一般にUNION ALLを実施するときや、パーティションテーブルをスキャンするときに発生します。
他のプランと同様にこのようなノードをパラレルプランで使うことができます。
しかしながら、パラレルプランではプランナは代わりにParallel Appendノードを使ってもよいです。
  


Appendノードがパラレルプランで使われるとき、各プロセスは子プランをそれらの出現順に実行します。そのため、全ての参加しているプロセスは共同して最初の子プランを完了するまで実行して、その後、一斉に次プランに移ります。
代わりにParallel Appendが使われるときには、エグゼキュータは逆に参加しているプロセスを各子プランにできるだけ均等に分散させます。そのため、複数の子プランは同時並行に実行されます。
これは競合を回避し、また、プランを実行することのないプロセスで子プランの開始コストが生じることも回避します。
  


また、パラレルプランの中で使われるときだけ部分的な子プランを持てる、通常のAppendノードと違い、Parallel Appendノードは部分的、非部分的のどちらの子プランも持つことができます。
複数回のスキャンは重複した結果をもたらすため、非部分的な子プランは単一プロセスのみからスキャンされます。
複数の結果セットの連結に関わるプランは、効率的なパラレルプランが不可能なときでも、それゆえ粗い並列性を実現できます。
例えば、パラレルスキャンをサポートしないインデックスを使うことでのみ効率的に実行できるパーティションテーブルに対する問い合わせを考えてください。
プランナは通常のIndex ScanプランのParallel Appendを選ぶことができます。
個々のインデックススキャンは単一プロセスで最後まで実行しなければなりませんが、別のスキャンは同時に別プロセスで実行することができます。
  


本機能を無効にするためにenable_parallel_appendを使用できます。
  

パラレルプランに関するヒント





パラレルプランを生成すると期待していたクエリがそうならない場合には、parallel_setup_costまたはparallel_tuple_costを減らしてみてください。
もちろん、このプランは結局のところ、プランナが選択した順次実行プランよりも遅いということもあり得ますが、いつもそうだとは限りません。
これらの設定値を非常に小さく（つまり両方とも0に）したにも関わらずパラレルプランを得られない場合、あなたのクエリのためにクエリプランナがパラレルプランを生成できない何か理由があるのかもしれません。
そうしたケースに該当しているかどうかを、「どのような時にパラレルクエリは使用できるのか？」と「パラレル安全」を参照して確認してください。
  


パラレルプランを実行する際には、EXPLAIN (ANALYZE, VERBOSE)を使って個々のプランノードに対するワーカーごとの状態を表示することができます。
これは、すべてのプランノードに均等に仕事が分散されているかどうかを確認すること、そしてもっと一般的には、プランの性能特性を理解するのに役に立つかもしれません。
  


パラレル安全





プランナは、クエリ中に実行される操作をパラレル安全（parallel safe）、パラレル制限（parallel restricted）、パラレル非安全（parallel unsafe）に分類します。
パラレル安全操作は、パラレルクエリとコンフリクトしない操作です。
パラレル制限操作は、パラレルクエリを利用中に、パラレルワーカー中では実行できないが、リーダーによって実行できる操作です。
したがって、パラレル制限操作は、GatherあるいはGather Mergeノードより下では決して実行されませんが、Gatherノードを含むプランの別の場所では実行されるかもしれません。
パラレル非安全操作は、パラレルクエリ利用中に、リーダーも含めて実行できない操作です。
クエリがパラレル非安全なものを含む場合は、クエリ中でのパラレルクエリの利用は全くできなくなります。
  


次の操作は常にパラレル制限です。
  
	

共通テーブル式（CTE）のスキャン
      

	

一時テーブルのスキャン
      

	

外部テーブルのスキャン。
外部データラッパーがIsForeignScanParallelSafeAPIを持ち、パラレル安全を返す場合を除く。
      

	

関連するSubPlanを参照するプランノード
      



関数と集約のためのパラレルラベル付け





プランナは、自動的にはユーザ定義関数や集約がパラレル安全か、パラレル制限か、あるいはパラレル非安全かを決定することはできません。
この関数が潜在的に実行する可能性のあるすべての操作を予測することが、このために要求されるからです。
一般的には、これは停止性問題と同等で、それ故に不可能です。
おそらく終了できると思われる単純な関数においてさえ、私達は試みません。なぜなら、そうした予測は高価でエラーを起こしやすいからです。
その代わりに、そうではないとマークされない限り、すべてのユーザ定義関数は、パラレル非安全と見なされます。
CREATE FUNCTION(7)あるいはALTER FUNCTION(7)を使用するときは、
適当なPARALLEL SAFE、PARALLEL RESTRICTED、PARALLEL UNSAFEを指定することによってマーキングを行うことができます。
CREATE AGGREGATE(7)を利用するときは、対応する値にしたがって、SAFE、RESTRICTED、UNSAFEのどれかをPARALLELオプションに指定します。
  


関数あるいは集約は、データベースに書き込むか、（エラー回復のためにサブトランザクションを使う場合以外で）トランザクションの状態を変更するか、シーケンスにアクセスするか、あるいは、恒久的な設定変更を行う場合、PARALLEL UNSAFEとマークされなければなりません。
同様に関数は、一時テーブル、クライアントの接続状態、カーソル、準備された文、システムがワーカーの間で同期できないその他のバックエンドローカルな状態にアクセスする場合、PARALLEL RESTRICTEDとマークされなければなりません。
たとえば、setseedとrandomは、最後の理由により、パラレル制限です。
  


一般的に制限あるいは非安全な関数が安全とラベル付されたり、実際には非安全なのに制限付きとラベル付されると、パラレルクエリの中で使用される際に、エラーを生じたり、間違った結果を生成するかもしれません。
誤ったラベル付をされると、C言語関数は理論的にはまったく未定義の振る舞いを示すことがあります。
システムは任意のCコードから身を守るすべがないからです。
しかしもっとも起こりえる可能性としては、他の関数のよりも悪いということはなさそうです。
もし自信がないなら、たぶんその関数をUNSAFEとラベル付するのが最善でしょう。
  


パラレルワーカーの中で実行される関数がリーダーが獲得していないロックを獲得する場合、たとえばクエリ中で参照されていないテーブルに対して問い合わせを実行する場合などは、これらのロックはトランザクションが終了した時点ではなく、ワーカーが終了する際に解放されます。
もしあなたがこれを行う関数を作成し、こうした振る舞いの違いがあなたにとって重要ならば、関数がリーダーの中だけで実行されることを保証するために、関数をPARALLEL RESTRICTEDとマーク付けしてください。
  


より良いプランを得るために、プランナがクエリの中で実行されるパラレル制限な関数や集約の評価の遅延を考慮することはないことに注意してください。
したがって、たとえばあるテーブルに適用されるWHERE句がパラレル制限であるときに、クエリプランナはプランの並列実行部分中のテーブルに対してスキャンを実行をすることを考慮しません。
ある場合においては、クエリ中のパラレル部分におけるテーブルのスキャンを含むようにして、WHERE句の評価を遅らせ、Gatherノード上で実行されるようにすることも可能でしょう（そしてその方が効率が良いことさえあります）。
しかし、プランナはそうしたことは行いません。
  


パート III. サーバの管理






ここでは、PostgreSQL™管理者にとって関心のあるトピックを扱います。
これには、インストール、サーバの設定、ユーザとデータベースの管理、および保守作業が含まれます。
PostgreSQL™サーバを個人的に使用している場合もそうですが、特に業務で使用している場合は、これらのトピックに精通している必要があります。
   


ここでの情報は、新規ユーザが読み進めるべき順番に並べられています。
各章は独立しており、必要に応じて個々の章を読むこともできます。
ここでの情報は項目単位で記述されています。
コマンドについて完全な説明を知りたい場合は、パートVI「リファレンス」を確認することをお勧めします。
   


最初の数章は、これからサーバを構築する新規ユーザにも読めるように、前提知識がなくても理解できるようになっています。
残りの部分では調整や管理について記されていますが、その資料は読者がPostgreSQL™データベースシステムの一般的な使用について理解していることを前提としています。
詳細な情報についてはパートI「チュートリアル」とパートII「SQL言語」を確認することをお勧めします。
   


第16章 バイナリからのインストール





PostgreSQL™は、現在ほとんどの一般的なオペレーティングシステム用にバイナリ形式で入手可能です。
バイナリが利用可能なら、そうしたシステムのユーザにとって、それがPostgreSQLをインストールするお勧めの方法です。
ソースコードからビルドするのは（17章ソースコードからインストール参照）、PostgreSQL™あるいは拡張を開発する人にのみお勧めします。
 


バイナリパッケージが提供されているプラットフォームの最新のリストを参照するには、https://www.postgresql.org/download/のPostgreSQL™ウェブサイトにあるダウンロードのセクションを開き、各プラットフォーム固有の手順にしたがってください。
 

第17章 ソースコードからインストール





この章では、PostgreSQL™のソースコード配布物を使用したインストール方法について説明します。
RPMやDebianパッケージなどパッケージ済みの配布物をインストールしている場合は、この章を無視し、代わりに16章バイナリからのインストールを参照してください。
 
必要条件





通常、最近のUnix互換プラットフォームならばPostgreSQL™を動作させることができるはずです。
リリース時点で明示的なテストを受けていたプラットフォームを以下の「サポートされるプラットフォーム」に示します。
  


PostgreSQL™を構築するには、以下のソフトウェアパッケージが必要です。

   
	
      


GNU makeのバージョン3.81以上が必要です。
他のmakeや古いGNU makeでは動作しません。
（GNU makeはときどきgmakeという名前でインストールされます。）
GNU makeのテストを行うためには以下を実行してください。


make --version


     

	
      


代替として、Mesonを使用してPostgreSQL™を構築できます。
これはPostgreSQL™をVisual Studio™を使用してWindowsで構築するための唯一のオプションです。
その他のプラットフォームでは、Mesonを使うことは現在実験的な機能です。
Mesonを使用することを選択した場合、GNU makeは必要ありませんが、以下の他の要件は引き続き適用されます。
     


Mesonの要求される最小のバージョンは0.54です。
     

	

ISO/ANSI Cコンパイラ（最低限C99-準拠）が必要です。
GCC™ の最近のバージョンをお勧めしますが、PostgreSQL™は異なるベンダの、様々なコンパイラを使用して構築できることで知られています。
     

	

配布物を展開するために、tarおよびgzipかbzip2のどちらかが必要です。
     

	
      
      
      
      


FlexとBisonが必要です。
他のlexやyaccプログラムは使用できません。
Bisonは少なくともバージョン2.3であることが必要です。
     

	
      


ビルドプロセスといくつかのテストスイートを実行するためには、Perl 5.14以降が必要です（この要件はPL/Perlをビルドするための要件とは別です。
以下を参照してください）。
     

	
      
      


GNU Readline™ライブラリは、デフォルトで使用されます。
これによりpsql（PostgreSQLコマンドラインSQLインタプリタ）は入力したコマンドの記憶、さらに、カーソルキーを使用した過去のコマンドの再実行や編集ができるようになります。
これは非常に役に立ちますので、強く推奨します。
使用したくない場合は、configureに--without-readlineオプションを指定する必要があります。
その代わりとして、BSDライセンスのlibeditライブラリを使用することもできます。
このライブラリはもともとNetBSD™で開発されていました。
libeditライブラリはGNUのReadline™と互換性があり、libreadlineを認識できなかった場合やconfigureのオプションに--with-libedit-preferredが使用された場合に使用されます。
パッケージベースのLinuxディストリビューションを使用し、そのディストリビューションの中でreadlineとreadline-develパッケージが別個に存在していた場合、両方とも必要ですので注意してください。
     

	
      


zlib™圧縮ライブラリはデフォルトで使用されます。
使用したくない場合は、configureに--without-zlibオプションを指定する必要があります。
このオプションを使用すると、pg_dumpおよびpg_restore内の圧縮アーカイブサポートが無効になります。
     

	

デフォルトではICUライブラリが使用されます。
使用したくない場合は、configureのオプションに--without-icuを指定する必要があります。
このオプションを使用すると、ICU照合機能（ 「照合順序サポート」 を参照）のサポートが無効になります。
     


ICUサポートを使用するには、ICU4C™パッケージがインストールされている必要があります。
ICU4C™の要求される最小のバージョンは現在4.2です。
     


デフォルトでは、必要なコンパイルオプションを見つけるためにpkg-config™が使用されます。
これはICU4C™バージョン4.6以降でサポートされています。
それより古いバージョンの場合やpkg-config™が使えない場合には、変数ICU_CFLAGSとICU_LIBSをconfigureに指定できます。
例を示します。


./configure ... ICU_CFLAGS='-I/some/where/include' ICU_LIBS='-L/some/where/lib -licui18n -licuuc -licudata'



（ICU4C™がコンパイラのデフォルトの検索パスにあるのなら、pkg-config™の使用を避けるため、例えばICU_CFLAGS=' 'のような空でない文字列を指定することも必要です。）
     




  


以下のパッケージはオプションです。
これらはデフォルトの設定では必要ありませんが、下記のように特定の構築オプションを有効とする場合に必要となります。

   
	

サーバプログラム言語であるPL/Perlを構築するには、libperlライブラリとヘッダファイルを含む完全なPerl™のインストレーションが必要です。
要求される最小のバージョンはPerl™ 5.14です。
PL/Perlは共有ライブラリですので、ほとんどのプラットフォームにおいてlibperlライブラリも共有ライブラリでなければなりません。
これは最近のバージョンのPerl™ではデフォルトのようですが、以前のバージョンではデフォルトではありませんでした。とにかく、これはPerlをサイトにインストールした人により決定されます。
PL/Perlを構築することを選択したのに共有のlibperlが見つからなければ、configureは失敗するでしょう。
その場合には、PL/Perlを構築できるようにするために手動でPerl™を再構築してインストールしなければならないでしょう。
Perl™の構成プロセスには共有ライブラリが必要です。
     


もし、PL/Perlを意図的に使用するつもりであるのなら、Perl™のインストレーションがusemultiplicityオプションを有効にして実施されているかを確認すべきです(perl -Vにより有効かどうかを確認できます)。
     

	

PL/Pythonサーバプログラム言語を構築するには、ヘッダファイルとsysconfigモジュールを含むPython™のインストレーションが必要です。
サポートされる最小のバージョンはPython™ 3.6.8です。
     


PL/Pythonは共有ライブラリになりますので、ほとんどのプラットフォームでは、libpythonもまた共有ライブラリである必要があります。
ソースから構築したPython™のインストレーションでは、これはデフォルトではありませんが、共有ライブラリは多くのオペレーティングシステムのディストリビューションで入手可能です。
PL/Pythonを構築することを選択したのに共有のlibpythonが見つからなければ、configureは失敗するでしょう。
それは、この共有ライブラリを提供するために追加のパッケージをインストールするか、Python™のインストレーション（の一部）を再構築しなければならないということを意味しているかもしれません。
ソースから構築する場合、--enable-sharedフラグを付けてPython™のconfigureを実行してください。
     

	

PL/Tcl手続き言語の構築には、もちろんTcl™のインストレーションが必要です。
要求される最小のバージョンはTcl™ 8.4です。
     

	

各国語サポート（NLS）、つまり、英語以外の言語によるプログラムメッセージの表示機能を有効にするには、Gettext APIの実装が必要です。
オペレーティングシステムの中には（例えば、Linux、NetBSD、Solarisなど）、組み込み済みのものがあります。
他のシステムでは、追加パッケージをhttps://www.gnu.org/software/gettext/からダウンロードできます。
GNU Cライブラリのgettextの実装を使用する場合、さらにいくつかのユーティリティプログラムのためにGNU Gettext™パッケージが必要となります。
他の実装の場合には必要ありません。
     

	

暗号化されたクライアント接続をサポートする場合にはOpenSSL™が必要です。
OpenSSL™は、/dev/urandomのないプラットフォーム（Windowsを除く）での乱数生成のためにも必要です。
要求される最小のバージョンは1.1.1です。
     


また、LibreSSL™はOpenSSL™互換層を使用してサポートされています。
要求される最小のバージョンは（OpenBSDバージョン7.0由来の）3.4です。
     

	

MIT Kerberos（GSSAPI用）、OpenLDAP™、および／またはPAMが、そのサービスを使用した認証をサポートする場合には必要です。
     

	

Curl™が、クライアントアプリケーション向けにOAuthデバイス認証フローを実装するオプションモジュールを構築するには必要です。
     

	

LZ4™が、その方式でのデータの圧縮をサポートする場合には必要です。
default_toast_compressionとwal_compressionを参照してください。
     

	

Zstandard™が、その方式でのデータの圧縮をサポートする場合には必要です。
wal_compressionを参照してください。
要求される最小のバージョンは1.4.0です。
     

	

PostgreSQL™のドキュメントを構築するために必要なセットは別途記載します。
「ツールセット」を参照してください。
     




  


GNUパッケージの入手が必要な場合、近くのGNUミラーサイトから探してください（ミラーサイトの一覧はhttps://www.gnu.org/prep/ftpにあります）。
または、ftp://ftp.gnu.org/gnu/から探してください。
  


ソースの入手





リリースされたバージョンのPostgreSQL™ソースコードは、Webサイトhttps://www.postgresql.org/ftp/source/のダウンロードページから入手できます。
興味のあるpostgresql-version.tar.gzまたはpostgresql-version.tar.bz2ファイルをダウンロードしてください。
ファイルを入手したら、展開します。


tar xf postgresql-version.tar.bz2



これにより、カレントディレクトリ以下にpostgresql-versionというディレクトリが作成され、PostgreSQL™のソースが展開されます。
この後のインストール手順を行うために、このディレクトリに移動してください。
  


あるいは、Gitバージョン管理システムを使うこともできます。
詳細は「Git™を使ってソースを入手する」を参照してください。
  

AutoconfとMakeによる構築とインストール



簡易版






./configure
make
su
make install
adduser postgres
mkdir -p /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data
su - postgres
/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -l logfile start
/usr/local/pgsql/bin/createdb test
/usr/local/pgsql/bin/psql test



この節の残りで詳細を説明します。
  

インストール手順



	設定


インストール手順の最初のステップは、システムに合わせてソースツリーを設定し、使用するオプションを選択することです。
configureスクリプトを実行することでこれを行います。
デフォルトのインストールを行う場合は、単に以下を入力してください。


./configure



このスクリプトは、各種のシステムに依存した変数の値を決定するために多くのテストを行い、使用中のオペレーティングシステムが持つどんなクセでも検出し、最終的に構築用ツリーに結果を記録するためのファイルをいくつか作成します。
   


構築用のディレクトリを別の場所にしたい場合は、ソースツリーの外のディレクトリでconfigureを実行することもできます。
この処理はVPATH構築と呼ばれます。
どのように行うかは下記を参照してください。


mkdir build_dir
cd build_dir

/path/to/source/tree/configure [オプションはここに]
make


   


デフォルトの構成では、サーバ、ユーティリティの他に、Cコンパイラだけを必要とするクライアントアプリケーションやインタフェースを構築します。
デフォルトでは、全てのファイルは/usr/local/pgsql以下にインストールされます。
   


configureにコマンドラインオプションを1つ以上指定することで、構築処理やインストール処理を変更できます。
よくあるのは、インストール位置や構築するオプションの機能の設定を変更することでしょう。
configureには数多くのオプションがあり、それは「configureオプション」に書かれています。
   


また、configureは、「configure環境変数」に書かれているように特定の環境変数に対応しています。
これは設定を変更する追加の方法を提供します。
   

	構築


構築作業を開始するには、以下のいずれかを入力してください。


make
make all



（GNU makeを使用することを忘れないでください。）
ハードウェアに依存しますが、構築作業には数分かかります。
   


もし、ドキュメント(HTMLやman)や追加モジュール(contrib)を含め、構築可能なものすべてを構築したい場合、次のように入力します。


make world


  


もし、追加モジュール(contrib)は含めるがドキュメントを含めずに、構築可能なものすべてを構築したい場合、次のように入力します。


make world-bin


   


手動で指定するのではなく、別のMakefileから構築をしたい場合には、例えば以下のようにMAKELEVELを削除するか、0に設定しなければなりません。


build-postgresql:
        $(MAKE) -C postgresql MAKELEVEL=0 all



上記に失敗すると、通常はヘッダファイルが見つからないという奇妙なエラーメッセージが出る場合があります。
   

	リグレッションテスト


インストールを行う前に、新しく構築したサーバをテストしたい場合、この時点でリグレッションテストを実行できます。
リグレッションテストとは、使用するマシンにおいてPostgreSQL™が、開発者の想定通りに動作することを検証するためのテストのまとまりです。
次のように入力します。


make check



（これは root では動作しません。
非特権ユーザとして実行してください。）
31章リグレッションテストにはテスト結果の解釈に関する詳しい情報があります。
同じコマンドを入力することで、後にいつでもテストを繰り返すことができます。
   

	ファイルのインストール
注記


もし既存のシステムのアップグレードをする場合、DBクラスタのアップグレードの解説が記載されている「PostgreSQL™クラスタのアップグレード処理」を参照してください。
    



PostgreSQL™をインストールするには、以下を入力してください。


make install



これは、ファイルをステップ 1で指定されたディレクトリにインストールします。
その領域に書き込むための権限を持っていることを確認してください。
通常はこのステップをrootで行う必要があります。
代わりに対象とするディレクトリを前もって作成し、適切に権限を調整することも可能です。
   


ドキュメント（HTMLやman）をインストールするには、以下を入力してください。


make install-docs


   


上記のようにすべてを（worldを付けて）構築していた場合には、代わりに以下を入力してください。


make install-world



これによりドキュメントもインストールされます。
   


上記のようにドキュメントを除くすべてを構築していた場合には、代わりに以下を入力してください。


make install-world-bin


   


make installの代わりにmake install-stripを使用することで、インストール時に実行可能ファイルやライブラリをストリップ（strip）できます。
これにより、多少の容量を節約できます。
デバッグをサポートするように構築している場合でも、ストリップするとデバッグのサポートは実質、除去されてしまいます。
したがって、これはデバッグが必要なくなった場合にのみ実行すべきです。
install-stripは容量を節約するために適切な作業を行おうとしますが、実行可能ファイルから全ての不必要なバイトを完全にストリップすることはできません。
可能な限りのディスク容量をすべて節約したい場合は、手動で作業を行う必要があります。
   


この標準的なインストール方法では、クライアントアプリケーションの開発に必要なヘッダファイルと、Cで独自の関数やデータ型を作成するといったサーバ側のプログラムの開発用のヘッダファイルが用意されます。
   
クライアント側のみのインストール: 

クライアントアプリケーションとインタフェースライブラリのみをインストールしたい場合、下記のコマンドを使います。


make -C src/bin install
make -C src/include install
make -C src/interfaces install
make -C doc install



src/binにはサーバ用の数個のバイナリがあります。これらは小さなものです。
    



アンインストール: 

インストールを取り消すには、make uninstall コマンドを使います。
しかし、作成済みのディレクトリは削除されません。
   
クリーニング: 

インストールが終わったら、make clean コマンドを使ってソースツリーから構築用のファイルを削除し、ディスク領域を解放できます。
configureプログラムが作るファイルは保持されますので、後でmakeコマンドですべてを再構築できます。
ソースツリーを配布された時の状態に戻したい場合は、make distcleanコマンドを使います。
同じソースツリー内で複数のプラットフォーム向けに構築する場合、これを実行して、それぞれのプラットフォームに対し再構成しなければなりません。
（または、未変更のソースツリーを維持するために、各プラットフォームで別々の構築用ツリーを使用してください。）
   


構築作業を行った後でconfigure用オプションが間違っていることに気付いた場合や、configureの調査結果に何らかの変更を加えた場合（例えば、ソフトウェアのアップグレードなど）、再設定と再構築の前にmake distcleanを行うことをお勧めします。
さもないと、設定選択肢の変更は、必要なところ全てには反映されない可能性があります。
  

configureオプション





configureのコマンドラインオプションを以下で説明します。
この一覧は完全なものではありません（完全なものを得るには./configure --helpを使ってください）。
ここで取り上げていないオプションはクロスコンパイルのような高度なユースケースのためのもので、標準のAutoconfのドキュメントに書かれています。
   
インストレーションの位置





このオプションはmake installがファイルをどこに置くかを制御します。
たいていの場合--prefixオプションで十分です。
特別な必要があるのであれば、この節に書かれた他のオプションを使用して個々のインストレーションサブディレクトリを変更できます。
しかし、異なるサブディレクトリの相対的な位置を変更した場合、インストレーションは再配置不能になります。つまり、インストールの後にディレクトリを移動できないことに注意してください。
（manとdocの場所はこの制限の影響を受けません。）
再配置可能インストールのために、後述の--disable-rpathを使用しようと考えるかもしれません。
     
	--prefix=PREFIX
	

/usr/local/pgsqlではなく、PREFIXディレクトリ以下に全てのファイルをインストールします。
ファイルは実際には様々なサブディレクトリにインストールされ、PREFIXディレクトリの直下にインストールされるファイルはありません。
        

	--exec-prefix=EXEC-PREFIX
	

アーキテクチャ依存のファイルをPREFIXの設定とは別の接頭辞EXEC-PREFIX以下にインストールすることができます。
ホスト間でアーキテクチャ非依存のファイルを共有する場合に便利です。
省略した場合、EXEC-PREFIXはPREFIXと同じに設定され、アーキテクチャに依存するファイルも非依存なファイルも同じツリー以下にインストールされます。
ほとんどの場合、これが望まれています。
        

	--bindir=DIRECTORY
	

実行可能プログラム用のディレクトリを指定します。
デフォルトではEXEC-PREFIX/binであり、通常/usr/local/pgsql/binとなります。
        

	--sysconfdir=DIRECTORY
	

各種設定ファイル用のディレクトリを設定します。
デフォルトではPREFIX/etcです。
        

	--libdir=DIRECTORY
	

ライブラリや動的ロード可能モジュールをインストールする場所を設定します。
デフォルトはEXEC-PREFIX/libです。
        

	--includedir=DIRECTORY
	

CおよびC++のヘッダファイルをインストールするディレクトリを設定します。
デフォルトはPREFIX/includeです。
        

	--datarootdir=DIRECTORY
	

いろいろな種類の読み取り専用データファイル用のルートディレクトリを設定します。
これは後述のオプションの一部についてのデフォルトを設定するだけです。
デフォルトはPREFIX/shareです。
        

	--datadir=DIRECTORY
	

インストールプログラムが使用する読み取り専用のディレクトリを設定します。
デフォルトはDATAROOTDIRです。
これはインストールするデータベースファイルがどこに設置されるかとは関係ないことを覚えておいてください。
        

	--localedir=DIRECTORY
	

特にメッセージ翻訳カタログファイルのロケールデータをインストールするディレクトリを設定します。
デフォルトはDATAROOTDIR/localeです。
        

	--mandir=DIRECTORY
	

PostgreSQL™付属のマニュアルページがこのディレクトリ以下の、対応するmanxサブディレクトリにインストールされます。
デフォルトはDATAROOTDIR/manです。
        

	--docdir=DIRECTORY
	

「man」ページを除いた、ドキュメント一式ファイルをインストールするルートディレクトリを設定します。
これは以下のオプションのデフォルトのみを設定します。
このオプションのデフォルト値はDATAROOTDIR/doc/postgresqlです。
        

	--htmldir=DIRECTORY
	

PostgreSQL™のHTML形式のドキュメント一式はこのディレクトリの下にインストールされます。
デフォルトはDATAROOTDIRです。
        



注記


（/usr/local/includeといった）共用のインストール場所に、システムの他の名前空間に影響を与えることなくPostgreSQL™をインストールできるような配慮がなされています。
まず、完全に展開したディレクトリ名に「postgres」か「pgsql」という文字列が含まれていない場合、「/postgresql」という文字列が自動的にdatadir、sysconfdir、docdirに追加されます。
例えば、接頭辞として/usr/localを使用する場合、ドキュメントは/usr/local/doc/postgresqlにインストールされますが、接頭辞が/opt/postgresの場合は/opt/postgres/docにインストールされます。
クライアントインタフェース用の外部向けCヘッダファイルはincludedirにインストールされ、名前空間の問題はありません。
内部向けヘッダファイルやサーバ用ヘッダファイルは、includedir以下の非公開ディレクトリにインストールされます。
各インタフェース用のヘッダファイルにアクセスする方法についての情報は、そのインタフェースのドキュメントを参照してください。
最後に、適切であれば、動的ロード可能モジュール用にlibdir以下にも非公開用のサブディレクトリが作成されます。
      


PostgreSQL™の機能





この節に書かれたオプションは、デフォルトでは構築されないPostgreSQL™の様々な機能を構築できるようにするものです。
これらのほとんどは、「必要条件」で説明されているように、追加のソフトウェアが必要なためにデフォルトではないものです。
    
	--enable-nls[=LANGUAGES]
	

各国語サポート（NLS）、つまり、英語以外の言語によるプログラムメッセージの表示機能を有効にします。
LANGUAGESはオプションであり、サポートさせたい言語コードを空白で区切ったリストを指定します。例えば、--enable-nls='de fr'などとします。
（指定したリストと実際に用意された翻訳との論理積が自動的に計算されます。）
リストに何も指定しなかった場合、利用可能な翻訳すべてがインストールされます。
        


このオプションを使用するためには、gettext APIの実装が必要です。
        

	--with-perl
	

PL/Perlサーバサイド言語を構築します。
        

	--with-python
	

PL/Pythonサーバサイド言語を構築します。
        

	--with-tcl
	

PL/Tclサーバサイド言語を構築します。
        

	--with-tclconfig=DIRECTORY
	

Tclは、Tclへのインタフェースモジュールを構築するために必要な設定情報を含むtclConfig.shファイルをインストールします。
このファイルは通常、自動的に一般的に知られている場所にありますが、もしTclの別のバージョンを使いたい場合は、tclConfig.shを検索対象のディレクトリを指定することができます。
        

	--with-llvm
	

LLVM™に基づいたJITコンパイル（30章実行時コンパイル(JIT)を参照）のサポートを有効にして構築します。
これには、LLVM™ライブラリがインストールされている必要があります。
LLVM™の要求される最小のバージョンは現在14です。
        


要求されるコンパイルオプションを見つけるためにllvm-configが使われます。
llvm-configはPATHから検索されます。
それで正しいバイナリが見つからなければ、正しいllvm-configへのパスを指定するためにLLVM_CONFIGを使ってください。
例えば、以下のとおりです。


./configure ... --with-llvm LLVM_CONFIG='/path/to/llvm/bin/llvm-config'


        


LLVM™サポートはclang互換のコンパイラ（必要なら環境変数CLANGで指定してください）と動作するC++コンパイラ（必要なら環境変数CXXで指定してください）を要求します。
        

	--with-lz4
	

LZ4™圧縮サポートを有効にして構築します。
        

	--with-zstd
	

Zstandard™圧縮サポートを有効にして構築します。
        

	--with-ssl=LIBRARY
       
       
	

SSL（暗号化）接続のサポートを有効にして構築します。
サポートされている唯一のLIBRARYはopensslで、これはOpenSSL™とLibreSSL™の両方に使用されます。
これには、OpenSSL™パッケージがインストールされている必要があります。
configureは、処理を進める前にOpenSSL™のインストールを確認するために、必要なヘッダファイルとライブラリを検査します。
        

	--with-openssl
	

--with-ssl=opensslに相当する古いものです。
        

	--with-gssapi
	

GSSAPI認証のサポートを構築します。
GSSAPIを使用するには、MIT Kerberosがインストールされている必要があります。
多くのシステムでは、GSSAPIシステム（通常MIT Kerberosインストレーションの一部）はデフォルトの検索場所（例えば/usr/includeや/usr/lib）にインストールされていません。
そのため、--with-includesと--with-librariesオプションをさらに追加して使わなければいけません。
configureは、処理を進める前にGSSAPIが正しくインストールされていることを確認するために、必要とされるヘッダファイルとライブラリを検査します。
        

	--with-ldap
	

認証および接続パラメータ検索用のLDAPサポートを有効にして構築します。
（詳細は「接続パラメータのLDAP検索」および「LDAP認証」を参照してください。）
Unixでは、OpenLDAP™パッケージがインストールされている必要があります。
WindowsではデフォルトのWinLDAP™ライブラリが使用されます。
configureは、処理を進める前にOpenLDAP™のインストールが十分されているかどうかを確認するために、必要なヘッダファイルとライブラリを検査します。
        

	--with-pam
	

PAM（プラガブル認証モジュール）のサポートを有効にして構築します。
        

	--with-bsd-auth
	

BSD認証のサポートを有効にして構築します。
（BSD認証フレームワークは今のところOpenBSDだけで利用可能です。）
        

	--with-systemd
	

systemdサービス通知のサポートを有効にして構築します。
サーババイナリがsystemdの元で開始する場合には、これは統合を改善しますが、それ以外は影響はありません。詳細は「データベースサーバの起動」を参照してください。
このオプションを使えるようにするには、libsystemdと関連するヘッダファイルがインストールされている必要があります。
        

	--with-bonjour
	

Bonjour自動サービス検出のサポートを有効にして構築します。
これには、オペレーティングシステムがBonjourをサポートしていることが必要です。
macOSで推奨します。
        

	--with-uuid=LIBRARY
	

指定されたUUIDライブラリを使用して(UUIDを生成する関数を提供する)uuid-osspモジュールをビルドします。
LIBRARYは以下のいずれかでなければなりません。
        
	

bsdはFreeBSD、その他のBSD派生システムにあるUUID関数を使います。
          

	

e2fsはe2fsprogsプロジェクトで作られたUUIDライブラリを使います。
このライブラリはたいていのLinuxシステムとmacOSにあり、また、その他のプラットフォームでも入手可能です。
          

	

osspはOSSP UUIDライブラリを使用します。
          




	--with-ossp-uuid
	

--with-uuid=osspに相当する古いものです。
        

	--with-libcurl
	

OAuth 2.0クライアントフロー用にlibcurlサポートを有効にして構築します。
この機能にはlibcurlバージョン7.61.0以降が必要です。
この設定で構築すると、必要なヘッダファイルとライブラリがチェックされ、curl™のインストールが十分であるかどうかが確認されてから処理が続行されます。
        

	--with-libnuma
	

基本NUMAサポート用にlibnumaサポートを有効にして構築します。
libnuma™ライブラリが実装されているプラットフォームでのみサポートされます。
        

	--with-liburing
	

liburingを使用して構築し、非同期I/O用にio_uringサポートを有効にします。
        


必要なコンパイラとリンカオプションを検出するために、PostgreSQLはpkg-configに問い合わせます。
        


通常以外の場所にインストールしたliburingインストレーションを使用するためには、pkg-config関連の環境変数を設定します（そのドキュメントを参照してください）。
        

	--with-libxml
	

libxml2を使用して構築し、SQL/XMLサポートを有効にします。
この機能のためにはlibxml2バージョン2.6.23以降が必要です。
        


pkg-configがインストールされていて、かつそれがlibxml2について知っているようであれば、必要なコンパイラオプション、リンカオプションを検出するために、PostgreSQLはpkg-configに問い合わせます。
そうでなければ、libxml2がインストールするプログラムxml2-configを見つけられれば使用します。
複数アーキテクチャのインストレーションをよりうまく扱えますので、pkg-configを使用する方が好ましいです。
        


通常以外の場所にインストールしたlibxml2インストレーションを使用するためには、pkg-config関連の環境変数を設定するか（そのドキュメントを参照してください）、環境変数XML2_CONFIGがそのインストレーション用のxml2-configプログラムを指し示すように設定するか、変数XML2_CFLAGSとXML2_LIBSを設定します。
（pkg-configがインストールされていて、libxml2がどこにあるかについてのその認識を覆したいのであれば、XML2_CONFIGを、もしくはXML2_CFLAGSとXML2_LIBSの両方を空でない文字列に設定しなければなりません。）
        

	--with-libxslt
	

XMLのXSL変換を行うためにxml2モジュールを有効にしてlibxsltを構築します。
--with-libxmlも指定しなければなりません。
        

	--with-selinux
	

SElinuxサポート付きで構築します。
sepgsql 拡張を有効にします。
        




機能の無効化





この節に書かれたオプションは、デフォルトでは構築されますが、必要なソフトウェアやシステムの機能が利用可能でない場合にオフにする必要があるPostgreSQL™の特定の機能を無効にします。
本当に必要でない限りは、ここのオプションの使用は勧められません。
    
	--without-icu
	

ICU™ライブラリをサポートしない構築を行い、ICU照合機能の使用を無効にします（「照合順序サポート」を参照）。
        

	--without-readline
	

Readlineライブラリ（およびlibedit）の使用を防止します。
このオプションはpsqlでのコマンドライン編集および履歴を無効にします。
        

	--with-libedit-preferred
	

GPLライセンスのReadlineではなくBSDライセンスのlibeditライブラリを優先して使用します。
このオプションは両方のライブラリがインストールされている場合にのみ重要です。その場合デフォルトでReadlineが使用されます。
        

	--without-zlib
	
         

Zlibライブラリの使用を抑制します。
これは、pg_dumpとpg_restoreにおける圧縮アーカイブのサポートを無効にします。
        




構築プロセスの詳細



	--with-includes=DIRECTORIES
	

DIRECTORIESには、コンパイラがヘッダファイルを検索するディレクトリのリストをコロンで区切って指定します。
（GNU Readlineなどの）オプションのパッケージが非標準的な場所にインストールされている場合、このオプションと、おそらく対応する--with-librariesオプションを使用する必要があります。
        


         例： --with-includes=/opt/gnu/include:/usr/sup/include
        

	--with-libraries=DIRECTORIES
	

DIRECTORIESには、ライブラリを検索するディレクトリのリストをコロンで区切って指定します。
パッケージが非標準的な場所にインストールされている場合は、おそらくこのオプション（と対応する--with-includesオプション）を使用する必要があります。
        


         例： --with-libraries=/opt/gnu/lib:/usr/sup/lib
        

	--with-system-tzdata=DIRECTORY
       
       
       
	

PostgreSQL™は、日付時刻に関する操作で必要な、独自の時間帯データベースを持ちます。
実際のところ、この時間帯データベースはFreeBSD、Linux、Solarisなどの多くのオペレーティングシステムで提供されるIANA時間帯データベースと互換性があります。
このため、これを再びインストールすることは冗長です。
このオプションが使用されると、DIRECTORYにあるシステムが提供する時間帯データベースがPostgreSQLソース配布物に含まれるものの代わりに使用されます。
DIRECTORYは絶対パスで指定しなければなりません。
/usr/share/zoneinfoがオペレーティングシステムの一部でよく使われます。
インストール処理が時間帯データの不一致、またはエラーがあることを検知しないことに注意してください。
このオプションを使用する場合、指定した時間帯データがPostgreSQL™で正しく動作するかどうかを検証するためにリグレッションテストを実行することが推奨されています。
        


このオプションは、対象オペレーティングシステムを熟知しているパッケージ配布者を主な対象としたもの。
このオプションを使用する大きな利点は、多くの局所的な夏時間規則の変更があってもPostgreSQLパッケージを更新する必要がないことです。
他の利点として、時間帯データベースファイルをインストール時に構築する必要がありませんので、PostgreSQLのクロスコンパイルをより簡単に行うことができます。
        

	--with-extra-version=STRING
	

PostgreSQLバージョン番号にSTRINGを追加します。
これは、例えば、リリースされていないGitスナップショットからビルドしたバイナリや、git describe識別子やディストリビューションパッケージリリース番号のような追加のバージョン文字列のあるカスタムパッチを含むバイナリに印をつけるために使えます。
        

	--disable-rpath
	

PostgreSQL™の実行ファイルがインストレーションのライブラリディレクトリ（--libdirを参照してください）にある共有ライブラリを探すよう指示する印を付けません。
ほとんどのプラットフォームでは、この印付けはライブラリディレクトリへの絶対パスを利用しますので、後でインストレーションを再配置したときには役に立たないでしょう。
ですので、実行ファイルが共有ライブラリを見つける他の方法を提供する必要があるでしょう。
通常は、オペレーティングシステムの動的リンカがライブラリディレクトリを探すよう設定することが必要です。詳細は「共有ライブラリ」を参照してください。
        




その他





デフォルトのポート番号を--with-pgportで調整することは、特にテスト構築のためには、かなり良くあることです。
この節の他のオプションは上級ユーザにのみ勧められます。
    
	--with-pgport=NUMBER
	

サーバとクライアントのデフォルトのポート番号をNUMBERに設定します。
デフォルトは5432です。
このポートは後でいつでも変更できますが、ここで指定した場合、サーバとクライアントはコンパイル時に同じデフォルト値を持つようになります。
これは非常に便利です。
通常、デフォルト以外の値を選択すべき唯一の理由は、同じマシンで複数のPostgreSQL™を稼働させることです。
        

	--with-krb-srvnam=NAME
	

GSSAPIで使用されるKerberosのサービスプリンシパルのデフォルトの名前です。
デフォルトではpostgresです。
これを変える理由はWindows環境のために構築しているのでない限り、特にありません。
Windows環境のために構築している場合は大文字のPOSTGRESに設定する必要があります。
        

	--with-segsize=SEGSIZE
	

セグメントサイズをギガバイト単位で指定します。
大規模なテーブルはこのセグメントサイズと同じサイズの複数のオペレーティングシステムのファイルに分割されます。
これにより多くのプラットフォームで存在するファイルサイズ上限に関する問題を防ぎます。
デフォルトのセグメントサイズは1ギガバイトで、サポートされるすべてのプラットフォームで安全です。
使用するオペレーティングシステムが「ラージファイル」をサポートしていれば（最近はほとんどサポートしています）、より大きなセグメントサイズを使用できます。
非常に大規模なテーブルで作業する時のファイル記述子の消費数を減らすために、これが役に立つでしょう。
しかし、プラットフォーム、または使用予定のファイルシステムでサポートされる値以上に大きな値を指定しないように注意してください。
tarなどの、使用したいその他のツールにも使用できるファイルサイズに制限があることがあります。
絶対に必要ではありませんが、この値を2のべき乗にすることを勧めます。
この値を変更するとディスク上でのデータベースの互換性を壊すことに注意してください。すなわち、pg_upgradeを使ってセグメントサイズの異なるビルドにはアップグレードできません。
        

	--with-blocksize=BLOCKSIZE
	

キロバイト単位でブロック容量を設定します。
これはテーブル内でのストレージとI/Oの単位です。
8キロバイトのデフォルトはほとんどの場合適切ですが、特別な場合は他の値が役立ちます。
値は1から32（キロバイト）の範囲の2のべき乗でなければなりません。
この値を変更するとディスク上でのデータベースの互換性を壊すことに注意してください。すなわち、pg_upgradeを使ってブロック容量の異なるビルドにはアップグレードできません。
        

	--with-wal-blocksize=BLOCKSIZE
	

キロバイト単位でWALブロック容量を設定します。
これはWALログ内でのストレージとI/Oの単位です。
8キロバイトのデフォルトはほとんどの場合適切ですが、特別な場合は大きめの値が役立ちます。
値は1から64（キロバイト）の範囲の2のべき乗でなければなりません。
この値を変更するとディスク上でのデータベースの互換性を壊すことに注意してください。すなわち、pg_upgradeを使ってWALブロック容量の異なるビルドにはアップグレードできません。
        




開発者向けオプション





この節のオプションのほとんどは、PostgreSQL™を開発したりデバッグしたりするために重要なものです。
--enable-debugを除いて、実運用での構築には勧められません。--enable-debugはバグに出くわすという不幸な出来事の時に詳細なバグレポートが得られるので有用かもしれません。
DTraceをサポートするプラットフォームでは、--enable-dtraceを実運用で使うことも適当かもしれません。
    


サーバ内でコードの開発に使われるインストレーションを構築する場合には、少なくともオプション--enable-debugと--enable-cassertを使うことをお勧めします。
    
	--enable-debug
	

すべてのプログラムとライブラリをデバッグシンボル付きでコンパイルします。
これは、問題を解析するためにデバッガ内でプログラムを実行できることを意味します。
これはインストールする実行形式ファイルのサイズをかなり大きくし、また、GCC以外のコンパイラでは、通常はコンパイラによる最適化が行われなくなりますので、低速になります。
しかし、デバッグシンボルが利用できるということは、発生した問題に対応する時に非常に便利です。
現在のところ、GCC を使用している場合にのみ、稼働用のインストレーションにこのオプションを使用することを推奨します。
しかし、開発作業時やベータ版を実行する時は、常にこれを有効にすべきです。
        

	--enable-cassert
	

サーバにおける、多くの「あり得ない」状態をテストするアサーションチェックを有効にします。
これは、プログラムの開発のためには測り知れない価値がありますが、このテストによりサーバはかなり低速になります。
また、このテストを有効にしても、サーバの安定性が向上するとは限りません！
アサーションチェックは、重要度によって分類されていませんので、比較的害がないようなバグでも、アサーション失敗をトリガとした、サーバの再起動が行われてしまいます。
稼働用にこのオプションを使用することは推奨されませんが、開発作業時やベータ版を実行する場合は、これを有効にすべきです。
        

	--enable-tap-tests
	

Perl TAPツールを使ったテストを有効にします。
これにはPerlのインストールとPerlモジュールIPC::Runが必要です。
詳細は「TAPテスト」を参照してください。
        

	--enable-depend
	

自動依存関係追跡を有効にします。
このオプションを使用すると、ヘッダファイルが変更された場合に、影響を受ける全てのオブジェクトファイルが再構築されるように、makefile が設定されます。
これは開発作業時には有用ですが、単に一度コンパイルしインストールするだけであれば、これは無駄なオーバーヘッドです。
現在のところ、GCC でのみ、このオプションは動作します。
        

	--enable-coverage
	

GCCを使用している場合、すべてのプログラムとライブラリはコードカバレッジテスト機構付きでコンパイルされます。
実行すると、これらは構築用ディレクトリ内にコードカバレッジメトリックを持ったファイルを生成します。
詳細は「テストが網羅する範囲の検証」を参照してください。
このオプションはGCC専用であり、また、開発作業中に使用するためのものです。
        

	--enable-profiling
	

GCCを使用する場合、すべてのプログラムとライブラリがプロファイリング可能状態でコンパイルされます。
バックエンドの終了時、プロファイリングに使用するgmon.outファイルを含むサブディレクトリが作成されます。
このオプションはGCCを使用する場合のみ使用でき、開発作業を行う時に使用します。
        

	--enable-dtrace
	
         

動的追跡ツールDTraceのサポートを有効にしてPostgreSQL™をコンパイルします。
より詳細な情報は「動的追跡」を参照してください。
        


dtraceプログラムを指し示すためにDTRACE環境変数を設定できます。
dtraceは通常、PATH内に存在しない可能性がある/usr/sbin以下にインストールされていますので、この設定はよく必要になります。
        


さらにdtraceプログラム用のコマンドラインオプションをDTRACEFLAGS環境変数で指定できます。
Solarisで64ビットバイナリでDTraceをサポートするには、DTRACEFLAGS="-64"を指定してください。
例えばGCCコンパイラを使用する場合は以下のようにします。


./configure CC='gcc -m64' --enable-dtrace DTRACEFLAGS='-64' ...



Sunのコンパイラを使用する場合は以下のようにします。


./configure CC='/opt/SUNWspro/bin/cc -xtarget=native64' --enable-dtrace DTRACEFLAGS='-64' ...


        

	--enable-injection-points
	

PostgreSQL™をサーバ内のインジェクションポイントをサポートするようにコンパイルします。
インジェクションポイントによって、サーバ内の事前定義されたコードパスでユーザ定義コードを実行することができます。
これは、テストや制御された方法での同時実行シナリオの調査に役立ちます。
このオプションはデフォルトでは無効になっています。
詳細については「インジェクションポイント」を参照してください。
このオプションは開発者によるテストのみを目的としています。
        

	--with-segsize-blocks=SEGSIZE_BLOCKS
	

リレーションのセグメントサイズをブロック単位で指定します。
--with-segsizeとこのオプションの両方が指定されている場合、このオプションが優先されます。
このオプションは、セグメント関連のコードをテストする開発者向けです。
        





configure環境変数





上記の通常のコマンドラインオプションに加えて、configureは数多くの環境変数に対応します。
次のようにして、configureコマンドラインに環境変数を指定できます。


./configure CC=/opt/bin/gcc CFLAGS='-O2 -pipe'



この使い方では、環境変数はコマンドラインオプションとは少し異なります。
あらかじめそのような変数を設定しておくこともできます。


export CC=/opt/bin/gcc
export CFLAGS='-O2 -pipe'
./configure



多くのプログラムの設定スクリプトは似たようにこの変数に対応しますので、この使い方は便利でしょう。
    


これらの環境変数の中で最も一般的に使用されているのは、CCとCFLAGSです。
configureが選ぶものと違うCコンパイラを使いたいという場合には、CC 環境変数をその使用したいプログラムに設定できます。
デフォルトでは、configureは利用できるのであればgccを、利用できなければプラットフォームのデフォルト（通常cc）を選択します。
同様に、デフォルトのコンパイラフラグは必要に応じてCFLAGS変数で上書きすることもできます。
    


以下は、この方式で設定可能な重要な環境変数の一覧です。

     
	BISON
	

Bisonプログラム。
        

	CC
	

Cコンパイラ。
        

	CFLAGS
	

Cコンパイラに渡すオプション。
        

	CLANG
	

--with-llvmでコンパイルされた場合、ソースコードのインライン展開を処理するために使われるclangプログラムへのパス。
        

	CPP
	

Cプリプロセッサ。
        

	CPPFLAGS
	

Cプリプロセッサに渡すオプション。
        

	CXX
	

C++コンパイラ。
        

	CXXFLAGS
	

C++コンパイラに渡すオプション。
        

	DTRACE
	

dtraceプログラムの場所。
        

	DTRACEFLAGS
	

dtraceプログラムに渡すオプション。
        

	FLEX
	

Flexプログラム。
        

	LDFLAGS
	

実行ファイルや共有ライブラリにリンクする場合に使用するオプション。
        

	LDFLAGS_EX
	

実行ファイルのリンク時のみに追加されるオプション。
        

	LDFLAGS_SL
	

共有ライブラリのリンク時のみに追加されるオプション。
        

	LLVM_CONFIG
	

LLVM™インストレーションの場所を特定するために使用するllvm-configプログラム。
        

	MSGFMT
	

各国語サポート（NLS）用のmsgfmtプログラム。
        

	PERL
	

Perlインタプリタプログラム。
これは、PL/Perl構築に関する依存性を決定するために使用されます。
デフォルトはperlです。
        

	PYTHON
	

Pythonインタプリタプログラム。
これは、PL/Python構築に関する依存性を決定するために使用されます。
設定されていなければ、python3 pythonの順で調べられます。
        

	TCLSH
	

Tclインタプリタプログラム。
これは、PL/Tcl構築に関する依存性を決定するために使用され、Tclスクリプト内を置き換えます。
設定されていなければ、以下の順で調べられます。tclsh tcl tclsh8.6 tclsh86 tclsh8.5 tclsh85 tclsh8.4 tclsh84
        

	XML2_CONFIG
	

libxml2インストレーションの場所を特定するために使用するxml2-configプログラムです。
        




    


configureが選んだコンパイラフラグに対して、事後にフラグを追加することが有用な場合があります。
重要な例は、configureに渡すCFLAGSにgccの-Werrorオプションを含められないことです。なぜなら、そうするとconfigureの組み込みテストの多くが失敗するからです。
そのようなフラグを追加するには、makeを実行する時にCOPT環境変数に含めてください。
configureで設定されたCFLAGS、CXXFLAGS、LDFLAGSオプションに、COPTの内容が追加されます。
例えば、以下のようにします。


make COPT='-Werror'



または


export COPT='-Werror'
make


    
注記


GCCを使う場合、少なくとも-O1レベルの最適化で構築することがベストです。なぜなら、何の最適化もしない(-O0) と、重要なコンパイル警告(初期化されていない変数の使用など)が無効になるからです。
しかし、最適化を行うことでソースコードとコンパイルされたコードのステップは1対1とはならなくなるため、デバッグは複雑になるかもしれません。
最適化されたコードのデバッグに悩まされてしまう場合は、関心のある特定のファイルに対して-O0で再コンパイルしてください。
これを実行するための簡単な方法は、make PROFILE=-O0 file.oのように、make経由でオプションを渡すことです。
     


COPTとPROFILEの環境変数は、PostgreSQL™のmakefileでは実際には全く同一に扱われます。
どちらを使うかは好みの問題ですが、開発者の一般的な習慣では、一時的にフラグを調整するにはPROFILEを使い、永続的に保持するものにはCOPTを使います。
     



Mesonを使った構築とインストール



簡易版






meson setup build --prefix=/usr/local/pgsql
cd build
ninja
su
ninja install
adduser postgres
mkdir -p /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data
su - postgres
/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -l logfile start
/usr/local/pgsql/bin/createdb test
/usr/local/pgsql/bin/psql test



この節の残りで詳細を説明します。
  

インストール手順



	設定


インストール手順の最初のステップは、システムに合わせてソースツリーを設定し、使用するオプションを選択することです。
ビルドディレクトリを作成して設定するには、meson setupコマンドから始めます。


meson setup build



セットアップコマンドはbuilddirとsrcdir引数を取ります。
srcdirが指定されていない場合、Mesonは現在のディレクトリとmeson.buildの場所に基づいてsrcdirを推測します。
builddirは必須です。
   


meson setupを実行すると、ビルド設定ファイルがロードされ、ビルドディレクトリが設定されます。
さらに、いくつかのビルドオプションをMesonに渡すこともできます。
一般的に使用されるオプションは、以下の節で説明します。
例えば



# configure with a different installation prefix
meson setup build --prefix=/home/user/pg-install

# configure to generate a debug build
meson setup build --buildtype=debug

# configure to build with OpenSSL support
meson setup build -Dssl=openssl


   


ビルドディレクトリの設定は、一度だけ行うステップです。
新しいビルドの前に再設定するには、単にmeson configureコマンドを使用します。


meson configure -Dcassert=true



meson configureの一般的に使用されるコマンドラインオプションについては「meson setupのオプション」で説明します。
   

	構築


デフォルトでは、Meson™はNinja構築ツールを使用します。
Mesonを使用してPostgreSQL™をソースからビルドするには、ビルドディレクトリ内でninjaコマンドを使用するだけです。


ninja



Ninjaは、コンピュータのCPU数を自動的に検出し、それに応じて並列化します。
コマンドライン引数-jで並列処理の数をオーバーライドすることができます。
   


最初の設定ステップの後、ninjaはコンパイルに必要な唯一のコマンドです。
ソースツリーをどのように変更しても（完全に新しい場所に移動しない限り）、Mesonは変更を検出し、それに応じて自身を再生成します。
これは、複数のビルドディレクトリがある場合に特に便利です。
多くの場合、それらの1つは開発（「デバッグ」ビルド）に使用され、他のものは時々（「静的分析」ビルドなど）使用されます。
対応するディレクトリに移動してNinjaを実行するだけで、どの構成でもビルドできます。
   


ninja以外のバックエンドで構築したい場合は、--backendオプションを指定してconfigureを実行し、使用するバックエンドを選択してからmeson compileで構築します。
これらのバックエンドやninjaに渡す他の引数について詳しくは、Mesonのドキュメントを参照してください。
   

	リグレッションテスト


インストールを行う前に、新しく構築したサーバをテストしたい場合、この時点でリグレッションテストを実行できます。
リグレッションテストとは、使用するマシンにおいてPostgreSQL™が、開発者の想定通りに動作することを検証するためのテストのまとまりです。
次のように入力します。


meson test



（これは root では動作しません。
非特権ユーザとして実行してください。）
31章リグレッションテストにはテスト結果の解釈に関する詳しい情報があります。
同じコマンドを入力することで、後にいつでもテストを繰り返すことができます。
   


実行中のpostgresインスタンスに対してpg_regressとpg_isolation_regressのテストを実行するには、--setup runningをmeson testの引数として指定します。
   

	ファイルのインストール
注記


もし既存のシステムのアップグレードをする場合、DBクラスタのアップグレードの解説が記載されている「PostgreSQL™クラスタのアップグレード処理」を参照してください。
    



PostgreSQLがビルドされたら、ninja installコマンドを実行するだけでインストールできます。


ninja install


   


これは、ファイルをステップ 1で指定されたディレクトリにインストールします。
その領域に書き込むための権限を持っていることを確認してください。
通常はこのステップをrootで行う必要があります。
代わりに対象とするディレクトリを前もって作成し、適切に権限を調整することも可能です。
この標準的なインストール方法では、クライアントアプリケーションの開発に必要なヘッダファイルと、Cで独自の関数やデータ型を作成するといったサーバ側のプログラムの開発用のヘッダファイルが用意されます。
   


ninja installはほとんどの場合に使えるはずですが、余分な出力を抑制する--quietなどのオプションを使いたい場合は、代わりにmeson installを使うこともできます。
meson installとそのオプションについてはMesonドキュメントを参照してください。
   



アンインストール: 

インストールを取り消すには、ninja uninstallコマンドを使用します。
   
クリーニング: 

インストール後、ninja cleanコマンドでソースツリーからビルドされたファイルを削除することで、ディスク容量を解放できます。
   

meson setupのオプション





meson setupのコマンドラインオプションを以下で説明します。
この一覧は完全なものではありません（完全なものを得るにはmeson configure --helpを使ってください）。
ここで取り上げていないオプションはクロスコンパイルのような高度なユースケースのためのもので、標準のMesonドキュメントを参照してください。
これらの引数はmeson setupでも使用できます。
   
インストレーションの位置





このオプションはninja install（またはmeson install）がファイルをどこに置くかを制御します。
ほとんどの場合は--prefixオプション（「簡易版」参照）で十分です。
特別な必要があるのであれば、この節に書かれた他のオプションを使用して個々のインストレーションサブディレクトリを変更できます。
しかし、異なるサブディレクトリの相対的な位置を変更した場合、インストレーションは再配置不能になります。つまり、インストールの後にディレクトリを移動できないことに注意してください。
（manとdocの場所はこの制限の影響を受けません。）
再配置可能インストールのために、後述の-Drpath=falseを使用しようと考えるかもしれません。
     
	--prefix=PREFIX
	

/usr/local/pgsql（Unixベースのシステム）またはcurrent drive letter:/usr/local/pgsql（Windows）の代わりにディレクトリPREFIXディレクトリ以下に全てのファイルをインストールします。
ファイルは実際には様々なサブディレクトリにインストールされ、PREFIXディレクトリの直下にインストールされるファイルはありません。
        

	--bindir=DIRECTORY
	

実行可能プログラム用のディレクトリを指定します。
デフォルトはPREFIX/binです。
        

	--sysconfdir=DIRECTORY
	

各種設定ファイル用のディレクトリを設定します。
デフォルトではPREFIX/etcです。
        

	--libdir=DIRECTORY
	

ライブラリや動的ロード可能モジュールをインストールする場所を設定します。
デフォルトはPREFIX/libです。
        

	--includedir=DIRECTORY
	

CおよびC++のヘッダファイルをインストールするディレクトリを設定します。
デフォルトはPREFIX/includeです。
        

	--datadir=DIRECTORY
	

インストールプログラムが使用する読み取り専用のディレクトリを設定します。
デフォルトはPREFIX/shareです。
これはインストールするデータベースファイルがどこに設置されるかとは関係ないことを覚えておいてください。
        

	--localedir=DIRECTORY
	

特にメッセージ翻訳カタログファイルのロケールデータをインストールするディレクトリを設定します。
デフォルトはDATADIR/localeです。
        

	--mandir=DIRECTORY
	

PostgreSQL™付属のマニュアルページがこのディレクトリ以下の、対応するmanxサブディレクトリにインストールされます。
デフォルトはDATADIR/manです。
        



注記


（/usr/local/includeといった）共用のインストール場所に、システムの他の名前空間に影響を与えることなくPostgreSQL™をインストールできるような配慮がなされています。
まず、完全に展開したディレクトリ名に「postgres」か「pgsql」という文字列が含まれていない場合、「/postgresql」という文字列が自動的にdatadir、sysconfdir、docdirに追加されます。
例えば、接頭辞として/usr/localを使用する場合、ドキュメントは/usr/local/doc/postgresqlにインストールされますが、接頭辞が/opt/postgresの場合は/opt/postgres/docにインストールされます。
クライアントインタフェース用の外部向けCヘッダファイルはincludedirにインストールされ、名前空間の問題はありません。
内部向けヘッダファイルやサーバ用ヘッダファイルは、includedir以下の非公開ディレクトリにインストールされます。
各インタフェース用のヘッダファイルにアクセスする方法についての情報は、そのインタフェースのドキュメントを参照してください。
最後に、適切であれば、動的ロード可能モジュール用にlibdir以下にも非公開用のサブディレクトリが作成されます。
      


PostgreSQL™の機能





この節に書かれたオプションは、デフォルトでは構築されないPostgreSQL™の様々な機能を構築できるようにするものです。
これらのほとんどは、「必要条件」で説明されている追加ソフトウェアが必要であり、必要なソフトウェアが見つかった場合は自動的に有効になります。
これらの機能が必要な場合はenabledに、必要でない場合はdisabledに設定して、この動作を手動で変更できます。
    


PostgreSQL固有のオプションを指定するには、オプション名の先頭に-Dを付ける必要があります。
    
	-Dnls={ auto | enabled | disabled }
	

各国語サポート（NLS）を有効または無効にします。
これは、Gettext APIの実装が英語以外の言語でメッセージを表示する機能です。
デフォルトは自動で、Gettext APIの実装が見つかった場合は自動的に有効になります。
       

	-Dplperl={ auto | enabled | disabled }
	

PL/Perlサーバサイド言語を構築します。
デフォルトは自動です。
       

	-Dplpython={ auto | enabled | disabled }
	

PL/Pythonサーバサイド言語を構築します。
デフォルトは自動です。
       

	-Dpltcl={ auto | enabled | disabled }
	

PL/Tclサーバサイド言語を構築します。
デフォルトは自動です。
       

	-Dtcl_version=TCL_VERSION
	

PL/Tclのビルド時に使用するTclバージョンを指定します。
       

	-Dicu={ auto | enabled | disabled }
	

ICU™ライブラリのサポートを有効にして構築します。これによりICU照合機能が使用できるようになります。
（「照合順序サポート」を参照してください。）
デフォルトは自動で、ICU4C™パッケージがインストールされている必要があります。
ICU4C™の要求される最小のバージョンは現在4.2です。
       

	-Dllvm={ auto | enabled | disabled }
	

LLVM™に基づいたJITコンパイル（30章実行時コンパイル(JIT)を参照）のサポートを有効にして構築します。
これには、LLVM™ライブラリがインストールされている必要があります。
LLVM™の要求される最小のバージョンは現在14です。
デフォルトでは無効です。
       


要求されるコンパイルオプションを見つけるためにllvm-configが使われます。
llvm-config、それからサポートされるバージョンすべての llvm-config-$versionをPATHで探します。
それで正しいバイナリが見つからなければ、正しいllvm-configへのパスを指定するためにLLVM_CONFIGを使ってください。
例えば、以下のとおりです。
       

	-Dlz4={ auto | enabled | disabled }
	

LZ4™圧縮サポートを有効にして構築します。
デフォルトは自動です。
       

	-Dzstd={ auto | enabled | disabled }
	

Zstandard™圧縮サポートを有効にして構築します。
デフォルトは自動です。
       

	-Dssl={ auto | LIBRARY }
      
      
	

SSL（暗号化）接続のサポートを有効にして構築します。
サポートされている唯一のLIBRARYはopensslです。
これには、OpenSSL™パッケージがインストールされている必要があります。
これを指定すると、必要なヘッダファイルとライブラリがチェックされ、OpenSSL™のインストールが十分であるかどうかが確認されてから処理が続行されます。
このオプションのデフォルトは自動です。
       

	-Dgssapi={ auto | enabled | disabled }
	

GSSAPI認証のサポートを構築します。
GSSAPIを使用するには、MIT Kerberosがインストールされている必要があります。
多くのシステムでは、GSSAPIシステム（通常MIT Kerberosインストレーションの一部）はデフォルトの検索場所（例えば/usr/includeや/usr/lib）にインストールされていません。
このような場合、PostgreSQLはpkg-configを照会して、必要なコンパイラとリンカのオプションを検出します。
デフォルトは自動です。
meson configureは、必要なヘッダファイルとライブラリをチェックして、GSSAPIのインストールが十分であることを確認してから続行します。
       

	-Dldap={ auto | enabled | disabled }
	

認証および接続パラメータ検索用のLDAPサポートを有効にして構築します。
（詳細は「接続パラメータのLDAP検索」および「LDAP認証」を参照してください。）
Unixでは、OpenLDAP™パッケージがインストールされている必要があります。
WindowsではデフォルトのWinLDAP™ライブラリが使用されます。
デフォルトは自動です。
meson configureは、必要なヘッダファイルとライブラリをチェックして、OpenLDAP™のインストールが十分であることを確認してから続行します。
       

	-Dpam={ auto | enabled | disabled }
	

PAM（プラガブル認証モジュール）のサポートを有効にして構築します。
デフォルトは自動です。
       

	-Dbsd_auth={ auto | enabled | disabled }
	

BSD認証のサポートを有効にして構築します。
（BSD認証フレームワークは今のところOpenBSDだけで利用可能です。）
デフォルトは自動です。
       

	-Dsystemd={ auto | enabled | disabled }
	

systemdサービス通知のサポートを有効にして構築します。
サーババイナリがsystemdの元で開始する場合には、これは統合を改善しますが、それ以外は影響はありません。
詳細は「データベースサーバの起動」を参照してください。
デフォルトは自動です。
このオプションを使えるようにするには、libsystemdと関連するヘッダファイルがインストールされている必要があります。
       

	-Dbonjour={ auto | enabled | disabled }
	

Bonjour自動サービス検出のサポートを有効にして構築します。
デフォルトは自動で、オペレーティングシステムがBonjourをサポートしていることが必要です。
macOSで推奨します。
       

	-Duuid=LIBRARY
	

指定されたUUIDライブラリを使用して(UUIDを生成する関数を提供する)uuid-osspモジュールを構築します。

LIBRARYは以下のいずれかでなければなりません。
       
	

noneはuuidモジュールを構築しないことを意味します。
これがデフォルトです。
         

	

bsdはFreeBSD、その他のBSD派生システムにあるUUID関数を使います。
         

	

e2fsはe2fsprogsプロジェクトで作られたUUIDライブラリを使います。
このライブラリはたいていのLinuxシステムとmacOSにあり、また、その他のプラットフォームでも入手可能です。
         

	

osspはOSSP UUIDライブラリを使用します。
         




	-Dlibcurl={ auto | enabled | disabled }
	

OAuth 2.0クライアントフロー用にlibcurlサポートを有効にして構築します。
この機能にはlibcurlバージョン7.61.0以降が必要です。
この設定で構築すると、必要なヘッダファイルとライブラリがチェックされ、Curl™インストールが十分であるかどうかが確認されてから処理が続行されます。
このオプションのデフォルトは自動です。
       

	-Dliburing={ auto | enabled | disabled }
	

liburingを使用して構築し、非同期I/O用にio_uringサポートを有効にします。
デフォルトは自動です。
       


通常以外の場所にインストールしたliburingインストレーションを使用するためには、pkg-config関連の環境変数を設定します（そのドキュメントを参照してください）。
       

	-Dlibnuma={ auto | enabled | disabled }
	

基本NUMAサポート用にlibnumaサポートを有効にして構築します。
libnuma™ライブラリが実装されているプラットフォームでのみサポートされます。
このオプションのデフォルトは自動です。
       

	-Dlibxml={ auto | enabled | disabled }
	

libxml2を使用して構築し、SQL/XMLサポートを有効にします。
デフォルトは自動です。
この機能のためにはLibxml2バージョン2.6.23以降が必要です。
       


通常以外の場所にインストールしたlibxml2インストレーションを使用するためには、pkg-config関連の環境変数を設定するか（そのドキュメントを参照してください）。
       

	-Dlibxslt={ auto | enabled | disabled }
	

XMLのXSL変換を行うためにxml2モジュールを有効にしてlibxsltを構築します。
-Dlibxmlも指定しなければなりません。
デフォルトは自動です。
       

	-Dselinux={ auto | enabled | disabled }
	

SElinuxサポート付きでビルドします。
sepgsql 拡張を有効にします。
デフォルトは自動です。
       




機能の無効化



	-Dreadline={ auto | enabled | disabled }
	

Readlineライブラリ（およびlibedit）の使用を可能にします。
このオプションはデフォルトで自動になり、psqlでのコマンドライン編集と履歴が有効になります。
強く推奨されます。
       

	-Dlibedit_preferred={ true | false }
	

GPLライセンスのReadlineではなくBSDライセンスのlibeditライブラリを優先して使用します。
このオプションは両方のライブラリがインストールされている場合にのみ重要です。その場合デフォルトでReadlineが使用されます。
       

	-Dzlib={ auto | enabled | disabled }
	
        

Zlibライブラリの使用を有効にします。
デフォルトは自動で、pg_dump、pg_restore、pg_basebackupでの圧縮アーカイブのサポートが有効になります。
これを使用することをお勧めします。
       




構築プロセスの詳細



	--auto-features={ auto | enabled | disabled }
	

このオプションを設定すると、必要なソフトウェアが見つかった場合に自動的に有効になる「auto」機能の値を上書きできます。
これは手動で設定することなく、すべての「optional」機能を一度に無効または有効にする場合に便利です。
このパラメータのデフォルト値は自動です。
       

	--backend=BACKEND
	

Mesonが使用するデフォルトのバックエンドはninjaで、ほとんどのユースケースに対応できます。
ただし、Visual Studioと完全に統合したい場合は、BACKENDをvsに設定します。
       

	-Dc_args=OPTIONS
	

このオプションは、Cコンパイラに追加のオプションを渡すために使用できます。
       

	-Dc_link_args=OPTIONS
	

このオプションは、Cリンカに追加のオプションを渡すために使用できます。
       

	-Dextra_include_dirs=DIRECTORIES
	

DIRECTORIESには、コンパイラがヘッダファイルを検索するディレクトリのリストをカンマで区切って指定します。
（GNU Readlineなどの）オプションのパッケージが非標準的な場所にインストールされている場合、このオプションと、おそらく対応する-Dextra_lib_dirsオプションを使用する必要があります。
       


例: -Dextra_include_dirs=/opt/gnu/include,/usr/sup/include。
       

	-Dextra_lib_dirs=DIRECTORIES
	

DIRECTORIESには、ライブラリを検索するディレクトリのリストをカンマで区切って指定します。
パッケージが非標準的な場所にインストールされている場合は、おそらくこのオプション（と対応する-Dextra_include_dirsオプション）を使用する必要があります。
       


例: -Dextra_lib_dirs=/opt/gnu/lib,/usr/sup/lib。
       

	-Dsystem_tzdata=DIRECTORY
      
      
	

PostgreSQL™は、日付時刻に関する操作で必要な、独自の時間帯データベースを持ちます。
実際のところ、この時間帯データベースはFreeBSD、Linux、Solarisなどの多くのオペレーティングシステムで提供されるIANA時間帯データベースと互換性があります。
このため、これを再びインストールすることは冗長です。
このオプションが使用されると、DIRECTORYにあるシステムが提供する時間帯データベースがPostgreSQLソース配布物に含まれるものの代わりに使用されます。
DIRECTORYは絶対パスで指定しなければなりません。
/usr/share/zoneinfoがオペレーティングシステムの一部でよく使われます。
インストール処理が時間帯データの不一致、またはエラーがあることを検知しないことに注意してください。
このオプションを使用する場合、指定した時間帯データがPostgreSQL™で正しく動作するかどうかを検証するためにリグレッションテストを実行することが推奨されています。
       


このオプションは、対象オペレーティングシステムを熟知しているパッケージ配布者を主な対象としたもの。
このオプションを使用する大きな利点は、多くの局所的な夏時間規則の変更があってもPostgreSQLパッケージを更新する必要がないことです。
他の利点として、時間帯データベースファイルをインストール時に構築する必要がありませんので、PostgreSQLのクロスコンパイルをより簡単に行うことができます。
       

	-Dextra_version=STRING
	

PostgreSQLバージョン番号にSTRINGを追加します。
これは、例えば、リリースされていないGit™スナップショットからビルドしたバイナリや、git describe識別子やディストリビューションパッケージリリース番号のような追加のバージョン文字列のあるカスタムパッチを含むバイナリに印をつけるために使えます。
       

	-Drpath={ true | false }
	

このオプションは、デフォルトでtrueに設定されています。
falseに設定すると、PostgreSQL™の実行ファイルがインストレーションのライブラリディレクトリ（--libdirを参照してください）にある共有ライブラリを探すよう指示する印を付けません。
ほとんどのプラットフォームでは、この印付けはライブラリディレクトリへの絶対パスを利用しますので、後でインストレーションを再配置したときには役に立たないでしょう。
ですので、実行ファイルが共有ライブラリを見つける他の方法を提供する必要があるでしょう。
通常は、オペレーティングシステムの動的リンカがライブラリディレクトリを探すよう設定することが必要です。詳細は「共有ライブラリ」を参照してください。
       

	-DBINARY_NAME=PATH
	

PostgreSQLを構築するのに必要なプログラム（オプションフラグ付きまたはオプションフラグなし）が標準以外のパスに格納されている場合、meson configureに手動で指定することができます。
これがサポートされているプログラムの完全なリストは、meson configureを実行することで確認できます。例:

meson configure -DBISON=PATH_TO_BISON

       




ドキュメンテーション





ドキュメントの構築に必要なツールについては、「ツールセット」を参照してください。
    
	-Ddocs={ auto | enabled | disabled }
	

HTMLおよびman形式でドキュメントを構築できるようにします。
デフォルトは自動です。
       

	-Ddocs_pdf={ auto | enabled | disabled }
	

PDF形式でのドキュメント作成を有効にします。
デフォルトは自動です。
       

	-Ddocs_html_style={ simple | website }
	

どのCSSスタイルシートを使用するかを制御します。
デフォルトはsimpleです。
これをwebsiteに設定すると、postgresql.orgのスタイルシートがHTMLドキュメントに参照されます。
       




その他



	-Dpgport=NUMBER
	

サーバとクライアントのデフォルトのポート番号をNUMBERに設定します。
デフォルトは5432です。
このポートは後でいつでも変更できますが、ここで指定した場合、サーバとクライアントはコンパイル時に同じデフォルト値を持つようになります。
これは非常に便利です。
通常、デフォルト以外の値を選択すべき唯一の理由は、同じマシンで複数のPostgreSQL™を稼働させることです。
       

	-Dkrb_srvnam=NAME
	

GSSAPIで使用されるKerberosのサービスプリンシパルのデフォルトの名前です。
デフォルトではpostgresです。
これを変える理由はWindows環境のために構築しているのでない限り、特にありません。
Windows環境のために構築している場合は大文字のPOSTGRESに設定する必要があります。
       

	-Dsegsize=SEGSIZE
	

セグメントサイズをギガバイト単位で指定します。
大規模なテーブルはこのセグメントサイズと同じサイズの複数のオペレーティングシステムのファイルに分割されます。
これにより多くのプラットフォームで存在するファイルサイズ上限に関する問題を防ぎます。
デフォルトのセグメントサイズは1ギガバイトで、サポートされるすべてのプラットフォームで安全です。
使用するオペレーティングシステムが「ラージファイル」をサポートしていれば（最近はほとんどサポートしています）、より大きなセグメントサイズを使用できます。
非常に大規模なテーブルで作業する時のファイル記述子の消費数を減らすために、これが役に立つでしょう。
しかし、プラットフォーム、または使用予定のファイルシステムでサポートされる値以上に大きな値を指定しないように注意してください。
tarなどの、使用したいその他のツールにも使用できるファイルサイズに制限があることがあります。
絶対に必要ではありませんが、この値を2のべき乗にすることを勧めます。
       

	-Dblocksize=BLOCKSIZE
	

ブロックサイズをKB単位で設定します。
これはテーブル内のストレージとI/Oの単位です。
デフォルトの8KBはほとんどの場合に適していますが、特別な場合には他の値が有用な場合もあります。
値は1から32(KB)までの2の累乗でなければなりません。
       

	-Dwal_blocksize=BLOCKSIZE
	

WALブロックサイズをKB単位で設定します。
これはWALログ内のストレージとI/Oの単位です。
デフォルトの8KBはほとんどの場合に適していますが、特別な場合には他の値が有用な場合もあります。
値は1から64(KB)までの2の累乗でなければなりません。
       




開発者向けオプション





この節のオプションのほとんどは、PostgreSQL™を開発したりデバッグしたりするために重要なものです。
--enable-debugを除いて、実運用での構築には勧められません。--enable-debugはバグに出くわすという不幸な出来事の時に詳細なバグレポートが得られるので有用かもしれません。
DTraceをサポートするプラットフォームでは、-Ddtraceを実運用で使うことも適当かもしれません。
    


サーバ内でコードの開発に使われるインストレーションを構築する場合には、少なくともオプション--buildtype=debugと-Dcassert optionsを使うことをお勧めします。
    
	--buildtype=BUILDTYPE
	

このオプションは、使用するビルドタイプを指定するために使用できます。
デフォルトはdebugoptimizedです。
このオプションが提供するものよりもデバッグシンボルと最適化レベルを細かく制御したい場合は、--debugと--optimizationフラグを参照してください。
       


一般的に使用されるビルドタイプは、plain、debug、debugoptimized、releaseです。
これらについての詳細はMesonのドキュメントを参照してください。
       

	--debug
	

すべてのプログラムとライブラリをデバッグシンボル付きでコンパイルします。
これは、問題を解析するためにデバッガ内でプログラムを実行できることを意味します。
これはインストールする実行形式ファイルのサイズをかなり大きくし、また、GCC以外のコンパイラでは、通常はコンパイラによる最適化が行われなくなりますので、低速になります。
しかし、デバッグシンボルが利用できるということは、発生した問題に対応する時に非常に便利です。
現在のところ、GCCを使用している場合にのみ、稼働用のインストレーションにこのオプションを使用することを推奨します。
しかし、開発作業時やベータ版を実行する時は、常にこれを有効にすべきです。
       

	--optimization=LEVEL
	

最適化レベルを指定します。
LEVELは{0,g,1,2,3,s}のいずれかに設定できます。
       

	--werror
	

このオプションを設定すると、コンパイラは警告をエラーとして扱います。
これはコード開発に役立ちます。
       

	-Dcassert={ true | false }
	

サーバにおける、多くの「あり得ない」状態をテストするアサーションチェックを有効にします。
これは、プログラムの開発のためには測り知れない価値がありますが、このテストによりサーバはかなり低速になります。
また、このテストを有効にしても、サーバの安定性が向上するとは限りません！
アサーションチェックは、重要度によって分類されていませんので、比較的害がないようなバグでも、アサーション失敗をトリガとした、サーバの再起動が行われてしまいます。
稼働用にこのオプションを使用することは推奨されませんが、開発作業時やベータ版を実行する場合は、これを有効にすべきです。
       

	-Dtap_tests={ auto | enabled | disabled }
	

Perl TAPツールを使ったテストを有効にします。
デフォルトは自動で、これにはPerlのインストールとPerlモジュールIPC::Runが必要です。
詳細は「TAPテスト」を参照してください。
       

	-DPG_TEST_EXTRA=TEST_SUITES
	

追加のテストスイートを有効にします。これらは以下の理由からデフォルトでは実行されません。マルチユーザシステムでの実行が安全でない、実行に特別なソフトウェアを必要とする、またはリソースを大量に消費するためです。
引数は、有効にするテストの空白で区切られたリストです。
詳細は「追加のテストスイート」を参照してください。
テストの実行時にPG_TEST_EXTRA環境変数が設定されると、このセットアップ時オプションは上書きされます。
       

	-Db_coverage={ true | false }
	

GCCを使用している場合、すべてのプログラムとライブラリはコードカバレッジテスト機構付きでコンパイルされます。
実行すると、これらは構築用ディレクトリ内にコードカバレッジメトリックを持ったファイルを生成します。
詳細は「テストが網羅する範囲の検証」を参照してください。
このオプションはGCC専用であり、また、開発作業中に使用するためのものです。
       

	-Ddtrace={ auto | enabled | disabled }
	
        

動的追跡ツールDTraceのサポートを有効にしてPostgreSQL™をコンパイルします。
より詳細な情報は「動的追跡」を参照してください。
       


dtraceプログラムを指し示すためにDTRACEオプションを設定します。
dtraceは通常、PATH内に存在しない可能性がある/usr/sbin以下にインストールされていますので、この設定はよく必要になります。
       

	-Dinjection_points={ true | false }
	

PostgreSQL™をサーバ内のインジェクションポイントをサポートするようにコンパイルします。
インジェクションポイントによって、サーバ内の事前定義されたコードパスでユーザ定義コードを実行できます。
これは、テストや制御された方法での同時実行シナリオの調査に役立ちます。
このオプションはデフォルトでは無効になっています。
詳細については「インジェクションポイント」を参照してください。
このオプションは開発者によるテストのみを目的としています。
       

	-Dsegsize_blocks=SEGSIZE_BLOCKS
	

リレーションのセグメントサイズをブロック単位で指定します。
-Dsegsizeとこのオプションの両方が指定されている場合、このオプションが優先されます。
このオプションは、セグメント関連のコードをテストする開発者向けです。
        





mesonビルドターゲット





個々のビルドターゲットはninja targetを使用してビルドできます。
ターゲットが指定されていない場合、ドキュメント以外のすべてがビルドされます。
個々の構築物はtargetとしてパス/ファイル名を使用してビルドできます。
   
コードターゲット



	all
	

ドキュメント以外のすべてを構築します
     

	backend
	

バックエンドと関連モジュールを構築します
     

	bin
	

フロントエンドバイナリを構築します
     

	contrib
	

contribモジュールを構築します
     

	pl
	

プロシージャ言語を構築します
     




開発者ターゲット



	reformat-dat-files
	

カタログデータファイルを標準形式に書き直します
     

	expand-dat-files
	

すべてのデータファイルをデフォルトを含めて展開します
     

	update-unicode
	

ユニコードデータを新しいバージョンに更新します
     




ドキュメントターゲット



	html
	

マルチページのHTML形式のドキュメントを構築します
     

	man
	

マニュアルページ形式のドキュメントを構築します
     

	docs
	

マルチページのHTMLおよびマニュアルページ形式のドキュメントを構築します
     

	doc/src/sgml/postgres-A4.pdf
	

A4ページのPDF形式のドキュメントを構築します
     

	doc/src/sgml/postgres-US.pdf
	

USレターページのPDF形式のドキュメントを構築します
     

	doc/src/sgml/postgres.html
	

単一ページのHTML形式のドキュメントを構築します
     

	alldocs
	

すべてのサポートされている形式のドキュメントを構築します
     




インストールターゲット



	install
	

ドキュメントを除いたpostgresをインストールします
     

	install-docs
	

マルチページのHTMLおよびマニュアルページ形式のドキュメントをインストールします
     

	install-html
	

マルチページのHTML形式のドキュメントをインストールします
     

	install-man
	

マニュアルページ形式のドキュメントをインストールします
     

	install-quiet
	

"install"と同様ですが、インストールされたファイルは表示されません
     

	install-world
	

マルチページのHTMLおよびマニュアルページ形式のドキュメントを含むpostgresをインストールします
     

	uninstall
	

インストールされたファイルを削除します
     




その他のターゲット



	clean
	

すべての構築された物を削除します
     

	test
	

すべての有効化されたテストを実行します（contribを含む）
     

	world
	

ドキュメントを含むすべてを構築します
     

	help
	

重要なターゲットを一覧表示します
     






インストール後の設定作業



共有ライブラリ





共有ライブラリを持つ何らかのシステムの中には、新しくインストールされた共有ライブラリを探す場所をシステムに通知する必要があるものがあります。
これが必要ではないシステムは
FreeBSD、
Linux、
NetBSD、
OpenBSD、およびSolarisです。
   


共有ライブラリの検索パスを設定する方法は、プラットフォームによって異なります。
しかし、最もよく使用される方法はLD_LIBRARY_PATHといった環境変数を以下のように設定することです。
Bourne シェル（sh、ksh、bash、zsh）では、


LD_LIBRARY_PATH=/usr/local/pgsql/lib
export LD_LIBRARY_PATH



cshまたはtcshでは、以下のように設定します。


setenv LD_LIBRARY_PATH /usr/local/pgsql/lib



/usr/local/pgsql/libはステップ 1で--libdirに設定したものに置き換えてください。
/etc/profileや~/.bash_profileといったシェルの起動ファイルにこれらのコマンドを追加してください。
この方法に関する警告についての優れた情報がhttp://xahlee.info/UnixResource_dir/_/ldpath.htmlにあります。
   


システムによっては、構築作業の前にLD_RUN_PATH環境変数を設定した方が良い場合があります。
   


Cygwinでは、ライブラリディレクトリをPATHに追加するか、.dllファイルをbinディレクトリに移動します。
   


もし確信が持てない場合は、システムのマニュアルページ（おそらくld.soかrld）を参照してください。
もし後に下記のようなメッセージが出たら、


psql: error in loading shared libraries
libpq.so.2.1: cannot open shared object file: No such file or directory



このステップが必要だったということです。
この場合は処置を行ってください。
   

    

もしLinuxを使用していて、root権限があれば、


/sbin/ldconfig /usr/local/pgsql/lib



（または同等のディレクトリ）をインストール後に実行して、実行時リンカが共有ライブラリを素早く検索できるようにできます。
より詳細についてはldconfigのマニュアルページを参照してください。
FreeBSD、NetBSDおよびOpenBSDの場合のコマンドは以下のとおりです。


/sbin/ldconfig -m /usr/local/pgsql/lib



同様なコマンドを持つ他のシステムは知られていません。
   

環境変数





もし/usr/local/pgsqlか、もしくはデフォルトでプログラムが検索されない場所にインストールした場合、/usr/local/pgsql/bin（もしくはステップ 1で--bindirに設定した場所）をPATHに追加する必要があります。
厳密に言えば、これは必要ではありません。
しかし、これによってPostgreSQL™の使用がずっと便利になります。
   


これを行うためには、以下を~/.bash_profile（もしくは、もし全てのユーザに反映したい場合は/etc/profile）のようなシェルの起動ファイルに追加してください。


PATH=/usr/local/pgsql/bin:$PATH
export PATH



cshやtcshを使用している場合は、以下のコマンドを使用してください。


set path = ( /usr/local/pgsql/bin $path )


   

    

デフォルトで検索される場所にインストールした場合を除き、システムがmanドキュメントを検索できるようにするためには、以下の行をシェルの起動ファイルに追加する必要があります。


MANPATH=/usr/local/pgsql/share/man:$MANPATH
export MANPATH


   


環境変数PGHOSTとPGPORTは、クライアントアプリケーションにデータベースサーバのホストとポートを指定し、コンパイル時に決定されたデフォルト値を無効にします。
クライアントアプリケーションをリモートで実行する場合、データベースを使用する予定の全てのユーザがPGHOSTを設定していると便利です。
しかしこれは必須ではありません。
この設定は、ほとんどのクライアントプログラムのコマンドラインオプションでも設定できます。
   


サポートされるプラットフォーム





プラットフォーム（CPUアーキテクチャとオペレーティングシステムの組み合わせ）は、そのプラットフォーム上で動作する仕組みがコード内に存在し、かつ、そのプラットフォーム上で構築およびリグレッションテストに合格することが最近検証できた場合に、PostgreSQL™開発者コミュニティによってサポートされたものとみなされます。
現在、プラットフォームの互換性に関するほとんどのテストはPostgreSQLビルドファーム中のテストマシンによって自動的に行われます。
ビルドファームに存在しないが、コードが動作するあるいは動作させることができたプラットフォームにおけるPostgreSQL™の使用に興味のあるかたは、継続した互換性を確実にするために、ビルドファームのメンバマシンとして設定することを強く勧めます。
  


一般的に、PostgreSQL™は、次のCPUアーキテクチャで動作
することを期待できます。
x86、PowerPC、S/390、SPARC、ARM、MIPS、RISC-V。
適用可能な場合、ビッグエンディアン、リトルエンディアン、32ビット、64ビットのバリエーションも含まれます。
  


PostgreSQL™は次のオペレーティングシステムで動作することを期待できます。
Linux、Windows、FreeBSD、OpenBSD、NetBSD、DragonFlyBSD、macOS、Solaris、illumos。
他のUnixに似たシステムでも動作するかもしれませんが、現在はテストされていません。
ほとんどの場合、指定されたオペレーティングシステムでサポートされるCPUアーキテクチャはすべて動作するでしょう。
特に古めのシステムを使用している場合、以下の「プラットフォーム特有の覚書」を参照し、使用するオペレーティングシステム固有の情報がないか確認してください。
  


最近のビルドファームの結果でサポートしているものとされているプラットフォームでインストールに問題があった場合は、<pgsql-bugs@lists.postgresql.org>に報告してください。
新しいプラットフォームへのPostgreSQL™の移植に興味があるのならば、<pgsql-hackers@lists.postgresql.org>がその議論に適しています。
  


PostgreSQL™またはPOSTGRESの以前のバージョンは、Alpha、Itanium、M32R、M68K、M88K、NS32K、PA-RISC、SuperH、VAXなどのCPUアーキテクチャと、4.3BSD、AIX、BEOS、BSD/OS、DG/UX、Dynix、HP-UX、IRIX、NeXTSTEP、QNX、SCO、SINIX、Sprite、SunOS、Tru64 UNIX、ULTRIXなどのオペレーティングシステムでも動作していました。
  

プラットフォーム特有の覚書





本節はPostgreSQLのインストールと設定に関する追加のプラットフォーム固有の問題について説明します。
インストール手順、特に「必要条件」を注意して読んでください。
またリグレッションテスト結果の解釈については31章リグレッションテストを確認してください。
  


   ここで触れられていないプラットフォームは、インストールに関してプラットフォーム特有の問題がありません。
  
Cygwin





Windowsに対するLinux的環境である、Cygwinを使ってPostgreSQLを構築できます。
しかし、この手法はWindowsネイティブビルドには及ばないので、もはや推奨されません。
   


ソースから構築する場合、以下のCygwin特有の差異に注意し、Unix形式のインストール手順に従って進めます（つまり、./configure;make; など）。

    
	

Windowsユーティリティの前に使用するCygwinのbinディレクトリのパスを設定します。
コンパイルにおける問題を回避する助けになります。
      

	

adduserコマンドはサポートされていません。
Windowsでは適切なユーザ管理アプリケーションを使用してください。
そうでない場合は、このステップをスキップしてください。
      

	

suコマンドはサポートされていません。
Windows上でsuをシミュレートするにはsshを使用してください。
そうでない場合は、このステップをスキップしてください。
      

	

OpenSSL™はサポートされていません。
      

	

共有メモリサポートのためにcygserverを開始します。
これを行うためには、コマンド/usr/sbin/cygserver&を入力します。
このプログラムはPostgreSQLサーバを起動するとき、または（initdbで）データベースクラスタを初期化するときはいつでも必要です。
システム資源が欠けていることによるPostgreSQLの失敗を避けるため、デフォルトのcygserver設定を（例えばSEMMNSを増やすなど）変更する必要があるかもしれません。
      

	

        いくつかのシステムでは、Cロケール以外を使っている場合に構築が失敗するかもしれません。
        これに対処するためには、構築前にexport LANG=C.utf8を実施してロケールをCに設定し、PostgreSQLのインストール後に以前の設定に戻してください。
      

	

並行リグレッションテスト（make check）は、接続拒絶エラーやハングアップを引き起こすlisten()バックログキューのオーバーフローにより、誤ったリグレッションテストの失敗を生成する可能性があります。
make 変数MAX_CONNECTIONSを使用して、最大接続数を制限できます。つまり次のようにします。


make MAX_CONNECTIONS=5 check



（いくつかのシステムでは、同時接続を10まで広げられます。）
      




   


Windows NTサービスとしてcygserverとPostgreSQLサーバをインストールできます。
これを実現する方法は、CygwinのPostgreSQLバイナリパッケージに含まれるREADMEドキュメントを参照してください。
それは/usr/share/doc/Cygwinディレクトリにインストールされます。
   

macOS





PostgreSQL™をmacOS™でソースから構築するには、Appleのコマンドライン開発ツールをインストールすることが必要で、次のようにすれば行えます


xcode-select --install



（確認のためGUIダイアログウィンドウが現れることに注意してください）。
Xcodeもインストールして構いませんし、しなくても構いません。
   


最近のmacOS™のリリースでは、システムヘッダファイルを見つけるために使われるインクルードスイッチに「sysroot」のパスを埋め込むことが必要です。
これにより、configureでどのSDKのバージョンが使われたかに依存して、configureスクリプトの出力が変わることになります。
これは簡単なシナリオでは問題を引き起こさないでしょうが、サーバのコードが構築されたのとは異なるマシンで拡張を構築するなどのようなことを試みているのだとしたら、異なるsysrootのパスを利用するように強制することが必要です。
そうするには、PG_SYSROOTを設定してください。例えば以下のようにです。


make PG_SYSROOT=/desired/path all



自分のマシンでの適切なパスを見つけるには、以下のようにしてください。


xcrun --show-sdk-path



コアサーバを構築するのに使われたのとは異なるsysrootのバージョンを使って拡張を構築することは、実のところ勧められないことに注意してください。最悪の場合、デバッグの難しいABIの不一致を招くかもしれません。
   


configureにPG_SYSROOTを指定することで、configureの時にデフォルトでないsysrootのパスを選ぶこともできます。


./configure ... PG_SYSROOT=/desired/path



これは主に他のバージョンのmacOS用にクロスコンパイルするのに有用でしょう。
結果として作られる実行ファイルが現在のホストで動作する保証はありません。
   


-isysrootオプションを完全に抑制するには、以下のようにします


./configure ... PG_SYSROOT=none



(存在しないパス名であればどのようなものであっても動作します)。
これはApple製でないコンパイラで構築するのに有用かもしれませんが、この状況はPostgreSQLの開発者がテストもサポートもしていないことに注意してください。
   


macOS™の「System Integrity Protection」 (SIP)機能は、DYLD_LIBRARY_PATHの必要な設定をテスト対象の実行ファイルに渡すのを妨げますので、make checkを壊します。
make checkの前にmake installとすることで回避できます。
ですが、PostgreSQLの開発者はほとんど単にSIPをオフにしています。
   

MinGW





Windows用のPostgreSQLは、Windows用のUnixに似た構築環境であるMinGWを使用して構築できます。
このためにはMSYS2環境を使用することを、また、前提条件となるパッケージソフトをインストールすることもお勧めします。
   
クラッシュダンプの収集





もしWindows上のPostgreSQLがクラッシュした場合、Unixにおけるコアダンプと似た、クラッシュの原因を追跡するために使用できるminidumps™を生成できます。
このダンプはWindows Debugger Tools™やVisual Studio™を使うことで解析できます。Windowsにてダンプを生成できるように、crashdumpsという名前のサブディレクトリをデータベースクラスタディレクトリの中に作成します。
ダンプは、クラッシュ時の現在時間と原因となったプロセスの識別子を元にした一意な名前としてこのディレクトリの中に生成されます。
    


Solaris





PostgreSQLはSolaris上でとても良くサポートされています。
オペレーティングシステムが更新されればされる程、問題点の遭遇は少なくなります。
   
必要なツール





GCCもしくはSunのコンパイラ一式により構築できます。
より良いコード最適化のため、SPARCアーキテクチャではSunのコンパイラを強く推奨します。
Sunのコンパイラを使用するのであれば、/usr/ucb/ccを選択せず、/opt/SUNWspro/bin/ccを使用するように注意してください。
    


https://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/からSun Studioをダウンロードできます。
数多くのGNUツールがSolaris 10に統合、もしくはSolaris companion CDの中にあります。
Solarisのより古いバージョンに対するパッケージが必要であれば、それらのツールはhttp://www.sunfreeware.comにあります。
ソースの方が良いという方はhttps://www.gnu.org/prep/ftpを参照してください。
    

失敗したテストプログラムについてconfigureが出すエラー





もしconfigureが失敗したテストプログラムについてエラーを出す場合、おそらく実行時のリンカがlibz、libreadline、またはlibsslのような非標準のライブラリを見つけ出せないことによります。
それを正しい場所に指し示すため、configureコマンドラインでLDFLAGS環境変数を例えば以下のように設定します。


configure ... LDFLAGS="-R /usr/sfw/lib:/opt/sfw/lib:/usr/local/lib"



より詳細な情報はld(1)マニュアルページを参照してください。
    

最適性能を得るためのコンパイル





SPARCアーキテクチャにおけるコンパイルでは、Sun Studioを強く推奨します。
特筆するような速さのバイナリを生成するため、-xO5最適化フラグを使用してみてください。
浮動小数点演算と、（-fastのような）errno演算を修正するようなフラグはすべて使ってはいけません。
    


SPARCで64ビットバイナリを使用する理由がないのであれば、32ビット版を選択してください。
64ビット操作はより遅く、64ビットバイナリは32ビット版より遅いのです。
一方で、AMD64 CPU系では32ビットコードはネイティブではないので、そのCPU系では32ビットコードはかなり遅くなります。
    

PostgreSQLをトレースするためのDTrace使用





そのとおりです。DTraceを使うことができます。より詳細な情報は「動的追跡」を参照してください。
    


もしpostgresの実行形式をリンクして作ろうとした時に、以下のようなメッセージが出て中断した場合は、


Undefined                       first referenced
 symbol                             in file
AbortTransaction                    utils/probes.o
CommitTransaction                   utils/probes.o
ld: fatal: Symbol referencing errors. No output written to postgres
collect2: ld returned 1 exit status
make: *** [postgres] Error 1



DTraceのインストールが古すぎて、静的関数でプローブを処理できません。
DTraceを使用するには、Solaris 10u4以降が必要です。
    


Visual Studio





ほとんどのユーザには、PostgreSQL™ウェブサイトのhttps://www.postgresql.org/download/からグラフィカルインストーラパッケージとして入手可能なWindows用のバイナリ配布物をダウンロードすることを推奨します。
ソースからの構築は、PostgreSQL™そのもの、もしくはその拡張の開発者のみを対象としています。
   


Visual Studioを使用したWindowsのPostgreSQLは、「Mesonを使った構築とインストール」で説明されているように、Mesonを使用して構築できます。
ネイティブWindowsポートには、Windows 10以降の32または64ビットバージョンが必要です。
   


psqlのネイティブビルドはコマンドライン編集をサポートしていません。
Cygwin™による構築はコマンドライン編集をサポートしているので、Windows™上でpsqlを対話形式で使用する必要がある場合は、こちらを使うことが推奨されます。
   


PostgreSQLは、MicrosoftのVisual C++コンパイラ一式を使って構築できます。
これらのコンパイラは、Visual Studio™、Visual Studio Express™、またはMicrosoft Windows SDK™のいくつかのバージョンから入手できます。
Visual Studio™環境をまだ設定していない場合、最も簡単な方法は、Visual Studio 2022™のコンパイラか、Microsoftから無料でダウンロードできるWindows SDK 10™のコンパイラを使用することです。
   


Microsoftコンパイラ一式で、32ビットと64ビットの両方のビルドが可能です。
PostgreSQLの32-ビットビルドは、Visual Studio 2015™からVisual Studio 2022™、およびスタンドアローンWindows SDKリリース10以降で可能です。
PostgreSQLの64-ビットビルドは、Microsoft Windows SDK™バージョン10以降またはVisual Studio 2015™以降でサポートされています。
    
   


お使いのビルド環境にサポートされているMicrosoft Windows SDK™のバージョンが同梱されていない場合は、https://www.microsoft.com/downloadからダウンロード可能な最新版（現在はバージョン10）にアップグレードすることを推奨します。
   


SDKのWindows Headers and Librariesを常にインクルードしなければなりません。
Visual C++ Compilersを含むWindows SDK™をインストールしている場合、構築のためにVisual Studio™は必要ありません。
バージョン8.0aでは、Windows SDKは完全なコマンドライン構築環境を提供していないことに注意してください。
   
必要条件





WindowsでPostgreSQL™を構築するには、以下のソフトウェアパッケージが必要です。

     
	Strawberry Perl™
	

ビルド生成スクリプトを実行するには、Strawberry Perlが必要です。
MinGWまたはCygwin Perlは動作しません。
また、PATHに存在する必要があります。
バイナリはhttps://strawberryperl.comからダウンロードできます。
       

	Bison™ and
        Flex™
	

Bison™とFlex™のバイナリはhttps://github.com/lexxmark/winflexbisonからダウンロードできます。
       




    


次の追加製品は、開始するために必要ではありませんが、完全なパッケージを構築するために必要です。

     
	Magicsplat Tcl™
	

PL/Tclを構築する場合に必要です。
バイナリはhttps://www.magicsplat.com/tcl-installer/index.htmlからダウンロードできます。
       

	Diff™
	

リグレッションテストを実行するにはdiffが必要です。
http://gnuwin32.sourceforge.netからダウンロードできます。
       

	Gettext™
	

NLSサポート付きで構築する場合はgettextが必要です。
http://gnuwin32.sourceforge.netからダウンロードできます。
バイナリ、依存物、開発用ファイルすべてが必要であることに注意してください。
       

	MIT Kerberos™
	

GSSAPI認証をサポートする場合に必要です。
MIT Kerberosはhttps://web.mit.edu/Kerberos/dist/index.htmlからダウンロードできます。
       

	libxml2™ and
        libxslt™
	

XMLサポートのために必要です。
バイナリはhttps://zlatkovic.com/pub/libxmlから、ソースはhttp://xmlsoft.orgからダウンロードできます。
libxml2はiconvを必要とすることに注意してください。
同じ場所からダウンロードできます。
       

	LZ4™
	

LZ4™圧縮方式のサポートのために必要です。
バイナリとソースはhttps://github.com/lz4/lz4/releasesからダウンロードできます。
       

	Zstandard™
	

Zstandard™圧縮方式のサポートのために必要です。
バイナリとソースはhttps://github.com/facebook/zstd/releasesからダウンロードできます。
       

	OpenSSL™
	

SSLサポートのために必要です。
バイナリはhttps://slproweb.com/products/Win32OpenSSL.htmlから、ソースはhttps://www.openssl.orgからダウンロードできます。
       

	ossp-uuid™
	

UUID-OSSPサポート（contribのみ）で必要です。
ソースはhttp://www.ossp.org/pkg/lib/uuid/からダウンロードできます。
       

	Python™
	

PL/Pythonを構築する場合に必要です。
バイナリはhttps://www.python.orgからダウンロードできます。
       

	zlib™
	

pg_dumpおよびpg_restoreにおける圧縮をサポートするために必要です。
バイナリはhttps://www.zlib.netからダウンロードできます。
       




    

64ビットWindowsに関する特別な考慮事項





64ビット版Windowsにおいてx64アーキテクチャのみPostgreSQLを構築できます。
    


同じ構築用ツリーで32ビット版と64ビット版を混在させることはサポートされません。
構築システムは32ビット環境で動作しているか64ビット環境で動作しているかを自動的に検出し、それにしたがってPostgreSQLを構築します。
このため構築作業を始める前に正しいコマンドプロンプトを開始することが重要です。
    


Python™やOpenSSL™などのサーバサイドのサードパーティ製ライブラリを使用するためには、ライブラリも64ビット版である必要があります。
64ビット版のサーバで32ビット版のライブラリをロードすることはサポートされていません。
PostgreSQLがサポートするサードパーティ製のライブラリで32ビット版しか利用できないものが複数あります。
こうした場合、64ビット版のPostgreSQLで使用することはできません。
    

クラッシュダンプの収集





もしWindows上のPostgreSQLがクラッシュした場合、Unixにおけるコアダンプと似た、クラッシュの原因を追跡するために使用できるminidumps™を生成できます。
このダンプはWindows Debugger Tools™やVisual Studio™を使うことで解析できます。Windowsにてダンプを生成できるように、crashdumpsという名前のサブディレクトリをデータベースクラスタディレクトリの中に作成します。
ダンプは、クラッシュ時の現在時間と原因となったプロセスの識別子を元にした一意な名前としてこのディレクトリの中に生成されます。
    



第18章 サーバの準備と運用





本章では、データベースサーバの設定と実行方法、そしてオペレーティングシステムとの相互作用について説明します。
 


本章で説明する手順は、追加の基盤を必要とせずに、単純なPostgreSQL™を使用していることを前提としています。例えば、前の章で説明した手順に従ってソースからビルドしてコピーした等です。
PostgreSQL™のパッケージ化された版またはベンダ提供版で作業している場合は、パッケージャがシステムの規約に従ってデータベースサーバをインストールし、開始するための特別な準備をしている場合があります。
詳細についてはパッケージレベルのドキュメントを参照してください。
 
PostgreSQL™ユーザアカウント





外部へアクセスできるサーバデーモンと同じように、PostgreSQL™を独立したユーザアカウントで実行することをお勧めします。
このユーザアカウントは、サーバによって管理されるデータのみを所有する必要があります。
また、他のデーモンとアカウントを共有しない方が良いです。
（例えば、nobodyユーザの使用はお勧めできません。）
このユーザによって所有される実行プログラムをインストールすることも好ましくありません。
特に、侵害されたサーバプロセスがこれらの実行可能ファイルを変更できないようにするために、このユーザアカウントは、PostgreSQL™実行可能ファイルを所有しないことをお勧めします。
  


パッケージ化された版のPostgreSQL™は、通常、パッケージのインストール中に自動的に適切なユーザアカウントを作成します。
  


システムにUnixのユーザアカウントを追加するためには、コマンドuseraddかadduserを使用してください。
postgresというユーザ名がよく使われ、本書全体でも使用していますが、好みの名前を使用しても構いません。
  


データベースクラスタの作成





まず最初に、ディスク上にデータベース格納領域を初期化する必要があります。
この格納領域をデータベースクラスタと呼びます。（標準SQLではカタログクラスタという用語が使用されています）。
データベースクラスタはデータベースの集合で、稼働しているデータベースサーバのただ一つのインスタンスを通して管理されます。
初期化が終わると、データベースクラスタにはpostgresという名前のデータベースが含まれています。
このデータベースは、ユーティリティ、ユーザ、サードパーティ製アプリケーションが使用するデフォルトデータベースになります。
データベースサーバ自身はこのpostgresデータベースの存在を必要としていませんが、多くの外部ユーティリティはその存在を想定しています。
初期化中に他にもtemplate1とtemplate0という2つのデータベースが各クラスタ内に作成されます。
その名前から推測できるように、これはその後に作成されるデータベースのテンプレートとして使われます。
したがって、実際の作業に使用しない方がよいです。
（クラスタ内における新しいデータベースの作成については22章データベース管理を参照してください。）
  


ファイルシステムの観点から見ると、データベースクラスタというのは、すべてのデータが格納される1つのディレクトリということになります。
これはデータディレクトリもしくはデータ領域と呼ばれます。
どこにデータを格納するかは完全にユーザの自由です。
特にデフォルトの領域はありませんが、一般的によく使われるのは/usr/local/pgsql/dataや/var/lib/pgsql/dataです。
データディレクトリは、使用前にPostgreSQL™と一緒にインストールされるコマンドinitdb(1)を使用して初期化する必要があります。
  


パッケージ化された版のPostgreSQL™を使用している場合は、データディレクトリを配置する場所について特別な規則がある場合があります。
また、データディレクトリを作成するためのスクリプトが提供されている場合もあります。
その場合は、initdbを直接実行するのではなくそのスクリプトを使用する必要があります。
詳細についてはパッケージレベルのドキュメントを参照してください。
  


データベースクラスタを手動で初期化するには、-Dオプションを使用してデータベースクラスタのファイルシステムの場所を指定しinitdbを実行します。
例えば次のようにします。


$ initdb -D /usr/local/pgsql/data



このコマンドは、前節で説明したPostgreSQL™ユーザアカウントでログインしている間に実行する必要があることに注意してください。
  
ヒント


-Dオプションを使う代わりにPGDATA環境変数を設定することもできます。
    
   



他にも以下のようにpg_ctl(1)プログラム経由でinitdbを実行することができます。


$ pg_ctl -D /usr/local/pgsql/data initdb



pg_ctlがデータベースサーバインスタンスの管理に使用する単一のコマンドになりますので、サーバの起動や停止にpg_ctlを使用している場合(「データベースサーバの起動」参照)はこちらの方がより直感的かもしれません。
  


もし指定したディレクトリが存在しない場合は、initdbはその新しいディレクトリを作成しようとします。
もちろん、その親ディレクトリに書き込み権限がない場合initdbは失敗します。
PostgreSQL™ユーザがデータディレクトリだけでなく、親ディレクトリも所有することを一般的に推奨します。
このようにすると問題になることはありません。
目的の親ディレクトリが存在しない場合は、まずそのディレクトリを作成する必要があります。
親の親ディレクトリが書き込み可能でない場合は、root権限を使用して作成します。
そのため、手順は下記のようになります。


root# mkdir /usr/local/pgsql
root# chown postgres /usr/local/pgsql
root# su postgres
postgres$ initdb -D /usr/local/pgsql/data


  


データディレクトリが存在し、すでにファイルが含まれている場合は、initdbは実行を拒否します。これは、誤って既存のインストールを上書きしないようにするためです。
  


データディレクトリにはデータベースの中のすべてのデータが保持されるため、権限を持たない人からのアクセスを確実に制限することが不可欠です。
ですから、initdbはPostgreSQL™ユーザ、更にオプションでグループ以外からのアクセス権を剥奪します。
許可されている場合には、グループアクセスは読み出し専用になります。
これにより、クラスタの所有者と同じグループに所属する非特権ユーザが、そのクラスタのデータをバックアップすることや、読み出し権限だけが必要なその他の操作を実行することが可能になります。
  


既存のクラスタに対してグループアクセスを有効にする、あるいは無効にするには、PostgreSQL™を再起動する前に、クラスタが停止済みの状態で、すべてのディレクトリとファイルに適切なモードが設定されている必要があることに注意してください。
そうでないと、データディレクトリ内に異なるモードが混在してしまうかもしれません。
所有者のみにアクセスを許可するクラスタでは、適切なディレクトリのモードは0700で、ファイルモードは0600です。
加えてグループに対して読み出しを許可するクラスタでは、適切なディレクトリのモードは0750で、ファイルモードは0640です。
  


しかし、ディレクトリの内容は安全ですが、デフォルトのクライアント認証の設定では、すべてのローカルユーザはデータベースに接続でき、データベーススーパーユーザになることさえ可能です。
他のローカルユーザを信用しない場合、initdbの-W、--pwprompt、--pwfileオプションのいずれか1つを使用して、データベーススーパーユーザにパスワードを付与することを推奨します。
   
また、デフォルトのtrust認証モードを使用しないように、-A scram-sha-256を指定してください。
もしくは、initdbの後、初回のサーバの起動の前に、生成済みのpg_hba.confファイルを変更してください。
（他の穏当な方法として、peer認証やファイルシステムの権限を使用して、接続を制限することもできます。
詳細については20章クライアント認証を参照してください。）
  


initdbはまた、データベースクラスタのデフォルトのロケールを初期化します。
通常は、環境のロケール設定を初期化されたデータベースにそのまま適用します。
データベースに異なるロケールを指定することも可能です。
詳細については「ロケールのサポート」を参照してください。
特定のデータベースクラスタ内で使用されるデフォルトのソート順はinitdbで設定されます。
異なるソート順を使用する新しいデータベースを作成することもできますが、initdbが作成するテンプレートデータベースで使用される順は削除して再作成しない限り変更することができません。
また、CやPOSIX以外のロケールを使用する場合には性能上の影響もあります。
ですので初回にこれを正しく選択することが重要です。
  


またinitdbは、データベースクラスタのデフォルトの文字集合符号化方式も設定します。
通常これは、ロケールの設定と合うものが選ばれなければなりません。
詳細は「文字集合サポート」を参照してください。
  


非Cおよび非POSIXのロケールでは、文字集合のソート順はオペレーティングシステムの照合ライブラリに依存しています。
これは、インデックスに格納されているキーの順序を制御します。
このためにクラスタは、スナップショットのリストア、バイナリストリーミングレプリケーション、異なるオペレーティングシステム、またはオペレーティングシステムのアップグレードのいずれでも互換性のない照合ライブラリバージョンに切り替えることは出来ません。
  
セカンダリファイルシステムの使用





多くのインストールでは、マシンの「ルート」ボリューム以外のファイルシステム（ボリューム）上にデータベースクラスタを作成します。
この選択をした場合、セカンダリボリュームの最上位ディレクトリ（マウントポイント）をデータディレクトリとして使用することはお勧めできません。
最善の方法はマウントポイントディレクトリ内にPostgreSQL™ユーザが所有するディレクトリを作成し、その中にデータディレクトリを作成することです。
これにより、権限の問題、特にpg_upgradeなどの操作での問題を避けることができ、またセカンダリボリュームがオフラインになったときに、確実にきれいなエラーを起こすようになります。
   

ファイルシステム





一般的にはPOSIXのセマンティクスを備えたすべてのファイルシステムがPostgreSQLで利用できます。
ユーザはベンダのサポート、性能、慣れ親しんでいるかどうかなどの様々な理由で異なるファイルシステムを選択します。
経験が示すところによると、これ以外の要素が同じなら、単にファイルシステムを変更したり、ファイルシステムの設定を少し変えただけで大きな性能の違いや挙動の違いがあるとは思わないほうが良いでしょう。
   
NFS





PostgreSQL™のデータディレクトリを格納するためにNFSファイルシステムが使えます。
PostgreSQL™はNFSファイルシステムのために何ら特別なことはしません。つまりNFSがローカルに接続されたドライブと完全に同じように振る舞うものとみなします。
PostgreSQL™は、ファイルのロックなど、NFS上で非標準の振る舞いをすると知られている機能は使いません。
    


NFSをPostgreSQL™で使う上での必須要件はhardオプションを使ってファイルシステムをマウントすることです。
hardオプションでは、ネットワークに問題があればプロセスは永久に「ハング」する可能性があります。ですからこの設定では注意深い監視が必要になります。
softオプションはネットワークに問題があるとシステムコールに割り込みますが、PostgreSQL™はこの方法で割り込まれたシステムコールを再発行しません。ですからそのような割り込みに対してはI/Oエラーの発生が報告されることとなります。
    


syncマウントオプションを使う必要はありません。
asyncオプションの動作で十分です。なぜならPostgreSQL™は書き込みキャッシュをフラッシュするために適切な時にfsync呼び出しを発行するからです。
（これはローカルファイルシステム上での動作と同様です。）
しかし、syncエクスポートオプションがあるシステム（主にLinux）上のNFSサーバでは、そのオプションを使うことを強くお勧めします。
さもないとNFSクライアント上のfsync、あるいは同等ものは実際にはサーバ上の永続ストレージに到達することが保証されず、fsyncパラメータをオフにして実行するのと同じような破壊をもたらす可能性があります。
これらのマウントオプションとエクスポートオプションのデフォルトはベンダとバージョンによって違います。ですから曖昧さを避けるためにこれらのオプションをチェックし、また常に明示的にオプションを指定したほうが良いでしょう。
    


場合によっては外部ストレージ製品は、NFSあるいはiSCSIのような低レベルのプロトコルのどちらでもアクセスできます。
後者の場合にはストレージはブロックデバイスとして扱われ、利用可能などのようなファイルシステムもその上に作ることができます。
このアプローチはNFSの特異性に対処することからDBAを解放するかも知れません。もちろんリモートストレージを管理する複雑さが別のレベルで起こってしまいますが。
    



データベースサーバの起動





データベースにアクセスするためには、まずデータベースサーバを起動しなくてはいけません。
データベースサーバプログラムはpostgresという名前です。

  


パッケージ化された版のPostgreSQL™を使用している場合は、オペレーティングシステムの規則に従って、サーバをバックグラウンドタスクとして実行するための提供がほぼ確実に含まれています。
パッケージの基盤を使用してサーバを起動させるほうが、自分でこれをおこなう方法を理解するよりもはるかに作業量が少なくなります。
詳細についてはパッケージレベルのドキュメントを参照してください。
  


サーバを手動で起動するための必要最低限の方法は、-Dオプションを使用してデータディレクトリの場所を指定postgresを直接呼び出することです。
次に例を示します。


$ postgres -D /usr/local/pgsql/data



上記のコマンドはサーバをフォアグラウンドで実行させます。
これは、PostgreSQL™ユーザアカウントでログインしている間に実行されなくてはいけません。
-Dオプションが指定されていない場合、サーバはPGDATA環境変数で指定されたデータディレクトリを使用しようと試みます。
どちらの変数も指定されていなければ失敗します。
  


通常はバックグラウンドでpostgresを起動することをお勧めします。
そのためには以下のように通常のUnixシェルの構文を使います。


$ postgres -D /usr/local/pgsql/data >logfile 2>&1 &



この例のように、サーバの標準出力と標準エラー出力をどこかに保管しておくことが重要です。
これは監査目的と問題の原因究明に役立ちます。
（ログファイルの取り扱いについての全体的な説明については「ログファイルの保守」を参照してください。）
  


postgresプログラムには、この他にも多くのコマンドラインオプションを指定することができます。
詳細はpostgres(1)リファレンスページと後述の19章サーバ設定を参照してください。
  


こうしたシェル構文は長くなりがちです。そのため、
pg_ctl(1)
ラッパープログラムが提供されていて、いくつかのタスクを単純化しています。
以下に例を示します。


pg_ctl start -l logfile



これは、サーバをバックグラウンドで起動し、出力を指定されたログファイルに書き出します。
-Dオプションは、ここでもpostgresの場合と同じ意味を持ちます。
pg_ctlによってサーバを停止させることもできます。
  


通常、コンピュータが起動された時にデータベースサーバも一緒に起動したい場合が多いと思われます。
   
自動起動スクリプトはオペレーティングシステム固有のものです。
いくつかのスクリプトの例はPostgreSQL™のcontrib/start-scriptsディレクトリに同梱されています。
このインストールにはおそらくroot権限が必要となります。
  


起動時にデーモンを開始する方法はシステムによって異なります。
多くのシステムには/etc/rc.localファイルや/etc/rc.d/rc.localファイルがあります。
他のシステムではinit.dやrc.dディレクトリが使用されます。
何を実行するにしても、サーバはPostgreSQL™ユーザアカウントで起動させなければなりません。
rootであってはいけませんし、他のユーザでもいけません。
したがって、su postgres -c '...'を使用してコマンドを実行する必要があるでしょう。
以下に例を示します。


su postgres -c 'pg_ctl start -D /usr/local/pgsql/data -l serverlog'


  


さらにいくつかのオペレーティングシステム固有の提案を挙げます。
（ここでは一般的な値で説明していますので、各項目において適切なインストールディレクトリとユーザ名に置き換えて読んでください。）

   
	

FreeBSD™では、PostgreSQL™のソース配布物の中にあるcontrib/start-scripts/freebsdファイルを参照してください。

     

	

OpenBSD™では、以下の数行を/etc/rc.localファイルに追加してください。



if [ -x /usr/local/pgsql/bin/pg_ctl -a -x /usr/local/pgsql/bin/postgres ]; then
    su -l postgres -c '/usr/local/pgsql/bin/pg_ctl start -s -l /var/postgresql/log -D /usr/local/pgsql/data'
    echo -n ' postgresql'
fi


     

	

Linux™システムでは、



/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/data



を/etc/rc.d/rc.localや/etc/rc.localに追加してください。
または、PostgreSQL™のソース配布物の中にあるcontrib/start-scripts/linuxファイルを参照してください。
     


systemdを使用する場合は以下のサービスユニットファイルを（例えば/etc/systemd/system/postgresql.serviceとして）使用できます。



[Unit]
Description=PostgreSQL database server
Documentation=man:postgres(1)
After=network-online.target
Wants=network-online.target

[Service]
Type=notify
User=postgres
ExecStart=/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data
ExecReload=/bin/kill -HUP $MAINPID
KillMode=mixed
KillSignal=SIGINT
TimeoutSec=infinity

[Install]
WantedBy=multi-user.target



Type=notifyを使うには、サーバのバイナリがconfigure --with-systemdでビルドされている必要があります。
     


タイムアウトの設定について慎重に検討してください。
この文書を書いている時点で、systemdのデフォルトのタイムアウトは90秒で、その時間内に準備ができたことを報告しないプロセスは終了させられます。
しかし、PostgreSQL™サーバは起動時にクラッシュリカバリを実行せねばならないことがあり、準備ができるまでにそれよりずっと長い時間を要することがあります。
ここで提案されているinfinityという値は、そのタイムアウトの仕組みを無効にします。
     

	

NetBSD™では、FreeBSD™かLinux™の好きな方の起動スクリプトを使用してください。

     

	

Solaris™では、/etc/init.d/postgresqlというファイルを作成し、そこに以下の1行を記述してください。




su - postgres -c "/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/data"



そして、/etc/rc3.d以下にS99postgresqlとしてそのファイルに対するシンボリックリンクを作成してください。
     





  


サーバが実行している間は、そのPIDはデータディレクトリの中のpostmaster.pidファイルに記述されています。
これは同じデータディレクトリで複数のサーバインスタンスが実行されるのを防止し、また、サーバの停止にも使うことができます。
   
サーバ起動の失敗





サーバの起動が失敗する理由として代表的なものがいくつかあります。
サーバのログファイルを点検するか、（標準出力や標準エラーをリダイレクトせずに）手動で起動して、どのようなエラーメッセージが出ているか確認してください。
以下に、よく発生するエラーメッセージのいくつかをより詳細に説明します。
    



LOG:  could not bind IPv4 address "127.0.0.1": Address already in use
HINT:  Is another postmaster already running on port 5432? If not, wait a few seconds and retry.
FATAL:  could not create any TCP/IP sockets



これはたいていの場合メッセージが示す通りの意味です。
既にサーバが動いているポートで別のサーバを起動しようとしたことを示しています。
しかし、カーネルエラーメッセージがAddress already in useやそれに類似したものではない場合は、別の問題の可能性もあります。
例えば、予約済みのポート番号でサーバを起動しようとすると下記のようなメッセージが出るかもしれません。


$ postgres -p 666
LOG:  could not bind IPv4 address "127.0.0.1": Permission denied
HINT:  Is another postmaster already running on port 666? If not, wait a few seconds and retry.
FATAL:  could not create any TCP/IP sockets


    


次のようなメッセージが表示された場合、


FATAL:  could not create shared memory segment: Invalid argument
DETAIL:  Failed system call was shmget(key=5440001, size=4011376640, 03600).



これは、おそらくカーネルによる共有メモリのサイズの上限がPostgreSQL™が作ろうとしている作業領域（この例では4011376640バイト）よりも小さいことを示しています。
これはshared_memory_typeをsysvに設定した場合にのみ発生する可能性があります。
その場合は、サーバを通常よりも少ないバッファ数（shared_buffers）で起動するか、カーネルを再設定して許容される共有メモリサイズを増やすこともできます。
このメッセージは、同じマシン上で複数のサーバを起動しようとした時に、要求された領域の合計がカーネルの上限を超えた場合にも表示されます。
    


下記のようなエラーの場合:


FATAL:  could not create semaphores: No space left on device
DETAIL:  Failed system call was semget(5440126, 17, 03600).



ディスクの空き容量がなくなったということを示しているわけではありません。
これはカーネルのSystem Vセマフォの上限が、PostgreSQL™が作成しようとしている数よりも小さいということを意味しています。
上記のように、許可される接続の数（max_connections）を減らしてサーバを起動させることで問題は回避できるかもしれませんが、最終的にはカーネルの設定を変えてセマフォの上限を増やした方が良いでしょう。
    


System V IPC設備の設定についての詳細は「共有メモリとセマフォ」を参照してください。
    

クライアント接続の問題





クライアント側で起こり得るエラー状態はきわめて多様で、アプリケーションに依存します。
その中のいくつかはサーバが起動された方法と直接関係するかもしれません。
以下で説明する以外の状態については各々のクライアントアプリケーションの資料を参照してください。
    



psql: error: connection to server at "server.joe.com" (123.123.123.123), port 5432 failed: Connection refused
        Is the server running on that host and accepting TCP/IP connections?



これは一般的な「接続するサーバが見つけられませんでした」という失敗です。
TCP/IP通信を試みた時に上記のように表示されます。
よくある間違いは、サーバがリモートのTCP接続を受け入れるようにlisten_addressesを設定するのを忘れていることです。
    


代わりに、ローカルのサーバにUnixソケット通信を試みると下記のような表示が出ます。


psql: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: No such file or directory
        Is the server running locally and accepting connections on that socket?



サーバが実行中にもかかわらずこうなるなら、クライアントが想定しているソケットパス（ここでは/tmp）がサーバのunix_socket_directories設定と一致しているかどうか確認してください。
    


接続失敗のメッセージは常にサーバのアドレスか、ソケットパス名を表示し、クライアントが正しいところに接続しようとしていることを確認するのに役立ちます。
もしそこを接続待ちしているサーバがない場合、典型的なカーネルエラーメッセージは、表示されているようにConnection refusedもしくはNo such file or directoryとなります。
（この場合のConnection refusedはサーバが接続要求を受け付けた後に拒否したわけではないということを理解しておくことが大切です。
もしそうだった場合は「認証における問題点」で示されるような別のメッセージが表示されます。）
Connection timed outのような他のメッセージは、例えばネットワーク接続の欠如、あるいはファイアウォールが接続をブロックしているようなもっと根本的な問題を表しています。
    


カーネルリソースの管理





PostgreSQL™は、特に同一システム上で複数のサーバコピーを実行している場合や非常に大規模なインストレーションでは、オペレーティングシステムの様々なリソース制限を超えてしまうことがあります。
本節では、PostgreSQL™で使用されるカーネルリソース、およびカーネルリソース消費に関連した問題を解消する時に取ることができる手順について説明します。
  
共有メモリとセマフォ





PostgreSQL™はオペレーティングシステムが、プロセス間通信(IPC)特に共有メモリとセマフォ機能を提供することを要求します。
Unix（派生）システムでは、「System V」 IPCや、「POSIX」 IPC、またはその両方を提供します。
Windowsは、これらの機能を独自で実装しているため、ここでは説明しません。
   


デフォルトではPostgreSQL™は通常、非常に少量のSystem V共有メモリと、もっと大量の無名mmap共有メモリを割り当てます。
代替方法として、単一の大きなSystem Vメモリリージョンも利用できます
（shared_memory_type参照）。

さらに、System V又はPOSIXスタイルのどちらかのセマフォがサーバの起動時に作成されます。
現在、LinuxとFreeBSDシステムではPOSIXセマフォが使用され、それ以外のプラットフォームではSystem Vセマフォが使用されます。
   


System V IPC機能は、通常システム全体の割り当て制限に制約されます。
PostgreSQL™がこれらの制限のいずれかを超えると、サーバは起動を拒否し、問題および何をすべきかを説明するエラーメッセージを残します。
（「サーバ起動の失敗」 も参照してください。）
関係するカーネルパラメータは別々のシステム上でも統一して名付けられています。
表18.1「System V IPCパラメータ」で概略がわかります。
しかしこれらを設定するための方法は異なります。
以下に、いくつかのプラットフォームへの提案を挙げます。
   
表18.1 System V IPCパラメータ
	名前	説明	一つのPostgreSQL™インスタンスに必要な値
	SHMMAX	共有メモリセグメントの最大サイズ（バイト）	最小でも1キロバイト（ただしデフォルトはもっと多くなっています）
	SHMMIN	共有メモリセグメントの最小サイズ（バイト）	1
	SHMALL	使用可能な共有メモリの総量（バイトまたはページ）	バイト指定の場合はSHMMAXと同じ。ページ指定の場合はceil(SHMMAX/PAGE_SIZE)。 + 他のアプリケーション用の空間
	SHMSEG	プロセスごとの共有メモリセグメントの最大数	必要なのは1セグメントのみ（ただしデフォルトはもっと多くなっています）
	SHMMNI	システム全体の共有メモリセグメントの最大数	SHMSEGと同様 + 他のアプリケーション用の空間
	SEMMNI	セマフォ識別子の最大数（つまりセット）	最低ceil(num_os_semaphores / 16) + 他のアプリケーション用の空間
	SEMMNS	システム全体のセマフォの最大数	ceil(num_os_semaphores / 16) * 17 + 他のアプリケーション用の空間
	SEMMSL	セットごとのセマフォの最大数	最低17
	SEMMAP	セマフォマップの中の項目の数	本文を参照
	SEMVMX	セマフォの最大値	最低1000（デフォルトはしばしば32767ですが、必要がなければ変更しないでください）





PostgreSQL™は、サーバのコピー毎にSystem V共有メモリの数バイト（64ビットプラットフォームでは通常48バイト）を必要とします。
最近のほとんどのオペレーティングシステムでは、このくらいの量は簡単に割り当てられます。
しかし複数のサーバのコピーを実行している場合やSystem V共有メモリを使用する他のアプリケーションを実行している場合（shared_memory_typeおよびdynamic_shared_memory_typeを参照）は、システム全体のSystem V共有メモリであるSHMALLを増加させる必要があるかもしれません。
多くのシステムではSHMALLをバイト単位ではなくページ単位で測ることに注意してください。
   


問題が少ないのは共有メモリセグメントの最小サイズ（SHMMIN）で、PostgreSQL™では最大でもおよそ32バイトのはずです（通常では1です）。
システム全体のセグメントの最大数（SHMMNI）もしくはプロセスごとのセグメントの最大数（SHMSEG）に関して、使用しているシステムで0に設定されていない限り、問題が起きることはほぼありません。
   


System Vセマフォを使用する場合、PostgreSQL™は許可される接続数（max_connections）、許可されるautovacuumワーカープロセス数（autovacuum_worker_slots）、許可されるWAL送信プロセス数（max_wal_senders）、許可されるバックグラウンドプロセス数（max_worker_processes）などに対して、セマフォを16個ずつのセットで使用します。
実行時に計算されるパラメータnum_os_semaphoresは必要なセマフォの数を報告します。
このパラメータは、以下のようなpostgresコマンドでサーバを起動する前に確認できます。


$ postgres -D $PGDATA -C num_os_semaphores


   


各16個のセマフォのセットには、他のアプリケーションで使用されているセマフォセットとの衝突を検出するための「マジックナンバー」を含む17番目のセマフォも含まれます。
システム内のセマフォの最大数はSEMMNSによって設定され、そのため必要なセマフォ16個ごとに1つ余分に加えたnum_os_semaphores以上でなくてはいけません（表18.1「System V IPCパラメータ」の式を参照）。
SEMMNIパラメータはシステム上に同時に存在できるセマフォ集合の数の上限を決定します。
ですから、このパラメータは少なくともceil(num_os_semaphores / 16)以上はなくてはいけません。
一時的な失敗の回避策としては許可される接続の数を下げることができますが、「No space left on device」という紛らわしい言葉がsemget関数から表示されます。
   


場合によってはSEMMAPを少なくともSEMMNSと同程度に増やすことが必要になる場合があるかもしれません。
システムにこのパラメータがあるなら（ないかもしれません）、このパラメータはセマフォリソースマップのサイズを定義し、その中では有効なセマフォのそれぞれの隣接したブロックの項目が必要です。
セマフォ集合が解放されると、解放されたブロックに隣接する既に存在する項目に追加されるか、もしくは新しいマップの項目の下に登録されます。
もしマップが一杯だった場合、解放されたセマフォは（再起動するまで）失われます。
セマフォ空間の断片化により時間が経つごとに、有効なセマフォがあるべき量よりも少なくなる可能性があります。
   


SEMMNUとSEMUMEのような、その他の様々な「semaphore undo」に関する設定はPostgreSQL™には影響を与えません。
   


POSIXセマフォを使用している場合、System Vと同じ数のセマフォを必要とします。
つまり、許可した接続（max_connections）、許可したオートバキュームワーカープロセス（autovacuum_worker_slots）、許可したWAL送信プロセス（max_wal_senders）、許可したバックエンドプロセス（max_worker_processes）などに対して1つのセマフォです。
このオプションが優先されるプラットフォームでは、POSIXセマフォの数に特定のカーネル制限はありません。
   
	FreeBSD
      
      
      
	

shared_memory_typeをsysvに設定していない限り、通常はデフォルトの共有メモリ設定で十分です。
System V セマフォはこのプラットフォームでは使用しません。
       


デフォルトのIPC設定はsysctlまたはloaderインタフェースを使用して変更を行うことができます。
以下ではsysctlを使用してパラメータを変更しています。


# sysctl kern.ipc.shmall=32768
# sysctl kern.ipc.shmmax=134217728



これらの設定を再起動しても永続化するには、/etc/sysctl.confを変更します。
       


shared_memory_typeをsysvに設定している場合は、System V共有メモリをRAM上に固定して、スワップによってページアウトされるのを避けるために、カーネルを設定することもできます。
これはsysctlを使用してkern.ipc.shm_use_physを設定することで実現できます。
       


FreeBSD jailを実行している場合、sysvshmパラメータをnewに設定して、独自のSystem V共有メモリ名前空間を有するようにする必要があります。
（FreeBSD 11.0以前は、jailからIPC名前空間への共有アクセスを可能にし、衝突を避けるための対策を講じる必要がありました。）
       

	NetBSD
      
      
      
	

shared_memory_typeをsysvに設定していない限り、通常はデフォルトの共有メモリ設定で十分です。
ただし、kern.ipc.semmniとkern.ipc.semmnsを増やす必要があります。
NetBSDのデフォルト設定では実用的でないほど小さいためです。
       


以下の例のようにIPCパラメータをsysctlを用いて調整することができます。


# sysctl -w kern.ipc.semmni=100



これらの設定を再起動しても永続化するには、/etc/sysctl.confを変更します。
       


shared_memory_typeをsysvに設定している場合は、System V共有メモリをRAM上に固定して、スワップによってページアウトされるのを避けるために、カーネルを設定することもできます。
これはsysctlを使用してkern.ipc.shm_use_physを設定することで実現できます。
       

	OpenBSD
      
      
      
	

shared_memory_typeをsysvに設定していない限り、通常はデフォルトの共有メモリ設定で十分です。
ただし、kern.seminfo.semmniとkern.seminfo.semmnsを増やす必要があります。
OpenBSDのデフォルト設定では実用的でないほど小さいためです。
       


以下の例のようにIPCパラメータをsysctlを用いて調整することができます。


# sysctl kern.seminfo.semmni=100



これらの設定を再起動しても永続化するには、/etc/sysctl.confを変更します。
       

	Linux
      
      
      
	

shared_memory_typeをsysvに設定していて、低いデフォルトで出荷されたより古いカーネルバージョンでない限り、通常はデフォルトの共有メモリ設定で十分です。
System V セマフォはこのプラットフォームでは使用しません。
       


共有メモリサイズの設定はsysctlインタフェースを使用して変更可能です。
例えば16ギガバイトまで許すには以下のようにします。


$ sysctl -w kernel.shmmax=17179869184
$ sysctl -w kernel.shmall=4194304



これらの設定を再起動しても永続化するには、/etc/sysctl.confを参照してください。
       

	macOS
      
      
      
	

shared_memory_typeをsysvに設定していない限り、通常はデフォルトの共有メモリとセマフォ設定で十分です。
       


macOSにおける共有メモリの推奨設定方法は、以下のような変数代入文からなる/etc/sysctl.confという名称のファイルを作成することです。


kern.sysv.shmmax=4194304
kern.sysv.shmmin=1
kern.sysv.shmmni=32
kern.sysv.shmseg=8
kern.sysv.shmall=1024



一部のバージョンのmacOSでは/etc/sysctl.conf内に共有メモリパラメータ5つすべてを設定しなければならないという点に注意してください。
さもなくば値が無視されます。
       


SHMMAXは4096の倍数のみ設定できます。
       


このプラットフォームではSHMALLは4キロバイトページ単位です。
       


SHMMNI以外の変更は、sysctlを用いることにより、その場でおこなうことができます。
しかしいずれにせよ/etc/sysctl.conf経由で望む値に設定することが最善です。
再起動を行っても値が保持されるからです。
       

	Solaris, illumos
	

大抵のPostgreSQL™アプリケーションではデフォルトの共有メモリとセマフォ設定で十分です。
SolarisのデフォルトのSHMMAXはシステムのRAMの1/4になりました。
さらにこの設定を調整するためには、postgresユーザに関するプロジェクト設定を使用しなければなりません。
例えば以下をroot権限で実行してください。


projadd -c "PostgreSQL DB User" -K "project.max-shm-memory=(privileged,8GB,deny)" -U postgres -G postgres user.postgres


       


このコマンドはuser.postgresプロジェクトを追加し、postgresユーザの共有メモリの最大サイズを8GBに設定します。
この影響は次にこのユーザがログインした時、またはPostgreSQL™を再起動した時（再読み込み時ではありません）に有効になります。
上ではPostgreSQL™はpostgresグループに属するpostgresユーザにより実行されていることを前提としています。
サーバの再起動は不要です。
       


多くの接続を受け付けるデータベースサーバにおいて推奨するカーネル設定にはこの他に以下があります。


project.max-shm-ids=(priv,32768,deny)
project.max-sem-ids=(priv,4096,deny)
project.max-msg-ids=(priv,4096,deny)


       


さらに、ゾーン内でPostgreSQL™を実行している場合、ゾーンのリソース使用上限も上げる必要があるかもしれません。
projectsとprctlについてはSystem Administrator's Guideの第2章 プロジェクトとタスクを参照してください。
       




systemd RemoveIPC





systemd™が使用されている場合、（共有メモリを含む）IPCリソースがオペレーティングシステムによって時期尚早に削除されないように注意する必要があります。
これはPostgreSQLをソースからインストールした場合に特に重要です。
PostgreSQLのディストリビューションパッケージのユーザは、通常postgresユーザがシステムユーザで作成されるため、影響を受けにくいでしょう。
   


logind.confのRemoveIPCの設定はユーザが完全にログアウトしたときにIPCオブジェクトを削除するかどうかを制御します。
システムユーザは免除されます。
この設定のデフォルトはsystemd™ですが、いくつかのオペレーティングシステムではデフォルトでオフになっています。
   


この設定が有効になっている時の典型的な影響は、並列問い合わせの実行で使われる共有メモリオブジェクトが見かけ上ランダムな時間に削除され、共有メモリオブジェクトをオープンしようとしたり、削除しようとしたりした時に以下のようなエラーや警告が出ることです。


WARNING:  could not remove shared memory segment "/PostgreSQL.1450751626": No such file or directory



IPCオブジェクトの違い（共有メモリ vs. セマフォ、System V vs. POSIX）はsystemd™によって若干扱いが異なるため一部のIPCは他のものと違って削除されないことがあります。
しかし、これらの微妙な違いに依存することはお勧めできません。
   


「ユーザログアウト」は、メンテナンスジョブの一環として、又は手動で、管理者がpostgresユーザや類似のユーザでログインする可能性があるため、一般的に防止することは困難です。
   


「システムユーザ」は、/etc/login.defsのSYS_UID_MAXの設定によりsystemd™のコンパイル時に決定されます。
   


パッケージとデプロイスクリプトは、useradd -r, adduser --system又は同等のコマンドを使用してpostgresユーザを作成するように注意する必要があります。
   


また、ユーザアカウントが誤って作成されて変更出来ないような場合は、以下を設定することを推奨します。


RemoveIPC=no



/etc/systemd/logind.conf又はその他の設定ファイルで上記を入れます。
   
注意


これらの２つのうち少なくとも１つが保証されてないとなりません。そうでないとPostgreSQLサーバは非常に信頼性が低くなります。
    


リソースの制限





UnixライクなオペレーティングシステムではPostgreSQL™サーバの操作と関係する可能性のある様々な種類のリソース制限があります。
特に重要なのは、ユーザごとのプロセス数の制限、プロセスごとのオープンファイルの数、プロセスごとの利用可能なメモリの量です。
これらのそれぞれが「ハード」と「ソフト」の2つの制限を持っています。
ソフト制限が実際に有効な制限ですが、ユーザによってハード制限まで変えることが可能です。
ハード制限はrootユーザによってのみ変えることができます。
setrlimitシステムコールがこれらのパラメータの設定を行います。
シェルの組み込みコマンドulimit（Bourne シェル）もしくはlimit（csh）は、コマンドラインからリソース制限を制御するために使われます。
BSD派生システム上では/etc/login.confファイルが、ログイン時に設定される様々なリソース制限を制御します。
詳細はオペレーティングシステムの文書を参照してください。
関連するパラメータはmaxproc、openfiles、datasizeです。
以下に例を示します。


default:\
...
        :datasize-cur=256M:\
        :maxproc-cur=256:\
        :openfiles-cur=256:\
...



（-curはソフト制限です。
ハード制限を設定するためには-maxを付けてください。）
   


カーネルはいくつかのリソースに対して、システム全体の制限も持つことができます。
    
	

Linux™カーネルパラメータfs.file-maxは、カーネルがサポートするオープンファイルの最大数を決定します。
これはsysctl-w fs.file-max=Nで変更できます。
再起動後もこの設定を保持するには、/etc/sysctl.confに割り当てを追加します。
プロセスあたりのファイル数の上限は、カーネルのコンパイル時に固定されます。
詳細は/usr/src/linux/Documentation/proc.txtを参照してください。
      




   


PostgreSQL™サーバは接続ごとに1つのプロセスを使うので、少なくとも許可された接続の数だけのプロセスに残りのシステムで必要な分を追加したものが必要になります。
通常はこれは問題ではありませんが、1つのマシン上でいくつかのサーバを起動している場合は厳しい状況になるかもしれません。
   


オープンファイルの制限の出荷時のデフォルトは、しばしば大多数のユーザはマシン上でシステムリソースの不正使用をしないという前堤に立った「社会的に友好的な」値を設定してしまいます。
もし1つのマシン上で複数のサーバを起動する場合はそれが必要でしょうが、専用サーバではこの制限を上げたいかもしれません。
   


反対に、個々のプロセスが多数のファイルをオープンすることを許可するシステムもあります。
そのようなプロセスが数個以上あれば、システム全体の制限は簡単に超えてしまいます。
この発生を検知し、システム全体の制限の変更を望まない場合は、PostgreSQL™のmax_files_per_process設定パラメータを設定し、オープンファイルの消費を制限することができます。
   


多数のクライアント接続をサポートする場合に懸念されるもう1つのカーネル制限は、ソケット接続キューの最大長です。
非常に短い時間内にそれ以上の数の接続要求が到着すると、PostgreSQL™サーバが要求を処理する前に一部が拒否される可能性があります。
これらのクライアントは「Resource temporarily unavailable」や「Connection refused」などの役に立たない接続失敗エラーを受け取ります。
多くのプラットフォームでデフォルトのキュー長制限は128です。
これを上げるにはsysctlで適切なカーネルパラメータを調整し、PostgreSQL™サーバを再起動します。
このパラメータはLinuxではnet.core.somaxconn、新しいFreeBSDではkern.ipc.soacceptqueue、macOSや他のBSD系ではkern.ipc.somaxconnと様々な名前が付けられています。
   

Linuxのメモリオーバーコミット





Linuxでのデフォルトの仮想メモリの動作はPostgreSQL™には最適ではありません。
カーネルがメモリオーバーコミットを実装する方法のため、カーネルは、PostgreSQL™や他のプロセスのメモリ要求がシステムの仮想メモリを枯渇させた場合、PostgreSQL™ postmaster （スーパーバイザサーバプロセス）を終了させる可能性があります。
   


これが発生した場合、以下のようなカーネルメッセージが現れます
（こうしたメッセージを検索する場所についてはシステム文書と設定を参照してください）。


Out of Memory: Killed process 12345 (postgres).



これは、postgresプロセスがメモリ不足のために終了してしまったことを示します。
起動中のデータベース接続は正常に動作しますが、新しい接続は受け付けられません。
復旧するには、PostgreSQL™を再起動しなければなりません。
   


この問題を防止する1つの方法として、PostgreSQL™を他のプロセスがそのマシンのメモリを枯渇させないことが確実なマシンで起動するというものがあります。
物理メモリとスワップ領域が消費尽くされた時のみにメモリ不足（OOM）killerが発生するため、メモリが不足する場合、オペレーティングシステムのスワップ領域を増やすことが問題解決の役にたちます。
   


PostgreSQL™自体が実行中のシステムのメモリ不足を引き起こした場合、設定を変更することで問題を防止することができます。
場合によっては、メモリ関連の設定パラメータ、shared_buffers、work_memおよびhash_mem_multiplierを低くすることで回避できる場合もあります。
この他にもデータベースサーバ自体への接続を多く許可しすぎることで問題が引き起こされる場合もあります。
多くの場合、max_connectionsを減らし、外部のコネクションプールソフトウェアを使用することで改善されます。
   


メモリを「オーバーコミット」させないようにカーネルの動作を変更することができます。
この設定は完全にOOM killerの発生を防ぐことはできませんが、その発生頻度をかなり軽減しますので、システム動作の堅牢性をより高めます。
これは、以下のようにsysctlを使用して厳密なオーバーコミットモードを選択することで実施されます。


sysctl -w vm.overcommit_memory=2



または/etc/sysctl.confに同等のエントリを配置します。
また、関連するvm.overcommit_ratio設定を変更した方が良いでしょう。
詳細はカーネル文書ファイルhttps://www.kernel.org/doc/Documentation/vm/overcommit-accountingを参照してください。
   


vm.overcommit_memoryの変更と関係なく使用できるその他の方法は、プロセス固有のOOMスコア調整値をpostmasterプロセス向けに-1000に設定することです。
これによりOOM killerの対象とならないことが保証されます。
このための最も簡単な方法は以下をPostgreSQL™の起動スクリプト内でpostgresを実行する直前に実行することです。


echo -1000 > /proc/self/oom_score_adj



この作業をrootで実行しなければならないことに注意して下さい。
さもないと効果がありません。
このためrootが所有する起動スクリプトが、これを行うための最も簡単な場所です。
その場合には、起動スクリプトのpostgresの起動前に以下の環境変数を設定することも推奨します。


export PG_OOM_ADJUST_FILE=/proc/self/oom_score_adj
export PG_OOM_ADJUST_VALUE=0



これらの設定は、いざという時にpostmasterの子プロセスをOOM killerのターゲットに出来るようにOOMスコア調整を通常のゼロで実行します。
子プロセスを他のOOMスコア調整で実行したい場合には、PG_OOM_ADJUST_VALUEにより別の値にすることが出来ます。
（PG_OOM_ADJUST_VALUEは省略することが出来て、その場合はデフォルトのゼロになります。）
PG_OOM_ADJUST_FILEを設定しない場合、子プロセスはpostmasterと同じOOMスコア調整で実行されますが、postmasterが優先される設定にすることが肝心なので、それは賢明とは言えません。
   

LinuxのHugePages





PostgreSQL™のように、メモリの大きな連続チャンクを使用するとき、特にshared_buffersの値が大きい場合に、huge pagesを使用するとオーバーヘッドが減少します。
PostgreSQL™でこの機能を有効にするには、CONFIG_HUGETLBFS=yおよびCONFIG_HUGETLB_PAGE=yとしたカーネルが必要です。
また、要求される十分な量だけhuge pagesを提供するようにオペレーティングシステムを調整する必要があるでしょう。
実行時に計算されるパラメータshared_memory_size_in_huge_pagesは、要求されるhuge pages数を報告します。
このパラメータは、サーバの開始前にpostgresコマンドで次のようにして見ることができます。


$ postgres -D $PGDATA -C shared_memory_size_in_huge_pages
3170
$ grep ^Hugepagesize /proc/meminfo
Hugepagesize:       2048 kB
$ ls /sys/kernel/mm/hugepages
hugepages-1048576kB  hugepages-2048kB




この例ではデフォルトは2MBですが、明示的に2MBまたは1GBをhuge_page_sizeで要求して、shared_memory_size_in_huge_pagesで計算されたページ数を調整することもできます。


この例では少なくとも3170のhuge pageが必要ですが、マシン上の他のプログラムもhuge pageを必要とする場合には、より大きな設定が適切です。
これは以下のように設定できます。


# sysctl -w vm.nr_hugepages=3170



再起動後にこの設定が行われるように、/etc/sysctl.confにこの設定を追加するのを忘れないようにしましょう。
非標準のhuge pageサイズなら、代わりに以下のようにできます。


# echo 3170 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages



hugepagesz=2M hugepages=3170のようにして、起動時にカーネルパラメータとしてこれらの設定を与えることもできます。
   


時には、断片化のためにカーネルは求められた数のhuge pagesを直ちには割り当てることができないことがあるので、そのコマンドを繰り返すか、再起動する必要があるかもしれません。
（再起動の直後は、マシンのメモリの大部分はhuge pagesへの変更が可能なはずです。）
指定サイズに対するhuge pagesの割り当ての状況を確認するには、次のようにします。


$ cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages


   


sysctlを使ってvm.hugetlb_shm_groupを設定する、あるいはulimit -lでメモリをロックする権限を与えることで、データベースサーバのOSユーザにhuge pagesを使用する権限を与える必要もあるかもしれません。
   


PostgreSQL™のhuge pagesのデフォルトの動作は、可能な場合はシステムのデフォルトサイズのhuge pagesを使用し、失敗した場合は通常のページを使用します。
postgresql.confでhuge_pagesをonに設定することで、huge pagesの使用を強制することができます。
この設定の場合、十分なhuge pagesが確保できなければ、PostgreSQL™の起動に失敗することに注意してください。
   


Linux™のhuge pages機能の詳細はhttps://www.kernel.org/doc/Documentation/vm/hugetlbpage.txtを参照してください。
   


サーバのシャットダウン





データベースサーバをシャットダウンする方法は複数あります。
内部的には、これらはすべてスーパーバイザのpostgresプロセスにシグナルを送信することになります。
  


パッケージ化された版のPostgreSQL™を使用していて、サーバの起動にその規定を使用した場合は、サーバの停止にもその規定を使用する必要があります。
詳細についてはパッケージレベルのドキュメントを参照してください。
  


サーバを直接管理する場合は、postgresプロセスに異なるシグナルを送信することで、シャットダウンのタイプを制御できます。

   
	SIGTERM
	

これはスマートシャットダウンモードです。
SIGTERMを受信した後、サーバは新しい接続を禁止しますが、既存のセッションは正常に終了させます。
サーバはすべてのセッションが終了した後にのみシャットダウンします。
スマートシャットダウンが要求されたときにサーバがリカバリ中の場合、リカバリとストリーミングレプリケーションはすべての通常セッションが終了した後にのみ停止します。
      

	SIGINT
	

これは高速シャットダウンモードです。
サーバは新しい接続を禁止しすべての存在するサーバプロセスにSIGTERMを送り、この結果サーバプロセスは現在のトランザクションをアボートし、即座に終了します。
そして、サーバはすべてのサーバプロセスの終了を待って、最後にシャットダウンします。
      

	SIGQUIT
	

これは即時シャットダウンモードです。
サーバは、すべての子プロセスにSIGQUITを送信し、それらが終了するのを待ちます。
5秒以内に終了しないものには、SIGKILLが送られます。
すべての子プロセスが終了したら、スーパーバイザサーバプロセスはすぐに終了しますが、このとき通常のデータベースのシャットダウン処理を実行しません。
これは次の起動時に（WALログを再実行することで）リカバリをすることになります。
これは緊急の時にのみ使うことを勧めます。
      




  


pg_ctl(1)プログラムは、サーバをシャットダウンさせるシグナルを送信するための便利なインタフェースを提供します。
他にも、Windows以外のシステムではkillを使用して直接シグナルを送信することもできます。
postgresプロセスのPIDは、psプログラム、もしくはデータディレクトリの中のpostmaster.pidファイルを使用して見つけることができます。
例えば、高速シャットダウンをするためには下記のようになります。


$ kill -INT `head -1 /usr/local/pgsql/data/postmaster.pid`


  
重要


サーバをシャットダウンするためにSIGKILLを使わない方が良いでしょう。
これによってサーバが共有メモリとセマフォを解放できなくなります。
さらに、SIGKILLは、子プロセスにシグナルを中継することなくpostgresを停止させます。
このため、個々の子プロセスを停止させるために、同じ作業を手作業で行わなければならなくなります。
   



他のセッションを継続させながら個別のセッションを停止するにはpg_terminate_backend()（表9.96「サーバシグナル送信関数」を参照）を使用するか、そのセッションに関連する子プロセスにSIGTERMシグナルを送ります。
  

PostgreSQL™クラスタのアップグレード処理





本節ではPostgreSQL™リリースからより新しいリリースにデータベースデータをアップグレードする方法を説明します。
  


現在のPostgreSQL™のバージョン番号はメジャーバージョンとマイナーバージョンのバージョン番号で構成されます。
例えばバージョン番号10.1は、10がメジャーバージョンで、1がマイナーバージョンです。メジャーリリース10の最初のマイナーリリースを意味します。
PostgreSQL™の10.0より前のバージョンは、３つの番号で構成されています。例えば9.5.3です。
この場合は、メジャーバージョンが最初の２つのグループのバージョン番号、例えば9.5で構成されています。
そしてマイナーバージョンは３つ目の番号で例えば3です。これはメジャーリリース9.5の３番めのマイナーリリースを意味します。
  


マイナーリリースでは内部格納書式が変わることは決してありませんので、同じメジャーバージョンにおける前後のマイナーリリースとの間で常に互換性があります。
例えばバージョン10.1はバージョン10.0やバージョン10.6と互換性があります。
同様に、例えば9.5.3は9.5.0、9.5.1、9.5.6と互換性があります。
互換性があるバージョンとの間で更新するためには、サーバを停止させ、実行ファイルを置き換え、サーバを再起動させるだけです。
データディレクトリはまったく変更されません。
マイナーリリースのアップグレードは簡単です。
  


PostgreSQL™のメジャーリリースでは、内部データ格納書式は変更されがちです。
したがって、アップグレードは複雑になります。
新しいメジャーバージョンにデータを移行する伝統的な方法は、遅くなることがありますが、データベースをダンプしてリストアすることです。
より速い方法については、pg_upgrade(1)を参照してください。以下で説明するようにレプリケーションを使用する方法もあります。
（パッケージ化された版のPostgreSQL™を使用している場合は、主要バージョンのアップグレードを支援するスクリプトが提供される場合があります。
詳細についてはパッケージレベルのドキュメントを参照してください。）
  


新しいメジャーバージョンは通常、ユーザにも影響する非互換性がいくつか導入されます。
このためアプリケーションのプログラム変更が必要になる可能性があります。
ユーザに影響する変更はすべてリリースノート（付録E リリースノート）に列挙されています。
「移行」という名前の節に特に注意してください。
あるメジャーバージョンから他のメジャーバージョンへと途中のバージョンを経由しないでアップグレードできますが、途中のバージョンすべてのリリースノートを確認してください。
  


用心深いユーザは、完全に切り替える前に新しいバージョンにおける自身のクライアントアプリケーションを試験したいと考えるでしょう。
このため古いバージョンと新しいバージョンを並行してインストールさせるというのは、よく良い考えとなります。
PostgreSQL™メジャーアップグレードを試験する時、以下に示す変更があり得る分野を検討してください。
  
	管理
	

各メジャーリリースにおいて、管理者が利用できるサーバの監視、制御機能はよく変更、向上されます。
     

	SQL
	

通常、これには新しいSQLコマンド機能が含まれます。
リリースノートに特に記載がない限りその動作には変更はありません。
     

	ライブラリAPI
	

繰り返しになりますが、リリースノートに記載がない場合のみですが、通常libpqのようなライブラリには新しい機能が追加されるだけです。
     

	システムカタログ
	

システムカタログの変更は通常データベース管理用ツールにのみ影響します。
     

	サーバC言語API
	

ここには、Cプログラム言語で作成されたバックエンド関数APIにおける変更が含まれます。
こうした変更は、サーバ内部深くにあるバックエンド関数を参照するコードに影響します。
     



pg_dumpallを介したデータのアップグレード





PostgreSQL™のアップグレードの一つの方法は、PostgreSQL™の１メジャーバージョンからデータをダンプし、別のバージョンにリストアすることです - これを行うには、pg_dumpallのような論理バックアップツールを使用しなければなりません。
ファイルシステムレベルのバックアップ方法は動作しません。
（あるデータディレクトリで間違ったバージョンのサーバを起動しようとして、大きな損害が起こることがないように、適所に互換性がないバージョンのPostgreSQL™のデータディレクトリが使用されないようにするための検査があります。）
   


新しいバージョンのPostgreSQL™のpg_dumpとpg_dumpallを使用することを勧めます。
これらのプログラムで拡張された機能を利用する可能性があるためです。
現在のリリースのダンププログラムは9.2以降のバージョンのサーバからデータを読み取ることができます。
   


以下の手順では、既存のインストレーションが/usr/local/pgsql以下にあり、そのデータ領域が/usr/local/pgsql/dataにあることを前提としています。
使用しているパスに適切に置き換えてください。
   
	

バックアップを作成する場合、使用しているデータベースが確実に更新されないようにしてください。
これはバックアップの整合性には影響しませんが、当然ながら変更されたデータがバックアップに含まれません。
必要に応じて、/usr/local/pgsql/data/pg_hba.conf（またはこれと等価なファイル）における権限を変更して、バックアップを行うユーザ以外からのアクセスを禁止してください。
アクセス制御に関する情報は20章クライアント認証を参照してください。
     

      
      


データベースインストレーションをバックアップするためには以下を入力してください。


pg_dumpall > outputfile


     


バックアップを作成するために、現在起動中のバージョンのpg_dumpallコマンドを使用することができます。詳細は「pg_dumpallの使用」 を参照してください。
しかし最善の結果を得るためには、PostgreSQL™ 18.0のpg_dumpallコマンドを試してください。
このバージョンでは、過去のバージョンに対して、不具合の修正や改良が含まれているからです。
新しいバージョンをまだインストールしていませんので、この勧告は奇異に思えるかもしれませんが、古いバージョンと並行して新しいバージョンをインストールすることを計画しているのであれば、これに従うことを推奨します。
この場合、インストールを普通に完了させてからデータを移行することができます。
これは同時に停止時間を短縮します。
     

	

古いサーバを停止します。


pg_ctl stop



起動時にPostgreSQL™を実行させるようにしているシステムではおそらく、同じことを達成する起動ファイルがあります。
例えばRed Hat Linuxシステムでは、以下が動作することが分かります。


/etc/rc.d/init.d/postgresql stop



サーバの起動と停止については18章サーバの準備と運用を参照してください。
     

	

バックアップからリストアする場合、名前を変更、またはバージョン固有でない場合は古いインストレーションディレクトリを削除してください。
問題があった場合に戻さなければならない場合に備え、削除するよりディレクトリの名前を変更する方を勧めます。
このディレクトリが多くのディスク容量を占めている可能性があることに注意してください。
ディレクトリの名前を変更するためには、以下のようなコマンドを使用してください。


mv /usr/local/pgsql /usr/local/pgsql.old



（相対パスが維持されるように確実にディレクトリ単位で移動してください。）
     

	

概要を17章ソースコードからインストールで示すように、新しいバージョンのPostgreSQL™をインストールしてください。
     

	

必要に応じて新しいデータベースクラスタを作成してください。
（アップグレードの場合はすでに存在している）特別なデータベースユーザアカウントでログインして、このコマンドを実行しなければならないことに注意してください。


/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data


     

	

以前のpg_hba.confとpostgresql.confに加えた何らかの変更を戻してください。
     

	

繰り返しになりますが、特別なデータベースユーザアカウントを使用して、データベースサーバを起動してください。


/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data


     

	

最後に、バックアップからデータをリストアしてください。


/usr/local/pgsql/bin/psql -d postgres -f outputfile



新しいpsqlを使用します。
     





新しいサーバを異なるディレクトリにインストールし、古いサーバと新しいサーバを別のポートで並行して実行させることで、停止時間を最小にすることができます。
この場合、データを移行するために以下のようなコマンドを使用することができます。



pg_dumpall -p 5432 | psql -d postgres -p 5433



   

pg_upgradeを使用したアップグレード方法





pg_upgrade(1)モジュールにより、PostgreSQL™のあるバージョンから次のバージョンにインストレーションをその場で移行することができます。
特に--linkオプションを使用することで、アップグレードは数分で行うことができます。
これは、pg_dumpallと同様の工程を必要とします。
例えば、initdbを実行し、サーバの起動／停止をおこないます。
pg_upgrade ドキュメントで必要な手順を説明します。
   

レプリケーション経由のアップグレード





論理レプリケーションを使って更新対象のバージョンのPostgreSQL™をスタンバイサーバとして作成することもできます。
論理レプリケーションが異なるメジャーバージョンのPostgreSQL™の間でレプリケーションすることができるため、これが実現できます。
スタンバイは同じコンピュータで作成することも異なるコンピュータで作成することもできます。
（古いバージョンのPostgreSQL™で実行している）プライマリサーバと同期した後、プライマリを切り替え、スタンバイをプライマリにし、古いデータベースインスタンスを停止することができます。
このようなスイッチオーバーの結果、数秒の停止時間でアップグレードされます。
   


この方法によるアップグレードは、組み込みの論理レプリケーション機能か、あるいはpglogical™、Slony™、Londiste™、Bucardo™などの外部の論理レプリケーションシステムを使うことで実施できます。
   


サーバのなりすまし防止





サーバが稼働中、悪意のあるユーザが通常のデータベースサーバに取って代わることはできません。
しかし、サーバが停止している時、ローカルユーザに対し、独自のサーバを起動させることで正常なサーバになりすますことは可能です。
なりすましたサーバで、クライアントから送信されたパスワードを読み取ることも問い合わせを読み取ることも可能です。
しかし、PGDATAディレクトリの安全性はディレクトリの権限により維持されていますので、データを返すことはできません。
誰もがデータベースサーバを起動させることができるため、なりすましは可能です。
特殊な設定がなされていなければ、クライアントは無効なサーバであることを識別できません。
  


local接続に対してなりすましを防ぐ、ひとつの方法は、信頼できるローカルユーザのみに書き込み権限を付与したUnixドメインソケットディレクトリ（unix_socket_directories）を使用することです。
これにより、悪意のあるユーザがそのディレクトリに独自のソケットを作成することを防ぐことができます。
一部のアプリケーションがソケットファイルのために/tmpを参照し、なりすましに対して脆弱であるかもしれないと気にするならば、オペレーティングシステムの起動時に、再割り当てされたソケットファイルを指し示す/tmp/.s.PGSQL.5432というシンボリックリンクを作成してください。
また、このシンボリックリンクが削除されることを防ぐために、/tmpを整理するスクリプトを変更する必要があるかもしれません。
  


local接続についての別の選択肢は、クライアントがrequirepeerを使用して、ソケットに接続しているサーバプロセスの必要な所有者を指定することです。
  


TCP接続のなりすましを防ぐためには、SSL証明書を使用してクライアントにサーバの証明書を確実に検査させるか、GSSAPI暗号化を使用します。
（あるいはそれらが別々の接続上にあるなら、その両方を使います。）
  


SSLでなりすましを防ぐためには、サーバはhostssl接続（「pg_hba.confファイル」）のみを受け付け、SSLキーと証明書ファイル（「SSLによる安全なTCP/IP接続」）を持つ必要があります。
TCPクライアントはsslmode=verify-caもしくはverify-fullを使用して接続し、また、適切なルート証明書ファイルをインストールしなければなりません（「サーバ証明書のクライアント検証」）。
あるいは、SSL実装で定義されているシステムCAプールがsslrootcert=systemで使用できます。この場合、sslmode=verify-fullが安全のために強制されます。これは、一般的に公開CAによって署名された証明書を取得するのが簡単なためです。
  


ネットワーク経由でscram-sha-256パスワード認証を使用する場合にサーバのなりすましが発生しないようにするには、SSLを使用してサーバに接続し、前の段落で説明したなりすまし防止方法の1つを使用する必要があります。
さらに、libpqのSCRAM実装は認証情報の交換全体を保護できませんが、channel_binding=require接続パラメータを使用すると、サーバのなりすましに対する防御が提供されます。
不正なサーバを使用してSCRAM交換を傍受する攻撃者は、オフライン分析を使用して、クライアントからのハッシュ化されたパスワードを判断できる可能性があります。
  


GSSAPIでなりすましを防ぐためには、サーバはhostgssenc接続（「pg_hba.confファイル」）のみを受け付け、gss認証をその接続で使います。
TCPクライアントはgssencmode=requireを使用して接続しなければなりません。
  

暗号化オプション





PostgreSQL™は、複数レベルの暗号化を備え、データベースサーバ自身、管理者の注意不足、安全ではないネットワークを原因とした漏洩からデータを柔軟に保護することができます。
また、医療記録や金融取引など高セキュリティが求められるデータを格納する場合に暗号化が必要な場合もあります。
  
	パスワードの暗号化
	

データベースユーザのパスワードは（password_encryptionによって決定される）ハッシュとして格納されます。ですので、ユーザに割り当てられているパスワードは管理者でも分かりません。
SCRAM又はMD5暗号化がクライアント認証に使用されている場合、平文のパスワードはサーバ上に一時的にも存在することはありません。ネットワーク上に流れる前にクライアントが暗号化を行うからです。
SCRAMは、インターネット標準で、PostgreSQL特有なMD5認証プロトコルよりセキュアであるため、より望ましいです。
    
警告


MD5で暗号化されたパスワードのサポートは非推奨となり、将来のPostgreSQL™のリリースで削除されます。
他のパスワードタイプへの移行の詳細については、「パスワード認証」を参照してください。
     


	特定の列に関する暗号化
	

pgcryptoモジュールにより、あるフィールドを暗号化して保存することができます。
データの一部が極秘データであるような場合に有用です。
クライアントが提供した復号化用のキーで、サーバ上のデータを復号化し、クライアントに返されます。
    


復号化されたデータと復号化用のキーは、復号処理中およびクライアントサーバ間の通信中サーバ上に存在している時間があります。
このため、データベースサーバへのすべてのアクセス権限を持つユーザ（例えばシステム管理者）によって、データとキーが盗まれるわずかな時間があります。
    

	データパーティションに関する暗号化
	

ストレージの暗号化は、ファイルシステムレベルまたはブロックレベルで行うことができます。
Linuxファイルシステムの暗号化オプションには、eCryptfsとEncFSがあります。一方、FreeBSDではPEFSを使用します。
ブロックレベルまたはフルディスクの暗号化オプションとして、Linuxにはdm-crypt + LUKS、FreeBSDにはGEOMモジュールのgeliとgbdeがあります。
これにより、ファイルシステムパーティション全体をディスク上で暗号化することができます。
他の多くのオペレーティングシステムは、Windowsを含め、この機能をサポートしています。
    


この機構により、ディスク装置やコンピュータ全体が盗まれた場合でも、ディスクから平文のデータが読み取られることを防止できます。
ファイルシステムがマウントされている時は、この機構による保護は働きません。
マウント時にはオペレーティングシステムが復号化したデータを提供するからです。
しかし、ファイルシステムをマウントするためになんらかの方法で暗号化キーをオペレーティングシステムに渡さなければなりません。
そのディスク装置をマウントするホストのどこかに暗号化キーを格納している場合もあります。
    

	ネットワーク越しのデータ暗号化
	

SSL接続により、ネットワーク越しに送信されるデータ（パスワード、問い合わせ、結果のデータ）はすべて暗号化されます。
pg_hba.confファイルを使用して、管理者はどのホストは暗号化しない接続を使用し（host）、どのホストがSSLで暗号化された接続を必要とするか（hostssl）を指定することができます。
また、SSL経由のサーバとの接続のみを使用するようにクライアントで指定することもできます。
     


GSSAPI暗号化接続は、問い合わせ及び返却されるデータを含めてネットワーク上に転送されるすべてのデータを暗号化します。
（パスワードはネットワーク上に送信されません。）
管理者はpg_hba.confファイルを使ってどのホストが非暗号化接続を使うか(host)、どのホストがGSSAPI暗号化接続を要求するか(hostgssenc)を指定できます。
クライアントはGSSAPI暗号化接続のみを使ってサーバに接続することも指定できます(gssencmode=require)。
     


StunnelやSSHを使用して暗号化転送を行うこともできます。
     

	SSLホスト認証
	

クライアントとサーバの両方で証明書を互いに提供することができます。
これには両方で追加の設定を行わなければなりませんが、これにより単なるパスワードの使用よりも強力な身元の検証を行うことができます。
クライアントから送信されたパスワードを盗聴する偽装サーバからコンピュータを保護します。
また、クライアントとサーバとの間にあるコンピュータがサーバになりすまし、クライアントとサーバ間で流れるデータを読み取り中継する、「中間者」攻撃から保護することもできます。
    

	クライアントサイドの暗号化
	

サーバマシンのシステム管理者を信頼できない場合、クライアント側でデータを暗号化する必要があります。
この場合、平文のデータはデータベースサーバ上に存在しません。
データはサーバに送信される前にクライアント上で暗号化されます。
また、使用する前にデータベースからの結果をクライアントで復号化しなければなりません。
    




SSLによる安全なTCP/IP接続





PostgreSQL™は標準でSSL接続をサポートし、クライアント/サーバの通信がさらに安全になるよう暗号化します。
そのためにはOpenSSL™がクライアントとサーバシステムの両方にインストールされ、構築時にPostgreSQL™におけるそのサポートが有効になっている必要があります（17章ソースコードからインストールを参照してください）。
  


用語SSLとTLSは、TLSプロトコルを使用したセキュアな暗号化接続を意味するために互換的に使用されることがよくあります。
SSLプロトコルはTLSプロトコルの前段階であり、SSLという用語は、SSLプロトコルがサポートされなくなっても暗号化接続に使用されています。
SSLはPostgreSQL™でTLSと互換的に使用されています。

  
基本的な設定





SSLサポートを有効にしてコンパイルされた場合、PostgreSQL™サーバは、postgresql.confにおいてsslパラメータをonにすることで、TLSプロトコルを使った暗号化された接続のサポートを有効にして起動することができます。
サーバは同じTCPポートで通常の接続とSSL接続の両方を待ち受け、クライアントとの接続にSSLを使用するかどうかを調停します。
デフォルトでは、これはクライアント側の選択肢です。
一部またはすべての接続でSSLの使用を必要とさせるためのサーバ側の設定方法に関しては「pg_hba.confファイル」を参照してください。
  


SSLモードで起動するには、サーバ証明書と秘密鍵を含むファイルが存在していなければなりません。
デフォルトでは、これらのファイルはserver.crtおよびserver.keyという名前で、それぞれがサーバのデータディレクトリに存在していることが想定されていますが、設定パラメータのssl_cert_fileとssl_key_fileによって他の名前、他の場所を指定することもできます。
  


Unixシステムでは、server.keyの権限は所有者以外からのアクセスを許可してはなりません。
これはchmod 0600 server.keyというコマンドで実現できます。
あるいは、このファイルの所有者をrootにして、グループに読み取りアクセス権を与える（つまり、パーミッションを0640にする）ということもできます。
この設定は、証明書と鍵ファイルがオペレーティングシステムによって管理されるインストレーションのためのものです。
PostgreSQL™サーバを実行するユーザは、証明書と鍵ファイルにアクセス権のあるグループのメンバにする必要があります。
  


データディレクトリがグループアクセスを許可している場合、証明書ファイルは上記のセキュリティ上の要求を満たすためにデータディレクトリ外に置く必要があるかも知れません。
一般に、グループアクセスは権限を持たないユーザがデータベースをバックアップできるように有効化されます。
この場合、バックアップソフトウェアは証明書を読むことができず、おそらくエラーとなるでしょう。
  


秘密鍵がパスフレーズで保護されている場合、サーバはパスフレーズの入力を促し、入力されるまでは起動しません。
パスフレーズを使用すると、サーバを再起動せずにサーバのSSL設定を変更する機能はデフォルトで無効になりますが、ssl_passphrase_command_supports_reloadを参照してください。
さらに、パスフレーズで保護された秘密鍵は、Windowsではまったく使用できません。
  


server.crtの最初の証明書は、サーバ証明書になり、秘密鍵とマッチしなければなりません。
「中間」認証局の証明書をファイルに追加することもできます。
これにより、ルートと中間証明書がv3_ca拡張により作成されていることが前提になりますが、中間証明書をクライアントに保存する必要が無くなります。
（これにより、CAの証明書の基本制約がtrueに設定されます。）
これは、中間証明書の有効期限の扱いをより簡単にします。
  


server.crtにルート証明書を追加する必要はありません。
代わりに、クライアントはサーバ証明書のチェーンのルート証明書を持っていなければなりません。
  

OpenSSLの設定





PostgreSQL™はシステム全体のOpenSSL™設定ファイルを読み込みます。
デフォルトでは、このファイルはopenssl.cnfという名前で、openssl version -dが報告するディレクトリに設置されます。
このデフォルトはOPENSSL_CONF環境変数を設定することによって希望の名前に置き換えることができます。
  


OpenSSL™は様々な強度を持つ、多様な暗号と認証アルゴリズムをサポートしています。
暗号のリストはOpenSSL™の設定ファイルで指定できますが、使用するデータベースサーバ用にpostgresql.confのssl_ciphersで指定することができます。
  
注記


NULL-SHAあるいはNULL-MD5暗号を使って暗号化のオーバーヘッドがない認証を行うことができます。
しかし、中間者がクライアントとサーバの間のコミュニケーションを読んで転送することができます。
また、認証のオーバーヘッドに比べると暗号化のオーバーヘッドは最小限です。
これらの理由から、NULL暗号はお勧めできません。
   


クライアント証明書の使用





信頼できる証明書をクライアントに要求するには、信頼するルート認証局（CA）の証明書をデータディレクトリ内のファイルに置き、postgresql.confのssl_ca_fileパラメータを設定し、認証オプションclientcert=verify-caまたはclientcert=verify-fullをpg_hba.confの適切なhostssl行に追加します。
そうすると、SSL接続の開始時にクライアントへ証明書が要求されます。
（クライアント上での証明書の設定方法については「SSLサポート」を参照してください。）
  


clientcert=verify-ca指定付きのhostsslエントリでは、サーバは、クライアントの証明書が信頼する認証局のいずれかにより署名されていることを検証します。
clientcert=verify-fullが指定されていると、サーバは証明書チェーンを検証するだけでなく、ユーザ名あるいはユーザ名のマッピングが提供された証明書のcn (Common Name)に一致しているかどうかも検証します。
cert認証メソッドが使われている場合は認証チェーンの検証は常に行われることに注意してください。
（「証明書認証」参照。）
  


既存のルート証明書に連鎖する中間証明書は、クライアントに保存することを避けたい場合にssl_ca_fileに含めることができます（ルート証明書と中間証明書がv3_ca拡張で作成されている場合）。
ssl_crl_fileあるいはssl_crl_dirパラメータが設定されている場合、証明書失効リスト（CRL）項目も検査されます。
  


認証オプションclientcertはすべての認証方式について利用可能ですが、pg_hba.confのhostsslとして指定された行でのみ有効です。
clientcertが指定されていない場合でも、クライアント証明書が提示され、認証局が設定されているときに限ってサーバはその認証局ファイルに対してクライアント証明書の検証を行います。
  


ユーザに対してログイン中に証明書を提供するように強制する二つのアプローチがあります。
  


最初のアプローチはpg_hba.confのhostsslにcert認証メソッドを使うことです。
そうすることによりSSL接続によるセキュリティが提供されるとともに、証明書自身が認証に使われます。
詳細は「証明書認証」をご覧ください。
（cert認証メソッドを使う際には明示的にclientcertオプションを指定する必要はありません。）
この場合証明書が提供するcn (Common Name)がユーザ名あるいは適用可能なマッピングに対して検証されます。
  


二番目のアプローチは、clientcert認証オプションにverify-caあるいはverify-fullを設定することによってhostsslエントリの認証メソッドにクライアント証明書の検証を組み合わせることです。
前者のオプションは証明書が有効であることだけを強制し、後者は更に証明書のcn (Common Name)がユーザ名あるいは適用可能なマッピングと一致することを強制します。
  

サーバにおけるSSL関連ファイルの利用





表18.2「SSLサーバファイルの使用方法」にて、サーバにおけるSSLの設定に関連するファイルをまとめます。
（表示されているファイル名はデフォルトまたは一般的な名前です。異なる名前を個別に設定することもできます。）
   
表18.2 SSLサーバファイルの使用方法
	ファイル	内容	影響
	ssl_cert_file ($PGDATA/server.crt)	サーバ証明書	サーバの身元を示すためにクライアントに送信します
	ssl_key_file ($PGDATA/server.key)	サーバの秘密鍵	サーバ証明書が所有者によって送られたことを証明します。証明書所有者が信頼できることを意味しません。
	ssl_ca_file	信頼できる認証局	信頼する認証局により署名されたクライアント証明書か検査します。
	ssl_crl_file	認証局により失効された証明書	クライアント証明書はこの一覧にあってはいけません。





サーバは、サーバ起動時及びサーバ設定がリロードされるたびに、これらのファイルを読み取ります。
Windowsシステム上では新しいクライアント接続のために新しいバックエンドプロセスが生成されるたびに再読み込みされます。
   


サーバ起動時にこれらのファイルのエラーが検出された場合、サーバは起動を拒否します。
ただし、設定のリロード中にエラーが検出された場合、ファイルは無視され、古いSSL設定が引き続き使用されます。
Windowsシステム上ではバックエンドの開始時にこれらのファイルのエラーが検出された場合、そのバックエンドはSSL接続を確立出来ません。
これらのすべてのケースでは、エラー状態がサーバログに記録されます。
   

証明書の作成





365日有効なサーバ用の自己署名証明書を簡単に作るためには下記のOpenSSL™コマンドを実行してください（dbhost.yourdomain.comをサーバのホスト名に置き換えてください）。


openssl req -new -x509 -days 365 -nodes -text -out server.crt \
  -keyout server.key -subj "/CN=dbhost.yourdomain.com"



続けて以下も実行します。


chmod og-rwx server.key



サーバはファイルの権限がこれよりも広範囲である場合にファイルを拒否するためです。
サーバの秘密鍵および証明書を作成するための詳しい方法についてはOpenSSL™の文書を参照してください。
   


テストには自己署名証明書を使用できますが、運用時は認証局(CA)（通常は事業全体のCA）により署名された証明書を使用する必要があります。
   


クライアントが身元を検証できるサーバ証明書を作成するには、まず最初に証明書署名要求(CSR) と公開／秘密鍵ファイルを作成します。


openssl req -new -nodes -text -out root.csr \
  -keyout root.key -subj "/CN=root.yourdomain.com"
chmod og-rwx root.key



その後、鍵を使用して署名要求に署名しルート証明書を作成します（Linux™上のデフォルトのOpenSSL™設定ファイルの場所を使用）。


openssl x509 -req -in root.csr -text -days 3650 \
  -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
  -signkey root.key -out root.crt



最後に、新しいルート証明書によって署名されるサーバ証明書を作成します。


openssl req -new -nodes -text -out server.csr \
  -keyout server.key -subj "/CN=dbhost.yourdomain.com"
chmod og-rwx server.key

openssl x509 -req -in server.csr -text -days 365 \
  -CA root.crt -CAkey root.key -CAcreateserial \
  -out server.crt



server.crtとserver.keyをサーバに格納し、root.crtをクライアントに格納します。
クライアントはサーバのリーフ証明書が信頼されたルート証明書によって署名されたことを確認できます。
root.keyは将来の証明書の作成に使用するために、オフラインで保存する必要があります。
   


中間証明書が含まれる信頼の連鎖を作成することも可能です。


# root
openssl req -new -nodes -text -out root.csr \
  -keyout root.key -subj "/CN=root.yourdomain.com"
chmod og-rwx root.key
openssl x509 -req -in root.csr -text -days 3650 \
  -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
  -signkey root.key -out root.crt

# intermediate
openssl req -new -nodes -text -out intermediate.csr \
  -keyout intermediate.key -subj "/CN=intermediate.yourdomain.com"
chmod og-rwx intermediate.key
openssl x509 -req -in intermediate.csr -text -days 1825 \
  -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
  -CA root.crt -CAkey root.key -CAcreateserial \
  -out intermediate.crt

# leaf
openssl req -new -nodes -text -out server.csr \
  -keyout server.key -subj "/CN=dbhost.yourdomain.com"
chmod og-rwx server.key
openssl x509 -req -in server.csr -text -days 365 \
  -CA intermediate.crt -CAkey intermediate.key -CAcreateserial \
  -out server.crt



server.crtとintermediate.crtは証明書ファイルに束ねて連結し、サーバに格納する必要があります。
server.keyもまたサーバに格納される必要があります。
サーバのリーフ証明書が信頼されたルート証明書にリンクされた一連の証明書によって署名されていることをクライアントが確認できるように、root.crtをクライアントに格納する必要があります。
root.keyとintermediate.keyは将来の証明書を作成に使用するためにオフラインで格納する必要があります。
   


GSSAPIによる安全なTCP/IP接続





セキュリティを強化する目的でクライアント／サーバの通信を暗号化するためにPostgreSQL™もまたGSSAPIの利用を直接サポートしています。
このサポートにはGSSAPIの実装（MIT Kerberosなど）がクライアントとサーバシステムの両方にインストールされていて、PostgreSQL™の構築時にそのサポートが有効になっていること（17章ソースコードからインストール参照）が必要です。
  
基本的な設定





PostgreSQL™サーバは通常の接続とGSSAPIによる暗号化接続の両方を同じTCPポートで待ち受け、接続しようとするクライアントとGSSAPIによる暗号化（そして認証）を使うかどうかを交渉します。
デフォルトではこの決定はクライアントに任されます（これは攻撃者によってダウングレードできることを意味します）。
サーバが一部あるいはすべての接続でGSSAPIを使うことを要求する設定に関しては「pg_hba.confファイル」をご覧ください。
   


常に基盤の仕組みがクライアントとサーバの身元を（GSSAPIの実装により）特定するため、暗号化にGSSAPIを使用する際は、GSSAPIを認証にも使うのが一般的です。
しかしこれは必須ではありません。追加の認証を行うために、PostgreSQL™の他の認証方法を選択することができます。
   


この交渉の挙動を設定すること以外にはGSSAPI暗号化では、GSSAPI認証に必要な設定はこれ以上ありません。
（設定のより詳細に関しては「GSSAPI認証」をご覧ください。）
   


SSHトンネルを使った安全なTCP/IP接続





クライアントとPostgreSQL™サーバ間のネットワーク接続を暗号化するためにSSHを使うことができます。
正しく行えば、SSL機能がクライアントになくても、これで十分に安全なネットワーク接続を行うことができます。
  


まずSSHサーバがPostgreSQL™サーバと同じマシン上で正しく起動していて、sshを使ってログインできるユーザが存在することを確かめてください。
リモートサーバへ安全なトンネルを確立することができます。
安全なトンネルは、ローカルポートをリッスンし、すべてのトラフィックをリモートマシン上のポートに転送します。
リモートポートに送信されたトラフィックは、localhostアドレスまたは必要に応じて別のバインドアドレスに到達することができ、ローカルマシンからのトラフィックとは表示されません。
次のコマンドは、クライアントマシンからリモートマシンfoo.comへの安全なトンネルを作成します。


ssh -L 63333:localhost:5432 joe@foo.com



-L引数の1番目の数字（63333）はトンネルのローカル側のポート番号で、未使用のポートを選択することが可能です。（IANAは49152から65535までのポートを私的使用のため予約しています。）
この後の名前かIPアドレスは、接続先のリモート側のバインドアドレス（デフォルトはlocalhost）です。
2番目の数字（5432）は、トンネルのリモート側のサーバが使用しているポート番号です。
このトンネルを使ってデータベースサーバに接続するためには、ローカルマシンのポート63333に接続します。


psql -h localhost -p 63333 postgres



データベースサーバにとっては、ユーザがホストfoo.com上のユーザjoeであり、localhostバインドアドレスに接続しているように見え、そのバインドアドレスに対するそのユーザの接続向けに設定された認証手続きが使用されます。
実際、SSHサーバとPostgreSQL™サーバとの間は暗号化されていないため、サーバはこの接続がSSLで暗号化されているとみなさないことに注意してください。
それらが、同じマシン上にあるため、セキュリティ上の危険性が増すことはありません。
  


トンネルの確立が成功するためには、sshを使用して端末セッションを作成したのと同様に、joe@foo.comユーザがsshを通して接続することが許可されていなければいけません。
  


以下に示すようにポートフォワードを設定することができます。


ssh -L 63333:foo.com:5432 joe@foo.com



しかしそうすると、データベースサーバはそのfoo.comバインドアドレスから接続が来たように判断し、デフォルトの設定であるlisten_addresses = 'localhost'では開かれません。
通常これは好ましいことではありません。
  


どこかのログインホスト経由でデータベースサーバに「跳躍」しなければならない場合、以下のようにすることが可能です。


ssh -L 63333:db.foo.com:5432 joe@shell.foo.com



shell.foo.comからdb.foo.comへのこのような接続はSSHトンネルで暗号化されません。
SSHはいろいろな方法でネットワークが制約されているとき、かなりの数の設定可能性を提供しています。
詳細はSSHの文書を参照してください。
  
ヒント


ここで説明してきたものと似た概念の手続きを使用して、安全なトンネルを提供可能なアプリケーションが他にもいくつか存在します。
   


WindowsにおけるEvent Logの登録





WindowsのOSのevent logライブラリに登録するには、以下のコマンドを発行します:


regsvr32 pgsql_library_directory/pgevent.dll



このコマンドは、PostgreSQLというデフォルトのイベントソース名で、イベントビューアが使用するレジストリエントリを作成します。
  


異なるイベントソース名（event_source参照）を指定するには、/nおよび/iオプションを使ってください:


regsvr32 /n /i:event_source_name pgsql_library_directory/pgevent.dll


  


OSからevent logライブラリを削除するには、以下のコマンドを発行します:


regsvr32 /u [/i:event_source_name] pgsql_library_directory/pgevent.dll


  
注記


データベースサーバにおけるイベントロギングを有効にするには、eventlogを含むようにpostgresql.confのlog_destinationを変更してください。
   


第19章 サーバ設定





データベースシステムの動作に影響を与える数多くのパラメータがあります。
この章の最初の節で、どのように設定パラメータを操作するのかについて説明します。
引き続く節で、それぞれのパラメータの詳細を説明します。
  
パラメータの設定



パラメータ名とその値





全てのパラメータの名前は大文字と小文字を区別しません。
それぞれのパラメータは、論理値、整数、浮動小数点、文字列、またはenum（列挙型）の5つの型のいずれかの値を取ります。
型はパラメータをセットするための記法を定義します。
    
	

論理型:
値はon、off、true、false、yes、no、1、0（すべて大文字小文字の区別なし）、あるいは、曖昧でなければ、これらの先頭から数文字を省略形として使うこともできます。
      

	

文字列型:
一般に、単一引用符の中に値を入れます。
単一引用符を値に含める場合は単一引用符を２つ続けます。
なお、値が単純な数字や識別子である場合は、通常は引用符を省略できます。
（使用する場所によっては、SQLキーワードと一致する値に引用符が必要になることがあります。）
      

	

数値型(整数型と浮動小数点型):
数値パラメータには通常の整数と浮動小数点型が使用できます。
パラメータが整数型なら、小数値はもっとも近い整数に丸められます。
加えて整数型パラメータは16進数入力（0xで始まります）と8進数入力（0で始まります）を受け付けます。
しかし、これらの形式では小数点以下は使えません。
1000の位取りの区切り文字は使わないでください。
16進数入力を除き引用符は必要ありません。
      

	

単位付きの数値:
数値型のパラメータによっては暗黙的な単位を持つことがあります。
メモリの量や時間について記述するからです。
単位はバイト、キロバイト、ブロック（通常8キロバイト）、ミリ秒、秒、分などです。
修飾無しの数値によるこれらの設定においては、 pg_settings.unit からデフォルト値が採用されます。
使い勝手を考えて、たとえば'120 ms'のように単位を明示的に指定することもできます。
この場合は、実際の単位に変換が行われます。
なお、この機能を使う場合は、引用符付きの文字列として値を指定しなければならないことに注意してください。
単位の名称は大文字小文字を区別します。
また、数値と単位の間に空白があっても構いません。

       
	

有効なメモリの単位はB (バイト) kB (キロバイト)、MB (メガバイト)、 GB (ギガバイト), TB (テラバイト)です。
メモリ単位の乗数は1024です。1000ではありません。
         

	

有効な時間の単位は us (マイクロ秒)、ms (ミリ秒)、s (秒)、min (分)、h (時間)、d (日数) です。
         






単位に添えて小数点以下が指定された場合、より小さな単位が存在すれば、値はその小さな単位の積に丸められます。
たとえば、30.1 GBは32319628902 Bではなく30822 MBに変換されます。
整数型のパラメータでは、単位変換の後で最終的な整数への丸めが行われます。
      

	

列挙型:
列挙型のパラメータは文字列パラメータと同じように記述します。
ただ、使用できる文字列の種類が決まっているだけです。
使用できる文字列は pg_settings.enumvals で定義されています。
列挙型の値は大文字小文字を区別しません。
      




設定ファイルによるパラメータ操作





これらのパラメータを設定する最も基本的な方法は、postgresql.confファイルを編集することで、これは通常 data ディレクトリに格納されています。
デフォルトのコピーはデータベースクラスタディレクトリが初期化されるときそこにインストールされます。このファイルがどういったものかの例を示します。


# This is a comment
log_connections = all
log_destination = 'syslog'
search_path = '"$user", public'
shared_buffers = 128MB



1つの行毎に1つのパラメータが指定されます。
名前と値の間の等号は省略可能です。
（引用符付きのパラメータ値内を除き）空白は特に意味を持たず、何もない行は無視されます。
ハッシュ記号（#）はその行の後の表記がコメントであることを意味します。
単純でない識別子、または数値でないパラメータ値は単一引用符で括られなければなりません。
パラメータ値の中に単一引用符を埋め込むには、引用符を2つ（推奨）もしくはバックスラッシュ-引用符を使います。
ファイル中、同じパラメータに対して複数のエントリが指定されている場合は、最後のエントリ以外は無視されます。
    


この方法によりクラスタに対してデフォルト値が設定されます。
上書きされない限り、アクティブなセッションが見るのはこの値です。
次節以降では、管理者やユーザがこれらのデフォルト値を上書きする方法を説明します。
    

     

設定ファイルは、メインサーバプロセスがSIGHUPシグナルを受け取るたびに再読み込みされます。
このシグナルを手っ取り早く送信するには、コマンドラインからpg_ctl reloadを実行するか、SQL関数のpg_reload_conf()を呼び出します。
メインサーバプロセスは同時にこのシグナルを、現存のセッションが同様に新しい値を入手できるように、全ての現在実行しているサーバプロセスに伝播します(これは現在実行中のクライアントコマンドの処理を完了してから行われます)。
他の手段として、直接単一のサーバプロセスにシグナルを送ることも可能です。
一部のパラメータはサーバの起動時のみ設定されまするので、設定ファイル中のそれらのエントリの変更はすべて、サーバが再起動されるまで無視されます。
設定ファイル内で無効なパラメータが設定された場合も、同じように（ログには残りますが）SIGHUP 処理中は無視されます。
    


postgresql.confに加え、PostgreSQL™のデータディレクトリには postgresql.auto.confというファイルがあります。
このファイルは postgresql.conf と同じフォーマットですが、手動ではなく自動で編集されることを意図しています。
このファイルはALTER SYSTEMコマンドを使った設定値を保存します。
このファイルはpostgresql.conf が読み込まれるときはいつでも自動的に読み込まれ、同じように設定が反映されます。
postgresql.auto.confは、postgresql.confの設定を上書きします。
    


外部ツールもpostgresql.auto.confを変更するかも知れません。
ALTER SYSTEMが変更を上書きする可能性があるので、allow_alter_systemがoffに設定されていない限り、サーバが稼働中は外部ツールによる変更は推奨されません。
そのようなツールは、単に新しい設定を最後に追加するか、重複した設定あるいはコメント(ALTER SYSTEMが行います)を削除することを選択するかも知れません。
    


システムビューのpg_file_settingsは、設定ファイルへの変更を前もってテストしたい場合や、SIGHUPシグナルで望み通りの効果がなかった場合に問題を調査する際に役立ちます。
    

SQLを通じたパラメータ操作





PostgreSQL™は3つのSQLコマンドでデフォルト値を設定します。
すでに説明したALTER SYSTEMコマンドは、SQLによってグローバルな設定値を変更する方法を提供します; postgresql.confを編集するのと等価です。これに加え、データベース単位あるいはロール単位で設定するためのコマンドがあります:
     
	

ALTER DATABASEコマンドはデータベース単位でグローバルな設定値を上書きします。
      

	

ALTER ROLEコマンドはグローバルと、データベース単位の両方をユーザ固有の設定値で上書きします。
      





ALTER DATABASEとALTER ROLEによる設定値は新しくデータベースセッションを開始した時にのみ適用されます。
これらのコマンドは設定ファイルやサーバのコマンドラインから取得した値を上書きし、セッションの残りの部分のデフォルト値を構成します。
なお、一部の設定はサーバを起動した後では変更できず、これらのコマンドを使っては設定できません（以下に記述するコマンドでも同じことが言えます）。
    


クライアントがデータベースに接続すると、PostgreSQL™では更に2つのSQL(そして同等の関数)を使ってセッションローカルの設定変更を行うことができます。
    
	

SHOWコマンドを使ってすべてのパラメータの現在の値を調べることができます。
対応する関数はcurrent_setting(setting_name text)です（「構成設定関数」を参照してください）。
     

	

SETコマンドでセッション内でローカルに変更できるパラメータの値を変更することができます。他のセッションには影響がありません。
多くのパラメータはすべてのユーザがこの方法で設定できますが、スーパーユーザか、そのパラメータのSET権限が与えられたユーザだけが設定できるものもあります。
対応するSQL関数はset_config(setting_name, new_value, is_local)です。
（「構成設定関数」を参照してください）。
      





更にシステムビューのpg_settingsを使ってセッションローカルな値を参照したり変更することができます。
    
	

このビューを問い合わせるのは、SHOW ALLを使うのと同じですが、更に詳細な情報を提供します。
フィルタ条件を指定したり他のリレーションと結合ができるので、より柔軟です。
      

	

このビューに対してUPDATEを実行する、具体的にはsetting列を更新することは、SETコマンドを実行するのと同等です。
たとえば、


SET configuration_parameter TO DEFAULT;



は以下と同じです。


UPDATE pg_settings SET setting = reset_val WHERE name = 'configuration_parameter';


      




シェルによるパラメータ操作





グローバルなデフォルト値を設定したりデータベース、ロール単位で上書きを行えるだけでなく、シェル機能を使ってPostgreSQL™に設定値を渡すことができます。
サーバもlibpqクライアントライブラリもシェル経由でパラメータ値を受けとることができます。
     
	

サーバ起動時に、-cコマンドラインパラメータか、それと同等で別の形式の--name=valueを使ってパラメータ設定値をpostgresに渡すことができます。たとえば、


postgres -c log_connections=all --log-destination='syslog'



このようにして渡された設定値は、postgresql.confやALTER SYSTEMによる設定を上書きします。
したがってサーバを再起動しない限りこれらの設定値をグローバルに変更することはできません。
     

	

libpqを使ってクライアントセッションを開始するときにPGOPTIONS環境変数を使って設定値を指定できます。
このようにして渡された設定値はセッションのデフォルトとなりますが、他のセッションには影響を与えません。
歴史的な理由により、PGOPTIONSの形式はpostgresを起動するときのものと似ています。とりわけ、-cを指定するか、先頭に--を付加した名前を指定しなければならない点です。たとえば、


env PGOPTIONS="-c geqo=off --statement-timeout=5min" psql


     


他のクライアントやライブラリではそれぞれ固有の方法でシェルなどを経由して、SQLコマンドを直接使わずにセッションの設定を変更することができるかもしれません。
     




設定ファイルの内容の管理





PostgreSQL™は複雑なpostgresql.confファイルを複数の小さなファイルに分割する複数の方法を提供しています。
これは、とりわけお互いに関連しているものの設定が同じではない複数のサーバを管理する際に有用です。
     

      
      

パラメータ設定に加え、postgresql.confファイルにincludeディレクティブを入れることができます。
このようにすると、別のファイルがあたかも設定ファイルのその場所に挿入されているかのごとく読み込まれ、処理されるように指定されます。
この機能により、設定ファイルを物理的に異なる複数のパーツに分解することができます。
Includeディレクティブは単に次のような形式になります。



include 'ファイル名'



ファイル名が絶対パスでない場合、参照する設定ファイルを含むディレクトリからの相対パスであると受け取られます。
Includeコマンドは入れ子にすることができます。
     

      
      

include_if_existsディレクティブもあります。
これは参照ファイルが存在しないか、または読み込むことができない場合の動作を除き、includeディレクティブと同一の動作をします。
通常のincludeはこれをエラーと解釈しますが、include_if_existsはただ単にメッセージをログ出力し、そして参照している設定ファイルの処理を続けます。
     

      
      

includeする設定ファイルを含むディレクトリ全体を指定するinclude_dirディレクティブを、postgresql.confファイルに含めることもできます。
このような感じです。



include_dir 'ディレクトリ名'



絶対パスではないディレクトリ名はその設定ファイルがあるディレクトリへの相対パスと見なされます。
指定したディレクトリの中で、ディレクトリではないファイルで末尾が.confで終わるファイルだけがincludeされます。
また、文字. で開始するファイル名は一部のプラットフォームでは隠しファイルとされるので、間違いを防止するため無視されます。
includeされるディレクトリにある複数ファイルはファイル名順に処理されます(ファイル名は C ロケール規則で順序付けされます。
つまり、文字より数字、小文字より大文字が先になります)。
     


includeされるファイルもしくはディレクトリは、大きな単一のpostgresql.confファイルを使う代わりに、データベース設定の一部分を論理的に分離するために使用することが可能です。
異なるメモリ容量を持つ二つのデータベースサーバを所有する会社を考えてみてください。
例えばログ出力のように、二つが共有する設定の要素があると思われます。
しかし、サーバ上のメモリに関連したパラメータは二つの間では異なります。
更に、サーバ特有のカスタマイズも存在することがあります。
この状況に対処する一つの方法として、そのサイトに対するカスタマイズされた設定の変更を三つのファイルにすることです。
それらをincludeするためにはpostgresql.confファイルの最後に以下を追加します。


include 'shared.conf'
include 'memory.conf'
include 'server.conf'



全てのシステムは同一のshared.confを所有する様になるでしょう。
特定のメモリ容量を所有するそれぞれのサーバは同じmemory.confを共有できます。
RAMが8GBのすべてのサーバには共通のmemory.confを1つ使い、16GBのサーバ群には別のものを使う、ということもできるでしょう。
そして最後のserver.confには、本当にサーバ固有となる設定情報を記載します。
     


別の方法として、設定ファイルディレクトリを作成し、この情報をそこのファイルに格納することができます。
たとえば、conf.dディレクトリをpostgresql.confの最後で参照するようにできます。


include_dir 'conf.d'



そして、conf.dの中のファイルを以下のような名前にすることができます。


00shared.conf
01memory.conf
02server.conf



この命名規則により、これらのファイルが読み込まれる順序が明確になります。
サーバが設定を読み込んでいるときに各パラメータについて最後にあった設定だけが使用されるので、このことは重要です。
この例では、conf.d/02server.confでされた指定はconf.d/01memory.confの設定値よりも優先します。
     


代わりに以下の方法を使って、ファイルにわかりやすい名前をつけることもできます。


00shared.conf
01memory-8GB.conf
02server-foo.conf



こういった工夫で、設定ファイルのバリエーションに対して固有の名前を付与することができます。
また、バージョン管理リポジトリのリポジトリに複数のサーバの設定ファイルを置く場合に生じる曖昧さを排除することができます。
（データベース設定ファイルをバージョン管理することは、これもまた検討に値するやり方です。）
     



ファイルの場所





すでに説明したpostgresql.confファイルに加え、PostgreSQL™は、クライアント認証の管理を行うために、他の2つの手作業で編集される設定ファイルを使用します（これらの使用方法は20章クライアント認証で説明します）。
全ての3つの設定ファイルは、デフォルトではデータベースクラスタのdataディレクトリに格納されます。
本節で説明するパラメータにより、設定ファイルを他の場所に置くことが可能になります。
（そのようにすると管理がしやすくなります。
とりわけ、設定ファイルを分けて保存することで、設定ファイルの適切なバックアップを確実に行うことがしばしば容易になります。）
     
	data_directory (string)
      
      
      
	

データ格納に使用するディレクトリを指定します。
このパラメータはサーバ起動時のみ設定可能です。
       

	config_file (string)
      
      
      
	

メインサーバ設定ファイルを指定します（通例postgresql.confと呼ばれます）。
このパラメータはpostgresコマンドライン上でのみ設定可能です。
       

	hba_file (string)
      
      
      
	

ホストベース認証（HBA）用のファイルを指定します（通例pg_hba.confと呼ばれます）。
このパラメータはサーバ起動時のみ設定可能です。
       

	ident_file (string)
      
      
      
	

ユーザ名マッピングの設定ファイルを指定します（通例pg_ident.confと呼ばれます）。
このパラメータはサーバ起動時のみ設定可能です。
「ユーザ名マップ」もご覧ください。
       

	external_pid_file (string)
      
      
      
	

サーバ管理プログラムで使用するためにサーバが作成する、追加のプロセス識別子（PID）ファイルの名前を指定します。
このパラメータはサーバ起動時のみ設定可能です。
       





デフォルトのインストールでは、上記のいかなるパラメータも明示的に設定されません。
その代わり、data ディレクトリは-Dコマンドラインオプション、またはPGDATA環境変数で指定され、設定ファイル全てはその data ディレクトリ内に格納されます。
     


dataディレクトリ以外の場所に設定ファイルを格納したいのであれば、postgresの-Dコマンドラインオプション、またはPGDATA環境変数で設定ファイルの場所を指し示し、そしてdataディレクトリが実際どこに存在するのかを示すため、postgresql.confの（もしくはコマンドライン上で）data_directoryパラメータを設定しなければなりません。
data_directoryは、設定ファイルの場所ではなく、data ディレクトリの位置に関して、-DおよびPGDATAを上書きすることに注意してください。
     


必要に応じて、パラメータconfig_file、hba_file、ident_fileを使用し、設定ファイルの名前と場所を個別に指定することができます。
config_fileはpostgresコマンドラインによってのみ指定されますが、その他は主設定ファイル内で設定できます。
全ての3つのパラメータとdata_directoryが明示的に設定されていれば、-DまたはPGDATAを指定する必要はありません。
     


これらのパラメータのどれを設定する場合でも、相対パスは、postgresが起動されるディレクトリから見た相対パスとして解釈されます。
     

接続と認証



接続設定



	listen_addresses (string)
      
      
      
	

クライアントアプリケーションからの接続をサーバが監視するTCP/IPアドレスを指定します。
この値は、ホスト名をカンマで区切ったリスト、そして/もしくは、数値によるIPアドレスです。
*という特別なエントリは利用可能な全てのIPインタフェースに対応します。
エントリ0.0.0.0は全てのIPv4アドレスの監視を、そしてエントリ::は全てのIPv6アドレスの監視を許容します。
リストが空の場合、サーバはいかなるIPインタフェースも全く監視しないで、Unixドメインソケットのみを使用して接続が行われます。
リストが空でない場合、少なくとも1つのTCP/IPアドレスがリスニングできる場合にサーバは起動します。
開くことのできなかったすべてのTCP/IPアドレスに対して警告が発せられます。
デフォルトの値はlocalhostで、ローカルなTCP/IP 「loopback」接続のみ許可します。
       


クライアント認証(20章クライアント認証)は、誰がサーバにアクセスできるかを細かく制御できますが、listen_addressesは接続要求を受け付けるインタフェースを制御します。
これは、セキュアでないネットワークインタフェース上での悪意のある接続試行の繰り返しを防ぐのに役立ちます。
このパラメータはサーバ起動時にのみ設定できます。
       

	port (integer)
      
      
      
	

サーバが監視するTCPポートで、デフォルトは 5432です。
サーバが監視する全てのIPアドレスに対し、同じポート番号が使用されることを覚えておいてください。
このパラメータはサーバ起動時のみ設定可能です。
       

	max_connections (integer)
      
      
      
	

データベースサーバに同時接続する最大数を決定します。
デフォルトは典型的に100接続ですが、カーネルの設定が（initdbの過程で）それをサポートしていない場合、もっと少なくなることがあります。
このパラメータはサーバ起動時のみに設定可能です。
       


PostgreSQL™は、max_connectionsの値に直接基づいてある種のリソースのサイズを設定します。
この値を大きくすると、共有メモリを含むこれらのリソースの割り当てが増えます。
       


スタンバイサーバを運用している場合、このパラメータはプライマリサーバでの設定と同じ、もしくはより高い値に設定しなければなりません。そうしないと問い合わせがスタンバイサーバ内で受け入れられません。
       

	reserved_connections (integer)
      
      
      
	

pg_use_reserved_connections権限を持つロールによる接続のために予約される接続「スロット」の数を決定します。
空き接続スロットの数がsuperuser_reserved_connectionsより大きく、かつsuperuser_reserved_connectionsとreserved_connectionsの合計以下の場合は常に、新しい接続はスーパーユーザあるいはpg_use_reserved_connections権限を持つロールに対してのみ受け入れられます。
superuser_reserved_connections以下の接続スロットが利用可能な場合、新しい接続はスーパーユーザに対してのみ受け入れられます。
       


デフォルトの値は0接続です。
この値は max_connections - superuser_reserved_connectionsより小さくなくてはなりません。
このパラメータはサーバ起動時のみ設定可能です。
       

	superuser_reserved_connections
      (integer)
      
      
      
	

PostgreSQL™のスーパーユーザによる接続のために予約されている接続「スロット」の数を決定します。
最大、max_connectionsの数までの接続を同時に有効にすることができます。
有効な同時接続数がmax_connectionsからsuperuser_reserved_connectionsを差し引いた数以上のときは、新規接続はスーパーユーザのみが許可されます。
このパラメータによる接続スロット予約は、reserved_connectionsによるスロット予約が使い果たされた後の緊急使用のための最終的な予備を意図しています。
       


デフォルトの値は3接続です。
この値は max_connectionsからreserved_connectionsを引いたものより小さくなくてはなりません。
このパラメータはサーバ起動時のみ設定可能です。
       

	unix_socket_directories (string)
      
      
      
	

クライアントアプリケーションからの接続をlistenするサーバ上のUnixドメインソケットのディレクトリを指定します。
複数のディレクトリをカンマで区切って指定することにより、複数のソケットを作ることができます。
項目の間の空白は無視されます。
名前の中に空白かカンマが必要なら、ディレクトリ名を二重引用符で囲ってください。
空の値はUnixドメインソケットをlistenしないことを意味します。
この場合、TCP/IPソケットを使ってサーバに接続することだけが可能になります。
       


@で始まる値は、抽象名前空間にUnixドメインソケットを作ることを指定します（今の所これはLinuxでのみサポートされています）。
この場合、この値は「ディレクトリ」ではなくファイルシステムの名前空間と同様の方法で、実際のソケット名の接頭辞が求められます。
ファイルシステムの位置ではないため、抽象ソケット名接頭辞は自由に選択できますが、それにもかかわらず@/tmpのようなファイルシステム的な値を使うのが慣例です。
       


デフォルト値は通常/tmpですが、ビルド時に変更できます。
Windowsではデフォルトは空文字で、これはつまりUnixドメインソケットがデフォルトでは作成されないことを意味します。
このパラメータはサーバ起動時のみ設定可能です。
       


.s.PGSQL.nnnnという名前のソケットファイル（nnnnはポート番号）のほかに、.s.PGSQL.nnnn.lockという通常ファイルがそれぞれのunix_socket_directoriesディレクトリの中に作成されます。
いずれのファイルも手作業で削除してはいけません。
抽象名前空間にあるソケットにはロックファイルは作成されません。
       

	unix_socket_group (string)
      
      
      
	

Unixドメインソケット（複数も）を所有するグループを設定します。
（ソケットを所有するユーザは常にサーバを起動するユーザです。）
unix_socket_permissionsパラメータとの組合せで、Unixドメインソケット接続の追加的アクセス管理機構として使うことができます。
デフォルトでは空文字列で、サーバユーザのデフォルトグループを使用します。
このパラメータはサーバ起動時のみ設定可能です。
       


このパラメータはWindowsではサポートされていません。
すべての設定は無視されます。
また、抽象名前空間にあるソケットはファイル所有者を持たないので、この場合も設定は無視されます。
       

	unix_socket_permissions (integer)
      
      
      
	

Unixドメインソケット（複数も）のアクセスパーミッションを設定します。
Unixドメインソケットは通常のUnixファイルシステムパーミッション設定の一式を使用します。
パラメータ値は、chmodおよびumaskシステムコールが受け付ける数値形式での指定を想定しています。
（通常使われる8進数形式を使用するのであれば、0（ゼロ）で始まらなければなりません。）
       


デフォルトのパーミッションは、誰でも接続できる0777になっています。
変更するならば0770（ユーザとグループのみです。unix_socket_groupも参照してください）や0700（ユーザのみ）が適切です。
（Unixドメインソケットでは書き込み権限だけが問題になるため、読み込みや実行のパーミッションを設定または解除する意味はありません。）
       


このアクセス制御機構は 20章クライアント認証で記述されたものとは別個のものです。
       


このパラメータはサーバ起動時のみ設定可能です。
       


このパラメータはSolaris 10の時点でのSolarisなど、ソケットのパーミッションを完全に無視するシステムでは無関係です。
こうしたシステムでは、許可したいユーザだけが検索パーミッションを持つディレクトリをunix_socket_directoriesで指すようにすることによって同じような効果を得ることができます。
       


抽象名前空間にあるソケットはファイルパーミッションを持たないので、この設定も無視されます。
       

	bonjour (boolean)
      
      
      
	

Bonjour™によりサーバの存在を公表することを可能にします。デフォルトはoffです。
このパラメータはサーバ起動時のみ設定可能です。
       

	bonjour_name (string)
      
      
      
	

Bonjour™サービス名を指定します。
このパラメータが空文字列''（デフォルトです）に設定されていると、コンピュータ名が使用されます。
サーバがBonjour™サポート付でコンパイルでされていない場合は無視されます。
このパラメータはサーバ起動時のみ設定可能です。
       




TCP設定



	tcp_keepalives_idle (integer)
      
      
      
	

クライアントとのやり取りがなくなった後、オペレーティングシステムがTCPのkeepaliveパケットをクライアントに送信するまでの時間を指定します。
この値が単位なしで指定された場合は、秒単位であるとみなします。
0（デフォルトです）の場合はオペレーティングシステムのデフォルト値を使用します。
Windowsでは、システムのデフォルト値を読み取る方法がないため、値0を設定すると、このパラメータは2時間に設定されます。
このパラメータはTCP_KEEPIDLEまたは同等のソケットオプションをサポートするシステムと、Windowsでのみサポートされます。
その他のシステムではゼロでなければなりません。
Unixドメインソケット経由で接続されたセッションでは、このパラメータは無視され、常にゼロとして読み取られます。
       

	tcp_keepalives_interval (integer)
      
      
      
	

TCPのkeepaliveメッセージに対してクライアントから応答がない場合に、再送を行うまでの時間を指定します。
この値が単位なしで指定された場合は、秒単位であるとみなします。
0（デフォルトです）の場合はシステムのデフォルト値を使用します。
Windowsでは、システムのデフォルト値を読み取る方法がないため、値0を設定すると、このパラメータが1秒に設定されます。
このパラメータはTCP_KEEPINTVLまたは同等のソケットオプションをサポートするシステムと、Windowsでのみサポートされます。
その他のシステムではゼロでなければなりません。
Unixドメインソケット経由で接続されたセッションでは、このパラメータは無視され、常にゼロとして読み取られます。
       

	tcp_keepalives_count (integer)
      
      
      
	

サーバのクライアントへの接続が切れたと判断されるまでのTCP keepaliveメッセージの数を指定します。
0（デフォルトです）の場合はオペレーティングシステムのデフォルト値を使用します。
このパラメータはTCP_KEEPCNTまたは同等のソケットオプションをサポートするシステムでのみサポートされます（Windowsは含みません）。
その他のシステムではゼロでなければなりません。
Unixドメインソケット経由で接続されたセッションでは、このパラメータは無視され、常にゼロとして読み取られます。
       

	tcp_user_timeout (integer)
      
      
      
	

未応答の送信データが残ったままの接続が強制的に閉じられるまでの時間を指定します。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
0（デフォルトです）の場合はオペレーティングシステムのデフォルト値を使用します。
このパラメータは、TCP_USER_TIMEOUTをサポートするシステム（Windowsは含みません）でのみ使用できます。他のシステムでは、0にする必要があります。
UNIXドメインソケットで接続しているセッションではこのパラメータは無視され、常に0として扱われます。
       

	client_connection_check_interval (integer)
      
      
      
	

問い合わせを実行中に、クライアントがまだ接続しているどうかの追加のチェックを行う時間間隔を指定します。
このチェックはソケットをポーリングすることによって行われ、その接続がクローズされていることをカーネルが報告することによって、長時間実行中の問い合わせをより早くアボートさせることができます。
       


このオプションは、Linux、macOS、illumos、BSD系のオペレーティングシステムによって公開されるカーネルイベントに依存しており、現在他のシステムでは利用できません。
       


値が単位なしに指定されると、ミリ秒であるとみなされます。
デフォルト値は0で、接続のチェックは無効になります。
接続チェックがない場合、サーバは接続が失われたことを、次のソケットへのアクセス、すなわちソケットの待受、データの受信、送信のときにだけ検出します。
       


ネットワーク障害を含めて、TCP接続が失われたことをすべてのシナリオにおいて既知のタイムフレームの中で確実にカーネルが検出するためには、オペレーティングシステムのTCP keepalive設定、あるいはPostgreSQL™のtcp_keepalives_idle、tcp_keepalives_interval、tcp_keepalives_count設定を調整することが必要になるかもしれません。
       




認証



	authentication_timeout (integer)
      
      
      
      
      
      
      
	

クライアント認証を完了するまでの最大時間です。
もし、この時間内に自称クライアントが認証プロトコルを完了しない場合、サーバは接続を閉じます。
これはハングしたクライアントが接続を永久に占有することを防ぎます。
この値が単位なしで指定された場合は、秒単位であるとみなします。
デフォルトは1分（1m）です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	password_encryption (enum)
      
      
      
	

CREATE ROLE(7)あるいはALTER ROLE(7)でパスワードを設定する際に、このパラメータはパスワードを暗号化するアルゴリズムを指定します。
可能な値は、SCRAM-SHA-256でパスワードを暗号化するscram-sha-256とパスワードをMD5ハッシュとして格納するmd5です。
デフォルト値はscram-sha-256です。
       


古いクライアントはSCRAM認証機構をサポートしていない可能性があり、したがってSCRAM-SHA-256による暗号化は動作しないかもしれないことに注意してください。
さらなる詳細については「パスワード認証」をご覧ください。
       
警告


MD5で暗号化されたパスワードのサポートは非推奨となり、将来のPostgreSQL™のリリースで削除されます。
他のパスワードタイプへの移行の詳細については、「パスワード認証」を参照してください。
        


	scram_iterations (integer)
      
      
      
	

SCRAM-SHA-256を使用してパスワードを暗号化するときに実行される計算の反復回数です。
デフォルトは4096です。
反復回数が多いほど、格納されたパスワードに対するブルートフォース攻撃に対する保護が強化されますが、認証の速度は低下します。
反復カウントは暗号化時に固定されるため、値を変更してもSCRAM-SHA-256で暗号化された既存のパスワードには影響しません。
変更された値を有効にするには、新しいパスワードを設定する必要があります。
       

	md5_password_warnings (boolean)
      
      
      
	

CREATE ROLEまたはALTER ROLE文によりMD5で暗号化されたパスワードを設定するときに、MD5パスワードの廃止に関するWARNINGを生成するかどうかを制御します。
デフォルト値はonです。
       

	krb_server_keyfile (string)
      
      
      
	

Kerberosサーバキーファイルの場所を設定します。
デフォルトはFILE:/usr/local/pgsql/etc/krb5.keytabです。
（ディレクトリ部分は構築時にsysconfdirで指定されたものです。
pg_config --sysconfdirを使って確認してください。）
このパラメータが空文字列に設定されると、それは無視されてシステム依存のデフォルトが使用されます。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
詳細は「GSSAPI認証」をご覧ください。
       

	krb_caseins_users (boolean)
      
      
      
	

GSSAPIユーザ名を大文字小文字の区別なく取り扱うかどうかを設定します。
デフォルトはoff（大文字小文字を区別する）です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	gss_accept_delegation (boolean)
      
      
      
	

クライアントからのGSSAPI委任を受け入れるかどうかを設定します。
デフォルトはoffです。
これは、クライアントからの資格証明が受け入れられないことを意味します。
これをonに変更すると、サーバは、クライアントから委任された資格証明を受け入れます。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	oauth_validator_libraries (string)
      
      
      
	

OAuth接続トークンの検証に使用するライブラリです。
検証用のライブラリが1つしか提供されていない場合は、それがすべてのOAuth接続でデフォルトで使用されます。
それ以外の場合は、すべてのoauth HBA項目で、このリストから選択したvalidatorを明示的に設定する必要があります。
空の文字列（デフォルト）に設定すると、OAuth接続は拒否されます。
このパラメータはpostgresql.confファイルでのみ設定できます。
       


検証モジュールは個別に実装/入手する必要があります。
PostgreSQL™にはデフォルトの実装は付属していません。
OAuth検証の実装の詳細については、50章OAuth検証器モジュールを参照してください。
       




SSL





SSLの設定の詳細は、「SSLによる安全なTCP/IP接続」を参照してください。
TLSプロトコルを使用した転送暗号化を制御するための構成パラメータは、SSLプロトコルのサポートが推奨されていないにもかかわらず、歴史的な理由からsslと名付けられています。
SSLはこの文脈でTLSと同じ意味で使用されます。
     
	ssl (boolean)
      
      
      
	

SSLによる接続を有効にします。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトはoffです。
       

	ssl_ca_file (string)
      
      
      
	

SSLサーバ認証局（CA）が入っているファイル名を設定します。
相対パスの場合は、データディレクトリからの相対パスになります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトは空で、この場合CAファイルは読み込まれず、クライアントのサーバ検証は行われません。
       

	ssl_cert_file (string)
      
      
      
	

SSLサーバ証明書が入っているファイル名を設定します。
相対パスの場合は、データディレクトリからの相対パスになります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトは server.crt です。
       

	ssl_crl_file (string)
      
      
      
	

SSLクライアント証明書失効リスト（CRL）が入っているファイル名を設定します。
相対パスの場合は、データディレクトリからの相対パスになります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトは空で、この場合CRLファイルは読み込まれません（ssl_crl_dirが設定されていない限り）。
       

	ssl_crl_dir (string)
      
      
      
	

SSLクライアント証明書失効リスト（CRL）が入っているディレクトリ名を設定します。
相対パスの場合は、データディレクトリからの相対パスになります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトは空で、この場合CRLファイルは読み込まれません（ssl_crl_fileが設定されていない限り）。
       


このディレクトリはOpenSSL™コマンドのopenssl rehashあるいはc_rehashで準備されなければなりません。
詳細はそれらのドキュメントをご覧ください。
       


この設定を使用すると、指定したディレクトリ内のCRLが接続時に必要に応じて読み込まれます。
新しいCRLをこのディレクトリに追加することが可能で、即座に使用されます。
サーバが起動されるとき、あるいは設定が再読込されるときに読み込まれるssl_crl_fileとは異なります。
両方の設定は一緒に使用できます。
       

	ssl_key_file (string)
      
      
      
	

SSLサーバの秘密鍵が入っているファイル名を設定します。
相対パスの場合は、データディレクトリからの相対パスになります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトは server.key です。
       

	ssl_tls13_ciphers (string)
      
      
      
	

TLSバージョン1.3を使用する接続で許可される暗号スイートのリストを指定します。
コロンで区切られたリストを使用して、複数の暗号スイートを指定できます。
空白のままにすると、OpenSSL™のデフォルトの暗号スイートが使用されます。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	ssl_ciphers (string)
      
      
      
	

TLSバージョン1.2以下を使用する接続で許可されるSSL暗号のリストを指定します。
TLSバージョン1.3を使用する接続についてはssl_tls13_ciphersを参照してください。
この設定の構文とサポートされている値の一覧については、OpenSSL™パッケージのマニュアルページciphersを参照してください。
デフォルト値はHIGH:MEDIUM:+3DES:!aNULLです。
特定のセキュリティ要件がない限り、通常はデフォルトが妥当な選択です。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       


デフォルト値の説明:
        
	HIGH
	

HIGHグループ(たとえばAES, Camellia, 3DES)を使用する暗号スイート
           

	MEDIUM
	

MEDIUMグループ(たとえば RC4, SEED)を使用する暗号スイート
           

	+3DES
	

OpenSSL™のHIGHに対するデフォルトの並び順には問題があります。
3DESがAES128より高いとしているからです。
3DESはAES128よりもセキュアではなく、またずっと遅いので、これは間違っています。
+3DESではそれを他のすべてのHIGHとMEDIUM暗号よりも後に位置づけます。
           

	!aNULL
	

認証を行わない匿名暗号スイートを無効にします。
そういった暗号スイートはMITM攻撃に対して脆弱で、使用すべきではありません。
           




       


OpenSSL™のバージョンにより、利用可能な暗号スイートの詳細は異なります。
openssl ciphers -v 'HIGH:MEDIUM:+3DES:!aNULL'
コマンドを使って現在インストールされているOpenSSL™のバージョンに関する詳細情報を得てください。
ここで得られるリストは、サーバキータイプにより実行時にフィルタされることに注意してください。
       

	ssl_prefer_server_ciphers (boolean)
      
      
      
	

サーバのSSL暗号設定をクライアントに優先して使うかどうかを指定します。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトはonです。
       


バージョン9.4より前のPostgreSQL™にはこの設定がなく、常にクライアントの設定が使用されます。
この設定は、主に古いバージョンとの互換性のために設けられています。
通常サーバの設定に従うほうが良いです。大抵の場合、サーバはより適切に設定されているからです。
       

	ssl_groups (string)
      
      
      
	

ECDHキー交換で使われる曲線の名前を指定します。
接続するすべてのクライアントがこの設定をサポートしている必要があります。
コロンで区切られたリストを使用して複数の曲線を指定できます。
サーバの楕円曲線キーで使用されるのと同じ曲線である必要はありません。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルト値はX25519:prime256v1です。
       


最も一般的な曲線のOpenSSL™名は、prime256v1（NIST P-256）、secp384r1（NIST P-384）、およびsecp521r1（NIST P-521）です。
openssl ecparam -list_curvesコマンドを使用すると、使用可能なグループの不完全なリストを表示することができます。
ただし、すべてがTLSで使用できるわけではなく、サポートされているグループ名と別名の多くは省略されています。
       


バージョン18.0より前のPostgreSQL™では、この設定はssl_ecdh_curveという名前で、指定できる値は1つだけでした。
       

	ssl_min_protocol_version (enum)
      
      
      
	

使用するSSL/TLSプロトコルバージョンの最小値を設定します。
今の所使用できる値はTLSv1、TLSv1.1、TLSv1.2、TLSv1.3です。
古いバージョンのOpenSSL™ライブラリはすべての値をサポートしません。
サポートしていない値が設定されるとエラーが発生します。
TLS 1.0より前のプロトコルバージョン、すなわちSSLバージョン2あるいは3は常に無効となります。
       


デフォルトはTLSv1.2で、本稿執筆時点では業界のベストプラクティスを満たしています。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	ssl_max_protocol_version (enum)
      
      
      
	

使用するSSL/TLSプロトコルバージョンの最大値を設定します。
使用できる値はssl_min_protocol_versionと、すべてのプロトコルバージョンを許可する空文字です。
デフォルトはすべてのプロトコルバージョンを許可する設定です。
最大プロトコルバージョンの設定は主にテスト、あるいは新しいプロトコルを使った時にコンポーネントのどこかに問題がある時に有用です。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	ssl_dh_params_file (string)
      
      
      
	

いわゆる短命DH系SSL暗号で使用するディフィー・ヘルマンパラメータを格納するファイル名を指定します。
デフォルトは空で、この場合はコンパイル時に決められたデフォルトのDHパラメータが使用されます。
攻撃者が、よく知られたコンパイル時設定のDHパラメータを解読しようとしている場合には、カスタムDHパラメータを使うことでその危険性を低減できます。
openssl dhparam -out dhparams.pem 2048を使って、独自のDHパラメータファイルを作ることができます。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	ssl_passphrase_command (string)
      
      
      
	

秘密鍵などのSSLファイルを復号する際に、パスフレーズの入手が必要な時に起動される外部コマンドを設定します。
デフォルトではこのパラメータは空文字で、組み込みのプロンプト機構が使用されます。
       


このコマンドは、パスフレーズを標準出力に書き出し、コード0で終了しなければなりません。
パラメータの値の%pはプロンプト文字列に置き換えられます。
（%を使いたい場合は%%としてください。）
プロンプト文字列はおそらく空白文字を含むので、適切に引用符付けするように注意してください。
出力の最後に一個の改行があれば、削除されます。
       


このコマンドは実際にはパスフレーズ用にユーザにプロンプトを表示する必要はありません。
ファイルからパスフレーズが読めるなら、キーチェーン機構やその他から取得します。
選択された仕組みが適切にセキュアかどうかを確認するのはユーザ次第です。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	ssl_passphrase_command_supports_reload (boolean)
      
      
      
	

このパラメータは、キーにパスフレーズが必要な場合、設定ファイルの再読み込み中にssl_passphrase_commandで設定されたパスフレーズコマンドも呼び出されるかどうかを設定します。
このパラメータがoff（デフォルト）なら、ssl_passphrase_commandは再読込の際に無視され、パスフレーズが必要な場合、SSL設定は再読込されません。
この設定は、サーバ実行中は存在しないかもしれないTTYがプロンプトに必要なコマンドに適しています。
たとえばパスフレーズがファイルから読み込める場合には、この設定をonにするのが適切です。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       





資源の消費



メモリ



	shared_buffers (integer)
      
      
      
	

データベースサーバが共有メモリバッファのために使用するメモリ量を設定します。
デフォルトは一般的に128メガバイト(128MB)です。
しかし、稼働中のカーネルの設定がこの値をサポートしていない場合、より少なくなることがあります（initdbの過程で決定されます）。
この設定は最低限128キロバイトなければなりません。
しかし、良い性能を引き出すためには、最小値よりかなり高い値の設定が通例必要です。
この値が単位なしで指定された場合は、ブロック単位であるとみなします。すなわち、BLCKSZバイト、一般的には8kBです。
（BLCKSZがデフォルト値と異なる場合、この最小値も異なる値になります。）
このパラメータはサーバ起動時のみ設定可能です。
       


1GB以上のRAMを載せた専用データベースサーバを使用している場合、shared_buffersに対する妥当な初期値はシステムメモリの25%です。
shared_buffersをこれよりも大きな値に設定することが有効なワークロードもあります。
しかし、PostgreSQL™はオペレーティングシステムキャッシュにも依存するため、shared_buffersにRAMの40%以上を割り当てても、それより小さい値の時より動作が良くなる見込みはありません。
shared_buffersをより大きく設定する場合は、大抵max_wal_sizeも合わせて増やす必要があります。これは、新規または変更された多量のデータを書き出す処理をより長い時間に渡って分散させるためです。
       


1GB未満のRAMのシステムでは、オペレーティングシステムに十分な余裕を残すために、RAMに対してより小さい割合を設定することが適切です。
       

	huge_pages (enum)
      
      
      
	

主共有メモリ領域に対してhuge pageを要求するかどうかを管理します。
可能な値はtry (デフォルト)、on、offです。
huge_pagesをtryに設定すると、サーバはhuge pageの要求を試み、失敗したらデフォルトに戻します。
onにすると、要求に失敗した場合にサーバの起動ができなくなることになります。
offならhuge pageの要求は行いません。
huge pageの実際の状態は、サーバ変数huge_pages_statusで示されています。
       


今のところこの機能はLinuxとWindowsでのみサポートされています。
他のシステムではtryと設定しても無視されます。
Linuxではこの機能はshared_memory_typeがmmap（デフォルトです）に設定されている時にのみサポートされます。
       


huge pageを使うと、ページテーブルが小さくなり、メモリ管理に使用されるCPU時間が少なくなり、性能が向上します。
詳細は、「LinuxのHugePages」を見てください。
       


huge pageはWindowsではlarge pageとして知られています。
それを使用するには、PostgreSQL™を実行するWindowsユーザアカウントに「メモリ中のロックページ」権限を与える必要があります。
ユーザに「メモリ中のロックページ」権限を与えるには、Windowsのグループポリシーツール(gpedit.msc)を利用できます。
Windowsサービスとしてではなく、スタンドアローンプロセスとしてデータベースサーバをコマンドプロンプトで起動するには、コマンドプロンプトを管理者として実行するか、ユーザアクセス管理(UAC)を無効にしておかなければなりません。
UACが有効ならば、通常のコマンドプロンプトは起動時にユーザの「メモリ中のロックページ」権限を剥奪します。
       


この設定は主共有メモリ領域にのみ影響することに注意してください。
Linux、FreeBSD、Illumosのようなオペレーティングシステムでは、PostgreSQL™からの明示的な要求なしにhuge page（「super」 pageあるいは「large」pageとしての知られています）が通常のメモリ獲得の際に使用できます。
Linuxでは、これは「transparent huge pages」 (THP)と呼ばれています。
この機能は、あるLinuxバージョンのあるユーザにおいてPostgreSQL™の性能低下をもたらすことが知られています。
ですから、この機能の利用は（huge_pagesの明示的な利用と違って）今の所推奨されていません。
       

	huge_page_size (integer)
      
      
      
	

huge_pagesが有効なときにhuge pageのサイズを制御します。
デフォルトはゼロ(0)です。
0に設定すると、システムのデフォルトのhuge pageのサイズが使われます。
このパラメータはサーバ起動時のみ設定可能です。
       


現代の64ビットサーバアーキテクチャにおける可能な一般的なページサイズには以下が含まれます。
2MBと1GB (IntelとAMD)、16MBと16GB (IBM POWER)、64kB、2MB、32MBそして1GB (ARM)。
使い方とサポートに関する詳細な情報に関しては「LinuxのHugePages」を参照してください。
       


今の所Linuxでサポートされるデフォルトの設定値はありません。
       

	temp_buffers (integer)
      
      
      
	

それぞれのデータベースセッションが使用する一時バッファの最大メモリ量を設定します。
一時バッファは、一時テーブルにアクセスする時にのみ使用されるセッションローカルのバッファです。
この値が単位なしで指定された場合は、ブロック単位であるとみなします。すなわち、BLCKSZバイト、一般的には8kBです。
デフォルトは8メガバイト（8MB）です。
（BLCKSZが8kBでなければ、それに比例して増減します。）
設定はそれぞれのセッション内で変更できますが、そのセッション内で一時テーブルが最初に使用されるまでになります。それより後に値の変更を試みても、そのセッションでは効果がありません。
       


セッションは、temp_buffersを上限として、必要に応じて一時バッファを確保します。
多くの一時バッファを実際に必要としないセッションで大きな値を設定するコストとは、temp_buffersの増分毎に、1つのバッファ記述子、約64バイトだけです。
しかし、バッファが実際に使用されると、それに対して追加の8192バイト（汎用的に言えばBLCKSZバイト）が消費されます。
       

	max_prepared_transactions (integer)
      
      
      
	

同時に「プリペアド」状態にできるトランザクションの最大数を設定します（PREPARE TRANSACTION(7)を参照してください）。
このパラメータをゼロ（これがデフォルトです）に設定すると、プリペアドトランザクション機能が無効になります。
このパラメータはサーバ起動時のみ設定可能です。
       


プリペアドトランザクションの使用を意図しないのであれば、このパラメータはプリペアドトランザクションが偶然に作成されないようゼロに設定すべきです。
プリペアドトランザクションを使用する場合、全てのセッションがプリペアドトランザクションを保留できるように、max_prepared_transactionsを少なくともmax_connectionsと同じ大きさに設定するのが良いでしょう。
       


スタンバイサーバを運用している場合、このパラメータはプライマリサーバ上の設定よりも同等かもしくはより高水準に設定しなければなりません。そうしないと問い合わせがスタンバイサーバ内で受け入れられません。
       

	work_mem (integer)
      
      
      
	

一時ディスクファイルに書き込む前に、問い合わせ操作（ソートやハッシュなど）で使用される最大メモリ量を設定します。
この値が単位なしで指定された場合は、キロバイト単位であるとみなします。
デフォルト値は4MB(4MB)です。
複雑な問い合わせでは、同時に複数のソート操作とハッシュ操作が実行される可能性があります。
各操作は通常、データを一時ファイルに書き込む前にこの値で指定された量のメモリを使用できます。
また、複数の実行中のセッションが同時にこのような操作を実行することもあります。
したがって、使用されるメモリの合計量はwork_memの数倍になる可能性があります。
値を選択する時には、この事実に留意することが必要です。
ソート操作はORDER BY、DISTINCT、およびマージ結合に対して使われます。
ハッシュテーブルはハッシュ結合、ハッシュに基づいた集約、メモ化（memoize）ノードおよびIN副問い合わせのハッシュに基づいた処理で使用されます。
       


一般的に、ハッシュに基づく操作はソートに基づく操作よりも利用可能なメモリに敏感です。
ハッシュテーブルのメモリ制限は、work_memにhash_mem_multiplierを乗算することで計算されます。
これにより、ハッシュに基づく操作では通常のwork_memに基づく量を超える量のメモリが使用される可能性があります。
       

	hash_mem_multiplier (floating point)
      
      
      
	

ハッシュに基づく操作が利用できる最大のメモリ量を計算するために使用します。
最終的な制限はwork_memにhash_mem_multiplierを掛けて決定されます。
デフォルト値は2.0で、ハッシュに基づく操作が通常のwork_memに基づく値の2倍使用することになります。
       


問い合わせ操作によって日常的にメモリ不足になるような環境、とりわけ単にwork_memを増やしたことによってメモリ逼迫（メモリ逼迫が典型的には間欠的なメモリ不足エラーの発生の形で起こる）が起きる場合にはhash_mem_multiplierを増やすことを考慮してください。
デフォルトの2.0が色々なワークロードが混在している場合には効果的かも知れません。
より大きな2.0から8.0、あるいはそれ以上の設定はwork_memがすでに40MB以上に増やしてあるような環境で効果的かも知れません。
       

	maintenance_work_mem (integer)
      
      
      
	

VACUUM、CREATE INDEX、およびALTER TABLE ADD FOREIGN KEYの様な保守操作で使用されるメモリの最大容量を指定します。
この値が単位なしで指定された場合は、キロバイト単位であるとみなします。
デフォルト値は64メガバイト（64MB）です。
1つのデータベースセッションでは、一度に1つしか上記操作はできませんし、通常インストレーションでこうした操作が同時に非常に多く発生することはありませんので、これをwork_memよりもかなり多めの値にしても安全です。
大きい値を設定することでvacuum処理と、ダンプしたデータベースのリストア性能が向上します。
       


自動バキュームが稼働すると、最大でこのメモリのautovacuum_max_workers倍が配分されるので、デフォルトの値をあまり高く設定しないよう注意してください。
別の設定項目autovacuum_work_memで制御するのが良いかもしれません。
       

	autovacuum_work_mem (integer)
      
      
      
	

個々の自動バキュームワーカープロセスが使用する最大のメモリ量を指定します。
この値が単位なしで指定された場合は、キロバイト単位であるとみなします。
デフォルトは-1で、maintenance_work_memが代わりに使われる設定になります。
別の文脈で実行されるVACUUMにはこの設定は影響しません。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	
       vacuum_buffer_usage_limit (integer)
       
       
      
	

VACUUMコマンドおよびANALYZEコマンドで使用されるバッファアクセスストラテジの大きさを指定します。
0を設定すると、それらの操作で任意の数のshared_buffersを使用できることになります。
それ以外の場合は、有効なサイズは128 kBから16 GBまでの範囲です。
指定されたサイズがshared_buffersのサイズの1/8を超える場合、サイズは黙ってその値に制限されます。
デフォルト値は2MBです。
この値が単位なしで指定された場合は、キロバイト単位であるとみなします。
このパラメータはいつでも設定できます。
このパラメータは、BUFFER_USAGE_LIMITオプションを渡すことによって、VACUUM(7)およびANALYZE(7)に対して上書きできます。
設定を高くすると、VACUUMおよびANALYZEの実行速度が速くなりますが、設定を高くしすぎると、他の多くの有用なページが共有バッファから削除されてしまう可能性があります。
       

	logical_decoding_work_mem (integer)
      
      
      
	

デコードされた更新がローカルディスクに書かれる前にロジカルデコーディングが使用する最大のメモリ量を指定します。
これにより、ロジカルストリーミングレプリケーションの接続が使用する最大メモリが制限されます。
デフォルトは64メガバイト(64MB)です。
個々のレプリケーション接続がここで指定した単一のバッファだけを使用し、インストールは通常たくさんの接続を並行して使わないので（max_wal_sendersで制限されます）、この値をwork_memよりもずっと大きくしても安全で、それによってデコードされた更新がディスクに書かれる量が削減されます。
       

	commit_timestamp_buffers (integer)
      
      
      
	

pg_commit_tsの内容をキャッシュするために使用するメモリ量を指定します（表66.1「PGDATAの内容」を参照してください）。
この値が単位なしで指定された場合、ブロック、つまりBLCKSZバイト、通常は8キロバイトとして扱われます。
デフォルト値は0で、最大1024ブロック、16ブロック以上のshared_buffers/512を要求します。
このパラメータはサーバ起動時のみ設定可能です。
       

	multixact_member_buffers (integer)
      
      
      
	

pg_multixact/membersの内容をキャッシュするために使用する共有メモリの量を指定します（表66.1「PGDATAの内容」を参照してください）。
この値が単位なしで指定された場合、ブロック、つまりBLCKSZバイト、通常は8キロバイトとして扱われます。
デフォルト値は32です。
このパラメータはサーバ起動時のみ設定可能です。
       

	multixact_offset_buffers (integer)
      
      
      
	

pg_multixact/offsetsの内容をキャッシュするために使用する共有メモリの量を指定します（表66.1「PGDATAの内容」を参照してください）。
この値が単位なしで指定された場合、ブロック、つまりBLCKSZバイト、通常は8キロバイトとして扱われます。
デフォルト値は16です。
このパラメータはサーバ起動時のみ設定可能です。
       

	notify_buffers (integer)
      
      
      
	

pg_notifyの内容をキャッシュするために使用する共有メモリの量を指定します（表66.1「PGDATAの内容」を参照してください）。
この値が単位なしで指定された場合、ブロック、つまりBLCKSZバイト、通常は8キロバイトとして扱われます。
デフォルト値は16です。
このパラメータはサーバ起動時のみ設定可能です。
       

	serializable_buffers (integer)
      
      
      
	

pg_serialの内容をキャッシュするために使用する共有メモリの量を指定します（表66.1「PGDATAの内容」を参照してください）。
この値が単位なしで指定された場合、ブロック、つまりBLCKSZバイト、通常は8キロバイトとして扱われます。
デフォルト値は32です。
このパラメータはサーバ起動時のみ設定可能です。
       

	subtransaction_buffers (integer)
      
      
      
	

pg_subtransの内容をキャッシュするために使用する共有メモリの量を指定します（表66.1「PGDATAの内容」を参照してください）。
この値が単位なしで指定された場合、ブロック、つまりBLCKSZバイト、通常は8キロバイトとして扱われます。
デフォルト値は0で、最大1024ブロック、16ブロック以上のshared_buffers/512を要求します。
このパラメータはサーバ起動時のみ設定可能です。
       

	transaction_buffers (integer)
      
      
      
	

pg_xactの内容をキャッシュするために使用する共有メモリの量を指定します（表66.1「PGDATAの内容」を参照してください）。
この値が単位なしで指定された場合、ブロック、つまりBLCKSZバイト、通常は8キロバイトとして扱われます。
デフォルト値は0で、最大1024ブロック、16ブロック以上のshared_buffers/512を要求します。
このパラメータはサーバ起動時のみ設定可能です。
       

	max_stack_depth (integer)
      
      
      
	

サーバの実行スタックの最大安全深度を指定します。
このパラメータの理想的な設定はカーネルにより強要される実際のスタック容量の（ulimit -sもしくはそれと同等の機能で設定された）限界から、1メガバイト程度の安全余裕度を差し引いたものです。
この安全余裕度は、サーバがすべてのルーチンではスタック深度を検査をせず、再帰を行う可能性のある重要なルーチンでのみ検査をするために必要となるものです。
この値が単位なしで指定された場合は、キロバイト単位であるとみなします。
デフォルト設定は2メガバイト（2MB）で、かなり控え目、かつクラッシュの危険がなさそうな設定です。
しかし、複雑な関数の実行を許容するには小さ過ぎるかも知れません。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       


max_stack_depthを実際のカーネルの制限よりも高い値に設定した場合、暴走した再帰関数により、個々のバックエンドプロセスがクラッシュするかもしれません。
PostgreSQL™がカーネルの制限を決定することができるプラットフォームでは、この変数を危険な値に設定させません。
しかし、すべてのプラットフォームがこの情報を提供できるわけではありません。
このため、値を選ぶ時には注意が必要です。
       

	shared_memory_type (enum)
      
      
      
	

PostgreSQL™の共有バッファおよび他の共有データを保持する主共有メモリ領域のためにサーバが使用すべき共有メモリの実装を指定します。
可能な値はmmap（mmapを使って獲得した無名共有メモリ）、sysv （shmgetを使って獲得したSystem V共有メモリ）、windows （Windows共有メモリ）です。
すべての値がすべてのプラットフォームでサポートされているわけではありません。
サポートされている最初のオプションがそのプラットフォームのデフォルトです。
どのプラットフォームでもデフォルトになっていないsysvオプションの利用は一般に推奨されません。
通常、デフォルトではないカーネルの設定が大きなアロケーションでは必要になるからです。
（「共有メモリとセマフォ」参照。）
       

	dynamic_shared_memory_type (enum)
      
      
      
	

サーバが使う動的共有メモリの実装を指定します。可能な値はposix (shm_openで獲得するPOSIX共有メモリ)、sysv(shmgetで獲得するSystem V共有メモリ)、windows (Windows共有メモリ)、 mmap(データディレクトリ内のメモリマップファイルを使ってシミュレートする共有メモリ)です。
すべての値がすべてのプラットフォームでサポートされているわけではありません。
そのプラットフォームでの推奨実装が通常デフォルトになります。
どのプラットフォームでもデフォルトになっていないmmapは、オペレーティングシステムが変更されたページをディスクに継続的に書き込み、I/O負荷を増加させるので一般的には利用が推奨されていません。
しかし、デバッグ目的のためにpg_dynshmemディレクトリがRAMディスク上にある場合や、他の共有メモリ機能が使えない場合は有用かもしれません。
       

	min_dynamic_shared_memory (integer)
      
      
      
	

サーバ起動時にパラレルクエリ用に獲得するメモリの量を指定します。
このメモリ領域不足していたり並列実行される問い合わせで使い尽くされると、新しいパラレルクエリはdynamic_shared_memory_typeで設定された方法でオペレーティングシステムから一時的に共有メモリを獲得しようとします。
これはメモリ管理のオーバーヘッドにより遅くなる可能性があります。
起動時にmin_dynamic_shared_memoryで獲得するメモリは、サポートするオペレーティングシステムに対するhuge_pagesの設定に影響を受けます。
huge pageを自動管理するオペレーティングシステム上でより大きなページにより恩恵を被る可能性が大きいです。
デフォルト値は0（none）です。
このパラメータはサーバ起動時にのみ設定可能です。
       




ディスク



	temp_file_limit (integer)
      
      
      
	

あるプロセスが一時ファイルとして使用できるディスクの最大容量を設定します。
例えば、ソートやハッシュの一時ファイルであったり、カーソルを保持する格納ファイルです。
この制限値を超えようとするトランザクションはキャンセルされます。
この値が単位なしで指定された場合は、キロバイト単位であるとみなします。
-1（デフォルトです）の場合は制限がありません。
この設定はスーパーユーザと、適切なSET権限を持つユーザのみ変更可能です。
       


この設定により、ある PostgreSQL™ セッションによって使用される一時ファイルの合計の容量が常に制約されることになります。
なお、問い合わせの実行において暗黙的に使用される一時ファイルとは異なり、一時テーブルとして明示的に使用されるディスク容量は、この制限には含まれません。
       

	file_copy_method (enum)
      
      
      
	

ファイルのコピーに使用する方法を指定します。
指定できる値はCOPY（デフォルト）とCLONE（操作がサポートがされている場合）です。
       


このパラメータは以下に影響を与えます。
       
	
         CREATE DATABASE ... STRATEGY=FILE_COPY
        

	
         ALTER DATABASE ... SET TABLESPACE ...
        





CLONEは、copy_file_range()（Linux、FreeBSDの場合）またはcopyfile（macOSの場合） システムコールを使用します。
これにより、カーネルはディスクブロックを共有したり、一部のファイルシステムの処理を下位レイヤにプッシュダウンしたりできます。
       

	max_notify_queue_pages (integer)
      
      
      
	

NOTIFY(7)/LISTEN(7)キューのために割り当てられたページの最大量を指定します。
デフォルト値は1048576です。
8キロバイトページの場合、最大8ギガバイトのディスクスペースが消費されます。
       




カーネル資源使用



	max_files_per_process (integer)
      
      
      
	

サーバの各子プロセスが同時にオープンできるファイル数の最大値を設定します。
既にpostmasterで開かれているファイルは、この制限にはカウントされません。
デフォルトは1000ファイルです。
       


カーネルがプロセス毎の安全制限を強要している場合、この設定を気にかける必要はありません。
しかし、いくつかのプラットフォーム（特にほとんどのBSDシステム）では、もし多くのプロセス全てがそれだけ多くのファイルを開くことを試みる場合、実際にサポートできるファイル数より多くのファイルを開くことを許しています。
もし「Too many open files」というエラーが発生した場合、この設定を削減してみてください。
このパラメータはサーバ起動時のみ設定可能です。
       




バックグラウンドライタ





バックグラウンドライタと呼ばれる個別のサーバプロセスがあり、その機能は（新規または更新された）「ダーティ」な共有バッファの書き込みを行うことです。
クリーンなバッファの数が足りないことが分かると、バックグラウンドライタはダーティバッファをファイルシステムに書き込み、それらのバッファにクリーンであるという印を付けます。
これにより、ユーザの問い合わせを処理するサーバプロセスがクリーンなバッファを見つけることができず、ダーティなバッファを自分で書き込まなければならなくなる可能性を減らすことができます。
しかし、バックグラウンドライタは正味の全体的I/O負荷の増加を引き起こします。
その理由は、繰り返しダーティ化されるページは、バックグラウンドライタを使わなければチェックポイント間隔で一度だけ書き出されれば十分なのに対し、バックグラウンドライタは同じ間隔内で何度もダーティ化されると、それを複数回書き出すかもしれないからです。
この副節で説明する各パラメータは、サイト独自の必要に応じて動作を調整することに使用できます。
     
	bgwriter_delay (integer)
       
       
       
	

バックグラウンドライタの動作周期間の遅延を指定します。
それぞれの周期でライタは、（以下のパラメータで管理される）一部のダーティバッファの書き込みを行います。
そしてbgwriter_delayの長さスリープした後、これを繰りかえします。
しかし、バッファプールにダーティバッファが存在しない場合、bgwriter_delayに係わらずより長くスリープします。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
デフォルトの値は200ミリ秒（200ms）です。
ある種のシステムでは、スリープ遅延の実精度は10ミリ秒です。
bgwriter_delayの値の設定を10の倍数としない場合、次に大きい10の倍数に設定した結果と同一になるかもしれないことを覚えておいてください。
このパラメータはpostgresql.confファイル、または、サーバのコマンドラインで設定可能です。
        

	bgwriter_lru_maxpages (integer)
       
       
       
	

それぞれの周期で、この数以上のバッファはバックグラウンドライタにより書き込まれません。
ゼロに設定することでバックグラウンド書き込みは無効になります。
（分離し、そして専用の補助プロセスにより管理されるチェックポイントは影響を受けません。）
デフォルト値は100バッファです。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
        

	bgwriter_lru_multiplier (floating point)
       
       
       
	

各周期で書き出されるダーティバッファ数は、最近の周期でサーバプロセスが必要とした新しいバッファ数を基にします。
次の周期で必要となるバッファ数を推定するために、最近必要とされた平均がbgwriter_lru_multiplierと掛け合わせられます。
ダーティバッファの書き出しは、同数の整理済み、再利用可能なバッファが利用できるようになるまで行われます。
（しかし1周期にbgwriter_lru_maxpagesを超えるバッファ数を書き出しません。）
したがって、1.0と設定することは、必要と予想されるバッファ数の書き込みについて「必要なときに必要なだけ」というポリシーを表します。
より大きな値は突発的な要求に対する多少の緩衝材を提供します。
より小さな値はサーバプロセスでなされる書き込みを意図的に残します。
デフォルトは2.0です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
        

	bgwriter_flush_after (integer)
       
       
       
	

バックグラウンドライタがこの値より多く書く度に、OSが記憶装置に書き込むことを強制しようとします。
このことにより、カーネルのページキャッシュが持つダーティデータの量を一定量に制限し、チェックポイントの最後にfsyncが実行される際、あるいはOSがバックグラウンドでデータを大きな塊で書き出す際に性能の急激な低下を招く可能性を減らします。
多くの場合これによってトランザクションの遅延が大幅に少なくなりますが、あるケース、特にワークロードがshared_buffersよりも大きく、OSのページキャッシュよりも小さい時には性能が低下するかもしれません。
この設定が無効なプラットフォームがあります。
この値が単位なしで指定された場合は、ブロック単位であるとみなします。すなわち、BLCKSZバイト、一般的には8kBです。
有効な設定値は、この強制書き込み機能が無効になる0から、2MBまでです。
デフォルト値は、Linuxでは512kBで、それ以外は0です。
（BLCKSZが8kBでなければ、この設定のデフォルト値と最大値がBLCKSZに比例して変更されます。）
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
        





bgwriter_lru_maxpagesおよびbgwriter_lru_multiplierの値がより少ないと、バックグラウンドライタで引き起こされる追加のI/O負荷を軽減しますが、サーバプロセスが自分自身で行わなければならない書き込みが増加することになり、会話型問い合わせを遅らせることになります。
     

I/O



	backend_flush_after (integer)
       
       
       
	

この量を超えるデータが単一のバックエンドによって書き込まれたときはいつでも、OSが記憶装置に書き込むことを強制します。
このことにより、カーネルのページキャッシュが持つダーティデータの量を一定量に制限し、チェックポイントの最後にfsyncが実行される際、あるいはバックグラウンドで実行される大きなバッチの中でOSがデータを書き出す際に性能の急激な低下を招く可能性を減らします。
多くの場合これによってトランザクションの遅延が大幅に少なくなりますが、あるケース、特にワークロードがshared_buffersよりも大きく、OSのページキャッシュよりも小さい時には性能が低下するかもしれません。
この設定が無効なプラットフォームがあります。
この値が単位なしで指定された場合は、ブロック単位であるとみなします。すなわち、BLCKSZバイト、一般的には8kBです。
有効な範囲は、この強制書き込み機能が無効になる0から、2MBまでです。
デフォルト値は0です(すなわち書き出し制御を行いません)。
（BLCKSZが8kBでなければ、最大値がBLCKSZに比例して変更されます。）
        

	effective_io_concurrency (integer)
       
       
       
	

PostgreSQL™が同時実行可能であると想定する同時ストレージI/O操作の数を設定します。
この値を大きくすると、あらゆる個別のPostgreSQL™セッションが並行して開始を試みるI/O操作の数が増加します。
設定可能な範囲は1から1000まで、または非同期I/Oリクエストの発行を無効にする0です。
デフォルトは16です。
        


値が高いほど、問い合わせで顕著なI/Oストールが発生するレイテンシの高いストレージや、IOPSが高いデバイスに最も大きな影響を与えます。
不必要に高い値を設定すると、システム上のすべての問い合わせのI/O待ち時間が長くなる可能性があります。
        


プリフェッチ指示がサポートされているシステムでは、effective_io_concurrencyがプリフェッチの距離も制御します。
        


この値は、同じ名前のテーブル空間パラメータを設定することで、特定のテーブル空間内のテーブルに対して上書きできます（ALTER TABLESPACE(7)を参照）。
        

	maintenance_io_concurrency (integer)
       
       
       
	

effective_io_concurrencyと似ていますが、多くのクライアントセッションのために行われる保守作業で適用されるところが異なります。
        


デフォルトは16です。
この値は、同じ名前のテーブル空間パラメータを設定することで、特定のテーブル空間内のテーブルに対して上書きできます（ALTER TABLESPACE(7)を参照）。
        

	io_max_combine_limit (integer)
       
       
       
	

I/Oを結合する操作の最大のI/Oサイズを制御し、ユーザが設定可能なパラメータであるio_combine_limitを暗黙的に制限します。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
可能な最大サイズは、オペレーティングシステムとブロックサイズによって異なりますが、通常、Unixでは1MBであり、Windowsでは128kBです。
デフォルトは128kBです。
        

	io_combine_limit (integer)
       
       
       
	

I/Oを結合する操作の最大のI/Oサイズを制御します。
io_max_combine_limitパラメータよりも高い値に設定すると、代わりに低い値が自動的に使用されるため、I/Oサイズを増やすには両方を上げる必要がある場合があります。
可能な最大サイズは、オペレーティングシステムとブロックサイズによって異なりますが、通常、Unixでは1MBであり、Windowsでは128kBです。
デフォルトは128kBです。
        

	io_max_concurrency (integer)
       
       
       
	

1つのプロセスが同時に実行できるI/O操作の最大数を制御します。
        


デフォルトの設定値の-1では、shared_buffersとプロセスの最大数（max_connections、autovacuum_worker_slots、max_worker_processes、およびmax_wal_senders）に基づいて値が選択されますが、64を超える値にはなりません。
        


このパラメータはサーバ起動時のみ設定可能です。
        

	io_method (enum)
       
       
       
	

非同期I/Oを実行する方法を選択します。
可能な値は次のとおりです。
         
	

worker
（ワーカープロセスを使用する非同期I/Oを実行します）
           

	

io_uring
（io_uringを使用して非同期I/Oを実行します。
--with-liburing / -Dliburingを使用してビルドする必要があります）
           

	

sync
（非同期で適格なI/Oを同期的に実行します）
           





デフォルトはworkerです。
        


このパラメータはサーバ起動時のみ設定可能です。
        

	io_workers (integer)
       
       
       
	

使用するI/Oワーカープロセスの数を選択します
デフォルトは3です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
        


io_methodがworkerと設定されている場合にのみ有効です。
        




ワーカープロセス



	max_worker_processes (integer)
       
       
       
	

クラスタがサポートするバックグラウンドプロセスの最大数を指定します。
このパラメータはサーバ起動時のみ設定可能です。
デフォルトは8です。
        


スタンバイサーバを起動しているときは、このパラメータを、プライマリサーバの設定値と同じかそれ以上にしなければなりません。
さもなければ、スタンバイサーバで問い合わせの実行ができなくなります。
        


この値を変更する際は、max_parallel_workers、max_parallel_maintenance_workers、max_parallel_workers_per_gatherを変更することも考慮してください。
        

	max_parallel_workers_per_gather (integer)
       
       
       
	

一つのGatherまたはGather Mergeノードに対して起動できるワーカー数の最大値を設定します。
パラレルワーカーは、max_parallel_workersで上限が決まるmax_worker_processesで確立されたプロセスのプールから取得されます。
実行時には、要求された数のワーカーは取得できないかもしれないことに注意してください。
そうなると、実行プランは期待していたよりも少ない数のワーカーで実行されることになり、効率は悪化するかもしれません。
デフォルト値は2です。
この設定値を0にすると、パラレルクエリの実行は行われません。
        


パラレルクエリの実行により、パラレルクエリではない場合に比べて非常に多くのリソースが使用されるかもしれないことに注意してください。
これは、個々のワーカープロセスは完全に別個のプロセスであり、システムに対してユーザセッションが追加されたのと大体同じくらいの影響があるからです。
この設定値を選択する際には、他のリソースの消費量を制御する他の設定値、たとえばwork_memを設定するときと同様に、この点を考慮しておく必要があります。
work_memのような設定値によるリソース制限は、個々のワーカーに対して個別に適用されます。
つまり、ひとつのプロセスに対するよりも、すべてのプロセスの全体のリソース消費はずっと多いかもしれないということです。
たとえば、あるパラレルクエリが4つのワーカーを使っているとすると、ワーカーを使わない場合に比べて、最大5倍のCPU時間、メモリ、I/Oバンド幅、その他を使うかもしれません。
        


パラレルクエリに関する更なる情報については、15章パラレルクエリをご覧ください。
        

	max_parallel_maintenance_workers (integer)
       
       
       
	

単一のユーティリティコマンドで使用されるパラレルワーカーの最大数を設定します。
今の所、パラレルワーカーの利用をサポートしているパラレルユーティリティコマンドは、CREATE INDEXがB-tree、GIN、またはBRINインデックスを構築するときと、FULLオプションなしのVACUUMです。
パラレルワーカーは、max_worker_processesで確立したプロセスのプールから取得され、max_parallel_workersによって制限されます。
要求したワーカー数は、実行時に実際には利用可能でないかもしれないことに注意してください。
この場合は、ユーティリティ操作は期待したよりも少ない数のワーカーにより実行されます。
デフォルト値は2です。
0に設定すると、ユーティリティコマンドはパラレルワーカーを使用しません。
        


パラレルユーティリティコマンドは同等の非パラレル操作よりもかなり多くのメモリを消費すべきでないことに留意してください。
この戦略は、一般的にワーカー毎にリソース制限を適用するパラレルクエリとは異なります。
パラレルワーカープロセスの数にかかわらず、パラレルユーティリティコマンドは、その全体でリソース制限maintenance_work_memが適用されるとみなします。
しかし、パラレルユーティリティコマンドは、依然としてかなり多くのCPUリソースとI/Oバンド幅を消費するかも知れません。
        

	max_parallel_workers (integer)
       
       
       
	

パラレルクエリ操作用にクラスタがサポートできる最大のワーカー数を設定します。
デフォルト値は8です。
この値を増減するときは、max_parallel_maintenance_workersとmax_parallel_workers_per_gatherを調整することを考慮してください。
また、この設定値をmax_worker_processesよりも高い値にしても効果がないことに注意してください。
max_worker_processesで決まるワーカープロセスのプールから、パラレルワーカーが使われるからです。
        

	
       parallel_leader_participation (boolean)
       
       
       
	

ワーカープロセスを待つ代わりに、GatherノードとGather Mergeノード配下の問い合わせプランをリーダープロセスが実行できるようにします。
デフォルトはonです。
この値をoffにすると、リーダーがタプルを十分早く読まないためにワーカーがブロックされる可能性を減らすことができますが、リーダープロセスは最初のタプルが生成される前にワーカープロセスが起動するのを待つ必要があります。
これがリーダーの性能を助けるのか、阻害要因になるかは計画型、ワーカーの数、問い合わせの実行時間の長さによります。
        





先行書き込みログ（WAL）





これらの設定をチューニングする追加情報は「WALの設定」を参照してください。
   
諸設定



	wal_level (enum)
      
      
      
	

wal_levelはどれだけの情報がWALに書かれるかを決定します。
デフォルト値はreplicaで、WALアーカイビングおよびレプリケーションをサポートするために十分なデータを書き出し、これにはスタンバイサーバで読み取り専用の問い合わせを実行することも含みます。
minimalはクラッシュまたは即時停止から回復するのに必要な情報を除き、すべてのログを削除します。
最後に、logicalは、更にロジカルデコーディングをサポートするのに必要な情報を追加します。
それぞれのレベルは、下位のレベルのログ出力を含んでいます。
このパラメータはサーバ起動時のみ設定可能です。
       


minimalレベルでは、最小限のWALの量しか生成されません。
永続リレーションを作成あるいは書き換えるトランザクションの差分に関する情報は記録されません。
これにより、それらの操作が大幅に高速になります（「WALアーカイブ処理とストリーミングレプリケーションの無効化」を参照してください）。
この最適化が適用される操作には以下のものがあげられます。
        
	ALTER ... SET TABLESPACE
	CLUSTER
	CREATE TABLE
	REFRESH MATERIALIZED VIEW

         (CONCURRENTLYなし)
	REINDEX
	TRUNCATE



しかし、minimal WALにはポイントインタイムリカバリのための十分な情報が含まれていないので、replica以上を使って継続的アーカイブ(archive_mode)とストリーミングバイナリレプリケーションを可能にしなければなりません。
実際、max_wal_sendersが0以外の場合、サーバはこのモードで起動することさえありません。
wal_levelをminimalに変更すると、以前のベースバックアップがポイントインタイムリカバリとスタンバイサーバで使用できなくなることに注意してください。
       


logicalレベルでは、replicaと同じ情報が記録されるのに加え、ロジカルチェンジセットをWALから取り出すのに必要な情報が追加されます。
logicalを使うとWALの量が増えます。
とりわけ、多数のテーブルがREPLICA IDENTITY FULLと設定されていて(訳注: ALTER TABLE参照)、多くのUPDATEとDELETE文が実行される場合はこのことが言えます。
       


9.6よりも前のリリースでは、このパラメータはarchiveとhot_standbyという設定値も可能でした。
引き続きこれらも受け付けられますが、replicaへとマップされます。
       

	fsync (boolean)
      
      
      
	

このパラメータがオンの場合、PostgreSQL™サーバはfsync()システムコールを発行するか、もしくはこれに相当する方法（wal_sync_methodを参照）で、更新が物理的にディスクに確実に書き込まれるように試みます。
これは、オペレーティングシステムもしくはハードウェアがクラッシュした後、データベースクラスタを一貫した状態に復旧させることを確実にします。
       


fsyncを停止することはしばしば性能上の利益になるとは言っても、停電やクラッシュの際に回復不可能なデータ破壊になることがあります。
従って外部データから全てのデータベースを簡単に再構築できる場合のみfsyncを停止してください。
       


fsyncを停止しても安全な状況の例としては、以下があげられます。
バックアップファイルから新しいデータベースクラスタにデータの初期読み込みを行う場合、バッチデータの処理のためにデータベースクラスタを使用し、その後データベースを削除して再構築する場合、読み込み専用のデータベースのクローンを頻繁に再作成するが、それをフェイルオーバーに使用しない場合、などです。
高性能なハードウェアであるからと言って、fsyncを停止することは正当性を主張する十分な理由とはなりません。
       


fsyncを無効(off)から有効(on)に変更したときの信頼できるリカバリのためには、カーネル内の全ての変更されたバッファを恒久的ストレージに強制的に吐き出させることが必要です。
これは、クラスタがシャットダウンしている間、またはfsyncが有効のときに、initdb --sync-onlyを実行する、syncを実行する、ファイルシステムをアンマウントする、またはサーバを再起動することによって可能となります。
       


多くの場合、重要でないトランザクションに対してsynchronous_commitを無効にすることにより、データ破壊という付随的危険性を伴うことなく、fsyncを無効にすることで得られるであろう性能上のメリットの多くを得ることができます。
       


fsync はpostgresql.confファイル、または、サーバのコマンドラインでのみ設定可能です。
このパラメータを無効にする場合、full_page_writesも同時に無効にすることを検討してください。
       

	synchronous_commit (enum)
      
      
      
	

トランザクションのコミットがクライアントに「成功」の報告を返す前に、どれだけのWAL処理を完了しなければならないかを指定をします。
有効な値はremote_apply、on(デフォルト)、remote_write、local、offです。
       


synchronous_standby_namesが空文字なら、意味のある設定はonとoffだけです。
remote_apply、remote_write、localはすべてonと同じ同期レベルを提供します。
offモード以外のローカルの振る舞いは、WALがディスクにローカルにフラッシュされるのを待ちます。
offモードでは待ちはありません。
ですから、クライアントに成功が報告されてから、トランザクションが後でサーバクラッシュに対して安全が保証されるまでの間に遅延が生じる可能性があります。
（遅延は最大でwal_writer_delayの3倍です。）
fsyncと違って、このパラメータをoffにすることでデータベースの一貫性が損なわれるリスクはありません。
オペレーティングシステムやデータベースのクラッシュにより最近コミットされたということになっているトランザクションの一部が失われる可能性がありますが、これらのトランザクションが正常にアボートされた時とデータベースの状態は変わりません。
したがって、synchronous_commitのオフによる調整は、トランザクションの耐障害性を確実にするよりも性能が重要な場合の有用な代替案となるかも知れません。
詳細は「非同期コミット」を参照してください。
       


synchronous_standby_namesが空文字でない場合は、synchronous_commitは、WALレコードが、スタンバイサーバに複製されるまでトランザクションコミットを待機するか否かも制御します。
       


remote_applyに設定すると、現在の同期スタンバイがトランザクションのコミットレコードを受け取って適用し、スタンバイ上で発行されたクエリから見えるようになり、スタンバイ上の永続的な記憶装置に書き込まれたことを報告するまでコミットは待機します。
WALのリプレイを待つので、今までの設定に比べるとこの設定によってずっと大きなコミットの遅延が発生します。
onに設定すると、現在の同期スタンバイがトランザクションのコミットレコードを受け取り、永続的な記憶装置にフラッシュしたことを報告するまでコミットは待機します。
このモードでは、プライマリおよびすべての同期スタンバイがデータベース記憶装置の故障を被った場合を除いて、トランザクションが失われないことが保証されます。
remote_writeに設定すると、現在の同期スタンバイがトランザクションのコミットレコードを受け取り、スタンバイのファイルシステムに書き出したことを報告するまでコミットは待機します。
この設定は仮にPostgreSQL™のスタンバイインスタンスがクラッシュしたとしても、データ保護を保証するのに充分です。
しかし、スタンバイがオペレーティングシステムのレベルでクラッシュした場合はこの限りではありません。
データが必ずしもスタンバイの永続的な記憶装置に到達したとは言えないからです。
最後に、local設定は、コミットがローカルにディスクにフラッシュされるまで待機しますが、レプリケーションされるまでは待機しません。
これは通常同期レプリケーションが使用されている場合は望ましい設定ではありませんが、完全さのために提供されています。
       


このパラメータはいつでも変更可能です。
どのトランザクションの動作も、コミット時に有効であった設定によって決まります。
したがって、一部のトランザクションのコミットを同期的に、その他を非同期的にすることが可能で、かつ、有用です。
例えば、デフォルトが同期コミットの場合に複数文トランザクションを一つだけ非同期にコミットさせるためには、トランザクション内でSET LOCAL synchronous_commit TO OFFを発行します。
       


synchronous_commit設定の機能のまとめが表19.1「synchronous_commitモード」にあります。
       
表19.1 synchronous_commitモード
	synchronous_commit設定	localの永続的なコミット	PGがクラッシュした後のスタンバイの永続的なコミット	OSがクラッシュした後のスタンバイの永続的なコミット	スタンバイのクエリの一貫性
	remote_apply	○	○	○	○
	on	○	○	○	 
	remote_write	○	○	 	 
	local	○	 	 	 
	off	 	 	 	 




	wal_sync_method (enum)
      
      
      
	

WALの更新をディスクへ強制するのに使用される方法です。
fsyncがオフの場合この設定は役に立ちません。と言うのはWALファイルの更新が全く強制されないからです。取り得る値は以下のものです。
       
	

open_datasync（open()のオプションO_DSYNCでWALファイルに書き込む）
        

	

fdatasync（コミット毎にfdatasync()を呼び出す）
        

	

fsync（コミット毎にfsync()を呼び出す）
        

	

fsync_writethrough（すべてのディスク書き込みキャッシュをライトスルーさせるため、コミット毎にfsync()を呼び出す）
        

	

open_sync（open()のオプションO_SYNCでWALファイルに書き込む）
        





全てのプラットフォームでこれら全ての選択肢が使えるわけではありません。
デフォルトは、上のリストのプラットフォームでサポートされるものの最初に列挙されているものです。
ただしLinuxとFreeBSDではfdatasyncがデフォルトです。
デフォルトは必ずしも理想的なものではありません。
クラッシュに適応した構成にする、あるいはアーカイブの最適性能を導くためには、この設定あるいはシステム構成の他の部分を変更することが必要かもしれません。
これらの側面は 「信頼性」で解説されます。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	full_page_writes (boolean)
      
      
      
	

このパラメータが有効の場合、PostgreSQL™サーバは、チェックポイントの後にそのページが最初に変更された過程で、ディスクページの全ての内容をWALに書き込みます。
オペレーティングシステムがクラッシュした時に進行中のページ書き込みは途中までしか終わっていない可能性があり、ディスク上のページが古いデータと新しいデータが混在する状態になるため、この機能が必要です。
通常WAL内に保存される行レベルの変更データは、クラッシュ後のリカバリ時にこうしたページを完全に復旧させるには不十分です。
完全なページイメージを保存することにより、ページを正しく復旧できることを保証しますが、その代わりに、WALに書き込まなければならないデータ量が増加することになります。
（WAL再生は常にチェックポイントから始まるため、チェックポイント後のそれぞれのページの最初の変更時にこれを行えば十分です。
従って、完全ページ書き出しのコストを低減する方法の1つは、チェックポイント間隔パラメータを大きくすることです。）
       


このパラメータを無効にすると、通常の操作速度が上がりますが、システム障害後に、回復不能なデータ破損、あるいは警告なしのデータ損壊をもたらすかもしれません。
このリスクは小さいながらfsyncを無効にした場合と似ています。そしてそのfsyncに対して推奨されている同一の状況に基づく限りにおいて停止されなければなりません。
       


このパラメータを無効にしてもポイントインタイムリカバリ（PITR）用のWALアーカイブの使用に影響ありません（ 「継続的アーカイブとポイントインタイムリカバリ（PITR）」を参照してください）。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトはonです。
       

	wal_log_hints (boolean)
      
      
      
	

このパラメータがonの場合、PostgreSQL™サーバはチェックポイント後にはじめてページを変更する際に、ディスクページの全内容をWALに書き出します。
これは、あまり重要でない、ヒントビットと呼ばれるものに対する変更にさえ当てはまります。
       


データチェックサムが有効であると、ヒントビットの更新は常にWALにログされ、この設定パラメータは無視されます。この設定パラメータを使って、データチェックサムが有効なときにどれだけのWALログは余計に書きだされるかをテストすることができます。
       


このパラメータはサーバ起動時のみ設定可能です。
デフォルト値はoffです。
       

	wal_compression (enum)
      
      
      
	

このパラメータは、指定された圧縮方式を使用したWALの圧縮を有効にします。
有効にすると、PostgreSQL™サーバはWALに書き込まれる全ページイメージを圧縮します（例えば、full_page_writesがオンの時やベースバックアップ中です）。
圧縮されたページイメージはWAL再生中に伸長されます。
サポートされている方法はpglz、lz4（PostgreSQL™が--with-lz4でコンパイルされた場合）およびzstd（PostgreSQL™が--with-zstdでコンパイルされた場合）です。
デフォルト値はoffです。
スーパーユーザと適切なSET権限を持つユーザのみがこの設定を変更できます。
       


このパラメータを有効にすると、回復不可能なデータ破壊のリスクを増やすこと無しにWALの量を減らすことができます。
しかし、WALロギングの際の圧縮のため、またWALリプレイの際には伸張のために余分なCPUを使用するというコストが発生します。
       

	wal_init_zero (boolean)
      
      
      
	

このオプションがon（デフォルト）に設定されると、新しいWALファイルはゼロで初期化されます。
システムによっては、このことによってWALレコードを書く必要が出てくる前にスペースが割り当てられることを保証します。
しかし、Copy-On-Write (COW)ファイルシステムではこの技術は利点がないかもしれず、このオプションはスキップできるようになっています。
offに設定すると、ファイルを作る時に期待する大きさになるように最後のバイトだけが書かれます。
       

	wal_recycle (boolean)
      
      
      
	

このオプションがon（デフォルト）に設定されると、新しくファイルを作るのを避けるために、名前を変えてWALファイルが再利用されます。
COWファイルシステムでは、新しいファイルを作るほうが速いかも知れないので、この挙動を無効にできるようにオプションとなっています。
       

	wal_buffers (integer)
      
      
      
	

未だディスクに書き込まれていないWALデータに対して使用される共有メモリ容量です。
デフォルトの設定である-1は、shared_buffersの1/32（約3%）の容量に等しい大きさを選択します。
しかし、64kB未満ではなく、かつ典型的に16MBであるWALセグメントの大きさを超えることはありません。
もし、自動設定による選択が大きすぎたり、小さすぎる場合この値は手作業で設定可能です。
しかし、32kB未満のどんな正の値であっても、32kBとして取り扱われます。
この値が単位なしで指定された場合は、WALブロック単位であるとみなします。すなわち、XLOG_BLCKSZバイト、一般的には8kBです。
このパラメータはサーバ起動時のみ設定可能です。
       


WALバッファの内容はトランザクションのコミット毎にディスクに書き込まれます。
したがって、極端に大きな値は有意な効果を期待できません。
しかし、この値を数メガバイトに設定することにより、多くのクライアントが同時にコミットするトラフィック量の多いサーバでは書き込み性能が向上します。
デフォルト設定の-1で選択される自動チューニングによると、ほとんどの場合妥当な結果が得られます。
       

	wal_writer_delay (integer)
      
      
      
	

WALライタがWALをフラッシュする頻度を時間で指定します。
WALをフラッシュしたあと、非同期コミットしているトランザクションに起こされない限り、wal_writer_delayミリ秒待機します。
最後のフラッシュが過去wal_writer_delay以内に行われ、かつそれ以降wal_writer_flush_after相当のWALが生成されていない場合は、WALはオペレーティングシステムに書き込まれますが、ディスクにはフラッシュされません。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
デフォルト値は200ミリ秒（200ms）です。
ある種のシステムでは、待機間隔の実質的な分解能は10ミリ秒です。
10の倍数以外の値をwal_writer_delayに設定しても、その次に大きい10の倍数を設定した場合と同じ結果となります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	wal_writer_flush_after (integer)
      
      
      
	

WALライタがWALをフラッシュする頻度を量で指定します。
最後のフラッシュが過去wal_writer_delay以内に行われ、かつそれ以降wal_writer_flush_after相当のWALが生成されていない場合は、WALはオペレーティングシステムに書き込まれますが、ディスクにはフラッシュされません。
wal_writer_flush_afterが0に設定されている場合は、WALデータが書かれるたびにWALが即時にフラッシュされます。
この値が単位なしで指定された場合は、WALブロック単位であるとみなします。すなわち、XLOG_BLCKSZバイト、一般的には8kBです。
デフォルト値は1MBです。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	wal_skip_threshold (integer)
      
      
      
	

wal_levelがminimalで、トランザクションのコミットが永続リレーションを作るかあるいは書き換えた場合に、この設定は新しいデータをどのように永続させるかを決定します。
データがこの設定よりも少なければ、WALログに書きます。そうでなければ、影響のあるファイルに対してfsyncを使用します。
そのようなコミットが現在のトランザクションを低速化しているようであれば、使用する記憶装置の特性によってはこの値を増減することが役に立つかも知れません。
この値が単位なしに指定されるとキロバイトであると見なします。
デフォルトは2メガバイト(2MB)です。
       

	commit_delay (integer)
      
      
      
	

commit_delayを設定することにより、WALフラッシュを開始する前の時間遅延が追加されます。
このことにより、もし追加のトランザクションが与えられた時間間隔内でコミットが可能になるほどシステム負荷が充分に高い場合、一回のWALフラッシュでより多くの数のトランザクションをコミットできるようになり、コミット群のスループットを改善できます。
とは言っても、それぞれのWALフラッシュに対して最大commit_delayの待ち時間の増加をきたします。
コミットの準備が完了したトランザクションが他に存在しない場合、遅延は無駄になるため、遅延はフラッシュが開始されようとしている時点で少なくともcommit_siblingsだけのトランザクションが活動している場合にだけ機能します。
同様に、fsyncが無効の場合も遅延は機能しません。
この値が単位なしで指定された場合は、マイクロ秒単位であるとみなします。
デフォルトのcommit_delayはゼロ（遅延無し）です。
スーパーユーザと適切なSET権限を持つユーザのみがこの設定を変更できます。
       


9.3より前のPostgreSQL™では、commit_delayの振る舞いは異なっており、あまり効果がありませんでした。
全てのWALフラッシュではなく、コミットだけに影響していました。また、そしてWALフラッシュが早めに完了しても設定された遅延分待機していました。
PostgreSQL™ 9.3以降では、フラッシュの準備が整った最初のプロセスが設定値分待機し、後続のプロセスは最初のプロセスがフラッシュ操作を完了するまでの間だけ待機をします。
       

	commit_siblings (integer)
      
      
      
	

commit_delayの遅延を実行するときに必要とされる同時に開いているトランザクションの最小数です。
より大きい値にすると、遅延周期の間に、少なくとも1つの他のトランザクションのコミットの準備が整う確率が高くなります。
デフォルトは5トランザクションです。
       




チェックポイント



	checkpoint_timeout (integer)
      
      
      
	

自動的WALチェックポイント間の最大間隔を指定します。
この値が単位なしで指定された場合は、秒単位であるとみなします。
有効な範囲は、30秒から1日の間です。
デフォルトは5分（5min）です。
このパラメータを増やすと、クラッシュリカバリで必要となる時間が増加します。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	checkpoint_completion_target (floating point)
      
      
      
	

チェックポイントの間の時間のうち、どの程度の割合を使うかをチェックポイントの完了目標として指定します。
デフォルトは0.9で、可能な限りの間隔のほとんどにチェックポイントを拡散し、かなり一定のI/O負荷をもたらしますが、チェックポイントが完了するにあたってオーバーヘッドをもたらします。
チェックポイントの完了を早くするので、このパラメータを小さくするのはお勧めできません。
これにより、チェックポイント中はI/Oの割合が大きくなり、チェックポイントの完了から次のチェックポイントまでの間はより少ないI/Oとなります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	checkpoint_flush_after (integer)
      
      
      
	

チェックポイント実行中にこのデータ量よりも多く書く度に、OSが記憶装置に書き込むことを強制しようとします。
このことにより、カーネルのページキャッシュが持つダーティデータの量を一定量に制限し、チェックポイントの最後にfsyncが実行される際、あるいはOSがバックグラウンドでデータを大きな塊で書き出す際に性能の急激な低下を招く可能性を減らします。
多くの場合これによってトランザクションの遅延が大幅に少なくなりますが、あるケース、特にワークロードがshared_buffersよりも大きく、OSのページキャッシュよりも小さい時には性能が低下するかもしれません。
この設定が無効なプラットフォームがあります。
この値が単位なしで指定された場合は、ブロック単位であるとみなします。すなわち、BLCKSZバイト、一般的には8kBです。
有効な設定値は、この強制書き込み機能が無効になる0から、2MBまでです。
デフォルト値は、Linuxでは256kBで、それ以外は0です。
（BLCKSZが8kbでなければ、この設定のデフォルト値と最大値がBLCKSZに比例して変更されます。）
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	checkpoint_warning (integer)
      
      
      
	

WALセグメントファイルが溢れることが原因で起きるチェックポイントが、ここで指定した時間よりも短い間隔で発生したとき、サーバログにメッセージを書き出します
（これは、max_wal_sizeを増やす必要があることを示唆しています）。
この値が単位なしで指定された場合は、秒単位であるとみなします。
デフォルトは30秒（30s）です。
零の場合は警告を出しません。
checkpoint_timeoutがcheckpoint_warningより小さい場合は警告を出しません。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	max_wal_size (integer)
      
      
      
	

自動WALチェックポイントの際にWALが増加する最大サイズです。
これはソフトリミットです。特別な状況下、たとえば高負荷、archive_commandの失敗、archive_libraryの失敗、wal_keep_sizeが大きな値に設定されている、などの時には、WALサイズはmax_wal_sizeを超えることがあります。
この値が単位なしで指定された場合は、メガバイト単位であるとみなします。
デフォルトは1GBです。
このパラメータを大きくすると、クラッシュリカバリに必要な時間が長くなります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	min_wal_size (integer)
      
      
      
	

この設定以下にWALのディスク使用量が保たれる限り、古いWALファイルは、消去されることなく今後のチェックポイントで使用するために常にリサイクルされます。
この設定は、たとえば大きなバッチジョブを走らせる際のWALの利用スパイクを取り扱うために、十分なWALのスペースが予約されていることを保証するために使用できます。
この値が単位なしで指定された場合は、メガバイト単位であるとみなします。
デフォルトは80MBです。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       




アーカイビング



	archive_mode (enum)
      
      
      
	

archive_modeが有効な場合、archive_commandあるいはarchive_libraryを設定することにより、完了したWALセグメントはアーカイブ格納領域に送信されます。
無効にするためのoffに加え、2つのモードがあります。onとalwaysです。
通常の運用ではこの2つのモードには違いはありませんが、alwaysに設定すると、アーカイブリカバリおよびスタンバイモードでWALアーカイバが有効になります。
alwaysモードでは、アーカイブからリストアされたファイルや、ストリーミングレプリケーションでストリームされたファイルもすべて(再び)アーカイブされます。
詳細は「スタンバイにおける継続的アーカイビング」を参照してください。
       


archive_commandとarchive_libraryがアーカイブモードを停止することなく変更できるように、archive_modeは、archive_commandとarchive_libraryとは別の設定項目になっています。
このパラメータはサーバ起動時のみ設定可能です。
wal_levelがminimalに設定されている場合、archive_modeを有効にすることはできません。
       

	archive_command (string)
      
      
      
	

完了したWALファイルセグメントのアーカイブを実行するローカルのシェルコマンドです。
文字列内のすべての%pは、格納されるファイルのパスで置き換えられ、そして、%fはファイル名のみ置換します。
（このパス名はサーバの作業用ディレクトリ、つまり、クラスタのデータディレクトリからの相対パスです。）
コマンド内に%文字そのものを埋め込むには%%を使用します。
コマンドが成功した場合にのみ終了ステータスゼロを返すことが重要です。
詳しくは「WALアーカイブの設定」を参照ください。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
サーバ起動時にarchive_modeが有効で、archive_libraryが空文字の時にのみ使用されます。
archive_commandとarchive_libraryの両方が有効ならばエラーが発生します。
archive_modeが有効であるにもかかわらず、archive_commandが空文字列（デフォルト）、（そしてarchive_libraryが空文字列）である場合、WALアーカイブ処理は一時的に無効になりますが、コマンドが後で提供されることを見越して、サーバはWALセグメントの蓄積を続けます。
例えば、/bin/true（WindowsではREM）のように、真を返すだけで何もしないコマンドをarchive_commandに設定すると、実質的にアーカイブ処理が無効になりますが、アーカイブからの復帰に必要なWALファイルの連鎖も同時に断ち切るため、特別な場合のみ使用するようにしなければなりません。
       

	archive_library (string)
      
      
      
	

アーカイビングが完了したWALファイルセグメントに使用するライブラリです。
空文字列（デフォルト）に設定された場合、シェル経由のアーカイビングが有効になり、archive_commandが使用されます。
archive_commandとarchive_libraryの両方が有効ならばエラーが発生します。
それ以外の場合は、指定された共有ライブラリがアーカイブに使用されます。
WALアーカイバプロセスは、このパラメータが変更されたときにpostmasterによって再起動されます。
詳細については、「WALアーカイブの設定」および49章アーカイブモジュールを参照してください。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	archive_timeout (integer)
      
      
      
	

archive_commandまたはarchive_library は、完了したWALセグメントに対してのみ呼び出されます。
したがって、サーバがWALトラフィックをほとんど生成しない場合（あるいはそのような余裕期間がある場合）、トランザクションの完了とアーカイブストレージへの安全な記録との間に長い遅延が発生する可能性があります。
アーカイブされていないデータの古さを制限するために、archive_timeoutを設定して、サーバに新しいWALセグメントファイルへの定期的な切り替えを強制することができます。
このパラメータが0より大きい場合、サーバは、最後のセグメントファイル切り替えからこの時間が経過し、単一のチェックポイント（データベースアクティビティがない場合はチェックポイントはスキップされます）を含むデータベースアクティビティが発生するたびに新しいセグメントファイルへの切り替えを行います。
強制的な切り替えにより早期に閉じられたアーカイブファイルは、完全に満杯のファイルと同じ長さのままであることに注意してください。
したがって、非常に短いarchive_timeoutを使用することは賢明ではなく、アーカイブストレージを膨張させます。
通常は1分程度のarchive_timeout設定が妥当です。
プライマリサーバからデータをより迅速にコピーしたい場合は、アーカイブではなくストリーミングレプリケーションを使用することを検討してください。この値が単位なしで指定された場合、秒として取得されます。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       




リカバリ





この節では、クラッシュリカバリ、ストリーミングレプリケーション、およびアーカイブベースのレプリケーションに影響する一般的なリカバリに適用される設定について説明します。
    
	recovery_prefetch (enum)
      
      
      
	

リカバリ中に、まだバッファプールにないWALで参照されているブロックをプリフェッチしようとするかどうかです。
有効な値はoff、on、およびtry（デフォルト）です。
try設定は、オペレーティングシステムが先読み指示の発行をサポートしている場合にのみ先読みを有効にします。
       


すぐに必要になるブロックをプリフェッチすると、一部のワークロードでリカバリ中のI/O待機時間を短縮できます。
プリフェッチ・アクティビティを制限するwal_decode_buffer_sizeおよびmaintenance_io_concurrency設定も参照してください。
       

	wal_decode_buffer_size (integer)
      
      
      
	

サーバがプリフェッチするブロックを見つけるためにWAL内をどれだけ先まで見ることができるかの制限です。
この値が単位なしで指定された場合、バイトとして扱われます。
デフォルトは512KBです。
       




アーカイブからのリカバリ





この節では、リカバリの間だけ適用する設定について説明します。
その後実施するリカバリでは、その設定はリセットしなければなりません。
    


「リカバリ」は、サーバをスタンバイとして使用するとき、あるいはターゲットを指定したリカバリで適用されます。
通常、スタンバイモードは、高可用性または読み出しスケーラビリティ、あるいはその両方を提供するために使用します。
一方ターゲットを指定したリカバリは失なわれたデータを回復するために使用します。
    


スタンバイモードでサーバを起動するには、standby.signalと呼ばれるファイルをデータディレクトリに作ります。
サーバはリカバリモードに入り、アーカイブWALの終端に到着してもリカバリを止めず、primary_conninfoの設定で指定された送信サーバに接続するか、restore_commandを使って新しいWALセグメントを取得するか、あるいはその両方によってリカバリを継続しようとします。
このモードでは、この節と「スタンバイサーバ」で説明するパラメータが関係します。
「リカバリターゲット」のパラメータも適用できますが、このモードでは通常有用ではありません。
    


サーバをターゲットリカバリモードで起動するには、recovery.signalという名前のファイルをデータディレクトリに作ります。
standby.signalとrecovery.signalの両方が作られた場合は、スタンバイモードが優先します。
ターゲットリカバリモードはアーカイブWALが完全に再生されるか、recovery_targetに到達した時に終了します。
このモードでは、この節と「リカバリターゲット」のパラメータの両方が使用されます。
    
	restore_command (string)
      
      
      
	

一連のWALファイルからアーカイブセグメントを取り出すために実行するローカルのシェルコマンドです。
このパラメータはアーカイブリカバリでは必須ですが、ストリーミングレプリケーションではオプションです。
文字列中の%fはアーカイブから取り出すファイルの名前に置換され、%pはサーバ上のコピー先のパス名に置換されます。
（パス名は現在の作業ディレクトリの相対パス、つまりクラスタのデータディレクトリです。）
%rは有効な最後のリスタートポイントを含むファイル名に置換されます。
これはリストアが再開可能であるために維持しなければならない最古のファイルで、現在のリストアからの再開をサポートするのに最小限必要なアーカイブを残して切り詰めるのに必要な情報として利用できます。
%rは通常ウォームスタンバイ構成でのみ使用されます。
（「ログシッピングスタンバイサーバ」参照。）
%文字自体を埋め込むには%%と書いてください。
       


コマンドは、成功した時のみ終了コードのゼロを返却することが重要です。
コマンドはアーカイブにないファイル名を聞かれることになります。
その場合には、非ゼロの値を返却しなければなりません。以下に例を示します。


restore_command = 'cp /mnt/server/archivedir/%f "%p"'
restore_command = 'copy "C:\\server\\archivedir\\%f" "%p"'  # Windows



例外は、データベースサーバのシャットダウンの一部として、SIGTERM以外のシグナルでコマンドが終了させられたり、シェルによってエラーが発生した（コマンドが見つからない場合など）場合で、その場合はリカバリは中断され、サーバはスタートアップしなくなります。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	archive_cleanup_command (string)
      
      
      
	

オプションのパラメータは、すべてのリスタートポイントで実行されるシェルコマンドを指定します。
archive_cleanup_commandの目的は、スタンバイサーバにとって必要とされない古いアーカイブWALファイルをクリーンアップする仕組みを提供することです。
%rは最後の有効なリスタートポイントを含むファイル名に置換されます。
これはリストアが再開可能であるために保持しなければならない最古のファイルで、%rよりも前のすべてのファイルは安全に削除できます。
これは現在のリストアからの再開をサポートするのに最小限必要なアーカイブを残して切り詰めるのに必要な情報として利用できます。
単一のスタンバイ構成用のarchive_cleanup_commandで、たとえば以下のように、しばしばpg_archivecleanup(1)モジュールが使われます。

archive_cleanup_command = 'pg_archivecleanup /mnt/server/archivedir %r'


だたし、複数のスタンバイサーバが同じアーカイブディレクトリからリストアしている場合は、どのサーバにおいてももはや必要がなくなるまでWALファイルが削除されることのないようにする必要があることに留意してください。
archive_cleanup_commandは通常ウォームスタンバイ構成で使用されます。
（「ログシッピングスタンバイサーバ」参照。）
%文字自体を埋め込むには%%と書いてください。
       


コマンドが非ゼロの終了ステータスを返した場合、警告ログメッセージが出力されます。
例外は、コマンドがシグナルで終了されたとき、あるいはシェルがエラーを起こしたとき（コマンドが見つからないなど）で、その場合致命的エラーが生じます。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	recovery_end_command (string)
      
      
      
	

このパラメータは、リカバリの終了時に一度だけ起動されるシェルコマンドを指定します。
このパラメータはオプションです。
recovery_end_commandの目的はレプリケーションあるいはリカバリの後のクリーンアップのための機構を提供することにあります。
%rは、archive_cleanup_commandと同じように、有効な最後のリスタートポイントを含むWALファイル名に置換されます。
       


コマンドが非ゼロの終了ステータスを返した場合、警告ログメッセージが出力されますが、データベースはスタートアップ処理を続けます。
例外は、コマンドがシグナルによって終了させられたか、シェルによってエラーが発生した（そのようなコマンドは見つからない）場合で、その場合はデータベースはスタートアップ処理を継続させません。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       




リカバリターゲット





デフォルトではWALログの最後までリカバリを行います。
次のパラメータがそれより前の時点でリカバリを停止するために利用できます。
次のrecovery_target、recovery_target_lsn、recovery_target_name、recovery_target_time、recovery_target_xidのどれか一つが使えます。
設定ファイルの中で２つ以上指定するとエラーとなります。
これらのパラメータはサーバ起動時のみ設定可能です。
     
	recovery_target = 'immediate'
      
      
      
	

このパラメータは、リカバリが一貫した状態になり次第、すなわちできるだけ早く終了することを指定します。
オンラインバックアップからリストアした場合、これはバックアップが終了した時点を意味します。
       


技術的にはこれは文字列型のパラメータですが、現時点では'immediate'だけが許容されている値です。
       

	recovery_target_name (string)
      
      
      
	

このパラメータは、指定した（pg_create_restore_point()により作成された）名前付きリストアポイントまでリカバリを進行させます。
       

	recovery_target_time (timestamp)
      
      
      
	

このパラメータは、指定したタイムスタンプまでリカバリを進行させます。
正確な停止点はrecovery_target_inclusiveにも影響されます。
       


（timezone_abbreviations変数が設定ファイルで先に設定されていない限り）時間帯略語を使えないことを除けば、このパラメータの値はtimestamp with time zoneデータ型が受け付けるのと同じ形式のタイムスタンプです。
おすすめの形式はUTCからのオフセットか、EESTではなくEurope/Helsinkiのような完全な時間帯名です。
       

	recovery_target_xid (string)
      
      
      
	

このパラメータは、指定したトランザクションIDまでリカバリを進行させます。
トランザクションIDはトランザクション起動時に順番に割り当てられますが、トランザクションは数字順によらず完了することがあることに留意してください。
リカバリされるトランザクションは、指定されたものよりも前 (オプションによっては指定されたものも含まれる) にコミットされたものになります。
正確な停止点はrecovery_target_inclusiveにも影響されます。
       

	recovery_target_lsn (pg_lsn)
      
      
      
	

このパラメータは、指定した先行書き込みログ（WAL）の場所のLSNまでリカバリを進行させます。
正確な停止点は、recovery_target_inclusiveの影響も受けます。
このパラメータは、システムデータ型pg_lsnを使用して解析されます。
       





以下のオプションはリカバリ対象をより詳細に指定し、リカバリが対象に達した時の動作に影響を与えます。
     
	recovery_target_inclusive (boolean)
      
      
      
	

指定したリカバリ対象のちょうど後に停止するか(on)、ちょうどその前に停止するか(off)を指定します。
recovery_target_lsn、recovery_target_time、又はrecovery_target_xidが指定されている場合は適用されます。
この設定は、指定した対象のWALの場所(LSN)、コミット時刻、あるいはトランザクションIDが、それぞれ正確に一致するトランザクションをリカバリに含めるかどうかを制御します。
デフォルトはonです。
       

	recovery_target_timeline (string)
      
      
      
	

リカバリが作成する個別のタイムラインを指定します。
値は数値のタイムラインIDか、特殊な値です。
currentでは、ベースバックアップが取得されたときにカレントだったタイムラインに沿ってリカバリします。
latestでは、アーカイブ時に見つけた最新のタイムラインにリカバリします。これはスタンバイサーバで有用です。
デフォルトはlatestです。
       


タイムラインIDを16進数で指定するには(たとえば、WALファイル名前または歴史ファイルから抽出した場合)、0xを前に置きます。
例として、WALファイル名前が00000011000000A10000004Fであれば、タイムラインIDは0x11(または10進数で17)になります。
       


通常このパラメータの設定が必要となるのは、ポイントインタイムリカバリの実施後に到達した状態に戻す場合など、複雑なリカバリの状況のみです。
説明は「タイムライン」を参照してください。
       

	recovery_target_action (enum)
      
      
      
	

リカバリ対象に到達した場合に、サーバがする動作を指定します。
デフォルトはpauseで、リカバリを休止することを意味します。
promoteは、リカバリの過程が終われば、サーバは接続の受け付けを始めることを意味します。
最後に、shutdownは、リカバリ対象に到達した後にサーバを停止します。
       


pauseの設定の意図した使い方は、このリカバリ対象がリカバリのための最も望ましいポイントかどうかチェックするために、データベースに対して問い合わせを実行できるようにすることです。
休止された状態は、pg_wal_replay_resume()(表9.99「リカバリ制御関数」参照)の使用により再開することができます。
その後、それはリカバリを終了させます。
このリカバリ対象が希望の止まるポイントでない場合、サーバをシャットダウンし、リカバリ対象の設定をより後の対象に変更し、リカバリを継続するために再起動してください。
       


shutdownの設定はインスタンスを正確に望ましい再生ポイントで準備するのに有用です。
インスタンスはさらに多くのWALレコードを再生できます(実際、次に起動するときには最後のチェックポイントからWALレコードを再生しなければなりません)。
       


recovery.signalはrecovery_target_actionがshutdownに設定されていると削除されないことに留意してください。
設定が変更されるか、recovery.signalが手動で削除されない限り、以降起動しても直ちに停止されてしまいます。
       


この設定はリカバリ対象が設定されていない場合には効果がありません。
hot_standbyが有効になっていない場合、pauseの設定はshutdownと同じように動作します。
昇格中にリカバリ対象に到達した場合は、pauseはpromoteと同じように働きます。
       


どのような場合でも、リカバリ対象が設定されていて、アーカイブリカバリがそのリカバリ対象に到達する前に終了すると、サーバはフェイタルエラーで停止します。
       




WAL要約





これらの設定は、WAL要約を制御します。この機能は、インクリメンタルバックアップを実行するために有効にする必要があります。
    
	summarize_wal (boolean)
      
      
      
	

WAL要約プロセスを有効にします。
WAL要約はプライマリまたはスタンバイのいずれかで有効にできることに注意してください。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトはoffです。
      


wal_levelがminimalに設定されている場合、サーバをsummarize_wal=onで起動することはできません。
wal_level=minimalの状態でサーバを起動し、その後summarize_wal=onに設定した場合、要約処理は動作しますが、wal_level=minimalで生成されたWALの要約ファイルの生成は拒否します。
      

	wal_summary_keep_time (integer)
      
      
      
	

WAL要約処理が自動的に古いWAL要約を削除するまでの時間を設定します。
ファイルタイムスタンプは、どのファイルが削除するのに十分な古さであるかを判断するために使用されます。
通常、この値は、バックアップとそれに依存する後のインクリメンタルバックアップとの間で経過する時間よりも余裕を持って高く設定する必要があります。
WAL要約は、先行するバックアップと新しいバックアップの間のWALレコードの全範囲に対して利用可能でなければなりません。そうでない場合、インクリメンタルバックアップは失敗します。
このパラメータがゼロに設定されている場合、WAL要約は自動的には削除されませんが、将来の増分バックアップに必要でないことが分かっているファイルは手動で安全に削除できます。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
この値が単位なしで指定されると、分として解釈されます。
デフォルトは10日間です。
summarize_wal = offの場合、WAL要約処理が動作しないため、このパラメータの値に関わらず、既存のWAL要約は削除されません。
      





レプリケーション





これらの設定は、組み込みストリーミングレプリケーション機能（「ストリーミングレプリケーション」参照）および組み込み論理レプリケーション機能（29章論理レプリケーションを参照）の動作を制御します。
「ストリーミングレプリケーション」
    


ストリーミングレプリケーションでは、サーバ群のサーバはプライマリかスタンバイのいずれかです。
プライマリはデータを送出する一方、複数のスタンバイは複製されたデータを常に受け取ります。
カスケードレプリケーション（「カスケードレプリケーション」を参照）が使用されている場合、スタンバイサーバ群は受け取り手でもあり、送り手でもあります。
パラメータは主として送出サーバとスタンバイサーバ用ですが、いくつかのパラメータはプライマリサーバのみに効力を発します。
必要とあればクラスタに渡って問題なく設定を変化させることができます。
    


論理レプリケーションの場合、パブリッシャー（CREATE PUBLICATIONを実行するサーバ）は、データをサブスクライバー（CREATE SUBSCRIPTIONを実行するサーバ）に複製します。
サーバは、パブリッシャーとサブスクライバーを同時に兼ねることもできます。
以降の節でパブリッシャーを「送信者」と呼ぶことに注意してください。
論理レプリケーション設定設定の詳細は、「構成設定」を参照してください。
    
送出サーバ群





これらのパラメータはレプリケーションデータを１つ、またはそれ以上複数のスタンバイサーバに送るすべてのサーバ上で設定することができます。
プライマリは常に送出サーバであるため、パラメータは常にプライマリ上に設定されなければなりません。
これらのパラメータの役割と意味はスタンバイが後にプライマリに昇格しても変わりません。
     
	max_wal_senders (integer)
       
       
       
	

複数のスタンバイサーバあるいは、ストリーミングを使ったベースバックアップクライアントからの同時接続を受ける接続最大値を設定します（つまり、同時に稼働するWAL送信プロセスの最大値です）。
デフォルトは10です。
0ならば、レプリケーションは無効であるという意味になります。
ストリーミングクライアントの突然の切断により、タイムアウトになるまで親のない接続スロットが残ることがあります。
ですから、このパラメータは想定されるクライアント数の最大値よりも少し大きめにして、切断されたクライアントが直ちに再接続できるようにした方が良いでしょう。
このパラメータはサーバ起動時のみ設定可能です。
また、スタンバイサーバからの接続を許可するには、wal_levelをreplica以上に設定しておかなければなりません。
       


スタンバイサーバを実行する際は、このパラメータをプライマリサーバと同じか高い値にしなければなりません。
さもなければ、スタンバイサーバでクエリを実行できなくなります。
        

	max_replication_slots (integer)
       
       
       
	

サーバが使用できるレプリケーションスロット(「レプリケーションスロット」参照)の最大数を指定します。
デフォルトは10です。
このパラメータはサーバ起動時のみ設定可能です。
現在存在しているレプリケーションスロットの数よりも少ない値を設定すると、サーバは起動しません。
また、レプリケーションスロットが使用できるためには、wal_levelをreplica以上に設定しなければなりません。
        

	wal_keep_size (integer)
       
       
       
	

pg_walディレクトリに保持する過去のWALファイルの最小サイズを指定します。
もし送出サーバに接続しているスタンバイサーバがwal_keep_sizeメガバイトを越えて遅延した場合、送出サーバはスタンバイサーバが今後とも必要とするWALセグメントを削除する可能性があります。
この場合、レプリケーション接続は終了させられます。結果として下流に対する接続も結局は終了されることがあります。（しかし、WALアーカイブが使用されていれば、スタンバイサーバはアーカイブからセグメントを取り出し、復旧することができます。）
       


pg_walに保持され続けるセグメントの最小値のみを設定します。
システムはWALアーカイブのため、またはチェックポイントからの復旧のため、より多くのセグメント保持が必要となることがあります。
もしwal_keep_sizeが（デフォルトの）ゼロの場合、システムはスタンバイサーバのために追加セグメントを保持することはしません。
従って、スタンバイサーバが使用できる古いWALセグメントの数は、直前のチェックポイントの場所とWALアーカイブの状況によって算出されます。
この値が単位無しで指定されると、メガバイトであると見なします。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	max_slot_wal_keep_size (integer)
       
       
       
	

チェックポイント時にレプリケーションスロットがpg_walディレクトリに残すことのできる
最大のWALファイルのサイズを指定します。
max_slot_wal_keep_sizeが-1 (デフォルトです)なら、レプリケーションスロットは無制限のWALファイルを残すかも知れません。
そうでなければ、レプリケーションスロットのrestart_lsnが現在のLSNよりも与えられたサイズ分遅れると、そのスロットを使っているスタンバイは必要なWALファイルが削除されたためにレプリケーションを継続できなくなります。
レプリケーションスロットのWALが存在するかどうかはpg_replication_slotsを見て確認できます。
この値が単位無しで指定されると、メガバイトであると見なします。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	idle_replication_slot_timeout (integer)
      
      
      
	

この期間より長く活動していない（レプリケーション接続で使用されていない）ままになっているレプリケーションスロットを無効にします。
この値が単位なしで指定された場合は、秒単位であるとみなします。
値がゼロ（デフォルト）の場合は、アイドルタイムアウトの無効化機構を無効にします。
このパラメータは、postgresql.confファイルまたはサーバコマンドラインでのみ設定できます。
       


アイドルタイムアウトによるスロットの無効化は、チェックポイント中に発生します。
チェックポイントはcheckpoint_timeoutの間隔で発生するため、idle_replication_slot_timeoutを超えてから次のチェックポイントでスロットの無効化が行われるまでに多少の遅れが生じる可能性があります。
このような遅延を避けるために、ユーザはチェックポイントを強制して活動していないスロットを速やかに無効にすることができます。
スロットが活動していない期間は、スロットのpg_replication_slots.inactive_sinceの値を使用して計算されます。
       


アイドルタイムアウトの無効化機構は、WALを保存していないスロットや、プライマリサーバから同期されているスタンバイサーバのスロット（つまり、pg_replication_slots.syncedの値がtrueであるスタンバイスロット）には適用されないことに注意してください。
同期されているスロットは、論理的なデコードを実行して変更を生成しないため、常に活動していないものと見なされます。
       

	wal_sender_timeout (integer)
      
      
      
	

指定された時間より長く非活動であるレプリケーション接続を停止します。
スタンバイサーバのクラッシュ、またはネットワークの停止を送出サーバが検出することにこれが役立ちます。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
デフォルトの値は60秒です。
値ゼロはこのタイムアウト機能を無効にします。
       


地理的に複数の場所に分散したクラスタでは、場所によって異なる値を使うことでクラスタ管理がより柔軟にできるようになります。
より小さな値は低遅延ネットワーク接続上のスタンバイの障害検知をより高速にするのに役立ちます。
遅延の大きなネットワーク接続に設置されたスタンバイの健全性の判断にはより大きな値が助けになるでしょう。
       

	track_commit_timestamp (boolean)
      
      
      
	

トランザクションのコミットタイムを記録します。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトはoffです。
       

	synchronized_standby_slots (string)
      
      
      
	

ロジカルWAL送信プロセスが待機する、カンマで区切られたストリーミングレプリケーションのスタンバイサーバのスロット名です。
ロジカルWAL送信プロセスは、指定されたレプリケーションスロットがWALの受信を確認した後にのみ、デコードされた変更をプラグインに送信します。
これにより、論理レプリケーションフェイルオーバースロットは、変更が受信され、対応する物理的スタンバイに吐き出されるまで、変更を消費しないことが保証されます。
物理スタンバイが昇格した後、論理レプリケーションコネクションがその物理スタンバイに移動した場合は、スタンバイの物理レプリケーションスロットがここに表示されます。
synchronized_standby_slotsで指定されたスロットが存在しないか、無効になっている場合、論理レプリケーションが続行しないことに注意してください。
また、レプリケーション管理関数である

、pg_replication_slot_advance、、pg_logical_slot_get_changes、、pg_logical_slot_peek_changesがロジカルフェイルオーバースロットに使用されると、synchronized_standby_slotsで指定されたすべての物理スロットでWAL受信が確認されるまでブロックします。
       


synchronized_standby_slots内の物理レプリケーションスロットに対応するスタンバイは、sync_replication_slots = trueを設定して、プライマリからロジカルフェイルオーバースロットの変更を受信できるようにする必要があります。
       




プライマリサーバ





これらのパラメータはレプリケーションデータを１つ、またはそれ以上複数のスタンバイサーバに送るプライマリサーバ上で設定することができます。
これらパラメータに加え、wal_levelはプライマリサーバ上で適切に設定される必要があり、オプションとしてWALアーカイブを有効にしてもかまいません（「アーカイビング」を参照してください）。
スタンバイサーバがプライマリサーバになるかもしれない状況に備え、それらのパラメータをスタンバイサーバで設定したいと考えたとしても、スタンバイサーバ上でのパラメータの値は意味をなしません。
     
	synchronous_standby_names (string)
      
      
      
	

「同期レプリケーション」で説明されているように、同期レプリケーションをサポート可能なスタンバイサーバのリストを指定します。
活動中の同期スタンバイサーバは1つまたはそれ以上です。
コミットを待機しているトランザクションは、このスタンバイサーバがそのデータの受信を確認してから処理の継続が許可されます。
同期スタンバイサーバはこのリストに名前が挙げられていており、現時点で接続され、そしてデータをリアルタイムでストリーミングしているものです（pg_stat_replication ビューにおいてstreaming状態として示されています）。
このリストの後の方に記載されているその他のスタンバイサーバは潜在的に同期スタンバイサーバになることを示しています。
二つ以上の同期スタンバイサーバ名を指定することで、かなりの高可用性とデータ損失に対する保護が得られます。
       


この目的のためのスタンバイサーバ名は、スタンバイの接続情報で指定された、スタンバイのapplication_name設定です。
物理レプリケーションスタンバイでは、primary_conninfo設定です。
デフォルトはcluster_nameの設定で、さもなければwalreceiverです。
論理レプリケーションでは、サブスクリプションの接続情報で設定でき、デフォルトはサブスクリプション名です。
それ以外のレプリケーションストリームの消費者については、それぞれのドキュメントをご覧ください。
       


このパラメータは、以下の構文のいずれかを用いてスタンバイサーバのリストを指定します。


[FIRST] num_sync ( standby_name [, ...] )
ANY num_sync ( standby_name [, ...] )
standby_name [, ...]



ここで、num_syncは、トランザクションが応答を待機する必要のある同期スタンバイの数です。
standby_nameは、スタンバイサーバの名前です。
num_syncは、ゼロより大きい整数値である必要があります。
FIRSTとANYは、リスト中のサーバから同期スタンバイを選ぶ方法を指定します。
       


キーワードFIRSTをnum_syncと組み合わせると、優先度に基づく同期レプリケーションを指定し、優先度に基づいて選ばれたnum_sync個の同期スタンバイにWALレコードがレプリケーションされるまで、トランザクションのコミットは待機します。
たとえばFIRST 3 (s1, s2, s3, s4)とすると、s1、s2、s3、s4の中から選ばれた優先順位の高い3つのスタンバイサーバが応答を返すまでコミットは待機します。
リストの中で前の方に名前が出現するスタンバイには高い優先度が与えられ、同期と見なされます。
それ以外のリストの中で後の方に名前が上がっているスタンバイサーバは、潜在的な同期スタンバイであることを表しています。
どんな理由であれ、現在の同期スタンバイが切断されると、次に高い優先度を持つスタンバイに直ちに取って代わられます。
キーワードFIRSTはオプションです。
       


キーワードANYをnum_syncと組み合わせると、クォーラムに基づく同期レプリケーションを指定し、列挙されたスタンバイのうち少なくともnum_sync個の同期スタンバイにWALレコードがレプリケーションされるまで、トランザクションのコミットを待たせます。
たとえばANY 3 (s1, s2, s3, s4)とすると、s1、s2、s3、s4のうちの少なくとも3つが応答を返した時点でコミットが進行します。
       


FIRSTとANYは、大文字小文字を区別しません。
もしこれらのキーワードをスタンバイサーバの名前に使う場合は、standby_nameは二重引用符で囲わなければなりません。
       


3番目の構文は、PostgreSQL™ 9.6よりも前のバージョンで用いられていたもので、依然としてサポートされています。
最初の構文で、FIRST、num_syncを1とした時と同じです。
たとえば、FIRST 1 (s1, s2)とs1, s2は同じ意味です。
s1かs2が同期スタンバイとして選ばれます。
       


特別なエントリ*は、すべてのスタンバイ名に一致します。
       


スタンバイの一意性を強制する仕組みはありません。
重複があった場合、一致したスタンバイは優先順位が高いと見なされますが、どれが選ばれるかは非決定的です。
       
注記


各々のstandby_nameは、*である場合を除き、SQL識別子の形式を取らなければなりません。
二重引用符を用いることもできます。
しかし、二重引用符の有無に関わらず、standby_nameとスタンバイのアプリケーション名の比較は、大文字小文字の区別なしに行われることに注意してください。
        



ここに同期スタンバイ名が指定されていない場合、同期レプリケーションは有効とはならず、トランザクションコミットはレプリケーションを待機しません。これがデフォルトの設定です。同期レプリケーションが有効であっても、synchronous_commitパラメータをlocal または offに設定することにより、個別のトランザクションをレプリケーションに対して待機しないように設定できます。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       




スタンバイサーバ





これらの設定はレプリケーションデータを受け取るスタンバイサーバの動作を管理します。
プライマリサーバ上のこれらの値は無意味です。
     
	primary_conninfo (string)
        
        
        
	

スタンバイサーバが送信サーバに接続するための接続文字列を指定します。
この文字列は、「接続文字列」で説明されている書式で記述されます。
この文字列に何のオプションも指定されていない場合、これに対応する環境変数 (「環境変数」 参照) が確認されます。
環境変数も設定されていなければデフォルトの値が使われます。
         


接続文字列では、プライマリサーバのホスト名（またはアドレス）、スタンバイサーバのデフォルトと異なるのであればポート番号も指定する必要があります。
また、送信サーバ上で適切な権限を保有するロールのユーザを指定しなければなりません (「認証」 参照)。
送信サーバがパスワード認証を要求するのであれば、パスワードも記述される必要があります。
パスワードは primary_conninfoに記述することもできますし、スタンバイサーバ上の分離されたファイル~/.pgpassに記述することもできます (データベース名には replication を使います)。
         


レプリケーションスロットを同期（「レプリケーションスロットの同期」を参照）するために、primary_conninfo文字列に有効なdbnameを指定する必要もあります。
これはスロットの同期にのみ使用されます。
ストリーミングでは無視されます。
         


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
WAL受信プロセスが実行中にこのパラメータが変更されると、そのプロセスにシグナルが送られ、新しい設定で再起動するために停止します（primary_conninfoが空文字の場合を除きます。）
サーバがスタンバイモードでなければこの設定は無効となります。
         

	primary_slot_name (string)
        
        
        
	

上流ノードのリソース削除を制御するためにストリーミングレプリケーション経由でプライマリに接続した場合、既存のレプリケーションスロットを使うように、必要に応じて指定します（「レプリケーションスロット」を参照）。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
WAL受信プロセスが実行中にこのパラメータが変更されると、そのプロセスにシグナルが送られ、新しい設定で再起動するために停止します。
primary_conninfoが設定されていない場合、この設定は無効です。
         

	hot_standby (boolean)
      
      
      
	

「ホットスタンバイ」に記載されている通り、リカバリの最中に接続し、そして問い合わせを実行できるか否かを設定します。デフォルト値はonです。
このパラメータはサーバ起動時のみ設定可能です。
これは、アーカイブリカバリ期間、又はスタンバイモードにある場合にのみ効果をもたらします。
       

	max_standby_archive_delay (integer)
      
      
      
	

ホットスタンバイがアクティブな場合、このパラメータは、「問い合わせコンフリクトの処理」で説明されているように、適用されようとしているWALエントリと競合するスタンバイクエリをキャンセルするまで待機する時間を決定します。
max_standby_archive_delayは、WALデータがWALアーカイブから読み取られるときに適用されます（したがって最新ではありません）。
この値が単位なしで指定された場合、ミリ秒単位で取得されます。
デフォルトは30秒です。
値-1を指定すると、スタンバイは競合するクエリが完了するまで永遠に待機します。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       


max_standby_archive_delayはキャンセル前に問い合わせが実行できる最大の時間の長さと同じでないことに注意してください。
むしろ、任意の１つのWALセグメントのデータの適用のために許される最大合計時間です。
従って、ある問い合わせによりWALセグメント内の前の部分で大幅な遅延となった場合、その後の衝突する問い合わせの猶予時間はずっと短くなります。
       

	max_standby_streaming_delay (integer)
      
      
      
	

ホットスタンバイがアクティブな場合、このパラメータは、 「問い合わせコンフリクトの処理」で説明されているように、適用されようとしているWALエントリと競合するスタンバイクエリをキャンセルするまで待機する時間を決定します。
max_standby_streaming_delayは、ストリーミングレプリケーションを介してWALデータを受信するときに適用されます。
この値が単位なしで指定された場合、ミリ秒単位で取得されます。
デフォルトは30秒です。
値-1を指定すると、スタンバイは競合するクエリが完了するまで永久に待機します。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       


max_standby_streaming_delayはキャンセル前に問い合わせが実行できる最大の時間の長さと同じでないことに注意してください。
むしろ、プライマリサーバから一度受け取られたWALデータを適用するために許される最大合計時間です。
従って、ある問い合わせが大幅な遅延を起こした場合、その後の衝突する問い合わせは、スタンバイサーバがふたたび遅れを取り戻すまでの間、猶予時間はずっと短くなります。
       

	wal_receiver_create_temp_slot (boolean)
      
      
      
	

永続レプリケーションスロットが(primary_slot_nameを使って)作成されない設定になっている時に、WAL受信プロセスがリモートインスタンス上に一時レプリケーションスロットを作るかどうかを指定します。
デフォルトはoffです。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
WAL受信プロセスが実行中にこのパラメータが変更されると、そのプロセスにシグナルが送られ、新しい設定で再起動するために停止します。
       

	wal_receiver_status_interval (integer)
      
      
      
	

スタンバイサーバ上のWAL受信プロセスがプライマリ、または上位サーバに対してレプリケーションの進捗情報を送信する最小頻度を指定します。
送信された進捗情報はpg_stat_replicationビューにより確認することが可能です。
スタンバイサーバは書き込みがされた直近の先行書き込みログ（WAL）位置、ディスクにフラッシュされた直近のログ位置、およびリカバリ適用された直近のログ位置を報告します。
このパラメータの値がそれぞれの報告間における最大の時間間隔です。
書き込み、またはフラッシュ位置が変更される毎、あるいはこのパラメータがゼロ以外なら、最低でもこのパラメータで設定された頻度で更新情報が送信されます。
他にもこのパラメータを無視して更新情報が送信される場合があります。
たとえば、既存のWALの処理が完了するか、synchronous_commitがremote_applyに設定されている場合です。
従って、適用位置は真の位置よりも少し後ろにずれることがあります。
この値が単位なしで指定された場合は、秒単位であるとみなします。
デフォルトの値は10秒です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
      

	hot_standby_feedback (boolean)
      
      
      
	

ホットスタンバイがスタンバイサーバ上で現在処理を行っている問い合わせについて、プライマリまたは上位サーバにフィードバックを送るか否かを指定します。
このパラメータはレコードの回収に起因する問い合わせの取り消しを排除するために使用することができます。
しかし、いくつかのワークロードに対してはプライマリサーバ上でのデータベース肥大の原因となります。
フィードバックメッセージはwal_receiver_status_interval毎に、2回以上送信されません。
デフォルトの値はoffです。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       


カスケードレプリケーションが使用されている場合、フィードバックは最終的にプライマリに到達するまで上位サーバに転送されます。スタンバイは上位に転送する以外、受け取ったフィードバックを他に使用しません。
       


スタンバイの時計が前後にずれると、必要な間隔でフィードバックメッセージが送信されない場合があることに注意してください。
フィードバック機構はタイムスタンプに基づいているため、極端なケースでは、プライマリの無効な行が長期間削除されないという危険が長引く可能性があります。
       

	wal_receiver_timeout (integer)
      
      
      
	

指定された時間より長い間、活動していないレプリケーション接続は停止します。
このことは受信するスタンバイサーバがプライマリノードの機能停止、またはネットワーク停止を検出するのに便利です。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
デフォルト値は60秒です。
値ゼロは時間切れメカニズムを無効にします。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	wal_retrieve_retry_interval (integer)
      
      
      
	

WALデータがソース(ストリーミングレプリケーション、ローカルのpg_wal、またはWALアーカイブ)から取得できない時に、スタンバイサーバがWALデータ受信をリトライするまでにどの位の時間待つべきかを指定します。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
デフォルト値は5秒です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       


このパラメータは、リカバリ対象のノードにおいて、新しいWALデータが読み込み可能になるまでの待ち時間を制御する必要のある時に有用です。
たとえば、アーカイブリカバリにおいては、このパラメータの値を小さくすることにより、新しいWALファイルを検出する際にリカバリの応答を早くすることができます。
WALの生成頻度が少ないシステムでは、この値を大きくすることにより、WALアーカイブへのアクセス頻度を減らすことができます。
これは、たとえば基盤へのアクセス回数が課金対象になるクラウド環境において、有用です。
       


論理レプリケーションでは、このパラメータによって、失敗したレプリケーション適用ワーカーやテーブル同期ワーカーが再生成される頻度も制限されます。
       

	recovery_min_apply_delay (integer)
      
      
      
	

デフォルトでは、スタンバイサーバは可能な限り早くプライマリからWALレコードをリストアします。
時間遅れのデータのコピーを持つことで、データ損失エラーを修正する機会を提供するのは有用かもしれません。
このパラメータを使う事で、決まった時間だけリカバリを遅らせることができます。
例えば、パラメータに5minと指定した場合、各トランザクションについて、スタンバイのシステム時刻が、プライマリから報告されたコミット時刻より5分以上経過している場合のみ、スタンバイサーバはコミットを再生します。
単位を指定しない場合、ミリ秒として扱われます。
デフォルトは0で、遅延を与えません。
       


サーバ間のレプリケーション遅延はパラメータの値を上回る可能性があり、その場合には遅延は追加されません。
遅延は、プライマリサーバで書かれたWALのタイムスタンプと、スタンバイサーバの現在時刻を使って計算されていることに注意してください。
ネットワークの遅延やカスケーディングレプリケーション構成によるデータ転送の遅延は、実際の待ち時間を大幅に減らすかもしれません。
もし、プライマリサーバとスタンバイサーバのシステムクロックが同期されていない場合、期待値よりも早くレコードのリカバリを始めるかもしれません。
しかし、このパラメータの有用な設定値は典型的なサーバ間の時間のずれよりもずっと大きいので、それらは大きな問題ではありません。
       


遅延はトランザクションコミットのWALレコードだけで発生します。
他のレコードは可能な限り早く再生されるでしょう。
対応する（トランザクション）コミットレコードが適用されるまではその効果が不可視であることがMVCCの可視ルールによって保証されているため、他のレコードが可能な限り早く再生されることは問題にはなりません。
       


ひとたびリカバリ中のデータベースが整合性のとれた状態になれば、スタンバイサーバが昇格またはトリガになるまで、遅延が発生します。
その後、スタンバイサーバはそれ以上待たずにリカバリを終了します。
       


WALレコードは、適用される準備が整うまでスタンバイに保持されなければなりません。
したがって、遅延が長くなるとWALファイルの蓄積量が増加し、スタンバイのpg_walディレクトリに必要なディスク容量が増加します。
       


このパラメータはストリーミングレプリケーション配信で使われることを目的としていますが、パラメータが指定されていると、クラッシュリカバリを除くすべてのケースで使用されます。
この機能を使うことによってhot_standby_feedbackが遅延され、プライマリサーバの肥大化に繋がる可能性があります。両方同時に使う場合には注意して使ってください。

        
警告


synchronous_commitがremote_applyに設定されていれば、同期レプリケーションは、この設定に影響を受けます。各COMMITは適用されるのを待つことが必要です。
         


       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	sync_replication_slots (boolean)
      
      
      
	

これにより、物理スタンバイはプライマリサーバからのロジカルフェイルオーバースロットの同期が可能となり、ロジカルサブスクライバーはフェイルオーバー後に新しいプライマリサーバからレプリケーションを再開できます。
       


このパラメータはデフォルトで無効です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       




サブスクライバー





これらの設定項目は、論理レプリケーションのサブスクライバーの挙動を制御します。
パブリッシャーにおける設定値とは無関係です。
詳細については「構成設定」を参照してください。
     
	max_active_replication_origins (integer)
       
       
      
	

同時に追跡できるレプリケーション起点（replication origin）（48章レプリケーション進捗の追跡を参照）の数を指定し、サーバ上に作成できる論理レプリケーションのサブスクリプション数を効果的に制限します。
現在追跡されているレプリケーション起点の数（pg_replication_origin_statusに反映されている）よりも低い値に設定すると、サーバが起動しなくなります。
デフォルトは10です。
このパラメータはサーバ起動時のみ設定可能です。
少なくともmax_active_replication_originsは、サブスクライバーに追加されるサブスクリプション数に、テーブル同期のために予約された数を加えた数以上に設定することが必要です。
       

	max_logical_replication_workers (integer)
      
      
      
	

論理レプリケーションワーカーの最大数を指定します。
これには、リーダー適用ワーカー、パラレル適用ワーカーおよびテーブル同期ワーカーが含まれます。
       


論理レプリケーションワーカーは、max_worker_processesで定義されたプールから取得されます。
       


デフォルト値は4です。
このパラメータはサーバ起動時にのみ設定可能です。
       

	max_sync_workers_per_subscription (integer)
      
      
      
	

サブスクリプションごとの同期ワーカーの最大数です。
このパラメータは、サブスクリプションの初期化中、あるいは新しいテーブルが追加されたときの初期データコピーの並列度を制御します。
       


今のところ、一つのテーブルにつき、同期ワーカーは一つだけです。
       


同期ワーカーは、max_logical_replication_workersで定義されたプールから取得されます。
       


デフォルト値は2です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	max_parallel_apply_workers_per_subscription (integer)
      
      
      
	

サブスクリプションごとのパラレル適用ワーカーの最大数です。
このパラメータは、サブスクリプションパラメータのstreaming = parallelが指定されている進行中のトランザクションのストリーミングに対する並列度の数を制御します。
       


パラレル適用ワーカーは、max_logical_replication_workersで定義されたプールから取得されます。
       


デフォルト値は2です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       





問い合わせ計画



プランナメソッド設定





以下の設定パラメータは、問い合わせオプティマイザが選択する問い合わせ計画に影響する大雑把な手法を提供します。
ある問い合わせに対してオプティマイザが選択したデフォルト計画が最適でない場合、暫定的な解決策は、これらの設定パラメータの1つを使用し、オプティマイザに異なる計画を選択するように仕向けることです。
オプティマイザが選択する計画の品質を改善するためのより良い方法には、プランナコスト定数を調節する（「プランナコスト定数」を参照）、ANALYZEを手作業で実行する、default_statistics_target設定パラメータの値を大きくする、ALTER TABLE SET STATISTICSを使用して、特定の列に対して収集される統計情報を増やす、などがあります。
      
	enable_async_append (boolean)
      
      
      
	

問い合わせプランナが非同期を意識したアペンド計画型を使うのを可能あるいは不可能にします。
デフォルトはonです。
       

	enable_bitmapscan (boolean)
      
      
      
      
      
	

問い合わせプランナがビットマップスキャン計画型を選択することを有効もしくは無効にします。デフォルトはonです。
       

	enable_distinct_reordering (boolean)
      
      
      
	

入力パスのパスキーと一致するようにDISTINCTキーの順序を並べ替える問い合わせプランナの機能を有効または無効にします。
デフォルトはonです。
       

	enable_gathermerge (boolean)
      
      
      
	

問い合わせプランナがギャザーマージ計画型を選択することを有効もしくは無効にします。
デフォルトはonです。
       

	enable_group_by_reordering (boolean)
      
      
      
	

問い合わせプランナが、インデックススキャンのようなプランの子ノードのキーの順でソートされたGROUP BYキーを提供するプランを生成するかどうかを制御します。
無効にすると、問い合わせプランナは、GROUP BY句があれば、それに合わせたソート順のORDER BYキーを持つプランを生成します。
有効にすると、プランナはより効率的プランの生成を試みます。
デフォルト値はonです。
       

	enable_hashagg (boolean)
      
      
      
	

問い合わせプランナがハッシュ集約計画型を選択することを有効もしくは無効にします。
デフォルトはonです。
       

	enable_hashjoin (boolean)
      
      
      
	

問い合わせプランナがハッシュ結合計画型を選択することを有効もしくは無効にします。デフォルトはonです。
       

	enable_incremental_sort (boolean)
      
      
      
	

問い合わせプランナが増分ソートステップを使うのを有効あるいは無効にします。
デフォルトはonです。
       

	enable_indexscan (boolean)
      
      
      
      
      
	

問い合わせプランナがインデックススキャン計画型とインデックスオンリースキャン計画型を選択することを有効もしくは無効にします。
デフォルトはonです。
enable_indexonlyscanも参照してください。
       

	enable_indexonlyscan (boolean)
      
      
      
	

問い合わせプランナがインデックスオンリースキャン計画型を選択することを有効もしくは無効にします（「インデックスオンリースキャンとカバリングインデックス」を参照）。
デフォルトはonです。
問い合わせプランナがインデックスオンリースキャンを考慮するようにするには、enable_indexscan設定も有効にすることが必要です。
       

	enable_material (boolean)
      
      
      
	

問い合わせプランナの具体化の使用を有効、または無効にします。
全体にわたって具体化を差し止めることはできませんが、この値をoffにすることにより、正確性が要求される場合を除いて、具体化ノードをプランナが挿入することを防止します。デフォルトはonです。
       

	enable_memoize (boolean)
      
      
      
	

問い合わせプランナが、ネステッドループ結合の中のパラメータ付きスキャンの結果をキャッシュするメモ化計画を使用するのを有効あるいは無効にします。
この計画型は、キャッシュ中に現在のパラメータに対応する結果があれば、配下の計画をスキップすることを可能にします。
新しい項目のためにより多くのスペースが必要な場合は、あまり参照されていない結果は削除されるかもしれません。
デフォルトはonです。
       

	enable_mergejoin (boolean)
      
      
      
	

問い合わせプランナがマージ結合計画型を選択することを有効もしくは無効にします。デフォルトはonです。
       

	enable_nestloop (boolean)
      
      
      
	

問い合わせプランナがネステッドループ結合計画を選択することを有効もしくは無効にします。
ネステッドループ結合を完全に禁止することは不可能ですが、この変数をオフにすると、もし他の方法が利用できるのであれば、プランナはその使用を行わないようになります。
デフォルトはonです。
       

	enable_parallel_append (boolean)
      
      
      
	

問い合わせプランナによるパラレル認識なアペンド計画型の利用を有効あるいは無効にします。
デフォルトはonです。
       

	enable_parallel_hash (boolean)
       
       
      
	

問い合わせプランナによる、パラレルハッシュを使ったハッシュ結合計画型の利用を有効あるいは無効にします。
ハッシュ結合計画が有効でない場合は無効です。
デフォルトはonです。
       

	enable_partition_pruning (boolean)
       
       
      
	

問い合わせプランナが、クエリプランからパーティション化テーブルのパーティションを除く機能を有効あるいは無効にします。
これはまた、クエリエグゼキュータがクエリ実行中にパーティションを削除（無視）することができるプランを生成するプランナの機能を制御します。
デフォルトはonです。
詳細は「パーティション除去」をご覧ください。
       

	enable_partitionwise_join (boolean)
      
      
      
	

パーティション同士の結合(partitionwise join)を問い合わせプランナが使用するのを有効あるいは無効にします。
パーティション同士の結合は、適合するパーティションを結合することによって実行される、パーティション化テーブルにまたがる結合を可能にします。
今の所、パーティション同士の結合は、すべてのパーティションキーを含んでいて、かつパーティションキーの型が同じで、一対一で一致する子パーティションの集合を持つ結合条件のときだけに適用されます。
この設定を有効にすると、最終プランに表示され、work_memによってメモリ使用が制限されるノードの数は、スキャンされるパーティションの数に応じて直線的に増加します。
これにより、問い合わせの実行中の全体的なメモリ消費の大きな増加をもたらす可能性があります。
また、問い合わせ計画の作成が、メモリとCPU使用率の点でも非常に高価になります。
デフォルト値はoffです。
       

	enable_partitionwise_aggregate (boolean)
      
      
      
	

パーティション化されたテーブルに対してグループ化または集約を個別に実行できるように、問い合わせプランナのパーティションごと（partitionwise）のグループ化または集約の使用を有効または無効にします。
GROUP BY句がパーティションキーを含まない場合は、パーティション単位で部分集約だけが実行でき、最終結果の算出は後で行われます。
この設定を有効にすると、最終プランに表示され、work_memによってメモリ使用が制限されるノードの数は、スキャンされるパーティションの数に応じて直線的に増加します。
これにより、問い合わせの実行中の全体的なメモリ消費の大きな増加をもたらす可能性があります。
また、問い合わせ計画の作成が、メモリとCPU使用率の点でも非常に高価になります。
デフォルト値はoffです。
       

	enable_presorted_aggregate (boolean)
      
      
      
	

問い合わせプランナが、問い合わせのORDER BY/DISTINCT集約関数に必要なオーダーで事前にソートされた行を生成するかどうかを制御します。
無効の場合、問い合わせプランナは、ORDER BYまたはDISTINCT句を含む各集約関数の集計を実行する前に、ソートをエグゼキュータが実行することを常に要求するプランを生成します。
有効な場合、集約に必要とされる事前にソートされた入力を集約関数に提供する、より効率的なプランをプランナは生成します。
デフォルト値はonです。
       

	enable_self_join_elimination (boolean)
      
      
      
	

問い合わせツリーを分析し、自己結合を意味的に同等の一度のスキャンに置き換える問い合わせプランナの最適化を有効または無効にします。
通常のテーブルのみが考慮されます。
デフォルトはonです。
       

	enable_seqscan (boolean)
      
      
      
      
      
	

問い合わせプランナがシーケンシャルスキャン計画型を選択することを有効もしくは無効にします。
シーケンシャルスキャンを完全に禁止することは不可能ですが、この変数をオフにすると、もし他の方法が利用できるのであれば、プランナはその使用を行わないようになります。
デフォルトはonです。
       

	enable_sort (boolean)
      
      
      
	

問い合わせプランナが明示的並べ替え手順を選択することを有効もしくは無効にします。
明示的並べ替えを完全に禁止することは不可能ですが、この変数をオフにすると、もし他の方法が利用できるのであれば、プランナはその使用を行わないようになります。
デフォルトはonです。
       

	enable_tidscan (boolean)
      
      
      
	

問い合わせプランナがTIDスキャン計画型を選択することを有効もしくは無効にします。
デフォルトはonです。
       




プランナコスト定数





本節で扱うコスト変数は、任意の尺度で測られます。
これらは相対的な値のみが意味を持つため、それらの値をすべて同じ係数で大きく、あるいは小さくしても、プランナの選択は結果として変わりません。
デフォルトではこれらのコスト変数はシーケンシャルなページ取り込みに基づいています。
つまり、seq_page_costを慣習的に1.0とし、他のコスト変数はそれを参考にして設定されています。
しかし望むなら、特定のマシンにおけるミリ秒単位の実行時間など、異なる尺度を使用することができます。
    
注記


残念ながら、コスト変数に対する理想的な値を決定する、上手く定義された方法がありません。
特定のインストレーションが受け取る問い合わせ全体を混在させたものの平均として扱うのが最善でしょう。
数回の実験のみを根拠にこの値を変更することは危険であるといえます。
    

	seq_page_cost (floating point)
      
      
      
	

シーケンシャルな一連の取り出しの一部となる、ディスクページ取り出しに関する、プランナの推定コストを設定します。
デフォルトは1.0です。
この値は同じ名前のテーブル空間パラメータを設定することで、特定のテーブル空間の中にあるテーブルとインデックスに対して上書きできます（ALTER TABLESPACE(7)を参照してください）。
       

	random_page_cost (floating point)
      
      
      
	

非シーケンシャル的に取り出されるディスクページのコストに対するプランナの推測を設定します。
デフォルトは4です。
この値は同じ名前のテーブル空間パラメータを設定することで、特定のテーブル空間の中にあるテーブルとインデックスに対して上書きできます（ALTER TABLESPACE(7)を参照してください）。
       


この値をseq_page_costと比較して小さくすると、システムはなるべくインデックススキャンを使用するようになります。
大きくすると、インデックススキャンが相対的に高価になります。
両方の値を増減させることで、CPUコストに対するディスクI/Oコストの重要性を変更させることができます。
これについては、後述のパラメータで説明します。
       


機械的ディスク記憶装置に対するランダムアクセスは通常はシーケンシャルアクセスの4倍よりもかなり高価です。
しかし、より低いデフォルト（4.0）が使用されます。というのはインデックスのついた読み取りのようなディスクに対するランダムアクセスのほとんどはキャッシュにあると想定されるからです。
このデフォルト値は、ランダムアクセスがシーケンシャルアクセスより40倍遅い一方で、ランダム読み込みの90%はキャッシュされていることが期待されるというモデルとして考えることができます。
       


自環境の作業負荷において、90％のキャッシュ率は誤った仮定と考えられるのであれば、ランダム記憶装置読み込みのコストをより良く反映するため random_page_cost を大きくすることができます。
反対に、データが完全にキャッシュされていると思われるのであれば、random_page_cost を小さくすることが適切です。例えば、データベースの容量がサーバのメモリより小さい場合などです。
例えばSSDのような、シーケンシャルアクセスに比べてランダム読み込みコストがあまり大きくない記憶装置の場合も、random_page_cost に対し1.1のようにより低い値のモデル化の方が良いでしょう。
       
ヒント


システムはrandom_page_costをseq_page_costよりも小さな値に設定することを許しますが、そのようにすることは物理的にはおかしなことです。
しかし、データベースが完全にRAMにキャッシュされる場合、同じ値に設定することは意味を持ちます。
この場合、順序通りではないページアクセスに対するペナルティが存在しないからです。
また、多くがキャッシュされるデータベースでは、CPUパラメータに対して両値を小さく設定すべきです。
RAM内に存在するページの取り出しコストは通常よりもかなり小さくなるためです。
        


	cpu_tuple_cost (floating point)
      
      
      
	

問い合わせ時のそれぞれの行の処理コストに対するプランナの推測を設定します。
デフォルトは0.01です。
       

	cpu_index_tuple_cost (floating point)
      
      
      
	

インデックススキャン時のそれぞれのインデックス行の処理コストに対するプランナの推測を設定します。
デフォルトは0.005です。
       

	cpu_operator_cost (floating point)
      
      
      
	

問い合わせ時に実行される各演算子や関数の処理コストに対するプランナの推測を設定します。デフォルトは0.0025です。
       

	parallel_setup_cost (floating point)
      
      
      
	

パラレルワーカープロセスを起動するためのコストに対するプランナの推測値を設定します。
デフォルトは1000です。
       

	parallel_tuple_cost (floating point)
      
      
      
	

あるパラレルワーカープロセスから、1タプルを他のプロセスに転送するためのコストに対するプランナの推測値を設定します。
デフォルトは0.1です。
       

	min_parallel_table_scan_size (integer)
      
      
      
	

パラレルスキャンを考慮する最小のテーブルデータのサイズを指定します。
パラレルシーケンシャルスキャンでは、スキャンされるテーブルのデータ量は、常にテーブルのサイズと同じです。
しかし、インデックスが使われる場合は、スキャンされるテーブルの量は通常少なくなるでしょう。
この値が単位なしで指定された場合は、ブロック単位であるとみなします。すなわち、BLCKSZバイト、一般的には8kBです。
デフォルトは8メガバイト（ 8MB）です。
       

	min_parallel_index_scan_size (integer)
      
      
      
	

パラレルスキャンが考慮されるために、スキャンされなければならないインデックスデータの最小量を設定します。
通常パラレルインデックススキャンは、典型的にはインデックス全体をアクセスしないことに注意してください。
これは、関連するスキャンにより、プランナが実際にアクセスされると信じるページ数です。
またこのパラメータは、あるインデックスがパラレルVACUUMで利用できるかどうかを決定するのにも使われます。
VACUUM(7)をご覧ください。
この値が単位なしで指定された場合は、ブロック単位であるとみなします。すなわち、BLCKSZバイト、一般的には8kBです。
デフォルトは512キロバイト（512kB）です。
       

	effective_cache_size (integer)
      
      
      
	

単一の問い合わせで利用できるディスクキャッシュの実効容量に関するプランナの条件を設定します。
これは、インデックスを使用するコスト推定値の要素となります。
より高い値にすれば、よりインデックススキャンが使用されるようになり、より小さく設定すれば、シーケンシャルスキャンがより使用されるようになります。
このパラメータを設定する時には、PostgreSQL™の共有バッファとPostgreSQL™データファイルに使用されるカーネルのディスクキャッシュの量の両方を考慮しなければなりませんが、データは両方に存在することもあります。
また、利用可能な領域を共有しますので、異なるテーブルに対して同時に実行される問い合わせの想定数も考慮してください。
このパラメータは、PostgreSQL™で割り当てられる共有メモリの大きさには影響を与えません。また、カーネルのディスクキャッシュを予約したりもしません。
これは推定目的のみで使用されます。
同時に、システムは問い合わせの間のディスクキャッシュ内のデータの残滓を想定していません。
この値が単位なしで指定された場合は、ブロック単位であるとみなします。すなわち、BLCKSZバイト、一般的には8kBです。
デフォルトは4ギガバイト（4GB）です。
（BLCKSZが8kbでなければ、この設定のデフォルト値と最大値がBLCKSZに比例して変更されます。）
       

	jit_above_cost (floating point)
      
      
      
	

JITが有効な場合（30章実行時コンパイル(JIT)参照）、それ以上ならJITコンパイルが起動する問い合わせコストを設定します。
JITを実行するとプラン時間がかかりますが、問い合わせの実行を高速化することができます。
これを-1にすると、JITコンパイルは無効になります。
デフォルトは100000です。
       

	jit_inline_above_cost (floating point)
      
      
      
	

それ以上ならJITコンパイルが関数と演算子のインライン化を試みる問い合わせコストを設定します。
インライン化するとプラン時間がかかりますが、問い合わせの実行速度を改善できます。
これをjit_above_costよりも小さくするのは意味がありません。
これを-1にすると、インライン化は無効になります。
デフォルトは500000です。
       

	jit_optimize_above_cost (floating point)
      
      
      
	

それ以上ならJITコンパイルが高価な最適化を実行する問い合わせコストを設定します。
そうした最適化にはプラン時間がかかりますが、問い合わせの実行速度を改善できます。
これをjit_above_costよりも小さくするのは意味がなく、またjit_inline_above_costよりも大きくしても利益はないでしょう。
これを-1にすると、高価な最適化は無効になります。
デフォルトは500000です。
       




遺伝的問い合わせオプティマイザ





遺伝的問い合わせオプティマイザ（GEQO）はヒューリスティック（発見的）検索法を用いた問い合わせ計画を行なう演算手法です。
通常のしらみつぶしの検索演算手法で見いだされる計画よりも時として劣った計画を作成するという代償を払いますが、この手法は（多くのリレーションを結合するような）複雑な問い合わせに対し計画時間を軽減します。
より詳細は61章遺伝的問い合わせオプティマイザを参照してください。
     
	geqo (boolean)
      
      
      
      
      
      
      
	

遺伝的問い合わせ最適化を有効もしくは無効にします。デフォルトは有効です。
運用時には無効にしないことが通常最善です。geqo_threshold変数は、GEQOを制御するためよりきめ細かな方法を提供します。
       

	geqo_threshold (integer)
      
      
      
	

少なくともこれだけの数のFROM項目数があるときに、問い合わせを計画するのに遺伝的問い合わせ最適化を使用します。
（FULL OUTER JOINの生成子は、FROM項目が１つだけとして計算することに注意してください。）
デフォルトは12です。
もっと単純な問い合わせでは、通常の、そしてしらみつぶしの検索プランナを使用するのが最善ですが、多くのテーブルを持つ問い合わせでは、しらみつぶしの検索は非常に時間がかかり、しばしば次善の計画を実行する代償より長くなります。
従って、問い合わせの大きさに対する閾値はGEQOの使用を管理するのに便利な方法です。
       

	geqo_effort (integer)
      
      
      
	

GEQOにおける計画時間と問い合わせ計画の品質間のトレードオフを制御します。この変数は1から10までの範囲の整数でなければなりません。
デフォルトの値は5です。値を大きくすると、問い合わせ計画作成により多くの時間を費すことになりますが、より効率的な問い合わせ計画が選択される可能性が増加します。
       


実際geqo_effortは直接何も行いません。それはGEQOの動作に影響を与える他の変数に対し、デフォルトの値を計算するためにのみ使用されます（以下で説明します）。もしよければ、代わりに手作業で他のパラメータを設定できます。
       

	geqo_pool_size (integer)
      
      
      
	

GEQOで使用されるプール容量を管理します。それは遺伝的個体群内の個体数です。最低でも2つはなければならず、よく100から1000までの値が使用されます。
もし（デフォルトの設定である）零に設定されると、geqo_effortおよび問い合わせの中のテーブル数に基づいて、適切な値が選択されます。
       

	geqo_generations (integer)
      
      
      
	

GEQOで使用される世代の数を管理します。それはアルゴリズムの反復数です。最低でも1はなければならず、よくプールサイズと同じ範囲の値が使用されます。
これを0に設定（デフォルトの設定）すると、適切な値がgeqo_pool_sizeに基づいて選択されます。
       

	geqo_selection_bias (floating point)
      
      
      
	

GEQOで使用される淘汰の偏りを管理します。
淘汰の偏りは個体群内の（遺伝的な）自然淘汰です。値は1.50から2.00で、2.00がデフォルトです。
       

	geqo_seed (floating point)
      
      
      
	

結合順序検索空間にわたって、GEQOが無作為のパスを選択するために使用される乱数発生器の初期値を制御します。
値は0（デフォルト）から1までの範囲です。
値を変動させると探査される結合パスの集合が変化するため、見つかる最善のパスが良くなる場合も悪くなる場合もあります。
       




その他のプランナオプション



	default_statistics_target (integer)
      
      
      
	

ALTER TABLE SET STATISTICSで列特定の目標が設定されていないテーブル列に対し、デフォルトの統計情報目標を設定します。
より大きい値はANALYZEに必要な時間を増加させますが、プランナの予測の品質を向上させます。
デフォルトは100です。
PostgreSQL™の問い合わせプランナによる統計情報の使用方法に関するより詳細な情報は、「プランナで使用される統計情報」を参照してください。
       

	constraint_exclusion (enum)
      
      
      
      
      
	

問い合わせプランナが問い合わせを最適化する際のテーブル制約の使用を制御します。
constraint_exclusionに許容される値は、on（全てのテーブルに対し制約を検査する）、off（決して制約を検査しない）、およびpartition（継承された子テーブルおよびUNION ALL副問い合わせのみ制約を検査する）です。
partitionがデフォルトの設定です。
伝統的な継承ツリーでしばしば性能向上のために使用されます。
      


このパラメータが特定のテーブルに対して許される時、プランナはそのテーブルのCHECK制約で問い合わせ条件を比較し、制約と矛盾する条件のテーブルのスキャンを省きます。
例えば以下のようになります。



CREATE TABLE parent(key integer, ...);
CREATE TABLE child1000(check (key between 1000 and 1999)) INHERITS(parent);
CREATE TABLE child2000(check (key between 2000 and 2999)) INHERITS(parent);
...
SELECT * FROM parent WHERE key = 2400;




制約排除が有効であると、このSELECTは全くchild1000をスキャンせず、性能を向上させます。
       


現在、継承ツリーを使ってテーブルパーティショニングを実装するために使用されるよくある場合のことだけを考慮して、制約排除はデフォルトで有効です。
すべてのテーブルに対して有効にするのは、単純な問い合わせにおいて特にはっきりわかる計画作成の余計なオーバーヘッドをもたらし、単純な問い合わせにはメリットがありません。
伝統的な継承を使うパーティショニングされたテーブルがない場合、完全に無効にする方が良いでしょう。
（パーティショニングされたテーブル用の同等の機能は別のパラメータenable_partition_pruningで制御します。）
       


パーティショニングを実装するための制約排除の利用についてのより進んだ情報は「パーティショニングと制約による除外」を参照ください。
       

	cursor_tuple_fraction (floating point)
      
      
      
	

検索されるカーソル行の割合のプランナの見積もりを設定します。
デフォルトは0.1です。
この設定をより小さくすると、プランナはカーソルに対し「起動を高速にする」計画を使用するようになりがちになります。
この場合先頭の数行の取り出しは高速になりますが、行全体を取り出す場合に時間がかかるようになる可能性があります。
この値をより大きくすると、推定時間全体がより強調されるようになります。
最大の設定である1.0の場合、カーソルは通常の問い合わせとまったく同様に計画されます。
つまり、推定時間全体のみが考慮され、先頭の行の取り出しにかかる時間は考慮されなくなります。
       

	from_collapse_limit (integer)
      
      
      
	

プランナは、FROMリストがこの数の項目より少ない結果の場合、副問い合わせを上位の問い合わせに併合します。
より小さい値は計画時間を縮小させますが、劣った問い合わせ計画をもたらす可能性があります。
デフォルトは8です。
詳細は「明示的なJOIN句でプランナを制御する」を参照してください。
       


この値をgeqo_thresholdか、それ以上に設定するとGEQOプランナ使用の誘引となり、最適ではない計画をもたらします。「遺伝的問い合わせオプティマイザ」を参照してください。
       

	jit (boolean)
      
      
      
	

PostgreSQL™が、可能ならばJITコンパイルを使うかどうかを決定します（30章実行時コンパイル(JIT)を参照）。
デフォルトはonです。
       

	join_collapse_limit (integer)
      
      
      
	

最終的にリストがこの項目数以下になる時、プランナは、明示的なJOIN構文（FULL JOINを除く）をFROM項目のリストに直します。
この値を小さくすれば計画作成時間は減少しますが、劣った問い合わせ計画が作成される可能性があります。
       


デフォルトでは、この値はfrom_collapse_limitと同じ値に設定されており、殆どの場合に適切です。
これを1に設定すると明示的なJOINの再順序付けは行われなくなります。
したがって、問い合わせで指定された明示的結合順序は、関係（リレーション）が結合される実際の順序となります。
問い合わせプランナは常に最適な結合順序を選択するとは限らないので、
上級ユーザなら暫定的にこの変数を1に設定し、明示的に希望とする結合順序を指定してもよいでしょう。
詳細は「明示的なJOIN句でプランナを制御する」を参照してください。
       


この値をgeqo_thresholdか、それ以上に設定するとGEQOプランナ使用の誘引となり、最適ではない計画をもたらします。「遺伝的問い合わせオプティマイザ」を参照してください。
       

	plan_cache_mode (enum)
      
      
      
	

準備された文（明示的に準備されたものあるいはPL/pgSQLのように暗黙的に生成されたもののどちらにおいても）は、カスタムあるいは汎用(generic)プランで実行することができます。
カスタムプランは実行ごとに指定されたパラメータ値の集合で新たに作られます。
一方汎用プランはパラメータ値に依存せず、複数の実行にまたがって再利用できます。
したがって、汎用プランはプランニングに要する時間を節約できますが、理想的なプランがパラメータ値に強く依存している場合は、汎用プランは非効率かも知れません。
通常この両者の選択は自動的に行われますが、plan_cache_modeで上書きできます。
可能な値はauto（デフォルト）、force_custom_plan、force_generic_planです。
この設定は、準備するときではなく、キャッシュされたプランを実行する際に考慮されます。
詳細はPREPARE(7)をご覧ください。
       

	recursive_worktable_factor (floating point)
      
      
      
	

再帰問い合わせのワーキング・テーブルの平均サイズのプランナの推定値を、問い合わせの最初の非再帰項の推定サイズの倍数として設定します。
これにより、プランナは、ワーキング・テーブルを問い合わせの他のテーブルに結合するための最も適切な方法を選択できます。
デフォルト値は10.0です。
1.0などの小さい値は、最短パス問い合わせなど、あるステップから次のステップへの再帰が低い「広がり方(fanout)」の場合に役立ちます。
グラフ分析の問い合わせでは、デフォルト値より大きい値が有効な場合があります。
       





エラー報告とログ出力



どこにログを出力するか



	log_destination (string)
      
      
      
	

PostgreSQL™は、stderr、jsonlog、csvlog、jsonlogおよびsyslogを含めて、サーバメッセージのログ出力に対し数種類の方法を提供します。
Windowsでは、eventlogも同時に提供します。
このパラメータを設定するには、カンマ区切りでお好みのログ出力先を記載します。
デフォルトでは、ログはstderrのみに出力されます。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       


csvlogがlog_destinationに含まれる場合、ログ項目はプログラムへの読み込みが簡便な「カンマ区切り値」書式（CSV）で出力されます。
詳細は「CSV書式のログ出力の利用」を参照してください。
CSV書式のログ出力を生成するためにはlogging_collectorを有効にする必要があります。
       


jsonlogがlog_destinationに含まれる場合、ログ項目はプログラムへの読み込みが簡便なJSON書式で出力されます。
詳細は「JSON書式のログ出力の利用」を参照してください。
JSON書式のログ出力を生成するためにはlogging_collectorを有効にする必要があります。
       


stderr、csvlog、またはjsonlogのいずれかが含まれている場合、ファイルcurrent_logfilesが作成され、ロギングコレクタによって現在使用されているログファイルの場所と関連付けられたロギング先が記録されます。
これにより、インスタンスによって現在使用されているログを簡単に見つけることができます。
このファイルの内容の例を次に示します:


stderr log/postgresql.log
csvlog log/postgresql.csv
jsonlog log/postgresql.json




current_logfilesは、ローテーションの効果として新しいログファイルが作成されたとき、およびlog_destinationがリロードされたときに再作成されます。
stderr、csvlog、jsonlogのいずれもlog_destinationに含まれていないとき、およびロギングコレクタが無効になっているときに削除されます。
       
注記


log_destinationでsyslogオプションを使用できるようにするために、ほとんどのUnixシステムではシステムのsyslogデーモンの設定を変更しなければならないでしょう。
PostgreSQL™ではログをLOCAL0からLOCAL7までのsyslogファシリティで記録することができます（syslog_facilityを参照してください）。
しかし、ほとんどのプラットフォームのデフォルトのsyslog設定ではこれらのメッセージはすべて破棄されます。
うまく動作させるために


local0.*    /var/log/postgresql



syslogデーモンの設定ファイルに追加しなければならないでしょう。
        


Windowsでlog_destinationに対しeventlogオプションを使用する場合、Windows Event Viewer がイベントログメッセージを手際良く表示できるよう、オペレーティングシステムでイベントソースとそのライブラリを登録しなければなりません。
詳細は「WindowsにおけるEvent Logの登録」を参照ください。
        


	logging_collector (boolean)
      
      
      
	

このパラメータはログ収集機構を有効にします。
それはstderrに送られたログメッセージを捕捉し、ログファイルにリダイレクトするバックグラウンドプロセスです。
この手法はsyslogへのログよりもしばしば有用です。
メッセージの一部の種類がsyslogでは出力されない可能性があるためです。
（一般的な例として、ダイナミックリンカのエラーメッセージがあり、その他の例としてarchive_commandのようなスクリプトにより生成されたエラーメッセージが挙げられます。）
このパラメータはサーバ起動時のみ設定可能です。
       
注記


ログ収集機構を使用せずにstderrのログを取ることは可能です。
ログメッセージはサーバのstderrが指し示すいかなる場所にも向かうだけです。
しかし、その方法はログファイルを巡回させる都合のよい方法を提供しないので、ログ容量が小さい場合のみに適しています。
同時に、ログ収集機構を使用しないいくつかのプラットフォームにおいては、ログ出力が失われたり、文字化けします。なぜなら、同一のログファイルに同時に書き込みを行うマルチプロセッサはそれぞれの出力を上書きできるからです。
        

注記


ログ収集機構はメッセージを決して失わないために設計されています。
これは、極端に高い負荷の場合、サーバプロセスはコレクタが遅れをとった場合、追加のログメッセージを送信しようと試みる時に阻止される可能性があります。
それとは対象的にsyslogは、もし書き込みができなかったときメッセージの廃棄を選びます。
これらの場合にはいくつかのログメッセージを失うことになりますが、残ったシステムを阻止しません。
        


	log_directory (string)
      
      
      
	

logging_collectorを有効と設定した場合、このパラメータはログファイルが作成されるディレクトリを確定します。
ディレクトリは、絶対パス、もしくはデータベースクラスタのディレクトリに対する相対パスで指定することができます。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトはlogです。
       

	log_filename (string)
      
      
      
	

logging_collectorが有効な場合、このパラメータは作成されたログファイルのファイル名を設定します。
値はstrftimeパターンとして扱われるため、%エスケープを使用して、時刻によって変動するファイル名を指定することができます。
（時間帯に依存した%エスケープが存在する場合、log_timezoneで指定された時間帯で計算が行われます。）
サポートされている%-エスケープはstrftime 仕様によく似ています。
システムのstrftimeは直接使用されないので、プラットフォーム固有の（非標準）の拡張は動作しません。
デフォルトはpostgresql-%Y-%m-%d_%H%M%S.logです。
       


エスケープすることなくファイル名を指定する場合、ディスク全体を使い切ってしまうことを防止するためにログローテーションを行うユーティリティを使用することを計画しなければなりません。
8.4より前のリリースのPostgreSQL™では、%エスケープがなければ、新しいログファイルの生成時のエポック時刻を付与しますが、これはもはや当てはまりません。
       


CSV書式の出力がlog_destinationで有効な場合、タイムスタンプ付きのログファイル名に.csvを付与し、最終的なCSV書式出力用のファイル名が作成されます。
（log_filenameが.logで終わる場合は後置詞が置き換えられます。）
       


JSON書式の出力がlog_destinationで有効な場合、タイムスタンプ付きのログファイル名に.jsonを付与し、最終的なJSON書式出力用のファイル名が作成されます。
（log_filenameが.logで終わる場合は後置詞が置き換えられます。）
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	log_file_mode (integer)
      
      
      
	

Unixシステムにおいては、logging_collectorが有効になっている場合、このパラメータはログファイルのパーミッションを設定します。
（Microsoft Windowsではこのパラメータは無視されます。）
パラメータの値はchmod および umaskシステムコールで許容されるフォーマットで指定される数値モードであると期待されます。
（慣例的な8進数フォーマットを使用する場合、番号は0（ゼロ）で始まらなければなりません。
       


デフォルトのパーミッションは0600で、意味するところはサーバの所有者のみログファイルの読み書きが可能です。
そのほか一般的に実用的な設定は0640で、所有者のグループはファイルを読み込めます。
しかし、これらの設定を活用するにはlog_directoryがクラスタデータディレクトリの外部のどこかにあるファイルを格納できるように変更する必要があります。
いずれにせよ、それらは機密データを含む可能性があるため、ログファイルを誰もが読み取り可能にすることは賢明ではありません。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	log_rotation_age (integer)
      
      
      
	

logging_collectorが有効な場合、このパラメータは個々のログファイルの最大寿命を決定します。
ここで指定した時間経過すると、新しいログファイルが生成されます。
この値が単位なしで指定された場合は、分単位であるとみなします。
デフォルトは24時間です。
ゼロに設定することで、時間に基づいた新しいログファイルの生成は無効になります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	log_rotation_size (integer)
      
      
      
	

logging_collectorが有効な場合、このパラメータは個々のログファイルの最大容量を決定します。
ここで指定したデータ量がログファイルに出力された後、新しいログファイルが生成されます。
この値が単位なしで指定された場合は、キロバイト単位であるとみなします。
デフォルトは10メガバイトです。
ゼロに設定することで、サイズに基づいた新しいログファイルの生成は無効になります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	log_truncate_on_rotation (boolean)
      
      
      
	

logging_collectorが有効な場合、このパラメータにより、PostgreSQL™は既存の同名のファイルに追加するのではなく、そのファイルを切り詰める（上書きする）ようになります。
しかし、切り詰めは時間を基にしたローテーションのために新規にファイルが開かれた時にのみ発生し、サーバ起動時やサイズを基にしたローテーションでは発生しません。
偽の場合、全ての場合において既存のファイルは追記されます。
例えば、この設定をpostgresql-%H.logのようなlog_filenameと組み合わせて使用すると、24個の時別のログファイルが生成され、それらは周期的に上書きされることになります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       


例：7日間のログを保存し、毎日のログを server_log.Mon、server_log.Tue、等とし、そして自動的に前週のログを今週のログで上書きするには以下のように設定します。
log_filename を server_log.%aとし、log_truncate_on_rotation を onにし、そしてlog_rotation_age を 1440に設定します。
       


例：24時間のログを保持、1時間おきに1つのログファイルを作成、ただし、ログファイルのサイズが1ギガバイトを超えた場合それより早く切り替えさせるには、log_filenameをserver_log.%H%Mにし、log_truncate_on_rotationをonにし、log_rotation_ageを60にし、そしてlog_rotation_sizeを1000000に設定します。
log_filenameに%Mを含めると、サイズを元にしたローテーションが時間毎の始めのファイル名とは異なる名前のファイルを選択するようにできます。
       

	syslog_facility (enum)
      
      
      
	

syslogへのログ出力が有効な場合、このパラメータはsyslogの「facility」が使われるように確定します。
LOCAL0、LOCAL1、LOCAL2、LOCAL3、LOCAL4、LOCAL5、LOCAL6、LOCAL7の中から選んでください。
デフォルトはLOCAL0です。
使用しているシステムのsyslogデーモンの文書を同時に参照してください。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	syslog_ident (string)
      
      
      
	

syslogにログ出力が有効な場合、このパラメータはsyslogログ内のPostgreSQL™メッセージを特定するのに使用するプログラム名を確定します。デフォルトはpostgresです。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
        

	syslog_sequence_numbers (boolean)
        
        
       
	

syslogにログを出力している場合で、これがオン（デフォルト）であると、各メッセージには（[2]のような）増加する順序数が頭に追加されます。
これにより、多くのsyslogの実装がデフォルトで行う「--- last message repeated N times ---」による出力の抑止が回避されます。
より近代的なsyslogの実装では、繰り返されるメッセージの抑止は設定変更できるので（たとえば、rsyslog™）における$RepeatedMsgReduction）、この機能は必要ないかもしれません。
繰り返されるメッセージを抑止したい場合には、これをオフにできます。
        


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
        

	syslog_split_messages (boolean)
      
      
      
	

syslogへのログ出力が有効な場合、このパラメータはメッセージがどのようにsyslogに送られるかを規定します。
オンなら（デフォルト）、メッセージは行に分割され、長い行は、伝統的なsyslog実装のサイズ上限である1024バイト以内に分割されます。
オフならば、PostgreSQLサーバログメッセージは、そのままsyslogサービスに送られます。
大きなサイズになるかもしれないメッセージにどう対応するかは、syslogサービス次第となります。
       


もしsyslogが最終的にテキストファイルにログを出力するのであれば、どちらに設定しても効果は同じです。
設定値をオンにしておくのが最善です。
多くのsyslogの実装では、長いメッセージを扱えないか、長いメッセージを扱うための特別な設定が必要だからです。
しかし、syslogが最終的に他のメディアに書き込むのであれば、メッセージを論理的に一緒にしておくことが必要か、もしくは有用です。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	event_source (string)
      
      
      
	

event logへのログ出力が有効になっていると、このパラメータはログ中のPostgreSQL™メッセージを特定するのに使用されるプログラム名を決定します。デフォルトはPostgreSQLです。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       




いつログを出力するか



	log_min_messages (enum)
      
      
      
	

どのメッセージレベルをサーバログに書き込むかを管理します。
有効な値はDEBUG5、DEBUG4、DEBUG3、DEBUG2、DEBUG1、INFO、NOTICE、WARNING、ERROR、LOG、FATAL、およびPANICです。
それぞれの階層はその下の全ての階層を含みます。階層を低くする程、より少ないメッセージがログに送られます。
デフォルトはWARNINGです。
ここでのLOGの優先順位がclient_min_messagesの場合と異なることに注意してください。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	log_min_error_statement (enum)
      
      
      
	

エラー条件の原因となったどのSQL文をサーバログに記録するかを制御します。
設定したレベル以上のメッセージについては現在のSQL文がログに記録されます。
有効な値は、DEBUG5、DEBUG4、DEBUG3、DEBUG2、DEBUG1、INFO、NOTICE、WARNING、ERROR、LOG、FATAL、PANICです。
デフォルトはERRORです。
エラー、ログメッセージ、致命的エラー、パニックを引き起こした文がログに記録されることを意味します。
失敗した文の記録を実質的に無効にするには、このパラメータをPANICに設定してください。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	log_min_duration_statement (integer)
      
      
      
	

文の実行に少なくとも指定した時間かかった場合、それぞれの文の実行に要した時間をログに記録します。
例えば、250msと設定した場合、250msもしくはそれ以上長くかかった全てのSQL文がログとして残ります。
このパラメータを有効にすることにより、アプリケーションで最適化されていない問い合わせを追跡するのが便利になります。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
0に設定すれば、すべての文の実行時間が出力されます。
-1（デフォルト）は、文実行時間の記録を無効にします。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
        


これはlog_min_duration_sampleを上書きします。つまり、問い合わせがこの設定を越えると、実行時間のサンプリングの対象にならず、常に記録されます。
        


拡張問い合わせプロトコルを使用するクライアントでは、Parse、Bind、Executeそれぞれの段階で要した時間が独立して記録されます。
        
注記


このオプションとlog_statementを一緒に使用する時、log_statementによって記録されるテキスト文は、実行時間のログには重複されません。
syslogを使用していなければ、プロセスIDとセッションIDを使用して、文メッセージと後の実行時間メッセージを関連付けできるように、log_line_prefixを使用してPIDまたはセッションIDをログに記録することを勧めます。
        


	log_min_duration_sample (integer)
      
      
      
	

指定した時間以上で実行完了した文の実行時間のサンプルを許可します。
これによりlog_min_duration_statementと同様ですが、log_statement_sample_rateで制御するレートでサンプルされた実行時間のサブセットのログエントリを生成します。
たとえば、100msに設定すると、100ミリ秒以上かかったSQL文がサンプルの対象となります。
このパラメータを有効にすることで、トラフィックが多すぎてすべての問い合わせをログできない状況で助けになることもあります。
この値を単位無しで指定すると、ミリ秒と見なされます。
これをゼロに設定すると、すべての文の実行時間がサンプルされます。
-1（デフォルトです）とすると、文の実行時間のサンプリングが無効になります。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
        


この設定はlog_min_duration_statementよりも優先度が低いです。つまり、log_min_duration_statementを超えた実行時間の文はサンプリングの対象となり、常に記録されます。
        


log_min_duration_statementのその他の注意事項もこの設定に適用されます。
        

	log_statement_sample_rate (floating point)
      
      
      
	

log_min_duration_sampleを越え、記録対象となる文の割合を決定します。
サンプリングは確率論的で、たとえば0.5は2つの文のうちひとつが統計的に記録対象になることを意味します。
デフォルトは1.0で、サンプルされた文はすべて記録対象となります。
ゼロに設定すると、log_min_duration_sampleを-1にしたのと同じで、文の実行時間のサンプルを記録しません。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
        

	log_transaction_sample_rate (floating point)
      
      
      
	

他の理由に加え、トランザクションの文のうち、ログの対象となる割合を設定します。
文の実行時間にかかわらず、新しいトランザクションに適用されます。
サンプリングは確率論的で、たとえば0.1は10のトランザクションのうちひとつが統計的に記録対象になることを意味します。
デフォルトは0で、これは追加のトランザクションのログを取らないことを意味します。
1に設定すると、すべてのトランザクションのすべての文のログを取ります。
log_transaction_sample_rateは、トランザクションのサンプルを調査するのに役立ちます。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
        
注記


他の文のログを取るオプション同様、このオプションも大きなオーバーヘッドを与える可能性があります。
        


	log_startup_progress_interval (integer)
      
      
      
	

起動プロセスが実行中の長時間実行操作に関するメッセージをログに記録するまでの時間と、その操作に関する次の進行状況メッセージの間隔を設定します。
デフォルトは10秒です。
0に設定すると、この機能は無効になります。この値を単位なしで指定すると、ミリ秒とみなされます。
この設定は、各操作に個別に適用されます。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
        


たとえば、データディレクトリの同期に25秒かかり、その後、unloggedリレーションのリセットに8秒かかったとします。
この設定がデフォルト値の10秒である場合、データディレクトリを同期するためのメッセージは、10秒間処理された後と20秒間処理された後に記録されますが、unloggedリレーションのリセットに関しては何も記録されません。
        





表19.2「メッセージ深刻度レベル」で、PostgreSQL™で使用されるメッセージ深刻度レベルを説明します。
ログ出力がsyslogまたはWindowsのeventlogに送られる場合、この深刻度レベルは表で示すように変換されます。
    
表19.2 メッセージ深刻度レベル
	深刻度	使用方法	syslog	eventlog
	DEBUG1 .. DEBUG5	開発者が使用する連続的かつより詳細な情報を提供します。	DEBUG	INFORMATION
	INFO	VACUUM VERBOSEの出力などの、ユーザによって暗黙的に要求された情報を提供します。	INFO	INFORMATION
	NOTICE	長い識別子の切り詰めに関する注意など、ユーザの補助になる情報を提供します。	NOTICE	INFORMATION
	WARNING	トランザクションブロック外でのCOMMITの様な、ユーザへの警告を提供します。	NOTICE	WARNING
	ERROR	現在のコマンドを中断させる原因となったエラーを報告します。	WARNING	ERROR
	LOG	チェックポイントの活動の様な、管理者に関心のある情報を報告します。	INFO	INFORMATION
	FATAL	現在のセッションを中断させる原因となったエラーを報告します。	ERR	ERROR
	PANIC	全てのデータベースセッションを中断させる原因となったエラーを報告します。	CRIT	ERROR




なにをログに出力するか



注記


ログに出力する内容は、セキュリティに影響を与える可能性があります。
「ログファイルの保守」を参照してください。
      

	application_name (string)
      
      
      
	

application_nameはNAMEDATALEN文字未満の任意の文字列（標準ビルドでは64文字）にすることができます。
これは通常、サーバへの接続時にアプリケーションによって設定されます。
この名前はpg_stat_activityビューに表示され、CSVログエントリに含まれます。
またlog_line_prefixパラメータにより通常のログ項目に含めることができます。
application_name値には印字可能なASCII文字のみを使用できます。
他の文字はCスタイルの16進エスケープ文字に置き換えられます。
       

	debug_print_parse (boolean)
      
      
      , debug_print_rewritten (boolean)
      
      
      , debug_print_plan (boolean)
      
      
      
	

これらのパラメータは生成される各種デバッグ出力を有効にします。
設定すると実行された問い合わせそれぞれに対し、最終的な解析ツリー、問い合わせリライタの出力、実行計画を出力します。
これらのメッセージはLOGメッセージレベルで出力されますので、デフォルトではサーバログに出力され、クライアントには渡されません。
client_min_messages、log_min_messagesまたはその両方を調整することで変更することができます。
デフォルトではこれらのパラメータは無効です。
       

	debug_pretty_print (boolean)
      
      
      
	

設定された場合、debug_pretty_printはdebug_print_parse、debug_print_rewritten、またはdebug_print_planで生成されたメッセージを字下げします。
設定されない場合の「コンパクト」形式よりもより見やすく、しかしより長いものとなります。デフォルトは有効です。
       

	log_autovacuum_min_duration (integer)
      
      
      
	

少なくとも指定時間実行した場合、autovacuumで実行される各活動がログに残るようになります。
これをゼロに設定すると、すべてのautovacuumの活動がログに残ります。
-1はautovacuum活動のログを無効にします。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
例えば、これを250msに設定すると、250ms以上かかって実行されたautovacuumやanalyzeはすべてログに残ります。
さらに、-1以外の値にこのパラメータが設定された場合、競合するロックや並行して削除されたリレーションによりautovacuum動作がスキップされるとメッセージはログに記録されます。
デフォルトは10minです。
このパラメータを有効にすることは、autovacuum活動の追跡に役に立ちます。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
ただし、この設定はテーブルストレージパラメータの変更により、それぞれのテーブルに対して上書きすることができます。
       

	log_checkpoints (boolean)
      
      
      
	

チェックポイントおよびリスタートポイントをサーバログに記録するようにします。
書き出されたバッファ数や書き出しに要した時間など、いくつかの統計情報がこのログメッセージに含まれます。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトはonです。
       

	log_connections (string)
      
      
      
	

サーバへの各接続の情報をログに記録します。
デフォルトは空文字列である''で、すべての接続ログを無効にします。
以下のオプションは単独で指定することも、コンマで区切ったリストで指定することもできます。
       
表19.3 接続ログのオプション
	名前	説明
	receipt	接続の受信を記録します。
	authentication	

ユーザを識別する認証方法で使用される元の識別子を記録します。
ほとんどの場合、識別子はPostgreSQL™のユーザ名と一致しますが、サードパーティの認証方法によっては、サーバが保存する前に元のユーザ識別子が変更されることがあります。
認証が失敗した場合、この設定の値に関係なく常に記録されます。
           
	authorization	

認証が正常に完了したことを記録します。
この時点で接続は確立されていますが、バックエンドはまだ完全には設定されていません。
ログメッセージには、認証されたユーザ名に加えて、データベース名とアプリケーション名（該当する場合）が含まれます。
           
	setup_durations	

接続が最初の問い合わせを実行する準備ができるまで、接続の確立とバックエンドの設定にかかった時間を記録します。
ログメッセージには、合計設定時間（postmasterが接続の着信を受け入れてから、接続が問い合わせ可能になった時点まで）、新しいバックエンドをフォークするのにかかった時間、およびユーザ認証にかかった時間の3つの期間が含まれます。
           
	all	

すべてのオプションを指定するのと同じ便利な別名です。
他のオプションのリストにallが指定されていると、すべての接続状況がログに記録されます。
           





切断時のロギングはlog_disconnectionsによって個別に制御されます。
       


下位互換性の目的で、on、off、true、false、yes、no、1、および0は引き続きサポートされます。
正の値はreceipt、authentication、およびauthorizationオプションを指定するのと同じです。
       


スーパーユーザと、適切なSET権限を持つユーザだけがセッション開始時にこのパラメータを変更でき、セッションが開始された後は変更できません。
       
注記


psqlなどクライアントプログラムは、パスワードが要求されているかどうか確認するまで2回接続を試みるので、二重の「connection received」メッセージは必ずしも問題を示すものではありません。
        


	log_disconnections (boolean)
      
      
      
	

セッションの終了をログします。
ログ出力の情報はlog_connectionsと同様で、更にセッションの経過時間が追加されます。
スーパーユーザと、適切なSET権限を持つユーザだけがセッション開始時にこのパラメータを変更でき、セッションが開始された後は変更できません。
デフォルトはoffです。
       

	log_duration (boolean)
      
      
      
	

すべての完了した文について、その経過時間をログするようにします。
デフォルトはoffです。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       


拡張問い合わせプロトコルを使用するクライアントでは、Parse、Bind、Executeそれぞれの段階で要した時間が独立して記録されます。
       
注記


log_durationを有効にするのとlog_min_duration_statementを0に設定する方法との違いは、log_min_duration_statementを超えた場合、テキスト版の問い合わせが強制的に出力されるのに対して、このオプションでは出力されないという点です。
したがって、log_durationがon、かつ、log_min_duration_statementが正の値を持つ場合、すべての経過時間がログに記録されますが、閾値を超えた文のみがテキスト版の問い合わせが含められるようになります。
この動作は、高負荷なインストレーションで統計情報を収集する際に有用です。
        


	log_error_verbosity (enum)
      
      
      
	

ログ出力されるそれぞれのメッセージに対し、サーバログに書き込まれる詳細の量を制御します。
有効な値は、TERSE、DEFAULT、およびVERBOSEで、それぞれは表示されるメッセージにより多くのフィールドを追加します。
TERSEはDETAIL、HINT、QUERY、およびCONTEXTエラー情報を除外します。
VERBOSE出力は、SQLSTATEエラーコード（付録A PostgreSQL™エラーコードも参照）、および、ソースコードファイル名、関数名、そしてエラーを生成した行番号を含みます。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	log_hostname (boolean)
      
      
      
	

デフォルトでは、接続ログメッセージは接続元ホストのIPアドレスのみを表示します。
このパラメータを有効にすると、ホスト名もログに残るようになります。
ホスト名解決方法の設定に依存しますが、これが無視できないほどの性能劣化を起こす可能性があることに注意してください。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	log_line_prefix (string)
      
      
      
	

これは、各ログ行の先頭に出力するprintfの書式文字列です。
%から始まる「エスケープシーケンス」は、後述の通りのステータス情報で置き換えられます。
この他のエスケープは無視されます。
他の文字はそのままログ行に出力されます。
エスケープの中には、セッションプロセスによってのみ認識可能なものがあり、これらはメインサーバプロセスなどのバックグラウンドプロセスでは空文字として扱われます。
状態情報は%の後かつオプションの前に数字を指定することにより、左寄せまた右寄せにすることができます。
数字が負ならば状態情報を右側に空白を詰めて最小限の幅にし、正の値は左に空白を詰めます。
ログファイルではパディングは人間の視認性を向上させるので有用です。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
デフォルトは、タイムスタンプとプロセスIDをログ出力する'%m [%p] 'です。
       
	エスケープ	効果	セッションのみ
	%a	アプリケーション名	○
	%u	ユーザ名	○
	%d	データベース名	○
	%r	遠隔ホスト名、またはIPアドレス、およびポート番号	○
	%h	遠隔ホスト名、またはIPアドレス	○
	%L	Local address (the IP address on the server that the
             client connected to)	○
	%b	バックエンドタイプ	×
	%p	プロセス識別子	×
	%P	このプロセスがパラレルクエリワーカーである場合に、パラレルグループリーダーのプロセス識別子	×
	%t	ミリ秒無しのタイムスタンプ	×
	%m	ミリ秒付きタイムスタンプ	×
	%n	ミリ秒付きタイムスタンプ（Unixエポックとして）	×
	%i	コマンドタグ。セッションの現在のコマンド種類	○
	%e	SQLSTATE エラーコード	×
	%c	セッションID。下記参照	×
	%l	各セッションまたは各プロセスのログ行の番号。1から始まります。	×
	%s	プロセスの開始タイムスタンプ	×
	%v	仮想トランザクションID(procNumber/localXID)。
             「トランザクションと識別子」を参照してください	×
	%x	トランザクションID（何もアサインされていない場合0）。
             「トランザクションと識別子」参照	×
	%q	何も出力しません。
             非セッションプロセスではこのエスケープ以降の出力を停止します。
             セッションプロセスでは無視されます。	×
	%Q	現在の問い合わせの問い合わせ識別子。問い合わせ識別子はデフォルトでは計算されません。
             ですからcompute_query_idパラメータが有効であるか、あるいは問い合わせ識別子を計算するサードパーティのモジュールが設定されていないければゼロとなります。	○
	%%	%文字そのもの	×




バックエンドタイプはpg_stat_activityビューのbackend_type列に関連します。しかし、ビューにない他のタイプがログに現れることがあります。
         


%cエスケープは、2つの4バイトの16進数（先頭のゼロは省略）をドットで区切った構成の、準一意なセッション識別子を表示します。
この数値はプロセスの起動時間とそのプロセスIDです。
したがって、%cを使用して、これらの項目を出力するための文字数を省略することができます。例として、pg_stat_activityからセッション識別子を生成するには以下の問い合わせを行ないます。


SELECT to_hex(trunc(EXTRACT(EPOCH FROM backend_start))::integer) || '.' ||
       to_hex(pid)
FROM pg_stat_activity;



       
ヒント


log_line_prefixに空白文字以外の値を設定する場合、通常、ログ行の残りとの区切りを明確にするために、その最後の文字を空白文字にすべきです。
句読点用の文字も使用できます。
        

ヒント


Syslogは独自にタイムスタンプとプロセスID情報を生成します。
ですのでおそらく、Syslogにログを保管する場合は、こうしたエスケープを含めるとは考えないでしょう。
        

ヒント


%qエスケープは、ユーザやデータベース名のように、セッション（バックエンド）コンテキストでのみ存在する情報を含める場合に有用です。
%q


log_line_prefix = '%m [%p] %q%u@%d/%a '


        

注記


識別子が計算できない不正な文も含め、log_statementは識別子が計算可能になる前に出力を生成するため、%Qエスケープは、log_statementが生成する行では常にゼロの識別子を報告します。
        


	log_lock_waits (boolean)
      
      
      
	

セッションがロックの獲得までの間にdeadlock_timeoutより長く待機する場合にログメッセージを生成するかどうかを制御します。
これは、ロック待ちによって性能がでていないのかどうか確認する時に有用です。
デフォルトはoffです。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	log_lock_failures (boolean)
      
      
      
	

ロック獲得が失敗したときに詳細なログメッセージを生成するかどうかを制御します。
これは、ロックの獲得が失敗した原因を分析するのに役立ちます。
現在、SELECT NOWAITによるロック獲得失敗のみがサポートされています。
デフォルトはoffです。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	log_recovery_conflict_waits (boolean)
      
      
      
	

スタートアッププロセスがdeadlock_timeoutよりも長くリカバリコンフリクトを待つ場合にログメッセージを出力するかどうかを制御します。
リカバリコンフリクトによってリカバリがWALを適用するのを妨げられているかどうかを決定するのに有用です。
       


デフォルトはoffです。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	log_parameter_max_length (integer)
      
      
      
	

ゼロよりも大きければ、エラーではない時にバインドパラメータ値が、文とともにこの指定バイト数に短縮されて記録されます。
ゼロなら、エラーではない時のバインドパラメータ値と文の記録は行われません。
-1（デフォルトです）ならバインドパラメータはすべて記録されます。
この値が単位なしに指定されると、バイト単位と見なされます。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       


この設定は、log_statement、log_durationおよび関連設定の結果を表示するログメッセージにのみ影響します。
ゼロ以外の値の設定は、とりわけパラメータがバイナリ形式で送信される際に多少のオーバーヘッドをもたらします。
テキストへの変換が必要になるからです。
       

	log_parameter_max_length_on_error (integer)
      
      
      
	

ゼロよりも大きければ、エラー時のバインドパラメータ値が、エラーメッセージ中にこの指定バイト数に短縮されて記録されます。
ゼロ（デフォルトです）ならエラーメッセージ中のバインドパラメータは記録されません。
-1ならバインドパラメータはすべて記録されます。
この値が単位なしに指定されると、バイト単位と見なされます。
       


ゼロ以外の値の設定は多少のオーバーヘッドをもたらします。
エラーが起きるかどうかに関わらず、PostgreSQL™は文を開始する際にテキスト形式のパラメータ値をメモリに保存する必要があるからです。
パラメータがバイナリ形式で送信される場合にテキスト形式で送信するよりもオーバーヘッドが大きくなります。
前者はデータ変換が必要なのに対し、後者は単に文字列をコピーするだけだからです。
       

	log_statement (enum)
      
      
      
	

どのSQL文をログに記録するかを制御します。
有効な値は、none（off）、ddl、mod、およびall（全ての文）です。
ddlは、CREATE、ALTER、およびDROP文といった、データ定義文を全てログに記録します。
modは、全てのddl文に加え、INSERT、UPDATE、DELETE、TRUNCATE、およびCOPY FROMといった、データ変更文をログに記録します。
PREPARE、EXECUTEおよびEXPLAIN ANALYZEコマンドも、そこに含まれるコマンドが適切な種類であればログが録られます。
拡張問い合わせプロトコルを使用するクライアントでは、Executeメッセージを受け取った時にBindパラメータの値が（すべての単一引用符が二重にされた状態で）含まれていた場合、ログに記録されます。
       


デフォルトはnoneです。
スーパーユーザおよび適切なSET権限を持つユーザのみがこの設定を変更できます。
       
注記


ログメッセージの発行は、基本解析により文の種類が決まった後に行われますので、log_statement = allという設定を行ったとしても、単純な構文エラーを持つ文は記録されません。
拡張問い合わせプロトコルの場合も同様に、この設定ではExecute段階以前（つまり、解析や計画作成期間）に失敗した文は記録されません。
こうした文のログを記録するには、log_min_error_statementをERROR（以下）に設定してください。
        


ログに記録された文は、機密データを明らかにし、プレーンテキストのパスワードを含むことさえあります。
        


	log_replication_commands (boolean)
      
      
      
	

サーバログに各レプリケーションコマンドと、walsenderプロセスのレプリケーションスロットの獲得／解放を記録します。
レプリケーションコマンドの更なる情報は「ストリーミングレプリケーションプロトコル」をご覧ください。
デフォルト値はoffです。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	log_temp_files (integer)
      
      
      
	

一時ファイルのファイル名とサイズのログ出力を制御します。
一時ファイルはソート処理やハッシュ処理、一時的な問い合わせの結果のために作成されます。
この設定が有効になると、指定されたファイルのバイト単位の大きさを伴うログの項目が、すべての一時ファイルそれぞれについて削除されたときに生成されます。
0を指定すると、すべての一時ファイル情報のログが残ります。
正の数を指定すると、指定した以上の容量のファイルのみがログに残ります。
この値が単位なしで指定された場合は、キロバイト単位であるとみなします。
デフォルトの設定は-1で、このログ出力を無効にします。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
この設定を変更できるのは、スーパーユーザと適切なSET権限を持つユーザだけです。
       

	log_timezone (string)
      
      
      
	

サーバログに書き出す際に使用される時間帯を設定します。
TimeZoneと異なり、すべてのセッションで一貫性を持ってタイムスタンプが報告されるようにこの値はクラスタ全体に適用されます。
組み込まれているデフォルトはGMTですが、postgresql.confにより通常は上書きされます。initdbによりこれらと関連した設定をシステム環境にインストールされます。
詳細は「時間帯」を参照してください。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       




CSV書式のログ出力の利用





log_destinationリストにcsvlogを含めることは、ログファイルをデータベーステーブルにインポートする簡便な方法を提供します。このオプションはカンマ区切り値書式（CSV）で以下の列を含むログ行を生成します。
ミリ秒単位のtimestamp、
ユーザ名、
データベース名、
プロセスID、
クライアントホスト：ポート番号、
セッションID、
セッション前行番号、
コマンドタグ、
セッション開始時間、
仮想トランザクションID、
通常トランザクションID、
エラーの深刻度、
SQLSTATEコード、
エラーメッセージ、
詳細エラーメッセージ、
ヒント、
エラーとなった内部的な問い合わせ（もしあれば）、
内部問い合わせにおけるエラー位置の文字数、
エラーの文脈、
エラーの原因となったユーザ問い合わせ(存在しlog_min_error_statementで有効になっている場合)、
エラー位置の文字数、
PostgreSQLソースコード上のエラー発生場所（log_error_verbosityがverboseに設定されているならば）、
アプリケーション名、バックエンドタイプ、パラレルグループリーダーのプロセスID、問い合わせID。
以下にcsvlog出力を格納するためのテーブル定義のサンプルを示します。



CREATE TABLE postgres_log
(
  log_time timestamp(3) with time zone,
  user_name text,
  database_name text,
  process_id integer,
  connection_from text,
  session_id text,
  session_line_num bigint,
  command_tag text,
  session_start_time timestamp with time zone,
  virtual_transaction_id text,
  transaction_id bigint,
  error_severity text,
  sql_state_code text,
  message text,
  detail text,
  hint text,
  internal_query text,
  internal_query_pos integer,
  context text,
  query text,
  query_pos integer,
  location text,
  application_name text,
  backend_type text,
  leader_pid integer,
  query_id bigint,
  PRIMARY KEY (session_id, session_line_num)
);


       


このテーブルにログファイルをインポートするためには、COPY FROMコマンドを使用してください。



COPY postgres_log FROM '/full/path/to/logfile.csv' WITH csv;



提供されたfile_fdwモジュールを使って外部テーブルとしてファイルをアクセスすることも可能です。
       


CSVログファイルをインポートする作業を単純にするためにいくつか必要な作業があります。

       
	

一貫性があり、予測可能なログファイル命名機構を提供するために、log_filenameおよびlog_rotation_ageを設定してください。
これによりどのようなファイル名になると、個々のログファイルが完了しインポートする準備が整ったかが推測できるようになります。
         

	

ログファイル名の予測が困難になりますので、log_rotation_sizeを0にして容量を基にしたログの回転を無効にしてください。
           

	

同じファイルに古いログデータと新しいログデータが混在しないようにするために、log_truncate_on_rotationをonに設定してください。
          

	

上のテーブル定義には主キーの指定が含まれています。
これにより、同じ情報が2回インポートされる事故を防止するために有用です。
COPYコマンドは、一度にインポートするすべてのデータをコミットしますので、何か1つでもエラーがあればインポート全体が失敗します。
ログファイルの一部をインポートし、そのファイルが完了した後に再度インポートしようとした場合、主キー違反によりインポートが失敗します。
インポートする前に、ログファイルの完了を待ち、閉じるまで待機してください。
この手順は、COPYが失敗する原因となる、完全に書き込まれなかった欠落した行をインポートするという事故も防止します。
          




      

JSON書式のログ出力の利用





log_destinationリストにjsonlogを含めると、ログファイルをさまざまなプログラムにインポートするのに便利です。
このオプションは、JSON書式のログ行を出力します。
     


NULL値を持つ文字列フィールドは出力から除外されます。
将来、フィールドが追加される可能性があります。
jsonlog出力を処理するユーザアプリケーションは不明なフィールドを無視する必要があります。
     


各ログ行はJSONオブジェクトとしてシリアライズされ、一連のキーとそれに関連する値が表19.4「JSONログ項目のキーと値」で示されます。
     
表19.4 JSONログ項目のキーと値
	キー名	型	説明
	timestamp	string	ミリ秒付きのタイムスタンプ
	user	string	ユーザ名
	dbname	string	データベース名
	pid	number	プロセスID
	remote_host	string	クライアントホスト
	remote_port	number	クライアントポート
	session_id	string	セッションID
	line_num	number	セッション単位の行番号
	ps	string	現在のps表示
	session_start	string	セッション開始時刻
	vxid	string	仮想トランザクションID
	txid	string	通常トランザクションID
	error_severity	string	エラー深刻度
	state_code	string	SQLSTATEコード
	message	string	エラーメッセージ
	detail	string	エラーメッセージ詳細
	hint	string	エラーメッセージヒント
	internal_query	string	このエラーの原因となった内部問い合わせ
	internal_position	number	内部問い合わせへのカーソルインデックス
	context	string	エラーコンテキスト
	statement	string	クライアント提供の問い合わせ文字列
	cursor_position	number	問い合わせ文字列へのカーソルインデックス
	func_name	string	エラー位置関数名
	file_name	string	エラー位置のファイル名
	file_line_num	number	エラー位置のファイル行番号
	application_name	string	クライアントアプリケーション名
	backend_type	string	バックエンドの種類
	leader_pid	number	活動中のパラレルワーカーのリーダーのプロセスID
	query_id	number	問い合わせ識別子




プロセスのタイトル





これらの設定項目は、サーバプロセスのタイトルを変更します。
プロセスのタイトルは、典型的にはps、あるいはWindowsにおいてはProcess Explorerで見ることができます。
詳細については、「標準的なUnixツール」を参照してください。
    
	cluster_name (string)
      
      
      
	

様々な目的のために、このデータベースクラスタ（インスタンス）を識別する名前を設定します。
クラスタ名はこのクラスタのすべてのサーバプロセスのプロセスタイトルに現れます。
更に、スタンバイ接続のデフォルトのアプリケーション名となります（synchronous_standby_names参照）。
       


名前はNAMEDATALEN文字（標準のビルドでは64文字）より少ない文字列です。
表示可能なASCII文字だけがcluster_nameの値として設定できます。
他の文字は、Cスタイルの16進エスケープ文字に置き換えられます。
空文字''（これがデフォルト値です）が設定されると、クラスタ名は表示されません。
このパラメータはサーバ起動時にのみ設定できます。
       

	update_process_title (boolean)
      
      
      
	

サーバが新しいSQLコマンドを受け取る時に毎回、プロセスタイトルを更新できるようにします。
この設定値はたいていのプラットフォームでonがデフォルトになっていますが、Windowsではプロセスタイトルを更新するオーバーヘッドが大きいため、offがデフォルトになっています。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       





実行時統計情報



累積的な問い合わせ及びインデックスの統計情報





これらのパラメータは、サーバ全体の累積的な統計情報収集機能を制御します。
統計情報収集が有効ならば、生成されるデータはpg_statとpg_statio系のシステムビュー経由でアクセス可能です。
詳細は27章データベース活動状況の監視を参照してください。
     
	track_activities (boolean)
      
      
      
	

各セッションで実行中のコマンドに関する情報と、そのコマンドの識別子および実行開始時刻の収集を有効にします。
このパラメータはデフォルトで有効です。
有効な場合であっても、スーパーユーザ、pg_read_all_statsロール権限を持つロール、報告対象のセッション（権限を持つロールに所属するセッションを含みます）の所有者のみから可視である点に注意してください。
このためセキュリティ上の危険性はありません。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	track_activity_query_size (integer)
      
      
      
	

pg_stat_activity.queryフィールドに対し、それぞれの活動中のセッションで現在実行されているコマンドを追跡記録するため予約されるメモリ量を指定します。
この値が単位なしで指定された場合は、バイト単位であるとみなします。
デフォルトの値は1024バイトです。
このパラメータはサーバ起動時のみ設定可能です。
       

	track_counts (boolean)
      
      
      
	

データベースの活動についての統計情報の収集を有効にします。
収集される情報を自動バキュームデーモンが必要とするため、このオプションはデフォルトで有効です。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	track_cost_delay_timing (boolean)
      
      
      
	
 
コストベースのバキューム遅延の記録を有効にします（「コストに基づくVacuum遅延」を参照）。
このパラメータはデフォルトでは無効になっています。
これは、オペレーティングシステムに現在の時刻を繰り返し問い合わせるため、一部のプラットフォームでは大きなオーバーヘッドが発生する可能性があるためです。
pg_test_timing(1)ツールを使用して、システム上のタイミングのオーバーヘッドを測定できます。
コストベースのバキューム遅延タイミング情報は、pg_stat_progress_vacuumとpg_stat_progress_analyzeに表示されます。
また、VERBOSEオプションが使用されているVACUUM(7)とANALYZE(7)の出力、log_autovacuum_min_durationが設定されている場合はautovacuumで行われる自動バキューム処理と自動解析処理でも表示されます。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	track_io_timing (boolean)
      
      
      
	

データベースによるI/O待機の記録を有効にします。
このパラメータはデフォルトで無効になっています。
その理由は、現時点の時刻をオペレーティングシステムに繰り返し問い合わせるので、プラットフォームによっては深刻な負荷の原因になるからです。
使用しているシステムにおける記録の負荷を計測するためpg_test_timing(1)ツールが使用できます。
I/Oの記録情報は、pg_stat_database、pg_stat_io（objectがwalではない）、pg_stat_get_backend_io()関数（objectがwalではない）の出力に表示されます。
また、BUFFERSオプションが使用されているEXPLAIN(7)の出力、VERBOSEオプションが使用されているVACUUM(7)の出力、log_autovacuum_min_durationが設定されている場合はpg_stat_statementsにより表示されます。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	track_wal_io_timing (boolean)
      
      
      
	

WALによるI/O待機の記録を有効にします。
このパラメータはデフォルトで無効になっています。
その理由は、現時点の時刻をオペレーティングシステムに繰り返し問い合わせるので、プラットフォームによっては深刻な負荷の原因になるからです。
使用しているシステムにおける負荷のタイミングを計測するためpg_test_timingツールが使用できます。
I/Oの記録情報は、objectがwalのpg_stat_io、およびobjectがwalのpg_stat_get_backend_io()関数の出力に表示されます。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	track_functions (enum)
      
      
      
	

関数の呼び出し数と費やされた時間の追跡を有効にします。
手続き言語関数のみを追跡するためにはplと指定してください。
SQL関数、C言語関数も追跡するためにはallと指定してください。
デフォルトは、統計情報追跡機能を無効にするnoneです。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       
注記


呼び出す問い合わせ内に「インライン化」できる位単純なSQL言語関数は、この設定と関係なく、追跡されません。
        


	stats_fetch_consistency (enum)
      
      
      
	

トランザクション内で累積的統計に複数回アクセスする場合の動作を決定します。
noneに設定すると、各アクセスは共有メモリからカウンタを再フェッチします。
cacheに設定すると、オブジェクトの統計への最初のアクセスは、pg_stat_clear_snapshot()が呼び出されない限り、トランザクションが終了するまでこれらの統計をキャッシュします。
snapshotに設定すると、最初の統計アクセスは、pg_stat_clear_snapshot()が呼び出されない限り、トランザクションが終了するまで現在のデータベースでアクセス可能なすべての統計をキャッシュします。
トランザクション内でこのパラメータを変更すると、統計情報のスナップショットは破棄されます。
デフォルトはcacheです。
       
注記


noneは、システムの監視に最も適しています。
値が一度しかアクセスされない場合、最も効率的です。
cacheは、繰り返しアクセスによって同じ値が生成されることを保証します。
これは、自己結合などを含むクエリで重要です。
snapshotは、統計情報を対話的に検査する場合に便利ですが、特に多くのデータベースオブジェクトが存在する場合にはオーバーヘッドが高くなります。
        





統計情報の監視



	compute_query_id (enum)
      
      
      
	

組み込みの問い合わせ識別子の計算を有効にします。
問い合わせ識別子は、pg_stat_activityビュー、EXPLAIN、あるいはlog_line_prefixパラメータが設定されていればログに出力されます。
pg_stat_statements拡張も問い合わせ識別子の計算が必要です。
組み込みの計算が許容できなければ、外部モジュールを代わりに利用することができることに注意してください。
この場合、組み込みの計算は常に無効にしなければなりません。
有効な値は、off（常に無効）、on（常に有効）、pg_stat_statementsのようなモジュールによって自動的に有効になるauto、自動リグレッションテストを機能させるために、問い合わせ識別子がEXPLAIN出力に表示されないことを除けばautoと同じ効果を持つregressです。
デフォルトはautoです。
       
注記


一つの問い合わせ識別子のみが計算されて表示されることを確実にするために、問い合わせ識別子を計算する拡張は、問い合わせ識別子がすでに計算済みのときにエラーを生じるようにすべきです。
        


	log_statement_stats (boolean)
      
      
      , log_parser_stats (boolean)
      
      
      , log_planner_stats (boolean)
      
      
      , log_executor_stats (boolean)
      
      
      
	

各問い合わせに対し、対応するモジュールの性能に関する統計情報をサーバログに出力します。
これは、Unixのgetrusage()オペレーティングシステム機能に類似した、雑なプロファイリング手段です。
log_statement_statsは文に関する統計情報全体を、この他はモジュール毎の統計情報を報告します。
log_statement_statsとモジュール毎のオプションを一緒に有効にすることはできません。
デフォルトでこれらのオプションはすべて無効です。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       





Vacuum作業





これらのパラメータは、バキューム処理の挙動を制御します。
バキュームの目的と責任の詳細は「定常的なバキューム作業」を参照してください。
    
自動Vacuum作業





以下に示す設定は自動バキューム機能の動作を制御します。
詳細は「自動バキュームデーモン」を参照してください。
これらの設定の多くは、テーブル単位で変更できることに注意してください。
格納パラメータを参照してください。
     
	autovacuum (boolean)
       
       
       
	

サーバが自動バキュームランチャデーモンを実行すべきかどうかを管理します。
デフォルトでは有効です。
しかし自動バキュームを作動させるためにはtrack_countsも有効でなければなりません。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
ただし、テーブル格納パラメータを変更することにより、自動バキュームは個々のテーブルに対して無効にできます。
        


このパラメータが無効であったとしてもシステムは、トランザクションIDの周回を防止する必要があれば、自動バキュームプロセスを起動することに注意してください。
詳細は「トランザクションIDの周回エラーの防止」を参照してください。
        

	autovacuum_worker_slots (integer)
       
       
       
	

自動バキュームワーカープロセス用に予約するバックエンドのスロット数を指定します。
デフォルトは通常16スロットですが、カーネル設定でサポートされない場合（initdb中に判定します）、それより少なくなる可能性があります。
このパラメータはサーバ起動時のみ設定可能です。
        


この値を変更する場合は、autovacuum_max_workersを調整することも考慮してください。
        

	autovacuum_max_workers (integer)
       
       
       
	

同時に実行することができる自動バキュームプロセス（自動バキュームランチャ以外）の最大数を指定します。
デフォルトは3です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
        


autovacuum_worker_slotsよりも大きい値を設定しても効果はありません。
これは、自動バキュームワーカーがこの設定によって確立されたスロットのプールから取得されるためです。
        

	autovacuum_naptime (integer)
       
       
       
	

あるデータベースについて実行される自動バキュームデーモンの最小遅延を指定します。
それぞれの周期で、デーモンはそのデータベースを試験し、そしてそのデータベース内のテーブルで必要性が認められると、VACUUMおよびANALYZEコマンドを発行します。
この値が単位なしで指定された場合は、秒単位であるとみなします。
デフォルトは1分（1min）です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
        

	autovacuum_vacuum_threshold (integer)
       
       
       
	

ある任意のテーブルでVACUUMが起動されるのに必要な更新もしくは削除されたタプルの最小数を指定します。
デフォルトは50タプルです。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
ただし、この設定はテーブル格納パラメータの変更により、それぞれのテーブルに対して上書きすることができます。
        

	autovacuum_vacuum_insert_threshold (integer)
       
       
       
	

ある任意のテーブルでVACUUMが起動されるのに必要な挿入タプル数を設定します。
デフォルトは1000タプルです。
-1が指定されると、自動バキュームが挿入タプル数に基づいてVACUUM操作を引き起こすことはなくなります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
ただし、この設定はテーブル格納パラメータの変更により、それぞれのテーブルに対して上書きすることができます。
        

	autovacuum_analyze_threshold (integer)
       
       
       
	

ある任意のテーブルでANALYZEが起動されるのに必要な、挿入、更新、もしくは削除されたタプルの最小数を指定します。
デフォルトは50タプルです。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
ただし、この設定はテーブル格納パラメータの変更により、それぞれのテーブルに対して上書きすることができます。
        

	autovacuum_vacuum_scale_factor (floating point)
       
       
       
	

VACUUMを起動するかどうか決定するときに、autovacuum_vacuum_thresholdに追加するテーブルサイズの割合を指定します。
デフォルトは0.2（テーブルサイズの20%）です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
ただし、この設定はテーブル格納パラメータの変更により、それぞれのテーブルに対して上書きすることができます。
        

	autovacuum_vacuum_insert_scale_factor (floating point)
       
       
       
	

VACUUMを起動するかどうか決めるときに、autovacuum_vacuum_insert_thresholdに追加するテーブルの未凍結なページの割合を指定します。
デフォルトは0.2（テーブルで未凍結なページの20%）です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
ただし、この設定はテーブル格納パラメータの変更により、それぞれのテーブルに対して上書きすることができます。
        

	autovacuum_analyze_scale_factor (floating point)
       
       
       
	

ANALYZEを起動するかどうか決めるときに、autovacuum_analyze_thresholdに追加するテーブルサイズの割合を指定します。
デフォルトは0.1（テーブルサイズの10%）です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
ただし、この設定はテーブル格納パラメータの変更により、それぞれのテーブルに対して上書きすることができます。
        

	autovacuum_vacuum_max_threshold (integer)
       
       
       
	

ある任意のテーブルでVACUUMが起動されるのに必要な更新または削除されたタプルの最大数、つまりautovacuum_vacuum_thresholdとautovacuum_vacuum_scale_factorで計算される値の上限値を指定します。
デフォルトは1億タプルです。
-1を指定すると、自動バキュームは、VACUUM操作を起動する更新または削除されたタプルの最大数を強制しません。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
ただし、この設定はテーブル格納パラメータの変更により、それぞれのテーブルに対して上書きすることができます。
        

	autovacuum_freeze_max_age (integer)
       
       
       
	

トランザクションID周回を防ぐためにVACUUM操作が強制される前までにテーブルのpg_class.relfrozenxidフィールドが到達できる（トランザクションにおける）最大の年代を指定します。
自動バキュームが無効であった時でも、システムは周回を防ぐために自動バキューム子プロセスを起動することに注意してください。
        


バキューム処理は同時にpg_xactサブディレクトリから古いファイルの削除を許可します。
これが、比較的低い2億トランザクションがデフォルトである理由です。
このパラメータはサーバ起動時にのみ設定可能です。
しかし、この設定はテーブル格納パラメータの変更により、それぞれのテーブルで減らすことができます。
詳細は「トランザクションIDの周回エラーの防止」を参照してください。
        

	autovacuum_multixact_freeze_max_age (integer)
       
       
       
	

トランザクションID周回を防ぐためにVACUUM操作が強制される前までにテーブルのpg_class.relminmxidフィールドが到達できる（マルチトランザクションにおける）最大の年代を指定します。
自動バキュームが無効であった時でも、システムは周回を防ぐために自動バキューム子プロセスを起動することに注意してください。
        


マルチトランザクションのバキューム処理は同時にpg_multixact/membersとpg_multixact/offsetsサブディレクトリから古いファイルの削除を許可します。
これが、比較的低い4億トランザクションがデフォルトである理由です。
このパラメータはサーバ起動時にのみ設定可能です。
しかし、この設定はテーブル格納パラメータの変更により、それぞれのテーブルで減らすことができます。
詳細は「マルチトランザクションと周回」を参照してください。
        

	autovacuum_vacuum_cost_delay (floating point)
       
       
       
	

自動VACUUM操作に使用されるコスト遅延値を指定します。
-1が指定されると、通常のvacuum_cost_delayの値が使用されます。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
デフォルト値は2ミリ秒です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
ただし、この設定はテーブル格納パラメータの変更により、それぞれのテーブルに対して上書きすることができます。
        

	autovacuum_vacuum_cost_limit (integer)
       
       
       
	

自動VACUUM操作に使用されるコスト限界値を指定します。
（デフォルトの）-1が指定されると、通常のvacuum_cost_limitの値が使用されます。
実行中の自動バキュームワーカーが複数存在する場合、この値はすべてのワーカーに比例分配されることに注意してください。
したがって各ワーカーの上限の合計がこの変数の値を超えることはありません。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
ただし、この設定はテーブル格納パラメータの変更により、それぞれのテーブルに対して上書きすることができます。
        




コストに基づくVacuum遅延





VACUUM(7) および ANALYZE(7) コマンドの実行中、実行される各種I/O操作の予測コストを追跡し続ける内部カウンタをシステムが保守します。
累積されたコストが（vacuum_cost_limitで指定された）限度に達すると、操作を実行しているプロセスはvacuum_cost_delayで指定されたちょっとの間スリープします。その後、カウンタをリセットし、実行を継続します。
     


この機能の目的は、同時に実行されているデータベースの活動に対するこれらコマンドによるI/Oへの影響を、管理者が軽減できるようにすることです。
VACUUM および ANALYZEの様な保守用コマンドが即座に終了することが重要ではない事態が数多くあります。
しかし、他のデータベースの操作を行うに当たって、これらのコマンドがシステムの能力に多大な阻害を与えないことは通常とても重要です。
コストに基づいたvacuum遅延はこれを実現するための方法を管理者に提供します。
     


手動で実行したVACUUMコマンドについては、デフォルトでこの機能は無効になっています。
有効にするには、vacuum_cost_delay変数をゼロでない値に設定します。
     
	vacuum_cost_delay (floating point)
       
       
       
	

コストの上限を越えた場合に、プロセスがスリープする時間の長さです。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
デフォルトの値は0で、コストに基づいたvacuum遅延機能を無効にします。
正の整数はコストに基づいたvacuumを有効にします。
        


コストに基づいたバキューム処理を使用する場合、vacuum_cost_delayの適切な値は通常かなり小さくなり、おそらく1ミリ秒以下になります。
バキュームによるリソース消費の調整は、他のバキュームのコストパラメータを変更して行うことが最善です。
vacuum_cost_delayを1ミリ秒以下に設定することは可能ですが、そうした遅延は古いプラットフォームでは正確には計測されないかも知れません。
そうしたプラットフォームでは、VACUUMのリソース消費制限を1ミリ秒のときに得られる値以上にするには、他のVACUUMコストパラメータの変更が必要となるでしょう。
とは言うものの、使用するプラットフォームで常に計測できる範囲でvacuum_cost_delayをできるだけ小さくするようにしてください。
大きな遅延は助けになりません。
        

	vacuum_cost_page_hit (integer)
       
       
       
	

共有バッファキャッシュにあるバッファをバキュームするための推定コストです。
これは、バッファプールのロック、共有ハッシュテーブルの検索、およびページ内容をスキャンするためのコストを示します。
デフォルトの値は1です。
        

	vacuum_cost_page_miss (integer)
       
       
       
	

ディスクから読み込まれなければならないバッファをバキュームするための推定コストです。
これは、バッファプールロックの試み、共有ハッシュテーブルの参照、ディスクから目的ブロックの読み込み、そしてその内容をスキャンするためのコストを示します。
デフォルトの値は2です。
        

	vacuum_cost_page_dirty (integer)
       
       
       
	

以前掃除されたブロックをバキュームで変更するときに必要な推定コストです。
これは、ダーティブロックを再度ディスクにフラッシュするのに必要な追加のI/Oを表します。
デフォルトの値は20です。
        

	vacuum_cost_limit (integer)
       
       
       
	

これは、バキューム処理をvacuum_cost_delayの間スリープさせるための累積コストです。
デフォルトの値は200です。
        



注記


重要なロックを保有し可能なかぎり早急に完了しなければならないある種の操作があります。コストに基づいたvacuum遅延はこの様な操作では起こりません。
したがって、コストの累計が指定された限度をかなり高く超える可能性があります。
このような場合無駄な長い遅延を防止するため、実際の遅延はvacuum_cost_delay * 4 を上限として、以下のように計算されます。
vacuum_cost_delay * accumulated_balance / vacuum_cost_limit
      


デフォルトの動作



	vacuum_truncate (boolean)
       
       
       
	

テーブルの最後にある空のページを切り捨てようとするバキュームの機能を有効または無効にします。
デフォルト値はtrueです。
trueに設定すると、VACUUMと自動バキュームが切り捨てを行い、切り捨てられたページのディスク容量がオペレーティングシステムに返されます。
切り捨てにはテーブルのACCESS EXCLUSIVEロックが必要であることに注意してください。
VACUUMのTRUNCATEパラメータが指定されている場合、このパラメータの値を上書きします。
この設定はテーブル格納パラメータの変更により、それぞれのテーブルに対して上書きすることができます。
        




凍結処理





トランザクションIDが周回した後でも正確さを維持するために、PostgreSQL™は十分に古い行を凍結済みとして印付けます。
これらの行はすべてのユーザに表示されます。
他のトランザクションでは、挿入したXIDを調べて可視性を判断する必要はありません。
VACUUMには、行を凍結状態として印付ける責任があります。
次の設定はVACUUMの凍結動作を制御します。
これらの設定は、システムのXID消費率と主要なワークロードのデータ参照パターンに基づいて調整する必要があります。
トランザクションIDの周回とこれらのパラメータの調整の詳細については、「トランザクションIDの周回エラーの防止」を参照してください。
     
	vacuum_freeze_table_age (integer)
       
       
       
	

テーブルのpg_class.relfrozenxidフィールドがこの設定で指定した年代に達すると、VACUUMは積極的なテーブルスキャンを行います。
積極的なスキャンは、無効タプルを含む可能性のあるページだけではなく、凍結されていないXIDあるいはMXIDを含むすべてのページを読む点で通常のVACUUMとは異なります。
デフォルトは1.5億トランザクションです。
ユーザはこの値をゼロから20億までの任意の値に設定することができますが、周回問題対策の自動バキュームがテーブルに対して起動する前に定期的な手動VACUUMが実行する機会を持つように、VACUUMは警告することなく実際の値をautovacuum_freeze_max_ageの95%に制限します。
詳細は「トランザクションIDの周回エラーの防止」を参照してください。
        

	vacuum_freeze_min_age (integer)
       
       
       
	

VACUUMが、古いXIDを持つページの凍結を行うかどうかを決定する、カットオフ年代を（トランザクション単位で）指定します。
デフォルトは5千万トランザクションです。
ユーザはこの値をゼロから10億までの間で任意の値に設定することができますが、VACUUMは警告することなく実際の値をautovacuum_freeze_max_ageの半分の値まで制限します。
このため、強制的な自動バキュームの間隔が不合理に短くなることはありません。
詳細は「トランザクションIDの周回エラーの防止」を参照してください。
        

	vacuum_failsafe_age (integer)
       
       
       
	

VACUUMがシステム全体に渡るトランザクションID周回障害を避けるために異例の措置を取るようになる、テーブルのpg_class.relfrozenxidフィールドが到達する最大の（トランザクション数単位での）年代を指定します。
これはVACUUMの最後の手段となる戦略です。
この安全機構は典型的には、トランザクションID周回を防ぐための自動バキュームがすでに走っているときに起動されます。
しかし、すべてのVACUUMの実行中にこの安全機構が起動する可能性があります。
        


この安全機構が起動すると、すべての有効なコストに基づく遅延はもはや適用されず、（インデックスのバキュームのような）必須ではない保守タスクは迂回されます。
使用中のバッファアクセスストラテジは無効になり、その結果VACUUMは共有バッファのすべてを自由に使用することになります。
        


デフォルトは16億トランザクションです。
ユーザはこの値をゼロから21億までの間で設定できますが、VACUUMは警告することなく実際の値をautovacuum_freeze_max_ageの105%よりも小さくならないように調整します。
        

	vacuum_multixact_freeze_table_age (integer)
       
       
       
	

pg_class.relminmxidフィールドがこの設定値で指定した年代に達すると、VACUUMはテーブルの積極的なスキャンを行います。
積極的なスキャンは、無効タプルを含む可能性のあるページだけではなく、凍結されていないXIDあるいはMXIDを含むすべてのページを読む点で通常のVACUUMとは異なります。
デフォルトは1億5千万トランザクションです。
ユーザはゼロから20億まで任意の値を設定できますが、テーブルに対して周回防止処理が起動される前に定期的な手動VACUUMが走ることができるように、VACUUMは警告することなく実際の値をautovacuum_multixact_freeze_max_ageの95%まで制限します。
詳細は「マルチトランザクションと周回」を参照してください。
        

	vacuum_multixact_freeze_min_age (integer)
       
       
       
	

VACUUMが、古いマルチトランザクションIDを持つページの凍結を行うかどうかを決定する、カットオフ年代を（マルチトランザクション単位で）指定します。
デフォルトは500万マルチトランザクションです。
ユーザはゼロから10億まで任意の値を設定できますが、強制的な自動バキュームの間隔が短くなり過ぎないように、VACUUMは警告することなく実際の値をautovacuum_multixact_freeze_max_ageの半分の値に制限します。
詳細は「マルチトランザクションと周回」を参照してください。
        

	vacuum_multixact_failsafe_age (integer)
       
       
       
	

VACUUMがシステム全体マルチトランザクションID周回障害を避けるために異例の措置を取るようになる、テーブルのpg_class.relminmxidフィールドが到達する最大の（マルチトランザクション数単位での）年代を指定します。
これはVACUUM最後の手段となる戦略です。
この安全機構は典型的には、マルチトランザクションID周回を防ぐための自動バキュームがすでに走っているときに起動されます。
しかし、すべてのVACUUMの実行中にこの安全機構が起動する可能性があります。
        


この安全機構が起動すると、すべての有効なコストに基づく遅延はもはや適用されず、（インデックスのバキュームのような）必須ではない保守タスクは迂回されます。
        


デフォルトは16億マルチトランザクションです。
ユーザはこの値をゼロから21億までの間で設定できますが、VACUUMは警告することなく実際の値をautovacuum_multixact_freeze_max_ageの105%よりも小さくならないように調整します。
        

	vacuum_max_eager_freeze_failure_rate (floating point)
      
      
      
	

熱心なスキャンを無効にする前に、VACUUMがスキャンした時に可視性マップで全凍結と設定することに失敗するページの最大数（そのリレーション内の全ページ数に対する割合）を指定します。
値が0の場合、熱心なスキャンは完全に無効になります。
デフォルトは0.03（3%）です。
       


熱心なスキャンを有効にすると、凍結の失敗のみがカウントされ、凍結の成功はカウントされないことに注意してください。
凍結に成功するページは、内部的には、そのリレーション内の全可視ではあるが全凍結ではないページの20%に制限されます。
凍結に成功するページを制限すると、複数の通常のバキューム処理でオーバーヘッドを分散でき、次の積極的バキュームの前に再度修正されたページに対する熱心な凍結処理が無駄になるという潜在的な欠点を抑えることができます。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
ただし、この設定は対応するテーブル格納パラメータの変更により、それぞれのテーブルに対して上書きすることができます。
バキュームの凍結動作の詳細については、「トランザクションIDの周回エラーの防止」を参照してください。
       





クライアント接続デフォルト



文の動作



	client_min_messages (enum)
      
      
      
	

どのメッセージレベルをクライアントに送るかを管理します。有効な値は、DEBUG5、DEBUG4、DEBUG3、DEBUG2、DEBUG1、LOG、NOTICE、WARNINGおよびERRORです。
それぞれのレベルはそれに続く全てのレベルを包含します。
レベルが後の方になるにつれ、より少ないメッセージが送られます。
デフォルトはNOTICEです。
ここでのLOGの優先順位がlog_min_messagesの場合と異なることに注意してください。
       


INFOレベルのメッセージは常にクライアントに送られます。
       

	search_path (string)
      
      
      
      
      
	

この変数は、オブジェクト（テーブル、データ型、関数など）がスキーマを指定されていない単純な名前で参照されている場合に、スキーマを検索する順番を指定します。
異なるスキーマに同じ名前のオブジェクトがある場合、検索パスで最初に見つかったものが使用されます。
検索パス内のどのスキーマにも存在しないオブジェクトを参照するには、修飾名（ドット付き）でそのオブジェクトが含まれるスキーマを指定する必要があります。
       


search_pathの値は、スキーマの名前をカンマで区切った一覧でなければなりません。
存在していないスキーマ、またはユーザがUSAGE権限を所有していないスキーマは警告なしに無視されます。
       


もしそのようなスキーマが存在し、ユーザがそれにたいしてUSAGE権限を所有している場合、一覧内の項目の1つが特別な名前である$userの場合、CURRENT_USERと同じ名前を持つスキーマがあれば、そのスキーマが置換されます。
（このような名前空間がない場合は$userは無視されます。）
       


システムカタログのスキーマであるpg_catalogは、パスでの指定の有無にかかわらず、常に検索されます。
パスで指定されている場合は、指定された順序で検索されます。
pg_catalogがパスに含まれていない場合、パスに含まれる項目を検索する前に検索が行われます
       


同様に、現在のセッションの一時テーブルスキーマpg_temp_nnnも、存在すれば常に検索されます。
これはpg_tempという別名を使用してパスに明示的に列挙させることができます。
パスに列挙されていない場合、最初に（pg_catalogよりも前であっても）検索されます。
しかし、一時スキーマはリレーション（テーブル、ビュー、シーケンスなど）とデータ型名に対してのみ検索されます。
関数や演算子名に対してはまったく検索されません。
       


対象となる特定のスキーマを指定せずにオブジェクトが作成された場合、それらのオブジェクトはsearch_pathで名前を付けられた最初に有効となっているスキーマに配置されます。
検索パスが空の場合、エラーが報告されます。
       


このパラメータのデフォルト値は"$user", publicです。
この設定はデータベースの共有（どのユーザも非公開のスキーマを持たず、全員がpublicを共有）、ユーザごとの非公開のスキーマ、およびこれらの組み合わせがサポートします。
デフォルトの検索パスの設定を全体的またはユーザごとに変更することで、その他の効果を得ることもできます。
       


スキーマの扱いについての詳細は、「スキーマ」をご覧ください。
とりわけ、デフォルトの設定はデータベースのユーザが、一人あるいはお互いに信頼できる少数のユーザだけである場合にのみ適切です。
       


SQL関数のcurrent_schemas によって、検索パスの現在の有効な値を調べることができます（「システム情報関数と演算子」を参照してください）。
これは、search_path の値を調べるのとは異なります。
current_schemasは、search_pathに現れる項目がどのように解決されたかを表すからです。
       

	row_security (boolean)
      
      
      
	

この設定値は、行セキュリティポリシーの適用によってエラーを生じさせるかどうかを制御します。
onに設定すると、通常通りポリシーが適用されます。
offにすると、少なくともひとつのポリシーが適用されたクエリは失敗します。
デフォルトはonです。
行の可視性が制限されている場合、offにすると不正な結果を招くことがあります。
たとえば、pg_dumpはデフォルトでoffにしています。
この設定値は、行セキュリティポリシーを迂回するロールには効果がありません。
それはすなわち、BYPASSRLSアトリビュートを持つスーパーユーザです。
       


行セキュリティポリシーについての更なる情報はCREATE POLICY(7)をご覧ください。
       

	default_table_access_method (string)
      
      
      
	

このパラメータは、テーブルあるいはマテリアライズドビューの作成時にCREATEコマンドが明示的にアクセスメソッドを指定しないか、あるいはテーブルアクセスメソッドを指定できないSELECT ... INTOが利用された時に使われるデフォルトのテーブルアクセスメソッドを指定します。
デフォルトはheapです。
       

	default_tablespace (string)
      
      
      
      
      
	

この変数は、CREATEコマンドで明示的にテーブル空間を指定していない場合にオブジェクト（テーブルとインデックス）の作成先となるデフォルトのテーブル空間を指定します。
       


値はテーブル空間名、もしくは現在のデータベースのデフォルトのテーブル空間を使用することを意味する空文字列です。
この値が既存のテーブル空間名と一致しない場合、PostgreSQL™は自動的に現在のデータベースのデフォルトのテーブル空間を使用します。
デフォルト以外のテーブル空間が指定された場合、ユーザはそのテーブル空間でCREATE権限を持たなければなりません。
さもなくば作成に失敗します。
       


この変数は一時テーブル向けには使用されません。
一時テーブル向けには代わりにtemp_tablespacesが考慮されます。
       


また、この変数はデータベース作成時には使用されません。
デフォルトでは、新しいデータベースはコピー元のテンプレートデータベースからテーブル空間の設定を引き継ぎます。
       


パーティションテーブルが作られたときにこのパラメータが空文字以外に設定されていると、default_tablespaceがその後変更されたとしても、パーティションテーブルのテーブル空間はその値になり、今後作られるパーティションのデフォルトテーブル空間として使われます。
       


テーブル空間に付いてより詳細な情報は「テーブル空間」を参照してください。
       

	default_toast_compression (enum)
      
      
      
	

この変数は圧縮可能な列の値のデフォルトTOAST圧縮方式を設定します。
（これはCREATE TABLEあるいはALTER TABLEのCOMPRESSION列オプションを設定することにより、置き換えることができます。）
サポートされている圧縮方式は、pglzとlz4（PostgreSQL™が--with-lz4でコンパイルされている場合）です。
デフォルトはpglzです。
       

	temp_tablespaces (string)
      
      
      
      
      
	

この変数は、CREATEコマンドで明示的にテーブル空間が指定されない場合に、生成する一時オブジェクト（一時テーブルと一時テーブル上のインデックス）を格納するテーブル空間（複数可）を指定します。
大規模データ集合のソートなどを目的とした一時ファイルもまた、このテーブル空間（複数可）に作成されます。
       


この値はテーブル空間名のリストです。
リストに複数の名前が存在する場合、一時オブジェクトが作成される度にPostgreSQL™は無作為にリストから要素を選択します。
トランザクションの内側は例外で、連続して作成される一時オブジェクトはそのリストで連続するテーブル空間に格納されます。
リスト内の選択された要素が空文字列だった場合、PostgreSQL™は自動的に現在のデータベースのデフォルトのテーブル空間を代わりに使用します。
       


temp_tablespacesを対話式に設定する場合、存在しないテーブル空間を指定するとエラーになります。
ユーザがCREATE権限を持たないテーブル空間を指定した場合も同様です。
しかし事前に設定された値を使用する場合、存在しないテーブル空間は無視されます。
ユーザがCREATE権限を持たないテーブル空間も同様です。
具体的には、この規則はpostgresql.conf内で設定した値を使用する場合に適用されます。
       


デフォルト値は空文字列です。
この結果、すべての一時オブジェクトは現在のデータベースのデフォルトのテーブル空間内に作成されます。
       


default_tablespaceも参照してください
       

	check_function_bodies (boolean)
      
      
      
	

このパラメータは通常オンです。
offに設定すると、CREATE FUNCTION(7)とCREATE PROCEDURE(7)の実行中の関数本体文字列の妥当性検証を無効にします。
妥当性検証を無効にするとその妥当性検証処理の副作用を避け、前方参照による問題から起こる偽陽性(false positive)を避けることができます。
関数をロードする前にこのパラメータを他のユーザとしてoffにします。
pg_dumpはこれを自動的に行います。
       

	default_transaction_isolation (enum)
      
      
      
      
      
	

SQLトランザクションはそれぞれ、「read uncommitted」、「read committed」、「repeatable read」、または「serializable」のいずれかの分離レベルを持ちます。
このパラメータは各新規トランザクションのデフォルトの分離レベルを制御します。
デフォルトは「read committed」です。
       


より詳細は 13章同時実行制御 および SET TRANSACTION(7) を調べてください。
       

	default_transaction_read_only (boolean)
      
      
      
      
      
	

読み取り専用のSQLトランザクションでは、非一時的テーブルを変更することができません。
このパラメータは、各新規トランザクションのデフォルトの読み取りのみ状況を制御します。
デフォルトoff（読み書き）です。
       


より詳細な情報はSET TRANSACTION(7)を調べてください。
       

	default_transaction_deferrable (boolean)
      
      
      
      
      
	

シリアライザブル分離レベルで運用されている場合、繰り延べ読み取り専用SQLトランザクションは、その処理の許可の前に遅延されることがあります。
しかし、ひとたび処理が開始されるとシリアライザブル可能性を保障するために必要ないかなるオーバーヘッドも発生させません。
従って、シリアル化（直列化）のコードは、このオプションを長期間にわたる読み取り専用トランザクションに対して適切な処置と位置づけ、同時実行の更新の観点から中断を強制する理由はありません。
        


このパラメータはそれぞれの新規トランザクションのデフォルトでの繰り延べ状態を制御します。
現時点では、読み取り専用トランザクション、またはシリアライザブルより低位の分離レベルの運用に対して効果はありません。
デフォルトはoffです。
       


より詳細はSET TRANSACTION(7)を参照してください。
       

	transaction_isolation (enum)
      
      
      
      
	

このパラメータは現在のトランザクションの隔離レベルを反映します。
個々のトランザクションの開始時、これにdefault_transaction_isolationの現在の値が設定されます。
その後のこの変数の値を変更する試みは、SET TRANSACTION(7)と同等です。
       

	transaction_read_only (boolean)
      
      
      
      
	

このパラメータは現在のトランザクションの読み込み専用状態を反映します。
個々のトランザクションの開始時、これにdefault_transaction_read_onlyの現在の値が設定されます。
その後のこの変数の値を変更する試みは、SET TRANSACTION(7)と同等です。
       

	transaction_deferrable (boolean)
      
      
      
      
	

このパラメータは現在のトランザクションの延期状態(deferrable status)を反映します。
個々のトランザクションの開始時、これにdefault_transaction_deferrableの現在の値が設定されます。
その後のこの変数の値を変更する試みは、SET TRANSACTION(7)と同等です。
       

	session_replication_role (enum)
      
      
      
	

現在のセッションに対するレプリケーション関連のトリガおよびルールの起動を制御します。
使用可能な値は、origin(デフォルト)、replicaおよびlocalです。
このパラメータを設定すると、以前にキャッシュされた問い合わせ計画が破棄されます。
スーパーユーザおよび適切なSET権限を持つユーザのみがこの設定を変更できます。
       


この設定の使い方の趣旨としては、レプリケーションされた更新を適用する際に論理レプリケーションシステムがreplicaに設定するということです。
このことによる効果としては、（デフォルトの設定から変更されていない）トリガとルールはレプリカ上では起動されない、ということです。
更なる情報は、ALTER TABLE節のENABLE TRIGGERとENABLE RULEをご覧ください。
       


PostgreSQLはoriginとlocalの設定を内部的に同じものとして扱います。
サードパーティのレプリケーションシステムは内部的な目的、たとえばlocalを使ってレプリケーションされるべきでないセッションを指定するためにこれら2つの値を使って構いません。
       


外部キーはトリガとして実装されているため、このパラメータをreplicaとすることによって同時にすべての外部キー検査が無効になります。
このことにより、正しく使用しないと、データを不整合状態にしてしまう可能性があります。
       

	statement_timeout (integer)
      
      
      
	

コマンドがクライアントからサーバに届いた時から数えて、実行時間が指定された時間を越えた文を停止します。
log_min_error_statementがERRORもしくはそれ以下に設定されている場合は、タイムアウトした文はログに書き込まれます。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
値がゼロ（デフォルト）の場合、これを無効にします。
       


タイムアウトは、コマンドがサーバに到着したときから、サーバがそのコマンドの実行を完了するまでを基準にします。
複数のSQL文が一つの単純問い合わせメッセージに含まれる場合、タイムアウトは個々のSQL文に別々に適用されます。
（13よりも前のPostgreSQL™バージョンでは、通常SQL文字列全体に対してタイムアウトが適用されていました。）
拡張問い合わせでは、タイムアウトは問い合わせに関するメッセージ（Parse、Bind、Execute、Describe）が到着したときに開始し、ExecuteあるいはSyncメッセージが完了した時にキャンセルされます。
       


すべてのセッションに影響することがあるので、postgresql.conf内でstatement_timeoutを設定することは推奨されません。
       

	transaction_timeout (integer)
      
      
      
	

トランザクションが指定された時間を超えていた場合に、このセッションを終了します。
この時間制限は、明示的なトランザクション（BEGINで開始）と、単一の文に対応する暗黙的に開始されたトランザクションの両方に適用されます。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
値がゼロ（デフォルト）の場合はタイムアウトは無効になります。
       


transaction_timeoutがidle_in_transaction_session_timeoutまたはstatement_timeoutより短いか、等しい場合、長い方のタイムアウトは無視されます。
       


すべてのセッションに影響することがあるので、postgresql.conf内でtransaction_timeoutを設定することは推奨されません。
       
注記


準備されたトランザクションには、このタイムアウトは影響ありません。
        


	lock_timeout (integer)
      
      
      
	

テーブル、インデックス、行、またはその他のデータベースオブジェクトに対してロック獲得を試みている最中、指定された時間を超えて待機するいかなる命令も停止されます。
時間制限はそれぞれのロック取得の試みに対し個別に適用されます。
制限は明示的ロック要求（例えばLOCK TABLE、またはSELECT FOR UPDATE without NOWAITなど）および暗黙的に取得されるロックに適用されます。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
値ゼロ（デフォルト）はこの機能を無効にします。
       


statement_timeoutと異なり、このタイムアウトはロックを待機しているときのみ発生します。
命令によるタイムアウトは常に第一に起動されるため、もしstatement_timeoutが非ゼロであればlock_timeoutを同一、もしくはより大きい値に設定するのは的を射ていません。
log_min_error_statementがERRORまたはそれより低く設定されると、時間制限を超えた命令はログに記録されます。
       


lock_timeoutをpostgresql.confにて設定することは、すべてのセッションに影響を与える可能性があるため推奨されません。
       

	idle_in_transaction_session_timeout (integer)
      
      
      
	

開いているトランザクションが、指定された時間を超えてアイドルだった場合（つまりクライアントからの問い合わせを待っている場合）に、セッションを終了します。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
値がゼロ（デフォルト）の場合はタイムアウトは無効になります。
       


このオプションにより、アイドル状態のセッションが不合理なほど長い時間ロックを保持することを防ぐことができます。
強いロックが保持されていなくても、開いたトランザクションは、自分にしか可視でない、最近無効になったタプルをvacuumが掃除するのを妨げます。
ですから、長時間アイドルのままになっていると、テーブルの溢れにつながります。
更なる詳細は「定常的なバキューム作業」を見てください。
       

	idle_session_timeout (integer)
      
      
      
	

トランザクションが開いた状態ではなく、指定した時間よりも長い時間アイドル（すなわちクライアントからの問い合わせを待っている）であるセッションを終了させます。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
値ゼロ（デフォルトです）はタイムアウトを無効にします。
       


開いたトランザクションの場合と違って、トランザクションを伴わないアイドルなセッションは、サーバに対して大きなコストにはなりません。
ですからこのタイムアウトを有効にする必要性は、idle_in_transaction_session_timeoutよりも低いと言えます。
       


コネクションプーリングソフトウェアその他のミドルウェアを通じたコネクションに対してこのタイムアウトを強制することには慎重になってください。
そのようなレイヤは、突然のコネクション切断に対して好ましくない振る舞いをするかもしれないからです。
おそらく特定のユーザに対してのみ適用し、対話形式のセッションに対してのみこのタイムアウトを有効にするのが助けになるかもしれません。
       

	bytea_output (enum)
      
      
      
	

bytea型の値の出力形式を設定します。
有効な値はhex（デフォルト）、およびescape（PostgreSQLの伝統的な書式）です。
より詳細は「バイナリ列データ型」を参照してください。
bytea型は常にこの設定に係わらず、入力時に双方の書式を受け付けます。
       

	xmlbinary (enum)
      
      
      
	

バイナリデータをXMLに符号化する方法を設定します。
例えばこれは、xmlelementやxmlforest関数でbytea値をXMLに変換する際に適用されます。
取り得る値はbase64とhexです。
どちらもXMLスキーマ標準で定義されています。
デフォルトはbase64です。
XMLに関連した関数については「XML関数」を参照してください。
       


実のところこの選択はほとんど趣味の問題で、クライアントアプリケーションで起こり得る制限のみに制約されます。
どちらの方法もすべての値をサポートしますが、hex符号化方式はbase64符号化方式より少し大きくなります。
       

	xmloption (enum)
      
      
      
      
      
      
	

XMLと文字列値との変換時にDOCUMENTとするかCONTENTとするかを設定します。
この説明については「XML型」を参照してください。
有効な値はDOCUMENTとCONTENTです。
デフォルトはCONTENTです。
       


標準SQLに従うと、このオプションを設定するコマンドは以下のようになります。


SET XML OPTION { DOCUMENT | CONTENT };



この構文はPostgreSQLでも使用可能です。
       

	gin_pending_list_limit (integer)
      
      
      
	

fastupdateが有効なときに使用されるGINインデックスのペンディングリストの最大サイズを設定します。
リストがこの設定値よりも大きくなったら、エントリをインデックスのGINの主データ構造に一括転送してリストはクリアされます。
この値が単位なしで指定された場合は、キロバイト単位であるとみなします。
デフォルトは4メガバイト(4MB)です。
この設定は、個々のGINインデックスに対してインデックスストレージパラメータを変更することにより、上書きできます。
更なる情報については、「GIN高速更新手法」と「GINの小技」を参照してください。
       

	createrole_self_grant (string)
      
      
      
	

CREATEROLEを持ち、SUPERUSERを持たないユーザがロールを作成し、これが空でない値に設定されている場合、新しく作成されたロールは、この指定されたオプションを持ち、ロールを作成したユーザに付与されます。
値は、set、inherit、またはこれらのリストをカンマで区切ったものである必要があります。
デフォルト値は空の文字列であるため、この機能は無効になります。
       


このオプションの目的は、CREATEROLEが許可されているスーパーユーザではないユーザが、作成されたユーザを自動的に継承するか、またはSET ROLE権限を自動的に取得できるようにすることです。
CREATEROLEユーザは、作成されたロールに対して常に暗黙的にADMIN OPTIONが付与されるため、そのユーザは、この設定と同じ効果を達成するGRANT文を常に実行できます。
しかし、権限付与が自動的に行われることは、使用上の理由から便利です。
スーパーユーザは、すべてのロールの権限を自動的に継承し、どのロールに対しても常にSET ROLEできます。
また、この設定を使用して、CREATEROLEユーザが作成したユーザに対して同様の動作を生成できます。
       

	event_triggers (boolean)
      
      
     
	

イベントトリガの実行を一時的に無効化して、障害のあるイベントトリガのトラブルシューティングおよび修復を可能にします。
falseに設定することですべてのイベントトリガが無効になります。
値をtrueに設定すると、すべてのイベントトリガが起動します。
これがデフォルト値です。
スーパーユーザおよび適切なSET権限を持つユーザのみがこの設定を変更できます。
      

	restrict_nonsystem_relation_kind (string)
      
      
     
	

非システムリレーションへのアクセスが禁止されているリレーションの種類を設定します。
値は、カンマで区切られたリレーションの種類のリストのフォームを取ります。
現在サポートされているリレーション種別はviewとforeign-tableです。
      




ロケールと書式設定



	DateStyle (string)
      
      
      
	

日付時刻値の表示書式を設定し、曖昧な日付入力の解釈規則を設定します。
歴史的な理由により、この変数には2つの独立した要素が含まれています。
出力書式指定（ISO、Postgres、SQL、German）と年/月/日の順序の入出力指定（DMY、MDY、YMD）です。
これらは分けて設定することもまとめて設定することもできます。
EuroおよびEuropeanキーワードはDMYの同義語であり、US、NonEuro、NonEuropeanはMDYの同義語です。
詳細は「日付/時刻データ型」を参照してください。
組み込みのデフォルトはISO, MDYですが、initdbにより、選択されたlc_timeロケールの動作に対応した設定で設定ファイルが初期化されます。
       

	IntervalStyle (enum)
      
      
      
	

間隔の値の表示形式を設定します。sql_standard値は、標準SQL間隔リテラルに一致する出力を生成します。
（デフォルトの）値postgresは、DateStyleパラメータがISOに設定されている場合、リリース8.4以前のPostgreSQL™に一致する出力を生成します。
値postgres_verboseは、DateStyleパラメータが非ISO出力に設定されている場合、リリース8.4以前のPostgreSQL™に一致する出力を生成します。
値iso_8601は、ISO 8601の4.4.3.2節で定義されている時間間隔「format with designators」に一致する出力を生成します。
       


またIntervalStyleパラメータはあいまいに入力された時間間隔の解釈に影響を与えます。
詳細については「時間間隔の入力」を参照してください。
       

	TimeZone (string)
      
      
      
      
      
	

表示用およびタイムスタンプ解釈用の時間帯を設定します。
組み込まれているデフォルトはGMTですが、通常はpostgresql.confにより上書きされます。initdbによりこれらと関連した設定をシステム環境にインストールされます。
詳細は「時間帯」を参照してください。
       

	timezone_abbreviations (string)
      
      
      
      
      
	

サーバで日付時刻の入力として受付け可能となる追加の時間帯省略形の集合を設定します（現在のTimeZone設定によって定義された略語を除きます）。
デフォルトは'Default'です。
これはほぼ全世界で通じる集合です。
また、'Australia'、'India'、およびその他特定のインストレーションで定義可能な集合が存在します。
詳細は「日付/時刻設定ファイル」を参照してください。
       

	extra_float_digits (integer)
      
      
      
      
      
      
      
	

このパラメータは、float4、float8、幾何データ型などにおいて、浮動小数点数値のテキスト形式の出力で使用される桁数を調整します。
       


この値が1（デフォルト）あるいはそれ以上なら、浮動小数点数値の出力は最も短い精度の形式で出力されます。
「浮動小数点データ型」を参照してください。
生成される実際の桁数は出力される値にのみ依存します。
float8値では最大でも17桁、float4値では最大9桁必要です。
この形式は高速かつ高精度で、正しく読まれる際には元の2進数における浮動小数点値を正確に保存します。
歴史的な互換性の理由により、3までの値が許容されています。
       


この値がゼロまたは負なら、出力は与えられた10進精度に丸められます。
使用される精度は、各々の型の標準的の桁数（型に応じてFLT_DIGあるいはDBL_DIG）がこのパラメータの値により制限されたものになります。
（たとえば、-1にするとfloat4値は5桁に、float8値では14桁に丸められます。）
この形式は低速、かつ元の2進数における浮動小数点値のビットを保存しませんが、人間にとってより読みやすいかも知れません。
       
注記


このパラメータの意味とデフォルト値はPostgreSQL™ 12で変更されました。
更なる説明については「浮動小数点データ型」をご覧ください。
        


	client_encoding (string)
      
      
      
      
      
	

クライアント側符号化方式（文字集合）を設定します。デフォルトはデータベース符号化方式を使用します。
PostgreSQL™サーバでサポートされている文字集合は「サポートされる文字集合」に記載されています。
       

	lc_messages (string)
      
      
      
	

メッセージが表示される言語を設定します。使用可能な値はシステムに依存します。詳細については「ロケールのサポート」を参照してください。
この変数が空に設定された場合（これがデフォルトです）、値はシステムに依存する方法でサーバの実行環境から継承されます。
       


システムによっては、このロケールのカテゴリが存在しません。この変数を設定することはできますが、実効性はありません。
また、指定の言語に翻訳されたメッセージが存在しないこともあります。
その場合は、引き続き英語のメッセージが表示されます。
       


この設定を変更できるのは、スーパーユーザと適切なSET権限を持つユーザだけです。
       

	lc_monetary (string)
      
      
      
	

通貨書式で使用するロケールを設定します。
例えば、to_char()系の関数で使用します。
使用可能な値はシステムに依存します。
詳細については「ロケールのサポート」を参照してください。
この変数が空に設定された場合（これがデフォルトです）、値はシステムに依存する方法でサーバの実行環境から継承されます。
       

	lc_numeric (string)
      
      
      
	

数字の書式で使用するロケールを設定します。
例えば、to_char系の関数で使用します。
使用可能な値はシステムに依存します。
詳細については「ロケールのサポート」を参照してください。
この変数が空に設定された場合（これがデフォルトです）、値はシステムに依存する方法でサーバの実行環境から継承されます。
       

	lc_time (string)
      
      
      
	

例えばto_char系関数における、日付と時間の書式で使用するロケールを設定します。
使用可能な値はシステムに依存します。
詳細については「ロケールのサポート」を参照してください。
この変数が空に設定された場合（これがデフォルトです）、値はシステムに依存する方法でサーバの実行環境から継承されます。
       

	icu_validation_level (enum)
      
      
      
	

ICUロケール検証の問題が発生した場合、問題を報告するために使用されるメッセージレベルを制御します。
有効な値は、DISABLED、DEBUG5、DEBUG4、DEBUG3、DEBUG2、DEBUG1、INFO、NOTICE、WARNING、ERROR、および LOGです。
       


DISABLEDに設定すると、検証で見つかった問題は全く報告されません。
それ以外の場合は、指定したメッセージレベルの問題が報告されます。
デフォルトはWARNINGです。
       

	default_text_search_config (string)
      
      
      
	

明示的な設定指定引数を持たないテキスト検索関数の亜種で使用される、テキスト検索設定を選択します。
詳細は12章全文検索を参照してください。
組み込みのデフォルトはpg_catalog.simpleですが、initdbは、ロケールに合う設定を認識することができれば、選択されたlc_ctypeロケールに対応した設定で設定ファイルを初期化します。
       




共有ライブラリのプリロード





追加機能や性能改良の目的で共有ライブラリをプリロードするいくつかの設定があります。
たとえば'$libdir/mylib'を設定するとmylib.so(あるいは他のプラットフォームではmylib.sl)を導入設定したの標準ディレクトリからプリロードします。
各設定の違いは、設定変更を行うためにいつ、どのような権限が必要かにあります。
     


典型的には'$libdir/plXXX'のような構文を用いてPostgreSQL™手続き言語ライブラリをこの方法でプリロードできます。
XXXはpgsql、perl、tcl、pythonです。
     


PostgreSQLで使用することを意図したライブラリだけがこの方法でロードできます。
すべてのPostgreSQL用のライブラリは「magic block」を持ち、互換性を保証するためにチェックされます。
ですからPostgreSQL用ではないライブラリはこの方法ではロードできません。
LD_PRELOADのようなOSの機能を使えばあるいは使用できるかもしれません。
     


一般的に言ってモジュールのドキュメントを参照し、推奨される方法でロードしてください。
     
	local_preload_libraries (string)
      
      
      
      
	

この変数は、接続時に事前読み込みされる、1つまたは複数の共有ライブラリを指定します。
ここにはカンマ区切りでライブラリ名のリストを格納し、各々の名前はLOADコマンドで解釈されます。
項目の間の空白は無視されます。
名前の中に空白あるいはカンマを含める場合は、二重引用符で囲ってください。
このパラメータは、接続の開始時にのみ効果があります。
以降の変更は効果がありません。
もし指定したライブラリが見つからない場合は、接続は失敗します。
       


このオプションはすべてのユーザが設定できます。
この理由で、読み込み可能なライブラリはインストレーションの共有ライブラリディレクトリのサブディレクトリplugins内にあるものに制限されています。
（確実に「安全」なライブラリのみをここにインストールすることはデータベース管理者の責任です。）
local_preload_libraries内の項目で、たとえば$libdir/plugins/mylibのようにこのディレクトリを明示的に指定することも、単にライブラリ名を指定することも可能です。
mylib は$libdir/plugins/mylibと同じ効果です。
       


この機能の意図するところは、明示的なLOADコマンドを使わずに、特定のセッションにおいて非特権ユーザがデバッグ用あるいは性能計測用のライブラリをロードできるようにすることにあります。
そのためにも、クライアント側でPGOPTIONS環境変数を使う、あるいはALTER ROLE SETを使うことが典型的になるでしょう。
       


しかし、モジュールが特にスーパーユーザ以外に使われることを意図しているのでない限り、通常この方法は正しい使い方ではありません。
代わりにsession_preload_librariesを見てください。
       

	session_preload_libraries (string)
      
      
      
	

この変数は、接続時に事前読み込みされる、1つまたは複数の共有ライブラリを指定します。
ここにはカンマ区切りでライブラリ名のリストを格納し、各々の名前はLOADコマンドで解釈されます。
項目の間の空白は無視されます。
名前の中に空白あるいはカンマを含める場合は、二重引用符で囲ってください。
このパラメータは、接続の開始時にのみ効果があります。
以降の変更は効果がありません。
もし指定したライブラリが見つからない場合は、接続は失敗します。
スーパーユーザおよび適切なSET権限を持つユーザのみがこの設定を変更できます。
       


この機能は、デバッグや性能測定の目的でLOADコマンドを使わずに特定のセッションでライブラリをロードする目的で使われます。
たとえばALTER ROLE SETで設定することにより、特定のユーザが開始するすべてのセッションでauto_explainが有効になります。
また、このパラメータはサーバを再起動せずに変更できます(しかし変更は新しいセッションが開始するときにのみ有効となります)。すべてのセッションで有効にしたいのであれば、この方法で新しいモジュールを容易に追加できます。
       


shared_preload_librariesと違って、ライブラリがはじめて使われるときにロードする方法と比べてセッションが開始するときにライブラリをロードする方法には大きな性能的な優位性はありません。
しかし、コネクションプーリングを使うのであれば、いくらか優位性があります。
       

	shared_preload_libraries (string)
      
      
      
	

この変数はサーバ起動時にプリロードされる一つ以上の共有ライブラリを指定します。
ここにはカンマ区切りでライブラリ名のリストを格納し、各々の名前はLOADコマンドで解釈されます。
項目の間の空白は無視されます。
名前の中に空白あるいはカンマを含める場合は、二重引用符で囲ってください。
このパラメータはサーバ起動時のみ設定可能です。
もし指定したライブラリが見つからない場合は、サーバの起動は失敗します。
       


ライブラリによってはpostmaster起動時にのみ可能な操作を実行する必要があるものがあります。
たとえば、共有メモリの獲得、軽量ロックの予約、バックグラウンドワーカーの起動などです。
このようなライブラリはこのパラメータを使ってサーバ起動時にロードしなければなりません。
詳細は各ライブラリのドキュメントを見てください。
       


これ以外のライブラリもプリロードできます。
共有ライブラリをプリロードすることにより、最初にライブラリが使われる際にライブラリが起動する時間を避けることができます。
しかし、そのライブラリが使われないとしても、サーバプロセスが起動する時間がわずかに長くなる可能性があります。
したがって、この方法は、ほとんどのセッションで使われるライブラリにのみ使用することを推奨します。
また、パラメータの変更にはサーバの再起動が必要になります。
ですから、たとえば短期のデバッグ仕事にこの設定を使うのは適当とは言えません。
session_preload_librariesを代わりに使ってください。
       
注記


Windowsのホストでは、ライブラリのプリロードは、新しいサーバプロセスの起動に要する時間を短縮しません。
個々のサーバプロセスは、すべてのプリロードライブラリを再読み込みします。
それでもpostmaster起動時に操作を実行しなければならないライブラリを使用するWindowsホストにとってはshared_preload_librariesは有用です。
       


	jit_provider (string)
       
       
      
	

この変数は、使用するJITプロバイダライブラリ(「プラグ可能JITプロバイダ」参照)の名前です。
デフォルトはllvmjitです。
このパラメータはサーバ起動時のみ設定可能です。
       


存在しないライブラリが指定されると、JITは利用できませんが、エラーは起こりません。
これにより、PostgreSQL™パッケージとは別にJITサポートをインストールできるようになります。
       




その他のデフォルト



	dynamic_library_path (string)
      
      
      
      
      
	

オープンする必要がある動的ロード可能なモジュールについて、そのCREATE FUNCTIONやLOADコマンドで指定されたファイル名にディレクトリ要素がなく（つまり、名前にスラッシュが含まれずに）指定された場合、システムは必要なファイルをこのパスから検索します。
       


dynamic_library_pathの値は、絶対パスのディレクトリ名をコロン（Windowsの場合はセミコロン）で区切った一覧です。
この一覧の要素が特別な$libdirという値から始まる場合、コンパイルされたPostgreSQL™パッケージのライブラリディレクトリで$libdirは置換されます。
ここには、PostgreSQL™の標準配布物により提供されるモジュールがインストールされます。
（このディレクトリ名を表示するには、pg_config --pkglibdir を使用してください。）
例を以下に示します。


dynamic_library_path = '/usr/local/lib/postgresql:/home/my_project/lib:$libdir'



Windows環境の場合は以下です。


dynamic_library_path = 'C:\tools\postgresql;H:\my_project\lib;$libdir'


       


このパラメータのデフォルト値は'$libdir'です。
この値が空に設定された場合、自動的なパス検索は無効になります。
       


このパラメータはスーパーユーザと、適切なSET権限を持つユーザによって実行時に変更することができますが、この方法での設定は、そのクライアント接続が終わるまでしか有効になりません。
ですので、この方法は開発目的でのみ使用すべきです。
推奨方法はこのパラメータをpostgresql.conf設定ファイル内で設定することです。
       

	extension_control_path (string)
      
      
      
	

拡張機能、特に拡張制御ファイル（name.control）を検索するためのパスです。
残りの拡張スクリプトと副制御ファイルは、主制御ファイルが見つかったディレクトリと同じディレクトリからロードされます。
詳細は「拡張のファイル」を参照してください。
       


extension_control_pathの値は、絶対パスのディレクトリ名をコロン（Windowsの場合はセミコロン）で区切った一覧です。
この一覧の要素が$systemという特別な値から始まる場合、$systemはコンパイルされたPostgreSQL™の拡張用のディレクトリで置換されます。
ここには、PostgreSQL™の標準配布物により提供される拡張機能がインストールされます。
（このディレクトリ名を表示するには、pg_config --sharedir を使用してください。）
例を以下に示します。


extension_control_path = '/usr/local/share/postgresql:/home/my_project/share:$system'



Windows環境の場合は以下です。


extension_control_path = 'C:\tools\postgresql;H:\my_project\share;$system'



指定されたパス要素では、.controlファイルと.sqlファイルを含むextensionサブディレクトリを持つことが想定されていることに注意してください。
各パス要素に、サフィックスextensionが自動的に追加されます。
       


このパラメータのデフォルト値は'$system'です。
値が空文字列に設定されている場合、デフォルトの'$system'も想定されます。
       


設定されたパスで、同じ名前をもつ拡張が複数のディレクトリに存在する場合、パスで最初に見つかったインスタンスのみが使用されます。
       


このパラメータはスーパーユーザと、適切なSET権限を持つユーザによって実行時に変更することができますが、この方法での設定は、そのクライアント接続が終わるまでしか有効になりません。
ですので、この方法は開発目的でのみ使用すべきです。
推奨方法はこのパラメータをpostgresql.conf設定ファイル内で設定することです。
       


非標準の場所から拡張をロードできるようにこのパラメータを設定する場合、多くの場合dynamic_library_pathも対応する場所に設定する必要があることに注意してください。
たとえば、次のようになります。


extension_control_path = '/usr/local/share/postgresql:$system'
dynamic_library_path = '/usr/local/lib/postgresql:$libdir'


       

	gin_fuzzy_search_limit (integer)
      
      
      
	

GINインデックススキャンにより返されるセットのソフトな上限サイズです。
詳細は「GINの小技」を参照してください。
       





ロック管理



	deadlock_timeout (integer)
      
      
      
      
      
      
      
	

これは、デッドロック状態があるかどうかを調べる前にロックを待つ時間です。
デッドロックの検査は比較的高価なので、サーバはロックを待つ度にこれを実行するわけではありません。
楽天的ですがデッドロックは実用レベルのアプリケーションでは頻繁に発生しないと仮定し、デッドロックの検査の前にしばらくはロック待ちをします。
この値を増やすことにより必要のないデッドロックの検査で無駄にされる時間は減りますが、本当にデッドロックがあった場合の報告が遅れます。
この値が単位なしで指定された場合は、ミリ秒単位であるとみなします。
デフォルトは1秒（1s）で、おそらく実用の際にはこれ以上は必要でしょう。
負荷の大きいサーバではもっと必要かもしれません。
理想としてはこの設定は通常のトランザクションにかかる時間を超えているべきです。
そうすればロック待ちトランザクションがデッドロックの検査をする前にロックが解除される可能性が改善されます。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       


log_lock_waitsが設定された場合、このパラメータはロック待機に関するログメッセージを出力する前の待機時間を決定します。
ロック遅延の調査を行う場合は、通常のdeadlock_timeoutよりも短い値を設定することを勧めます。
       

	max_locks_per_transaction (integer)
      
      
      
	

共有ロックテーブルは、プロセスごと、あるいは準備されたトランザクションごとのmax_locks_per_transactionオブジェクト（たとえばテーブル）空間を持っています。
したがって、ある時点でこの数以上の個々のオブジェクトをロックすることはできません。
このパラメータは各トランザクションで使用するオブジェクトロックの平均値を制限します。
個々のトランザクションでは、このロックテーブルにすべてのトランザクションのロックが収まる限りオブジェクトのロックを獲得できます。
これは、ロックできる行数ではありません。この値には制限がありません。
デフォルトの64は、経験的に十分であると証明されていますが、単一のトランザクションで数多くの異なるテーブルをいじる問い合わせがいる場合、たとえば、数多くの子テーブルを持つ親テーブルの問い合わせなど、この値を大きくする必要があるかも知れません。
このパラメータはサーバ起動時のみ設定可能です。
       


スタンバイサーバを運用している場合、このパラメータはプライマリサーバでの設定と同じ、もしくはより高い値に設定しなければなりません。そうしないと問い合わせがスタンバイサーバ内で受け入れられません。
       

	max_pred_locks_per_transaction (integer)
      
      
      
	

共有述語ロックテーブルは、プロセスごと、あるいは準備されたトランザクションごとのmax_pred_locks_per_transactionオブジェクト（たとえばテーブル）空間を持っています。
したがって、ある時点でこの数以上の個々のオブジェクトをロックすることはできません。
このパラメータは各トランザクションで使用するオブジェクトロックの平均値を制限します。
個々のトランザクションでは、このロックテーブルにすべてのトランザクションのロックが収まる限りオブジェクトのロックを獲得できます。
これはロック可能な行数ではありません。その値は無制限です。
デフォルトは64で、過去の経験から十分であることがわかっていますが、単一のシリアライザブルトランザクションで数多くの異なるテーブルに触れるクライアントが存在する場合、この値を大きくする必要があることがあります。
このパラメータはサーバ起動時のみ設定可能です。
       

	max_pred_locks_per_relation (integer)
      
      
      
	

リレーション全体をカバーするロックに昇格する前に、一つリレーションの中で述語ロックできるページ数あるいはタプル数を指定します。
0以上の値は、絶対的な制限を表し、負の数はmax_pred_locks_per_transactionをその絶対値で割ったものを表します。
デフォルトは-2で、以前のバージョンのPostgreSQL™の振る舞いを維持します。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	max_pred_locks_per_page (integer)
      
      
      
	

ページ全体をカバーするロックに昇格する前に、一つページの中で述語ロックできる行数を指定します。
デフォルトは2です。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       




バージョンとプラットフォーム互換性



以前のPostgreSQLバージョン



	array_nulls (boolean)
      
      
      
	

これは、配列入力パーサが引用符のないNULLをNULL配列要素として認識するかどうかを制御します。
デフォルトでは、これはonで、NULL値を持つ配列値を入力することができます。
しかし、8.2より前のバージョンのPostgreSQL™では、配列内のNULL値をサポートしておらず、NULLを「NULL」という値の文字列を持つ通常の配列要素として扱っていました。
古い動作を必要とするアプリケーションの後方互換性のため、この変数をoffにすることができます。
       


この変数がoffであっても、NULL値を含む配列値を作成することができることに注意してください。
       

	backslash_quote (enum)
      
      
      
      
      
	

文字列リテラルの中で引用符が\'で表現されるかどうかを管理します。
引用符の表現として標準SQLの方式では二重化（''）ですが、PostgreSQL™は歴史的に\'も受け付けます。
とは言っても、いくつかのクライアント文字集合エンコーディング方式において、最終バイトが数値的にASCIIの\に等しいマルチバイト文字があり、\'を使用するとセキュリティ上問題を引き起こす可能性があります。
クライアント側のコードが事実上エスケープを正しく扱わない場合、SQLインジェクション攻撃が可能になります。この危険性の回避は、サーバが逆スラッシュでエスケープされた引用符を含む問い合わせを拒絶するようにします。
許可されるbackslash_quoteの値は、on （常に \' を許可）,off （常に拒否）、およびsafe_encoding （クライアント符号化方式がASCIIの\を許可しないときのみ、マルチバイト文字内で許可）。
safe_encoding がデフォルトの設定。
       


標準に従った文字列リテラルでは、\は単に\を意味するものです。
このパラメータのみが、エスケープ文字列構文（E'...'）を含む標準に従わないリテラルの取り扱いに影響します。
       

	escape_string_warning (boolean)
      
      
      
      
      
	

有効の場合、通常の文字列リテラル（'...'構文）にバックスラッシュ（\）があり、standard_conforming_stringsが無効な場合、警告が発せられます。
デフォルトはonです。
       


通常文字列のデフォルトの振る舞いは、標準SQLではバックスラッシュを通常文字として取り扱うため、バックスラッシュをエスケープとして使用したいアプリケーションは、エスケープ文字列構文(E'...')を使用するように変更すべきです。
この変数は変更すべきコードを突き止めるのに役立つよう、有効にすることができます。
       

	lo_compat_privileges (boolean)
      
      
      
	

9.0以前のPostgreSQL™リリースでは、ラージオブジェクトはアクセス権限が無く、従って全てのユーザが常に読み込み、書き込みが可能でした。
この変数をonにすると、以前のリリースとの互換性のため、新規の権限チェックが無効になります。
デフォルトはoffです。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       


この変数を設定しても、ラージオブジェクトに関連した全ての安全性チェックを無効にする訳ではありません。
PostgreSQL™ 9.0で変更されたデフォルトの動きに対してのみです。
       

	quote_all_identifiers (boolean)
      
      
      
	

データベースがSQLを生成する時、たとえ（現在）キーワードになっていなくても、全ての識別子を引用符で囲むことを強制します。
これは EXPLAINの出力に影響を与えるのみならず、pg_get_viewdefのような関数の結果にも影響します。
pg_dump(1) および pg_dumpall(1)の--quote-all-identifiersオプションも参照してください。
       

	standard_conforming_strings (boolean)
      
      
      
      
      
	

標準SQLで規定されたように、通常の文字列リテラル（'...'）がバックスラッシュをそのまま取り扱うか否かを制御します。
PostgreSQL™ 9.1からデフォルトはonになっています（それ以前のリリースではoffがデフォルトでした）。
どのように文字列リテラルが処理されるかを決めるこのパラメータを、アプリケーションで検査することができます。
このパラメータの存在は、エスケープ文字列構文（E'...'）がサポートされているかどうかを示すものとも考えられます。
エスケープ文字列構文 (「C形式エスケープでの文字列定数」)は、アプリケーションでバックスラッシュをエスケープ文字として扱いたい場合に使用すべきです。
       

	synchronize_seqscans (boolean)
      
      
      
	

これにより、同時実行スキャンがほぼ同じ時間に同じブロックを読み取り、I/Oへの負荷を分散できるように、互いに同期して、大規模テーブルをシーケンシャルスキャンすることができます。
これが有効な場合、スキャンはテーブルの途中から始まり、進行中のスキャンの活動と同期するように、行全体を覆うように終端を「巻き上げる」可能性があります。
これにより、ORDER BY句を持たない問い合わせが返す行の順序は予想できない程変わってしまいます。
このパラメータをoffにすることで、シーケンシャルスキャンが常にテーブルの先頭から始まるという、8.3より前の動作を保証します。
デフォルトはonです。
       




プラットフォームとクライアント互換性



	transform_null_equals (boolean)
      
      
      
      
	

有効の場合、expr = NULL（もしくはNULL = expr）形式の式はexpr IS NULLとして取り扱われ、それは、もしexprがNULL値と評価すれば真を返し、そうでなければ偽を返します。
expr = NULLの正しいSQL仕様準拠の動作は常にNULL（判らない）を返すことです。
従って、このパラメータのデフォルトはoffになっています。
       


しかし、Microsoft Access™のフィルタ形式はNULL値を検査するためにexpr = NULLを使用する問い合わせを生成しますので、そのインタフェースを使用してデータベースにアクセスする場合は、このオプションを有効にする方が良いでしょう。
expr = NULLという形の式は（標準SQL解釈を使用した結果）常にNULL値を返しますので、通常のアプリケーションでは意味がほとんどなく、滅多に使用されません。
ですので、このオプションは実際は害はありません。
しかし、慣れていないユーザはしばしばNULL値に関する式の意味に戸惑いますので、デフォルトでこのオプションはoffです。
       


このオプションは= NULLという形式にのみ影響することに注意してください。
他の比較演算子や等価演算子を呼び出す他の（INのような）式と計算する上で等価となる式には影響を与えません。
したがって、このオプションは間違ったプログラミングの汎用的な問題解決を行いません。
       


関連する情報は「比較関数および演算子」を参照してください。
       

	allow_alter_system (boolean)
      
      
      
	

allow_alter_systemがoffに設定されている場合、ALTER SYSTEMコマンドが実行されるとエラーが返されます。
このパラメータは、PostgreSQL.confファイルまたはサーバコマンドラインでのみ設定できます。
デフォルト値はonです。
       


この設定をセキュリティ機能とみなしてはならないことに注意してください。
これはALTER SYSTEMコマンドを無効にするだけです。
スーパーユーザが他のSQLコマンドを使用して設定を変更することを妨げるものではありません。
スーパーユーザにはオペレーティングシステムレベルでシェルコマンドを実行する多くの方法があるため、この設定の値に関係なくpostgresql.auto.confを変更できます。
       


この設定を無効にすることは、PostgreSQL™の設定が外部のツールによって管理されている環境を対象としています。
このような環境では、善意のスーパーユーザがツールを使わずに、誤ってALTER SYSTEMを使って設定を変更する可能性があります。
これにより、外部ツールを使って後で設定を更新したときに、変更を上書きするなど、意図しない振る舞いとなる可能性があります。
このパラメータをoffに設定すると、そのような間違いを避けるための助けになります。
       


このパラメータはALTER SYSTEMの使用のみを制御します。
postgresql.auto.confに保存された設定は、allow_alter_systemがoffに設定されていても有効になります。
       





エラー処理



	exit_on_error (boolean)
      
      
      
	

onなら、全てのエラーは現在のセッションを中止させます。
デフォルトではこれはoffに設定されているので、 FATALエラーのみがセッションを中止させます。
       

	restart_after_crash (boolean)
      
      
      
	

デフォルトであるonの場合、PostgreSQL™はバックエンドのクラッシュの後、自動的に再初期化を行います。
この値を真のままにしておくことが、通常データベースの可用性を最大化する最適の方法です。
しかし、 PostgreSQL™がクラスタウェアにより起動された時のような状況では、クラスタウェアが制御を獲得して、適切とみなすいかなる振る舞いをも行えるように再起動を無効にすることが有益かもしれません。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	data_sync_retry (boolean)
      
      
      
	

デフォルトであるoffに設定すると、PostgreSQL™は変更されたデータファイルのファイルシステムへのフラッシュの失敗に対してPANICレベルのエラーを発生させます。
これによりデータベースサーバのクラッシュが引き起こされます。
このパラメータはサーバ起動時のみ設定可能です。
       


オペレーティングシステムによっては、カーネルキャッシュのページ内のデータの状態は、書き戻しの失敗の後は不明です。
完全に忘れられてしまった場合には、再試行することが危険であるかもしれません。
二度目の試行は成功と報告されるかもしれませんが、実際にはデータが失われているかもしれません。
このような状況では、データロスを避ける唯一の方法は、失敗が報告された後、可能ならば失敗の根本原因を調査して故障したハードウェアを交換したのち、WALからの回復することだけです。
       


onに設定すると、代わりにPostgreSQL™はエラーを報告して実行を継続し、後のチェックポイントでデータのフラッシュをリトライします。
書き戻しの失敗が起きたときのオペレーティングシステムのバッファデータの扱いを調査した後でのみonに設定してください。
       

	recovery_init_sync_method (enum)
       
       
      
	

デフォルトであるfsyncに設定すると、PostgreSQL™はクラッシュリカバリを開始する前に、再帰的にデータディレクトリ内のすべてのファイルを開いて同期します。
ファイルの探索は、WALディレクトリと設定されているテーブル空間へのシンボリックリンクを追跡します（他のシンボリックリンクは追跡しません）。
これはリプレイを開始する前に、すべてのWALとデータファイルをディスクに恒久的に書くことを確実にすることを意図しています。
これは、pg_basebackupで作られた複製も含めて、正しく停止されなかったデータベースクラスタを起動する際には必ず適用されます。
       


Linuxでは代わりに、オペレーティングシステムに対して、データディレクトリ、WALファイル、各々のテーブル空間（しかし、シンボリックリンクを通じて到達可能な他のファイルシステムを含みません）を含むファイルシステムを同期することを依頼するsyncfsが使えるかもしれません。
これは各々のファイルを一つ一つ開けることが必要ないため、fsyncを設定するよりもずっと速いかもしれません。
一方で、そのファイルシステムが多くのファイルを変更するアプリケーションも利用している場合、これらのファイルもディスクに書かれるので、遅くなるかもしれません。
更に、Linuxのバージョン5.8以前では、ディスクへの書き込み中に発生したI/OエラーがPostgreSQL™に報告されないことがあり、関連エラーメッセージはカーネルログにのみ現れるかもしれません。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       




設定済みのオプション





以下の「パラメータ」は読み取り専用です。
そのため、これらはpostgresql.confのサンプルから除かれています。
このオプションは、特定のアプリケーション、特に管理用フロントエンドによって注目される可能性があるPostgreSQL™の様々な部分の振舞いを報告します。
これらのうち多くはPostgreSQL™のコンパイル時、もしくはインストール時に決定されます。
    
	block_size (integer)
      
      
      
	

ディスクブロックの容量を報告します。
サーバ構築の際にBLCKSZの値で決定されます。デフォルトの値は8192バイトです。
（shared_buffersの様な）いくつかの構成変数の意味はblock_sizeによって影響されます。
これに関しての情報は「資源の消費」を参照してください。
       

	data_checksums (boolean)
      
      
      
	

このクラスタでデータチェックサムが有効になっているかどうかを報告します。
詳細は-kを見てください。
       

	data_directory_mode (integer)
      
      
      
	

このパラメータは、Unixシステムでは起動時のデータディレクトリ（data_directoryにより定義されます）のパーミッションを報告します。
（Microsoft Windowsではこのパラメータは常に0700を表示します。）
詳細はinitdbの-gオプションを参照してください。
       

	debug_assertions (boolean)
      
      
      
	

PostgreSQL™がアサーションを有効にしてビルドされているかどうかを報告します。
これは、USE_ASSERT_CHECKINGマクロがPostgreSQL™をビルドされた際に定義されている場合(つまり、configureオプションの--enable-cassertが適用されている)に該当します。
デフォルトではPostgreSQL™は、アサーションなしにビルドされます。
       

	huge_pages_status (enum)
      
      
      
	

現在インスタンスのhuge pagesの状態を報告します:on、off、またはunknownのどれかです（postgres -Cで表示される場合）。
このパラメータは、huge_pages=tryでhuge pagesのアロケーションが成功したかどうかを判断するのに役立ちます。
詳細については、huge_pagesを参照してください。
       

	integer_datetimes (boolean)
      
      
      
	

PostgreSQL™が64ビット整数による日付と時刻のサポート付きで構築されたかどうかを報告します。
PostgreSQL™ 10では、これは常にonです。
       

	in_hot_standby (boolean)
      
      
      
	

サーバが現在ホットスタンバイモードかどうかを報告します。
これがonの時は、すべてのトランザクションは読み取り専用を強制されます。
セッション中ではこれはサーバがプライマリに昇格するときだけ変更できます。
詳細は「ホットスタンバイ」をご覧ください。
       

	max_function_args (integer)
      
      
      
	

関数の引数の最大数を報告します。
サーバを構築する時、FUNC_MAX_ARGSの値で決定されます。
デフォルトの値は100引数です。
       

	max_identifier_length (integer)
      
      
      
	

最長の識別子の長さを報告します。
サーバ構築時のNAMEDATALENの値より一つ少なく設定されます。
デフォルトのNAMEDATALENの値は64ですので、デフォルトのmax_identifier_lengthは63バイトで、マルチバイト符号化方式を使用している場合、63文字以下になることがあります。
       

	max_index_keys (integer)
      
      
      
	

インデックスキーの最大数を報告します。サーバをビルドする際にINDEX_MAX_KEYSの値で決定されます。デフォルトの値は32キーです。
       

	num_os_semaphores (integer)
      
      
      
	

設定されている接続数（max_connections）、自動バキュームワーカープロセス数（autovacuum_max_workers）、WAL送信プロセス数（max_wal_senders）、およびバックグラウンドプロセス数（max_worker_processes）などに基づいて、サーバに必要なセマフォの数を報告します。
       

	segment_size (integer)
      
      
      
	

あるファイルセグメントの中に格納できるブロック数（ページ数）を報告します。
サーバ構築時にRELSEG_SIZEの値で決定されます。
バイト単位の一セグメントファイルの最大容量は、block_size倍のsegment_sizeと等しくなります。デフォルトでは1GBです。
       

	server_encoding (string)
      
      
      
      
      
	

データベース符号化方式（文字集合）を報告します。
データベースが作成された時に決定されます。通常クライアントはclient_encodingの値にのみ注意する必要があります。
       

	server_version (string)
      
      
      
	

サーバのバージョン番号を報告します。
サーバ構築の際のPG_VERSIONの値によって決定されます。
       

	server_version_num (integer)
      
      
      
	

サーバのバージョン番号を整数として返します。
この値は、サーバ構築時のPG_VERSION_NUMの値により決まります。
       

	shared_memory_size (integer)
      
      
      
	

主共有メモリ領域のサイズを報告します。
最も近いメガバイト単位に切り上げられます。
       

	shared_memory_size_in_huge_pages (integer)
      
      
      
	

指定されたhuge_page_sizeに基づいて、主共有メモリ領域に必要な巨大ページの数を報告します。
巨大ページがサポートされていない場合、-1になります。
       


この設定はLinux™でのみサポートされています。
他のプラットフォームでは常に-1に設定されます。
Linux™で巨大なページを使うための詳細は「LinuxのHugePages」を参照してください。
       

	ssl_library (string)
      
      
      
	

（このインスタンスでSSLが設定あるいは使用されていなくても）このPostgreSQL™サーバの構築時に使用されたSSLライブラリの名前、たとえばOpenSSLあるいは空文字列、を報告します。
       

	wal_block_size (integer)
      
      
      
	

WALディスクブロックの容量を報告します。
サーバ構築時にXLOG_BLCKSZの値で決定されます。デフォルトの値は8192バイトです。
       

	wal_segment_size (integer)
      
      
      
	

先行書き込みログ（WAL）のセグメントの大きさを報告します。
デフォルト値は16MBです。
さらなる詳細については「WALの設定」をご覧ください。
       




独自のオプション





この機能は追加モジュール（手続き言語など）によって追加されるPostgreSQL™が識別できないパラメータを使えるように設計されたものです。
これにより拡張モジュールは標準の方法で構成されます。
    


カスタムオプションには２つに分かれた名称があります。拡張名につづいてドット、そして特定のパラメータ名です。SQLの修飾名に良く似ています。
例としてplpgsql.variable_conflictが挙げられます。
    


カスタムオプションは読み込まれていない関連性のある拡張モジュールのプロセスに設定される必要がある場合があるので、PostgreSQL™はどんな２つの部分のパラメータ名による設定を受け付けます。これらの変数は代替物として取り扱われ、それらを定義したモジュールが読み込まれるまで機能しません。
拡張モジュールが読み込まれた時、その変数定義が追加され、それら定義に基づいてプレースホルダ値が変換されます。
拡張名で始まる認識できないプレースホルダに対しては警告が発せられ、そのプレースホルダは削除されます。
    

開発者向けオプション





以下のパラメータは、開発者のテスト用であり、決して実運用のデータベースに使わないでください。
しかし、中には深刻な損傷を負ったデータベースの復旧に役立つものもあります。
したがって、これらはサンプルのpostgresql.confからは除外されています。
これらのパラメータの多くは、それを動作させるために特殊なソースコンパイルを必要としていることに注意してください。
    
	allow_in_place_tablespaces (boolean)
      
      
      
	

CREATE TABLESPACEコマンドに空の位置文字列が渡された時に、pg_tblspc内にテーブル空間をディレクトリとして作ることを可能にします。
これは、プライマリとスタンバイサーバが同じマシン上で実行されるレプリケーションシナリオをテストするために使用することを意図しています。
このようなディレクトリは、その場所にシンボリックリンクだけが見つかることを期待しているバックアップツールを混乱させる可能性が高いでしょう。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	allow_system_table_mods (boolean)
      
      
      
	

システムテーブルの構造変更とその他の危険性の高いシステムテーブルに対するアクションを許可します。
これは通常スーパーユーザにさえ許可されません。
この設定の無分別な使用は回復不能なデータ喪失やデータベースシステムの重大な破損を招きます。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	backtrace_functions (string)
      
      
      
	

このパラメータはカンマ区切りのC関数名を含みます。
エラーが発生し、エラー発生箇所の内部C関数がこのリストの値と一致すると、エラーメッセージとともにバックトレースが一緒にサーバログに書かれます。
これはソースコードの特定箇所をデバッグするのに役立ちます。
       


バックトレースのサポートはすべてのプラットフォームで提供されているわけではありませんし、バックトレースの品質はコンパイルオプションに依存します。
       


この設定を変更できるのは、スーパーユーザと適切なSET権限を持つユーザだけです。
       

	debug_copy_parse_plan_trees (boolean)
      
      
      
	

これを有効にすると、copyObject()でのエラーや省略を簡単に検出できるように、すべての解析ツリーと問い合わせツリーがcopyObject()を介して渡されます。
デフォルトはoffです。
       


このパラメータは、コンパイル時にDEBUG_NODE_TESTS_ENABLEDが定義された場合にのみ使用できます（これは、configureオプションの--enable-cassertを使用すると自動的に実行されます）。
       

	debug_discard_caches (integer)
      
      
      
	

1なら、可能な最初の機会にシステムカタログのキャッシュ項目が破棄されます。
すべてのキャッシュ項目を無効にするすべてのことが実際に起きます。
結果としてシステムカタログのキャッシュが無効になり、サーバは極めて低速に動作します。
1より大きければ、再帰的にキャッシュを削除します。
これは更に遅くなり、キャッシュのロジック自体をテストするときにだけ役に立ちます。
デフォルト値の0で正常なカタログキャッシュは通常の動作になります。
       


このパラメータは並行的なカタログの変更を伴う再現しにくいバグを引き起こす際にとても役に立ちますが、それ以外にはめったに必要になりません。
詳細はinval.cとpg_config_manual.hのソースコードファイルを見てください。
       


このパラメータはコンパイル時にDISCARD_CACHES_ENABLEDが定義されたとき（これはconfigureオプションの--enable-cassertが使われたときに自動的に起こります）にサポートされます。
実運用のビルドでは0となり、それ以外の値に設定しようとするとエラーが起こります。
       

	debug_io_direct (string)
      
      
      
	

リレーションデータとWALファイルに対して、O_DIRECT（ほとんどのUnixライクなシステム）、F_NOCACHE（macOS）、FILE_FLAG_NO_BUFFERING （Windows）を使って、キャッシュ効果を最小にするようカーネルに依頼します。
       


空文字列（デフォルト）を設定してダイレクトI/Oの使用を無効にすることも、カンマで区切られたリストを設定してダイレクトI/Oを使用するようにすることもできます。
有効なオプションは、メインデータファイルの場合はdata、WALファイルの場合はwal、最初に割り当てられたWALファイルの場合はwal_initです。
       


一部のオペレーティングシステムおよびファイルシステムでは、ダイレクトI/Oが行われないため、デフォルト以外の設定が起動時に拒否されたり、エラーが発生したりする場合があります。
       


今の所、この機能はパフォーマンスを悪くするので、開発者のテストのみを目的としています。
       

	debug_parallel_query (enum)
      
      
      
	

性能改善が期待できなくても、テスト目的のためにパラレルクエリを利用できるようにします。
debug_parallel_queryに設定できる値は、off（性能改善が期待できるときにだけパラレルクエリを使用する）、on（安全なクエリに対しては常にパラレルクエリを強制する）、regress（onと同様だが、下記のような振る舞いの変更を伴う）です。
       


正確に言えば、この値をonにすると、安全と見なされるすべての問い合わせ計画の上にGatherノードを追加し、クエリをパラレルワーカー上で実行するようにします。
プランナがこれによってクエリが失敗すると思わない限り、パラレルワーカーが利用できない、あるいは使用できないような場合でも、たとえばサブトランザクションの開始のように、パラレルクエリコンテキストでは許可されない操作は不許可となります。
このオプションを設定することによって、エラーとなったり、あるいは期待していなかった結果がもたらされる場合には、クエリで使用されている関数はPARALLEL UNSAFE（もしくは、PARALLEL RESTRICTED）と印を付ける必要があるかもしません。
       


この設定値をregressとすると、onとするのに加え、自動リグレッションテストを助けるための付加的な効果が現れます。
通常パラレルワーカーからのメッセージは、そのことを表すコンテキスト行を表示しますが、regressと設定すると、非パラレル実行と同じ出力になるように、これを抑止します。
また、プランに追加されたGatherノードは、EXPLAIN出力から隠され、offに設定したときと同じ出力が得られるようにします。
       

	debug_raw_expression_coverage_test (boolean)
      
      
      
	

これを有効にすると、DML文の加工されていない解析ツリーがすべてraw_expression_tree_walker()でスキャンされるようになり、その関数でのエラーや省略を簡単に検出できます。
デフォルトはoffです。
       


このパラメータは、コンパイル時にDEBUG_NODE_TESTS_ENABLEDが定義された場合にのみ使用できます（これは、configureオプションの--enable-cassertを使用すると自動的に実行されます）。
       

	debug_write_read_parse_plan_trees (boolean)
      
      
      
	

これを有効にすると、すべての解析ツリーと問い合わせツリーがoutfuncs.c/readfuncs.cを介して渡され、これらのモジュールでのエラーや省略を簡単に検出できるようになります。
デフォルトはoffです。
       


このパラメータは、コンパイル時にDEBUG_NODE_TESTS_ENABLEDが定義された場合にのみ使用できます（これは、configureオプションの--enable-cassertを使用すると自動的に実行されます）。
       

	ignore_system_indexes (boolean)
      
      
      
	

システムテーブルの読み込み時にシステムインデックスを無視します（しかしテーブルが更新された時はインデックスを更新します）。
障害があるシステムインデックスを復旧する時、これは有用です。
セッションが始まった後に、このパラメータを変更することはできません。
       

	post_auth_delay (integer)
      
      
      
	

サーバプロセスが始まり認証手続きが終わった後の遅延時間です。
これは、デバッガを使用してサーバプロセスに接続する機会を開発者に提供することを目的としています。
この値が単位なしで指定された場合は、秒単位であるとみなします。
値がゼロ（デフォルト）の場合、この遅延は無効になります。
セッションが始まった後に、このパラメータを変更することはできません。
       

	pre_auth_delay (integer)
      
      
      
	

新しくサーバプロセスがforkした後、認証手続きに入る前の遅延時間です。
これは、認証における誤動作を追跡するために、デバッガを使用してサーバプロセスに接続する機会を開発者に提供することを目的としたものです。
この値が単位なしで指定された場合は、秒単位であるとみなします。
値がゼロ（デフォルト）の場合、この機能は無効になります。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	trace_notify (boolean)
      
      
      
	

LISTENとNOTIFYコマンドのための大量なデバッグ出力を生成します。
この出力をクライアントもしくはサーバログに送信するためには、それぞれ、client_min_messagesもしくはlog_min_messagesはDEBUG1以下でなければなりません。
       

	trace_sort (boolean)
      
      
      
	

有効な場合、ソート操作中のリソース使用状況に関する情報を出力します。
       

	trace_locks (boolean)
      
      
      
	

有効な場合、ロックの使用状況に関する情報を出力します。
出力される情報には、ロック操作の種類、ロックの種類、ロックまたはロック解除されているオブジェクトの一意な識別子が含まれます。
また、このオブジェクトに既に与えられているロック種類やこのオブジェクトで待機しているロック種類を表すビットマスクも含まれます。
ロック種類それぞれについて、与えられているロック数、待機中のロック数がその総数と共に出力されます。
ログファイル出力例を以下に示します。


LOG:  LockAcquire: new: lock(0xb7acd844) id(24688,24696,0,0,0,1)
      grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
      wait(0) type(AccessShareLock)
LOG:  GrantLock: lock(0xb7acd844) id(24688,24696,0,0,0,1)
      grantMask(2) req(1,0,0,0,0,0,0)=1 grant(1,0,0,0,0,0,0)=1
      wait(0) type(AccessShareLock)
LOG:  UnGrantLock: updated: lock(0xb7acd844) id(24688,24696,0,0,0,1)
      grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
      wait(0) type(AccessShareLock)
LOG:  CleanUpLock: deleting: lock(0xb7acd844) id(24688,24696,0,0,0,1)
      grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
      wait(0) type(INVALID)



ダンプされる構造の詳細は、src/include/storage/lock.h にあります。
       


このパラメータはPostgreSQL™がコンパイル時にLOCK_DEBUGマクロが定義された場合のみ有効です。
       

	trace_lwlocks (boolean)
      
      
      
	

有効な場合、軽量ロックの使用状況に関する情報を出力します。
軽量ロックは主に、共有メモリ上のデータ構造へのアクセスに関する排他制御機能を提供することを意図したものです。
       


このパラメータはPostgreSQL™がコンパイル時にLOCK_DEBUGマクロが定義された場合のみ有効です。
       

	trace_userlocks (boolean)
      
      
      
	

有効な場合、ユーザロックの使用状況に関する情報を出力します。
出力はtrace_locksと同じですが、勧告的ロックに関するもののみを出力します。
       


このパラメータはPostgreSQL™がコンパイル時にLOCK_DEBUGマクロが定義された場合のみ有効です。
       

	trace_lock_oidmin (integer)
      
      
      
	

設定すると、このOID未満のテーブルに関するロックの追跡を行いません。
（システムテーブルに関する出力を抑えるために使用します。）
       


このパラメータはPostgreSQL™がコンパイル時にLOCK_DEBUGマクロが定義された場合のみ有効です。
       

	trace_lock_table (integer)
      
      
      
	

このテーブル（OID）に対し無条件でロックを追跡します。
       


このパラメータはPostgreSQL™がコンパイル時にLOCK_DEBUGマクロが定義された場合のみ有効です。
       

	debug_deadlocks (boolean)
      
      
      
	

設定すると、デッドロックタイムアウトが発生した時全ての進行中のロックについての情報がダンプされます。
       


このパラメータはPostgreSQL™がコンパイル時にLOCK_DEBUGマクロが定義された場合のみ有効です。
       

	log_btree_build_stats (boolean)
      
      
      
	

設定すると、各種B-tree操作に関するシステムリソース（メモリとCPU）の使用についての統計情報をログに出力します。
       


このパラメータはPostgreSQL™がコンパイル時にBTREE_BUILD_STATSマクロが定義された場合のみ有効です。
       

	wal_consistency_checking (string)
      
      
      
	

このパラメータは、WALのREDOルーチンのバグをチェックするために使うことを意図しています。
有効にすると、WALレコードと一緒に変更されたバッファのフルページイメージをレコードに追加します。
後でそのレコードがリプレイされるときは、システムはまず各々のレコードを適用し、次にレコードによって変更されたバッファが、格納したイメージと一致するかどうかをテストします。
ある種のケース（たとえばヒントビット）では、些細な変化は許容され、無視されます。
予期しない差異は、致命的エラーを引き起こし、リカバリが中断されます。
       


デフォルト値は空文字で、この機能を無効にします。
すべてのレコードをチェックするために、allにすることができます。
カンマ区切りのリストにすると、対応するリソースマネージャに由来するレコードのみをチェックします。
今のところ、サポートされているリソースマネージャは、heap、heap2、btree、hash、gin、gist、sequence、spgist、brin、genericです。
拡張は追加のリソースマネージャを定義しても構いません。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	wal_debug (boolean)
      
      
      
	

もしonであれば、WALに関連したデバッグ出力が有効になります。このパラメータはWAL_DEBUGマクロが PostgreSQL™のコンパイルの時に定義された場合にのみ有効です。
       

	ignore_checksum_failure (boolean)
      
      
      
	

-kが有効の時のみ効果があります。
       


読み込み過程でチェックサム障害が検出されると、通常PostgreSQL™はエラーを報告し、現時点のトランザクションを停止します。
ignore_checksum_failureを有効（on）に設定するとシステムはその障害を無視し（しかし警告は報告をします）、処理を継続します。
この振る舞いはたぶんクラッシュの原因、破損の伝播や隠ぺい、もしくはその他の深刻な問題の原因になることがあります。
とは言っても、エラーを切り抜け、ブロックヘッダが健全に存在するテーブルにある障害を受けていないタプルの回収は行えます。
もしヘッダが破損されたら、オプションが有効になっていたとしても報告はなされます。
デフォルトの設定はoffです。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	zero_damaged_pages (boolean)
      
      
      
	

ページヘッダの障害がわかると、通常PostgreSQL™はエラーの報告を行い、現在のトランザクションを中断させます。
zero_damaged_pagesをonに設定することにより、システムは代わりに警告を報告し、障害のあるメモリ内のページをゼロで埋め、処理を継続します。
この動作により、障害のあったページ上にある全ての行のデータが破壊されます。
しかし、これによりエラーを確実に無視し、正常なページに存在するテーブル内の行を取り出すことができます。
ハードウェアまたはソフトウェアのエラーによって破損が発生した場合のデータの復旧時に有用です。
障害のあるページからのテーブルのデータの復旧をあきらめた場合を除き、通常はこれをonにしてはいけません。
ゼロで埋められたページはディスクに書き込みを強要されないため、このパラメータを再び無効にする以前にテーブル、またはインデックスを再作成することを勧めます。
デフォルトはoffです。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	ignore_invalid_pages (boolean)
      
      
      
	

off（デフォルトです）に設定すると、無効なページを参照しているWALレコードはPostgreSQL™に対してPANICレベルのエラーを引き起こし、リカバリをアボートします。
ignore_invalid_pagesをonに設定すると、WALレコードの無効なページへの参照を無視し（しかしワーニングは報告されます）、リカバリを継続します。
この振る舞いにより、クラッシュ、データロス、破壊を増長したり見えなくするなどの深刻な問題を被るかもしれません。
しかし、これによってPANICレベルのエラーを回避してリカバリを完了し、サーバを起動できるかもしれません。
このパラメータはサーバ起動時にのみ設定できます。
リカバリ中、あるいはスタンバイモードでのみ効果があります。
       

	jit_debugging_support (boolean)
      
      
      
	

LLVMに要求された機能がある場合は、生成した関数をGDB™用に登録します。
これにより、デバッグが容易になります。
デフォルト設定はoffです。
このパラメータはサーバ起動時のみ設定可能です。
       

	jit_dump_bitcode (boolean)
      
      
      
	

生成されたLLVM™ IRをdata_directory内のファイルシステムに出力します。
これはJITコンパイルのインターナルについて作業するときだけ有用です。
デフォルト設定はoffです。
スーパーユーザと、適切なSET権限を持つユーザのみがこの設定を変更することができます。
       

	jit_expressions (boolean)
      
      
      
	

JITコンパイルが有効な時に式がJITコンパイルされるかどうかを決定します。
（「どんなときにJITを使うべきか？」参照。）
デフォルトはonです。
       

	jit_profiling_support (boolean)
      
      
      
	

LLVMに要求された機能がある場合は、JITが生成した関数をperf™でプロファイルすることができるデータを出力します。
これにより~/.debug/jit/にファイルが書き出されます。
ユーザは自分の責任で必要なときに後始末を行わなければなりません。
デフォルト設定はoffです。
このパラメータはサーバ起動時のみ設定可能です。
       

	jit_tuple_deforming (boolean)
      
      
      
	

JITコンパイルが有効な時にタプルデフォーミングがJITコンパイルされるかどうかを決定します。
（「どんなときにJITを使うべきか？」参照。）
デフォルトはonです。
       

	remove_temp_files_after_crash (boolean)
      
      
      
	

デフォルトであるonに設定すると、PostgreSQL™はバックエンドがクラッシュした後に自動的に一時ファイルを削除します。
無効にすると、ファイルは保存され、たとえばデバッグ目的で使用できます。
しかしクラッシュを繰り返すと不要なファイルが溜まっていくかもしれません。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	send_abort_for_crash (boolean)
      
      
      
	

デフォルトでは、バックエンドクラッシュの後、postmasterは残りの子プロセスをSIGQUITシグナルを送ることで停止します。
これにより、子プロセスは多かれ少なかれ礼儀正しく終了することができます。
このオプションがonに設定されている場合、代わりにSIGABRTが送信されます。
これにより通常、子プロセスごとにコアダンプファイルを生成します。
これは、クラッシュの後の他のプロセスの状態を調査するのに便利です。
また、クラッシュが繰り返されるイベントで大量のディスクスペースを消費する可能性があるため、注意深く監視していないシステムではこれを有効にしないでください。
自動的にコアファイルを削除する機能は提供されていないことに注意してください。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	send_abort_for_kill (boolean)
      
      
      
	

デフォルトでは、SIGQUITで子プロセスを停止しようとした後、postmasterは5秒間待ってからSIGKILLを送信して即時終了を強制します。
このオプションがonに設定されている場合、SIGKILLの代わりにSIGABRTが送信されます。
これにより通常、子プロセスごとにコアダンプファイルを生成します。
これは、「スタックした」子プロセスの状態を調査するのに便利です。
また、クラッシュが繰り返されるイベントで大量のディスクスペースを消費する可能性があるため、注意深く監視していないシステムではこれを有効にしないでください。
自動的にコアファイルを削除する機能は提供されていないことに注意してください。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	debug_logical_replication_streaming (enum)
      
      
      
	

指定できる値は、bufferedおよびimmediateです。
デフォルトはbufferedです。
このパラメータは、大きなトランザクションにおけるロジカルデコーディングおよびレプリケーションのテストに使用することを目的としています。
debug_logical_replication_streamingの効果は、パブリッシャーとサブスクライバーで異なります。
       


パブリッシャー側では、debug_logical_replication_streamingを使用すると、ロジカルデコーディングでただちに変更をストリーミングまたはシリアル化できます。
immediateに設定すると、CREATE SUBSCRIPTIONのstreamingオプションが有効になっている場合は各変更をストリームし、それ以外の場合は各変更をシリアル化します。
bufferedに設定すると、logical_decoding_work_memに達したときに、デコーディング処理がストリームまたはシリアル化します。
       


サブスクライバー側では、streamingオプションがparallelに設定されている場合、debug_logical_replication_streamingを使用して、リーダー適用ワーカーに変更を共有メモリキューに送信するか、すべての変更をファイルにシリアル化するように指示できます。
bufferedに設定されている場合、リーダーは共有メモリキューを介してパラレル適用ワーカーに変更を送信します。
immediateに設定されている場合、リーダーはファイルに対するすべての変更をシリアル化し、パラレル適用ワーカーにファイルを読み取ってトランザクションの最後に適用するように通知します。
       




短いオプション





簡便性のために、一文字のコマンドラインオプションスイッチも、幾つかのパラメータのために用意されています。
それらは表19.5「短いオプションキー」に解説されています。
一部のオプションは歴史的な理由のために存在します。
また、この一文字オプションが存在することが、このオプションを多く使用することを支持することを示しているわけではありません。
   
表19.5 短いオプションキー
	短いオプション	同義
	-B x	shared_buffers = x
	-d x	log_min_messages = DEBUGx
	-e	datestyle = euro
	
          -fb, -fh, -fi,
          -fm, -fn, -fo,
          -fs, -ft
         	
          enable_bitmapscan = off,
          enable_hashjoin = off,
          enable_indexscan = off,
          enable_mergejoin = off,
          enable_nestloop = off,
          enable_indexonlyscan = off,
          enable_seqscan = off,
          enable_tidscan = off
         
	-F	fsync = off
	-h x	listen_addresses = x
	-i	listen_addresses = '*'
	-k x	unix_socket_directories = x
	-l	ssl = on
	-N x	max_connections = x
	-O	allow_system_table_mods = on
	-p x	port = x
	-P	ignore_system_indexes = on
	-s	log_statement_stats = on
	-S x	work_mem = x
	-tpa, -tpl, -te	log_parser_stats = on,
        log_planner_stats = on,
        log_executor_stats = on
	-W x	post_auth_delay = x




第20章 クライアント認証





クライアントアプリケーションがデータベースサーバに接続する時、Unixコンピュータに特定のユーザとしてログインする時と同じように、どのPostgreSQL™ユーザ名で接続するかを指定します。
SQL 環境の中では存在するユーザ名でデータベースオブジェクトへのアクセス権限が決まります。
詳しい情報は21章データベースロールを参照してください。
ですから、どのデータベースユーザがデータベースに接続できるかを制限することが基本となります。
 
注記


21章データベースロールで説明されていますが、実はPostgreSQL™は「ロール」によって権限の管理を行っています。
この章では、「LOGIN権限を持つロール」を、一貫してデータベースユーザという呼び方で使用します。
  



認証はデータベースサーバがクライアントの身元を識別し、その延長としてクライアントアプリケーション（もしくはクライアントアプリケーションを実行するユーザ）が要求されたデータベースユーザ名で接続することができるかどうかを決定する手順です。
 


PostgreSQL™は異なったクライアント認証方法を複数提供します。
特定のクライアント接続の認証に使用する方法は、（クライアントの）ホストアドレス、データベース、およびユーザに従って選択できます。
 


PostgreSQL™データベースユーザ名は稼働しているサーバのオペレーティングシステムのユーザ名とは論理的に分かれています。
もし特定のサーバの全てのユーザがサーバマシン上にもアカウントを持っている場合、そのオペレーティングシステムのユーザ名に一致するデータベースユーザ名を割り当てることは理にかなっています。
しかし、リモート接続を受け付けるサーバは、ローカルなオペレーティングシステムのアカウントを持たないデータベースユーザを多く持っている場合もあります。
そのような時にはデータベースユーザ名とOSのユーザ名との間の関連性は必要ありません。
 
pg_hba.confファイル





クライアント認証はデータベースクラスタのデータディレクトリ内の、伝統的にpg_hba.confという名前の設定ファイルで管理されています。
（HBAとは、host-based authentication: ホストベース認証の略です。）
デフォルトのpg_hba.confファイルは、データディレクトリがinitdb(1)で初期化される時にインストールされます。
しかし、この認証設定ファイルを他の場所に設置することができます。
hba_file設定パラメータを参照してください。
  


pg_hba.confファイルは起動時と、主サーバプロセスがSIGHUPシグナルを受け取った時に読み込まれます。
稼働中のシステムでファイルを編集した場合は、（pg_ctl reloadの使用、SQL関数のpg_reload_conf()の呼び出し、またはkill -HUPを使用して）postmasterにファイルをもう一度読み込むようにシグナルを出さなければなりません。
  
注記


上記はマイクロソフトWindowsに対して当てはまりません。
つまり、pg_hba.confに対する変更は、ただちにそれ以降の新しい接続に反映されます。
   



pg_hba.confに対する変更を事前にテストする際、あるいはそのファイルをロードしても期待していた結果が得られなかった場合には、システムビューpg_hba_file_rulesが役に立ちます。
そのビューのerrorフィールドがNULLでない行は、そのファイルの該当行に問題があることを示しています。
  


pg_hba.confファイルの一般的な書式は、1行につき1つのレコードというレコードの集合です。
空行はコメント用の#文字以降の文字と同じく無視されます。
行の最後をバックスラッシュで終えることによりレコードを次の行に継続できます。（行の最後を除き、バックスラッシュは特別扱いされません。）
レコードはスペースもしくはタブ、もしくはその両方で区切られた、複数のフィールドで構成されています。
フィールドには、フィールド値が二重引用符付きの場合空白文字を含むことができます。
データベース、ユーザもしくはアドレスフィールド内のキーワード（例：allまたはreplication）の一つを引用するとその特別な意味が失われ、その名称のデータベース、ユーザもしくはホストと一致するようになります。
引用テキストあるいはコメントもバックスラッシュで行を継続できます。
  


それぞれの認証レコードは接続形式、（接続形式に対して意味を持つのであれば）クライアントのIPアドレス範囲、データベースの名前、ユーザ名およびこれらのパラメータに一致する接続で使用される認証方法を指定します。
接続形式、クライアントアドレス、要求されたデータベース、およびユーザ名に一致する最初のレコードが認証処理に使用されます。
「失敗時の継続」や、 あるいは「バックアップ」はありません。
これは、もしあるレコードが選択されて認証に失敗した場合、後続のレコードは考慮されないということです。
どのレコードも一致しない時はアクセスが拒否されます。
  


各レコードは、includeディレクティブまたは認証レコードにできます。
includeディレクティブは、追加レコードを含むインクルード可能なファイルを指定します。
レコードは、includeディレクティブの代わりに挿入されます。
includeディレクティブには以下の2つのフィールドのみが含まれます。include、include_if_existsまたはinclude_dirディレクティブと、インクルードするファイルまたはディレクトリです。
ファイルまたはディレクトリは、相対または絶対パスにでき、二重引用符で囲むことができます。
include_dir形式の場合、.で始まらず.confで終わるすべてのファイルがインクルードされます。
インクルードディレクトリ内の複数のファイルは、ファイル名の順(Cロケールの規則に従って、すなわち、文字より先に数字、小文字より先に大文字)に処理されます。
  


レコードはいくつかの形式があります。


local               database  user  auth-method [auth-options]
host                database  user  address     auth-method  [auth-options]
hostssl             database  user  address     auth-method  [auth-options]
hostnossl           database  user  address     auth-method  [auth-options]
hostgssenc          database  user  address     auth-method  [auth-options]
hostnogssenc        database  user  address     auth-method  [auth-options]
host                database  user  IP-address  IP-mask      auth-method  [auth-options]
hostssl             database  user  IP-address  IP-mask      auth-method  [auth-options]
hostnossl           database  user  IP-address  IP-mask      auth-method  [auth-options]
hostgssenc          database  user  IP-address  IP-mask      auth-method  [auth-options]
hostnogssenc        database  user  IP-address  IP-mask      auth-method  [auth-options]
include             file
include_if_exists   file
include_dir         directory



フィールドの意味は以下のようになっています。

   
	local
	

このレコードはUnixドメインソケットを使用する接続に対応します。
この種類のレコードを使用しないと、Unixドメインソケット経由の接続は拒否されます。
      

	host
	

このレコードは、TCP/IPを使用した接続に対応します。
hostレコードは、SSLまたは非SSL接続、GSSAPI暗号化、非GSSAPI暗号化のいずれかに対応します。
      
注記


サーバのデフォルトの動作は、ローカルループバックアドレスであるlocalhostのみTCP/IP接続を監視しています。
よってサーバにおいてlisten_addressesパラメータが適切な値に設定された状態で起動されていない限り、リモートのTCP/IP接続はできません。
      


	hostssl
	

このレコードは、接続がSSLで暗号化されている場合にのみTCP/IPネットワークを使用する接続に対応します。
      


このオプションを使用するためには、サーバはSSLサポートができるように構築されていなければいけません。
また、 SSLはsslパラメータを設定することによりサーバの起動時に有効になっていなくてはなりません（詳細は「SSLによる安全なTCP/IP接続」を参照してください）。
そうでなければ、どのような接続にも対応していないという警告が表示されることを除き、hostsslレコードは無視されます。
      

	hostnossl
	

このレコードは、hostsslと反対の動作で、SSLを使用していないTCP/IPの接続のみに対応します。
      

	hostgssenc
	

このレコードは、TCP/IPを使用した接続に対応しますが、GSSAPI暗号化を使用して接続が行われた場合に限ります。
      


このオプションを使用するためには、サーバはGSSAPIサポートができるように構築されていなければいけません。
そうでなければ、どのような接続にも対応していないという警告が表示されることを除き、hostgssencレコードは無視されます。
      

	hostnogssenc
	

このレコードは、hostgssencとは反対の動作で、GSSAPI暗号化を使用していないTCP/IPの接続のみに対応します。
      

	database
	

このレコードで対応するデータベース名を指定します。
all という値は、全てのデータベースと対応することを指定します。
sameuserという値は、要求されたデータベースが要求ユーザと同じ名前を持つ場合にレコードが対応することを指定します。
sameroleという値は、要求ユーザが要求されたデータベースと同じ名前のロールのメンバでなければならないことを指定します。
（以前はsamegroupと書いていましたが、sameroleと記述してください。）
スーパーユーザは、直接的であれ間接的であれ、明示的にsameroleのメンバでない限りsameroleのメンバとはみなされません。
また、スーパーユーザであるからといってsameroleのメンバとはみなされません。
replicationという値は、もし物理レプリケーション接続が要求された場合にレコードが一致することを指定します。
しかし、論理レプリケーションによる接続には一致しません。
物理レプリケーション接続は特定のデータベースを指定しないのに対し、論理レプリケーション接続は特定のデータベースを指定することに注意してください。
それ以外の場合には、特定のPostgreSQL™データベースの名前または正規表現になります。
データベースの名前や正規表現はカンマで区切ることで複数指定できます。
      


データベース名がスラッシュ(/)で始まる場合、名前の残りの部分は正規表現として扱われます。
（PostgreSQL™の正規表現構文の詳細については、「正規表現の詳細」を参照してください。）
      


データベース名や正規表現を含む別のファイルを、そのファイル名の前に@を付けることで指定できます。
      

	user
	

このレコードで対応するデータベースユーザ名を指定します。
allという値は、全てのユーザが対応することを指定します。
それ以外の場合には特定のデータベースユーザの名前、（スラッシュ(/)で始まる場合には）正規表現、もしくは+で始まるグループ名のいずれかになります。
（PostgreSQL™ではユーザとグループの明確な区別がないことを思い出してください。
+のマークは実のところ、「このロールの直接的もしくは間接的なメンバのどちらかに一致していること」を意味しています。
一方、+のマークがない名前はその特定のロールにのみ一致します。）
このため、スーパーユーザは、直接的であれ間接的であれ明示的にロールのメンバである場合にのみ、ロールのメンバとみなされます。
スーパーユーザであるからといってロールのメンバとはみなされません。
ユーザ名や正規表現は、カンマで区切ることで複数指定できます。
      


ユーザ名がスラッシュ(/)で始まる場合、名前の残りの部分は正規表現として扱われます。
（PostgreSQL™の正規表現構文の詳細については、「正規表現の詳細」を参照してください。）
      


ユーザ名や正規表現を含む別のファイルを、そのファイル名の前に@を付けることで指定できます。
      

	address
	

このレコードに対応しているクライアントマシンのアドレス。
このフィールドはホスト名、IPアドレスの範囲、もしくは下記の特別なキーワードの1つを含んでいます。
      


IPアドレスの範囲は、範囲の開始アドレス、続いてスラッシュ(/)とCIDRマスクの長さという標準の数値表記で指定されます。
CIDRマスク長とは、クライアントIPアドレスが一致しなければならない、高位のビット数を表すものです。
指定するIPアドレスのこれより右側のビットには、0を指定しなければなりません。
IPアドレスと/、およびCIDRマスク長の間に空白を入れてはいけません。
      


典型的なIPv4アドレス範囲の例は、単一のホストでは172.20.143.89/32、小規模ネットワークでは172.20.143.0/24、大規模ネットワークでは10.6.0.0/16のようなものです。
IPv6アドレスの範囲は、単一のホストでは::1/128(この場合はIPv6ループバックアドレス)、小規模ネットワークではfe80::7a31:c1ff:0000:0000/96のようなものです。
0.0.0.0/0は全てのIPv4アドレスを意味します。また、::0/0は全てのIPv6アドレスを意味しています。
単一ホストを指定するには、IPv4では32、IPv6では128というマスク長を使用してください。
ネットワークアドレスでは末尾の0を省略できません。
      


IPv4書式で与えられたエントリは、IPv4接続のみに対応し、IPv6書式で与えられた項目は、たとえそのアドレスがIPv6内のIPv4の範囲内であったとしてもIPv6接続のみに対応します。
      


どのIPアドレスにも一致するようにallと書くこともできますし、
サーバ自身のIPアドレスのいずれかにも一致するようにsamehostと書くこともできます。
もしくは、サーバが直接接続されているサブネット内のアドレスのいずれかにも一致するようにsamenetと書くことができます。
      


もし、ホスト名（IPアドレスの範囲ではない場合の全て、もしくはホスト名として処理される特別なキーワード）が指定されている場合は、その名前は、クライアントのIPアドレスの逆引き名前解決の結果と比較されます（例えば、もしDNSが使用されている場合は逆引きDNS検索により解決されます）。
ホスト名の比較は、大文字小文字が区別されません。
もし一致するものがあった場合は、解決された、どのアドレスもクライアントのIPアドレスと等しいか否かをチェックするために（例えば、正引きDNS検索のような）ホスト名の正引き名前解決が実行されます。
もし正引き、逆引きの両方で一致した場合は、エントリは一致するものとみなされます。
（pg_hba.conf内で使用されているホスト名は、クライアントのIPアドレスのアドレス-名前解決が返すホスト名の1つでなければいけません。
もしそうでなければこの行は一致しません。
1つのIPアドレスを複数のホスト名に関連付けるホスト名データベースもありますが、IPアドレスの解決を要求された場合にオペレーティングシステムは1つのホスト名のみを返します。）
      


ドット（.）で始まるホスト名の特定は実際のホスト名のサフィックスに一致します。
よって、.example.comは、foo.example.comに一致します
（example.comだけでは一致しません）。
      


ホスト名がpg_hba.conf内で指定されている場合、名前解決が適度に早いことを
確かめてください。
nscdのようなローカル名前解決のキャッシュを設定すると便利です。
また、クライアントのIPアドレスの代わりにホスト名がログで見られるように、log_hostnameの
設定パラメータを有効化することもできます。
      


これらのフィールドはlocalレコードに適用されません。
      
注記


時折、ユーザは、クライアントのIPアドレスの逆引きを含む2つの名前解決が必要になる、というような一見複雑に見える方法でなぜホスト名が扱われるのか不思議に思うことがあります。
このため、クライアントの逆引きDNSエントリが設定されていなかったり、いくつかの望ましくないホスト名を生成する場合にこの機能の使用が複雑になります。
これは主に効率のために行われます。このように、接続要求では最大2つのリゾルバの検索、1つは逆引き、1つは正引き、が必要になります。
もしリゾルバにおいて、アドレスに問題があった場合、クライアントのみの問題となります。
正引き検索のみを行うような実装を仮に行っていると、全ての接続要求においてpg_hba.conf内に記載された全てのホスト名を解決しなくてはいけなくなります。
これは、多くの名前が列挙されていた場合にかなり遅くなります。
また、リゾルバにおいて1つのホスト名に問題があった場合、全員の問題となってしまいます。
       


さらに、逆引き検索はサフィックス一致の機能を実装するために必要です。というのも実際のクライアントのホスト名は
ホスト名がパターンに対して一致するために、知られる必要があるためです。
       


このふるまいは、Apache HTTPサーバやTCPラッパーのような他のよくあるホスト名ベースのアクセス制御の実装と
一致していることに注意してください。
       


	IP-address, IP-mask
	

この2つのフィールドはIP-address/mask-length表記の代替として使用可能です。
マスク長を指定する代わりに、実際のマスクを分離した列で指定します。
例えば255.0.0.0はIPv4のCIDRマスク長8を意味し、255.255.255.255はCIDRマスク長32を意味しています。
      


これらのフィールドはlocalレコードに適用されません。
      

	auth-method
	

接続がこのレコードに一致する場合に使用する認証方式を指定します。
使用できる選択肢は以下にまとめていますが、詳しくは「認証方式」を参照してください。
すべてのオプションは小文字で、大文字小文字の区別が認識されます。ですから、ldapのような頭文字であっても小文字で指定しなければなりません。

       
	trust
	

接続を無条件で許可します。
この方式は、PostgreSQL™データベースサーバに接続できる全てのユーザが、任意のPostgreSQL™ユーザとしてパスワードや他の認証なしでログインすることを許可します。
詳細は「Trust認証」を参照してください。
         

	reject
	

接続を無条件に拒否します。
特定のホストをあるグループから「除外」するために便利です。
例えば、1行のrejectは特定のホストが接続することを拒否します。一方、
後ろの行では特定のネットワーク内の残りのホストが接続することを許可します。
         

	scram-sha-256
	

ユーザのパスワードを検証するためにSCRAM-SHA-256認証を実行します。
詳細は「パスワード認証」をご覧ください。
         

	md5
	

ユーザのパスワードを検証するために、SCRAM-SHA-256あるいはMD5認証を実行します。
詳細は「パスワード認証」を参照してください。
         
警告


MD5で暗号化されたパスワードの使用は非推奨となり、将来のPostgreSQL™のリリースで削除されます。
他のパスワードタイプへの移行の詳細については、「パスワード認証」を参照してください。
          


	password
	

クライアントに対して認証時に平文のパスワードを要求します。
パスワードはネットワークを通じて普通のテキスト形式で送られますので、信頼されていないネットワークでは使用しないでください。
詳細は「パスワード認証」を参照してください。
         

	gss
	

ユーザの認証にGSSAPIを使用します。
これはTCP/IP接続を使用するときのみ使用可能です。
詳細は「GSSAPI認証」を参照してください。
GSSAPI暗号化と組み合わせて使用できます。
         

	sspi
	

ユーザの認証にSSPIを使用します。
これはWindowsを使用するときのみ使用可能です。
詳細は「SSPI認証」を参照してください。
         

	ident
	

クライアントのオペレーティングシステムにおけるユーザ名をクライアント上のidentサーバに尋ねてユーザ名が要求されたデータベースユーザ名と一致するか検査します。
ident認証は、TCP/IP接続でのみ使用可能です。ローカル接続が指定されている場合は、peer認証が代わりに使用されます。
詳細は「Ident認証」を参照してください。
         

	peer
	

クライアントのオペレーティングシステムにおけるユーザ名をオペレーティングシステムから取得し、ユーザ名が要求されたデータベースユーザ名と一致するか検査します。
これはローカル接続の時にのみ使用可能です。詳細は「Peer認証」を参照してください。
         

	ldap
	

LDAPサーバを使用して認証します。
詳細は「LDAP認証」を参照してください。
         

	radius
	

RADIUSサーバを使用して認証します。
詳細は「RADIUS認証」を参照してください。
         

	cert
	

SSLクライアント証明書を使用して認証します。
詳細は「証明書認証」を参照してください。
         

	pam
	

オペレーティングシステムによって提供されるPAM（Pluggable Authentication Modules）サービスを使用した認証です。
詳細は「PAM認証」を参照してください。
         

	bsd
	

オペレーティングシステムによって提供されたBSD認証サービスを使用して認証します。
詳細は「BSD認証」を参照してください。
         

	oauth
	

サードパーティのOAuth 2.0アイデンティティプロバイダの使用を認可します。オプションで認証もします。
詳細は、「OAuth認可／認証」を参照してください。
         





      

	auth-options
	

auth-methodフィールドの後ろに、
認証方式のオプションを指定する、name=valueの形式のフィールドが存在する可能性があります。
どのオプションがどの認証方式に使用できるのか、についての詳細は以下で説明します。
      


以下に示された方式特定のオプションに加えて、方式に依存しないのひとつの認証オプションclientcertがあり、hostsslレコードで指定できます。
このオプションは、verify-caまたはverify-fullに設定できます。
どちらのオプションも、クライアントに有効な（信頼された）SSL証明書の提出を要求し、verify fullは、証明書のcn（Common Name）がユーザ名または適用可能なマッピングと一致することをさらに強制します。
この動作はcert認証方式（詳細は「証明書認証」を参照してください）に似ていますが、クライアント証明書の検証をhostsslエントリをサポートする任意の認証方式と組み合わせることができます。
      


クライアント証明書認証を使用するすべてのレコード（つまり、cert認証方式あるいはclientcertオプションを使用している）では、clientnameオプションを使ってクライアント証明書資格情報のどの部分を照合するかを指定できます。
このオプションは2つの値のうち1つを持つことができます。
デフォルトであるclientname=CNを指定すると、ユーザ名は証明書のCommon Name (CN)と照合されます。
その代わりにclientname=DNを指定すると、ユーザ名は証明書のDistinguished Name (DN)全体と照合されます。
このオプションはおそらくユーザ名マップとともに使うのが最善です。
RFC 2253のDNと比較されます。
この形式のクライアント証明書のDNを参照するには以下のようにしてください。


openssl x509 -in myclient.crt -noout -subject -nameopt RFC2253 | sed "s/^subject=//"



このオプションを使ってDNに対して正規表現を使った比較を行う際にはとりわけ注意が必要です。
      

	include
	

この行は、指定したファイルの内容に置き換えられます。
      

	include_if_exists
	

ファイルが存在する場合、この行は指定したファイルの内容に置き換えられます。
存在しない場合は、ファイルがスキップされたことを示すメッセージが記録されます。
      

	include_dir
	

ファイル名が.で始まらず、.confで終わる場合、この行は、そのディレクトリで見つかったすべてのファイルの内容に置き換えられ、ファイル名の順(Cロケールの規則に従って、すなわち、文字より先に数字、小文字より先に大文字)に処理されます。
      




  


@式により含められるファイルは、空白文字あるいはカンマのどちらかで区切られた名前の列挙として読み込まれます。
コメントは、pg_hba.confと同様に#から始まります。
また、@式を入れ子にすることもできます。
@の後のファイル名が絶対パスでない限り、参照元ファイルが存在するディレクトリから見た相対パスであるとみなされます。
  


pg_hba.confレコードは接続が試みられる度に順番に検査されますので、レコードの順序はとても大切です。
典型的には、始めの方のレコードには厳しい接続照合パラメータと緩い認証方式があるのに対し、終わりの方のレコードにはより緩い照合パラメータとより厳しい認証方式があります。
例えば、ローカルTCP接続ではtrust認証方式、リモートTCP接続に対してはパスワードを要求したいとします。
この場合、広範囲にわたって許可されるクライアントのIPアドレスに対するパスワード認証を指定するレコードの前に127.0.0.1からの接続に対するtrust認証指定のレコードが置かれなければなりません。
  
ヒント


特定のデータベースに接続するためには、ユーザはpg_hba.confによる検査を通過しなければならない他、そのデータベースに対するCONNECT権限を持たなければなりません。
どのユーザがどのデータベースに接続できるかを制限したければ、通常、pg_hba.conf項目に規則を追加するよりも、CONNECT権限の付与・削除を行う方が簡単です。
   



pg_hba.confファイルの例をいくつか例20.1「pg_hba.confの項目の例」に示します。
各種認証方式の詳細については次節で説明します。
  
例20.1 pg_hba.confの項目の例


# ローカルシステム上の全てのユーザが、任意のデータベースに
# 任意のデータベースユーザ名でUnixドメインソケットを使用して接続することを許可
# （ローカル接続ではデフォルト）。
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
local   all             all                                     trust


# 上記と同じことをローカルループバックのTCP/IP接続を使って行う。
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
host    all             all             127.0.0.1/32            trust


# 上記と同じだが、独立したネットマスク列を使用する
#
# TYPE  DATABASE        USER            IP-ADDRESS      IP-MASK             METHOD
host    all             all             127.0.0.1       255.255.255.255     trust


# IPv6で上記と同じことを行う。
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
host    all             all             ::1/128                 trust


# ホスト名を使用して上記と同じことを行う（通常はIPv4とIPv6の両方をカバーします）。
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
host    all             all             localhost               trust


# DATABASEに対して正規表現を使って同じことを行う。（「db1234」や「db12」のような）
# 「db」で始まり、2から4個の数字を使った番号で終わるデータベースへ接続することを許可。
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
host    "/^db\d{2,4}$"  all             localhost               trust


# IPアドレス192.168.93.xを持つ全てのホストの全てのユーザが、
# identがその接続について報告するのと同じユーザ名（典型的にはオペレーティングシステムのユーザ名）で
# データベース「postgres」へ接続することを許可。
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
host    postgres        all             192.168.93.0/24         ident


# ユーザのパスワードが正しく入力された場合、
# ホスト192.168.12.10からのどのようなユーザでもデータベース「postgres」へ接続することを許可。
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
host    postgres        all             192.168.12.10/32        scram-sha-256


# ユーザのパスワードが正しく指定された場合は、
# example.comドメイン内のホストからの、どのユーザからのデータベース接続も許可する。
#
# Require SCRAM authentication for most users, but make an exception
# for user 'mike', who uses an older client that doesn't support SCRAM
# authentication.
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
host    all             mike            .example.com            md5
host    all             all             .example.com            scram-sha-256


# 先行する「host」行がなければ、これら3行によって、
# 192.168.54.1からの接続の試みを全て拒否（この項目が最初に照合されるため）、
# ただし、インターネット上の他の全ての場所からのGSSAPI接続は許可。
# ゼロマスクは、ホストIPアドレスのビットが考慮されずに
# どのホストでも照合できることになる。
# 暗号化されていないGSSAPI接続（「hostgssenc」は暗号化されたGSSAPI接続
# にのみに一致するので、3行目までは「通過」）は許可されるが、192.168.12.10からのみ許可。
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
host    all             all             192.168.54.1/32         reject
hostgssenc all          all             0.0.0.0/0               gss
host    all             all             192.168.12.10/32        gss


# 192.168.x.xホストからのユーザが、ident検査に通る場合、
# どのデータベースにでも接続を許可。もし、例えば、identが「bryanh」と認定し
# 「bryanh」がPostgreSQLのユーザ「guest1」として
# 接続要求を出す場合、「bryanh」は「guest1」として接続が許可されるという
# マップ「omicron」に対する記載事項がpg_ident.confにあれば接続を許可。
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
host    all             all             192.168.0.0/16          ident map=omicron


# ローカル接続に対して、以下のたった4行しか記載がない場合、ローカルユーザは
# 自分のデータベース（データベースユーザ名と同じ名前のデータベース）にのみ接続許可。
# ただし、名前が「helpdesk」で終わるユーザ、管理者、ロール「support」のメンバは
# 全てのデータベースに接続可能。$PGDATA/adminsファイルは管理者のリストを含む。
# 全ての場合にパスワードが必要。
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
local   sameuser        all                                     md5
local   all             /^.*helpdesk$                           md5
local   all             @admins                                 md5
local   all             +support                                md5


# 上記の最後の2行は1つの行にまとめることが可能。
local   all             @admins,+support                        md5


# データベースの列にはリストやファイル名も使用できる。
local   db1,db2,@demodbs  all                                   md5





ユーザ名マップ





identやGSSAPIといった外部の認証システムを使用する場合は、接続を開始したオペレーティングシステムのユーザ名が接続先のデータベースユーザ（ロール）名と同じであるとは限りません。
ユーザ名マップを使用するには、pg_hba.conf内でmap=map-nameオプションを指定してください。
このオプションは、外部ユーザ名を受け取るすべての認証方式をサポートしています。
異なる接続に対して、異なるマップを必要とする可能性があります。そのため、それぞれの接続に対して使用されるマップを指定するために、使用するマップの名称はpg_hba.conf内のmap-nameパラメータで指定されます。
  


ユーザ名マップはidentマップファイルに定義されています。デフォルトではファイル名はpg_ident.confで、クラスタのデータディレクトリに保存されています。
（マップファイルを他の場所にも保存できますが、詳細はident_file設定パラメータを参照してください。）
identマップファイルは以下のような一般的な形式の行を含んでいます。


map-name system-username database-username
include file
include_if_exists file
include_dir directory



コメント、空白、行継続はpg_hba.confと同様に扱われます。 map-nameは
pg_hba.conf内で参照される任意の名称です。
他の2つのフィールドは、どのオペレーティングシステムユーザが、どのデータベースユーザに接続することを許可されているかを指定しています。
同じmap-nameは、1つのマップ内でユーザをマップするために繰り返し使用されます。
  


pg_hba.confに関しては、同じ規則に従って、このファイルの行にincludeディレクティブを書くことができます。
  


pg_ident.confファイルは起動時と、メインサーバのプロセスが
SIGHUPを受信したときに読み込まれます。
起動しているシステムで編集した場合は、ファイルを再読み込みするために（pg_ctl reloadの使用、SQL関数pg_reload_conf()の呼び出し、またはkill -HUPを使用して）postmasterにシグナルを送信する必要があります。
  


pg_ident.confに対する変更を事前にテストする際、あるいはそのファイルをロードしても期待していた結果が得られなかった場合には、システムビューpg_ident_file_mappingsが役に立ちます。
そのビューのerrorフィールドがNULLでない行は、そのファイルの該当行に問題があることを示しています。
  


どれだけのデータベースユーザがオペレーティングシステムのユーザに対して一致しているか、またその逆に対しても制限はありません。
よってマップ内のエントリは、それらが等しいというよりもむしろ「このオペレーティングシステムのユーザはこのデータベースユーザとして接続する」という意味になります。
もし外部の認証システムから得られたユーザ名と接続要求を行ったデータベースユーザ名が対となるエントリがマップ内にある場合は、接続は許可されます。
値allをdatabase-usernameとして使用して、system-usernameが一致する場合、このユーザは既存のデータベースユーザのいずれかとしてログインできるように指定できます。
allを引用符で囲むと、キーワードはその特別な意味を失います。
  


database-usernameが+文字で始まる場合、オペレーティングシステムユーザはそのロールに属するユーザとしてログインできます。これは+で始まるユーザ名のpg_hba.confでの扱い方と同様です。
したがって、+マークは「このロールの直接または間接的なメンバであるロールのいずれかに一致した」ことを意味し、+マークのない名前はその特定のロールにのみ一致します。
+で始まるユーザ名を引用符で囲むと、+はその特別な意味を失います。
  


もしsystem-usernameフィールドがスラッシュ（/）で始まっている場合は、このフィールドの残りは正規表現として扱われます。
（PostgreSQL™の正規表現構文の詳細については「正規表現の詳細」を参照してください。）
正規表現は単一キャプチャや括弧を使用した表現を含みます。
検索に一致したシステムユーザ名の一部は、database-usernameフィールドで\1（バックスラッシュ1）として参照できます。
これにより、1行で複数のユーザ名のマップが可能となり、簡単な構文で特に使いやすくなります。例を以下に示します。


mymap   /^(.*)@mydomain\.com$      \1
mymap   /^(.*)@otherdomain\.com$   guest



上記のエントリでは、@mydomain.comで終わるシステムユーザ名のドメイン部分を削除して、@otherdomain.comで終わるシステムユーザ名のユーザがguestとしてログインすることを許可します。
\1を含むdatabase-usernameを引用符で括っても、\1はその特別な意味を失いません。
  


database-usernameフィールドがスラッシュ(/)で始まる場合、フィールドの残りは正規表現として扱われます。
database-usernameフィールドが正規表現の場合、その中で\1を使用してsystem-usernameフィールドからキャプチャを参照することはできません。
  
ヒント


デフォルトでは正規表現は、文字列の一部を一致させることに注意してください。
上記の例で示したように、システムユーザ名全体を強制的に一致させるために^や$を使用すると有用です。
   



pg_ident.confファイルは、pg_hba.confファイルと結合して使用されます。
例20.2「pg_ident.confファイルの例」に例20.1「pg_hba.confの項目の例」の例があります。
この例では、192.168のネットワーク内のマシンにログインしている、
オペレーティングシステムのユーザ名でbryanh、ann、robert以外の誰もが、アクセスを許可されていません。
UnixユーザrobertはPostgreSQL™ユーザであるbobとして接続しようとした時のみ
アクセス可能で、 robertや他の名前ではアクセスできません。
annはannとして接続した時のみ許可され、bryanhはbryanh自身もしくはguest1として
アクセスが可能となります。
  
例20.2 pg_ident.confファイルの例

# MAPNAME       SYSTEM-USERNAME         PG-USERNAME

omicron         bryanh                  bryanh
omicron         ann                     ann

# bobはこれらのマシン内でrobertというユーザ名を持っています。
omicron         robert                  bob

# bryanhはguest1としても接続可能です。
omicron         bryanh                  guest1




認証方式





PostgreSQL™では、様々なユーザ認証方式を提供しています。

   
	

trust認証は、ユーザが本人であることを単純に信頼します。
     

	

パスワード認証は、ユーザにパスワードが必要であることを示します。
     

	

GSSAPI認証は、GSSAPI互換のセキュリティライブラリに依存します。通常、これはKerberosまたはMicrosoft Active Directoryサーバなどの認証サーバにアクセスするために使用されます。
     

	

SSPI認証は、GSSAPIに似たWindows固有のプロトコルを使用します。
     

	

ident認証は、クライアントのマシン上の「Identification Protocol」 (RFC 1413)サービスに依存します。
（ローカルのUnixドメインソケット接続では、これはpeer認証として扱われます。）
     

	

peer認証は、オペレーティングシステムの機能に依存して、ローカル接続の相手側のプロセスを識別します。
これはリモート接続ではサポートされません。
     

	

LDAP認証は、LDAP認証サーバに依存します。
     

	

RADIUS認証は、RADIUS認証サーバに依存します。
     

	

証明書認証は、SSL接続を必要とし、送信されるSSL証明書をチェックしてユーザを認証します。
     

	

PAM認証は、PAM(Pluggable Authentication Modules)ライブラリに依存します。
     

	

BSD認証は、BSD認証フレームワーク（現在はOpenBSDでのみ利用可能）に依存します。
     

	

OAuth認可/認証は、外部のOAuth 2.0アイデンティティプロバイダに依存します。
     




  


peer認証は、通常ローカル接続に推奨されますが、trust認証で十分な場合もあります。
パスワード認証は、リモート接続の最も簡単な選択肢です。
その他のオプションはすべて、何らかの外部セキュリティ基盤（通常は、認証サーバやSSL証明書を発行するための認証局）を必要とするか、またはプラットフォーム固有のものです。
  


以下の節では、これらの認証方式についてそれぞれ詳しく説明します。
  

Trust認証





trust認証が指定されるとPostgreSQL™は、サーバに接続できる全ての人に対して
（データベーススーパーユーザさえも）その人が指定する任意のデータベースユーザ名としてのアクセス権限が付与されていると想定します。
当然ながらdatabaseとuser列にある制限は適用されます。
この方式はサーバに接続する際に適切なオペレーティングシステムレベルの保護が掛けられている場合にのみ使用すべきです。
   


trust認証はユーザが1人のみのワークステーション上でローカル接続を行う場合に適切で非常に便利です。
複数ユーザが存在するマシン上では一般的に適切ではありません。
とは言っても、ファイルシステムの許可属性を使ってサーバのUnixドメインソケットファイルへのアクセスを制限すればtrust認証を複数ユーザのマシン上で使用することも可能です。
その方法は、「接続と認証」に記載されているようにunix_socket_permissions（およびunix_socket_groupパラメータの可能性もあります）パラメータを設定します。
もしくは、unix_socket_directories設定パラメータでソケットファイルをそれに相応しく制限されているディレクトリにします。
   


ファイルシステムの許可を設定することが役に立つのはUnixソケット接続だけです。
ローカルのTCP/IP接続は、ファイルシステムにより制限はされていません。
よってローカルでファイルシステムの許可を使用したい場合はpg_hba.confから
host ... 127.0.0.1 ...の行を削除するか、trust認証とは異なる方法に変更する必要があります。
   


TCP/IP接続におけるtrust認証は、trustを指定するpg_hba.confの行によってサーバに接続を許可される全てのマシン上の全てのユーザを信用（trust）できる場合にのみ相応しいものです。
localhost（127.0.0.1）以外からのTCP/IP接続にtrust認証を用いる理由はほとんど見当たりません。
   

パスワード認証





複数のパスワードに基づく認証方式があります。
これらは似たような方法で使用されますが、ユーザのパスワードをサーバに格納する方法と、クライアントによって提供されたパスワードが接続を通じて送信される方法が異なります。
   
	scram-sha-256
	

scram-sha-256方式は、RFC 7677に記述された方法でSCRAM-SHA-256認証を実行します。
これはチャレンジ／レスポンス方式のひとつであり、信頼できない接続におけるパスワードの漏洩を防ぎ、安全だと見なされる暗号学的ハッシュ形式でパスワードをサーバに格納するのを支援します。
      


これは、現在実装されている認証方式の中では最も安全ですが、古いクライアントライブラリではサポートされていません。
      

	md5
	

md5方式は、独自のより安全性の低いチャレンジ／レスポンス機構を使います。
パスワードの漏洩を防ぎ、平文でパスワードをサーバに格納するのを避けることができますが、攻撃者がサーバからパスワードハッシュを盗むことを防ぐことはできません。
また、MD5ハッシュアルゴリズムは、昨今では強い意志をもった攻撃に対して安全ではないと考えられています。
      


md5方式からより新しいSCRAM方式への移行を容易にするため、pg_hba.confでmd5が指定されているにもかかわらず、パスワードがSCRAM（下記参照）で暗号化されている場合には、自動的にSCRAMに基づく認証が代わりに使用されます。
      
警告


MD5で暗号化されたパスワードの使用は非推奨となり、将来のPostgreSQL™のリリースで削除されます。
詳細については、以下のテキストを参照して、別のパスワードタイプへの移行を行ってください。
       


	password
	

password方式は、パスワードを平文で送信するので、パスワード「盗聴」攻撃に対して脆弱です。
可能ならば、常に避けるようにしてください。
しかしながら、接続がSSL暗号で保護されていれば、passwordは安全に使用できます。
（もっとも、SSLの利用に依存するのであれば、SSL証明書認証がより良い選択かもしれません。）
      





PostgreSQL™データベースパスワードはオペレーティングシステムのユーザパスワードとも別のものです。
各データベースユーザのパスワードはpg_authidシステムカタログテーブルの中に格納されます。
CREATE ROLE foo WITH LOGIN PASSWORD 'secret'のように、パスワードはSQLコマンドCREATE ROLE(7)とALTER ROLE(7)を使って管理できます。
あるいは、psqlの\passwordコマンドでも管理できます。
もしユーザに対してパスワードが設定されない場合、格納されるパスワードはNULLとなり、そのユーザのパスワード認証は常に失敗します。
   


パスワードにもとづく異なる認証方式が利用可能かどうかは、サーバ上でユーザのパスワードがどのように暗号化（正確には、ハッシュ化）されるのかに依存します。
これは、パスワードが設定されたときに、設定パラメータのpassword_encryptionによって制御されます。
パスワードがscram-sha-256によって暗号化されていれば、認証方式のscram-sha-256とpasswordで利用できます。
（ただし、後者の場合にはパスワードの転送が平文になります。）
前述のように、ここで認証方式のmd5を指定すると、scram-sha-256方式に自動的に切り替わります。
パスワードがmd5で暗号化されていると、md5とpasswordでのみ使用されます。
（ここでも、後者の場合にはパスワードが平文で転送されます。）
  （以前のPostgreSQLのリリースでは、パスワードを平文で格納することをサポートしていました。
  これはもはや不可能です。）
現在格納されているパスワードのハッシュを確認するには、システムカタログpg_authidを参照してください。
   


既存のインストールにおいて、md5からscram-sha-256にアップグレードするには、すべてのクライアントライブラリが十分新しく、SCRAMをサポートをできることを確認してから、postgresql.confでpassword_encryption = 'scram-sha-256'を設定し、すべてのユーザに新しいパスワードを設定してもらい、pg_hba.confの認証方式をscram-sha-256に変更してください。
   

GSSAPI認証





GSSAPI™は、RFC 2743で定義されている安全な認証のための業界標準のプロトコルです。
PostgreSQL™は、GSSAPI™を認証、通信の暗号化、あるいはその両方のためにサポートしています。
GSSAPI™は、GSSAPIをサポートするシステムに自動認証（シングルサインオン）を提供します。
認証自体は安全です。
GSSAPI™暗号化、またはSSL暗号化を使用すると、データベース接続に沿って送信されるデータは暗号化されますが、それ以外の場合は暗号化されません。
   


GSSAPIサポートは、PostgreSQL™を構築する時に有効にしなければなりません。詳細は、17章ソースコードからインストールを参照してください。
   


GSSAPI™がKerberos™を使用しているとき、GSSAPI™は、servicename/hostname@realmという書式の標準のサービスプリンシパル名を使用します。
[訳注：プリンシパルとは大雑把に2つのものを指します。1つはサービスを受けるクライアントで、もう1つはサービスを提供するサーバアプリケーションです。どちらも、認証に関してはKerberosのKDCから見るとクライアントになります]
特定のインストールによって使用されるプリンシパル名はPostgreSQL™サーバでは決してエンコードされません。
そうではなくて、サーバが自身の識別を決定するために読み込むkeytabファイルで指定されます。
そのkeytabファイルに複数のプリンシパルが列挙されている場合は、サーバはそのうちのどれか一つを受け付けます。
サーバのrealm名は、サーバがアクセスできるKerberos設定ファイルで指定されたものが優先的に採用されます。
   


接続する際には、クライアントは接続しようとしているサーバのプリンシパル名を知っておかなければなりません。
プリンシパルのservicename部は通常postgresですが、libpqのkrbsrvname接続パラメータで選択できます。
hostname部はlibpqが接続要求されている完全修飾ホスト名です。
realm名はクライアントがアクセスできるKerberos設定ファイルで指定されているrealmです。
   


クライアントは、自身の識別目的でプリンシパル名も持ちます（このプリンシパルの有効なチケットも持っていなければなりません）。
認証にGSSAPI™を使うためには、クライアントプリンシパルはPostgreSQL™データベースユーザ名に紐付いていなければなりません。
pg_ident.conf設定ファイルを使ってプリンシパルをユーザ名にマップできます。
例えば、pgusername@realmを単なるpgusernameにマップできます。
もう1つの方法として、プリンシパル名全体username@realmをPostgreSQL™のロール名としてマッピングなしに使うこともできます。
   


PostgreSQL™はまたプリンシパルから単にrealmを外すことにより、クライアントプリンシパルをユーザ名にマップする方法をサポートしています。
この方法は後方互換のためにサポートされているものであり、異なるrealmから来た同じユーザ名の異なるユーザを区別することができませんので、使用しないことを強く薦めます。
この方法を有効にするにはinclude_realmを0に設定してください。
単純な単一realmの設定では、(プリンシパルのrealmがkrb_realmパラメータ内のものと正確に一致するか確認する)krb_realmパラメータと組み合わせることが安全です。
しかし、これはpg_ident.confで明示的なマッピングを指定するのに比べてあまり適切でない選択でしょう。
   


サーバのkeytabファイルの場所はkrb_server_keyfile設定パラメータで指定されます。
セキュリティ上の理由から、サーバがシステムkeytabファイルの読み込むことを許可するよりも、PostgreSQL™サーバ用に別のkeytabファイルを使うことをお薦めします。
サーバ鍵ファイルがPostgreSQL™サーバアカウントによって読み込み可能（そしてできれば読み込み専用で書き込み不可）であることを確認してください。
（「PostgreSQL™ユーザアカウント」を参照してください。）
   


keytabファイルはKerberosのソフトウェアを使って作成されます。詳細はKerberosのドキュメントを参照してください。
MIT Kerberosのkadminツールを使って行う例を以下に示します。


kadmin% addprinc -randkey postgres/server.my.domain.org
kadmin% ktadd -k krb5.keytab postgres/server.my.domain.org


   


次の認証オプションはGSSAPI™のためにサポートされています。
    
	include_realm
	

0に設定されている場合は、認証されたユーザプリンシパルからのrealm名が、ユーザ名マッピング（「ユーザ名マップ」）で渡されるシステムユーザ名から外されています。
krb_realmも一緒に使われていない限り、これは複数realm環境で安全ではありませんので、非推奨であり、主に後方互換性のために利用できます。
include_realmをデフォルト(1)にしたまま、プリンシパル名をPostgreSQL™ユーザ名に変換するためにpg_ident.confで明示的なマッピングを指定することをお薦めします。
       

	map
	

クライアントプリンシパルからデータベースユーザ名へのマッピングを許可します。
詳細は「ユーザ名マップ」を参照してください。
GSSAPI/Kerberosプリンシパルusername@EXAMPLE.COM（もしくは、あまり一般的ではありませんがusername/hostbased@EXAMPLE.COM）に対しては、もしinclude_realmが0に設定されていない限り、マッピングに使われるユーザ名はusername@EXAMPLE.COM（もしくはusername/hostbased@EXAMPLE.COM）です。
0に設定されている場合には、username（もしくはusername/hostbased）がマッピング時のシステムユーザ名です。
       

	krb_realm
	

realmをユーザプリンシパル名に一致するように設定します。
もしこのパラメータが設定されている場合はそのrealmのユーザのみが受け付けられます。
もしこれが設定されていない場合は、どのようなrealmのユーザも接続可能で、ユーザ名マッピングが設定されていれば、どれでも影響を受けます。
       




   


pg_hba.confのエントリによって異なるこれらの設定に加え、サーバ全体のkrb_caseins_users設定パラメータがあります。
これが真に設定されていれば、クライアントプリンシパルは大文字小文字を区別せずにユーザマップを照合します。
krb_realmが設定されている場合も、大文字小文字を区別せずに照合します。
   

SSPI認証





SSPI™は、シングルサインオンで安全な認証を行うためのWindows™の技術です。
PostgreSQL™は、negotiateモードにおいてSSPIを使用します。
これは、可能な場合はKerberos™を使用し、他の場合については自動的にNTLM™を使用することを意味しています。
SSPI™とGSSAPI™は、サーバ、クライアントとして相互運用します。例えば、SSPI™クライアントはGSSAPI™サーバに対して認証できます。
WindowsクライアントとサーバではSSPI™を、WindowsでないプラットフォームではGSSAPI™を使うことを勧めます。
   


Kerberos™認証を使用しているとき、
SSPI™は、GSSAPI™と同じように動作します。
詳細は「GSSAPI認証」を参照してください。
   


次の設定オプションはSSPI™のためにサポートされています。
    
	include_realm
	

0に設定されている場合は、認証されたユーザプリンシパルからのrealm名が、ユーザ名マッピング（「ユーザ名マップ」）で渡されるシステムユーザ名から外されています。
krb_realmも一緒に使われていない限り、これは複数realm環境で安全ではありませんので、非推奨であり、主に後方互換性のために利用できます。
include_realmをデフォルト(1)にしたまま、プリンシパル名をPostgreSQL™ユーザ名に変換するためにpg_ident.confで明示的なマッピングを指定することをお薦めします。
       

	compat_realm
	

1に設定されている場合は、（NetBIOS名としても知られている）ドメインのSAM互換名がinclude_realmオプションのために使用されます。
これはデフォルトの動作です。
0に設定されている場合は、ケルベロスユーザプリンシパル名からの真のrealm名が使用されます。
       


ドメインアカウント（これはドメインメンバシステムの仮想サービスアカウントを含みます）にて実行されているサーバで、SSPIで認証されているすべてのクライアントがドメインアカウントを使用している場合を除き、このオプションを無効にしないでください。
さもなくば認証は失敗します。
       

	upn_username
	

compat_realmと共にこのオプションが有効の場合、認証にはケルベロスUPNからユーザ名が使用されます。
無効（デフォルト）である場合は、SAM互換ユーザ名が使用されます。
デフォルトでは、これらの2つのユーザ名は新しいユーザアカウントでは同じものとなります。
       


明示的なユーザ名が指定されない場合、libpqはSAM互換名を使用することに注意してください。
libpqもしくはlibpqを基礎としたドライバを使用する場合は、このオプションを無効のままにするか、明示的なユーザ名を接続文字列にて指定してください。
       

	map
	

システムとデータベースユーザ名の間のマッピングを許可します。
詳細は「ユーザ名マップ」を参照してください。
SSPI/Kerberosプリンシパルusername@EXAMPLE.COM（もしくは、あまり一般的ではありませんがusername/hostbased@EXAMPLE.COM）に対しては、もしinclude_realmが0に設定されていない限り、マッピングに使われるユーザ名はusername@EXAMPLE.COM（もしくはusername/hostbased@EXAMPLE.COM）です。
0に設定されている場合には、username（もしくはusername/hostbased）がマッピング時のシステムユーザ名です。
       

	krb_realm
	

realmをユーザプリンシパル名に一致するように設定します。もしこのパラメータが設定されている場合は
realmのユーザのみが受け付けられます。もしこれが設定されていない場合は、
どのようなrealmのユーザも接続可能で、ユーザ名マッピングが設定されていれば、どれでも影響を受けます。
       




   

Ident認証





ident認証方式は、クライアントのオペレーティングシステムのユーザ名をidentサーバから入手し、それを（オプションのユーザ名マップとともに）許可されているデータベースのユーザ名として使用します。
これはTCP/IP接続のみサポートされます。
   
注記


identが（TCP/IPではない）ローカル接続で指定されている場合、
peer認証（「Peer認証」を参照してください）が代わりに使用されます。
    



次の設定オプションはidentのためにサポートされています。
    
	map
	

システムとデータベースユーザ名の間のマッピングを許可します。
詳細は「ユーザ名マップ」を参照してください。
       




   


「身元特定（Identification）プロトコル」についてはRFC 1413で説明されています。
事実上全てのUnix系のオペレーティングシステムの配布には、デフォルトでTCPポート113を監視するidentサーバが付属しています。
identサーバの基本的な機能は「どのユーザがポートXからの接続を開始し、自分のポートYへの接続を初期化したのか？」というような質問に答えることです。
PostgreSQL™は物理的な接続が確立された時にXとYの両方を認識するので、接続するクライアントのホスト上のidentサーバに応答指令信号を送ることができ、理論的には与えられたどの接続にもオペレーティングシステムユーザを決定できます。
   


この手続きの欠点は、クライアントの正直さに頼るところが大きいということです。
もしクライアントマシンが信用されない、もしくは危険に晒されている場合、攻撃者はポート113上でほぼどんなプログラムでも実行することができ、どのユーザ名でも好きに選んで返すことができます。
したがってこの認証方式は、各々のクライアントマシンが厳格な管理下にあり、データベースとシステム管理者が密接に連絡を取り合って動作している、外界から閉ざされたネットワークにのみ適していると言えます。
言い換えると、identサーバが稼働しているマシンを信用しなければなりません。
次の警告に注意してください。
    
	 	

      身元特定プロトコルは、認証、あるいはアクセス管理プロトコルには意図されていません。
     
	 
	 	--RFC 1413



   


いくつかの身元特定サーバは、ユーザ名を（マシンの管理者のみが知っているキーで）暗号化して返すような非標準のオプションを持っています。
このオプションは、身元特定サーバとPostgreSQL™とを一緒に使用する場合には、使用してはいけません。
理由はPostgreSQL™は、返された文字列を復号化して本当のユーザを決定するための手段を持っていないためです。
   

Peer認証





peer認証方式はカーネルからクライアント上のオペレーティングシステムのユーザ名を取得し、
それをデータベースユーザ名（オプションのユーザ名マップとともに）として使用することにより動作します。この方法はローカル接続でのみ使用可能です。
   


次の設定オプションはpeerのためにサポートされています。
    
	map
	

システムとデータベースのユーザ名のマッピングを許可します。詳細は「ユーザ名マップ」を参照してください。
       




   


peer認証はオペレーティングシステムが、getpeereid()関数、SO_PEERCREDのソケットパラメータ、もしくは同じような仕組みを提供しているときにのみ使用可能です。現状では、Linux、macOSを含むBSD系、そしてSolarisに含まれています。
   

LDAP認証





この認証方式はpasswordと似ていますが、パスワード確認にLDAPを使用する点が異なります。
LDAPはユーザの名前とパスワードの組み合わせの検証のみに使用されます。
そのため、LDAPを使用して認証を行うようにする前に、ユーザはデータベースに存在しなければなりません。
   


LDAP認証は2つのモードで動作します。1つ目のモードでは、それは単なるバインド・モードを呼び出すものですが、
サーバはprefix username suffixとして区別された名前にバインドします。
一般的に、prefixパラメータはActive Directory環境でのcn=やDOMAIN\を特定するために使用されます。
suffixは、Active Directory環境ではない場合でのDNの残りの部分を特定するために使用されます。
   


2つ目のモードでは、それはsearch+bindモードを呼び出すもので、サーバは最初にldapbinddnとldapbindpasswdで指定された、固定されたユーザ名とパスワードを使用してLDAPディレクトリにバインドします。
それからデータベースにログインしようとしているユーザを検索します。
もしユーザとパスワードが指定されていなかった場合は、ディレクトリに対して匿名でバインドします。
検索はldapbasednのサブツリーまで行われ、ldapsearchattributeで指定された属性に正確に一致するかどうかまで行われます。
この検索において、一度ユーザが見つかるとサーバはクライアントで指定されたパスワードを使用してこのユーザとして再度ディレクトリにバインドします。
これはそのログインが正しいかどうかを検証するためです。
このモードはApache mod_authnz_ldapおよびpam_ldapなどの他のソフトウェアと同じように、LDAP認証の仕組みで使用されるものと同じです。
この方法は、ユーザオブジェクトがディレクトリに配置されている場合に、かなりの柔軟性があります。
しかし、2つの追加のリクエストがLDAPサーバに対して行われることになります。
   


次の設定オプションは両方のモードで使用されます。
    
	ldapserver
	

接続するLDAPサーバの名称もしくはIPアドレス。空白で区切ることで複数のサーバを指定できます。
       

	ldapport
	

LDAPサーバに接続するためのポート番号。もしポートが指定されていない場合は
LDAPライブラリ内のデフォルトポート設定が使用されます。
       

	ldapscheme
	

ldapsに設定するとLDAPSを使用します。
これはいくつかのLDAPサーバの実装でサポートされている、SSL経由のLDAPを使用する非標準の方法です。
代替方法については、ldaptlsオプションを参照してください。
       

	ldaptls
	

1に設定すると、PostgreSQLとLDAPサーバ間の接続にTLSによる暗号化を使用します。
これはRFC 4513のStartTLS操作を使用します。
代替方法については、ldapschemeオプションも参照してください。
       




   


ldapschemeやldaptlsを使うときにはPostgreSQLサーバとLDAPサーバ間のトラフィックのみが暗号化されることに注意してください。
SSLがそこでも使用されていない限り、PostgreSQLサーバとPostgreSQLクライアントとの接続は、暗号化されません。
   


以下のオプションは単純バインド・モードのみで使用されます。
    
	ldapprefix
	

単純なバインド認証を行う場合のDNを生成する際にユーザ名の前に追加する文字列
       

	ldapsuffix
	

単純なバインド認証を行う場合のDNを生成する際にユーザ名の後に追加する文字列
       




   


以下のオプションはsearch+bindモードのみで使用されます。
    
	ldapbasedn
	

検索とバインドの認証を行う場合のユーザ名がログインするための検索を始めるためのルートDN
       

	ldapbinddn
	

検索とバインドの認証を行う場合のディレクトリと検索をバインドするためのユーザのDN
       

	ldapbindpasswd
	

検索とバインドの認証を行う場合のディレクトリと検索をバインドするためのユーザのパスワード
       

	ldapsearchattribute
	

検索とバインドの認証を行う場合の検索時のユーザ名に対して一致させる属性。
属性が指定されない場合、属性uidが使用されます。
        

	ldapsearchfilter
	

search+bind認証を行うときに使用する検索フィルタです。
$usernameの出現はユーザ名に置き換えられます。
これによりldapsearchattributeよりも柔軟な検索フィルタが可能になります。
        




    


別の方法として、次のオプションを使用して、上記のオプションの一部をよりコンパクトで標準的なフォームに書き込むこともできます。
     
	ldapurl
	

RFC 4516のLDAP URLです。
フォーマットは以下の通りです。


ldap[s]://host[:port]/basedn[?[attribute][?[scope][?[filter]]]]



scopeはbase、one、subのいずれかでなくてはならず、一般的には最後のものです。
 （デフォルトはbaseです。これは通常このアプリケーションでは役に立ちません。）
attributeは単一の属性を指定できます。その場合、それはldapsearchattributeの値として使用されます。
もしattributeが空の場合は、ldapsearchfilterの値としてfilterを使用できます。
        


 URLスキームldapsは、ldapscheme=ldapsを使用するのと同じ、SSL上のLDAP接続をするLDAPS方式を選択します。
StartTLS操作による暗号化されたLDAP接続を使用するには、通常のURLスキームldapを使用し、ldapurlに加えldaptlsオプションを使用しなければなりません。
        


非匿名バインド（non-anonymous bind）に対し、ldapbinddnおよびldapbindpasswdは個別のオプションとして指定されなければなりません。
        


LDAP URLは現在、OpenLDAP™のみでサポートされており、Windowsではサポートされていません。
        




   


シンプルバインドの設定オプションとsearch+bindオプションを混在するのは間違いです。
ldapurlをシンプルバインドモードで使用するには、URLにbasednまたは問い合わせ要素を含めないでください。
   


search+bindモードを使用するときは、ldapsearchattributeで指定される単一の属性を使って、あるいはldapsearchfilterで指定されるカスタム検索フィルタを使って、検索を実行できます。
ldapsearchattribute=fooの指定は、ldapsearchfilter="(foo=$username)"と同等です。
どちらのオプションもない場合は、ldapsearchattribute=uidがデフォルトです。
   


PostgreSQL™が、LDAPクライアントライブラリとしてOpenLDAP™を使用するようにコンパイルされていた場合、ldapserverの設定は省略出来ます。
その場合、ホスト名とポート番号のリストは、RFC 2782 DNS SRVレコードを使用して検索されます。
_ldap._tcp.DOMAINという名前が検索され、ldapbasednからDOMAINが抽出されます。
   


以下に単純バインドLDAP設定の例を示します。


host ... ldap ldapserver=ldap.example.net ldapprefix="cn=" ldapsuffix=", dc=example, dc=net"



データベースのユーザ、someuserからデータベースサーバに接続を要求された場合、PostgreSQLはDN cn=someuser, dc=example, dc=netおよびクライアントから提供されたパスワードを用いてLDAPサーバにバインドを試みます。
その接続が成功すればデータベースへのアクセスが認められます。
   


これはシンプルバインドの別の設定で、LDAPSスキームとカスタムポート番号を使用し、URL:として記述しています。


host ... ldap ldapurl="ldaps://ldap.example.net:49151" ldapprefix="cn=" ldapsuffix=", dc=example, dc=net"



これは、ldapserver、ldapscheme、およびldapportを別々に指定するよりも少しコンパクトです。
   


以下はsearch+bind設定の例です。


host ... ldap ldapserver=ldap.example.net ldapbasedn="dc=example, dc=net" ldapsearchattribute=uid



データベースユーザsomeuserとしてデータベースに接続するとき、PostgreSQLは（ldapbinddnが指定されていないので）匿名的にバインドを試み、指定されたベースDNの基で(uid=someuser)の検索を行います。
あるエントリが見つかると、見つかった情報とクライアントから与えられたパスワードを用いて、バインドを試みます。
その二番目のバインドが成功するとデータベースアクセスが認められます。
   


URLとして記述した同じsearch+bind設定の例です。


host ... ldap ldapurl="ldap://ldap.example.net/dc=example,dc=net?uid?sub"



LDAPに対し認証をサポートするいくつかの他のソフトウェアは同じURLフォーマットを使用します。
従って、設定をより簡易に共有できます。
   


ldapsearchattributeの代わりにldapsearchfilterを使用してユーザIDまたは電子メールアドレスによる認証を可能にするsearch+bind設定の例です。


host ... ldap ldapserver=ldap.example.net ldapbasedn="dc=example, dc=net" ldapsearchfilter="(|(uid=$username)(mail=$username))"


   


DNS SRV検出を使用してドメイン名example.netのLDAPサービスのホスト名とポート番号を検索する、search+bind設定の例です。


host ... ldap ldapbasedn="dc=example,dc=net"


   
ヒント


LDAPはDNの異なる構成要素を区切るために往々にしてカンマとスペースを使用します。
例で示されたように、LDAPオプションを設定する場合、二重引用符で括られたパラメータ値を使用することがしばしば必須となります。
    


RADIUS認証





この認証方法は、RADIUSをパスワード検証として使用するという点を除いてpasswordと似た動作をします。
RADIUSはユーザ名/パスワードの組のみを検証するために使用されます。
よってユーザはRADIUSが認証に使用される以前にデータベースにすでに存在していなければいけません。
   


RADIUS認証を使用する場合に、設定されたRADIUSサーバにアクセスリクエストメッセージが送信されます。
このリクエストはAuthenticate Onlyの形式になり、ユーザ名、（暗号化された）パスワード、NAS Identifierを含んでいます。
リクエストはサーバと共有している秘密を用いて暗号化されます。
RADIUSサーバは、このリクエストに対してAccess AcceptもしくはAccess Rejectを返します。
RADIUSアカウントのサポートはありません。
   


複数のRADIUSサーバを指定することができ、その場合には各々が順に試行されます。
サーバから負の応答があると、認証は失敗します。
サーバから応答がない場合は、リスト内の次のサーバが試されます。
複数のサーバを指定するには、サーバ名をカンマで区切り、リストを二重引用符で囲みます。
複数のサーバを指定した場合は、別のRADIUSオプションをカンマ区切りのリストとして指定して、各サーバの値を個別に指定することもできます。
オプションは単一の値としても指定でき、その場合にはこの値がすべてのサーバに対して適用されます。
   


RADIUSのために次の設定オプションがサポートされています。
     
	radiusservers
	

接続するRADIUSサーバのDNS名称もしくはIPアドレス。
このパラメータは必須です。
        

	radiussecrets
	

RADIUSサーバと安全なやり取りに使用される共有の秘密データ。
これはPostgreSQLとRADIUSサーバにおいて厳密に同じ値にする必要があります。
少なくとも16文字以上の文字列が推奨されます。
このパラメータは必須です。
         
注記


使用されている暗号化ベクトルはPostgreSQL™がOpenSSL™をサポートするよう構築している場合にのみ暗号論的に強力です。
他の場合にはRADIUSサーバへの伝送は難読化されているだけで安全ではなく、必要ならば外部のセキュリティ方法を適用すべきです。
         


        

	radiusports
	

接続するRADIUSサーバのポート番号。
もしポート番号が指定されていない場合は、デフォルトのRADIUSポートである1812が使用されます。
        

	radiusidentifiers
	

RADIUSリクエスト内でNAS Identifierとして使用される文字列。
このパラメータは、例えばユーザがどのデータベースクラスタに接続しようとしているかを識別するために使用できます。
これはRADIUSサーバにおいてポリシーを一致させるのに便利です。
もし識別子が指定されていない場合は、デフォルトのpostgresqlが使用されます。
        




   


RADIUSパラメータ値にカンマまたは空白を含める必要がある場合は、値を二重引用符で囲むことで実行できますが、二重引用符の2つのレイヤが必要になるため面倒なことになります。
RADIUSシークレット文字列に空白を入れる例を次に示します。


host ... radius radiusservers="server1,server2" radiussecrets="""secret one"",""secret two"""


   

証明書認証





この認証方法は、認証のためにSSLクライアント証明書を使用します。
よってこの方法は、SSL接続を使用します。SSLの構成の手順については「OpenSSLの設定」を参照してください。
この認証方法を使用する際は、サーバはクライアントが有効かつ信頼された証明書を提供することを要求します。
パスワードのプロンプトはクライアントに送信されません。
証明書のcn（Common Name）属性は、要求されたデータベースユーザ名と比較されます。
もしそれらが一致した場合はログインが許可されます。
ユーザ名マッピングは、cnがデータベースユーザ名と異なるものであることを許可するために使用されます。
   


次の設定オプションはSSL証明書認証のためにサポートされています。
    
	map
	

システムとデータベースユーザ名の間のマッピングを許可します。
詳細は「ユーザ名マップ」を参照してください。
       




   


cert認証でclientcertオプションを使うことは冗長です。
cert認証は実質的にclientcert=verify-fullを持つtrust認証であるためです。
   

PAM認証





この認証方式は認証機構としてPAM（Pluggable Authentication Modules）を使用することを除いてpasswordのように動作します。
デフォルトのPAMサービス名はpostgresqlです。
PAMはユーザ名/パスワードの組の確認と接続されたリモートホスト名またはIPアドレスを任意に確認するためだけに使用されます。
それゆえ、ユーザはPAMが認証に使用される以前にデータベースに存在していなければいけません。
PAMについての詳細はLinux-PAM™ページを読んでください。
   


次の設定オプションはPAMのためにサポートされています。
    
	pamservice
	

PAMサービス名。
       

	pam_use_hostname
	

PAM_RHOSTアイテムを通じてPAMモジュールに提供されるものがリモートのIPアドレスかホスト名かを決定します。
デフォルトではIPアドレスが使用されます。
ホスト名にて使用するためにはこのオプションを1にセットしてください。
ホスト名の解決はログインの遅延をもたらします。（ほとんどのPAM設定はこの情報を利用せず、PAM設定がホスト名を使用するために明確に作成された場合のみ、この設定値を考慮する必要があります。）
       




   
注記


PAMが/etc/shadowを読み取るように設定されている場合は、PostgreSQLがルートユーザで起動されていないため、認証は失敗するでしょう。
しかしPAMがLDAPや他の認証方法を使用するように設定されている場合は、これは問題ではありません。
    


BSD認証





この認証方式は、パスワードを照合するためにBSD認証を使用すること以外はpasswordと同じように動作します。
BSD認証は、ユーザ名/パスワードの組の確認のみに使用されます。
それゆえ、ユーザのロールはBSD認証が認証に使用可能となる前にデータベースに存在していなければいけません。
BSD認証フレームワークは現在OpenBSDでのみ利用可能です。
   


PostgreSQL™でのBSD認証は、auth-postgresqlログイン型を使用し、postgresqlログインクラスがlogin.confにて定義されている場合はそれを使った認証を使用します。
デフォルトでは、そのログインクラスは存在せず、PostgreSQL™はデフォルトログインクラスを使用します。
   
注記


BSD認証を使用するために、PostgreSQLユーザアカウント（サーバを起動しているオペレーティングシステムユーザ）が、まずはauthグループに追加されていなければいけません。
authグループはOpenBSDシステムではデフォルトで存在しています。
    


OAuth認可／認証





OAuth 2.0は、RFC 6749で定義されている業界標準のフレームワークであり、サードパーティのアプリケーションが保護されたリソースへの限定されたアクセスを取得できるようにします。
PostgreSQL™を構築する際、OAuthクライアントサポートを有効にする必要があります。詳細については17章ソースコードからインストールを参照してください。
   


この文書では、OAuthエコシステムについて議論する際に次の用語を使用しています。

    
	リソース所有者（またはエンドユーザ)
	

保護されたリソースを所有し、アクセスを与えることができるユーザまたはシステム。
この文書は、リソース所有者が個人の場合にもエンドユーザという用語を使用します。
psqlを使用して、OAuthを使用してデータベースに接続する場合、ユーザはリソース所有者/エンドユーザになります。
       

	クライアント
	

アクセストークンを使用して保護されたリソースにアクセスするシステム。
psqlなどのlibpqを使用するアプリケーションは、PostgreSQL™クラスタに接続するときのOAuthクライアントです。
       

	リソースサーバ
	

クライアントによってアクセスされる保護されたリソースをホスティングするシステム。
接続されるPostgreSQL™クラスタはリソースサーバです。
       

	プロバイダ
	

特定のアプリケーションのためにOAuth認証サーバおよびクライアントを開発および/または管理する組織、プロダクトベンダ、その他のエンティティ。
典型的には、プロバイダが異なれば、OAuthシステムに対して選択する実装の詳細も異なります。
あるプロバイダのクライアントが別のプロバイダのサーバに対してアクセスできる保証は通常ありません。
       


この「プロバイダ」という用語の使用は標準的ではありませんが、一般的に広く使用されているようです。
（OpenIDの類似用語である「IDプロバイダ」と混同しないでください。
PostgreSQL™でのOAuthの実装はOpenID Connect/OIDCとの相互運用と互換性を意図していますが、自分自身はOIDCクライアントではないため、使用する必要はありません。）
       

	認可サーバ
	

認証されたリソース所有者が承認した後に、クライアントからアクセストークンのリクエストを受信し、アクセストークンをクライアントに発行するシステム。
PostgreSQL™は認可サーバを提供しません。これはOAuthプロバイダの責任です。
       

	発行者
	

OAuthクライアントのための信頼された「名前空間」で、https:// URLの形で印字される認可サーバの識別子。
発行者識別子により、それらが別々の発行者を保持する限り、単一の認可サーバが相互に信用していないエンティティのクライアントと話すことを可能にします。
       





    
注記


小規模な導入では、「プロバイダ」、「認可サーバ」、および「発行者」の間に意味のある区別がない場合があります。
ただし、より複雑な設定では、1対多（または多対多）のリレーションが存在する場合があります。
プロバイダは、複数の発行者識別子を別々のテナントに貸し出し、テナントがクライアントと対話するために、場合によっては異なる機能の組み合わせをサポートする複数の認証サーバを提供することがあります。
     


   


PostgreSQL™は、RFC 6750で定義されているベアラ(bearer)トークンをサポートします。
これは、OAuth 2.0で使用されるアクセストークンの型です。
トークンは不透明文字列です。
アクセストークンのフォーマットは実装固有であり、各認可サーバによって選択されます。
   


OAuth用に、次の設定オプションがサポートされています。
    
	issuer
	

ディスカバリー文書によって定義された認可サーバの正確な発行者識別子であるか、またはそのディスカバリー文書を直接指す既知のURIであるHTTPS URLです。
このパラメータは必須です。
       


OAuthクライアントがサーバに接続する際に、その発行者識別子を用いてディスカバリー文書のURLを構築します。
デフォルトでは、このURLはOpenID Connect Discoveryの規約であるパス/.well-known/OpenID-configuration発行者識別子の末尾に付加されます。
あるいは、issuerが/.well-known/パスセグメントを含んでいる場合、そのURLがそのままクライアントに提供されます。
       
警告


libpqのOAuthクライアントは、サーバ発行者の設定が、正確にディスカバリー文書中で提供された発行者識別子と一致する必要があり、そしてそれはクライアントのoauth_issuer設定と一致しなければなりません。
大文字小文字やフォーマットの変更は許可されません。
        


	scope
	

サーバがクライアントを認可し、ユーザを認証するのに必要な空白で区切られたOAuthスコープです。
認証サーバとOAuth検証モジュールによって適切な値が決まります（検証器の詳細は50章OAuth検証器モジュールを参照）。
このパラメータは必須です。
       

	validator
	

ベアラトークンの検証に使用するライブラリ。
指定する場合、名前はoauth_validator_librariesに列挙されているライブラリの1つと正確にマッチする必要があります。
このパラメータは、oauth_validator_librariesが複数のライブラリを含んでいる場合を除き、オプションです。複数のライブラリが含まれていれば必須です。
       

	map
	

OAuthアイデンティティプロバイダとデータベースユーザ名の間のマッピングを可能にします。
詳細は、「ユーザ名マップ」を参照してください。
マップが指定されていない場合、（OAuth検証器によって決定される）トークンに関連付けられたユーザ名は、要求されているロール名と正確にマッチする必要があります。
このパラメータはオプションです。
       

	
       delegate_ident_mapping
      
	

一般的な使用を目的としない高度なオプション。
       


1に設定すると、pg_ident.confによる標準ユーザマッピングはスキップされ、OAuth検証器はデータベースロールに対するマッピングエンドユーザIDに対して完全な責任を負います。
検証器がトークンを認可すると、サーバはユーザが要求されたロールの下で接続できることを信頼し、ユーザの認証ステータスに関係なくコネクションを続行できます。
       


このパラメータはmapと互換性がありません。
       
警告


delegate_ident_mappingは認証システムのデザインに追加の柔軟性を提供しますが、提供されたトークンがすべての検証器に必要な標準チェックに加えて、十分なエンドユーザ権限を持っているかどうかを判断するOAuth検証器の注意深い実装も必要です。
注意して使用してください。
        





   

認証における問題点





本来の認証失敗とそれに関連した問題は、一般的に以下のようなエラーメッセージを通して明示されます。
   



FATAL:  no pg_hba.conf entry for host "123.123.123.123", user "andym", database "testdb"



たいがい、サーバとの接触に成功はしたものの、サーバが通信を拒否した場合です。
メッセージが指摘するようにサーバは接続要求を拒否しました。 なぜならpg_hba.conf設定ファイルに一致する項目を見つけることができなかったからです。
   



FATAL:  password authentication failed for user "andym"



この種のメッセージは、サーバと接触し、サーバも通信することを許可したが、pg_hba.confファイルの中で指定された認証方式に合格していないことを表します。
入力したパスワードを確認するか、もしエラーがKerberos、ident認証型のいずれかを指摘している場合はKerberosあるいはidentソフトウェアを確認してください。
   



FATAL:  user "andym" does not exist



与えられたデータベースユーザ名は見つかりませんでした。
   



FATAL:  database "testdb" does not exist



接続しようとしているデータベースは存在しません。
データベース名を指定しなければ、データベースユーザ名がデフォルトとなることに注意してください。
   
ヒント


クライアントに報告される以上により多くの情報がサーバログに残ります。
失敗した原因についてよくわからなければサーバのログを見てください。
   


第21章 データベースロール





PostgreSQL™は、ロールという概念を使用してデータベースへの接続承認を管理します。
ロールは、その設定方法に応じて、データベースユーザ、またはデータベースユーザのグループとみなすことができます。
ロールはデータベースオブジェクト（例えばテーブルや関数）を所有することができます。
またロールは、どのオブジェクトに誰がアクセスできるかを制御するために、それらのオブジェクトに対しての権限を他のロールに割り当てることができます。
更に、ロールのメンバ資格を他のロールに与えることもできます。
そのため、メンバとなったロールは別のロールに割り当てられた権限を使用することができます。
 


ロールの概念には、「ユーザ」という概念と「グループ」という概念が含まれます。
PostgreSQL™バージョン8.1より前まででは、ユーザとグループは異なる種類の実体として扱われていました。
しかし、現在ではロールしか存在しません。
すべてのロールは、ユーザとして、グループとして、またはその両方として動作することができます。
 


本章では、ロールの作成と管理の方法について説明します。
様々なデータベースオブジェクト上の権限の効果について、さらに詳細な情報は「権限」に記載されています。
 
データベースロール





データベースロールは概念的に、オペレーティングシステムユーザとは完全に分離されています。
実行する上でユーザ名を一致させておくと便利ですが、必須ではありません。
データベースロール名はデータベースクラスタインストレーション全体で共通です
（個別のデータベースごとではありません）。
ユーザを作成するためにはCREATE ROLE SQLコマンドを使います。


CREATE ROLE name;



nameはSQL識別子の規則に従います。
特殊な文字を持たない無装飾のものか、二重引用符に囲まれたもののどちらかです。
（現実的には、通常他のオプション、例えばLOGINなどをこのコマンドに付与することになるでしょう。
詳細は後で説明します。）
既存のユーザを削除するためには類似のコマンドDROP ROLEを使用してください。


DROP ROLE name;


  


利便性のために、これらのSQLコマンドのラッパーである、シェルのコマンドラインから呼び出し可能なcreateuser(1)プログラムとdropuser(1)プログラムが提供されています。


createuser name
dropuser name


  


既存のロール群を求めるためには、以下のようにpg_rolesシステムカタログを確認してください。


SELECT rolname FROM pg_roles;



あるいはログインできるロールだけを確認するには以下のようにします。


SELECT rolname FROM pg_roles WHERE rolcanlogin;



また、psql(1)プログラムの\duメタコマンドも既存のロールを列挙する際に役に立ちます。
  


データベースシステム自身を起動するために、初期化されたばかりのシステムは常に定義済みでログイン可能なロールを1つ持ちます。
このロールは必ず「スーパーユーザ」であり、異なる名前を指定しない限り、initdbでそのデータベースクラスタを初期化したオペレーティングシステムユーザと同じ名前となります。
このロールはしばしばpostgresと名付けられます。
ロールを追加する場合はまずこの初期ロールで接続しなければいけません。
  


すべてのデータベースサーバへの接続は、特定のロールの名前を使用して確立し、そのロールによりその接続で発行されるコマンドの初期のアクセス権限が決まります。
特定のデータベース接続に使うロールは、アプリケーション固有の方式で接続要求を開始するクライアントによって指示されます。
例えば、psqlプログラムでは、-Uコマンドラインオプションを使って接続するロールを指示します。
多くのアプリケーション（createuserおよびpsqlを含む）では、オペレーティングシステムの現在のユーザ名をデフォルトと想定します。
したがって、ロールとオペレーティングシステムのユーザの組み合わせ間で名前を一致させておくと便利です。
  


20章クライアント認証で説明されているように、あるクライアント接続で与えられたデータベースロールの集合は、クライアント認証設定で決定された内容で接続できます。
（したがって、ユーザのログイン名が本名と一致していなくても構わないのと同様に、クライアントはオペレーティングシステムのユーザ名と同じロール名で接続しなくても構いません）。
接続したクライアントに付与される権限の内容はロールIDによって決定されるため、マルチユーザ環境を設定する際には権限を注意深く設定することが重要です。
  


ロールの属性





データベースロールは、権限を定義し、クライアント認証システムと相互作用する数多くの属性を持つことができます。

    
	ログイン権限
	

LOGIN属性を持つロールのみがデータベース接続の初期ロール名として使用できます。
LOGIN 属性を持つロールは「データベースユーザ」と同じであるとみなすことができます。
ログイン権限を持つロールの作成方法は、以下のいずれかです。


CREATE ROLE name LOGIN;
CREATE USER name;



（CREATE USERはデフォルトで LOGINを持ち、CREATE ROLEは持たないという点を除き、CREATE USERはCREATE ROLEと同じです。）
       

	スーパーユーザ状態
	

ログイン権限を除き、データベーススーパーユーザに対する権限検査は全て行われません。
これは危険な権限ですので、安易に使用してはいけません。
作業のほとんどを非スーパーユーザのロールで行うことが最善です。
新しいデータベーススーパーユーザを作成するには、CREATE ROLE name SUPERUSERを使用してください。
これはスーパーユーザのロールで実行しなければなりません。
       

	データベース作成
	

（全ての権限検査が行われないスーパーユーザを除き）ロールに明示的にデータベースを作成するための権限を指定しておかねばいけません。
そのようなロールを作るためにはCREATE ROLE name CREATEDBを使用してください。
       

	ロールの作成
	

あるロールがロールを作成するには、明示的な権限が付与されていなければなりません。
（スーパーユーザは、すべての権限検査を迂回しますので、例外です。）
こうしたロールを作成するには、CREATE ROLE name CREATEROLEを使用してください。
CREATEROLE権限を持つロールは、ADMINオプションを持つCREATEROLEユーザのロールを変更したり削除したりすることもできます。
そのような権限付与は、スーパーユーザではないCREATEROLEユーザが新しいロールを作った時に自動的に行われ、CREATEROLEユーザが、作成したロールを変更したり削除できるようになります。
ロールの変更には、たとえばパスワードの変更などを含む、ALTER ROLEを使って実行できるほとんどの変更が含まれます。
また、COMMENTとSECURITY LABELコマンドを使って実行できるロールの変更も含まれます。
       


しかし、CREATEROLEでは、SUPERUSERロールを作成する能力は移譲されませんし、既存のSUPERUSERロールに対する権限も移譲されません。
さらに、CREATEROLEでは、REPLICATIONユーザを作成する機能も、REPLICATION権限を付与または取り消す能力も、そのようなユーザのロール属性を変更する能力も移譲されません。
ただし、REPLICATIONロールでのALTER ROLE ... SETおよびALTER ROLE ... RENAMEの使用、およびCOMMENT ON ROLE、SECURITY LABEL ON ROLE、DROP ROLEの使用は許可されます。
最後に、CREATEROLEでは、BYPASSRLS権限を付与または取り消す能力は付与されません。
       

	レプリケーションの新規接続
	

あるロールがストリーミングレプリケーションの新規接続を実施するには、明示的な権限が付与されていなければなりません。
（スーパーユーザは、すべての権限検査を迂回しますので、例外です。）
ストリーミングレプリケーションを行うロールは、LOGIN権限も持っていることが必要です。
こうしたロールを作成するには、CREATE ROLE name REPLICATION LOGINを使用してください。
       

	パスワード
	

パスワードは、クライアント認証方法においてデータベースに接続する際にユーザにパスワードを要求する場合にのみ重要になります。
passwordとmd5認証方式でパスワードが使用されます。
データベースパスワードはオペレーティングシステムのパスワードとは異なります。
ロール作成時にCREATE ROLE name PASSWORD 'string'のようにパスワードを指定します。
       

	権限の継承
	

ロールは、デフォルトでメンバであるロールの権限を継承します。
ただし、デフォルトで権限を継承しないロールを作成するには、CREATE ROLE name NOINHERITを使用します。
別の方法として、WITH INHERIT TRUE、あるいはWITH INHERIT FALSEを使用して個々の権限の継承を上書きすることもできます。
       

	行単位セキュリティのバイパス
	

（全ての権限検査が行われないスーパーユーザを除き）ロールに明示的にすべての行単位セキュリティ(RLS)ポリシーをバイパスするための権限を指定しておかねばなりません。
そのようなロールを作るためには、スーパーユーザでCREATE ROLE name BYPASSRLSを使用してください。
       

	接続制限
	

接続制限では、ロールが作成できる同時接続数を指定できます。
-1(デフォルト)は制限なしを意味します。
CREATE ROLE name CONNECTION LIMIT 'integer'でロール作成時に接続制限を指定します。
       






ロール属性は、ロールを作成した後でもALTER ROLEコマンドで変更できます。
詳細はCREATE ROLE(7)とALTER ROLE(7)のリファレンスページを参照してください。
   


ロールは、19章サーバ設定で説明されている実行時の設定の多くをロールごとのデフォルトに設定することもできます。
例えば何らかの理由で、自分が接続する時は常にインデックススキャンを無効にしたい場合（注:お勧めしません）、次のようにします。


ALTER ROLE myname SET enable_indexscan TO off;



このようにして設定を保存します（ただし、すぐに反映はされません）。
以降のこのロールによる接続においては、セッションの開始の直前にSET enable_indexscan TO off;が呼び出されたのと同様になります。
これはデフォルトとする設定をするだけなので、設定をセッション途中いつでも変更できます。
ロール固有のデフォルト設定を削除するには、ALTER ROLE rolename RESET varnameを使用してください。
呼び出されることがありませんので、LOGIN権限を持たないロールにロール固有のデフォルトを持たせることに意味がないことに注意してください。
  


非スーパーユーザがCREATEROLE権限を使用してロールを作成すると、作成されたロールは自動的に作成元のユーザに再度付与されます。これは、ブートストラップスーパーユーザがコマンドGRANT created_user TO creating_user WITH ADMIN OPTION, SET FALSE, INHERIT FALSEを実行した場合と同じです。
CREATEROLEユーザが、既存のロールに関して特別な権限を行使できるのは、そのロールに対するADMIN OPTION権限がある場合のみですので、この権限は、CREATEROLEユーザが作成したロールを管理するのに十分なだけです。
一方、INHERIT FALSE, SET FALSEで作成されたため、このCREATEROLEユーザは作成されたロールの権限をデフォルトで継承していませんし、SET ROLEを使ってそのロールの権限にアクセスできません。
しかし、ロールに対するADMIN OPTIONを持つユーザは、そのロールのメンバシップを他のユーザに付与できるため、CREATEROLEユーザは、そのロールを自分自身にINHERITまたはSETオプションで付与するだけで、作成したロールへのアクセス権を獲得できます。
したがって、権限がデフォルトで継承されないこと、またはデフォルトでSET ROLEが付与されないことは、事故に対する安全策であり、セキュリティ機能ではありません。
また、この自動的な付与はブートストラップスーパーユーザによって与えられるため、CREATEROLEユーザによって削除または変更することはできないことに注意してください。しかし、スーパーユーザはそれを取り消したり、修正したり、他のCREATEROLEユーザに対してそのようなグラントを追加したりすることができます。
どのCREATEROLEユーザも、ある時点でロールに対してADMIN OPTIONを持っているかどうかに関係なく、それを管理できます。
  

ロールのメンバ資格





権限の管理を簡単にするために、ユーザをグループにまとめることはしばしば便利です。
グループ全体に対して権限を与えることも、取り消すこともできます。
PostgreSQL™では、グループを表すロールを作成することで行われます。
そして、そのグループロールに個々のユーザロールのメンバ資格を与えます。
  


グループロールを設定するには、まずロールを作成します。


CREATE ROLE name;



通常、グループとして使用されるロールにはLOGIN属性を持たせません。
しかし、そうしたければ持たせることもできます。
  


グループロールをいったん作成すれば、GRANTおよびREVOKEコマンドを使用してメンバの追加と削除を行うことができます。


GRANT group_role TO role1, ... ;
REVOKE group_role FROM role1, ... ;



他のグループロールへのメンバ資格を与えることもできます。
（グループロールと非グループロールとの間には実際には区別がないからです。）
データベースはグループのメンバ資格がループし、循環するような設定はさせません。
また、ロール内のメンバ資格をPUBLICに付与することはできません。
  


グループロールのメンバは、2つの方法でロールの権限を使用できます。
1つ目として、メンバ資格がSETオプションで付与されたメンバロールは、SET ROLEを使用して、一時的にグループロールに「なる」ことができます。
この状態では、データベースセッションは、元のログインロールではなくグループロールの権限にアクセスでき、作成されたデータベースオブジェクトは、ログインロールではなくグループロールによって所有されているとみなされます。
2つ目として、INHERITオプションでメンバ資格が付与されたメンバロールは、直接的または間接的にメンバであるメンバの権限を自動的に使用できます。
ただし、この連鎖は継承オプションを持たないメンバ資格で停止します。
例えば、以下の状態を想定します。


CREATE ROLE joe LOGIN;
CREATE ROLE admin;
CREATE ROLE wheel;
CREATE ROLE island;
GRANT admin TO joe WITH INHERIT TRUE;
GRANT wheel TO admin WITH INHERIT FALSE;
GRANT island TO joe WITH INHERIT TRUE, SET FALSE;



ロールjoeとして接続した直後、データベースはjoeに直接付与された権限に加えて、adminとislandに付与された権限を「継承」するため、これらの権限を使用できます。
ただし、wheelに付与された権限は使用できません。これは、joeが間接的にwheelのメンバであるにもかかわらず、メンバシップはadminを介して付与され、WITH INHERIT FALSEを使用して付与されたためです。
そして、


SET ROLE admin;



を行った後、セッションは、adminに付与された権限のみを使用し、joeやislandに付与された権限は使用しません。
そして、


SET ROLE wheel;



を行った後、セッションはwheelに与えられた権限のみを使用できるようになり、joeやadminに与えられた権限は使用できなくなります。
元の状態の権限に戻すには、以下のいずれかを行います。


SET ROLE joe;
SET ROLE NONE;
RESET ROLE;


  
注記


メンバシップの許可の連鎖が存在し、それぞれがSET TRUE（デフォルトです）である場合、SET ROLEコマンドは、元のログインロールが直接的または間接的にメンバであるロールを常に選択できるようにします。
したがって、上記の例では、adminになる前にwheelになる必要はありません。
一方、islandになることはできません。 joeは継承を介してのみこれらの権限にアクセスできます。
   

注記


標準SQLでは、ユーザとロールとの間に明確な違いがあり、ユーザはロールのように自動的に権限を継承することができません。
PostgreSQL™でこの振舞いを実現させるには、SQLロールとして使用するロールにはINHERIT属性を付与し、SQLユーザとして使用するロールにはNOINHERIT属性を付与します。
しかし、8.1リリースより前との互換性を保持するために、PostgreSQL™はデフォルトで、すべてのロールにINHERIT属性を付与します。
以前は、ユーザは常にメンバとして属するグループに付与された権限を常に使用できました。
   



LOGIN、SUPERUSER、CREATEDB、およびCREATEROLEロール属性は、特別な権限とみなすことができますが、データベースオブジェクトに対する通常の権限のように継承されません。
こうした属性の1つを使用できるようにするためには、その属性を特定のロールに設定するように実際にSET ROLEを行う必要があります。
上の例を続けると、adminロールにCREATEDB権限とCREATEROLE権限を付与することを選ぶことができます。
こうすると、joeロールとして接続するセッションでは、すぐさまこれらの権限を持ちません。
SET ROLE adminを行った後で、この権限を持ちます。
  

  


グループロールを削除するには、DROP ROLEを使用してください。


DROP ROLE name;



グループロール内のメンバ資格も自動的に取り上げられます。
（しかし、メンバロールには何も影響ありません。）
  

ロールの削除





ロールはデータベースオブジェクトを所有したり、他のオブジェクトにアクセスする権限を保持したりできるので、ロールを削除するのは、単にDROP ROLEを実行すれば良いというだけのものでないことがよくあります。
そのロールが所有するすべてのオブジェクトについて、まずそれを削除するか、あるいは他の所有者に移すかしなければなりません。
また、そのロールに付与されたすべての権限を取り上げる必要があります。
  


オブジェクトの所有権はALTERコマンドを使って、1度に1つずつ移管することができます。
以下に例を示します。


ALTER TABLE bobs_table OWNER TO alice;



その代わりにREASSIGN OWNEDコマンドを使って、削除予定のロールが所有するすべてのオブジェクトの所有権を、単一の他のロールに移管することもできます。
REASSIGN OWNEDは他のデータベースのオブジェクトにはアクセスできないので、そのロールが所有するオブジェクトを含むそれぞれのデータベース内で実行する必要があります。
（最初にそのようなREASSIGN OWNEDを実行した時に、データベース間で共有されるオブジェクト、つまりデータベースとテーブル空間については、すべて削除予定のロールから所有権が変更されることに注意してください。）
  


重要なオブジェクトがすべて新しい所有者に移管された後は、削除予定のロールが所有する残りのオブジェクトはすべてDROP OWNED commandコマンドで削除することができます。
ここでも、このコマンドは他のデータベースのオブジェクトにはアクセスできないので、そのロールが所有するオブジェクトを含むそれぞれのデータベース内で実行する必要があります。
また、DROP OWNEDはデータベース全体、あるいはテーブル空間全体を削除することはありませんので、ロールが所有するデータベースあるいはテーブル空間で新しい所有者に移管されていないものがあれば、手作業でそれを削除する必要があります。
  


DROP OWNEDは対象のロールが所有しないオブジェクトについて、そのロールに付与されたすべての権限を削除することも行います。
REASSIGN OWNEDはそのようなオブジェクトに関与しないので、削除されるロールによる依存関係を完全に取り除くには、多くの場合、REASSIGN OWNEDとDROP OWNEDの両方を（この順序で！）実行する必要があります。
  


まとめると、オブジェクトを所有するために使用されたロールを削除する最も一般的な手順は以下のようになります。
  

REASSIGN OWNED BY doomed_role TO successor_role;
DROP OWNED BY doomed_role;

-- 上記のコマンドをクラスタ内の各データベースについて繰り返す
DROP ROLE doomed_role;



すべての所有オブジェクトを同一の後継所有者に移管するのでない場合は、例外部分を手作業で処理した後で、上記の手順を実行して残りを処理するのが最善でしょう。
  


依存するオブジェクトがまだ残っている状態でDROP ROLEを実行すると、どのオブジェクトが所有者変更または削除の必要があるかを特定するメッセージが発行されます。
  

定義済みロール





PostgreSQL™では、一般的に必要とされる、特権のある機能や情報にアクセスできるよう、いくつかのあらかじめ定義されたロールを提供しています。
管理者（CREATEROLE権限を持つロールを含む）は自分の環境のユーザあるいは他のロールに対し、これらのロールをGRANT（付与）することで、それらのユーザに、その機能や情報を提供することができます。
例えば以下です。



GRANT pg_signal_backend TO admin_user;


  
警告


これらのロールを付与する場合、機密情報へのアクセス権が与えられるということを理解したうえで、必要な場合にのみ使用されるように注意する必要があります。
   



定義済みロールについては以下で説明します。
それぞれのロールの個別の権限については、将来、さらなる機能が追加される時に変更されるかもしれないことに注意してください。
管理者は、変更がないかリリースノートを確認するようにしてください。

   
	pg_checkpoint
	

pg_checkpointは、CHECKPOINTコマンドの実行を許可します。
      

	pg_create_subscription
	

pg_create_subscriptionは、データベースでのCREATE権限を持つユーザに対して、CREATE SUBSCRIPTIONの実行を許可します。
      

	pg_database_owner
	

pg_database_ownerロールには、暗黙的なメンバが常に1つだけあります。
すなわち、現在のデータベースの所有者です。
どのロールにもメンバ資格を付与することはできませんし、pg_database_ownerのメンバ資格を付与できるロールもありません。
ただし、他のロールと同様に、オブジェクトを所有したりアクセス権限の付与を受けたりすることはできます。
したがって、pg_database_ownerがテンプレートデータベース内で権限を一度持てば、そのテンプレートから作成されたデータベースの所有者は皆、その権限を持つことになります。
最初は、このロールはpublicスキーマを所有していますので、各データベースの所有者がそのスキーマのローカルでの使用を管理します。
      

	pg_maintain
	

pg_maintainは、MAINTAIN権限があるかのように、すべてのリレーションに対してVACUUM、ANALYZE、CLUSTER、REFRESH MATERIALIZED VIEW、REINDEX、およびLOCK TABLEを実行することを許可します。
      

	pg_monitor, pg_read_all_settings, pg_read_all_stats, pg_stat_scan_tables
	

これらのロールは、管理者がデータベースサーバを監視するためのロールを簡単に設定できるようにすることを目的としています。
これらのロールは、通常はスーパーユーザに制限されている、各種の有用な構成設定、統計情報、および他のシステム情報を読み取るための一般的な権限のセットを付与することができます。
      


pg_monitorは、各種の監視ビューや関数を読み取ること/実行することを許可します。
このロールは、pg_read_all_settings、pg_read_all_stats、およびpg_stat_scan_tablesのメンバです。
      


pg_read_all_settingsは、通常スーパーユーザのみに見える、すべての設定変数を読み取ることを許可します。
      


pg_read_all_statsは、通常スーパーユーザのみに見える、すべてのpg_stat_*ビューの読み取りと各種統計関連の拡張の使用を許可します。
      


pg_stat_scan_tablesは、潜在的にテーブルに対して長時間ACCESS SHAREロックを取得する可能性がある関数（例えばpgrowlocks拡張のpgrowlocks(text)）の監視を行うことを許可します。
      

	pg_read_all_data, pg_write_all_data
	

pg_read_all_dataは、すべてのデータ（テーブル、ビュー、シーケンス）について、これらのオブジェクトのSELECT権限とすべてのスキーマのUSAGE権限を持っているかのように読み取ることを許可します。
このロールは、行レベルセキュリティ（RLS）ポリシーを無視しません。
RLSが使用されている場合、管理者はこのロールが付与されているロールに対してBYPASSRLSを設定したいと思うかもしれません。
      


pg_write_all_dataは、すべてのデータ（テーブル、ビュー、シーケンス）について、これらのオブジェクトのINSERT、UPDATE、およびDELETE権限とすべてのスキーマのUSAGE権限を持っているかのように書き込むことを許可します。
このロールは、行レベルセキュリティ（RLS）ポリシーを無視しません。
RLSが使用されている場合、管理者はこのロールが付与されているロールに対してBYPASSRLSを設定したいと思うかもしれません。
      

	pg_read_server_files, pg_write_server_files, pg_execute_server_program
	

これらのロールは、信頼はできるがスーパーユーザではないロールが、データベースを実行するユーザとしてデータベースサーバ上のファイルにアクセスしたりプログラムを実行したりすることを、管理者が許可できるようにすることを意図しています。
これらのロールは、ファイルに直接アクセスする時はデータベースレベルの権限確認をすべて無視し、スーパーユーザレベルのアクセス権を取得するために使用できます。
そのため、これらのロールをユーザに付与する時には細心の注意が必要です。
      


pg_read_server_filesは、COPYやその他のファイルアクセス関数を使用して、データベースがサーバ上でアクセスできる任意の場所からファイルを読み取ることを許可します。
      


pg_write_server_filesは、COPYやその他のファイルアクセス関数を使用して、データベースがサーバ上でアクセスできる任意の場所のファイルに書き込むことを許可します。
      


pg_execute_server_programは、COPYやサーバ側のプログラムを実行できるその他の関数で、データベースを実行しているユーザとしてデータベースサーバ上でプログラムを実行することを許可します。
      

	pg_signal_autovacuum_worker
	

pg_signal_autovacuum_workerは、自動バキュームワーカーに対して、現在のテーブルのバキュームをキャンセルしたりそのセッションを終了させたりするためのシグナルを送信することを許可します。
「サーバシグナル送信関数」を参照してください。
      

	pg_signal_backend
	

pg_signal_backendは、他のバックエンドに対して、問い合わせをキャンセルしたりそのセッションを終了させたりするためのシグナルを送信することを許可します。
このロールでは、スーパーユーザが所有するバックエンドに対してシグナルを送信することは許可されないことに注意してください。
「サーバシグナル送信関数」を参照してください。
      

	pg_use_reserved_connections
	

pg_use_reserved_connectionsは、reserved_connectionsによって予約済みの接続スロットを使用することを許可します。
      




  

関数のセキュリティ





関数やトリガや行単位セキュリティポリシーによって、ユーザは他のユーザが意識しないで実行できるようなコードを、バックエンドサーバに挿入することができます。
したがって、これらの機能によってユーザは比較的簡単に他のユーザにとって「トロイの木馬」となるものを実行することができます。
最も強力な保護は、誰がオブジェクトを定義できるかを厳格に管理することです。
それが実行不可能な場合は、信頼できる所有者を持つオブジェクトのみを参照する問い合わせを記述します。
search_pathから、信頼できないユーザがオブジェクトを作成できるスキーマを削除します。
  


関数は、データベースサーバデーモンのオペレーティングシステム権限で、バックエンドサーバプロセスの中で実行されます。
プログラミング言語で関数に未検査のメモリアクセスを許可している場合、サーバの内部データ構造を変更することが可能です。
したがって、その他の多数のことの中でも、そのような関数はどのようなシステムアクセスコントロールも回避することができます。
このようなアクセスを許可する関数言語は「信頼されない」ものとみなされ、PostgreSQL™はこれらの言語による関数の作成をスーパーユーザのみに限定して許可しています。
  

第22章 データベース管理





稼働しているPostgreSQL™サーバのすべてのインスタンスは、1つ以上のデータベースを管理します。
したがって、データベースはSQLオブジェクト（「データベースオブジェクト」）を組織化する場合に最上位の階層レベルとなります。
本章では、データベースの特性、作成方法、管理方法、および削除方法について説明します。
 
概要





ロール、データベース、テーブル空間名のような少数のオブジェクトはクラスタレベルで定義されており、pg_globalテーブル空間に格納されています。
クラスタの中には複数のデータベースがあり、互いに分離されているもののクラスタレベルのオブジェクトにはアクセスできます。
各データベースの中には複数のスキーマがあり、スキーマはテーブルや関数などのオブジェクトを含みます。
したがって階層の全体像は、クラスタ、データベース、スキーマ、テーブル（や関数などの何らかのオブジェクト）となります。
  


データベースサーバに接続する時、クライアントはその接続要求の中で接続するデータベース名を指定しなければなりません。
1つの接続で複数のデータベースにアクセスすることはできません。
しかし、クライアントは同じデータベースに対して複数の接続を開いたり、異なるデータベースに対して複数の接続を開いたりできます。
データベースレベルでのセキュリティには2つの構成要素があります。接続レベルで管理されるアクセス制御（「pg_hba.confファイル」参照）と、権限付与システムで管理される認証制御（「権限」参照）です。
外部データラッパー（postgres_fdw参照）により、1つのデータベース内のオブジェクトが他のデータベースやクラスタ内にあるオブジェクトに対するプロキシとして動作できます。
古いdblinkモジュール（dblink参照）は同様の機能を提供します。
デフォルトでは、すべてのユーザはすべてのデータベースにすべての接続方法で接続できます。
  


1つのPostgreSQL™サーバクラスタに、たいていの場合お互いのことを意識しない、関係のないプロジェクトやユーザを含めるつもりなら、これらを別々のデータベースに含め、それに従って認証制御とアクセス制御を調整することが推奨されます。
複数のデータベースは物理的に分離されていて、アクセス制御は接続レベルで管理されています。
したがって、分離して、ほとんどの場面で互いに見えないようにする必要のある複数のプロジェクトやユーザを単一のPostgreSQL™サーバインスタンスに収容する場合、これらを別々のデータベースに含めることが推奨されます。
もし、複数のプロジェクトやユーザが相互に関連していて互いのリソースを使用できる必要がある場合、これらは同じデータベースに含めるべきですが、スキーマを別にすることは可能です。これは名前空間での分離と認証制御によるモジュラー構造を提供します。
スキーマの管理についての詳細は「スキーマ」に記載されています。
  


1つのクラスタ内に複数のデータベースを作成できますが、その利点がその危険性と制限に勝るかどうか慎重に検討することを勧めます。
特に、共有のWAL（28章信頼性と先行書き込みログ（WAL）参照）を持つことの影響がバックアップとリカバリのオプションにあります。
クラスタ内の個々のデータベースは、ユーザの視点から考えれば分離していても、データベース管理者の観点からは密接に結びついています。
  


データベースはCREATE DATABASEコマンド（「データベースの作成」を参照）で作成され、DROP DATABASEコマンド（「データベースの削除」を参照）で破棄されます。
既存のデータベース群を求めるには、以下の例のようにpg_databaseシステムカタログを確認してください。


SELECT datname FROM pg_database;



また、psql(1)プログラムの\lメタコマンドや-lコマンドラインオプションも既存のデータベースを列挙する際に役に立ちます。
  
注記


標準SQLでは、データベースを「カタログ」（catalog）と呼ぶこともありますが、実際のところ違いはありません。
   



データベースの作成





データベースを作成する場合、PostgreSQL™サーバを起動している必要があります（「データベースサーバの起動」を参照してください）。
  


CREATE DATABASE(7)SQLコマンドでデータベースを作成できます。


CREATE DATABASE name;



ここで、nameはSQL識別子の通常の規則に従います。
現在のロールが自動的に新しいデータベースの所有者になります。
作成後、データベースを削除する権限はこの所有者にあります（この作業では、そのデータベースに属している、所有者のものではないオブジェクトでも、すべて削除されます）。
  


データベースの作成は制限された作業です。
権限の付与に関する詳細は「ロールの属性」を参照してください。
  


CREATE DATABASEコマンドを実行するためには、データベースサーバに接続している必要があります。
そうすると、あるサイトの最初のデータベースはどのようにして作成するのかという疑問が出てきます。
最初のデータベースはinitdbコマンドでデータ格納領域が初期化される時、必ず作成されます。
（「データベースクラスタの作成」を参照してください。）
このデータベースはpostgresと呼ばれます。

したがって、最初の「通常の」データベースを作成するにはpostgresに接続してください。
  


template1、template0という2つの追加のデータベースもデータベースクラスタの初期化時に作成されます。
クラスタ内に新しいデータベースが作成されたら、実際にtemplate1が複製されます。
つまりtemplate1に変更を与えると、その後に作成されるデータベースすべてにその変更が反映されることを意味します。
このため新しく作成するデータベースすべてに反映させたい場合でない限りtemplate1内にオブジェクトを作成することは避けてください。
template0はtemplate1の元の内容の汚れのない複製を意図したものです。
サイト独自の追加などを一切含まないデータベースを作成することが重要な場合に、template1の代わりに複製できます。
詳細については「テンプレートデータベース」を参照してください。
  


利便性のために、シェルからcreatedbを実行して、新しいデータベースを作成できます。




createdb dbname




createdbは魔法ではありません。
これはpostgresデータベースに接続し、先に解説した通りにCREATE DATABASEコマンドを実行します。
createdb(1)のリファレンスページに実行方法の詳細が説明されています。
引数のないcreatedbは現在のユーザ名のデータベースを作成しますので、注意してください。
  
注記


特定のデータベースに誰が接続できるかを制限する方法については20章クライアント認証に記載されています。
   



他のユーザのためにデータベースを作成し、そのユーザ自身が設定、管理できるように新しいデータベースの所有者にさせたい場合も考えられます。
そのためには、次のコマンドのいずれかを使用します。


CREATE DATABASE dbname OWNER rolename;



をSQL環境から実行するか、または


createdb -O rolename dbname



をシェルから実行します。
他のユーザのために（つまり、自身がメンバではないロールのために）データベースを作成できるのはスーパーユーザだけです。
  

テンプレートデータベース





実際のCREATE DATABASEの動作は、既存のデータベースをコピーすることです。
デフォルトでは、template1という名前の標準のシステムデータベースをコピーします。
したがって、このデータベースは新しく作成するデータベースの元になる「テンプレート」となります。
template1にオブジェクトを追加した場合、追加したオブジェクトはその後に作成されるユーザデータベースにコピーされます。
この振舞いによって、データベース標準オブジェクト群にサイト独自の変更を行うことができます。
例えば、PL/Perl手続き言語をtemplate1にインストールした場合、データベースを作成する時に追加作業を行うことなく、自動的にこの言語をユーザデータベースで使用できます。
  


しかし、CREATE DATABASEは、元のデータベースに付加されたデータベースレベルのGRANT権限をコピーしません。
新しいデータベースにはデフォルトのデータベースレベルの権限があります。
  


template0という名前の二次的な標準システムデータベースがあります。

このデータベースにはtemplate1の初期内容と同じデータが含まれています。
つまり、使用しているバージョンのPostgreSQL™で定義済みの標準オブジェクトのみから構成されています。
template0をデータベースクラスタを初期化した後に変更してはいけません。
CREATE DATABASEをtemplate1ではなくtemplate0をコピーするように実行することで、template1に追加されたサイト独自のものを含まない、（そこではユーザ定義オブジェクトは存在せず、システムオブジェクトは変更されていない）「汚れがない」ユーザデータベースを作成できます。
これは特に、pg_dumpダンプからリストアする時に便利です。
このダンプスクリプトは、後でtemplate1に追加される可能性のあるオブジェクトと衝突しないように、ダンプしたデータベースの内容を正しく再作成するために、汚れのないデータベースにリストアされなければなりません。
  


template1の代わりにtemplate0をコピーするその他の一般的な理由は、template0をコピーするときに新規の符号化方式とロケールを設定できることです。
一方、template1のコピーはそれが行ったと同一の設定を使用しなければなりません。
これはtemplate0が認識されていない一方で、template1が符号化方式特有の、またはロケール特有のデータを含んでいる可能性があることに依ります。
  


template0をコピーしてデータベースを作成するには、


CREATE DATABASE dbname TEMPLATE template0;



をSQL環境から実行するか、または


createdb -T template0 dbname



をシェルから実行します。
  


さらにテンプレートデータベースを作成することができます。
また、実際のところCREATE DATABASEのテンプレートとして名前を指定することで、クラスタ内の任意のデータベースをコピーできます。
しかし、この機能は、（まだ）汎用目的の「COPY DATABASE」能力を意図したものではないことを理解しておいてください。
コピー操作の間、他のセッションから元のデータベースに接続することができないという点は大きな制限です。
CREATE DATABASEは、その起動時に他の接続が存在する場合失敗します。
コピー操作中は元のデータベースへの新しい接続を許しません。
  


datistemplate列とdatallowconn列という、データベースそれぞれに有用なフラグがpg_databaseに存在します。

datistemplateは、そのデータベースがCREATE DATABASEのテンプレートとして使用されることを目的としているものであることを意味するために設定できます。
このフラグが設定された場合、CREATEDB権限を持つすべてのユーザはそのデータベースを複製できます。
設定されていない場合は、スーパーユーザとそのデータベース所有者のみがそれを複製できます。
datallowconnが偽の場合、そのデータベースへの新規接続はできません（しかし、このフラグを偽にするだけでは既存のセッションは閉ざされません）。
template0データベースは、変更を防ぐために、通常datallowconn = falseとされています。
template0とtemplate1の両方は、常にdatistemplate = trueとされていなければなりません。
  
注記


template1とtemplate0には、template1という名前がCREATE DATABASEのデフォルトのソースデータベースの名前であること以上の特別な地位はありません。
例えば、template1を削除し、template0から再作成しても何も問題ありません。
この操作は、不注意にごみをtemplate1に追加してしまった場合にお勧めします。
（template1を削除するには、pg_database.datistemplate = falseとしなければなりません。）
   


データベースクラスタが初期化される時、postgresデータベースも作成されます。
このデータベースは、ユーザとアプリケーションのデフォルトの接続先を意図したものです。
これはtemplate1の単純なコピーで、必要に応じて削除したり再作成したりできます。
   


データベースの設定





19章サーバ設定で説明したように、PostgreSQL™サーバには多数の実行時の設定変数が存在します。
これらの設定の多くに対して、データベース固有のデフォルト値を設定できます。
  


例えば、何らかの理由で特定のデータベースについてGEQOオプティマイザを無効にしたい場合、通常はすべてのデータベースでこれを無効にするか、またはすべての接続しているクライアントで間違いなくSET geqo TO off;が実行されていることを確認する必要があります。
特定のデータベースでこの設定をデフォルトにするには、次のコマンドを実行します。


ALTER DATABASE mydb SET geqo TO off;



これにより設定が保存されます（ただし、すぐに反映はされません）。
以降のこのデータベースに対する接続においては、セッションの開始の直前にSET geqo TO off;が呼び出されたのと同様になります。
これはデフォルトでしかありませんので、ユーザはセッションの途中であってもこの設定を変更できます。
このような設定を解除するには、ALTER DATABASE dbname RESET varnameを使用します。
  

データベースの削除





データベースの削除には、以下のDROP DATABASE(7)コマンドを使用します。



DROP DATABASE name;



データベースの所有者とスーパーユーザのみがデータベースを削除できます。
データベースの削除はそのデータベースに含まれるすべてのオブジェクトを削除します。
削除されたデータベースは復元できません。
  


削除しようとしているデータベースに接続している時にはDROP DATABASEを実行することはできません。
しかし、template1などのその他のデータベースに接続すれば削除できます。
また、そのクラスタの最後のユーザデータベースを削除する時には、template1データベースに接続するしかありません。
  


利便性のため、データベースを削除するdropdb(1)シェルプログラムもあります。



dropdb dbname



（createdbと異なり、デフォルトで現在のユーザ名のデータベースを削除するようにはなっていません。）
  

テーブル空間





PostgreSQL™のテーブル空間により、データベース管理者はデータベースオブジェクトを表すファイルを格納できるファイルシステム上の場所を定義できます。
テーブル空間を一度作成すると、データベースオブジェクトを作成する時に名前により参照できます。
  


テーブル空間を使用することで、管理者はPostgreSQL™インストレーションのディスクレイアウトを制御できます。
これは、少なくとも2つの点で有用です。
1つは、クラスタを初期化したパーティションもしくはボリュームの容量が不足し、拡張を行うことができない場合、システムを再構成するまで、別のパーティションにテーブル空間を作成して、このテーブル空間を使用できます。
  


もう1つは、テーブル空間により、管理者はデータベースオブジェクトの使用パターンに基づいてデータ格納場所を調整できることです。
例えば、非常によく使用されるインデックスを、例えば、高価なソリッドステートディスクなどの高速・高可用性ディスクに格納できます。
同時に、めったに使用されない保存用のデータや性能が求められていない保存用のデータを格納するテーブルを低価格・低速ディスクシステムに格納することもできます。
  
警告


主PostgreSQLデータディレクトリの外に位置していたとしても、テーブル空間はデータベースクラスタの不可欠な部分であり、データファイルの自律的な集合として扱うことはできません。
それらは主データディレクトリに含まれるメタデータに依存しますので、異なるデータベースクラスタに所属させたり、個別にバックアップしたりすることはできません。
同様に、テーブル空間を失えば（ファイル削除、ディスクの破損など）、データベースクラスタは読み取れなくなったり、開始できなくなったりするかもしれません。
テーブル空間をRAMディスクのような一時ファイルシステムに置くことは、クラスタ全体の信頼性を危険にさらします。
   



テーブル空間を定義するにはCREATE TABLESPACE(7)コマンドを使用してください。
以下に例を示します。



CREATE TABLESPACE fastspace LOCATION '/ssd1/postgresql/data';



この場所は、既存かつ空のディレクトリでなければならず、また、PostgreSQL™オペレーティングシステムユーザが所有していなければなりません。
その後に、テーブル空間内に作成されるオブジェクトはすべてこのディレクトリ以下のファイルに格納されます。
テーブル空間が見つからなかったり失われたりするとクラスタは機能しませんので、この場所は取り外し可能な記憶装置や一時的な記憶装置上にあってはいけません。
  
注記


通常、論理ファイルシステム内の個々のファイルの場所を制御することができませんので、1つの論理ファイルシステムに複数のテーブル空間を作成することは意味がありません。
しかし、PostgreSQL™にはこうした制限はありません。
実際、システムのファイルシステムの境を直接意識しません。
単に使用することを宣言したディレクトリにファイルを格納します。
   



テーブル空間自体の生成はデータベーススーパーユーザが行う必要があります。
しかし、その後に、データベース一般ユーザにそのテーブル空間を使用させることができます。
これを行うには、ユーザにテーブル空間に対するCREATE権限を与えてください。
  


テーブル、インデックス、およびデータベース全体は特定のテーブル空間に割り当て可能です。
これを行うには、指定テーブル空間にCREATE権限を持つユーザが関連するコマンドにテーブル空間をパラメータとして渡す必要があります。
例えば、以下はspace1テーブル空間にあるテーブルを作成しています。


CREATE TABLE foo(i int) TABLESPACE space1;


  


他の方法として、以下のようにdefault_tablespaceパラメータの使用があります。


SET default_tablespace = space1;
CREATE TABLE foo(i int);



default_tablespaceが空文字以外の何かに設定された場合、この値が、明示的なテーブル空間の指定がないCREATE TABLEコマンドやCREATE INDEXコマンドの暗黙的な TABLESPACE句として適用されます。
  


temp_tablespacesというパラメータも存在します。
これは、一時テーブルとそのインデックス、大規模データ集合のソートなどを目的に使用される一時ファイルの場所を決定するものです。
これは、テーブル空間名を1つだけ指定するものではなく、テーブル空間名のリストを取ることができます。
このため、一時的なオブジェクトに関連する負荷を、複数のテーブル空間にわたって分散することができます。
一時的なオブジェクトを作成する度に、このリストから無作為に要素が選択されます。
  


データベースに関連付けされたテーブル空間は、そのデータベースのシステムカタログを格納するために使用されます。
さらに、TABLESPACE句を付けずに、または、（適切な）default_tablespaceやtemp_tablespacesで指定された選択肢がなければ、データベース内に作成されたテーブルやインデックスのデフォルトのテーブル空間としても使用されます。
テーブル空間の指定なしで作成されたデータベースは、コピー元のテンプレートデータベースのテーブル空間と同じものを使用します。
  


データベースクラスタが初期化される時に2つのテーブル空間が自動的に作成されます。
pg_globalテーブル空間は共有システムカタログ用にのみ使用されます。
pg_defaultテーブル空間はtemplate1とtemplate0データベースのデフォルトテーブル空間です
（したがって、CREATE DATABASEのTABLESPACE句で変更されない限り、このテーブル空間が同様に他のデータベースに対するデフォルトのテーブル空間になります）。
  


テーブル空間は、一度作成すると、要求しているユーザが十分な権限を持っていればすべてのデータベースから使用できます。
これは、テーブル空間を使用するすべてのデータベースのすべてのオブジェクトが削除されるまで、そのテーブル空間を削除できないことを意味します。
  


空のテーブル空間を削除するには、DROP TABLESPACE(7)コマンドを使用してください。
  


既存のテーブル空間群を求めるには、以下の例のようにpg_tablespaceを確認してください。


SELECT spcname, spcowner::regrole, pg_tablespace_location(oid) FROM pg_tablespace;



どのデータベースがどのテーブル空間を使用しているかを見つけることができます。表9.76「システムカタログ情報関数」を参照してください。
psql(1)プログラムの\dbメタコマンドも既存のテーブル空間を列挙する際に役に立ちます。
  


$PGDATA/pg_tblspcディレクトリには、そのクラスタで定義された各非組み込みテーブル空間を指し示すシンボリックリンクがあります。
推奨はしませんが、こうしたリンクを手作業で再定義してテーブル空間のレイアウトを調整できます。
これをサーバが稼働している時に行わないでください。
  

第23章 ローカライゼーション





本章では、管理者の立場から見た、利用可能なローカライゼーション機能について説明します。
PostgreSQL™では、2つの手法でローカライゼーションをサポートします。

   
	

ロケール固有の照合順序、数字の書式、翻訳されたメッセージなどを提供するためオペレーティングシステムのロケールの機能を使います。
これは「ロケールのサポート」と「照合順序サポート」内で解説されています。
     

	

全ての種類の言語によるテキストの格納のサポート、およびクライアントサーバ間の文字集合翻訳の提供を行うため、多くの文字集合を提供します。
これは「文字集合サポート」内で解説されています。
     




  
ロケールのサポート





ロケールのサポートはアルファベット、並べ替え、数字の書式など文化的嗜好を配慮したアプリケーションを対象にします。
PostgreSQL™は、サーバのオペレーティングシステムが提供する、標準ISO CとPOSIXのロケール機能を使用します。
これ以上の情報についてはお使いのシステムのドキュメントを参照してください。
  
概要





ロケールのサポートは、initdbを使用してデータベースクラスタを作成する時に自動で初期化されます。
initdbは、デフォルトでその実行環境のロケール設定に従ってデータベースクラスタを初期化します。
そのため、システムがデータベースクラスタで使用したいロケールを使用するように既に設定してある場合は何も行う必要はありません。
違うロケールを使用したい場合（またはシステムのロケール設定が不明な場合）は、initdbの--localeオプションで希望のロケールを指定することができます。
以下に例を示します。


initdb --locale=sv_SE


   


Unixシステム用のこの例の設定はロケールをスウェーデン（SE）で使用されているスウェーデン語（sv）に合わせています。
他にもen_US（米国英語）やfr_CA（カナダのフランス語）などの設定もできます。
ロケールに複数の文字集合が使用可能であれば、language_territory.codesetのように記述することができます。
例えば、fr_BE.UTF-8はベルギー（BE）で使用されているフランス語（fr）でUTF-8の文字集合を表します。
   


お使いのシステムでどのロケールがどういう名前で使えるかはオペレーティングシステムのベンダがどのようなものを提供しているかと、何がインストールされているかに依存します。
ほとんどのUnixシステムでは、locale -aというコマンドで利用可能なロケールの一覧を入手できます。
Windowsは、German_GermanyやSwedish_Sweden.1252のようなもっと冗長なロケール名を使用しますが、原理は同じです。
   


英語の照合順序規則でスペイン語のメッセージを使用する時など、時として複数のロケールの規則を併用すると便利です。
これをサポートするために、ロケールには以下のようなローカライゼーション規則の特定の箇所だけを管理する一連のサブカテゴリがあります。

    
	LC_COLLATE	文字列の並べ替え順
	LC_CTYPE	文字の分類（文字とはどんなもの？大文字小文字を区別しない？）
	LC_MESSAGES	メッセージの言語
	LC_MONETARY	通貨書式
	LC_NUMERIC	数字の書式
	LC_TIME	日付と時刻の書式





これらのカテゴリの名前は、特定のカテゴリについてのロケールの選択を上書きするためのinitdbオプションの名前としてそのまま使用できます。
例えば、ロケールをカナダのフランス語に設定しながら通貨書式については米国の規則を使用するには、initdb --locale=fr_CA --lc-monetary=en_USとします。
   


システムがロケールをサポートしていないように動作させたい場合は、特別なロケールのC、もしくは同等なPOSIXを使用してください。
   


一部のロケールカテゴリでは、その値がデータベース生成時に固定されていなければならないものがあります。
他のデータベースで他の設定を使用することができますが、一度データベースが生成されると、そのデータベースでは変更することができません。
LC_COLLATEとLC_CTYPEがこれらのカテゴリにあてはまります。
これらはインデックスのソート順に影響を及ぼすため、固定されていなければなりません。
さもないと、テキスト型の列上のインデックスは破壊されるでしょう。
（しかし「照合順序サポート」内で述べられているように、照合順序を使用することで、この制限を緩和できます）
initdbが実行された時に、これらのカテゴリのデフォルト値は決定され、CREATE DATABASEコマンドで他を指定しない限り、新しいデータベースが作成されるときにこの値が使用されます。
   


その他のロケールカテゴリは、いつでも、ロケールカテゴリと同じ名前の実行時パラメータを設定することで、希望値に変更できます
（詳細は「ロケールと書式設定」を参照してください）。
initdbで選択された値は、実際のところ、サーバの起動時にデフォルトとして動作するようにpostgresql.conf設定ファイルに書き込まれるだけです。
この代入文をpostgresql.confから削除すると、サーバは実行環境の設定をそのまま使用します。
   


サーバのロケールの動作はどのクライアントの環境にも依存せず、サーバが参照できる環境変数で決まります。
ですからサーバを稼働させる前に正しいロケール設定を行うように注意してください。
結果としてサーバとクライアントで異なるロケールが設定されていると、メッセージはそれらがどこから生じたかによって、異なる言語で表示されます。
   
注記


実行環境のロケールをそのまま使用するということは、ほとんどのオペレーティングシステムでは次のような意味を持ちます。
指定されたロケールカテゴリ（例えば照合順序）について、設定するものが見つかるまで、以下の環境変数がこの順番で調べられます。LC_ALL、LC_COLLATE（またはそれぞれのカテゴリに対応する変数）、LANG。
これらのいずれの環境変数も設定されない場合に、ロケールはデフォルトでCに設定されます。
    


メッセージの言語を設定する目的で、メッセージローカライゼーションライブラリの中には全てのロケール設定を上書きする環境変数LANGUAGEを検索するものがあります。
お使いのシステムでの挙動が不明ならばより詳細な情報を得るためお使いのオペレーティングシステムの文書、特にgettextの文書を参照してください。
    



ユーザの選択した言語にメッセージを翻訳できるようにするためにはNLSを構築時に有効にする（configure --enable-nls）必要があります。
他のロケールサポートはすべて自動的に構築されます。
   

動作





ロケールの設定は以下のSQL機能に影響を与えます。

    
	

文字列データに対するORDER BYまたは標準の比較演算子を使用した問い合わせにおける並べ替え順

      

	

upper、lower、initcap関数


      

	

（LIKE、SIMILAR TOやPOSIX形式の正規表現といった）パターンマッチング演算子では
ロケールは大文字、小文字を区別せず正規表現の文字クラスによる文字の区別に影響を及ぼします。


      

	

一群のto_char関数

      

	

LIKE節が付いたインデックスを使用する性能
      




   


CやPOSIX以外で、PostgreSQL™でロケールを使用する際の欠点は実行速度です。
ロケールは文字の扱いを遅くし、さらにLIKEで通常のインデックスが使用されなくなります。この理由から、本当に必要な時のみロケールを使用してください。
   


C以外のロケールにおいて、PostgreSQL™がLIKE句を持つインデックスを使用できるようにする回避方法として、いくつかのカスタム演算子クラスがあります。
これらを用いると、文字と文字を厳密に比較するようなインデックスや、ロケールの比較規則を無視するようなインデックスを作成できます。
詳細は「演算子クラスと演算子族」を参照してください。
もうひとつの方法は、「照合順序サポート」内で解説されているようなC照合順序を使用してインデックスを作成することです。
   

ロケールの選択





ロケールは、要件に応じて異なる範囲で選択できます。
前述の概要では、initdbを使用してロケールを指定し、クラスタ全体のデフォルトを設定する方法を説明しました。
次のリストは、ロケールを選択できる場所を示しています。
各項目は後続の項目のデフォルトを提供し、下位の各項目はより細かい粒度でデフォルトを上書きできます。
   
	

上で説明したように、オペレーティングシステムの環境は、新しく初期化されたデータベースクラスタのデフォルトのロケールを提供します。
多くの場合、これで十分です。
オペレーティングシステムが目的の言語/地域に設定されている場合、PostgreSQL™もデフォルトでそのロケールに従って動作します。
     

	

上記のように、initdbのコマンドラインオプションでは、新しく初期化されたデータベースクラスタのロケール設定を指定します。
オペレーティングシステムにデータベースシステムに必要なロケール設定がない場合に使用します。
     

	

ロケールはデータベースごとに個別に選択できます。
SQLコマンドCREATE DATABASEとそれに相当するコマンドラインcreatedbには、そのためのオプションがあります。
これは、データベース・クラスタに、異なる要件を持つ複数のテナントのデータベースが格納されている場合などに使用します。
     

	

ロケール設定は、個々のテーブル列に対して行うことができます。
これは照合順序というSQLオブジェクトを使用します。
このオブジェクトは「照合順序サポート」で説明されています。
たとえば、異なる言語でデータをソートしたり、特定のテーブルのソート順をカスタマイズする場合に使用します。
     

	

最後に、個々の問い合わせに対してロケールを選択できます。
ここでも、SQL照合オブジェクトを使用します。
これは、実行時の選択に基づいて並べ替え順序を変更する場合や、アドホックな実験に使用できます。
     




ロケールプロバイダ





ロケールプロバイダは、照合と文字分類のロケール動作を定義するライブラリを指定します。
   


前述のように、ロケール設定を選択するコマンドとツールには、それぞれロケールプロバイダを選択するオプションがあります。
次に、ICUプロバイダを使用してデータベースクラスタを初期化する例を示します。


initdb --locale-provider=icu --icu-locale=en



詳細は、各コマンドおよびプログラムの説明を参照してください。
異なる粒度でロケールプロバイダを混在させることもできます。
たとえば、クラスタではデフォルトでlibcを使用しますが、icuプロバイダを使用するデータベースが1つあり、これらのデータベース内でいずれかのプロバイダを使用する照合オブジェクトがあることに注意してください。
   


ロケールプロバイダに関係なく、オペレーティングシステムは、メッセージなどのロケール認識動作を提供するために使用されます（lc_messagesを参照）。
   


利用可能なロケールプロバイダは次のとおりです。
   
	builtin
	

builtinプロバイダは組み込みの操作を使用します。
このプロバイダでは、C、C.UTF-8およびPG_UNICODE_FASTロケールのみがサポートされています。
      


Cロケールプロバイダの動作は、libcプロバイダのCロケールと同じです。
このロケールを使用する場合、動作はデータベースエンコーディングによって異なる場合があります。
      


C.UTF-8ロケールは、データベースエンコーディングがUTF-8であり、動作がUnicodeに基づいている場合にのみ使用できます。
照合順序はコードポイント値のみを使用します。
正規表現文字クラスは"POSIX互換"セマンティクスに基づいており、ケースマッピングは"シンプル"亜種です。
      


PG_UNICODE_FASTロケールは、データベースエンコーディングがUTF-8であり、動作がUnicodeに基づいている場合にのみ使用できます。
照合順序はコードポイント値のみを使用します。
正規表現文字クラスは"標準"セマンティクスに基づいており、ケースマッピングは"フル"亜種です。
      

	icu
	

icuプロバイダは、外部ICUライブラリを使用します。
PostgreSQL™がICUサポート付きで設定されている必要があります。
      


ICUでは、照合順序およびデータベースエンコーディングから独立したオペレーティングシステムおよび文字の分類動作が提供されます。これは、結果を変更せずに他のプラットフォームに移行する場合に適しています。
LC_COLLATEおよびLC_CTYPEは、ICUロケールから独立して設定できます。
      
注記


ICUプロバイダは時間の経過に伴う自然言語の変化を反映して更新されるため、結果は、使用されるICUライブラリのバージョンに依存する可能性があります。
       


	libc
	

libcプロバイダは、オペレーティングシステムのCライブラリを使用します。
照合順序と文字の分類の動作は、LC_COLLATEとLC_CTYPEの設定によって制御されるため、個別に設定することはできません。
      
注記


同じロケール名でも、libcプロバイダを使用する場合、プラットフォームによって動作が異なる場合があります。
       





ICUロケール



ICUロケール名





ロケール名のICU形式は言語タグです。



CREATE COLLATION mycollation1 (provider = icu, locale = 'ja-JP');
CREATE COLLATION mycollation2 (provider = icu, locale = 'fr');


    

ロケールの正規化と検証





ICUをプロバイダとして使用して新しいICU照合順序オブジェクトまたはデータベースを定義する場合、指定されたロケール名がその形式でない場合は、言語タグに変換 ("正規化") されます。
例えば、



CREATE COLLATION mycollation3 (provider = icu, locale = 'en-US-u-kn-true');
NOTICE:  using standard form "en-US-u-kn" for locale "en-US-u-kn-true"
CREATE COLLATION mycollation4 (provider = icu, locale = 'de_DE.utf8');
NOTICE:  using standard form "de-DE" for locale "de_DE.utf8"




この通知が表示された場合は、providerとlocaleが期待通りであることを確認してください。
ICUプロバイダを使用するときに一貫した結果を得るには、変換に依存するのではなく、標準の言語タグを指定してください。
    


言語名のないロケール、または特別言語名rootは、言語und("undefined")を持つように変換されます。
    


ICUでは、ほとんどのlibcロケール名とその他の形式を言語タグに変換して、ICUへの移行を容易にすることができます。
ICUでlibcロケール名を使用すると、libcでの動作とまったく同じであるとは限りません。
    


ロケール名の解釈に問題がある場合、またはロケール名をICUが認識しない言語または地域を表す場合は、次の警告が表示されます。



CREATE COLLATION nonsense (provider = icu, locale = 'nonsense');
WARNING:  ICU locale "nonsense" has unknown language "nonsense"
HINT:  To disable ICU locale validation, set parameter icu_validation_level to DISABLED.
CREATE COLLATION




icu_validation_levelは、メッセージがどのように報告されるかを制御します。
ERRORに設定されていない限り、照合順序は作成されますが、ユーザが意図した動作とは異なる可能性があります。
    

言語タグ





BCP 47で定義されている言語タグは、言語、識別子、およびロケールに関するその他の情報を識別するために使用される標準化された地域です。
    


基本言語タグは、単にlanguage-region、または単にlanguageです。
languageは言語コード（例:frはフランス語を表します）で、regionは地域コード（例:caはカナダを表します）です。
例:ja-JP、de、またはfr-CA。
    


照合順序設定を言語タグに含めて、照合順序の動作をカスタマイズすることができます。
ICUでは、アクセント、大文字小文字、句読点に対する感度（または非感度）、テキスト内の数字の扱いなど、さまざまな用途に対応するための多くのオプションを含む、照合順序の広範なカスタマイズが可能です。
    


言語タグにこの追加の照合順序情報を含めるには、追加の照合順序設定があることを示す-uを追加し、その後に1つ以上の-key-valueペアを続けます。
keyは照合順序設定のキーで、valueはその設定の有効な値です。
ブール設定の場合、-keyを指定するだけで、対応する-valueを指定しないことができ、これはtrueの値を意味します。
    


例えば、言語タグen-US-u-kn-ks-level2とは、米国の英語言語を持つロケールを意味し、照合順序設定knはtrueに設定され、ksはレベル2に設定されています。
これらの設定は、照合順序が大文字小文字を区別せず、続きの数字を単一の数値として扱うことを意味します。



CREATE COLLATION mycollation5 (provider = icu, deterministic = false, locale = 'en-US-u-kn-ks-level2');
SELECT 'aB' = 'Ab' COLLATE mycollation5 as result;
 result
--------
 t
(1 row)

SELECT 'N-45' < 'N-123' COLLATE mycollation5 as result;
 result
--------
 t
(1 row)


    


ロケールのためのカスタム照合順序情報を持つ言語タグの使用の詳細と追加の例については、「ICU照合順序カスタム」を参照してください。
    


問題点





上記の説明に従ってロケールのサポートが正常に動作しない場合、オペレーティングシステムのロケールサポートが正確に設定されているか確認してください。
指定されたロケールがインストールされているかどうか確認するために、オペレーティングシステムが提供していれば、locale -aコマンドを使用することができます。
   


PostgreSQL™が想定しているロケールを実際に使用しているかどうかを確認してください。
LC_COLLATEとLC_CTYPEの設定はデータベース作成時に決定され、新しいデータベースを作成する方法以外に変更することはできません。
LC_MESSAGESやLC_MONETARYなど他のロケール設定はサーバ起動時の環境変数によって初めに決定されますが、その場で変更することもできます。
SHOWコマンドを使用して、使用中のロケール設定を確認できます。
   


ソース配布物のsrc/test/localeディレクトリには、PostgreSQL™のロケールサポート用のテストスイートがあります。
   


エラーメッセージ内のテキストを解析してサーバ側のエラーを扱っているクライアントアプリケーションでは、サーバのメッセージが異なる言語で記載されると、明らかに問題になります。
こうしたアプリケーションの作者には、エラーコードスキームで代替させることを推奨します。
   


メッセージ翻訳のカタログのメンテナンスにはPostgreSQL™に選択した言語を話させてみたいという数多くのボランティアのたゆみのない努力を必要としています。
もしあなたの言語が現在使えなかったり完全に翻訳されていない場合、助力をよろしくお願いします。
もし助力していただけるのであれば、56章各国語サポートを参照するか開発グループのメーリングリストに投稿してください。
   



照合順序サポート





照合順序機能は、ソート順番と列ごともしくは操作ごとのデータの文字区別の振る舞いを指定することを可能にします。
これにより、作成後のデータベースのLC_COLLATEとLC_CTYPEの設定を変更できない制限が緩和されます。
  
概念





概念的に照合可能なデータ型のそれぞれの式は、照合順序を保持しています
（組み込みの照合可能なデータ型はtext、varchar、 charです。
ユーザ定義の基本型は照合可能とマーキングできます。もちろん照合可能なデータ型上のドメインは照合可能となります）。
もし、式が列参照である場合は、式の照合順序は列の定義された照合順序となります。
もし、式が定数である場合は、照合順序は定数のデータ型のデフォルトの照合順序となります。
より複雑な式の照合順序は、下記に示すように、その入力の照合順序から引き出されます。
   


式の照合順序は、「default」照合順序となります。これはデータベースに対して定義されたロケール設定を意味しています。
式の照合順序は非決定となることもあります。そのような場合に、照合順序が必要となるような順序操作や他の操作は失敗するでしょう。
   


データベースシステムが並べ替えや文字区別を行う場合、データベースは入力の照合順序を使用します。
これは、たとえばORDER BY句や < 演算子や関数を使用する際に発生します。
ORDER BY句に適用する照合順序は、単純にソートキーの照合順序です。
関数や演算子の呼び出しに対して適用される照合順序は、以下に述べるように引数により決まります。
比較演算子に加えて、照合順序はlower、upper、initcapといった小文字と大文字を変換する関数やパターンマッチングの演算子、to_char関連の関数で考慮されています。
   


関数や演算子の呼び出しに対して、引数の照合順序検査により得られた照合順序は実行時に特定の操作を行うために使用されます。
もし関数や演算子の呼び出しの結果が照合順序可能なデータ型であった場合、照合順序は関数もしくは演算子式の定義済みの照合順序として
解析時にも試用されます。このとき照合順序の知識が必要となるような囲み式があります。
   


式の照合順序の導出は暗黙でも明示的にでも可能です。
この区別は、複数の異なる照合順序が式中に現れるときに照合順序がどのように組み合わされるか、に影響を与えます。
明示的な照合順序の導出は、COLLATE句が使用されたときに発生します。
他の全ての照合順序は暗黙となります。例えば関数呼び出しの中では、次の規則が用いられます。

    
	

入力式に明示的な照合順序の導出がある場合、入力式の中の明示的に導出された全ての照合順序が同一でなくてはなりません。
そうでない場合はエラーが発生します。もし明示的に導出された照合順序がある場合は、それは照合順序の組み合わせの結果となります。
      

	

そうでない場合は、全ての入力式は同一の暗黙の照合順序の導出またはデフォルトの照合順序を持たなくてはなりません。
もしデフォルトではない照合順序がある場合は、それは照合順序の組み合わせの結果となります。
もしそうでない場合は、結果はデフォルトの照合順序となります。
      

	

入力式内でデフォルトではない暗黙の照合順序が衝突している場合、決定不能な照合順序であるとみなされます。
これは、もし呼び出された特定の関数が適用するべき照合順序を知っておく必要がないかぎりエラーの条件ではありません。
もし知っておく必要がある場合は、実行時にエラーとなります。
      






例えば、このテーブル定義を考えてみます。


CREATE TABLE test1 (
    a text COLLATE "de_DE",
    b text COLLATE "es_ES",
    ...
);




このとき


SELECT a < 'foo' FROM test1;



< の比較はde_DEの規則により実行されます。
というのも式は暗黙的に導出されたデフォルトの照合順序と組み合わせます。しかし、


SELECT a < ('foo' COLLATE "fr_FR") FROM test1;



このとき比較は、明示的な照合順序の導出は暗黙の照合順序をオーバーライドするためfr_FR規則が用いられます。
さらに、次の例では


SELECT a < b FROM test1;



パーサはどの照合順序を適用するか決定できません。というのもaとb列は暗黙の衝突する照合順序を持つためです。
< 演算子がどちらの照合順序を使用するか知る必要があるため、エラーとなります。
このエラーは、どちらかの入力式に明示的な照合順序の指定を付加することで解決できます。
つまり、以下のようになります。


SELECT a < b COLLATE "de_DE" FROM test1;



もしくは以下でも同じです。


SELECT a COLLATE "de_DE" < b FROM test1;



一方で、以下のように構造的に似たケースとして


SELECT a || b FROM test1;



これはエラーとなりません。というのも || 演算子は、照合順序には関係がないためです。
この結果は照合順序と関係なく同じになります。
   


もし関数や演算子が照合順序可能なデータ型の結果を出力する場合は、関数に割り当てられた照合順序、もしくは演算子の組み合わされた入力式は、関数もしくは演算子の結果に対しても
適用されると考えられます。よって、以下の例では


SELECT * FROM test1 ORDER BY a || 'foo';



順序はde_DE規則に基づき実行されますが、以下の問い合わせでは


SELECT * FROM test1 ORDER BY a || b;



エラーとなります。というのも || 演算子が照合順序を知る必要がなかったとしても
ORDER BY句が照合順序を知る必要があるためです。
以前と同様、この衝突は明示的に照合順序を指定することにより解決できます。


SELECT * FROM test1 ORDER BY a || b COLLATE "fr_FR";


   

照合順序の管理





照合順序は、SQL名称を、オペレーティングシステム中にインストールされたライブラリによって提供されるロケールにマッピングするSQLスキーマオブジェクトです。
照合順序の定義には、ロケールデータを提供するライブラリを指定するプロバイダ(provider)が含まれます。
標準プロバイダの一つはlibcで、オペレーティングシステムのCライブラリが提供するロケールを使用します。
オペレーティングシステムが提供するほとんどのツールが、このロケールを使用します。
他のプロバイダとしてはicuがあり、外部のICUライブラリを使います。
ICUロケールは、PostgreSQLがビルドされた際にICUサポートが設定されていた場合にのみ利用可能です。
   


libcが提供する照合順序は、setlocale()システムライブラリの呼び出しが許可するLC_COLLATEとLC_CTYPEの組み合わせ設定にマッピングします。
（名称から推測されるように、照合順序の主な目的はソート順序を制御するLC_COLLATEを設定することです。
しかし実際にはLC_CTYPEの設定をLC_COLLATEと異なるようにする必要はほとんどありません。
そのため、式ごとにLC_CTYPEを設定するような別の機構を作成するより、これらの設定を収集する方が、より便利です。）
また、libcの照合順序は文字集合エンコーディングと結びついています（「文字集合サポート」を参照してください）。
同一の照合順序名称が異なるエンコーディングに対して存在しています。
   


icuが提供する照合順序オブジェクトは、ICUライブラリが提供する照合順序機能(collator)にマップします。
ICUは「collate」と「ctype」を別々に設定する機能を提供しないので、それら常に同じものになります。
また、ICUの照合順序はエンコーディングからは独立しています。
ですから、データベース中のある名前のICU照合順序は、常にただひとつだけです。
   
標準の照合順序





すべてのプラットフォームで、次の照合順序がサポートされています。

    
	unicode
	

この標準SQL照合順序は、デフォルトUnicode照合基本テーブルを使用してUnicode照合アルゴリズムで並べ替えます。
すべてのエンコーディングで使用できます。
この照合順序を使用するにはICUサポートが必要であり、PostgreSQL™がICUの別のバージョンで構築されている場合は動作が変更される可能性があります。
（この照合順序は、ICUルートロケールと同じ動作をします。und-x-icu (「undefined」用)を参照してください。）
       

	ucs_basic
	

この標準SQL照合順序による並べ替えでは、自然言語の並び順ではなく、Unicodeのコードポイント値を使用してソートされ、ASCII文字「A」から「Z」のみが文字として扱われます。
動作は効率的で、すべてのバージョンにわたって安定です。
エンコーディングUTF8でのみ使用可能です。
（この照合順序は、UTF8エンコーディングのlibcロケール指定Cと同じ動作をします。）
       

	pg_unicode_fast
	

この照合順序による並べ替えでは、自然言語の並び順ではなく、Unicodeのコードポイント値を使用してソートされます。
関数lower、initcap、upperには、Unicodeフルケースマッピングを使用します。
パターンマッチ（正規表現を含む）の場合は、Unicode互換プロパティの標準（Standard）亜種を使用します。
動作は効率的で、Postgres™のメジャーバージョン内で安定です。
これは、エンコーディングUTF8でのみ使用できます。
       

	pg_c_utf8
	

この照合順序による並べ替えでは、自然言語の並び順ではなく、Unicodeのコードポイント値を使用してソートされます。
関数lower、initcap、upperには、Unicodeシンプルケースマッピングを使用します。
パターンマッチ（正規表現を含む）の場合は、Unicode互換プロパティのPOSIX互換（POSIX Compatible）亜種を使用します。
動作は効率的で、Postgres™のメジャーバージョン内で安定です。
この照合順序は、エンコーディングUTF8でのみ使用できます。
       

	C (equivalent to POSIX)
	

CとPOSIXの照合は、「従来のC」の動作に基づいています。
自然言語の並び順ではなく、バイト値を使用してソートされ、ASCII文字「A」から「Z」のみが文字として扱われます。
動作は効率的で、すべてのバージョンで特定のデータベースエンコーディングに対して安定ですが、動作はデータベースのエンコーディングによって異なる場合があります。
       

	default
	

default照合順序は、データベース作成時に指定したロケールを選択します。
       




   


オペレーティングシステムサポートによっては、追加の照合を使用できる場合があります。
これらの追加の照合の効率性と安定度は、照合順序プロバイダ、プロバイダバージョン、およびロケールによって異なります。
   

定義済みの照合順序





オペレーティングシステムが単一のプログラム内(newlocaleや関連する関数)で複数のロケールを使用することをサポートしているか、ICUサポートが組み込み済みの場合、データベースクラスタが初期化されるとinitdbは、オペレーティングシステム上で見つけた全てのロケールに基づく照合順序をシステムカタログのpg_collationに書き込みます。
   


現在利用可能なロケールを調べるには、SELECT * FROM pg_collationという問い合わせを使うか、psql内で\dOS+コマンドを使用します。
   
libc照合順序





例えば、オペレーティングシステムがde_DE.utf8という名称のロケールを提供するとします。
initdbは、de_DE.utf8に設定されたLC_COLLATEとLC_CTYPEの両方を持つUTF8エンコーディングのde_DE.utf8という名称の照合順序を作成します。
同時に照合順序の名称から.utf8タグを削除した照合順序も作成します。
そのため、de_DEという名前の照合を使用することもできます。
これは手間を省き、名称がエンコーディングに依存しにくいようになります。
それにもかかわらず、照合順序名称の初期値はプラットフォーム依存となることに気をつけてください。
   


libcが提供するデフォルトの照合順序の集合は、直接オペレーティングシステム内にインストールされたロケールにマップされ、コマンドlocale -aで参照できます。
LC_COLLATEとLC_CTYPEで違う値を持つlibc照合順序が必要な場合、あるいはデータベースシステムが初期化された後に新しいロケールがインストールされた場合は、新しい照合順序をCREATE COLLATION(7)コマンドで作成できます。
また、新しいオペレーティングシステムロケールは、pg_import_system_collations()関数でインポートできます。
   


どのようなデータベース内でも、データベースのエンコーディングを使用している照合順序のみが興味の対象となります。
pg_collation内の他のエントリは無視されます。
よってde_DEといったようなエンコーディング名が省かれた照合順序は、一般的には一意でなくてもデータベース内では一意であるとみなされます。
エンコーディング名が省かれた照合順序を使用することを推奨します。
というのも、データベースのエンコーディングを変更するときに、変えなければならないものを１つ減らせるからです。
しかし、default、CそしてPOSIX照合順序は、データベースのエンコーディングに関係なく使用可能であることに注意してください。
   


PostgreSQL™は、異なる照合順序オブジェクトは、それらが同じプロパティを持っていても互換性がないものとみなします。
例えば、


SELECT a COLLATE "C" < b COLLATE "POSIX" FROM test1;



は、CとPOSIX照合順序が同じ動作であってもエラーとなります。
よってエンコーディング名が省かれた照合順序を混ぜて使用することは推奨されません。
   

ICU照合順序





ICUにおいては、すべての可能なロケール名を列挙するのは賢明ではありません。
ICUはロケールの固有の名前付けシステムを使っています。
しかし、実際の個別のロケール名以上の名前を付ける多くの方法があります。
initdbはICUのAPIを使い、照合順序の初期集合を入力するための
個別のロケールの集合を取り出します。
ICUが提供する照合順序は、libcロケールと区別するために、SQL環境において、「私的利用」拡張-x-icuを追加したBCP 47言語タグ形式の名前で作成されます。
   


以下は作成されるかもしれない照合順序の例です。

    
	de-x-icu
	ドイツ語照合順序、デフォルトの亜種

	de-AT-x-icu
	オーストリアのドイツ語照合順序、デフォルトの亜種


（他に、de-DE-x-icuあるいはde-CH-x-icuというのがあります。
しかし、本稿執筆時点では、それらはde-x-icuと同じです。）
       

	und-x-icu (「undefined」用)
	

ICU「root」照合順序。
言語に依存しない適当なソート順を得るために使用してください。
       




   


ある種の（利用頻度が低い）エンコーディングをICUはサポートしません。
データベースエンコーディングがこのようなものであった場合、pg_collation中のICU照合順序は無視されます。
このようなものを使おうとすると、「collation "de-x-icu" for encoding "WIN874" does not exist」というメッセージを伴ったエラーが発生します。
   


新しい照合順序オブジェクトの作成





標準の定義済み照合順序が十分でない場合は、ユーザはSQLコマンドCREATE COLLATION(7)で照合順序オブジェクトを作成できます。
   


すべての定義済みオブジェクト同様、標準の定義済み照合順序はpg_catalogスキーマにあります。
ユーザ定義の照合順序はユーザのスキーマに作成するべきです。
これはまた、pg_dumpの保存対象になることを確実にします。
   
libc照合順序





以下のようにして新しいlibc照合順序を作成できます。


CREATE COLLATION german (provider = libc, locale = 'de_DE');



コマンド中のlocale句に使用できる正確な値は、オペレーティングシステムに依存します。
Unix系のシステムでは、locale -aコマンドでこのリストを表示できるでしょう。
    


定義済みのlibc照合順序は、データベースインスタンスが初期化された際に、オペレーティングシステムで定義されたすべての照合順序をすでに含んでいるので、新しいものを手動で作る必要はあまりないでしょう。
そうしたことをする理由があるとすれば、異なる命名規則が必要である（この場合は、「照合順序の複製」も参照してください）、あるいはオペレーティングシステムが更新されて、新しいロケールの定義が提供されるようになった場合です。（この場合はpg_import_system_collations()も参照してください。）
    

ICU照合順序





ICU照合順序は次のように作成できます。



CREATE COLLATION german (provider = icu, locale = 'de-DE');




ICUロケールはBCP 47言語タグとして指定されますが、ほとんどのlibcスタイルのロケール名も受け入れます。
可能な場合、libcスタイルのロケール名は言語タグに変換されます。
    


新しいカスタマイズICU照合順序では、照合順序タグに照合順序属性を含めることで、言語の動作を広範囲にICU化できます。
詳細と例については、「ICU照合順序カスタム」を参照してください。
    

照合順序の複製





コマンドCREATE COLLATION(7)は、既存の照合順序から新しい照合順序を作る際にも利用できます。
これは、オペレーティングシステムから独立した照合順序名をアプリケーションで使用可能にしたり、互換性のある名称を作成したり、ICUが提供する照合順序を、よりわかりやすい名称で利用するのに役立ちます。
例を示します。


CREATE COLLATION german FROM "de_DE";
CREATE COLLATION french FROM "fr-x-icu";


   


非決定論的な照合順序





照合順序は決定論的もしくは非決定論的のどちらかです。
決定論的な照合順序は決定論的な比較を使用します。
つまり、同じバイト列で構成される場合に限り等しい文字列とみなします。
非決定論的な比較は、異なるバイト値で構成される文字列の場合でさえ文字列が等しいと判定するかもしれません。
一般的な状況では、大文字小文字を区別しない比較、アクセントを区別しない比較および異なるUnicode正規化形式による文字列の比較が含まれます。
このような区別しない比較を実際に実装するかは照合順序のプロバイダ次第です。
deterministicフラグはバイト単位の比較を用いて分解されるかどうかのみを決定します。
用語の詳細については、Unicode Technical Standard 10を参照してください。
    


非決定論的な照合順序を作るためにはCREATE COLLATIONにdeterministic = falseプロパティを指定します。
以下に例を示します。


CREATE COLLATION ndcoll (provider = icu, locale = 'und', deterministic = false);



この例では非決定論的な方法で標準のUnicode照合順序を使えます。
具体的には、これは異なる正規形の文字列を正しく比較できるでしょう。
より興味深い例は上述したICUカスタマイズ機能を用いた場合です。
以下に例を示します。


CREATE COLLATION case_insensitive (provider = icu, locale = 'und-u-ks-level2', deterministic = false);
CREATE COLLATION ignore_accents (provider = icu, locale = 'und-u-ks-level1-kc-true', deterministic = false);


    


すべての標準および事前に定義された照合順序は決定論的であり、すべてのユーザ定義の照合順序はデフォルトで決定論的です。
特にUnicodeの全機能およびその特別な場合を考えた際、非決定論的な照合順序はより多くの「正しい」振る舞いを与えると同時に、いくつかの欠点もあります。
第一にそれらを使用するとパフォーマンスが低下します。
B-treeは非決定的照合順序を使用したインデックスでは重複排除には使用できないことに特に注意してください。
また、パターンマッチング操作などで非決定論的な照合順序による操作ができないことも避けられません。
したがって、これらは明確に必要とされる場合のみに使用されるべきです。
    
ヒント


異なるUnicode正規化形式のテキストを処理する場合、非決定論的な照合を使用する代わりにnormalizeおよびis normalized関数もしくは式を使用して文字列の前処理もしくはチェックをするオプションもあります。
それぞれのアプローチで異なるトレードオフがあります。
     



ICU照合順序カスタム





ICUは、言語タグの一部として照合順序設定を持つ新しい照合順序を定義することで、照合順序の動作を広範囲に制御することができます。
これらの設定は、さまざまなニーズに合わせて照合順序を変更できます。
インスタンスの場合:



-- ignore differences in accents and case
CREATE COLLATION ignore_accent_case (provider = icu, deterministic = false, locale = 'und-u-ks-level1');
SELECT 'Å' = 'A' COLLATE ignore_accent_case; -- true
SELECT 'z' = 'Z' COLLATE ignore_accent_case; -- true

-- upper case letters sort before lower case.
CREATE COLLATION upper_first (provider = icu, locale = 'und-u-kf-upper');
SELECT 'B' < 'b' COLLATE upper_first; -- true

-- treat digits numerically and ignore punctuation
CREATE COLLATION num_ignore_punct (provider = icu, deterministic = false, locale = 'und-u-ka-shifted-kn');
SELECT 'id-45' < 'id-123' COLLATE num_ignore_punct; -- true
SELECT 'w;x*y-z' = 'wxyz' COLLATE num_ignore_punct; -- true




利用可能なオプションの多くは「ICUロケールの照合順序設定」で説明されています。
詳細は「ICUの外部参照」を参照してください。
   
ICU比較レベル





ICUでの2つの文字列の比較（照合）は、テキストの特徴が「レベル」にグループ化される多段階プロセスによって決定されます。
各レベルの処理は、照合設定によって制御されます。
高いレベルは、より細かいテキストの特徴に対応します。
    


表23.1「ICU照合順序レベル」は、指定されたレベルで等しいかどうかを決定する際に重要とされるテキスト特徴の違いを示しています。
Unicode文字U+2063は不可視のセパレータであり、表に示されているように、identic未満のすべての比較レベルで無視されます。
    
表23.1 ICU照合順序レベル
	レベル	説明	'f' = 'f'	'ab' = U&'a\2063b'	'x-y' = 'x_y'	'g' = 'G'	'n' = 'ñ'	'y' = 'z'
	level1	基本文字	true	true	true	true	true	false
	level2	アクセント	true	true	true	true	false	false
	level3	大文字小文字／亜種	true	true	true	false	false	false
	level4	句読点[a]	true	true	false	false	false	false
	identic	すべて	true	false	false	false	false	false
	[a] ka-shiftedに対してのみ。表23.2「ICU照合順序設定」参照







すべてのレベルで、完全正規化が無効であっても基本正規化は行われます。
例の場合、'á'はコードポイントU&'\0061\0301'または単一コードポイントU&'\00E1'で構成され、これらのシーケンスはidenticレベルでも等しいとみなされます。
コードポイント表現形式内の差を個別として扱うには、deterministicをtrueに設定して作成された照合順序を使用します。
    
照合順序レベルの例




CREATE COLLATION level3 (provider = icu, deterministic = false, locale = 'und-u-ka-shifted-ks-level3');
CREATE COLLATION level4 (provider = icu, deterministic = false, locale = 'und-u-ka-shifted-ks-level4');
CREATE COLLATION identic (provider = icu, deterministic = false, locale = 'und-u-ka-shifted-ks-identic');

-- invisible separator ignored at all levels except identic
SELECT 'ab' = U&'a\2063b' COLLATE level4; -- true
SELECT 'ab' = U&'a\2063b' COLLATE identic; -- false

-- punctuation ignored at level3 but not at level 4
SELECT 'x-y' = 'x_y' COLLATE level3; -- true
SELECT 'x-y' = 'x_y' COLLATE level4; -- false



ICUロケールの照合順序設定





表23.2「ICU照合順序設定」には、利用可能な照合順序設定が表示されます。
これらは言語タグの一部として使用して照合順序をカスタマイズすることができます。
    
表23.2 ICU照合順序設定
	キー	値	デフォルト	説明
	co	emoji, phonebk, standard, ...	standard	

照合順序タイプ。追加のオプションと詳細については「ICUの外部参照」を参照してください。
         
	ka	noignore, shifted	noignore	

shiftedに設定されている場合、いくつかの文字（例：句読点やスペース）が比較で無視されるようになります。
効果を発揮するには、キーksをlevel3以下に設定する必要があります。
どの文字クラスが無視されるかを制御するためにキーkvを設定します。
         
	kb	true, false	false	

レベル2の差異の逆比較。
例えば、ロケールund-u-kbは'àe'を'aé'よりも前に並べます。
         
	kc	true, false	false	
          

大文字小文字をアクセントと他のレベル3の特徴の間に「レベル2.5」として分離します。
          

          

trueに設定されており、ksがlevel1に設定されている場合、アクセントを無視しますが、大文字小文字を考慮します。
          

         
	kf	
          upper, lower,
          false
         	false	

upperに設定されている場合、大文字が小文字よりも前に並べられます。
lowerに設定されている場合、小文字が大文字よりも前に並べられます。
falseに設定されている場合、並べ替えはロケールの規則に依存します。
         
	kn	true, false	false	

trueに設定されている場合、文字列内の数字は、数字のシーケンスではなく単一の数値として扱われます。
例えば、'id-45'は'id-123'よりも前に並べられます。
         
	kk	true, false	false	
          

完全正規化を有効にします。
パフォーマンスに影響する場合があります。
基本正規化は、falseに設定されている場合でも実行されます。
完全正規化を必要とする言語のロケールでは、通常、デフォルトによって有効にされます。
          

          

複数のアクセントが単一の文字に適用される場合など、完全正規化が重要な場合があります。
例えば、コードポイントシーケンスU&'\0065\0323\0302'とU&'\0065\0302\0323'は、異なる順序で適用されたサーカムフレックスと下ドットのアクセントを持つeを表します。
完全正規化が有効の場合、これらのコードポイントシーケンスは等しいものとして扱われます。
それ以外の場合は等しくありません。
          

         
	kr	
          space, punct,
          symbol, currency,
          digit, script-id
         	 	
          

1つ以上の有効な値、または任意のBCP 47script-idに設定します。
たとえば、latn("ラテン")またはgrek("ギリシャ")です。
複数の値は"-"で区切ります。
          

          

文字クラスの順序を再定義します。
リストの後の文字クラスに属する文字は、リストの後の文字クラスに属する文字よりも前に並べられます。
たとえば、値digit-currency-space（言語タグの一部としてund-u-kr-digit-currency-space）は、句読点を数字とスペースの前に並べます。
          

         
	ks	level1, level2, level3, level4, identic	level3	

等価性を決定する際の感度（または「強度」）で、level1は差異に対して最も感度が低く、identicは差異に対して最も感度が高いです。
詳細は表23.1「ICU照合順序レベル」を参照してください。
         
	kv	
          space, punct,
          symbol, currency
         	punct	

レベル3での比較中に無視される文字クラス。
後の値に設定すると、前の値も含まれます。
たとえば、symbolはpunctおよびspaceも含みます。
無視される文字を含む文字にキーkaをshiftedに設定し、キーksをlevel3以下に設定する必要があります。
         





デフォルトはロケールによって異なります。
上記のテーブルは完全なものではありません。
追加のオプションと詳細については「ICUの外部参照」を参照してください。
    
注記


多くの照合順序設定では、目的の効果を得るために、deterministicをfalseに設定した照合順序を作成する必要があります（「非決定論的な照合順序」を参照）。
また、キーkaがshiftedに設定されている場合にのみ有効になる設定もあります（表23.2「ICU照合順序設定」を参照）。
     


照合順序設定の例



	CREATE COLLATION "de-u-co-phonebk-x-icu" (provider = icu, locale = 'de-u-co-phonebk');
	電話帳照合順形式を伴うドイツ語の照合順序

	CREATE COLLATION "und-u-co-emoji-x-icu" (provider = icu, locale = 'und-u-co-emoji');
	

絵文字照合順序型を伴うroot照合順序。Unicode Technical Standard #51による。
        

	CREATE COLLATION latinlast (provider = icu, locale = 'en-u-kr-grek-latn');
	

ラテン文字の前にギリシャ文字が来るように並べます。（デフォルトではギリシャ文字の前にラテン文字が来ます。）
        

	CREATE COLLATION upperfirst (provider = icu, locale = 'en-u-kf-upper');
	

小文字の前に大文字が来るように並べます。（デフォルトでは最初に小文字が来ます。）
        

	CREATE COLLATION special (provider = icu, locale = 'en-u-kf-upper-kr-grek-latn');
	

上記のオプションを組み合わせます。
        




ICU適合化規則





上記のオプション設定によって提供される照合順序が十分でない場合は、照合順序要素のオーダーを適合化規則を使用して変更できます。
適合化規則の構文はで詳しく説明されています。

    


この小さな例は、rootロケールをベースにした照合順序を作成し、ルールを調整します。


CREATE COLLATION custom (provider = icu, locale = 'und', rules = '&V << w <<< W');



このルールでは、文字「W」は「V」の後にソートされますが、アクセントと同様に二次的な差として扱われます。
このようなルールは、一部の言語のロケール定義に含まれています。
（もちろん、ロケール定義がすでに目的のルールを包含している場合は、明示的に再指定する必要はありません。）
    


ここに、より複雑な例があります。
次のステートメントは、EBCDIC記名的のオーダーにUS-ASCII文字をソートするためのルールを使用して、照合順序エンコーディングebcdicを設定します。



CREATE COLLATION ebcdic (provider = icu, locale = 'und',
rules = $$
& ' ' < '.' < '<' < '(' < '+' < \|
< '&' < '!' < '$' < '*' < ')' < ';'
< '-' < '/' < ',' < '%' < '_' < '>' < '?'
< '`' < ':' < '#' < '@' < \' < '=' < '"'
<*a-r < '~' <*s-z < '^' < '[' < ']'
< '{' <*A-I < '}' <*J-R < '\' <*S-Z <*0-9
$$);

SELECT c
FROM (VALUES ('a'), ('b'), ('A'), ('B'), ('1'), ('2'), ('!'), ('^')) AS x(c)
ORDER BY c COLLATE ebcdic;
 c
---
 !
 a
 b
 ^
 A
 B
 1
 2


    

ICUの外部参照





この節(「ICU照合順序カスタム」)は、概要の動作と言語タグの簡単なオプションです。
技術的な詳細、追加のICU、および新しい動作については、次のドキュメントを参照してください。
    
	
       Unicode Technical Standard #35
      

	
       BCP 47
      

	
       CLDR repository
      

	
       https://unicode-org.github.io/icu/userguide/locale/
      

	
       https://unicode-org.github.io/icu/userguide/collation/
      






文字集合サポート





PostgreSQL™の文字集合（エンコーディングとも呼ばれます）サポートにより、ISO 8859シリーズなどのシングルバイト文字やEUC（拡張Unixコード）、UTF-8、Mule内部コードなどのマルチバイト文字を含む、各種文字集合でテキストを保存できます。
全ての文字集合はクライアントにより透過的に使用できますが、いくつかは、サーバ内での（つまりサーバサイドエンコーディングとして）使用はサポートされていません。デフォルトの文字集合は、initdbを使用したPostgreSQL™データベースクラスタの初期化時に決定されます。
これは、データベースを作成する時に上書きできるので、異なる文字集合を使用した複数のデータベースを持つことができます。
  


しかし重要な制限として、それぞれのデータベースの文字集合がサーバのLC_CTYPE（文字分類）およびLC_COLLATE（文字列並べ替え順序）ロケール設定と互換性がなくてはいけないことがあげられます。
CもしくはPOSIXロケール設定の場合、どのような文字集合も許可されています。
しかし、libcが提供する他のロケール設定の場合、正しく動作する文字集合はひとつだけとなります。
（しかしWindowsではUTF-8符号化方式をどのロケールでも使用できます。）
ICUサポートが組み込まれている場合は、サーバサイドのすべてではないにしても、ほとんどのエンコーディングで、ICUが提供する照合順序が利用できます。
  
サポートされる文字集合





PostgreSQL™で使用できる文字集合を表23.3「PostgreSQL™文字集合」に示します。
    
表23.3 PostgreSQL™文字集合
	名前	説明	言語	サーバ？	ICU?	バイト数/​文字	別名
	BIG5	Big Five	繁体字	いいえ	いいえ	1-2	WIN950、Windows950
	EUC_CN	Extended UNIX Code-CN	簡体字	はい	はい	1-3	 
	EUC_JP	Extended UNIX Code-JP	日本語	はい	はい	1-3	 
	EUC_JIS_2004	Extended UNIX Code-JP, JIS X 0213	日本語	はい	いいえ	1-3	 
	EUC_KR	Extended UNIX Code-KR	韓国語	はい	はい	1-3	 
	EUC_TW	Extended UNIX Code-TW	繁体字、台湾語	はい	はい	1-4	 
	GB18030	National Standard	中国語	いいえ	いいえ	1-4	 
	GBK	Extended National Standard	簡体字	いいえ	いいえ	1-2	WIN936、Windows936
	ISO_8859_5	ISO 8859-5、ECMA 113	ラテン/キリル	はい	はい	1	 
	ISO_8859_6	ISO 8859-6、ECMA 114	ラテン/アラビア語	はい	はい	1	 
	ISO_8859_7	ISO 8859-7、ECMA 118	ラテン/ギリシャ語	はい	はい	1	 
	ISO_8859_8	ISO 8859-8、ECMA 121	ラテン/ヘブライ語	はい	はい	1	 
	JOHAB	JOHAB	韓国語（ハングル）	いいえ	いいえ	1-3	 
	KOI8R	KOI8-R	キリル文字（ロシア）	はい	はい	1	KOI8
	KOI8U	KOI8-U	キリル文字（ウクライナ）	はい	はい	1	 
	LATIN1	ISO 8859-1、ECMA 94	西ヨーロッパ	はい	はい	1	ISO88591
	LATIN2	ISO 8859-2、ECMA 94	中央ヨーロッパ	はい	はい	1	ISO88592
	LATIN3	ISO 8859-3、ECMA 94	南ヨーロッパ	はい	はい	1	ISO88593
	LATIN4	ISO 8859-4、ECMA 94	北ヨーロッパ	はい	はい	1	ISO88594
	LATIN5	ISO 8859-9、ECMA 128	トルコ	はい	はい	1	ISO88599
	LATIN6	ISO 8859-10、ECMA 144	北欧	はい	はい	1	ISO885910
	LATIN7	ISO 8859-13	バルト語派	はい	はい	1	ISO885913
	LATIN8	ISO 8859-14	ケルト	はい	はい	1	ISO885914
	LATIN9	ISO 8859-15	LATIN1でヨーロッパと訛りを含む	はい	はい	1	ISO885915
	LATIN10	ISO 8859-16、ASRO SR 14111	ルーマニア	はい	いいえ	1	ISO885916
	MULE_INTERNAL	Mule内部コード	多言語Emacs	はい	いいえ	1-4	 
	SJIS	Shift JIS	日本語	いいえ	いいえ	1-2	Mskanji、ShiftJIS、WIN932、Windows932
	SHIFT_JIS_2004	Shift JIS, JIS X 0213	日本語	いいえ	いいえ	1-2	 
	SQL_ASCII	未指定（テキストを参照）	何でも	はい	いいえ	1	 
	UHC	統合ハングルコード	韓国語	いいえ	いいえ	1-2	WIN949、Windows949
	UTF8	Unicode、8ビット	すべて	はい	はい	1-4	Unicode
	WIN866	Windows CP866	キリル文字	はい	はい	1	ALT
	WIN874	Windows CP874	タイ語	はい	いいえ	1	 
	WIN1250	Windows CP1250	中央ヨーロッパ	はい	はい	1	 
	WIN1251	Windows CP1251	キリル文字	はい	はい	1	WIN
	WIN1252	Windows CP1252	西ヨーロッパ	はい	はい	1	 
	WIN1253	Windows CP1253	ギリシャ	はい	はい	1	 
	WIN1254	Windows CP1254	トルコ	はい	はい	1	 
	WIN1255	Windows CP1255	ヘブライ	はい	はい	1	 
	WIN1256	Windows CP1256	アラビア語	はい	はい	1	 
	WIN1257	Windows CP1257	バルト語派	はい	はい	1	 
	WIN1258	Windows CP1258	ベトナム語	はい	はい	1	ABC、TCVN、TCVN5712、VSCII





全てのクライアントのAPIが上の一覧表に示した文字集合をサポートしているわけではありません。
例えばPostgreSQL™ JDBCドライバはMULE_INTERNAL、LATIN6、LATIN8、そしてLATIN10をサポートしません。
     


SQL_ASCIIの設定は、他の設定とかなり異なります。サーバの文字集合がSQL_ASCIIのとき、サーバは0から127のバイト値をASCIIに変換します。一方、128から255までは変換されません。
設定がSQL_ASCIIの場合は、符号化は実行されません。よって、この設定は特定の符号化を使用している場合には、その符号化を無視するようになってしまいます。
多くの場合、ASCIIではない環境で作業する場合はSQL_ASCIIの設定を使用するのは、賢いことではありません。なぜならPostgreSQL™はASCIIではない文字を変換したり検査したりすることは出来ないからです。
     

文字集合の設定





initdbでPostgreSQL™クラスタのデフォルト文字集合（エンコーディング）を定義します。
以下に例を示します。



initdb -E EUC_JP




これはデフォルトの文字集合をEUC_JP（日本語拡張Unixコード）に設定します。
より長いオプションの文字列がお好みなら-Eの代わりに--encodingと書くこともできます。
-Eオプションも--encodingオプションも与えられない場合、initdbは、指定もしくはデフォルトのロケールに基づいて適当な符号化方式を決定しようとします。
    


データベース作成時に選択したロケールと互換性を持つ符号化方式を提供することで、デフォルト以外の符号化方式を指定できます。



createdb -E EUC_KR -T template0 --lc-collate=ko_KR.euckr --lc-ctype=ko_KR.euckr korean




これはEUC_KR文字集合とko_KRロケールを使用するkoreanという名前のデータベースを作成します。
SQLコマンドで同じことを行うには次のようにします。



CREATE DATABASE korean WITH ENCODING 'EUC_KR' LC_COLLATE='ko_KR.euckr' LC_CTYPE='ko_KR.euckr' TEMPLATE=template0;




上のコマンドにてtemplate0データベースのコピーが指定されていることに注目してください。
他のデータベースからコピーする場合、データが破損する結果となる可能性がありますので、符号化方式とロケール設定を元のデータベースの設定から変更することはできません。
詳細については「テンプレートデータベース」を参照してください。
    


データベースの符号化方式はpg_databaseシステムカタログに格納されます。
psqlの-lオプションか\lコマンドで符号化方式を確認できます。



$ psql -l
                                         List of databases
   Name    |  Owner   | Encoding  |  Collation  |    Ctype    |          Access Privileges
-----------+----------+-----------+-------------+-------------+-------------------------------------
 clocaledb | hlinnaka | SQL_ASCII | C           | C           |
 englishdb | hlinnaka | UTF8      | en_GB.UTF8  | en_GB.UTF8  |
 japanese  | hlinnaka | UTF8      | ja_JP.UTF8  | ja_JP.UTF8  |
 korean    | hlinnaka | EUC_KR    | ko_KR.euckr | ko_KR.euckr |
 postgres  | hlinnaka | UTF8      | fi_FI.UTF8  | fi_FI.UTF8  |
 template0 | hlinnaka | UTF8      | fi_FI.UTF8  | fi_FI.UTF8  | {=c/hlinnaka,hlinnaka=CTc/hlinnaka}
 template1 | hlinnaka | UTF8      | fi_FI.UTF8  | fi_FI.UTF8  | {=c/hlinnaka,hlinnaka=CTc/hlinnaka}
(7 rows)


    
重要


最近のオペレーティングシステムでは、PostgreSQL™は、LC_CTYPEの設定によりどの文字集合が指定されているか決定できます。
そして、一致するデータベース符号化方式のみを強制的に使用します。
古いオペレーティングシステムでは、自分で選択したロケールが想定している符号化方式を確実に使用することは各自の責任になります。
ここでの間違いは、ソート処理などのロケールに依存する操作が、奇妙な動作するといったことにつながります。
     


PostgreSQL™は、LC_CTYPEがCもしくはPOSIXでもない場合にも、スーパーユーザがSQL_ASCIIエンコーディングでデータベースを作成することを許可します。
上記のように、SQL_ASCIIは、データベースに保存されているデータが特定のエンコーディングを持つことを強制しません。それゆえ、この選択はロケールに依存したおかしな動作を引き起こすリスクを高めます。
この設定の組み合わせを使用することは、お勧めできませんし、いつの日か完全に禁止されるかもしれません。
     


サーバ・クライアント間の自動文字集合変換





PostgreSQL™は、多数の文字集合の組み合わせ（「利用可能な文字集合の変換」 のいずれか）に対してサーバとクライアントの間で自動的に文字集合を変換する機能を提供しています。
    


自動文字集合変換を有効にするためには、クライアントでどのような文字集合（符号化方式）を使用させたいかをPostgreSQL™に伝えなければなりません。
これを行うにはいくつかの方法があります。

     
	

psqlで\encodingコマンドを使います。
\encodingは実行中であってもクライアントの符号化方式を変更させることができます。
例えば符号化方式をSJISに変えたい場合は次のように入力します。



\encoding SJIS


       

	

        libpq (「制御関数」)はクライアントの符号化方式を制御する関数を保持しています。
       

	

SET client_encoding TOを使います。
次のSQLコマンドでクライアントの符号化方式を設定できます。



SET CLIENT_ENCODING TO 'value';




標準SQLの構文SET NAMESを同じ目的で使うこともできます。



SET NAMES 'value';




現在のクライアントの符号化方式を問い合わせるには次のようにします。



SHOW client_encoding;




デフォルトの符号化方式に戻すのには次のようにします。



RESET client_encoding;


       

	

PGCLIENTENCODINGを使います。
クライアントの環境でPGCLIENTENCODING環境変数が定義されていると、サーバと接続が確立した時点で自動的にクライアントの符号化方式が選択されます。
（上で説明したその他のどんな方法でもその後書き換えできます。）
       

	

client_encoding変数を使います。
client_encoding変数が設定されていると、サーバとの接続が確立した時点で自動的にクライアントの符号化方式が選択されます。
（上で説明したその他のどんな方法でもその後書き換えできます。）
       




    


EUC_JPをサーバに、そしてLATIN1をクライアントに選んだ場合のように、
特定の文字の変換ができない時、日本語文字はLATIN1に入っていないという旨の日本語が返され、エラーが報告されます。
    


クライアント側の文字集合がSQL_ASCIIに定義されている場合は、符号化変換はサーバ側の文字集合に関係無く無効化されます。
（ただし、サーバの文字集合がSQL_ASCIIでない場合、サーバは受信データがそのエンコーディングに対して有効であることをチェックします。したがって、クライアントの文字集合がサーバの文字集合と同じであるかのような結果になります。）
サーバ側と同じように、SQL_ASCIIを使用することは、すべてASCIIのデータを扱っている場合を除き、賢い方法ではありません。
    

利用可能な文字集合の変換





PostgreSQL™は、pg_conversionシステムカタログ内にリストされた変換関数によって2つの文字集合間を変換できます。
PostgreSQL™では表23.4「組み込みクライアントもしくはサーバ文字集合変換」で要約され表23.5「すべての組み込み文字集合変換」に詳細が示されているように、いくつかの変換があらかじめ組み込まれています。
CREATE CONVERSION(7)SQLコマンドを用いることで新しい変換を作成できます。（クライアントもしくはサーバの自動変換を使用するためには、変換がその文字集合の組み合わせのための「デフォルト」として設定されている必要があります。）
    
表23.4 組み込みクライアントもしくはサーバ文字集合変換
	サーバ文字集合	利用可能なクライアント文字集合
	BIG5	サーバの符号化方式としてサポートされていません
        
	EUC_CN	EUC_CN,
        MULE_INTERNAL,
        UTF8
        
	EUC_JP	EUC_JP,
        MULE_INTERNAL,
        SJIS,
        UTF8
        
	EUC_JIS_2004	EUC_JIS_2004,
        SHIFT_JIS_2004,
        UTF8
        
	EUC_KR	EUC_KR,
        MULE_INTERNAL,
        UTF8
        
	EUC_TW	EUC_TW,
        BIG5,
        MULE_INTERNAL,
        UTF8
        
	GB18030	サーバの符号化方式としてサポートされていません
        
	GBK	サーバの符号化方式としてサポートされていません
        
	ISO_8859_5	ISO_8859_5,
        KOI8R,
        MULE_INTERNAL,
        UTF8,
        WIN866,
        WIN1251
        
	ISO_8859_6	ISO_8859_6,
        UTF8
        
	ISO_8859_7	ISO_8859_7,
        UTF8
        
	ISO_8859_8	ISO_8859_8,
        UTF8
        
	JOHAB	サーバの符号化方式としてサポートされていません
        
	KOI8R	KOI8R,
        ISO_8859_5,
        MULE_INTERNAL,
        UTF8,
        WIN866,
        WIN1251
        
	KOI8U	KOI8U,
        UTF8
        
	LATIN1	LATIN1,
        MULE_INTERNAL,
        UTF8
        
	LATIN2	LATIN2,
        MULE_INTERNAL,
        UTF8,
        WIN1250
        
	LATIN3	LATIN3,
        MULE_INTERNAL,
        UTF8
        
	LATIN4	LATIN4,
        MULE_INTERNAL,
        UTF8
        
	LATIN5	LATIN5,
        UTF8
        
	LATIN6	LATIN6,
        UTF8
        
	LATIN7	LATIN7,
        UTF8
        
	LATIN8	LATIN8,
        UTF8
        
	LATIN9	LATIN9,
        UTF8
        
	LATIN10	LATIN10,
        UTF8
        
	MULE_INTERNAL	MULE_INTERNAL,
         BIG5,
         EUC_CN,
         EUC_JP,
         EUC_KR,
         EUC_TW,
         ISO_8859_5,
         KOI8R,

         LATIN1 から LATIN4,
         SJIS,
         WIN866,
         WIN1250,
         WIN1251
        
	SJIS	サーバの符号化方式としてサポートされていません
        
	SHIFT_JIS_2004	サーバの符号化方式としてサポートされていません
        
	SQL_ASCII	任意（変換は実行されません）
        
	UHC	サーバの符号化方式としてサポートされていません
        
	UTF8	すべての符号化方式がサポートされています
        
	WIN866	WIN866,
         ISO_8859_5,
         KOI8R,
         MULE_INTERNAL,
         UTF8,
         WIN1251
        
	WIN874	WIN874,
        UTF8
        
	WIN1250	WIN1250,
         LATIN2,
         MULE_INTERNAL,
         UTF8
        
	WIN1251	WIN1251,
         ISO_8859_5,
         KOI8R,
         MULE_INTERNAL,
         UTF8,
         WIN866
        
	WIN1252	WIN1252,
         UTF8
        
	WIN1253	WIN1253,
         UTF8
        
	WIN1254	WIN1254,
         UTF8
        
	WIN1255	WIN1255,
         UTF8
        
	WIN1256	WIN1256,
        UTF8
        
	WIN1257	WIN1257,
         UTF8
        
	WIN1258	WIN1258,
        UTF8
        



表23.5 すべての組み込み文字集合変換
	変換名
         [a]
        	変換元符号化方式	変換先符号化方式
	big5_to_euc_tw	BIG5	EUC_TW
	big5_to_mic	BIG5	MULE_INTERNAL
	big5_to_utf8	BIG5	UTF8
	euc_cn_to_mic	EUC_CN	MULE_INTERNAL
	euc_cn_to_utf8	EUC_CN	UTF8
	euc_jp_to_mic	EUC_JP	MULE_INTERNAL
	euc_jp_to_sjis	EUC_JP	SJIS
	euc_jp_to_utf8	EUC_JP	UTF8
	euc_kr_to_mic	EUC_KR	MULE_INTERNAL
	euc_kr_to_utf8	EUC_KR	UTF8
	euc_tw_to_big5	EUC_TW	BIG5
	euc_tw_to_mic	EUC_TW	MULE_INTERNAL
	euc_tw_to_utf8	EUC_TW	UTF8
	gb18030_to_utf8	GB18030	UTF8
	gbk_to_utf8	GBK	UTF8
	iso_8859_10_to_utf8	LATIN6	UTF8
	iso_8859_13_to_utf8	LATIN7	UTF8
	iso_8859_14_to_utf8	LATIN8	UTF8
	iso_8859_15_to_utf8	LATIN9	UTF8
	iso_8859_16_to_utf8	LATIN10	UTF8
	iso_8859_1_to_mic	LATIN1	MULE_INTERNAL
	iso_8859_1_to_utf8	LATIN1	UTF8
	iso_8859_2_to_mic	LATIN2	MULE_INTERNAL
	iso_8859_2_to_utf8	LATIN2	UTF8
	iso_8859_2_to_windows_1250	LATIN2	WIN1250
	iso_8859_3_to_mic	LATIN3	MULE_INTERNAL
	iso_8859_3_to_utf8	LATIN3	UTF8
	iso_8859_4_to_mic	LATIN4	MULE_INTERNAL
	iso_8859_4_to_utf8	LATIN4	UTF8
	iso_8859_5_to_koi8_r	ISO_8859_5	KOI8R
	iso_8859_5_to_mic	ISO_8859_5	MULE_INTERNAL
	iso_8859_5_to_utf8	ISO_8859_5	UTF8
	iso_8859_5_to_windows_1251	ISO_8859_5	WIN1251
	iso_8859_5_to_windows_866	ISO_8859_5	WIN866
	iso_8859_6_to_utf8	ISO_8859_6	UTF8
	iso_8859_7_to_utf8	ISO_8859_7	UTF8
	iso_8859_8_to_utf8	ISO_8859_8	UTF8
	iso_8859_9_to_utf8	LATIN5	UTF8
	johab_to_utf8	JOHAB	UTF8
	koi8_r_to_iso_8859_5	KOI8R	ISO_8859_5
	koi8_r_to_mic	KOI8R	MULE_INTERNAL
	koi8_r_to_utf8	KOI8R	UTF8
	koi8_r_to_windows_1251	KOI8R	WIN1251
	koi8_r_to_windows_866	KOI8R	WIN866
	koi8_u_to_utf8	KOI8U	UTF8
	mic_to_big5	MULE_INTERNAL	BIG5
	mic_to_euc_cn	MULE_INTERNAL	EUC_CN
	mic_to_euc_jp	MULE_INTERNAL	EUC_JP
	mic_to_euc_kr	MULE_INTERNAL	EUC_KR
	mic_to_euc_tw	MULE_INTERNAL	EUC_TW
	mic_to_iso_8859_1	MULE_INTERNAL	LATIN1
	mic_to_iso_8859_2	MULE_INTERNAL	LATIN2
	mic_to_iso_8859_3	MULE_INTERNAL	LATIN3
	mic_to_iso_8859_4	MULE_INTERNAL	LATIN4
	mic_to_iso_8859_5	MULE_INTERNAL	ISO_8859_5
	mic_to_koi8_r	MULE_INTERNAL	KOI8R
	mic_to_sjis	MULE_INTERNAL	SJIS
	mic_to_windows_1250	MULE_INTERNAL	WIN1250
	mic_to_windows_1251	MULE_INTERNAL	WIN1251
	mic_to_windows_866	MULE_INTERNAL	WIN866
	sjis_to_euc_jp	SJIS	EUC_JP
	sjis_to_mic	SJIS	MULE_INTERNAL
	sjis_to_utf8	SJIS	UTF8
	windows_1258_to_utf8	WIN1258	UTF8
	uhc_to_utf8	UHC	UTF8
	utf8_to_big5	UTF8	BIG5
	utf8_to_euc_cn	UTF8	EUC_CN
	utf8_to_euc_jp	UTF8	EUC_JP
	utf8_to_euc_kr	UTF8	EUC_KR
	utf8_to_euc_tw	UTF8	EUC_TW
	utf8_to_gb18030	UTF8	GB18030
	utf8_to_gbk	UTF8	GBK
	utf8_to_iso_8859_1	UTF8	LATIN1
	utf8_to_iso_8859_10	UTF8	LATIN6
	utf8_to_iso_8859_13	UTF8	LATIN7
	utf8_to_iso_8859_14	UTF8	LATIN8
	utf8_to_iso_8859_15	UTF8	LATIN9
	utf8_to_iso_8859_16	UTF8	LATIN10
	utf8_to_iso_8859_2	UTF8	LATIN2
	utf8_to_iso_8859_3	UTF8	LATIN3
	utf8_to_iso_8859_4	UTF8	LATIN4
	utf8_to_iso_8859_5	UTF8	ISO_8859_5
	utf8_to_iso_8859_6	UTF8	ISO_8859_6
	utf8_to_iso_8859_7	UTF8	ISO_8859_7
	utf8_to_iso_8859_8	UTF8	ISO_8859_8
	utf8_to_iso_8859_9	UTF8	LATIN5
	utf8_to_johab	UTF8	JOHAB
	utf8_to_koi8_r	UTF8	KOI8R
	utf8_to_koi8_u	UTF8	KOI8U
	utf8_to_sjis	UTF8	SJIS
	utf8_to_windows_1258	UTF8	WIN1258
	utf8_to_uhc	UTF8	UHC
	utf8_to_windows_1250	UTF8	WIN1250
	utf8_to_windows_1251	UTF8	WIN1251
	utf8_to_windows_1252	UTF8	WIN1252
	utf8_to_windows_1253	UTF8	WIN1253
	utf8_to_windows_1254	UTF8	WIN1254
	utf8_to_windows_1255	UTF8	WIN1255
	utf8_to_windows_1256	UTF8	WIN1256
	utf8_to_windows_1257	UTF8	WIN1257
	utf8_to_windows_866	UTF8	WIN866
	utf8_to_windows_874	UTF8	WIN874
	windows_1250_to_iso_8859_2	WIN1250	LATIN2
	windows_1250_to_mic	WIN1250	MULE_INTERNAL
	windows_1250_to_utf8	WIN1250	UTF8
	windows_1251_to_iso_8859_5	WIN1251	ISO_8859_5
	windows_1251_to_koi8_r	WIN1251	KOI8R
	windows_1251_to_mic	WIN1251	MULE_INTERNAL
	windows_1251_to_utf8	WIN1251	UTF8
	windows_1251_to_windows_866	WIN1251	WIN866
	windows_1252_to_utf8	WIN1252	UTF8
	windows_1256_to_utf8	WIN1256	UTF8
	windows_866_to_iso_8859_5	WIN866	ISO_8859_5
	windows_866_to_koi8_r	WIN866	KOI8R
	windows_866_to_mic	WIN866	MULE_INTERNAL
	windows_866_to_utf8	WIN866	UTF8
	windows_866_to_windows_1251	WIN866	WIN
	windows_874_to_utf8	WIN874	UTF8
	euc_jis_2004_to_utf8	EUC_JIS_2004	UTF8
	utf8_to_euc_jis_2004	UTF8	EUC_JIS_2004
	shift_jis_2004_to_utf8	SHIFT_JIS_2004	UTF8
	utf8_to_shift_jis_2004	UTF8	SHIFT_JIS_2004
	euc_jis_2004_to_shift_jis_2004	EUC_JIS_2004	SHIFT_JIS_2004
	shift_jis_2004_to_euc_jis_2004	SHIFT_JIS_2004	EUC_JIS_2004
	[a] 

変換名は、標準の命名規定に従います。
英数字以外のすべての文字がアンダースコアに置き換えられた変換元符号化方式の正式名に_to_が続き、同様に処理された変換先符号化方式名が続きます。
したがって、これらの名前は、表23.3「PostgreSQL™文字集合」に示されている通常の符号化方式名と異なる場合があります。
          






推奨文書





ここに記したものは様々な符号化方式システムを学習するのに良い資料です。

     
	CJKV日中韓越情報処理: 中国語、日本語、韓国語 & ベトナム語処理
	

EUC_JP、EUC_CN、EUC_KR、EUC_TWの詳しい説明があります。
        

	https://www.unicode.org/
	

Unicode協会のWebサイトです。
        

	RFC 3629
	

ここでUTF-8（8ビットUCS/Unicode変換書式）が定義されています。
        




    


第24章 定常的なデータベース保守作業





他のデータベースソフトウェア同様、PostgreSQL™も、最適な性能を得るために定常的に実施しなければならない作業があります。
ここで説明する作業は必要なものであり、その性質上繰り返し行うべきものです。
しかし、cronスクリプトなどの標準ツールや、Windowsのタスクスケジューラを使用して簡単に自動化することができます。
適切なスクリプトを設定し、その実行がうまく行くかどうかを点検することは、データベース管理者の責任です。
  


明らかに必要な保守作業の1つに、定期的なデータのバックアップコピーの作成があります。
最近のバックアップがなければ、（ディスクの破損、火災、重要なテーブルの間違った削除などの）破滅の後、復旧することができません。
PostgreSQL™で可能なバックアップとリカバリ機構については、25章バックアップとリストアにて詳細に説明します。
  


他の保守作業の主なカテゴリには、定期的なデータベースの「バキューム」があります。
この作業については「定常的なバキューム作業」で説明します。
問い合わせプランナで使用される統計情報の更新も密接に関連しますが、こちらに関しては「プランナ用の統計情報の更新」で説明します。
  


この他、定期的に行わなければならない作業にログファイルの管理があります。
これについては「ログファイルの保守」で説明します。
  


check_postgresが、データベースの健全性を監視し、異常な状態を報告するために用意されています。
check_postgresはNagiosおよびMRTGに組み込まれたものですが、独立して実行させることができます。
  


PostgreSQL™は他のデータベース管理システムに比べ、保守作業は少ないと言えます。
それでもなお、これらの作業に適切に注意することは、システムに対する快適かつ充実した経験を確実に得るのに効果があります。
  
定常的なバキューム作業





PostgreSQL™データベースはバキューム処理として知られている定期的な保守を必要とします。
多くのインストレーションでは、「自動バキュームデーモン」で説明されている自動バキュームデーモンでのバキューム処理を行わせることで充分です。
それぞれの状況に合った最善の結果を得るため、そこで説明する自動バキューム用パラメータの調整が必要かもしれません。
データベース管理者によっては、cronもしくはタスクスケジューラスクリプトに従って典型的に実行される、手作業管理のVACUUMコマンドによりデーモンの活動を補足したり、置き換えたりすることを意図するかもしれません。
手作業管理のバキューム処理を適切に設定するためには、以下のいくつかの副節で説明する問題点を理解することが必須です。
自動バキューム処理に信頼をおいている管理者にとっても、この資料に目を通すことはそれらの理解と自動バキューム処理の調整に役に立つことでしょう。
  
バキューム作業の基本





PostgreSQL™のVACUUMコマンドは以下の理由により定期的にそれぞれのテーブルを処理しなければなりません。

    
	
更新、あるいは削除された行によって占められたディスク領域の復旧または再利用。

	
PostgreSQL™問い合わせプランナによって使用されるデータ統計情報の更新。

	
可視性マップの更新。
これによりインデックスオンリースキャンが高速化される。
      
	
トランザクションIDの周回またはマルチトランザクションIDの周回による非常に古いデータの損失を防止。






以降の副節で説明するように、これらの理由の1つ1つはVACUUM操作の実行について、その頻度の変動や対象領域の変動に影響します。
   


VACUUMには、標準VACUUMとVACUUM FULLという２つの種類があります。
VACUUM FULLはより多くのディスク容量を回収することができますが、実行にとても時間がかかります。
また、VACUUMの標準形式は実運用のデータベースに対する操作と同時に実行させることができます。
（SELECT、INSERT、UPDATE、DELETEなどのコマンドは通常通りに動作し続けます。
しかし、バキューム処理中はALTER TABLEなどのコマンドを使用してテーブル定義を変更することはできません。）
VACUUM FULLはそれが作用するテーブルに対しACCESS EXCLUSIVEロックを必要とするので、それらテーブルのその他の用途と並行して行うことはできません。
一般的に、管理者は標準VACUUMの使用に努め、VACUUM FULLの使用を避けるべきです。
   


VACUUMは、かなりの量のI/Oトラフィックを発生させます。
このため、他の実行中のセッションの性能を劣化させる可能性があります。
バックグラウンドで実行されるバキューム処理による性能への影響を軽減させることを調整できるような設定パラメータがあります。
「コストに基づくVacuum遅延」を参照してください。
   

ディスク容量の復旧





PostgreSQL™では、行のUPDATEもしくはDELETEは古い行を即座に削除しません。
この方法は、多版同時性制御（MVCC。13章同時実行制御を参照してください）の恩恵を受けるために必要なものです。
あるバージョンの行は他のトランザクションから参照される可能性がある場合は削除されてはなりません。
しかし最終的には、更新された前の行や削除された行を参照するトランザクションはなくなります。
必要なディスク容量が無制限に増加しないように、これらが占める領域は、新しい行で再利用できるように回収されなければなりません。
これはVACUUMを実行することで行われます。
   


標準形式のVACUUMは、テーブルとインデックス内の無効な行バージョンを削除し、その領域を将来の再利用が可能であるものとして記録します。
しかし、その領域をオペレーティングシステムに返却することはありません。
例外として、テーブルの末尾に完全に空のページが存在し、かつそのテーブルの排他ロックが容易に獲得できるような特殊な場合には、その領域を返却します。
対照的にVACUUM FULLは、無効な領域のない全く新しいバージョンのテーブルファイルを書き出すことで、積極的にテーブルを圧縮します。
テーブルの容量を最小化しますが、長い時間がかかる可能性があります。
また操作が終わるまで、テーブルの新しいコピー用に余計なディスク領域を必要とします。
   


定常的なバキューム作業の通例の目安はVACUUM FULLの必要性を避けるに充分な頻度で標準VACUUMを行うことです。
自動バキュームデーモンはこのようにして作動を試みます。
そして実際VACUUM FULLを行いません。
この手法において、その発想はテーブルを最小サイズに保つのではなく、ディスク領域使用の安定状態を保持することです。
それぞれのテーブルは、その最小サイズにバキューム作業とバキューム作業の間で使用されることになる容量を加えたのに等しい空間を占有します。
VACUUM FULLは、テーブルをその最小サイズまで縮小し、ディスク空間をオペレーティングシステムに返却するために使用することができますが、もし将来そのテーブルが再び肥大化するのであれば、大した意味がありません。
従って、程よい頻度の標準VACUUMを実行するほうが、不定期のVACUUM FULLを実行するより大量の更新テーブルを保守するにはより良い取り組みとなります。
   


例えば負荷が少ない夜間に全ての作業を行うように、一部の管理者は自身で計画したバキューム作業の方を選びます。
固定したスケジュールに従ってバキューム作業を行うことについての問題は、もし更新作業によりテーブルが予期せぬ急増に遭遇した場合、空き領域を回収するためにVACUUM FULLが本当に必要となるところまで肥大化することです。
自動バキュームデーモンを使用することにより、この問題は緩和されます。
なぜなら、このデーモンは更新作業に反応して動的にバキューム作業を計画するからです。
完全に作業量を予測することができない限り、デーモンを完全に無効化するのは勧められません。
取り得る妥協案の1つは、いつになく激しい更新作業にのみ反応するよう、デーモンのパラメータを設定することです。
これにより、抑制可能な範囲を維持しつつ、負荷が標準的な場合に計画化されたVACUUMがまとめて作業を行うことを想定することができます。
   


自動バキュームを使用しない場合の典型的な方式は、データベース全体のVACUUMを1日1回使用頻度が低い時間帯にスケジュールすることです。
必要に応じて、更新頻度の激しいテーブルのバキューム処理をより頻繁に行うよう追加してください。
（非常に高い頻度でデータの更新を行うインストレーションの中では、分間隔位という頻度で高負荷なテーブルのVACUUMを行うこともあります。）
1つのクラスタで複数のデータベースがある場合、それぞれをバキュームすることを忘れないでください。
vacuumdb(1)プログラムが役に立つかもしれません。
   
ヒント


大規模な更新や削除作業の結果としてテーブルが無効な行バージョンを大量に含む場合、通常のVACUUMは満足のゆくものではないかもしれません。
もしそのようなテーブルを所有し、それが占有する余分なディスク空間の回収が必要であれば、VACUUM FULL、またはその代わりにCLUSTERやテーブルを書き換えるALTER TABLE構文の1つを使用しなければなりません。
これらのコマンドはテーブル全体を新しいコピーに書き換え、それに対する新規インデックスを作成します。
これらの選択肢はすべてACCESS EXCLUSIVEロックを必要とします。
新しいものが完成するまで、テーブルの旧コピーとインデックスは解放されませんので、元のテーブルと同程度の容量の余計なディスク領域も一時的に使用することに注意してください。
   

ヒント


テーブルの内容が定期的に完全に削除される場合、DELETEの後にVACUUMを使用するよりも、TRUNCATEを使用する方が良いでしょう。
TRUNCATEはテーブルの全ての内容を即座に削除します。
また、その後に不要となったディスク容量を回収するためにVACUUMやVACUUM FULLを行う必要がありません。
不利な点は厳格なMVCCの意味論に違反することです。
   


プランナ用の統計情報の更新





PostgreSQL™問い合わせプランナは、優れた問い合わせ計画を作成するのに、テーブルの内容に関する統計情報に依存しています。
この統計情報はANALYZEコマンドによって収集されます。
このコマンドはそのものを呼び出す以外にも、VACUUMのオプション処理としても呼び出すことができます。
合理的な精度の統計情報を持つことは重要です。
さもないと非効率的な計画を選択してしまい、データベースの性能を悪化させてしまいます。
   


自動バキュームデーモンが有効になっている場合は、テーブルの内容が大きく変更されたときはいつでも自動的にANALYZEコマンドを発行します。
しかし、特にテーブルの更新作業が「興味のある」列の統計情報に影響を与えないことが判っている時、手作業により計画されたANALYZE操作を当てにする方が好ましいと管理者は思うかもしれません。
デーモンは、挿入または更新された行数の関数としてANALYZEを厳密に計画します。
しかし、意味のある統計情報の変更につながるかどうかは判りません。
   


パーティションや継承の子で変更されたタプルは親テーブルでの解析を誘発しません。
親テーブルが空であったり、まれにしか変更されなかったりする場合、自動バキュームにより処理されることはなく、継承ツリー全体としての統計情報は収集されないかもしれません。
統計情報を最新に保つためには、親テーブルでANALYZEを手動で実行することが必要です。
   


領域復旧のためのバキューム処理と同様、頻繁な統計情報の更新は、滅多に更新されないテーブルよりも更新の激しいテーブルにとってより有益です。
しかし、頻繁に更新されるテーブルであっても、データの統計的な分布が大きく変更されなければ、統計情報を更新する必要はありません。
単純な鉄則は、テーブル内の列の最小値、最大値にどのくらいの変化があったかを考えることです。
例えば、行の更新時刻を保持するtimestamp列の場合、最大値は行が追加、更新されるにつれて、単純に増加します。
こういった列は、おそらく、例えば、あるWebサイト上のアクセスされたページのURLを保持する列よりも頻繁に統計情報を更新する必要があるでしょう。
このURL列の更新頻度も高いものかもしれませんが、その値の統計的な分布の変更は相対的に見ておそらく低いものです。
   


特定のテーブルに対してANALYZEを実行することができます。
また、テーブルの特定の列のみに対してさえも実行することができます。
ですので、アプリケーションの要求に応じて、他よりも頻繁に一部の統計情報を更新できるような柔軟性があります。
しかし、実際には、操作が高速であるため、単にデータベース全体を解析することが最善です。
ANALYZEは、すべての行を読むのではなく、テーブルから統計的にランダムな行を抽出して使用します。
   
ヒント


列単位でのANALYZE実行頻度の調整はあまり実用的とは言えるものではありませんが、ANALYZEで集計される統計情報の詳細レベルの調整を列単位で行うことは価値がある場合があります。
WHERE句でよく使用され、データ分布の規則性がほとんどない列は、他の列よりもより細かいデータのヒストグラムが必要になるでしょう。
ALTER TABLE SET STATISTICSを参照するか、default_statistics_target設定パラメータでデータベース全体のデフォルトを変更してください。
    


またデフォルトで、関数の選択性に関して利用可能な制限付きの情報があります。
しかし、統計情報オブジェクトや関数呼び出しを使用する式インデックスを作成する場合、有用な統計情報が関数に関して収集されます。
これにより式インデックスを使用する問い合わせ計画を大きく改良することができます。
    

ヒント


自動バキュームデーモンは、有益になる頻度を決定する手段がありませんので、外部テーブルに対してANALYZEコマンドを発行しません。
問い合わせが適切な計画作成のために外部テーブルの統計情報が必要であれば、適当なスケジュールでこれらのテーブルに対して手作業で管理するANALYZEコマンドを実行することを勧めます。
    

ヒント


自動バキュームデーモンはパーティション化テーブルに対してANALYZEコマンドを発行しません。
継承の親は親自身が変更された場合にのみ解析されます。子テーブルの変更は親テーブルでの自動解析を誘発しません。
もし問い合わせが適切な計画のために親テーブルの統計情報を必要とするなら、統計情報を最新に保つために、それらのテーブルに対して定期的に手動でANALYZEを実行することが必要です。
    


可視性マップの更新





バキュームは、どのページにすべての有効トランザクション（およびページが再度更新されるまでの将来のトランザクション）で可視であることが分かっているタプルのみが含まれるかを追跡するために、各テーブルの可視性マップの保守を行います。
２つの目的があります。
１つ目はバキューム自身が、整理するものがありませんので、こうしたページを次回飛ばすことができます。
   


２つ目は、PostgreSQL™が、背後にあるテーブルを参照することなく、インデックスのみを使用して一部の問い合わせに応えることができるようになります。
PostgreSQL™のインデックスにはタプルの可視性に関する情報を持ちませんので、通常のインデックススキャンは合致したインデックス項目のヒープタプルを取り込み、現在のトランザクションから可視であるべきかどうか検査します。
一方でインデックスオンリースキャンはまず可視性マップを検査します。
そのページのタプルがすべて可視であることが分かれば、ヒープの取り出しを省くことができます。
可視性マップによりディスクアクセスを防ぐことができる大規模なデータ群に対して、特に有効です。
可視性マップはヒープより非常に小さいため、ヒープが非常に大きい場合であっても簡単にキャッシュすることができます。
   

トランザクションIDの周回エラーの防止





PostgreSQL™のMVCCトランザクションのセマンティクスは、トランザクションID（XID）番号の比較が可能であることに依存しています。
現在のトランザクションのXIDよりも新しい挿入時のXIDを持ったバージョンの行は、「未来のもの」であり、現在のトランザクションから可視であってはなりません。
しかし、トランザクションIDのサイズには制限（32ビット）があり、長時間（40億トランザクション）稼働しているクラスタはトランザクションの周回を経験します。
XIDのカウンタが一周して0に戻り、そして、突然に、過去になされたトランザクションが将来のものと見えるように、つまり、その出力が不可視になります。
端的に言うと、破滅的なデータの損失です。
（実際はデータは保持されていますが、それを入手することができなければ、慰めにならないでしょう。）
これを防ぐためには、すべてのデータベースにあるすべてのテーブルを少なくとも20億トランザクションごとにバキュームする必要があります。
   


定期的なバキューム処理によりこの問題が解決する理由は、VACUUMが行に凍結状態という印をつけて、挿入トランザクションの効果が確実に可視になるような十分遠い過去にコミットされたトランザクションによりそれらが挿入されたことを表すからです。
PostgreSQL™は特別なXID、FrozenTransactionIdを確保します。
このXIDは通常のXIDの比較規則には従わず、常に全ての通常のXIDよりも古いものとみなされます。
通常のXID（2以上の値）はmodulo-232という数式を使用して比較されます。
これは、全ての通常のXIDでは、20億の「より古い」XIDと20億の「より新しい」XIDが存在することを意味します。
言い換えると、通常のXID空間は終わることなく循環されているということです。
そのため、ある特定のXIDであるバージョンの行を作成すると、そのバージョンの行は、以降の20億トランザクションからはどの通常のXIDについて比較しているのかには関係なく、 「過去のもの」と認識されます。
そのバージョンの行が20億トランザクション以上後にも存在していた場合、それは突然に未来のものとして認識されます。
これを防ぐために、凍結された行バージョンは挿入XIDがFrozenTransactionIdであるかのように扱われ、それで、周回問題に関係なく、すべての通常のトランザクションから「過去のもの」として認識され、また、そのバージョンの行はどれだけ古いものであろうと、削除されるまで有効状態となります。
   
注記


9.4より前のバージョンのPostgreSQL™では、行の挿入XIDを実際にFrozenTransactionIdで置換することで凍結が実装されており、これは行のxminシステム列として見えていました。
それより新しいバージョンでは単にフラグのビットをセットするだけで、行の元のxminは後の検証での利用に備えて保存します。
しかし、9.4以前のバージョンからpg_upgradeでアップグレードしたデータベースでは、xminが FrozenTransactionId (2)に等しい行がまだあるかもしれません。
    


また、システムカタログにはxminがBootstrapTransactionId (1)に等しい行が含まれる場合があり、これはその行がinitdbの最初の段階で挿入されたことを意味します。
FrozenTransactionIdと同様、この特別なXIDはすべての通常のXIDよりも古いものとして扱われます。
    



vacuum_freeze_min_ageは、その行バージョンが凍結される前に、XID値がどのくらい経過しているのかを制御します。
この設定値を大きくすることで、そうでなければ凍結状態になる行がすぐに再び修正されるのであれば、不必要な作業を避けられるかもしれませんが、この設定値を小さくすることでテーブルを次にバキュームする必要が起こるまで継続できるトランザクション数が増加します。
   


VACUUMは可視性マップを使用して、テーブルのどのページをスキャンする必要があるかを決定します。
通常は、無効な行バージョンを持っていないページをスキップします。このとき、そのページに古いXID値の行バージョンがまだある可能性があったとしても読み飛ばします。
したがって、通常のVACUUMでは必ずしもテーブル内のすべての古い行バージョンを凍結するわけではありません。
そのようなことが起きた場合には、最終的にVACUUMで積極的なバキュームを実行する必要があるでしょう。そのときは、全可視ではあるが全凍結ではないページにあるものを含めて、適切な凍結されていないXID値やMXID値をすべて凍結します。
   


テーブルに、全可視ではあるが全凍結ではないページのバックログが蓄積されている場合、通常のバキュームは、それらを凍結するために、スキップ可能なページをスキャンすることを選択するかもしれません。
これにより、次の積極的なバキュームがスキャンしなければならないページの数が減少します。
これらは熱心にスキャンされるページと呼ばれます。
熱心なスキャンは、vacuum_max_eager_freeze_failure_rateを増加させることによって、より多くの全可視のページを凍結しようとするように調整できます。
熱心なスキャンによって、全可視ではあるが全凍結ではないページの数が最小限に抑えられた場合でも、ほとんどのテーブルでは定期的な積極的バキューム処理が必要です。
ただし、熱心な凍結に成功したページは積極的なバキュームではスキップされる可能性があるため、熱心な凍結は積極的なバキュームのオーバーヘッドを最小限に抑えるかもしれません。
   


vacuum_freeze_table_ageは、いつテーブルが積極的にバキュームされるかを制御します。
最後にそのようなスキャンが行われた後に実行されたトランザクションの数がvacuum_freeze_table_ageからvacuum_freeze_min_ageを引いた数より大きいとき、全可視ではあるが全凍結ではないページがスキャンされます。
vacuum_freeze_table_ageを0に設定するとVACUUMは常にこの積極的な戦略を使うようになります。
   


テーブルをバキュームすることなく処理できる最大の時間は、20億トランザクションから最後に積極的なバキュームを実行した時点のvacuum_freeze_min_ageの値を差し引いたものです。
この時間よりも長期間バキュームを行わないと、データ損失が発生するかもしれません。
これを確実に防止するために、自動バキュームがautovacuum_freeze_max_age設定パラメータで指定された時代より古いXIDを持つ、凍結状態でない行を含む可能性がある任意のテーブルに対して呼び出されます。
（これは自動バキュームが無効であっても起こります。）
   


これは、あるテーブルがバキュームされていなかったとしても、自動バキュームがおよそautovacuum_freeze_max_age - vacuum_freeze_min_ageトランザクション毎に呼び出されることを意味します。
領域確保のために定常的にバキューム処理を行うテーブルでは、これは重要ではありません。
しかし、（挿入のみで更新や削除が行われないテーブルを含む）静的なテーブルでは、領域確保のためのバキューム処理を行う必要がなくなりますので、非常に長期間静的なテーブルでは、強制的な自動バキューム間の間隔を最大まで延ばすことができます。
記載するまでもありませんが、autovacuum_freeze_max_ageを増やすことでもvacuum_freeze_min_ageを減らすことでも、これを行うことができます。
   


vacuum_freeze_table_ageに対する有効な最大値は0.95 * autovacuum_freeze_max_ageです。
これより値が高いと値は最大値までに制限されます。
autovacuum_freeze_max_ageより高い値は、周回防止用の自動バキュームがその時点でいずれにせよ誘発され、0.95という乗算係数がそれが起こる前に手動によるVACUUM実行の余地を残すため、意味を持ちません。
経験則に従うと、定期的に計画されたVACUUMもしくは通常の削除・更新作業により誘発された自動バキュームがその期間で実行されるように十分な間隔を残しておくように、vacuum_freeze_table_ageはautovacuum_freeze_max_ageより多少低い値に設定されるべきです。
これを余りにも近い値に設定すると、たとえ領域を回収するために最近テーブルがバキュームされたとしても、周回防止用の自動バキュームに帰着します。
一方より低い値はより頻繁な積極的バキュームを引き起こします。
   


autovacuum_freeze_max_age（およびそれに付随するvacuum_freeze_table_age）を増やす唯一の欠点は、データベースクラスタのサブディレクトリpg_xactとpg_commit_tsがより大きな容量となることです。
autovacuum_freeze_max_ageの範囲まですべてのトランザクションのコミット状況と(track_commit_timestampが指定されていれば)タイムスタンプを格納しなければならないためです。
コミット状況は1トランザクション当たり2ビット使用しますので、もしautovacuum_freeze_max_ageをその最大許容値である20億に設定している場合、pg_xactはおよそ0.5ギガバイトまで、pg_commit_tsは約20GBまで膨らむものと考えられます。
これがデータベースサイズ全体に対してとるに足らないものであれば、autovacuum_freeze_max_ageを最大許容値に設定することを勧めます。
さもなければ、pg_xactとpg_commit_tsの容量として許容できる値に応じてそれらを設定してください。
（デフォルトは2億トランザクションです。換算するとpg_xactはおよそ50MB、pg_commit_tsはおよそ2GBの容量となります。）
   


vacuum_freeze_min_age を減らすことにも1つ欠点があります。
これによりVACUUMが大して役に立たなくなるかもしれません。
テーブル行がすぐに変更される場合（新しいXIDを獲得することになります）、行バージョンを凍結することは時間の無駄です。
そのため、この設定は、行の変更が起こらなくなるまで凍結されない程度に大きくすべきです。
   


データベース内のもっとも古い凍結されていないXIDの年代を追跡するために、VACUUMはシステムテーブルpg_classとpg_databaseにXID統計情報を保持します。
特に、テーブルに対応するpg_class行のrelfrozenxid列には、relfrozenxidを進めることに成功した最後のVACUUM（典型的には最後の積極的なVACUUM）の終わりに残っているもっとも古い凍結されていないXIDが含まれます。
同様に、データベースに対応するpg_database行のdatfrozenxid列は、データベース内で現れる凍結されていないXIDの下限値です。
これは、そのデータベース内のテーブル当たりのrelfrozenxid値の最小値です。
この情報を検査する簡便な方法は、以下の問い合わせを実行することです。



SELECT c.oid::regclass as table_name,
       greatest(age(c.relfrozenxid),age(t.relfrozenxid)) as age
FROM pg_class c
LEFT JOIN pg_class t ON c.reltoastrelid = t.oid
WHERE c.relkind IN ('r', 'm');

SELECT datname, age(datfrozenxid) FROM pg_database;




age列は切り捨てXIDから現在のトランザクションXIDまでのトランザクション数を測ります。
   
ヒント


VACUUMコマンドのVERBOSEパラメータが指定されている場合、VACUUMはテーブルに関するさまざまな統計情報を出力します。
これにはrelfrozenxidおよびrelminmxidをどのように繰り上げたかの情報や新しく凍結されたページの数が含まれます。
(log_autovacuum_min_durationで制御される)自動バキュームロギングが自動バキュームによって実行されたVACUUM操作を報告する場合にも、サーバログに同じ詳細が表示されます。
    



VACUUMはたいてい前回のバキュームの後で変更されたページをスキャンしますが、全可視ではあるが全凍結ではないページを凍結しようと、それらを熱心にスキャンする場合もあります。ただし、relfrozenxidはテーブルの凍結されていないXIDを含むかもしれないすべてのページをスキャンしたときのみ繰り上がります。
これは、relfrozenxidがvacuum_freeze_table_ageトランザクション年齢より大きい時、VACUUMのFREEZEオプションが使用された時、もしくは無効な行バージョンを削除するため全凍結になっていないすべてのページをバキュームしなければならなくなった時に発生します。
VACUUMがテーブルの全凍結になっていないすべてのページをスキャンしたとき、age(relfrozenxid)は、使用されたvacuum_freeze_min_age設定より若干大きくなるはずです
（VACUUMを起動してから始まったトランザクションの数分大きくなります）。
VACUUMはrelfrozenxidをテーブルに残っている最も古いXIDに設定しますので、最後の値を厳密に要求されるものよりずっとより新しいものとすることが可能です。
relfrozenxidを繰り上げるVACUUMがautovacuum_freeze_max_ageに達するまでにテーブルに対して発行されない場合、そのテーブルに対して自動バキュームが早急に強制されます。
   


何らかの理由により自動バキュームがテーブルの古いXIDの整理に失敗した場合、システムはデータベースの最古のXIDが周回ポイントから4000万トランザクションに達した場合と似たような警告メッセージを発行し始めます。



WARNING:  database "mydb" must be vacuumed within 39985967 transactions
HINT:  To avoid XID assignment failures, execute a database-wide VACUUM in that database.




（ヒントで示唆されたように手動VACUUMはこの問題を解決します。
しかし、VACUUMはスーパーユーザで実行されるべきであること注意してください。
さもないとシステムカタログの処理に失敗し、このためデータベースのdatfrozenxidを繰り上げることができません。）
こうした警告も無視し続け、周回するまでのトランザクションが300万より少なくなると、システムは新しいXIDの割り当てを拒絶します。



ERROR:  database is not accepting commands that assign new XIDs to avoid wraparound data loss in database "mydb"
HINT:  Execute a database-wide VACUUM in that database.




この状態では、すでに進行中のトランザクションは継続できますが、読み込み専用トランザクションのみを開始できます。
データベースレコードを変更したり、リレーションを切り詰めたりする操作は失敗します。
VACUUMコマンドは通常どおりに実行できます。
以前のリリースで推奨されていたことに反して、通常の操作を復元するために、postmasterを停止したりシングルユーザモードに入ったりする必要はなく、また、それが望ましいことでもないことに注意してください。
代わりに、次の手順を実行してください。

    
	古いプリペアドトランザクションを解決します。
pg_prepared_xactsのage(transactionid)が大きい行を確認して見つけることができます。
このようなトランザクションはコミットまたはロールバックされるべきです。
	長時間実行されているオープントランザクションを終了します。
pg_stat_activityでage(backend_xid)またはage(backend_xmin)が大きい行を確認して、これらを見つけることができます。
このようなトランザクションはコミットまたはロールバックするか、pg_terminate_backendを使用してセッションを終了できます。
	古いレプリケーションスロットを削除します。
pg_stat_replicationを使用してage(xmin)またはage(catalog_xmin)が大きいスロットを見つけます。
多くの場合、そのようなスロットは、もはや存在しないか長い間ダウンしているサーバへのレプリケーションのために作成されたものです。
存在するサーバに対してスロットを削除しても、そのスロットに接続しようとする可能性がある場合、そのレプリカは再構築する必要があるでしょう。
	対象のデータベースでVACUUMを実行します。
データベース全体のVACUUMが最も簡単です。
必要な時間を短縮するために、relminxidが最も古いテーブルに対して手動VACUUMコマンドを発行することも可能です。
このシナリオではVACUUM FULLを使用しないでください。これにはXIDが必要であり、スーパーユーザモード以外では失敗します。
その代わりにXIDを消費してトランザクションIDのラップアラウンドのリスクを高めるからです。
また、VACUUM FREEZEも使用しないでください。
通常の操作を回復するために必要な最小限の作業以上の作業を行うからです。
	通常の動作が回復したら、将来の問題を回避するために、対象のデータベースで自動バキュームが正しく設定されていることを確認してください。



   
注記


以前のバージョンでは、postmasterを停止してVACUUMをシングルユーザモードで実行する必要な場合がありました。
一般的なシナリオでは、これはもはや必要ではなく、システムを停止させることを伴うため、可能な限り回避する必要があります。
また、データ損失を防ぐために設計されたトランザクションIDラップアラウンド保護を無効にするため、よりリスクが高くなります。
このシナリオでシングルユーザモードを使用する唯一の理由は、不必要なテーブルをTRUNCATEまたはDROPし、それらのVACUUMをする必要を避けたい場合です。
管理者がこのようなことを行えるようにするために、300万トランザクションの安全マージンが存在します。
シングルユーザモードの使用の詳細については、postgres(1)のリファレンスページを参照してください。
    

マルチトランザクションと周回





マルチトランザクションIDは複数のトランザクションによる行ロックをサポートするのに使われます。
タプルヘッダにはロック情報を格納するために限られた容量しかありませんので、二つ以上のトランザクションが同時に行をロックする時には必ず、その情報は「マルチプル（訳注:複数の）トランザクションID」、略してマルチトランザクションID、にエンコードされます。
あるマルチトランザクションIDにどのトランザクションIDが含まれているかという情報はpg_multixactサブディレクトリに別に格納されており、マルチトランザクションIDのみがタプルヘッダのxmaxフィールドに現れます。
トランザクションIDと同様に、マルチトランザクションIDは32ビットカウンタと対応する記憶領域として実装されており、どちらも注意深い年代管理や記憶領域の整理、周回の取り扱いが必要です。
各マルチトランザクションにはメンバの一覧を保持する独立した記憶領域があり、そこでも32ビットカウンタを使っているので同じように管理しなければなりません。
表9.84「トランザクションIDとスナップショット情報関数」で説明されているシステム関数pg_get_multixact_members()を使用して、マルチトランザクションIDに関連付けられたトランザクションIDを調べることができます。
    


テーブルの何らかの部分に対しVACUUMスキャンされるときはいつでも、そのときに見つかったvacuum_multixact_freeze_min_ageよりも古いマルチトランザクションIDはすべて異なる値で置き換えられます。
異なる値とは、0かもしれませんし、単一のトランザクションIDかもしれませんし、より新しいマルチトランザクションIDかもしれません。
各テーブルでは、pg_class.relminmxidがそのテーブルのタプルにまだ現れるマルチトランザクションIDのうちできるだけ古いものを保持しています。
この値がvacuum_multixact_freeze_table_ageよりも古ければ、積極的バキュームが強制されます。
前節で説明したように、積極的なバキュームでは全凍結であるとわかっているページのみがスキップされます。
pg_class.relminmxidに対してその年代を調べるのにmxid_age()を使えます。
    


積極的なVACUUMは、その原因が何かに関わらず、そのテーブルのrelminmxidを繰り上げできることが保証されています。
結局、すべてのデータベースのすべてのテーブルがスキャンされ、最も古いマルチトランザクション値が繰り上げられますので、ディスク上でより古いマルチトランザクションを保持している領域は削除できます。
    


安全装置として、autovacuum_multixact_freeze_max_ageよりもそのマルチトランザクション年代が大きいどのテーブルに対しても、積極的なバキュームスキャンが起こります。
また、マルチトランザクションメンバによる記憶領域の占有が約10GBを超えた場合にも、積極的なバキュームスキャンは、マルチトランザクション年代の一番古いものから始めて、すべてのテーブルに対してより頻繁に起こります。
この種の積極的スキャンはどちらも、自動バキュームが名目上は無効にされていても発生します。
メンバ格納領域は、周回に達する前に、約20GBまで成長することがあります。
    


XIDの場合と同様に、自動バキュームがテーブルから古いMXIDをクリアできない場合、データベースの最も古いMXIDが周回ポイントから4000万トランザクションに達すると、システムは警告メッセージの出力を開始します。
そして、XIDの場合と同様に、こうした警告を無視し続け、周回するまで300万を切ると、システムは新しいMXIDの生成を拒絶します。
    


MXIDが枯渇したときの通常の動作は、XIDが枯渇したときとほぼ同じ方法で復元できます。
前節と同じ手順に従いますが、次の点が異なります。

    
	実行中のトランザクションとプリペアドトランザクションは、マルチトランザクションに現れる可能性がない場合は無視できます。
	pg_stat_activityなどのシステムビューではMXID情報は直接表示されませんが、古いXIDを探すことはMXIDの周回問題の原因となっているトランザクションを判断する良い方法です。
	XIDの枯渇はすべての書き込みトランザクションをブロックしますが、MXIDの枯渇は、特に MXIDを必要とする行ロックを含む書き込みトランザクションのサブセットのみをブロックします。



   


自動バキュームデーモン





PostgreSQL™には、省略可能ですが強く推奨される自動バキュームという機能があります。
これはVACUUMとANALYZEコマンドの実行を自動化することを目的としたものです。
有効にすると、自動バキュームは大量のタプルの挿入、更新、削除があったテーブルを検査します。
この検査は統計情報収集機能を使用します。
したがって、track_countsがtrueに設定されていないと、自動バキュームを使用することができません。
デフォルトの設定では、自動バキュームは有効で、関連するパラメータも適切に設定されています。
   


実際のところ「自動バキュームデーモン」は複数のプロセスから構成されます。
自動バキュームランチャという永続的デーモンプロセスが存在し、自動バキュームワーカープロセスがすべてのデータベースを処理します。
ランチャは、1つのワーカーを各データベースに対しautovacuum_naptime秒ごとに開始するよう試みることにより、時間に対して作業を分散化します。
（したがってインストレーションにN個のデータベースがある場合、新規ワーカーがautovacuum_naptime/N秒毎に起動されます。）
同時に最大autovacuum_max_workers個のプロセスが実行可能です。
処理対象のデータベースがautovacuum_max_workersより多くある場合、次のデータベースは最初のワーカーが終了するとすぐに処理されます。
それぞれのワーカープロセスはデータベース内の各テーブルを検査し、必要に応じてVACUUMまたはANALYZEコマンドを発行します。
log_autovacuum_min_durationも自動バキュームワーカーの活動を監視するために設定できます。
   


短期間にいくつかの大規模なテーブルがすべてバキューム対象として適切な状態になったとすると、すべての自動バキュームワーカーはこうしたテーブルに対するバキューム処理に長い期間占領される可能性があります。
これにより、ワーカーが利用できるようになるまで、他のテーブルやデータベースに対するバキュームが行われなくなります。
また、単一データベースに対するワーカー数には制限はありませんが、ワーカーはすでに他のワーカーによって実行された作業を繰り返さないように試みます。
ワーカーの実行数はmax_connections制限にもsuperuser_reserved_connections制限にも計上されないことに注意してください。
   


テーブルのrelfrozenxid値がautovacuum_freeze_max_ageトランザクション年齢よりも古い場合、そのテーブルは常にバキュームされます
（これはfreeze max ageが格納パラメータにより変更されたテーブルに対しても適用されます。以下を参照）。
さもなければ、直前のVACUUMの後に不要となったタプル数が「バキューム閾値」を超えると、テーブルはバキュームされます。
このバキューム閾値は以下のように定義されます。



バキューム閾値 = Minimum(バキューム最大閾値, バキューム基礎閾値 + バキューム規模係数 * タプル数)



ここで、バキューム最大閾値はautovacuum_vacuum_max_threshold、バキューム基礎閾値はautovacuum_vacuum_threshold、バキューム規模係数はautovacuum_vacuum_scale_factor、タプル数はpg_class.reltuplesです。
   


直前のバキュームの後に挿入されたタプル数が定義された挿入閾値を超えた場合も、テーブルはバキュームされます。ここで挿入閾値は以下のように定義されます。



バキューム挿入閾値 = バキューム基礎挿入閾値 + バキューム挿入規模係数 * タプル数



ここで、バキューム挿入基礎閾値はautovacuum_vacuum_insert_threshold、バキューム挿入規模係数はautovacuum_vacuum_insert_scale_factorです。
そのようなバキュームは、テーブルの一部を全可視と印づけたり、タプルを凍結したりもできますので、後続のバキュームで必要となる作業を減らせます。
より早いバキュームによりタプルを凍結できますので、INSERT操作を受けたもののUPDATE/DELETE操作を全くもしくはほとんど受けていないテーブルに対しては、テーブルのautovacuum_freeze_min_ageを低くすることが有益な場合があります。
不要となったタプル数と挿入されたタプル数は、累積統計情報システムから取得されます。
これは、UPDATE、DELETEおよびINSERT操作ごとに更新される、最終的には一貫性のある数です。
テーブルのrelfrozenxid値がvacuum_freeze_table_ageトランザクション年齢より大きい場合、古いタプルを凍結して、relfrozenxidを繰り上げるため、積極的なバキュームが実行されます。
   


解析でも似たような条件が使用されます。
以下で定義される閾値が、



解析閾値 = 解析基礎閾値 + 解析規模係数 * タプル数



前回のANALYZEの後に挿入、更新、削除されたタプル数と比較されます。
   


パーティション化テーブルはタプルを直接格納しないため、自動バキュームによって処理されません。
(自動バキュームは他のテーブルと同様にテーブルパーティションを処理します。)
残念ながら、これは自動バキュームがパーティション化テーブルでANALYZEを実行しないことを意味し、これによりパーティション化テーブルの統計を参照する問い合わせに対して最適でない計画を生成する可能性があります。
この問題を回避するには、パーティション化テーブルに最初にデータが移入されたときにANALYZEを手動で実行し、パーティション内のデータの分布が大きく変化した場合には必ず再度実行します。
   


一時テーブルには自動バキュームでアクセスすることはできません。
したがってセッションのSQLコマンドを用いて適切なバキュームおよび解析操作を行わなければなりません。
   


デフォルトの閾値と規模係数は、postgresql.confから取られますが、(他の多くの自動バキューム制御パラメータと合わせて)テーブル毎に上書きすることができます。
より詳細な情報は格納パラメータを参照してください。
テーブルの格納パラメータで設定が変更されると、そのテーブルを処理する時にその値が使用されます。
そうでなければ、全体設定が使われます。
全体設定についての詳細な情報は「自動Vacuum作業」を参照してください。
   


複数のワーカープロセスが実行している場合、自動バキュームコスト遅延パラメータ(「コストに基づくVacuum遅延」を参照してください)は実行中のワーカー全体に「振り分け」られます。
このため、ワーカーの実稼働数に関らず、システムに与えるI/Oの総影響は変わりありません。
しかし、テーブル毎のautovacuum_vacuum_cost_delayまたはautovacuum_vacuum_cost_limit格納パラメータが設定されたテーブルを処理するワーカーは振り分けアルゴリズムでは考慮されません。
   


自動バキュームワーカーは通常は他のコマンドをブロックしません。
自動バキュームが保持するSHARE UPDATE EXCLUSIVEロックと衝突するロックを、プロセスが獲得しようとした場合には、ロックの獲得により自動バキュームが中断されます。
衝突するロックモードに関しては表13.2「ロックモードの競合」を参照してください。
しかしながら、自動バキュームがトランザクションIDの周回を防ぐために動作している(すなわち、pg_stat_activityビューの自動バキューム問い合わせ名が(to prevent wraparound)で終わっている)場合には、自動バキュームは自動的には中断されません。
   
警告


SHARE UPDATE EXCLUSIVEロックと衝突するロックを獲得する、定期的に動作するコマンド(例えばANALYZE)により、自動バキュームが実質的に終わらなくなることがあります。
    




定常的なインデックスの再作成





REINDEX(7)コマンドまたは一連の個々の再構築処理を使用して定期的にインデックスを再構築することが価値がある状況があります。

  


完全に空になったB-treeインデックスページは再利用のために回収されます。
しかしまだ非効率的な領域使用の可能性があります。
ページからわずかを残しほとんどすべてのインデックスキーが削除されたとしても、ページは割り当てられたまま残ります。
各範囲において、わずかを残しほとんどすべてのキーが削除されるようなパターンで使用されると、領域が無駄に使用されることが分かります。
こうした使用状況では、定期的なインデックス再構築を推奨します。
  


B-tree以外のインデックスが膨張する可能性はまだよく調査されていません。
B-tree以外の任意の種類のインデックスを使用する際には、インデックスの物理容量を定期的に監視することを勧めます。
  


また、B-treeインデックスでは、新規に構築したインデックスの方が何度も更新されたインデックスよりもアクセスが多少高速です。
新しく構築されたインデックスでは論理的に近接するページが通常物理的にも近接するからです。
（これはB-tree以外のインデックスではあてはまりません。）
アクセス速度を向上させるためだけに周期的にインデックスを再構築することは価値があるかもしれません。
  


REINDEX(7)はすべての状況で安全に簡単に使うことができます。
このコマンドはデフォルトでACCESS EXCLUSIVEロックを要求しますので、CONCURRENTLYオプションを付けて実行する方が好ましい場合がしばしばあります。その場合にはSHARE UPDATE EXCLUSIVEロックしか要求しません。
  

ログファイルの保守





データベースサーバのログ出力を/dev/nullに渡して単に破棄するのではなく、どこかに保存しておくことを推奨します。
問題の原因を究明する時にログ出力は貴重です。
  
注記


サーバログには機密情報が含まれている可能性があり、保存方法や保存場所、ルーティング先に関係なく保護する必要があります。
たとえば、一部のDDL文に平文のパスワードやその他の認証の詳細が含まれている場合があります。
ERRORレベルで記録された文には、アプリケーションのSQLソースコードが表示され、データ行の一部も含まれる場合があります。
データ、イベントおよび関連情報の記録は、この機能の意図した機能であるため、これは漏洩やバグではありません。
サーバログは、適切に権限を与えられたユーザにのみ見えるようにしてください。
   



ログ出力は（特により高いデバッグレベルの時に）巨大になる傾向があるので、際限なく保存したくはないでしょう。
適切な期間を経過した後に、新しいログファイルが開始され、古いログファイルが削除されるように、ログファイルをローテーションする必要があります。
  


単にpostgresのstderrをファイルに渡している場合、ログ出力を保持できますが、そのログファイルを切り詰めるためにはサーバを停止させ、再度起動させるしか方法がありません。
開発環境でPostgreSQL™を使用しているのであればこれで構いませんが、実運用サーバでこの振舞いが適切となることはほぼありません。
  


サーバのstderrを何らかのログローテーションプログラムに送信する方が良いでしょう。
組み込みのログローテーション機能があり、postgresql.confのlogging_collector設定パラメータをtrueに設定することでこれを使用することができます。
このプログラムを制御するパラメータについては「どこにログを出力するか」で説明します。
また、この方法を使用して、機械読み取りしやすいCSV(カンマ区分値)書式でログデータを取り込むことができます。
  


また、既に他のサーバソフトウェアで使用している外部のログローテーションプログラムがあるのであれば、それを使用したいと考えるでしょう。
例えば、Apache™配布物に含まれるrotatelogsをPostgreSQL™で使用することができます。
これを行う一つの方法は、単にサーバのstderrを目的のプログラムにパイプで渡すことです。
pg_ctlを使用してサーバを起動している場合はstderrは既にstdoutにリダイレクトされていますので、以下の例のようにコマンドをパイプする必要があるだけです。



pg_ctl start | rotatelogs /var/log/pgsql_log 86400


  


PostgreSQL™組み込みのログ収集機構により生成されるログファイルを集めるのにlogrotateを設定することで、上の方法を組み合わせることができます。
この場合、ログ収集機構はログファイルの名前と位置を定義する一方、logrotateは周期的にそのファイルをアーカイブします。
ログローテーションを開始する時に、logrotateはアプリケーションが以降の出力を新しいファイルに送ることを確実にしなければなりません。
通常これは、アプリケーションにSIGHUPシグナルを送るpostrotateスクリプトにより行なわれ、アプリケーションはその後ログファイルを再度開きます。
PostgreSQL™では、その代わりにpg_ctlにlogrotateオプションを付けて実行できます。
サーバはこのコマンドを受け取ると、ログ収集の設定に応じて新しいログファイルに切り替えるか、既存のファイルを再度開くかします(「どこにログを出力するか」を参照してください)。
  
注記


静的なログファイル名を使う場合には、開けるファイルの最大数に達したりファイルテーブルのオーバーフローが起きた場合に、サーバがログファイルを再度開くのに失敗するかもしれません。
この場合には、ログローテーションが成功するまでログメッセージは古いログファイルに送られます。
logrotateがログファイルを圧縮して削除するよう設定されていれば、サーバはこの期間にログに残そうとしたメッセージを失うかもしれません。
この問題を避けるため、ログファイル名を動的に割り当てて、開いているログファイルを無視するprerotateスクリプトを使うようにログ収集機構を設定できます。
    



この他の実運用レベルのログ出力の管理方法は、syslogに送信し、syslogにファイルのローテーションを行わせることです。
このためには、postgresql.confのlog_destination設定パラメータをsyslog（syslogのみにログを出力）に設定してください。
そして、新しいログファイルへの書き込みを始めたい時に、syslogデーモンにSIGHUPシグナルを送信してください。
ログローテーションを自動化させたい場合は、logrotateプログラムを設定することで、syslogからのログファイルを扱うことができます。
  


しかし、多くのシステムではsyslogは特に巨大なログメッセージに関してあまり信頼できません。
必要なメッセージを切り詰めてしまったり、破棄してしまったりする可能性があります。
また、Linux™では、syslogはメッセージごとにディスクに書き出すため、性能が良くありません。
（同期化を無効にするため、syslog設定ファイル内のファイル名の先頭に「-」を使うことができます。）
  


上述の手法は全て、新しいログファイルを開始する周期を設定することができますが、古い、既に役に立たなくなったログファイルの削除は扱わないことに注意してください。
おそらく定期的に古いログファイルを削除するバッチジョブを設定することになるでしょう。
他に、ローテーション用プログラムを設定して古いログファイルを周期的に上書きさせるという方法もあります。
  


pgBadger™という外部プロジェクトは洗練されたログファイルの解析を行います。
check_postgres™は、通常ではない多くの状態の検出を行うのと同時にログファイルに重要なメッセージが現れた時にNagiosで警告する機構を提供します。
  

第25章 バックアップとリストア





貴重なデータを保持しているあらゆるもの同様、PostgreSQL™データベースも定期的にバックアップされなければなりません。
バックアップの手順は基本的に簡単ですが、使用されている諸技術といくつかの前提条件を明確に理解しておくことが重要です。
 


PostgreSQL™のデータをバックアップする場合、3つの異なる手法があります。
  
	SQLによるダンプ

	ファイルシステムレベルのバックアップ

	継続的アーカイブ





それぞれ長所と短所があります。
ひとつひとつ順を追って以下の節で説明します。
 
SQLによるダンプ





このダンプ方法の背景にはSQLコマンドでファイルを生成し、そのファイルをサーバが再度読み込みを行った時に、ダンプした時点と同じ状態が再構築されるという意図があります。
この目的のため、PostgreSQL™はpg_dump(1)ユーティリティプログラムを提供しています。
このコマンドの基本となる使い方は以下の通りです。


pg_dump dbname > dumpfile



見てわかる通り、pg_dumpは結果を標準出力に書き出します。
これがどのように活用できるかをこれから説明します。
上記のコマンドはテキストファイルを作成しますが、pg_dumpは並列処理を可能にしたり、オブジェクトのリストアをより細かく制御できる他のフォーマットでファイルを作れます。
  


pg_dumpは、PostgreSQL™の通常のクライアントアプリケーションです（その中でも特に優れた機能を発揮するものですが）。
ということは、データベースに接続可能なあらゆるリモートホストからこのバックアップ手順を実行できます。
しかし、pg_dumpは特別な権限で実行される訳ではないことを忘れないでください。
特に、バックアップを行う全てのテーブルに対して読み取り権限が必要ですので、データベース全体のバックアップを実行する場合、ほとんど常にデータベースのスーパーユーザとして実行しなければなりません。
（もしデータベース全体のバックアップを取るのに十分な権限を持っていない場合には、-n schemaもしくは、-t tableのようなオプションを使って、データベースのアクセス権のある部分をバックアップできます。）
  


pg_dumpを行うデータベースサーバを特定するにはコマンドラインの-h hostオプションと-p portオプションを使用します。
デフォルトのホストはローカルホスト、またはPGHOST環境変数で指定したものです。
同様に、デフォルトのポートはPGPORT環境変数で指定されているか、うまく行かない場合にはコンパイル時の設定がデフォルトとなります。（そこはうまくできていて、サーバは通常コンパイル時の設定をデフォルトとします。）
  


他のPostgreSQL™のクライアントアプリケーションのように、pg_dumpはデフォルトでオペレーティングシステムの現在のユーザ名と同じデータベースユーザ名で接続します。
これを書き換えるには-Uオプションを付けるかPGUSER環境変数を設定します。
pg_dumpの接続は（20章クライアント認証で説明されている）通常のクライアント認証方法によることを思い出してください。
  


後で述べる他のバックアップ手法に対するpg_dumpの重要な利点は、pg_dumpの出力は一般に新しいバージョンのPostgreSQL™に再ロードできるということです。
一方、ファイルレベルのバックアップと継続的アーカイブは両方とも非常にサーバ、バージョン依存です。
pg_dumpは、32ビットから64ビットのサーバに移行するなどの異なるマシンアーキテクチャにデータベースを移す場合に上手くいく唯一の方法でもあります。
  


pg_dumpで作成されたダンプは、内部的に整合性があります。
つまり、ダンプはpg_dumpが開始された際のデータベースのスナップショットを示しています。
pg_dumpの操作はデータベースに対する他の作業を妨げません。
（ALTER TABLEのほとんどの形態であるような排他的ロックが必要な作業は例外です。）
  
ダンプのリストア





pg_dumpで作成されたテキストファイルは、デフォルト設定のpsqlプログラムで読み込まれることを意図しています。
以下に、テキストダンプをリストアする一般的なコマンドを示します。


psql -X dbname < dumpfile



ここでdumpfileはpg_dumpコマンドにより出力されたファイルです。
dbnameデータベースはこのコマンドでは作成されません。
（例えばcreatedb -T template0 dbname のようにして）psqlを実行する前に自分でtemplate0から作成してください。
psqlをデフォルト設定で実行することを保証するためには、-X(--no-psqlrc)オプションを使用します。
psqlはpg_dumpと似たような、接続データベースサーバと使用するユーザ名を指定するオプションに対応しています。
詳細については、psql(1)のリファレンスページを参照してください。
   


テキスト形式ではないダンプファイルはpg_restore(1)ユーティリティを使いリストアします。
   


SQLダンプのリストアを実行する前に、ダンプされたデータベース内のオブジェクトを所有するユーザやそのオブジェクト上に権限を与えられたユーザも存在しなければなりません。
存在していない場合、リストアはそのオブジェクトの元々の所有権や付与された権限を再作成することができません。
（このようにしたい場合もあるでしょうが、通常そうではありません。）
   


デフォルトでpsqlスクリプトは、SQLエラーが起きた後も実行を継続します。
ON_ERROR_STOP変数を設定してpsqlを実行することで、その動作を変更し、SQLエラーが起きた場合にpsqlが、終了ステータス3で終了するようにしたいと思うかもしれません。


psql -X --set ON_ERROR_STOP=on dbname < dumpfile



どちらにしても、部分的にリストアされたデータベースにしかなりません。
他に、ダンプ全体を1つのトランザクションとしてリストアするように指定することができます。
こうすれば、リストアが完全に終わるか、完全にロールバックされるかのどちらかになります。
このモードは、psqlのコマンドラインオプションに-1または--single-transactionを渡すことで指定できます。
このモードを使用する場合、数時間かけて実行していたリストアが軽微なエラーでロールバックしてしまうことに注意してください。
しかし、部分的にリストアされたダンプから手作業で複雑なデータベースを整理するよりまだましかもしれません。
   


pg_dumpとpsqlではパイプから読み書きができるので、あるサーバから別のサーバへデータベースを直接ダンプできます。
以下に例を示します。


pg_dump -h host1 dbname | psql -X -h host2 dbname


   
重要


pg_dumpで作成されるダンプはtemplate0と相対関係にあります。
つまりtemplate1を経由して追加されたあらゆる言語、プロシージャなどもpg_dumpによりダンプされます。
その結果としてリストアする際に、カスタマイズされたtemplate1を使用している場合は、上記の例のように、template0から空のデータベースを作成する必要があります。
    



バックアップをリストアした後、問い合わせオプティマイザが有用な統計情報を使用できるように、各データベースに対してANALYZEを実行することを勧めます。
より詳しくは、「プランナ用の統計情報の更新」 と 「自動バキュームデーモン」を参照してください。
効率的に大規模なデータをPostgreSQL™にロードする方法に関するより多くの勧告については、「データベースへのデータ投入」を参照してください。
   

pg_dumpallの使用





pg_dumpは一度に単一のデータベースのみをダンプします。
また、ロールやテーブル空間についての情報はダンプしません。
（これらはテーブル毎ではなくクラスタ全体のものだからです。）
データベースクラスタの全内容の簡便なダンプをサポートするために、pg_dumpall(1)プログラムが提供されています。
pg_dumpallは指定されたクラスタの各データベースのバックアップを行い、そして、ロールやテーブル空間定義などのクラスタ全体にわたるデータを保存します。
このコマンドの基本的な使用方法は


pg_dumpall > dumpfile


です。

ダンプの結果はpsqlでリストアできます。


psql -X -f dumpfile postgres



（実際、開始時に任意の既存のデータベース名を指定することができますが、空のクラスタ内にロードする場合は、通常 postgres を使用すべきです。）
ロールやテーブル空間の情報をリストアしなければならないので、pg_dumpallのダンプをリストアする時には、データベーススーパーユーザのアクセス権限を確実に必要とします。
テーブル空間を使用している場合、ダンプ内のテーブル空間のパスが新しいインストレーションで適切であることを確認してください。
   


pg_dumpallはコマンドを発令することによりロール、テーブル空間、およびデータベースを再作成し、それぞれのデータベースに対してpg_dumpを起動します。
このことは、それぞれのデータベースには内部的に矛盾がない一方、異なるデータベースのスナップショットは完全に同期しないことを示しています。
   


クラスタレベルでのデータはpg_dumpall の--globals-only オプションを使用して出力することができます。
このコマンドは個々のデータベースにpg_dump コマンドを実行しつつ、フルバックアップを取得する際に必要です。
   

大規模データベースの扱い





オペレーティングシステムの中には最大ファイルサイズに制限があるものがあり、大きなpg_dump出力ファイルを作成しているときに問題を引き起こします。
幸運なことに、pg_dumpは標準出力に書き出すことができますので、Unix標準のツールを使ってこの潜在的な問題を解決できます。
取りうる方法がいくつか存在します。
   
圧縮ダンプの使用. 

たとえば、自分が愛用しているgzipのような圧縮プログラムが使えます。



pg_dump dbname | gzip > filename.gz




元に戻すには次のようにします。



gunzip -c filename.gz | psql dbname




あるいは次のようにもできます。



cat filename.gz | gunzip | psql dbname


    
splitの使用. 

splitコマンドで結果を使用しているファイルシステムが受け付けられる大きさに分割することができます。
例えば2ギガバイトずつに分割するには次のようにします。



pg_dump dbname | split -b 2G - filename




元に戻すには次のようにします。



cat filename* | psql dbname




GNU splitを使用している場合は、次のようにgzipを一緒に使うことでファイルの圧縮が出来ます。



pg_dump dbname | split -b 2G --filter='gzip > $FILE.gz'




圧縮されたファイルはzcatを使ってリストア出来ます。
    
pg_dumpのカスタムダンプ書式の使用. 

もしPostgreSQL™がzlib圧縮ライブラリインストール済みのシステム上で構築されたのなら、カスタムダンプ書式では出力ファイルに書き出す時にデータを圧縮します。
gzipを使用した時と似通ったダンプサイズとなりますが、テーブルの復元を部分的に行えるという点で優れていると言えます。
以下のコマンドは、カスタムダンプ書式でのデータベースのダンプを行います。



pg_dump -Fc dbname > filename




カスタム書式のダンプはpsql用のスクリプトではありませんので、代わりにpg_restoreでリストアしなければなりません。
例えば以下のようにします。



pg_restore -d dbname filename




詳細はpg_dump(1)とpg_restore(1)のリファレンスページを参照してください。
    


巨大なデータベースに対しては、そのほかの２つの手法のうちの１つと一緒にsplitを組み合わせる必要があるかもしれません。
   
pg_dumpの並列実行. 

pg_dumpを並列実行することで、大きなデータベースのダンプを高速に実行することができます。
これは同時に複数テーブルのダンプを実行します。
並列度は-jパラメータを指定することで制御できます。
並列ダンプはディレクトリダンプ書式のみサポートします。



pg_dump -j num -F d -f out.dir dbname




pg_restore -jコマンドでダンプファイルを並列でリストアすることができます。
これはpg_dump -jでダンプファイルが作成されたか、否かにかかわらず、カスタムもしくはディレクトリダンプ書式で作成されたダンプファイルに使用できます。
    



ファイルシステムレベルのバックアップ





バックアップ戦略の代替案としてPostgreSQL™がデータベース内のデータを保存するために使用しているファイルを直接コピーする方法があります。
「データベースクラスタの作成」にこれらのファイルがどこにあるか解説されています。
下記のような通常のファイルシステムのバックアップを行うどんな方法でも問題ありません。



tar -cf backup.tar /usr/local/pgsql/data


  


しかしこの方法には2つの制約があり、そのためにあまり実用的ではなく、少なくともpg_dumpより劣ると言わざるを得ません。

   
	

有効なバックアップを行うにはデータベースサーバを必ず停止しなければなりません。
全ての接続を無効とするような中途半端な対策では作用しません
（tarやその類似ツールはある時点におけるファイルシステムの原子的なスナップショットを取らないことと同時に、サーバ内の内部バッファリングの理由によるからです）。
サーバの停止に関しては「サーバのシャットダウン」を参照してください。
言うまでもありませんが、データをリストアする前にもサーバを停止させる必要があります。
     

	

データベースのファイルシステムレイアウトの詳細を熟知している場合、ある個別のテーブルやデータベースをそれぞれのファイルやディレクトリからバックアップしたり復元したりすることを試みたいと思うかもしれません。
しかし、それらのファイル内の情報はすべてのトランザクションのコミット状態を保持するコミットログファイルpg_xact/*なしでは使えないため、この方法では正常なバックアップは行えません。
テーブルファイルはこの情報があって初めて意味をなします。
もちろんテーブルとそれに付帯するpg_xactデータだけで復元することも、データベースクラスタにある他のテーブルを無効としてしまうのでできません。
ですので、ファイルシステムバックアップは、データベースクラスタ全体の完全なバックアップとリストア処理にのみ動作します。
     




  


その他のファイルシステムバックアップ方法として、ファイルシステムが「整合性を維持したスナップショット」機能をサポートしている場合（かつ、正しく実装されていると信用する場合）、データディレクトリのスナップショットを作成する方法があります。
典型的な手順では、データベースを含むボリュームの「凍結スナップショット」を作成し、データディレクトリ全体（上述のように、一部だけではいけません）をスナップショットからバックアップデバイスにコピーし、そして、凍結スナップショットを解放します。
これはデータベースサーバが稼働中であっても動作します。
しかし、こうして作成されたバックアップは、データベースサーバが適切に停止されなかった状態のデータベースファイルを保存します。
そのため、このバックアップデータでデータベースサーバを起動する時、直前のサーバインスタンスがクラッシュしたものとみなされ、WALログが取り直されます。
これは問題ではありません。
単に注意してください（そして、確実にバックアップにWALファイルを含めてください）。
CHECKPOINTコマンドをスナップショット取得前に発行することで復旧時間を減らすこともできます。
  


対象のデータベースが複数のファイルシステムにまたがって分散している場合、全てのボリュームに対して完全に同期した凍結スナップショットを得る方法が存在しない可能性があります。
例えば、データファイルとWALログが異なったディスク上にあったり、テーブル空間が異なるファイルシステム上にある場合、スナップショットは同時でなければなりませんので、スナップショットのバックアップを使用できない可能性があります。
こうした状況では、整合性を維持したスナップショット技術を信用する前に使用するファイルシステムの文書を熟読してください。
  


同時実行のスナップショットができない場合、選択肢の１つとして、全ての機能の停止したスナップショットを確定させるのに充分な時間、データベースサーバをシャットダウンさせることが挙げられます。
他の選択肢は、継続的なベースバックアップの保管（「ベースバックアップの作成」）を行うことです。
こうしたバックアップには、バックアップ中のファイルシステムの変更を心配する必要がないためです。
これにはバックアップ処理期間のみに継続的な保管を行う必要があり、継続的なアーカイブリカバリ（「継続的アーカイブによるバックアップを使用した復旧」）を使用してリストアを行います。
  


ファイルシステムをバックアップするその他の選択肢としてrsyncの使用が挙げられます。
これを行うには、先ずデータベースサーバが稼働中にrsyncを実行し、そしてrsync --checksumを実行するのに充分な間だけデータベースサーバを停止します。
（rsyncはファイルの更新時刻に関して1秒の粒度しかありませんので、--checksumが必要です。）
次のrsyncは、比較的転送するデータ量が少なく、サーバが稼働していないため最終結果に矛盾がない事から、最初のrsyncよりも迅速です。
この方法で最小の稼働停止時間でファイルシステムのバックアップを行う事ができます。
  


ファイルシステムバックアップは、概してSQLによるダンプより大きくなることに注意してください。
（pg_dumpでは、例えばインデックスの内容をダンプする必要はありません。単にコマンドで再作成します。）
しかし、ファイルシステムのバックアップを取るほうがより高速でしょう。
  

継続的アーカイブとポイントインタイムリカバリ（PITR）





PostgreSQL™は常に、クラスタのデータディレクトリ以下のpg_wal/ディレクトリ内で先行書き込みログ（WAL）を管理しています。
このログはデータベースのデータファイルに行われた全ての変更を記録します。
このログは主にクラッシュ時の安全性を目的としています。
システムがクラッシュしたとしても、最後のチェックポイント以降に作成されたログ項目を「やり直し」することで、データベースを整合性を維持した状態にリストアすることができます。
しかし、この存在するログファイルを使用して、データベースのバックアップ用の第3の戦略が可能になりました。
ファイルシステムレベルのバックアップとWALファイルのバックアップを組み合わせるという戦略です。
復旧が必要ならば、ファイルシステムバックアップをリストアし、その後にバックアップされたWALファイルを再生することで、システムを最新の状態にできます。
管理者にとって、この方法はこれまで説明した方法よりかなり複雑になりますが、以下のような大きな利点が複数あります。
  
	

開始時点のファイルシステムバックアップは完全な整合状態である必要はありません。
そのバックアップ内の内部的な不整合はログのやり直しによって修正されます
（これは、クラッシュからの復旧時に行われることと大きな違いはありません）。
ですので、ファイルシステムのスナップショット機能を必要としません。
単にtarなどのアーカイブツールが必要です。
    

	

再生の際にWALファイルの並びを数に制限なく連ねて組み合わせられますので、単にWALファイルのアーカイブを続けることで連続したバックアップを達成できます。
これは、頻繁に完全なバックアップを行うことが困難な、大規模なデータベースでは特に価値があります。
    

	

WAL項目の再生を最後まで行わなければならないということはありません。
やり直しを任意の時点までで停止することができ、それにより、その時点までのデータベースの整合性を持ったスナップショットを得ることができます。
このような技術がポイントインタイムリカバリを補助するものであり、元となるベースバックアップの取得時点以降の任意の時点の状態にデータベースをリストアすることが可能になります。
    

	

連続的に一連のWALファイルを、同一のベースバックアップをロードしている別のマシンに配送することで、ウォームスタンバイシステムを保有することができます。
つまり、任意の時点でその2番目のマシンを、ほぼ現時点のデータベースの複製を持った状態で有効にすることができます。
    




  
注記


pg_dumpとpg_dumpallはファイルシステムレベルのバックアップを生成しませんので、継続的アーカイブ方式の一部として使うことはできません。
そのダンプは論理的なものであり、WALのやり直しで使うのに十分な情報を含んでいません。
   



通常のファイルシステムバックアップ技術の場合と同様、この方法は、一部ではなく、データベースクラスタ全体のリストア処理のみをサポートできます。
また、アーカイブ用に大量の格納領域を必要とします。
ベースバックアップはかさばる場合があり、また、高負荷なシステムではアーカイブしなければならないWALの流量をメガバイト単位で生成します。
しかし、これは、高信頼性が必要な、多くの状況でむしろ好まれるバックアップ手法です。
  


継続的アーカイブ（多くのデータベースベンダで「オンラインバックアップ」とも呼ばれます）を使用して復旧を成功させるためには、少なくともバックアップの開始時点まで遡る、連続した一連のアーカイブ済みWALファイルが必要です。
ですので、運用するためには、最初のベースバックアップを取得する前にWALファイルをアーカイブする手順を設定し試験しなければなりません。
したがって、まずWALファイルのアーカイブ機構について説明します。
  
WALアーカイブの設定





抽象的な意味では、実行中のPostgreSQL™システムは無限に長い一連のWALレコードを生成します。
システムは物理的にこの並びを、通常1つ16メガバイト（このセグメントサイズはinitdbの実行時に変更可能です）の、WALセグメントファイルに分割します。
このセグメントファイルには、概念的なWALの並び内の位置を反映した、数字の名前が付与されます。
WALアーカイブを行わない場合、システムは通常数個のセグメントファイルを生成し、不要となったセグメントファイルの名前をより大きなセグメント番号に変更することでそれを「リサイクル」します。
最後のチェックポイントより前の内容を持つセグメントファイルはもはや重要でなく、リサイクルできると見なされます。
   


WALデータをアーカイブする場合、完成したセグメントファイルのそれぞれの内容を取り出し、再利用のために回収される前にそのデータをどこかに保存することが必要です。
アプリケーションと利用できるハードウェアに依存しますが、数多くの「データをどこかに保存する」方法があります。
例えば、NFSでマウントした他のマシンのディレクトリにセグメントファイルをコピーすること、あるいは、テープ装置に書き出すこと（元々のファイル名を識別する手段があることを確認してください）、それらを一度にまとめてCDに焼くこと、そのほか全く異なったなんらかの方法などです。
柔軟性をデータベース管理者に提供するために、PostgreSQL™は、どのようにアーカイブがなされたかについて一切想定しないようになっています。
その代わりにPostgreSQL™は、管理者に完全なセグメントファイルをどこか必要な場所にコピーするシェルコマンドあるいはアーカイブライブラリを指定させます。
このコマンドは単純なcpを使ったシェルコマンドでも構いませんし、また、複雑なC関数を呼び出しても構いません。
全て管理者に任されています。
   


WALアーカイブを有効にするには、wal_level設定パラメータをreplica以上に、archive_modeをonに設定し、archive_command設定パラメータで使用するシェルコマンドを指定するか、archive_library設定パラメータで使用するライブラリを指定します。
実際には、これらの設定は常にpostgresql.confファイルに置かれます。
   


archive_commandでは、%pはアーカイブするファイルのパス名に置き換えられますが、%fはファイル名のみに置き換えられます。
（パス名は現在の作業ディレクトリ、つまりクラスタのデータディレクトリからの相対パスです。）
実際の%文字をコマンドに埋め込む必要がある場合は%%を使用してください。
最も簡単で便利なコマンドは以下のようなものです。


archive_command = 'test ! -f /mnt/server/archivedir/%f && cp %p /mnt/server/archivedir/%f'  # Unix
archive_command = 'copy "%p" "C:\\server\\archivedir\\%f"'  # Windows



これは、アーカイブ可能なWALセグメントを/mnt/server/archivedirディレクトリにコピーします。
（これは一例です。
推奨するものではなく、また、全てのプラットフォームで動作しない可能性があります。）
%pおよび%fパラメータが置き換えられたあと、実行された実コマンドは以下のようになります。


test ! -f /mnt/server/archivedir/00000001000000A900000065 && cp pg_wal/00000001000000A900000065 /mnt/server/archivedir/00000001000000A900000065



類似したコマンドがアーカイブされるそれぞれの新規ファイルに生成されます。
   


このアーカイブ用コマンドはPostgreSQL™サーバを稼働させるユーザと同じ所有権で実行されます。
アーカイブされる一連のWALファイルには、実質、データベース内の全てが含まれていますので、アーカイブしたデータをのぞき見から確実に保護しなければならないでしょう。
例えば、グループや全員に読み込み権限を付与していないディレクトリにデータをアーカイブしてください。
   


アーカイブ用コマンドが成功した場合のみにゼロという終了ステータスを返すことが重要です。
PostgreSQL™は、ゼロという結果に基づいて、そのファイルのアーカイブが成功したことを想定し、そのファイルを削除したり回収するかもしれません。
しかし、非ゼロのステータスは、PostgreSQL™に対してファイルがアーカイブされなかったことを通知し、成功するまで定期的に再試行させます。
   


アーカイブするための別の方法は、archive_libraryとしてカスタムアーカイブモジュールを使用することです。
このようなモジュールはCで記述されているため、独自のモジュールを作成するには、シェルコマンドを記述するよりもかなり多くの労力が必要になる場合があります。
しかし、アーカイブモジュールはシェルを介したアーカイブよりもパフォーマンスが高く、多くの有用なサーバ・リソースにアクセスできます。
アーカイブモジュールの詳細は49章アーカイブモジュールを参照してください。
   


アーカイブコマンドがシグナル（サーバのシャットダウンの一部として使用されるSIGTERM以外）やシェルによる125より大きい終了ステータスを持つエラー（command not foundなど）、あるいはアーカイブ関数がERRORまたはFATALを出力したことによって終了すると、アーカイバプロセスは中止され、postmasterによって再起動されます。
このような場合、失敗はpg_stat_archiverでは報告されません。
   


通常アーカイブ用コマンドあるいはライブラリは、既存のアーカイブ済みファイルの上書きを行わないように設計されなければなりません。
これは、管理者のミス（例えば2つの異なるサーバの出力を同一のアーカイブ用ディレクトリに送信してしまうなど）といった場合からアーカイブ状況の整合性を保護するための安全策として重要です。
確実に既存のファイルを上書きしないように、使用予定のアーカイブライブラリを試験することをお勧めします。
   


まれに、PostgreSQL™は以前にアーカイブされたWALファイルを再アーカイブしようとすることがあります。
たとえば、サーバがアーカイブの成功を永続的に記録する前にシステムがクラッシュした場合、サーバは再起動後にファイルを再びアーカイブしようとします（アーカイブがまだ有効になっている場合）。
アーカイブコマンドやライブラリが既に存在するファイルに遭遇した場合、WALファイルの内容が既に存在するアーカイブと同じであり、既に存在するアーカイブがストレージに完全に永続化されている場合、それぞれ0のステータス、trueを返すことが必要です。
既に存在するファイルがアーカイブされるWALファイルと異なる内容を含む場合、アーカイブコマンドやライブラリは、それぞれ0のステータス、falseを返さなければなりません。
   


上のUnix用のコマンド例では、別途testという段階を含めることで、既に存在するアーカイブへの上書きを防いでいます。
いくつかのUnixプラットフォームではcpコマンドには-i 引数を使うことで煩雑な出力を少なくし使うことができますが、正しい終了コードが返ることを確認せずに使用するべきではありません。
（具体的にはGNUのcpコマンドは-i オプションを使い、ターゲットファイルがすでに存在している場合、ゼロのステータスを返します。これは期待していない動作です。）
   


アーカイブ設定を設計する時には、操作者の介入が必要であったり、アーカイブ場所の容量不足の理由でアーカイブ用コマンドあるいはライブラリが繰り返し失敗した時にどうなるかを考慮してください。
例えば、これはオートチェンジャ機能のないテープに書き出している場合に発生する可能性があります。
テープが一杯になった場合、テープを交換するまでアーカイブを行うことができなくなります。
こうした状況を相応の早さで解消できるよう、適切に操作者に対しエラーや要求を確実に連絡できるようにしなければなりません。
この状況が解消するまで、WALセグメントファイルはpg_wal/ディレクトリ内に格納され続けます。
（pg_wal/を含むファイルシステムがいっぱいになると、PostgreSQL™はパニック停止します。コミットされたトランザクションは失われませんが、データベースはいくらかの容量を解放するまでオフラインのままです。）
   


サーバのWALデータの生成に要する平均速度に追いついている限り、アーカイブ用コマンドあるいはライブラリの処理速度は重要ではありません。
アーカイブプロセスが多少遅れたとしても通常の操作は続けられます。
アーカイブ処理がかなり遅れると、災害時に損失するデータの量が増加することになります。
また、これはpg_wal/ディレクトリ内に多くのアーカイブ処理待ちのセグメントファイルが格納され、ディスク容量が不足する状況になる可能性があることを意味します。
アーカイブ処理が確実に意図通りに動作しているかを監視することを推奨します。
   


アーカイブ用コマンドあるいはライブラリを作成する時、アーカイブされるファイル名は最長64文字までで、ASCII文字と数字とドットのどんな組合せを使用しても構いません。
元の相対パス（%p）を保存する必要はありませんが、ファイル名（%f）を保存する必要はあります。
   


WALアーカイブによってPostgreSQL™データベースでなされた変更は全てリストアすることができますが、設定ファイルはSQL操作ではなく手作業で変更されますので、設定ファイル（postgresql.conf、pg_hba.conf、およびpg_ident.conf）になされた変更までリストアしないことに注意してください。
通常のファイルシステムバックアップ手続きでバックアップされる場所に設定ファイルを保持したい場合があります。
設定ファイルの設置場所を変更するには「ファイルの場所」を参照してください。
   


アーカイブコマンドあるいは関数は完全なWALセグメントに対してのみ呼び出されます。
このため、サーバが少ししかWAL流量がない（処理を行わないなぎの期間がある）場合、トランザクションの完了とアーカイブ格納領域への安全な記録との間に長期にわたる遅延があることになります。
古い未アーカイブのデータをどうするかについて制限を付けるために、archive_timeoutを設定して、強制的にサーバを新しいWALセグメントにある程度の間隔で切り替えるようにすることができます。
強制切り替えにより早期にアーカイブされたアーカイブ済みファイルは完全に完了したファイルと同じ大きさを持つことに注意してください。
そのため、非常に小さなarchive_timeoutを使用することはお勧めしません。
格納領域を膨張させてしまいます。
通常ならば分単位のarchive_timeout設定が合理的です。
   


終わったばかりのトランザクションをできるだけ早くアーカイブさせたい場合、pg_switch_walを使用して手作業でセグメント切り替えを強制することができます。
この他のWAL管理に関連した関数を表9.97「バックアップ制御関数」に列挙します。
   


wal_levelがminimalの場合、「WALアーカイブ処理とストリーミングレプリケーションの無効化」に書かれているように、いくつかのSQLコマンドはWALロギングを回避するため最適化されます。
アーカイビングもしくはストリーミングレプリケーションがこれら構文の１つを実行中に作動させられると、アーカイブ復旧のための十分な情報をWALが含まなくなります。（クラッシュ復旧は影響を受けません。）
このことにより、wal_levelはサーバの起動時のみ変更可能です。
とは言っても、archive_commandとarchive_libraryは構成ファイルを再読み込みすることで変更できます。
シェルでアーカイブしており、一時的にアーカイビングを停止したい場合、１つの方法はarchive_commandを空文字列（''）に設定することです。
このようにすると、動作するarchive_commandが再構築されるまでWALファイルはpg_wal/に蓄積します。
   

ベースバックアップの作成





ベースバックアップを取得する最も簡単な方法はpg_basebackup(1) を実行する方法です。
通常のファイルやTAR形式のファイルとしてベースバックアップを取得することができます。
もし、pg_basebackup(1)より柔軟性が求められる場合は、低レベルなAPIを使ってバックアップを作成することもできます（詳細は 「低レベルAPIを使用したベースバックアップの作成」を参照）。
   


ベースバックアップを取得するための時間を考慮する必要はありません。
しかし、普段、full_page_writesを無効にして運用している場合、バックアップ取得中は強制的にfull_page_writesが有効になるため、パフォーマンスが落ちていると感じる可能性があります。
   


バックアップを使用するためには、ファイルシステムのバックアップ取得中、および、その後に生成されるWALセグメントファイル全てが保存されている必要があります。
この目的のために、ベースバックアップの過程で即座にWALアーカイブ領域にバックアップ履歴ファイルが作成されます。
このファイルにはファイルシステムのバックアップに最初に必要とされるWALセグメントの名前が付けられます。
例えば、最初のWALファイルが 0000000100001234000055CDである場合、バックアップ履歴ファイルは0000000100001234000055CD.007C9330.backupというように名付けられます。
（ファイル名の2番目のパートはWALファイルの厳密な位置が記載されます。通常は無視することができます。）
一旦、安全にファイルシステムのバックアップとそのバックアップ中に使用されたWALセグメントファイル（バックアップ履歴ファイルから特定できます）を取得すると、それより数値の小さな全てのWALアーカイブセグメントはファイルシステムの復旧には必要が無く、削除することができます。
しかし、データを確実に復旧させるためには数世代のバックアップセットを保持することを考慮すべきです。
   


バックアップ履歴ファイルは、ほんの小さなテキストファイルです。
これにはpg_basebackup(1)で与えたラベル文字列の他、バックアップの開始、終了時間およびバックアップのWALセグメントが含まれます。
このラベルをバックアップを構成するために使うことで、アーカイブ履歴ファイルはどのバックアップをリストアするべきか間違いなく判断することができます。
   


最後のベースバックアップ以降のアーカイブされたWALファイルを保持し続ける必要があるため、通常、ベースバックアップを取得すべき期間は、アーカイブされたWALファイルを保持するためにどのくらいのストレージを拡張できるかによって決定されます。
また、復旧が必要になった場合に、どのくらいの時間を復旧に使うと覚悟するのかも考慮すべきです。—
システムは全てのWALセグメントを適用する必要があるため、もし、最後のベースバックアップを取得してから長い時間が経過している場合、適用に時間を要する可能性があります。
   

増分バックアップを作成する





pg_basebackup(1)を使用して増分バックアップを作成するには、--incrementalオプションを指定します。
--incrementalの引数として、同じサーバの以前のバックアップへのバックアップマニフェストを指定する必要があります。
作成されたバックアップには、リレーション以外のファイルはそのまま含まれますが、一部のリレーションファイルは、以前のバックアップ以降に変更されたブロックのみと、ファイルの現在のバージョンを再構築するのに十分なメタデータを含む、より小さな増分ファイルに置き換えられる場合があります。
   


どのブロックをバックアップする必要があるかを判断するために、サーバは、データディレクトリ内のディレクトリpg_wal/summariesに格納されているWAL要約を使用します。
必要な要約ファイルが存在しない場合、増分バックアップを作成する試みは失敗します。
このディレクトリに存在する要約は、前のバックアップのスタートLSNから現在バックアップのスタートLSNまでのすべてのLSNを網羅しなければなりません。
サーバは現在のバックアップの開始LSNを確立した直後のWAL要約を探すので、必要な要約ファイルはおそらくディスクにすぐには現れませんが、サーバは不足しているファイルが現れるのを待ちます。
これは、プロセスのWAL集約が遅れている場合にも役立ちます。
しかし、必要なファイルがすでに削除されている場合や、WAL要約が十分な速さで追いつかないときは、増分バックアップは失敗します。
   


増分バックアップをリストアする場合は、増分バックアップ自体だけでなく、増分バックアップから除外されたブロックを提供するために必要な以前のすべてのバックアップも必要になります。
この要件の詳細については、pg_combinebackup(1)を参照してください。
クラスタのチェックサム状態が変更された場合、pg_combinebackupの使用に制限があることに注意してください。pg_combinebackupの制限を参照してください。
   


完全バックアップを使用するためのすべての要件は、増分バックアップにも適用されることに注意してください。
たとえば、ファイルシステムバックアップ中と、その後に生成された全てのWALセグメントと、関連するWAL歴史ファイルが必要です。
また、「継続的アーカイブによるバックアップを使用した復旧」で説明されているように、recovery.signal（またはstandby.signal）を作成し、リカバリを実行する必要があります。
以前のバックアップをリストア時に利用可能にし、pg_combinebackupを使用するために要件は、それ以外の要件に対する追加の要件です。
PostgreSQLには、後で増分バックアップからリストアするために、どのバックアップが前提として必要となるかを判断する機構は組み込まれていないことに注意してください。
完全バックアップと増分バックアップの関係は自分で追跡する必要があり、後で増分バックアップをリストアするときに必要になる前のバックアップを削除しないようにしてください。
   


通常、増分バックアップは、データのかなりの部分が変更されないか、または徐々にしか変更されない比較的大きなデータベースに対してのみ意味があります。
小規模なデータベースの場合は、増分バックアップの存在を無視して、管理が簡単な完全バックアップを実行する方が簡単です。
頻繁に変更される大きなデータベースの場合、増分バックアップは完全バックアップよりも大幅に小さくはなりません。
   


増分バックアップは、増分バックアップが依存しているバックアップよりも後のチェックポイントから再生を開始する場合にのみ可能です。
プライマリで増分バックアップを実行する場合、バックアップごとに新しいチェックポイントが起こるため、この条件は常に満たされます。
スタンバイでは、再生は最新のリスタートポイントから開始します。
そのため、前回のバックアップ以降のアクティビティが非常に少ない場合は、新しいリスタートポイントが作成されていない可能性があるため、増分バックアップは失敗するかもしれません。
   

低レベルAPIを使用したベースバックアップの作成





pg_basebackup(1)を使って完全、あるいは増分バックアップを取る代わりに、低レベルのAPIを使ってベースバックアップを取得できます。
この手順はpg_basebackupを使う方法よりも少し余分の手順が必要ですが、比較的単純です。
これらのステップを順番に実行すること、また次のステップに進む前にこれらのステップが成功していることを確認することが非常に重要です。
   


複数のバックアップを同時に実行できます（このバックアップAPIを使用して開始されたバックアップとpg_basebackup(1)を使用して開始されたバックアップの両方）。
    

  
	

WALアーカイブが有効であり、正常に動作することを確認してください。
    

	

pg_backup_startの実行権限を持つユーザとしてサーバ（どのデータベースであってもかまいません）に接続します。ユーザはスーパーユーザか、またはこの関数にEXECUTE権限を与えられたユーザです。以下のコマンドを発行します。


SELECT pg_backup_start(label => 'label', fast => false);



ここでlabelは、このバックアップ操作を一意に識別するために使用したい文字列です。
pg_backup_startを呼び出す接続は、バックアップが終了するまで維持されなければなりません。
さもないと、バックアップは自動的に打ち切られます。
    


オンラインバックアップは、常にチェックポイントの先頭から開始されます。
デフォルトでは、pg_backup_startは、次の定期的にスケジュールされたチェックポイントが完了するまで待機します。
これには長い時間がかかる場合があります（設定パラメータcheckpoint_timeoutおよびcheckpoint_completion_targetを参照してください）。
これは、実行中のシステムへの影響を最小限に抑えるため、通常は望ましい方法です。
できるだけ早くバックアップを開始したい場合は、pg_backup_startの2番目のパラメータとしてtrueを渡すと、即時のチェックポイントが要求されます。
このチェックポイントは、できるだけ多くのI/Oを使用してできるだけ早く完了します。
    

	

（pg_dumpやpg_dumpallではなく）tarやcpioなどの使い慣れた任意のファイルシステムバックアップツールを使用して、バックアップを実行してください。
この作業時に、データベースの通常の操作を停止することは不要ですし、望ましい方法でもありません。
このバックアップの実行中に考慮すべき点は「データディレクトリのバックアップ」を参照してください。
    

	

以前と同じ接続の中で、以下のコマンドを実行します。


SELECT * FROM pg_backup_stop(wait_for_archive => true);



これはバックアップモードを終了し、プライマリでは、次のWALセグメントへの自動切換えを行います。
スタンバイでは、WALセグメントを自動的に切り替えることはできません。
ですから、手動切り替えを行うためにプライマリでpg_switch_walを実行することをお勧めします。
この切換えの理由は、バックアップ期間中に書き出された最後のWALファイルがアーカイブできるよう準備することです。
    


pg_backup_stopは3つの値を含んだ1行を返します。
2番目の値は、バックアップのルートディレクトリ内のbackup_labelという名称のファイルを作成の上、値を書き込む必要があります。
3番目の値は、空でない限りはtablespace_mapという名称のファイルを作成の上、値を書き込む必要があります。
これらのファイルはバックアップが動作するために極めて重要であり、1バイトも変更なしに書き込まれる必要があるため、バイナリモードで開かれる必要があるかもしれません。
    

	

バックアップ中に使用されたWALセグメントファイルがアーカイブされれば完了です。
pg_backup_stopの戻り値の1番目の値で識別されるファイルは、バックアップファイル一式を完結させるのに必要となる最終セグメントです。
プライマリでは、archive_modeが有効で、かつwait_for_archiveパラメータがtrueであれば、pg_backup_stop は最終セグメントがアーカイブされるまで戻りません。
スタンバイでは、pg_backup_stopがアーカイブ完了を待つためには、archive_modeはalwaysでなければなりません。
すでにarchive_commandあるいはarchive_libraryを設定していますので、これらのファイルのアーカイブ操作は自動的に発生します。
ほとんどの場合、これは瞬時に行われます。
しかし、バックアップの完了を確認できるよう、アーカイブシステムを監視し、遅延が無いことの確認をお勧めします。
アーカイブコマンドの失敗によりアーカイブ処理が遅れてしまったとしても、アーカイブが成功し、そしてバックアップが完了するまで再試行を繰り返すようになっています。
pg_backup_stop実行においての時間期限を設けたい場合、適切なstatement_timeoutの値を設定できますが、この設定値によってpg_backup_stopが中断したときにバックアップが正当ではない可能性があるということを肝に銘じてください。
    


バックアップに必要なすべてのWALセグメントファイルのアーカイブが成功したことを、バックアップ作業の中で監視して確認するのであれば、wait_for_archiveパラメータ（デフォルトでtrueです）をfalseに設定し、バックアップレコードがWALに書き込まれたら即座にpg_backup_stopが戻るようにすることができます。
デフォルトでは、pg_backup_stopはすべてのWALがアーカイブされるのを待つので、少し時間がかかることがあります。
このオプションは慎重に使わなければなりません。
WALのアーカイブを適切に監視していない場合、バックアップにはすべてのWALファイルが含まれず、不完全かもしれません。
そうなると、リストアできません。
    




    
データディレクトリのバックアップ





ファイルシステムのバックアップツール中には複写している途中でファイルが変更されると警告もしくはエラーを報告するものがあります。
稼働しているデータベースのベースバックアップを取っている場合には、この状況は正常でエラーではありません。
しかし、この種の警告と本当のエラーとを区別できるか確認が必要です。
例えば、rsyncのバージョンによっては「消滅したソースファイル」に対して別の終了コードを返し、そしてこの終了コードをエラーではないと受け付けるドライバスクリプトを記述することができます。
同時にGNU tarのバージョンによっては、tarがそれを複写していた途中でファイルが切り詰められると、致命的エラーと識別できないエラーコードを返します。
ありがたいことに、GNU tarのバージョン1.16もしくはそれ以降では、バックアップ中にファイルが変更されると1で、それ以外のエラーの時は2でプログラムから抜けます。
GNUの tarで1.23以降のバージョンを使用しているのであれば、--warning=no-file-changed --warning=no-file-removedオプションをつけることで関連する警告メッセージを隠すオプションを使用することができます。
   


バックアップに、データベースクラスタディレクトリ（例えば/usr/local/pgsql/data）以下にある全てのファイルが含まれていることを確認してください。
このディレクトリ以下に存在しないテーブル空間を使用している場合、注意して、同様にそれらを含めてください
（そして、バックアップがリンクとしてシンボリックリンクをアーカイブしていることを確認してください。
さもないとリストアはテーブル空間を壊してしまいます）。
   


しかし、クラスタのpg_wal/サブディレクトリにあるファイルをバックアップから省いてください。
このちょっとした調整は、リストア処理中の失敗の危険性を低減できますので、行う価値があります。
pg_wal/がクラスタディレクトリ外のどこかを指し示すシンボリックリンクの場合は調整が簡単です。
これは性能上の理由でよく使用される設定です。
また、いずれこのバックアップを使うpostmasterではなく、今起動しているpostmasterの情報を記録しているpostmaster.pidとpostmaster.optsも除外できます。
（これらのファイルはpg_ctlを誤作動させる可能性があります。）
   


プライマリ上に存在するレプリケーションスロットがバックアップに含まれないようにするために、クラスタの中のpg_replslot/ディレクトリをバックアップから除くのもしばしば良い考えです。
もし、スタンバイを作成するためのバックアップを続けて使用すると、スタンバイのWALファイルの保持を無制限に保留する結果になり、ホットスタンバイからのフィードバックを有効にしている場合、プライマリのWALを膨張させます。
これは、これらのレプリケーションスロットを使っているクライアントはまだ、スタンバイではなく、プライマリのスロットを接続し続け、更新しているからです。
バックアップが新しいプライマリを作成するためだけに作成されたとしても、レプリケーションスロットをコピーすることは特に有益であるとは考えられません。
このようにバックアップにレプリケーションスロットを含むことは、新しいプライマリがオンラインになる頃には、スロットの内容がかなり古くなっている可能性があります。
   


ディレクトリpg_dynshmem/、pg_notify/、pg_serial/、pg_snapshots/、pg_stat_tmp/、pg_subtrans/の中身はバックアップから除外できます。（ただし、ディレクトリ自体は除外できません。）
というのも、postmaster起動時に初期化されるからです。
   


pgsql_tmpで始まるすべてのファイルとディレクトリはバックアップから除外できます。
これらのファイルはpostmasterの起動時に削除されますし、ディレクトリも必要なら再作成されます。
   


pg_internal.initという名前のファイルが見つかった場合、それはバックアップから省くことができます。
このファイルはリレーションキャッシュデータを含んでおり、常にリカバリの際に再構築されます。
   


バックアップラベルファイルには、pg_backup_startに付与したラベル文字列とpg_backup_startが実行された時刻、最初のWALファイルの名前が含まれます。
したがって、当惑した時にバックアップファイルの中身を検索し、そのダンプファイルがどのバックアップセッションに由来したものかを確認することができます。
テーブル空間マップファイルにはディレクトリpg_tblspc/に存在するシンボリックリンク名と各シンボリックリンクのフルパスが含まれています。
このファイルはあなたのためだけの情報ではありません。
その存在と内容はシステムのリカバリプロセスが適切に動作するために非常に重要です。
   


サーバが停止している時にバックアップを作成することも可能です。
この場合、わかりきったことですが、pg_backup_startやpg_backup_stopを使用することができません。
そのため、どのバックアップが、どのWALファイルと関連し、どこまで戻せばよいかを独自の方法で残さなければなりません。
通常は、上述の継続的アーカイブ手順に従う方をお勧めします。
   


継続的アーカイブによるバックアップを使用した復旧





さて、最悪の事態が発生し、バックアップから復旧する必要が出てきたものとします。
以下にその手順を説明します。
  
	

もし稼働しているのであればサーバを停止してください。
    

	

もし容量があるのであれば、後で必要になる場合に備えてクラスタデータディレクトリ全体とテーブル空間を全て一時的な場所にコピーしてください。
この予防措置は、既存のデータベースを2つ分保持できるだけの空き領域を必要とします。
十分な領域がない場合でも、少なくともクラスタのpg_walサブディレクトリの内容は保存すべきです。
ここには、システムが停止する前にアーカイブされなかったWALファイルが含まれているかも知れないからです。
    

	

クラスタデータディレクトリ以下、および、使用中のテーブル空間の最上位ディレクトリ以下にある既存の全てのファイルとサブディレクトリを削除してください。
    

	

完全バックアップをリストアする場合は、データベースファイルを直接ターゲットディレクトリにリストアすることができます。
ファイルが正しい所有権（rootではなくデータベースシステムユーザです！）でリストアされていることを確認してください。
テーブル空間を使用している場合は、pg_tblspc/内のシンボリックリンクが正しくリストアされていることを検証する必要があります。
    

	

増分バックアップをリストアする場合は、増分バックアップと、それが直接または間接的に依存している以前のすべてのバックアップを、リストアを実行しているマシンにリストアする必要があります。
これらのバックアップは、実行中のサーバが最終的に目的とするターゲットディレクトリではなく、別のディレクトリに配置する必要があります。
これが完了したら、pg_combinebackup(1)を使用して完全バックアップとすべての増分バックアップからデータを抽出し、合成された完全バックアップをターゲットディレクトリに書き出します。
上記のように、権限とテーブル空間のリンクが正しいことを確認します。
    

	

pg_wal/内にあるファイルをすべて削除してください。
これらはファイルシステムバックアップから生成されたものであり、おそらく現在のものより古く使用できないものです。
pg_wal/をまったくアーカイブしていなければ、適切な権限で再作成してください。
以前シンボリックリンクとして設定していたのであれば、そのように確実に再構築するように注意してください。
    

	

手順2で退避させた未アーカイブのWALセグメントファイルがあるのであれば、pg_wal/にコピーしてください。
（問題が発生し、初めからやり直さなければならない場合に未変更のファイルが残るように、移動させるのではなくコピーすることが最善です。）
    

	

postgresql.conf（「アーカイブからのリカバリ」を参照してください）に復旧の設定を記述し、クラスタデータディレクトリにrecovery.signalファイルを作成します。
また、一時的にpg_hba.confを変更し、復旧の成功を確認できるまで一般ユーザが接続できないようにする必要があるかもしれません。
    

	

サーバを起動してください。
サーバは復旧モードに入り、必要なアーカイブ済みWALファイル群の読み込みを行います。
外部的なエラーにより復旧が中断したら、サーバを単に再起動させて、復旧処理を継続してください。
復旧処理が完了したら、（誤って後で復旧モードに再度入らないように）サーバはrecovery.signalを削除します。
その後通常のデータベース操作を開始します。
    

	

データベースの内容を検査し、希望する状態まで復旧できていることを確認してください。
復旧できなかった場合は手順1に戻ってください。
全て問題なければ、ユーザが接続できるようにpg_hba.confを正常状態に戻してください。
    




   


ここで重要となるのは、どのように復旧させたいのかやどこまで復旧させたいかを記述する復旧設定を設定することです。
絶対に指定しなければならないことは、アーカイブ済みWALファイルセグメントをどのように戻すかをPostgreSQL™に通知するrestore_commandです。
archive_command同様、これはシェルコマンド文字列です。
ここには、対象のWALファイルの名前で置換される%fやWALファイルのコピー先を示すパスで置換される%pを含めることができます。
（パス名は現在の作業用ディレクトリ、つまり、クラスタのデータディレクトリから見た相対パスです。）
コマンド内に%文字自体を埋め込む必要があれば%%と記載してください。
最も簡単でよく使われるコマンドは以下のようなものです。


restore_command = 'cp /mnt/server/archivedir/%f %p'



これは事前にアーカイブされたWALセグメントを/mnt/server/archivedirディレクトリからコピーします。
当然ながら、もっと複雑なものを使用することができます。
例えば、操作者に適切なテープをマウントさせることを要求するようなシェルスクリプトでさえ可能です。
   


このコマンドが失敗した時に非ゼロの終了ステータスを返すことが重要です。
このコマンドは、アーカイブに存在しないファイルを要求するかもしれませんが、その場合でも非ゼロを返さなければなりません。
これはエラー状態ではありません。
例外は、コマンドがシグナルによって中断された場合（データベースの停止に使用されるSIGTERM以外）か、シェルによるエラー（コマンドが見つかりませんなど）で復旧が中断され、サーバが起動しない場合です。
   


要求されるファイルはWALセグメントファイルだけではありません。
.historyが付いているファイルが要求されることも想定しなければなりません。
同時に、%pパスのファイル名部分は%fと異なることに注意してください。
これらが相互に置き換え可能であるとは考えないでください。
   


アーカイブ場所で見つけられなかったWALセグメントはpg_wal/から検索されます。
これにより、最近の未アーカイブのセグメントを使用することができます。
しかし、アーカイブ場所から利用できるセグメントはpg_wal/内のファイルよりも優先的に使用されます。
   


通常は利用可能な全てのWALセグメントを使用して復旧処理が行われます。
その結果、データベースを現時点まで（もしくは、利用可能なWALセグメントで得られる限り現在に近い時点まで）リストアします。
従って、通常の復旧は「file not found」メッセージで終了します。
エラーメッセージの正確な文言はrestore_commandの選択によります。
また、復旧の開始時点で00000001.historyのようなファイル名のエラーメッセージが出ることがあります。
これも単純な復旧作業では不具合を意味するものでなく正常です。
説明は「タイムライン」を参照してください。
   


もし以前のある時点まで復旧させたい場合（例えば、経験不足のデータベース管理者が主トランザクションテーブルを消去した直前）、要求する停止時点を指定するだけです。
停止時点は、「recovery target」として既知の停止時点で指定することも、日付と時刻で指定することも、リストアポイントか完了した特定のトランザクションIDで指定することもできます。
本ドキュメントの執筆時点では使用するトランザクションIDの識別を補助するツールがありませんので、ほとんどの場合は日付と時刻による指定のみを使用することになるでしょう。
   
注記


停止時点はバックアップの終了時刻、つまり、pg_backup_stopの最終時刻より後の時点でなければなりません。
バックアップを行っている最中のある時点までベースバックアップを使用して復旧させることはできません。
（こうした時点まで復旧させるには、その前のベースバックアップまで戻って、そこからロールフォワードしてください。）
     



復旧時にWALデータの破損がわかると、復旧はその時点で止まり、サーバは起動しません。
こうした場合、「復旧対象」に破損時点より前の時点を指定することで、復旧処理が正常に完了できるよう、復旧プロセスを初めからやり直すことができます。
システムクラッシュなど外的理由により復旧処理が失敗した場合やWALアーカイブがアクセスできなくなった場合、復旧処理を単に再起動させることができます。
この場合は失敗した時点とほぼ同じところから再開します。
復旧処理の再起動は、次のような通常操作時のチェックポイント処理とほぼ同様に動作します。
サーバは定期的にすべての状態をディスクに強制し、再度スキャンする必要がない処理済みのWALデータを示すpg_controlファイルを更新します。
   

タイムライン





過去のある時点までデータベースを復旧できる機能は、タイムトラベルやパラレルユニバースといったSFの物語に類似した、多少の複雑性があります。
例えば、データベースの元の履歴で、火曜日の夕方5:15PMに重要なテーブルを削除し、水曜日のお昼まで手違いに気が付かなかったとします。
慌てずに、バックアップを取り出して、火曜日の夕方5:14PMの時点にリストアし、データベースを起動させます。
データベース世界のこの履歴では、そのテーブルを削除していません。
しかし、後になって、これは大した問題ではなかったことが分かり、元の履歴における水曜日に朝の何時かにまで戻したいと考えたと仮定しましょう。
データベースは既に起動していますので、元に戻したい時点に至るWALセグメントファイルの一部は上書きされていて、戻すことはできないかもしれません。
ですので、このことを避けるために、ポイントインタイムで復旧させた後に生成された一連のWALレコードと元のデータベースの履歴において生成されたWALレコードとを区別する必要があります。
   


こうした問題を扱うためにPostgreSQL™にはタイムラインという概念があります。
アーカイブ復旧が完了したときはいつでも、その復旧後に生成されたWALレコードを識別するための新しいタイムラインが生成されます。
タイムラインID番号はWALセグメントファイル名の一部です。ですので、新しいタイムラインはこれまでのタイムラインで生成されたWALデータを上書きしません。
たとえば、WALファイル名が0000000100001234000055CDの場合、先頭の00000001は16進数でのタイムラインIDです。
（たとえばサーバログメッセージのような他のコンテキストの場合、タイムラインIDは通常10進数で表示されることに注意してください。）
   


実際、多くの異なるタイムラインをアーカイブすることができます。
不要な機能と考えるかもしれませんが、命綱になることがしばしばあります。
どの時点まで復旧すればよいか確実でないといった状況を考えてみてください。
その時は、過去の履歴からの分岐点として最善の時点を見つけるために、試行錯誤して何度もポイントインタイムの復旧を行う必要があるでしょう。
タイムラインがないと、この手続きはすぐに管理不能な混乱を招いてしまいます。
タイムラインを使用して、以前捨てたタイムライン分岐における状態を含む、過去の任意の状態に復旧させることができます。
   


新しいタイムラインが生成される度に、PostgreSQL™は、どのタイムラインがいつどこから分岐したかを示す「タイムライン履歴」ファイルを作成します。
この履歴ファイルは、複数のタイムラインを含むアーカイブ場所から復旧する時にシステムが正しいWALセグメントファイルを選択できるようにするために必要です。
したがって、履歴ファイルは、WALセグメントファイル同様にWALアーカイブ領域にアーカイブされます。
履歴ファイルは（巨大になるセグメントファイルとは異なり）単なる小さなテキストファイルですので、安価かつ適切に無期限で保管できます。
必要ならば、履歴ファイルにコメントを追加し、この特定のタイムラインがどのように、なぜ生成されたかについて独自の注釈を付与することができます。
特にこうしたコメントは、実験の結果いくつものタイムラインのもつれがある場合に有用です。
   


復旧処理のデフォルトは、アーカイブで見つかった最新のタイムラインへの復旧です。
ベースバックアップが取得された時点のタイムラインと同一のタイムラインや別の子タイムラインに沿って復旧させたい（つまり、復旧試行以降に生成されたある状態に戻りたい）場合は、currentかrecovery_target_timelineで対象のタイムラインIDを指定しなければなりません。
ベースバックアップより前に分岐したタイムラインに沿って復旧することはできません。
   

ヒントと例





継続的アーカイブを構成するいくつかのヒントを以下にあげます。
   
スタンドアローンホットバックアップ





スタンドアローンホットバックアップを形成するためPostgreSQL™のバックアップ基盤を使用することができます。
これらのバックアップはポイントインタイムリカバリに使用することはできないのですが、pg_dumpによるダンプよりバックアップとリストアが概してより速く行われます。
（同時にpg_dumpのダンプより大きくなるので、場合によっては速度による利点が打ち消されるかもしれません。）
     


ベースバックアップと同様に、スタンドアローンホットバックアップを作成する最も簡単な方法は pg_basebackup(1)ツールを使用する方法です。
実行時に-Xオプションをつけることでバックアップに必要な全ての先行書き込みログ（WAL）を自動的にバックアップに含めることができ、リストアするときには特に特別な作業を行う必要がありません。
     

圧縮アーカイブログ





もし、アーカイブのストレージ容量に懸念がある場合、アーカイブファイルを圧縮するためにgzipを使用することもできます。


archive_command = 'gzip < %p > /mnt/server/archivedir/%f.gz'



復旧時は gunzipを使う必要があります。


restore_command = 'gunzip < /mnt/server/archivedir/%f.gz > %p'


     

archive_commandスクリプト





postgresql.confの記入事項が以下のように簡素となるため、多くの人がarchive_commandの定義にスクリプトの使用を選択します。


archive_command = 'local_backup_script.sh "%p" "%f"'



アーカイブ処理手順において単一ではなくそれ以上の数のコマンドを使用したい場合はいつでも、別のスクリプトファイルの使用が推奨されます。
そうするとスクリプト内で全ての複雑性が管理されます。
スクリプトはbashまたはperlのようなよくあるスクリプト言語で記載できます。
     


スクリプト内で解決される要件の例として以下があります。
      
	

セキュアなオフサイトデータストレージへのデータのコピー
        

	

一回に全てではなく３時間毎に転送されるようにWALファイルのバッチ
        

	

その他のバックアップとリカバリのソフトウェアとのインタフェース
        

	

エラー報告を行う監視ソフトとのインタフェース
        




     
ヒント


archive_commandスクリプトを使うときはlogging_collectorを使えるようにすることが望ましい方法です。
そのスクリプトがstderrに書き出したメッセージはすべて、データベースのサーバログとして書かれます。
このため複雑な設定でエラーが発生した時に、簡単に原因を突き止められます。
      



警告





本ドキュメント作成時点では、継続的アーカイブ技術にいくつかの制限があります。
将来のリリースでは修正されるはずです。

  
	

もしもベースバックアップが行われている時、CREATE DATABASEコマンドが実行され、ベースバックアップが処理を実行している期間にCREATE DATABASEがコピーしているtemplateデータベースが変更されると、復旧処理により、これらの変更が作成されたデータベースにも伝播される可能性があります。
もちろん、これは望まれる事ではありません。
この危険を回避するには、ベースバックアップ期間中にはすべてのtemplateデータベースを変更しないことが一番です。
    

	

CREATE TABLESPACEコマンドはリテラルの絶対パス付でWALにログが記録され、したがって、同じ絶対パスでのテーブル空間作成の時に再生されます。
これは、もしWALが異なったマシン上で再生される場合には好ましくありません。
WAL再生がたとえ同一のマシンであっても、新規のデータディレクトリであれば危険です。
なぜなら、再生は元のテーブル空間の内容を上書きしてしまうからです。
この種の潜在的な振舞いを防ぐためには、テーブル空間を作成もしくは削除後に新規ベースバックアップを行うのが最良の手段です。
    




   


また、デフォルトのWALフォーマットは数多くのディスクページのスナップショットを含んでいるため、かなりかさばるものになってしまっていることに触れておくべきでしょう。
これらのページスナップショットは、クラッシュから回復のために設計されています。
それというのも、回復処理の際には不完全に書き込まれているディスクページを修復しなければならないことがあるからです。
システムのハードウェアやソフトウェアによっては、不完全なディスクページの書き込みが起きてしまう危険性は無視してもよい程微小です。
この場合full_page_writesパラメータを設定してページスナップショットを無効にすることで、アーカイブされたWALファイルの総容量を大幅に縮小できます。
（実際に設定を行う前に、28章信頼性と先行書き込みログ（WAL）の注意事項と警告を読んでください。）
ページスナップショットを無効にしても PITR処理の際にWALが使用できなくなることはありません。
将来の課題は、full_page_writesがたとえオンになっている場合であっても不要なページを取り除き、アーカイブ済みWALデータの圧縮を行うことでしょう。
差し当たり管理者は、可能な限りチェックポイント間隔パラメータを大きくすることによって、WALに含まれるページスナップショットの数を削減することができます。
   


第26章 高可用性、負荷分散およびレプリケーション





データベースサーバは共同して稼働できます。
その目的は、最初のサーバが故障したとき次のサーバへ速やかに引き継ぎができること（高可用性）および複数のコンピュータが同一のデータを処理できること（負荷分散）です。
データベースサーバがシームレスに共同稼働できれば理想的です。
静的なウェブページを提供するウェブサーバは、ウェブからの要求で生ずる負荷を複数のマシンに分散するだけで、簡単に結合できます。
実際、読み取り専用のデータベースサーバの結合は、同じようにかなり容易です。
しかし、大部分のデータベースサーバは、読み書きの混在した要求を受け取り、読み書き両用のサーバの結合はとても困難です。
なぜなら、読み取り要求だけの場合、全サーバへのデータの配布は1回で終わります。
しかし、書き込み後の読み取り要求に対して一貫性のある結果を返すためには、書き込み要求を受けたサーバだけでなく、他の全サーバにおいてもデータに書き込まなければなりません。
 


この同時性を持たせるという問題は、共同して稼働するサーバにおいて根本的に困難なものです。
すべての使用状況において、単一の解法を用いて同時性の問題の影響を軽減できないため、複数の解法が存在します。
各々の解法はこの問題に異なったやり方を適用し、固有の作業負荷に対する影響を最小化します。
 


幾つかの解法では、1つのサーバだけにデータの更新を許可することにより、同時性を持たせています。
データの更新ができるサーバを、読み書きサーバ、マスタサーバまたはプライマリサーバといいます。
プライマリの変更を追跡するサーバを、スタンバイサーバまたはセカンダリサーバといいます。
プライマリサーバに昇格するまで接続できないスタンバイサーバをウォームスタンバイサーバといいます。
接続を受理できて読み取り専用の問い合わせを処理できるスタンバイサーバをホットスタンバイサーバといいます。
 


いくつかの同期の解法が提供されています。
すなわち、データに書き込むトランザクションでは、全サーバがコミットするまでトランザクションはコミットされません。
これによって、フェイルオーバーにおいてデータの消失がないことが保証されます。
また、どのサーバが問い合わせを受理したかに関係なく、全ての負荷分散サーバが一貫した結果を返すことが保証されます。
それに対して非同期の解法では、コミット時刻と他サーバへの伝達時刻に時間差がありうるため、バックアップサーバへ交代する時にトランザクションが消失する可能性があります。
また、負荷分散サーバにおいては、最新でない結果を応答する可能性があります。
サーバ間の非同期の通信は、同期が非常に低速な場合に使用されます。
 


解法は粒度によって分類することもできます。
ある解法ではデータベースサーバ全体だけを範囲として処理しますが、他の解法では各テーブルまたは各データベースを範囲として管理できます。
 


すべての選択において、作業効率を考えなければなりません。
通常、作業効率と機能性は相反する関係にあります。
例えば、遅いネットワークの場合、完全同期の解法を使えば作業効率は半分以下となりますが、非同期の解法を使えば作業効率への影響が最小となります。
 


本節では、フェイルオーバーとレプリケーションと負荷分散における種々の解法を説明します。
 
様々な解法の比較



	共有ディスクを用いたフェイルオーバー
	

データベースのコピーを 1つだけ保有すればよいため、共有ディスクを用いたフェイルオーバーは同期によるオーバーヘッドを回避できます。
本解法では、複数のサーバが単一のディスクアレイを共有します。
主データベースサーバが故障したとき、まるでデータベースの破損から復旧したように、スタンバイサーバが元のデータベースを実装して稼働できます。
これはデータの消失がない高速なフェイルオーバーを行うことができます。
    


ハードウェアを共有するという機能は、ネットワーク上の記憶装置では一般的です。
ネットワークファイルシステムの利用も可能ですが、そのファイルシステムがPOSIX仕様を満たしているか注意してください。
（ 「NFS」を見てください）。
本解法には重大な制約があり、共有ディスクアレイが故障または破損したとき、プライマリサーバもスタンバイサーバも機能しなくなります。
また、プライマリサーバが稼働している間は、スタンバイサーバが共有記憶装置にアクセスしてはなりません。
    

	ファイルシステム（ブロックデバイス）レプリケーション
	

ハードウェア共有機能の改善の一つとしてファイルシステムのレプリケーションをあげることができます。
それは、あるファイルシステムに対して行われたすべての変更を他のコンピュータに存在するファイルシステムにミラーリングします。
制約はただ一つであり、スタンバイサーバがファイルシステムの一貫したコピーを自身の領域に持つようにミラーリングしなければなりません。具体的には、スタンバイサーバへの書き込みがプライマリサーバへの書き込みと同じ順序でおこなわれなければなりません。
LinuxにおけるDRBD™は、ファイルシステムレプリケーションで広く受けいれられている手法です。
    

	先行書き込みログシッピング
	

ウォームスタンバイおよびホットスタンバイサーバは、先行書き込みログ（WAL）のレコードを解読して最新の状態を保持できます。
プライマリサーバが故障したとき、スタンバイサーバがプライマリサーバのほぼすべてのデータを保存して、速やかに新しいプライマリデータベースサーバを作成できます。
本解法は同期、非同期で行うことができ、データベース全体だけを範囲として処理できます。
    


スタンバイサーバは、ファイル単位のログシッピング（「ログシッピングスタンバイサーバ」参照）またはストリーミングレプリケーション（「ストリーミングレプリケーション」参照）または両者の併用を使用して実装できます。
ホットスタンバイの情報は 「ホットスタンバイ」 を参照してください。
    

	論理レプリケーション
	

論理レプリケーションにより、データベースサーバが他のサーバに、データ更新のストリームを送ることができます。
PostgreSQL™の論理レプリケーションは、WALから論理的なデータ更新のストリームを構築します。
論理レプリケーションでは、テーブル単位でデータ変更をレプリケーションすることができます。
さらに自分の変更をパブリッシュしているサーバは同時に他のサーバから変更をサブスクライブできるので、複数の方向にデータを流すことができます。
論理レプリケーションの更なる情報については、29章論理レプリケーションをご覧ください。
なお、ロジカルデコーディングインタフェース(47章ロジカルデコーディング)を使って、サードパーティ拡張は同様の機能を提供できます。
    

	トリガベースのプライマリ・スタンバイレプリケーション
	

トリガベースのレプリケーションの構成では、通常はデータを変更する問い合わせを指定されたプライマリサーバに送り込みます。
テーブル単位で処理を行い、プライマリサーバはデータの変更を（典型的には）非同期でスタンバイサーバに送信します。
スタンバイサーバは、プライマリが処理中に問い合わせに応答し、ローカルでのデータ変更あるいは書き込み処理を行うことができます。
この形式のレプリケーションは、大量のデータ分析の負荷軽減や、データウェアハウスの問い合わせにしばしば利用されます。
    


この種類のレプリケーションの一例はSlony-I™であり、テーブル単位の粒度を持ち、複数のスタンバイサーバが稼働できます。
（バッチ処理によって）スタンバイサーバのデータを非同期で更新するため、フェイルオーバーにおけるデータ消失の可能性があります。
    

	SQLに基づいたレプリケーションのミドルウェア
	

SQLに基づいたレプリケーションのミドルウェアでは、プログラムがすべてのSQL問い合わせを採取して、1つまたはすべてのサーバに送付します。
なお、各々のサーバは独立して稼働します。
読み書き問い合わせは、すべてのサーバがすべての変更を受け取るように全サーバに送付されなければなりません。
しかし、読み取り専用の問い合わせはサーバ全体の読み取り負荷を分散させるために、1つのサーバだけに送付することができます。
    


問い合わせを修正しないで送付した場合、random()関数による乱数値とCURRENT_TIMESTAMP関数による現在時刻およびシーケンス値が、サーバごとに異なることがあります。
その理由は、各サーバが独立して稼働しているため、および、実際のデータ変更ではなくSQL問い合わせが送信されるからです。
これが許容できない場合は、ミドルウェアかアプリケーションで単一のソースからそのような値を確定し、その結果を書き込み問い合わせで使用しなければなりません。
トランザクションをコミットするか中断するかについても、全サーバが同一となるよう注意しなければなりません。
これには2相コミット（PREPARE TRANSACTION(7)およびCOMMIT PREPARED(7)）を使用することになるでしょう。
Pgpool-II™とContinuent Tungsten™がこのレプリケーションの一例です。
    

	非同期マルチマスタレプリケーション
	

ラップトップやリモートマシンのように、通常は接続されていない、あるいは遅い通信リンクで接続されているサーバ間において、データの一貫性を保持することは挑戦的な課題です。
非同期マルチマスタレプリケーションの使用により、全サーバの独立した稼働、およびトランザクションの衝突を識別するための定期的な通信を実現します。
トランザクションの衝突は、利用者および衝突回避法によって解決できるでしょう。
Bucardoはこの種のレプリケーションの一例です。
    

	同期マルチマスタレプリケーション
	

同期マルチマスタレプリケーションでは全てのサーバが書き込み要求を受理できます。
受理したサーバは更新したデータを、トランザクションをコミットする前に、他の全サーバへ配布します。
書き込み負荷が重いとき、ロックの掛かり過ぎやコミットの遅延による作業効率の低下の原因となりえます。
読み取り要求はどのサーバにも送付できます。
通信による負荷を減らすには、共有ディスクが実装されます。
同期マルチマスタレプリケーションは、主に読み取り作業負荷の低減に最適ですが、全てのサーバが書き込み要求を受理できることも大きな利点です。
その利点とは、プライマリとスタンバイ間で作業負荷を分けなくてよいこと、および更新データが1つのサーバから他のサーバに送付されるため、出力が確定しないrandom()関数などによる問題が起こらないことです。
    


PostgreSQL™ では、この種類のレプリケーションを提供しません。
しかし、PostgreSQL™ の 2相コミット（PREPARE TRANSACTION(7)およびCOMMIT PREPARED(7)）を使用すれば、アプリケーションのコードまたはミドルウェアにおいて本解法を実装できます。
    





表26.1「高可用性、負荷分散およびレプリケーションの特徴」は上述した種々の解法の機能を要約したものです。
 
表26.1 高可用性、負荷分散およびレプリケーションの特徴
	特徴	共有ディスク	ファイルシステムのレプリケーション	先行書き込みログシッピング	論理レプリケーション	トリガに基づいたレプリケーション	SQLに基づいたレプリケーションのミドルウェア	非同期マルチマスタレプリケーション	同期マルチマスタレプリケーション
	一般的な例	NAS	DRBD	組み込みストリーミングレプリケーション	組み込み論理レプリケーション、pglogical	Londiste、Slony	pgpool-II	Bucardo	 
	通信方法	共有ディスク	ディスクブロック	WAL	ロジカルデコーディング	テーブル行	SQL	テーブル行	テーブル行および行ロック
	特別なハードウェアが不要	 	○	○	○	○	○	○	○
	複数のプライマリサーバが可能	 	 	 	○	 	○	○	○
	プライマリサーバにオーバーヘッドがない	○	 	○	○	 	○	 	 
	複数のサーバを待たない	○	 	同期が無効の場合	同期が無効の場合	○	 	○	 
	プライマリの故障によるデータ損失がない	○	○	同期が有効の場合	同期が有効の場合	 	○	 	○
	レプリカは読み取り専用問い合わせを受理可能	 	 	ホットスタンバイ使用時	○	○	○	○	○
	テーブルごとの粒度	 	 	 	○	○	 	○	○
	コンフリクトの回避が不要	○	○	○	 	○	○	 	○





上の分類に該当しない解法もあります。
 
	データの分割
	

データの分割とは、同じテーブルのデータを複数部分に分けることです。
各部分に書き込むことができるのは、1つのサーバだけです。
例えば、データをロンドンとパリの営業所用に分割でき、サーバをロンドンとパリのどちらにも設置できた状態を考えます。
問い合わせにロンドンとパリのデータが混在した場合、アプリケーションは両方のサーバに問い合わせることができます。
または、プライマリ／スタンバイレプリケーションを使用して、他の営業所のデータを読み取り専用コピーとして保持できます。
    

	複数サーバによる問い合わせの並列実行
	

上述した多くの解法は、複数のサーバが複数の問い合わせを処理するものです。
処理速度の向上のために、単一の問い合わせに複数のサーバを使用するものはありません。
本解法は複数のサーバが単一の問い合わせを共同して実行するものです。
その方法は、データをサーバ間で分割し、各サーバが部分的に問い合わせを実行し、各々の結果をプライマリサーバに送付し、プライマリサーバが合体して利用者に返送するものです。
これはPL/Proxy™ツールセットを使用して実装できます。
    





また、PostgreSQL™はオープンソースで、容易に拡張できるので、多くの企業がPostgreSQL™をもとにして、独自のフェイルオーバー、レプリケーション、負荷分散機能を備えたクローズドソースの製品を開発していることに注意してください。
これらについては、ここでは説明しません。
  


ログシッピングスタンバイサーバ





継続的なアーカイブ処理を使用して、プライマリサーバが失敗した場合に操作を引き継ぐ準備がなされた、1つ以上のスタンバイサーバを持つ高可用性(HA)クラスタ構成を作成することができます。
この機能はウォームスタンバイまたはログシッピングとして広く知られています。
  


プライマリサーバとスタンバイサーバは、この機能を提供するために共同して稼働しますが、サーバとサーバはゆるく結合しています。
プライマリサーバは継続的アーカイブモードで動作し、各スタンバイサーバはプライマリからWALファイルを読み取る、継続的リカバリモードで動作します。
この機能を可能にするために、データベースのテーブル変更は不要です。
したがって、他のレプリケーションの解法に比べて、管理にかかるオーバーヘッドが減少します。
この構成はプライマリサーバの性能への影響も相対的に減少させます。
  


あるデータベースサーバから他へ直接WALレコードを移動することは通常、ログシッピングと説明されます。
PostgreSQL™はファイルベースのログシッピングを実装します。
つまりWALレコードはある時点で1つのファイル(WALセグメント)として送信されることを意味します。
WALファイル(16MB)は隣り合うシステム、同じサイトの別システム、地球の裏側のシステムなど距離に関わらず、簡単かつ安価に送付することができます。
この技法に必要な帯域幅はプライマリサーバのトランザクションの頻度に応じて変動します。
レコードベースのログシッピングはより粒度を細かくしたもので、ネットワーク接続を介してWALの変更を増分的に流します（「ストリーミングレプリケーション」参照）。
  


ログシッピングが非同期であることに注意しなければなりません。
つまり、WALレコードはトランザクションがコミットした後に転送されます。
結果として、プライマリサーバが災害などの致命的な失敗をうけた場合、送信されていないトランザクションが失われますので、データを損失する空白期間があります。
ファイルベースのログシッピングにおけるデータ損失の空白期間量をarchive_timeoutパラメータを用いて制限することができます。
これは数秒程度まで小さく設定することができます。
しかし、低く設定するとファイル転送に必要な帯域幅が増大します。
ストリーミングレプリケーション（「ストリーミングレプリケーション」参照）により、データを損失する期間を非常に小さくすることができます。
  


リカバリ処理の性能は十分よく、一度実施されれば、スタンバイサーバが完全な状態から逸脱するのは一時的にしかすぎません。
結果としてこれは、高可用性を提供するウォームスタンバイ構成と呼ばれます。
保管されたベースバックアップからサーバをリストアし、ロールフォワードを行うことはおそらく長時間かかりますので、これは高可用性のための解法とはいえず、災害からのリカバリのための解法です。
スタンバイサーバは読み取り専用の問い合わせに使用することもできます。
この場合ホットスタンバイサーバと呼ばれます。
詳細については「ホットスタンバイ」を参照してください。
  
計画





プライマリサーバとスタンバイサーバを、少なくともデータベースサーバという見地でできる限り同じになるように作成することを通常勧めます。
具体的には、テーブル空間に関連するパス名はそのまま渡されますので、テーブル空間機能を使用する場合には、プライマリとスタンバイサーバの両方でテーブル空間用のマウントパスを同じにしておかなければなりません。
CREATE TABLESPACE(7)をプライマリで実行する場合、そのコマンドを実行する前に必要な新しいマウントポイントをプライマリとすべてのスタンバイサーバで作成しなければならないことに注意してください。
ハードウェアをまったく同じにする必要はありませんが、経験上アプリケーションとシステムの運用期間に渡って2つの同じシステムを管理する方が、異なる2つのシステムを管理するよりも簡単です。
いずれにしてもハードウェアアーキテクチャは必ず同じでなければなりません。
例えば32ビットシステムから64ビットシステムへのシッピングは動作しません。
   


一般的に、異なるメジャーリリースレベルのPostgreSQL™間でログシッピングはできません。
マイナーリリースの更新ではディスク書式を変更しないというのがPostgreSQLグローバル開発グループの方針ですので、プライマリサーバとスタンバイサーバとの間でマイナーリリースレベルの違いがあってもうまく動作するはずです。
しかし、この場合、公的なサポートは提供されません。
できる限りプライマリサーバとスタンバイサーバとで同じリリースレベルを使用してください。
新しいマイナーリリースに更新する場合、もっとも安全な方針はスタンバイサーバを先に更新することです。
新しいマイナーリリースは以前のマイナーリリースのWALファイルを読み込むことはできますが、逆はできないかもしれません。
   

スタンバイサーバの動作





サーバが起動した時にデータディレクトリにstandby.signalが存在すると、サーバはスタンバイモードに入ります。
   


スタンバイモードでは、サーバは継続的にプライマリサーバから受け取ったWALを適用します。
スタンバイサーバはWALアーカイブ(restore_command参照)から、または直接TCP接続(ストリーミングレプリケーション)を介してプライマリサーバから、WALを読み取ることができます。
またスタンバイサーバはスタンバイクラスタのpg_walディレクトリにあるすべてのWALをリストアしようと試みます。
これはよくサーバの再起動後、スタンバイが再起動前にプライマリから流れ込んだWALを再生する時に発生します。
しかしまたファイルを再生する任意の時点で、手作業でpg_walにコピーすることもできます。
   


起動時、スタンバイサーバはrestore_commandを呼び出して、アーカイブ場所にある利用可能なすべてのWALをリストアすることから始めます。
そこで利用可能なWALの終端に達し、restore_commandが失敗すると、pg_walディレクトリにある利用可能な任意のWALのリストアを試みます。
ストリーミングレプリケーションが設定されている場合、これに失敗すると、スタンバイはプライマリサーバへの接続を試み、アーカイブまたはpg_wal内に存在した最終の有効レコードからWALのストリーミングを開始します。
ストリーミングレプリケーションが未設定時にこれに失敗する場合、または、接続が後で切断される場合、スタンバイは最初に戻り、アーカイブからのファイルのリストアを繰り返し行います。
このアーカイブ、pg_wal、ストリーミングレプリケーションからという再試行の繰り返しはサーバが停止する、あるいは昇格するまで続きます。
   


スタンバイモードは、pg_ctl promoteが実行されたとき、またはpg_promote()が呼び出されたときに終了し、サーバは通常の動作に切り替わります。
フェイルオーバーの前に、アーカイブまたはpg_wal内で直ちに使用可能なWALはすべてリストアされますが、プライマリへの接続は試みられません。
   

スタンバイサーバのためのプライマリの準備





「継続的アーカイブとポイントインタイムリカバリ（PITR）」で説明したように、スタンバイからアクセス可能なアーカイブディレクトリに対してプライマリで継続的なアーカイブを設定してください。
このアーカイブ場所はプライマリが停止した時であってもスタンバイからアクセス可能でなければなりません。
つまり、プライマリサーバ上ではなく、スタンバイサーバ自身上に存在するか、または他の高信頼性サーバ上に存在しなければなりません。
   


ストリーミングレプリケーションを使用したい場合、スタンバイサーバ(複数可)からのレプリケーション接続を受け付けるようにプライマリサーバで認証を設定してください。
つまり、ロールを作成し適切な項目を提供、あるいは、そのデータベースフィールドとしてreplicationを持つ項目をpg_hba.conf内に設定してください。
また、プライマリサーバの設定ファイルにおいてmax_wal_sendersが十分大きな値に設定されていることを確認してください。
レプリケーションスロットを使用している場合は、max_replication_slotsも十分に設定されているか確認してください。
   


「ベースバックアップの作成」に記述したように、スタンバイサーバの再起動のために、ベースバックアップを取得してください。
   

スタンバイサーバの設定





スタンバイサーバを設定するためには、プライマリサーバから取得したベースバックアップをリストアしてください(「継続的アーカイブによるバックアップを使用した復旧」参照)。
スタンバイのクラスタデータディレクトリ内にstandby.signalファイルを作成してください。
WALアーカイブからファイルをコピーする簡単なコマンドをrestore_commandに設定してください。
高可用性のために複数のスタンバイサーバを持たせようとしている場合、recovery_target_timelineをlatestに設定し（デフォルト）、スタンバイサーバが他のスタンバイにフェイルオーバーする時に発生するタイムラインの変更に従うようにします。
   
注記


そのファイルが存在しなければrestore_commandは直ちに終了すべきです。サーバは必要ならばそのコマンドをリトライします。
    



ストリーミングレプリケーションを使用したい場合には、ホスト名(またはIPアドレス)とプライマリサーバとの接続に必要な追加情報を含む、libpq接続文字列でprimary_conninfoを記述してください。
プライマリで認証用のパスワードが必要な場合はprimary_conninfoにそのパスワードも指定する必要があります。
   


スタンバイサーバを高可用性を目的に設定しているのであれば、スタンバイサーバはフェイルオーバーの後プライマリサーバとして動作しますので、プライマリサーバと同様にWALアーカイブ処理、接続、認証を設定してください。
   


WALアーカイブを使用している場合、archive_cleanup_commandパラメータを使用してスタンバイサーバで不要となったファイルを削除することで、その容量を最小化することができます。
特にpg_archivecleanupユーティリティは、典型的な単一スタンバイ構成（pg_archivecleanup(1)参照）におけるarchive_cleanup_commandと共に使用されるように設計されています。
しかし、バックアップを目的にアーカイブを使用している場合には、スタンバイから必要とされなくなったファイルであっても、最新のベースバックアップの時点からリカバリするために必要なファイルを保持しなければならないことに注意してください。
   


簡単な設定例を以下に示します。


primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass options=''-c wal_sender_timeout=5000'''
restore_command = 'cp /path/to/archive/%f %p'
archive_cleanup_command = 'pg_archivecleanup /path/to/archive %r'


   


スタンバイサーバの台数に制限はありませんが、ストリーミングレプリケーションを使用するなら、プライマリサーバに同時に接続できるようにmax_wal_sendersを十分な数に設定してください。
   

ストリーミングレプリケーション





ストリーミングレプリケーションによりスタンバイサーバはファイルベースのログシッピングよりもより最近の状態を維持できるようになります。
スタンバイは、WALレコードが生成された時にWALファイルがいっぱいになるまで待機せずにWALレコードをスタンバイに流し出すプライマリと接続します。
   


ストリーミングレプリケーションはデフォルトで非同期で、(「同期レプリケーション」参照)
この場合、プライマリでトランザクションがコミットされてから、その変更がスタンバイ側で参照可能になるまでの間にわずかな遅延がまだあります。
しかし、この遅延はファイルベースのログシッピングよりも非常に小さなもので、負荷に追随できる程度の能力があるスタンバイであれば通常は1秒以下です。
ストリーミングレプリケーションでは、データ損失期間を減らすためのarchive_timeoutを必要としません。
   


ファイルベースの継続的アーカイブのないストリーミングレプリケーションを使用している場合、スタンバイが受け取る前に古いWALセグメントを再利用するかもしれません。
もし、そうなった場合はスタンバイは新しいベースバックアップから再作成しなければならなくなります。
wal_keep_sizeを十分に大きくしたり、レプリケーションスロットにスタンバイを設定することでWALセグメントがすぐに再利用されることを防ぎ、これを防ぐことができます。WALアーカイブをスタンバイからアクセスできる位置に設定する場合は、スタンバイが常にWALセグメントを追随することができるため、これらの解決策は要求されません。
   


ストリーミングレプリケーションを使用するためには、「ログシッピングスタンバイサーバ」の説明のようにファイルベースのログシッピングを行うスタンバイサーバを設定してください。
ファイルベースのログシッピングを行うスタンバイをストリーミングレプリケーションを行うスタンバイに切り替える手順は、primary_conninfo設定をプライマリサーバを指し示すように設定することです。
スタンバイサーバがプライマリサーバ上のreplication疑似データベースに接続できる(「認証」参照)ように、プライマリでlisten_addressesと認証オプション(pg_hba.conf参照)を設定してください。
   


キープアライブソケットオプションをサポートするシステムでは、tcp_keepalives_idle、tcp_keepalives_intervalおよびtcp_keepalives_countを設定することで、プライマリの接続切断の即時検知に有用です。
   


スタンバイサーバからの同時接続数の最大値を設定してください（詳細はmax_wal_sendersを参照）。
   


スタンバイが起動し、primary_conninfoが正しく設定されると、スタンバイはアーカイブ内で利用可能なWALファイルをすべて再生した後にプライマリと接続します。
接続の確立に成功すると、スタンバイでwalreceiverが存在し、プライマリで対応するwalsenderが存在します。
   
認証





信頼できるユーザのみがWALストリームを読み取ることができるように、レプリケーション用のアクセス権限を設定することは非常に重要です。
WALから機密情報を取り出すことは簡単だからです。
スタンバイサーバはプライマリに対してプライマリのREPLICATION権限を持つアカウントか、スーパーユーザとして認証されなければなりません。
レプリケーションのためのREPLICATION権限 と LOGIN権限を持つ専用のユーザを作成することをお勧めします。
REPLICATION権限は非常に強力な権限なので、SUPERUSERのようにプライマリのデータを変更することを許可されていません。
    


レプリケーション用のクライアント認証はpg_hba.conf内でそのdatabaseフィールドにreplicationを指定したレコードで制御されます。
例えば、スタンバイがIPアドレス192.168.1.100のホストで稼働し、レプリケーション用のアカウントの名前がfooである場合、管理者はプライマリ上のpg_hba.confに以下の行を追加することができます。




# 利用者 foo のホスト 192.168.1.100 からプライマリサーバへのレプリケーションスタンバイとしての接続を
# 利用者のパスワードが正しく入力されたならば許可する
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
host    replication     foo             192.168.1.100/32        md5


    


プライマリサーバのホスト名とポート番号、接続する利用者名およびパスワードは、primary_conninfoで指定します。
パスワードはスタンバイサーバの~/.pgpassファイルでも設定できます（databaseフィールドのreplicationを指定します）。
例えば、プライマリサーバが稼働するホストの IP アドレスが192.168.1.50でポート番号が5432であり、レプリケーションのアカウント名がfooであり、パスワードがfoopassである場合、管理者はスタンバイサーバのpostgresql.confファイルに次行を追加できます。




# プライマリサーバが 192.168.1.50 のホストの 5432ポートで稼働し
# 利用者名が foo でパスワードが foopass とする
primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass'


    

監視





ストリーミングレプリケーションの重要な健全性尺度は、プライマリサーバで生成されたがスタンバイサーバではまだ適用されていないWALレコードの量です。
プライマリサーバの現在のWAL書き込み位置とスタンバイサーバの受理したWALの最終位置を比較すれば、この遅延を計算できます。
これらの位置は、プライマリサーバではpg_current_wal_lsnを、スタンバイサーバではpg_last_wal_receive_lsnを使用すれば検索できます（詳細は表9.97「バックアップ制御関数」および表9.98「リカバリ情報関数」を参照）。
スタンバイサーバの最終位置は、psコマンドを使用して WAL受信プロセスの状態としても表示できます（詳細は「標準的なUnixツール」を参照）。
    


pg_stat_replicationビューを介してWAL送信プロセスのリストを入手することができます。
pg_current_wal_lsnとビューのsent_lsnフィールドとの違いが大きい場合、プライマリサーバが高負荷状態であることを示している可能性があります。
一方でスタンバイサーバ上のsent_lsnとpg_last_wal_receive_lsnの値の差異は、ネットワーク遅延、またはスタンバイが高負荷状態であることを示す可能性があります。
    


ホットスタンバイ上では、WAL受信プロセスの状態は、pg_stat_wal_receiverビューを通じて入手することができます。
pg_last_wal_replay_lsnとビューのflushed_lsnとの違いが大きい場合、WALのリプレイを上回る速さでWALが受信されていることを示しています。
    


レプリケーションスロット





レプリケーションスロットは、以下のことを保証する自動的な方法を提供します。
全てのスタンバイがWALセグメントを受け取るまでは、プライマリサーバがWALセグメントを削除しないこと、また、スタンバイが接続していない際にも、リカバリの競合が発生する可能性がある行をプライマリが削除しないこと、です。
   


レプリケーションスロットを使う代わりに、wal_keep_sizeを使う、あるいはarchive_commandまたは archive_libraryを使用してセグメントをアーカイブに保存することによっても、古いWALセグメントの削除を防ぐことができます。
これらの方法の欠点は、しばしば必要以上のWALセグメントを保持することで、これらに対してレプリケーションスロットは必要とされる数のセグメントしか保持しません。
   


同様に、hot_standby_feedbackは、レプリケーションスロットを使用しない場合、関連する行がバキュームによって削除されることに対して保護しますが、スタンバイが接続されていない間は保護しません。
   
注意


レプリケーションスロットは、サーバが非常に多くのWALセグメントを保持し、pg_walに割り当てられた領域を一杯にしてしまう可能性があることに注意してください。
max_slot_wal_keep_sizeは、レプリケーションスロットによって保持されるWALファイルのサイズを制限するために使用できます。
    

レプリケーションスロットへの問い合わせと操作





いずれのレプリケーションスロットにも小文字、数字、アンダースコアを含む名前があります。
    


レプリケーションスロットとその状態はpg_replication_slots
ビューより確認できます。
    


レプリケーションスロットはストリーミングレプリケーションプロトコル( 「ストリーミングレプリケーションプロトコル」参照)もしくはSQL関数(「レプリケーション管理関数」参照)を使用し、作成や削除ができます。
    

設定の例





以下のような方法でレプリケーションスロットを作成できます。


postgres=# SELECT * FROM pg_create_physical_replication_slot('node_a_slot');
  slot_name  | lsn
-------------+-----
 node_a_slot |

postgres=# SELECT slot_name, slot_type, active FROM pg_replication_slots;
  slot_name  | slot_type | active
-------------+-----------+--------
 node_a_slot | physical  | f
(1 row)



スタンバイのレプリケーションスロットを使用できるように設定するためには、primary_slot_nameをスタンバイ側で設定します。
以下は単純な設定例です。：


primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass'
primary_slot_name = 'node_a_slot'


    


カスケードレプリケーション





カスケードレプリケーションは、リレーのような振る舞い、つまり、スタンバイサーバから他のスタンバイにレプリケーション接続し、WALレコードを送信することができます。
プライマリサーバへ直接の接続を減らしたり、サイト相互の帯域オーバーヘッドを最小化するために使用することができます。
   


カスケードスタンバイとして知られているとおり、スタンバイは受け取り手としても送り手としても振る舞うことができます。
よりプライマリサーバに近いスタンバイサーバは上流サーバと呼ばれるのに対し、より遠いスタンバイサーバは下流サーバと呼ばれます。
カスケードレプリケーションには下流サーバの数に制限は設定されていません。しかし、どのスタンバイサーバも最終的には1つのプライマリサーバに繋がる1つの上流サーバに接続します。
   


カスケードスタンバイはプライマリから受け取ったWALレコードだけでなく、アーカイブからリストアしたWALレコードも送信します。
このため、レプリケーション接続が上流サーバで切断しても、ストリーミングレプリケーションは下流サーバへ新しいWAL
レコードがある限り継続します。
   


カスケードレプリケーションは現時点では非同期です。同期レプリケーション（参照「同期レプリケーション」）の設定は現時点でカスケードレプリケーションへは影響を与えません。
   


ホットスタンバイがどの様にカスケード配置されていても、ホットスタンバイフィードバックは上流に伝播します。
   


上流スタンバイサーバが昇格し、新しいプライマリサーバになった場合、recovery_target_timelineが'latest'に設定されていれば、下流サーバは新プライマリからのストリーミングレプリケーションを継続します（デフォルトです）。
   


カスケードレプリケーションを使うためには、カスケードスタンバイをセットアップ、つまり、レプリケーション接続を許可してください。(max_wal_sendersとhot_standbyおよび、 クライアント認証を設定してください)
また、下流スタンバイがカスケードスタンバイに接続できるために、下流スタンバイではprimary_conninfoを設定する必要があります。
   

同期レプリケーション





PostgreSQL™のストリーミングレプリケーションはデフォルトで非同期です。
プライマリサーバがクラッシュした場合、コミットされた一部のトランザクションがスタンバイサーバに複製されず、データ損失を引き起こす可能性があります。
データ損失量はフェイルオーバー時点のレプリケーション遅延に比例します。
   


同期レプリケーションは、あるトランザクションでなされた変更はすべて、１つ以上の同期スタンバイサーバに転送されていることを確実にする機能を提供します。
これはトランザクションコミットで提供される永続性の標準レベルを拡張します。
この保護レベルはコンピュータ科学理論では、2-safeレプリケーション、そしてsynchronous_commitがremote_writeに設定されている場合にはgroup-1-safe (group-safeと1-safe) と呼ばれます。
   


同期レプリケーションを要求する時、書き込みトランザクションのコミットはそれぞれ、そのコミットがプライマリサーバおよびスタンバイサーバの両方で、ディスク上の先行書き込みログ（WAL）に書き込まれたという確認を受けとるまで待機します。
データ損失が起こる可能性は、プライマリサーバとスタンバイサーバが同時にクラッシュしてしまった場合のみです。
これは非常に高い永続性を提供することができますが、それはシステム管理者が２つのサーバの設置と管理に関して注意を払っている場合のみです。
確認のための待機は、サーバがクラッシュした場合でも変更が失われないということでユーザからの信頼性が大きくなりますが、同時に要求するトランザクションの応答時間も必ず大きくなります。
最小待機時間はプライマリとスタンバイの間の往復遅延時間です。
   


読み取り専用のトランザクションおよびトランザクションのロールバックはスタンバイサーバからの応答を待つ必要はありません。
副トランザクションのコミットもスタンバイサーバからの応答を待つことはなく、最上位レベルのコミットのみ待機します。
データロード処理やインデックス構築など長時間実行される操作は、最終コミットメッセージまで待機しません。
準備およびコミットの両方を含め、二相コミット動作はすべてコミット待機を必要とします。
   


同期スタンバイは、物理レプリケーションのスタンバイでも、論理レプリケーションのサブスクライバーのどちらでも構いません。
また同期スタンバイは、適切なフィードバックメッセージを送信する方法を知っている、物理あるいは論理WALレプリケーションストリームの消費者であっても構いません。
組み込みの物理あるいは論理レプリケーションシステムを別にすると、pg_receivewalとpg_recvlogical、それにサードパーティのレプリケーションシステムとカスタムプログラムが該当します。
対応する同期レプリケーションのサポートの詳細に関するドキュメントを参照してください。
   
基本設定





一度、ストリーミングレプリケーションが設定されている場合、同期レプリケーションの設定には必要な追加設定は１つだけ：synchronous_standby_namesを空でない値に設定することです。
またsynchronous_commitはonに設定されていなければなりませんが、これはデフォルト値ですので、通常は変更する必要はありません。（「諸設定」 および「プライマリサーバ」を参照してください。）
この設定によりスタンバイがそのコミットレコードを信頼できるストレージに書き込んだことが確認できるまで、各コミットが待たされるようになります。
synchronous_commitは個々のユーザによって設定することができます。
このため、トランザクション単位を基準とした永続性の保証を制御するために、設定ファイルの中で特定のユーザまたはデータベースについて設定することも、アプリケーションによって動的に設定することもできます。
   


コミットレコードがプライマリ上のディスクに書き出された後、WALレコードがスタンバイに送信されます。
スタンバイにてwal_receiver_status_intervalがゼロに設定されていない限り、スタンバイは新しいWALデータの塊がディスクに書き出される度に応答メッセージを返します。
synchronous_commitがremote_applyに設定されている場合には、コミットレコードが再生され、そのトランザクションが可視化されたときに応答メッセージを返します。
スタンバイが、プライマリ上のsynchronous_standby_namesにしたがって、同期スタンバイとして選ばれた時は、コミットレコードの受領の確認のために待機しているトランザクションをいつ解放すべきかを決めるために、他の同期スタンバイとともにそれらスタンバイからの応答メッセージが考慮されます。
これらのパラメータにより、管理者はどのスタンバイサーバを同期スタンバイとすべきかを指定することができます。
同期レプリケーションの設定は主にプライマリでなされることに注意してください。
指名されたスタンバイは直接プライマリサーバに接続される必要があります。
つまり、カスケードレプリケーションを使用している下流スタンバイサーバについて、プライマリサーバは何も知りません。
   


synchronous_commitをremote_writeに設定することで、個々のコミットは、スタンバイサーバがコミットされたレコードを受け取り、オペレーティングシステムに書きだしたことが確認できるまで待ちますが、スタンバイ上のディスクにフラッシュするまでは待ちません。
これは、onと設定するより、提供される永続性は弱くなります。
具体的には、スタンバイサーバはオペレーティングシステムがクラッシュした場合にデータを失う可能性がありますが、PostgreSQL™がクラッシュした場合にはデータを失いません。
しかし、実用的にはこの設定はトランザクションの応答時間を短くすることができるので有用です。
データの損失は、プライマリサーバとスタンバイサーバが同時にクラッシュし、かつ、プライマリのデータベースが同時に壊れた場合にのみ発生します。
   


synchronous_commitをremote_applyに設定することで、現在の同期スタンバイがトランザクションを再生し、ユーザから見えるようにしたと報告するまでは各々のコミットは待たされます。
単純なケースでは、因果一貫性を保つ負荷分散を可能にします。
   


高速シャットダウンが要求された場合、ユーザは待ち状態ではなくなります。
しかし非同期レプリケーションを使用している時と同じく、送信中のWALレコードが現在接続しているスタンバイサーバに転送されるまで、サーバは完全に停止しません。
   

複数の同期スタンバイ





同期レプリケーションは、一つ以上の同期スタンバイサーバをサポートします。
同期と見なされるすべてのスタンバイサーバがデータの受領を確認するまで、トランザクションは待機します。
トランザクションが応答を待たなければならない同期スタンバイの数は、synchronous_standby_namesで指定されます。
また、このパラメータには、スタンバイの名前のリストと、リストされたものから同期スタンバイを選ぶ方法（FIRSTとANY）を指定します。
   


方法FIRSTは優先度に基づく同期レプリケーションを指定し、優先度に応じて選択された同期スタンバイにWALレコードがレプリケーションされるまで、トランザクションのコミットは待機します。
リストの前の方に名前が書いてあるスタンバイにはより高い優先度が与えられ、同期とみなされます。
リストの後ろの方に書いてあるスタンバイは、潜在的な同期スタンバイであることを示します。
どんな理由であれ、現在のスタンバイのどれかの接続が切断されると、次に優先度が高いスタンバイがとって代わります。
   


優先度に基づく複数同期スタンバイのためのsynchronous_standby_namesの例を示します。


synchronous_standby_names = 'FIRST 2 (s1, s2, s3)'



この例では、もし4つのスタンバイサーバs1、s2、s3、s4が稼働中なら、s1とs2が同期スタンバイに選ばれます。
それらの名前がスタンバイ名のリストの最初の方にあるからです。
s3は潜在的な同期スタンバイで、s1あるいはs2が故障した時に同期スタンバイの役割を取って代わります。
このリストに名前が載っていないので、s4は非同期スタンバイです。
   


方法ANYはクォーラムに基づく同期レプリケーションを指定し、少なくともリスト中で指定された数の同期スタンバイにWALレコードがレプリケーションされるまで、トランザクションのコミットを待たせます
   


クォーラムに基づく同期スタンバイのためのsynchronous_standby_namesの例を示します。


synchronous_standby_names = 'ANY 2 (s1, s2, s3)'



この例では、もし4つのスタンバイサーバs1、s2、s3、s4が稼働中なら、トランザクションのコミットは、s1、s2、s3のどれか二つのスタンバイから応答があるまで待たされます。
このリストに名前が載っていないので、s4は非同期スタンバイです。
   


pg_stat_replicationビューを使って、スタンバイサーバの同期状態を見ることができます。
   

性能に関する考慮





通常、同期レプリケーションは、アプリケーションが満足できる程度に実行されることを確実にするために、注意深くスタンバイサーバを計画し設置しなければなりません。
待機のためにシステムリソースを使用することはありませんが、トランザクションロックは転送が確認されるまで継続して保持されます。
結果として同期レプリケーションを注意せずに使用すると、応答時間が増加する、および競合がより高くなるため、データベースアプリケーションの性能は低下します。
   


PostgreSQL™ではアプリケーション開発者がレプリケーション経由で必要とする永続性レベルを指定することができます。
これをシステム全体に対して指定することができますし、特定のユーザ、接続、個々のトランザクションに対してさえ指定することもできます。
   


例えばアプリケーションの作業量が、重要な顧客詳細の変更が10%、ユーザ間のチャットメッセージなど、あまり重要ではなく、失ったとしても業務をより簡単に戻すことができるようなデータの変更が90% という構成を考えてみます。
   


（プライマリ上で）アプリケーションレベルで指定する同期レプリケーションオプションを使用して、作業全体を低速化させることなく、最も重要な変更に対して同期レプリケーションを企てることができます。
アプリケーションレベルのオプションは、高い性能が求められるアプリケーションで同期レプリケーションの利点が得られる、重要かつ現実的な手段です。
   


生成されるWALデータの割合よりネットワーク帯域幅が大きくなければならないことを考慮しなければなりません。
   

高可用性に関する検討





synchronous_commitが、on、remote_apply、remote_writeのいずれかに設定されている場合、synchronous_standby_namesには、コミットされたトランザクションが応答を待つ同期スタンバイの数と名前を指定します。
もし同期スタンバイのどれかがクラッシュした場合、そのようなトランザクションのコミットは決して完了しないかもしれません。
   


高可用性のもっとも良い解決方法は、想定したのと同じ数の同期スタンバイを確実に確保することです。
これは、synchronous_standby_namesを使って同期スタンバイ候補を複数指定することによって実現できます。
そのリストの最初の方に名前が上がっているスタンバイは、同期スタンバイとして使用されます。
その後の方に名前が上がっているスタンバイは、同期スタンバイのどれかが故障した時に、その役割を取って代わります。
   


優先度に基づく同期レプリケーションでは、リストの前の方に名前が現れるスタンバイが同期スタンバイになります。
現在の同期スタンバイのどれかが故障した際には、リストの後の方にあるスタンバイが同期スタンバイの役割を引き継ぎます。
   


クォーラムに基づく同期レプリケーションでは、リストに現れたすべてのスタンバイが同期スタンバイの候補となります。
そのどれかが故障した場合でも、他のスタンバイは引き続き同期スタンバイの候補としての役割を担い続けます。
   


スタンバイが最初にプライマリに接続された時、それはまだ適切に同期されていません。
これはcatchupモードと呼ばれます。
一旦スタンバイとプライマリ間の遅延がゼロになると、実時間streaming状態に移ります。
追従（catchup）期間はスタンバイが作成された直後は長くなるかもしれません。
スタンバイが停止している場合、追従期間はスタンバイの停止期間にしたがって長くなります。
スタンバイは、streaming状態に達した後でのみ、同期スタンバイになることができます。
この状態は、pg_stat_replicationビューで見ることができます。
   


コミットが受領通知を待機している間にプライマリが再起動した場合、プライマリデータベースが復旧した後、待機中のトランザクションは完全にコミットされたものと記録されます。
すべてのスタンバイがプライマリのクラッシュ時点で送信中のWALデータのすべてを受信したかどうかを確認する方法はありません。
トランザクションの一部は、プライマリではコミットされたものと表示されていたとしても、スタンバイではコミットされていないと表示されるかもしれません。
PostgreSQLは、WALデータをすべてのスタンバイが安全に受信したことが分かるまで、アプリケーションは明示的なトランザクションコミットの成功に関する受領通知を受けとらないことを保証しています。
   


要求していた数の同期スタンバイを本当に確保できないときは、トランザクションが応答を待たなければならない同期スタンバイの数を、synchronous_standby_namesから減らしてください（もしくは無効にします）。
そして、プライマリサーバの設定ファイルを再読み込みしてください。
   


プライマリが既存のスタンバイサーバから切り離された場合は、スタンバイサーバの中から最善と思われる候補にフェイルオーバーしてください。
   


トランザクションの待機中にスタンバイサーバを再作成する必要がある場合、pg_backup_start()関数およびpg_backup_stop()関数をsynchronous_commit = offであるセッション内で確実に実行してください。
さもないとこれらの要求はスタンバイに現れるまで永遠に待機します。
   


スタンバイにおける継続的アーカイビング





スタンバイにおいてWALの継続的アーカイビングが行われる場合、2つのシナリオが考えられます。
WALアーカイブがプライマリとスタンバイで共有されるケースと、スタンバイが自分のWALアーカイブを持つケースです。
スタンバイが自分のWALアーカイブを持つケースでは、archive_modeをalwaysに設定しておくことにより、アーカイブからリストアされたWALセグメントであろうと、ストリーミングレプリケーション由来のWALセグメントであろうと、WALセグメントを受信する度にスタンバイはアーカイブコマンドを呼び出します。
共有アーカイブのケースも同じように扱えますが、archive_commandまたはarchive_libraryはアーカイブしようとしているファイルがすでに存在していて、それが同一内容かどうかのチェックを行う必要があります。
archive_commandやarchive_libraryでは、異なる内容で既存のファイルを上書きしないように、ただしまったく同じファイルが2回アーカイブされた場合は成功を返すように注意する必要があります。
また、2つのサーバが同時に同じファイルをアーカイブしようとした場合は、競合状態が発生しないようにする必要があります。
   


archive_modeがonの場合には、リカバリモードあるいはスタンバイモードではアーカイブは有効になりません。
スタンバイサーバが昇格すると、昇格後にスタンバイサーバはアーカイブを開始します。
しかし、自分が生成しなかったWALやタイムライン履歴ファイルは一切アーカイブしません。
完全な一連のWALファイルをアーカイブから取り出すためには、WALがスタンバイに到着する前に、すべてのWALがアーカイブされていることを保証しなければなりません。
ファイルベースのログシッピングにおいても本質的にはこの通りです。
というのも、スタンバイはアーカイブにあるファイルだけをリストアできるからです。
ストリーミングレプリケーションが有効ならば、この限りではありません。
サーバがリカバリモードでない場合には、onとalwaysのモードの間には違いはありません。
   


フェイルオーバー





プライマリサーバに障害が起こると、スタンバイサーバはフェイルオーバー処理を始めなければなりません。
   


スタンバイサーバが故障した場合、フェイルオーバーは不要です。
多少の時間の後に、スタンバイサーバを再起動できれば、再起動可能なリカバリのため、リカバリ処理も即座に再起動することができます。
スタンバイサーバを再起動できなければ、新しい完全なスタンバイサーバのインスタンスを作成しなければなりません。
   


プライマリサーバに障害が起こりスタンバイサーバが新しいプライマリとなり、その後古いプライマリが再起動した場合、もはやプライマリサーバでなくなっていることを古いプライマリに知らせる機構が必要です。
これはSTONITH (Shoot the Other Node In The Head)と一部ではいわれています。
これは、混乱と最悪はデータ損失をもたらしかねない、両方のシステムが自身をプライマリとして認識してしまう状況を防ぐために必要です。
   


多くのフェイルオーバーシステムではプライマリとスタンバイといった２つのシステムを使用します。
なんらかのハートビート機構でプライマリとスタンバイを接続し、両者の接続性とプライマリの実行能力を継続的に確認します。
また、第３のシステム（witnessサーバと呼ばれます）を使用して、不適切なフェイルオーバーなどの状況を防ぐこともできます。
しかし、さらに複雑になりますので、十分な注意と厳密な検証の元に設定を行わない限り行う意味がありません。
   


PostgreSQL™は、プライマリサーバの障害を識別し、スタンバイデータベースサーバに通知するために必要なシステムソフトウェアを提供しません。
こうしたツールは多く存在し、IPアドレスの移行といったフェイルオーバーを成功させるために必要な機能をオペレーティングシステムにうまく統合させています。
   


スタンバイサーバへのフェイルオーバーが起きた後、運用可能なサーバは1つしかありません。
これは縮退状態と呼ばれます。
以前のスタンバイサーバはプライマリサーバになり、以前のプライマリは停止し、その後も停止し続けるかもしれません。
通常の運用に戻すには、スタンバイサーバを再作成しなければなりません。
以前のプライマリシステムが起動できればこのシステム上で再作成してもかまいませんし、第三のおそらく新規のシステム上で再作成してもかまいません。
pg_rewind(1)を使って、大きなクラスタにおける処理を早めることもできます。
完了すれば、プライマリとスタンバイの役割が切り替わったとみなすことができます。
新しいスタンバイサーバを再作成するまでに第三のサーバを使用して新しいプライマリのバックアップを提供することを選択する人もいますが、これがシステム構成と運用手順を複雑にすることは明らかです。
   


プライマリサーバからスタンバイサーバへの切り替えは高速ですが、フェイルオーバークラスタを再度準備するのに多少時間が必要です。
それぞれのシステムを保守のために定期的に停止することができるので、プライマリからスタンバイへの定期的切り替えは有益です。
これは同時に、必要になった時、フェイルオーバー機構が実際に機能するかどうかを確認する試験としても役立ちます。
管理手順の文書化を勧めます。
   


論理レプリケーションスロットの同期（「レプリケーションスロットの同期」参照）を選択した場合、スタンバイサーバに切り替える前に、スタンバイサーバと同期している論理スロットがフェイルオーバーの準備ができていることを確認しておくことをおすすめします。
これは、「論理レプリケーションのフェイルオーバー」で説明されている手順に従って行うことができます。
   


ログシッピングスタンバイサーバのフェイルオーバーを開始するには、pg_ctl promoteを実行するか、pg_promote()を呼び出します。
高可用性目的ではなく、 読み取り専用の問い合わせをプライマリからオフロードするためだけに使用するレポートサーバを設定する場合は、昇格する必要はありません。
   

ホットスタンバイ





ホットスタンバイという単語は、サーバがアーカイブリカバリまたはスタンバイモードにある間に実行している最中に、サーバに接続し読み取り専用の問い合わせを実行することができる機能を説明するために使われます。
これは、レプリケーションという目的およびバックアップからのリストアの両方で高い精度で好ましい状態にするために有用です。
ホットスタンバイという単語はまた、ユーザが問い合わせを実行しながら、または、開いている接続を維持しながら、またはその両方で、サーバをリカバリ状態から通常の動作に移すことができる機能も示すものです。
   


ホットスタンバイモードにおける問い合わせは、通常の問い合わせに類似していますが、利用上および管理上の差異が多少あり、以下に説明します。
   
ユーザのための概説





スタンバイサーバでhot_standbyパラメータが真に設定されている場合、リカバリによりシステムが一貫性を持ち、ホットスタンバイの準備ができると、接続を受け付け始めます。
こうした接続はすべて読み取り専用に限定されます。
一時テーブルであっても書き込むことはできません。
   


スタンバイ上のデータはプライマリサーバから届くまでに多少の時間がかかります。
このため、プライマリとスタンバイの間にはある程度の遅延があります。
したがって、同じ問い合わせをほとんど同時にプライマリとスタンバイに対して実行すると、異なる結果が返る可能性があります。
スタンバイ上のデータはプライマリに対して最後には一貫性を持つといいます。
あるトランザクションのコミットレコードがスタンバイ上で再生されると、そのトランザクションでなされた変更はスタンバイで獲得されるすべての新規スナップショットで可視になります。
現在のトランザクション分離レベルに応じて、スナップショットは各問い合わせの開始時または各トランザクションの開始時に獲得されます。
詳細については「トランザクションの分離」を参照してください。
   


ホットスタンバイ中に開始されたトランザクションは以下のコマンドを発行することができます。

    
	

問い合わせによるアクセス: SELECTおよびCOPY TO
      

	

カーソルコマンド: DECLAREとFETCHとCLOSE
      

	

設定の操作: SHOWとSETとRESET
      

	

トランザクション管理コマンド:
        
	

BEGINとENDとABORTとSTART TRANSACTION
          

	

SAVEPOINTとRELEASEとROLLBACK TO SAVEPOINT
          

	

EXCEPTIONブロックおよびこの他の内部サブトランザクション
          




      

	

LOCK TABLE。
なお、以下のモードが明示された場合に限ります。
ACCESS SHAREまたはROW SHAREまたはROW EXCLUSIVE
      

	

計画と資源: PREPAREとEXECUTEとDEALLOCATEとDISCARD
      

	

プラグインと拡張: LOAD
      

	
       UNLISTEN
      




   


ホットスタンバイ中に開始したトランザクションではトランザクションIDを割り当てられません。
また、システムの先行書き込みログ（WAL）に書き出すことができません。
このため、以下の動作はエラーメッセージを生成します。

    
	

データ操作言語（DML）:
INSERT、UPDATE、DELETE、MERGE、COPY FROMおよびTRUNCATE。
リカバリ中にトリガ内で実行されてしまう場合でも許されていない動作であることに注意してください。
現在のホットスタンバイ環境では行うことができないトランザクションIDの割り当てを行うことなく、テーブル行の読み書きを行うことができませんので、この制限は一時テーブルであっても適用されます。
      

	

データ定義言語（DDL）:
CREATE、DROP、ALTERおよびCOMMENT。
この制約は一時テーブルに対しても適用されます。
これらの操作の実行がシステムカタログテーブルの更新を必要とするためです。
      

	

SELECT ... FOR SHARE | UPDATE。
背後のデータファイルを更新することなく行ロックを獲得することはできないためです。
      

	

データ操作言語のコマンドを生成するSELECT文のルール
      

	

ROW EXCLUSIVE MODEより高いモードを明示的に要求するLOCK
      

	

短いデフォルト構文のLOCK。
これはACCESS EXCLUSIVE MODEを要求するためです。
      

	

読み取り専用でない状態を明示的に設定するトランザクション処理コマンド
        
	

BEGIN READ WRITEとSTART TRANSACTION READ WRITE
          

	

SET TRANSACTION READ WRITEとSET SESSION CHARACTERISTICS AS TRANSACTION READ WRITE
          

	

SET transaction_read_only = off
          




      

	

二相コミットコマンド: PREPARE TRANSACTION、COMMIT PREPAREDおよびROLLBACK PREPARED。
読み取り専用トランザクションでも、プリペア相（二相コミットの第1相）においてWALの書き込みが必要だからです。
      

	

シーケンス更新の関数: nextval()とsetval()
      

	

LISTEN、NOTIFY
      




   


通常の操作では、「読み取り専用」トランザクションにはLISTENとNOTIFYの使用が許可されています。
ホットスタンバイセッションの操作では、通常の読み取り専用セッションよりも少し厳しい制約を受けます。
将来のリリースではこの制約の一部が緩和されるかもしれません。
   


ホットスタンバイ中は、transaction_read_onlyパラメータは常に真であり、変更することはできません。
しかし、データベースを変更するような試行がない限り、ホットスタンバイ中の接続は他のデータベース接続とほとんど同じように動作します。
もし、フェイルオーバーまたはスイッチオーバーが発生すると、データベースは通常処理モードに切り替わります。
サーバのモードが変わってもセッションは接続を保持します。
ホットスタンバイが完了すると、読み書き可能なトランザクションを（ホットスタンバイ中に始まったセッションからであっても）始められるようになります。
   


ユーザはSHOW in_hot_standbyを発行することで、そのセッションが読み取り専用かどうかを調べることができます。
（サーババージョンが14より前ではin_hot_standbyパラメータは存在しませんでした。古いバージョンでの可能な代替方法は、SHOW transaction_read_onlyです。）
さらに、ユーザがスタンバイサーバに関する情報にアクセスできる関数群(表9.98「リカバリ情報関数」)があります。
これらによりデータベースの現状認識を行うプログラムを作成することができます。
これらを使用して、リカバリの進行状況を監視するために使用したり、データベースを特定の状態にリストアする複雑なプログラムを作成したりすることができます。
   

問い合わせコンフリクトの処理





プライマリサーバとスタンバイサーバは、多方面でゆるく結合しています。
プライマリサーバの動作はスタンバイサーバに影響します。
その結果、負の相互作用またはコンフリクトの可能性があります。
最も分かりやすいコンフリクトは性能です。
プライマリサーバで巨大なデータがロードされた場合、スタンバイサーバにおいて同様に巨大なWALレコードが生成されるので、スタンバイサーバにおける問い合わせは互いにI/Oなどのシステム資源を奪い合います。
   


ホットスタンバイで発生する可能性があるコンフリクトの種類には他にもあります。
これらのコンフリクトは、問い合わせをキャンセルしなければならない可能性があり、解消させるためにはセッションの接続を閉じることになる場合もあるため、致命的なコンフリクトです。
ユーザにはこうしたコンフリクトを扱うための複数の方法が提供されます。
コンフリクトする状況には以下があります。

      
	

プライマリサーバで獲得されたアクセス排他ロックは、スタンバイの問い合わせにおけるテーブルアクセスとコンフリクトします。
明示的なLOCKコマンドおよび各種DDL操作を含みます。
        

	

プライマリでテーブル空間を削除することは、一時作業ファイル用にそのテーブル空間を使用するスタンバイ側の問い合わせとコンフリクトします。
        

	

プライマリでデータベースを削除することは、スタンバイ側でそのデータベースに接続するセッションとコンフリクトします。
        

	

WALからのバキュームクリーンアップレコードの適用は、その適用により削除される行のどれか1つでも「見る」ことができるスナップショットを持つスタンバイでのトランザクションとコンフリクトします。
        

	

WALからのバキュームクリーンアップレコードは、消去されるデータが可視か否かに関係なく、スタンバイで対象ページにアクセスする問い合わせとコンフリクトします。
        




   


プライマリサーバでは、こうした状況は単に待たされるだけです。
ユーザはコンフリクトする操作をキャンセルすることを選ぶことができます。
しかし、スタンバイ側には選択肢がありません。
WALに記録された操作はすでにプライマリで発生したものですので、スタンバイではその適用に失敗してはなりません。
さらに、適用したいWALを無制限に待機させることを許すことは、まったく望まない結果になってしまうかもしれません。
なぜなら、スタンバイの状態がプライマリの状態とだんだんとかけ離れてしまうからです。
したがって適用すべきWALレコードとコンフリクトするスタンバイの問い合わせを強制的に取り消す仕組みが用意されています。
   


この問題の例として、スタンバイサーバで現在問い合わせ対象となっているテーブルをプライマリサーバでDROP TABLEを行う管理者を考えてみます。
スタンバイでDROP TABLEが適用されたら問い合わせを継続できないことは明確です。
プライマリ上でこうした状況が発生した場合は、他の問い合わせが終わるまでDROP TABLEは待機させられます。
しかし、DROP TABLEがプライマリで実行された時、プライマリ側でスタンバイで稼働する問い合わせに関する情報がありませんので、スタンバイ側のこうした問い合わせを待機させることはできません。
スタンバイ側で問い合わせが実行している時にWALの変更レコードがスタンバイに届けば、コンフリクトが発生します。
スタンバイサーバはWALレコードの適用を遅延させる（およびその後の適用すべても遅延させる）か、DROP TABLEを適用できるようにコンフリクトする問い合わせを取り消すかのいずれかを行わなければなりません。
   


コンフリクトする問い合わせが短ければ、適用したいWALを多少遅延させることで、問い合わせを完了させることが通常望まれます。
しかし、WALの適用が長く遅延することはたいていは望まれません。
したがって、取り消し機能はmax_standby_archive_delayとmax_standby_streaming_delayというパラメータを持ちます。
これらはWAL適用に許される遅延を定義するものです。
コンフリクトする問い合わせは、何らかの新しく受信したWALデータを適用するための各種遅延設定を超えたら取り消されます。
アーカイブからWALデータを読み取る場合（つまりベースバックアップからの初期リカバリや大きく遅延したスタンバイサーバの「追従」）とストリーミングレプリケーションとで異なる遅延値を指定することができるように2つのパラメータが存在します。
   


主に高可用性のために存在するスタンバイサーバでは、スタンバイ側の問い合わせによって発生する遅延のためにプライマリと大きく遅延が発生することがないように、遅延パラメータを相対的に短く設定することが最善です。
しかし、スタンバイサーバが長時間かかる問い合わせを実行するためのものであれば、長い遅延もしくは制限を設けないことが好まれるかもしれません。
しかし、長時間かかる問い合わせがWALレコードの適用を遅延させてしまう場合、スタンバイサーバ上の他のセッションがプライマリにおける最近の変更を参照することができなくなることは覚えておいてください。
   


max_standby_archive_delayまたはmax_standby_streaming_delayで指定した遅延を超えると、コンフリクトする問い合わせは取り消されます。
通常これは単なる取り消しエラーという結果となりますが、DROP DATABASEを再生する場合では、コンフリクトするセッション全体が終了します。
また、コンフリクトが待機中のトランザクションで保持されるロックについてのものであれば、そのコンフリクトするセッションが終了します（この動作は将来変更されるかもしれません）。
   


ユーザは取り消された問い合わせをすぐに再試行するかもしれません（もちろん新規のトランザクション開始後に）。
問い合わせの取り消しは、再生されるWALレコードの性質に依存するので、取り消された問い合わせが再度実行された場合には正常に動作するかもしれません。
   


遅延パラメータはスタンバイサーバでWALデータを受信してからの経過時間と比べられることに注意してください。
したがって、スタンバイ上で任意の問い合わせに許される猶予期間は、この遅延パラメータよりも大きくなることは決してありません。
これまでの問い合わせを完了させるために待機した結果、あるいは、大量の更新負荷に追従することができなくなった結果、スタンバイがすでに遅延している場合は相当小さくなります。
   


スタンバイ側の問い合わせとWAL再生の間でもっともよくあるコンフリクト理由は「早すぎるクリーンアップ」です。
通常PostgreSQL™はMVCC規則にしたがって正確なデータの可視性を確実にするために、古い行バージョンを参照するトランザクションが存在しない場合それらをクリーンアップすることが許されています。
しかし、この規則はプライマリ上で実行するトランザクションのみに適用させることができます。
したがって、スタンバイ上のトランザクションでまだ可視である行バージョンを、プライマリ上のクリーンアップ処理が削除してしまう可能性があります。
   


スタンバイ問い合わせとの競合の潜在的な原因は、行バージョンのクリーンアップだけではありません。
すべてのインデックスオンリースキャン（スタンバイで実行されるものも含む）は、可視性マップに「同意する」MVCCスナップショットを使用しなければなりません。
したがって、VACUUMが、すべてのスタンバイの問い合わせに対して1行以上の非可視行を含み、一つのページがすべて可視であるような可視性マップを設定する時には、必ず競合が必要になります。
ですから、クリーンアップが必要で、更新や削除された行を含まないテーブルに対してVACUUMを実行しても競合が発生する可能性があります。
   


プライマリサーバにおいて規則的かつ頻繁に更新されるテーブルは、スタンバイサーバにおける問い合わせの取り消しの原因になりやすいことを利用者は理解するべきです。
そのような場合、max_standby_archive_delayまたはmax_standby_streaming_delayの設定値はstatement_timeoutの設定と同様に考えることができます。
   


スタンバイにおける問い合わせの中断が受け入れがたいほど多い場合、この問題を改善する方法が用意されています。
１つ目の選択肢は、hot_standby_feedbackパラメータを設定することです。
これはVACUUMによる最近不要になった行の削除を防止しますので、クリーンアップによるコンフリクトが発生しません。
これを行う場合、プライマリで不要になった行のクリーンアップが遅延することに注意が必要です。望まないテーブルの膨張が発生してしまうかもしれません。
しかし、スタンバイ側で行うべき問い合わせをプライマリサーバ上で直接実行することと比べ、こうしたクリーンアップに関する問題を優先する価値はありません。
また、スタンバイに実行負荷を分散できるという利点があります。
スタンバイサーバが接続、切断を頻繁に繰り返す場合、hot_standby_feedbackによるフィードバックが提供されていなければ、その値を調整したいと思うでしょう。
例えば、max_standby_archive_delayを増やし、接続をしていない間、WALアーカイブファイルのコンフリクトによって問い合わせの急速な中断が起きないようにすることを考慮してください。
また、再接続後に新しく到着したストリーミングWALエントリによる急速な中断が起きることを避けるためにmax_standby_streaming_delayを大きくすることを考えてみてください。
   


問い合わせキャンセルの個数とその原因はスタンバイサーバ上のpg_stat_database_conflictsシステムビューを用いて参照することができます。
またpg_stat_databaseシステムビューには要約された情報が含まれます。
   


コンフリクトのためにWAL再生がdeadlock_timeoutより長くかかる場合にログメッセージを出力するかどうかをユーザは制御できます。
log_recovery_conflict_waitsパラメータで制御します。
   

管理者のための概説





postgresql.confにおいてhot_standbyがonで（これはデフォルトです）、かつstandby.signalが存在すれば、サーバはホットスタンバイモードで稼働します。
しかし、サーバはまず問い合わせが実行できる程度の一貫性を持つ状態を提供するために十分なリカバリを完了させなければなりませんので、ホットスタンバイでの接続が有効になるまでに多少の時間がかかるかもしれません。
この期間中、接続を試みるクライアントはエラーメッセージとともに拒否されます。
サーバの準備ができたことを確認するために、アプリケーションで接続試行を繰り返すか、サーバログに以下のメッセージがあるかどうかを確認します。



LOG:  entering standby mode


... 多少時間が経過して ...

LOG:  consistent recovery state reached
LOG:  database system is ready to accept read-only connections




一貫性に関する情報はプライマリでチェックポイント毎に一回記録されます。
プライマリでwal_levelがreplicaもしくはlogicalに設定されていなかった期間に書き込まれたWALを読み取っている間は、ホットスタンバイを有効にすることはできません。
一貫性のある状態に到達した後でも、以下の両方が存在する場合、リカバリスナップショットはホットスタンバイの準備ができていない可能性があり、読み取り専用接続の受け付けが遅れます。
ホットスタンバイを有効にするには、サブトランザクション数が64を超える非常に長く実行される書き込みトランザクションを、プライマリで終了する必要があります。
      
	

サブトランザクション数が64を超える書き込みトランザクション
        

	

非常に長く実行される書き込みトランザクション
        






ファイルベースのログシッピング(「ウォームスタンバイ」)を実行しているのであれば、次のWALファイルが届く、長くともプライマリのarchive_timeout設定まで待機しなければなりません。
   


いくつかのパラメータの設定により、トランザクションID、ロック、準備されたトランザクションを追跡するための共有メモリのサイズが決まります。
リカバリ中に共有メモリを使い尽くすことがないことを確実にするために、スタンバイサーバにおける設定値は、プライマリサーバにおける設定値以上でなければなりません。
たとえばプライマリが準備されたトランザクションを実行していてスタンバイが準備されたトランザクションを追跡するための共有メモリを獲得していなければ、スタンバイは設定が変更されるまではリカバリを続けることができません。
影響があるパラメータは以下です。

      
	
         max_connections
        

	
         max_prepared_transactions
        

	
         max_locks_per_transaction
        

	
         max_wal_senders
        

	
         max_worker_processes
        






これが問題にならないようにする確実な方法は、スタンバイにおけるこれらのパラメータの値をプライマリでの値以上にすることです。
ですから、これらの値を増やしたいなら、プライマリで設定を変更する前に、まずスタンバイで設定変更するべきです。
逆にこれらの値を減らしたいなら、スタンバイで設定を変更する前に、まずプライマリで設定変更するべきです。
スタンバイが昇格したときは、それが追従するスタンバイにとって必要なパラメータ設定の新しい基準になるということを覚えておいてください。
ですから、スイッチオーバーやフェイルオーバー中にこれが問題にならないようにするために、これらの設定値をすべてのスタンバイで同じにしておくことをお勧めします。
   


プライマリでWALはこれらのパラメータの変更を追跡します。
ホットスタンバイが現在のプライマリの値がスタンバイの値よりも大きいことを示すWALを処理すると、警告をログし、リカバリを中断します。
例を示します。


WARNING:  hot standby is not possible because of insufficient parameter settings
DETAIL:  max_connections = 80 is a lower setting than on the primary server, where its value was 100.
LOG:  recovery has paused
DETAIL:  If recovery is unpaused, the server will shut down.
HINT:  You can then restart the server after making the necessary configuration changes.



この時点で、スタンバイの設定を変更し、リカバリを継続するためにインスタンスを再起動する必要があります。
スタンバイがホットスタンバイでない場合は、整合性のないパラメータの変更があると、休止することなく直ちにシャットダウンします。起動し続ける意味がないからです。
   


max_standby_archive_delayおよびmax_standby_streaming_delayの値が適切であるように管理者が選択することが重要です。
最善の選択は業務上の優先順位によって変化します。
例えば、サーバが主に高可用性を目的としたサーバとして作業するものであれば、短い遅延を設定したいでしょう。
非常に積極的な設定ですが、ゼロにしたいかもしれません。
スタンバイサーバが意思決定支援のための問い合わせ用の追加サーバとして作業するものであれば、数時間程度の最大の遅延値の設定、あるいは問い合わせの完了を永遠に待つことを意味する-1という設定でさえ、許容範囲であるかもしれません。
   


プライマリ側で「ヒントビット」として書き出されたトランザクション状態はWALに記録されません。
このためスタンバイ側のデータはスタンバイ側でヒントを再度書き出すことになります。
したがって、スタンバイサーバはすべてのユーザが読み取り専用であっても、ディスク書き込みを行います。データの値自体は変更されません。
ユーザは大規模なソート用の一時ファイルを書き出し、relcache情報ファイルを再作成します。
したがって、ホットスタンバイモードではデータベースのすべてが本当に読み取り専用ではありません。
また、ローカルでは読み取り専用のトランザクションであってもdblinkモジュールを使用したリモートデータベースへの書き出しや、その他のPL関数を使用したデータベース外部への操作が可能であることに注意してください。
   


リカバリモードの間、下記の管理者用コマンドは受理されません。

      
	

データ定義言語: 例えばCREATE INDEX
        

	

権限および所有権: GRANTとREVOKEとREASSIGN
        

	

保守コマンド: ANALYZEとVACUUMとCLUSTERとREINDEX
        




   


ここでも、これらのコマンドの一部は、プライマリサーバにおける「読み取り専用」モードのトランザクションで実際に許可されていることに注意してください。
   


その結果、スタンバイ側にのみ存在する追加のインデックスやスタンバイ側にのみ存在する統計情報を作成することはできません。
これらの管理者用コマンドが必要な場合、プライマリ側で実行しなければなりません。
最終的にこの変更はスタンバイ側に伝播します。
   


pg_cancel_backend()とpg_terminate_backend()はユーザを扱うバックエンドでは実行できますが、リカバリを実行する起動プロセスでは実行できません。
pg_stat_activityはリカバリ中のトランザクションをアクティブとして表示しません。
その結果、リカバリの間pg_prepared_xactsは常に空となります。
調査が必要な準備されたトランザクションがある場合は、プライマリサーバにおいてpg_prepared_xactsを表示し、その場でトランザクションを解決するか、リカバリが終わるのを待ってからトランザクションを解決します。
   


pg_locksは通常通りバックエンドで保持されるロックを示します。
pg_locksはまた、リカバリによって再生されているトランザクションで保持されるAccessExclusiveLocksのすべてを所有する、起動プロセスで管理される仮想トランザクションも表示します。
起動プロセスはデータベースの変更を行うためのロックを獲得しません。
このため起動プロセスにおいてAccessExclusiveLocks以外のロックはpg_locksでは表示されません。
これらは存在することを想定されているだけです。
   


存在を検知する情報が単純なので、Nagios™プラグインcheck_pgsql™は稼働します。
一部の報告値が異なった、混乱を招く結果となりますが、check_postgres™の監視スクリプトも動作します。
たとえば、スタンバイではバキュームが発生しないため、最終バキューム時刻は維持されません。
それでも、プライマリで行われるバキュームはその変更をスタンバイに送信します。
   


リカバリの間、WALファイルの制御コマンドは稼働しません。
例えば、pg_backup_startやpg_switch_walなどです。
   


pg_stat_statementsも含み、動的にロード可能なモジュールは稼働します。
   


デッドロック検出を含むアドバイザリロックは、通常リカバリにおいて稼働します。
アドバイザリロックはWALに決して記録されないので、プライマリサーバでもスタンバイサーバでもWALの再実行においてコンフリクトが起こらないことに注意してください。
プライマリサーバでアドバイザリロックを取得して、スタンバイサーバで同様のアドバイザリロックを掛けることはできません。
アドバイザリロックは取得したサーバだけに関係するものです。
   


Slony™やLondiste™やBucardo™のようにトリガに基づいたレプリケーションシステムは、スタンバイサーバで全く稼働しません。
しかし、それによる変更がスタンバイサーバに送られるまでは、プライマリサーバにおいて問題なく稼働します。
WALの再実行はトリガに基づいたものではありません。
したがって、データベースへの付加的な書き込みを必要とするか、トリガの使用に依存するものを、スタンバイサーバを中継して他のシステムへ送ることはできません。
   


一部のUUIDジェネレータは、データベースに新しい状態を書き出すことに依存していない限り動作可能ですが、新しいOIDを割り当てることはできません。
   


現時点では、読み取り専用のトランザクションでは一時テーブルの作成は許されません。
このため既存のスクリプトが正しく動作しない場合があります。
この制限は将来のリリースで緩和されるかもしれません。
これは、標準SQLとの互換性の問題でもあり、技術的な問題でもあります。
   


テーブル空間が空の場合だけ、DROP TABLESPACEが成功します。
一部のスタンバイ側のユーザはtemp_tablespacesパラメータを介してテーブル空間を活発に使用しているかもしれません。
テーブル空間に一時ファイルが存在する場合、一時ファイルを確実に削除するためすべての問い合わせが取り消されます。
このため、WAL再生を続けながらテーブル空間を削除することができます。
   


プライマリサーバにおけるDROP DATABASEまたはALTER DATABASE ... SET TABLESPACEの実行により、スタンバイサーバのデータベースに接続するすべてのユーザを強制的に接続を切断させることになるWALエントリを生成します。
これはmax_standby_streaming_delayの設定にかかわらず、直ちに起こります。
ALTER DATABASE ... RENAMEはユーザを切断しないので大部分の場合は気がつきませんが、プログラムがデータベースの名称に依存するときは混乱の原因となることに注意してください。
   


通常の(リカバリ以外の)モードで、ログイン権限を持つロールが接続している間にそのロールにDROP USERまたはDROP ROLEを発行した場合、接続中のユーザには何も起こらず、接続し続けます。
しかし、そのユーザは再接続できません。
この振舞いはリカバリモードでも適用されます。
このためプライマリ側でDROP USERされたとしても、スタンバイ側のユーザの接続は切断されません。
   


リカバリの間も累積統計システムはアクティブになります。
すべてのスキャン、読み取り、ブロック、インデックスの使用などは、スタンバイサーバにおいて正常に記録されます。
しかし、WAL再生はリレーションやデータベース固有のカウンタを増加させません。
つまり、再生はpg_stat_all_tables列(n_tup_insなど)を増加させませんし、起動プロセスによって実行された読み取りや書き込みもpg_statio_ビューで追跡されませんし、関連するpg_stat_database列も増加されません。
   


リカバリの間は自動バキュームは稼働しません。
リカバリが終わると正常に起動します。
   


リカバリの間、チェックポインタプロセスとバックグラウンドライタプロセスは稼働しています。
チェックポインタプロセスは（プライマリサーバにおけるチェックポイントに類似した）リスタートポイントを設定し、通常のブロック消去を行います。
これはスタンバイサーバに保存されるヒントビット情報の更新を含むことができます。
リカバリの間CHECKPOINTコマンドは受理されますが、新規のチェックポイントではなくてリスタートポイントが設定されます。
   

ホットスタンバイパラメータリファレンス





種々のパラメータが上記「問い合わせコンフリクトの処理」および「管理者のための概説」で述べられています。
   


プライマリサーバでは、wal_levelのパラメータを使用できます。
プライマリサーバにmax_standby_archive_delayおよびmax_standby_streaming_delayを設定しても無効です。
   


スタンバイでは、パラメータhot_standby、max_standby_archive_delay、max_standby_streaming_delayを使用できます。
   

警告





ホットスタンバイには幾つかの制限があります。
将来のリリースでは改善されると思われます。

  
	

スナップショットを取ることができるようになる前に、実行中のトランザクションについての完全な知識が要求されます。
(現時点では64を超える)多くのサブトランザクションを使用するトランザクションでは、実行中の最長の書き込みトランザクションが完了するまで、読み取り専用の接続の開始は遅延されます。
この状況が起こると、それを説明するメッセージがサーバログに記録されます。
    

	

スタンバイ問い合わせ用の有効な起動ポイントは、プライマリにおけるチェックポイント毎に生成されます。
プライマリが停止状態にある時にスタンバイが停止した場合、プライマリが起動し、さらに起動ポイントをWALログに生成するまで再度ホットスタンバイになることができないことがあります。
この状況は、通常考えられる状態では問題ではありません。
一般的に、プライマリが停止し利用できなくなった場合、それはスタンバイに対して新しいプライマリに切り替わることを要求するような深刻な失敗が原因であることが多いはずです。
また、プライマリを意図的に停止させるような状況では、それに伴いスタンバイが新しいプライマリになめらかに切り替わることも普通の手順です。
    

	

リカバリの終了において、準備されたトランザクションが保持するAccessExclusiveLocksには、通常の2倍のロックテーブルへのエントリ数が必要です。
通常AccessExclusiveLocksを取るプリペアドトランザクションを大量に同時実行させる、または、多くのAccessExclusiveLocksを取る大規模なトランザクションを1つ実行させることを考えている場合、max_locks_per_transactionの値を、おそらくプライマリサーバのパラメータ値の倍程度に大きくすることを勧めます。
max_prepared_transactionsの設定が0ならば、これを検討する必要はまったくありません。
    

	

シリアライザブルトランザクション分離レベルはまだホットスタンバイでは利用できません。
（「シリアライザブル分離レベル」および「シリアライザブルトランザクションを用いた一貫性の強化」参照。）
ホットスタンバイにおいてトランザクションをシリアライザブルトランザクション分離レベルに設定しようとすると、エラーになります。
    





   


第27章 データベース活動状況の監視





データベース管理者はよく、「システムは今現在何をしているか」を気にします。
本章ではそれを知る方法について説明します。
 


データベース活動状況の監視と性能解析用のツールはいくつか存在します。
本章の大部分はPostgreSQL™の累積統計システムの説明に費されていますが、psやtop、iostat、vmstatなどの通常のUnix監視プログラムを無視すべきではありません。
また、性能が悪い問い合わせであると認知された問い合わせは、その後、PostgreSQL™のEXPLAINコマンドを使用して調査を行う必要が発生します。
「EXPLAINの利用」では、個々の問い合わせの振舞いを理解するための、EXPLAINやその他の方法について記載しています。
  
標準的なUnixツール





ほとんどのUNIXプラットフォームでは、PostgreSQL™は、個々のサーバプロセスが容易に識別できるように、psによって報告されるコマンドタイトル部分を変更します。
以下に表示例を示します。



$ ps auxww | grep ^postgres
postgres  15551  0.0  0.1  57536  7132 pts/0    S    18:02   0:00 postgres -i
postgres  15554  0.0  0.0  57536  1184 ?        Ss   18:02   0:00 postgres: background writer
postgres  15555  0.0  0.0  57536   916 ?        Ss   18:02   0:00 postgres: checkpointer
postgres  15556  0.0  0.0  57536   916 ?        Ss   18:02   0:00 postgres: walwriter
postgres  15557  0.0  0.0  58504  2244 ?        Ss   18:02   0:00 postgres: autovacuum launcher
postgres  15582  0.0  0.0  58772  3080 ?        Ss   18:04   0:00 postgres: joe runbug 127.0.0.1 idle
postgres  15606  0.0  0.0  58772  3052 ?        Ss   18:07   0:00 postgres: tgl regression [local] SELECT waiting
postgres  15610  0.0  0.0  58772  3056 ?        Ss   18:07   0:00 postgres: tgl regression [local] idle in transaction




（psの適切な呼び出し方はプラットフォームによって異なります。
同様に、何が詳細に表示されるのかも異なります。
この例は最近のLinuxシステムのものです。）
この一覧の最初のプロセスはプライマリサーバプロセスです。
表示されているコマンド引数は、起動時に使用されたものと同じものです。
次の4つのプロセスは、プライマリプロセスから自動的に起動されるバックグラウンドワーカープロセスです。
（自動バキュームが起動しないように設定していた場合は「自動バキュームランチャ」プロセスは表示されません。）
残るプロセスはそれぞれ、1つのクライアント接続を取り扱うサーバプロセスです。
それぞれのプロセスは、次の形式のコマンドライン表示を設定します。



postgres: user database host activity




ユーザ、データベース、(クライアント)ホストという項目はクライアント接続の存続期間中変更されることはありませんが、活動状況を示す部分は変わります。
活動状況は、idle（つまり、クライアントからのコマンド待ち状態）、idle in transaction（BEGINブロックの内側でのクライアントの待ち状態）、またはSELECTのようなコマンド種類名のいずれかとなります。
また、そのサーバプロセスが他のセッションによって保持されたロックを待っている状態の場合は、waitingが追加されます。
上の例では、プロセス15606はプロセス15610におけるトランザクションの完了とそれに伴うロックの解放を待っていると推測できます。
（他に実行中のセッションがありませんので、プロセス15610がブロックしている側であるはずです。
もっと複雑な場合ではpg_locksシステムビューを検索し、どのプロセスがどのプロセスをブロックしているか決定しなければなりません。）
  


cluster_nameが設定されていれば、psの出力でクラスタ名も表示されます。


$ psql -c 'SHOW cluster_name'
 cluster_name
--------------
 server1
(1 row)

$ ps aux|grep server1
postgres   27093  0.0  0.0  30096  2752 ?        Ss   11:34   0:00 postgres: server1: background writer
...


  


update_process_titleを無効にした場合、活動情報を示す部分は更新されません。
新しいプロセスが起動した時に一度だけ、プロセスのタイトルは設定されます。
プラットフォームの中には、これによりコマンドごとのオーバーヘッドをかなり抑えられるものもありますし、まったく意味がないものもあります。
  
ヒント


Solaris™では特別な取り扱いが必要です。
/bin/psではなく、/usr/ucb/psを使用しなければなりません。
また、wフラグを1つではなく2つ使用しなければなりません。
さらに、元のpostgresの呼び出しに関するpsのステータス表示は、各サーバプロセスに関するステータス表示よりも短くなければなりません。
この3条件を全て満たさないと、各サーバプロセスのpsの出力は、元のpostgresのコマンドラインのものになってしまいます。
  



累積統計システム





PostgreSQL™の累積統計システムは、サーバ活動に関する情報の収集と報告をサポートしています。
現在、コレクタはテーブルとインデックスへのアクセスをディスクブロックおよび個々の行単位で数えることができます。
またこれは、各テーブル内の総行数、および、各テーブルでのバキュームやアナライズの実施情報を数えます。
有効になっている場合は、ユーザ定義関数の呼ばれた回数、それぞれの消費した総時間を数えます。
  


また、PostgreSQL™は他のサーバプロセスによって現在実行されている正確なコマンドなど現在システム内で起きていること、またシステム内にどんな他の接続が存在するかということについての動的情報を正確に報告する機能を持ちます。
これは累積統計システムから独立している機能です。
  
統計情報収集のための設定





統計情報の収集によって問い合わせの実行に少しオーバーヘッドが加わりますので、システムは情報を収集するようにもしないようにも設定できます。
これは通常はpostgresql.conf内で設定される、設定パラメータによって制御されます。
（設定パラメータの設定についての詳細は19章サーバ設定を参照してください。）
  


track_activitiesパラメータは、任意のサーバプロセスで現在実行されているコマンドを監視するかどうかを指定できます。
  


track_cost_delay_timingパラメータは、コストベースのバキューム遅延を監視するかどうかを指定できます。
  


track_countsパラメータは、テーブルおよびインデックスアクセスに関する累積統計を収集するかどうかを制御します。
  


track_functionsパラメータは、ユーザ定義関数の使用状況を追跡するかどうかを指定できます。
  


track_io_timingパラメータは、ブロック読み取り、書き込み、拡張およびfsync時間を監視するかどうかを指定できます。
  


track_wal_io_timingパラメータは、WALの読み取り、書き込み、およびfsync時間を監視するかどうかを指定できます。
  


通常、これらの変数は全てのサーバプロセスに適用できるようにpostgresql.conf内で設定されます。
しかし、SET(7)コマンドを使用して、個別のセッションで有効または無効にできます。
（一般ユーザがその活動を管理者から隠すことを防止するために、スーパーユーザのみがSETを使用してこれらのパラメータを変更できます。）
  


累積統計情報は共有メモリに収集されます。
すべてのPostgreSQL™プロセスがローカルで統計情報を収集し、適切な間隔で共有データを更新します。
物理レプリカを含むサーバがクリーンにシャットダウンすると、統計データの永続的なコピーがpg_statサブディレクトリに保存されます。
これにより、サーバの再起動後も統計情報を保持できます。
対照的に、クリーンでないシャットダウンから開始する場合（即時シャットダウン後、サーバクラッシュ、ベースバックアップから開始、ポイントインタイムリカバリなど）、すべての統計カウンタがリセットされます。
  

統計情報の表示





システムの現在の状態を表示するために、いくつかの定義済みのビューがあり、表27.1「動的統計情報ビュー」に一覧されています。
また、累積統計の収集結果を表示するために、他にもいくつかのビューがあり、表27.2「収集済み統計情報ビュー」に一覧されています。
あるいはまた、「統計情報関数」で説明する、基礎的な累積統計関数を使用した独自のビューを構築することもできます。
  


収集したデータを監視するために累積統計ビューや関数を使用する場合、この情報は即座に更新されないことを認識することが重要です。
個々のサーバプロセスは、待機状態になる直前に、累積統計を共有メモリにフラッシュしますが、PGSTAT_MIN_INTERVALミリ秒に1回以上の頻度でフラッシュすることはありません（サーバ構築時に変更しない限り1秒）。
したがって、まだ処理中の問い合わせやトランザクションは表示される合計に影響を与えず、表示される情報は実際のアクティビティより遅くなります。
しかし、track_activitiesで収集される現在の問い合わせの情報は常に最新です。
  


もう1つの重要なポイントは、サーバプロセスが累積された統計のいずれかを表示するように要求された場合、アクセスされた値はデフォルト構成で現在のトランザクションが終了するまでキャッシュされることです。
したがって、現在のトランザクションを続行しているかぎり、統計には静的な情報が表示されます。
同様に、すべてのセッションの現在の問い合わせに関する情報は、その情報がトランザクション内で最初に要求されたときに収集され、同じ情報がトランザクション全体にわたって表示されます。
これはバグではなく特徴です。
これにより、統計に対して複数の問い合わせを実行し、結果を相互に関連付ける際に、ユーザの下で数値が変化することを心配する必要がないためです。


統計情報を対話的に分析する場合、または高価な問い合わせを使用する場合、個々の統計へのアクセス間の時間差によって、キャッシュされた統計に大幅な歪みが発生する可能性があります。
歪みを最小化するには、stats_fetch_consistencyをsnapshotに設定します。
ただし、不要な統計データをキャッシュするためのメモリ使用量が増加します。逆に、統計が一度しかアクセスされないことがわかっている場合は、アクセスされた統計のキャッシュは不要であり、stats_fetch_consistencyをnoneに設定することで回避できます。


pg_stat_clear_snapshot()を呼び出して、現在のトランザクションの統計スナップショットまたはキャッシュされた値（もしあれば）を破棄できます。
次に統計情報を使用すると（スナップショットモードの場合）新しいスナップショットが作成され、（キャッシュモードの場合）アクセスされた統計がキャッシュされます。
  


トランザクションはまた、ビューのpg_stat_xact_all_tables、pg_stat_xact_sys_tables、pg_stat_xact_user_tables、およびpg_stat_xact_user_functionsを通じて、自身の統計情報（まだ共有メモリの統計情報にフラッシュされていない）も参照することができます。
これらの数値はトランザクション中に継続的に更新されていくため上記の様な（静的な情報を示す）振る舞いとはなりません。
  


表27.1「動的統計情報ビュー」で表示される動的な統計ビューの情報の中にはセキュリティ制限があるものがあります。
一般ユーザは自身のセッション（メンバとなっているロールに属するセッション）に関する全情報だけを参照できます。
他セッションに関する行では多くの列がNULLになるでしょう。
しかしながら、セッションの存在とセッションのユーザとデータベースなどの一般的な属性は全ユーザに可視であることに注意してください。
スーパーユーザと組み込みロールpg_read_all_statsの権限を持つロールは全セッションに関する全情報を参照できます。
  
表27.1 動的統計情報ビュー
	ビュー名	説明
	
       pg_stat_activity
       
      	

サーバプロセスあたり1行の形式で、状態や現在の問い合わせ等のプロセスの現在の活動状況に関連した情報を表示します。
詳細についてはpg_stat_activityを参照してください。
      
	pg_stat_replication	
WAL送信プロセス毎に1行の形式で、送信サーバが接続したスタンバイサーバへのレプリケーションに関する統計情報を表示します。
詳細についてはpg_stat_replicationを参照してください。
      
	pg_stat_wal_receiver	
1行の形式で、受信サーバが接続したサーバからWAL受信サーバに関する統計情報を表示します。
詳細についてはpg_stat_wal_receiverを参照してください。
      
	pg_stat_recovery_prefetch	
1行の形式で、リカバリ中にプリフェッチされたブロックに関する統計情報を表示します。
詳細についてはpg_stat_recovery_prefetch を参照してください。
      
	pg_stat_subscription	
1つのサブスクリプションにつき少なくとも1行の形式で、サブスクリプションワーカーに関する情報を表示します。
詳細についてはpg_stat_subscriptionを参照してください。
      
	pg_stat_ssl	
接続（通常およびレプリケーション）あたり1行の形式で、接続に使われるSSLの情報を表示します。
詳細についてはpg_stat_sslを参照してください。
      
	pg_stat_gssapi	
接続（通常およびレプリケーション）あたり1行の形式で、接続に使われるGSSAPI認証と暗号化に関する情報を表示します。
詳細についてはpg_stat_gssapiを参照してください。
      
	pg_stat_progress_analyze	
ANALYZEを実行している各バックエンド（自動バキュームワーカープロセスを含む）ごとに1行の形式で、現在の進捗を表示します。
「ANALYZEの進捗状況のレポート」を参照してください。
      
	pg_stat_progress_create_index	
CREATE INDEXまたはREINDEXを実行している各バックエンドごとに1行の形式で、現在の進捗を表示します。
「CREATE INDEXの進捗状況のレポート」を参照してください。
     
	pg_stat_progress_vacuum	
VACUUMを実行している各バックエンド（自動バキュームワーカープロセスを含む）ごとに1行の形式で、現在の進捗を表示します。
「VACUUMの進捗状況のレポート」を参照してください。
      
	pg_stat_progress_cluster	
CLUSTERまたはVACUUM FULLを実行している各バックエンドごとに1行の形式で、現在の進捗を表示します。
「CLUSTERの進捗状況のレポート」を参照してください。
      
	pg_stat_progress_basebackup	
ベースバックアップをストリームしている各WAL送信プロセスごとに1行の形式で、現在の進捗を表示します。
「ベースバックアップの進捗状況のレポート」を参照してください。
      
	pg_stat_progress_copy	
COPYを実行している各バックエンドごとに1行の形式で、現在の進捗を表示します。
「COPYの進捗状況のレポート」を参照してください。
      



表27.2 収集済み統計情報ビュー
	ビュー名	説明
	pg_stat_archiver	
WALアーカイバプロセスの活動状況に関する統計情報を1行のみで表示します。
詳細についてはpg_stat_archiverを参照してください。
      
	pg_stat_bgwriter	
バックグラウンドライタプロセスの活動状況に関する統計情報を1行のみで表示します。
詳細についてはpg_stat_bgwriterを参照してください。
     
	pg_stat_checkpointer	
チェックポインタプロセスの活動状況に関する統計情報を1行のみで表示します。
詳細についてはpg_stat_checkpointerを参照してください。
     
	pg_stat_database	
データベース毎に1行の形式で、データベース全体の統計情報を表示します。
詳細についてはpg_stat_databaseを参照してください。
      
	pg_stat_database_conflicts	

データベース毎に1行の形式で、スタンバイサーバにおける復旧との競合のためにキャンセルされた問い合わせについてのデータベース全体の統計情報を表示します。
詳細についてはpg_stat_database_conflictsを参照してください。
      
	pg_stat_io	

バックエンドタイプ、コンテキスト、ターゲットのオブジェクトの組み合わせごとに1行で、クラスタ全体のI/O統計情報を含みます。
詳細についてはpg_stat_ioを参照してください。
     
	pg_stat_replication_slots	
レプリケーションスロットごとに1行の形式で、レプリケーションスロットの使用状況に関する統計情報を表示します。
詳細については pg_stat_replication_slotsを参照してください。
      
	pg_stat_slru	
SLRUごとに1行の形で、操作に関する統計情報を示します。
詳細についてはpg_stat_slruを参照してください。
      
	pg_stat_subscription_stats	
サブスクリプションごとに1行の形式で、エラーとコンフリクトに関する統計を表示します。
詳細についてはpg_stat_subscription_statsを参照してください。
      
	pg_stat_wal	
WALの活動状況に関する統計情報を1行のみで表示します。
詳細についてはpg_stat_walを参照してください。
      
	pg_stat_all_tables	

現在のデータベースの各テーブルごとに1行の形式で、特定のテーブルへのアクセスに関する統計情報を示します。
詳細についてはpg_stat_all_tablesを参照してください。
      
	pg_stat_sys_tables	
システムテーブルのみが表示される点を除き、pg_stat_all_tablesと同じです。

	pg_stat_user_tables	
ユーザテーブルのみが表示される点を除き、pg_stat_all_tablesと同じです。

	pg_stat_xact_all_tables	
pg_stat_all_tablesと似ていますが、現在のトランザクションにて実施された処理結果をカウントします（数値が見える時点では、これらの数値はpg_stat_all_tablesと関連するビューに含まれていません）。
このビューでは、有効な行数、無効な行数、およびバキュームやアナライズの処理に関する列はありません。
      
	pg_stat_xact_sys_tables	
システムテーブルのみが表示される点を除き、pg_stat_xact_all_tablesと同じです。
      
	pg_stat_xact_user_tables	
ユーザテーブルのみが表示される点を除き、pg_stat_xact_all_tablesと同じです。
      
	pg_stat_all_indexes	

現在のデータベースのインデックスごとに1行の形式で、特定のインデックスへのアクセスに関する統計情報を示します。
詳細についてはpg_stat_all_indexesを参照してください。
      
	pg_stat_sys_indexes	
システムテーブルのインデックスのみが表示される点を除き、pg_stat_all_indexesと同じです。
      
	pg_stat_user_indexes	
ユーザテーブルのインデックスのみが表示される点を除き、pg_stat_all_indexesと同じです。
      
	pg_stat_user_functions	

追跡された関数ごとに1行の形式で、関数の実行に関する統計情報を表示します。
詳細についてはpg_stat_user_functionsを参照してください。
      
	pg_stat_xact_user_functions	
pg_stat_user_functionsと似ていますが、現在のトランザクション中に呼び出されたものだけをカウントします。
(数値が見える時点では、これらの数値はpg_stat_user_functionsに含まれていません。)
      
	pg_statio_all_tables	

現在のデータベース内のテーブルごとに1行の形式で、特定のテーブルに対するI/Oに関する統計情報を示します。
詳細についてはpg_statio_all_tablesを参照してください。
      
	pg_statio_sys_tables	
システムテーブルのみが表示される点を除き、pg_statio_all_tablesと同じです。

	pg_statio_user_tables	
ユーザテーブルのみが表示される点を除き、pg_statio_all_tablesと同じです。
      
	pg_statio_all_indexes	

現在のデータベース内のインデックスごとに1行の形式で、特定のインデックスに対するI/Oに関する統計情報を表示します。
詳細についてはpg_statio_all_indexesを参照してください。
      
	pg_statio_sys_indexes	
システムテーブルのインデックスのみが表示される点を除き、pg_statio_all_indexes と同じです。
      
	pg_statio_user_indexes	
ユーザテーブルのインデックスのみが表示される点を除き、pg_statio_all_indexesと同じです。
      
	pg_statio_all_sequences	

現在のデータベース内のシーケンスごとに1行の形式で、特定のシーケンスに対するI/Oに関する統計情報を表示します。
詳細についてはpg_statio_all_sequencesを参照してください。
     
	pg_statio_sys_sequences	
システムシーケンスのみが表示される点を除き、pg_statio_all_sequencesと同じです。
（現時点では、システムシーケンスは定義されていませんので、このビューは常に空です。）
      
	pg_statio_user_sequences	
ユーザシーケンスのみが表示される点を除き、pg_statio_all_sequencesと同じです。
      





インデックス単位の統計情報は、どのインデックスが使用され、どの程度効果があるのかを評価する際に、特に有用です。
  


pg_stat_ioとpg_statio_ビューの組み合わせは、バッファキャッシュの有効性を判断するのに役立ちます。
これらはキャッシュヒット率を計算するのに使用できます。
PostgreSQL™のI/O統計は、I/Oを実行するためにカーネルが呼び出されたほとんどのインスタンスを取得しますが、ディスクから取得しなければならなかったデータと、カーネルページキャッシュにすでに存在していたデータとを区別しません。
ユーザは、データベースのI/Oパフォーマンスのより完全な全体像を得るために、PostgreSQL™の統計ビューをオペレーティングシステムのユーティリティと組み合わせて使用することをお勧めします。
  

pg_stat_activity





pg_stat_activityはサーバプロセス毎に、そのプロセスの現在の活動に関連する情報を表示する1行を持ちます。
  
表27.3 pg_stat_activityビュー
	

列 型
      

      

説明
      

	
       datid oid
      

      

バックエンドが接続するデータベースのOIDです。
      

	
       datname name
      

      

バックエンドが接続するデータベースの名前です。
      

	
       pid integer
      

      

バックエンドのプロセスIDです。
      

	
       leader_pid integer
      

      

このプロセスがパラレルクエリワーカーであればパラレルグループリーダーのプロセスIDです。
あるいは、このプロセスがパラレル適用ワーカーであればリーダー適用ワーカーのプロセスIDです。
NULLは、このプロセスがパラレルグループリーダーまたはリーダー適用ワーカーであること、またはこのプロセスがパラレル処理に参加していないことを示します。
      

	
       usesysid oid
      

      

バックエンドにログインしたユーザのOIDです。
      

	
       usename name
      

      

バックエンドにログインしたユーザの名前です。
      

	
       application_name text
      

      

バックエンドに接続したアプリケーションの名前です。
      

	
       client_addr inet
      

      

バックエンドに接続したクライアントのIPアドレスです。
このフィールドがNULLである場合、これはクライアントがサーバマシン上のUnixソケット経由で接続されたか、自動バキュームなど内部プロセスであることを示しています。
      

	
       client_hostname text
      

      

client_addrのDNS逆引き検索により報告された、接続クライアントのホスト名です。
IP接続、かつlog_hostnameが有効である場合にのみこのフィールドは非NULLになります。
      

	
       client_port integer
      

      

クライアントがバックエンドとの通信に使用するTCPポート番号、もしくはUnixソケットを使用する場合は-1です。
このフィールドがNULLであれば、内部のサーバプロセスであることを示しています。
      

	
       backend_start timestamp with time zone
      

      

プロセスが開始した時刻です。
クライアントのバックエンドについては、クライアントがサーバに接続した時刻です。
      

	
       xact_start timestamp with time zone
      

      

プロセスの現在のトランザクションが開始した時刻です。活動中のトランザクションがない場合はNULLです。
現在の問い合わせがトランザクションの先頭である場合、この列はquery_start列と同じです。
      

	
       query_start timestamp with time zone
      

      

現在活動中の問い合わせが開始した時刻です。もしstateがactiveでない場合は直前の問い合わせが開始した時刻です。
      

	
       state_change timestamp with time zone
      

      

stateの最終変更時刻です。
      

	
       wait_event_type text
      

      

バックエンドが待機しているイベントがあれば、その型、なければNULLとなります。
表27.4「待機イベント型」を参照してください。
      

	
       wait_event text
      

      

バックエンドが現在待機している場合は待機イベント名、そうでなければNULLとなります。
表27.5「Activity型の待機イベント」から表27.13「Timeout型の待機イベント」までを参照してください。
      

	
       state text
      

      

現在のバックエンドの総体的な状態です。
以下のいずれかの値を取ることができます。
       
	

starting: バックエンドは起動中です。
クライアント認証はこのフェーズで行われます。
         

	

active: バックエンドは問い合わせを実行中です。
         

	

idle: バックエンドは新しいクライアントからのコマンドを待機しています。
         

	

idle in transaction: バックエンドはトランザクションの内部にいますが、現在実行中の問い合わせがありません。
         

	

idle in transaction (aborted): この状態はidle in transactionと似ていますが、トランザクション内のある文がエラーになっている点が異なります。
         

	

fastpath function call: バックエンドは近道関数を実行中です。
         

	

disabled: この状態は、このバックエンドでtrack_activitiesが無効である場合に報告されます。
         




      

	
       backend_xid xid
      

      

もしあれば、このバックエンドの最上位のトランザクション識別子です。
「トランザクションと識別子」を参照してください。
      

	
       backend_xmin xid
      

      

現在のバックエンドのxminです。
      

	
      query_id bigint
     

     

バックエンドの直近の問い合わせ識別子です。
stateがactiveの場合、このフィールドには現在実行中の問い合わせ識別子が表示されます。
他のすべての状態では、最後に実行された問い合わせ識別子が表示されます。
問い合わせ識別子はデフォルトでは計算されないため、compute_query_idパラメータが有効になっているか、問い合わせ識別子を計算するサードパーティモジュールが設定されていない限り、このフィールドはnullになります。
     

	
       query text
      

      

バックエンドの最も最近の問い合わせテキストです。
stateがactiveの場合、このフィールドは現在実行中の問い合わせを示します。
その他のすべての状態では、実行済みの最後の問い合わせを示します。
デフォルトでは問い合わせのテキストは1024バイトで切り詰められますが、この値はパラメータtrack_activity_query_sizeにより変更できます。
      

	
       backend_type text
      

      

現在のバックエンドのタイプです。
可能なタイプは、autovacuum launcher、autovacuum worker、logical replication launcher、logical replication worker、parallel worker、background writer、client backend、checkpointer、archiver、standalone backend、startup、walreceiver、walsender、walwriter、walsummarizerです。
さらに、拡張によって登録されたバックグラウンドワーカーは追加のタイプを持つ場合があります。
      




注記


wait_eventとstate列は独立しています。
バックエンドがactive状態である場合、いくつかのイベントではwaitingかもしれませんし、そうでないかもしれません。
状態がactiveであり、wait_eventがNULLでない場合、問い合わせは実行中ですが、システム内のどこかでブロックされていることを意味します。
報告のオーバーヘッドを低く抑えるため、システムはバックエンドのさまざまな活動データを同期しようとはしません。
その結果、ビューの列間で一時的な不一致が発生する可能性があります。
   

表27.4 待機イベント型
	待機イベント型	説明
	Activity	
サーバプロセスはアイドル状態です。
このイベント型はプロセスがメインの処理ループ内で活動を待機していることを示します。
wait_eventによりその待機点が特定できます。
表27.5「Activity型の待機イベント」を参照してください。
      
	BufferPin	
サーバプロセスは、データバッファに排他的アクセスをするために待機しています。
バッファピン待機は、他のプロセスが該当のバッファから最後に読み込んだデータのオープンカーソルを保持している場合に長引かされることがあります。
表27.6「Bufferpin型の待機イベント」を参照してください。
      
	Client	
サーバプロセスはユーザアプリケーションに接続しているソケット上での活動を待機しています。
それゆえ、サーバはその内部プロセスとは無関係の何かが起きることを期待しています。
wait_eventによりその待機点が特定できます。表27.7「Client型の待機イベント」を参照してください。
      
	Extension	
サーバプロセスは拡張モジュールにより定義された条件を待機しています。
表27.8「Extension型の待機イベント」を参照してください。
      
	InjectionPoint	
サーバプロセスは、インジェクションポイントがテストで定義された結果に達するのを待機しています。
詳細は、「インジェクションポイント」を参照してください。
このタイプには事前定義された待機ポイントはありません。
      
	IO	
サーバプロセスは入出力が完了するのを待機しています。
wait_eventによりその待機点が特定できます。表27.9「Io型の待機イベント」を参照してください。
      
	IPC	
サーバプロセスは、他のサーバプロセスとの相互作用を待機しています。
wait_eventによりその待機点が特定できます。表27.10「Ipc型の待機イベント」を参照してください。
      
	Lock	
サーバプロセスは重量ロックを待機しています。
ロックマネージャロックや単にロックとしても知られている重量ロックは、主にテーブルのようなSQLで可視なオブジェクトを保護します。
しかし、それらはリレーション拡張のような、なんらかの内部操作のために相互排他を確実にするためにも使用されます。
wait_eventは、待たせているロックの型を識別します。
表27.11「Lock型の待機イベント」を参照してください。
      
	LWLock	
サーバプロセスは軽量ロックを待機しています。
ほとんどのこのようなロックは、共有メモリ内の特定のデータ構造を保護します。
wait_eventには軽量ロックの目的を特定する名前が入ります。
（特定の名前がついたロックもあれば、似たような目的のロックのグループの一部となっているものもあります。）
表27.12「Lwlock型の待機イベント」を参照してください。
      
	Timeout	
サーバプロセスはタイムアウトが満了するのを待機しています。
wait_eventによりその待機点が特定できます。表27.13「Timeout型の待機イベント」を参照してください。
      



表27.5 Activity型の待機イベント
	Activity待機イベント	説明
	ArchiverMain	アーカイバプロセスのメインループ内で待機しています。
	AutovacuumMain	自動バキュームのランチャプロセスのメインループ内で待機しています。
	BgwriterHibernate	バックグラウンドライタプロセス内で待機し、休止状態になっています。
	BgwriterMain	バックグラウンドライタプロセスのメインループ内で待機しています。
	CheckpointerMain	チェックポインタプロセスのメインループ内で待機しています。
	CheckpointerShutdown	Waiting for checkpointer process to be terminated.
	IoWorkerMain	Waiting in main loop of IO Worker process.
	LogicalApplyMain	論理レプリケーション適用プロセスのメインループ内で待機しています。
	LogicalLauncherMain	論理レプリケーションランチャプロセスのメインループ内で待機しています。
	LogicalParallelApplyMain	論理レプリケーションパラレル適用プロセスのメインループ内で待機しています。
	RecoveryWalStream	ストリーミングリカバリ中に、起動プロセスのメインループ内でWALが到着するのを待機しています。
	ReplicationSlotsyncMain	スロット同期ワーカーのメインループ内で待機しています。
	ReplicationSlotsyncShutdown	スロット同期ワーカーがシャットダウンするのを待機しています。
	SysloggerMain	sysloggerプロセスのメインループ内で待機しています。
	WalReceiverMain	WAL受信プロセスのメインループ内で待機しています。
	WalSenderMain	WAL送信プロセスのメインループ内で待機しています。
	WalSummarizerWal	WAL要約処理がさらなる生成対象のWALを待機しています。
	WalWriterMain	WAL書き込みプロセスのメインループ内で待機しています。



表27.6 Bufferpin型の待機イベント
	BufferPin待機イベント	説明
	BufferPin	バッファ上の排他ピンを獲得するのを待機しています。



表27.7 Client型の待機イベント
	Client待機イベント	説明
	ClientRead	クライアントからのデータの読み込みを待機しています。
	ClientWrite	クライアントへのデータの書き込みを待機しています。
	GssOpenServer	GSSAPIセッションを確立する際にクライアントからのデータ読み込みを待機しています。
	LibpqwalreceiverConnect	WAL受信プロセス内でリモートサーバへの接続が確立するのを待機しています。
	LibpqwalreceiverReceive	WAL受信プロセス内でリモートサーバからデータを受信するのを待機しています。
	SslOpenServer	接続試行中にSSLを待機しています。
	WaitForStandbyConfirmation	物理スタンバイによってWALが受信され、フラッシュされるのを待機しています。
	WalSenderWaitForWal	WAL送信プロセス内でWALがフラッシュされるのを待機しています。
	WalSenderWriteData	WAL送信プロセス内でWAL受信プロセスからの応答を処理している時に、何らかの活動を待機しています。



表27.8 Extension型の待機イベント
	Extension待機イベント	説明
	Extension	拡張内で待機しています。



表27.9 Io型の待機イベント
	IO待機イベント	説明
	AioIoCompletion	Waiting for another process to complete IO.
	AioIoUringExecution	Waiting for IO execution via io_uring.
	AioIoUringSubmit	Waiting for IO submission via io_uring.
	BasebackupRead	ベースバックアップがファイルから読み取るのを待機しています。
	BasebackupSync	ベースバックアップによって書き込まれたデータが永続的ストレージに到達するのを待機しています。
	BasebackupWrite	ベースバックアップがファイルに書き込むのを待機しています。
	BuffileRead	バッファファイルからの読み取りを待機しています。
	BuffileTruncate	バッファファイルが切り捨てられるのを待機しています。
	BuffileWrite	バッファファイルへの書き込みを待機しています。
	ControlFileRead	pg_controlファイルからの読み取りを待機しています。
	ControlFileSync	pg_controlファイルが永続的ストレージに到達するのを待機しています。
	ControlFileSyncUpdate	pg_controlファイルの更新が永続的ストレージに到達するのを待機しています。
	ControlFileWrite	pg_controlファイルへの書き込みを待機しています。
	ControlFileWriteUpdate	pg_controlファイルの更新の書き込みを待機しています。
	CopyFileCopy	Waiting for a file copy operation.
	CopyFileRead	ファイルコピーの操作の間、読み込みを待機しています。
	CopyFileWrite	ファイルコピーの操作の間、書き込みを待機しています。
	DataFileExtend	リレーションのデータファイルが拡張されるのを待機しています。
	DataFileFlush	リレーションのデータファイルが永続的ストレージに到達するのを待機しています。
	DataFileImmediateSync	リレーションのデータファイルが永続的ストレージに即座に同期されるのを待機しています。
	DataFilePrefetch	リレーションのデータファイルからの非同期プリフェッチを待機しています。
	DataFileRead	リレーションのデータファイルからの読み込みを待機しています。
	DataFileSync	リレーションのデータファイルへの変更が永続的ストレージに到達するのを待機しています。
	DataFileTruncate	リレーションのデータファイルが切り詰められるのを待機しています。
	DataFileWrite	リレーションのデータファイルへの書き込みを待機しています。
	DsmAllocate	動的共有メモリセグメントが確保されるのを待機しています。
	DsmFillZeroWrite	動的共有メモリの背後のファイルにゼロのバイトを書き込むのを待機しています。
	LockFileAddtodatadirRead	データディレクトリのロックファイルに行を追加する間の読み込みを待機しています。
	LockFileAddtodatadirSync	データディレクトリのロックファイルに行を追加する間、データが永続的ストレージに到達するのを待機しています。
	LockFileAddtodatadirWrite	データディレクトリのロックファイルに行を追加する間の書き込みを待機しています。
	LockFileCreateRead	データディレクトリのロックファイルを作成する間の読み込みを待機しています。
	LockFileCreateSync	データディレクトリのロックファイルを作成する間、データが永続的ストレージに到達するのを待機しています。
	LockFileCreateWrite	データディレクトリのロックファイルを作成する間の書き込みを待機しています。
	LockFileRecheckdatadirRead	データディレクトリのロックファイルを再検査する間の読み込みを待機しています。
	LogicalRewriteCheckpointSync	チェックポイントの間に、論理的な再書き込みのマッピングが永続的ストレージに到達するのを待機しています。
	LogicalRewriteMappingSync	論理的な再書き込みの間に、マッピングデータが永続的ストレージに到達するのを待機しています。
	LogicalRewriteMappingWrite	論理的な再書き込みの間に、マッピングデータの書き込みを待機しています。
	LogicalRewriteSync	論理的な再書き込みのマッピングが永続的ストレージに到達するのを待機しています。
	LogicalRewriteTruncate	論理的な再書き込みの際にマッピングデータが切り詰められるのを待機しています。
	LogicalRewriteWrite	論理的な再書き込みのマッピングの書き込みを待機しています。
	RelationMapRead	リレーションのマップファイルの読み込みを待機しています。
	RelationMapReplace	リレーションのマップファイルの永続的な置き換えを待機しています。
	RelationMapWrite	リレーションのマップファイルの書き込みを待機しています。
	ReorderBufferRead	並べ替えのバッファ管理の間に読み込みを待機しています。
	ReorderBufferWrite	並べ替えのバッファ管理の間に書き込みを待機しています。
	ReorderLogicalMappingRead	並べ替えのバッファ管理の間に、論理マッピングの読み込みを待機しています。
	ReplicationSlotRead	レプリケーションスロットの制御ファイルからの読み込みを待機しています。
	ReplicationSlotRestoreSync	レプリケーションスロットの制御ファイルをメモリにリストアする間、それが永続的ストレージに到達するのを待機しています。
	ReplicationSlotSync	レプリケーションスロットの制御ファイルが永続的ストレージに到達するのを待機しています。
	ReplicationSlotWrite	レプリケーションスロットの制御ファイルへの書き込みを待機しています。
	SlruFlushSync	チェックポイントまたはデータベースのシャットダウン中に、SLRUデータが永続的ストレージに到達するのを待機しています。
	SlruRead	SLRUページの読み込みを待機しています。
	SlruSync	ページ書き込みの後、SLRUデータが永続的ストレージに到達するのを待機しています。
	SlruWrite	SLRUページの書き込みを待機しています。
	SnapbuildRead	シリアライズされた歴史的カタログのスナップショットの読み込みを待機しています。
	SnapbuildSync	シリアライズされた歴史的カタログのスナップショットが永続的ストレージに到達するのを待機しています。
	SnapbuildWrite	シリアライズされた歴史的カタログのスナップショットの書き込みを待機しています。
	TimelineHistoryFileSync	ストリーミングレプリケーションを経由して受け取ったタイムラインの履歴ファイルが永続的ストレージに到達するのを待機しています。
	TimelineHistoryFileWrite	ストリーミングレプリケーションを経由して受け取ったタイムラインの履歴ファイルの書き込みを待機しています。
	TimelineHistoryRead	タイムラインの履歴ファイルの読み込みを待機しています。
	TimelineHistorySync	新しく作成されたタイムラインの履歴ファイルが永続的ストレージに到達するのを待機しています。
	TimelineHistoryWrite	新しく作成されたタイムラインの履歴ファイルの書き込みを待機しています。
	TwophaseFileRead	二相の状態ファイルの読み込みを待機しています。
	TwophaseFileSync	二相の状態ファイルが永続的ストレージに到達するのを待機しています。
	TwophaseFileWrite	二相の状態ファイルの書き込みを待機しています。
	VersionFileSync	データベースの作成中にバージョンファイルが永続的ストレージに到達するのを待機しています。
	VersionFileWrite	データベースの作成中にバージョンファイルが作成されるのを待機しています。
	WalsenderTimelineHistoryRead	WAL送信サーバのタイムラインコマンドで、タイムラインの履歴ファイルの読み込みを待機しています。
	WalBootstrapSync	ブートストラップ時にWALが永続的ストレージに到達するのを待機しています。
	WalBootstrapWrite	ブートストラップ時にWALページの書き込みを待機しています。
	WalCopyRead	既存のWALセグメントをコピーして新しいWALセグメントを作成する時に読み込みを待機しています。
	WalCopySync	既存のWALセグメントをコピーして作成した新しいWALセグメントが永続的ストレージに到達するのを待機しています。
	WalCopyWrite	既存のWALセグメントをコピーして新しいWALセグメントを作成する時に書き込みを待機しています。
	WalInitSync	新しく初期化されたWALファイルが永続的ストレージに到達するのを待機しています。
	WalInitWrite	新しいWALファイルを初期化している時に書き込みを待機しています。
	WalRead	WALファイルからの読み込みを待機しています。
	WalSummaryRead	WALの要約ファイルからの読み込みを待機しています。
	WalSummaryWrite	WALの要約ファイルへの書き込みを待機しています。
	WalSync	WALファイルが永続的ストレージに達するのを待機しています。
	WalSyncMethodAssign	新しいWALの同期方法を割り当てている時にデータが永続的ストレージに到達するのを待機しています。
	WalWrite	WALファイルへの書き込みを待機しています。



表27.10 Ipc型の待機イベント
	IPC待機イベント	説明
	AppendReady	Appendプランノードのサブプランノードの準備が整うのを待機しています。
	ArchiveCleanupCommand	archive_cleanup_commandの完了を待機しています。
	ArchiveCommand	archive_commandの完了を待機しています。
	BackendTermination	他のバックエンドの終了を待機しています。
	BackupWaitWalArchive	バックアップに必要なWALファイルがアーカイブに成功するのを待機しています。
	BgworkerShutdown	バックグラウンドワーカーがシャットダウンするのを待機しています。
	BgworkerStartup	バックグラウンドワーカーが起動するのを待機しています。
	BtreePage	パラレルB-treeスキャンを継続するのに必要なページ番号が利用可能になるのを待機しています。
	BufferIo	バッファI/Oが完了するのを待機しています。
	CheckpointDelayComplete	チェックポイントの完了をブロックしているバックエンドを待機しています。
	CheckpointDelayStart	チェックポイントの開始をブロックしているバックエンドを待機しています。
	CheckpointDone	チェックポイントが完了するのを待機しています。
	CheckpointStart	チェックポイントが開始するのを待機しています。
	ExecuteGather	Gather計画ノードの実行時に子プロセスの活動を待機しています。
	HashBatchAllocate	選ばれたパラレルハッシュ参加者がハッシュテーブルを獲得するのを待機しています。
	HashBatchElect	ハッシュテーブルを獲得するパラレルハッシュ参加者を選ぶのを待機しています。
	HashBatchLoad	他のパラレルハッシュ参加者がハッシュテーブルのロードを完了させるのを待機しています。
	HashBuildAllocate	選ばれたパラレルハッシュ参加者が初期ハッシュテーブルを獲得するのを待機しています。
	HashBuildElect	初期ハッシュテーブルを獲得するパラレルハッシュ参加者を選ぶのを待機しています。
	HashBuildHashInner	他のパラレルハッシュ参加者がインナーリレーションのハッシュを完了させるのを待機しています。
	HashBuildHashOuter	他のパラレルハッシュ参加者がアウターリレーションのパーティショニングを完了させるのを待機しています。
	HashGrowBatchesDecide	将来のバッチの増加を決めるパラレルハッシュ参加者を選ぶのを待機しています。
	HashGrowBatchesElect	追加バッチを獲得するパラレルハッシュ参加者を選ぶのを待機しています。
	HashGrowBatchesFinish	選ばれたパラレルハッシュ参加者が将来のバッチの増加を決めるのを待機しています。
	HashGrowBatchesReallocate	選ばれたパラレルハッシュ参加者が追加バッチを獲得するのを待機しています。
	HashGrowBatchesRepartition	他のパラレルハッシュ参加者がリパーティショニングを完了させるのを待機しています。
	HashGrowBucketsElect	追加バケットを獲得するパラレルハッシュ参加者を選ぶのを待機しています。
	HashGrowBucketsReallocate	選ばれたパラレルハッシュ参加者が追加バケット獲得を完了するのを待機しています。
	HashGrowBucketsReinsert	他のパラレルハッシュ参加者が新しいバケットに対するタプル挿入を完了させるのを待機しています。
	LogicalApplySendData	論理レプリケーションリーダー適用プロセスがパラレル適用プロセスにデータを送信するのを待機しています。
	LogicalParallelApplyStateChange	論理レプリケーションのパラレル適用プロセスが状態を変更するのを待機しています。
	LogicalSyncData	論理レプリケーションのリモートサーバが最初のテーブル同期のためのデータを送信するのを待機しています。
	LogicalSyncStateChange	論理レプリケーションのリモートサーバが状態を変更するのを待機しています。
	MessageQueueInternal	他のプロセスが共有メッセージキューにアタッチされるのを待機しています。
	MessageQueuePutMessage	共有メッセージキューにプロトコルのメッセージを書くのを待機しています。
	MessageQueueReceive	共有メッセージキューからバイトを受信するのを待機しています。
	MessageQueueSend	共有メッセージキューにバイトを送信するのを待機しています。
	MultixactCreation	マルチトランザクションの作成が完了するのを待機しています。
	ParallelBitmapScan	パラレルビットマップスキャンが初期化されるのを待機しています。
	ParallelCreateIndexScan	パラレルCREATE INDEXワーカーがヒープスキャンを完了するのを待機しています。
	ParallelFinish	パラレルワーカーが計算を完了するのを待機しています。
	ProcarrayGroupUpdate	グループリーダーがトランザクション終了時にトランザクションIDをクリアするのを待機しています。
	ProcSignalBarrier	バックエンドすべてでバリアイベントが処理されるのを待機しています。
	Promote	スタンバイの昇格を待機しています。
	RecoveryConflictSnapshot	バキュームクリーンアップに対するリカバリ競合の解決を待機しています。
	RecoveryConflictTablespace	テーブル空間の削除に対するリカバリ競合の解決を待機しています。
	RecoveryEndCommand	recovery_end_commandの完了を待機しています。
	RecoveryPause	リカバリが再開するのを待機しています。
	ReplicationOriginDrop	レプリケーションオリジンが削除できるよう非活動状態になるのを待機しています。
	ReplicationSlotDrop	レプリケーションスロットが削除できるよう非活動状態になるのを待機しています。
	RestoreCommand	restore_commandの完了を待機しています。
	SafeSnapshot	READ ONLY DEFERRABLEのトランザクションに対する有効なスナップショットの獲得を待機しています。
	SyncRep	同期レプリケーション中に、リモートサーバからの確認を待機しています。
	WalReceiverExit	WALレシーバが終了するのを待機しています。
	WalReceiverWaitStart	ストリーミングレプリケーションの初期データを送信するための起動プロセスを待機しています。
	WalSummaryReady	新しいWAL要約が生成されるのを待機しています。
	XactGroupUpdate	グループリーダーがトランザクション終了時にトランザクションステータスを更新するのを待機しています。



表27.11 Lock型の待機イベント
	Lock待機イベント	説明
	advisory	勧告的ユーザロックを獲得するのを待機しています。
	applytransaction	論理レプリケーションサブスクライバによって適用されるリモートトランザクションのロック獲得を待機しています。
	extend	リレーションを拡張するのを待機しています。
	frozenid	pg_database.datfrozenxidとpg_database.datminmxidを更新するのを待機しています。
	object	非リレーションデータベースオブジェクト上のロックを獲得するのを待機しています。
	page	リレーションのページ上のロックを獲得するのを待機しています。
	relation	リレーション上のロックを獲得するのを待機しています。
	spectoken	投機的挿入ロックを獲得するのを待機しています。
	transactionid	トランザクションが終了するのを待機しています。
	tuple	タプル上のロックを獲得するのを待機しています。
	userlock	ユーザロックを獲得するのを待機しています。
	virtualxid	仮想トランザクションIDロックを獲得するのを待機しています。「トランザクションと識別子」を参照してください。



表27.12 Lwlock型の待機イベント
	LWLock待機イベント	説明
	AddinShmemInit	Waiting to manage an extension's space allocation in shared memory.
	AioUringCompletion	Waiting for another process to complete IO via io_uring。
	AioWorkerSubmissionQueue	Waiting to access AIO worker submission queue。
	AutoFile	postgresql.auto.confファイルを更新するのを待機しています。
	Autovacuum	自動バキュームワーカーの現在の状態の読み込み、または更新を待機しています。
	AutovacuumSchedule	自動バキューム対象として選定されたテーブルが、まだバキューム処理が必要であることを確認するのを待機しています。
	BackgroundWorker	バックグラウンドワーカー状態の読み込み、または更新を待機しています。
	BtreeVacuum	B-treeインデックスのバキュームに関連した情報の読み込み、または更新を待機しています。
	BufferContent	メモリ内のデータページへアクセスするのを待機しています。
	BufferMapping	データブロックをバッファプール内のバッファと関連付けるのを待機しています。
	CheckpointerComm	fsyncリクエストを管理するのを待機しています。
	CommitTs	トランザクションコミットタイムスタンプのために設定された最新の値の読み込み、または更新を待機しています。
	CommitTsBuffer	コミットタイムスタンプSLRUバッファでのI/Oを待機しています。
	CommitTsSLRU	コミットタイムスタンプSLRUキャッシュにアクセスするのを待機しています。
	ControlFile	pg_controlファイルの読み込みもしくは更新、または新しいWALファイルの作成を待機しています。
	DSMRegistry	動的共有メモリレジストリの読み込み、または更新を待機しています。
	DSMRegistryDSA	動的共有メモリレジストリの動的共有メモリアロケータへのアクセスするのを待機しています。
	DSMRegistryHash	動的共有メモリレジストリの共有ハッシュテーブルにアクセスするのを待機しています。
	DynamicSharedMemoryControl	動的共有メモリの割り当て情報の読み込み、または更新を待機しています。
	InjectionPoint	インジェクションポイントに関連する情報の読み込み、または更新を待機しています。
	LockFastPath	プロセスのファストパスロック情報の読み込み、または更新を待機しています。
	LockManager	「重量」ロックに関する情報の読み込み、または更新を待機しています。
	LogicalRepLauncherDSA	論理レプリケーションランチャの動的共有メモリアロケータへアクセスするのを待機しています。
	LogicalRepLauncherHash	論理レプリケーションランチャの共有ハッシュテーブルへアクセスするのを待機しています。
	LogicalRepWorker	論理レプリケーションワーカーの状態の読み込み、または更新を待機しています。
	MultiXactGen	共有マルチトランザクション状態の読み込み、または更新を待機しています。
	MultiXactMemberBuffer	マルチトランザクションメンバSLRUバッファでのI/Oを待機しています。
	MultiXactMemberSLRU	マルチトランザクションメンバSLRUキャッシュにアクセスするのを待機しています。
	MultiXactOffsetBuffer	マルチトランザクションオフセットSLRUバッファでのI/Oを待機しています。
	MultiXactOffsetSLRU	マルチトランザクションオフセットSLRUキャッシュにアクセスするのを待機しています。
	MultiXactTruncation	マルチトランザクション情報の読み込み、または切り詰めを待機しています。
	NotifyBuffer	NOTIFYメッセージSLRUバッファでのI/Oを待機しています。
	NotifyQueue	NOTIFYメッセージの読み込み、または更新を待機しています。
	NotifyQueueTail	NOTIFYメッセージストレージの制限が更新されるのを待機しています。
	NotifySLRU	NOTIFYメッセージSLRUキャッシュにアクセスするのを待機しています。
	OidGen	新しいOIDを割り当てるのを待機しています。
	ParallelAppend	パラレルアペンド計画を実行中に次のサブプランの選択を待機しています。
	ParallelHashJoin	パラレルハッシュ結合計画を実行中に、ワーカーの同期を待機しています。
	ParallelQueryDSA	パラレルクエリの動的共有メモリ割り当てを待機しています。
	ParallelVacuumDSA	パラレルバキューム動的共有メモリアロケーションを待機しています。
	PerSessionDSA	パラレルクエリの動的共有メモリ割り当てを待機しています。
	PerSessionRecordType	複合型に関するパラレルクエリの情報にアクセスするのを待機しています。
	PerSessionRecordTypmod	匿名レコード型を特定する型修飾子に関するパラレルクエリの情報にアクセスするのを待機しています。
	PerXactPredicateList	パラレルクエリの間に、現在のシリアライザブルトランザクションによって保持された述語ロックの一覧へアクセスするのを待機しています。
	PgStatsData	共有メモリ統計データへのアクセスを待機しています。
	PgStatsDSA	統計動的共有メモリアロケータへのアクセスを待機しています。
	PgStatsHash	統計共有メモリハッシュテーブルへのアクセスを待機しています。
	PredicateLockManager	シリアライザブルトランザクションによって使われる述語ロックの情報にアクセスするのを待機しています。
	ProcArray	（通常、スナップショットを取得するか、セッションのトランザクションIDを報告するため）共有のプロセスごとのデータ構造へアクセスするのを待機しています。
	RelationMapping	（特定のシステムカタログのファイルノード割り当てを追跡するために使用される）pg_filenode.mapファイルの読み込み、または更新を待機しています。
	RelCacheInit	pg_internal.initリレーションキャッシュ初期化ファイルの読み込み、または更新を待機しています。
	ReplicationOrigin	レプリケーションオリジンの作成、削除、または使用を待機しています。
	ReplicationOriginState	あるレプリケーションオリジンの進捗の読み込み、または更新を待機しています。
	ReplicationSlotAllocation	レプリケーションスロットの割り当て、または解放を待機しています。
	ReplicationSlotControl	レプリケーションスロット状態の読み込み、または更新を待機しています。
	ReplicationSlotIO	レプリケーションスロットでのI/Oを待機しています。
	SerialBuffer	シリアライザブルトランザクション競合SLRUバッファでのI/Oを待機しています
	SerialControl	共有pg_serial状態の読み込み、または更新を待機しています。
	SerializableFinishedList	完了したシリアライザブルトランザクションの一覧へアクセスするのを待機しています。
	SerializablePredicateList	シリアライザブルトランザクションによって保持された述語ロックの一覧へアクセスするのを待機しています。
	SerializableXactHash	シリアライザブルトランザクションに関する情報の読み込み、または更新を待機しています。
	SerialSLRU	シリアライザブルトランザクション競合SLRUキャッシュにアクセスするのを待機しています。
	SharedTidBitmap	パラレルビットマップインデックススキャンの間に、共有TIDビットマップにアクセスするのを待機しています。
	SharedTupleStore	パラレルクエリの間に共有タプルストアにアクセスするのを待機しています。
	ShmemIndex	共有メモリ内に領域を発見する、もしくは割り当てるのを待機しています。
	SInvalRead	共有カタログ無効化キューからメッセージを取り出すのを待機しています。
	SInvalWrite	共有カタログ無効化キューにメッセージを追加するのを待機しています。
	SubtransBuffer	サブトランザクションSLRUバッファのI/Oを待機しています。
	SubtransSLRU	サブトランザクションSLRUキャッシュにアクセスするのを待機しています。
	SyncRep	同期レプリケーションの状態に関する情報を読み込む、または更新するの待機しています。
	SyncScan	同期テーブルスキャンの開始位置を選ぶのを待機しています。
	TablespaceCreate	テーブル空間の作成、または削除を待機しています。
	TwoPhaseState	プリペアドトランザクションの状態の読み込み、または更新を待機しています。
	WaitEventCustom	カスタム待機イベント情報の読み込み、または更新を待機しています。
	WALBufMapping	WALバッファ内のページの置き換えを待機しています。
	WALInsert	WALデータをメモリバッファに挿入するのを待機しています。
	WALSummarizer	WAL要約状態の読み込み、または更新を待機しています。
	WALWrite	WALバッファがディスクに書き込まれるのを待機しています。
	WrapLimitsVacuum	トランザクションIDとマルチトランザクションの消費の制限が更新されるのを待機しています。
	XactBuffer	トランザクション状態SLRUバッファでのI/Oを待機しています。
	XactSLRU	トランザクション状態SLRUキャッシュにアクセスするのを待機しています。
	XactTruncation	pg_xact_statusを実行する、またはその関数で利用可能な最古のトランザクションIDを更新するのを待機しています。
	XidGen	新しいトランザクションIDを割り当てるのを待機しています。



表27.13 Timeout型の待機イベント
	Timeout待機イベント	説明
	BaseBackupThrottle	スロットル活動時にベースバックアップで待機しています。
	CheckpointWriteDelay	チェックポイント実行中の書き込みの間で待機しています。
	PgSleep	pg_sleepまたは同系列の関数を呼び出したため待機しています。
	RecoveryApplyDelay	遅延設定によりリカバリ時のWAL適用を待機しています。
	RecoveryRetrieveRetryInterval	リカバリ中にWALデータがどのソース（pg_wal、アーカイブ、またはストリーム）からも利用できない間、待機しています。
	RegisterSyncRequest	要求キューがいっぱいのため、同期要求をチェックポインタに送信する間、待機しています。
	SpinDelay	競合スピンロックの獲得中に待機しています。
	VacuumDelay	コストに基づくバキューム遅延ポイントで待機しています。
	VacuumTruncate	バキュームされたテーブルの最後にある空のロックをオフで切り捨てるために、排他的ロックの獲得を待機しています。
	WalSummarizerError	WAL要約処理エラー後の待機しています。





以下に、待機イベントが表示される例を示します。



SELECT pid, wait_event_type, wait_event FROM pg_stat_activity WHERE wait_event is NOT NULL;
 pid  | wait_event_type | wait_event
------+-----------------+------------
 2540 | Lock            | relation
 6644 | LWLock          | ProcArray
(2 rows)





SELECT a.pid, a.wait_event, w.description
  FROM pg_stat_activity a JOIN
       pg_wait_events w ON (a.wait_event_type = w.type AND
                            a.wait_event = w.name)
  WHERE a.wait_event is NOT NULL and a.state = 'active';
-[ RECORD 1 ]------------------------------------------------------​------------
pid         | 686674
wait_event  | WALInitSync
description | Waiting for a newly initialized WAL file to reach durable storage


   
注記


拡張は、表27.8「Extension型の待機イベント」と表27.12「Lwlock型の待機イベント」に示す一覧にExtension、InjectionPoint、LWLockイベントを追加できます。
拡張によって割り当てられたLWLockの名前がすべてのサーバプロセスでは利用可能でない場合があります。
その場合、拡張によって割り当てられた名前ではなく、単に「extension」と報告されることがあります。
    


pg_stat_replication





pg_stat_replicationビューには、WAL送信プロセス毎に1行を含み、送信処理に接続したスタンバイサーバへのレプリケーションに関する統計情報を表示します。
直接接続されたスタンバイサーバのみが一覧表示されます。
下流のスタンバイサーバに関する情報はありません。
  
表27.14 pg_stat_replicationビュー
	

列 型
      

      

説明
      

	
       pid integer
      

      

WAL送信プロセスのプロセスIDです。
      

	
       usesysid oid
      

      

WAL送信プロセスにログインしたユーザのOIDです。
      

	
       usename name
      

      

WAL送信プロセスにログインしたユーザの名前です。
      

	
       application_name text
      

      

WAL送信プロセスに接続したアプリケーションの名前です。
      

	
       client_addr inet
      

      

WAL送信プロセスに接続したクライアントのIPアドレスです。
このフィールドがNULLの場合、クライアントがサーバマシン上のUnixソケット経由で接続したことを示します。
      

	
       client_hostname text
      

      

client_addrのDNS逆引き検索により報告された、接続クライアントのホスト名です。
IP接続、かつlog_hostnameが有効である場合にのみ、このフィールドは非NULLになります。
      

	
       client_port integer
      

      

クライアントがWAL送信プロセスとの通信に使用するTCPポート番号、もしUnixソケットを使用する場合は-1です。
      

	
       backend_start timestamp with time zone
      

      

プロセスが開始、つまりクライアントがWAL送信プロセスに接続した時刻です。
      

	
       backend_xmin xid
      

      

hot_standby_feedbackにより報告されたこのスタンバイのxminです。
      

	
       state text
      

      

WAL送信サーバの現在の状態です。
取り得る値は以下の通りです。
       
	

startup: このWAL送信サーバは起動するところです。
         

	

catchup: このWAL送信サーバが接続しているスタンバイはプライマリに追いつこうとしています。
         

	

streaming: このWAL送信サーバは、接続先のスタンバイサーバがプライマリに追いついた後、変更をストリームしています。
         

	

backup: このWAL送信サーバはバックアップを送信しています。
         

	

stopping: このWAL送信サーバは停止するところです。
         




      

	
       sent_lsn pg_lsn
      

      

この接続で送信された最後の先行書き込みログ（WAL）の位置です。
      

	
       write_lsn pg_lsn
      

      

このスタンバイサーバによってディスクに書き出された最後の先行書き込みログ（WAL）の位置です。
      

	
       flush_lsn pg_lsn
      

      

このスタンバイサーバによってディスクにフラッシュされた最後の先行書き込みログ（WAL）の位置です。
      

	
       replay_lsn pg_lsn
      

      

このスタンバイサーバ上のデータベースに再生された最後の先行書き込みログ（WAL）の位置です。
      

	
       write_lag interval
      

      

最近のWALをローカルにフラッシュしてから、このスタンバイサーバがそれを書き出した（が、まだフラッシュしたり適用したりしていない）ことの通知を受け取るまでの経過時間です。
このサーバが同期スタンバイとして設定されているとして、コミット時にsynchronous_commitレベルのremote_writeが起こした遅延を正確に測定するために、これを使用することができます。
      

	
       flush_lag interval
      

      

最近のWALをローカルにフラッシュしてから、このスタンバイサーバがそれを書き出してフラッシュした（が、まだ適用していない）ことの通知を受け取るまでの経過時間です。
このサーバが同期スタンバイとして設定されているとして、コミット時にsynchronous_commitレベルのonが起こした遅延を正確に測定するために、これを使用することができます。
      

	
       replay_lag interval
      

      

最近のWALをローカルにフラッシュしてから、このスタンバイサーバがそれを書き出し、フラッシュし、そして適用したことの通知を受け取るまでの経過時間です。
このサーバが同期スタンバイとして設定されているとして、コミット時にsynchronous_commitレベルのremote_applyが起こした遅延を正確に測定するために、これを使用することができます。
      

	
       sync_priority integer
      

      

優先度に基づく同期レプリケーションで、このスタンバイサーバが同期スタンバイとして選択される優先度です。
クォーラムに基づく同期レプリケーションでは効果がありません。
      

	
       sync_state text
      

      

このスタンバイサーバの同期状態です。
取り得る値は以下の通りです。
       
	

async: このスタンバイサーバは非同期です。
         

	

potential: このスタンバイサーバは現在非同期ですが、現在同期中のサーバの一つが故障すると同期になる可能性があります。
         

	

sync: このスタンバイサーバは同期です。
         

	

quorum: このサーバはクォーラムのスタンバイの候補とみなされています。
         




      

	
       reply_time timestamp with time zone
      

      

スタンバイサーバから受け取った最後の応答メッセージの送信時刻です。
      






pg_stat_replicationビューで報告される経過時間は、最近のWALが書き込まれ、フラッシュされ、再生されるのに要した時間の測定結果であり、また、送信サーバがそれを知るためのものです。
リモートサーバが同期スタンバイとして設定されている場合、これらの時間は、同期コミットの各レベルによって引き起こされた（あるいは引き起こされたであろう）コミットの遅延を表します。
非同期スタンバイの場合は、replay_lag列は最近のトランザクションが問い合わせに対して可視になったときまでの遅延を近似します。
スタンバイサーバが送信サーバに完全に追いつき、WALの活動がなくなった状態のときは、最も直近に測定された経過時間が短い間、表示され続け、その後はNULLとなります。
  


経過時間は物理レプリケーションの場合は自動的に機能します。
ロジカルデコーディングのプラグインはオプションで追跡メッセージを発することができますが、そうしなければ追跡機能は単にNULLの経過時間を表示します。
  
注記


報告される経過時間は、現在の再生速度の前提でスタンバイが送信サーバに追いつくのに要する時間を予測するものではありません。
そのようなシステムでは、新しいWALが生成されている間は類似した時間を示しますが、送信サーバがアイドル状態になると異なるものになるでしょう。
特に、スタンバイが完全に追いついたとき、pg_stat_replicationは、一部のユーザが期待するゼロではなく、最も最近に報告されたWAL位置を書き込み、フラッシュし、再生するのに要した時間を示します。
これは最近の書き込みトランザクションについて同期コミットおよびトランザクションの可視性の遅延を測定するという目的と首尾一貫しています。
経過時間について異なるモデルを期待するユーザの混乱を抑えるため、完全に再生されてアイドルになったシステムでは、経過時間の列は短い時間の後、NULLに戻ります。
監視システムでは、これをデータなしとする、ゼロとする、あるいは最後の既知の値を表示し続けるという選択をすることになります。
   


pg_stat_replication_slots





pg_stat_replication_slotsビューには、論理レプリケーションスロットごとに1行が含まれ、その使用状況に関する統計情報が表示されます。
  
表27.15 pg_stat_replication_slotsビュー
	

列 型
       

       

説明
      

	
        slot_name text
       

       

クラスタ全体で一意なレプリケーションスロットの識別子です。
      

	
        spill_txns bigint
       

       

WALからの変更をデコードするためにロジカルデコーディングによって使用されるメモリがlogical_decoding_work_memを超えたときにディスクにあふれたトランザクション数です。
カウンタは、トップレベルのトランザクションとサブトランザクションの両方で増分されます。
      

	
        spill_count bigint
       

       

このスロットのWALから変更をデコードしている間に、トランザクションがディスクにあふれた回数です。
このカウンタは、トランザクションがあふれるたびに増分され、同じトランザクションが複数回あふれることもあります。
      

	
        spill_bytes bigint
       

       

このスロットのWALからの変更をデコード実行している間に、ディスクにあふれたデコード済みトランザクションデータ量です。
このカウンタと他のあふれカウンタは、ロジカルデコーディング中に発生したI/Oを測定しlogical_decoding_work_memを調整できます。
      

	
        stream_txns bigint
       

       

このスロットのWALからの変更をデコードするためにロジカルデコーディングが使用するメモリがlogical_decoding_work_memを超えた後にデコード出力プラグインにストリーミングされた進行中のトランザクション数です。
ストリーミングはトップレベルのトランザクションでのみ機能するため (サブトランザクションは独立してストリーミングできません)、サブトランザクションではカウンタは増分されません。
       

	
        stream_countbigint
       

       

このスロットのWALからの変更をデコードしている間に、進行中のトランザクションがデコード出力プラグインにストリーミングされた回数です。
このカウンタは、トランザクションがストリーミングされるたびに増分され、同じトランザクションが複数回ストリーミングされる可能性があります。
      

	
        stream_bytesbigint
       

       

このスロットのWALからの変更をデコードしている間に、進行中のトランザクションをデコード出力プラグインにストリーミングするためにデコードされたトランザクションデータ量です。
このカウンタと他のストリーミングカウンタは、logical_decoding_work_memを調整するために使用できます。
       

      
	
        total_txns bigint
       

       

このスロットのデコード出力プラグインに送信されたデコードされたトランザクション数です。
これはトップレベルのトランザクションのみ数えられ、サブトランザクションは数えられません。
これには、ストリーミングされたトランザクションやあふれたトランザクションが含まれることに注意してください。
       

	
        total_bytesbigint
       

       

このスロットのWALからの変更をデコードしながら、デコード出力プラグインにトランザクションを送信するためにデコードされたトランザクションデータ量です。
これには、ストリーミングされたデータやあふれたデータが含まれることに注意してください。
       

      
	
        stats_reset timestamp with time zone
       

       

統計情報がリセットされた最終時刻です。
       





pg_stat_wal_receiver





pg_stat_wal_receiverビューは、1行のみの形式で、受信サーバが接続したサーバからWALレシーバに関する統計情報を表示します。
  
表27.16 pg_stat_wal_receiverビュー
	

列 型
      

      

説明
      

	
       pid integer
      

      

WALレシーバプロセスのプロセスIDです。
      

	
       status text
      

      

WALレシーバプロセスの活動状態です。
      

	
       receive_start_lsn pg_lsn
      

      

WALレシーバが開始された時に使われる先行書き込みログ（WAL）の最初の位置です。
      

	
       receive_start_tli integer
      

      

WALレシーバが開始された時に使われる初期タイムライン番号です。
      

	
       written_lsn pg_lsn
      

      

すでに受信し、ディスクに書き出されたもののまだフラッシュされていない先行書き込みログ（WAL）の最新位置です。
これはデータの完全性の確認のためには使うべきではありません。
      

	
       flushed_lsn pg_lsn
      

      

すでに受信し、ディスクにフラッシュされた先行書き込みログ（WAL）の最新位置です。
この列の初期値は、WALレシーバが開始された時に使用される、最初のログ位置です。
      

	
       received_tli integer
      

      

受信済みでディスクにフラッシュされた先行書き込みログ（WAL）の最新位置のタイムライン番号です。
この列の初期値は、WALレシーバが開始された時に使用される、最初のログ位置のタイムライン番号です。
      

	
       last_msg_send_time timestamp with time zone
      

      

オリジンWAL送信サーバから受け取った最後のメッセージの送信時刻です。
      

	
       last_msg_receipt_time timestamp with time zone
      

      

オリジンWAL送信サーバから受け取った最後のメッセージの受信時刻です。
      

	
       latest_end_lsn pg_lsn
      

      

オリジンWAL送信サーバに最後に報告された先行書き込みログ（WAL）位置です。
      

	
       latest_end_time timestamp with time zone
      

      

オリジンWAL送信サーバへ最新の先行書き込みログ（WAL）位置が報告された時間です。
      

	
       slot_name text
      

      

WALレシーバによって使用されたレプリケーションスロット名です。
      

	
       sender_host text
      

      

WALレシーバが接続しているPostgreSQL™インスタンスのホストです。
これはホスト名、IPアドレス、あるいはUNIXソケットで接続している場合はディレクトリのパスです。
（パスは、常に/で始まる絶対パスなので、パスであることを識別できます。）
      

	
       sender_port integer
      

      

WALレシーバが接続しているPostgreSQL™インスタンスのポート番号です。
      

	
       conninfo text
      

      

セキュリティに重要な値が難読化された文字列を含む、WALレシーバによって使用された接続文字列です。
      





pg_stat_recovery_prefetch





pg_stat_recovery_prefetchビューは1行のみの形式です。
wal_distance、block_distance、io_depthの列は現在の値を示し、他の列はpg_stat_reset_shared関数でリセット可能な累積カウンタを示します。
  
表27.17 pg_stat_recovery_prefetchビュー
	

列 型
      

      

説明
      

	
       
        stats_reset timestamp with time zone
       

       

統計情報がリセットされた最終時刻です。
       

      
	
       
        prefetch bigint
       

       

バッファプールになかったためにプリフェッチされたブロックの数です。
       

      
	
       
        hit bigint
       

       

すでにバッファプールにあったためプリフェッチされなかったブロックの数です。
       

      
	
       
        skip_init bigint
       

       

ゼロで初期化されるためプリフェッチされなかったブロックの数です。
       

      
	
       
        skip_new bigint
       

       

まだ存在しなかったためにプリフェッチされなかったブロックの数です。
       

      
	
       
        skip_fpw bigint
       

       

フルページイメージがWALに含まれていたためにプリフェッチされなかったブロックの数です。
       

      
	
       
        skip_rep bigint
       

       

すでに最近プリフェッチされていたためにプリフェッチされなかったブロックの数です。
       

      
	
       
        wal_distance int
       

       

プリフェッチャーが参照しているバイト数です。
       

      
	
       
        block_distance int
       

       

プリフェッチャーが参照している前方のブロック数です。
       

      
	
       
        io_depth int
       

       

開始されたがまだ完了していないプリフェッチの数です。
       

      




pg_stat_subscription



表27.18 pg_stat_subscriptionビュー
	

列 型
      

      

説明
      

	
       subid oid
      

      

サブスクリプションのOIDです。
      

	
       subname name
      

      

サブスクリプションの名前です。
      

	
       worker_type text
      

      

サブスクリプションワーカープロセスのタイプです。
可能なタイプはapply、parallel apply、table synchronizationです。
      

	
       pid integer
      

      

サブスクリプションのワーカープロセスのプロセスIDです。
      

	
       leader_pid integer
      

      

このプロセスがパラレル適用ワーカーの場合は、リーダー適用ワーカーのプロセスIDです。
このプロセスがリーダー適用ワーカーまたはテーブル同期ワーカーの場合はNULLです。
      

	
       relid oid
      

      

ワーカーが同期しているリレーションのOIDです。リーダー適用ワーカーとパラレル適用ワーカーの場合はNULLです。
      

	
       received_lsn pg_lsn
      

      

最後に受け取った先行書き込みログ（WAL）位置です。このフィールドの初期値は0です。
パラレル適用ワーカーではNULLです。
      

	
       last_msg_send_time timestamp with time zone
      

      

オリジンWAL送信サーバから受け取った最後のメッセージの送信時刻です。パラレル適用ワーカーの場合はNULLです。
      

	
       last_msg_receipt_time timestamp with time zone
      

      

オリジンWAL送信サーバから受け取った最後のメッセージの受信時刻です。パラレル適用ワーカーの場合はNULLです。
      

	
       latest_end_lsn pg_lsn
      

      

オリジンWAL送信サーバに最後に報告された先行書き込みログ（WAL）位置です。パラレル適用ワーカーの場合はNULLです。
      

	
       latest_end_time timestamp with time zone
      

      

オリジンWAL送信サーバに最後に報告された先行書き込みログ（WAL）位置です。パラレル適用ワーカーの場合はNULLです。
      





pg_stat_subscription_stats





pg_stat_subscription_statsビューにはサブスクリプションごとに1行が含まれます。
  
表27.19 pg_stat_subscription_statsビュー
	

列 型
      

      

説明
      

	
       subid oid
      

      

サブスクリプションのOIDです。
      

	
       subname name
      

      

サブスクリプションの名前です。
      

	
       apply_error_count bigint
      

      

変更の適用中にエラーが発生した回数です。
適用エラーとなるコンフリクトは、apply_error_countと対応するコンフリクト数（たとえばconfl_*）の両方でカウントされることに注意してください。
      

	
       sync_error_count bigint
      

      

初期テーブル同期中にエラーが発生した回数です。
      

	
       confl_insert_exists bigint
      

      

変更の適用中に、行の挿入がNOT DEFERRABLEな一意性制約に違反した回数です。
このコンフリクトの詳細はinsert_existsを参照してください。
      

	
       confl_update_origin_differs bigint
      

      

変更の適用中に、別のソースにより以前変更された行に更新が適用された回数です。
このコンフリクトの詳細はupdate_origin_differsを参照してください。
      

	
       confl_update_exists bigint
      

      

変更の適用中に、更新された行の値がNOT DEFERRABLEな一意性制約に違反した回数です。
このコンフリクトの詳細はupdate_existsを参照してください。
      

	
       confl_update_missing bigint
      

      

変更の適用中に、更新対象のタプルが見つからなかった回数です。
このコンフリクトの詳細はupdate_missingを参照してください。
      

	
       confl_delete_origin_differs bigint
      

      

変更の適用中に、別のソースにより以前変更された行に削除操作が適用された回数です。
このコンフリクトの詳細はdelete_origin_differsを参照してください。
      

	
       confl_delete_missing bigint
      

      

変更の適用中に、削除対象のタプルが見つからなかった回数です。
このコンフリクトの詳細はdelete_missingを参照してください。
      

	
       confl_multiple_unique_conflicts bigint
      

      

変更の適用中に、挿入または更新された行の値が複数のNOT DEFERRABLEな一意性制約に違反した回数です。
このコンフリクトの詳細はmultiple_unique_conflictsを参照してください。
      

	
       stats_reset timestamp with time zone
      

      

統計情報がリセットされた最終時刻です。
      





pg_stat_ssl





pg_stat_sslビューは、バックエンドプロセスおよびWAL送信プロセスごとに1行を保持し、接続上でのSSLの使用に関する統計情報を示します。
pg_stat_activityまたはpg_stat_replicationとpid列で結合することで、接続に関するより詳細な情報を取得できます。
  
表27.20 pg_stat_sslビュー
	

列 型
      

      

説明
      

	
       pid integer
      

      

バックエンドプロセスまたはWAL送信プロセスのプロセスIDです。
      

	
       ssl boolean
      

      

この接続でSSLが使用されていれば真になります。
      

	
       version text
      

      

使用されているSSLのバージョンです。この接続でSSLが使用されていなければNULLになります。
      

	
       cipher text
      

      

使用されているSSL暗号の名前です。この接続でSSLが使用されていなければNULLになります。
      

	
       bits integer
      

      

使用されている暗号アルゴリズムのビット数です。この接続でSSLが使用されていなければNULLになります。
      

	
       client_dn text
      

      

使用されているクライアント証明書の識別名(DN)フィールドです。クライアント証明書が提供されなかった場合、およびこの接続でSSLが使用されていない場合はNULLになります。
このフィールドは、DNフィールドがNAMEDATALEN（標準ビルドでは64文字）より長いと切り詰められます。
      

	
       client_serial numeric
      

      

クライアント証明書のシリアル番号です。この接続でクライアント証明書が提供されていないかSSLが使われていない場合にNULLになります。
証明書のシリアル番号と証明書発行者の組み合わせは（発行者が誤ってシリアル番号を再使用しない限り）証明書を一意に識別します。
      

	
       issuer_dn text
      

      

クライアント証明書の発行者のDNです。この接続でクライアント証明書が提供されていないかSSLが使われていない場合にNULLになります。
このフィールドはclient_dnと同様に切り詰められます。
      





pg_stat_gssapi





pg_stat_gssapiビューはバックエンド毎に1行で構成され、接続でのGSSAPI使用に関する情報を表示します。
接続に関する更なる詳細を得るため、これをpg_stat_activityやpg_stat_replicationとpid列で結合できます。
  
表27.21 pg_stat_gssapiビュー
	

列 型
      

      

説明
      

	
       pid integer
      

      

バックエンドのプロセスIDです。
      

	
       gss_authenticated boolean
      

      

この接続にGSSAPI認証が使われていたなら真です。
      

	
       principal text
      

      

この接続の認証に使われているプリンシパルです。接続の認証にGSSAPIが使われていない場合にはNULLです。
このフィールドはプリンシパルがNAMEDATALEN（標準ビルドでは64文字）よりも長い場合には切り詰められます。
      

	
       encrypted boolean
      

      

この接続でGSSAPI暗号化が使われているなら真です。
      

	
       credentials_delegated boolean
      

      

この接続でGSSAPI認証情報が委任されていた場合は真です。
      





pg_stat_archiver





pg_stat_archiverビューは常に、クラスタのアーカイバプロセスに関するデータを含む１つの行を持ちます。
  
表27.22 pg_stat_archiverビュー
	

列 型
      

      

説明
      

	
       archived_count bigint
      

      

アーカイブに成功したWALファイルの数です。
      

	
       last_archived_wal text
      

      

最後にアーカイブに成功したWALファイルの名前です。
      

	
       last_archived_time timestamp with time zone
      

      

最後にアーカイブに成功した操作の時刻です。
      

	
       failed_count bigint
      

      

WALファイルのアーカイブに失敗した回数です。
      

	
       last_failed_wal text
      

      

最後にアーカイブ操作に失敗したWALファイルの名前です。
      

	
       last_failed_time timestamp with time zone
      

      

最後にアーカイブ操作に失敗した時刻です。
      

	
       stats_reset timestamp with time zone
      

      

統計情報がリセットされた最終時刻です。
      






通常、WALファイルは古いものから新しいものの順にアーカイブされますが、これは保証されておらず、スタンバイをプロモートしたときやクラッシュリカバリ後のような特別な状況では保持されません。
したがって、last_archived_walより古いすべてのファイルも正常にアーカイブされたと考えるのは安全ではありません。
  

pg_stat_io





pg_stat_ioビューには、バックエンドのタイプ、ターゲットI/Oオブジェクト、およびI/Oコンテキストの各組み合わせに対する1行が含まれ、クラスタ全体のI/O統計が示されます。
意味のない組み合わせは省略されます。
  


今の所、リレーション（テーブル、インデックス）上のI/OとWALの活動に関するI/Oが追跡されます。
ただし、共有バッファをバイパスするリレーションI/O（たとえば、あるテーブル空間から別のテーブル空間にテーブルを移動するとき）は現在は追跡されません。
  
表27.23 pg_stat_io View
	
       

列 型
       

       

説明
       

      
	
       
        backend_type text
       

       

バックエンドのタイプです（たとえばバックグラウンドワーカー、自動バキュームワーカーなど）。
 backend_typeの詳細についてはpg_stat_activityを参照してください。
一部のbackend_typeはI/O操作統計を累積しないため、このビューには含まれません。
       

      
	
       
        object text
       

       

I/O操作のターゲットオブジェクトです。
可能な値は次のとおりです。
       
	

          relation: 永続的リレーションです。
         

	

temp relation: 一時リレーションです。
         

	

wal: 先行書き込みログ（WAL）です。
         




       

      
	
       
        context text
       

       

I/O操作のコンテキストです。
可能な値は次のとおりです。
       

       	

normal: I/O操作のタイプに対するデフォルトまたは標準のcontextです。
例えば、リレーションデータの読み込みと書き込みは、デフォルトで共有バッファに書き込まれます。
したがって、共有バッファからのリレーションデータの読み込みと書き込みは、context normalで追跡されます。
         

	

init: WALセグメント作成中に行われるI/O操作は、context initで追跡されます。
         

	

vacuum: 永続的なリレーションのバキューム中および解析中に共有バッファ外で実行されたI/O操作です。
一時テーブルのバキュームは、他の一時テーブルI/O操作と同じローカルバッファプールを使用し、context normalで追跡されます。
         

	

bulkread: 大きな読み取りI/O操作（大きなテーブルのシーケンシャルスキャンなど）で、共有バッファの外部で行われるものです。
         

	

bulkwrite: COPYなどの共有バッファ外で行われる、大きな書き込みI/O操作です。
         




      
	
       
        reads bigint
       

       

読み取り操作の数です。
       

      
	
       
        read_bytes numeric
       

       

読み取り操作の合計サイズです（バイト単位）。
       

      
	
       
        read_time double precision
       

       

読み取り操作の待ち時間です（ミリ秒単位）。
（track_io_timingが有効でobjectがwalでない場合、またはtrack_wal_io_timingが有効でobjectがwalの場合。そうでない場合はゼロです）
       

      
	
       
        writes bigint
       

       

書き込み操作の数です。
       

      
	
       
        write_bytes numeric
       

       

書き込み操作の合計サイズです（バイト単位）。
       

      
	
       
        write_time double precision
       

       

書き込み操作の待ち時間です（ミリ秒単位）。
（track_io_timingが有効でobjectがwalでない場合、またはtrack_wal_io_timingが有効でobjectがwalの場合。そうでない場合はゼロです）
       

      
	
       
        writebacks bigint
       

       

プロセスがカーネルに永続的な記憶域への書き出しを要求したBLCKSZ（一般的には8kB）のサイズの数です。
       

      
	
       
        writeback_time double precision
       

       

ライトバック操作の待ち時間です（ミリ秒単位）。（track_io_timingが有効な場合。そうでない場合はゼロです）。
これには、書き出し要求の待ち時間と、ダーティデータの書き出しに費やした時間が含まれます。
       

      
	
       
        extends bigint
       

       

リレーション拡張操作の数です。
       

      
	
       
        extend_bytes numeric
       

       

リレーション拡張操作の合計サイズです（バイト単位）。
       

      
	
       
        extend_time double precision
       

       

拡張操作の待ち時間です（ミリ秒単位）。
（track_io_timingが有効でobjectがwalでない場合、またはtrack_wal_io_timingが有効でobjectがwalの場合。そうでない場合はゼロです）
       

      
	
       
        hits bigint
       

       

共有バッファ内で所望のブロックが見つかった回数です。
       

      
	
       
        evictions bigint
       

       

ブロックが別の使用に使用できるように、共有バッファまたはローカルバッファから書き出された回数です。
       

       

contextがnormalの場合、この値は、ブロックがバッファから削除され、別のブロックに置き換えられた回数をカウントします。
 contextがbulkwrite、bulkread、およびvacuumの場合、この値は、バルクI/O操作で使用するために、共有バッファを別のサイズ制限のあるリングバッファに追加するために、ブロックが共有バッファから追い出された回数をカウントします。
        

      
	
       
        reuses bigint
       

       

共有バッファ以外のサイズ制限付きリングバッファ内の既存のバッファが、bulkread、bulkwrite、またはvacuum context内でI/O操作の一部として再利用された回数です。
       

      
	
       
        fsyncs bigint
       

       

fsync呼び出しの数です。
これらはcontext normalでのみ追跡されます。
       

      
	
       
        fsync_time double precision
       

       

fsync操作の待ち時間です（ミリ秒単位）。
（track_io_timingが有効でobjectがwalでない場合、またはtrack_wal_io_timingが有効でobjectがwalの場合。そうでない場合はゼロです）
       

      
	
       
        stats_reset timestamp with time zone
       

       

これらの統計情報が最後にリセットされた時刻です。
       

      





一部のバックエンドタイプは、一部のI/Oオブジェクトおよび/または一部のI/OコンテキストでI/O操作を実行しません。
これらの行はビューから省略されます。
たとえば、チェックポインタは一時テーブルをチェックポイントしないため、backend_type checkpointerおよびobject temp relationの行はありません。
  


また、特定のバックエンドタイプ、特定のI/Oオブジェクト、特定のI/Oコンテキストで、一部のI/O操作が実行されない場合もあります。
これらのセルはNULLです。
たとえば、一時テーブルはfsyncされないので、fsyncsはobject temp relationに対してNULLになります。
また、バックグラウンドライタは読み取りを行わないので、backend_typeがtemp relationの行ではreadsがNULLになります。
  


object walの場合、fsyncsとfsync_timeはissue_xlog_fsyncで実行されたWALファイルのfsync処理を追跡します。
writesとwrite_timeは、XLogWriteで実行されたWALファイルの書き込み処理を追跡します。
詳細は「WALの設定」を参照してください。
  


pg_stat_ioはデータベースのチューニングに役立てることができます。
例を示します。
   
	

evictionsの数が多いということは、共有バッファを増やす必要があることを示しています。
     

	

クライアントバックエンドは、永続的なストレージにデータが保存されていることを確実するために、チェックポインタに依存しています。
client backendによる多数のfsyncは、共有バッファやチェックポインタの設定ミスを示している可能性があります。
チェックポインタの設定の詳細は「WALの設定」を参照してください。
     

	

通常、クライアントバックエンドは、チェックポインタやバックグラウンドライタのような補助プロセスが、できるだけ多くのダーティデータを書き出すことに依存できるはずです。
クライアントバックエンドによる大量の書き込みは、共有バッファやチェックポインタの設定ミスを示している可能性があります。
チェックポインタの設定についての詳細は「WALの設定」を参照してください。
     




  
注記


I/Oの待ち時間を追跡する列は、track_io_timingが有効な場合にのみゼロ以外になります。
ユーザは、対応するI/O操作を参照するときに、最後の統計リセット以降の全期間でtrack_io_timingが有効になっていなかった場合には注意が必要です。
   


pg_stat_bgwriter





pg_stat_bgwriterビューは常に、クラスタのクラスタのバックグラウンドライタに関するデータに関する１つの行を持ちます。
  
表27.24 pg_stat_bgwriterビュー
	

列 型
      

      

説明
      

	
       buffers_clean bigint
      

      

バックグラウンドライタにより書き出されたバッファ数です。
      

	
       maxwritten_clean bigint
      

      

バックグラウンドライタが書き出したバッファ数が多過ぎたために、整理用スキャンを停止した回数です。
      

	
       buffers_alloc bigint
      

      

割当られたバッファ数です。
      

	
       stats_reset timestamp with time zone
      

      

統計情報がリセットされた最終時刻です。
      





pg_stat_checkpointer





pg_stat_checkpointerビューは常に、クラスタのチェックポインタプロセスに関するデータを含む１つの行を持ちます。
  
表27.25 pg_stat_checkpointer View
	

列 型
      

      

説明
      

	
       num_timed bigint
      

      

タイムアウトによりスケジュールされたチェックポイントの個数です。
      

	
       num_requested bigint
      

      

要求されたチェックポイントの個数です。
      

	
       num_done bigint
      

      

実行されたチェックポイントの個数です。
      

	
       restartpoints_timed bigint
      

      

タイムアウトまたは失敗した試行の後にスケジュールされたリスタートポイントの個数です。
      

	
       restartpoints_req bigint
      

      

要求されたリスタートポイントの個数です。
      

	
       restartpoints_done bigint
      

      

これまでに実行された、リスタートポイントの個数です。
      

	
       write_time double precision
      

      

ファイルがディスクに書き込まれるチェックポイントおよびリスタートポイントの処理に費やされた、ミリ秒単位の総時間です。
      

	
       sync_time double precision
      

      

ファイルがディスクに同期されるチェックポイントおよびリスタートポイントの処理に費やされた、ミリ秒単位の総時間です。
      

	
       buffers_written bigint
      

      

チェックポイント中およびリスタートポイント中に書き出された共有バッファ数です。
      

	
        slru_written bigint
      

      

チェックポイント中およびリスタートポイント中に書き出されたSLRUバッファ数です。
      

	
       stats_reset timestamp with time zone
      

      

統計情報がリセットされた最終時刻です。
      






最後のチェックポイント以降サーバがアイドル状態になっている場合、チェックポイントはスキップされるかもしれません。
num_timedとnum_requestedは完了したチェックポイントとスキップされたチェックポイントの両方をカウントしますが、num_doneは完了したチェックポイントのみを追跡します。
同様に、最後に再生されたチェックポイントレコードが最後のリスタートポイントである場合、リスタートポイントはスキップされるかもしれません。
restartpoints_timedとrestartpoints_reqは、完了したリスタートポイントとスキップされたリスタートポイントの両方をカウントしますが、restartpoints_doneは完了したリスタートポイントのみを追跡します。
  

pg_stat_wal





pg_stat_walビューは常に、クラスタのWAL活動状況のデータに関する1つの行を持ちます。
  
表27.26 pg_stat_walビュー
	

列 型
      

      

説明
      

	
       wal_records bigint
      

      

生成されたWALレコードの総数です。
      

	
       wal_fpi bigint
      

      

生成されたWALフルページイメージの総数です。
      

	
       wal_bytes numeric
      

      

生成されたWALのバイト単位の総量です。
      

	
       wal_buffers_full bigint
      

      

WALバッファが満杯になったため、WALデータがディスクに書き込まれた回数です。
      

	
       stats_reset timestamp with time zone
      

      

統計情報がリセットされた最終時刻です。
      





pg_stat_database





pg_stat_databaseビューには、クラスタ内のデータベース毎に1行と加えて共有オブジェクトのための1行が含まれ、データベース全体の統計情報を示します。
  
表27.27 pg_stat_databaseビュー
	

列 型
      

      

説明
      

	
       datid oid
      

      

データベースのOIDです。共有リレーションに属するオブジェクトについては0になります。
      

	
       datname name
      

      

データベース名です。共有オブジェクトについてはNULLになります。
      

	
       numbackends integer
      

      

現在データベースに接続しているバックエンドの個数です。共有オブジェクトについてはNULLになります。
これは、このビューの中で、現在の状態を反映した値を返す唯一の列です。
他の列はすべて、最後にリセットされてから累積された値を返します。
      

	
       xact_commit bigint
      

      

データベース内でコミットされたトランザクション数です。
      

	
       xact_rollback bigint
      

      

データベース内でロールバックされたトランザクション数です。
      

	
       blks_read bigint
      

      

データベース内で読み取られたディスクブロック数です。
      

	
       blks_hit bigint
      

      

バッファキャッシュに既にあることが分かっているためにディスクブロックの読み取りが不要だった回数です（これにはPostgreSQLのバッファキャッシュにおけるヒットのみが含まれ、オペレーティングシステムのファイルシステムキャッシュは含まれません）。
      

	
       tup_returned bigint
      

      

シーケンシャルスキャンとこのデータベース内のインデックススキャンによって返されたインデックスエントリから取り出された有効な行数です。
      

	
       tup_fetched bigint
      

      

データベース内のインデックススキャンで取り出された有効な行数です。
      

	
       tup_inserted bigint
      

      

データベース内の問い合わせで挿入された行数です。
      

	
       tup_updated bigint
      

      

データベース内の問い合わせで更新された行数です。
      

	
       tup_deleted bigint
      

      

データベース内の問い合わせで削除された行数です。
      

	
       conflicts bigint
      

      

データベース内のリカバリで競合したためキャンセルされた問い合わせ数です。
(競合はスタンバイサーバ上でのみ起こります。
詳細についてはpg_stat_database_conflictsを参照してください。)
      

	
       temp_files bigint
      

      

データベース内の問い合わせによって書き出された一時ファイルの個数です。
一時ファイルが作成された理由（ソート処理やハッシュ処理）やlog_temp_filesの設定に関わらず、すべての一時ファイルが計上されます。
      

	
       temp_bytes bigint
      

      

データベース内の問い合わせによって一時ファイルに書き出されたデータ量です。
一時ファイルが作成された理由やlog_temp_filesの設定に関わらず、すべての一時ファイルが計上されます。
      

	
       deadlocks bigint
      

      

データベース内で検知されたデッドロック数です。
      

	
       checksum_failures bigint
      

      

データベース（または共有オブジェクト）内で検出されたデータページチェックサムの検査失敗数です。データチェックサムが無効の場合にはNULLです。
      

	
       checksum_last_failure timestamp with time zone
      

      

データベース（または共有オブジェクト）内で最後にデータページチェックサムの検査失敗が検知された時刻です。データチェックサムが無効の場合にはNULLです。
      

	
       blk_read_time double precision
      

      

データベース内でバックエンドによりデータファイルブロックの読み取りに費やされた、ミリ秒単位の時間です(track_io_timingが有効な場合。そうでなければゼロです)。
      

	
       blk_write_time double precision
      

      

データベース内でバックエンドによりデータファイルブロックの書き出しに費やされた、ミリ秒単位の時間です(track_io_timingが有効な場合。そうでなければゼロです)。
      

	
       session_time double precision
      

      

このデータベースでデータベースセッションに費やされた、ミリ秒単位の時間です（統計はセッションの状態が変化したときのみ更新されるため、セッションが長い間アイドル状態の場合、このアイドル時間は含まれません）。
      

	
       active_time double precision
      

      

このデータベースでSQL文実行に費やされた、ミリ秒単位の時間です（これはpg_stat_activityのactiveとfastpath function call状態に対応します）。
      

	
       idle_in_transaction_time double precision
      

      

このデータベースでトランザクション中にアイドル状態であった、ミリ秒単位の時間です（これはpg_stat_activityのidle in transactionとidle in transaction (aborted)状態に対応します）。
      

	
       sessions bigint
      

      

このデータベースに対して確立されたセッションの総数です。
      

	
       sessions_abandoned bigint
      

      

このデータベースに対するデータベースセッションのうち、クライアントとの接続が失われたために終了したセッションの数です。
      

	
       sessions_fatal bigint
      

      

このデータベースに対するデータベースセッションのうち、致命的なエラーによって終了したセッションの数です。
      

	
       sessions_killed bigint
      

      

このデータベースに対するデータベースセッションのうち、オペレータの介入によって終了したセッションの数です。
      

	
       parallel_workers_to_launch bigint
      

      

このデータベース上のクエリにより起動が計画されたパラレルワーカーの数です。
      

	
       parallel_workers_launched bigint
      

      

このデータベース上のクエリにより起動されたパラレルワーカーの数です。
      

	
       stats_reset timestamp with time zone
      

      

統計情報がリセットされた最終時刻です。
      





pg_stat_database_conflicts





pg_stat_database_conflictsビューは、データベースごとに1行を保持し、スタンバイサーバでのリカバリと競合するためにキャンセルされた問い合わせに関するデータベース全体の統計情報を示します。
プライマリサーバでは競合は発生しませんので、スタンバイサーバ上の情報のみが保持されます。
  
表27.28 pg_stat_database_conflictsビュー
	

列 型
      

      

説明
      

	
       datid oid
      

      

データベースのOIDです。
      

	
       datname name
      

      

データベースの名前です。
      

	
       confl_tablespace bigint
      

      

データベースにおいて、削除されたテーブル空間のためにキャンセルされた問い合わせの個数です。
      

	
       confl_lock bigint
      

      

データベースにおいて、ロック時間切れのためにキャンセルされた問い合わせの個数です。
      

	
       confl_snapshot bigint
      

      

データベースにおいて、古いスナップショットのためにキャンセルされた問い合わせの個数です。
      

	
       confl_bufferpin bigint
      

      

データベースにおいて、ピンが付いたバッファのためにキャンセルされた問い合わせの個数です。
      

	
       confl_deadlock bigint
      

      

データベースにおいて、デッドロックのためにキャンセルされた問い合わせの個数です。
      

	
       confl_active_logicalslot bigint
      

      

スナップショットが古い、またはプライマリ上でwal_levelが低すぎることにより取り消されたこのデータベース内の論理スロットの使用回数です。
      





pg_stat_all_tables





pg_stat_all_tablesビューは現在のデータベース内のテーブル（TOASTテーブルを含む）ごと1行の形式で、特定のテーブルへのアクセスに関する統計情報を表示します。
pg_stat_user_tablesおよびpg_stat_sys_tablesビューにも同じ情報が含まれますが、それぞれユーザテーブルとシステムテーブルのみにフィルタされています。
  
表27.29 pg_stat_all_tablesビュー
	

列 型
      

      

説明
      

	
       relid oid
      

      

テーブルのOIDです。
      

	
       schemaname name
      

      

テーブルが存在するスキーマの名前です。
      

	
       relname name
      

      

テーブルの名前です。
      

	
       seq_scan bigint
      

      

テーブル上で初期化されたシーケンシャルスキャンの個数です。
      

	
       last_seq_scan timestamp with time zone
      

      

最新のトランザクション停止時刻に基づく、このテーブルの最後のシーケンシャルスキャンの時刻です。
      

	
       seq_tup_read bigint
      

      

シーケンシャルスキャンによって取り出された有効な行数です。
      

	
       idx_scan bigint
      

      

テーブル上で開始されたインデックススキャンの実行回数です。
      

	
       last_idx_scan timestamp with time zone
      

      

最新のトランザクション停止時刻に基づく、このテーブルに対する最新のインデックススキャンの時刻です。
      

	
       idx_tup_fetch bigint
      

      

インデックススキャンによって取り出された有効な行数です。
      

	
       n_tup_ins bigint
      

      

挿入された総行数です。
      

	
       n_tup_upd bigint
      

      

更新された総行数です。
（これには、n_tup_hot_updとn_tup_newpage_updでカウントされた行更新と、HOT以外の残りの更新が含まれます。）
      

	
       n_tup_del bigint
      

      

削除された総行数です。
      

	
       n_tup_hot_upd bigint
      

      

HOT更新された行数です。
これらは、インデックスで後続のバージョンが必要ない更新です。
      

	
       n_tup_newpage_upd bigint
      

      

後継バージョンが新しいヒープページに移動し、元のバージョンがt_ctidフィールドで別のヒープページを指すような更新が行われた行数です。
これらは常に非HOT更新です。
      

	
       n_live_tup bigint
      

      

有効な行数の推定値です。
      

	
       n_dead_tup bigint
      

      

無効な行数の推定値です。
      

	
       n_mod_since_analyze bigint
      

      

このテーブルが最後に解析されてから変更された行数の推定値です。
      

	
       n_ins_since_vacuum bigint
      

      

このテーブルが最後にバキュームされてから挿入された行数の推定値です（VACUUM FULLは含まれません）。
      

	
       last_vacuum timestamp with time zone
      

      

テーブルが手作業でバキュームされた最終時刻です（VACUUM FULLは含まれません）。
      

	
       last_autovacuum timestamp with time zone
      

      

自動バキュームデーモンによりテーブルがバキュームされた最終時刻です。
      

	
       last_analyze timestamp with time zone
      

      

テーブルが手作業で解析された最終時刻です。
      

	
       last_autoanalyze timestamp with time zone
      

      

自動バキュームデーモンによりテーブルが解析された最終時刻です。
      

	
       vacuum_count bigint
      

      

テーブルが手作業でバキュームされた回数です。（VACUUM FULLは含まれません）。
      

	
       autovacuum_count bigint
      

      

テーブルが自動バキュームデーモンによりバキュームされた回数です。
      

	
       analyze_count bigint
      

      

テーブルが手作業で解析された回数です。
      

	
       autoanalyze_count bigint
      

      

テーブルが自動バキュームデーモンによって解析された回数です。
      

	
       total_vacuum_time double precision
      

      

テーブルが手作業によるバキュームで費やされた、ミリ秒単位の総時間です（VACUUM FULLは含みません）。
（これには、コストベースの遅延によるスリープに費やされた時間も含まれます。）
      

	
       total_autovacuum_time double precision
      

      

テーブルが自動バキュームデーモンによるバキュームで費やされた、ミリ秒単位の総時間です。
（これには、コストベースの遅延によるスリープに費やされた時間も含まれます。）
      

	
       total_analyze_time double precision
      

      

テーブルが手作業による解析で費やされた、ミリ秒単位の総時間です。
（これには、コストベースの遅延によるスリープに費やされた時間も含まれます。）
      

	
       total_autoanalyze_time double precision
      

      

テーブルが自動バキュームデーモンによる解析で費やされた、ミリ秒単位の総時間です。
（これには、コストベースの遅延によるスリープに費やされた時間も含まれます。）
      





pg_stat_all_indexes





pg_stat_all_indexesビューは、現在のデータベース内のインデックスごとに1行の形式で、特定のインデックスへのアクセスに関する統計情報を表示します。
pg_stat_user_indexesとpg_stat_sys_indexesも同じ情報を保持しますが、ユーザ向けのインデックスとシステム向けのインデックスに対する行のみを保持するようにフィルタ処理されています。
  
表27.30 pg_stat_all_indexesビュー
	

列 型
      

      

説明
      

	
       relid oid
      

      

このインデックスに対応するテーブルのOIDです。
      

	
       indexrelid oid
      

      

インデックスのOIDです。
      

	
       schemaname name
      

      

インデックスが存在するスキーマの名前です。
      

	
       relname name
      

      

このインデックスに対応するテーブルの名前です。
      

	
       indexrelname name
      

      

インデックスの名前です。
      

	
       idx_scan bigint
      

      

インデックスに対して開始されたインデックススキャンの実行回数です。
      

	
       last_idx_scan timestamp with time zone
      

      

最新のトランザクション停止時刻に基づく、このインデックスの最後のスキャン時刻です。
      

	
       idx_tup_read bigint
      

      

インデックスに対するスキャンにより返されたインデックス項目の個数です。
      

	
       idx_tup_fetch bigint
      

      

インデックスを使用する単純なインデックススキャンによって取り出された有効テーブル行数です。
      






単純なインデックススキャン、「ビットマップ」インデックススキャン、あるいはオプティマイザによりインデックスが使用されることがあります。
ビットマップスキャンでは、複数のインデックスの出力をANDやOR規則で組み合わせることができます。
このため、ビットマップスキャンが使用される場合、特定インデックスと個々のヒープ行の取り出しとを関連づけることが困難です。
したがってビットマップスキャンでは、使用したインデックスのpg_stat_all_indexes.idx_tup_read個数を増やし、そのテーブルのpg_stat_all_tables.idx_tup_fetch個数を増やしますが、pg_stat_all_indexes.idx_tup_fetchを変更しません。
オプティマイザもインデックスにアクセスし、提供された定数値がオプティマイザの統計情報に記録された範囲の外側にあるときに、それを検査します。
これはオプティマイザの統計情報が古いかもしれないからです。
  
注記


idx_tup_readとidx_tup_fetch個数は、ビットマップスキャンがまったく使用されていない場合でも異なります。
idx_tup_readはインデックスから取り出したインデックス項目を計上し、idx_tup_fetchはテーブルから取り出した有効行を計上するからです。
インデックスを用いて無効行やまだコミットされていない行が取り出された場合やインデックスオンリースキャン法によりヒープの取り出しが回避された場合に、後者は減少します。
   

注記


インデックススキャンでは、1回の実行で複数のインデックス検索が実行されることがあります。
インデックス検索のたびにpg_stat_all_indexes.idx_scanが増加するため、インデックススキャンの回数がインデックススキャンにおけるエグゼキュータノードの合計実行回数を大幅に上回ることがあります。
   


これは、複数のスカラ値のリストや配列に一致する行を検索する特定のSQL構文を使用する問い合わせ（「行と配列の比較」を参照）で起こり得ます。
また、column_name = value1 OR column_name = value2 ...構文のクエリでも発生する可能性はありますが、オプティマイザがこの構文を同等の複数値配列表現に変換した場合に限られます。
同様に、B-treeインデックススキャンでスキップスキャンの最適化を使用する場合、タプルと一致する可能性のある次のインデックスリーフページをスキャンするたびに、インデックス検索が実行されます（「複数列インデックス」を参照）。
   

ヒント


EXPLAIN ANALYZEは各インデックススキャンノードによって行われるインデックス検索の総数を出力します。
この仕組みを説明する例については「EXPLAIN ANALYZE」を参照してください。
   


pg_statio_all_tables





pg_statio_all_tablesビューは現在のデータベース内のテーブル（TOASTテーブルを含む）ごとに1行の形式で、特定のテーブルのI/Oに関する統計情報を表示します。
pg_statio_user_tablesとpg_statio_sys_tablesには同じ情報が保持されますが、ユーザテーブルとシステムテーブルに関する行のみを持つようにフィルタ処理がなされています。
  
表27.31 pg_statio_all_tablesビュー
	

列 型
      

      

説明
      

	
       relid oid
      

      

テーブルのOIDです。
      

	
       schemaname name
      

      

テーブルが存在するスキーマの名前です。
      

	
       relname name
      

      

テーブルの名前です。
      

	
       heap_blks_read bigint
      

      

テーブルから読み取られたディスクブロック数です。
      

	
       heap_blks_hit bigint
      

      

テーブル内のバッファヒット数です。
      

	
       idx_blks_read bigint
      

      

テーブル上のすべてのインデックスから読み取られたディスクブロック数です。
      

	
       idx_blks_hit bigint
      

      

テーブル上のすべてのインデックス内のバッファヒット数です。
      

	
       toast_blks_read bigint
      

      

テーブルのTOASTテーブル（もしあれば）から読み取られたディスクブロック数です。
      

	
       toast_blks_hit bigint
      

      

テーブルのTOASTテーブル（もしあれば）におけるバッファヒット数です。
      

	
       tidx_blks_read bigint
      

      

テーブルのTOASTテーブルのインデックス（もしあれば）から読み取られたディスクブロック数です。
      

	
       tidx_blks_hit bigint
      

      

テーブルのTOASTテーブルのインデックス（もしあれば）におけるバッファヒット数です。
      





pg_statio_all_indexes





pg_statio_all_indexesビューは、現在のデータベース内のインデックスごとに1行の形式で、特定のインデックスへのI/Oに関する統計情報を表示します。
pg_statio_user_indexesとpg_statio_sys_indexesも同じ情報を保持しますが、それぞれユーザ向けのインデックスとシステム向けのインデックスに対する行のみを保持するようにフィルタ処理されています。
  
表27.32 pg_statio_all_indexesビュー
	

列 型
      

      

説明
      

	
       relid oid
      

      

このインデックスに対応するテーブルのOIDです。
      

	
       indexrelid oid
      

      

インデックスのOIDです。
      

	
       schemaname name
      

      

インデックスが存在するスキーマの名前です。
      

	
       relname name
      

      

このインデックスに対応するテーブルの名前です。
      

	
       indexrelname name
      

      

インデックスの名前です。
      

	
       idx_blks_read bigint
      

      

インデックスから読み取られたディスクブロック数です。
      

	
       idx_blks_hit bigint
      

      

インデックスにおけるバッファヒット数です。
      





pg_statio_all_sequences





pg_statio_all_sequencesビューは現在のデータベース内のシーケンスごとに1行の形式で、特定シーケンスにおけるI/Oに関する統計情報を表示します。
  
表27.33 pg_statio_all_sequencesビュー
	

列 型
      

      

説明
      

	
       relid oid
      

      

シーケンスのOIDです。
      

	
       schemaname name
      

      

シーケンスが存在するスキーマの名前です。
      

	
       relname name
      

      

シーケンスの名前です。
      

	
       blks_read bigint
      

      

シーケンスから読み取られたディスクブロック数です。
      

	
       blks_hit bigint
      

      

シーケンスにおけるバッファヒット数です。
      





pg_stat_user_functions





pg_stat_user_functionsビューは追跡された関数ごとに1行の形式で、その関数の実行に関する統計情報を表示します。
track_functionsパラメータは関数が追跡されるかどうかを正確に制御します。
  
表27.34 pg_stat_user_functionsビュー
	

列 型
      

      

説明
      

	
       funcid oid
      

      

関数のOIDです。
      

	
       schemaname name
      

      

関数が存在するスキーマの名前です。
      

	
       funcname name
      

      

関数の名前です。
      

	
       calls bigint
      

      

関数が呼び出された回数です。
      

	
       total_time double precision
      

      

関数とその関数から呼び出されるその他の関数で費やされた、ミリ秒単位の総時間です。
      

	
       self_time double precision
      

      

その関数から呼び出されるその他の関数で費やされた時間を含まない、関数自身で費やされた、ミリ秒単位の総時間です。
      





pg_stat_slru





PostgreSQL™はSLRU (simple least-recently-used)キャッシュ経由で特定のディスク上の情報にアクセスします。
pg_stat_slruビューは、追跡されたSLRUキャッシュごとに1行の形式で、キャッシュされたページへのアクセスに関する統計情報を表示します。
  


コアサーバの一部である各SLRUキャッシュに対して、そのサイズを制御する構成パラメータがあり、接尾辞_buffersが付加されます。
  
表27.35 pg_stat_slruビュー
	

列 型
      

      

説明
      

	
       name text
      

      

SLRUの名前です。
      

	
       blks_zeroed bigint
      

      

初期化中にゼロにされたブロックの数です。
      

	
       blks_hit bigint
      

      

SLRUに既にあることが分かっているためにディスクブロックの読み取りが不要だった回数です（これにはSLRUにおけるヒットのみが含まれ、オペレーティングシステムのファイルシステムキャッシュは含まれません）。
      

	
       blks_read bigint
      

      

SLRUから読み取られたディスクブロック数です。
      

	
       blks_written bigint
      

      

SLRUに書き込まれたディスクブロック数です。
      

	
       blks_exists bigint
      

      

SLRUで存在を検査されたブロック数です。
      

	
       flushes bigint
      

      

SLRUでのダーティデータのフラッシュ数です。
      

	
       truncates bigint
      

      

SLRUでの切り詰めの数です。
      

	
       stats_reset timestamp with time zone
      

      

統計情報がリセットされた最終時刻です。
      





統計情報関数





統計情報を参照する他の方法は、上述の標準ビューによって使用される基礎的な統計情報アクセス関数と同じ関数を使用した問い合わせを作成することで設定することができます。
こうした関数の名前などに関する詳細については、標準ビューの定義を参照してください。
（例えばpsqlでは\d+ pg_stat_activityを発行してください。）
データベースごとの統計情報についてのアクセス関数は、どのデータベースに対して報告するのかを識別するためにデータベースのOIDを取ります。
テーブルごと、インデックスごとの関数はテーブルの、もしくはインデックスのOIDを取ります。
関数ごとの統計情報の関数は、関数のOIDを取ります。
これらの関数を使用して参照できるテーブルとインデックス、および関数は現在のデータベース内のものだけであることに注意してください。
  


その他の累積統計システムに関連した関数を表27.36「その他の統計情報関数」に示します。
  
表27.36 その他の統計情報関数
	

関数
       

       

説明
       

	
        pg_backend_pid ()
        integer
       

       

現在のセッションにアタッチされたサーバプロセスのプロセスIDを返します。
       

	
        
        pg_stat_get_backend_io ( integer )
        setof record
       

       

指定されたプロセスIDに該当するバックエンドのI/O統計を返します。
出力フィールドはpg_stat_ioビューとまったく同じです。
       

       

この関数は、チェックポインタ、バックグラウンドライタ、スタートアッププロセス、および自動バキュームランチャのI/O統計を返しません。
これらはpg_stat_ioビューですでに表示されており、それぞれ1つしかないためです。
       

	
        
        pg_stat_get_activity ( integer )
        setof record
       

       

指定されたプロセスIDに該当するバックエンドの情報のレコードを、NULLが指定された場合はシステム上のアクティブな各バックエンドに関するレコードを返します。
返される情報内容はpg_stat_activityの一部と同じです。
       

	
        
        pg_stat_get_backend_wal ( integer )
        record
       

       

指定されたプロセスIDに該当するバックエンドのWAL統計を返します。
出力フィールドはpg_stat_walビューとまったく同じです。
       

       

この関数は、チェックポインタ、バックグラウンドライタ、スタートアッププロセス、および自動バキュームランチャのWAL統計を返しません。
       

	
        
        pg_stat_get_snapshot_timestamp ()
        timestamp with time zone
       

       

現在の統計スナップショットのタイムスタンプを返します。
統計スナップショットが取得されていない場合はNULLを返します。
stats_fetch_consistencyがsnapshotに設定されている場合は、トランザクションで累積統計に初めてアクセスしたときにスナップショットが取得されます。
       

	
        
        pg_stat_get_xact_blocks_fetched ( oid )
        bigint
       

       

現在のトランザクションにおけるテーブルまたはインデックスについてのブロック読み取り要求の数を返します。
この数からpg_stat_get_xact_blocks_hitを引いた数がカーネルread()呼び出しの数になります。
実際の物理的な読み取り数は通常、カーネルレベルのバッファリングにより低くなります。
       

	
        
        pg_stat_get_xact_blocks_hit ( oid )
        bigint
       

       

現在トランザクションのテーブルまたはインデックスについて、キャッシュで検出されたブロック読み取り要求の数を返します（カーネルread()呼び出しを引き起こしません）。
       

	
        
        pg_stat_clear_snapshot ()
        void
       

       

現在の統計スナップショットまたはキャッシュされた情報を破棄します。
       

	
        
        pg_stat_reset ()
        void
       

       

現在のデータベースに関する統計情報カウンタすべてをゼロにリセットします。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_stat_reset_shared ( [ target text DEFAULT NULL ] )
        void
       

       

引数に応じて、クラスタ全体の統計情報カウンタの一部をゼロにリセットします。
targetは以下のいずれかです。
       
	

archiver: pg_stat_archiverビューで示されるカウンタがすべてリセットされます。
         

	

bgwriter: pg_stat_bgwriterビューで示されるカウンタがすべてリセットされます。
         

	

checkpointer: pg_stat_checkpointerビューで示されるカウンタがすべてリセットされます。
         

	

io: pg_stat_ioビューで示されるカウンタがすべてリセットされます。
         

	

recovery_prefetch: pg_stat_recovery_prefetchビューで示されるカウンタがすべてリセットされます。
         

	

slru: pg_stat_slruビューで示されるカウンタがすべてリセットされます。
         

	

wal: pg_stat_walビューで示されるカウンタがすべてリセットされます。
         

	

NULLか、指定しない場合: 上記のビューのカウンタはすべてリセットされます。
         




       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_stat_reset_single_table_counters ( oid )
        void
       

       

現在のデータベース内にある、ひとつのテーブルまたはインデックス、あるいはクラスタ内のすべてのデータベースで共有されている統計情報をゼロにリセットします。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_stat_reset_backend_stats ( integer )
        void
       

       

指定されたプロセスIDに該当するひとつのバックエンドの統計情報をゼロにリセットします。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_stat_reset_single_function_counters ( oid )
        void
       

       

現在のデータベース内にある、ひとつの関数の統計情報をゼロにリセットします。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_stat_reset_slru ( [ target text DEFAULT NULL ] )
        void
       

       

単一のSLRUキャッシュ、またはクラスタ内のすべてのSLRUの統計情報をゼロにリセットします。
targetがNULLであるか、指定されていない場合は、すべてのSLRUキャッシュに関するpg_stat_slruビューで示されるすべてのカウンタがリセットされます。
引数は、そのエントリのみに対応するカウンタをリセットするよう commit_timestamp、multixact_member、multixact_offset、notify、serializable、subtransaction、transactionの1つを指定できます。
引数がother（実際のところは、認識されない名前であれば何でも）であれば、拡張が定義したキャッシュのような、それ以外のSLRUキャッシュに対するカウンタがリセットされます。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_stat_reset_replication_slot ( text )
        void
       

       

引数で定義されたレプリケーションスロットの統計情報をリセットします。
引数がNULLの場合、すべてのレプリケーションスロットの統計情報をリセットします。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       

	
        
        pg_stat_reset_subscription_stats ( oid )
        void
       

       

pg_stat_subscription_statsビューに表示されている単一サブスクリプションの統計をゼロにリセットします。
引数がNULLの場合は、すべてのサブスクリプションの統計をリセットします。
       

       

デフォルトではこの関数の実行はスーパーユーザに限定されますが、他のユーザにも関数を実行するEXECUTE権限を与えることができます。
       




警告


pg_stat_reset()を使用すると、自動バキュームがバキュームまたはANALYZEを実行するタイミングを決定するために使用するカウンタもリセットされます。
これらのカウンタをリセットすると、自動バキュームが必要な作業を実行できなくなり、テーブルの膨張や期限切れのテーブル統計情報などの問題が発生する可能性があります。
統計情報がリセットになった後にデータベース全体でANALYZEを実行することをお勧めします。
   



pg_stat_activityビューの基礎となるpg_stat_get_activity関数は、各バックエンドプロセスに関して利用可能な情報をすべて含むレコード集合を返します。
この情報の一部のみを入手することがより簡便である場合があるかもしれません。
このような場合、表27.37「バックエンド単位の統計情報関数」に示す、別のバックエンド単位の統計情報アクセス関数を使用できます。
これらのアクセス関数は、セッションのバックエンドID番号を使用します。 これは、バックエンドIDが同時に実行されているセッションのIDとは異なる小さな整数(>= 0)です。
ただし、セッションのIDは、セッションが終了すると再利用できます。
とりわけバックエンドIDは、セッションが一時スキーマを持つ場合に、それを識別するために使用されます。
pg_stat_get_backend_idset関数は、これらの関数を呼び出すために、活動中のバックエンド毎に1行を生成する簡便な方法を提供します。
例えば以下はすべてのバックエンドについてPIDと現在の問い合わせを示します。



SELECT pg_stat_get_backend_pid(backendid) AS pid,
       pg_stat_get_backend_activity(backendid) AS query
FROM pg_stat_get_backend_idset() AS backendid;


  
表27.37 バックエンド単位の統計情報関数
	

関数
       

       

説明
       

	
        
        pg_stat_get_backend_activity ( integer )
        text
       

       

バックエンドが最後に行った問い合わせテキストを返します。
       

	
        
        pg_stat_get_backend_activity_start ( integer )
        timestamp with time zone
       

       

バックエンドの最後の問い合わせが開始された時刻を返します。
       

	
        
        pg_stat_get_backend_client_addr ( integer )
        inet
       

       

バックエンドに接続したクライアントのIPアドレスを返します。
       

	
        
        pg_stat_get_backend_client_port ( integer )
        integer
       

       

クライアントが通信に使用しているTCPポート番号を返します。
       

	
        
        pg_stat_get_backend_dbid ( integer )
        oid
       

       

バックエンドが接続するデータベースのOIDを返します。
       

	
        
        pg_stat_get_backend_idset ()
        setof integer
       

       

現在アクティブなバックエンドID番号の集合を返します。
       

	
        
        pg_stat_get_backend_pid ( integer )
        integer
       

       

バックエンドのプロセスIDを返します。
       

	
        
        pg_stat_get_backend_start ( integer )
        timestamp with time zone
       

       

プロセスが開始された時刻を返します。
       

	
        
        pg_stat_get_backend_subxact ( integer )
        record
       

       

指定されたIDを持つバックエンドのサブトランザクションの情報を含むレコードを返します。
返却されるフィールドは、バックエンドのサブトランザクションキャッシュ内のサブトランザクション数を示すsubxact_countと、バックエンドのサブトランザクションキャッシュがオーバーフローしているかどうかを示すsubxact_overflowです。
       

	
        
        pg_stat_get_backend_userid ( integer )
        oid
       

       

バックエンドにログインしたユーザのOIDを返します。
       

	
        
        pg_stat_get_backend_wait_event ( integer )
        text
       

       

バックエンドが現在待機中であれば、待機イベント名を、さもなくばNULLを返します。
詳細は表27.5「Activity型の待機イベント」から表27.13「Timeout型の待機イベント」までを参照してください。
       

	
        
        pg_stat_get_backend_wait_event_type ( integer )
        text
       

       

バックエンドが現在待機中であれば、待機イベント型名を、さもなくばNULLを返します。
詳細については表27.4「待機イベント型」を参照してください。
       

	
        
        pg_stat_get_backend_xact_start ( integer )
        timestamp with time zone
       

       

バックエンドの現在のトランザクションが開始された時刻を返します。
       






ロックの表示





この他に、データベース活動状況の監視に役立つツールとしてpg_locksシステムテーブルがあります。
これにより、データベース管理者はロックマネージャ内の未解決のロックに関する情報を参照することができます。
例えば、この機能を使用すると以下のことができます。

   
	

現在未解決のロック、特定データベース内のリレーション上のロック、特定のリレーションのロック、または特定のPostgreSQL™セッションが保持するロックを全て表示する。
     

	

最も許可されにくいロック（データベースクライアント間で競合の原因になる可能性がある）を持つ、現在のデータベースにおけるリレーションを表示する。
     

	

競合によって変動するデータベースの全トラフィックの範囲に加えて、全体的なデータベースの性能に対するロック競合の影響を判断する。
     






pg_locksビューの詳細は、「pg_locks」にあります。
PostgreSQL™のロックと同時実行性についての詳細は、13章同時実行制御を参照してください。
  

進捗状況のレポート





PostgreSQL™は、何らかのコマンドの実行中に進捗状況をレポートする能力があります。
現在、進捗状況のレポートをサポートしているのは、ANALYZE、CLUSTER、CREATE INDEX、VACUUM、COPY、および、BASE_BACKUP(すなわち、pg_basebackup(1)がベースバックアップのために発行するレプリケーションコマンド)のみです。
将来的にサポートされるコマンドが拡大される可能性があります。
  
ANALYZEの進捗状況のレポート





ANALYZEが実行されているときにはいつでも、pg_stat_progress_analyzeビューには現在コマンドを実行している各バックエンドごとの行が含まれます。
以下の表は、報告される情報を説明し、どのように解釈するかの情報を提供します。
  
表27.38 pg_stat_progress_analyzeビュー
	

列 型
      

      

説明
      

	
       pid integer
      

      

バックエンドのプロセスIDです。
      

	
       datid oid
      

      

バックエンドが接続されているデータベースのOIDです。
      

	
       datname name
      

      

バックエンドが接続されているデータベース名です。
      

	
       relid oid
      

      

解析されているテーブルのOIDです。
      

	
       phase text
      

      

現在処理中のフェーズです。
表27.39「ANALYZEのフェーズ」を参照してください。
      

	
       sample_blks_total bigint
      

      

サンプルされるヒープブロックの総数です。
      

	
       sample_blks_scanned bigint
      

      

スキャンされたヒープブロックの数です。
      

	
       ext_stats_total bigint
      

      

拡張統計情報の個数です。
      

	
       ext_stats_computed bigint
      

      

計算された拡張統計情報の個数です。
このカウンタはフェーズがcomputing extended statisticsの時にのみ増加します。
      

	
       child_tables_total bigint
      

      

子テーブルの数です。
      

	
       child_tables_done bigint
      

      

スキャンされた子テーブルの数です。
このカウンタはフェーズがacquiring inherited sample rowsの時にのみ増加します。
      

	
       current_child_table_relid oid
      

      

現在スキャンされている子テーブルのOIDです。
このフィールドはフェーズがacquiring inherited sample rowsの時のみ有効です。
      

	
       delay_time double precision
      

      

コストベースの遅延（「コストに基づくVacuum遅延」を参照）によるスリープに費やされた、ミリ秒単位の総時間です（track_cost_delay_timingが有効な場合。無効であればゼロです）。
      




表27.39 ANALYZEのフェーズ
	フェーズ	説明
	initializing	

コマンドはヒープをスキャンし始める準備をしています。
このフェーズは非常に短時間であると予想されます。
      
	acquiring sample rows	

コマンドはサンプル行を得るため、relidで指定されたテーブルを現在スキャンしています。
      
	acquiring inherited sample rows	

コマンドはサンプル行を得るため、子テーブルを現在スキャンしています。
列child_tables_total、child_tables_done、current_child_table_relidはこのフェーズの進捗情報を含みます。
      
	computing statistics	

コマンドはテーブルスキャンの間に得られたサンプルから統計情報を計算しています。
      
	computing extended statistics	

コマンドはテーブルスキャンの間に得られたサンプルから拡張統計情報を計算しています。
      
	finalizing analyze	

コマンドはpg_classを更新しています。
このフェーズが完了すれば、ANALYZEは終わります。
      



注記


ONLYキーワード指定のないANALYZEがパーティションテーブルに実行される場合、そのすべてのパーティションも再帰的に解析されることに注意してください。
その場合、ANALYZEの進捗はまず親テーブルについて報告され、それによってその継承の統計情報が集められ、次に各パーティションが報告されます。
   


CLUSTERの進捗状況のレポート





CLUSTERやVACUUM FULLが実行されているときにはいつでも、pg_stat_progress_clusterビューには現在いずれかのコマンドを実行している各バックエンドごとの行が含まれます。
以下の表は、報告される情報を説明し、どのように解釈するかの情報を提供します。
  
表27.40 pg_stat_progress_clusterビュー
	

列 型
      

      

説明
      

	
       pid integer
      

      

バックエンドのプロセスIDです。
      

	
       datid oid
      

      

バックエンドが接続されているデータベースのOIDです。
      

	
       datname name
      

      

バックエンドが接続されているデータベースの名前です。
      

	
       relid oid
      

      

クラスタ化されているテーブルのOIDです。
      

	
       command text
      

      

実行しているコマンドです。
CLUSTERかVACUUM FULLのいずれかです。
      

	
       phase text
      

      

現在処理しているフェーズです。
表27.41「CLUSTERとVACUUM FULLのフェーズ」を参照してください。
      

	
       cluster_index_relid oid
      

      

テーブルがインデックスを使ってスキャンされているのであれば、これは使われているインデックスのOIDで、さもなくばゼロです。
      

	
       heap_tuples_scanned bigint
      

      

スキャンされたヒープタプルの数です。
このカウンタは、フェーズがseq scanning heap、index scanning heap、または、writing new heapであるときのみ増加します。
      

	
       heap_tuples_written bigint
      

      

書かれたヒープタプルの数です。
このカウンタは、フェーズがseq scanning heap、index scanning heap、または、writing new heapであるときのみ増加します。
      

	
       heap_blks_total bigint
      

      

テーブル内のヒープブロックの総数です。
この数にはseq scanning heapの開始時の値が報告されます。
      

	
       heap_blks_scanned bigint
      

      

スキャンされたヒープブロックの数です。
このカウンタは、フェーズがseq scanning heapであるときのみ増加します。
      

	
       index_rebuild_count bigint
      

      

インデックス再作成の数です。
このカウンタはフェーズがrebuilding indexであるときのみ増加します。
      




表27.41 CLUSTERとVACUUM FULLのフェーズ
	フェーズ	説明
	initializing	

コマンドはヒープのスキャンを開始する準備をしています。
本フェーズはごく短時間になると予想されます。
     
	seq scanning heap	

コマンドは現在、テーブルをシーケンシャルスキャンを使ってスキャンしています。
     
	index scanning heap	

CLUSTERは現在、インデックススキャンを使ってテーブルをスキャンしています。
     
	sorting tuples	

CLUSTERは現在、タプルをソートしています。
     
	writing new heap	

CLUSTERが新しいヒープに書き込んでいます。
     
	swapping relation files	

コマンドは現在、新たに構築したファイルを置き換えて設置しています。
     
	rebuilding index	

コマンドは現在、インデックスを再構築しています。
     
	performing final cleanup	

コマンドは現在、最終クリーンアップを実行中です。
このフェーズが完了すると、CLUSTERやVACUUM FULLは終了します。
     




COPYの進捗状況のレポート





COPYが実行されているときはいつでも、pg_stat_progress_copyビューには現在COPYコマンドを実行している各バックエンドごとの行が含まれます。
以下の表は、報告される情報を説明し、どのように解釈するかの情報を提供します。
  
表27.42 pg_stat_progress_copyビュー
	

列 型
      

      

説明
      

	
       pid integer
      

      

バックエンドのプロセスIDです。
      

	
       datid oid
      

      

バックエンドが接続されているデータベースのOIDです。
      

	
       datname name
      

      

バックエンドが接続されているデータベースの名前です。
      

	
       relid oid
      

      

COPYコマンドが実行されるテーブルのOIDです。
SELECT問い合わせからコピーする場合は0に設定されます。
      

	
       command text
      

      

実行しているコマンドで、
COPY FROMまたはCOPY TOです。
      

	
       type text
      

      

データの読み取りまたは書き込みが行われるI/Oの種類です。
FILE、PROGRAM、
PIPE（COPY FROM STDINおよびCOPY TO STDOUT用）、
またはCALLBACK（たとえば、論理レプリケーションの初期テーブル同期中に使用されます）です。
      

	
       bytes_processed bigint
      

      

COPYコマンドで既に処理されたバイト数です。
      

	
       bytes_total bigint
      

      

COPY FROMコマンドのコピー元ファイルのバイト数でのサイズです。
利用できない場合は0に設定されます。
      

	
       tuples_processed bigint
      

      

COPYコマンドで既に処理されたタプル数です。
      

	
       tuples_excluded bigint
      

      

COPYコマンドのWHERE句で除外されたために処理されなかったタプル数です。
      

	
       tuples_skipped bigint
      

      

不正なデータが含まれているためにスキップされたタプルの数です。
このカウンタは、ON_ERRORオプションに対してstop以外の値が指定された時にのみ増加します。
      





CREATE INDEXの進捗状況のレポート





CREATE INDEXやREINDEXが実行中であるときにはいつでも、pg_stat_progress_create_indexビューには現在インデックスを作成している各バックエンドごとに1行が含まれます。
以下の表は、報告される情報を説明し、どのように解釈するかの情報を提供します。
  
表27.43 pg_stat_progress_create_indexビュー
	

列 型
      

      

説明
      

	
       pid integer
      

      

インデックスを作成するバックエンドのプロセスIDです。
      

	
       datid oid
      

      

バックエンドが接続されているデータベースのOIDです。
      

	
       datname name
      

      

バックエンドが接続されているデータベースの名前です。
      

	
       relid oid
      

      

インデックスが作られているテーブルのOIDです。
      

	
       index_relid oid
      

      

作成または再作成されているインデックスのOIDです。
同時作成ではないCREATE INDEXのときは、これは0です。
      

	
       command text
      

      

特定のコマンドタイプ：CREATE INDEX、CREATE INDEX CONCURRENTLY、REINDEX、またはREINDEX CONCURRENTLYです。
      

	
       phase text
      

      

現在処理中のインデックス作成のフェーズです。
表27.44「CREATE INDEXのフェーズ」を参照してください。
      

	
       lockers_total bigint
      

      

該当するときに、待機するロック取得者の総数です。
      

	
       lockers_done bigint
      

      

既に待機したロック取得者の数です。
      

	
       current_locker_pid bigint
      

      

現在待機しているロック取得者のプロセスIDです。
      

	
       blocks_total bigint
      

      

現在のフェーズで処理されることになっているブロックの総数です。
      

	
       blocks_done bigint
      

      

現在のフェーズで既に処理されたブロック数です。
      

	
       tuples_total bigint
      

      

現在のフェーズで処理されることになっているタプルの総数です。
      

	
       tuples_done bigint
      

      

現在のフェーズで既に処理されたタプル数です。
      

	
       partitions_total bigint
      

      

直接パーティションと間接パーティションの両方を含む、インデックスが作成またはアタッチされるパーティションの総数です。
 0は、REINDEX中またはインデックスがパーティション化されていない場合です。
      

	
       partitions_done bigint
      

      

直接パーティションと間接パーティションの両方を含む、インデックスがすでに作成またはアタッチされているパーティションの数です。
 0は、REINDEX中またはインデックスがパーティション化されていない場合です。
      




表27.44 CREATE INDEXのフェーズ
	フェーズ	説明
	initializing	

CREATE INDEXやREINDEXはインデックスを作る準備をしています。
このフェーズはごく短時間になると予想されます。
      
	waiting for writers before build	

CREATE INDEX CONCURRENTLYやREINDEX CONCURRENTLYは、潜在的にテーブルを参照するかもしれない書き込みロックを伴うトランザクションが終了するのを待機しています。
本フェーズは同時モードでないときには省かれます。
列lockers_total、lockers_done、および、current_locker_pidには本フェーズの進行情報が入ります。
      
	building index	

インデックスがアクセスメソッド固有のコードにより作成されています。
本フェーズでは、進捗レポートをサポートするアクセスメソッドが自身の進捗データを記入し、また、サブフェーズはこの列で示されます。
典型的には、blocks_totalとblocks_doneが、さらにあるいはtuples_totalとtuples_doneも、進捗データを含みます。
      
	waiting for writers before validation	

CREATE INDEX CONCURRENTLYやREINDEX CONCURRENTLYは、潜在的にテーブルに書き込みするかもしれない書き込みロックを伴うトランザクションが終了するのを待機しています。
本フェーズは同時モードでないときには省かれます。
列lockers_total、lockers_done、および、current_locker_pidには本フェーズの進行情報が入ります。
      
	index validation: scanning index	

CREATE INDEX CONCURRENTLYは確認が必要なタプルに対するインデックス検索をスキャンしています。
本フェーズは同時モードでないときには省かれます。
列blocks_total（インデックスの総サイズが設定される）とblocks_doneに本フェーズの進行情報が入ります。
      
	index validation: sorting tuples	

CREATE INDEX CONCURRENTLYはインデックスをスキャンするフェーズ(scanning index)の出力をソートしています。
      
	index validation: scanning table	

CREATE INDEX CONCURRENTLYは、前の2フェーズで収集されたインデックスのタプルを確認するためテーブルをスキャンしています。
本フェーズは同時モードでないときには省かれます。
列blocks_total（テーブルの総サイズが設定される）とblocks_doneに本フェーズの進行情報が入ります。
      
	waiting for old snapshots	

CREATE INDEX CONCURRENTLYやREINDEX CONCURRENTLYは、潜在的にテーブルを参照するかもしれないトランザクションがそれらのスナップショットを解放するのを待機しています。
本フェーズは同時モードでないときには省かれます。
列lockers_total、lockers_done、および、current_locker_pidには本フェーズの進行情報が入ります。
      
	waiting for readers before marking dead	

REINDEX CONCURRENTLYは、古いインデックスに無効と印付けする前に、テーブルへの読み取りロックを伴うトランザクションが終了するのを待機しています。
本フェーズは同時モードでないときには省かれます。
列lockers_total、lockers_done、および、current_locker_pidには本フェーズの進行情報が入ります。
      
	waiting for readers before dropping	

REINDEX CONCURRENTLYは、古いインデックスを削除する前に、テーブルへの読み取りロックを伴うトランザクションが終了するのを待機しています。
本フェーズは同時モードでないときには省かれます。
列lockers_total、lockers_done、および、current_locker_pidには本フェーズの進行情報が入ります。
      




VACUUMの進捗状況のレポート





VACUUMを実行するときはいつでも、pg_stat_progress_vacuumビューは、現在バキューム処理している（自動バキュームワーカープロセスを含む）それぞれのバックエンドごとに1行含まれます。
以下の表は、報告される情報を説明し、どのように解釈するかの情報を提供します。
VACUUM FULLコマンドの進捗はpg_stat_progress_clusterでレポートされます。これは、通常のVACUUMはテーブル内を書き換えするのみである一方、VACUUM FULLとCLUSTERはいずれもテーブルを再作成するためです。
「CLUSTERの進捗状況のレポート」を参照してください。
  
表27.45 pg_stat_progress_vacuumビュー
	

列 型
      

      

説明
      

	
       pid integer
      

      

バックエンドのプロセスIDです。
      

	
       datid oid
      

      

バックエンドが接続されているデータベースのOIDです。
      

	
       datname name
      

      

バックエンドが接続されているデータベース名です。
      

	
       relid oid
      

      

バキューム処理が行われているテーブルのOIDです。
      

	
       phase text
      

      

現在処理しているバキュームのフェーズです。
表27.46「VACUUMのフェーズ」を参照してください。
      

	
       heap_blks_total bigint
      

      

テーブルのヒープブロックの総数です。
この数字は、スキャンの開始を基点としてレポートされます。
後に追加されるブロックは、このVACUUMによって処理されません（必要もありません）。
      

	
       heap_blks_scanned bigint
      

      

スキャンされたヒープブロックの数です。
可視性マップがスキャンを最適化するために使用されるため、いくつかのブロックが検査されずに読み飛ばされます。
読み飛ばされたブロックはこの総数に含まれ、そのためこの数字はバキューム処理が完了した時に、最終的にheap_blks_totalと同じになります。
このカウンタは、フェーズがscanning heapの時にのみ増加します。
      

	
       heap_blks_vacuumed bigint
      

      

バキューム処理されたヒープブロックの数です。
テーブルにインデックスが１つでも存在するなら、このカウンタはフェーズがvacuuming heapの時にのみ増加します。
無効なタプルが含まれていないブロックは読み飛ばされ、それゆえカウンタは時々大きな増加量で早送りされます。
      

	
       index_vacuum_count bigint
      

      

完了したインデックスバキュームサイクルの数です。
      

	
       max_dead_tuple_bytes bigint
      

      

インデックスバキュームサイクルの実行に必要となる前に格納できる、maintenance_work_memに基づいた、無効なタプルの量です。
      

	
       dead_tuple_bytes bigint
      

      

最後のインデックスバキュームサイクルから収集された無効タプルの量です。
      

	
      num_dead_item_ids bigint
      

      

最後のインデックスバキュームサイクルから収集された無効アイテム識別子の数です。
      

	
       indexes_total bigint
      

      

バキュームまたは削除されるインデックスの総数です。
この数はvacuuming indexesフェーズまたはcleaning up indexesフェーズの開始時に報告されます。
      

	
       indexes_processed bigint
      

      

処理されたインデックスの数です。
このカウンタはフェーズがvacuuming indexesまたはcleaning up indexesである時にのみ増加します。
      

	
       delay_time double precision
      

      

コストベースの遅延（「コストに基づくVacuum遅延」を参照）によりスリープに費やされた、ミリ秒単位の総時間です（track_cost_delay_timingが有効な場合。無効であればゼロです）。
これには、関連するすべてのパラレルワーカーがスリープした時間が含まれます。
ただし、パラレルワーカーがスリープ時間を報告する頻度は1秒に1回以下しかないため、報告される値が少し古い場合があります。
      




表27.46 VACUUMのフェーズ
	フェーズ	説明
	initializing	

VACUUMは、ヒープをスキャンし始める準備をしています。
このフェーズは、非常に短時間であると予想されます。
     
	scanning heap	

VACUUMは、現在ヒープをスキャン中です。
必要であればそれぞれのページを切り取り、デフラグし、場合によってはフリーズ活動を実行します。
スキャンの進捗状況の監視にheap_blks_scanned列が使用できます。
     
	vacuuming indexes	

VACUUMは、現在インデックスをバキューム処理中です。
テーブルにインデックスが存在する場合、ヒープが完全にスキャンされた後に、バキューム実行ごとに少なくとも１回発生します。
maintenance_work_memが、発見された無効タプルの数量を格納するのに不十分な場合（または、自動バキュームの場合はautovacuum_work_memが設定されている場合）は、バキューム実行ごとに複数回発生する可能性があります。
     
	vacuuming heap	

VACUUMは、現在ヒープをバキューム処理中です。
ヒープのバキュームは、ヒープのスキャンと異なり、インデックスをバキューム処理するそれぞれのインスタンスの後に発生します。
heap_blks_scannedがheap_blks_totalより少ない場合、システムはこのフェーズの完了後にヒープのスキャン処理に戻ります。
さもなければ、このフェーズの完了後にインデックスの整理を始めます。
     
	cleaning up indexes	

VACUUMは、現在インデックスの整理処理中です。
これは、ヒープが完全にスキャンされ、インデックスとヒープが完全にすべてバキューム処理された後に発生します。
     
	truncating heap	

VACUUMは、現在リレーションの終点の空のページをオペレーティングシステムに戻すためにヒープを切り詰めています。
これは、インデックスの整理処理後に発生します。
     
	performing final cleanup	

VACUUMは最終クリーンアップを実行しています。
このフェーズ中に、VACUUMは空き領域マップをバキュームし、pg_class内の統計を更新し、累積統計システムに統計を報告します。
このフェーズが完了すると、VACUUMは終了します。
     




ベースバックアップの進捗状況のレポート





pg_basebackupのようなアプリケーションがベースバックアップを取る時はいつでも、pg_stat_progress_basebackupビューには現在BASE_BACKUPレプリケーションコマンドを実行し、バックアップをストリームしている各WAL送信プロセスごとの行が含まれます。
以下の表は、報告される情報を説明し、どのように解釈するかの情報を提供します。
  
表27.47 pg_stat_progress_basebackupビュー
	

列 型
      

      

説明
      

	
       pid integer
      

      

WAL送信プロセスのプロセスIDです。
      

	
       phase text
      

      

現在処理中のフェーズです。
表27.48「ベースバックアップのフェーズ」を参照してください。
      

	
       backup_total bigint
      

      

ストリームされるデータの総量です。
これは推定され、streaming database filesフェーズの最初に報告されます。
データベースはstreaming database filesフェーズの間に変化するかもしれませんし、WALログが後ほどバックアップに含められますので、これは近似でしかないことに注意してください。
ストリームされたデータ量が推定された総量を超えたら、これは常にbackup_streamedと同じ値です。
pg_basebackupで推定が無効にされて(すなわち、--no-estimate-sizeオプションが指定されて)いれば、NULLです。
      

	
       backup_streamed bigint
      

      

ストリームされるデータの量です。
このカウンタはフェーズがstreaming database filesまたはtransferring wal filesの時にのみ増加します。
      

	
       tablespaces_total bigint
      

      

ストリームされるテーブル空間の総数です。
      

	
       tablespaces_streamed bigint
      

      

ストリームされたテーブル空間の数です。
このカウンタはフェーズがstreaming database filesの時にのみ増加します。
      




表27.48 ベースバックアップのフェーズ
	フェーズ	説明
	initializing	

WAL送信プロセスはバックアップを開始する準備をしています。
このフェーズはごく短時間になると予想されます。
      
	waiting for checkpoint to finish	

WAL送信プロセスは、ベースバックアップを取る準備をするために現在pg_backup_startを実行し、バックアップ開始チェックポイントが完了するのを待っています。
      
	estimating backup size	

WAL送信プロセスは、ベースバックアップとしてストリームされるデータベースファイルの総量を現在推定しています。
      
	streaming database files	

WAL送信プロセスはデータベースファイルをベースバックアップとして現在ストリームしています。
      
	waiting for wal archiving to finish	

WAL送信プロセスは現在pg_backup_stopを実行してバックアップを終了しており、ベースバックアップに必要なすべてのWALファイルが正常にアーカイブされるのを待機しています。
pg_basebackupで--wal-method=noneまたは--wal-method=streamが指定された場合、バックアップはこのフェーズが完了した時点で終了します。
      
	transferring wal files	

WAL送信プロセスはバックアップ中に生成されたWALログをすべて現在転送しています。
pg_basebackupで--wal-method=fetchが指定されていれば、このフェーズがwaiting for wal archiving to finishの次に来ます。
バックアップはこのフェーズが完了したら終了します。
      





動的追跡





PostgreSQL™は、データベースサーバの動的追跡をサポートする機能を提供します。
これにより、外部ユーティリティをコードの特定のポイントで呼び出すことができ、追跡を行うことができるようになります。
  


多くの追跡やプローブ用のポイントは、すでにソースコード内部に存在します。
これらのプローブはデータベースの開発者や管理者が使うことを意図しています。
デフォルトでは、これらのプローブはPostgreSQL™にコンパイルされません。ユーザは明示的にconfigureスクリプトでプローブを有効にするように設定する必要があります。
  


現在、これを書いている時点ではSolaris、macOS、FreeBSD、NetBSD、Oracle Linuxで利用可能なDTraceユーティリティがサポートされています。
SystemTapプロジェクトではDTrace相当の機能をLinux向けに提供しており、それを使うこともできます。
他の動的追跡ユーティリティのサポートは、src/include/utils/probes.h内のマクロ定義を変更することで、理論上は可能です。
  
動的追跡のためのコンパイル





デフォルトではプローブは利用ないので、configureスクリプトに明示的にプローブをPostgreSQL™で利用可能にするように指示する必要があります。
DTraceサポートを含めるには、configureに--enable-dtraceを指定します。
詳細は「開発者向けオプション」を参照してください。
  

組み込み済みのプローブ





表27.49「組み込み済みのDTraceプローブ」で示されるように、多くの標準的なプローブがソースコード内で提供されています。表27.50「プローブパラメータで使われる型の定義」はプローブで使用している型を示しています。
また、PostgreSQL™内の可観測性を強化するためのプローブ追加が可能です。
  
表27.49 組み込み済みのDTraceプローブ
	名前	パラメータ	説明
	transaction-start	(LocalTransactionId)	新しいトランザクションの開始を捕捉するプローブです。arg0はトランザクションIDです。
	transaction-commit	(LocalTransactionId)	トランザクションの正常終了を捕捉するプローブです。arg0はトランザクションIDです。
	transaction-abort	(LocalTransactionId)	トランザクションの異常終了を捕捉するプローブです。arg0はトランザクションIDです。
	query-start	(const char *)	問い合わせ処理の開始を捕捉するプローブです。arg0は問い合わせ文字列です。
	query-done	(const char *)	問い合わせ処理の正常終了を捕捉するプローブです。arg0は問い合わせ文字列です。
	query-parse-start	(const char *)	問い合わせのパース処理の開始を捕捉するプローブです。arg0は問い合わせ文字列です。
	query-parse-done	(const char *)	問い合わせのパース処理の正常終了を捕捉するプローブです。arg0は問い合わせ文字列です。
	query-rewrite-start	(const char *)	問い合わせの書き換え処理の開始を捕捉するプローブです。arg0は問い合わせ文字列です。
	query-rewrite-done	(const char *)	問い合わせの書き換え処理の正常終了を捕捉するプローブです。arg0は問い合わせ文字列です。
	query-plan-start	()	問い合わせのプランナ処理の開始を捕捉するプローブです。
	query-plan-done	()	問い合わせのプランナ処理の正常終了を捕捉するプローブです。
	query-execute-start	()	問い合わせの実行(エグゼキュータ)処理の開始を捕捉するプローブです。
	query-execute-done	()	問い合わせの実行(エグゼキュータ)処理の正常終了を捕捉するプローブです。
	statement-status	(const char *)	
サーバプロセスによるpg_stat_activity.statusの状態の更新を捕捉するプローブです。
arg0は新しい状態の文字列です。
     
	checkpoint-start	(int)	
チェックポイントの開始を捕捉するプローブです。
arg0はチェックポイントの種類の違い(shutdown、immediate、force)を区別するためのビットフラグを持っています。
     
	checkpoint-done	(int, int, int, int, int)	
チェックポイントの正常終了を捕捉するプローブです。
(以下に示すプローブはチェックポイント進行に従い順番に捕捉されます。)
arg0は書き込まれたバッファ数、arg1はバッファの総数、arg2、3、4はそれぞれ追加、削除、再利用されたWALファイルの数です。
     
	clog-checkpoint-start	(bool)	
CLOG部分のチェックポイントの開始を捕捉するプローブです。
arg0がtrueならば通常のチェックポイントであり、falseならばシャットダウン時のチェックポイントを示します。
     
	clog-checkpoint-done	(bool)	
CLOG部分のチェックポイントの正常終了を捕捉するプローブです。
arg0はclog-checkpoint-startと同じ意味を持ちます。
     
	subtrans-checkpoint-start	(bool)	
サブトランザクション部分のチェックポイントの開始を捕捉するプローブです。
arg0がtrueならば通常のチェックポイントであり、falseならばシャットダウン時のチェックポイントを示します。
     
	subtrans-checkpoint-done	(bool)	
サブトランザクション部分のチェックポイントの正常終了を捕捉するプローブです。
arg0はsubtrans-checkpoint-startと同じ意味を持ちます。
     
	multixact-checkpoint-start	(bool)	
マルチトランザクション部分のチェックポイントの開始を捕捉するプローブです。
arg0がtrueならば通常のチェックポイントであり、falseならばシャットダウン時のチェックポイントを示します。
     
	multixact-checkpoint-done	(bool)	
マルチトランザクション部分のチェックポイントの正常終了を捕捉するプローブです。
arg0はmultixact-checkpoint-startと同じ意味を持ちます。
     
	buffer-checkpoint-start	(int)	
チェックポイントのバッファ書き込み部分の開始を捕捉するプローブです。
arg0はチェックポイントの種類の違い(shutdown、immediate、force)を区別するためのビットフラグを持っています。
     
	buffer-sync-start	(int, int)	
チェックポイント中のダーティバッファの書き出し開始を捕捉するプローブです(どのバッファが書き出す必要があるのかを判定した後です)。
arg0はバッファの総数で、arg1は現在ダーティであり、書き出す必要のあるバッファ数です。
     
	buffer-sync-written	(int)	
チェックポイント中のそれぞれのバッファの書き出し後を捕捉するプローブです。
arg0はバッファのIDを示します。
     
	buffer-sync-done	(int, int, int)	
全てのダーティバッファの書き出し後を捕捉するプローブです。
arg0はバッファの総数です。
arg1はチェックポイント処理により実際に書き出されたバッファ数です。
arg2は書き出されるであろうと見積もられたバッファ数(buffer-sync-startのarg1相当)です。
違いはチェックポイント中に他のプロセスがバッファを書き出したことを反映しています。
     
	buffer-checkpoint-sync-start	()	カーネルへのダーティバッファの書き出し処理発行の後、そして同期書き出し要求を開始する前を捕捉するプローブです。
	buffer-checkpoint-done	()	バッファからディスクへの同期書き出し処理の終了を捕捉するプローブです。
	twophase-checkpoint-start	()	二相コミット部分のチェックポイントの開始を捕捉するプローブです。
	twophase-checkpoint-done	()	二相コミット部分のチェックポイントの正常終了を捕捉するプローブです。
	buffer-extend-start	(ForkNumber, BlockNumber, Oid, Oid, Oid, int, unsigned int)	
リレーションの拡張が開始された時を捕捉するプローブです。
arg0は拡張されるフォークを示します。
arg1、arg2、arg3は対象のリレーションを識別するテーブル空間、データベース、そしてリレーションのOIDです。
arg4はローカルバッファのために一時的なリレーションを作成したバックエンドのID、INVALID_PROC_NUMBER(-1)であれは共有バッファを指します。
arg5は呼び出し元が拡張したいブロックの数です。
      
	buffer-extend-done	(ForkNumber, BlockNumber, Oid, Oid, Oid, int, unsigned int, BlockNumber)	
リレーションの拡張が完了した時を捕捉するプローブです。
arg0は拡張されるフォークを示します。
arg1、arg2、arg3は対象のリレーションを識別するテーブル空間、データベース、そしてリレーションのOIDです。
arg4はローカルバッファのために一時的なリレーションを作成したバックエンドのID、INVALID_PROC_NUMBER(-1)であれは共有バッファを指します。
arg5はリレーションが拡張されたブロック数です。これはリソース制約によりbuffer-extend-startで指定された数より少ない場合があります。
arg6は最初の新しいブロックのブロック番号です。
      
	buffer-read-start	(ForkNumber, BlockNumber, Oid, Oid, Oid, int)	
バッファ読み込みの開始を捕捉するプローブです。
arg0とarg1は読み込みページのフォーク番号とブロック番号です。
arg2、arg3、arg4は対象のリレーションを識別するテーブル空間、データベース、そしてリレーションのOIDです。
arg5は一時テーブルをローカルバッファに作成していればそのバックエンドのIDであり、INVALID_PROC_NUMBER(-1)であれは共有バッファを指します。
      
	buffer-read-done	(ForkNumber, BlockNumber, Oid, Oid, Oid, int, bool)	
バッファ読み込みの終了を捕捉するプローブです。
arg0とarg1はそのページのフォーク番号とブロック番号です。
arg2、arg3、arg4は対象のリレーションを識別するテーブル空間、データベース、そしてリレーションのOIDです。
arg5はローカルバッファのために一時的なリレーションを作成したバックエンドのID、INVALID_PROC_NUMBER(-1)であれは共有バッファを指します。
arg6はtrueならばバッファがプール内にある、falseはプール内に無かったことを示します。
     
	buffer-flush-start	(ForkNumber, BlockNumber, Oid, Oid, Oid)	
共有バッファへの書き込み要求開始を捕捉するプローブです。
arg0とarg1はそのページのフォーク番号とブロック番号です。
arg2、arg3、arg4は対象のリレーションを識別するテーブル空間、データベース、そしてテーブルのOIDです。
     
	buffer-flush-done	(ForkNumber, BlockNumber, Oid, Oid, Oid)	
書き込み要求の終了を捕捉するプローブです。
(これはカーネルへデータを渡したタイミングのみを反映していることに注意してください。大抵、この時点ではまだ実際にディスクへ書き込まれていません。)
引数はbuffer-flush-startと同じです。
     
	wal-buffer-write-dirty-start	()	
WALバッファ領域の不足によるサーバプロセスのダーティなWALバッファの書き出しを捕捉するプローブです。
(もしこれが頻発するようでしたら、wal_buffersが小さすぎることを意味します。)
     
	wal-buffer-write-dirty-done	()	ダーティなWALバッファの書き出し終了を捕捉するプローブです。
	wal-insert	(unsigned char, unsigned char)	
WALレコードの挿入を捕捉するプローブです。
arg0はレコードのリソースマネージャ(rmid)です。
arg1は情報フラグです。
     
	wal-switch	()	WALセグメントのスイッチ要求を捕捉するプローブです。
	smgr-md-read-start	(ForkNumber, BlockNumber, Oid, Oid, Oid, int)	
リレーションからのブロック読み込みの開始を捕捉するプローブ。
arg0とarg1はそのページのフォーク番号とブロック番号です。
arg2、arg3、arg4は対象のリレーションを識別するテーブル空間、データベース、そしてリレーションのOIDです。
arg5は一時テーブルをローカルバッファに作成していればそのバックエンドのIDであり、INVALID_PROC_NUMBER(-1)であれは共有バッファを指します。
     
	smgr-md-read-done	(ForkNumber, BlockNumber, Oid, Oid, Oid, int, int, int)	
ブロックの読み込み終了を捕捉するプローブです。
arg0とarg1はそのページのフォーク番号とブロック番号です。
arg2、arg3、arg4は対象のリレーションを識別するテーブル空間、データベース、そしてリレーションのOIDです。
arg5は一時テーブルをローカルバッファに作成していればそのバックエンドのIDであり、INVALID_PROC_NUMBER(-1)であれは共有バッファを指します。
arg6は実際に読み込んだバイト数、arg7はリクエストされた読み込みバイト数です（もし、これらに差異があった場合、読み込みが短いことを示します）。
     
	smgr-md-write-start	(ForkNumber, BlockNumber, Oid, Oid, Oid, int)	
リレーションへのブロック書き出しの開始を捕捉するプローブです。
arg0とarg1はそのページのフォーク番号とブロック番号です。
arg2、arg3、arg4は対象のリレーションを識別するテーブル空間、データベース、そしてリレーションのOIDです。
arg5は一時テーブルをローカルバッファに作成していればそのバックエンドのIDであり、INVALID_PROC_NUMBER(-1)であれは共有バッファを指します。
     
	smgr-md-write-done	(ForkNumber, BlockNumber, Oid, Oid, Oid, int, int, int)	
ブロックの書き出し終了を捕捉するプローブです。
arg0とarg1はそのページのフォーク番号とブロック番号です。
arg2、arg3、arg4は対象のリレーションを識別するテーブル空間、データベース、そしてリレーションのOIDです。
arg5は一時テーブルをローカルバッファに作成していればそのバックエンドのIDであり、INVALID_PROC_NUMBER(-1)であれは共有バッファを指します。
arg6は実際に書き出したバイト数、arg7はリクエストされた書き出しバイト数です（もし、これらに差異があった場合、書き込みが短いことを示します）。
     
	sort-start	(int, bool, int, int, bool, int)	
ソート処理の開始を捕捉するプローブです。
arg0は対象データがヒープ、インデックス、またはdatumのどれかを示します。
arg1はtrueならば一意性を必要としていることを示します。
arg2はカラムのキー数です。
arg3は許容されている作業メモリ(work_mem)のキロバイト数です。
arg4はtrueならばソート結果に対するランダムアクセスが要求されていることを示します。
arg5は、0ならばシリアル、1ならばパラレルワーカー、2ならばパラレルリーダーであることを示します。
     
	sort-done	(bool, long)	
ソート処理の終了を捕捉するプローブです。
arg0はtrueならば外部ソート、falseは内部ソートを示します。
arg1は外部ソートで使用されたディスクブロック数、もしくは内部ソートで使用されたメモリのキロバイト数を示します。
     
	lwlock-acquire	(char *, LWLockMode)	
LWLockの獲得を捕捉するプローブです。
arg0はLWLockのトランシェを示します。
arg1は要求されたロックモード（排他または共有）を示します。
     
	lwlock-release	(char *)	
LWLockの解放を捕捉するプローブです（ただし、解放された待機状態のものにはまだ通知されていないことに注意してください）。
arg0はLWLockのトランシェを示します。
     
	lwlock-wait-start	(char *, LWLockMode)	
LWLockが即座には獲得できず、ロックが利用可能になるまでサーバプロセスが待機を開始したことを捕捉するプローブです。
arg0はLWLockのトランシェを示します。
arg1は要求されたロックモード（排他または共有）を示します。
     
	lwlock-wait-done	(char *, LWLockMode)	
サーバプロセスがLWLockの待機から解放されたことを捕捉するプローブです（まだ実際にはロックを取得していません）。
arg0はLWLockのトランシェを示します。
arg1は要求されたロックモード（排他または共有）を示します。
     
	lwlock-condacquire	(char *, LWLockMode)	
呼び出し元が待機しないことを指定した際の、LWLockの獲得成功を捕捉するプローブです。
arg0はLWLockのトランシェを示します。
arg1は要求されたロックモード（排他または共有）を示します。
     
	lwlock-condacquire-fail	(char *, LWLockMode)	
呼び出し元が待機しないことを指定した際の、LWLockの獲得失敗を捕捉するプローブです。
arg0はLWLockのトランシェを示します。
arg1は要求されたロックモード（排他または共有）を示します。
     
	lock-wait-start	(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, LOCKMODE)	
重量ロック(lmgr lock)を即座に取得できなかったため、サーバプロセスがロックを利用できるまでロック待ち状態になった際の開始を捕捉するプローブです。
arg0からarg3はロックされたオブジェクトの識別用タグ領域です。
arg4はロックされたオブジェクトのタイプを示します。
arg5は要求されたロックの種類を示します。
     
	lock-wait-done	(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, LOCKMODE)	
重量ロック(lmgr lock)要求の待機終了を捕捉するプローブです(つまりロックを取得した)。
引数はlock-wait-startと同じです。
     
	deadlock-found	()	デッドロック検知器によるデッドロックの発見を捕捉するプローブです。



表27.50 プローブパラメータで使われる型の定義
	型	定義
	LocalTransactionId	unsigned int
	LWLockMode	int
	LOCKMODE	int
	BlockNumber	unsigned int
	Oid	unsigned int
	ForkNumber	int
	bool	unsigned char




プローブの利用





以下の例では、性能試験前後でpg_stat_databaseのスナップショットを取る代わりに、システムにおけるトランザクション数を解析するDTraceスクリプトを示します。


#!/usr/sbin/dtrace -qs

postgresql$1:::transaction-start
{
      @start["Start"] = count();
      self->ts  = timestamp;
}

postgresql$1:::transaction-abort
{
      @abort["Abort"] = count();
}

postgresql$1:::transaction-commit
/self->ts/
{
      @commit["Commit"] = count();
      @time["Total time (ns)"] = sum(timestamp - self->ts);
      self->ts=0;
}



実行すると、例のDスクリプトは以下のような出力をします。


# ./txn_count.d `pgrep -n postgres` or ./txn_count.d <PID>
^C

Start                                          71
Commit                                         70
Total time (ns)                        2312105013


  
注記


基本となる追跡ポイントの互換性はありますが、SystemTapはDTraceと異なる追跡スクリプトの表記を用います。
表記に関して特に注意すべき点として、SystemTapでは参照する追跡ポイント名のハイフンの代わりに二重のアンダースコアを用いる必要があります。
これは将来的なSystemTapのリリースで修正されることを期待しています。
   



DTraceスクリプトの作成には注意が必要であり、デバッグが必要であることは忘れないでください。さもないと、収集される追跡情報の意味がなくなるかもしれません。
ほとんどの場合、見つかる問題はシステムではなく使用方法の間違いです。
動的追跡を使用して見つかった情報に関して議論を行う際には、スクリプトの検査や議論もできるようにスクリプトも含めるようにしてください。
  

新規プローブの定義





開発者が望めばコード内に新しくプローブを定義することができます。しかし、これには再コンパイルが必要です。
下記は、新規プローブの定義の手順です。
  
	

プローブの名前とプローブの処理を通じて取得可能とするデータを決めます
    

	

src/backend/utils/probes.dにプローブの定義を追加します
    

	

もし、プローブポイントを含むモジュールがpg_trace.hをインクルードしていなければそれをインクルードし、ソースコード中のプローブを行いたい場所にTRACE_POSTGRESQLマクロを挿入します
    

	

再コンパイルを行い、新規プローブが利用できるか確認します
    



例: 

これはトランザクションIDを用いて新規トランザクションを追跡するプローブ追加の仕方の例です。
   
	

プローブ名をtransaction-startとし、LocalTransactionId型のパラメータを必要とすることを決めます。
    

	

src/backend/utils/probes.dにプローブの定義を追加します:


probe transaction__start(LocalTransactionId);



プローブ名に二重のアンダースコアを使用する場合は注意してください。
DTraceスクリプトでプローブを用いる場合、二重のアンダースコアをハイフンに置き換える必要があります。そのため、transaction-startがユーザ向けの文書に記載される名前となります。
    

	

コンパイル時に、transaction__startはTRACE_POSTGRESQL_TRANSACTION_STARTと呼ばれるマクロに変換されます(ここではアンダースコアはひとつになります)。このマクロは、pg_trace.hをインクルードすることにより使用可能となります。
このマクロをソースコード中の適切な箇所へ追加していきます。
この場合、以下の様になります。



TRACE_POSTGRESQL_TRANSACTION_START(vxid.localTransactionId);


    

	

再コンパイル後に新しいバイナリでサーバを起動し、下記の様なDTraceコマンドの実行により新たに追加したプローブが利用可能かチェックします。
下記の様な出力が確認できるはずです:


# dtrace -ln transaction-start
   ID    PROVIDER          MODULE           FUNCTION NAME
18705 postgresql49878     postgres     StartTransactionCommand transaction-start
18755 postgresql49877     postgres     StartTransactionCommand transaction-start
18805 postgresql49876     postgres     StartTransactionCommand transaction-start
18855 postgresql49875     postgres     StartTransactionCommand transaction-start
18986 postgresql49873     postgres     StartTransactionCommand transaction-start


    





Cのソースコードに追跡用のマクロを追加する際、いくつかの注意点があります:

   
	

プローブの引数に指定したデータ型がマクロで使用される変数のデータ型と一致するよう注意しなければなりません。
でなければ、コンパイル時にエラーとなるでしょう。
     

	

ほとんどのプラットフォームでは、もしPostgreSQL™が--enable-dtrace付きでビルドされた場合、何の追跡もされなかったとしても、制御がマクロを通過する際はいつでも追跡用マクロの引数が評価されます。
ごく少数のローカルな変数を報告するような場合はそれほど心配はいりません。
ただし、高価な関数呼び出しを引数にする場合は注意してください。
もしそのようにする必要がある場合、追跡が実際に有効かどうかをチェックしてマクロを保護することを考慮してください:



if (TRACE_POSTGRESQL_TRANSACTION_START_ENABLED())
    TRACE_POSTGRESQL_TRANSACTION_START(some_function(...));




各追跡マクロは対応するENABLEDマクロを持っています。
     





  


ディスク使用量の監視





この節では、PostgreSQL™データベースシステムのディスク使用量を監視する方法について説明します。
  
ディスク使用量の決定





各テーブルには、ほとんどのデータが格納される主要なヒープディスクファイルがあります。
テーブルに広い値を持つ可能性のある列がある場合、テーブルに関連付けられたTOASTファイルもあり、これはメインテーブルに収まりきらない広すぎる値を格納するために使用されます（「TOAST」を参照してください）。
TOASTテーブルに有効なインデックスが存在する場合、そのインデックスが1つ存在します。
また、ベーステーブルに関連付けられたインデックスがある場合もあります。
各テーブルとインデックスは、別々のディスクファイルに格納されます。
ファイルが1ギガバイトを超える場合は、複数のファイルが格納されることもあります。
これらのファイルの命名規則については「データベースファイルのレイアウト」で説明します。
   


ディスク容量の監視は、次の3つの方法で行えます。
表9.102「データベースオブジェクトサイズ関数」にあるSQL関数を使用する方法、oid2name(1)モジュールを使用する方法、およびシステムカタログを手動で調べる方法です。
SQL関数を使用する方法が、一般的に一番簡単な方法です。
この節の残りの部分では、システムカタログを調べる方法を示します。
   


最近バキュームされたか、あるいは分析されたデータベースでpsqlを使用すると、任意のテーブルのディスク使用状況を調べるための問い合わせを発行できます。


SELECT pg_relation_filepath(oid), relpages FROM pg_class WHERE relname = 'customer';

 pg_relation_filepath | relpages
----------------------+----------
 base/16384/16806     |       60
(1 row)



1ページは通常8キロバイトです。
（relpagesはVACUUMとANALYZE、さらにCREATE INDEXといったいくつかのDDLによってのみ更新されることに注意してください。）
もしテーブルのディスクファイルを直接調べるときは、ファイルのパス名称に注目して下さい。
   


TOASTテーブルが使用している容量を表示するには、以下のような問い合わせを使用します。


SELECT relname, relpages
FROM pg_class,
     (SELECT reltoastrelid
      FROM pg_class
      WHERE relname = 'customer') AS ss
WHERE oid = ss.reltoastrelid OR
      oid = (SELECT indexrelid
             FROM pg_index
             WHERE indrelid = ss.reltoastrelid)
ORDER BY relname;

       relname        | relpages
----------------------+----------
 pg_toast_16806       |        0
 pg_toast_16806_index |        1


   


インデックスサイズも簡単に表示できます。


SELECT c2.relname, c2.relpages
FROM pg_class c, pg_class c2, pg_index i
WHERE c.relname = 'customer' AND
      c.oid = i.indrelid AND
      c2.oid = i.indexrelid
ORDER BY c2.relname;

      relname      | relpages
-------------------+----------
 customer_id_index |       26


   


この情報を使用すると、最大のテーブルとインデックスを簡単に見つけられます。


SELECT relname, relpages
FROM pg_class
ORDER BY relpages DESC;

       relname        | relpages
----------------------+----------
 bigtable             |     3290
 customer             |     3144


   

ディスク容量不足の障害





データベース管理者の最も重要なディスク監視作業は、ディスクが容量不足になっていないことを確認することです。
データディスクが容量不足になったなった場合、データの破損は発生しませんが、有用な活動が行われなくなる可能性があります。
WALファイルを保持しているディスクがいっぱいになると、データベースサーバがパニックし、それに続くシャットダウンが発生する可能性があります。
   


他のデータを削除しても、ディスクに空き容量を用意できない場合、 テーブル空間を使用することによって、データベースファイルのいくつかを他のファイルシステムに移動できます。
詳細は 「テーブル空間」を参照してください。
   
ヒント


一部のファイルシステムは、容量がほぼ一杯になっている場合にパフォーマンスが悪くなります。
ですから、ディスクがほぼ一杯になる前に余裕をもって対策を取ってください。
    



システムでユーザ単位のディスククォータをサポートしている場合、当然ながらデータベースもサーバを実行するユーザに割り当てられたクォータに従います。
クォータを超えた場合、ディスク容量が完全になくなった時と同じ悪影響が発生します。
   


第28章 信頼性と先行書き込みログ（WAL）





本章では、先行書き込みログに関する詳細を含めて、PostgreSQL™の信頼性を制御する方法を説明します。
 
信頼性





信頼性は、すべての本格的なデータベースシステムで重要な特性です。
PostgreSQL™は信頼できる操作を保証するためにできることは何でもします。
信頼できる操作の一面は、コミットされたトランザクションにより記録されたデータはすべて不揮発性の領域に格納され、電源断、オペレーティングシステムの障害、ハードウェアの障害（当然ですが、不揮発性の領域自体の障害は除きます。）があっても安全であるという点です。
通常、コンピュータの永続的格納領域（ディスク装置など）へのデータ書き込みの成功がこの条件を満たします。
実際、コンピュータに致命的な障害が発生したとしても、もしディスク装置が無事ならば、類似のハードウェアを持つ別のコンピュータに移すことができ、コミットされたトランザクションを元通りに復元できます。
  


データを周期的にディスクプラッタに書き出すことは簡単な操作に思われるかもしれませんが、そうではありません。
ディスク装置は主メモリ、CPU、コンピュータの主メモリとディスクプラッタの間にある各種のキャッシュ層と比べ非常に低速であるからです。
まず、オペレーティングシステムのバッファキャッシュが存在します。
これは頻繁にアクセス要求があるディスクブロックをキャッシュし、ディスクへの書き込みをまとめます。
好運にもすべてのオペレーティングシステムがバッファキャッシュをディスクに強制書き込みさせる方法をアプリケーションに提供しています。
PostgreSQL™はこの機能を使用します。
（これを調整する方法についてはwal_sync_methodパラメータを参照してください。）
  


次に、ディスク装置のコントローラキャッシュが存在する可能性があります。
特に、RAIDコントローラカードでは、これは一般的です。
これらの中にはwrite-throughキャッシュがあり、つまり、データが届いた時に即座に書き込みがディスク装置に対して行なわれます。
他にはwrite-backキャッシュがあり、多少遅れて書き込みがディスク装置に対して行なわれます。
こうしたキャッシュでは、ディスクコントローラキャッシュが揮発性で、電源障害の際にその内容が失われてしまい、信頼性に関して致命的な問題になる可能性があります。
より優れたコントローラカードにはバッテリバックアップ付き装置(BBUs)があり、システムの電源が落ちた場合もキャッシュに電源を供給します。
後で電源が復旧した後に、データがディスク装置に書き出されます。
  


最後に、ほとんどのディスク装置がキャッシュを持っています。一部はwrite-throughであり、一部はwrite-backです。
ディスクコントローラキャッシュの場合と同様にwrite-backのディスク装置キャッシュの場合にはデータが損失する恐れがあります。
一般消費者向けのIDEおよびSATA装置では、電源障害時にデータが残らないwrite-backキャッシュを使用している可能性がとりわけ高いです。
多くのソリッドステートドライブ(SSD)も同様に揮発性のwrite-backキャッシュを持っています。
  


これらのキャッシュは、大抵は無効にできます。しかしながらオペレーティングシステムやドライブの種類によってその方法は異なります。
  
	

Linux™上でhdparm -Iを使用することでIDEおよびSATAドライブのキャッシュについて調べることができます。
Write cacheの次に *があれば書き込みキャッシュが有効になっています。
hdparm -W 0により書き込みキャッシュを無効にできます。
SCSIドライブであればsdparmを使うことで調査が可能です。
sdparm --get=WCEによりキャッシュが有効かどうかの確認ができ、sdparm --clear=WCEにより無効にすることができます。
      

	

FreeBSD™では、IDEドライブに対してcamcontrol identifyにより確認ができ、そして書き込みキャッシュを無効にするには/boot/loader.confのhw.ata.wc=0を利用します。SCSIドライブに対してはcamcontrol identifyを確認に使用することができ、sdparmを使用できる場合にはそれを用いて書き込みキャッシュの確認と変更が可能です。
      

	

Solaris™では、ディスクの書き込みキャッシュはformat -eで制御できます。
(SolarisのZFSファイルシステムは、独自のディスクキャッシュ書き出しコマンドを発行しているため、ディスクの書き込みキャッシュを有効にしても安全です。)
      

	

Windows™では、もしwal_sync_methodがopen_datasync（デフォルト）の場合、My Computer\Open\disk drive\Properties\Hardware\Properties\Policies\Enable write caching on the diskのチェックを外すことで、書き込みキャッシュを無効にできます。
もう一つの方法としては、wal_sync_methodをfdatasync（NTFSのみ）またはfsyncに設定し、書き込みキャッシュを使用しないようにします。
      

	

macOS™では、wal_sync_methodをfsync_writethroughに設定することで書き込みキャッシュを使用しないようにします。
      





最近のSATAドライブ(ATAPI-6またはそれ以降)はドライブキャッシュの書き出しコマンド(FLUSH CACHE EXT)を提供している一方、SCSIドライブでは従来から類似のSYNCHRONIZE CACHEコマンドをサポートしていました。
これらのコマンドは、直接PostgreSQL™に発行されませんが、いくつかのファイルシステム(例えばZFSやext4)では、それらをwrite-backが有効なドライブへデータを書き出すために使います。
不幸なことに、このようなwriteバリアを持つファイルシステムは、バッテリバックアップ付き装置(BBU)のディスクコントローラと組み合わせた際に、好ましい動作をしません。
このような処理の流れにおいて、同期コマンドはコントローラキャッシュにあるデータを全てディスクへ強制的に書き込みを行うため、BBUのメリットの大半を失わせています。
pg_test_fsync(1)プログラムを使うことで、あなたの環境が影響を受けるかどうかを確認できます。
もし影響を受けるようであれば、ファイルシステムのwriteバリアを無効にするか、(オプションがあれば)ディスクコントローラを再設定することで、BBUによる性能上の効果を再び得ることができるでしょう。
もしwriteバリアを無効にした場合は、バッテリが動作していることを確認しておきましょう。バッテリの欠陥はデータロスの可能性に繋がります。
ファイルシステムやディスクコントローラの設計者が、いずれはこの動作を修正してくれることが望まれます。
  


オペレーティングシステムが、ストレージハードウェアに書き込み要求を送信した時、データが不揮発性のストレージ領域に本当に届いたかどうかを確認することはほぼできません。
ですので、全てのストレージ構成品がデータとファイルシステムのメタデータの整合性を保証することをよく確認しておくことは、管理者の責任です。
バッテリバックアップされた書き込みキャッシュを持たないコントローラの使用は避けてください。
装置レベルでは、もし装置が停止前にデータが書き出されることを保証できないのであれば、write-backキャッシュを無効にしてください。
もしSSDを使っている場合、多くのドライブはデフォルトでキャッシュ書き出しコマンドを無視することに注意して下さい。
diskchecker.plを使うことで、I/Oサブシステムの動作の信頼性をテストすることができます。
  


ディスクプラッタの書き込み操作自体によってもデータ損失が発生することがあります。
ディスクプラッタは、通常512バイトのセクタに分割されています。
物理的な読み込み操作、書き込み操作はすべて、セクタ全体を処理します。
書き込み要求がディスクに達した時、その要求は512バイトの倍数になるでしょう(PostgreSQL™では大抵一度に8192バイトすなわち16セクタを書き込みます)。そして電源断により、任意のタイミングで書き込み処理が失敗することがありえます。これは一部の512バイトのセクタに書き込みが行なわれたのに、残りのセクタには書き込みが行なわれていない状況を意味します。
こうした問題の対策として、PostgreSQL™は、ディスク上の実際のページを変更する前に定期的にページ全体のイメージを永続的なWAL格納領域に書き出します。
これにより、PostgreSQL™はクラッシュリカバリ時に部分的に書き出されたページをWALから復旧させることができます。
もし、部分的なページ書き込みを防止できるファイルシステムソフトウェア（例えばZFS）を使うのであれば、full_page_writesを無効にしてページイメージ作成を無効にすることができます。バッテリバックアップ付き（BBU）のディスクコントローラでは、フルページ（8kB）がBBUへ書き込まれることを保証できなければ、部分的なページ書き出しを防止できません。
  


さらにPostgreSQL™は、ハードウェアエラーや経時変化によるメディア障害により発生する、ごみデータを読み書きしてしまうようなストレージ装置内のある種のデータ破損を防ぎます。
   
	

WALファイルのそれぞれのレコードは、レコードの内容が正確かどうかを伝えるためCRC-32C (32-bit)チェックにより保護されています。
CRCの値はそれぞれのWALレコードを書き込む時に設定され、クラッシュリカバリ、アーカイブリカバリとレプリケーション時に検証されます。
     

	

データページはデフォルトでチェックサム計算され、WALレコードに記録されているページ全体のイメージは常にチェックサムで保護されます。
     

	

pg_xact、pg_subtrans、pg_multixact、pg_serial、pg_notify、pg_stat、pg_snapshotsのような内部データ構造は直接チェックサム計算もされず、全ページ書き込みによる保護もされていません。
しかし、そのようなデータ構造が永続する場所では、クラッシュリカバリ時に直近の更新が正確に再構築されるようにWALレコードが書き出され、それらのWALレコードは上記のように保護されます。
     

	

pg_twophaseにある個別の状態ファイルはCRC-32Cで保護されています。
     

	

大きな問い合わせの中でソート、具現化、および中間結果用に使用される暫定的なデータファイルは現在チェックサム計算されず、それらのファイルに対する変更もWALレコードに書き込まれません。
     




  


PostgreSQL™は修復可能なメモリエラーに対して保護を行いません。業界標準の誤り検出訂正（Error Correcting Codes -ECC-）またはそれ以上の保護付きのRAM使用が想定されています。
  


データチェックサム





データページはデフォルトでチェックサムにより保護されていますが、オプションでデータベースクラスタに対して無効にすることができます。
チェックサムが有効である場合、各データページにチェックサムが含まれます。
チェックサムは、ページが書き込まれるときに更新され、ページが読み取られるたびに検証されます。
チェックサムによってデータページのみ保護されます。
内部データ構造と一時ファイルは保護されません。
  


チェックサムは、initdbを使用してデータベースクラスタを初期化するときに無効にできます。
また、オフライン操作で後から有効化または無効化することもできます。
データチェックサムは、データベースクラスタ全体のレベルで有効または無効になり、データベースやテーブルに対して個別に指定することはできません。
  


データベースクラスタのチェックサムの現在の状態は、SHOW data_checksumsコマンドを実行して読み取り専用設定変数data_checksumsの値を参照することで確認できます。
  


ページ破損からの復旧を試みる場合、チェックサム保護のバイパスが必要な場合があります。
これを行うには、一時的に設定パラメータignore_checksum_failureを設定します。
  
オフラインでのチェックサムの有効化





pg_checksumsアプリケーションは、オフラインのデータベースクラスタ上でデータチェックサムを有効または無効にしたり、チェックサムを検証したりできます。
   


先行書き込みログ(WAL)





先行書き込みログ（WAL）はデータの一貫性を確実にするための標準的な手法です。
詳細については、トランザクション処理について書かれた(すべてとは言いませんが)たいていの書籍に記載されています。
簡単に言うと、WALの基本的な考え方は、(テーブルやインデックスがある)データファイルへの変更は、ログへの記録、つまり、変更内容を記述したWALレコードが永続格納領域にフラッシュされた後にのみ書き出されなければならないということです。
このような手順に従って処理を行えば、たとえクラッシュが起きてもログを使ってデータベースをリカバリすることができるため、トランザクションのコミットの度にデータページをディスクにフラッシュする必要がなくなります。
リカバリの時点でデータページに対してまだ行われていない変更分は、WALレコードを使って再実行されます（これがREDOとして知られているロールフォワードリカバリです）。
   
ヒント


WALによりデータベースファイルの中身を障害後にリストアするため、信頼性のある格納領域にあるデータファイルやWALファイルに対しては、ジャーナルファイルシステムは必要ありません。
実際、特に、もしファイルシステムのデータをディスクにフラッシュさせている場合には、ジャーナリングのオーバーヘッドは性能を劣化させることがあります。
幸運なことに、ジャーナリング中のデータのフラッシュをマウントオプションにより無効にできることが多いです。例えばLinuxのext3ファイルシステムでは、data=writebackと指定します。
ジャーナルファイルシステムは障害後の起動速度を改善します。
    



WALを使用することでディスクへの書き込み回数が大幅に減少します。
と言うのも、トランザクションがコミットされたことを保証するために、そのトランザクションで変更された全てのデータファイルではなく、WALファイルだけをディスクにフラッシュする必要があるからです。
WALファイルへの書き込みはシーケンシャルに行われるため、データページをフラッシュするコストに比べWALの同期はずっと低コストになります。
これは特に、データ格納領域の様々な部分を変更する小さなトランザクションを多く扱うサーバで顕著に現れます。
さらに、サーバが小規模なトランザクションを同時に多く処理する時、WALファイルを一度fsyncすることで、多くのトランザクションをコミットすることができる場合もあります。
   


また、WALにより、「継続的アーカイブとポイントインタイムリカバリ（PITR）」で説明するオンラインバックアップとポイントインタイムリカバリをサポートできます。
WALのデータを保持することにより、そのWALデータが範囲内とする任意の時点に戻すことができます。
単純にデータベースの主となる物理バックアップをインストールし、WALを目的の時点まで単に再生することで実現できます。
さらに、物理バックアップはインスタンス化可能なデータベース状態のスナップショットである必要もありません。
ある程度の時間を経過して作成されたバックアップであっても、その期間用のWALを再生することにより、内部の不整合を修復します。
   

非同期コミット





非同期コミットとは、トランザクションをより高速に完了することができるオプションです。
もっとも最近のトランザクションがデータベースがクラッシュしてしまった場合に失われるという危険があります。
これは、多くのアプリケーションで受け入れられるトレードオフです。
  


前節で説明した通り、通常トランザクションのコミットは同期的です。
サーバはトランザクションのWALレコードが永続的格納領域にフラッシュされるまで、クライアントに成功したことを通知することを待機します。
従って、直後にサーバクラッシュといった障害があったとしても、コミットされたと報告されたトランザクションは保持されることをクライアントは保証されます。
しかし、短期のトランザクションでは、この遅延はトランザクションの処理時間の大半を占める要素となります。
非同期コミットモードを選択することは、サーバがWALレコードが実際に作成された通りにディスクに書き込まれるより前に、トランザクションの論理的な完了をもって成功したと通知することを意味します。
これにより、小規模なトランザクションでスループットがかなり向上します。
  


非同期コミットにはデータ損失の危険があります。
トランザクションの完了をクライアントに通知してからトランザクションが本当に完了する（つまり、サーバクラッシュしても損失がないことが保証される）までの間にわずかな時間が存在します。
したがって、クライアントがトランザクションが記録されているという仮定を元に外部的な動作を行う場合は、非同期コミットを使用すべきではありません。
例えば、銀行では、ATMの現金支払を記録するトランザクションで非同期コミットを決して使用していないでしょう。
しかし、イベントロギングなど多くのシナリオでは、この種の強力な保証は必要ありません。
  


非同期コミットによりもたらされる危険性は、データの破損ではなくデータの損失です。
データベースがクラッシュした場合、最後にフラッシュされた記録までWALを再生することで復旧が行われます。
このため、データベースは内部で一貫性を持った状態に復旧されますが、ディスクにフラッシュされていないトランザクションはすべてそこには反映されません。
したがって、影響を受けるのは、最後に行われたいくつかのトランザクションの損失です。
トランザクションはコミットされた順に再生されますので、一貫性が失われることはありません。
例えば、トランザクションBが以前に行われたトランザクションAの結果に依存した変更を行った場合、Bの影響が保存されている限り、Aの影響が失われることは起こり得ません。
  


ユーザは各トランザクションでコミットモードを選択することができます。
このため、同時実行されるトランザクションを同期的、および非同期の両方でコミットさせることができます。
これにより、性能とトランザクションの信頼性の確実性との間で柔軟な選択を行うことができます。
コミットモードはユーザによる設定が可能なパラメータsynchronous_commitで制御されます。
このパラメータは、設定パラメータを設定することができる全ての方法で変更することが可能です。
あるひとつのトランザクションで使用されるモードは、トランザクションのコミットが始まった時のsynchronous_commitの値に依存します。
  


例えばDROP TABLEなどの特定のユーティリティコマンドでは、synchronous_commitの設定に関わらず、強制的に同期的コミットが行われます。
これにより、サーバのファイルシステムとデータベースの論理的な状態との間の一貫性が保証されます。
PREPARE TRANSACTIONなどの二相コミットをサポートするコマンドもまた、常に同期的です。
  


もし非同期コミットとそのトランザクションのWALレコードの書き込みの間の危険期間にデータベースがクラッシュしたとすると、そのトランザクションでなされた変更は失われるでしょう。
バックグラウンドプロセス（「WALライタ」）が未書き込みのWALレコードをwal_writer_delayミリ秒毎にディスクにフラッシュしますので、この危険期間は制限されます。
WALライタは稼働中に一回ページ全体を書き込むように設計されているため、危険期間の実際の最大の長さはwal_writer_delayの３倍です。
  
注意


即時モードのシャットダウンはサーバクラッシュと同じことですので、フラッシュされていない非同期コミットが失われることになります。
   



非同期コミットではfsync = offという設定とは異なる動作になります。
fsyncはサーバ全体に関する設定であり、すべてのトランザクションの動作を変更します。
これは、PostgreSQL™における、データベースの様々な場所への書き込みを同期しようとするすべてのロジックを無効にします。
このため、システムクラッシュ（PostgreSQL™自体の障害ではなくハードウェアやオペレーティングシステムのクラッシュ）の結果、予測できないデータベース状態の破損が起こります。
非同期コミットはデータ破損の危険性はなく、多くの状況ではfsyncを無効にした場合に得られる性能向上とほぼ同等の性能を提供します。
  


またcommit_delayも非同期コミットと類似のように見えますが、これは実のところ同期コミットの一方法です。
（実際、非同期コミット時commit_delayは無視されます。）
トランザクションがWALをディスクにフラッシュする直前に、こうしたトランザクションによって実行される一度のフラッシュにより、ほぼ同時期にコミットを行う他のトランザクションの分も処理できるようにすることを目的とした遅延がcommit_delayにより発生します。
この設定は、複数のトランザクションの中でフラッシュのコストを償却するために、トランザクションが一回のフラッシュに参加しようとするグループに参加できる時間的猶予を広げる方法として考えることができます。
  

WALの設定





データベースの性能に影響するようなWALに関連した設定パラメータが複数あります。
本節では、その使い方を説明します。
サーバ設定パラメータの設定方法についての詳細は19章サーバ設定を参照してください。
  


チェックポイントは、一連のトランザクションにおいて、そのチェックポイント以前に書かれた全ての情報によりヒープとインデックスファイルがすでに更新されていることを保証する時点です。
チェックポイント時に、全てのダーティページデータはディスクにフラッシュされ、特殊なチェックポイントレコードがWALファイルに書き込まれます。
(変更されたレコードは以前にWALファイルにフラッシュされています。)
クラッシュした時、クラッシュリカバリ処理は最新のチェックポイントレコードを見つけ、WALの中でどのレコード(これはredoレコードと呼ばれています)からREDOログ操作を開始すべきかを決定します。
このチェックポイント以前になされたデータファイルの変更は、すでにディスク上にあることが保証されています。
従って、チェックポイント後、redoレコード内のそのチェックポイント以前のWALセグメントは不要となり、再利用または削除することができます。
(WALアーカイブが行われる場合、このWALセグメントは削除もしくは再利用される前に保存されなければなりません。)
  


チェックポイント処理は、全てのダーティデータページをディスクへフラッシュするため、大きなI/O負荷を発生させます。
チェックポイント処理においては、I/Oはチェックポイント開始時に始まり、次のチェックポイントが開始する前に完了するように調節されます。
これは、チェックポイント処理中の性能劣化を極力抑える効果があります。
  


サーバのチェックポインタプロセスは、自動的にチェックポイントを時々実行します。
checkpoint_timeout秒が経過するか、またはmax_wal_sizeに達するか、どちらかの条件が最初に満たされるとチェックポイントが開始されます。
デフォルトの設定では、それぞれ5分と1GBとなっています。
前回のチェックポイント以降書き出すWALがない場合、checkpoint_timeoutが経過したとしても新しいチェックポイントが飛ばされます。
(WALアーカイブ処理を使用しており、かつ、データ損失の可能性を限定するためにファイルのアーカイブ頻度の下限を設定したい場合、チェックポイント関連のパラメータよりも、archive_timeoutパラメータを調節するべきです。)
また、CHECKPOINT SQLコマンドで強制的にチェックポイントを作成することもできます。
  


checkpoint_timeoutまたはmax_wal_size、あるいはその両者を減少させると、チェックポイントはより頻繁に行われます。
これにより、やり直しに要する処理量が少なくなるので、クラッシュ後の修復は高速になります。
しかし、変更されたデータページのフラッシュがより頻繁に行われることにより増大するコストとバランスを考えなければなりません。
full_page_writesが設定されている（デフォルトです）場合、他に考慮しなければならない点があります。
データページの一貫性を保証するために、各チェックポイント後の最初に変更されるデータページは、そのページ全体の内容がログに保存されることになります。
このような場合、チェックポイントの間隔を少なくすることは、WALへの出力を増加させ、間隔を短くする目的の一部を無意味にします。
また、確実により多くのディスクI/Oが発生します。
  


チェックポイントはかなり高価なものです。
1番の理由は、この処理は現時点の全てのダーティバッファを書き出す必要があること、2番目の理由は、上記のようにその後に余計なWALの書き込みが発生することです。
そのため、チェックポイント用のパラメータを高くし、チェックポイントがあまりにも頻発することがないようにすることを勧めます。
簡単なチェックポイント用のパラメータの健全性検査として、checkpoint_warningパラメータを設定することができます。
チェックポイントの発生間隔がcheckpoint_warning秒未満の場合、max_wal_sizeの増加を勧めるメッセージがサーバのログに出力されます。
このメッセージが稀に現れたとしても問題にはなりませんが、頻出するようであれば、チェックポイントの制御パラメータを増加させるべきです。
max_wal_sizeを十分高く設定していないと、大規模なCOPY転送などのまとまった操作でこうした警告が多く発生するかもしれません。
  


ページ書き出しの集中によるI/Oシステムの溢れを防ぐために、チェックポイント期間のダーティバッファの書き出しは一定の期間に分散されます。
この期間はcheckpoint_completion_targetにより制御され、checkpoint_timeoutによって設定されるチェックポイント間隔の割合として指定されます。
I/Oの割合は、チェックポイントの起動時からcheckpoint_timeout秒が経過した時、あるいはmax_wal_sizeを超えた時、このどちらかが発生するとすぐに、チェックポイントが完了するように調整されます。
デフォルトの0.9という値では、PostgreSQL™は次のチェックポイントが始まる少し前に、前回のチェックポイント期間の約90%程度の時間で各チェックポイントが完了するものと想定できることになります。
これにより、チェックポイントのI/O負荷がチェックポイント期間を通して一定になるように、I/Oが可能な限り分散されます。
この欠点は、延長されたチェックポイントがリカバリ時間に影響をあたえることです。
リカバリ時に使用できるように、より多くのWALセグメントを保持する必要があるためです。
リカバリに必要な時間を気にするユーザは、checkpoint_timeoutを減らして、チェックポイントをより頻繁に発生しながらも、チェックポイント間隔全体にI/Oを分散させることを望むかもしれません。
または、checkpoint_completion_targetを減らすこともできますが、この場合、チェックポイント中のI/Oが多い時間帯と、チェックポイント完了後から次に予定されているチェックポイントの前までのI/Oの少ない時間帯が発生しますので、推奨されません。
checkpoint_completion_targetを最大の1.0に設定することもできますが、チェックポイントにはダーティバッファを書き出す以外の活動も含まれているため、通常はデフォルトの0.9以下に設定することをお勧めします。
1.0という設定は、ある時点でチェックポイントが完了しなくなるという結果に陥ります。
これは必要なWALセグメント数が想定以上に変動することになり、性能の劣化が発生することになります。
  


LinuxおよびPOSIXプラットフォームでは、チェックポイントによって書かれたページを、設定したバイト数の後にディスクにフラッシュさせるようにcheckpoint_flush_afterを使ってOSに強制させることができます。
この設定がない場合はこのページはOSのページキャッシュに保持されるかもしれず、チェックポイントの最後にfsyncが発行された際の速度低下を招きます。
この設定は、しばしばトランザクションの遅延を減少させるのに役立ちます。
しかし、とりわけワークロードがshared_buffersよりも大きく、かつOSのページキャッシュよりも小さい場合には性能上不利になることもあります。
  


pg_walディレクトリ内のWALセグメントファイルの数は、min_wal_size、max_wal_size、それに前回のチェックポイントで生成されたWALの量に依存します。
古いWALセグメントファイルが不要になると、削除または再利用(連番のうち、今後利用される予定の番号に名前が変更されます)されます。
WALの出力レートが短期間にピークを迎えたためにmax_wal_sizeを超えた場合、この制限以下になるまで不要なセグメントファイルが削除されます。
この制限以下になると、次のチェックポイントまでは、システムは見積もりを満たすだけのWALファイルを再利用します。
この見積は、前回のチェックポイントの際に使用されたWALファイルの移動平均に基づいています。
もし実際の使用量が見積もりを上回ると、移動平均は直ちに増加します。
これにより、平均需要というよりは、ピーク時の需要をある程度満たすことができるわけです。
min_wal_sizeは、今後のために再利用されるWALファイル数の最小値を設定します。
システムがアイドル状態にあり、WALの使用量を見積った結果、少ないWALしか必要ないとなったとしても、こうした量のWALファイルは必ず再利用されます。
  


max_wal_sizeに関わらず、最新のwal_keep_sizeメガバイトのWALファイルに加えて、もう一つのWALファイルが常に保持されます。
また、WALアーカイブを利用している場合は、古いセグメントは、アーカイブされるまでは削除も再利用もされません。
WALが生成されるペースにWALのアーカイブ処理が追いつかなかったり、archive_commandやarchive_libraryが連続して失敗すると、事態が解決するまでWALファイルはpg_walの下に蓄積されていきます。
レプリケーションスロットを使用しているスタンバイサーバが低速だったり、失敗すると、同じ現象が起きます（「レプリケーションスロット」を参照のこと）。
同様に、WAL要約が有効な場合、古いセグメントは要約されるまで保持されます。
  


アーカイブリカバリもしくはスタンバイモードにおいて、サーバでは定期的に通常運用でのチェックポイント処理と似たリスタートポイント処理を行います。これは、すでに再生されたWALを再度読み込む必要がないよう、ディスクに現在の状態を強制的に書き込み、pg_controlファイルを更新します。またpg_walディレクトリの中の古いWALセグメントを再利用できるようにします。
リスタートポイント処理はチェックポイントレコードに基づいてのみ実行されるため、プライマリ側のチェックポイント処理よりも頻繁に実行されることはありません。
リスタートポイントはスケジュールまたは外部リクエストによって要求されます。
pg_stat_checkpointerビューの中のrestartpoints_timedカウンタは最初のリスタートポイントを数え、restartpoints_reqは2番目のリスタートポイントを数えます。
リスタートポイントは、チェックポイントレコードに到達し、前回のリスタートポイント処理からcheckpoint_timeout秒以上経過している場合、または前回のリスタートポイント処理が失敗した場合にスケジュールされます。
この場合、次のリスタートポイントは15秒後にスケジュールされます。
リスタートポイントは、チェックポイントと同様の理由で要求されることがありますが、ほとんどはWALサイズがmax_wal_sizeを超えそうな場合です。
しかし、リスタートポイント処理が実行できるタイミングに制限があるため、リカバリ中には、1回のチェックポイント分のWAL相当がmax_wal_sizeを超えることが頻繁にあります。
（どのみちmax_wal_sizeはハードリミットではないので、ディスクスペースを使い尽くしてしまわないように、常に十分な余裕を持っておくべきです。）
pg_stat_checkpointerビューの中のrestartpoints_doneカウンタは、実際に実行されたリスタートポイントを数えます。
  


場合によっては、プライマリのWALサイズが急速に増加すると、例えば大規模なINSERT中のインスタンスでは、スタンバイのrestartpoints_reqカウンタがピークの増加を示すことがあります。
これは、最後のリスタートポイント以降の安全なチェックポイントレコードがスタンバイでまだ再生されていないため、WAL消費の増加による新規リスタートポイントの作成要求を実行できないために発生します。
この動作は正常であり、システムリソースの消費の増加にはつながりません。
リスタートポイントに関連するカウンタの中で、顕著なシステムリソースの消費を示すのはrestartpoints_doneカウンタのみです。
  


よく使われる2つの内部用WAL関数があります。
XLogInsertRecordとXLogFlushです。
XLogInsertRecordは共有メモリ上のWALバッファに新しいレコードを挿入します。
新しいレコードを挿入する余地がない時は、XLogInsertRecordは、満杯になったWALバッファを書き込み（カーネルキャッシュに移動）しなければいけません。
これは望ましいことではありません。
なぜなら、データベースへの低レベルの変更（例えば行の挿入）の度にXLogInsertRecordが呼ばれますが、そのような場合には変更を受けたページに対して排他ロックがかかっており、それゆえこの操作は可能な限り高速に実行されなければなりません。
さらに悪いことには、WALバッファへの書き込みの際に、さらに時間がかかる、強制的な新しいWALセグメントの生成が必要となるかもしれません。
通常、WALの書き込み、フラッシュはXLogFlush要求で実施されます。
これはたいていの場合、トランザクションコミットの際に永続的な記憶領域にトランザクションレコードがフラッシュされることを保証するために行われます。
WAL出力が大量に行われるシステムでは、XLogInsertRecordによって必要となる書き込みを防ぐほどにはXLogFlush要求が頻繁に起こらないかもしれません。
そういうシステムでは、wal_buffersパラメータを変更してWALバッファの数を増やしてください。
full_page_writesが設定され、かつ、システムが高負荷状態である場合、wal_buffersを高くすることで、各チェックポイントの直後の応答時間を滑らかにすることができます。
  


commit_delayパラメータは、XLogFlush内でロックを取得してからグループコミット上位者が何マイクロ秒休止するかを定義します。一方、グループコミット追従者は上位者の後に並びます。
すべてが上位者の結果として生ずる同期操作によりフラッシュされるように、この遅延は他のサーバプロセスがそれらのコミットレコードをWALバッファに追加することを許容します。
fsyncが有効でないか、またはcommit_siblingsより少ない他のセッションがその時点で活動しているトランザクションであれば休止は行われません。
他の何らかのセッションが直ぐにでもコミットするという起こりそうにない時の休止を避けるものです。
いくつかのプラットフォームにおいて、休止要求の分解能は10ミリ秒で、１から10000マイクロ秒の間のcommit_delayの設定は、どの値でも同じ効果となることを覚えておいてください。
いくつかのプラットフォームで、休止操作はパラメータによって要求された時間よりわずかに長くなることも覚えておいてください。
  


commit_delayの目的は、それぞれのフラッシュ操作のコストを並列にコミット中のトランザクションに（潜在的にはトランザクションの待ち時間と引き換えに）分散させることにあり、うまく設定を行うためには、まずそのコストを測る必要があります。
そのコストが高ければ高いほど、トランザクションのスループットがある程度向上するという意味において、commit_delayの効果がより増すことが期待できます。
pg_test_fsync(1)プログラムは、一つのWALフラッシュが必要とするマイクロ秒単位の平均時間を計測するために使用可能です。
プログラムが報告する単一の8kB書き込み操作のあとのフラッシュ平均時間の２分の１の値は、しばしばcommit_delayの最も効果的な設定です。
従って、この値は特定の作業負荷のための最適化を行うときに使用するための手始めとして推奨されます。
WALが高遅延の回転ディスクに格納されているときは、commit_delayのチューニングは特に有効ですが、半導体ドライブまたはバッテリバックアップされている書き込みキャッシュ付きのRAIDアレイのような、特に同期時間が高速な格納メディア上であっても大きなメリットがある場合があります。
しかし、このことは、代表的作業負荷に対してきちんと検証しておくべきです。
commit_siblingsの高い値は、これらの状況で使用すべきで、一方より小さなcommit_siblingsの値は高遅延メディア上でしばしば有用です。
余りにも高い値のcommit_delayを設定すると、トランザクション遅延を増加させかねないことになり、トランザクションの総スループットが低下します。
  


commit_delayが(デフォルトの)ゼロに設定されても、グループコミットが起こることがあります。
しかし、それぞれのグループは前回のフラッシュ操作（あった場合）が発生していた期間中に、それぞれのコミットレコードをフラッシュする必要に至ったセッションのみから成ります。
クライアントが多い状況では、「gangway effect」が起こる傾向があり、そのためcommit_delayがゼロであってもグループコミットの効果が著しく、従って、commit_delayを明示的に設定しても役立ちません。
commit_delayの設定は（１）複数の同時にコミット中のトランザクションが存在すること、そして（２）コミット頻度によりある程度までスループットが制限されている場合に役立ちます。
しかし、回転待ち時間が長い場合、この設定はわずか二つのクライアントにおいてさえトランザクションスループットを向上させる効果があるかもしれません（言いかえれば、一つの兄弟（sibling）トランザクションを所有する単一のコミット中のクライアントです）。
  


wal_sync_methodパラメータはPostgreSQL™がカーネルに対してWAL更新のディスクへの書き込みを要求する方法を決定します。
fsync_writethroughを除き、どういう設定でも信頼性は同じはずです。fsync_writethroughは他のオプションがそうしないときでも、時々ディスクキャッシュの書き出しを強制することができます。
しかしながら、プラットフォームによってどれが一番速いのかがまったく違います。
pg_test_fsync(1)プログラムを使って異なるオプションの速度テストを行うことができます。
ちなみに、このパラメータはfsyncが無効になっている場合は役に立ちません。
  


wal_debug設定パラメータを有効にすることで、XLogInsertRecordとXLogFlushというWAL呼び出しは毎回サーバログにログが残ります
（このパラメータをサポートするようにPostgreSQL™をコンパイルする必要があります）。
将来このオプションはより一般的な機構に置き換わる可能性があります。
  


WALデータをディスクに書き込むための2つの内部関数があります。
XLogWriteとissue_xlog_fsyncです。
track_wal_io_timingが有効な場合、XLogWriteがWALデータをディスクに書き込む合計時間と、issue_xlog_fsyncがWALデータをディスクに同期する合計時間は、それぞれpg_stat_ioにおけるobject walのwrite_timeおよびfsync_timeとして数えられます。
XLogWriteは、WALバッファをディスクに書き込んでissue_xlog_fsyncを呼び出すために、通常はXLogInsertRecord（WALバッファに新しいレコード用の領域がない場合）、XLogFlush、WALライタによって呼び出されます。
issue_xlog_fsyncは通常、WALファイルをディスクに同期するためにXLogWriteによって呼び出されます。
wal_sync_methodがopen_datasyncまたはopen_syncの場合、XLogWriteでの書き込み操作はディスクに書き込まれたWALデータの同期を保証し、issue_xlog_fsyncは何も行いません。
wal_sync_methodがfdatasync、fsync、またはfsync_writethroughのいずれかの場合、書き込み操作はWALバッファをカーネルキャッシュに移動し、issue_xlog_fsyncはそれらをディスクに同期します。
track_wal_io_timingの設定に関係なく、XLogWriteの書き込み回数とissue_xlog_fsyncのディスクへのWALデータの同期回数も、それぞれpg_stat_ioにおけるobject walのwritesとfsyncsとしてカウントされます。
  


recovery_prefetchパラメータは、すぐに必要になるが現在PostgreSQL™のバッファプールにないディスクブロックの読み取りを開始するようカーネルに指示することにより、リカバリ中の入出力待ち時間を減らすために使用できます。
maintenance_io_concurrencyとwal_decode_buffer_sizeの設定は、プリフェッチの並列度と先読み量をそれぞれ制限します。
デフォルトではtryに設定されており、先読み指示の発行をサポートするシステムでこの機能が有効になります。
  

WALの内部





WALは自動的に有効になります。
WALファイルが必要とするディスク容量を確保することと、必要なチューニングを実施すること（「WALの設定」を参照）以外は、管理者は何もする必要はありません。
  


新しいレコードが作成されるごとに、WALレコードがWALファイルに追加されます。
挿入位置はログシーケンス番号(LSN)によって記録されます。LSNはWALのバイトオフセットで、新しいレコードごとに単調増加します。
LSN値は、pg_lsnデータ型として返されます。
2つのLSN値を比較することでWALデータの差分量を計算することができるので、レプリケーションやリカバリの進捗状況を測定できます。
  


WALファイルは、データディレクトリ以下のpg_walディレクトリに、通常16メガバイトのサイズを持つセグメントファイルの集合として格納されています(ただし、このサイズはinitdbの--wal-segsizeオプションで変更できます)。
各セグメントは通常8キロバイトのページに分割されます(このサイズは--with-wal-blocksizeというconfigureオプションで変更できます)。
WALレコード用のヘッダはaccess/xlogrecord.hに記述されています。レコードの内容は、ログの対象となるイベントの種類によって異なります。
セグメントファイルは名前として000000010000000000000001から始まる、常に増加する数が与えられています。
数字は巡回しませんが、利用可能な数字を使い尽くすには非常に長い時間がかかるはずです。
  


主要なデータベースファイルが置いてあるディスクとは別のディスクにWALを置くと利点があります。
これはpg_walディレクトリを別の場所に（もちろんサーバを終了しておいてから）移動し、主データディレクトリ以下の元々の場所から新しい場所へのシンボリックリンクを張ることによって可能となります。
  


WALの目的である、確実にデータベースレコードが変更される前にログが書き出されることは、実際にはキャッシュにしかデータがなく、ディスクには格納されていない時にディスクドライブが格納に成功したとカーネルに虚偽の報告を行うことによって失われる可能性があります。
そのような状況では、電源が落ちた際に、復旧不可能なデータ破損が起こることがあります。
管理者は、PostgreSQL™のWALファイルを保持しているディスク装置がそのような嘘の報告をしないように保証するべきです。(「信頼性」を参照して下さい。)
  


チェックポイントが実行され、WALがフラッシュされた後、チェックポイントの位置はpg_controlに保存されます。
したがって、リカバリの開始時は、サーバはまずpg_controlを読み、次にチェックポイントレコードを読みます。
そして、チェックポイントレコード内で示されたWALの位置から前方にスキャンしてREDO処理を行います。
データページの内容全体は、チェックポイント後の最初のページ変更時にWAL内に保存されますので(full_page_writesパラメータが無効にされていないという前提です)、そのチェックポイント以降に変更された全てのページは一貫した状態に復旧されます。
  


pg_controlが壊れた場合に備え、既存のWALセグメントを逆順に読み（すなわち新しいものから古いものへと）、最終チェックポイントを見つける方法を実際には実装した方が良いと思われます。
まだこれはできていません。
pg_controlはかなり小さなもの（1ディスクページ未満）ですので、一部のみ書き込みされるという問題は起こりません。
またこの書き込みの時点では、pg_control自体の読み込みができないことによるデータベースエラーという報告はありません。
このため、pg_controlは理屈では弱点ですが、実質問題になりません。
  

第29章 論理レプリケーション





論理レプリケーションとは、レプリケーションアイデンティティ(replication identity)（通常は主キーです）に基づき、データオブジェクトと、それに対する変更を複製する手法です。
この論理という用語は、正確なブロックアドレスを使い、バイト同士の複製を行う物理レプリケーションと対比的に使用しています。
PostgreSQLは両方の仕組みを同時にサポートします。
26章高可用性、負荷分散およびレプリケーションをご覧ください。
論理レプリケーションにより、データの複製とセキュリティに対するきめの細かい制御が可能になります。
 


論理レプリケーションは、ひとつのパブリッシャー(publisher)ノード上の一つ以上のパブリケーション(publications)を購読する一つ以上のサブスクライバー(subscribers)を伴う、パブリッシュ(publish)とサブスクライブ(subscribe)モデルを使用します。
サブスクライバーは、サブスクライブするパブリケーションからデータを取得し、再パブリッシュしてカスケードレプリケーションや、更に複雑な構成を構築することができます。
 


通常、テーブルの論理レプリケーションが開始されると、PostgreSQLはパブリッシャーデータベースのテーブルデータのスナップショットを取得し、それをサブスクライバーにコピーします。
完了すると、最初のコピー以降のパブリッシャーの変更がサブスクライバーに継続的に送られます。
パブリッシャーと同じ順序でデータを適用するため、一つのサブスクリプション内のパブリケーションに対するトランザクションの一貫性が保証されます。
この方式によるデータレプリケーションは、トランザクショナルレプリケーション(transactional replication)と呼ばれることがあります。
 


典型的な論理レプリケーションの利用例には、以下のようなものがあります。

  
	

一つのデータベース、あるいはデータベースの一部に起こった更新の差分を、発生都度サブスクライバーに送る。
    

	

サブスクライバーに更新が到着した時に、それぞれの更新に対してトリガを起動する。
    

	

複数のデータベースを一つのデータベースに統合する。（たとえば分析目的で。）
    

	

異なるメジャーバージョンのPostgreSQL間でレプリケーションする。
    

	

異なるプラットフォーム上のPostgreSQLインスタンス間（たとえばLinuxからWindows）でレプリケーションする。
    

	

異なるユーザのグループに対して、複製されたデータにアクセスさせる。
    

	

複数のデータベース間でデータベースの一部を共有する。
    




 


サブスクライバーのデータベースは、他のPostgreSQLインスタンスと同様に振る舞い、自分用のパブリケーションを定義することにより、他のデータベースに対するパブリッシャーとして利用できます。
アプリケーションがそのサブスクライバーを読み取り専用として取り扱うときには、単独のサブスクリプションからはコンフリクトは発生しません。
一方、アプリケーションあるいは他のサブスクライバーから同じテーブルに書き込みが起こるとすると、コンフリクトが発生する可能性があります。
 
パブリケーション





パブリケーションは、どのような物理レプリケーションのプライマリにも定義できます。
パブリケーションが定義されたノードは、パブリッシャーと呼ばれます。
パブリケーションは、テーブルか、テーブルのグループから生成された更新の集合であると同時に、更新セットあるいはレプリケーションセットであるとも言えます。
一つのパブリケーションは一つのデータベースにのみ存在します。
  


パブリケーションはスキーマとは異なり、テーブルがどのようにアクセスされるかには影響しません。
必要ならば、テーブルを複数のパブリケーションに追加できます。
今のところパブリケーションはテーブルとスキーマのすべてのテーブルのみを含むことができます。
パブリケーションがALL TABLESで作られた場合を除き、オブジェクトは明示的に追加されなければなりません。
  


パブリケーションは、生成される更新を、INSERT、UPDATE、DELETE、TRUNCATEのうちのどのような組み合わせにも制限することができます。
これはトリガが特定のイベント型によって起動されることに似ています。
デフォルトでは、すべての操作タイプがレプリケーションされます。
これらのパブリケーション指定はDML操作にのみ適用され、初期データ同期コピーには影響しません（行フィルタはTRUNCATEには影響しません。「行フィルタ」を参照してください）
  


すべてのパブリケーションは、複数のサブスクライバーを持つことができます。
  


パブリケーションは、CREATE PUBLICATIONコマンドで作成し、対応するコマンドで変更や削除ができます。
  


個々のテーブルはALTER PUBLICATIONで動的に追加削除できます。
ADD TABLEおよびDROP TABLE操作はトランザクションの対象です。
ひとたびトランザクションがコミットされれば、正しいスナップショットでテーブルのレプリケーションが開始あるいは終了されます。
  
レプリカアイデンティティ





パブリッシュされたテーブルは、UPDATEとDELETEをレプリケーションできるようにするために、レプリカアイデンティティの設定を含んでいなければなりません。
そうすることにより、サブスクライバー側で更新または削除する対象の正しい行が特定できるようになります。
   


デフォルトでは主キーがあれば、それがレプリカアイデンティティになります。
他に、一意インデックス（追加の要件を伴います）もレプリカアイデンティティにできます。
テーブルに適切なキーがなければ、レプリカアイデンティティをFULLにできます。これは、行全体がキーになることを意味します。
レプリカアイデンティティFULLを指定すると、行の検索にサブスクライバー側でインデックスが使えます。
候補となるインデックスはBツリーまたはハッシュでなければならず、部分的であってはなりません。そして、左端のインデックスのフィールドはパブリッシュされたテーブル列を参照する（式でない）列でなければなりません。
一意でないインデックスの属性に関するこれらの制限は、主キーに強制される制限の一部に準拠しています。
そのような適切なインデックスがない場合には、サブスクライバー側での検索は非常に非効率なる可能性があるので、レプリカアイデンティティFULLは他の解決方法がない場合のみの代替手段にすべきです。
   


FULL以外のレプリカアイデンティティがパブリッシャー側に設定されている場合、同じか、より少ない列を含むレプリカアイデンティティがサブスクライバー側に設定されていなければなりません。
   


レプリカアイデンティティがNOTHING、主キーのないDEFAULT、またはUSING INDEXとして削除されたインデックスが登録されたテーブルは、UPDATEまたはDELETE操作をサポートできません。
これらの操作を試みると、パブリッシャーでエラーが報告されます。
   


INSERT操作は、レプリカアイデンティティの設定に関わらず実行されます。
   


レプリカアイデンティティを設定する詳細な方法については、ALTER TABLE...REPLICA IDENTITYをご覧ください。
   



サブスクリプション





サブスクリプションは論理レプリケーションの下流側です。
サブスクリプションが定義されたノードはサブスクライバーとして参照されます。
サブスクリプションは他のデータベースへの接続と、サブスクリプション対象の一つ以上のパブリケーションの集合を定義します。
  


サブスクライバーのデータベースは、他のPostgreSQLインスタンスと同様に振る舞い、自分用のパブリケーションを定義することにより、他のデータベースに対するパブリッシャーとして利用できます。
  


サブスクライバーノードは、必要ならば複数のサブスクリプションを持つことができます。
一組のパブリッシャーとサブスクライバーの間で複数のサブスクリプションを定義することもできますが、サブスクライブしたパブリケーションオブジェクトが重複しないように注意が必要です。
  


各々のサブスクリプションは、一つのレプリケーションスロット（「レプリケーションスロット」を参照）を通じて更新が通知されます。
既存のテーブルデータを初期同期するために、追加でレプリケーションスロットが必要になることもあります。それらはデータ同期の終了時に削除されます。
  


論理レプリケーションのサブスクリプションは、同期レプリケーション（「同期レプリケーション」参照）のスタンバイであっても構いません。
スタンバイ名称はデフォルトではサブスクリプション名となります。
サブスクリプションのコネクション情報の中のapplication_nameを別の名前として指定することもできます。
  


現在のユーザがスーパーユーザならば、サブスクリプションはpg_dumpでダンプできます。
そうでない場合には、警告が出力され、サブスクリプションはスキップされます。
非スーパーユーザはすべてのサブスクリプション情報を、pg_subscriptionカタログから読み出せないからです。
  


サブスクリプションはCREATE SUBSCRIPTIONで追加し、ALTER SUBSCRIPTIONを使って、いつでも停止、再開でき、そしてDROP SUBSCRIPTIONで削除できます。
  


サブスクリプションが削除され、そして再作成されると、同期情報は失われます。
このことは、後でデータを再同期しなければならないことを意味します。
  


スキーマ定義情報はレプリケーションされないので、パブリッシュするテーブルはサブスクライバーに存在しなければなりません。
通常のテーブルだけがレプリケーションの対象です。
たとえば、ビューはレプリケーションできません。
  


パブリッシャーとサブスクライバーの間でのテーブルの照合は、完全修飾されたテーブル名に基づいて行われます。
サブスクライバーで異なる名前になっているテーブルに対するレプリケーションは、サポートされていません。
  


テーブルの列も名前で照合されます。
サブスクライバーのテーブルでの列の順序はパブリッシャーと一致している必要はありません。
データのテキスト表現列が対象の型に変換可能である限り、列のデータ型も一致している必要がありません。
例えば、integer型の列からbigint型の列にレプリケーションすることができます。
対象テーブルはパブリッシュされたテーブルにない追加の列を持つこともできます。
そうした列には対象テーブルの定義の指定に従ってデフォルト値が挿入されます。
しかしながら、バイナリ形式の論理レプリケーションはより制限的です。
詳細は、CREATE SUBSCRIPTIONのbinaryオプションを参照してください。
  
レプリケーションスロットの管理





前述のように、各々の（有効な）サブスクリプションは、リモート（パブリッシュしている）側のレプリケーションスロットに対する変更を受信します。
   


追加的なテーブル同期スロットは通常一時的なもので、初期テーブル同期を実行するために内部的に作成され、不要になった時に自動的に削除されます。
これらのテーブル同期スロットには「pg_%u_sync_%u_%llu」（パラメータは、サブスクリプションoid、テーブルrelid、システム識別子sysid）という名前が生成されます。
   


通常、リモートのレプリケーションスロットはCREATE SUBSCRIPTIONでサブスクリプションが作成されるときに自動的に作成され、サブスクリプションがDROP SUBSCRIPTIONで削除されるときに自動的に削除されます。
しかしながら、状況によっては、サブスクリプションとその下にあるレプリケーションスロットを別々に操作することが有用であったり必要であったりします。
以下にいくつかシナリオを示します。

    
	

サブスクリプションを作る際、レプリケーションスロットがすでに存在しています。
この場合、create_slot = falseオプションを使ってサブスクリプションを作成し、既存のスロットと関連付けることができます。
      

	

サブスクリプションを作成する際に、リモートホストが接続できない状態にあるか、不明な状況にあります。
こうした時は、connect = falseを使ってサブスクリプションを作成することができます。
リモートホストにはまったく接続しません。
これは、pg_dumpが使っている方法です。
サブスクリプションを有効にする前に、リモートホストのレプリケーションスロットを手動で作成しなければなりません。
      

	

サブスクリプションを削除する際に、レプリケーションスロットを維持する必要があります。
サブスクライバーのデータベースが別のホストに移動中で、移動後にそこからデータベースを起動するときに有効です。
この場合、サブスクリプションを削除する前に、ALTER SUBSCRIPTIONでそのスロットを切り離します。
      

	

サブスクリプションを削除する際に、リモートホストに接続できません。
この場合、サブスクリプションを削除する前に、ALTER SUBSCRIPTIONでそのスロットを切り離しを試みます。
リモートデータベースインスタンスが存在しない場合は、これ以上の操作は必要ありません。
しかし、単にリモートデータベースに接続できない状態ならば、レプリケーションスロット（および、未だ残っている全てのテーブル同期スロット）を手動で削除する必要があります。
そうでなければ、WALが保存され続け、いずれディスクを埋め尽くすかもしれません。
そのような状態は注意深く調査する必要があります。
      




   

例: 論理レプリケーションの設定





パブリッシャーでいくつかテストテーブルを作成します。


/* pub # */ CREATE TABLE t1(a int, b text, PRIMARY KEY(a));
/* pub # */ CREATE TABLE t2(c int, d text, PRIMARY KEY(c));
/* pub # */ CREATE TABLE t3(e int, f text, PRIMARY KEY(e));



サブスクライバーに同じテーブルを作成します。


/* sub # */ CREATE TABLE t1(a int, b text, PRIMARY KEY(a));
/* sub # */ CREATE TABLE t2(c int, d text, PRIMARY KEY(c));
/* sub # */ CREATE TABLE t3(e int, f text, PRIMARY KEY(e));



パブリッシャー側のテーブルにデータを挿入します。


/* pub # */ INSERT INTO t1 VALUES (1, 'one'), (2, 'two'), (3, 'three');
/* pub # */ INSERT INTO t2 VALUES (1, 'A'), (2, 'B'), (3, 'C');
/* pub # */ INSERT INTO t3 VALUES (1, 'i'), (2, 'ii'), (3, 'iii');



テーブルのパブリケーションを作成します。
パブリケーションpub2とpub3aでは、一部のパブリッシュ操作が許可されません。
パブリケーションpub3bには行フィルタがあります（「行フィルタ」を参照）。


/* pub # */ CREATE PUBLICATION pub1 FOR TABLE t1;
/* pub # */ CREATE PUBLICATION pub2 FOR TABLE t2 WITH (publish = 'truncate');
/* pub # */ CREATE PUBLICATION pub3a FOR TABLE t3 WITH (publish = 'truncate');
/* pub # */ CREATE PUBLICATION pub3b FOR TABLE t3 WHERE (e > 5);



パブリケーションのサブスクリプションを作成します。
サブスクリプションsub3は、pub3aとpub3bの両方をサブスクライブします。
デフォルトでは、すべてのサブスクリプションによって初期データがコピーされます。


/* sub # */ CREATE SUBSCRIPTION sub1
/* sub - */ CONNECTION 'host=localhost dbname=test_pub application_name=sub1'
/* sub - */ PUBLICATION pub1;
/* sub # */ CREATE SUBSCRIPTION sub2
/* sub - */ CONNECTION 'host=localhost dbname=test_pub application_name=sub2'
/* sub - */ PUBLICATION pub2;
/* sub # */ CREATE SUBSCRIPTION sub3
/* sub - */ CONNECTION 'host=localhost dbname=test_pub application_name=sub3'
/* sub - */ PUBLICATION pub3a, pub3b;



パブリケーションのパブリッシュ操作に関係なく、初期テーブルデータがコピーされることに注意してください。


/* sub # */ SELECT * FROM t1;
 a |   b
---+-------
 1 | one
 2 | two
 3 | three
(3 rows)

/* sub # */ SELECT * FROM t2;
 c | d
---+---
 1 | A
 2 | B
 3 | C
(3 rows)



さらに、最初のデータコピーではパブリッシュ操作が無視され、パブリケーションpub3aには行フィルタがないため、コピーされたテーブルt3には、パブリケーションpub3bの行フィルタに一致しない場合でもすべての行が含まれていることになります。


/* sub # */ SELECT * FROM t3;
 e |  f
---+-----
 1 | i
 2 | ii
 3 | iii
(3 rows)



パブリッシャー側のテーブルにさらにデータを挿入します。


/* pub # */ INSERT INTO t1 VALUES (4, 'four'), (5, 'five'), (6, 'six');
/* pub # */ INSERT INTO t2 VALUES (4, 'D'), (5, 'E'), (6, 'F');
/* pub # */ INSERT INTO t3 VALUES (4, 'iv'), (5, 'v'), (6, 'vi');



パブリッシャー側のデータは次のようになります。


/* pub # */ SELECT * FROM t1;
 a |   b
---+-------
 1 | one
 2 | two
 3 | three
 4 | four
 5 | five
 6 | six
(6 rows)

/* pub # */ SELECT * FROM t2;
 c | d
---+---
 1 | A
 2 | B
 3 | C
 4 | D
 5 | E
 6 | F
(6 rows)

/* pub # */ SELECT * FROM t3;
 e |  f
---+-----
 1 | i
 2 | ii
 3 | iii
 4 | iv
 5 | v
 6 | vi
(6 rows)



通常のレプリケーションでは、適切なパブリッシュ操作が使用されていることに注意してください。
これは、パブリケーションpub2およびpub3aがINSERTをレプリケーションしないことを意味します。
また、パブリケーションpub3bはpub3bの行フィルタに一致するデータのみをレプリケーションします。
サブスクライバー側のデータは次のようになります:


/* sub # */ SELECT * FROM t1;
 a |   b
---+-------
 1 | one
 2 | two
 3 | three
 4 | four
 5 | five
 6 | six
(6 rows)

/* sub # */ SELECT * FROM t2;
 c | d
---+---
 1 | A
 2 | B
 3 | C
(3 rows)

/* sub # */ SELECT * FROM t3;
 e |  f
---+-----
 1 | i
 2 | ii
 3 | iii
 6 | vi
(4 rows)


例: レプリケーションスロットの遅延作成





リモートレプリケーションスロットが自動的に作成されない場合（例えば「レプリケーションスロットの管理」）があり、その場合、サブスクリプションをアクティブにする前に、ユーザが手動で作成しなければなりません。
スロットを作成してサブスクリプションをアクティブにする手順を、次の例に示します。
これらの例では、標準のロジカルデコーディング出力プラグイン（pgoutput）を指定しています。これは、組み込みの論理レプリケーションが使用するものです。
   


まず、サンプルで使用するパブリケーションを作成します。


/* pub # */ CREATE PUBLICATION pub1 FOR ALL TABLES;



例1: サブスクリプションがconnect = falseと記述されている場合
   

    
	

サブスクリプションを作成します。


/* sub # */ CREATE SUBSCRIPTION sub1
/* sub - */ CONNECTION 'host=localhost dbname=test_pub'
/* sub - */ PUBLICATION pub1
/* sub - */ WITH (connect=false);
WARNING:  subscription was created, but is not connected
HINT:  To initiate replication, you must manually create the replication slot, enable the subscription, and refresh the subscription.


	

パブリッシャーで、スロットを手動で作成します。
CREATE SUBSCRIPTION時に名前が指定されていないため、作成するスロットの名前はサブスクリプション名と同じになります。たとえば、"sub1"です。


/* pub # */ SELECT * FROM pg_create_logical_replication_slot('sub1', 'pgoutput');
 slot_name |    lsn
-----------+-----------
 sub1      | 0/19404D0
(1 row)


	

サブスクライバーで、サブスクリプションのアクティブ化を完了します。
これにより、pub1のテーブルはレプリケーションを開始します。


/* sub # */ ALTER SUBSCRIPTION sub1 ENABLE;
/* sub # */ ALTER SUBSCRIPTION sub1 REFRESH PUBLICATION;





   


例2: サブスクリプションがconnect = falseと記述されているが、slot_nameオプションも指定されている場合。
    
	

サブスクリプションを作成します。


/* sub # */ CREATE SUBSCRIPTION sub1
/* sub - */ CONNECTION 'host=localhost dbname=test_pub'
/* sub - */ PUBLICATION pub1
/* sub - */ WITH (connect=false, slot_name='myslot');
WARNING:  subscription was created, but is not connected
HINT:  To initiate replication, you must manually create the replication slot, enable the subscription, and refresh the subscription.


	

パブリッシャーで、CREATE SUBSCRIPTION時に指定したものと同じ名前を使用して、スロットを手動で作成します。例えば、"myslot"です。


/* pub # */ SELECT * FROM pg_create_logical_replication_slot('myslot', 'pgoutput');
 slot_name |    lsn
-----------+-----------
 myslot    | 0/19059A0
(1 row)


	

サブスクライバーでは、残りのサブスクリプションのアクティブ化手順は以前と同じです。


/* sub # */ ALTER SUBSCRIPTION sub1 ENABLE;
/* sub # */ ALTER SUBSCRIPTION sub1 REFRESH PUBLICATION;





   


例3: サブスクリプションがslot_name = NONEを指定している場合
    
	

サブスクリプションを作成します。
 slot_name = NONEの場合、enabled = falseとcreate_slot = falseも必要です。


/* sub # */ CREATE SUBSCRIPTION sub1
/* sub - */ CONNECTION 'host=localhost dbname=test_pub'
/* sub - */ PUBLICATION pub1
/* sub - */ WITH (slot_name=NONE, enabled=false, create_slot=false);


	

パブリッシャーで、"myslot"などの名前を使用してスロットを手動で作成します。


/* pub # */ SELECT * FROM pg_create_logical_replication_slot('myslot', 'pgoutput');
 slot_name |    lsn
-----------+-----------
 myslot    | 0/1905930
(1 row)


	

サブスクライバーで、先ほど作成したスロット名にサブスクリプションを関連付けます。


/* sub # */ ALTER SUBSCRIPTION sub1 SET (slot_name='myslot');


	

残りのサブスクリプションのアクティブ化手順は、以前と同じです。


/* sub # */ ALTER SUBSCRIPTION sub1 ENABLE;
/* sub # */ ALTER SUBSCRIPTION sub1 REFRESH PUBLICATION;





   


論理レプリケーションのフェイルオーバー





パブリッシャーノードがダウンした場合でも、サブスクライバーノードがパブリッシャーノードからのデータの複製を継続できるようにするには、パブリッシャーノードに対応する物理スタンバイが必要です。
サブスクリプションに対応するプライマリサーバの論理スロットは、サブスクリプションの作成時にfailover = trueを指定することで、スタンバイサーバと同期させることができます。
詳細は「レプリケーションスロットの同期」を参照してください。
failoverパラメータを有効にすると、スタンバイ昇格後のサブスクリプションのシームレスな移行が保証されます。
サブスクリプションは新しいプライマリサーバ上のパブリケーションへのサブスクライブを継続できます。
  


スロット同期ロジックは非同期にコピーを行うため、フェイルオーバーが発生する前にレプリケーションスロットがスタンバイサーバに同期されているかを確認する必要があります。
フェイルオーバーの成功を保証するためには、スタンバイサーバはサブスクライバーよりも先行していなければいけません。
これはsynchronized_standby_slotsを設定することで実現できます。
  


スタンバイサーバがフェイルオーバーの準備ができていることを確認するためには、次の手順に従って、サブスクライバーに必要なすべての論理レプリケーションスロットがスタンバイサーバと同期されていることを検証します。
  
	

サブスクライバーノードで、次のSQLを使用して、昇格する予定のスタンバイに同期する必要があるレプリケーションスロットを特定します。
このクエリは、フェイルオーバーが有効になっているサブスクリプションと関連付けられている、関連するレプリケーションスロットを返します。


/* sub # */ SELECT
               array_agg(quote_literal(s.subslotname)) AS slots
           FROM  pg_subscription s
           WHERE s.subfailover AND
                 s.subslotname IS NOT NULL;
 slots
-------
 {'sub1','sub2','sub3'}
(1 row)


	

サブスクライバーノードで、次のSQLを使用して、昇格する予定のスタンバイに同期する必要があるテーブル同期スロットを特定します。
このクエリは、フェイルオーバーが有効になっているサブスクリプションを持つ各データベースで実行する必要があります。
テーブル同期スロットは、テーブル同期が終了している場合にのみ同期されることに注意してください（「pg_subscription_rel」を参照）。
その他の場合では、テーブル同期スロットが同期されることを保証する必要はありません。これらは破棄されるか、新しいプライマリサーバで再作成されるためです。


/* sub # */ SELECT
               array_agg(quote_literal(slot_name)) AS slots
           FROM
           (
               SELECT CONCAT('pg_', srsubid, '_sync_', srrelid, '_', ctl.system_identifier) AS slot_name
               FROM pg_control_system() ctl, pg_subscription_rel r, pg_subscription s
               WHERE r.srsubstate = 'f' AND s.oid = r.srsubid AND s.subfailover
           );
 slots
-------
 {'pg_16394_sync_16385_7394666715149055164'}
(1 row)


	

上記で特定した論理レプリケーションスロットがスタンバイに存在し、フェイルオーバーの準備ができていることを確認します。


/* standby # */ SELECT slot_name, (synced AND NOT temporary AND invalidation_reason IS NULL) AS failover_ready
               FROM pg_replication_slots
               WHERE slot_name IN
                   ('sub1','sub2','sub3', 'pg_16394_sync_16385_7394666715149055164');
  slot_name                                 | failover_ready
--------------------------------------------+----------------
  sub1                                      | t
  sub2                                      | t
  sub3                                      | t
  pg_16394_sync_16385_7394666715149055164   | t
(4 rows)






すべてのスロットがスタンバイサーバに存在し、上記のSQLクエリの結果（failover_ready）が真である場合、既存のサブスクリプションは、新しいプライマリサーバ上のパブリケーションへのサブスクライブを継続できます。
  


前述の手続きのうち最初の2つの手順は、PostgreSQL™サブスクライバーを対象としています。
これらの手順は、フェイルオーバーの後に指定されたスタンバイに接続する各サブスクライバーノード上で実行することをお勧めします。これにより、レプリケーションスロットの完全なリストを取得できます。
このリストはフェイルオーバーの準備状況の確認のため、手順3で検証されます
一方、非PostgreSQL™サブスクライバーは、独自の方法を使用して、それぞれのサブスクリプションで使用されるレプリケーションスロットを識別できます。
  


計画的なフェイルオーバー中など、場合によっては、PostgreSQL™または非PostgreSQL™のすべてのサブスクライバーが、特定のスタンバイサーバへのフェイルオーバーの後にレプリケーションを継続できることを確認する必要があります。
このような場合は、最初の2つの手順の代わりに以下のSQLを使用して、プライマリ上のどのレプリケーションスロットを昇格対象のスタンバイに同期する必要があるかを特定します。
この問い合わせは、すべてのフェイルオーバーが有効なサブスクリプションに紐づけられた関連するレプリケーションスロットを返します。
  



/* primary # */ SELECT array_agg(quote_literal(r.slot_name)) AS slots
               FROM pg_replication_slots r
               WHERE r.failover AND NOT r.temporary;
 slots
-------
 {'sub1','sub2','sub3', 'pg_16394_sync_16385_7394666715149055164'}
(1 row)


行フィルタ





デフォルトでは、すべてのパブリッシュされたテーブルのすべてのデータが適切なサブスクライバーにレプリケーションされます。
レプリケーションされたデータは、行フィルタを使用して削減できます。
ユーザは、動作、セキュリティまたはパフォーマンス上の理由で行フィルタの使用を選択できます。
パブリッシュされたテーブルに行フィルタが設定されている場合、行はそのデータが行フィルタ式を満たす場合にのみレプリケーションされます。
これにより、一連のテーブルを部分的にレプリケーションできます。
行フィルタはテーブルごとに定義されます。
データのフィルタ処理が必要なパブリッシュされたテーブルごとに、テーブル名の後にWHERE句を使用します。
WHERE句はカッコで囲む必要があります。
詳細はCREATE PUBLICATION(7)を参照してください。
  
行フィルタルール





行フィルタは、変更を発行する前に適用されます。
行フィルタがfalseまたはNULLと評価される場合、行はレプリケーションされません。
WHERE句の式は、レプリケーション接続に使用されるロールと同じロール(CREATE SUBSCRIPTION(7)のCONNECTION句で指定されたロール)で評価されます。
TRUNCATEコマンドに対しては、行フィルタは無効です。
   

式の制限





WHERE句では単純な式のみを使用できます。
ユーザ定義関数、演算子、型、照合、システム列参照、不変でない組み込み関数は使用できません。
   


パブリケーションがUPDATEまたはDELETE操作をパブリッシュする場合、行フィルタWHERE句には、レプリカアイデンティティの対象となる列のみを含める必要があります(REPLICA IDENTITYを参照)。
パブリケーションがINSERT操作のみをパブリッシュする場合、行フィルタWHERE句は任意の列を使用できます。
   

UPDATE変換





UPDATEが処理されるたびに、行フィルタ式は古い行と新しい行の両方に対して評価されます(つまり、更新前後のデータを使用します)。
両方の評価がtrueの場合、UPDATE変更がレプリケーションされます。
両方の評価がfalseの場合、変更はレプリケーションされません。
古い行と新しい行のいずれか1つのみが行フィルタ式に一致する場合、データの不整合を回避するためにUPDATEがINSERTまたはDELETEに変換されます。
サブスクライバーの行は、パブリッシャーの行フィルタ式で定義されている内容を反映する必要があります。
   


古い行が行フィルタ式を満たしていて(サブスクライバーに送信された)、新しい行が満たさない場合、データの整合性の観点から、古い行はサブスクライバーから削除される必要があります。
したがって、UPDATEはDELETEに変換されます。
   


古い行が行フィルタ式を満たさず(サブスクライバーに送信されなかった)、新しい行がそれを満たす場合は、データの整合性の観点から、新しい行をサブスクライバーに追加する必要があります。
したがって、UPDATEはINSERTに変換されます。
   


表29.1「UPDATE変換要約」は、適用された変換を要約します。
   
表29.1 UPDATE変換要約
	古い行	新しい行	変換
	一致せず	一致せず	レプリケーションしない
	一致せず	一致	INSERT
	一致	一致せず	DELETE
	一致	一致	UPDATE




パーティション化テーブル





パブリケーションにパーティション化テーブルが含まれている場合、パブリケーションパラメータpublish_via_partition_rootによって使用される行フィルタが決定されます。
publish_via_partition_rootがtrueの場合、ルートのパーティション化テーブルの行フィルタが使用されます。
それ以外の場合、publish_via_partition_rootがfalse(デフォルト)の場合、パーティションの行フィルタがそれぞれ使用されます。
   

初期データ同期





サブスクリプションで既存のテーブルデータをコピーする必要があり、パブリケーションにWHERE句が含まれている場合、行フィルタ式を満たすデータのみがサブスクライバーにコピーされます。
   


サブスクリプションに複数のパブリケーションがあり、テーブルが異なるWHERE句でパブリッシュされている場合は、式のanyを満たす行がコピーされます。
詳細は「複数行フィルタの統合」を参照してください。
   
警告


初期データ同期では、既存のテーブルデータをコピーする際にpublishパラメータが考慮されないため、DMLを使用してレプリケーションされない行がコピーされる場合があります。
「初期スナップショット」および「例: 論理レプリケーションの設定」の例を参照してください。
    

注記


サブスクライバーが15より前のリリースにある場合、既存のデータのコピーでは、パブリケーションで定義されていても行フィルタは使用されません。
これは、古いリリースではテーブルデータ全体しかコピーできないためです。
    


複数行フィルタの統合





サブスクリプションに複数のパブリケーションがあり、その中で同じテーブルが異なる行フィルタを使用してパブリッシュされている場合（同じパブリッシュ操作の場合）、これらの式はOR結合され、式のいずれかを満たす行がレプリケーションされます。
これは、次の場合、同じテーブルの他のすべての行フィルタが冗長になることを意味します。
    
	

パブリケーションの１つに行フィルタがない。
      

	

パブリケーションの1つがFOR ALL TABLESを使用して作成された。
この句では行フィルタを使用できません。
      

	

パブリケーションの1つがFOR TABLES IN SCHEMAを使用して作成され、テーブルは参照されたスキーマに属している。
この句では、行フィルタは使用できません。
      




例





次の例で使用するテーブルをいくつか作成します。


/* pub # */ CREATE TABLE t1(a int, b int, c text, PRIMARY KEY(a,c));
/* pub # */ CREATE TABLE t2(d int, e int, f int, PRIMARY KEY(d));
/* pub # */ CREATE TABLE t3(g int, h int, i int, PRIMARY KEY(g));



いくつかのパブリケーションを作成します。
パブリケーションp1には1つのテーブルt1があり、そのテーブルには行フィルタがあります。
パブリケーションp2には2つのテーブルがあります。
テーブルt1には行フィルタがなく、テーブルt2には行フィルタがあります。
パブリケーションp3には2つのテーブルがあり、両方に行フィルタがあります。


/* pub # */ CREATE PUBLICATION p1 FOR TABLE t1 WHERE (a > 5 AND c = 'NSW');
/* pub # */ CREATE PUBLICATION p2 FOR TABLE t1, t2 WHERE (e = 99);
/* pub # */ CREATE PUBLICATION p3 FOR TABLE t2 WHERE (d = 10), t3 WHERE (g = 10);



psqlを使用して、各パブリケーションの行フィルタ式（定義されている場）を表示することができます。


/* pub # */ \dRp+
                                         Publication p1
  Owner   | All tables | Inserts | Updates | Deletes | Truncates | Generated columns | Via root
----------+------------+---------+---------+---------+-----------+-------------------+----------
 postgres | f          | t       | t       | t       | t         | none              | f
Tables:
    "public.t1" WHERE ((a > 5) AND (c = 'NSW'::text))

                                         Publication p2
  Owner   | All tables | Inserts | Updates | Deletes | Truncates | Generated columns | Via root
----------+------------+---------+---------+---------+-----------+-------------------+----------
 postgres | f          | t       | t       | t       | t         | none              | f
Tables:
    "public.t1"
    "public.t2" WHERE (e = 99)

                                         Publication p3
  Owner   | All tables | Inserts | Updates | Deletes | Truncates | Generated columns | Via root
----------+------------+---------+---------+---------+-----------+-------------------+----------
 postgres | f          | t       | t       | t       | t         | none              | f
Tables:
    "public.t2" WHERE (d = 10)
    "public.t3" WHERE (g = 10)



psqlを使用して、各テーブルの行フィルタ式（定義されている場合）を表示できます。
テーブルt1は2つのパブリケーションのメンバですが、p1にのみ行フィルタがあります。
テーブルt2は2つのパブリケーションのメンバですが、それぞれに異なる行フィルタがあります。


/* pub # */ \d t1
                 Table "public.t1"
 Column |  Type   | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 a      | integer |           | not null |
 b      | integer |           |          |
 c      | text    |           | not null |
Indexes:
    "t1_pkey" PRIMARY KEY, btree (a, c)
Publications:
    "p1" WHERE ((a > 5) AND (c = 'NSW'::text))
    "p2"

/* pub # */ \d t2
                 Table "public.t2"
 Column |  Type   | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 d      | integer |           | not null |
 e      | integer |           |          |
 f      | integer |           |          |
Indexes:
    "t2_pkey" PRIMARY KEY, btree (d)
Publications:
    "p2" WHERE (e = 99)
    "p3" WHERE (d = 10)

/* pub # */ \d t3
                 Table "public.t3"
 Column |  Type   | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 g      | integer |           | not null |
 h      | integer |           |          |
 i      | integer |           |          |
Indexes:
    "t3_pkey" PRIMARY KEY, btree (g)
Publications:
    "p3" WHERE (g = 10)



サブスクライバーノードで、パブリッシャーと同じ定義のテーブルt1を作成し、パブリケーションp1をサブスクライブするサブスクリプションs1も作成します。


/* sub # */ CREATE TABLE t1(a int, b int, c text, PRIMARY KEY(a,c));
/* sub # */ CREATE SUBSCRIPTION s1
/* sub - */ CONNECTION 'host=localhost dbname=test_pub application_name=s1'
/* sub - */ PUBLICATION p1;



いくつかの行を挿入します。
パブリケーションp1のt1 WHERE句を満たす行のみがレプリケーションされます。


/* pub # */ INSERT INTO t1 VALUES (2, 102, 'NSW');
/* pub # */ INSERT INTO t1 VALUES (3, 103, 'QLD');
/* pub # */ INSERT INTO t1 VALUES (4, 104, 'VIC');
/* pub # */ INSERT INTO t1 VALUES (5, 105, 'ACT');
/* pub # */ INSERT INTO t1 VALUES (6, 106, 'NSW');
/* pub # */ INSERT INTO t1 VALUES (7, 107, 'NT');
/* pub # */ INSERT INTO t1 VALUES (8, 108, 'QLD');
/* pub # */ INSERT INTO t1 VALUES (9, 109, 'NSW');

/* pub # */ SELECT * FROM t1;
 a |  b  |  c
---+-----+-----
 2 | 102 | NSW
 3 | 103 | QLD
 4 | 104 | VIC
 5 | 105 | ACT
 6 | 106 | NSW
 7 | 107 | NT
 8 | 108 | QLD
 9 | 109 | NSW
(8 rows)




/* sub # */ SELECT * FROM t1;
 a |  b  |  c
---+-----+-----
 6 | 106 | NSW
 9 | 109 | NSW
(2 rows)



古い行の値と新しい行の値の両方がパブリケーションp1のt1 WHERE句を満たすデータを更新します。
UPDATEは、通常のように変更をレプリケーションします。


/* pub # */ UPDATE t1 SET b = 999 WHERE a = 6;

/* pub # */ SELECT * FROM t1;
 a |  b  |  c
---+-----+-----
 2 | 102 | NSW
 3 | 103 | QLD
 4 | 104 | VIC
 5 | 105 | ACT
 7 | 107 | NT
 8 | 108 | QLD
 9 | 109 | NSW
 6 | 999 | NSW
(8 rows)




/* sub # */ SELECT * FROM t1;
 a |  b  |  c
---+-----+-----
 9 | 109 | NSW
 6 | 999 | NSW
(2 rows)



古い行の値はパブリケーションp1のt1 WHERE句を満たしていませんが、新しい行の値はこの句を満たしているデータを更新します。
UPDATEはINSERTに変換され、変更がレプリケーションされます。
サブスクライバーの新しい行を参照してください。


/* pub # */ UPDATE t1 SET a = 555 WHERE a = 2;

/* pub # */ SELECT * FROM t1;
  a  |  b  |  c
-----+-----+-----
   3 | 103 | QLD
   4 | 104 | VIC
   5 | 105 | ACT
   7 | 107 | NT
   8 | 108 | QLD
   9 | 109 | NSW
   6 | 999 | NSW
 555 | 102 | NSW
(8 rows)




/* sub # */ SELECT * FROM t1;
  a  |  b  |  c
-----+-----+-----
   9 | 109 | NSW
   6 | 999 | NSW
 555 | 102 | NSW
(3 rows)



古い行の値がパブリケーションp1のt1 WHERE句を満たしていますが、新しい行の値がこの句を満たしていないデータを更新します。
UPDATEはDELETEに変換され、変更がレプリケーションされます。
行がサブスクライバーから削除されていることを確認します。


/* pub # */ UPDATE t1 SET c = 'VIC' WHERE a = 9;

/* pub # */ SELECT * FROM t1;
  a  |  b  |  c
-----+-----+-----
   3 | 103 | QLD
   4 | 104 | VIC
   5 | 105 | ACT
   7 | 107 | NT
   8 | 108 | QLD
   6 | 999 | NSW
 555 | 102 | NSW
   9 | 109 | VIC
(8 rows)




/* sub # */ SELECT * FROM t1;
  a  |  b  |  c
-----+-----+-----
   6 | 999 | NSW
 555 | 102 | NSW
(2 rows)



次の例は、パブリケーションパラメータpublish_via_partition_rootによって、親テーブルまたは子テーブルの行フィルタがパーティション化されたテーブルで使用されるかどうかがどのように決定されるかを示しています。
   


パブリッシャーでパーティション化テーブルを作成します。


/* pub # */ CREATE TABLE parent(a int PRIMARY KEY) PARTITION BY RANGE(a);
/* pub # */ CREATE TABLE child PARTITION OF parent DEFAULT;



サブスクライバー上に同じテーブルを作成します。


/* sub # */ CREATE TABLE parent(a int PRIMARY KEY) PARTITION BY RANGE(a);
/* sub # */ CREATE TABLE child PARTITION OF parent DEFAULT;



パブリケーションp4を作成し、サブスクライブします。
パブリケーションパラメータpublish_via_partition_rootはtrueに設定されています。
行フィルタは、パーティション化テーブル(parent)とパーティション(child)の両方に定義されています。


/* pub # */ CREATE PUBLICATION p4 FOR TABLE parent WHERE (a < 5), child WHERE (a >= 5)
/* pub - */ WITH (publish_via_partition_root=true);




/* sub # */ CREATE SUBSCRIPTION s4
/* sub - */ CONNECTION 'host=localhost dbname=test_pub application_name=s4'
/* sub - */ PUBLICATION p4;



一部の値を親および子テーブルに直接挿入します。
これらの値は、親の行フィルタを使用してレプリケーションされます（publish_via_partition_rootがtrueであるため）。


/* pub # */ INSERT INTO parent VALUES (2), (4), (6);
/* pub # */ INSERT INTO child VALUES (3), (5), (7);

/* pub # */ SELECT * FROM parent ORDER BY a;
 a
---
 2
 3
 4
 5
 6
 7
(6 rows)




/* sub # */ SELECT * FROM parent ORDER BY a;
 a
---
 2
 3
 4
(3 rows)



同じテストを、異なる値publish_via_partition_rootで繰り返します。
パブリケーションパラメータpublish_via_partition_rootは偽に設定されています。
行フィルタがパーティション(child)に定義されています。


/* pub # */ DROP PUBLICATION p4;
/* pub # */ CREATE PUBLICATION p4 FOR TABLE parent, child WHERE (a >= 5)
/* pub - */ WITH (publish_via_partition_root=false);




/* sub # */ ALTER SUBSCRIPTION s4 REFRESH PUBLICATION;



パブリッシャーで挿入を前と同じように実行します。
これらはchildの行フィルタを使用してレプリケーションされます(publish_via_partition_rootがfalseであるため)。


/* pub # */ TRUNCATE parent;
/* pub # */ INSERT INTO parent VALUES (2), (4), (6);
/* pub # */ INSERT INTO child VALUES (3), (5), (7);

/* pub # */ SELECT * FROM parent ORDER BY a;
 a
---
 2
 3
 4
 5
 6
 7
(6 rows)




/* sub # */ SELECT * FROM child ORDER BY a;
 a
---
 5
 6
 7
(3 rows)



列リスト





各パブリケーションでは、オプションで各テーブルのどの列をサブスクライバーにレプリケーションするかを指定できます。
サブスクライバー側のテーブルには、少なくとも発行されるすべての列が必要です。
列リストが指定されていない場合は、パブリッシャーのすべての列がレプリケーションされます。
構文の詳細はCREATE PUBLICATION(7)を参照してください。
  


列の選択は、動作またはパフォーマンスの理由に基づいて行うことができます。
ただし、セキュリティのためにこの機能に依存しないでください。
悪意のあるサブスクライバーが、特に公開されていない列からデータを取得する可能性があります。
セキュリティを考慮する場合は、発行者側で保護を適用できます。
  


列リストが指定されていない場合、後でテーブルに追加された列は自動的にレプリケーションされます。
つまり、すべての列に名前を付ける列リストがあることは、列リストがないこととは異なります。
  


列リストには、単純な列参照のみを含めることができます。
リスト内の列の順序は保持されません。
  


生成列も列リストに指定できます。
これにより、パブリケーションパラメータpublish_generated_columnsに関係なく生成列をパブリッシュできます。
詳細は「生成列のレプリケーション」を参照してください。
  


パブリケーションもパブリッシュする場合の列リストの指定FOR TABLES IN SCHEMAはサポートされていません。
  


パーティション化テーブルの場合、パブリケーションパラメータpublish_via_partition_rootによって使用される列リストが決定されます。
publish_via_partition_rootがtrueの場合、ルートのパーティション化テーブルの列リストが使用されます。
それ以外の場合、publish_via_partition_rootがfalse（デフォルト）の場合、各パーティションの列リストが使用されます。
  


パブリケーションがUPDATEまたはDELETE操作をパブリッシュする場合、どの列リストにもテーブルのレプリカアイデンティティ列が含まれている必要があります(REPLICA IDENTITYを参照)。
パブリケーションがINSERT操作のみをパブリッシュする場合列リストでレプリカアイデンティティ列を省略できます。
  


列リストは、TRUNCATEコマンドには影響しません。
  


初期データの同期化時には、公開済の列のみがコピーされます。
ただし、サブスクライバーが15より前のリリースの場合は、テーブルのすべての列が初期データの同期化時にコピーされ、列リストは無視されます。
サブスクライバーが18より前のリリースの場合、初期テーブル同期では、生成列がパブリッシャーで定義されている場合でもコピーされません。
  
警告: 複数のパブリケーションからの列リストの統合


現在、同じテーブルが異なる列リストで発行されている複数のパブリケーションで構成されるサブスクリプションはサポートされていません。
CREATE SUBSCRIPTION(7)ではこのようなサブスクリプションの作成はできませんが、サブスクリプションの作成後にパブリケーション側で列リストを追加または変更することで、このような状況になる可能性はあります。
    


つまり、すでにサブスクライブされているパブリケーションのテーブルの列リストを変更すると、サブスクライバー側でエラーになる可能性があります。
    


サブスクリプションがこの問題の影響を受ける場合、レプリケーションを再開する唯一の方法は、パブリケーション側の列リストの1つを調整してすべて一致させてから、サブスクリプションを再作成するか、ALTER SUBSCRIPTION ... DROP PUBLICATIONを使用して問題のパブリケーションの1つを削除し、再度追加することです。
    

例





次の例で使用するテーブルt1を作成します。


/* pub # */ CREATE TABLE t1(id int, a text, b text, c text, d text, e text, PRIMARY KEY(id));



パブリケーションp1を作成します。
レプリケーションされる列数を減らすために、テーブルt1に対して列リストが定義されます。
列リスト内の列名の順序は重要ではないことに注意してください。


/* pub # */ CREATE PUBLICATION p1 FOR TABLE t1 (id, b, a, d);



psqlを使用して、各パブリケーションの列リストを表示することができます（定義されている場合）。


/* pub # */ \dRp+
                                         Publication p1
  Owner   | All tables | Inserts | Updates | Deletes | Truncates | Generated columns | Via root
----------+------------+---------+---------+---------+-----------+-------------------+----------
 postgres | f          | t       | t       | t       | t         | none              | f
Tables:
    "public.t1" (id, a, b, d)



psqlを使用して、各テーブルの列リストを表示することができます（定義されている場合）。


/* pub # */ \d t1
                 Table "public.t1"
 Column |  Type   | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 id     | integer |           | not null |
 a      | text    |           |          |
 b      | text    |           |          |
 c      | text    |           |          |
 d      | text    |           |          |
 e      | text    |           |          |
Indexes:
    "t1_pkey" PRIMARY KEY, btree (id)
Publications:
    "p1" (id, a, b, d)



サブスクライバーノードで、パブリッシャーテーブルt1にあった列のサブセットだけが必要なテーブルt1を作成し、パブリケーションp1をサブスクライブするサブスクリプションs1も作成します。


/* sub # */ CREATE TABLE t1(id int, b text, a text, d text, PRIMARY KEY(id));
/* sub # */ CREATE SUBSCRIPTION s1
/* sub - */ CONNECTION 'host=localhost dbname=test_pub application_name=s1'
/* sub - */ PUBLICATION p1;



パブリッシャーノードで、テーブルt1に行を挿入します。


/* pub # */ INSERT INTO t1 VALUES(1, 'a-1', 'b-1', 'c-1', 'd-1', 'e-1');
/* pub # */ INSERT INTO t1 VALUES(2, 'a-2', 'b-2', 'c-2', 'd-2', 'e-2');
/* pub # */ INSERT INTO t1 VALUES(3, 'a-3', 'b-3', 'c-3', 'd-3', 'e-3');
/* pub # */ SELECT * FROM t1 ORDER BY id;
 id |  a  |  b  |  c  |  d  |  e
----+-----+-----+-----+-----+-----
  1 | a-1 | b-1 | c-1 | d-1 | e-1
  2 | a-2 | b-2 | c-2 | d-2 | e-2
  3 | a-3 | b-3 | c-3 | d-3 | e-3
(3 rows)



パブリケーションp1の列リストからのデータのみがレプリケーションされます。


/* sub # */ SELECT * FROM t1 ORDER BY id;
 id |  b  |  a  |  d
----+-----+-----+-----
  1 | b-1 | a-1 | d-1
  2 | b-2 | a-2 | d-2
  3 | b-3 | a-3 | d-3
(3 rows)



生成列のレプリケーション





通常、サブスクライバーのテーブルはパブリッシャーのテーブルと同じように定義されます。そのため、パブリッシャーテーブルにGENERATED（生成）列が存在する場合、サブスクライバーテーブルにも対応する生成列が存在します。
この場合、常にサブスクライバーテーブルの生成列の値が使用されます。
  


例えば以下の場合、サブスクライバーテーブルの生成列の値は、サブスクライバー列の計算から取得されることに注意してください。


/* pub # */ CREATE TABLE tab_gen_to_gen (a int, b int GENERATED ALWAYS AS (a + 1) STORED);
/* pub # */ INSERT INTO tab_gen_to_gen VALUES (1),(2),(3);
/* pub # */ CREATE PUBLICATION pub1 FOR TABLE tab_gen_to_gen;
/* pub # */ SELECT * FROM tab_gen_to_gen;
 a | b
---+---
 1 | 2
 2 | 3
 3 | 4
(3 rows)

/* sub # */ CREATE TABLE tab_gen_to_gen (a int, b int GENERATED ALWAYS AS (a * 100) STORED);
/* sub # */ CREATE SUBSCRIPTION sub1 CONNECTION 'dbname=test_pub' PUBLICATION pub1;
/* sub # */ SELECT * from tab_gen_to_gen;
 a | b
---+----
 1 | 100
 2 | 200
 3 | 300
(3 rows)


  


実際、バージョン18.0より前では、論理レプリケーションは生成列を全くパブリッシュしません。
  


しかし、生成列の値を通常の列に複製することが望ましい場合もあります。
   
ヒント


この機能は、出力プラグインを介してPostgreSQL以外のデータベースにデータを複製する場合、特に対象データベースが生成列をサポートしていない場合に有用です。
    


  


生成列はデフォルトではパブリッシュされませんが、ユーザは格納生成列を通常の列と同様にパブリッシュすることを選択できます。
  


これには2つの方法があります。
   
	

PUBLICATIONパラメータのpublish_generated_columnsをstoredに設定します。
これは、PostgreSQL論理レプリケーションに、パブリケーションのテーブルが持つ現在または将来の格納生成列をパブリッシュするように指示します。
      

	

どの格納生成列がパブリッシュされるかを明示的に指定する、テーブルの列リストを設定します。
      
注記


どのテーブル列をパブリッシュするかを決定する際には、列リストが優先され、publish_generated_columnsパラメータの効果を上書きします。
       





  


以下の表は、論理レプリケーションに生成列が含まれる場合の動作をまとめたものです。
生成列のパブリッシュが有効になっていない場合と、有効になっている場合の結果を示しています。
  
表29.2 レプリケーション結果の概要
	生成列をパブリッシュするか否か？	パブリッシャーテーブルの列	サブスクライバーテーブルの列	結果
	いいえ	生成列	生成列	パブリッシャーテーブルの列はレプリケーションされません。サブスクライバーテーブルの生成列の値を使用します。
	いいえ	生成列	通常の列	パブリッシャーテーブルの列はレプリケーションされません。サブスクライバーテーブルの通常の列の値を使用します。
	いいえ	生成列	--存在しない--	パブリッシャーテーブルの列はレプリケーションされません。何も起こりません。
	はい	生成列	生成列	エラー。サポートされていません。
	はい	生成列	通常の列	パブリッシャーテーブルの列がサブスクライバーテーブルの列にレプリケーションされます。
	はい	生成列	--存在しない--	エラー。サブスクライバーテーブルに列が存在しないことが報告されます。



警告


現在のところ、同じテーブルが異なる列リストでパブリッシュされている複数のパブリケーションで構成されるサブスクリプションはサポートされていません。
「列リスト」を参照してください。
   


同様の状況は、あるパブリケーションが生成列をパブリッシュしている一方で、同じサブスクリプション内の別のパブリケーションが同じテーブルに対して生成列をパブリッシュしていない場合にも発生します。
   

注記


サブスクライバーが18より前のリリースの場合、生成列のパブリッシュがパブリッシャーで規定されている場合でも、初期テーブル同期ではそれらの列はコピーされません。
   


コンフリクト





サブスクライバーノードでローカルにデータが変更された場合でも、データが更新されるという点では、論理レプリケーションは通常のDML操作と同じように振る舞います。
到着したデータが制約に違反すると、レプリケーションは停止します。
これは、コンフリクトと呼ばれます。
UPDATEあるいはDELETE操作をレプリケーションする場合は、存在しないデータもコンフリクトとみなされますが、エラーにはならずそのような操作は単にスキップされます。
  


次のコンフリクトの場合、追加のログが出力され、統計情報が収集されます（pg_stat_subscription_statsビューに出力されます）。
   
	insert_exists
	

NOT DEFERRABLEな一意性制約に違反する行を挿入しています。
競合するキーのオリジンやコミットタイムスタンプの詳細をログ出力するためには、サブスクライバーでtrack_commit_timestampを有効にする必要があります。
この場合、コンフリクトが手動で解決されるまで、エラーが報告されます。
      

	update_origin_differs
	

以前別のオリジンによって変更された行を更新しています。
このコンフリクトは、サブスクライバーでtrack_commit_timestampを有効にしている場合にのみ検出されます。
現在のところ、更新はローカル行のオリジンに関係なく常に適用されます。
      

	update_exists
	

行の更新された値がNOT DEFERRABLEな一意性制約に違反しています。
競合するキーのオリジンやコミットタイムスタンプの詳細をログ出力するためには、サブスクライバーでtrack_commit_timestampを有効にする必要があります。
この場合、コンフリクトが手動で解決されるまで、エラーが報告されます。
パーティションテーブルを更新するときに、更新した行が別のパーティション制約を満たし、その結果行が別のパーティションに挿入される場合、新しい行がNOT DEFERRABLEな一意性制約に違反すると、insert_existsコンフリクトが検出される可能性があることに注意してください。
      

	update_missing
	

更新対象の行が見つかりませんでした。
このシナリオでは更新は単純にスキップされます。
      

	delete_origin_differs
	

以前別のオリジンによって変更された行を削除しています。
このコンフリクトは、サブスクライバーでtrack_commit_timestampを有効にしている場合にのみ検出されます。
現在のところ、削除はローカル行のオリジンに関係なく常に適用されます。
      

	delete_missing
	

削除対象の行が見つかりませんでした。
このシナリオでは削除は単純にスキップされます。
      

	multiple_unique_conflicts
	

挿入または更新行が、複数のNOT DEFERRABLEな一意性制約に違反しています。
このコンフリクトは、サブスクライバーでtrack_commit_timestampを有効にしている場合にのみ検出されます。
この場合、コンフリクトが手動で解決されるまで、エラーが報告されます。
      





排他制約違反など、他にもコンフリクトのシナリオが存在することに注意してください。
現在のところ、ログにはこれらのコンフリクトに関する詳細情報は出力されません。
  


論理レプリケーションコンフリクトのログフォーマットは以下の通りです。


LOG:  conflict detected on relation "schemaname.tablename": conflict=conflict_type
DETAIL:  detailed_explanation.
{detail_values [; ... ]}.

where detail_values is one of:

    Key (column_name [, ...])=(column_value [, ...])
    existing local row [(column_name [, ...])=](column_value [, ...])
    remote row [(column_name [, ...])=](column_value [, ...])
    replica identity {(column_name [, ...])=(column_value [, ...]) | full [(column_name [, ...])=](column_value [, ...])}




ログには次の情報が提供されます。
   
	LOG
		

schemaname.tablenameは、コンフリクトに関係するローカルリレーションを識別します。
         

	

conflict_typeは発生したコンフリクトの種類です（例：insert_exists、update_exists）。
         




	DETAIL
		

detailed_explanationには、既存のローカル行を変更したトランザクションのオリジンとトランザクションID、そしてコミットタイムスタンプ（利用可能であれば）が含まれます。
        

	

Keyセクションには、insert_exists、update_existsまたはmultiple_unique_conflictsコンフリクトの一意性制約に違反したローカル行のキー値が含まれます。
        

	

existing local rowセクションにはローカル行が含まれます。
ただし、update_origin_differsまたはdelete_origin_differsコンフリクトではローカル行のオリジンがリモートと異なる場合、insert_exists、update_existsまたはmultiple_unique_conflictsではキー値がリモート行と競合する場合です。
        

	

remote rowセクションには、競合の原因となったリモート挿入または更新操作による新しい行が含まれます。
更新操作の場合、変更されなかった列やTOASTされた列の値はNULLとなることに注意してください。
        

	

replica identityセクションには、更新または削除対象となったローカル行の検索に使用されたレプリカアイデンティティが含まれます。
ローカルリレーションにREPLICA IDENTITY FULLが指定されている場合は、行全体の値が含まれることがあります。
        

	

column_nameは列名です。
existing local row, remote row、およびreplica identity fullの場合、ユーザがテーブルのすべての列に対するアクセス権限を持っていない場合にのみ列名が記録されます。
列名が存在する場合は、対応する列の値と同じ順に表示されます。
        

	

column_valueは列の値です。
長い列の値は64バイトに切り詰められます。
        

	

multiple_unique_conflictsコンフリクトの場合は、複数のdetailed_explanationおよびdetail_valuesが生成され、それぞれが異なる一意性制約に関連付けられたコンフリクト情報を詳述することに注意してください。
        







  


論理レプリケーション操作は、サブスクリプションを所有するロールの権限を使用して実行されます。
対象テーブルで権限違反が起こると、レプリケーション競合が発生します。
これは、サブスクリプション所有者が従う、対象テーブルで有効な行レベルセキュリティと同じですが、レプリケーションされているINSERT、UPDATE、DELETEまたはTRUNCATEをポリシーが通常拒否するかどうかには関係ありません。
行レベルセキュリティに対するこの制限は、PostgreSQL™の将来のバージョンで解除される可能性があります。
  


コンフリクトはエラーを生じさせ、レプリケーションを停止させます。
コンフリクトはユーザが手動で解消しなければなりません。
コンフリクトの詳細は、サブスクライバーのサーバログに出力されます。
  


この問題を解決するには、データを変更するか、サブスクライバーに対する権限を変更して、既存の変更でコンフリクトしないようにするか、既存のトランザクションと競合するデータをスキップします。
コンフリクトよってエラーが発生した場合、レプリケーションは処理を続行せず、論理レプリケーションワーカーは次のようなメッセージをサブスクライバーのサーバログに送信します。


ERROR:  conflict detected on relation "public.test": conflict=insert_exists
DETAIL:  Key already exists in unique index "t_pkey", which was modified locally in transaction 740 at 2024-06-26 10:47:04.727375+08.
Key (c)=(1); existing local row (1, 'local'); remote row (1, 'remote').
CONTEXT:  processing remote data for replication origin "pg_16395" during "INSERT" for replication target relation "public.test" in transaction 725 finished at 0/14C0378



制約とレプリケーションの起点名に違反する変更を含むトランザクションのLSNは、サーバログ(LSN 0/14C0378とレプリケーション起点pg_16395)から見つけることができます。
競合を発生させたトランザクションは、終了LSN(LSN 0/14C0378)でALTER SUBSCRIPTION ... SKIPを使用してスキップできます。
終了LSNは、パブリッシャーでトランザクションがコミットまたは準備されたLSNにすることができます。
あるいは、pg_replication_origin_advance()関数を呼び出して、トランザクションをスキップすることもできます。
この関数を使用する前に、ALTER SUBSCRIPTION ... DISABLEを使用してサブスクリプションを一時的に無効にするか、
disable_on_errorオプションを使用します。
次に、pg_replication_origin_advance()関数をnode_name(pg_16395)と終了LSNの次のLSN(0/14C0379)と共に使用します。
現在の起点の位置は、pg_replication_origin_status システムビューで確認できます。
トランザクション全体をスキップすることは、いかなる制約にも違反しない可能性のある変更をスキップすることを含むことに注意してください。
これは容易にサブスクライバーを不整合にする可能性があります。
オリジンやコミットタイムスタンプのようなコンフリクト行に関する詳細は、ログのDETAIL行で確認できます。
しかし、これらの情報は、サブスクライバーでtrack_commit_timestampが有効な場合にのみ表示されます。
この情報はローカルの変更を保持するか、リモートの変更を採用するかを決定する際に使用できます。
例えば上記ログのDETAILは、既存の行がローカルで変更されたことを示しています。
ユーザは手動でリモート変更優先を実行できます。
  


streamingモードがparallelの場合、失敗したトランザクションの終了LSNはログに書き込まれないことがあります。
その場合、ストリーミングモードをonまたはoffに変更し、再度同じコンフリクトを起こすことで、失敗したトランザクションの終了LSNをサーバのログに書き込むようにする必要があるかもしれません。
終了LSNの使用方法については、ALTER SUBSCRIPTION ... SKIPを参照してください。
  

制限事項





論理レプリケーションには、以下の制限事項とサポートされていない機能があります。
将来のリリースでは、これらは対処されるかもしれません。
  
	

データベーススキーマおよびDDLコマンドはレプリケーションされません。
初期スキーマは、pg_dump --schema-onlyを使ってコピーすることができます。
以後のスキーマ変更の同期は手動で行ないます。
（なお、両者でスキーマは完全に同じである必要はないことに留意してください。）
稼働中のスキーマ定義変更に対して、論理レプリケーションは頑健です。
スキーマがパブリッシャー側で変更され、レプリケーションデータがサブスクライバー側に到着し始めたものの、データがテーブルスキーマに合致しない場合は、スキーマが変更されるまではレプリケーションはエラーとなります。
多くの場合、間欠的なエラーは、サブスクライバーに先に追加的なスキーマ変更を行うことで避けることができます。
    

	

シーケンスデータはレプリケーションされません。
シーケンスによって裏付けされたSERIAL型や識別列のデータは、もちろんテーブルの一部としてレプリケーションされます。
しかし、シーケンス自体は、サブスクライバーがスタートした時の値のままです。
サブスクライバーが読み取り専用のデータベースとして使われているなら、通常は問題になりません。
しかし、サブスクライバーのデータベースをスイッチオーバーやフェイルオーバーするつもりなら、パブリッシャーから現在のデータをコピーするか（おそらくpg_dumpを使います）、テーブル自身から十分に大きな値を決定し、シーケンスを最新の値に更新しなければなりません。
    

	

TRUNCATEコマンドのレプリケーションはサポートされますが、外部キーで結びついたテーブル群を削除する場合には注意が必要です。
削除処理をレプリケーションするとき、サブスクライバーはパブリッシャーで明示的に指定され削除された、もしくはCASCADEにより暗黙的に削除されたテーブル群から、サブスクリプションの一部ではないテーブルを除いたテーブル群を削除します。
この処理は、外部キーで関連付けられた全てのテーブルが同一のサブスクリプションの一部であれば、正常に動作します。
しかし、サブスクライバーで削除されるテーブルが同一のサブスクリプションの一部でないテーブルと外部キーで接続されていた場合、サブスクライバー上の削除処理は失敗します。
    

	

ラージオブジェクト（33章ラージオブジェクト参照）はレプリケーションされません。
通常のテーブルにデータを格納する以外に回避方法はありません。
    

	

レプリケーションは、パーティション化テーブルを含むテーブルでのみサポートされています。
ビュー、マテリアライズドビュー、外部テーブルのような、その他の種類のリレーションをレプリケーションしようとすると、エラーになります。
    

	

パーティション化テーブル間でレプリケーションする場合には、実際のレプリケーションは、デフォルトでは、パブリッシャー側の末端のパーティションから開始します。ですので、パブリッシャー側のパーティションがサブスクライバー側にも有効な対象テーブルとして存在していなければなりません。
(対象テーブルは、それ自身が末端のパーティションかもしれませんし、さらにサブパーティション化されているかもしれません。独立したテーブルであっても構いません。)
パブリケーションは、変更が実際に開始された個々の末端のパーティションのIDとスキーマの代わりに、パーティション化されたルートのテーブルのIDとスキーマを使って指定することもできます(CREATE PUBLICATIONのpublish_via_partition_rootパラメータを参照してください)。
    

	

パブリッシュされたテーブルでREPLICA IDENTITY FULLを使用する場合、テーブルにBツリーまたはハッシュのデフォルトの演算子クラスを持たないデータ型(pointやboxなど)の属性が含まれていると、UPDATEおよびDELETE操作をサブスクライバーに適用できないことに注意してください。
ただし、この制限は、テーブルに主キーまたはレプリカアイデンティティを定義することで回避できます。
    




アーキテクチャ





論理レプリケーションは物理ストリーミングレプリケーション(「ストリーミングレプリケーション」参照)と似たアーキテクチャで構成されています。
walsender（WAL送信）プロセスとapply（適用）プロセスで実装されています。
WAL送信プロセスはWALのロジカルデコーディング（47章ロジカルデコーディングに記載）を開始し、標準のロジカルデコーディング出力プラグイン（pgoutput）をロードします。
このプラグインは、WALから読み込んだ更新を論理レプリケーションプロトコル（「論理ストリーミングレプリケーションのプロトコル」参照）に変換します。
そして、パブリケーションの指定にしたがってフィルタします。
データは次に、ストリーミングレプリケーションプロトコルを使って継続的に適用ワーカーに転送されます。
適用ワーカーは、データをローカルテーブルにマップし、更新を受信すると正しいトランザクション順に個々の更新を適用します。
  


サブスクライバーデータベース上の適用プロセスは、常にsession_replication_roleをreplicaに設定して実行されます。
これは、デフォルトでは、トリガとルールはサブスクライバー上では起動されないことを意味します。
ユーザは、必要に応じて、 ALTER TABLEコマンド、ENABLE TRIGGERおよびENABLE RULE句を使用して、テーブルのトリガおよびルールを有効にすることを選択できます。
  


今のところ、論理レプリケーション適用プロセスは行トリガだけを起動し、文トリガは起動しません。
ただし、初期テーブル同期はCOPYコマンドのように実装されているので、INSERTの行と文トリガの両方を起動します。
  
初期スナップショット





既存のサブスクライブされたテーブル中の初期データのスナップショットが取得され、特殊な適用プロセスの並列インスタンスにコピーされます。
これらの特殊な適用プロセスは、同期されるテーブルごとに生成された、専用のテーブル同期ワーカーです。
このプロセスは自身のレプリケーションスロットを作成し、既存のデータをコピーします。
コピーが終わるとすぐにテーブル内容が他のバックエンドから見えるようになります。
既存のデータのコピーが終わると、ワーカーは同期モードに入ります。
このモードでは、初期データのコピー中に起こった更新を標準の論理レプリケーションを使ってストリーミングすることにより、テーブルが主適用プロセスと同期状態になることを保証します。
この同期フェーズの間、パブリッシャーで発生したのと同じ順序で変更が適用され、コミットされます。
ひとたび同期が完了すれば、テーブルのレプリケーションの制御は主適用プロセスに戻され、レプリケーションは通常通り継続されます。
    
注記


パブリケーションのpublishパラメータは、レプリケーションされるDML操作にのみ影響します。
初期データ同期では、既存のテーブルデータをコピーするときにこのパラメータは考慮されません。
     

注記


コピー中にテーブル同期ワーカーが失敗した場合、適用ワーカーが失敗を検出し、テーブル同期ワーカーを再生成して同期プロセスを続行します。
この動作により、一時的なエラーによってレプリケーションのセットアップが永続的に中断されることがなくなります。
wal_retrieve_retry_intervalも参照してください。
     



監視





論理レプリケーションは物理ストリーミングレプリケーションと類似のアーキテクチャに基づいているので、パブリケーションノードの監視は、物理レプリケーションのプライマリ（「監視」参照）の監視と似ています。
  


サブスクリプションに関する監視情報はpg_stat_subscriptionで見ることができます。
このビューは、個々のサブスクリプションワーカー毎に1つの行を含んでいます。
サブスクリプションは状態により、0以上のアクティブなサブスクリプションワーカーを持つことができます。
  


有効なサブスクリプションのために通常は一つの適用プロセスが実行中です。
無効なサブスクリプション、あるいはクラッシュしたサブスクリプションはこのビュー中に0個の行を持ちます。
テーブルの初期データの同期が進行中なら、同期中のテーブルのための追加ワーカーが存在するでしょう。
さらに、streamingトランザクションが並列に適用される場合、追加のパラレル適用ワーカーが存在する可能性があります。
  

セキュリティ





レプリケーション接続のために使われるロールには、REPLICATION属性が付与されている（もしくはスーパーユーザである）必要があります。
ロールに SUPERUSERとBYPASSRLSがない場合は、パブリッシャーは行セキュリティポリシーを実行できます。
ロールが全てのテーブルの所有者を信頼していない場合、接続文字列にoptions=-crow_security=offを含めてください。
テーブルの所有者が行セキュリティポリシーを追加した場合、ポリシーが実行されるのではなく、レプリケーションが停止します。
接続のためのロールはpg_hba.confで設定され、 LOGIN属性を持つ必要があります。
  


テーブルの初期データをコピーできるためには、レプリケーション接続に使用されるロールは、パブリッシュされるテーブルに対してSELECT権限を持っていなければなりません。
（あるいはスーパーユーザでなければなりません。）
  


パブリケーションを作成するためには、ユーザはデータベース中のCREATE権限を持っていなければなりません。
  


テーブルをパブリケーションに追加するためには、ユーザはテーブルの所有権限を持っていなければなりません。
スキーマのすべてのテーブルをパブリケーションに追加するには、ユーザがスーパーユーザである必要があります。
自動的にすべてのテーブルにパブリッシュするパブリケーションを作成するには、ユーザはスーパーユーザでなければなりません。
  


現在、パブリケーションに権限はありません。
（接続可能な）サブスクリプションはすべて、パブリケーションにアクセスできます。
そのため、行フィルタや列リストを使用したり、テーブル全体をパブリケーションに追加しないなどして、特定のサブスクライバーからの情報を隠したい場合は、同じデータベース内の他のパブリケーションが同じ情報にアクセスできる可能性があることに注意してください。
より細かいアクセス制御を可能にするために、パブリケーション権限が将来PostgreSQL™に追加される可能性があります。
  


サブスクリプションを作成するためには、ユーザはpg_create_subscriptionロールの権限と、データベースのCREATE権限を持っていることが必要です。
  


サブスクリプション適用プロセスは、セッションレベルで、サブスクリプション所有者の権限で実行されます。
ただし、特定のテーブルに対して挿入、更新、削除または切捨て操作を実行すると、テーブルの所有者にロールを切り替え、テーブルの所有者の権限で操作が実行されます。
つまり、サブスクリプション所有者は、レプリケートされたテーブルを所有する各ロールに対してSET ROLEを実行できる必要があります。
  


サブスクリプションが run_as_owner = trueで構成されている場合、ユーザの切り替えは発生しません。
その代わり、すべての操作は、サブスクリプションの所有者の権限で実行されます。
この場合、サブスクリプションの所有者は、対象テーブルからのSELECT、INSERT、UPDATE、およびDELETE権限のみが必要であり、テーブル所有者に対するSET ROLE権限は不要です。
しかし、これはまた、レプリケーションが行われているテーブルを所有するユーザは、サブスクリプション所有者の権限で任意のコードを実行できることを意味します。
たとえば、所有するテーブルにトリガを付加するだけで、これを実行できます。
通常、あるロールが別のロールの権限を自由に引き受けることは望ましくないので、データベース内のユーザセキュリティが問題にならない場合以外は、このオプションを避けるべきです。
  


パブリッシャーでは、権限はレプリケーション接続の開始時に一度だけチェックされ、変更レコードが読み取られるたびに再チェックされません。
  


サブスクライバーでは、サブスクリプション所有者の権限は、適用時にトランザクションごとに再チェックされます。
同時に並行しているトランザクションによってサブスクリプションの所有権が変更されたときにワーカーがトランザクションを適用している場合、現在のトランザクションの適用は古い所有者の権限で継続されます。
  

構成設定





論理レプリケーションでは、いくつかの構成オプションを設定することが必要です。
これらのオプションは、レプリケーションの一方の側にのみ関連します。
  
パブリッシャー





wal_levelはlogicalに設定することが必要です。
   


max_replication_slotsは、接続する予定のサブスクリプション数と、テーブル同期のために予約された数を加えた数以上に設定することが必要です。
   


論理レプリケーションスロットもidle_replication_slot_timeoutの影響を受けます。
   


max_wal_sendersは、少なくともmax_replication_slotsに同時に接続されている物理レプリカの数も加えたものと同じ数に設定することが必要です。
   


論理レプリケーションのwalsenderもwal_sender_timeoutの影響を受けます。
   

サブスクライバー





max_active_replication_originsは、少なくともサブスクライバーに追加されるサブスクリプションの数に、テーブル同期用の予約を加えた数以上に設定することが必要です。
   


max_logical_replication_workersは、少なくともサブスクリプション数（リーダー適用ワーカー用）に加えて、テーブル同期ワーカーとパラレル適用ワーカー用に予約された数を加えた数以上に設定することが必要です。
   


max_worker_processesは、少なくともレプリケーションワーカーに対応するように調整する必要があるかもしれません(max_logical_replication_workers + 1)。
なお、一部の拡張機能やパラレルクエリもmax_worker_processesからワーカースロットを取得することに注意してください。
   


max_sync_workers_per_subscriptionは、サブスクリプション初期化時や新しいテーブルが追加されたときの初期データコピーの並列度を制御します。
   


max_parallel_apply_workers_per_subscriptionは、サブスクリプションパラメータstreaming = parallelで進行中のトランザクションのストリーミングに対する並列度を制御します。
   


論理レプリケーションワーカーも、wal_receiver_timeout、wal_receiver_status_interval、およびwal_retrieve_retry_intervalの影響を受けます。
   


アップグレード





論理レプリケーションクラスタの移行は、旧論理レプリケーションクラスタがすべてバージョン17.0以降の場合にのみ可能です。
  
パブリッシャーのアップグレードの準備





pg_upgradeは論理スロットの移行を試みます。
これは、新しいパブリッシャー上で同じ論理スロットを手動で定義する必要性を回避するのに役立ちます。
論理スロットの移行は、古いクラスタがバージョン17.0以降の場合にのみサポートされます。
バージョン17.0より前のクラスタ上の論理スロットは、警告なく無視されます。
   


パブリッシャークラスタのアップグレードを開始する前に、ALTER SUBSCRIPTION ... DISABLEを実行して、サブスクリプションが一時的に無効になっていることを確認してください。
アップグレード後にサブスクリプションを再度有効にしてください。
   


pg_upgradeが論理スロットをアップグレードできるようにするための前提条件がいくつかあります。
これらが満たされていない場合はエラーが報告されます。
   
	

新しいクラスタはwal_levelをlogicalにする必要があります。
     

	

新しいクラスタは、古いクラスタに存在するスロットの数以上の値にmax_replication_slotsを設定する必要があります。
     

	

古いクラスタのスロットで参照される出力プラグインは、新しいPostgreSQLの実行ファイル格納ディレクトリにインストールする必要があります。
     

	

古いクラスタは、すべてのトランザクションとロジカルデコーディングメッセージをサブスクライバーに複製済です。
     

	

古いクラスタの全てのスロットが使用可能でなければなりません。
つまりpg_replication_slots.conflictingがtrueであってはいけません。
     

	

新しいクラスタは、永続的な論理スロットを持ってはなりません。
つまり、pg_replication_slots.temporaryがfalseであってはいけません。
     




サブスクライバーのアップグレードの準備





新しいサブスクライバーにサブスクライバー構成を設定します。
pg_upgradeは、pg_subscription_relシステムカタログに存在するサブスクリプションのテーブル情報と、サブスクリプションのレプリケーション元を含むサブスクリプション依存関係の移行を試みます。
これにより、新しいサブスクライバーで論理レプリケーションを、古いサブスクライバーが存在していた場所から継続できます。
サブスクリプションの依存関係の移行は、古いクラスタがバージョン17.0以降の場合にのみサポートされます。
バージョン17.0より前のクラスタに対するサブスクリプションの依存関係は、警告なく無視されます。
   


pg_upgradeがサブスクリプションをアップグレードできるようにするための前提条件がいくつかあります。
これらが満たされていない場合はエラーが報告されます。
   
	

古いサブスクライバーのすべてのサブスクリプションテーブルはi（初期化）またはr（準備完了）の状態である必要があります。
これはpg_subscription_rel.srsubstateを調べることで確認できます。
     

	

各サブスクリプションに対応するレプリケーション起点エントリは、古いクラスタに存在する必要があります。
これは、pg_subscriptionとpg_replication_originシステムテーブルを調べることで見つけることができます。
     

	

新しいクラスタは、古いクラスタに存在するサブスクリプションの数以上の値にmax_active_replication_originsを設定する必要があります。
     




論理レプリケーションクラスタのアップグレード





サブスクライバーをアップグレードしている間、書き込み操作はパブリッシャーでのみ実行できます。
これらの変更は、サブスクライバーのアップグレードが完了すると複製されます。
   
注記


論理レプリケーションの制限は、論理レプリケーションクラスタのアップグレードにも適用されます。
詳細は「制限事項」を参照してください。
    


パブリッシャーアップグレードの前提条件は、論理レプリケーションクラスタのアップグレードにも適用されます。
詳細は「パブリッシャーのアップグレードの準備」を参照してください。
    


サブスクライバーアップグレードの前提条件は、論理レプリケーションクラスタのアップグレードにも適用されます。
詳細は「サブスクライバーのアップグレードの準備」を参照してください。
    

警告


論理レプリケーションクラスタのアップグレードは、様々なノードで複数の手順を実行する必要があります。
すべての処理がトランザクションのように振る舞うわけではないため、「ベースバックアップの作成」の手順に従ってバックアップを取得することをお薦めします。
    



論理レプリケーションクラスタをアップグレードする手順は以下の通りです。
    
	

2ノードの論理レプリケーションクラスタをアップグレードする場合は、「2ノードの論理レプリケーションクラスタをアップグレードする手順」に指定されている手順に従います。
      

	

カスケード論理レプリケーションクラスタをアップグレードする場合は、「カスケード論理レプリケーションクラスタをアップグレードする手順」に指定されている手順に従います。
      

	

2ノードの循環論理レプリケーションクラスタをアップグレードする場合は、「2ノードの循環論理レプリケーションクラスタをアップグレードする手順」に指定されている手順に従います。
      




   
2ノードの論理レプリケーションクラスタをアップグレードする手順





パブリッシャーがnode1にあり、サブスクライバーがnode2にあるとします。
サブスクライバーnode2には、node1から変更をサブスクライブしているサブスクリプションsub1_node1_node2があります。
     
	

ALTER SUBSCRIPTION ... DISABLEを使用して、node1からの変更をサブスクライブしているnode2上のすべてのサブスクリプションを無効にします。以下は、その例です。


/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 DISABLE;


       

	

node1にあるパブリッシャーサーバを停止します。


pg_ctl -D /opt/PostgreSQL/data1 stop


       

	

必要とされる新しいバージョンを使用して、data1_upgradedインスタンスを初期化します。
       

	

必要とされる新しいバージョンを使用して、node1にあるパブリッシャーサーバをアップグレードします。


pg_upgrade
        --old-datadir "/opt/PostgreSQL/postgres/17/data1"
        --new-datadir "/opt/PostgreSQL/postgres/18/data1_upgraded"
        --old-bindir "/opt/PostgreSQL/postgres/17/bin"
        --new-bindir "/opt/PostgreSQL/postgres/18/bin"


       

	

node1にあるアップグレードされたパブリッシャーサーバを起動します。


pg_ctl -D /opt/PostgreSQL/data1_upgraded start -l logfile


       

	

node2にあるサブスクライバーサーバを停止します。


pg_ctl -D /opt/PostgreSQL/data2 stop


       

	

必要とされる新しいバージョンを使用して、data2_upgradedインスタンスを初期化します。
       

	

必要とされる新しいバージョンを使用して、node2にあるサブスクライバーサーバをアップグレードします。


pg_upgrade
       --old-datadir "/opt/PostgreSQL/postgres/17/data2"
       --new-datadir "/opt/PostgreSQL/postgres/18/data2_upgraded"
       --old-bindir "/opt/PostgreSQL/postgres/17/bin"
       --new-bindir "/opt/PostgreSQL/postgres/18/bin"


       

	

node2にあるアップグレードされたサブスクライバーサーバを起動します。


pg_ctl -D /opt/PostgreSQL/data2_upgraded start -l logfile


       

	

node2上で、ステップ 1と現在までの間に、パブリッシャーサーバnode1で作成されたすべてのテーブルを作成します。


/* node2 # */ CREATE TABLE distributors (did integer PRIMARY KEY, name varchar(40));


       

	

ALTER SUBSCRIPTION ... ENABLEコマンドを使用して、node1からの変更をサブスクライブするnode2上のすべてのサブスクリプションを有効にします。


/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 ENABLE;


       

	

ALTER SUBSCRIPTION ... REFRESH PUBLICATIONコマンドを使用して、node2サブスクリプションのパブリケーションをリフレッシュします。


/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 REFRESH PUBLICATION;


       



注記


上記の手順では、パブリッシャーが最初にアップグレードされ、次にサブスクライバーがアップグレードされます。
または、同様の手順を使用して、まずサブスクライバーをアップグレードし、次にパブリッシャーをアップグレードすることもできます。
      


カスケード論理レプリケーションクラスタをアップグレードする手順





カスケードされた論理レプリケーションセットアップnode1->node2->node3があるとします。
ここで、node2はnode1からの変更をサブスクライブしており、node3はnode2からの変更をサブスクライブしています。
node2にはnode1からの変更をサブスクライブしているsub1_node1_node2サブスクリプションがあります。
node3にはnode2からの変更をサブスクライブしているsub1_node2_node3サブスクリプションがあります。
node3
     
	

ALTER SUBSCRIPTION ... DISABLEを使用して、node1からの変更をサブスクライブしているnode2上のすべてのサブスクリプションを無効にします。以下は、その例です。


/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 DISABLE;


       

	

node1にあるサーバを停止します。


pg_ctl -D /opt/PostgreSQL/data1 stop


       

	

必要とされる新しいバージョンを使用して、data1_upgradedインスタンスを初期化します。
       

	

必要とされる新しいバージョンを使用して、node1にあるサーバをアップグレードします。


pg_upgrade
        --old-datadir "/opt/PostgreSQL/postgres/17/data1"
        --new-datadir "/opt/PostgreSQL/postgres/18/data1_upgraded"
        --old-bindir "/opt/PostgreSQL/postgres/17/bin"
        --new-bindir "/opt/PostgreSQL/postgres/18/bin"


       

	

node1にあるアップグレードされたサーバを起動します。


pg_ctl -D /opt/PostgreSQL/data1_upgraded start -l logfile


       

	

ALTER SUBSCRIPTION ... DISABLEを使用して、node2からの変更をサブスクライブしているnode3上のすべてのサブスクリプションを無効にします。


/* node3 # */ ALTER SUBSCRIPTION sub1_node2_node3 DISABLE;


       

	

node2にあるサーバを停止します。


pg_ctl -D /opt/PostgreSQL/data2 stop


       

	

必要とされる新しいバージョンを使用して、data2_upgradedインスタンスを初期化します。
       

	

必要とされる新しいバージョンを使用して、node2にあるサーバをアップグレードします。


pg_upgrade
        --old-datadir "/opt/PostgreSQL/postgres/17/data2"
        --new-datadir "/opt/PostgreSQL/postgres/18/data2_upgraded"
        --old-bindir "/opt/PostgreSQL/postgres/17/bin"
        --new-bindir "/opt/PostgreSQL/postgres/18/bin"


       

	

node2にあるアップグレードされたサーバを起動します。


pg_ctl -D /opt/PostgreSQL/data2_upgraded start -l logfile


       

	

node2上で、ステップ 1と現在までの間に、パブリッシャーサーバnode1で作成されたすべてのテーブルを作成します。


/* node2 # */ CREATE TABLE distributors (did integer PRIMARY KEY, name varchar(40));


       

	

ALTER SUBSCRIPTION ... ENABLEコマンドを使用して、node1からの変更をサブスクライブするnode2上のすべてのサブスクリプションを有効にします。


/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 ENABLE;


       

	

ALTER SUBSCRIPTION ... REFRESH PUBLICATIONコマンドを使用して、node2サブスクリプションのパブリケーションをリフレッシュします。


/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 REFRESH PUBLICATION;


       

	

node3にあるサーバを停止します。


pg_ctl -D /opt/PostgreSQL/data3 stop


       

	

必要とされる新しいバージョンを使用して、data3_upgradedインスタンスを初期化します。
       

	

必要とされる新しいバージョンを使用して、node3にあるサーバをアップグレードします。


pg_upgrade
        --old-datadir "/opt/PostgreSQL/postgres/17/data3"
        --new-datadir "/opt/PostgreSQL/postgres/18/data3_upgraded"
        --old-bindir "/opt/PostgreSQL/postgres/17/bin"
        --new-bindir "/opt/PostgreSQL/postgres/18/bin"


       

	

node3にあるアップグレードされたサーバを起動します。


pg_ctl -D /opt/PostgreSQL/data3_upgraded start -l logfile


       

	

node3上で、ステップ 6と現在までの間に、パブリッシャーサーバnode2で作成されたすべてのテーブルを作成します。


/* node3 # */ CREATE TABLE distributors (did integer PRIMARY KEY, name varchar(40));


       

	

ALTER SUBSCRIPTION ... ENABLEコマンドを使用して、node2からの変更をサブスクライブするnode3上のすべてのサブスクリプションを有効にします。


/* node3 # */ ALTER SUBSCRIPTION sub1_node2_node3 ENABLE;


       

	

ALTER SUBSCRIPTION ... REFRESH PUBLICATIONコマンドを使用して、node3サブスクリプションのパブリケーションをリフレッシュします。


/* node3 # */ ALTER SUBSCRIPTION sub1_node2_node3 REFRESH PUBLICATION;


       




2ノードの循環論理レプリケーションクラスタをアップグレードする手順





循環論理レプリケーションセットアップnode1->node2およびnode2->node1があるとします。
ここで、node2はnode1からの変更をサブスクライブしており、node1はnode2からの変更をサブスクライブしています。
node1にはnode2からの変更をサブスクライブしているsub1_node2_node1サブスクリプションがあります。
node2にはnode1からの変更をサブスクライブしているsub1_node1_node2サブスクリプションがあります。
     
	

ALTER SUBSCRIPTION ... DISABLEを使用して、node1からの変更をサブスクライブしているnode2上のすべてのサブスクリプションを無効にします。


/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 DISABLE;


       

	

node1にあるサーバを停止します。


pg_ctl -D /opt/PostgreSQL/data1 stop


       

	

必要とされる新しいバージョンを使用して、data1_upgradedインスタンスを初期化します。
       

	

必要とされる新しいバージョンを使用して、node1にあるサーバをアップグレードします。


pg_upgrade
        --old-datadir "/opt/PostgreSQL/postgres/17/data1"
        --new-datadir "/opt/PostgreSQL/postgres/18/data1_upgraded"
        --old-bindir "/opt/PostgreSQL/postgres/17/bin"
        --new-bindir "/opt/PostgreSQL/postgres/18/bin"


       

	

node1にあるアップグレードされたサーバを起動します。


pg_ctl -D /opt/PostgreSQL/data1_upgraded start -l logfile


       

	

ALTER SUBSCRIPTION ... ENABLEコマンドを使用して、node1からの変更をサブスクライブするnode2上のすべてのサブスクリプションを有効にします。


/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 ENABLE;


       

	

node1上で、ステップ 1と現在までの間に、パブリッシャーサーバnode2で作成されたすべてのテーブルを作成します。


/* node1 # */ CREATE TABLE distributors (did integer PRIMARY KEY, name varchar(40));


       

	

node1サブスクリプションのパブリケーションをリフレッシュして、初期テーブルデータをnode2からコピーするために、ALTER SUBSCRIPTION ... REFRESH PUBLICATIONコマンドを使用します。


/* node1 # */ ALTER SUBSCRIPTION sub1_node2_node1 REFRESH PUBLICATION;


       

	

ALTER SUBSCRIPTION ... DISABLEを使用して、node2からの変更をサブスクライブしているnode1上のすべてのサブスクリプションを無効にします。


/* node1 # */ ALTER SUBSCRIPTION sub1_node2_node1 DISABLE;


       

	

node2にあるサーバを停止します。


pg_ctl -D /opt/PostgreSQL/data2 stop


       

	

必要とされる新しいバージョンを使用して、data2_upgradedインスタンスを初期化します。
       

	

必要とされる新しいバージョンを使用して、node2にあるサーバをアップグレードします。


pg_upgrade
        --old-datadir "/opt/PostgreSQL/postgres/17/data2"
        --new-datadir "/opt/PostgreSQL/postgres/18/data2_upgraded"
        --old-bindir "/opt/PostgreSQL/postgres/17/bin"
        --new-bindir "/opt/PostgreSQL/postgres/18/bin"


       

	

node2にあるアップグレードされたサーバを起動します。


pg_ctl -D /opt/PostgreSQL/data2_upgraded start -l logfile


       

	

ALTER SUBSCRIPTION ... ENABLEコマンドを使用して、node2からの変更をサブスクライブするnode1上のすべてのサブスクリプションを有効にします。


/* node1 # */ ALTER SUBSCRIPTION sub1_node2_node1 ENABLE;


       

	

node2上で、ステップ 9と現在までの間に、パブリッシャーサーバnode1で作成されたすべてのテーブルを作成します。


/* node2 # */ CREATE TABLE distributors (did integer PRIMARY KEY, name varchar(40));


       

	

ALTER SUBSCRIPTION ... REFRESH PUBLICATIONコマンドを使用して、初期テーブルデータをnode1からコピーするために、node2サブスクリプションのパブリケーションをリフレッシュします。


/* node2 # */ ALTER SUBSCRIPTION sub1_node1_node2 REFRESH PUBLICATION;


       






簡単な設定





まずpostgresql.confの設定オプションを設定してください。


wal_level = logical



基本的な設定のためには、それ以外の設定はデフォルトのままで十分です。
  


pg_hba.confはレプリケーションを許可するために調整が必要です。
（ここで示した値は、実際のネットワーク設定と、接続に使用するユーザにより異なります。）


host     all     repuser     0.0.0.0/0     md5


  


次にパブリッシャーデータベースで以下を実行します。


CREATE PUBLICATION mypub FOR TABLE users, departments;


  


サブスクライバーデータベースでは次を実行します。


CREATE SUBSCRIPTION mysub CONNECTION 'dbname=foo host=bar user=repuser' PUBLICATION mypub;


  


上記により、テーブルusersとdepartmentsの初期内容の同期プロセスが起動されます。
その後、これらのテーブルへの増分変更のレプリケーションが開始します。
  

第30章 実行時コンパイル(JIT)





本章では、実行時コンパイル(just-in-time compilation)とは何か、そしてPostgreSQL™でそれをどのように設定できるかを説明します。
 
JITコンパイルとは何か？





実行時(JIT)コンパイルとは、ある形式のインタプリタプログラムの評価をネイティブプログラムに変換する過程であり、かつそれを実行時に行うことを指します。
たとえば、WHERE a.col = 3のような特定のSQL述語を評価するために、任意のSQL式を評価できる汎用目的のコードを使う代わりに、その式専用の関数を生成し、CPUによってネイティブに実行して速度向上をもたらすことができます。
  


PostgreSQL™が--with-llvmでビルドされている場合、PostgreSQL™にはLLVM™を使ってJITコンパイルを実行するためのサポートが組み込まれます。
  


さらなる詳細はsrc/backend/jit/READMEをご覧ください。
  
JITにより高速化される処理





今の所、PostgreSQL™のJIT実装は、式評価とタプルデフォーミング(tuple deforming)の高速化をサポートしています。
将来は他の操作も高速化されるかも知れません。
   


式評価は、WHERE句、ターゲットリスト、集約、射影を評価するために使用されます。
それぞれのケースに応じたコードを生成することによって高速化することができます。
   


タプルデフォーミングは、ディスク上のタプル(「テーブル行のレイアウト」参照)をメモリ上の表現に変換する処理です。
これはテーブルレイアウトと抽出するカラム数に特化した関数を作ることによって高速化可能です。
   

インライン展開(Inlining)





PostgreSQL™は拡張性が高く、新しいデータ型、関数、演算子、その他のデータベースオブジェクトを定義することが可能です。
36章SQLの拡張を参照してください。
実際、組み込みオブジェクトは似た機構を使って実装されています。
この拡張性は、たとえば関数呼び出し(「ユーザ定義関数」参照)により、幾分のオーバーヘッドをもたらします。
このオーバーヘッドを軽減するために、JITコンパイルは、小さな関数の本体をそれを使っている式にインライン展開することができます。
これにより、オーバーヘッドのかなりの部分を最適化によって解消することができます。
   

最適化





LLVM™は、生成したコードの最適化をサポートしています。
ある最適化はJITが使用される際に常に適用できるほど安価ですが、長時間実行する問い合わせのときだけ有利になるようなものもあります。
最適化についてのさらなる詳細は、https://llvm.org/docs/Passes.html#transform-passesをご覧ください。
   



どんなときにJITを使うべきか？





JITコンパイルは、主に長時間実行するCPUバウンドの問い合わせに有益です。
これらはしばしば分析的な問い合わせでしょう。
短い問い合わせでは、JITコンパイルを行うことにより加わるオーバーヘッドはしばしばそれによって短縮できる時間よりも大きくなるでしょう。
  


JITコンパイルを使うべきかどうかを決めるために、問い合わせの合計推定コスト(69章プランナは統計情報をどのように使用するかと「プランナコスト定数」を参照)が使用されます。
問い合わせの推定コストはjit_above_costの設定と比較されます。
もしもそのコストが大きければ、JITコンパイルが実行されます。
さらなる二つの決定が必要になります。
まず、推定コストがjit_inline_above_costの設定よりも大きければ、問い合わせ中で使用される短い関数と演算子がインライン展開されます。
次に、推定コストがjit_optimize_above_costの設定よりも大きければ、生成コードを改善するために、高価な最適化が適用されます。
これらのオプションはJITコンパイルのオーバーヘッドを大きくしますが、かなりクエリの実行時間を短縮します。
  


これらのコストに基づく決定は実行時ではなく、プラン時に行われます。
このことは、準備された文が使われ、汎用プラン(PREPARE(7)参照)が用いられるときには、実行時ではなく、準備時に参照される設定パラメータの値が決定を左右することを意味します。
  
注記


jitがoffか、JIT実装が適用外（たとえばサーバが--with-llvm付きでコンパイルされていない）場合は、たとえ上記の基準からは有益であったとしてもJITは実行されません。
jitをoffにすると、プラン時と実行時の両方に影響を与えます。
   



EXPLAIN(7)を使ってJITが使われているかどうかを確認できます。
JITを使っていない例を示します。


=# EXPLAIN ANALYZE SELECT SUM(relpages) FROM pg_class;
                                                 QUERY PLAN
-------------------------------------------------------------------​------------------------------------------
 Aggregate  (cost=16.27..16.29 rows=1 width=8) (actual time=0.303..0.303 rows=1.00 loops=1)
   Buffers: shared hit=14
   ->  Seq Scan on pg_class  (cost=0.00..15.42 rows=342 width=4) (actual time=0.017..0.111 rows=356.00 loops=1)
         Buffers: shared hit=14
 Planning Time: 0.116 ms
 Execution Time: 0.365 ms



プランに与えられたコストによれば、JITが使われないのは完全に合理的です。
JITのコストは潜在的な節約よりも大きいのです。
コスト上限を調整すると、JITが使われるようになります。


=# SET jit_above_cost = 10;
SET
=# EXPLAIN ANALYZE SELECT SUM(relpages) FROM pg_class;
                                                 QUERY PLAN
-------------------------------------------------------------------​------------------------------------------
 Aggregate  (cost=16.27..16.29 rows=1 width=8) (actual time=6.049..6.049 rows=1.00 loops=1)
   Buffers: shared hit=14
   ->  Seq Scan on pg_class  (cost=0.00..15.42 rows=342 width=4) (actual time=0.019..0.052 rows=356.00 loops=1)
         Buffers: shared hit=14
 Planning Time: 0.133 ms
 JIT:
   Functions: 3
   Options: Inlining false, Optimization false, Expressions true, Deforming true
   Timing: Generation 1.259 ms (Deform 0.000 ms), Inlining 0.000 ms, Optimization 0.797 ms, Emission 5.048 ms, Total 7.104 ms
 Execution Time: 7.416 ms



これを見るとわかるように、JITは使われていますが、インライン展開と高価な最適化は行われていません。
加えてjit_inline_above_costあるいはjit_optimize_above_costを小さくすれば、これは変わることでしょう。
  

設定





設定パラメータのjitは、JITが有効か無効かを決定します。
有効ならば、設定値jit_above_cost、jit_inline_above_cost、jit_optimize_above_costは問い合わせでJITコンパイルが実行されるかどうか、どの程度の努力がJITコンパイルに払われるのかを決定します。
  


jit_providerはどのJIT実装が使われるのかを決定します。
めったに変更する必要はありません。
「プラグ可能JITプロバイダ」を参照してください。
  


「開発者向けオプション」にあるように、開発とデバッグ目的のために少数の追加設定パラメータがあります。
  

拡張性



拡張のためのインライン展開サポート





PostgreSQL™のJIT実装は、Cとinternal型の関数の本体をインライン展開できます。そうした関数に基づく演算子も同様です。
拡張の関数に同じことを行うには、関数の定義が入手可能である必要があります。
LLVM JITサポートがコンパイルされているサーバに対してPGXSを使って拡張をビルドする際に、関連するファイルは自動的にビルドされ、インストールされます。
   


関連するファイルは$pkglibdir/bitcode/$extension/に、そのサマリは$pkglibdir/bitcode/$extension.index.bcにインストールされなければなりません。
ここで、$pkglibdirは、pg_config --pkglibdirが返すディレクトリで、$extensionは拡張の共有ライブラリのベース名です。

    
注記


PostgreSQL™自身に組み込まれた関数については、ビットコードが$pkglibdir/bitcode/postgresにインストールされます。
     


   

プラグ可能JITプロバイダ





PostgreSQL™はLLVM™に基づいたJIT実装を提供します。
JITプロバイダのインタフェースはプラグ可能で、プロバイダは再コンパイルすることなく変更できます。（ただし今のところ、ビルドプロセスはLLVM™用のインライン展開サポートデータのみを提供しています。）
有効なプロバイダはjit_providerの設定で選択できます。
   
JITプロバイダインタフェース





名前付きの共有ライブラリをロードすることにより、JITは動的にロードされます。
ライブラリを特定するために通常のライブラリサーチパスが使用されます。
必要なJITプロバイダコールバックを提供し、かつそのライブラリが実際にJITプロバイダであることを示すために、_PG_jit_provider_initという名前のC関数を提供する必要があります。
この関数には構造体が渡され、その構造体には各々の動作用のコールバック関数へのポインタが設定される必要があります。


struct JitProviderCallbacks
{
    JitProviderResetAfterErrorCB reset_after_error;
    JitProviderReleaseContextCB release_context;
    JitProviderCompileExprCB compile_expr;
};

extern void _PG_jit_provider_init(JitProviderCallbacks *cb);


    



第31章 リグレッションテスト





リグレッションテストとは、PostgreSQL™のSQL実装についての包括的なテストの集まりです。
リグレッションテストでは、標準SQLの操作に加えてPostgreSQL™の拡張SQL機能もテストします。
  
テストの実行





リグレッションテストは既にインストールされ稼働中のサーバや、ビルドツリー内の一時的なインストレーションに対して実行することができます。
さらに、テストの実行には「並行」と「連続」モードがあります。
連続モードでは個々のテストスクリプトを単独で実行し、並行モードでは複数のサーバプロセスを実行し、テストをグループ化して並行的に実行します。
並行テストではプロセス間通信とロック機能が正常に作動しているかをテストします。
テストの中には、テストによって要求されている場合には「並行」モードであっても連続的に実行するものがあるかもしれません。
  
一時的なインストレーションに対するテストの実行





構築後、インストール前に並行リグレッションテストを行う場合には、


make check



を最上位のディレクトリで入力してください。
（または、src/test/regressディレクトリに移動して、そこで実行してください。）
並行的に実行されるテストは前に「+」が付いていて、連続的に実行されるテストは前に「-」が付いています。
終了したら以下のような表示がされるはずです。



# All 213 tests passed.




これが表示されなければ、テストは失敗したことになります。
「失敗」を深刻な問題であると推測する前に、以下の 「テストの評価」 を参照してください。
  


この試験方法では、一時的にサーバを起動するので、rootユーザとして構築を行なった場合には動作しません。
サーバがrootでは起動しないからです。
rootで構築をしないこと、もしくはインストール完了後に試験を実施することをお薦めします。
   


古いPostgreSQL™のインストレーションが既に存在している場所にPostgreSQL™をインストールするように構築した場合、新しいバージョンをインストールする前にmake checkを行うと、新しいプログラムがインストール済みの共有ライブラリを使用しようとするために試験が失敗することになります。
（典型的な症状は、未定義シンボルに関するエラーメッセージです。）
古いインストレーションを上書きする前に試験を行いたいのであれば、configure --disable-rpathで構築する必要があります。
しかし、このオプションを最終的なインストレーションで使用することは推奨しません。
   


並行リグレッションテストは、実行したユーザのユーザIDを使用して相当数のプロセスを起動します。
現在、最大で20個の並行テストスクリプトが同時に実行されますが、これは合計40個のプロセスが実行されることを意味します。
各テストスクリプトに対して、1つのサーバプロセスと1つのpsqlプロセスが存在するためです。
ですので、使用するシステムでユーザ当たりのプロセス数に制限を加えている場合は、その上限が少なくとも50程度であることを確認してください。
さもないと、並行テストにおいて、ランダムに発生しているように見える失敗が発生するかもしれません。
この上限を変更できない場合は、MAX_CONNECTIONSパラメータを編集して、並行度を減らすことができます。
例えば、以下は同時実行数を10以下で実行します。


make MAX_CONNECTIONS=10 check



   

既存のインストレーションに対するテストの実行





インストール（17章ソースコードからインストールを参照）後にテストを実行するには、18章サーバの準備と運用で説明したようにデータディレクトリを初期化し、サーバを起動し、そして以下を入力してください。


make installcheck



もしくは、並行テストの場合は以下を入力してください。


make installcheck-parallel



テストでは、PGHOST環境変数とPGPORT環境変数で指定がない限り、ローカルホストのサーバに接続し、デフォルトのポート番号を使用します。
テストはregressionという名前のデータベースで行なわれます。
この名前の既存のデータベースはすべて削除されます。
  


テストは、ロールやテーブル空間、サブスクリプションのようなクラスタ全体にわたるオブジェクトも一時的に作成します。
このオブジェクトの名前はregress_で始まります。
実際のグローバルオブジェクトがそのように名付けられたインストレーションでinstallcheckモードを使う場合には注意してください。
  

追加のテストスイート





make checkとmake installcheckコマンドは「コア」リグレッションテストだけを実行します。
そのテストはPostgreSQL™サーバに組み込まれている機能のみをテストします。
ソース配布には、オプションとなっている手続き言語のような追加機能とその多くが関係のある追加のテストスイートが多く含まれています。
  


コアテストを含む、構築するよう選択されたモジュールに適用できるテストスイートをすべて実行するにはビルドツリーの最上位で以下のコマンドの一つを入力して下さい。


make check-world
make installcheck-world



make checkとmake installcheckで以前述べたように、このコマンドは、それぞれ、一時的なサーバもしくは既にインストールされているサーバを使ってテストを行ないます。
それ以外に考慮すべきことはそれぞれのところで以前述べたことと同じです。
make check-worldはテストするモジュール毎に別のインスタンス(一時的なデータディレクトリ)を構築しますので、make installcheck-worldよりもずっとより多くの時間とディスク容量が必要です。
  


複数のCPUコアがあり、オペレーティングシステムの厳しい制限のない最近のマシンでは、並列処理でかなり速くできます。
ほとんどのPostgreSQL開発者がテストをすべて実行するのに実際に使っている方法は以下のようなものです。


make check-world -j8 >/dev/null



ここで-jの範囲は利用可能なコアの数に近い、もしくはそれより少し多い値です。
stdoutを捨てることで、成功を検証する時には興味のない出力を除きます。(失敗した場合、どこをより詳細に調べるべきか決めるにはstderrメッセージでたいてい十分です。)
  


代わりに、構築ツリーの適切なサブディレクトリでmake checkまたはmake installcheckと入力することで個々のテストスイートを実行することもできます。
make installcheckはコアサーバだけでなく、関係のあるモジュールもインストール済みであると仮定することを覚えておいて下さい。
  


このように実行できる追加のテストには以下のものが含まれます。
  
	

オプションとなっている手続き言語のリグレッションテスト。
これはsrc/plにあります。
    

	

contribの下にあるcontribモジュールのリグレッションテスト。
すべてのcontribモジュールにテストがあるわけではありません。
    

	

src/interfaces/libpq/testとsrc/interfaces/ecpg/testにあるインタフェースライブラリのリグレッションテスト。
    

	

コアがサポートする認証方式のテスト。
src/test/authenticationにあります。
(認証に関連する追加のテストについては下記を参照してください。)
    

	

同時実行中のセッションの振舞いの負荷テスト。
src/test/isolationにあります。
    

	

クラッシュリカバリと物理レプリケーションのテスト。
src/test/recoveryにあります。
    

	

論理レプリケーションのテスト。
src/test/subscriptionにあります。
    

	

src/bin以下のクライアントプログラムのテスト。
    





installcheckモードを使う場合には、上記のテストは名前regressionを含むテストデータベースを破壊します。例えば、pl_regression、contrib_regressionです。
非テストデータベースがそのように名付けられたインストレーションでinstallcheckモードを使う場合には注意してください。
  


この補助的なテストスイートの中には「TAPテスト」で説明するTAP基盤を使うものがあります。
オプション--enable-tap-testsを指定してPostgreSQLを構築した場合にのみ、TAPベースのテストが行なわれます。
これは開発にはお薦めですが、適切なPerlのインストレーションがない場合には省略できます。
  


マルチユーザシステムにおいて安全に実行できない、特別なソフトウェアを必要とする、あるいは、リソースを大量に使うといういずれかの理由により、一部のテストスイートはデフォルトでは実行されません。
どのテストスイートを追加で実行するかをmakeや環境変数PG_TEST_EXTRAに空白区切りのリストを設定することで決定できます。
以下に例を示します。


make check-world PG_TEST_EXTRA='kerberos ldap ssl load_balance libpq_encryption'



現在、以下の値がサポートされます。
   
	kerberos
	

src/test/kerberos以下のテストスイートを実行します。
これはMIT Kerberosのインストールを必要とし、TCP/IPリッスンソケットを開きます。
      

	ldap
	

src/test/ldap以下のテストスイートを実行します。
これはOpenLDAP™のインストールを必要としTCP/IPリッスンソケットを開きます。
      

	libpq_encryption
	

src/interfaces/libpq/t/005_negotiate_encryption.plテストを実行します。
これはTCP/IPリッスンソケットを開きます。
PG_TEST_EXTRAにkerberosも含まれる場合、MIT Kerberosインストールを必要とする追加のテストが有効になります。
      

	load_balance
	

src/interfaces/libpq/t/004_load_balance_dns.plテストを実行します。
これには、システムのhostsファイルを編集することが必要で、TCP/IPリッスンソケットを開きます。
      

	oauth
	

src/test/modules/oauth_validator以下のテストスイートを実行します。
これはHTTPSテストサーバのTCP/IPリッスンソケットを開きます。
      

	regress_dump_restore
	

src/bin/pg_upgrade/t/002_pg_upgrade.pl内にある追加のテストスイートを実行します。
これはregressionデータベースに対してpg_dump/pg_restoreを繰り返し実行します。
リソースを大量に消費するため、デフォルトでは有効になっていません。
      

	sepgsql
	

contrib/sepgsql以下にあるテストスイートを実行します。
これは特別な方法で設定されたSELinux環境を必要とします。
「リグレッションテスト」を参照してください。
      

	ssl
	

src/test/ssl以下のテストスイートを実行します。
これはTCP/IPリッスンソケットを開きます。
      

	wal_consistency_checking
	

src/test/recoveryで特定のテストを実行する際にwal_consistency_checking=allを使用します。
リソースを大量に消費するため、デフォルトでは有効になっていません。
      

	xid_wraparound
	

src/test/modules/xid_wraparound以下のテストスイートを実行します。
リソースを大量に消費するため、デフォルトでは有効になっていません。
      






現在のビルド設定ではサポートされない機能のテストは、PG_TEST_EXTRAに記述されていても、実行されません。
  


さらに、make check-worldでは実行されますが、make installcheck-worldでは実行されないテストがsrc/test/modulesにあります。
これは、実運用向けではない拡張をインストールしたり、実運用のインストレーションには望ましくない副作用があったりするためです。
お望みとあらば、そのサブディレクトリの1つでmake installとmake installcheckを使うことはできますが、テスト用でないサーバでそうすることはお勧めしません。
  

ロケールと符号化方式





デフォルトでは、一時的なインストレーションを使うテストは、現在の環境で定義されたロケールとinitdbで決定される対応するデータベース符号化方式を使用します。
異なるロケールを試験する際は、以下の例のように適切な環境変数を設定することが有用です。


make check LANG=C
make check LC_COLLATE=en_US.utf8 LC_CTYPE=fr_CA.utf8



実装上の理由のため、LC_ALLはこの目的には動作しません。
この他のロケール関連の環境変数は動作します。
   


既存のインストレーションに対するテストでは、ロケールは既存のデータベースクラスタによって決まり、テスト実行時に別の値に設定することができません。
   


また、以下の例のようにENCODING変数を設定することで明示的にデータベース符号化方式を選択することができます。


make check LANG=C ENCODING=EUC_JP



この方法でデータベース符号化方式を設定することは、通常ロケールがCだった場合にのみ意味があります。
この他の場合、ロケールから自動的に符号化方式が選択されます。
ロケールと一致しない符号化方式を指定してもエラーになるだけです。
   


データベース符号化方式は一時的なインストレーションに対するテストでも既存のインストレーションに対するテストでも設定することができます。
ただし、後者の場合にはインストレーションのロケールと互換性がなければなりません。
   

カスタムサーバ設定





テストスイートを実行するときにカスタムサーバ設定を使用するには、いくつかの方法があります。
これは、追加のログを有効にしたり、リソース制限を調整したり、debug_discard_cachesのような追加の実行時チェックを有効にしたりするのに便利です。
ただし、任意の設定ですべてのテストが完全に合格するとは限らないことに注意してください。
   


テストのセットアップ中に内部で実行されるさまざまなinitdbコマンドに対しての追加のオプションをPG_TEST_INITDB_EXTRA_OPTS環境変数を使って渡せます。
例えば、チェックサムを有効にしてカスタムのWALセグメントサイズとwork_mem設定でテストを実行するには以下を使います。


make check PG_TEST_INITDB_EXTRA_OPTS='-k --wal-segsize=4 -c work_mem=50MB'


   


コアリグレッションテストおよびpg_regressによって実行されるその他のテストでは、カスタムの実行時サーバ設定をPGOPTIONS環境変数（許可されている設定について）で設定できます。
以下に例を示します。


make check PGOPTIONS="-c debug_parallel_query=regress -c work_mem=50MB"



（これはlibpqが提供する機能を利用しています。
詳細はoptionsを参照してください。）
   


一時的なインストールに対して実行する際には、前もって書き込んでおいたpostgresql.confを用意することによってもカスタム設定に反映できます。


echo 'log_checkpoints = on' > test_postgresql.conf
echo 'work_mem = 50MB' >> test_postgresql.conf
make check EXTRA_REGRESS_OPTS="--temp-config=test_postgresql.conf"


   

追加のテスト





プラットフォームに依存する、または非常に時間がかかる可能性があるという理由で、コアリグレッションテスト一式にはデフォルトでは動作しないテストファイルがいくつか含まれています。
EXTRA_TESTS変数を設定することでこれらの追加テストやその他のテストを実行することができます。
例えば、numeric_bigテストを以下のように実行します。


make check EXTRA_TESTS=numeric_big


   



テストの評価





適正にインストールされ、かつ、すべての機能が使用できるようなPostgreSQL™インストレーションであっても、浮動小数点の表現やメッセージ内の単語順など、プラットフォーム特有の誤差のために「失敗」することがあります。
現在のテストは単純に、（基準となる）参照用システムで生成した出力とのdiffを取ることで結果の検証を行っているため、システムの些細な違いにも反応します。
結果が「失敗」となった場合は、予測された結果と実際の結果との差分を必ず評価してください。
それらの差異が重大ではないことが判明することもあります。
なお、すべてのテストが成功するように、サポートするすべてのプラットフォームに対する正確な参照ファイルの保守に努めています。
   


実際のリグレッションテストの出力は、src/test/regress/resultsディレクトリ内のファイルに書き込まれます。
テストスクリプトはdiffを使用して、各出力ファイルとsrc/test/regress/expectedディレクトリ内の参照用出力とを比較します。
あらゆる差異は調査用にsrc/test/regress/regression.diffsに保存されます。
（コアテスト以外のテストスイートを実行する場合には、上記のファイルはもちろんsrc/test/regressではなく適切なサブディレクトリに現れます。）
   


デフォルトで利用されているdiffオプションが気に入らなければ、例えばPG_REGRESS_DIFF_OPTS='-c'のように、環境変数PG_REGRESS_DIFF_OPTSを設定して下さい。
（あるいは、自分でdiffを実行することもできます。）
   


何らかの理由で、特定のプラットフォームが指定した試験で「失敗」し、その出力の調査により結果の方が有効であると確信できた場合、新しい比較用ファイルを追加し、今後の試験で失敗の報告が発生しないようにすることができます。
詳細は「各種の比較用ファイル」を参照してください。
   
エラーメッセージの違い





リグレッションテストのいくつかは、意図的に無効な入力値を使用します。
エラーメッセージはPostgreSQL™のコードによるもの、または使用しているプラットフォームの関数によるものがあります。
後者の場合、プラットフォームによって違いがあるかもしれませんが、似たような内容になるはずです。
これらのメッセージの違いによりリグレッションテストは「失敗」する可能性がありますが、これらは検査で確認できます。
    

ロケールの違い





Cロケール以外の照合順序のロケールで初期化されたサーバに対してテストを実行する際には、ソート順やその後に発生する失敗に違いが生じる可能性があります。
リグレッションテストスイートはこの問題を解決するために、多くのロケールを処理するための代替の結果ファイルを提供するように設定されています。
    


一時的なインストレーションを使用して、異なるロケールのテストを実行するためには、以下の例のように、makeコマンドラインに適切なロケール関連の環境変数を渡してください。


make check LANG=de_DE.utf8



（リグレッションテストのドライバはLC_ALLを設定しないため、この変数を使ってロケールを選択することはできません。）
ロケール無しを使用するためには、すべてのロケール関連の環境変数を設定しない（または、それらをCに設定する）か、もしくは以下の特殊な起動を行います。


make check NO_LOCALE=1



既存のインストレーションに対してテストを実行する場合は、ロケール設定は既存のインストレーションによって決まります。
変更するためには、initdbに適切なオプションを渡して、異なるロケールでデータベースクラスタを初期化してください。
    


実際に実運用で使用されるロケールおよび符号化方式に関連した部分のコードが検証されますので、一般的には、実運用で使用されるロケール設定でリグレッションテストを実行することを推奨します。
オペレーティングシステム環境に依存して、結果が失敗する場合もありますが、少なくとも実際のアプリケーションを実行する時に想定されるロケール固有の動作を知ることができます。
    

日付と時刻の違い





日付と時刻の結果のほとんどは時間帯の環境に依存します。
参照ファイルは時間帯America/Los_Angeles用に生成されているため、この時間帯設定で実行されていないテストは明らかに失敗します。
リグレッションテストのドライバは、適切な結果を保証するために、環境変数PGTZにAmerica/Los_Angelesを設定します。
    

浮動小数点数の違い





いくつかのテストでは、64ビット（double precision型）の浮動小数点数値をテーブルの列から取り出して計算を行います。
double precision列における数学演算関数では、異なった結果が発生する場合があることが知られています。
float8とgeometryテストは特に、プラットフォーム間、またはコンパイラの最適化の設定による小さな違いが起こりやすくなります。
これらの違い、通常は小数点以下10桁目以降の相違の、実際の影響度を判断するためには、人間の目で実際に確認する必要があります。
    


いくつかのシステムではマイナス0を-0と表示することがあり、その他のシステムでは単に0と表示します。
    


いくつかのシステムでは、現在のPostgreSQL™のコードが想定しているメカニズムと異なるために、pow()とexp()でエラーを発生する場合があります。
    

行の順序の違い





同じ行の出力が、参照ファイルで記述されている順序とは異なっている場合があります。
ほとんどの場合、これは厳密に言ってバグではありません。
ほとんどのリグレッションテストは、各SELECT文に対してORDER BYを使用するほど規則に厳しくなく、そのため、結果の行の順序はSQLの仕様に従って、明確に決まっていません。
実際には、同じソフトウェアで同じデータを用いて同じ問い合わせで参照しているので、すべてのプラットフォームで同じ順序の結果が返されるため、ORDER BYがないことは問題ではないと言えます。
しかし、問い合わせによっては、プラットフォーム間の順序の違いが起こる可能性があります。
インストール済みのサーバに対して試験を行う場合、C以外のロケール、独自のwork_memや独自のプランナ用のコストパラメータなどデフォルト以外のパラメータ設定により順序の違いが生じる可能性があります。
    


したがって、順序の違いを見つけた場合、問い合わせにORDER BYが含まれていて順序が影響を及ぼす場合以外は、気にする必要はありません。
ただし、その場合にもとにかくご一報ください。特定の問い合わせから偽の「失敗」を取り除くために、将来のリリースにおいて、ORDER BYを追加します。
    


このような問題を避けるために、なぜ我々がすべてのリグレッションテストに対して明示的に順序を指定しないのか、疑問に思うかもしれません。
その理由は、ソートが必要がない場合であってもソートされた結果を生成する問い合わせ計画を実行しようとすることによって、リグレッションテストの意義が増すわけではなく、むしろ減るからです。
    

スタック長の不足





errorsテストがselect infinite_recurse()コマンドでサーバをクラッシュさせた場合、プラットフォームのプロセススタックサイズがmax_stack_depthパラメータが示す値よりも小さいことを意味します。
これは、スタックサイズ制限を高くして（デフォルトのmax_stack_depthでの推奨値は4メガバイト）サーバを実行することで修正することができます。
これを行うことができない場合、max_stack_depthの値を少なくすることが代替方法です。
    


getrlimit()をサポートするプラットフォームでは、サーバは自動的にmax_stack_depthの安全な値を選ぶべきです。
この設定を手で上書きしたのでない限り、この種の失敗は報告する価値のあるバグです。
    

「乱数」 テスト





randomテストスクリプトは、無作為な結果を生成することを目的としています。
非常に稀ですが、これがリグレッションテストが失敗する原因になることがあります。
次のように、


diff results/random.out expected/random.out



と入力すると、ほんの数行だけの差異が生じるはずです。
繰り返し失敗しない限り、気に留める必要はありません。
    

設定パラメータ





既存のインストレーションに対してテストを実行する場合、デフォルトでないパラメータ設定はテストが失敗する原因になり得ます。
例えば、enable_seqscanやenable_indexscanのようなパラメータの変更は、EXPLAINを使うテストの結果に影響する計画の変更の原因となり得ます。
    


各種の比較用ファイル





試験の中には必然的に環境に依存した結果となるものがありますので、「expected」結果ファイルの代替を指定する方法を用意しています。
各リグレッションテストは、異なるプラットフォームで出力される可能性がある、複数の比較用ファイルを持つことができます。
各試験に対してどの比較用ファイルを使用するかを決定する方法には、独立した２つの機構があります。
   


1つ目のメカニズムにより、特定のプラットフォームのための比較用ファイルを選ぶことができます。
関連付けを行うsrc/test/regress/resultmapというファイルがあり、どの比較用ファイルがどのプラットフォームで使用されるのかを定義します。
特定のプラットフォームにおいて試験の「失敗」の誤検知を防ぐためには、まず結果ファイルを選ぶ、あるいは結果ファイルを作成してから、resultmapファイルに1行加えてください。
   


マッピングファイルの各行の書式は下記の通りです。


testname:output:platformpattern=comparisonfilename



testnameは特定のリグレッションテストのモジュール名です。
outputの値は、どの出力ファイルを検査するのかを示します。
標準のリグレッションテストでは、これは常にoutです。
この値は出力ファイルの拡張子に対応します。
platformpatternとは、expr Unixツールスタイル（最初に暗黙的な^がある正規表現）のパターンです。
これはconfig.guessによって出力されるプラットフォーム名と比較されます。
comparisonfilenameは置き換える結果比較ファイルの（ディレクトリ部分を除いた）名前です。
   


以下に例を示します。
システムの中には、動作するstrtof関数がないものがあり、そのため私たちの回避策がfloat4リグレッションテストでの丸め誤差の原因となります。
そのため、float4-misrounded-input.outという異なる比較ファイルを用意し、そこにこういったシステムでの期待される値を記述します。
Cygwinプラットフォームにおいて偽の「失敗」メッセージ出力を行わせないようにするために、resultmapに以下を含めます。


float4:out:.*-.*-cygwin.*=float4-misrounded-input.out



これは、config.guessの出力が.*-.*-cygwin.*に一致するすべてのマシンに対して適用されます。
resultmapのその他の行は、他のプラットフォーム向けの適切な比較ファイルを選択します。
   


2つ目の比較用ファイルの選択の仕組みはかなり自動化されています。
これは単純に、提供されている各種比較用ファイルの中から「もっとも一致するもの」を使用します。
リグレッションテストのドライバスクリプトは、試験において、標準の比較用ファイルtestname.outとtestname_digit.out（ここでdigitは0-9のいずれかからなる1つの数字です）という名前の別のファイルの両方を考慮します。
もしこの中のいずれかのファイルが正確に一致した場合、試験が成功したものとみなします。
さもなくば、生成されたdiffの結果がもっとも小さかった結果ファイルを選択して、失敗報告を生成します。
（resultmapに特定の試験用の項目が含まれていると、resultmap内の名前が元となるtestnameに置き換えられます。）
   


例えば、charの試験では、比較用ファイルchar.outにはCロケールとPOSIXロケールで想定される結果が含まれています。
一方、char_1.outファイルには、他の多くのロケールで現れる結果がソートされて含まれています。
   


この最善一致の仕組みは、ロケールに依存した結果に対応できるように考え出されました。
しかし、この仕組みはプラットフォームの名前だけでは簡単に予測できる試験結果とならないような、任意の状況で使用することができます。
この仕組みの制約は、現在の環境でどの種類の比較ファイルが本当に「正しい」のかが試験ドライバでは分からないという点です。
単にもっともうまく動いていそうなものを選択しているだけだからです。
したがって、すべての文脈で平等に有効とみなすことができるような種類の結果においてのみ利用するのが、もっとも安全です。
   

TAPテスト





様々なテスト、特にsrc/bin以下のクライアントプログラムテストはPerl TAPツールを使い、Perlテストプログラムproveを使って実行されます。
make変数PROVE_FLAGSを設定することでproveコマンドラインオプションを渡すことができます。
例えば、


make -C src/bin check PROVE_FLAGS='--timer'



詳細な情報はproveのマニュアルページを参照してください。
   


デフォルトのt/*.plに替えて、テストの指定サブセットを実行するために、make変数PROVE_TESTSを使用できます。proveを起動するMakefileからの相対パスの空白区切りのリストを指定します。
以下に例を示します。


make check PROVE_TESTS='t/001_test1.pl t/003_test3.pl'


   


TAPテストはPerlモジュールIPC::Runが必要です。
このモジュールはCPANもしくはオペレーティングシステムのパッケージから入手可能です。
また、PostgreSQL™を--enable-tap-testsを有効にして構成しておく必要があります。
   


一般的に言って、TAPテストは、make installcheckとした場合には以前インストールしたインストレーションツリーの実行ファイルをテストし、make checkとした場合には現在のソースから新しいインストレーションツリーを構築します。
どちらの場合も、ローカルインスタンス(データディレクトリ)を初期化し、その中で一時的にサーバを実行します。
テストの中には2つ以上のサーバを実行するものがあります。
従って、このテストはかなりリソース集約的になる可能性があります。
   


make installcheckとした場合でも、TAPテストはテストサーバを開始することを理解しておくことは重要です。
これは伝統的な非TAPテスト基盤とは異なります。非TAPテスト基盤ではその場合、既に動作しているテストサーバを使うことが期待されます。
PostgreSQLのサブディレクトリには、伝統的な形式のテストとTAP形式のものの両方を含むものがありますので、make installcheckは一時的なサーバと既に動作しているテストサーバからの結果を寄せ集めることになります。
   
環境変数





データディレクトリは、テストファイル名に従って命名され、テストが失敗した場合は保持されます。
環境変数PG_TEST_NOCLEANが設定されている場合、テストステータスに関係なく、データディレクトリは保持されます。
たとえば、pg_dumpテストを実行するときに、テスト結果に関係なくデータディレクトリを保持するには、次のようにします。


PG_TEST_NOCLEAN=1 make -C src/bin/pg_dump check



この環境変数は、テストの一時ディレクトリが削除されないようにもします。
   


テストスイートの多くの操作では、180秒のタイムアウトが使用されます。これは、低速なホストでは、ロードによってタイムアウトが誘発される可能性があります。
環境変数PG_TEST_TIMEOUT_DEFAULTをより大きな数値に設定すると、この問題を回避するためにデフォルトが変更されます。
   


テストが網羅する範囲の検証





PostgreSQLソースコードは、カバレッジテストツールとともにコンパイルすることができるため、リグレッションテスト、あるいはその他のテストスイートによって、コードのどの部分が網羅されているかを評価することができます。
これは現在、GCCを使用してコンパイルした時にサポートされ、gcovおよびlcovパッケージを必要とします。
   
AutoconfとMakeでのカバレッジ





典型的な作業の流れは以下のようになります。


./configure --enable-coverage ... OTHER OPTIONS ...
make
make check # or other test suite
make coverage-html



そして、HTMLブラウザでcoverage/index.htmlを参照します。
    


lcovがない、あるいは、HTMLレポートよりもテキスト出力を好むなら、以下を実行してください。


make coverage



make coverage-htmlの代わりに、これはテストに関連する各ソースファイルに対して.gcov出力ファイルを生成します。
（make coverageとmake coverage-htmlは互いのファイルを上書きしますので、混用は混乱をひき起こすかもしれません）
    


カバレッジレポートを作成する前に複数の異なるテストを実行できます。実行カウントは累積されます。
実行カウントをテストの間でリセットしたければ、以下を実行してください。


make coverage-clean


    


コードツリーの一部だけのカバレッジレポートが必要ならば、make coverage-htmlあるいはmake coverageコマンドをそのサブディレクトリで実行することができます。
    


終了後に結果を削除するにはmake distcleanを実行します。
    

Mesonでのカバレッジ





典型的な作業の流れは以下のようになります。


meson setup -Db_coverage=true ... OTHER OPTIONS ... builddir/
meson compile -C builddir/
meson test -C builddir/
cd builddir/
ninja coverage-html



次に、HTMLブラウザで./meson-logs/coveragereport/index.htmlを指定します。
    


カバレッジレポートを作成する前に複数の異なるテストを実行できます。実行回数は累積されます。
    


パート IV. クライアントインタフェース






ここではPostgreSQL™に附属するクライアントプログラミングインタフェースについて説明します。
各章は独立して読むことができます。
クライアントプログラムには、数多くの外部プログラミングインタフェースがありますが、これらのインタフェースは独自の資料とともに個別に配布されています。
（付録H 外部プロジェクトに人気があるインタフェースの一部を列挙しています）。
読者は、データベースの操作や問い合わせを行うためのSQL（パートII「SQL言語」を参照）、また、当然ながら、ご自身の選んだプログラミング言語に慣れ親しんでいることが必要です。
   


第32章 libpq — C ライブラリ





libpqは、C言語によるアプリケーションプログラマ用のPostgreSQL™インタフェースです。
libpqは、クライアントプログラムからPostgreSQL™のバックエンドサーバに問い合わせを渡し、その結果を受け取るためのライブラリ関数の集合です。
 


libpqは、C++、Perl、Python、Tcl、ECPGなどを含む、PostgreSQL™の他の各種アプリケーションインタフェースを支えるエンジンでもあります。
従って、libpqの動作は、これらのパッケージを使用する人にとって重要なものになります。
特に、「環境変数」、「パスワードファイル」および「SSLサポート」にて、libpqを使用するすべてのアプリケーションのユーザから見える動作を説明します。
 


本章の最後に、libpqの使い方を示す、いくつかの短いプログラム(「サンプルプログラム」)があります。
また、ソースコード配布物内のsrc/test/examplesディレクトリに、libpqを利用したアプリケーションプログラム一式の例があります。
 


libpqを使用してフロントエンドプログラムを作成するには、libpq-fe.hヘッダファイルのインクルードと、libpq ライブラリとのリンクが必要です。

 
データベース接続制御関数





PostgreSQL™のバックエンドサーバとの接続を作成するには、以下の関数を使用します。
アプリケーションプログラムはバックエンドとの接続を一度に複数個開くことができます。
（そのようにする1つの理由として、複数のデータベースへのアクセスが挙げられます。）
個々の接続は、PQconnectdb、PQconnectdbParamsまたはPQsetdbLogin関数を呼び出すことで得られるPGconnオブジェクトによって表されます。
なお、これらの関数は、PGconnオブジェクトに割り当てるほんのわずかなメモリの余裕さえもない場合を除き、NULLではなく常にオブジェクトのポインタを返します。
また、この接続オブジェクトを通じて問い合わせを送る前に、PQstatus関数を呼び出して、データベースとの接続に成功したか戻り値を検査しなければなりません。

   
警告


信頼できないユーザが、安全なスキーマ使用パターンを適用していないデータベースへアクセスする際には、セッション開始時にsearch_pathから、第三者が書き込みができるスキーマを削除してください。
これはoptionsパラメータキーワードに値-csearch_path=を設定することで可能となります。
別の方法としては、接続後にPQexec(conn, "SELECT pg_catalog.set_config('search_path', '', false)")を発行しても構いません。
このような配慮は、libpqに限ったことではありません。
任意のSQLコマンドを実行するすべてのインタフェースに当てはまります。
    



   
警告


Unix上で、libpq接続を開いたプロセスのフォークは、親と子のプロセスが同じソケットとオペレーティングシステムの資源を共有するため、予期せぬ結果を招くことがあります。
この理由により、新規実行形式を子プロセスが読み込むためexecを行うことが安全と言っても、このような使用方法は推奨されません。
    



   
	PQconnectdbParams
	

新たにデータベースサーバへの接続を作成します。



PGconn *PQconnectdbParams(const char * const *keywords,
                          const char * const *values,
                          int expand_dbname);


      


この関数は、2つのNULL終端の配列から取得したパラメータを使用して、データベースとの接続を新たに1つ確立します。
1つ目は文字列配列として定義されるkeywordsで、それぞれがキーワードとなります。
2つ目はvaluesで、各キーワードの値を提供します。
後述のPQsetdbLoginとは異なり、関数のシグネチャを変更せずにパラメータ集合を拡張できますので、アプリケーションプログラムを新たに作成する際には、この関数(もしくは非ブロックモードでよく似た処理をするPQconnectStartParamsとPQconnectPoll)を使用することをお勧めします。
      


現在有効なパラメータキーワードを「パラメータキーワード」に示します。
      


渡される配列は、すべてのデフォルトパラメータを使用するために空にするか、または1つ以上のパラメータ設定を含むことができます。
それらは長さが一致する必要があります。
処理はkeywords配列内の最初のNULLエントリで停止します。
また、非NULL keywordsエントリに関連付けられたvaluesエントリがNULLまたは空文字列である場合、そのエントリは無視され、処理は配列エントリの次のペアで続行されます。
      


expand_dbnameが0以外の場合、最初のdbnameキーワードの値が接続文字列かどうかチェックされます。
そうであれば、文字列から抽出された個々の接続パラメータに「拡張」されます。
等号(=)が含まれている場合や、URIスキーム指定子で始まっている場合、値は単なるデータベース名ではなく接続文字列とみなされます。
(接続文字列フォーマットの詳細は「接続文字列」を参照してください。)
dbnameの最初の出現のみがこの方法で処理されます。
後続のdbnameパラメータはプレーンなデータベース名として処理されます。
      


一般的に、パラメータ配列は開始から終了まで処理されます。
キーワードが繰り返された場合、最後の値(NULLまたは空ではない)が使用されます。
この規則は特に、接続文字列内で見つかったキーワードがkeywords配列内で出現するキーワードと競合する場合に適用されます。
したがって、プログラマは、配列エントリが上書きするか、あるいは接続文字列から取得した値によって上書きされるかを判断できます。
拡張されたdbnameエントリの前に現れる配列エントリは、接続文字列のフィールドによって上書きされ、次にdbnameの後に現れる配列エントリによって上書きされます(ただし、これらのエントリが空でない値を提供する場合に限ります)。
      


すべての配列エントリと拡張された接続文字列を処理した後、未設定のままの接続パラメータはデフォルト値で埋められます。
未設定パラメータに対応する環境変数(「環境変数」参照)が設定されている場合は、その値が使用されます。
環境変数も設定されていない場合は、パラメータに組み込まれているデフォルト値が使用されます。
      

	PQconnectdb
	

新たにデータベースサーバへの接続を作成します。



PGconn *PQconnectdb(const char *conninfo);


      


この関数はconninfo文字列から取得されるパラメータを使用して、新しいデータベース接続を開きます。
      


空の文字列を渡してすべてデフォルトパラメータを使用することができます。
また空白文字で区切ることで1つ以上のパラメータ設定を持たせることもできます。
さらにURIを含めることができます。
詳細については「接続文字列」を参照してください。
     

	PQsetdbLogin
	

新たにデータベースサーバへの接続を作成します。


PGconn *PQsetdbLogin(const char *pghost,
                     const char *pgport,
                     const char *pgoptions,
                     const char *pgtty,
                     const char *dbName,
                     const char *login,
                     const char *pwd);


       


これはパラメータ群を固定したPQconnectdbの前身です。
設定できないパラメータが常にデフォルト値になる点を除き、同一の機能を持ちます。
固定のパラメータに対してNULLもしくは空文字列とすると、それはデフォルトを使用することになります。
      


dbName内に=記号が含まれる場合、または有効な接続URI接頭辞を持つ場合、PQconnectdbに渡された場合とまったく同じ扱いでconninfo文字列として扱われます。
その後残りのパラメータがPQconnectdbParamsの指定のように適用されます。
      


pgttyは使用されなくなり、渡された値は無視されます。
      

	PQsetdb
	

新たにデータベースサーバへの接続を作成します。


PGconn *PQsetdb(char *pghost,
                char *pgport,
                char *pgoptions,
                char *pgtty,
                char *dbName);


     


これは、loginとpwdにNULLポインタを設定するPQsetdbLoginを呼び出すマクロです。
非常に古いプログラムへの後方互換性のために提供されています。
     

	PQconnectStartParams, PQconnectStart, PQconnectPoll
	
       
       

ブロックしない方法で、データベースサーバへの接続を作成します。



PGconn *PQconnectStartParams(const char * const *keywords,
                             const char * const *values,
                             int expand_dbname);

PGconn *PQconnectStart(const char *conninfo);

PostgresPollingStatusType PQconnectPoll(PGconn *conn);


      


これら3つの関数は、リモートI/Oの実行時にアプリケーションスレッドの実行がブロックされないようなデータベースサーバへの接続を作成するために使われます。
この手法の利点は、I/Oの終了待ちがPQconnectdbParamsまたはPQconnectdb内部ではなく、アプリケーションプログラムのメインループでできることにあります。
これによって、アプリケーションは他の処理と並行してこの処理を管理することができます。
      


PQconnectStartParamsでは、上でPQconnectdbParamsで説明したように、データベース接続はkeywordsおよびvalues配列から取得され、expand_dbnameによって制御されたパラメータを使用して確立します。
      


PQconnectStartでは、上でPQconnectdbで説明したように、conninfo文字列から取得されたパラメータを使用してデータベース接続を確立します。
      


PQconnectStartParams、PQconnectStartとPQconnectPollのどちらも以下の制限に適合する場合ブロックしません。
       
	

hostaddrパラメータは、DNS問い合わせが発生するのを防ぐように適切に使用されなければいけません。
詳細については「パラメータキーワード」内のパラメータ説明を参照してください。
         

	

PQtraceを呼び出す場合は、トレースに使用するストリームオブジェクトがブロックされないことが保証されていなくてはなりません。
         

	

プログラマ自身が、後に示すように、PQconnectPollを呼び出す前にソケットが適切な状態にあることを保証しなくてはいけません。
         




      


非ブロック接続要求を始めるにはまず、PQconnectStartかPQconnectStartParamsを呼び出します。
その結果がNULLの場合、libpqは新たなPGconn構造体を割り当てられませんでした。
そうでない場合は、適切なPGconnへのポインタが返されます
（ただし、未だデータベースへの有効な接続を示しているわけではありません）。
次にPQstatus(conn)を呼び出します。
もし、結果がCONNECTION_BADであった場合、接続の試みは失敗しています。典型的には無効な接続パラメータに因ります。
      


PQconnectStartあるいはPQconnectStartParamsが成功したら、次は接続シーケンスを進めるために、libpqをポーリングします。
データベース接続の背後にあるソケットの記述子を取り出すには、PQsocket(conn)を使用します。
（注意：複数のPQconnectPoll呼び出しでソケットが同じままであると思わないでください。）
以下の繰り返しです。
直前のPQconnectPoll(conn)がPGRES_POLLING_READINGの場合、（select()やpoll()などのシステム関数で示されて）ソケットの読み込み準備が整うまで待機します。
システムで利用可能であれば、PQsocketPollはselect(2)やpoll(2)の設定を抽象化することで、定型コードを減らすことができます。
そして、再度PQconnectPoll(conn)を呼び出します。
反対に直前のPQconnectPoll(conn)がPGRES_POLLING_WRITINGの場合、ソケットの書き込み準備が整うまで待機し、その後、PQconnectPoll(conn)を再度呼び出します。
繰り返しの最初、すなわち、未だPQconnectPollを呼び出していない場合、最後にPGRES_POLLING_WRITINGを返したかのように振舞います。
この繰り返しをPQconnectPoll(conn)が、接続手続きの失敗を示すPGRES_POLLING_FAILED、もしくは、接続確立に成功したことを示すPGRES_POLLING_OKを返すまで継続します。
      


接続している間は、PQstatusを呼び出すことで、いつでも接続の状態を検査できます。
この関数呼び出しがCONNECTION_BADを返す場合、接続手続きは失敗しており、CONNECTION_OKを返す場合、接続が確立しています。
上述のように、このいずれの状態も、PQconnectPollの戻り値から同様に検出できます。
これ以外の状態は、非同期の接続手続きの間（のみ）に現れることがあります。
これらは、接続手続きの現在の段階を示すものであり、例えばユーザへのフィードバックを提供することに使用できます。
以下の状態があります。

       
	CONNECTION_STARTED
	

接続の確立待ち状態です。
          

	CONNECTION_MADE
	

接続はOKです。送信待ち状態です。
          

	CONNECTION_AWAITING_RESPONSE
	

サーバからの応答待ち状態です。
          

	CONNECTION_AUTH_OK
	

        認証済みです。バックエンドの起動待ち状態です。
          

	CONNECTION_SSL_STARTUP
	

SSL暗号化の調停状態です。
          

	CONNECTION_GSS_STARTUP
	

GSS暗号化の調停状態です。
          

	CONNECTION_CHECK_WRITABLE
	

接続が書き込みトランザクションを扱えるかどうかを調べています。
          

	CONNECTION_CHECK_STANDBY
	

接続がスタンバイモードのサーバに対するものかどうかを確認しています。
          

	CONNECTION_CONSUME
	

接続の残りの応答メッセージを消費しています。
          






これらの定数は（互換性を保つため）なくなることはありませんが、アプリケーションは、これらが特定の順で出現したり、本書に書いてある値のどれかに必ずステータス値が該当するということを決して当てにしてはいけません。
アプリケーションは、以下に示すようにするべきです。


switch(PQstatus(conn))
{
        case CONNECTION_STARTED:
            feedback = "Connecting...";
            break;

        case CONNECTION_MADE:
            feedback = "Connected to server...";
            break;
.
.
.
        default:
            feedback = "Connecting...";
}


      


PQconnectPollを使用する場合、connect_timeout接続パラメータは無視されます。
経過時間が長過ぎるかどうかの判定はアプリケーションの責任で行ないます。
さもないと、PQconnectStartの後のPQconnectPollの繰り返しがPQconnectdbと同じになります。
      


PQconnectStartやPQconnectStartParamsが非NULLポインタを返した場合、処理を終了する際には、構造体や関連するメモリブロックを始末するために、PQfinishを呼び出さなくてはならないことに注意してください。
この処理は、接続試行が失敗した場合やその試行を中断する場合にも、必ず実行されなければいけません。
      

	PQsocketPoll
	
       
       

PQsocketで取得された接続の基礎となるソケットディスクリプタをポーリングします。
この関数の主な用途は、PQconnectStartParamsの文書で説明されている接続シーケンスを繰り返すことにあります。


typedef int64_t pg_usec_time_t;

int PQsocketPoll(int sock, int forRead, int forWrite,
                 pg_usec_time_t end_time);


      


この関数は、ファイルディスクリプタのポーリングを実行し、オプションでタイムアウトも実行できます。
forReadが非ゼロの場合、この関数はソケットの読取り準備が整ったときに終了します。
forWriteが非ゼロの場合、この関数はソケットの書込み準備が整ったときに終了します。
      


タイムアウトはend_timeで指定されます。
これは、Unixエポックからのマイクロ秒数で表される、待機を停止する時間です（つまり、time_t×100万）。
end_timeが-1の場合、タイムアウトは無限になります。
end_timeが0の場合、タイムアウトは即時（ブロッキングなし）です（実際には、現在時刻の前の任意の時刻でも構いません）。
タイムアウト値は、PQgetCurrentTimeUSecの結果に所望のマイクロ秒数を加えることによって容易に計算できます。
使用しているシステムコールの精度はマイクロ秒より劣っていることがあり、実際の遅延は不正確である可能性があることに注意してください。
      


この関数は、指定された条件が満たされた場合は0より大きい値を返し、タイムアウトが発生した場合は0を返し、エラーが発生した場合は-1を返します。
エラーは、errno(3)値をチェックすることによって取得できます。
forReadとforWriteの両方がゼロなら、関数はすぐにタイムアウトの戻り値を返します。
      


PQsocketPollは、プラットフォームに依存してselect(2)またはpoll(2)を使用して実装されています。
詳細については、poll(2)のPOLLINとPOLLOUT、select(2)のreadfdsとwritefdsを参照してください。
      

	PQconndefaults
	

デフォルトの接続オプションを返します。


PQconninfoOption *PQconndefaults(void);

typedef struct
{

    char   *keyword;   /* このオプションのキーワード */
    char   *envvar;    /* 代替となる環境変数の名前 */
    char   *compiled;  /* 代替となるコンパイル時に組み込まれたデフォルト値 */
    char   *val;       /* オプションの現在値、もしくは、NULL */
    char   *label;     /* 接続ダイアログ内の当該フィールドのラベル */
    char   *dispchar;  /* 接続ダイアログ内の当該フィールドをどのように表示するかの指示
                          値:
                          ""        入力された値をそのまま表示
                          "*"       値を隠すパスワードフィールド用
                          "D"       デバッグオプション。デフォルトで何も表示しません */
    int     dispsize;  /* ダイアログ用のフィールドの大きさ(文字数単位) */
} PQconninfoOption;


      


接続オプションの配列を返します。
これは、使用可能なPQconnectdb用オプションのすべてや、その時点でのデフォルト値を決定するために使用することができます。
戻り値は、PQconninfoOption構造体の配列へのポインタで、keywordポインタがNULLとなる項目が配列の末尾にきます。
メモリが確保できなかった場合にはNULLポインタを返します。
現在のデフォルト値(val フィールド)は、環境変数や他のコンテキストに依存します。
不足しているか無効なサービスファイルは無視されます。
呼び出し側では、接続オプションの情報は、読み込み専用として取り扱わなければいけません。
      


オプションの配列を処理した後は、それをPQconninfoFreeに渡して解放します。
この処理をしないと、PQconndefaultsが呼び出されるたびに少しずつメモリリークが発生します。
      

	PQconninfo
	

所在する接続で使用される接続オプションを返します。


PQconninfoOption *PQconninfo(PGconn *conn);


      


接続オプション配列を返します。これは全ての可能性のあるPQconnectdbオプションとサーバに接続するのに使用される値を確定するために使用することができます。
戻り値はPQconninfoOption構造体の配列を指し示します。それはnull keyword ポインタを持つ項目で終結します。PQconndefaultsに対する上記の全ての注釈はまたPQconninfoの結果に適用されます。
      

	PQconninfoParse
	

提供された接続文字列から構文解析された接続オプションを返します。



PQconninfoOption *PQconninfoParse(const char *conninfo, char **errmsg);


      


接続文字列の構文解析を行い、配列として結果オプションを返すか、または接続文字列に問題があった場合にNULLを返します。
この関数を提供された接続文字列の中のPQconnectdbオプションを取り出すために使用することができます。
戻り値はPQconninfoOption構造体の配列を指し示し、それはNULLのkeywordポインタを持つ項目で終結します。
      


正規なオプションはすべて、結果配列内に現れます。
しかし接続文字列内に現れない、何らかのオプション用のPQconninfoOptionはNULLに設定されたvalを持ちます。
デフォルトは挿入されません。
      


errmsgが非NULLであれば、成功した場合*errmsgはNULLに設定され、そうでなければ、問題を説明したmallocされたエラー文字列になります。
（*errmsgがNULLに設定され、かつ、この関数がNULLを返すこともあり得ます。
これはメモリ不足状態を意味します。）
      


オプション配列を処理した後、それをPQconninfoFreeに渡して解放してください。
これが行われない場合、PQconninfoParseへのそれぞれの呼び出しに対してメモリリークが起こります。
反対に、エラーが起こり、そしてerrmsgが非NULLであれば、PQfreememを使用してエラー文字列を必ず解放してください。
      

	PQfinish
	

サーバとの接続を閉ざします。
また、PGconnオブジェクトが占めるメモリも解放します。


void PQfinish(PGconn *conn);


      


たとえサーバへの接続試行が失敗しても（PQstatusで調べます）、アプリケーションはPQfinishを呼び出しPGconnオブジェクトが占めるメモリを解放するべきです。
そしてPQfinishを呼び出したら、もうPGconnへのポインタを使ってはいけません。
      

	PQreset
	

サーバへの通信チャネルをリセットします。


void PQreset(PGconn *conn);


      


この関数はサーバへの接続を閉じ、以前使用したパラメータをすべて使用して、同一のサーバへ新しく接続を確立します。
これは、作業中の接続が失われた場合のエラーの修復に役立つでしょう。
      

	PQresetStart, PQresetPoll
	

非ブロッキング方式で、サーバへの通信チャネルをリセットします。



int PQresetStart(PGconn *conn);

PostgresPollingStatusType PQresetPoll(PGconn *conn);


      


これらの関数はサーバへの接続を閉じ、それから再度、以前使用したパラメータをすべて使用して、同じサーバと新たな接続を確立しようとします。
これらは作業中の接続が失われた場合のエラー修復に役立つでしょう。
PQreset（前述）との違いは、この2つの関数が非ブロック方式で動作することです。
また、これらの関数はPQconnectStartParams、PQconnectStartおよびPQconnectPollと同じ制限を受けます。
      


接続のリセットを始めるためにはPQresetStartを呼び出します。
この関数がゼロを返す場合、リセットに失敗しています。
戻り値が1ならば、PQconnectPollを使って接続を確立した時とまったく同じに、PQresetPollを使用してリセットのポーリングを行います。
      

	PQpingParams
	

PQpingParamsはサーバの状態を報告します。
この関数は上述のPQconnectdbParamsと同じ接続パラメータを受け付けます。
サーバの状態を得るために正しいユーザ名、パスワード、データベース名を提供する必要はありません。
しかし、不適切な値が供給されると、サーバは不成功に終わった接続の試みをログに残します。



PGPing PQpingParams(const char * const *keywords,
                    const char * const *values,
                    int expand_dbname);




この関数は以下の値のいずれかを返します。

       
	PQPING_OK
	

サーバは稼働中で、接続を受け付けているようです。
          

	PQPING_REJECT
	

サーバは稼働中ですが、接続を許可しない状態（起動処理中、停止処理中、クラッシュリカバリ中）です。
          

	PQPING_NO_RESPONSE
	

サーバと通信できません。
これは、サーバが稼働中ではない、指定した接続パラメータの何か（例えばポート番号の間違い）が間違っている、ネットワーク接続性の問題（例えば接続要求をブロックするファイアウォール）があることを示しているかもしれません。
          

	PQPING_NO_ATTEMPT
	

指定されたパラメータが明らかに間違っている、または、（メモリ不足など）クライアント側の問題があったため、サーバとの通信を試行しませんでした。
          





      

	PQping
	

PQpingはサーバの状態を報告します。
この関数は上述のPQconnectdbと同じ接続パラメータを受け付けます。
サーバの状態を得るために正しいユーザ名、パスワード、データベース名を提供する必要はありません。
しかし、不適切な値が供給されると、サーバは不成功に終わった接続の試みをログに残します。



PGPing PQping(const char *conninfo);


      


戻り値はPQpingParamsと同じです。
      

	PQsetSSLKeyPassHook_OpenSSL
	

PQsetSSLKeyPassHook_OpenSSLはアプリケーションにsslpasswordや対話的なプロンプトを使ってlibpqの暗号化されたクライアント証明書キーファイルのデフォルト処理を置き換えさせます。



void PQsetSSLKeyPassHook_OpenSSL(PQsslKeyPassHook_OpenSSL_type hook);




アプリケーションは以下のシグネチャを持つコールバック関数のポインタを渡します。


int callback_fn(char *buf, int size, PGconn *conn);



libpqはデフォルトのPQdefaultSSLKeyPassHook_OpenSSLハンドラの代わりに、これを呼び出します。
コールバックはキーに対するパスワードを決定して、それをsizeの大きさを持つ結果バッファbufにコピーすべきです。
buf内の文字列はNULL終端でなければなりません。
コールバックはbufに格納されたパスワードのNULL終端子を除いた長さを返さなければなりません。
失敗した場合、コールバックはbuf[0] = '\0'をセットし、0を返すべきです。
例として、libpqのソースコードのPQdefaultSSLKeyPassHook_OpenSSLを参照してください。
      


ユーザが明示的なキー位置を指定した場合、コールバックが実行されたときにそのパスがconn->sslkeyに含まれます。
デフォルトのキーパスが使われている場合、これは空になります。
エンジン指定子であるキーに対して、OpenSSL™パスワードコールバックを使うか固有の処理を定義するかは、エンジン実装によります。
      


アプリケーションのコールバックが対応していない場合についてPQdefaultSSLKeyPassHook_OpenSSLに委託したり、最初に呼び出して0が返った場合に何らか他のことを試みたり、あるいは完全に上書きしたりすることにしても良いです。
      


コールバックは例外、longjmp(...)などで通常のフロー制御から脱出してはいけません。
正常にリターンしなければなりません。
      

	PQgetSSLKeyPassHook_OpenSSL
	

PQgetSSLKeyPassHook_OpenSSLは現在のクライアント証明書のキーパスワードのフックを、あるいは、設定されていない場合にNULLを返します。



PQsslKeyPassHook_OpenSSL_type PQgetSSLKeyPassHook_OpenSSL(void);


      




  
接続文字列





複数のlibpq関数は、接続パラメータを得るためにユーザが指定した文字列の解析を行います。
この文字列として、単純なキーワード/値文字列とURIという２種類の書式が受け付けられます。
URIは通常RFC 3986に従いますが、以下で詳細を説明する複数ホスト接続文字列が使用できるところが例外です。
   
キーワード／値形式の接続文字列





キーワード／値書式では、各パラメータ設定は、各設定の間に空白文字があり、keyword = valueという形式です。
等号記号の前後の空白文字は省略可能です。
空の値を書く、または空白文字を含む値を書くためには、keyword = 'a value'のように単一引用符で値を括ります。
値内部の単一引用符とバックスラッシュはバックスラッシュでエスケープしなければなりません。
つまり\'と\\です。
   


以下に例を示します。


host=localhost port=5432 dbname=mydb connect_timeout=10


   


有効なパラメータキーワードを「パラメータキーワード」に示します。
   

接続URI





接続URIの一般的な形式を以下に示します。


postgresql://[userspec@][hostspec][/dbname][?paramspec]

where userspec is:

user[:password]

and hostspec is:

[host][:port][,...]

and paramspec is:

name=value[&...]


   


URIスキーム指示子はpostgresql://またはpostgres://のいずれかを取ることができます。
個々のURIの残りの部品は省略可能です。
以下の例で有効なURI構文の使用例を示します。


postgresql://
postgresql://localhost
postgresql://localhost:5433
postgresql://localhost/mydb
postgresql://user@localhost
postgresql://user:secret@localhost
postgresql://other@localhost/otherdb?connect_timeout=10&application_name=myapp
postgresql://host1:123,host2:456/somedb?target_session_attrs=any&application_name=myapp



URIの階層部分に通常現れる値は、代わりに名前付きパラメータとして与えられます。例:


postgresql:///mydb?host=localhost&port=5433



JDBC接続URIとの互換性のために、ssl=trueのインスタンスがsslmode=requireに変換される点を除き、すべての名前付きパラメータは「パラメータキーワード」に列挙されたキーワードと一致しなければなりません。
   


接続URIは、その中のどこかの部分に特別な意味を持つシンボルを含む場合、パーセントエンコーディングでエンコードされている必要があります。
以下は等号(=)が%3D、空白が%20で置き換えられた例です。


postgresql://user@localhost:5433/mydb?options=-c%20synchronous_commit%3Doff


   


ホスト部分は、ホスト名またはIPアドレスのいずれかです。
IPv6アドレスを指定するには、角括弧で囲みます:


postgresql://[2001:db8::1234]/database


   


ホスト部分はパラメータhostで説明したように解釈されます。
具体的には、ホスト部が空または絶対パス名のように見える場合、Unixドメインソケット接続が選択され、さもなければTCP/IP接続で初期化されます。
しかしURIの階層部ではスラッシュが予約された文字であることに注意してください。
このため、標準以外のUnixドメインソケットディレクトリを指定するためには、URIからホスト指定を省き、名前付きパラメータとしてホストを指定するか、URIのホスト要素内のパスをパーセントエンコードするかどちらかを行ってください。


postgresql:///dbname?host=/var/lib/postgresql
postgresql://%2Fvar%2Flib%2Fpostgresql/dbname


   


単一のURIの中に、オプションのポート要素を伴う複数のホスト要素を指定することができます。
postgresql://host1:port1,host2:port2,host3:port3/という形式のURIは、host=host1,host2,host3 port=port1,port2,port3という形式の接続文字列と同じです。
更に以下に示すように、接続の確立に成功するまで、各々のホストが順番に試されます。
   

複数ホストの指定





接続先に複数のホストを指定することができ、指定された順に試されます。
キーワード/値形式では、host、hostaddr、portオプションは、カンマで区切った値のリストを受け付けます。
指定された各々のオプションでは、同じ数の要素を与えなければなりません。
たとえば、最初のhostaddrは最初のホスト名に関連付けられ、二番目のhostaddrは二番目のホスト名に関連付けられる、という具合です。
例外として、一つのportだけが指定された場合には、すべてのホストにそれが適用されます。
     


接続URI形式では、host要素中にカンマで区切って複数のhost:portペアを指定できます。
     


いずれの形式でも、単一ホスト名は複数のネットワークアドレスに変換されることがあります。
これの一般的な例はIPv4とIPv6のアドレスを両方持つホストです。
     


複数のホスト名が指定された場合、あるいは単一のホスト名が複数のアドレスに変換された場合、そのうちの一つが成功するまで、すべてのホストとアドレスがその順に試されます。
どのホストも到達可能でなければ、接続は失敗します。
接続の確立に成功しても、認証に失敗すると、リスト中の残りのホストは試されません。
     


パスワードファイルが使用される場合は、異なるホストに対して異なるパスワードを使用できます。
他の接続オプションは、リスト中のすべてのホストで同じです。
たとえば、異なるユーザ名を異なるホストに指定することはできません。
     


パラメータキーワード





現時点で有効なパラメータのキーワードは以下に示す通りです。

    
	host
	

接続するホスト名を指定します。
 ホスト名が絶対パス名のように見えるなら、それはTCP/IPによる通信ではなく、Unixドメインの通信を示します。
その場合、この値はソケットファイルを格納するディレクトリの名前になります。
（Unixでは絶対パス名はスラッシュから始まります。Windowsではドライブ文字から始まるパスも認められます。）
ホスト名が@から始まっていると、抽象名前空間（今のところLinuxとWindowsでサポートされています）内のUnixドメインソケットとして扱われます。
hostが指定されなかったり、空の場合のデフォルトの振る舞いは、/tmp（または、PostgreSQL™の構築時に指定したソケットディレクトリ）にあるUnixドメインのソケットに接続することです。

Windowsでは、デフォルトはlocalhostに接続することです。
       


カンマで区切ったホスト名も受け付けます。
この場合、リスト中のホスト名が順に試されます。
リスト中の空の項目には、上で説明したデフォルトの挙動が適用されます。
詳細は「複数ホストの指定」をご覧ください。
       

	hostaddr
	

接続するホストのIPアドレスを指定します。
これは、172.28.40.9といった標準的なIPv4アドレス書式でなければなりません。
使用するマシンでIPv6をサポートする場合は、そのアドレスを使用することもできます。
このパラメータに空以外の文字列が指定されると、TCP/IP通信が常に使用されます。
パラメータが指定されない場合、対応するIPアドレスを探すためにhostの値が調べられます。あるいは、hostでIPアドレスを指定している場合、その値が直接使われます。
       


hostaddrを使用することで、アプリケーションがホスト名の検索を行なわずに済みます。
特に時間的制約があるアプリケーションでは重要になるでしょう。
しかし、GSSAPI、SSPI認証方式では、ホスト名が必要になります。
verify-fullSSL証明書検証を行う場合も同様です。
以下の規則が使用されます。
        
	

hostaddrを使わずにhostを指定した場合は、ホスト名の検索が発生します。
（PQconnectPollを使う場合、PQconnectPollが最初にホスト名を考慮するときに、PQconnectPollをかなり長い時間、ブロックさせてしまうかもしれません。）
          

	

hostを使わずにhostaddrを指定した場合、hostaddrの値はサーバのネットワークアドレスとなります。
認証方式がホスト名を必要する場合は接続試行が失敗します。
          

	

hostとhostaddrの両方を指定した場合、hostaddrがサーバのネットワークアドレスとなります。
hostの値は認証方式で必要とされない限り無視され、必要とされる場合にはホスト名として使用されます。
          





hostがhostaddrネットワークアドレスに対応するマシンの名前と一致しない場合は、認証に失敗する可能性があるので注意してください。
また、hostとhostaddrの両方が指定されると、hostがパスワードファイル(「パスワードファイル」を参照)での接続の識別に使用されます。
       


カンマ区切りのhostaddr値のリストも受け付けます。
この場合、リスト中のホストが順に試されます。
リスト中の空の項目には、対応するホスト名が使用されます。
そのホスト名も空の場合は、デフォルトのホスト名が使用されます。
詳細は「複数ホストの指定」をご覧ください。
       


ホスト名もホストのアドレスも用いない場合、libpqはローカルのUnixドメインソケットを使用して接続します。
Windowsでは、localhostへの接続を試みます。
       

	port
	

サーバホストでの接続用のポート番号、または、Unixドメイン接続の場合は、ソケットファイルの拡張子を指定します。

もし複数のホストがhostあるいはhostaddrパラメータで与えられると、このパラメータで同じ長さのポートのリストを与えることができます。
あるいは、一つのポート番号をすべてのホストに指定することもできます。
空文字、あるいはカンマ区切りリスト中の空の項目は、PostgreSQL™が構築されたときに設定されたデフォルトポート番号を指定します。
       

	dbname
	

データベース名を指定します。
デフォルトはユーザ名と同じです。
特定の文脈では、この値は拡張書式で検査されます。
詳細については「接続文字列」を参照してください。
      

	user
	

データベースへ接続するPostgreSQL™ユーザ名を指定します。
デフォルトは、そのアプリケーションを実行しているユーザのオペレーティングシステム上の名前と同じです。
      

	password
	

サーバがパスワードによる認証を必要とした場合に使用されるパスワードを指定します。
      

	passfile
	

パスワードを格納するファイル名を指定します（「パスワードファイル」参照）。
デフォルトは~/.pgpassまたは、Microsoft Windowsでは%APPDATA%\postgresql\pgpass.confです。
（このファイルが存在しなくてもエラーは報告されません。）
      

	require_auth
	

クライアントがサーバに要求する認証方式を指定します。
サーバがクライアントの認証に必要な方式を使用しない場合、またはサーバが認証ハンドシェイクを完全に完了しない場合、接続は失敗します。
必要な方式のカンマ区切りリストも指定できます。サーバは接続に成功するために、このリストのうちの1つを使用する必要があります。
デフォルトでは、任意の認証方式が受け入れられ、サーバは認証を完全に省略できます。
      


方式は、!接頭辞を付けて否定できます。
その場合、サーバはリストされた方式を試みないことになります。
他の方式はすべて受け入れられます。また、サーバがクライアントを全く認証しないこともできます。
カンマ区切りのリストが与えられた場合、サーバは、リストされた否定された方式のいずれも試みません。
否定された形式と否定されていない形式は、同じ設定では組み合わせることができません。
      


最後の特殊な場合として、none方式はサーバが認証チャレンジを使用しないことを要求します。
（何らかの形の認証を要求するために否定されることもあります。）
      


以下の方式を指定できます。

        
	password
	

サーバは、平文パスワード認証を要求しなければなりません。
           

	md5
	

サーバは、MD5ハッシュパスワード認証を要求しなければなりません。
           
警告


MD5で暗号化されたパスワードのサポートは非推奨となり、将来のPostgreSQL™のリリースで削除されます。
他のパスワードタイプへの移行の詳細については、「パスワード認証」を参照してください。
            


	gss
	

サーバはGSSAPIを介してKerberosハンドシェイクを要求するか、GSSで暗号化されたチャネルを確立しなければなりません（gssencmodeも参照してください）。
           

	sspi
	

サーバはWindows SSPI認証を要求しなければなりません。
           

	scram-sha-256
	

サーバは、クライアントとのSCRAM-SHA-256認証交換を正常に完了しなければなりません。
           

	oauth
	

サーバはクライアントにOAuthベアラ（bearer）トークンを要求しなければなりません。
           

	none
	

サーバはクライアントに認証交換を要求してはなりません。
（これは、TLSによるクライアント証明書認証や、その暗号化されたトランスポートによるGSS認証を禁止するものではありません。）
           




      

	channel_binding
	

このオプションはクライアントのチャネルバインディングの使用を制御します。
require設定では接続はチャネルバインディングを使わなければならず、preferではクライアントが可能であればチャネルバインディングを使い、disableではチャネルバインディングを使用させません。
PostgreSQL™がSSLサポートを伴ってコンパイルされている場合のデフォルトはpreferで、そうでなければデフォルトはdisableです。
      


チャネルバインディングはサーバが自身が信頼できることをクライアントに証明する方法です。
これは、SCRAM認証方式を使ったPostgreSQL™ 11以降のサーバとのSSL接続上でのみサポートされます。
      

	connect_timeout
	

接続中の最大待機時間を秒単位（10進整数で記述してください、10など）で指定します。
ゼロ、負値、もしくは未設定は、無期限の待機を意味します。
このタイムアウトは各ホスト名やIPアドレスに別々に適用されます。
例えば、二つのホストを指定して、connect_timeoutが5であるなら、各ホストが5秒以内に接続できないときにタイムアウトして、接続を待つ合計所要時間は10秒近くになるかもしれません。
      

	client_encoding
	

接続用のclient_encoding設定パラメータを設定します。
対応するサーバオプションで受け付けられる値の他に、クライアントにおける現在のロケール（Unixシステムの場合はLC_CTYPE環境変数）から正しい符号化方式を決定するautoを使用することができます。
      

	options
	

接続開始時にサーバに送信するコマンドラインオプションを指定します。
例えば、これを-c geqo=offまたは--geqo=offに設定すると、geqoパラメータのセッションの値がoffに設定されます。
この文字列中の空白はバックスラッシュ(\)でエスケープされていなければコマンドライン引数の区切りであるとみなされます。
リテラルのバックスラッシュを表すには\\と書いて下さい。
利用可能なオプションに関する詳細については19章サーバ設定を参照してください。
       

	application_name
	

application_name設定パラメータの値を指定します。
       

	fallback_application_name
	

application_name設定パラメータの予備値を指定します。
接続パラメータまたはPGAPPNAME環境変数によりapplication_nameの値が指定されない場合に、この値が使用されます。
予備の名前を指定することは、デフォルトのアプリケーション名を設定したいが、ユーザにもそれを上書きできるようにしておきたい、一般的なユーティリティプログラムで有用です。
       

	keepalives
	

クライアント側におけるTCPキープアライブの使用を制御します。
デフォルト値は1であり、有効であることを意味します。
しかしキープアライブを望まない場合は、無効であることを意味するゼロに設定することができます。
このパラメータはUnixドメインソケット経由の接続では無視されます。
       

	keepalives_idle
	

TCPがサーバにキープアライブメッセージを送信した後に活動を行わない期間を秒単位で制御します。
ゼロという値ではシステムのデフォルトを使用します。
Unixドメインソケット経由でなされた接続の場合もしくはキープアライブが無効な場合、このパラメータは無視されます。
これはTCP_KEEPIDLEまたは同等のソケットオプションが利用できるシステムおよびWindowsでのみサポートされます。
他のシステムでは効果がありません。
       

	keepalives_interval
	

TCPキープアライブメッセージに対する応答がサーバからない場合に、何秒後に再送を行うかを制御します。
ゼロという値ではシステムのデフォルトを使用します。
Unixドメインソケット経由でなされた接続の場合、またはキープアライブを無効にしている場合、このパラメータは無視されます。
これはTCP_KEEPINTVLまたは同等のソケットオプションが利用できるシステムおよびWindowsでのみサポートされます。
他のシステムでは効果がありません。
       

	keepalives_count
	

サーバへのクライアント接続が不要になったとみなすまで、何回キープアライブの欠落を認めるかを制御します。
ゼロという値ではシステムのデフォルトを使用します。
Unixドメインソケット経由でなされた接続の場合、またはキープアライブを無効にしている場合、このパラメータは無視されます。
これはTCP_KEEPCNTまたは同等のソケットオプションが利用できるシステムでのみサポートされます。
他のシステムでは効果がありません。
       

	tcp_user_timeout
	

接続が強制的に閉じられるまで、送信されたデータに対して応答がない状況をどれだけ認めるかをミリ秒単位で制御します。
値0はシステムのデフォルトを使用します。
Unixドメインソケット経由でなされた接続の場合、このパラメータは無視されます。
TCP_USER_TIMEOUTが利用可能なシステムでのみサポートされます。
他のシステムでは効果がありません。
       

	replication
	

このオプションは接続が通常プロトコルの代わりにレプリケーションプロトコルを使うかどうかを決めます。
これはPostgreSQLのレプリケーション接続やpg_basebackupなどのツールが内部的に使うものですが、サードパーティアプリケーションからも使われることがあります。
レプリケーションプロトコルについての説明は「ストリーミングレプリケーションプロトコル」を参照してください。
      


以下の値がサポートされます。これらは大文字小文字を区別しません。
       
	
          true, on,
          yes, 1
         
	

接続は物理レプリケーションモードになります。
          

	database
	

接続は論理レプリケーションモードになり、dbnameパラメータで指定されたデータベースに接続します。
          

	
          false, off,
          no, 0
         
	

接続は通常のものになります。これがデフォルトの振る舞いです。
          




      


物理あるいは論理レプリケーションモードでは、簡易問い合わせプロトコルのみが使用できます。
      

	gssencmode
	

このオプションは、GSSによる安全なTCP/IP接続をサーバと調停するか、するのならどの優先度で調停するかを決定します。
3つのモードがあります。

        
	disable
	

非GSSAPI暗号化接続のみ試行
           

	prefer (デフォルト)
	

GSSAPI認証情報が(すなわち認証情報キャッシュに)存在すれば、まずGSSAPI暗号化接続を試行します。
その試行に失敗した場合、もしくは認証情報がない場合には非GSSAPI暗号化接続を試行します。
これがPostgreSQL™をGSSAPIサポートを有効にしてコンパイルした場合のデフォルトです。
           

	require
	

GSSAPI暗号化接続のみ試行
           




       


gssencmodeはUnixドメインソケット通信では無視されます。
PostgreSQL™がGSSAPIなしでコンパイルされた場合、requireオプションを使うとエラーになります。一方、preferは受け付けられますが、libpqは実際にはGSSAPI暗号化接続を試行しません。
       

	sslmode
	

このオプションは、どのSSLによる安全なTCP/IP接続の優先度でサーバと調停するかを決定します。
6つのモードがあります。

        
	disable
	

非SSL接続のみ試行
           

	allow
	

最初に非SSL接続を試行し、失敗したら、SSL接続を試行
           

	prefer （デフォルト）
	

最初にSSL接続を試行し、失敗したら、非SSL接続を試行
           

	require
	

SSL接続のみ試行。
ルートCAファイルが存在する場合、verify-caが指定された場合と同じ方法で証明書が検証されます。
           

	verify-ca
	

SSL接続のみ試行し、サーバ証明書が信用された認証局（CA）から発行されたかを検証
           

	verify-full
	

SSL接続のみ試行し、サーバ証明書が信用されたCAから発行されたか、およびそのサーバホスト名が証明書内のものと一致するかを検証
           






これらのオプションがどのように動くのかについては「SSLサポート」を参照してください。
       


sslmodeはUnixドメインソケット通信では無視されます。
SSLサポートなしでPostgreSQL™がコンパイルされた場合に、require、verify-ca、verify-fullを使用するとエラーになります。
一方、allowとpreferは使用できますが、実際にlibpqはSSL接続を受け付けません。

       


GSSAPI暗号化が可能な場合、sslmodeの値に関係なく、SSL暗号化よりも優先して使用されることに注意してください。
GSSAPIインフラストラクチャが動作している環境（Kerberosサーバなど）でSSL暗号化を強制的に使用するには、gssencmodeをdisableに設定します。
       

	requiressl
	

このオプションはsslmode設定を支持する観点から廃止予定になっています。
       


1に設定することで、サーバへのSSL接続が必要になります
(これはsslmodeのrequireと同じです)。
サーバがSSL接続を受け付けない場合、libpqは接続を拒絶します。
0(デフォルト)に設定することで、libpqはサーバと接続形式の調停を行います。
(sslmodeのpreferと同じです。)
SSLサポート付きでPostgreSQL™をコンパイルした場合にのみ、このオプションが利用できます。
       

	sslnegotiation
	

このオプションは、SSLが使用されている場合に、SSL暗号化がサーバとどのように調停されるかを制御します。
デフォルトpostgresモードでは、クライアントは最初にサーバにSSLがサポートされているかどうかを尋ねます。
directモードでは、クライアントはTCP/IP接続を確立した後に直接標準SSLハンドシェイクを開始します。
伝統的なPostgreSQL™プロトコルネゴシエーションは、さまざまなサーバ設定に対して最も柔軟性があります。
PostgreSQL™サーバが直接SSL接続をサポートしているとわかっている場合、SSL接続では必要なラウンドトリップが1つ少なくなり、接続遅延が削減され、プロトコルに依存しないSSLネットワークツールを使用できるようになります。
直接SSLオプションは、PostgreSQL™バージョン17で導入されました。
       
	postgres
	

PostgreSQL™プロトコルのネゴシエーションを行います。
このオプションが指定されていない場合のデフォルトです。
           

	direct
	

TCP/IP接続を確立した後に直接SSLハンドシェイクを開始します。
弱い設定では、サーバが直接SSLハンドシェイクをサポートしない場合に、意図しないプレーンテキストハンドシェイクへのフォールバックが発生する可能性があるため、sslmode=require以上の場合にのみ許可されます。
           




	sslcompression
	

1に設定することで、SSL接続越えで送信されるデータは圧縮されます。
0に設定すると、圧縮が無効になります。
デフォルトは0です。
このパラメータはSSLを使わない接続では無視されます。
       


SSL圧縮は現在では安全ではないと考えられており、その使用は推奨されません。
OpenSSL™ 1.1.0ではデフォルトで圧縮が無効になっており、多くのオペレーティングシステムのディストリビューションでも以前のバージョンでは無効になっていたため、このパラメータをonに設定してもサーバが圧縮を受け入れない場合は効果がありません。
PostgreSQL™ 14ではバックエンドで圧縮が完全に無効になりました。
       


セキュリティが主要な関心でないなら、ネットワークがボトルネックであるとき圧縮でスループットを改善できます。
CPU性能が律速要素であるなら、圧縮を無効化することで応答時間とスループットを改善できます。
       

	sslcert
	

このパラメータは、~/.postgresql/postgresql.crtというデフォルトを置き換えるクライアントSSL証明書のファイル名を指定します。
このパラメータはSSL接続が確立していない場合は無視されます。
       

	sslkey
	

このパラメータはクライアント証明書に対して使用される秘密鍵の場所を指定します。
デフォルトの~/.postgresql/postgresql.keyの代わりに使用されるファイル名、または外部「エンジン」（エンジンとはOpenSSL™ロード可能なモジュール）から得られるキーを指定することも可能です。
外部エンジンの指定にはコロンで区切ったエンジン名とエンジン特有の鍵識別子を含んでいなければなりません。
SSL接続が確立していない場合このパラメータは無視されます。
       

	sslkeylogfile
	

このパラメータは、libpqがこのSSLコンテキストで使用されるキーを記録する場所を指定します。
これは、Wireshark™などのネットワーク検査ツールを使用してPostgreSQL™プロトコルの相互作用やクライアント接続をデバッグする場合に役立ちます。
SSL接続が確立されていない場合、またはLibreSSL™が使用されている場合（LibreSSL™はキーの記録をサポートしていません）、このパラメータは無視されます。
キーはNSS™形式を使用して記録されます。
        
警告


キーを記録することで、キーの記録ファイル内に潜在的に機密性の高い情報が公開されることになります。
キーの記録ファイルはsslkeyファイルと同様に注意して扱う必要があります。
         


       

	sslpassword
	

このパラメータはsslkeyで指定される秘密鍵に対するパスワードを指定して、対話的なパスフレーズ入力が現実的でないときにも、クライアント証明書のプライベートキーを暗号化された形式でディスクに格納できるようにします。
       


このパラメータに空でない値を指定することで、暗号化されたクライアント証明書キーがlibpqに提供されるときにOpenSSL™がデフォルトで出力するEnter PEM pass phrase:プロンプトを抑止します。
       


キーが暗号化されていない場合、このパラメータは無視されます。
OpenSSL™エンジンがプロンプトにOpenSSL™パスワードコールバックの仕組みを使わない限り、このパラメータはエンジンで指定されたキーに影響しません。
       


このオプションと同等の環境変数、および、パスワードを.pgpassから探す機能はありません。
このオプションはサービスファイルの接続定義で使用できます。
より高度な使用法を用いるユーザは、OpenSSL™エンジンとPKCS#11やUSB暗号オフロードデバイスといったツールの利用を検討すべきです。
       

	sslcertmode
	

このオプションは、クライアント証明書をサーバに送信するかどうか、およびサーバがそれを要求する必要があるかどうかを決定します。
以下の3つのモードがあります。

        
	disable
	

クライアント証明書は、（デフォルトの場所またはsslcertで提供されていて）使用可能であっても、決して送信されません。
           

	allow (default)
	

サーバが証明書を要求し、クライアントが送信する証明書を持っている場合は、証明書が送信されます。
           

	require
	

サーバは証明書を要求しなければなりません。
サーバがクライアントの認証にとにかく成功したものの、クライアントが証明書を送信しなかった場合には、接続は失敗します。
           




       
注記


sslcertmode=requireは、サーバが証明書を正しく検証しているかどうかを保証しないため、さらにセキュリティを追加するものではありません。
PostgreSQLサーバは、一般に、有効にするかどうかに関係なく、クライアントからTLS証明書を要求します。
このオプションは、より複雑なTLS設定のトラブルシューティングに役立つ場合があります。
        


	sslrootcert
	

このパラメータはSSL認証局(CA)の証明書のファイル名を指定します。
このファイルが存在する場合、サーバ証明書はこれらの認証局の1つで署名されているかどうか検証されます。
デフォルトは~/.postgresql/root.crtです。
       


代わりに、特別な値systemを指定することもできます。この場合、SSL実装から信頼できるCAルートがロードされます。
これらのルート証明書の正確な位置は、SSL実装とプラットフォームによって異なります。
OpenSSL™の場合、特に、SSL_CERT_DIRとSSL_CERT_FILE環境変数によって位置がさらに変更される可能性があります。
       
注記


sslrootcert=systemを使用すると、デフォルトのsslmodeはverify-fullに変更され、より弱い設定はエラーになります。
ほとんどの場合、自身が制御するホスト名に対してシステムが信頼する証明書を取得することは誰にでも簡単であり、verify-caや他の弱いモードはすべて無意味になります。
        


マジック値systemは、同じ名前のローカル証明書ファイルよりも優先されます。
何らかの理由でこのような状況になった場合は、代わりにsslrootcert=./systemのような別のパスを使用してください。
        


	sslcrl
	

このパラメータはSSLサーバ証明書失効リスト（CRL）のファイル名を指定します。
このファイルに列挙された証明書が存在した場合、それはサーバ証明書を承認しようとする時に拒絶されます。
sslcrlもsslcrldirも設定されていなければ、設定は~/.postgresql/root.crlから取得されます。
       

	sslcrldir
	

このパラメータは、SSLサーバ証明書失効リスト(CRL)のディレクトリ名を指定します。
このディレクトリのファイルにリストされている証明書が存在する場合は、サーバの証明書の認証中に拒否されます。
       


ディレクトリは、OpenSSL™コマンドopenssl rehashまたはc_rehashを使用して準備する必要があります。
詳細はそのドキュメントを参照してください。
       


sslcrlとsslcrldirの両方を同時に指定できます。
       

	sslsni
	

1(デフォルト)に設定されている場合、libpqはTLS拡張「Server Name Indication」(SNI)をSSL使用可能な接続に設定します。
このパラメータを0に設定することにより、これはオフになります。
       


Server Name Indicationは、SSLストリームを復号化することなく接続をルーティングするために、SSL対応プロキシによって使用できます。（プロキシがPostgreSQLプロトコルハンドシェイクを認識していない限り、sslnegotiationをdirectに設定する必要があることに注意してください。）
しかし、SNIは宛先ホスト名をネットワークトラフィック中に平文で表示しますので、場合によっては望ましくないかもしれません。
       

	requirepeer
	

このパラメータは、例えばrequirepeer=postgresのようにサーバのオペレーティングシステムのユーザ名を指定します。
Unixドメインソケット接続を確立する時に、このパラメータが設定された場合、クライアントは接続開始時にサーバプロセスが指定されたユーザ名で稼働しているか検査し、稼働していない場合は接続をエラーとして中断します。
このパラメータは、TCP/IP接続においてSSL証明書で実現するようなサーバ認証を実現するために使用することができます。
（Unixドメインソケットが/tmpなどの誰にでも書き込むことができる場所にある場合、誰でもそこで接続を監視するサーバを起動できることに注意してください。
信頼できるユーザが起動したサーバに接続することを確実に行うために、このパラメータを使用してください。）
このオプションはpeer認証方式が実装されたプラットフォームでのみでサポートされます。
「Peer認証」を参照してください。
       

	ssl_min_protocol_version
	

このパラメータは接続で許容されるSSL/TLSプロトコルの最小バージョンを指定します。
有効な値はTLSv1、TLSv1.1、TLSv1.2、および、TLSv1.3です。
対応しているプロトコルは使われているOpenSSL™バージョンに依存し、より古いバージョンでは最新プロトコルバージョンに対応していません。
指定しない場合、デフォルトはTLSv1.2で、これは執筆時点では業界標準を満たします。
       

	ssl_max_protocol_version
	

このパラメータは接続で許容されるSSL/TLSプロトコルの最大バージョンを指定します。
有効な値はTLSv1、TLSv1.1、TLSv1.2、および、TLSv1.3です。
対応しているプロトコルは使われているOpenSSL™バージョンに依存し、より古いバージョンでは最新のプロトコルバージョンに対応していません。
設定しない場合、このパラメータは無視されて、接続ではバックエンドで定義されている最大範囲が、もし定義されているなら、使われます。
テストや、一部コンポーネントがより新しいプロトコルでの動作に問題がある場合に対して、大概はプロトコルの最大バージョンを設定することが有用です。
       

	min_protocol_version
	

接続で許容されるプロトコルの最小バージョンを指定します。
デフォルトではlibpqがサポートする任意のバージョンのPostgreSQL™プロトコル（現在は3.0）を許可します。
サーバが少なくともこのプロトコルバージョンをサポートしていない場合、接続は閉じられます。
       


現在サポートされている値は、3.0、3.2、およびlatestです。
latestの値は、使用されているlibpqのバージョンでサポートされている最新のプロトコルバージョンと同等であり、現在は3.2です。
       

	max_protocol_version
	

サーバが要求するプロトコルバージョンを指定します。
デフォルトではPostgreSQL™プロトコルのバージョン3.0が使用されます。
ただし、より上位のプロトコルバージョンに依存する機能が接続文字列に指定されている場合は、libpqがサポートする最新バージョンが使用されます。
クライアントが要求するプロトコルバージョンをサーバがサポートしていない場合、その接続は、サーバがサポートしている、より低いプロトコルバージョンに自動的にダウングレードされます。
接続試行が完了したら、PQprotocolVersionを使用することで、どのプロトコルバージョンで調停したかを確認できます。
       


現在サポートされている値は、3.0、3.2、およびlatestです。
latestの値は、使用されているlibpqのバージョンでサポートされている最新のプロトコルバージョンと同等であり、現在は3.2です。
       

	krbsrvname
	

GSSAPIの認証時に使われるKerberosサービス名です。
成功するためには、これはサーバのKerberos認証設定のサービス名と一致していなければなりません。
(「GSSAPI認証」も参照してください。)
デフォルト値は通常postgresですが、PostgreSQL™をconfigureの--with-krb-srvnamオプションを使ってビルドすることにより変更できます。
大抵の環境ではこのパラメータは滅多に変更の必要がありません。
サービス名が大文字(POSTGRES)であることを要求するMicrosoft Active Directoryのように、ある種のKerberos実装では異なるサービス名が必要になるかもしれません。
       

	gsslib
	

GSSAPI認証で使用されるGSSライブラリです。
これは今のところ、GSSAPIとSSPIの両方のサポートを含むWindowsビルド版を除いて無視されます。
その場合、認証にデフォルトのSSPIではなく、GSSAPIライブラリを使うようlibpqに強制するには、これをgssapiに設定してください。
       

	gssdelegation
	

GSS資格証明をサーバに転送(委任)します。
デフォルトは0で、これは資格証明がサーバに転送されないことを意味します。
可能な場合に資格証明を転送するには1に設定します。
       

	scram_client_key
	

base64でエンコードされたSCRAMクライアントキーです。
これを外部データラッパーまたは同様のミドルウェアで使用して、パススルーSCRAM認証を有効にできます。
そのような実装の1つについては、「接続管理オプション」を参照してください。
これは、ユーザまたはクライアントアプリケーションが直接指定することを意図したものではありません。
       

	scram_server_key
	

base64でエンコードされたSCRAMサーバキーです。
これを外部データラッパーまたは同様のミドルウェアで使用して、パススルーSCRAM認証を有効にできます。
そのような実装の1つについては、「接続管理オプション」を参照してください。
これは、ユーザまたはクライアントアプリケーションが直接指定することを意図したものではありません。
       

	service
	

追加のパラメータ用に使用されるサービス名です。
pg_service.conf内の追加的な接続パラメータを保持するサービス名を指定します。
これによりアプリケーションはサービス名だけを指定でき、接続パラメータを集中的に保守できるようになります。
「接続サービスファイル」を参照してください。
       

	target_session_attrs
	

このオプションは、セッションが受け入れられるために特定のプロパティを持つ必要があるかどうかを決定します。
これは通常、複数のホスト名と組み合わせて使用され、いくつかのホストの中から最初に受け入れられる代替を選択します。
6つのモードがあります:

        
	any (default)
	

成功した接続は受け入れられます
           

	read-write
	

セッションはデフォルトで読み書きトランザクションを受け入れなければなりません(つまり、サーバはホットスタンバイモードであってはならず、default_transaction_read_onlyパラメータはoffでなければなりません)。
           

	read-only
	

セッションはデフォルトで読み書きトランザクションを受け入れてはなりません(逆)
           

	primary
	

サーバはホットスタンバイモードであってはなりません
           

	standby
	

サーバはホットスタンバイモードでなければなりません
           

	prefer-standby
	

最初にスタンバイサーバを見つけようとしますが、リストされているホストがいずれもスタンバイサーバでない場合は、anyモードで再試行します。
           




       

	load_balance_hosts
	

使用可能なホストおよびアドレスへの接続をクライアントが試行する順序を制御します。
接続試行が成功すると、他のホストおよびアドレスへの試行は行われません。
このパラメータは、通常、複数のホスト名または複数のIPを返すDNSレコードと組み合わせて使用されます。
このパラメータは、例えばスタンバイサーバのみで負荷分散を実行するためにtarget_session_attrsと組み合わせて使用できます。
接続に成功すると、返された接続に対する後続の問い合わせはすべて同じサーバへ送られます。
以下の2つのモードがあります。
        
	disable (default)
	

ホスト間の負荷分散は実行されません。
ホストは与えられた順に試行され、アドレスはDNSやホストファイルから受け取った順に試行されます。
           

	random
	

ホストとアドレスはランダムな順序で試行されます。
この値は、主に同時に複数の接続を開こうとする場合、おそらく異なるマシンからの接続を開こうとする場合に便利です。
このようにして、複数のPostgreSQL™サーバ間で接続を負荷分散できます。
           


ランダム負荷分散は、そのランダムな性質のために、完全に均一な分布になることはほとんどありませんが、統計的には非常に近くなります。
ここで重要な側面の1つは、このアルゴリズムが2つのレベルのランダム選択を使用することです。
まず、ホストはランダムな順序で解決されます。
次に、次のホストを解決する前に、現在のホストのすべての解決済みアドレスがランダムな順序で試されます。
この動作は、特定のケースで各ノードが取得する接続の数を大幅に歪める可能性があります。たとえば、一部のホストが他のホストより多くのアドレスを解決する場合などです。
しかし、このような歪曲は、特定の目的で意図的に使用することもできます。たとえば、ホスト文字列で複数回ホスト名を指定することによって、大きなサーバが取得する接続数を増やすことができます。
           


この値を使用する場合、connect_timeoutにも妥当な値を設定することをお勧めします。
なぜならそうすれば、負荷分散に使用されているノードの1つが応答しない場合、新しいノードが試されるからです。
           




       

	oauth_issuer
	

サーバが接続用のOAuthトークンを要求した場合に使用する、信頼できる発行者のHTTPS URLです。
このパラメータはすべてのOAuth接続に必要です。
サーバのHBA設定のissuerの設定と完全に一致する必要があります。
       


標準認証ハンドシェイクの一部として、libpqはサーバにディスカバリー文書、つまり一連のOAuth設定パラメータを提供するURLを要求します。
サーバはoauth_issuerのコンポーネントから直接構築されたURLを提供する必要があり、この値はディスカバリー文書自体で宣言されている発行者の識別子と完全に一致する必要があります。
もし一致しない場合、接続は失敗します。
これは、OAuthクライアントに対する一種のmix-up攻撃を防ぐために必要です。
       


OAuthの検出のために利用される/.well-known/ URIに、oauth_issuerを明示的に設定することもできます。
この場合、サーバが別のURLを要求すると接続は失敗しますが、カスタムOAuthフローでは、以前にキャッシュされたトークンを使用して標準ハンドシェイクを高速化できる場合があります。
（この場合、クライアントがサーバに正しいスコープ設定を要求する機会がなく、トークンのデフォルトスコープでは接続に不十分な場合があるため、oauth_scopeも設定することをお勧めします。）
libpqは現在、以下の既知のエンドポイントをサポートしています。
        
	/.well-known/openid-configuration

	/.well-known/oauth-authorization-server




       
警告


OAuth接続ハンドシェイクの間、発行者には高い権限が与えられます。
経験則として、あるURLの運用者を信頼できず、サーバへのアクセス処理を任せることや自分自身になりすますことを任せることができない場合、そのURLをoauth_issuerとして信頼すべきではありません。
        


	oauth_client_id
	

認証サーバによって発行されたOAuth 2.0クライアント識別子です。
PostgreSQL™サーバが接続用のOAuthトークンを要求する場合（および、トークンを提供するカスタムOAuthフックがインストールされていない場合）、このパラメータを設定する必要があります。
設定されていない場合、接続は失敗します。
       

	oauth_client_secret
	

OAuth認証サーバにアクセスするときに使用するクライアントパスワード（もしあれば）です。
このパラメータが必要かどうかはOAuthプロバイダによって決定されます。
「公開」クライアントは通常シークレットを使用しませんが、「機密」クライアントは一般的にシークレットを使用します。
       

	oauth_scope
	

認証サーバに送信されるアクセス要求のスコープです。
スペースで区切られたOAuthスコープ識別子の一覧（空の場合もあります）として指定されます。
このパラメータはオプションであり、高度な使用方法を想定しています。
       


通常、クライアントはPostgreSQL™サーバから適切なスコープ設定を取得します。
このパラメータを使用すると、サーバから要求されたスコープの一覧は無視されます。
これにより、信頼性の低いサーバがエンドユーザに適切ではないアクセススコープを要求することを防ぐことができます。
ただし、クライアントのスコープ設定にサーバの必須スコープが含まれていない場合、サーバは発行されたトークンを拒否する可能性が高く、接続は失敗します。
       


空のスコープ一覧が何を意味するかは、プロバイダに依存します。
OAuth認証サーバは、それが何であれ「デフォルトスコープ」でトークンを発行する場合もあれば、トークンの要求を完全に拒否する場合もあります。
       




   



接続状態関数





これらの関数を使用して、既存のデータベース接続オブジェクトの状態を調べることができます。
  
ヒント

    
    

libpqアプリケーションのプログラマは注意してPGconnという抽象化を維持してください。
PGconnの内容は以下に挙げるアクセス用関数を使って取り出してください。
PGconn構造体中のフィールドは将来予告なく変更されることがありますので、libpq-int.hを使用したフィールドの参照は避けてください。
   



以下の関数は、接続で確立したパラメータの値を返します。
これらの値は接続期間中固定されます。
複数ホストの接続文字列が使用されている場合、同じPGconnオブジェクトを使用して新しい接続が確立されると、PQhost、PQport、PQpassの値は変わる可能性があります。
他の変数はPGconnの存在期間中固定されます。

   
	PQdb
	

接続したデータベース名を返します。


char *PQdb(const PGconn *conn);


      

	PQuser
	

接続したユーザ名を返します。


char *PQuser(const PGconn *conn);


      

	PQpass
	

接続したパスワードを返します。


char *PQpass(const PGconn *conn);


      


PQpassは、接続パラメータで指定されたパスワードを返します。
もし接続パラメータにパスワードがなくて、パスワードファイルからパスワードを取得できる場合には、そのパスワードを返します。
この場合、接続パラメータに複数のホストが指定されていると、接続が確立するまでは、PQpassの結果を当てにすることはできません。
接続の状態は、関数PQstatusで確認できます。
      

	PQhost
	

実際に接続したサーバホスト名を返します。
これはホスト名、IPアドレス、あるいはUnixソケット経由で接続している場合はディレクトリパスになります。
（パスの場合は必ず/で始まる絶対パスになるので、他と区別できます。）


char *PQhost(const PGconn *conn);


      


hostとhostaddrの両方が指定されると、PQhostは、そのhost情報を返します。
hostaddrだけが指定されると、それが返されます。
接続パラメータ中に複数のホストが指定された場合には、PQhostは実際に接続しているホストの情報を返します。
      


conn引数がNULLならば、PQhostはNULLを返します。
そうでない場合、もしホスト情報の生成中エラーとなったら（おそらく接続がまだ完全には確立されていないか、なんらかのエラーがある場合です）、空文字が返ります。
      


接続パラメータ中に複数のホストが指定されると、接続が確立するまではPQhostの結果を当てにすることはできません。
接続の状態は、PQstatus関数で確認できます。
      

	PQhostaddr
	

実際に接続したサーバIPアドレスを返します。
これはホスト名を解決したアドレス、あるいはhostaddrパラメータ経由で与えられたIPアドレスになります。


char *PQhostaddr(const PGconn *conn);


      


conn引数がNULLならば、PQhostaddrはNULLを返します。
そうでない場合、もしホスト情報の生成がエラーとなったら（おそらく接続がまだ完全には確立されていないか、なんらかのエラーがある場合です）、空文字が返ります。
      

	PQport
	

実際に接続したポートを返します。



char *PQport(const PGconn *conn);


      


接続パラメータ中に複数のポートが指定された場合には、PQportは実際に接続しているポートを返します。
      


conn引数がNULLならば、PQportはNULLを返します。
そうでない場合、もしホスト情報の生成がエラーとなったら（おそらく接続がまだ完全には確立されていないか、なんらかのエラーがある場合です）、空文字が返ります。
      


接続パラメータ中に複数のポートが指定されると、接続が確立するまではPQportの結果を当てにすることはできません。
接続の状態は、PQstatus関数で確認できます。
      

	PQtty
	

この関数はもう何もしませんが、後方互換性のために残っています。
この関数は常に空の文字列を返します。
conn引数がNULLの場合はNULLを返します。



char *PQtty(const PGconn *conn);


      

	PQoptions
	

接続要求時に渡されたコマンドラインオプションを返します。


char *PQoptions(const PGconn *conn);


      




  


以下の関数は、PGconnオブジェクトに対して操作を行うことで変更可能な状態データを返します。

   
	PQstatus
	

接続の状態を返します。


ConnStatusType PQstatus(const PGconn *conn);


      


この状態は多くの値の中の1つとなるはずです。
しかし非同期接続手順の外部からは、その中でたった2つ、CONNECTION_OKとCONNECTION_BADだけが現れます。
データベースへの接続に問題がなければ、CONNECTION_OK状態になります。
接続に失敗している場合はCONNECTION_BAD状態となります。
通常、OK状態はPQfinishまで維持されますが、通信失敗のために早まってCONNECTION_BADになることもあります。
その場合、アプリケーションはPQresetを呼び出して修復を試みることができます。
      


返される可能性があるその他の状態コードについてはPQconnectStartParams、PQconnectStartおよびPQconnectPollの項目を参照してください。
      

	PQtransactionStatus
	

サーバの現在のトランザクション内部状態を返します。



PGTransactionStatusType PQtransactionStatus(const PGconn *conn);




この状態は、PQTRANS_IDLE (現在待機中)、PQTRANS_ACTIVE (コマンド実行中)、PQTRANS_INTRANS (有効なトランザクションブロック内で待機中)、PQTRANS_INERROR (無効なトランザクションブロック内で待機中)となり得ます。
接続に問題がある場合のみPQTRANS_UNKNOWNが報告されます。
サーバへ問い合わせが送信されたが、まだ完了していない場合のみPQTRANS_ACTIVEが報告されます。
      

	PQparameterStatus
	

サーバの現在のパラメータ設定を検索します。



const char *PQparameterStatus(const PGconn *conn, const char *paramName);




あるパラメータ値は、接続開始時に、もしくは、その値が変更された時は常にサーバによって自動的に報告されます。
PQparameterStatusはそれらの設定の調査に役立ちます。
パラメータの現在値がわかればその値を、わからない場合はNULLを返します。
      


現在のリリースで報告されるパラメータは、次の通りです。
       
	application_name	scram_iterations
	client_encoding	search_path
	DateStyle	server_encoding
	default_transaction_read_only	server_version
	in_hot_standby	session_authorization
	integer_datetimes	standard_conforming_strings
	IntervalStyle	TimeZone
	is_superuser	 



（default_transaction_read_onlyとin_hot_standbyは14より前のリリースでは報告されませんでした。
scram_iterationsは16より前のリリースでは報告されませんでした。
search_pathは18より前のリリースでは報告されませんでした。）
なお、server_version、server_encoding、およびinteger_datetimesは起動後に変更できません。
      


standard_conforming_stringsの値がないと報告された場合、アプリケーションはoffと推測することができます。
つまり、バックスラッシュは文字リテラル中のエスケープ文字として扱います。
また、このパラメータが存在すると、エスケープ文字構文(E'...')が受付けられることを意味するものと取られます。
      


返されるポインタはconstと宣言されていますが、実際にはPGconn構造体に関連付けされた変化する領域を指し示します。
このポインタが諸問い合わせに渡って有効なままであるとみなすのは賢明ではありません。
      

	PQfullProtocolVersion
	

使用されるフロントエンド/バックエンドプロトコルを調査します。


int PQfullProtocolVersion(const PGconn *conn);



アプリケーションは、この関数を使用して特定の機能がサポートされているかどうかを確認できます。
返却値は、サーバのメジャーバージョン番号に10000を乗算し、マイナーバージョン番号を加算した形式になります。
たとえば、バージョン3.2は30002として返され、バージョン4.0は40000として返されます。
接続が不良な場合は0が返されます。
3.0プロトコルは、PostgreSQL™サーババージョン7.4以降でサポートされています。
      


プロトコルのバージョンは、接続の開始処理が完了しても変更されませんが、理論的には接続のリセット中に変わる可能性があります。
      

	PQprotocolVersion
	

フロントエンド/バックエンドプロトコルのメジャーバージョンを調査します。


int PQprotocolVersion(const PGconn *conn);



PQfullProtocolVersionとは異なり、これは使用中のメジャープロトコルバージョンのみを返しますが、バージョン7.4までさかのぼる幅広いlibpqリリースでサポートされています。
現在返却されうる値は3（3.0プロトコル）または0（接続不良）です。
バージョン14.0より前のリリースでは、libpqはさらに2（2.0プロトコル）を返す可能性があります。
      

	PQserverVersion
	

サーバのバージョンの整数表現を返します。


int PQserverVersion(const PGconn *conn);


      


この関数を使用してアプリケーションは接続したデータベースサーバのバージョンを決定することができます。
返却値の形式は、メジャーバージョン番号に10000を掛け、マイナーバージョン番号を加えたものです。
例えば、バージョン10.1では100001を返し、バージョン11.0では110000を返します。
接続不良の場合は0が返されます。
      


バージョン10よりも前では、PostgreSQL™では、最初の2つの部分がメジャーバージョンを表す、3つの部分からなるバージョン番号が使われていました。
これらのバージョンでは、PQserverVersionはそれぞれの部分に2桁の数字を使います。
たとえば、バージョン9.1.5では90105が返され、バージョン9.2.0では90200が返されます。
      


ですから、機能の互換性を見極めるのが目的なら、アプリケーションはPQserverVersionの結果を10000ではなく、100で割り、論理的なメジャーバージョンを求めるべきです。
すべてのリリースで、最後の2桁だけがマイナーリリースで異なります。
（バグ修正リリースです。）
      

	
      PQerrorMessage
      
     
	

接続に対する操作によって最後に生成されたエラーメッセージを返します。



char *PQerrorMessage(const PGconn *conn);


      


ほとんどすべてのlibpq関数は、失敗時に
      PQerrorMessage
      
     用のメッセージを設定します。
libpqでの決まりとして、空でない
      PQerrorMessage
      
     の結果は複数行に渡ることも可能で、最後に改行が含まれることがある点に注意してください。
呼び出し元はこの結果を直接解放してはいけません。
関連するPGconnハンドルがPQfinishに渡された時にこれは解放されます。
PGconn構造体への操作を跨って、この結果文字列が同一であると想定してはいけません。
      

	PQsocket
	

サーバとの接続ソケットに対するファイル記述子番号を得ます。
有効な記述子なら値は0以上です。
-1の場合は、サーバとの接続がまだ開いていないことを示します。
(これは通常の操作では変更することはできません。
接続設定中やリセット中に変更されます。)



int PQsocket(const PGconn *conn);



      

	PQbackendPID
	

接続を処理するバックエンドのプロセスID(PID)を返します。




int PQbackendPID(const PGconn *conn);


      


バックエンドのPIDは、デバッグする場合やNOTIFYメッセージ（これは通知を発行したバックエンドプロセスのPIDを含んでいます）の比較に便利です。
このPIDはデータベースサーバホスト上で実行されているプロセスのものであり、ローカルホスト側のものではありません！
注意してください。
      

	PQconnectionNeedsPassword
	

接続認証方式がパスワードを要求し、利用可能なパスワードがない場合真（1）を返します。
さもなくば偽（0）を返します。



int PQconnectionNeedsPassword(const PGconn *conn);


      


この関数を、接続試行に失敗した後でユーザにパスワード入力を促すかどうかを決定するために適用することができます。
      

	PQconnectionUsedPassword
	

接続認証方式でパスワードを使用する場合は真（1）を返します。
さもなくば偽（0）を返します。



int PQconnectionUsedPassword(const PGconn *conn);


      


この関数は、接続の試みが失敗したか成功したかの後に、サーバがパスワードを要求したかどうかを検出するために適用できます。
      

	PQconnectionUsedGSSAPI
	

接続認証方式が GSSAPI を使用している場合はtrue (1)を返します。
使用していない場合はfalse (0)を返します。



int PQconnectionUsedGSSAPI(const PGconn *conn);


      


この関数は、接続がGSSAPIで認証されたかどうかを検出するために適用できます。
      




  


以下の関数はSSLに関連した情報を返します。
この情報は通常、接続の確立後には変更されません。

    
	PQsslInUse
	

接続がSSLを使っていれば真(1)、使っていなければ偽(0)を返します。



int PQsslInUse(const PGconn *conn);


      

	PQsslAttribute
	

接続におけるSSL関連の情報を返します。



const char *PQsslAttribute(const PGconn *conn, const char *attribute_name);


      


利用可能な属性のリストは使用されているSSLライブラリおよび接続の種類によって異なります。
接続でSSLが使用されない場合、または指定した属性名が使用中のライブラリに定義されていない場合は、NULLが返されます。
      


一般的には、以下の属性が利用可能です。
       
	library
	

使用されているSSLの実装の名前です。
（現在は"OpenSSL"だけが実装されています。）
           

	protocol
	

使用されているSSL/TLSのバージョンです。
一般的な値は、"TLSv1"、"TLSv1.1"、"TLSv1.2"ですが、他のプロトコルが使用されれば、異なる文字列が返されるかもしれません。
           

	key_bits
	

暗号アルゴリズムで使用されている鍵のビット数です。
           

	cipher
	

使用されている暗号スイートの短縮名、例えば"DHE-RSA-DES-CBC3-SHA"です。
この名前は各SSLの実装に固有のものです。
           

	compression
	

SSL圧縮が使用されている場合は"on"を返し、使用されていない場合は"off"を返します。
           

	alpn
	

TLSアプリケーションレイヤプロトコルネゴシエーション(ALPN)拡張によって選択されたアプリケーションプロトコルです。
libpqがサポートするプロトコルはpostgresqlのみであるため、これは主にサーバがALPNをサポートしているかどうかをチェックするのに役立ちます。
ALPNが使用されなかった場合は空文字列です。
           




      


特殊なケースとして、library属性は、conn引数としてNULLを渡すことによって接続なしで照会することができます。
結果はデフォルトのSSLライブラリ名、またはlibpqがSSLサポートなしでコンパイルされた場合にNULLになります。
（PostgreSQL™バージョン15より前では、conn引数としてNULLを渡すと常にNULLになりました。
このケースの新しい実装と古い実装を区別する必要があるクライアントプログラムは、LIBPQ_HAS_SSL_LIBRARY_DETECTION機能マクロをチェックしてください。）
      

	PQsslAttributeNames
	

PQsslAttribute()で使用できるSSL属性名の配列を返します。
配列の最後のメンバにはNULLポインタが入ります。


const char * const * PQsslAttributeNames(const PGconn *conn);


      


connがNULLの場合、デフォルトのSSLライブラリで使用可能な属性が返されます。
または、libpqがSSLサポートなしでコンパイルされた場合は空のリストが返されます。
connがNULLでない場合、接続に使用されているSSLライブラリで使用可能な属性が返されます。接続が暗号化されていない場合は空のリストが返されます。
      

	PQsslStruct
	

SSLの実装に固有な接続を説明するオブジェクトへのポインタを返します。
接続が暗号化されていないか、要求されたタイプのオブジェクトが接続のSSLの実装から利用できない場合はNULLを返します。


void *PQsslStruct(const PGconn *conn, const char *struct_name);


      


利用可能な構造体は、使用されるSSLの実装に依存します。
OpenSSL™では、OpenSSLの名前の下に利用可能な構造体が1つあり、OpenSSL™のSSL構造体へのポインタを返します。
この関数を使用するには、以下のようなプログラムが利用できます。


#include <libpq-fe.h>
#include <openssl/ssl.h>

...

    SSL *ssl;

    dbconn = PQconnectdb(...);
    ...

    ssl = PQsslStruct(dbconn, "OpenSSL");
    if (ssl)
    {

        /* sslにアクセスするためOpenSSLの関数を使う */
    }


      


この構造体は、暗号化レベルの確認、サーバ証明書の検証、その他に使用できます。
この構造体に関する情報についてはOpenSSL™のドキュメントを参照して下さい。
      

	PQgetssl
	
       

接続で使用されているSSLの構造体を返します。
SSLが使われていなければNULLを返します。



void *PQgetssl(const PGconn *conn);


      


この関数はPQsslStruct(conn, "OpenSSL")と同等です。
返される構造体はOpenSSL™に固有のもので他のSSL実装が利用されていると使用できないので、新しく作成するアプリケーションでは使うべきではありません。
接続がSSLを使用しているかどうかを調べるには、代わりにPQsslInUseを呼び出して下さい。
また、接続に関するより詳細についてはPQsslAttributeを使って下さい。
      




  

コマンド実行関数





いったんデータベースサーバへの接続の確立が成功すれば、本節で説明する関数を使ってSQLの問い合わせやコマンドを実行します。
  
主要な関数




    
	PQexec
	

コマンドをサーバに送信し、結果を待機します。



PGresult *PQexec(PGconn *conn, const char *command);


       


戻り値はPGresultへのポインタ、場合によってはNULLポインタです。
メモリ不足の状態、あるいはサーバへのコマンド送信が不可能といった深刻なエラーの場合を除けば、通常非NULLのポインタが返ります。
PQresultStatus関数を呼び出して、何かエラー（NULLポインタ値を含むエラー。この場合はPGRES_FATAL_ERRORが返されます）がないか戻り値を検査しなければなりません。
こうしたエラーの詳しい情報は
      PQerrorMessage
      
     で得ることができます。
       






コマンド文字列には（セミコロンで区切られた）複数のSQLコマンドを含めることができます。
単一のPQexec呼び出しで送信された複数の問い合わせは、単一トランザクションで処理されます。
ただし、問い合わせ文字列内に明示的なBEGIN/COMMITコマンドがある場合は、複数のトランザクションに分離されます。
（サーバがどのように複数問い合わせを処理するかの更なる詳細は「簡易問い合わせでの複文」を参照してください。）
しかし、返されるPGresult構造体には、その文字列内で最後に実行されたコマンドの結果のみが含まれることに注意してください。
そのコマンドの1つが失敗したとすると、文字列の処理はそこで中断し、エラー条件が含まれるPGresultが返されます。
   

    
	PQexecParams
	

サーバにコマンドを送信し、結果を待ちます。
ただし、SQLコマンドテキストとは別にパラメータを渡すことができます。



PGresult *PQexecParams(PGconn *conn,
                       const char *command,
                       int nParams,
                       const Oid *paramTypes,
                       const char * const *paramValues,
                       const int *paramLengths,
                       const int *paramFormats,
                       int resultFormat);


       


PQexecParamsとPQexecは似ていますが、前者は次の機能が追加されています。
パラメータ値をコマンド文字列とは別に適切に指定することができ、また、問い合わせの結果をテキスト書式としてでもバイナリ書式としてでも要求できます。
       


この関数の引数を以下に示します。

        
	conn
	

接続オブジェクトです。これを通してコマンドを送信します。
           

	command
	

実行させるSQLコマンド文字列です。
パラメータが使用される場合は、コマンド文字列内で$1、$2などのように参照されます。
           

	nParams
	

提供されるパラメータ数です。
これは配列paramTypes[]、paramValues[]、paramLengths[]、paramFormats[]の要素数です。
（この配列ポインタは、nParamsが0の場合、NULLとすることができます。）
           

	paramTypes[]
	

パラメータシンボルに代入されるデータ型をOIDで指定したものです。
paramTypesがNULL、または、ある配列要素が0の場合、サーバは、型指定のないリテラル文字列に対して行う推定方法と同じ方法を使用して、パラメータシンボルのデータ型を推定します。
           

	paramValues[]
	

パラメータの実際の値を指定します。
配列内のNULLポインタは対応するパラメータがNULLであることを意味します。
さもなくば、このポインタはゼロ終端のテキスト文字列（テキスト書式）、または、サーバで想定している書式によるバイナリデータ（バイナリ書式）を指し示します。
           

	paramLengths[]
	

バイナリ書式のパラメータの実データ長を指定します。
NULLパラメータおよびテキスト書式のパラメータでは無視されます。
バイナリパラメータが存在しない場合、この配列ポインタはNULLとしてもかまいません。
           

	paramFormats[]
	

パラメータがテキスト（パラメータに対応する配列要素に0を設定）か、バイナリ（パラメータに対応する配列要素に1を設定）かを指定します。
この配列ポインタがNULLの場合、すべてのパラメータはテキスト文字列であると仮定されます。
           


バイナリ書式で渡された値は、バックエンドが想定する内部表現の知識を必要とします。
例えば、整数はネットワークバイト順に渡されなければなりません。
numericによる値は、src/backend/utils/adt/numeric.c::numeric_send()およびsrc/backend/utils/adt/numeric.c::numeric_recv()で実装されたようにサーバストレージ書式の知識を必要とします。
           

	resultFormat
	

結果をテキスト書式で取り出したい場合は0を、バイナリ書式で取り出したい場合は1を指定します。
（現時点では、プロトコル内部では実現可能ですが、結果の列ごとに異なる書式を指定して取り出す機構は存在しません。）
           




       




   


PQexecに対するPQexecParamsの主要な利点は、コマンド文字列とパラメータ値を分離することができることです。
これにより、面倒でエラーを招きやすい引用符付けやエスケープ処理を行なう必要がなくなります。
   


PQexecと異なり、PQexecParamsは、文字列内に最大でも1つのSQLコマンドを入れることができます。
（セミコロンを入れることはできますが、空でないコマンドを2つ以上入れることはできません。）
これは、プロトコル自体の制限ですが、SQLインジェクション攻撃に対する追加の防御となりますので、多少役に立ちます。
   
ヒント


OID経由のパラメータ型の指定は、特にプログラムの中で特定のOID値がソースに直接書き込まれることを好まない場合には退屈です。
しかしながら、パラメータの型をサーバ自身で決定できない場合や、望む型と異なる型を選択する場合であっても、これを避けることができます。
SQLコマンドテキストでどのデータ型を送信するかを示すためにパラメータシンボルに明示的なキャストをつけてください。
以下が例です。


SELECT * FROM mytable WHERE x = $1::bigint;



デフォルトではパラメータ$1の型はxと同じデータ型に割り当てられますが、これにより強制的にbigintとして扱われます。
この方法または型のOIDを数字で指定する方法で、パラメータの型を強制的に決定することがバイナリ書式においてパラメータ値を送る時に強く推奨されます。
これは、バイナリ書式はテキスト書式より情報が少なく、そのために、サーバが型の不一致という問題を検出する機会が少なくなるためです。
    


    
	PQprepare
	

指定パラメータを持つ準備された文の作成要求を送信し、その完了を待ちます。


PGresult *PQprepare(PGconn *conn,
                    const char *stmtName,
                    const char *query,
                    int nParams,
                    const Oid *paramTypes);


       


PQprepareは、後でPQexecPreparedを使用して実行する準備された文を作成します。
この機能を使用すると、コマンドを実行の度に解析して計画することなく、繰り返し実行することができます。
詳しくはPREPARE(7)を参照してください。
       


この関数はquery文字列からstmtNameという名前の準備された文を作成します。
queryは単一のSQLコマンドでなければなりません。
stmtNameを""にして、無名の文を作成することができます。
もし、無名の文が既に存在していた場合は自動的に置き換えられます。
その他の場合、文の名前が現在のセッションで既に存在するとエラーになります。
何らかのパラメータが使用される場合、問い合わせ内では$1、$2などで参照します。
nParamsはパラメータ数です。
その型については事前にparamTypes[]配列で指定されています。
(nParamsがゼロの場合、この配列ポインタはNULLにすることができます。)
paramTypes[]は、OIDによりパラメータシンボルに割り当てるデータ型を指定します。
paramTypesがNULLの場合、もしくは、配列内の特定要素がゼロの場合、サーバはそのパラメータシンボルに対して、型指定の無いリテラル文字列に対する処理と同等の方法でデータ型を割り当てます。
また、問い合わせではnParamsより多くのパラメータシンボルを使用することができます。
これらのシンボルに対するデータ型も同様に推測されます。
（どのようなデータ型が推測されるかを検出する手法についてはPQdescribePreparedを参照してください。）
       


PQexec同様、結果は通常PGresultオブジェクトで、その内容でサーバ側の成功や失敗を示します。
NULLという結果はメモリ不足や全くコマンドを送信することができなかったことを示します。
こうしたエラーの詳細情報を入手するには
      PQerrorMessage
      
     を使用してください。
       






PQexecPreparedで使用するための準備された文は、SQL PREPARE(7)文を実行して作成することもできます。
   

    
	PQexecPrepared
	

指定パラメータによる準備された文の実行要求を送信し、結果を待ちます。


PGresult *PQexecPrepared(PGconn *conn,
                         const char *stmtName,
                         int nParams,
                         const char * const *paramValues,
                         const int *paramLengths,
                         const int *paramFormats,
                         int resultFormat);


       


PQexecPreparedとPQexecParamsは似ていますが、前者では実行されるコマンドは、問い合わせ文字列を与えるのではなく、事前に準備された文を指名することで指定されます。
この機能により、繰り返し使用する予定のコマンドを実行する度にではなく、一度だけ解析、計画作成を行うことができます。
この文は現在のセッションで事前に準備されていなければなりません。
       


パラメータは、問い合わせ文字列ではなく指定された準備された文の名前を与える点を除き、PQexecParamsと同じです。
また、paramTypes[]パラメータは存在しません。
(準備された文のパラメータ型はその作成時点で決定されているため、これは不要です。)
       

	PQdescribePrepared
	

指定した準備された文に関する情報入手要求を送り、入手完了まで待機します。


PGresult *PQdescribePrepared(PGconn *conn, const char *stmtName);


       


PQdescribePreparedにより、アプリケーションは事前に準備された文に関する情報を入手できます。
       


stmtNameを""またはNULLとすることで、無名の文を参照することができます。
これ以外では、存在する準備された文の名前でなければなりません。
成功すると、PGRES_COMMAND_OKというステータスのPGresultが返されます。
PQnparamsおよびPQparamtype関数をこのPGresultに適用して、準備された文のパラメータに関する情報を得ることができます。
また、PQnfields、PQfname、PQftype関数などを使用して、文の結果列（もしあれば）に関する情報を提供できます。
       

	PQdescribePortal
	

指定したポータルに関する情報入手要求を送信し、完了まで待機します。


PGresult *PQdescribePortal(PGconn *conn, const char *portalName);


       


PQdescribePortalにより、アプリケーションは事前に作成されたポータルの情報を入手することができます。
（libpqはポータルへの直接アクセスする方法を提供していませんが、この関数を使用してDECLARE CURSOR SQLコマンドで作成したカーソルの属性を確認することができます。）
       


portalNameに""またはNULLを指定して、無名のポータルを参照することができます。
これ以外では、既存のポータルの名前でなければなりません。
成功すると、PGRES_COMMAND_OKというステータスのPGresultが返されます。
PQnfields、PQfname、PQftype関数などをこのPGresultに適用して、ポータルの結果列（もしあれば）に関する情報を得ることができます。
       

	PQclosePrepared
	

指定した準備された文をクローズする要求を送信し、完了を待機します。


PGresult *PQclosePrepared(PGconn *conn, const char *stmtName);


       


PQclosePreparedを使用すると、アプリケーションは以前に作られた準備された文を閉じることができます。
文を閉じると、サーバ上の関連するすべてのリソースが解放され、その名前を再利用できるようになります。
       


stmtNameは""またはNULLで、名前のない文を参照できます。
この名前がついた文は存在しなくてもよく、この場合は何も操作は行われません。
成功した場合、ステータスPGRES_COMMAND_OKを持つPGresultが返されます。
       

	PQclosePortal
	

指定されたポータルを閉じる要求を送信し、完了を待機します。


PGresult *PQclosePortal(PGconn *conn, const char *portalName);


       


PQclosePortalを使用すると、アプリケーションは以前に作成したポータルを閉じることができます。
ポータルを閉じると、サーバ上の関連するすべてのリソースが解放され、その名前を再利用できるようになります。
（libpqはポータルへの直接アクセスを提供しませんが、この関数を使用してDECLARE CURSORSQLコマンドで作成されたカーソルを閉じることができます。）
       


portalNameは""またはNULLで、名前のないポータルを参照できます。
この名前のポータルが存在しない場合は、操作は何も行われません。
成功した場合、ステータスPGRES_COMMAND_OKを持つPGresultが返されます。
       




   


PGresult構造体はサーバから返された結果をカプセル化します。

libpqアプリケーションのプログラマは注意してPGresultという抽象化を維持してください。
以下のアクセス用関数を使用して、PGresultの内容を取り出してください。
将来の変更に影響されますので、PGresult構造体のフィールドを直接参照することは避けてください。

    
	PQresultStatus
	

コマンドの結果状態を返します。


ExecStatusType PQresultStatus(const PGresult *res);


       


PQresultStatusは以下のいずれかの値を返します。

        
	PGRES_EMPTY_QUERY
	

サーバに送信された文字列が空でした。
           

	PGRES_COMMAND_OK
	

データを返さないコマンドが正常終了しました。
           

	PGRES_TUPLES_OK
	

データを返すコマンド(SELECTやSHOWなど)が正常終了しました。
           

	PGRES_COPY_OUT
	

(サーバからの)コピーアウトデータ転送が始まりました。
           

	PGRES_COPY_IN
	

(サーバへの)コピーインデータ転送が始まりました。
           

	PGRES_BAD_RESPONSE
	

サーバが不明な応答を返しました。
           

	PGRES_NONFATAL_ERROR
	

致命的ではない(注意喚起もしくは警告)エラーが発生しました。
           

	PGRES_FATAL_ERROR
	

致命的なエラーが発生しました。
           

	PGRES_COPY_BOTH
	

（サーバからおよびサーバへの）コピーイン/アウトデータ転送が始まりました。
現在こればストリーミングレプリケーションのみで使用されます。
このためこの状態は通常のアプリケーションでは起こりません。
           

	PGRES_SINGLE_TUPLE
	

PGresultには現在のコマンドからの結果タプルが１つ含まれます。
この状態は問い合わせで単一行モードが選択された場合（「問い合わせ結果をチャンクとして取り出す」参照）のみ起こります。
           

	PGRES_TUPLES_CHUNK
	

PGresultは現在のコマンドからの複数の結果タプルを含んでいます。
この状態は、問い合わせに対してチャンクモードが選択された場合にのみ発生します（「問い合わせ結果をチャンクとして取り出す」を参照してください）。
タプル数はPQsetChunkedRowsModeに渡された制限を超えることはありません。
           

	PGRES_PIPELINE_SYNC
	

PGresultは、パイプラインモードでPQpipelineSyncまたはPQsendPipelineSyncによって要求された同期ポイントを表します。
この状態は、パイプラインモードが選択された場合にのみ発生します。
           

	PGRES_PIPELINE_ABORTED
	

PGresultは、サーバからエラーを受信したパイプラインを表します。
PQgetResultは繰り返し呼び出されなければならず、現在のパイプラインが終了するまでこのステータスコードを返す度にPGRES_PIPELINE_SYNCを返し、通常の処理を再開できます。
           






結果の状態がPGRES_TUPLES_OK、PGRES_SINGLE_TUPLE、またはPGRES_TUPLES_CHUNKの場合、以下に説明する関数を使用して、問い合わせによって返された行を取り出すことができます。
ただし、たまたまSELECTコマンドが返す行が０個だったような場合でもPGRES_TUPLES_OKとなることに注意してください。
PGRES_COMMAND_OKは、行を決して返さない(RETURNING句の無いINSERTまたはUPDATEなど)コマンド用です。
PGRES_EMPTY_QUERYという応答はクライアントソフトウェアの不具合を示しているかもしれません。
       


PGRES_NONFATAL_ERROR状態の場合、結果はPQexecや他の問い合わせ実行関数によって直接返されません。
その代わりに、この種の結果は注意喚起プロセッサ(「警告処理」を参照)に渡されます。
       

	PQresStatus
	

PQresultStatusが返す列挙型から状態コードを説明する文字列定数に変換します。
呼び出し元はこの結果を解放してはいけません。



char *PQresStatus(ExecStatusType status);


       

	PQresultErrorMessage
	

コマンドに関するエラーメッセージを返します。
エラーが何もなければ、空の文字列を返します。


char *PQresultErrorMessage(const PGresult *res);



エラーがあった場合、返される文字列の最後には改行が含まれます。
呼び出し元はこの結果を直接解放してはいけません。
関連するPGresultハンドルがPQclearに渡された時にこれは解放されます。
       


（接続に対する）
      PQerrorMessage
      
     も、PQexecまたはPQgetResult呼び出しの直後なら（結果に対する）PQresultErrorMessageと同じ文字列を返します。
しかし、接続に対するエラーメッセージは続いて操作を行うと変化してしまうのに対し、PGresultは自身が破棄されるまでそのエラーメッセージを維持し続けます。
このPQresultErrorMessageは個々のPGresultに結び付けられた状態を確認する時に、そして
      PQerrorMessage
      
     は接続における最後の操作の状態を確認する時に使用してください。
       

	PQresultVerboseErrorMessage
	

PGresultオブジェクトに関連したエラーメッセージの再フォーマットしたバージョンを返します。


char *PQresultVerboseErrorMessage(const PGresult *res,
                                  PGVerbosity verbosity,
                                  PGContextVisibility show_context);



状況によっては、クライアントは以前に報告されたエラーのより詳細なバージョンを取得したいと思うかもしれません。
PQresultVerboseErrorMessageは、指定のPGresultが生成されたときに、指定した冗長設定がその接続で使われていたならPQresultErrorMessageが生成したであろうメッセージを計算することで、この要請に応えます。
PGresultがエラーの結果ではない場合は、「PGresult is not an error result」が代わりに報告されます。
返される文字列は行末に改行コードが含まれます。
       


PGresultからデータを抽出する他の多くの関数と異なり、この関数の結果は新しく割り当てられた文字列です。
その文字列が必要なくなったときは、呼び出し側がPQfreemem()を使ってそれを解放しなければなりません。
       


十分なメモリがないときは、NULLが返されることもありえます。
       

	PQresultErrorField
	

エラー報告の個々のフィールドを返します。


char *PQresultErrorField(const PGresult *res, int fieldcode);



fieldcodeはエラーフィールド識別子です。
以下に示すシンボルを参照してください。
PGresultがエラーではない、もしくは、警告付きの結果である場合や指定したフィールドを含まない場合、NULLが返されます。
通常フィールド値には改行が含まれません。
フィールド値は関連するPGresultハンドルがPQclearに渡された時に解放されます。
       


以下のフィールドコードが使用できます。
        
	PG_DIAG_SEVERITY
	

深刻度。
このフィールドの内容は(エラーメッセージの場合)ERROR、FATAL、もしくは、PANIC、(注意喚起メッセージの場合)WARNING、NOTICE、DEBUG、INFO、もしくは、LOGです。
これらは、ローカライズ化により翻訳されている可能性があります。
常に存在します。
           

	PG_DIAG_SEVERITY_NONLOCALIZED
	

深刻度。
このフィールドの内容は(エラーメッセージの場合)ERROR、FATAL、もしくは、PANIC、(注意喚起メッセージの場合)WARNING、NOTICE、DEBUG、INFO、もしくは、LOGです。
これは、内容がローカライズ化されないことを除き、PG_DIAG_SEVERITYと同一です。
これはPostgreSQL™のバージョン9.6以降で生成された報告にのみ存在します。
           

	PG_DIAG_SQLSTATE
	

エラーのSQLSTATEコードです。
SQLSTATEコードは発生したエラーの種類を識別します。
フロントエンドアプリケーションにより、特定のデータベースエラーに対して所定の操作（エラー処理など）を行うために使用できます。
起こり得るSQLSTATEコードの一覧については付録A PostgreSQL™エラーコードを参照してください。
このフィールドはローカライズ化されず、また、常に存在します。
           

	PG_DIAG_MESSAGE_PRIMARY
	

可読性を高めた主要エラーメッセージです。
(通常は1行です。)
常に存在します。
           

	PG_DIAG_MESSAGE_DETAIL
	

詳細です。
問題に関するより詳細を表す補助的なエラーメッセージです。
複数行に跨る可能性があります。
           

	PG_DIAG_MESSAGE_HINT
	

ヒントです。
問題の対応方法についての補助的な提言です。
これは、詳細(detail)とは異なり、問題の事象ではなく、(適切でない可能性がありますが)アドバイスを提供することを目的としています。
複数行に跨る可能性があります。
           

	PG_DIAG_STATEMENT_POSITION
	

元の問い合わせ文字列のインデックスとなる、エラーが発生したカーソル位置を示す10進整数を持つ文字列です。
先頭文字がインデックス1となり、また、バイトではなく、文字数で数えた位置です。
           

	PG_DIAG_INTERNAL_POSITION
	

この定義はPG_DIAG_STATEMENT_POSITIONフィールドと同じです。
しかし、これは、クライアントが発行したコマンドではなく、カーソル位置が内部生成コマンドを参照する場合に使用されます。
このフィールドが存在する時は常にPG_DIAG_INTERNAL_QUERYフィールドが存在します。
           

	PG_DIAG_INTERNAL_QUERY
	

失敗した内部生成コマンドのテキストです。
これは、例えば、PL/pgSQL関数で発行されたSQL問い合わせになります。
           

	PG_DIAG_CONTEXT
	

エラーが発生した文脈を示すものです。
今の所、これは活動中の手続き言語関数や内部生成問い合わせの呼び出しスタックの追跡情報が含まれます。
この追跡は行単位で1項目であり、その順番は呼び出し順の反対になります。
           

	PG_DIAG_SCHEMA_NAME
	

そのエラーが特定のデータベースオブジェクトに付随する場合、もしあれば、そのオブジェクトを含むスキーマ名です。
           

	PG_DIAG_TABLE_NAME
	

そのエラーが特定のテーブルに付随する場合のテーブル名です。
（テーブルのスキーマ名についてはスキーマ名フィールドを参照してください。）
           

	PG_DIAG_COLUMN_NAME
	

そのエラーが特定のテーブル列に付随する場合の列名です。
（テーブルを識別するにはスキーマとテーブル名フィールドを参照してください。）
           

	PG_DIAG_DATATYPE_NAME
	

そのエラーが特定のデータ型に付随する場合のデータ型名です。
（データ型のスキーマ名についてはスキーマ名フィールドを参照してください。）
           

	PG_DIAG_CONSTRAINT_NAME
	

そのエラーが特定の制約に付随する場合の制約名です。
付随するテーブルまたはドメインについては上記にリストされたフィールドを参照してください。
（この目的のために、制約は制約構文で作成されていなくてもインデックスは制約として扱われます。）
           

	PG_DIAG_SOURCE_FILE
	

エラーが報告された場所のソースコードのファイル名です。
           

	PG_DIAG_SOURCE_LINE
	

エラーが報告された場所のソースコードにおける行番号です。
           

	PG_DIAG_SOURCE_FUNCTION
	

エラーを報告した、ソースコードにおける関数名です。
           




       
注記


スキーマ名、テーブル名、列名、データ型名、および制約名に対するフィールドは限定的なエラー型に対してのみ提供されます。付録A PostgreSQL™エラーコードを参照してください。
これらのフィールドのいかなる存在もその他のフィールドの存在を保証すると推測してはなりません。
コアエラーの出所は上に記載の相互関係を監視しますが、ユーザ定義関数はこれらフィールドを別目的で使用しているかもしれません。
同様の脈絡で、使用しているデータベースで
これらのフィールドが同時に存在するオブジェクトを意味すると推測してはなりません。
        



表示情報の必要に応じた整形はクライアントの責任です。
具体的には、必要に応じて長い行を分割しなければなりません。
エラーメッセージフィールド内の改行文字は、改行としてではなく段落として分かれたものとして取扱うべきです。
       


libpqで内部的に生成されたエラーは、深刻度と主要メッセージを持ちますが、通常は他のフィールドを持ちません。
       


エラーフィールドはPGresultからのみ利用でき、PGconnからは利用できません。
PQerrorFieldという関数はありません。
       

	PQclear
	

PGresultに割り当てられた記憶領域を解放します。
個々の問い合わせ結果は、必要なくなった時にPQclearで解放するべきです。



void PQclear(PGresult *res);




引数がNULLポインタの場合、操作は実行されません。
       


PGresultオブジェクトは必要な間保持することができます。
新しい問い合わせを発行する場合でも、接続を閉じてしまうまではPGresultは消えません。
PGresultを解放するには、PQclearを呼び出さなくてはいけません。
その操作に失敗してしまうと、アプリケーションのメモリリークを引き起こしてしまいます。
       




   

問い合わせ結果の情報の取り出し





これらの関数は、問い合わせ結果が成功したことを表すPGresult（つまり、PGRES_TUPLES_OK、PGRES_SINGLE_TUPLE、またはPGRES_TUPLES_CHUNKのステータスを持つ）から情報を抽出するために使用されます。
また、成功したDescribe操作から情報を抽出するためにも使用できます。Describeの結果には、実際の問い合わせの実行によって提供される列情報と同じ情報がすべて含まれますが、行は0です。
他のステータス値を持つオブジェクトの場合、これらの関数は結果が0行と0列であるかのように動作します。
   
	PQntuples
	

問い合わせ結果内の行(タプル)数を返します。
（ PGresultオブジェクトはINT_MAX行に制限されているため、intの結果で十分です。）



int PQntuples(const PGresult *res);



      

	PQnfields
	

問い合わせ結果の各行の列(フィールド)の数を返します。



int PQnfields(const PGresult *res);


      

	PQfname
	

指定した列番号に対応する列の名前を返します。
列番号は0から始まります。
呼び出し元はこの結果を直接解放してはいけません。
関連するPGresultハンドルがPQclearに渡された時にこれは解放されます。


char *PQfname(const PGresult *res,
              int column_number);


      


列番号が範囲外であった場合、NULLが返ります。
      

	PQfnumber
	

指定した列名に関連する列番号を返します。


int PQfnumber(const PGresult *res,
              const char *column_name);


      


指定した名前に一致する列がなければ、-1が返ります。
      


指定した名前はSQLコマンドの識別子同様に扱われます。
つまり、二重引用符でくくられていない限り、小文字化されます。
例えば、以下のSQLで生成された問い合わせ結果を考えます。


SELECT 1 AS FOO, 2 AS "BAR";



以下により、結果を取り出すことができます。


PQfname(res, 0)              foo
PQfname(res, 1)              BAR
PQfnumber(res, "FOO")        0
PQfnumber(res, "foo")        0
PQfnumber(res, "BAR")        -1
PQfnumber(res, "\"BAR\"")    1


      

	PQftable
	

指定した列の抽出元であるテーブルのOIDを返します。
列番号は0から始まります。


Oid PQftable(const PGresult *res,
             int column_number);


      


列番号が範囲外の場合や指定した列がテーブル列への単純な参照でない場合、InvalidOidが返されます。
pg_classシステムテーブルに問い合わせ、どのテーブルが参照されているのかを正確に求めることができます。
      


libpqヘッダファイルをインクルードすると、Oid型とInvalidOid定数が定義されます。
これらは両方とも何らかの整数型です。
      

	PQftablecol
	

指定した問い合わせ結果の列を作成した列の(それが属するテーブル内での)列番号を返します。
問い合わせ結果の列番号は0から始まりますが、テーブル列には0以外の番号が付けられています。


int PQftablecol(const PGresult *res,
                int column_number);


      


列番号が範囲外の場合や指定した列がテーブル列への単純な参照でなかった場合、ゼロが返されます。
      

	PQfformat
	

指定した列の書式を示す書式コードを返します。
列番号は0から始まります。


int PQfformat(const PGresult *res,
              int column_number);


      


ゼロという書式コードはテキストデータ表現を示し、1という書式コードはバイナリ表現を示します。
(他のコードは将来の定義のために予約されています。)
      

	PQftype
	

指定した列番号に関連したデータ型を返します。
返された整数はその型の内部的なOID番号です。
列番号は0から始まります。


Oid PQftype(const PGresult *res,
            int column_number);


      


pg_typeシステムテーブルに問い合わせて、各種データ型の名前や属性を得ることができます。
組み込みデータ型のOIDは、PostgreSQL™がインストールされたincludeディレクトリ内のcatalog/pg_type_d.hファイルに定義されています。
      

	PQfmod
	

指定した列番号に関連した列の型修飾子を返します。
列番号は0から始まります。


int PQfmod(const PGresult *res,
           int column_number);


      


修飾子の値の解釈は型に固有なものです。
通常これらは精度やサイズの制限を示します。
-1という値は「使用できる情報がない」ことを示します。
ほとんどのデータ型は修飾子を使用しません。
この場合は常に-1という値になります。
      

	PQfsize
	

指定した列番号に関連した列のバイト単位のサイズを返します。
列番号は0から始まります。


int PQfsize(const PGresult *res,
            int column_number);


      


PQfsizeはデータベース行内でその列用に割り当てられる領域を返します。
言い替えると、そのデータ型についてのサーバでの内部表現のサイズです。
(従って、実際にはクライアントから見るとあまり役には立ちません。)
負の値は可変長データ型を示します。
      

	PQbinaryTuples
	

PGresultがバイナリデータを持つ場合は1を、テキストデータを持つ場合は0を返します。


int PQbinaryTuples(const PGresult *res);


      


この関数は廃れたものです。
(COPYを行う接続での使用を除きます。)
単一のPGresultで、ある列はテキストデータを持ち、他の列ではバイナリデータを持つことが可能であるためです。
PQfformatの利用が推奨されます。
結果のすべての列がバイナリ(書式1)の場合のみPQbinaryTuplesは1を返します。
      

	PQgetvalue
	

PGresultの1行における単一フィールドの値を返します。
行番号と列番号は0から始まります。
呼び出し元はこの結果を直接解放してはいけません。
関連するPGresultハンドルがPQclearに渡された時に、これは解放されます。


char *PQgetvalue(const PGresult *res,
                 int row_number,
                 int column_number);


      


テキスト書式のデータでは、PQgetvalueで返される値はフィールド値のNULL終端の文字列表現となります。
バイナリ書式のデータでは、この値はデータ型のtypsend関数とtypreceive関数で決まるバイナリ表現となります。
(実際にはこの場合でも値の終わりにゼロというバイトが付与されます。
しかし、この値の内部には大抵の場合NULLが埋め込まれていますので、通常このバイトは有用ではありません。)
      


フィールド値がNULLの場合、空文字列が返されます。
NULL値と空文字列という値とを区別する方法はPQgetisnullを参照してください。
      


PQgetvalueによって返されるポインタはPGresult構造体の一部の格納領域を指し示します。
このポインタが指し示すデータを変更すべきではありません。
また、PGresult構造体を解放した後も使用し続ける場合は、データを別の格納領域に明示的にコピーしなければなりません。
      

	PQgetisnull
	

フィールドがNULL値かどうか検査します。
行番号と列番号は0から始まります。


int PQgetisnull(const PGresult *res,
                int row_number,
                int column_number);


      


この関数は、フィールドがNULLの場合に1を、フィールドが非NULL値を持つ場合は0を返します。
(PQgetvalueでは、NULLフィールドはNULLポインタではなく空文字列を返すことに注意してください。)
      

	PQgetlength
	

実際のフィールド値の長さをバイト単位で返します。
行番号と列番号は0から始まります。


int PQgetlength(const PGresult *res,
                int row_number,
                int column_number);


      


これは特定のデータ値についての実際のデータ長です。
つまり、PQgetvalueによって指し示されるオブジェクトのサイズです。
テキストデータ書式ではstrlen()と同一です。
バイナリ書式ではこれは重要な情報です。
実際のデータ長を取り出すためにPQfsizeを信用してはなりません。
      

	PQnparams
	

準備された文のパラメータ数を返します。


int PQnparams(const PGresult *res);


      


この関数はPQdescribePreparedの結果を確認する時にのみ有用です。
他の種類の結果ではゼロを返します。
      

	PQparamtype
	

指定された文パラメータのデータ型を返します。
パラメータ番号は0から始まります。


Oid PQparamtype(const PGresult *res, int param_number);


      


この関数は、PQdescribePreparedの結果を確認する時にのみ有用です。
他の種類の結果ではゼロを返します。
      

	PQprint
	

すべての行と列名(省略可能)を指定した出力ストリームに表示します。



void PQprint(FILE *fout,      /* 出力ストリーム */
             const PGresult *res,
             const PQprintOpt *po);
typedef struct
{
    pqbool  header;      /* フィールドヘッダ情報と行数の表示出力 */
    pqbool  align;       /* 位置揃えのためのフィールドへの埋め込み */
    pqbool  standard;    /* 古い、無くなりそうな書式 */
    pqbool  html3;       /* HTML表出力 */
    pqbool  expanded;    /* 拡張テーブル */
    pqbool  pager;       /* 必要に応じたページャの使用 */
    char    *fieldSep;   /* フィールド区切り文字 */
    char    *tableOpt;   /* HTML表要素の属性 */
    char    *caption;    /* HTML 表の表題 */
    char    **fieldName; /* フィールド名を置き換えるNULL終端の配列 */
} PQprintOpt;


      


この関数は以前に問い合わせ結果を表示するためにpsqlで使用されていましたが、今ではもう使用されていません。
これはすべてのデータがテキスト書式であるという前提で動作することに注意してください。
      




他の結果情報の取り出し





これらの関数はPGresultオブジェクトからその他の情報を取り出すために使用されます。
   
	PQcmdStatus
	

PGresultを生成したSQLコマンドのコマンド状態タグを返します。


char *PQcmdStatus(PGresult *res);


      


これは通常単なるコマンド名ですが、処理行数など追加情報が含まれる場合もあります。
呼び出し元はこの戻り値を直接解放してはいけません。
関連するPGresultハンドルがPQclearに渡された時にこれは解放されます。
      

	PQcmdTuples
	

SQLコマンドにより影響を受けた行数を返します。


char *PQcmdTuples(PGresult *res);


      


この関数はPGresultを生成したSQLコマンドにより影響を受けた行数を含む文字列を返します。
この関数はSELECT、CREATE TABLE AS、INSERT、UPDATE、DELETE、MERGE、MOVE、FETCH、COPY文の実行、あるいは、INSERT、UPDATE、DELETE、MERGEを含むプリペアド問い合わせのEXECUTE文の後でのみ使用することができます。
PGresultを生成したコマンドが他のコマンドであった場合、PQcmdTuplesは空文字列を返します。
呼び出し元はこの戻り値を直接解放してはいけません。
関連するPGresultハンドルがPQclearに渡された時にこれは解放されます。
      

	PQoidValue
	

SQLコマンドが、OIDを持つテーブル内に1行のみを挿入するINSERTだった場合、あるいは、適切なINSERTを持つプリペアド問い合わせのEXECUTEだった場合に、挿入された行のOIDを返します。
さもなくばInvalidOidを返します。
また、INSERT文の影響を受けたテーブルがOIDを持たなかった場合、この関数はInvalidOidを返します。


Oid PQoidValue(const PGresult *res);


      

	PQoidStatus
	

この関数はPQoidValueのため廃止予定になりました。
またこれはスレッドセーフではありません。
これは挿入された行のOIDを文字列として返します。
一方PQoidValueはOID値を返します。


char *PQoidStatus(const PGresult *res);


      




SQLコマンドに含めるための文字列のエスケープ処理



	PQescapeLiteral
	


char *PQescapeLiteral(PGconn *conn, const char *str, size_t length);


     


PQescapeLiteralは、SQLコマンド内で使用するために文字列をエスケープします。
これは、SQLコマンド内のリテラル定数としてデータ値を挿入する時に有用です。
特定の文字(引用符やバックスラッシュ)は、SQLパーサによって特殊な解釈がなされないようにエスケープされなければなりません。
PQescapeLiteralはこの操作を行います。
     


PQescapeLiteralはstrパラメータをエスケープしたものをmalloc()で割り当てたメモリ内に返します。
その結果が不要になったら、そのメモリをPQfreemem()を使用して解放しなければなりません。
ゼロバイト終端は必要なく、lengthに含めて数えてはいけません。
(lengthバイトを処理する前にゼロバイト終端が見つかると、PQescapeLiteralはそのゼロで終了します。
この動作はstrncpyと似ています。)
返される文字列では、PostgreSQL™文字列リテラルパーサで適切に処理することができるように、すべての特殊文字は置換されます。
ゼロバイト終端も追加されます。
PostgreSQL™の文字列リテラルでは前後に必要となる単一引用符も、その結果文字列には含まれています。
     


エラー時、PQescapeLiteralはNULLを返し、connオブジェクト内に適切なメッセージを残します。
     
ヒント


信用できない入力元から受けとった文字列を扱う場合に適切なエスケープ処理を行なうことは非常に重要です。
さもなくば、セキュリティ上の危険性が発生します。
「SQLインジェクション」攻撃という弱点となり、好ましくないSQLコマンドがデータベースに流れてしまいます。
      



PQexecParamsまたは同義のルーチン内で別のパラメータとしてデータ値が渡される場合は、エスケープすることは必要でもなければ正しくもないことに注意してください。
     

	PQescapeIdentifier
	


char *PQescapeIdentifier(PGconn *conn, const char *str, size_t length);


     


PQescapeIdentifierは、テーブル、列、関数名などのSQL識別子として使用できるように文字列をエスケープします。
これはユーザが提供した識別子に、そのままではSQLパーサで識別子として解釈されない特殊な文字が含まれる可能性がある場合、または、大文字小文字の違いを維持しなければならない状況で識別子に大文字が含まれる可能性がある場合に有用です。
     


PQescapeIdentifierはstrパラメータをSQL識別子としてエスケープしたものをmalloc()で割り当てたメモリ内に返します。
その結果が不要になったら、そのメモリをPQfreemem()を使用して解放しなければなりません。
ゼロバイト終端は必要なく、lengthに含めて数えてはいけません。
(lengthバイトを処理する前にゼロバイト終端が見つかると、PQescapeIdentifierはそのゼロで終了します。
この動作はstrncpyと似ています。)
返される文字列では、SQL識別子として適切に処理することができるように、すべての特殊文字は置換されます。
ゼロバイト終端も追加されます。
その結果文字列の前後には二重引用符が付与されます。
     


エラー時、PQescapeIdentifierはNULLを返し、connオブジェクト内に適切なメッセージを残します。
     
ヒント


文字列リテラルと同様、SQLインジェクション攻撃を防ぐために、信頼できない入力元から受けとる場合にはSQL識別子をエスケープしなければなりません。
      


	PQescapeStringConn
	


size_t PQescapeStringConn(PGconn *conn,
                          char *to, const char *from, size_t length,
                          int *error);


     


PQescapeStringConnは、PQescapeLiteralとほぼ同様に文字列リテラルをエスケープします。
PQescapeLiteralとは異なり、呼び出し元が適切な大きさのバッファを提供することに責任を持ちます。
さらにPQescapeStringConnはPostgreSQL™の文字リテラルとして囲まれなければならない単一引用符を生成しません。
これは、結果をSQLコマンドに挿入するときに付与しなければなりません。
fromパラメータはエスケープ対象の文字列の先頭を指すポインタです。
lengthパラメータはこの文字列のバイト数を示します。
ゼロバイト終端は必要なく、また、lengthではこれを数えてはなりません。
(もしlengthバイト処理する前にゼロバイト終端が存在すると、PQescapeStringConnはそのゼロで終了します。
この動作はstrncpyと同様です。)
toは、最低でもlengthの2倍よりも1バイト多い文字を保持可能なバッファへのポインタにしなければなりません。
さもないと、動作は不定になります。
toとfrom文字領域が重なる場合の動作も不定です。
     


errorパラメータがNULLでなければ、*errorには成功の0か、エラーの0以外が設定されます。
現時点であり得る唯一のエラー条件は、元文字列に無効なマルチバイト符号が含まれている場合です。
出力文字列はエラーであっても生成されますが、サーバが不整合として却下することが想定できます。
エラーの際、適切なメッセージはerrorがNULLかどうかにかかわらずconnオブジェクト内に格納されます。
     


PQescapeStringConnはtoに書き出したバイト数を返します。
ただし、文字数にはゼロバイト終端は含まれません。
     

	PQescapeString
	

PQescapeStringはPQescapeStringConnの推奨されない古いものです。


size_t PQescapeString (char *to, const char *from, size_t length);


     


PQescapeStringConnとの唯一の違いは、PQescapeStringはPGconnやerrorパラメータを取らないことです。
このため(文字符号化方式のような)接続属性に依存する振舞いを調整できません。
その結果間違った結果を返す可能性があります。
また、エラー状態を通知する機能がありません。
     


PQescapeStringは、一度に1つのPostgreSQL™接続のみで動作するクライアントプログラムでは安全に利用できます。
(この場合知らなければならない「裏側に隠された情報」を知ることができるからです。)
他の場合には、セキュリティ要因でありPQescapeStringConnを利用することで避けなければなりません。
     

	PQescapeByteaConn
	

bytea型としてSQLコマンド内で使用するバイナリデータをエスケープします。
PQescapeStringConnと同様、これは、SQLコマンド文字列にデータを直接含める場合にのみに使用されます。


unsigned char *PQescapeByteaConn(PGconn *conn,
                                 const unsigned char *from,
                                 size_t from_length,
                                 size_t *to_length);


      


SQL文内のbyteaリテラルの一部として使用する場合、特定のバイト値はエスケープされなければなりません。
PQescapeByteaConnは16進数符号化またはバックスラッシュエスケープ処理を使用してバイトをエスケープします。
詳しくは「バイナリ列データ型」を参照してください。
      


fromパラメータはエスケープ対象の文字列の先頭バイトを指し示すポインタです。
from_lengthパラメータは、このバイナリ列内のバイト数を指定します。
(ゼロバイト終端は不要、かつ、数えられません。)
to_lengthパラメータは結果となるエスケープされた文字列の長さを保持する変数へのポインタです。
この結果文字列長は、結果内のゼロバイト終端を含みます。
      


PQescapeByteaConnは、fromパラメータが示すバイナリ文字列をエスケープしたものをmalloc()で確保したメモリ内に返します。
その結果が不要になったら、このメモリをPQfreemem()を使用して解放しなければなりません。
返される文字列では、PostgreSQL™リテラル文字列パーサとbytea入力関数によって適切に処理できるように、すべての特殊な文字が置換されています。
ゼロバイト終端も追加されます。
PostgreSQL™のリテラル文字列をくくる単一引用符は結果文字列には含まれません。
      


エラー時、NULLポインタを返し適切なエラーメッセージをconnオブジェクトに格納します。
現在、唯一あり得るエラーは結果文字列のメモリ不足です。
      

	PQescapeBytea
	

PQescapeByteaは、PQescapeByteaConnの推奨されない古いものです。


unsigned char *PQescapeBytea(const unsigned char *from,
                             size_t from_length,
                             size_t *to_length);


      


PQescapeByteaのPQescapeByteaConnとの唯一の違いは、PGconnパラメータです。
このためPQescapeByteaは、一度に１つのPostgreSQL™接続を使用するクライアントプログラムのみで安全に利用することができます。
(この場合知らなければならない「裏側に隠された情報」を知ることができるからです。)
複数のデータベース接続を使用するプログラムでは間違った結果を返す可能性があります。
（このような場合はPQescapeByteaConnを使用してください。）
      

	PQunescapeBytea
	

バイナリデータの文字列表現をバイナリデータに変換します。
つまり、PQescapeByteaの逆です。
これは、byteaデータをテキスト書式で受けとった場合に必要とされます。
しかし、バイナリ書式で受けとった場合は不要です。



unsigned char *PQunescapeBytea(const unsigned char *from, size_t *to_length);


      


fromパラメータは、例えば、bytea列にPQgetvalueを行なった場合に返される可能性がある、文字列を指し示すポインタです。
PQunescapeByteaは、この文字列表現をバイナリ表現に変換します。
malloc()で確保したバッファへのポインタを返します。
エラー時はNULLです。
また、このバッファのサイズをto_lengthに格納します。
不要になったら、この結果をPQfreememを使用して解放しなければなりません。
      


この変換は、PQescapeByteaの逆ではありません。
文字列はPQgetvalueから受け取る場合「エスケープされた」ことを予想しないためです。
特にこれは、文字列の引用符付けを意識する必要がなく、そのためPGconnパラメータを持つ必要がないことを意味します。
      





非同期コマンドの処理





PQexec関数は普通の同期処理のアプリケーションにおけるコマンドの送信に適したものです。
しかし、一部のユーザにとって重要な問題となり得る、数個の問題があります。

   
	

PQexec はコマンドが完了するまで待機します。
アプリケーションによっては(例えばユーザインタフェースの調整処理など)他に行うべき作業があります。
この場合は応答待ちでブロックさせたくはありません。
     

	

クライアントアプリケーションの実行が結果を待っている間停止されるため、アプリケーションで送信したコマンドをキャンセルさせる指示を行うことは困難です。
(シグナルハンドラを使って達成することができますが、他の方法はありません。)
     

	

PQexecが返すことができるPGresult構造体は1つだけです。
もし送信した問い合わせ文字列が複数のSQLコマンドを含んでいる場合、PQexecは最後のものだけを除いて、残りすべてのPGresultを破棄してしまいます。
     

	

PQexecは常にコマンドの結果全体を収集し、１つのPGresult内に保管します。
アプリケーションにおけるエラー処理を簡単にしますが、多くの行になる結果では非現実的になるかもしれません。
     




  


アプリケーションにとってこのような制限が望ましくない場合は、代わりにPQexecを構成する関数PQsendQueryとPQgetResultを使用してください。
また、PQsendQueryParams、PQsendPrepare、PQsendQueryPrepared、PQsendDescribePrepared、PQsendDescribePortal、PQsendClosePrepared、PQsendClosePortalもあり、PQgetResultを使用して、それぞれPQexecParams、PQprepare、PQexecPrepared、PQdescribePrepared、PQdescribePortal、PQclosePrepared、PQclosePortalの機能を複製できます。

   
	PQsendQuery
	

結果を待つことなく、サーバにコマンドを発行します。
コマンドの登録に成功した場合1が、失敗した場合0が返されます。
(後者の場合、
      PQerrorMessage
      
     を使用して失敗についてのより多くの情報を取り出してください。)


int PQsendQuery(PGconn *conn, const char *command);




PQsendQuery呼び出しが成功したら、PQgetResultを繰り返し呼び出して、実行結果を取得します。
PQgetResultがNULLポインタを返し、コマンドが完了したことを示すまでは、(同じ接続で)PQsendQueryを再度呼び出すことはできません。
      


パイプラインモードでは、この関数は使用できません。
      

	PQsendQueryParams
	

結果を待つことなく、サーバにコマンドとパラメータとを分けて発行します。


int PQsendQueryParams(PGconn *conn,
                      const char *command,
                      int nParams,
                      const Oid *paramTypes,
                      const char * const *paramValues,
                      const int *paramLengths,
                      const int *paramFormats,
                      int resultFormat);




これは、問い合わせのパラメータが問い合わせ文字列と分けて指定できる点を除き、PQsendQueryと同じです。
この関数のパラメータはPQexecParamsと同様に扱われます。
PQexecParams同様、問い合わせ文字列には1つのコマンドしか指定できません。
      

	PQsendPrepare
	

指定パラメータを持つ準備された文の作成要求を送信します。
その完了を待ちません。


int PQsendPrepare(PGconn *conn,
                  const char *stmtName,
                  const char *query,
                  int nParams,
                  const Oid *paramTypes);




これはPQprepareの非同期版です。
要求の登録に成功した場合1が、失敗した場合0が返されます。
呼び出しの成功の後、サーバが準備された文の生成に成功したかを確認するためにはPQgetResultを呼び出してください。
この関数のパラメータはPQprepareと同様に扱われます。
      

	PQsendQueryPrepared
	

結果を待つことなく、指定したパラメータで準備された文の実行要求を送信します。


int PQsendQueryPrepared(PGconn *conn,
                        const char *stmtName,
                        int nParams,
                        const char * const *paramValues,
                        const int *paramLengths,
                        const int *paramFormats,
                        int resultFormat);




これはPQsendQueryParamsと似ていますが、実行されるコマンドは問い合わせ文字列ではなく、事前に準備された文の名前で指定されます。
この関数のパラメータはPQexecPreparedと同様に扱われます。
      

	PQsendDescribePrepared
	

指定した準備された文に関する情報入手要求を送ります。
入手完了まで待機しません。


int PQsendDescribePrepared(PGconn *conn, const char *stmtName);




これはPQdescribePreparedの非同期版です。
要求の登録に成功した場合1が、失敗した場合0が返されます。
呼び出しに成功した後、PQgetResultを呼び出して結果を入手してください。
この関数のパラメータはPQdescribePreparedと同じように扱われます。
      

	PQsendDescribePortal
	

指定したポータルに関する情報入手要求を送信します。
完了まで待機しません。


int PQsendDescribePortal(PGconn *conn, const char *portalName);




これはPQdescribePortalの非同期版です。
要求の登録に成功した場合1が、失敗した場合0が返されます。
呼び出しに成功した後、PQgetResultを呼び出して結果を入手してください。
この関数のパラメータはPQdescribePortalと同じように扱われます。
      

	PQsendClosePrepared
	

完了を待たずに、指定した準備された文を閉じる要求を送信します。


int PQsendClosePrepared(PGconn *conn, const char *stmtName);




これはPQclosePreparedの非同期版です。
要求を送信できた場合は1を、そうでない場合は0を返します。
成功した場合はPQgetResultを呼び出して結果を取得します。
この関数のパラメータはPQclosePreparedと同じように扱われます。
      

	PQsendClosePortal
	

完了を待たずに、指定されたポータルを閉じる要求を送信します。


int PQsendClosePortal(PGconn *conn, const char *portalName);




これはPQclosePortalの非同期版です。
要求を送信できた場合は1を、そうでない場合は0を返します。
呼び出しが成功した後、結果を得るためにPQgetResultを呼び出します。
この関数のパラメータはPQclosePortalと同様に扱われます。
      

	PQgetResult
	

以前に呼び出したPQsendQuery、PQsendQueryParams、PQsendPrepare、PQsendQueryPrepared、PQsendDescribePrepared、PQsendDescribePortal、PQsendClosePrepared、PQsendClosePortal、PQsendPipelineSync、PQpipelineSyncからの結果を待ち、その結果を返します。
コマンドが完了し、これ以上結果がない場合は、NULLポインタが返されます。


PGresult *PQgetResult(PGconn *conn);


      


PQgetResultは、コマンドの完了を示すNULLポインタが返るまで、繰り返し呼び出さなければなりません。
(コマンド実行中以外での呼び出しでは、PQgetResultは単にNULLポインタを返します。)
PQgetResultの非NULLの結果はそれぞれ前述と同じPGresultアクセス用関数を使用して処理されなければなりません。
各結果オブジェクトに対する処理が終わったら、そのオブジェクトをPQclearを使用して解放することを忘れないでください。
コマンドが活動中、かつ、必要な応答データがまだPQconsumeInput
     で読み込まれていない場合にのみ、PQgetResultがブロックすることに注意してください。
      


パイプラインモードでは、PQgetResultはエラーが発生しない限り通常通りに戻ります。
エラーを引き起こした問い合わせの後、次の同期ポイントまで（そして次の同期ポイントを除外して）送られた問い合わせに対しては、PGRES_PIPELINE_ABORTED型の特殊な結果が返され、その後にNULLポインタが返されます。
パイプライン同期ポイントに到達すると、PGRES_PIPELINE_SYNC型の結果が返されます。
同期ポイントの後の次の問い合わせの結果はすぐに続きます（つまり、同期ポイントの後にNULLポインタは返されません）。
      
注記


PQresultStatusが致命的なエラーを示した場合であっても、libpqがエラー情報を完全に処理できるようにNULLポインタが返されるまでPQgetResultを呼び出さなければなりません。
       





  


PQsendQueryとPQgetResultを使うことでPQexecの問題は1つ解決します。
つまり、コマンドが複数のSQLコマンドを含んでいる場合でも、これらのコマンドの結果を個々に得ることができるわけです
（これは多重処理を単純な形で実現します。
単一のコマンド文字列に含まれる複数の問い合わせの内、後ろのものが処理中でもフロントエンドは先に完了した結果から扱うことができるからです）。
  


PQsendQueryとPQgetResultで得られるもう一つの望ましい機能は、大量の問い合わせ結果について、一度あたりに限られた数の行を取り出すことです。
これについては「問い合わせ結果をチャンクとして取り出す」で説明します。
  


サーバが次のSQLコマンドの処理に入ると、それが完了するまでやはりPQgetResultの呼び出しがフロントエンドをブロックしてしまいます。
さらに以下の2つの関数をうまく使用してこれを防ぐことができます。

   
	PQconsumeInput
     
	

サーバからの入力が可能になった場合、それを吸い取ります。


int PQconsumeInput(PGconn *conn);


      


PQconsumeInput
     は通常、「エラーなし」を示す1を返しますが、何らかの障害があると0を返します（この場合は、
      PQerrorMessage
      
     を参考にしてください）。
この結果は、何らかの入力データが実際に収集されたかどうかを示しているのではないことに注意してください。
PQconsumeInput
     の呼び出し後、アプリケーションはPQisBusy、または必要があればPQnotifiesを呼び出して状態に変化がないか調べることができます。
      


PQconsumeInput
     は、結果や通知を扱うようにまだ準備していないアプリケーションからでも呼び出すことができます。
この関数は有効なデータを読み込んでバッファに保存し、結果としてselectによる読み込み準備完了の通知をリセットします。
従ってアプリケーションはPQconsumeInput
     を使うとselect()の検査条件をただちに満たすことができますから、あとはゆっくりと結果を調べてやればいいわけです。
      

	PQisBusy
	

この関数が1を返したのであれば、問い合わせは処理の最中で、PQgetResultも入力を待ったままブロック状態になってしまうでしょう。
0が返ったのであれば、PQgetResultを呼び出してもブロックされないことが保証されます。


int PQisBusy(PGconn *conn);


      


PQisBusy自身はサーバからデータを読み込む操作をしません。
ですから、まず最初にPQconsumeInput
     を呼び出す必要があります。
そうしないとビジー状態がいつまでも続きます。
      




  


これら3関数を使用するアプリケーションは通常、select()もしくはpoll()を使用するメインループを持ち、対応しなければならないすべての状態を待機しています。
その内の1つの条件は、サーバからの利用可能な入力となるでしょう。
これは、select()の見地からは、PQsocketで識別されるファイル記述子上で読み込み可能なデータがあることを意味します。
メインループが入力準備完了を検出すると、その入力を読み込むためにPQconsumeInput
     を呼び出さなければなりません。
そして、PQisBusyを、更にPQisBusyが偽(0)を返す場合にPQgetResultも呼び出すことができます。
また、PQnotifiesを呼び出して、NOTIFYメッセージ（「非同期通知」を参照）を検出することもできます。
  


また、PQsendQuery/PQgetResultを使用するクライアントは、サーバで処理中のコマンドに対してキャンセルを試行することができます。「処理中の問い合わせのキャンセル」を参照してください。
しかし、PQcancelBlockingの戻り値と関係なく、アプリケーションはPQgetResultを使用した通常の結果読み取り手順を続けなければなりません。
キャンセル手続きの成功は単に、そのコマンドを通常よりも早めに終わらせるだけです。
  


上述の関数を使用して、データベースサーバからの入力待ちのためのブロックを行わずに済みます。
しかしまだ、サーバへの出力送信を待つためにアプリケーションはブロックする可能性があります。
これは比較的あまり発生しませんが、非常に長いSQLコマンドやデータ値が送信される場合に発生することがあります。
(しかし、アプリケーションがCOPY IN経由でデータを送信する場合よく発生します。)
この発生を防ぎ、完全な非ブロックのデータベース操作を行うためには、さらに以下の関数を使用してください。

   
	PQsetnonblocking
	

接続の非ブロック状態を設定します。


int PQsetnonblocking(PGconn *conn, int arg);


      


argが1の場合、接続状態を非ブロックに設定します。
argが0の場合はブロックに設定します。
問題がなければ0が、エラー時は-1が返ります。
      


非ブロック状態ではPQsendQuery、PQputline、PQputnbytes、PQputCopyDataおよびPQendcopyの成功した呼び出しはブロックされません。変更はフラッシュされるまでローカル出力バッファに格納されます。
失敗した呼び出しはエラーを返しますので再試行しなければなりません。
      


PQexecは非ブロックモードにはしたがわないことに注意してください。
この関数の呼び出しは、必ずブロック方式で動作します。
      

	PQisnonblocking
	

データベース接続のブロック状態を返します。


int PQisnonblocking(const PGconn *conn);


      


接続が非ブロック状態の場合は1が、ブロック状態の場合は0が返ります。
      

	PQflush
	

キューに蓄えられたサーバへの出力データのフラッシュを行います。
成功時(および送信キューが空の場合)は0が返ります。
何らかの原因で失敗した場合は-1が、送信キュー内のデータをすべて送信できなかった場合は1が返ります。
(これは接続が非ブロックの場合にのみ発生します。)


int PQflush(PGconn *conn);


      




  


非ブロック接続時にはコマンドやデータを送信した後に、PQflushを呼び出してください。
1が返った場合、ソケットの読み込みまたは書き込み準備ができるまで待ってください。
書き込み準備ができたら、PQflushを再度呼び出してください。
読み込み準備ができたら、PQconsumeInput
     を呼び出してから、PQflushを再度呼び出してください。
これをPQflushが0を返すまで繰り返してください。
(例えばNOTICEメッセージのように、こちらがそのデータを読むまで、サーバがデータを送ろうとするのを妨げ、こちらのデータを読もうとしないことがありますので、読み込み準備ができたことを確認してPQconsumeInput
     で入力をすべて抜き取ることが必要です。)
PQflushが0を返した後は、ソケットの読み込み準備が整うまで待ち、上述のように応答を読み取ってください。
  

パイプラインモード





libpqパイプラインモードを使用すると、アプリケーションは以前に送信された問い合わせの結果を読み込まなくても問い合わせを送信できます。
パイプラインモードを利用すると、1つのネットワークトランザクションで複数の問い合わせ/結果を送受信できるので、クライアントはサーバを待つ時間が少なくなります。
  


パイプラインモードではパフォーマンスが大幅に向上しますが、パイプラインモードを使用してクライアントを作成すると、保留中の問い合わせのキューを管理し、どの結果がキュー内のどの問い合わせに対応するかを見つける必要があるため、より複雑になります。
  


パイプラインモードでは、一般にクライアントとサーバの両方でより多くのメモリを消費しますが、送受信キューを注意深く積極的に管理することでこれを軽減できます。
これは、接続がブロックモードか非ブロックモードかに関係なく適用されます。
  


libpqのパイプラインAPIは、PostgreSQL™ 14で導入されましたが、これは特別なサーバサポートを必要としないクライアント側の機能であり、v3拡張問い合わせプロトコルをサポートするすべてのサーバで機能します。
詳細については、「パイプライン化」を参照してください。
  
パイプラインモードの使用





パイプラインを発行するためには、アプリケーションは接続をパイプラインモードに切り替える必要があります。
これはPQenterPipelineModeで行われます。
PQpipelineStatusは、パイプラインモードがアクティブかどうかをテストするために使用できます。
パイプラインモードでは、非同期操作のみが許可され、複数のSQLコマンドを含むコマンド文字列、COPYは許可されません。
PQfn、PQexec、PQexecParams、PQprepare、PQexecPrepared、PQdescribePrepared、PQdescribePortal、PQclosePrepared、PQclosePortalなどの同期コマンド実行関数を使用するとエラー状態になります。
PQsendQueryも禁止されています。なぜなら、簡易問い合わせプロトコルを使用するからです。
登録されたすべてのコマンドの結果が処理され、パイプラインの終了結果が消費されると、アプリケーションはPQexitPipelineModeを使用して非パイプラインモードに戻ることができます。
   
注記


パイプラインモードをlibpqとともに非ブロックモードで使用するのが最善です。
ブロックモードで使用すると、クライアント/サーバのデッドロックが発生する可能性があります。
      [15]
    

問い合わせ発行





パイプラインモードに入った後、アプリケーションはPQsendQueryParams、またはその準備された問い合わせ版の兄弟であるPQsendQueryPreparedを使用して要求を登録します。
これらの要求は、サーバにフラッシュされるまでクライアント側で待ち行列に入れられます。
これは、PQpipelineSyncがパイプラインに同期ポイントを確立するために使用された場合、またはPQflushが呼び出された場合に発生します。
関数PQsendPrepare、PQsendDescribePrepared、PQsendDescribePortal、PQsendClosePrepared、PQsendClosePortalもパイプラインモードで動作します。
結果の処理については後述します。
    


サーバは文を実行し、クライアントが送信した順に結果を返します。
サーバはパイプラインのコマンドの実行を即座に開始し、パイプラインの終了を待機しません。
結果はサーバ側でバッファされることに注意してください;同期ポイントがPQpipelineSyncかPQsendPipelineSyncのどちらかで確立されたとき、またはPQsendFlushRequestが呼び出されたとき、サーバはバッファをフラッシュします。
いずれかの文でエラーが発生した場合、サーバは現在のトランザクションを中止し、次の同期ポイントまでキュー内の後続のコマンドを実行しません。
このようなコマンドごとにPGRES_PIPELINE_ABORTED結果が生成されます(パイプラインのコマンドがトランザクションをロールバックする場合でも同様です)。
問い合わせ処理は同期ポイント後に再開されます。
    


1つの操作が前の操作の結果に依存することは問題ありません。
たとえば、1つの問い合わせが同じパイプラインの次の問い合わせが使用するテーブルを定義することができます。
同様に、アプリケーションは名前付きのプリペアドステートメントを作成し、同じパイプラインの後のステートメントで実行することができます。
    

処理結果





パイプラインの1つの問い合わせの結果を処理するために、アプリケーションはPQgetResultを繰り返し呼び出し、PQgetResultがNULLを返すまで各結果を処理します。
パイプラインの次の問い合わせの結果は、再度PQgetResultを使用して取得され、サイクルが繰り返されます。
アプリケーションは個々の文の結果を通常どおり処理します。
パイプラインのすべての問い合わせの結果が返されると、PQgetResultは状態値PGRES_PIPELINE_SYNCを含む結果を返します。
    


クライアントは、完全なパイプラインが送信されるまで結果処理を延期するか、パイプラインでさらに問い合わせを送信して結果処理をインターリーブするかを選択できます。
「インターリーブ結果処理と問い合わせ登録」を参照してください。
    


PQgetResultは通常の非同期処理と同じように動作しますが、新しいPGresult型PGRES_PIPELINE_SYNCとPGRES_PIPELINE_ABORTEDが含まれる場合があります。
PGRES_PIPELINE_SYNCは、パイプラインの対応するポイントの各PQpipelineSyncまたはPQsendPipelineSyncごとに1回だけ報告されます。
最初のエラーに対する通常の問い合わせ結果の代わりにPGRES_PIPELINE_ABORTEDが出力され、次のPGRES_PIPELINE_SYNCまでのすべての結果が出力されます。
「エラー処理」を参照してください。
    


パイプラインの結果を処理する場合、PQisBusyやPQconsumeInputなどは通常どおりに動作します。
特に、パイプラインの途中でPQisBusyを呼び出した場合、これまでに発行されたすべての問い合わせの結果が消費されていれば0を返します。
    


libpqは、現在処理されている問い合わせに関する情報をアプリケーションに提供しません(PQgetResultはNULLを返し、次の問い合わせの結果を返し始めることを示します)。
アプリケーションは、問い合わせを送信した順序を追跡し、対応する結果と関連付ける必要があります。
アプリケーションは通常、ステートマシンまたはFIFOキューを使用します。
    

エラー処理





クライアント側から見ると、PQresultStatusがPGRES_FATAL_ERRORを返した後、パイプラインは中断されたフラグが立てられます。
PQresultStatusは、中断されたパイプラインの残りのキュー操作ごとにPGRES_PIPELINE_ABORTED結果を報告します。
PQpipelineSyncまたはPQsendPipelineSyncの結果はPGRES_PIPELINE_SYNCとして報告され、中断されたパイプラインの終了と通常の結果処理の再開を通知します。
    


クライアントは、エラー修復中にPQgetResultで結果を処理しなければなりません。
    


パイプラインで暗黙的なトランザクションが使用された場合、すでに実行された操作はロールバックされ、失敗した操作に続くキューに入れられていた操作は完全にスキップされます。
パイプラインが開始され、単一の明示的なトランザクションをコミットした場合(つまり、最初の文がBEGIN、最後の文がCOMMIT)と同じ動作が成立します。
ただし、セッションはパイプラインの終了時に中断されたトランザクション状態のままです。
パイプラインに複数の明示的なトランザクションが含まれている場合、エラー以前にコミットされたすべてのトランザクションはコミットされたままになり、現在進行中のトランザクションは中断され、後続のトランザクションも含めて後続のすべての操作は完全にスキップされます。
パイプライン同期ポイントが中断状態の明示的なトランザクションブロックで発生した場合、次のコマンドがROLLBACKを使用してトランザクションを通常モードにしない限り、次のパイプラインは即時に中断されます。
    
注記


クライアントは、COMMIT—を送信したときに作業がコミットされたと想定してはなりません。
コミットが完了したことを確認するために対応する結果を受信したときだけです。
エラーは非同期で到着するため、アプリケーションは最後に受信したコミット済みの変更から再起動し、何か問題が発生した場合にはその時点以降に行われた作業を再送信できる必要があります。
     


インターリーブ結果処理と問い合わせ登録





大規模なパイプラインでデッドロックを回避するためには、クライアントはselect、poll、WaitForMultipleObjectExなどのオペレーティングシステム機能を使用して、ノンブロッキングイベントループを中心に構築する必要があります。
    


通常、クライアントアプリケーションは、登録される残りの作業キューと、登録されたがまだ結果が処理されていない作業キューを維持する必要があります。
ソケットが書き込み可能な場合は、より多くの作業を登録する必要があります。
ソケットが読み取り可能な場合は、結果を読み取って処理し、対応する結果キュー内の次のエントリと一致させる必要があります。
使用可能なメモリに基づいて、ソケットからの結果は頻繁に読み取られる必要があります:結果を読み取るためにパイプラインが終了するまで待つ必要はありません。
パイプラインは、通常(必ずしも必要ではありません)パイプラインごとに1つのトランザクションである論理作業単位にスコープされる必要があります。
パイプラインモードを終了してパイプライン間で再入力したり、次のパイプラインを送信する前に1つのパイプラインが終了するのを待つ必要はありません。
    


送受信された作業を追跡するためにselect()と単純なステートマシンを使用する例は、PostgreSQLソース配布物のsrc/test/modules/libpq_pipeline/libpq_pipeline.cにあります。
    


パイプラインモード関連関数



	PQpipelineStatus
	

libpq接続の現在のパイプラインモード状態を返します。


PGpipelineStatus PQpipelineStatus(const PGconn *conn);


      


PQpipelineStatusは以下のいずれかの値を返すことができます。

       
	
          PQ_PIPELINE_ON
         
	

libpq接続はパイプラインモードです。
          

	
          PQ_PIPELINE_OFF
         
	

libpq接続はパイプラインモードではありません。
          

	
          PQ_PIPELINE_ABORTED
         
	

libpq接続はパイプラインモードで、現在のパイプラインの処理中にエラーが発生しました。
PQgetResultがPGRES_PIPELINE_SYNC型の結果を返すと、中断フラグがクリアされます。
          




      

	PQenterPipelineMode
	

接続が現在アイドル状態であるか、すでにパイプラインモードになっている場合、接続をパイプラインモードにします。



int PQenterPipelineMode(PGconn *conn);



      


成功した場合は1を返します。
接続が現在アイドル状態でない場合、つまり結果を準備している場合や、サーバからの入力を待っている場合などには0を返し、何の効果もありません。
この関数は実際にはサーバに何も送信せず、単にlibpq接続状態を変更します。
      

	PQexitPipelineMode
	

接続が現在パイプラインモードにあり、キューが空で、保留中の結果がない場合、接続はパイプラインモードを終了します。


int PQexitPipelineMode(PGconn *conn);


      


成功した場合は1を返します。
パイプラインモードでない場合は、1を返し、何も行いません。
現在の文の処理が終了していない場合、またはPQgetResultが以前に送信されたすべての問い合わせから結果を収集するために呼び出されていない場合は、0を返します(この場合、失敗に関する詳細情報を取得するには
      PQerrorMessage
      
     を使用します)。
      

	PQpipelineSync
	

同期メッセージを送信し、送信バッファをフラッシュすることにより、パイプラインの同期ポイントをマークします。
これは暗黙的なトランザクションとエラー修復ポイントの区切り文字として機能します。
「エラー処理」を参照してください。



int PQpipelineSync(PGconn *conn);


      


成功した場合は1を返します。
接続がパイプラインモードでないか、同期メッセージの送信に失敗した場合は0を返します。
      

	PQsendPipelineSync
	

送信バッファをフラッシュせずに同期メッセージを送信することで、パイプライン内の同期ポイントをマークします。
これは暗黙的なトランザクションとエラー修復ポイントの区切り文字として機能します。「エラー処理」を参照してください。
「エラー処理」を参照してください。



int PQsendPipelineSync(PGconn *conn);


      


成功した場合は1を返します。
接続がパイプラインモードでないか、同期メッセージの送信に失敗した場合は0を返します。
メッセージ自体は自動的にサーバにフラッシュされないことに注意してください。
必要であればPQflushを使用してください。
      

	PQsendFlushRequest
	

サーバに出力バッファをフラッシュする要求を送信します。


int PQsendFlushRequest(PGconn *conn);


      


成功した場合は1を返します。
失敗した場合は0を返します。
      


サーバは、PQpipelineSyncが呼び出された結果として、あるいはパイプラインモードでない要求があった場合に、自動的に出力バッファをフラッシュします。
この関数は、同期ポイントを確立せずに、サーバにパイプラインモードで出力バッファをフラッシュさせるのに便利です。
要求自体は自動的にサーバにフラッシュされないことに注意してください。必要であればPQflushを使用してください。
      




いつパイプラインモードを使用するか





非同期問い合わせモードと同様に、パイプラインモードを使用する場合、意味のあるパフォーマンスオーバーヘッドはありません。
これはクライアントアプリケーションの複雑さを増加させ、クライアント／サーバのデッドロックを防ぐために特別な注意が必要ですが、パイプラインモードは、状態をより長く残すことによるメモリ使用量の増加と引き換えに、かなりのパフォーマンス改善を提供することができます。
   


パイプラインモードは、サーバが離れている場合、つまりネットワーク遅延(「ping時間」)が大きい場合や、多数の小さな操作が連続して実行されている場合に最も便利です。
各問い合わせが実行するのにクライアント/サーバのラウンドトリップ時間の何倍もかかる場合、パイプラインコマンドを使用するメリットは通常少なくなります。
ラウンドトリップ時間が300ミリ秒離れたサーバ上で100文の操作を実行すると、パイプライン処理なしでネットワーク遅延だけで30秒かかります。
パイプライン処理を使用すると、サーバからの結果を待つのに0.3秒ほどしかかかりません。
   


集合に対する操作やCOPY操作に容易に変換できない小さなINSERT、UPDATE、DELETE操作をアプリケーションが大量に行う場合は、パイプラインコマンドを使用してください。
   


パイプラインモードは、クライアントが次のオペレーションを生成するために1つのオペレーションからの情報を必要とする場合には便利ではありません。
このような場合、クライアントは同期ポイントを導入し、クライアント／サーバの完全なラウンドトリップを待機して、必要な結果を取得する必要があります。
ただし、クライアント設計を調整して、必要な情報をサーバ側で交換することも可能です。
読み取り-変更-書き込みサイクルは特に適した候補です。
たとえば、次のようになります。


BEGIN;
SELECT x FROM mytable WHERE id = 42 FOR UPDATE;
-- result: x=2
-- client adds 1 to x:
UPDATE mytable SET x = 3 WHERE id = 42;
COMMIT;



次のようにして、より効率的にできます。


UPDATE mytable SET x = x + 1 WHERE id = 42;


   


単一のパイプラインに複数のトランザクションが含まれている場合、パイプライン化はあまり有用ではなく、複雑になります（「エラー処理」を参照）。
   



[15] 

クライアントはサーバに問い合わせを送信しようとするのをブロックしますが、サーバは既に処理した問い合わせから結果をクライアントに送信しようとするのをブロックします。
これは、クライアントが出力バッファとサーバの受信バッファの両方を満たすのに十分な問い合わせを送信してから、サーバからの入力処理に切り替える場合にのみ発生しますが、いつ発生するかを正確に予測するのは困難です。
       



問い合わせ結果をチャンクとして取り出す





通常、libpqはSQLコマンドの結果全体を収集し、それを１つのPGresultとしてアプリケーションに返します。
これは、多くの行数を返すコマンドでは動作しなくなるかもしれません。
このような場合、アプリケーションはPQsendQueryとPQgetResultで単一行モードまたはチャンクモードを使用することができます。
これらのモードでは、結果の行は、サーバから受信されると、一度に1行ずつ、またはチャンクでグループ化されてアプリケーションに返されます。
  


これらのモードのいずれかに入るには、PQsendQuery （またはその兄弟関数）の呼び出し直後にPQsetSingleRowModeまたはPQsetChunkedRowsModeを呼び出します。
このモード選択は、現在実行中の問い合わせに対してのみ有効です。
その後、「非同期コマンドの処理」の説明通りに、NULLを返すようになるまでPQgetResultを繰り返し呼び出してください。
問い合わせが何らかの行を返す場合、PGRES_TUPLES_OKではなくPGRES_SINGLE_TUPLEである点を除けば、通常の問い合わせ結果と同じように見える、個々のPGresultオブジェクトを返します。
問い合わせが何行かの行を返すと、それらは1つ以上のPGresultオブジェクトとして返されます。
これらは通常の問い合わせ結果と同じように見えますが、PGRES_SINGLE_TUPLEがシングル行モードの場合はPGRES_TUPLES_OKではなく、チャンクモードの場合はPGRES_TUPLES_CHUNKが付きます。
各PGRES_SINGLE_TUPLEオブジェクトには1行の結果がありますが、PGRES_TUPLES_CHUNKオブジェクトには少なくとも1行、チャンクあたり指定された行数以下の結果があります。
最後の行の後、またはクエリがゼロ行を返す場合は直ちに、ステータスPGRES_TUPLES_OKを持つゼロ行オブジェクトが返されます。これは、これ以上行が到着しないというシグナルです。
（ただし、NULL を返すまでは、PQgetResultを呼び出し続ける必要があることに注意してください。）
これらのPGresultオブジェクトはすべて、問い合わせの通常のPGresultオブジェクトと同じ行記述データ（列名、型など）を含みます。
各オブジェクトは通常通りPQclearで解放する必要があります。
  


パイプラインモードを使用する場合、単一行モードまたはチャンクモードは、PQgetResultでその問い合わせの結果を取得する前に、パイプラインの各問い合わせに対してアクティブにする必要があります。
詳細は「パイプラインモード」を参照してください。
  

   
	PQsetSingleRowMode
	

現在実行中の問い合わせについて単一行モードを選択します。



int PQsetSingleRowMode(PGconn *conn);


      


この関数はPQsendQueryまたはその系列の関数のいずれかの後即座に、PQconsumeInput
     やPQgetResultなど接続に対する何らかの他の操作を行う前のみに呼び出すことができます。
正しい時点で呼び出された場合、この関数は現在の問い合わせに対して単一行モードを有効にし、１を返します。
この他の場合、モードは変更されず、関数はゼロを返します。
いずれの場合でも、現在の問い合わせが完了した後に通常モードに戻ります。
      

	PQsetChunkedRowsMode
	

現在実行中の問い合わせに対してチャンクモードを選択します。



int PQsetChunkedRowsMode(PGconn *conn, int chunkSize);


      


この関数はPQsetSingleRowModeと似ていますが、必ずしも1行だけではなく、PGresultごとに最大chunkSize行を取得する点が異なります。
この関数は、PQsendQueryまたはその兄弟関数の直後、およびPQconsumeInput
     やPQgetResultなどの接続上の他の操作の直前にのみ呼び出すことができます。
正しいタイミングで呼び出されると、この関数は現在の問い合わせに対してチャンクモードをアクティブにし、1を返します。
それ以外の場合、モードは変更されず、この関数は0を返します。
いずれの場合も、現在の問い合わせが完了すると、モードは通常に戻ります。
      




  
注意


問い合わせを処理している間、サーバはいくつか行を返した後にエラーになり、問い合わせがアボートする可能性があります。
通常のlibpqでは、こうした行を破棄しエラーのみを報告します。
しかし単一行モードあるいはチャンクモードでは、これらの行はすでにアプリケーションに返されています。
このためアプリケーションはPGRES_SINGLE_TUPLEあるいはPGRES_TUPLES_CHUNK状態のPGresultオブジェクトをいくつか見た後にPGRES_FATAL_ERRORオブジェクトを見るかもしれません。
適切な振る舞いのトランザクションのために、最終的に問い合わせが失敗した場合、アプリケーションはこれまで処理した行を破棄するまたは取り消すように設計しなければなりません。
   


処理中の問い合わせのキャンセル



キャンセル要求の送信関数



	PQcancelCreate
	

キャンセル要求を送信できる接続を準備します。


PGcancelConn *PQcancelCreate(PGconn *conn);


      


PQcancelCreateはPGcancelConnオブジェクトを作成しますが、この接続を介して直ちにキャンセルリクエストを送信し始めることはありません。
キャンセル要求は、PQcancelBlockingを使用してブロッキング方式で、あるいはPQcancelStartを使用して非ブロッキング方式でこの接続を介して送信できます。
戻り値はPQcancelStatusに渡して、PGcancelConnオブジェクトが正常に作成されたかどうかを調べることができます。
PGcancelConnオブジェクトは、アプリケーションが直接アクセスすることを意図していない不透明な構造体です。
このPGcancelConnオブジェクトは、スレッドセーフな方法で元の接続で実行中の問い合わせをキャンセルするために使用できます。
      


元のクライアントの多くの接続パラメータは、キャンセル要求の接続を設定するときに再利用されます。
重要な点として、元の接続が接続の暗号化とターゲットホストの検証（sslmodeまたはgssencmodeを使用）を必要とする場合、キャンセル要求の接続はこれらの同じ要件を使用して作成されます。
ただし、クライアントの認証中または認証後にのみ使用される接続オプションは無視されます。取り消し要求では認証は必要なく、接続は取り消し要求が送信された直後に閉じられるためです。
      


PQcancelCreateがNULL以外のポインタを返した場合、構造体と関連するメモリブロックを始末するために、PQcancelFinishを呼び出す必要があります。
これは、キャンセル要求が失敗したか、あるいは放棄された場合でも必要です。
      

	PQcancelBlocking
	

サーバがブロック方式で現在のコマンドの処理を中止するように要求します。


int PQcancelBlocking(PGcancelConn *cancelConn);


      


この要求は、PQcancelCreateで作成する必要がある指定されたPGcancelを介して行われます。
取り消し要求が正常にディスパッチされた場合、PQcancelBlockingの返却値は1です。
失敗した場合、エラーメッセージは
      PQcancelErrorMessage
      
     を使用して取得できます。
      


キャンセルの送信が成功しても、要求が有効になるとは限りません。
キャンセルが有効な場合、キャンセルされるコマンドは早期に終了し、エラー結果を返します。
キャンセルが失敗した場合 （サーバがコマンドの処理をすでに完了していた場合など）、目に見える結果はまったくありません。
      

	PQcancelStart, PQcancelPoll
	

サーバが非ブロッキング方式で現在のコマンドの処理を中止するように要求します。


int PQcancelStart(PGcancelConn *cancelConn);

PostgresPollingStatusType PQcancelPoll(PGcancelConn *cancelConn);


      


この要求は、PQcancelCreateを使用して作成する必要がある指定されたPGcancelを介して行われます。
取り消し要求が開始できた場合、PQcancelStartの返却値は1です。
開始できなかった場合、エラーメッセージは
      PQcancelErrorMessage
      
     を使用して取得できます。
      


PQcancelStartが成功した場合、次の段階はlibpqをポーリングして、接続解除シーケンスを続行できるようにすることです。
データベース接続の基礎となるソケットの記述子を取得するには、PQcancelSocketを使用します。
（注意: ソケットはPQcancelPoll呼び出しの間は同じままだと仮定しないでください）。
ループを次のように実行します。
PQcancelPoll(cancelConn)が最後にPGRES_POLLING_READINGを返した場合、ソケットが読み込みの準備ができるまで待ちます（select()やpoll()などのシステム関数で指定します）。
その後、再度PQcancelPoll(cancelConn)を呼び出します。
逆に、PQcancelPoll(cancelConn)が最後にPGRES_POLLING_WRITINGを返した場合、ソケットが書き込み可能になるまで待ってから、再度PQcancelPoll(cancelConn)を呼び出します。
最初の反復では、つまりPQcancelPoll(cancelConn)をまだ呼び出していない場合は、最後にPGRES_POLLING_WRITINGを返したかのように振る舞います。
接続手続きが失敗したことを示すPGRES_POLLING_FAILEDを返すか、または、PGRES_POLLING_OKを返して、キャンセル要求が正常にディスパッチされたことを示すまで、このループを続けます。
      


キャンセルの送信が成功しても、要求が有効になるとは限りません。
キャンセルが有効な場合、キャンセルされるコマンドは早期に終了し、エラー結果を返します。
キャンセルが失敗した場合 （サーバがコマンドの処理をすでに完了していた場合など）、目に見える結果はまったくありません。
      


接続中はいつでも、PQcancelStatusを呼び出すことで接続の状態を確認できます。
この呼び出しがCONNECTION_BADを返した場合、キャンセル手続きは失敗しています。
この呼び出しがCONNECTION_OKを返した場合、キャンセル要求は正常にディスパッチされました。
これらの状態はどちらも、上記のPQcancelPollの戻り値から等しく検出できます。
他の状態は、非同期接続手順の間（およびその間のみ）に発生することもあります。
これらは、接続手順の現在の段階を示し、例えばユーザにフィードバックを提供するのに有用です。
これらのステータスは次のとおりです。

       
	CONNECTION_ALLOCATED
	

PQcancelStartやPQcancelBlockingへの呼び出しを待って、実際にソケットを開いています。
これはPQcancelCreateやPQcancelResetを呼んだ直後の接続の状態です。
この時点ではサーバへの接続はまだ開始されていません。
実際にキャンセルリクエストの送信を開始するにはPQcancelStartやPQcancelBlockingを使います。
          

	CONNECTION_STARTED
	

接続の確立待ち状態です。
          

	CONNECTION_MADE
	

接続はOKです。送信待ち状態です。
          

	CONNECTION_AWAITING_RESPONSE
	

サーバからの応答待ち状態です。
          

	CONNECTION_SSL_STARTUP
	

SSL暗号化の調停状態です。
          

	CONNECTION_GSS_STARTUP
	

GSS暗号化の調停状態です。
          






これらの定数は（互換性を保つため）なくなることはありませんが、アプリケーションは、これらが特定の順で出現したり、本書に書いてある値のどれかに必ずステータス値が該当するということを決して当てにしてはいけません。
アプリケーションは、以下に示すようにするべきです。


switch(PQcancelStatus(conn))
{
        case CONNECTION_STARTED:
            feedback = "Connecting...";
            break;

        case CONNECTION_MADE:
            feedback = "Connected to server...";
            break;
.
.
.
        default:
            feedback = "Connecting...";
}


      


PQcancelPollを使用する場合、connect_timeout接続パラメータは無視されます。
経過時間が長過ぎるかどうかの判定はアプリケーションの責任で行ないます。
そうでない場合、PQcancelStartとそれに続くPQcancelPollループはPQcancelBlockingと同等です。
      

	PQcancelStatus
	

キャンセル接続の状態を返します。


ConnStatusType PQcancelStatus(const PGcancelConn *cancelConn);


      


ステータスは、いくつかの値のいずれかになります。
しかし、非同期キャンセル手続きの外で見られるのは、CONNECTION_ALLOCATED、CONNECTION_OK、およびCONNECTION_BADの3つだけです。
PQcancelCreateを使用して正常に作成されたPGcancelConnの初期状態はCONNECTION_ALLOCATEDです。
正常にディスパッチされたキャンセル要求はCONNECTION_OKの状態になります。
キャンセルが失敗した場合、状態CONNECTION_BADが通知されます。
PQcancelFinishまたはPQcancelResetが呼び出されるまで、OK状態はそのまま残ります。
      


返される可能性がある他の状態コードについてはPQcancelStartの項目を参照してください。
      


キャンセルの送信が成功しても、要求が有効になるとは限りません。
キャンセルが有効な場合、キャンセルされるコマンドは早期に終了し、エラー結果を返します。
キャンセルが失敗した場合 （サーバがコマンドの処理をすでに完了していた場合など）、目に見える結果はまったくありません。
      

	PQcancelSocket
	

サーバへのキャンセル接続ソケットのファイル記述子番号を取得する。


int PQcancelSocket(const PGcancelConn *cancelConn);


      


有効なディスクリプタは0以上です。
-1 の結果は、現在オープンしているサーバ接続がないことを示します。
このセクションの関数をPGcancelConn（
      PQcancelErrorMessage
      
     とPQcancelSocket自身を除く）で呼び出すと、この値が変わる可能性があります。
      

	
      PQcancelErrorMessage
      
     
	

接続解除操作で最後に生成されたエラーメッセージを返します。


char *PQcancelErrorMessage(const PGcancelConn *cancelconn);


      


PGcancelConnを取得するlibpq関数のほとんどは、失敗した場合に
      PQcancelErrorMessage
      
     にメッセージを設定します。
libpqの規則では、空でない
      PQcancelErrorMessage
      
     結果は複数行からなる可能性があり、最後に改行を含むことに注意してください。
呼び出し元は、結果を直接解放しないでください。
関連するPGcancelConnハンドルがPQcancelFinishに渡されると解放されます。
結果の文字列はPGcancelConn構造体に対する操作を通じて同じままになることは期待されません。
      

	PQcancelFinish
	

キャンセル接続を閉じます（キャンセル要求の送信がまだ完了していない場合）。
また、PGcancelConnオブジェクトが使用するメモリを解放します。


void PQcancelFinish(PGcancelConn *cancelConn);


      


取り消しの試みが失敗した場合（PQcancelStatusで示されるように）でも、アプリケーションはPQcancelFinishを呼び出してPGcancelConnオブジェクトが使用したメモリを解放するようにしてください。
PGcancelConnポインタはPQcancelFinishが呼び出された後は再度使用してはなりません。
      

	PQcancelReset
	

新しいキャンセル接続で再利用できるようにPGcancelConnをリセットします。


void PQcancelReset(PGcancelConn *cancelConn);


      


PGcancelConnが現在キャンセル要求を送信するために使用されている場合、この接続は閉じられます。
次に、新しいキャンセル要求を送信するために使用できるようにPGcancelConnオブジェクトを準備します。
      


これはPGconnに対して1つのPGcancelConnを作成し、元のPGconnの存続期間中に何度も再利用することができます。
      




キャンセル要求を送るための廃れた関数





これらの関数は古い方法でキャンセル要求を送信するものです。
これらはまだ動作しますが、元の接続が暗号化を要求するためにsslmodeまたはgssencmodeを指定した場合でも、キャンセル要求を暗号化された方法で送信しないため、推奨されません。
したがって、これらの古い方法は新しいコードではほとんど使用されず、既存のコードを変更して新しい関数を使用することをお勧めします。
   
	PQgetCancel
	

PQcancelを使用してコマンドをキャンセルするために必要な情報を含むデータ構造体を作成します。


PGcancel *PQgetCancel(PGconn *conn);


      


PQgetCancelはPGconn接続オブジェクトを与えられたPGcancelオブジェクトを作成します。
指定されたconnがNULLか、または無効な接続である場合、NULLを返します。
PGcancelオブジェクトは不透明な構造体で、アプリケーションが直接アクセスするためのものではありません。これはPQcancelまたはPQfreeCancelに渡すことができるだけです。
      

	PQfreeCancel
	

PQgetCancelで作成されたデータ構造を解放します。


void PQfreeCancel(PGcancel *cancel);


      


PQfreeCancelは事前にPQgetCancelで作成されたデータオブジェクトを解放します。
      

	PQcancel
	

PQcancelは、PQcancelBlockingの非推奨で安全でない変種ですが、シグナルハンドラ内から安全に使用できます。


int PQcancel(PGcancel *cancel, char *errbuf, int errbufsize);


      


PQcancelが存在するのは、下位互換性のためだけです。
代わりにPQcancelBlockingを使用してください。
PQcancelの唯一の利点は、errbufがシグナルハンドラ内のローカル変数である場合に、シグナルハンドラから安全に呼び出すことができることです。
しかし、一般的には、この関数が持つセキュリティ問題に見合うほど大きな利点とは考えられていません。
      


PGcancelオブジェクトはPQcancelに関しては読み取り専用であるため、PGconnオブジェクトを操作するスレッドとは別のスレッドからも呼び出すことができます。
      


取り消し要求が正常にディスパッチされた場合、PQcancelの戻り値は1で、そうでなければ0です。
ディスパッチされなかった場合、errbufに説明的なエラーメッセージが入ります。
errbufはerrbufsizeのサイズ（推奨サイズは256バイト）の文字配列でなければなりません。
      



	PQrequestCancel
	

PQrequestCancelは、PQcancelBlockingの非推奨で安全でない変種です。


int PQrequestCancel(PGconn *conn);


      


PQrequestCancelは下位互換性のために存在します。
代わりにPQcancelBlockingを使用してください。
PQrequestCancelをPQcancelBlockingよりも使用する利益はありません。
      


サーバに現在のコマンドの廃棄処理を要求します。
これはPGconnオブジェクトを直接扱い、また、失敗した場合エラーメッセージはPGconnオブジェクト内に収納されます。
(
      PQerrorMessage
      
     により取り出すことができます。)
機能的には同一ですが、この方法は複数スレッドプログラムやシグナルハンドラでは安全ではありません。PGconnのエラーメッセージが上書きされることにより、その接続で現在進行中の操作を台無しにする可能性があるからです。
      





近道インタフェース





PostgreSQL™は、サーバへの簡単な関数呼び出しを送信する近道 (fast-path) インタフェースを用意しています。
  
ヒント


この関数はどちらかというと廃れたものです。
同様の性能やそれ以上の機能を、関数呼び出しを定義した準備された文を設定することで達成できるからです。
そして、その文をパラメータと結果をバイナリ転送するように実行すれば、近道関数呼び出しを置き換えることになります。
   



PQfn関数は近道インタフェースを使ってサーバ関数の実行を要求します。


PGresult *PQfn(PGconn *conn,
               int fnid,
               int *result_buf,
               int *result_len,
               int result_is_int,
               const PQArgBlock *args,
               int nargs);

typedef struct
{
    int len;
    int isint;
    union
    {
        int *ptr;
        int integer;
    } u;
} PQArgBlock;


  


fnid引数は実行する関数のOIDです。
argsとnargsは関数に渡すパラメータを定義します。
これらは関数宣言における引数リストに一致しなければなりません。
パラメータ構造体のisintが真の場合、u.integerの値はサーバに指定長の整数として送信されます。
(これは2もしくは4バイトでなければなりません。)
この時、適切なバイト順の交換が行なわれます。
isintが偽の場合は、*u.ptrで指定されたバイト数が無処理で送信されます。
関数のパラメータデータ型をバイナリ転送で行うために、このデータはサーバで想定する書式である必要があります。
(u.ptrをint *型と宣言するのは歴史的なものです。void *と考えた方が良いでしょう。)
result_bufは関数の戻り値を格納するバッファを指しています。
呼び出し側は戻り値を格納するのに十分な領域を確保しておかなければいけません。
（ライブラリ側ではこの検査はしていません！）
バイト単位での結果の実データ長はresult_lenが指す整数で返されます。
結果が2、4バイト整数だと想定できるならresult_is_intを1に、そうでなければ0を設定します。
result_is_intを1にすれば、必要に応じて値のバイト順を入れ換えるようlibpqに指示することになります。
そしてクライアントマシン上で正しいint値となるように転送します。
4バイト整数は認められた結果の大きさで*result_bufに転送されることに注意してください。
result_is_intが0の場合は、バックエンドが送ったバイナリ書式のバイト列を何も修正せずに返します。
(この場合、result_bufはvoid *型と考えた方が良いでしょう。)
  


PQfnは常に有効なPGresult*ポインタを返します。
成功した場合はPGRES_COMMAND_OK、問題が発生した場合はPGRES_FATAL_ERRORのステータスが返されます。
結果を使う前にはまず、結果ステータスを調べておくべきでしょう。
結果が必要なくなった時点で、PQclearによって、PGresultを解放するのは、呼び出し側の責任です。
  


関数にNULL引数を渡すには、そのパラメータ構造体のlenフィールドを-1に設定します。
isintフィールドとuフィールドは無関係です。
  


この関数がNULLを返す場合、*result_lenは-1に設定され、*result_bufは変更されません。
  


このインタフェースを使用した場合、セット値の結果を扱うことができないことに注意してください。
また、関数は、集約関数、ウィンドウ関数またはプロシージャではなく、プレーンな関数である必要があります。
  

非同期通知





PostgreSQL™は、LISTENとNOTIFYコマンドを使用した、非同期通知をサポートします。
クライアントセッションは、LISTENコマンドを使用して処理対象とする特定の通知チャネルを登録します。
（通知監視を取り止めるにはUNLISTENコマンドを使用します。）
任意のセッションでそのチャネル名によるNOTIFYコマンドが実行されると、特定チャネルを監視しているすべてのセッションは非同期に通知を受け取ります。
監視者に追加データを通信するために「ペイロード」文字列を渡すことができます。
  


libpqアプリケーションは、通常のSQLによる問い合わせと同じようにLISTEN、UNLISTENおよびNOTIFYコマンドを発行することができます。
NOTIFYメッセージの到着は、続いてPQnotifies.を呼び出せば検出できます。
  


PQnotifies関数は、サーバから受信した通知メッセージの未処理リストから次の通知を返します。
保留中の通知がなくなればNULLポインタを返します。
PQnotifiesが通知を返すと、その通知は処理済みとみなされ、通知リストから取り除かれます。



PGnotify *PQnotifies(PGconn *conn);

typedef struct pgNotify
{

    char *relname;              /* 通知チャネル名 */
    int  be_pid;                /* 通知元サーバプロセスのプロセスID */
    char *extra;                /* 通知ペイロード文字列 */
} PGnotify;




PQnotifiesで返されたPGnotifyオブジェクトの処理が終わったら、PQfreememを使用して確実に解放してください。
PGnotifyポインタを解放することは重要です。
relnameとextraフィールドは別の割り当てを表していません。
(これらのフィールド名は歴史的なものです。特にチャネル名はリレーション名と関係するものである必要はありません。)
  


例32.2「libpq サンプルプログラム 2」で非同期通知を使用したサンプルプログラムを示しています。
  


PQnotifiesは実際にサーバのデータを読み出すわけではありません。
これは単に、他のlibpq関数が吸収してしまっていた通知メッセージを返すだけです。
libpqの古いリリースでは、NOTIFYメッセージを適切な時点で確実に受け取るには、空の問い合わせでも何でも、とにかく一定時間ごとに問い合わせを送り、そしてPQexecを実行するたびにPQnotifiesを検査するしかありませんでした。
今でもこの方法は動作しますが、処理能力の無駄使いをすることになるのでやめておくべきでしょう。
  


実行すべき問い合わせがない時にNOTIFYメッセージを検査するよい方法は、まずPQconsumeInput
     を呼び出し、それからPQnotifiesを検査することです。
サーバからのデータの到着をselect()で待つことができ、不必要な動作でCPUパワーを消費してしまうことがありません。
（select()で使用するファイル記述子番号の取得については、PQsocketを参照してください。）
なお、これは問い合わせにPQsendQueryとPQgetResultを使った時でも、またはおなじみのPQexecを使った時でも動作します。
しかし通知がコマンドの処理中に届いていないかどうか、PQgetResultあるいはPQexecの実行ごとにPQnotifiesを調べることを忘れないようにしておくべきです。
  

COPYコマンド関連関数





PostgreSQL™のCOPYコマンドでは、libpqが使っているネットワーク接続に対して読み込み、あるいは書き込みを選ぶことができるようになっています。
本節で説明する関数により、アプリケーションはコピーするデータの提供やコピーされるデータの使用が可能になるという利点を持ちます。
  


全体的な処理として、アプリケーションはまずPQexecもしくは同等な関数経由でCOPY SQLコマンドを発行します。
（コマンドでエラーが発生しなければ）この応答は、（指定したコピーの方向に応じて）PGRES_COPY_OUTもしくはPGRES_COPY_INという状態コードを持ったPGresultになります。
その後、アプリケーションは本節の関数を使用して、行データを受信、もしくは、送信しなければなりません。
データの転送が完了した時、転送に成功したか失敗したかを示す別のPGresultオブジェクトが返されます。
その状態は、成功時にはPGRES_COMMAND_OKになり、何らかの問題が起きていた時には PGRES_FATAL_ERRORになります。
この時点で、別のSQLコマンドをPQexec経由で発行することができます。
（COPY操作の実行中は、同じ接続を使用して他のSQLコマンドを実行することはできません。）
  


COPYコマンドが、他にもコマンドを含んだ文字列としてPQexec経由で発行された場合、アプリケーションはCOPY処理を終えた後に、PQgetResult経由で結果の取り出しを続けなければなりません。
PQexecコマンド文字列が完了し、その後のコマンドが安全に発行できることが確実になるのは、PQgetResultがNULLを返す時のみです。
  


本節の関数は、PQexecもしくはPQgetResultからPGRES_COPY_OUTもしくはPGRES_COPY_INという結果状態を得た後のみに実行されなければなりません。
  


これらの状態値の一つを持つPGresultオブジェクトは、開始したCOPY操作に関する追加データを持ちます。
この追加データは、以下の問い合わせ結果を持つ接続で使用される関数を使用して利用することができます。

   
	PQnfields
	

コピーされる列(フィールド)数を返します。
      

	PQbinaryTuples
	

0は、コピー全体の書式がテキスト(改行で区切られた行、区切り文字で区切られた列など)であることを示します。
1は、コピー全体の書式がバイナリであることを示します。
詳細はCOPY(7)を参照してください。
      

	PQfformat
	

コピー操作対象の列それぞれに関した書式コード(テキストでは0、バイナリでは1)を返します。
コピー全体の書式がテキストの場合は、列単位の書式コードは常にゼロです。
しかし、バイナリ書式はテキスト列もバイナリ列もサポートすることができます。
(しかし、現在のCOPY実装では、バイナリコピーでのみバイナリ列が発生します。
そのため、今の所列単位の書式は常に全体の書式と一致します。)
      




  
COPYデータ送信用関数





これらの関数は、COPY FROM STDIN期間にデータを送信するために使用されます。
接続がCOPY_IN状態でない時に呼び出された場合、これらは失敗します。
   
	PQputCopyData
	

COPY_IN状態の間、サーバにデータを送信します。


int PQputCopyData(PGconn *conn,
                  const char *buffer,
                  int nbytes);


      


指定したbufferにあるCOPYデータをnbytes長分、サーバに送信します。
データがキューに入れられた場合、この結果は1になります。
バッファが一杯でキューに入らなかった場合はゼロになります。
（これは、接続が非ブロックモードの場合にのみ起こります。）
エラーが発生した場合は-1になります。
（戻り値が-1の場合、詳細を取り出すためには
      PQerrorMessage
      
     を使用してください。
戻り値がゼロの場合は書き込み準備が整うまで待ち、再実行してください。）
      


アプリケーションはCOPYデータストリームを使いやすい大きさのバッファに分けて読み込むことができます。
送信時の読み込みバッファの境界には意味的な重要性はありません。
データストリームの内容は、COPYコマンドで想定しているデータ書式に一致している必要があります。
詳細はCOPY(7)を参照してください。
      

	PQputCopyEnd
	

COPY_IN状態の間に、サーバにデータ終了指示を送信します。


int PQputCopyEnd(PGconn *conn,
                 const char *errormsg);


      


errormsgがNULLなら、COPY_INを成功として終了させます。
errormsgがNULLではないなら、errormsgの指し示す文字列をエラーメッセージとして用いてCOPYを強制的に失敗させます。
（しかし、このエラーメッセージがサーバからそのまま返ってくると仮定すべきではありません。サーバは既に別の原因でCOPYに失敗していた可能性があります。）
      


終端メッセージが送信された場合は結果は1になります。
非ブロックモードでは、終端メッセージがキューに入れられたことしか意味しないかもしれません。
（非ブロックモードでデータが送信されたことを確認するには、次に書き込み準備ができるまで待ち、PQflushを呼ぶことを、それが0を返すまでくり返します。）
バッファが一杯で終端メッセージがキューに入れられなかった場合はゼロになります。
これは、接続が非ブロックモードの場合にのみ起こります。
（この場合、書き込み準備ができるまで待ち、再度PQputCopyEndを呼び出してみてください。）
ハードエラーが発生した場合は-1になります。
このとき、詳細を取得するために
      PQerrorMessage
      
     を使用できます。
      


PQputCopyEndの呼び出しに成功した後、PQgetResultを呼び出してCOPYコマンドの最終的な結果状態を取り出してください。
通常の方法でこの結果が使用できるようになるまで待機しても構いません。
そして、通常の操作に戻ってください。
      




COPYデータ受信用関数





これらの関数はCOPY TO STDOUT時にデータを受信するために使用されます。
COPY_OUT状態以外の接続で呼び出すと、失敗します。
   
	PQgetCopyData
	

COPY_OUT状態時にサーバからデータを受信します。


int PQgetCopyData(PGconn *conn,
                  char **buffer,
                  int async);


      


COPY期間中、サーバから別の行データの入手を試みます。
常に1度に1つの行データが返されます。
部分的な行のみが利用可能な場合は返されません。
行データの取得に成功することは、そのデータを保持するためのメモリチャンクの割り当てを意味します。
bufferパラメータは非NULLでなければなりません。
*bufferは割り当てられたメモリへのポインタに、バッファが返されなかった場合はNULLに設定されます。
非NULLの結果バッファは、不要になったらPQfreememを使用して解放しなければなりません。
      


行の取り込みに成功した時、戻り値は行内のデータのバイト数になります。
(これは常に0より大きくなります。)
返された文字列は常にNULL終端ですが、おそらくテキストCOPYでのみ有用になるでしょう。
ゼロという結果は、COPYが進行中で、行がまだ利用できない状態であることを示します。
(asyncが真の場合にのみ発生することがあります。)
-1という結果は、COPYが完了したことを示します。
-2という結果はエラーが発生したことを示します。
(その理由については
      PQerrorMessage
      
     を参照してください。)
      


asyncが真(非0)の場合、PQgetCopyDataは入力待ちのためのブロックを行いません。
COPY実行中で完全な行を取り出せない場合PQgetCopyDataは0を返します。
(この場合、再試行の前に読み込み準備が整うまで待機してください。
PQconsumeInput
     を呼び出したかどうかは関係ありません。)
asyncが偽(0)の場合、PQgetCopyDataはデータが利用できるようになるまで、もしくは、操作が完了するまでブロックします。
      


PQgetCopyDataが-1を返した後、PQgetResultを呼び出して、COPYコマンドの最終結果状態を取り出してください。
通常の方法で結果が利用できるようになるまで待機しても構いません。
そして、通常の操作に戻ってください。
      




廃れたCOPY用関数





以下の関数はCOPYを取扱う、古めの手法を行います。
これらはまだ動作しますが、エラーの取扱いが貧弱であることやデータの終端を検知する方法が不便であることより使用を奨めません。
   
	PQgetline
	

改行で終端する文字列（サーバから送信されたもの）を長さlengthのバッファ用文字列に読み込みます。


int PQgetline(PGconn *conn,
              char *buffer,
              int length);


      


この関数はバッファにlength-1個までの文字をコピーし、終端の改行を1バイトのゼロに置き換えます。
PQgetlineは、入力の終端ではEOFを、行全体が読み込まれれば0を返します。
そしてまだ終端の改行が読み込まれていないうちにバッファがいっぱいになってしまった場合は1を返します。
       


アプリケーションは新しく読み込んだ行が、\.という2文字であるかどうか確認しなければいけません。
この2文字は、COPYコマンドの結果をサーバが送信し終えたことを示すものです。
アプリケーションには、仮にlength-1文字より長い行を受け取るようなことがあっても、間違いなく\.行を認識するような配慮が必要です
（また例えば長いデータの行の終端を、最終行と取り違えないようにもしてください）。
      

	PQgetlineAsync
	

COPYデータ行（サーバから送信されたもの）を、ブロッキングなしでバッファに読み込みます。


int PQgetlineAsync(PGconn *conn,
                   char *buffer,
                   int bufsize);


      


PQgetlineと似ていますが、COPYのデータを非同期的に、つまりブロッキングなしで読み出さなければならないアプリケーションで使用することができます。
COPYコマンドを発行し、そしてPGRES_COPY_OUT応答を受け取ったら、アプリケーションはデータ終了の合図を受け取るまでPQconsumeInput
     とPQgetlineAsyncを呼び出します。
       


PQgetlineと違い、この関数はデータ終了の検出に対して責任を持ちます。
      


PQgetlineAsyncの個々の呼び出しでは、libpqの入力バッファ内で完全な行データが利用できる場合にデータを返します。
さもなければ、行の残りが届くまでデータは返されません。
この関数は、コピーデータの終端を示す符号を認識すると-1を、また何もデータがなければ0を、そしてデータを返す場合はそのバイト数を正の値で返します。
もし-1が返されたら、呼び出し側は次にPQendcopyを呼び出さなければいけません。
それから通常の処理に戻ります。
      


返されるデータは行データの境界を越えて拡張されることはありません。
可能であれば行全体を一度に返します。
しかし呼び出し側が準備したバッファが少なすぎ、サーバから送られてくる行を保持しておくことができない場合には、分割された行データを返します。
テキストデータでは、これは最後の1バイトが\nかどうかを確認すれば検出できます。
（バイナリCOPYの場合に同様の検出を行うためには、実際にCOPYデータの書式を解析しなければなりません。）
なお、返される文字列はNULL終端ではありません。
（NULL終端を後から付け加えるのであれば、実際に確保するバッファサイズ-1をbufsizeとして渡すようにしてください。）
      

	PQputline
	

サーバにNULL終端の文字列を送信します。
問題なければ0を返します。
文字列の送信ができなかった場合はEOFを返します。


int PQputline(PGconn *conn,
              const char *string);


      


PQputlineの呼び出しによって送信されるCOPYデータストリームは、PQgetlineAsyncで返される書式と同じ書式を持ちます。
ただし、アプリケーションは、PQputline毎に正確に1つのデータ行を送信するように強制されていません。
呼び出し毎に行の一部や複数の行を送信しても問題ありません。
      
注記


PostgreSQL™プロトコル3.0より前では、アプリケーションは、サーバに対してCOPYデータの送信を完了したことを通知するために、最終の行として\.という2文字を明示的に送信する必要がありました。
これはまだ動作しますが、廃止予定であり、\.の特殊な意味は将来のリリースで無くなることが予想されます。
（CSVモードでは、すでに正しく動作しません。）
実際のデータの送信完了後にPQendcopyを呼び出すだけで十分です。
       


	PQputnbytes
	

NULL終端ではない文字列をサーバに送信します。
問題なければ0を返します。
文字列の送信ができなかった場合はEOFを返します。


int PQputnbytes(PGconn *conn,
                const char *buffer,
                int nbytes);


      


これはまさにPQputlineと同様です。
ただし、直接送信バイト数を指定するため、NULL終端である必要がありません。
バイナリデータを送信する時はこのプロシージャを使用してください。
      

	PQendcopy
	

サーバと同期します。


int PQendcopy(PGconn *conn);



この関数はサーバがコピーを完了するのを待ちます。
この関数は、PQputlineを使ったサーバへの文字列送信が完了した時点、あるいはPQgetlineを使ったサーバからの文字列受信が完了した時点のいずれでも呼び出さなければなりません。
これを発行しないと、サーバはクライアントとの「同期がずれた」状態になってしまいます。
この関数から戻った時点で、サーバは次のSQLコマンドを受ける準備が整います。
正常に終了した場合、戻り値は0です。 さもなくば、非ゼロです。
（戻り値が非ゼロの場合、
      PQerrorMessage
      
     を使用して詳細を取り出してください。）
      


PQgetResultを使う場合、アプリケーションはPQgetlineを繰り返し呼び出してPGRES_COPY_OUTに応答し、終端行を見つけたら続いてPQendcopyを呼び出さなければなりません。
それから、PQgetResultがNULLポインタを返すまで、PQgetResultのループに戻らなければなりません。
同じように PGRES_COPY_INは連続したPQputlineで処理し、それからPQendcopyで締めくくった後にPQgetResultのループに戻ります。
このようにすることで、一連のSQLコマンド群に含めたCOPYコマンドを確実に、また正しく実行できるはずです。
      


比較的古いアプリケーションでは、COPYをPQexecで実行し、PQendcopyの実行でトランザクションは完了する、と想定していることがよくあります。
これはコマンド文字列中のSQLがCOPYだけであった時にのみ正しく動作します。
      





制御関数





これらの関数はlibpqの動作の各種詳細を制御します。
  
	PQclientEncoding
	

クライアント符号化方式を返します。


int PQclientEncoding(const PGconn *conn);




これがEUC_JPなどのシンボル文字列ではなく符号化方式IDを返すことに注意してください。
成功しなかった場合には、-1が返ります。
符号化方式IDを符号化方式名に変換するためには以下を使用してください。



char *pg_encoding_to_char(int encoding_id);


     

	PQsetClientEncoding
	

クライアント符号化方式を設定します。


int PQsetClientEncoding(PGconn *conn, const char *encoding);




connはサーバへの接続、encodingは使用したい符号化方式です。
この関数は符号化方式の設定に成功すると、ゼロを返します。
さもなくば-1を返します。
この接続における現在の符号化方式はPQclientEncodingを使用して決定することができます。
     

	PQsetErrorVerbosity
	


      PQerrorMessage
      
     とPQresultErrorMessageで返されるメッセージの冗長度を決定します。


typedef enum
{
    PQERRORS_TERSE,
    PQERRORS_DEFAULT,
    PQERRORS_VERBOSE,
    PQERRORS_SQLSTATE
} PGVerbosity;

PGVerbosity PQsetErrorVerbosity(PGconn *conn, PGVerbosity verbosity);




PQsetErrorVerbosityは冗長度モードを設定し、接続における以前の状態を返します。
TERSEモードでは、返されるメッセージには深刻度、主テキスト、位置のみが含まれます。
これは通常単一行に収まります。
DEFAULTモードでは、上に加え、詳細、ヒント、文脈フィールドが含まれるメッセージが生成されます（これは複数行に跨るかもしれません。）
VERBOSEモードでは、すべての利用可能なフィールドが含まれます。
SQLSTATEモードでは、エラーの深刻度と、利用可能であればSQLSTATEエラーコードだけが含まれます(利用できなければ、出力はTERSEモードのようになります)。
     


冗長度の変更は、既に存在するPGresultオブジェクト内から取り出せるメッセージには影響を与えません。
その後に作成されたオブジェクトにのみ影響を与えます。
（ただし、以前のエラーを異なる冗長さで表示したい場合はPQresultVerboseErrorMessageを参照してください。）
     

	PQsetErrorContextVisibility
	


      PQerrorMessage
      
     およびPQresultErrorMessageから返されるメッセージ内のCONTEXTフィールドの扱いについて決定します。


typedef enum
{
    PQSHOW_CONTEXT_NEVER,
    PQSHOW_CONTEXT_ERRORS,
    PQSHOW_CONTEXT_ALWAYS
} PGContextVisibility;

PGContextVisibility PQsetErrorContextVisibility(PGconn *conn, PGContextVisibility show_context);




PQsetErrorContextVisibilityはコンテキストの表示モードを設定し、その接続での以前の設定を返します。
このモードはメッセージにCONTEXTフィールドが含まれるかどうかを制御します。
NEVERモードでは、決してCONTEXTを含みませんが、ALWAYSではCONTEXTが利用可能であれば常に含まれます。
ERRORSモード（デフォルト）では、CONTEXTはエラーメッセージには含まれますが、注意や警告では含まれません。
（しかしながら、冗長設定がTERSEやSQLSTATEの場合は、コンテキストの表示モードに関わらずCONTEXTフィールドは省略されます。）
     


このモードを変更しても、既存のPGresultから取得可能なメッセージには影響を与えず、その後で作成されるものにのみ影響します。
（ただし、以前のエラーについて異なる表示モードで表示したい場合は、PQresultVerboseErrorMessageを参照してください。）
     

	PQtrace
	

クライアント／サーバ間の通信トレースを有効にし、デバッグ用のファイルストリームに書き出します。


void PQtrace(PGconn *conn, FILE *stream);


     


各行は、オプションのタイムスタンプ、方向インジケータ（クライアントからサーバへのメッセージの場合はF、サーバからクライアントへのメッセージの場合はB）、メッセージ長、メッセージタイプ、およびメッセージ内容で構成されます。
メッセージ内容以外のフィールド（タイムスタンプ、方向、長さ、メッセージタイプ）はタブで区切られます。
メッセージ内容はスペースで区切られます。
プロトコル文字列は二重引用符で囲まれますが、データ値として使用される文字列は単一引用符で囲まれます。
表示できない文字は16進エスケープとして出力されます。
メッセージタイプ固有の詳細については、「メッセージの書式」を参照してください。
     
注記


Windowsにおいて、libpqライブラリとアプリケーションを異なるフラグでコンパイルすると、この関数呼び出しでFILEポインタの内部表現の違いによりアプリケーションはクラッシュするでしょう。
特に、このライブラリを使用するアプリケーションでは、マルチスレッド/シングルスレッド、リリース/デバッグ、静的リンク/動的リンクに関して、ライブラリと同じフラグを使わなければなりません。
      


	PQsetTraceFlags
	

クライアント／サーバ通信のトレース動作を制御します。


void PQsetTraceFlags(PGconn *conn, int flags);


     


flagsには、トレースの動作モードを記述するフラグビットが含まれています。
flagsにPQTRACE_SUPPRESS_TIMESTAMPSが含まれている場合、各メッセージを出力するときにタイムスタンプは含まれません。
flagsにPQTRACE_REGRESS_MODEが含まれている場合、各メッセージを出力するときにオブジェクトOIDなどの一部のフィールドが編集され、テストフレームワークで使用しやすくなります。
この関数は、PQtraceを呼び出した後に呼び出す必要があります。
     

	PQuntrace
	

PQtraceによって起動されたトレース処理を無効にします。


void PQuntrace(PGconn *conn);


     




雑多な関数





よくあることですが、うまく分類できない関数がいくつか存在します。
  
	PQfreemem
	

libpqが割り当てたメモリを解放します。


void PQfreemem(void *ptr);


     


具体的にはPQescapeByteaConn、PQescapeBytea、PQunescapeByteaおよびPQnotifiesによりlibpqが割り当てたメモリを解放します。
Microsoft Windowsにおいてfree()ではなく、この関数を使用することが特に重要です。
DLLにおけるメモリ割り当てとアプリケーションにおけるその解放が、DLLとアプリケーションとでマルチスレッド/シングルスレッド、リリース用/デバッグ用、静的/動的フラグが同じ場合でのみ動作するためです。
Microsoft Windowsプラットフォーム以外では、この関数は標準ライブラリのfree()関数と同じです。
     

	PQconninfoFree
	

PQconndefaultsもしくはPQconninfoParseが割り当てたデータ構造を解放します。


void PQconninfoFree(PQconninfoOption *connOptions);



引数がNULLポインタの場合、操作は実行されません。
     


単純なPQfreememは、配列が補助文字列への参照を含んでいることから、このためには作業しません。
     

	PQencryptPasswordConn
	

PostgreSQL™パスワードの暗号化された形式を準備します。


char *PQencryptPasswordConn(PGconn *conn, const char *passwd, const char *user, const char *algorithm);



この関数は、ALTER USER joe PASSWORD 'pwd'のようなコマンドを送信したいクライアントアプリケーションで使用されることを意図したものです。
こうしたコマンドでは、コマンドログが活動の監視などで晒されてしまうため、元々の平文テキストでパスワードを送信しないことが推奨されています。
その代わりに、この関数を使用して送信前にパスワードを暗号化形式に変換してください。
     


passwdとuser引数は、関数が使用する平文のパスワードとそのSQL上のユーザ名です。
algorithmは、パスワードを暗号化するために使用する暗号化アルゴリズムを指定します。
現在サポートされているアルゴリズムは、md5とscram-sha-256です。
(古いサーババージョンとの互換性のために、md5の別名として、onとoffも受け付けます。)
scram-sha-256のサポートは、PostgreSQL™バージョン10で導入されたので、古いサーババージョンでは正しく動作しないことに注意してください。
algorithmがNULLなら、この関数はサーバに問い合わせて現在のpassword_encryption設定を返します。
これは、ブロックする可能性があり、また現在のトランザクションがアボートしているか、あるいは他の問い合わせを実行中でビジーなら失敗します。
サーバのデフォルトアルゴリズムを使用したいが、ブロックは避けたい、という場合は、PQencryptPasswordConnを呼び出す前にpassword_encryptionを自分で調べ、その値をalgorithmに渡してください。
     


戻り値はmallocで割り当てられた文字列です。
呼び出し元は、その文字列にエスケープしなければならない特殊な文字列が含まれていないことを仮定することができます。
処理が終わった時にPQfreememを使用して結果を解放してください。
エラーの場合にNULLが返され、接続オブジェクトに対応するメッセージが格納されます。
     

	PQchangePassword
	

PostgreSQL™のパスワードを変更します。


PGresult *PQchangePassword(PGconn *conn, const char *user, const char *passwd);



この関数はPQencryptPasswordConnを使用して、コマンドALTER ... PASSWORD '...'を実行し、これによりユーザのパスワードが変更されます。
これはPQencryptPasswordConnと同じ理由で存在しますが、コマンドを構築して実行するのでより便利です。
PQencryptPasswordConnはアルゴリズム引数にNULLを渡すので、サーバのpassword_encryption設定に従って暗号化が行われます。
     


userとpasswd引数は、対象ユーザのSQL名と新しい平文パスワードです。
     


ALTER USERコマンドの結果を表すPGresultポインタ、またはコマンドを発行する前にルーチンが失敗した場合はNULLポインタを返します。
エラーの結果（NULLポインタの場合も含み、そのケースはPGRES_FATAL_ERRORを返します）を確認するには、PQresultStatus関数を呼び出す必要があります。
このようなエラーについての詳細は
      PQerrorMessage
      
     を参照してください。
     

	PQencryptPassword
	

md5暗号化形式のPostgreSQL™パスワードを準備します。


char *PQencryptPassword(const char *passwd, const char *user);



PQencryptPasswordは、古くて非推奨のバージョンのPQencryptPasswordConnです。
違いは、PQencryptPasswordは接続オブジェクトを必要とせず、md5が常に暗号化アルゴリズムに使用されることです。
     

	PQmakeEmptyPGresult
	

与えられたステータスで空のPGresultオブジェクトを構築します。


PGresult *PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status);


     


これは空のPGresultオブジェクトを割り当てて、初期化するlibpqの内部関数です。
メモリが割り当てられなかった場合、この関数はNULLを返します。
一部のアプリケーションで結果オブジェクト（特にエラーステータスを伴ったオブジェクト）それ自身を生成することが便利であることが分かりましたので、外部公開されました。
connが非NULで、statusがエラーを示唆している場合、特定された接続の現在のエラーメッセージはPGresultにコピーされます。
同時に、connが非NULLの場合、接続で登録された任意のイベントプロシージャはPGresultにコピーされます。
（それらはPGEVT_RESULTCREATE呼び出しを受けませんが、PQfireResultCreateEventsを理解します。）
libpq自身で返されたPGresultと同様に、最終的にはこのオブジェクトに対してPQclearを呼び出さなければならないことに注意してください。
     

	PQfireResultCreateEvents
	

PGresultオブジェクトに登録されたそれぞれのイベントプロシージャに対し、PGEVT_RESULTCREATEイベント（「イベントシステム」を参照）を発行します。
イベントプロシージャが成功の場合は非ゼロ、失敗の場合はゼロを返します。



int PQfireResultCreateEvents(PGconn *conn, PGresult *res);


     


conn引数はイベントプロシージャに渡されますが、直接には使用されません。
イベントプロシージャが使用しない場合はNULLで構いません。
     


このオブジェクトに対し、PGEVT_RESULTCREATEもしくはPGEVT_RESULTCOPYイベントを過去に受け取ったイベントプロシージャは再び発行されません。
     


この関数がPQmakeEmptyPGresultと分離されている主たる理由は、多くの場合イベントプロシージャを呼び出す前にPGresultを作成し、データを挿入するのが適切であることによります。
     

	PQcopyResult
	

PGresultオブジェクトのコピーを作ります。
コピーは元の結果にいかなる方法でもリンクされず、コピーが不要になった時にPQclearを呼び出されなければなりません。
関数が失敗するとNULLが返されます。



PGresult *PQcopyResult(const PGresult *src, int flags);


     


これは正確なコピーの作成を目的としたものではありません。
返された結果は常にPGRES_TUPLES_OK状態の中に置かれ、元の結果におけるエラーメッセージはまったくコピーされません。
（しかしコマンド状態文字列をコピーします。）
flags引数はその他にコピーするものがないかを決定します。
それはいくつかのフラグのビット単位のORです。
PG_COPYRES_ATTRSは元の結果の属性（列定義）のコピーを指定します。
PG_COPYRES_TUPLESは元の結果のタプルのコピーを指定します。
（これは属性もコピーされることを意味しています。）
PG_COPYRES_NOTICEHOOKSは元の結果の警告フックのコピーを指定します。
PG_COPYRES_EVENTSは元の結果イベントのコピーを指定します。
（しかし、元の結果に関連したインスタンスデータはまったくコピーされません。）
イベントプロシージャは、PGEVT_RESULTCOPYイベントを受信します。
     

	PQsetResultAttrs
	

PGresultオブジェクトの属性を設定します。


int PQsetResultAttrs(PGresult *res, int numAttributes, PGresAttDesc *attDescs);


     


提供されたattDescsは結果にコピーされます。
もしattDescsポインタがNULL、またはnumAttributesが１未満の場合、要求は無視され、関数は成功します。
resが既に属性を所有している場合、関数は失敗に終わります。
関数が失敗すると、戻り値はゼロです。
関数が成功すると戻り値は非ゼロになります。
     

	PQsetvalue
	

PGresultオブジェクトのタプルフィールド値を設定します。


int PQsetvalue(PGresult *res, int tup_num, int field_num, char *value, int len);


     


必要に応じて関数は自動的に結果の内部タプル配列を肥大化させます。
しかし、tup_num引数はPQntuplesと同じか、もしくは小さくなければなりません。
その意味は、この関数は一回にタプル配列を１タプル大きくさせるだけだからです。
とは言っても、存在するいかなるタプルの任意のフィールドも、順序を問わず変更できます。
もしfield_numに値が既に存在すれば、書き換えられます。
lenが-1、またはvalueがNULLであれば、フィールドの値はSQLのNULLに設定されます。
valueは結果のプライベート格納領域にコピーされるため、関数が返った後ではもう必要がなくなります。
関数が失敗すると、戻り値はゼロです。
関数が成功すると戻り値は非ゼロになります。
     

	PQresultAlloc
	

PGresultオブジェクトに補助ストレージを割り当てます。


void *PQresultAlloc(PGresult *res, size_t nBytes);


     


resが消去された時、この関数で割り付けられたメモリは解放されます。
関数が失敗すると戻り値はNULLです。
mallocと同じように、どのような種類のデータでも結果は適切に整列されることが保証されています。
     

	PQresultMemorySize
	

PGresultオブジェクトのために割り当てられたバイト数を取り出します。


size_t PQresultMemorySize(const PGresult *res);


     


この値は、PGresultオブジェクトに関連する全てのmalloc要求、つまりPQclearで解放される全てのメモリの合計です。
この情報はメモリ消費量を管理するのに役立ちます。
     

	PQlibVersion
	

使用中のlibpqのバージョンを返します。


int PQlibVersion(void);


     


この関数の結果を使用して、現在読み込まれているバージョンのlibpqで特定の機能が利用可能かどうかを実行時に決定することができます。
例えばこの関数を使用して、PQconnectdbでどの接続オプションが利用できるかを確認することができます。
     


返却値の形式は、メジャーバージョン番号に10000を掛け、マイナーバージョン番号を加えたものです。
例えば、バージョン10.1では100001を返し、バージョン11.0では110000を返します。
     


バージョン10よりも前では、PostgreSQL™では、最初の2つの部分がメジャーバージョンを表す、3つの部分からなるバージョン番号が使われていました。
これらのバージョンでは、PQlibVersionはそれぞれの部分に2桁の数字を使います。
たとえば、バージョン9.1.5では90105が返され、バージョン9.2.0では90200が返されます。
     


ですから、機能の互換性を見極めるのが目的なら、アプリケーションはPQlibVersionの結果を10000ではなく、100で割り、論理的なメジャーバージョンを求めるべきです。
すべてのリリースで、最後の2桁だけがマイナーリリースで異なります。
（バグ修正リリースです。）
     
注記


この関数はPostgreSQL™バージョン9.1で追加されました。
このため以前のバージョンにおいて要求される機能を検知するために使用することができません。
この関数の呼び出しがバージョン9.1以降とのリンク依存性を作成するためです。
      


	PQgetCurrentTimeUSec
	

現在時刻を取得します。これは、Unixエポックからの経過時間をマイクロ秒単位で表したものです（すなわち、time_t×100万です)。


pg_usec_time_t PQgetCurrentTimeUSec(void);


     


これは主に、PQsocketPollで使用するタイムアウト値を計算する場合に便利です。
     




警告処理





問い合わせ実行関数では、サーバにより生成された通知と警告メッセージは、問い合わせの失敗を意味していないので返されません。
その代わり、それらは通知処理関数に渡され、ハンドラから返った後も実行は通常通り継続します。
デフォルトの通知処理関数はstderrにメッセージを出力しますが、アプリケーションは自身の処理関数を提供することでこの動作を書き換えることができます。
  


歴史的理由で、通知レシーバと通知プロセッサと呼ばれる２階層の通知処理が存在します。
デフォルトの動作は、通知レシーバが通知を書式化し、出力のため通知プロセッサに文字列を渡します。
しかし、独自の通知レシーバを提供することを選んだアプリケーションでは、通常、通知プロセッサ層を無視し、すべての作業を単に通知レシーバで行います。
  


関数PQsetNoticeReceiverは接続オブジェクトに対し現在の通知レシーバを設定もしくは確認します。
同様に、PQsetNoticeProcessorは現在の通知プロセッサの設定もしくは確認を行います。




typedef void (*PQnoticeReceiver) (void *arg, const PGresult *res);

PQnoticeReceiver
PQsetNoticeReceiver(PGconn *conn,
                    PQnoticeReceiver proc,
                    void *arg);

typedef void (*PQnoticeProcessor) (void *arg, const char *message);

PQnoticeProcessor
PQsetNoticeProcessor(PGconn *conn,
                     PQnoticeProcessor proc,
                     void *arg);




各関数は、以前の通知レシーバもしくは通知プロセッサ用の関数へのポインタを返し、新しい値を設定します。
関数ポインタにNULLを渡した場合、何も変更されず、現在のポインタが返されるだけです。
  


サーバから注意/警告メッセージを受け取ると、あるいは、libpq内部で注意/警告メッセージが生成されると、通知レシーバ関数が呼び出されます。
PGRES_NONFATAL_ERROR PGresultという形でメッセージが渡されます。
（これにより、レシーバはPQresultErrorFieldを使用して個々のフィールドを取り出すことや、PQresultErrorMessageあるいはPQresultVerboseErrorMessageを使用して事前に整形された完全なメッセージを取得することができます。）
PQsetNoticeReceiverに渡されたvoidポインタと同じものも渡されます。
（このポインタを使用して、必要に応じてアプリケーション特有の状態にアクセスすることができます。）
  


デフォルトの通知レシーバは単に（PQresultErrorMessageを使用して）メッセージを取り出し、それを通知プロセッサに渡すだけです。
  


通知プロセッサは、テキスト形式で与えられた注意/警告メッセージの取扱いに責任を持ちます。
メッセージは（最後の改行を含む）文字列テキストで渡され、更に、PQsetNoticeProcessorに渡したものと同じvoidポインタも渡されます。
（このポインタを使用して、必要に応じてアプリケーション特有の状態にアクセスすることができます。）
  


デフォルトの通知プロセッサは以下のような単純なものです。


static void
defaultNoticeProcessor(void *arg, const char *message)
{
    fprintf(stderr, "%s", message);
}


  


一旦通知レシーバや通知プロセッサを設定したら、PGconnオブジェクトか、それから生成されたPGresultオブジェクトが存在している間は、その関数が呼び出される可能性があると考えておくべきです。
PGresultの生成時には、PGconnの現在の警告処理用のポインタが、PQgetvalueのような関数で使用可能であるように、PGresultへコピーされます。
  

イベントシステム





libpqのイベントシステムは、PGconnおよびPGresultオブジェクトの作成と削除のような関心を引くlibpqイベントについて登録されたイベントハンドラに通知を行うため設計されています。
主たる使用状況は、アプリケーションがそれ自身のデータをPGconnまたはPGresultと提携させ、データが適切な時間に解放されることを保証するものです。
  


それぞれの登録されたイベントハンドラは、libpqからは不透明なvoid *ポインタとしてだけ知られる２つのデータの断片と提携します。
イベントハンドラがPGconnで登録された時にアプリケーションが提供する通過地点ポインタがあります。
通過地点ポインタはPGconnやそれから生成されたすべての（複数の）PGresultが有効な間決して変わることはありません。
したがって使用された場合、長期間生存しているデータを指し示します。
さらに、インスタンスデータポインタがあって、それはすべてのPGconnとPGresultでNULLから開始します。
ポインタは、PQinstanceData、PQsetInstanceData、PQresultInstanceDataおよびPQresultSetInstanceData関数を使って操作することができます。
通過地点ポインタとは異なり、PGconnのインスタンスデータはそれから作成されたPGresultにより自動的に継承されません。
libpqは通過地点とインスタンスデータポインタが（もしあったとしても）何を指し示すのか判らず、決して解放しようとは試みません。
それはイベントハンドラの責任です。
  
イベントの種類





PGEventId列挙はイベントシステムにより処理されるイベントの種類に名前をつけます。
その値はすべてPGEVTで始まる名前を持っています。
それぞれのイベントの種類に対し、イベントハンドラに渡されるパラメータを運ぶ関連したイベント情報構造体があります。
イベントの種類を以下に示します。
   
	PGEVT_REGISTER
	

レジスタイベントは、PQregisterEventProcが呼び出された時に発生します。
イベントプロシージャが必要とするinstanceDataを初期化するのに理想的な時間です。
接続ごとにイベントハンドラごとに1つのレジスタイベントしか発生しません。
イベントプロシージャが失敗した場合（0を返す場合）、登録はキャンセルされます。



typedef struct
{
    PGconn *conn;
} PGEventRegister;




PGEVT_REGISTERイベントが受け取られると、evtInfoポインタはPGEventRegister *にキャストされなければなりません。
この構造体はCONNECTION_OK状態ではなくてはならないPGconnを含んでいます。
そしてそれは、効果のあるPGconnを取得した直後、PQregisterEventProcを呼び出せば、保証されます。
失敗コードを返すとき、PGEVT_CONNDESTROYイベントが送られないので、すべての消去が実行されなければなりません。
      

	PGEVT_CONNRESET
	

接続初期化イベントはPQresetまたはPQresetPollの完了時点で発行されます。
どちらの場合も、初期化が成功したときのみ発行されます。
PostgreSQL™ v15以降では、イベントプロシージャの戻り値は無視されます。
しかし、以前のバージョンでは、成功（ゼロ以外）を返すことが重要です。
そうしないと接続は中断されます。



typedef struct
{
    PGconn *conn;
} PGEventConnReset;




PGEVT_CONNRESETイベントが受け取られた時、evtInfoポインタはPGEventConnReset *にキャストされなければなりません。
含まれたPGconnは単に初期化されますが、すべてのイベントデータは変更されずに残ります。
このイベントはすべての関連したinstanceDataの初期化・再読み込み・再問い合わせに使用されなければなりません。
イベントプロシージャがPGEVT_CONNRESET処理に失敗したとしても、接続が閉じられた時PGEVT_CONNDESTROYイベントを依然として受け付けることに注意してください。
      

	PGEVT_CONNDESTROY
	

接続破棄イベントはPQfinishに対応して発行されます。
libpqはこのメモリを管理する機能がありませんので、そのイベントデータを的確に消去するのはイベントプロシージャの責任です。
消去の失敗はメモリリークに通じます。



typedef struct
{
    PGconn *conn;
} PGEventConnDestroy;




PGEVT_CONNDESTROYイベントが受け取られた時、evtInfoポインタはPGEventConnDestroy *にキャストされなければなりません。
このイベントはPQfinishが他のすべての消去を行う前に発行されます。
イベントプロシージャの戻り値は、PQfinishから失敗を示唆する方法がないので無視されます。
同時に、イベントプロシージャの失敗が不要なメモリ消去処理を中止してはなりません。
      

	PGEVT_RESULTCREATE
	

結果作成イベントは、PQgetResultを含み、結果を生成する任意の問い合わせ実行関数に対応して発行されます。
このイベントは結果が成功裏に作成されたときのみ発行されます。



typedef struct
{
    PGconn *conn;
    PGresult *result;
} PGEventResultCreate;




PGEVT_RESULTCREATEイベントが受け取られた時、evtInfoポインタはPGEventResultCreate *にキャストされなければなりません。
connは結果を生成するために使われた接続です。
これは、結果と関連しなければならないすべてのinstanceDataを初期化するために、理想的な場所です。
イベントプロシージャが失敗する（ゼロが返される）と、そのイベントプロシージャは結果の残りの存在期間中無視されます。
つまり、この結果またはそこからコピーされた結果に対して、PGEVT_RESULTCOPYまたはPGEVT_RESULTDESTROYイベントを受け取りません。
      

	PGEVT_RESULTCOPY
	

結果コピーイベントはPQcopyResultの応答として発行されます。
このイベントはコピーが完了した後にのみ発行されます。
元の結果に対するPGEVT_RESULTCREATEもしくはPGEVT_RESULTCOPYイベントを成功裏に処理したイベントプロシージャのみ、PGEVT_RESULTCOPYイベントを受け取ります。



typedef struct
{
    const PGresult *src;
    PGresult *dest;
} PGEventResultCopy;




PGEVT_RESULTCOPYイベントが受け取られた時、evtInfoポインタはPGEventResultCopy *にキャストされなければなりません。
srcは結果のコピー元で、dest結果はコピー先です。
このイベントはinstanceDataのディープコピーを提供するために使用されます。
PQcopyResultではこれを行うことができないためです。
もしイベントプロシージャが失敗する（ゼロが返される）と、そのイベントプロシージャは新しい結果の残りの存在期間中無視されます。
つまり、その結果またはそこからコピーされた結果のPGEVT_RESULTCOPYまたはPGEVT_RESULTDESTROYイベントを受け取りません。
      

	PGEVT_RESULTDESTROY
	

結果破棄イベントはPQclearに対応して発行されます。
libpqはこのメモリを管理する機能がありませんので、そのイベントデータを的確に消去するのはイベントプロシージャの責任です。
消去の失敗はメモリリークに通じます。



typedef struct
{
    PGresult *result;
} PGEventResultDestroy;




PGEVT_RESULTDESTROYが受け取られた時、evtInfoポインタはPGEventResultDestroy *にキャストされなければなりません。
このイベントはPQclearがその他の消去を行う以前に起動されなければなりません。
イベントプロシージャの戻り値は、PQclearから失敗を示唆する方法がないので無視されます。
同時に、イベントプロシージャの失敗が不要なメモリ消去処理を中止してはなりません。
      




イベントコールバックプロシージャ



	PGEventProc
	

PGEventProcはイベントプロシージャへのポインタに対するtypedefです。
つまり、libpqからイベントを受け取るユーザコールバック関数です。
イベントプロシージャのシグネチャは以下でなければなりません。



int eventproc(PGEventId evtId, void *evtInfo, void *passThrough)




evtIdパラメータはどのPGEVTイベントが発生したかを示します。
evtInfoポインタは、イベントに対する追加情報を入手するため適切な構造体型にキャストされなければなりません。
passThroughパラメータは、イベントプロシージャが登録された時、PQregisterEventProcに提供されるポインタです。
関数は成功した場合非ゼロを、失敗した場合ゼロを返さなければなりません。
      


特定のイベントプロシージャは任意のPGconnにおいて一回だけ登録できます。
これは、プロシージャのアドレスが関連するインスタンスデータを特定する検索キーとして用いられるからです。
      
注意


Windowsにおいて、関数は２つの異なるアドレスを持つことができます。
外部から可視のDLLと内部から可視のDLLです。
libpqのイベントプロシージャ関数ではこれらのアドレスのうちの１つだけが使用されることに注意してください。
さもないと、混乱が起きます。
正常に機能するコードを書く最も単純な規則は、イベントプロシージャがstaticとして宣言されることを確実にすることです。
もし、プロシージャのアドレスがそれ自身のファイルの外部から有効とならなければならない場合、アドレスを返すため別の関数を公開します。
       





イベントサポート関数



	PQregisterEventProc
	

libpqでイベントコールバックプロシージャを登録します。



int PQregisterEventProc(PGconn *conn, PGEventProc proc,
                        const char *name, void *passThrough);


      


そのイベントを取得したいそれぞれのPGconnで１回イベントプロシージャは登録されなければなりません。
一つの接続に登録できるイベントプロシージャの数には、メモリ以外の制限はありません。
関数は成功した場合非ゼロ、失敗の場合ゼロを返します。
      


libpqイベントが発行されたときproc引数が呼ばれます。
そのメモリアドレスはinstanceDataを検索するのにも使用されます。
name引数はエラーメッセージ内でイベントプロシージャを参照するために使用されます。
この値はNULLもしくは空文字列であってはなりません。
このname文字列はPGconnにコピーされますので、渡されたものは長寿命である必要がありません。
passThroughポインタはイベントが発生した時はいつでもprocに渡されます。
この引数はNULLであっても構いません。
      

	PQsetInstanceData
	

procプロシージャに対するconn接続のinstanceDataをdataに設定します。
成功の場合非ゼロ、失敗の場合ゼロが返ります。
（connでprocが正しく登録されていない場合のみ失敗する可能性があります。）



int PQsetInstanceData(PGconn *conn, PGEventProc proc, void *data);


      

	PQinstanceData
	

procプロシージャに関連したconn接続のinstanceData、または存在しなければNULLを返します。



void *PQinstanceData(const PGconn *conn, PGEventProc proc);


      

	PQresultSetInstanceData
	

procに対する結果のinstanceDataをdataに設定します。
成功の場合非ゼロ、失敗の場合ゼロが返ります。
（結果でproc正しく登録されていない場合のみ失敗する可能性があります。）



int PQresultSetInstanceData(PGresult *res, PGEventProc proc, void *data);


      


dataで示された領域は、PQresultAllocを使って割り当てたのでない限り、PQresultMemorySizeでは考慮されないことに注意してください。
(結果を破棄する時に、領域を明示的に解放する必要がなくなりますので、PQresultAllocを使って割り当てるのがお勧めです。)
      

	PQresultInstanceData
	

procに関連した結果のinstanceData、または存在しなければNULLを返します。



void *PQresultInstanceData(const PGresult *res, PGEventProc proc);


      




イベント事例





以下にlibpq接続と結果に関連したプライベートデータを管理する例の大枠を示します。
   



/* libpqイベントに必要なヘッダ（覚書：libpq-fe.hのインクルード） */
#include <libpq-events.h>


/* instanceData */
typedef struct
{
    int n;
    char *str;
} mydata;

/* PGEventProc */
static int myEventProc(PGEventId evtId, void *evtInfo, void *passThrough);

int
main(void)
{
    mydata *data;
    PGresult *res;
    PGconn *conn =
        PQconnectdb("dbname=postgres options=-csearch_path=");

    if (PQstatus(conn) != CONNECTION_OK)
    {
        /* PQerrorMessage's result includes a trailing newline */
        fprintf(stderr, "%s", PQerrorMessage(conn));
        PQfinish(conn);
        return 1;
    }


    /* イベントを受け取るべきすべての接続で１回呼ばれる。
     * myEventProcにPGEVT_REGISTERを送る。
     */
    if (!PQregisterEventProc(conn, myEventProc, "mydata_proc", NULL))
    {
        fprintf(stderr, "Cannot register PGEventProc\n");
        PQfinish(conn);
        return 1;
    }


    /* conn instanceDataが有効 */
    data = PQinstanceData(conn, myEventProc);


    /* myEventProcにPGEVT_RESULTCREATEを送る */
    res = PQexec(conn, "SELECT 1 + 1");


    /* 結果 instanceDataが有効 */
    data = PQresultInstanceData(res, myEventProc);


    /* PG_COPYRES_EVENTSが使われた場合、PGEVT_RESULTCOPYをmyEventProcに送る */
    res_copy = PQcopyResult(res, PG_COPYRES_TUPLES | PG_COPYRES_EVENTS);


    /* PQcopyResult呼び出しの過程でPG_COPYRES_EVENTSが使用された場合、
     * 結果 instanceDataが有効
     */
    data = PQresultInstanceData(res_copy, myEventProc);


    /* 双方のclearがPGEVT_RESULTDESTROYをmyEventProcに送る */
    PQclear(res);
    PQclear(res_copy);


    /* PGEVT_CONNDESTROYをmyEventProcに送る */
    PQfinish(conn);

    return 0;
}

static int
myEventProc(PGEventId evtId, void *evtInfo, void *passThrough)
{
    switch (evtId)
    {
        case PGEVT_REGISTER:
        {
            PGEventRegister *e = (PGEventRegister *)evtInfo;
            mydata *data = get_mydata(e->conn);


            /* アプリ特有のデータを接続に関連付ける */
            PQsetInstanceData(e->conn, myEventProc, data);
            break;
        }

        case PGEVT_CONNRESET:
        {
            PGEventConnReset *e = (PGEventConnReset *)evtInfo;
            mydata *data = PQinstanceData(e->conn, myEventProc);

            if (data)
              memset(data, 0, sizeof(mydata));
            break;
        }

        case PGEVT_CONNDESTROY:
        {
            PGEventConnDestroy *e = (PGEventConnDestroy *)evtInfo;
            mydata *data = PQinstanceData(e->conn, myEventProc);


            /* connが破棄されたのでインスタンスデータを解放 */
            if (data)
              free_mydata(data);
            break;
        }

        case PGEVT_RESULTCREATE:
        {
            PGEventResultCreate *e = (PGEventResultCreate *)evtInfo;
            mydata *conn_data = PQinstanceData(e->conn, myEventProc);
            mydata *res_data = dup_mydata(conn_data);


            /* アプリ特有のデータを結果と（connから複写して）関連付ける */
            PQresultSetInstanceData(e->result, myEventProc, res_data);
            break;
        }

        case PGEVT_RESULTCOPY:
        {
            PGEventResultCopy *e = (PGEventResultCopy *)evtInfo;
            mydata *src_data = PQresultInstanceData(e->src, myEventProc);
            mydata *dest_data = dup_mydata(src_data);


            /* アプリ特有のデータを結果と（結果から複写して）関連付ける */
            PQresultSetInstanceData(e->dest, myEventProc, dest_data);
            break;
        }

        case PGEVT_RESULTDESTROY:
        {
            PGEventResultDestroy *e = (PGEventResultDestroy *)evtInfo;
            mydata *data = PQresultInstanceData(e->result, myEventProc);


            /* 結果が破棄されたためインスタンスデータを解放 */
            if (data)
              free_mydata(data);
            break;
        }


        /* 未知のイベント識別子。単にtrueを返す */
        default:
            break;
    }


    return true; /* イベント処理成功 */
}




環境変数





以下の環境変数を使用して、呼び出し側のプログラムで直接値を指定しなかった場合の接続パラメータのデフォルト値を選ぶことができます。
この値は、PQconnectdb、PQsetdbLoginおよびPQsetdbで使用されます。
例えば、簡単なクライアントアプリケーションでは、データベース接続情報を直接プログラムに記述しない方が便利です。

   
	
      

PGHOSTはhost接続パラメータと同様に動作します。
     

	
      

PGSSLNEGOTIATIONはsslnegotiation接続パラメータと同様に動作します。
     

	
      

PGHOSTADDRはhostaddr接続パラメータと同様に動作します。
PGHOSTの代わりに設定して、または、PGHOSTに追加して、DNS検索に要するオーバーヘッドをなくすことができます。
     

	
      

PGPORTはport接続パラメータと同様に動作します。
     

	
      

PGDATABASEはdbname接続パラメータと同様に動作します。
      

	
      

PGUSERはuser接続パラメータと同様に動作します。
     

	
      

PGPASSWORDはpassword接続パラメータと同様に動作します。
この環境変数は、一部のオペレーティングシステムではroot以外のユーザがpsコマンド経由で環境変数を見ることができるなど、セキュリティ上の理由から現在では推奨されていません。
代わりにパスワードファイル(「パスワードファイル」を参照してください)を使用することを検討してください。
     

	
      

PGPASSFILEはpassfile接続パラメータと同様に動作します。
     

	
      

PGREQUIREAUTHはrequire_auth接続パラメータと同様に動作します。
     

	
      

 PGCHANNELBINDINGはchannel_binding接続パラメータと同様に動作します。
     

	
      

PGSERVICEはservice接続パラメータと同様に動作します。
     

	
      

PGSERVICEFILEは、ユーザ毎の接続サービスファイルを指定します(「接続サービスファイル」参照)。
デフォルトは~/.pg_service.conf、Microsoft Windowsでは%APPDATA%\postgresql\.pg_service.confです。
     

	
      

PGOPTIONSはoptions接続パラメータと同様に動作します。
     

	
      

PGAPPNAMEはapplication_name接続パラメータと同様に動作します。
     

	
      

PGSSLMODEはsslmode接続パラメータと同様に動作します。
     

	
      

PGREQUIRESSLはrequiressl接続パラメータと同様に動作します。
この環境変数はPGSSLMODE変数があるため、廃止予定となっています。
両方の変数を設定すると、PGREQUIRESSLの設定は無視されます。
     

	
      

PGSSLCOMPRESSIONはsslcompression接続パラメータと同様に動作します。
     

	
      

PGSSLCERTはsslcert接続パラメータと同様に動作します。
     

	
      

PGSSLKEYはsslkey接続パラメータと同様に動作します。
     

	
      

PGSSLCERTMODEはsslcertmode接続パラメータと同様に動作します。
     

	
      

PGSSLROOTCERTはsslrootcert接続パラメータと同様に動作します。
     

	
      

PGSSLCRLはsslcrl接続パラメータと同様に動作します。
     

	
      

PGSSLCRLDIRは、sslcrldir接続パラメータと同様に動作します。
     

	
      

PGSSLSNIはsslsni接続パラメータと同様に動作します。
     

	
      

PGREQUIREPEERはrequirepeer接続パラメータと同様に動作します。
     

	
      

 PGSSLMINPROTOCOLVERSIONはssl_min_protocol_version接続パラメータと同様に動作します。
     

	
      

PGSSLMAXPROTOCOLVERSIONはssl_max_protocol_version接続パラメータと同様に動作します。
     

	
      

PGGSSENCMODEはgssencmode接続パラメータと同様に動作します。
     

	
      

PGKRBSRVNAMEはkrbsrvname接続パラメータと同様に動作します。
     

	
      

PGGSSLIBはgsslib接続パラメータと同様に動作します。
     

	
      

PGGSSDELEGATIONはgssdelegation接続パラメータと同様に動作します。
     

	
      

PGCONNECT_TIMEOUTはconnect_timeout接続パラメータと同様に動作します。
     

	
      

PGCLIENTENCODINGはclient_encoding接続パラメータと同様に動作します。
     

	
      

PGTARGETSESSIONATTRSはtarget_session_attrs接続パラメータと同様に動作します。
     

	
      

PGLOADBALANCEHOSTSはload_balance_hosts接続パラメータと同様に動作します。
     

	
      

PGMINPROTOCOLVERSIONはmin_protocol_version接続パラメータと同様に動作します。
     

	
      

PGMAXPROTOCOLVERSIONはmax_protocol_version接続パラメータと同様に動作します。
     




  


以下の環境変数を使用して、PostgreSQL™セッション毎のデフォルト動作を指定することができます。
(また、ユーザ毎、もしくは、データベース毎を単位としたデフォルト動作の設定方法についてはALTER ROLE(7)およびALTER DATABASE(7)コマンドを参照してください。)

   
	
      

PGDATESTYLEはデフォルトの日付/時刻表現形式を設定します。
(SET datestyle TO ...と等価です。)
     

	
      

PGTZはデフォルトの時間帯を設定します。
(SET timezone TO ...と等価です。)
     

	
      

PGGEQOは遺伝的問い合わせオプティマイザのデフォルトのモードを設定します。
(SET geqo TO ...と等価です。)
     






これらの環境変数の正確な値については、SET(7) SQLコマンドを参照してください。
  


以下の環境変数は、libpqの内部動作を決定します。
これらはコンパイル時のデフォルトを上書きします。

   
	
      

PGSYSCONFDIRはpg_service.confファイルがあるディレクトリを設定します。
また今後のバージョンでは他のシステム全体の設定ファイルとなるかもしれません。
     

	
      

PGLOCALEDIRはメッセージローカライゼーション用のlocaleファイルがあるディレクトリを設定します。
     




  

パスワードファイル





ユーザのホームディレクトリの.pgpassは、接続にパスワードが必要な場合（かつ、他に指定されたパスワードが無かった場合）に使用するパスワードを格納するファイルです。
Unixシステムでは、このディレクトリはHOME環境変数で指定でき、定義されていない場合は実効ユーザのホームディレクトリが指定されます。
Microsoft Windowsでは、このファイルの名前は%APPDATA%\postgresql\pgpass.conf（ここで%APPDATA%はユーザのプロファイル内のアプリケーションデータディレクトリ）です。
他に、接続パラメータpassfileを利用するか、環境変数PGPASSFILEで、パスワードファイルを指定できます。
  


このファイル内の行の書式は次の通りです。


hostname:port:database:username:password



（このファイルでは、上のような行をコピーし、その先頭に#をつけて忘れないようにコメントとして残すことができます。）
先頭の4フィールドはそれぞれリテラル値にすることも、あるいはすべてに一致する*を使用することもできます。
最初に現在の接続パラメータと一致した行のパスワードフィールドが使用されます。
(従って、ワイルドカードを使用する場合は、始めの方により具体的な項目を入力してください。)
項目内に:または\を含める必要があれば、\でこれらの文字をエスケープする必要があります。
ホスト名フィールドは、host接続パラメータか、もし指定されていれば、hostaddrパラメータと一致します。
どちらも指定されていなければ、ホスト名localhostが検索されます。
接続がUnixドメインソケット接続で、hostパラメータがlibpqのデフォルトソケットディレクトリパスに一致した場合も、ホスト名localhostが検索されます。
スタンバイサーバでは、replicationという名称のデータベースは、プライマリサーバとの間でなされるストリーミングレプリケーション用の接続に一致します。
同一のクラスタ内のすべてのデータベースに対するパスワードは同じものですので、データベースフィールドの有用性は限定的なものです。
  


Unixシステムにおいて、パスワードファイルの権限はグループ、他者へのアクセスをすべて拒否しなければなりません。
これはchmod 0600 ~/.pgpassといったコマンドによって行います。
権限をこれよりも緩くすると、このファイルは無視されます。
Microsoft Windowsにおいては、このファイルが安全なディレクトリに格納されていることを前提としていますので、特別に行われる権限の検査はありません。
  

接続サービスファイル





接続サービスファイルにより、libpq接続パラメータをひとつのサービス名に関連付けることができます。
サービス名は、libpq接続文字列のserviceキーワードを使用して指定することができ、関連付けられた設定が使用されます。
これにより、libpqを使用するアプリケーションの再コンパイルをしなくても、接続パラメータを変更できます。
サービス名はPGSERVICE環境変数を使用して指定することもできます。
  


サービス名は、ユーザ単位のサービスファイルまたはシステム全体のファイルのいずれかで定義できます。
ユーザとシステムファイルの両方に同じサービス名が存在する場合は、ユーザファイルが優先されます。
デフォルトでは、ユーザ単位のサービスファイルは~/.pg_service.confにあります。
Microsoft Windowsでは、%APPDATA%\postgresql\.pg_service.confという名前です（%APPDATA%は、ユーザプロファイル内のApplication Dataサブディレクトリです）。
これは環境変数PGSERVICEFILEを設定することで上書きできます。
システム全体のファイルはpg_service.confという名前です。
デフォルトでは、PostgreSQL™インストールのetcディレクトリに検索されます（このディレクトリを正確に識別するにはpg_config--sysconfdirを使用します）。
環境変数PGSYSCONFDIRを設定することで、別のディレクトリを指定できますが、異なるファイル名は指定できません。
  


どちらのサービスファイルも「INIファイル」書式を使用します。
セクション名がサービス名となり、パラメータが接続パラメータです。
「パラメータキーワード」のリストを参照してください。
以下に例を示します。


# comment
[mydb]
host=somehost
port=5433
user=admin



例となるファイルがPostgreSQL™インストールのshare/pg_service.conf.sampleにあります。
  


サービスファイルから取得された接続パラメータは、他のソースから取得されたパラメータと組み合わされます。
サービスファイルの設定は、対応する環境変数を上書きし、接続文字列で直接指定された値によって上書きすることができます。
たとえば、上記のサービスファイルを使用すると、接続文字列service=mydb port=5434は、hostsomehost、port5434、useradmin、および環境変数または組み込みデフォルトで設定されたその他のパラメータを使用します。
  

接続パラメータのLDAP検索





libpqがLDAPサポート（configure時の--with-ldapオプション）付きでコンパイルされている場合、中央サーバからLDAPを通してhostやdbnameなどの接続オプションを取り出すことができます。
この利点は、データベースの接続パラメータが変わった場合に、すべてのクライアントマシンで接続情報を更新しなくても済む点です。
  


LDAP接続パラメータ検索は、pg_service.confという接続サービスファイル（「接続サービスファイル」を参照）を使用します。
pg_service.conf内のldap://から始まる行は、LDAP URLとして認識され、LDAP問い合わせが実行されることを示します。
その結果は、keyword = valueという組み合わせのリストでなければなりません。
これらが接続用オプションの設定に使用されます。
このURLはRFC 1959に従ったもので、以下のような形式でなければなりません。


ldap://[hostname[:port]]/search_base?attribute?search_scope?filter



ここで、hostnameのデフォルトはlocalhost、portのデフォルトは389です。
  


pg_service.confの処理はLDAP検索が成功した時に終わります。
しかし、もしLDAPサーバへのアクセスができなかった場合は継続します。
これはアクセスに失敗した時に、異なるLDAPサーバを指し示す他のLDAP行や以前からのkeyword = valueの組み合わせ、デフォルトの接続オプションを参照する予備機能を提供します。
この場合にエラーメッセージを受け取りたい場合は、LDAP URL行の後に文法的に不正な行を記載してください。
  


LDIFファイルとして作成されたLDAP項目の例を以下に示します。


version:1
dn:cn=mydatabase,dc=mycompany,dc=com
changetype:add
objectclass:top
objectclass:device
cn:mydatabase
description:host=dbserver.mycompany.com
description:port=5439
description:dbname=mydb
description:user=mydb_user
description:sslmode=require



これは、以下のようなLDAP URLから得られます。


ldap://ldap.mycompany.com/dc=mycompany,dc=com?description?one?(cn=mydatabase)


  


また、LDAP検索と通常のサービスファイル項目とを混在させることもできます。
pg_service.confの一節について完全な例を以下に示します。


# only host and port are stored in LDAP, specify dbname and user explicitly
[customerdb]
dbname=customer
user=appuser
ldap://ldap.acme.com/cn=dbserver,cn=hosts?pgconnectinfo?base?(objectclass=*)


  

SSLサポート





PostgreSQL™は、TLSプロトコルを使用して、セキュリティを高めるためにクライアントサーバ間の通信を暗号化するSSL接続の使用を元来サポートしています。
サーバ側のSSL機能についての詳細は「SSLによる安全なTCP/IP接続」を参照してください。
  


libpqはシステム全体に対するOpenSSL™設定ファイルを読み込みます。
デフォルトでは、ファイル名はopenssl.cnfで、openssl version -dで報告されるディレクトリに格納されています。
このデフォルトはOPENSSL_CONF環境変数に希望する設定ファイル名を設定することで変更することができます。
  
サーバ証明書のクライアント検証





デフォルトではPostgreSQL™はサーバ証明書の検証をまったく行いません。
これは、（例えば、DNSレコードを変更したり、もしくはサーバのIPアドレスを乗っ取ったりして）クライアントに知られずにサーバの身元をなりすませることを意味します。
なりすましを防止するには、クライアントは、トラストチェーン(chain of trust)を通じて、サーバの身元を検証できなければなりません。
トラストチェーンは、ルート（自己署名）認証局（CA）証明書をあるコンピュータに設置し、そのルート証明書によって署名されたリーフ証明書を他のコンピュータに設置することによって確立されます。
また、ルート証明書によって署名された「中間」証明書を使って、リーフ証明書に署名することによっても可能です。
  


クライアントがサーバの身元を検証するためには、ルート証明書をクライアントに設置し、そのルート証明書によって署名されたリーフ証明書をサーバに設置します。
サーバがクライアントの身元を検証するためには、ルート証明書をサーバに設置し、そのルート証明書によって署名されたリーフ証明書をクライアントに設置します。
一つ以上の中間証明書（通常リーフ証明書とともに格納されます）を使って、リーフ証明書をルート証明書につなげることもできます。
  


トラストチェーンがひとたび確立されれば、クライアントがサーバから送信されたリーフ証明書を検証する二つの方法があります。
パラメータsslmodeがverify-caに設定されている場合、libpqはクライアントに格納されたルート証明書までの証明書連鎖を検査することで、サーバが信用に足るかを検証します。
sslmodeがverify-fullに設定されていると、libpqは同時にサーバホスト名が証明書のそれと一致するかを検証します。
SSL接続はサーバ証明書が検証されない場合失敗します。
安全性に慎重を期するほとんどのサーバ環境ではverify-fullを推奨します。
  


verify-fullモードでは、ホスト名を証明書のサブジェクト別名(Subject Alternative Name(SAN))属性と、あるいはdNSNameタイプのサブジェクト別名がないときはコモンネーム属性とマッチさせます。
証明書の名前属性がアスタリスク（*）で始まると、それはワイルドカードとして取り扱われ、ドット（.）を除くすべての文字とマッチします。
これは、証明書がサブドメインとマッチしないことを意味します。
もし接続がホスト名ではなくIPアドレスを使用するのであれば、タイプiPAddressまたはdNSNameのSANに対してIPアドレスが照合されます(DNS検索は実行されません)。iPAddressSANが存在せず、マッチングdNSNameSANが存在しない場合、ホストIPアドレスはコモンネーム属性に対して照合されます。
  
注記


PostgreSQLの以前のバージョンとの後方互換性のために、ホストIPアドレスはRFC 6125とは異なる方法で検証されます。
ホストIPアドレスはDNsNameSANおよびIpAddressSANに対して常に照合され、関連するSANが存在しない場合はCommon Name属性に対して照合できます。
   



サーバ証明書の検証を可能にするには、1つ以上のルート証明書を、ユーザのホームディレクトリの~/.postgresql/root.crtファイルに置かなければなりません。
（Microsoft Windowsの場合、このファイルの名前は%APPDATA%\postgresql\root.crtです。）
サーバより送信された証明書連鎖から、クライアントに格納されたルート証明書にリンクするために（中間証明書が）必要なら、中間証明書もそのファイルに追加する必要があります。
  


~/.postgresql/root.crlファイル（Microsoft Windowsでは%APPDATA%\postgresql\root.crl）が存在する場合、証明書失効リスト（CRL）の項目もまた検査されます。
  


ルート証明書ファイルとCRLの格納場所を接続パラメータsslrootcertとsslcrl、もしくは環境変数PGSSLROOTCERTとPGSSLCRLで変更することができます。
sslcrldirまたは環境変数PGSSLCRLDIRを使用して、CRLファイルを含むディレクトリを指定することもできます。
  
注記


より古いバージョンのPostgreSQLとの後方互換性のために、ルートCAファイルが存在する場合、sslmode=requireの動作はverify-caの場合と同じになっています。
つまり、サーバ証明書がCAに対して検証されます。
この動作に依存することは勧めません。
また証明書の検証を必要とするアプリケーションは常にverify-caまたはverify-fullを使用すべきです。
   


クライアント証明書





サーバが、クライアントのリーフ証明書を要求することによってクライアントの身元を検証しようとする場合、libpqはユーザのホームディレクトリにある~/.postgresql/postgresql.crtファイルに格納された証明書を送信します。
証明書は、サーバが信頼するルート証明書につながらなければなりません。
対応する~/.postgresql/postgresql.key秘密キーファイルも存在しなければなりません。
秘密キーファイルは他者やグループからのアクセスを許可してはいけません。
Microsoft Windowsでは、このファイルの名前はそれぞれ%APPDATA%\postgresql\postgresql.crtと%APPDATA%\postgresql\postgresql.keyです。
証明書とキーファイルの格納場所はsslcertおよびsslkey接続パラメータ、またはPGSSLCERTおよびPGSSLKEY環境変数で上書きされます。
  


Unixシステムにおいて、秘密鍵ファイル権限はグループ、他者へのアクセスをすべて拒否しなければなりません。
これはchmod 0600~/.postgresql/postgresql.keyといったコマンドによって行います。
あるいは、このファイルをrootが所有し、グループの読み取りアクセス権（つまり0640のアクセス権）を持つこともできます。
このセットアップは、証明書と鍵ファイルがオペレーティングシステムによって管理されているインストールを対象としています。
libpqのユーザは、これらの証明書と鍵ファイルへのアクセス権を持つグループのメンバになる必要があります。
（Microsoft Windowsにおいては、%APPDATA%\postgresqlディレクトリが安全であると考えられるため、ファイルの権限の検査は行われません。）
  


postgresql.crt中の最初の証明書は、クライアント証明書でなければなりません。
クライアントの秘密鍵と一致していなければならないからです。
オプションで、ファイルに「中間」証明書を追加することができます。
そうすることによって、サーバ上に中間証明書（ssl_ca_file）の格納が不要になります。
  


証明書とキーはPEMまたはASN.1 DER形式です。
  


キーは平文テキストで、あるいは、OpenSSL™で対応しているAES-128など任意のアルゴリズムを使ってパスフレーズで暗号化して、格納できます。
キーが暗号化されて格納された場合、パスフレーズはsslpassword接続オプションで供給してもよいです。
暗号化されたキーが供給されて、かつ、sslpasswordが無いか空欄の場合、TTYが利用可能であればパスワードはOpenSSL™によりEnter PEM pass phrase:プロンプトで対話的に入力が要求されます。
アプリケーションはクライアント証明書のプロンプトとsslpasswordパラメータの操作を、自身のキーパスワードコールバックを供給することで置き換えできます。
PQsetSSLKeyPassHook_OpenSSLを参照してください。
  


証明書の作成手順については、「証明書の作成」をご覧ください。
  

異なるモードで提供される保護





sslmodeパラメータ値を変更することで、異なったレベルの保護を提供します。
SSLは以下の３種類の攻撃に対する保護を提供することができます。

   
	盗聴
	クライアント・サーバ間のネットワークトラフィックを第三者が監視することができれば、（ユーザ名とパスワードを含め）双方の接続情報と通過するデータを読み取ることができます。
SSLはこれを防止するために暗号を使用します。
      

	中間者攻撃（MITM）
	データがクライアント・サーバ間で渡されている時に、第三者がそのデータを変更できれば、サーバを装うことができ、従ってたとえ暗号化されていてもデータを理解し変更することができます。
第三者はそこで、この攻撃を検出不可能にする接続情報とデータを元のサーバに送ることができます。
これを行う共通した媒介はDNSポイズニングとアドレス乗っ取りを含み、それに従ってクライアントは意図したサーバではなく異なったサーバに誘導されます。
同時に、このことを成し遂げるいくつかの異なった攻撃も存在します。
SSLはクライアントに対しサーバを認証することで、この防止に証明書検証を使用します。
      

	なりすまし
	第三者が認定されたクライアントを装うことができれば、それはアクセスしてはならないデータに簡単にアクセス可能になります。
典型的にこれは心もとないパスワード管理から生じます。
SSLは有効な証明書の所持者のみサーバにアクセスできることを確実にすることで、この防止策としてクライアント証明書を使用します。
      




  


SSLで信頼できるとされる接続では、SSLの使用を接続確立前にクライアントとサーバの双方において設定されなければなりません。
サーバのみに構成されると、クライアントはサーバが高度なセキュリティを必要とすることが判る以前に、（例えばパスワードのような）機密事項を扱う情報を結局送ることになります。
libpqにおいて、sslmodeパラメータをverify-fullまたはverify-caに設定し、そして対象を検証するためルート証明書をシステムに提供することで、安全な接続を確実に行うことができます。
これは暗号化されたweb閲覧に対するhttps URLの使用とよく似ています。
  


一度サーバが認証されると、クライアントは機密事項を扱うデータを送ることができます。
この意味は、これまでクライアントは認証に証明書が使われているかどうかを知る必要がなく、サーバ構成においてのみこのことを指定しても安全だと言うことです。
  


すべてのSSLオプションでは暗号化の形式と鍵交換といったオーバーヘッドがかかります。
このため性能と安全性との間で決定されるべきトレードオフがあります。
表32.1「SSLモードの説明」は異なるsslmode値が防御する危険性と、安全性とオーバーヘッドに対する声明を示したものです。
  
表32.1 SSLモードの説明
	sslmode	盗聴防止	MITM防止	声明
	disable	いいえ	いいえ	セキュリティはどうでもよく、暗号化のオーバーヘッドを払いたくない
      
	allow	たぶん	いいえ	セキュリティはどうでもよいが、サーバがそれを強く要求するのであれば暗号化のオーバーヘッドを払ってもよい
      
	prefer	たぶん	いいえ	セキュリティはどうでもよいが、サーバがそれをサポートするのであれば暗号化のオーバーヘッドを払ってもよい
      
	require	はい	いいえ	データを暗号化して欲しい。そしてオーバーヘッドも受け入れる。意図したサーバに常に接続することをネットワークが確実にしてくれると信用する
      
	verify-ca	はい	CAの方針に依存	データを暗号化して欲しい。そしてオーバーヘッドも受け入れる。信頼するサーバに確実に接続したい
      
	verify-full	はい	はい	データを暗号化して欲しい。そしてオーバーヘッドも受け入れる。信頼するサーバに接続すること、そのサーバが指定したものであることを確実にしたい
       





verify-caとverify-fullの差異はルートCAの規定に依存します。
公的なCAが使用されるとき、verify-caはそのCAで他の誰かが登録したかもしれないサーバへの接続を許可します。
この場合、verify-fullが常に使用されなければなりません。
独自CAが使用されるとき、または自己署名証明書であったとしてもverify-caは十分な防御策を提供します。
  


sslmodeのデフォルト値はpreferです。
表で示したように、これはセキュリティの視点では意味がなく、可能であれば性能上のオーバーヘッドを保証するだけです。
これは後方互換性を提供するためのみにデフォルトとなっているもので、安全性確保の観点からは推奨されません。
  

SSLクライアントファイル使用方法





表32.2「libpq/クライアントにおけるSSLファイルの使用方法」にクライアントにおけるSSL設定に関連するファイルをまとめます。
  
表32.2 libpq/クライアントにおけるSSLファイルの使用方法
	ファイル	内容	効果
	~/.postgresql/postgresql.crt	クライアント証明書	サーバにより要求されます
	~/.postgresql/postgresql.key	クライアントの秘密キー	所有者により送信されるクライアント証明書を証明します。証明書の所有者が信頼できることを意味していません。
	~/.postgresql/root.crt	信頼できる認証局	サーバ証明書が信頼できる認証局により署名されたか検査します。
	~/.postgresql/root.crl	認証局により失効された証明書	サーバ証明書はこのリストにあってはいけません




SSLライブラリの初期化





OpenSSL™バージョン1.0.2以前を使用する古いバージョンのPostgreSQL™との互換性が必要なアプリケーションは、SSLライブラリを使用する前にSSLライブラリを初期化する必要があります。
libsslとlibcryptoの両方またはいずれか一方のライブラリを初期化するアプリケーションは、PQinitOpenSSLを呼び出して、libsslとlibcryptoの両方またはいずれか一方のライブラリがアプリケーションによって初期化されたことをlibpqに伝える必要があります。
これにより、libpqはこれらのライブラリを初期化しなくなります。
ただし、OpenSSL™バージョン1.1.0以降を使用している場合は、重複の初期化に問題がなくなるため、これは不要です。
  


使用方法の詳細については、対象とするPostgreSQL™のバージョンの文書を参照してください。
  

   
	PQinitOpenSSL
	

アプリケーションがどのセキュリティライブラリを初期化するか選択することができます。


void PQinitOpenSSL(int do_ssl, int do_crypto);


      


この関数は廃止予定であり、後方互換性のためにのみ存在し、何もしません。
      

	PQinitSSL
	

アプリケーションがどのセキュリティライブラリを初期化するか選択することができます。


void PQinitSSL(int do_ssl);


      


この関数はPQinitOpenSSL(do_ssl, do_ssl)と同等です。
この関数は廃止予定であり、後方互換性のためにのみ存在し、何もしません。
      


PQinitSSLとPQinitOpenSSLは下位互換性のために保守されていますが、PostgreSQL™ 18以降では必要なくなりました。
PostgreSQL™ 8.0以降、PQinitSSLは含まれていますが、PQinitOpenSSLはPostgreSQL™ 8.4で追加されました。
従って、旧バージョンのlibpqで動かす必要があるアプリケーションではPQinitSSLの方が好ましいかもしれません。
      




  


OAuthサポート





libpqは、RFC 8628に記載されているOAuth v2デバイス認証クライアントフローのサポートを、オプションのモジュールとして実装しています。
組み込みフローとしてデバイス認証のサポートを有効にする方法については、インストール文書を参照してください。
  


サポートが有効化されておりオプションのモジュールがインストールされている場合、認証中にサーバがベアラトークンを要求すると、libpqはデフォルトで組み込みフローを使用します。
このフローは、たとえばSSH経由でクライアントを実行している場合など、クライアントアプリケーションを実行しているシステムに使用可能なWebブラウザがない場合でも利用できます。
  


組み込みフローでは、デフォルトでアクセス先のURLとそこで入力するユーザコードを表示します。


$ psql 'dbname=postgres oauth_issuer=https://example.com oauth_client_id=...'
Visit https://example.com/device and enter the code: ABCD-EFGH



（このプロンプトはカスタマイズされているかもしれません。）
ユーザがOAuthプロバイダにログインすると、OAuthプロバイダはlibpqとサーバがユーザの代わりにアクションを実行することを許可するかどうかを尋ねます。
続行する前に、表示されたURLと権限を注意深く確認し、期待通りであることを確認することをお勧めします。
信頼できない第三者に許可を与えてはいけません。
  


クライアントアプリケーションは、独自のフローを実装してアプリケーションとの対話や統合をカスタマイズできます。
libpqに独自のフローを追加する方法の詳細については、「認証データフック」を参照してください。
  


OAuthクライアントフローを使用できるようにするには、接続文字列に少なくともoauth_issuerとoauth_client_idが含まれている必要があります。
（これらの設定は、利用者の組織のOAuthプロバイダによって決定されます。）
さらに組み込みフローでは、OAuth認証サーバがデバイス認証エンドポイントを公開する必要があります。
  
注記


組み込みデバイス認証フローは、現在Windowsではサポートされていません。
カスタムクライアントフローは引き続き実装できます。
   

認証データフック





OAuthフローの動作は、次のフックAPIを使用するクライアントにより変更または置き換えることができます。
    
	PQsetAuthDataHook
	

PGauthDataHookを設定し、libpqによるOAuthクライアントフローの1つ以上の処理を上書きします。


void PQsetAuthDataHook(PQauthDataHook_type hook);



hookがNULLの場合、デフォルトのハンドラが再インストールされます。
それ以外の場合、アプリケーションは次のシグネチャを持つコールバック関数へのポインタを渡します。


int hook_fn(PGauthData type, PGconn *conn, void *data);



これは、アプリケーションでアクションが必要なときにlibpqが呼び出すものです。
typeはリクエストの種類を示し、connは認証中の接続ハンドルを示し、dataはリクエスト固有のメタデータを指します。
このポインタの内容はtypeによって決まります。
サポートされている一覧については「フック型」を参照してください。
       


フックをつなぎ合わせることで、連携動作や代替動作を実現できます。
一般的に、フックの実装では、入力のtype（および、場合によってはリクエストのメタデータや使用中のconnの設定）を調べて、特定の認証データを処理するかどうかを判断する必要があります。
処理しない場合は、チェーン内の前のフック（PQgetAuthDataHook経由で取得可能）に委任する必要があります。
       


0より大きい整数を返すと、成功していることを示します。
負の整数を返すとエラー状態であることを示しており、接続試行が中止されます。
（デフォルトの実装では0の値は予約されています。）
       

	PQgetAuthDataHook
	

現在のPGauthDataHookの値を取得します。


PQauthDataHook_type PQgetAuthDataHook(void);



初期化時（PQsetAuthDataHookを最初に呼び出す前）には、この関数はPQdefaultAuthDataHookを返します。
       




   
フック型





次のPGauthData型とそれに対応するdata構造体が定義されています。
     
	
        PQAUTHDATA_PROMPT_OAUTH_DEVICE
        
       
	

組み込みデバイス認証クライアントフロー中の、デフォルトのユーザプロンプトを置き換えます。
dataはPGpromptOAuthDeviceのインスタンスを指しています。


typedef struct _PGpromptOAuthDevice
{

    const char *verification_uri;   /* アクセスする検証URI */
    const char *user_code;          /* 入力するユーザコード */
    const char *verification_uri_complete;  /* URIとコードのオプションの組み合わせ、
                                             * またはNULL */
    int         expires_in;         /* ユーザコードの有効期限が切れるまでの秒数 */
} PGpromptOAuthDevice;


        


libpqに含めることができるOAuthデバイス認証フローでは、エンドユーザがブラウザでURLにアクセスし、libpqがユーザに代わってサーバに接続することを許可するコードを入力する必要があります。
デフォルトのプロンプトは、標準エラーにverification_uriとuser_codeを出力するだけです。
代替の実装では、この情報をGUIなど好みの方法を使用して表示できます。
        


このコールバックは、組み込みデバイス認証フロー中にのみ呼び出されます。
アプリケーションがカスタムOAuthフローをインストールしている場合や、libpqが組み込みフローをサポートするようにビルドされていない場合、この認証データ型は使用されません。
        


非NULLのverification_uri_completeが提供されている場合は、テキスト以外の検証（QRコードの表示など）にも使用できます。
この場合でも、URLとユーザコードは引き続きエンドユーザに表示する必要があります。
これは、そのコードがプロバイダによって手動で確認されるため、またユーザがテキスト以外の方法を使用できない場合でもURLを使用して続行できるようにするためです。
詳細については、RFC 8628のセクション3.3.1を参照してください。
        

	
        PQAUTHDATA_OAUTH_BEARER_TOKEN
        
       
	

独自実装したフローを追加し、組み込みフローがインストールされている場合はそれを置き換えます。
フックは、ブロッキングなしで使用可能な場合は現在のユーザ/発行者/スコープの組み合わせのベアラトークンを直接返すか、それ以外の場合は非同期コールバックを設定してベアラトークンを取得する必要があります。
        


dataはPGoauthBearerRequestのインスタンスを指しています。
このインスタンスは実装側で入力する必要があります。


typedef struct PGoauthBearerRequest
{

    /* フックの入力（全ての呼び出しで一定） */
    const char *openid_configuration; /* OIDCディスカバリーURL */
    const char *scope;                /* 必要なスコープ、またはNULL */

    /* フックの出力 */

    /* カスタム非同期OAuthフローを実装するコールバック。 */
    PostgresPollingStatusType (*async) (PGconn *conn,
                                        struct PGoauthBearerRequest *request,
                                        SOCKTYPE *altsock);

    /* カスタム割り当てをクリーンアップするためのコールバック。 */
    void        (*cleanup) (PGconn *conn, struct PGoauthBearerRequest *request);

    char       *token;   /* 取得したベアラトークン */
    void       *user;    /* フックで定義される割り当てデータ */
} PGoauthBearerRequest;


        


libpqでは、このフックで2つの情報を提供しています。
openid_configurationには、認証サーバがサポートするフローを説明するOAuthディスカバリー文書のURLが含まれ、scopeには、サーバへのアクセスに必要なOAuthスコープの一覧（空の場合もあります）がスペースで区切られて含まれています。
どちらか一方または両方がNULLの場合は、情報が検出できなかったことを示します。
（この場合、実装側で事前に設定された他の知識を使用して要件を確立できる場合もあれば、失敗を選択する場合もあります。）
        


フックの最終出力はtokenであり、これは接続で使用できる有効なベアラトークンを指している必要があります。
（このトークンはoauth_issuerによって発行され、要求されたスコープを保持する必要があります。
そうしないと、サーバの検証モジュールによって接続が拒否されます。）
割り当てられたトークン文字列は、libpqが接続を終了するまで有効なままでなければなりません。
フックは、libpqが接続を必要としなくなったときに呼び出されるcleanupコールバックを設定する必要があります。
        


実装上フックの最初の呼び出し中にすぐにtokenを生成できない場合は、認証サーバとの非ブロッキング通信を処理するように非同期コールバックを設定する必要があります。
         [16]

これは、フックから戻るとすぐにフローを開始するために呼び出されます。
コールバックがブロッキングなしでこれ以上先に進めない場合は、*pgsocketに、処理が再開できるようになったときに読み取り/書き込みの準備完了とマークされるファイルディスクリプタを設定した後、PGRES_POLLING_READINGまたはPGRES_POLLING_WRITINGのいずれかを返す必要があります。
（その後、このディスクリプタはPQsocket()を介して最上位のポーリングループに提供されます。）
フローが完了したらtokenを設定した後にPGRES_POLLING_OKを返し、失敗した場合はPGRES_POLLING_FAILEDを返します。
        


実装によっては、asyncコールバックとcleanupコールバックの呼び出しをまたぐ情報に対し、追加のデータを格納したい場合があります。
userポインタはこの目的のために提供されています。
libpqはその内容に触れることはなく、アプリケーションは都合の良いときにこの追加のデータを使用できます。
（トークンのクリーンアップ中に割り当てを解放することを忘れないでください。）
        




    


デバッグと開発者用の設定





環境変数PGOAUTHDEBUG=UNSAFEを設定することで、「危険なデバッグモード」を有効にできます。
この機能は、ローカルでの開発とテストを容易にするためにのみ提供されています。
この機能は、本番システムでは実行したくないいくつかのことを実行します。

    
	

OAuthプロバイダの交換中に暗号化されていないHTTPを使用することを許可します
      

	

PGOAUTHCAFILE環境変数を使用して、システムの信頼するCAリストを完全に置き換えることができます
      

	

OAuthフロー中にHTTPトラフィック（いくつかの重要なシークレットを含む）を標準エラーに出力します
      

	

0秒の再試行間隔の使用を許可します。
これにより、クライアントはビジーループ状態になり、CPUを無意味に消費する可能性があります
      




   
警告


OAuthフロートラフィックの出力を第三者と共有しないでください。
クライアントやサーバを攻撃するために使用できるシークレットが含まれています。
    




[16] 

PQAUTHDATA_OAUTH_BEARER_TOKENフックコールバック中にブロッキング操作を実行すると、PQconnectPollなどの非ブロッキングな接続APIが妨害され、同時接続の進行が妨げられます。
PQconnectdbのように同期接続プリミティブのみを使用するアプリケーションでは、asyncコールバックを実装する代わりにフック中にトークンを同期的に取得できますが、一度に1つの接続に制限される必要があります。
          



スレッド化プログラムの振舞い





バージョン17では、libpqは常に再入可能でスレッドセーフです。
ただし、1つの制限として、2つのスレッドが同じPGconnオブジェクトを同時に操作することはできません。
特に、異なるスレッドから同じ接続オブジェクトを介して同時にコマンドを実行することはできません。（並行してコマンドを実行する必要がある場合は、複数の接続を使用してください。）
  


PGresultオブジェクトは生成後、読み込み専用であり、そのためスレッド間で自由に渡すことができます。
しかし「雑多な関数」や「イベントシステム」で説明するPGresultを変更する関数のいずれかを使用している場合、同一のPGresultに対する同時操作を防ぐことも、作成者の責任です。
  


以前のバージョンでは、libpqはコンパイラオプションに応じてスレッドサポート付きでコンパイルすることも、スレッドサポートなしでコンパイルすることもできました。
この関数はlibpqのスレッドセーフステータスを照会することができます。
  
	PQisthreadsafe
	

libpqライブラリのスレッドセーフ状態を返します。


int PQisthreadsafe();


     


libpqがスレッドセーフである場合は1を、そうでない場合は0を返します。
バージョン17以降では常に1を返します。
     





非推奨の関数、PQrequestCancelやPQoidStatusはスレッドセーフではありませんので、マルチスレッドプログラムでは使用してはなりません。
PQrequestCancelはPQcancelBlockingに置き換えられます。
PQoidStatusはPQoidValueに置き換えられます。
  


(libpqの内部に加えて)アプリケーション中でKerberosを利用している場合、Kerberos関数はスレッドセーフではありませんのでKerberos呼び出しの前後をロックする必要があるでしょう。
libpqとアプリケーション間のロック処理を協調させる方法としてlibpqのソースコードのPQregisterThreadLock関数を参照してください。
  


同様に、アプリケーション内でCurl™を使用していて、かつ新しいスレッドを開始する前にlibcurlをグローバルに初期化していない場合は、libcurlを初期化する可能性のあるコードを（再度PQregisterThreadLock経由で）協調してロックする必要があります。
この制限は、スレッドセーフな初期化をサポートするように構築されたCurl™の最近のバージョンでは解除されています。
これらのビルドは、バージョンメタデータにthreadsafe機能が記載されているかどうかで識別できます。
  

libpqプログラムの構築





libpqを使用するプログラムの構築(つまり、コンパイルとリンク)を行うためには、以下をすべて実施する必要があります。

   
	

libpq-fe.hヘッダファイルをインクルードします。


#include <libpq-fe.h>



これを忘れると、通常コンパイラから以下のようなエラーメッセージが発生します。


foo.c: In function `main':
foo.c:34: `PGconn' undeclared (first use in this function)
foo.c:35: `PGresult' undeclared (first use in this function)
foo.c:54: `CONNECTION_BAD' undeclared (first use in this function)
foo.c:68: `PGRES_COMMAND_OK' undeclared (first use in this function)
foo.c:95: `PGRES_TUPLES_OK' undeclared (first use in this function)


     

	

コンパイラに-Idirectoryオプションを付与することで、コンパイラにPostgreSQL™ヘッダファイルをインストールしたディレクトリを通知します。
（デフォルトでこのディレクトリを検索するコンパイラもあります。
その場合はこのオプションを省くことができます。）
例えば、以下のようなコンパイルコマンドになります。


cc -c -I/usr/local/pgsql/include testprog.c



Makefileを使用しているのであれば、CPPFLAGS変数にこのオプションを追加してください。


CPPFLAGS += -I/usr/local/pgsql/include


     


他のユーザがそのプログラムをコンパイルする可能性がある場合は、上のようにディレクトリの場所を直接書き込むべきではありません。
その代わりにpg_configユーティリティを実行して、各システムにおけるヘッダファイルの在処を検索させることができます。


$ pg_config --includedir
/usr/local/include


     


もしも、pkg-configがインストールされている場合、代わりとして以下を実行します。


$ pkg-config --cflags libpq
-I/usr/local/include



これは既にパスの最前部で-Iが含まれていることに注意してください。
     


正確なオプションを指定できなかった結果、コンパイラは以下のようなエラーメッセージを生成します。


testlibpq.c:8:22: libpq-fe.h: No such file or directory


     

	

最終的なプログラムのリンク時、-lpqオプションを指定して、libpqライブラリを組み込んでください。
同時に-Ldirectoryオプションを指定して、コンパイラにlibpqライブラリの在処を通知してください。
（ここでも、コンパイラはデフォルトでいくつかのディレクトリを検索します。）
移植性を最大にするために、-lpqオプションの前に-Lを記述してください。
以下に例を示します。


cc -o testprog testprog1.o testprog2.o -L/usr/local/pgsql/lib -lpq


     


同様にpg_configを使用してライブラリのあるディレクトリを見つけることもできます。


$ pg_config --libdir
/usr/local/pgsql/lib


     


さもなくば、この場合もやはりpkg-configを使用します。


$ pkg-config --libs libpq
-L/usr/local/pgsql/lib -lpq



重ねて、これはパスのみならず全てのオプションを表示することに注意してください。
     


この部分で問題があった場合のエラーメッセージは以下のようなものになります。


testlibpq.o: In function `main':
testlibpq.o(.text+0x60): undefined reference to `PQsetdbLogin'
testlibpq.o(.text+0x71): undefined reference to `PQstatus'
testlibpq.o(.text+0xa4): undefined reference to `PQerrorMessage'



これは-lpqの付け忘れを示します。


/usr/bin/ld: cannot find -lpq



これは-Lの付け忘れ、あるいは、ディレクトリ指定の間違いを示します。
     




  

サンプルプログラム





以下を含むサンプルプログラムが、ソースコード配布物内のsrc/test/examplesディレクトリにあります。
  
例32.1 libpq サンプルプログラム 1


/*
 * src/test/examples/testlibpq.c
 *
 *
 * testlibpq.c
 *

 *      C言語PostgreSQLフロントエンドライブラリlibpqの試験。
 */
#include <stdio.h>
#include <stdlib.h>
#include "libpq-fe.h"

static void
exit_nicely(PGconn *conn)
{
    PQfinish(conn);
    exit(1);
}

int
main(int argc, char **argv)
{
    const char *conninfo;
    PGconn     *conn;
    PGresult   *res;
    int         nFields;
    int         i,
                j;

    /*

     * ユーザがコマンドラインでパラメータを提供した場合、conninfo文字列として使用する。
     * 提供されない場合はデフォルトでdbname=postgresを使用する。
     * その他の接続パラメータについては環境変数やデフォルトを使用する。
     */
    if (argc > 1)
        conninfo = argv[1];
    else
        conninfo = "dbname = postgres";


    /* データベースとの接続を確立する */
    conn = PQconnectdb(conninfo);

<!--
    /* Check to see that the backend connection was successfully made */
-->
    /* バックエンドとの接続確立に成功したかを確認する */
    if (PQstatus(conn) != CONNECTION_OK)
    {
        fprintf(stderr, "%s", PQerrorMessage(conn));
        exit_nicely(conn);
    }


    /* 悪意のユーザによる乗っ取りを防ぐように常に安全なサーチパスを設定 */
    res = PQexec(conn,
                 "SELECT pg_catalog.set_config('search_path', '', false)");
    if (PQresultStatus(res) != PGRES_TUPLES_OK)
    {
        fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
        PQclear(res);
        exit_nicely(conn);
    }

    /*

     * メモリリークを避けるため、必要なくなったときにはいつでもPGresultを
     * PQclearすべき
     */
    PQclear(res);

    /*

     * この試験ケースではカーソルを使用する。
     * そのため、トランザクションブロック内で実行する必要がある。
     * すべてを単一の"select * from pg_database"というPQexec()で行うこと
     * も可能だが、例としては簡単過ぎる。
     */


    /* トランザクションブロックを開始する。 */
    res = PQexec(conn, "BEGIN");
    if (PQresultStatus(res) != PGRES_COMMAND_OK)
    {
        fprintf(stderr, "BEGIN command failed: %s", PQerrorMessage(conn));
        PQclear(res);
        exit_nicely(conn);
    }
    PQclear(res);

    /*

     * データベースのシステムカタログpg_databaseから行を取り出す。
     */
    res = PQexec(conn, "DECLARE myportal CURSOR FOR select * from pg_database");
    if (PQresultStatus(res) != PGRES_COMMAND_OK)
    {
        fprintf(stderr, "DECLARE CURSOR failed: %s", PQerrorMessage(conn));
        PQclear(res);
        exit_nicely(conn);
    }
    PQclear(res);

    res = PQexec(conn, "FETCH ALL in myportal");
    if (PQresultStatus(res) != PGRES_TUPLES_OK)
    {
        fprintf(stderr, "FETCH ALL failed: %s", PQerrorMessage(conn));
        PQclear(res);
        exit_nicely(conn);
    }


    /* まず属性名を表示する。 */
    nFields = PQnfields(res);
    for (i = 0; i < nFields; i++)
        printf("%-15s", PQfname(res, i));
    printf("\n\n");


    /* そして行を表示する。 */
    for (i = 0; i < PQntuples(res); i++)
    {
        for (j = 0; j < nFields; j++)
            printf("%-15s", PQgetvalue(res, i, j));
        printf("\n");
    }

    PQclear(res);


    /* ポータルを閉じる。ここではエラーチェックは省略した… */
    res = PQexec(conn, "CLOSE myportal");
    PQclear(res);


    /* トランザクションを終了する */
    res = PQexec(conn, "END");
    PQclear(res);

<!--
    /* close the connection to the database and cleanup */
-->
    /* データベースとの接続を閉じ、後始末を行う。 */
    PQfinish(conn);

    return 0;
}




例32.2 libpq サンプルプログラム 2


/*
 * src/test/examples/testlibpq2.c
 *
 *
 * testlibpq2.c

 *      非同期通知インタフェースの試験
 *

 * このプログラムを起動し、別ウィンドウからpsqlを使用して以下を実行してください。
 *   NOTIFY TBL2;
 * 4回繰り返すとこのプログラムは終了します。
 *

 * もう少し凝りたければ、以下を実施してください。
 * 以下のコマンド(src/test/examples/testlibpq2.sqlで提供)でデータベースを作成します。
 *
 *   CREATE SCHEMA TESTLIBPQ2;
 *   SET search_path = TESTLIBPQ2;
 *   CREATE TABLE TBL1 (i int4);
 *   CREATE TABLE TBL2 (i int4);
 *   CREATE RULE r1 AS ON INSERT TO TBL1 DO
 *     (INSERT INTO TBL2 VALUES (new.i); NOTIFY TBL2);
 *

 * このプログラムを起動し、psqlからこれを4回実行します。
 *
 *   INSERT INTO TESTLIBPQ2.TBL1 VALUES (10);
 */

#ifdef WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/select.h>
#include <sys/time.h>
#include <sys/types.h>

#include "libpq-fe.h"

static void
exit_nicely(PGconn *conn)
{
    PQfinish(conn);
    exit(1);
}

int
main(int argc, char **argv)
{
    const char *conninfo;
    PGconn     *conn;
    PGresult   *res;
    PGnotify   *notify;
    int         nnotifies;

    /*

     * ユーザがコマンドラインでパラメータを提供した場合、conninfo文字列として使用する。
     * 提供されない場合はデフォルトでdbname=postgresを使用する。
     * その他の接続パラメータについては環境変数やデフォルトを使用する。
     */
    if (argc > 1)
        conninfo = argv[1];
    else
        conninfo = "dbname = postgres";


    /* データベースとの接続を確立する。 */
    conn = PQconnectdb(conninfo);

<!--
    /* Check to see that the backend connection was successfully made */
-->
    /* バックエンドとの接続確立に成功したかを確認する */
    if (PQstatus(conn) != CONNECTION_OK)
    {
        fprintf(stderr, "%s", PQerrorMessage(conn));
        exit_nicely(conn);
    }


    /* 悪意のユーザによる乗っ取りを防ぐように常に安全なサーチパスを設定 */
    res = PQexec(conn,
                 "SELECT pg_catalog.set_config('search_path', '', false)");
    if (PQresultStatus(res) != PGRES_TUPLES_OK)
    {
        fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
        PQclear(res);
        exit_nicely(conn);
    }

    /*

     * メモリリークを避けるため、必要なくなったときにはいつでもPGresultを
     * PQclearすべき
     */
    PQclear(res);

    /*

     * LISTENコマンドを発行して、ルールのNOTIFYからの通知を有効にする。
     */
    res = PQexec(conn, "LISTEN TBL2");
    if (PQresultStatus(res) != PGRES_COMMAND_OK)
    {
        fprintf(stderr, "LISTEN command failed: %s", PQerrorMessage(conn));
        PQclear(res);
        exit_nicely(conn);
    }
    PQclear(res);


    /* 4回通知を受けたら終了する。 */
    nnotifies = 0;
    while (nnotifies < 4)
    {
        /*

         * その接続で何かが起こるまで待機する。ここでは入力待ちのために
         * select(2)を使用する。poll()や類似機能を使用することも可能
         * である。
         */
        int         sock;
        fd_set      input_mask;

        sock = PQsocket(conn);

        if (sock < 0)

            break;              /* 発生してはならない。 */

        FD_ZERO(&input_mask);
        FD_SET(sock, &input_mask);

        if (select(sock + 1, &input_mask, NULL, NULL, NULL) < 0)
        {
            fprintf(stderr, "select() failed: %s\n", strerror(errno));
            exit_nicely(conn);
        }


        /* ここで入力を確認する。 */
        PQconsumeInput(conn);
        while ((notify = PQnotifies(conn)) != NULL)
        {
            fprintf(stderr,
                    "ASYNC NOTIFY of '%s' received from backend PID %d\n",
                    notify->relname, notify->be_pid);
            PQfreemem(notify);
            nnotifies++;
            PQconsumeInput(conn);
        }
    }

    fprintf(stderr, "Done.\n");

<!--
    /* close the connection to the database and cleanup */
-->
    /* データベースとの接続を閉じ、後始末を行う。 */
    PQfinish(conn);

    return 0;
}




例32.3 libpq サンプルプログラム 3


/*
 * src/test/examples/testlibpq3.c
 *
 *
 * testlibpq3.c

 *      行以外のパラメータとバイナリI/Oの試験。
 *

 * 実行前に、以下のコマンド(src/test/examples/testlibpq3.sqlで提供)を使用して
 * データベースを作成してください。
 *
 * CREATE SCHEMA testlibpq3;
 * SET search_path = testlibpq3;
 * SET standard_conforming_strings = ON;
 * CREATE TABLE test1 (i int4, t text, b bytea);
 * INSERT INTO test1 values (1, 'joe''s place', '\000\001\002\003\004');
 * INSERT INTO test1 values (2, 'ho there', '\004\003\002\001\000');
 *

 * 以下の出力が想定されます。
 *
 * tuple 0: got
 *  i = (4 bytes) 1
 *  t = (11 bytes) 'joe's place'
 *  b = (5 bytes) \000\001\002\003\004
 *
 * tuple 0: got
 *  i = (4 bytes) 2
 *  t = (8 bytes) 'ho there'
 *  b = (5 bytes) \004\003\002\001\000
 */

#ifdef WIN32
#include <windows.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include "libpq-fe.h"


/* ntohl/htonl用 */
#include <netinet/in.h>
#include <arpa/inet.h>


static void
exit_nicely(PGconn *conn)
{
    PQfinish(conn);
    exit(1);
}

/*

 * この関数は上のコメントで定義したテーブルからバイナリフォーマットでフェッチした
 * クエリ結果を表示します。
 * main() 関数が2度使うので、結果を分割します。
 */
static void
show_binary_results(PGresult *res)
{
    int         i,
                j;
    int         i_fnum,
                t_fnum,
                b_fnum;


    /* 結果中の列オーダーの仮定を嫌うので PQfnumber を利用する */
    /* PQfnumber  */
    i_fnum = PQfnumber(res, "i");
    t_fnum = PQfnumber(res, "t");
    b_fnum = PQfnumber(res, "b");

    for (i = 0; i < PQntuples(res); i++)
    {
        char       *iptr;
        char       *tptr;
        char       *bptr;
        int         blen;
        int         ival;


        /* 列の値を取得(NULLを出来る限り無視) */
        iptr = PQgetvalue(res, i, i_fnum);
        tptr = PQgetvalue(res, i, t_fnum);
        bptr = PQgetvalue(res, i, b_fnum);

        /*

         * INT4のバイナリ表現はネットワークバイトオーダーによる。
         * よって、ローカルバイトオーダーに合わせた方が良い。
         */
        ival = ntohl(*((uint32_t *) iptr));

        /*

         * TEXT型のバイナリ表現も同様にテキスト。
         * 更にlibpqはその最後にゼロバイトを付与するので、
         * C言語の文字列として単純に扱うことができる。
         *

         * BYTEA のバイト表現はバイトの集まりである。
         * null 埋め込みを含むのでフィールド長に注意を払わなければいけない。
         */
        blen = PQgetlength(res, i, b_fnum);

        printf("tuple %d: got\n", i);
        printf(" i = (%d bytes) %d\n",
               PQgetlength(res, i, i_fnum), ival);
        printf(" t = (%d bytes) '%s'\n",
               PQgetlength(res, i, t_fnum), tptr);
        printf(" b = (%d bytes) ", blen);
        for (j = 0; j < blen; j++)
            printf("\\%03o", bptr[j]);
        printf("\n\n");
    }
}

int
main(int argc, char **argv)
{
    const char *conninfo;
    PGconn     *conn;
    PGresult   *res;
    const char *paramValues[1];
    int         paramLengths[1];
    int         paramFormats[1];
    uint32_t    binaryIntVal;

    /*

     * ユーザがコマンドラインでパラメータを提供した場合、conninfo文字列として使用する。
     * 提供されない場合はデフォルトでdbname=postgresを使用する。
     * その他の接続パラメータについては環境変数やデフォルトを使用する。
     */
    if (argc > 1)
        conninfo = argv[1];
    else
        conninfo = "dbname = postgres";


    /* データベースとの接続を確立する */
    conn = PQconnectdb(conninfo);

<!--
    /* Check to see that the backend connection was successfully made */
-->
    /* バックエンドとの接続確立に成功したかを確認する */
    if (PQstatus(conn) != CONNECTION_OK)
    {
        fprintf(stderr, "%s", PQerrorMessage(conn));
        exit_nicely(conn);
    }


    /* 悪意のユーザによる乗っ取りを防ぐように常に安全なサーチパスを設定 */
    res = PQexec(conn, "SET search_path = testlibpq3");
    if (PQresultStatus(res) != PGRES_COMMAND_OK)
    {
        fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
        PQclear(res);
        exit_nicely(conn);
    }
    PQclear(res);

    /*

     * このプログラムのポイントは、行外パラメータを持つPQexecParams()の使用方法、
     * および、データのバイナリ転送を示すことである。
     *

     * この最初の例はパラメータをテキストとして渡す。
     * しかし結果はバイナリフォーマットで受ける。
     * 行外パラメータを使うことで、データがテキストであっても引用符付けや
     * エスケープ処理といった多くの長たらしいゴミをなくすことができる。
     * パラメータ値内部の引用符に対して特殊な処理を行う必要がないことに注目して
     * ほしい。
     */


    /* 以下が行外パラメータの値である。 */
    paramValues[0] = "joe's place";

    res = PQexecParams(conn,
                       "SELECT * FROM test1 WHERE t = $1",

                       1,           /* パラメータは1つ。 */
                       NULL,        /* バックエンドにパラメータの型を推測させる。 */
                       paramValues,
                       NULL,        /* テキストのため、パラメータ長は不要。 */
                       NULL,        /* デフォルトですべてのパラメータはテキスト。 */
                       1);          /* バイナリ結果を要求。 */

    if (PQresultStatus(res) != PGRES_TUPLES_OK)
    {
        fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
        PQclear(res);
        exit_nicely(conn);
    }

    show_binary_results(res);

    PQclear(res);

    /*

     * 2つ目の例は、バイナリフォームの中で整数値パラメータを渡す。
     * そして再びバイナリフォームで結果を受け取る。
     *

     * バックエンドにパラメータタイプを推測させていると PQexecParams に伝えるが、
     * クエリテキストの中にパラメータシンボルを入れることによって 強制的に決定する。
     * これはバイナリパラメータに送るときに安全で良い大きさである。
     */


    /* 整数値 "2" をネットワークバイトオーダーに変換 */
    binaryIntVal = htonl((uint32_t) 2);


    /* PQexecParams 用にパラメータ配列をセットする */
    paramValues[0] = (char *) &binaryIntVal;
    paramLengths[0] = sizeof(binaryIntVal);

    paramFormats[0] = 1;        /* バイナリ */

    res = PQexecParams(conn,
                       "SELECT * FROM test1 WHERE i = $1::int4",

                       1,       /* パラメータは1つ */
                       NULL,    /* バックエンドにパラメータの型を推測させる。 */
                       paramValues,
                       paramLengths,
                       paramFormats,

                       1);      /* バイナリ結果を要求。 */

    if (PQresultStatus(res) != PGRES_TUPLES_OK)
    {
        fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
        PQclear(res);
        exit_nicely(conn);
    }

    show_binary_results(res);

    PQclear(res);

<!--
    /* close the connection to the database and cleanup */
-->
    /* データベースとの接続を閉じ、後始末を行う。 */
    PQfinish(conn);

    return 0;
}





第33章 ラージオブジェクト





PostgreSQL™にはラージオブジェクト機能があります。
これは、特殊なラージオブジェクト構造に格納されたユーザデータに対してストリーム様式のアクセスを提供します。
全体をまるごと簡単に操作するには巨大過ぎるデータ値を操作する場合、ストリーミングアクセスが有用です。
   


本章では、PostgreSQL™ラージオブジェクトデータに関する、実装、プログラミング、問い合わせ言語インタフェースについて説明します。
libpq Cライブラリを例として本章で使用していますが、ほとんどのPostgreSQL™固有のプログラミングインタフェースは同等の機能を持っています。
他のインタフェースでは、巨大な値を汎用的にサポートできるように、ラージオブジェクトインタフェースを内部で使用しているかもしれません。
ここでは説明しません。
   
はじめに





すべてのラージオブジェクトはpg_largeobjectというひとつのシステムテーブル内に格納されます。
各ラージオブジェクトはまたpg_largeobject_metadataシステムテーブルの中に項目を持ちます。
ラージオブジェクトを、ファイル標準操作に似た読み取り/書き出しAPIを使用して、作成、変更、削除することができます。
   


PostgreSQL™ではまた、単一のデータベースページよりも大きな値を自動的にテーブルごとに存在する二次格納領域に格納する「TOAST」という格納システムをサポートします。
これによりラージオブジェクトの一部は不要になりました。
ラージオブジェクト機能に残る利点の1つは、そのサイズが4テラバイトまで可能であるという点です。
TOASTではフィールドは1ギガバイトまでしか扱えません。
また、ラージオブジェクトの部分読み取り、部分更新は効率的に行うことができます。
一方TOAST化されたフィールドに対する操作のほとんどは、そのフィールド全体を単位として読み取り、または書き出しがなされます。
   


実装機能





ラージオブジェクトの実装では、ラージオブジェクトを「チャンク」に分割し、チャンクをデータベース内の行に格納しています。
B-treeインデックスは読み書き用のランダムアクセスに際して、正確なチャンク番号の高速検索を保証しています。
   


ラージオブジェクト用のチャンクは継続性を持ちません。
例えば、アプリケーションが新しくラージオブジェクトを開き、1000000オフセットにシークし、数バイトそこに書き出した場合、これは1000000バイトほどの格納領域が割り当てられることにはなりません。
データバイトの範囲に対応するチャンクのみが実際に書き出されます。
しかし読み取り操作は最後に存在するチャンクの前にある未割り当ての領域すべてとしてゼロを読み取ります。
これはUnixファイルシステムの「スパース割り当て」ファイルの一般動作に一致します。
   


PostgreSQL™ 9.0からラージオブジェクトは所有者およびアクセス権限を持ちます。
これはGRANT(7)およびREVOKE(7)を使用して管理可能です。
ラージオブジェクトの読み取りにはSELECT権限が必要です。
また書き出し、切り詰めのためにはUPDATE権限が必要です。
ラージオブジェクトの所有者(またはデータベーススーパーユーザ)のみがラージオブジェクトの削除、コメント付け、所有者の変更が可能です。
過去のリリースとの互換性に関するこの動作を調整するためにはlo_compat_privileges実行時パラメータを参照してください。
   

クライアントインタフェース





本節では、PostgreSQL™のlibpqクライアントインタフェースライブラリで提供されるラージオブジェクトへのアクセス手段について説明します。
PostgreSQL™ラージオブジェクトインタフェースは、Unixファイルシステムインタフェースに因んで設計されており、open、read、write、lseekなど同様のインタフェースを有しています。
   


ラージオブジェクトファイル記述子はトランザクションの間でしか有効でありませんので、これらの関数を使用したラージオブジェクトの操作はすべてSQLトランザクションブロック内で行われなければなりません。
INV_WRITEモードでのlo_openを含む書き込み操作は、読み取り専用トランザクションでは許可されません。
   


これらの関数のいずれか１つの実行時にエラーが発生した場合、関数は他ではあり得ない値、通常は0または-1を返します。
エラーを説明するメッセージは接続オブジェクト内に格納され、
      PQerrorMessage
      
     を用いて取り出すことができます。
   


これらの関数を使用するクライアントアプリケーションは、libpq/libpq-fs.hヘッダファイルをインクルードし、libpqライブラリとリンクしなければなりません。
   


libpqの接続がパイプラインモードである間は、クライアントアプリケーションはこれらの関数を使用できません。
   
ラージオブジェクトの作成




     

この関数は


Oid lo_create(PGconn *conn, Oid lobjId);



ラージオブジェクトを新規に作成します。
割り当てられるOIDをlobjIdで指定することができます。
こうした場合、そのOIDが他のラージオブジェクトですでに使用されていた場合、失敗します。
lobjIdがInvalidOid（ゼロ）の場合、lo_createは未使用のOIDを割り当てます。
戻り値は新規ラージオブジェクトに割り当てられたOIDで、失敗時にはInvalidOid（ゼロ）が返されます。
    


以下に例を示します。


inv_oid = lo_create(conn, desired_oid);


    

     

古い関数


Oid lo_creat(PGconn *conn, int mode);



もまた新しいラージオブジェクトを作成し、常に未使用のOIDを割り当てます。
戻り値は新しいラージオブジェクトに割り当てられたOIDです。
失敗した場合はInvalidOid(ゼロ)が返されます。
    


PostgreSQL™リリース8.1以降では、modeは無視されます。
そのためlo_creatは2番目の引数が0であるlo_createとまったく同じです。
しかし、8.1より古いサーバで作業する必要がない限り、lo_creatを使用する理由はほとんどありません。
このような古いサーバで作業するには、lo_createではなくlo_creatを使用しなければなりません。
modeをINV_READ、INV_WRITE、INV_READ|INV_WRITEのいずれかに設定する必要があります。
（これらの定数シンボルは、libpq/libpq-fs.hヘッダファイルで定義されています。）
    


例を示します。


inv_oid = lo_creat(conn, INV_READ|INV_WRITE);


    

ラージオブジェクトのインポート




     

オペレーティングシステム上のファイルをラージオブジェクトとしてインポートするには、以下の関数を呼び出します。


Oid lo_import(PGconn *conn, const char *filename);



filenameには、ラージオブジェクトとしてインポートするオペレーティングシステム上のファイルのパス名を指定します。
戻り値は、新規ラージオブジェクトに割り当てられたOIDです。
失敗時はInvalidOid（0）が返されます。
このファイルがサーバではなく、クライアントインタフェースライブラリから読み取られることに注意してください。
ですから、このファイルはクライアントのファイルシステム上に存在し、クライアントアプリケーションから読み取り可能でなければなりません。
    

     

この関数も


Oid lo_import_with_oid(PGconn *conn, const char *filename, Oid lobjId);



新規のラージオブジェクトをインポートします。
割り当てられるOIDをlobjIdで指定することができます。
こうした場合、そのOIDが他のラージオブジェクトですでに使用されていた場合、失敗します。
lobjIdがInvalidOid（0）の場合、lo_import_with_oidは未使用のOIDを割り当てます（これはlo_importと同じ動作です）。
戻り値は新規ラージオブジェクトに割り当てられたOIDで、失敗時にはInvalidOid（0）が返されます。
    


lo_import_with_oidはPostgreSQL™ 8.4から導入され、8.1から導入されたlo_createを内部で使用しています。
この関数を8.0以前のバージョンで実行させると失敗し、InvalidOidが返されます。
    

ラージオブジェクトのエクスポート




     

ラージオブジェクトをオペレーティングシステム上のファイルにエクスポートするには、以下の関数を呼び出します。


int lo_export(PGconn *conn, Oid lobjId, const char *filename);



lobjId引数には、エクスポートさせるラージオブジェクトのOIDを指定し、filename引数には、オペレーティングシステム上のファイルのパス名を指定します。
このファイルはサーバではなく、クライアントインタフェースライブラリによって書き込まれることに注意してください。
成功時には1、失敗時には-1が返されます。
    

既存のラージオブジェクトのオープン




     

読み取りまたは書き込みのために既存のラージオブジェクトを開く場合は、以下の関数を呼び出します。


int lo_open(PGconn *conn, Oid lobjId, int mode);



lobjId引数には開きたいラージオブジェクトのOIDを指定します。
modeの各ビットは、そのオブジェクトを読み取りのみ（INV_READ）、書き込みのみ（INV_WRITE）、またはその両方できるように開くのかを制御するものです。
（これらの定数シンボルはlibpq/libpq-fs.hヘッダファイルで定義されています。）
lo_openは、lo_read、lo_write、lo_lseek、lo_lseek64、lo_tell、lo_tell64、lo_truncate、lo_truncate64、lo_closeで使用する（非負の）ラージオブジェクト記述子を返します。
この記述子は現在のトランザクション期間のみで有効です。
失敗時には-1が返されます。
    


現時点では、サーバはINV_WRITEモードとINV_READ | INV_WRITEモードとを区別しません。
どちらの場合でも記述子から読み取り可能です。
しかし、これらのモードとINV_READだけのモードとの間には大きな違いがあります。
INV_READモードでは記述子に書き込むことができません。
そして、読み込んだデータは、このトランザクションや他のトランザクションで後で書き込んだかどうかは関係なく、lo_openを実行した時に有効だったトランザクションスナップショットの時点のラージオブジェクトの内容を反映したものになります。
INV_WRITEを付けて開いた記述子から読み取ると、現在のトランザクションによる書き込みや他のトランザクションがコミットした書き込みすべてを反映したデータが返されます。
これは、通常のSELECT SQLコマンドにおけるREPEATABLE READトランザクションの動作とREAD COMMITTEDトランザクションの動作の違いに似ています。
    


ラージオブジェクトにSELECT権限が与えられていなかったり、INV_WRITEが指定されていて、かつUPDATE権限が与えられていないと、lo_openは失敗します。
（PostgreSQL™ 11よりも前では、こうした権限チェックはディスクリプタを使って最初に読み出し、あるいは書き込みの呼び出しを実際に行う際に実施されていました。）
この権限チェックは、lo_compat_privileges実行時パラメータで無効にすることができます。
    


以下に例を示します。


inv_fd = lo_open(conn, inv_oid, INV_READ|INV_WRITE);


    

ラージオブジェクトへのデータの書き込み




     

この関数も


int lo_write(PGconn *conn, int fd, const char *buf, size_t len);



lenバイトを、buf（lenサイズでなければなりません）からfdラージオブジェクト記述子に書き込みます。
fd引数は事前に実行したlo_openの戻り値でなければいけません。
実際に書き込まれたバイト数が返されます（現在の実装ではエラーが発生しない限りlenと常に等しくなります）。
エラーイベントが発生した場合は、-1を返します。



lenパラメータはsize_tとして宣言されていますが、この関数はINT_MAXより大きな値を拒絶します。
実際には、多くても数メガバイトのチャンクでデータを転送することが最善です。


ラージオブジェクトからのデータの読み込み




     

この関数は


int lo_read(PGconn *conn, int fd, char *buf, size_t len);



len長のバイトを、fdラージオブジェクト記述子からbuf（lenサイズでなければなりません）に読み込みます。
fd引数は事前に実行したlo_openの戻り値でなければいけません。
実際に読み込まれたバイト数が返されます。
ラージオブジェクトの最後に先に達した場合はlenより小さな値になります。
エラーイベントが発生した場合は、-1値を返します。



lenパラメータはsize_tとして宣言されていますが、この関数はINT_MAXより大きな値を拒絶します。
実際には、多くても数メガバイトをチャンク内にデータを転送することが最善です。


ラージオブジェクトのシーク




     

ラージオブジェクト記述子に関連付けされている、現在の読み取りまたは書き込みを行う位置を変更するには、以下の関数を呼び出します。


int lo_lseek(PGconn *conn, int fd, int offset, int whence);



この関数はfdで識別されるラージオブジェクト識別子の現在の位置を指すポインタを、offsetで指定した新しい位置に変更します。
whenceに指定可能な値は、SEEK_SET（オブジェクトの先頭位置からシーク）、SEEK_CUR（現在位置からシーク）、SEEK_END（オブジェクトの末尾位置からシーク）のいずれかです。
戻り値は新しい位置ポインタで、エラー時に-1が返されます。


     

2GBを超えるサイズのラージオブジェクトを取り扱う場合は代わりに以下を使用してください。


int64_t lo_lseek64(PGconn *conn, int fd, int64_t offset, int whence);



この関数はlo_lseekと同じ動作をしますが、offsetとして2GBを超える値を受付け、2GBより大きな結果を出力します。
lo_lseekは2GBを超える新しい位置ポインタが指定された場合に失敗することに注意してください。



lo_lseek64はPostgreSQL™ 9.3にて追加されました。
この関数をより古いバージョンのサーバに対して実行した場合には失敗し、-1が返ります。


ラージオブジェクトのシーク位置の入手




     

ラージオブジェクト記述子の現在の読み取り、書き込み位置を入手するには、以下の関数を呼び出します。


int lo_tell(PGconn *conn, int fd);



エラーが発生した場合は-1が返されます。


     

サイズが2GBを超える可能性があるラージオブジェクトを取り扱う場合は代わりに以下を使用します。


int64_t lo_tell64(PGconn *conn, int fd);



この関数はlo_tellと同じ動作をしますが、2GBより大きな結果を出力します。
lo_tellは2GBを超える新しい位置での読み書きに失敗します。



lo_tell64はPostgreSQL™ 9.3にて追加されました。
この関数をより古いバージョンのサーバに対して実行した場合には失敗し、-1が返ります。


ラージオブジェクトを切り詰める




     

ラージオブジェクトを指定した長さに切り詰めるには、以下を呼び出します。


int lo_truncate(PGconn *conn, int fd, size_t len);



この関数はラージオブジェクト記述子fdをlen長に切り詰めます。
fd引数は前もってlo_openが返したものでなければなりません。
lenが現在のラージオブジェクト長より大きければ、ラージオブジェクトは指定された長さまでヌルバイト('\0')で拡張されます。
成功時lo_truncateはゼロを返します。
失敗時の戻り値は-1です。



fdディスクリプタの読み取り/書き出し位置は変わりません。



lenパラメータはsize_tとして宣言されていますが、lo_truncateはINT_MAXより大きな値を拒絶します。


     

2GBを超える可能性があるラージオブジェクトを取り扱う場合は代わりに以下を使用します。


int lo_truncate64(PGconn *conn, int fd, int64_t len);



この関数はlo_truncateと同じ動作をしますが、2GBを超えるlenを受け付けることができます。



lo_truncateはPostgreSQL™ 8.3で新規に導入されました。
この関数を古いバージョンのサーバに対して実行した場合は失敗し、-1が返されます。



lo_truncate64はPostgreSQL™ 9.3にて追加されました。
この関数をより古いバージョンのサーバに対して実行した場合には失敗し、-1が返ります。


ラージオブジェクト記述子を閉じる




     

以下を呼び出すことでラージオブジェクト記述子を閉じることができます。


int lo_close(PGconn *conn, int fd);



ここで、fdはlo_openの戻り値であるラージオブジェクト記述子です。
成功すると、lo_closeは0を返します。
失敗すると、-1を返します。



開いたままのラージオブジェクト記述子は全てトランザクションの終了時に自動的に閉じられます。


ラージオブジェクトの削除




     

データベースからラージオブジェクトを削除するには、以下の関数を呼び出します。


int lo_unlink(PGconn *conn, Oid lobjId);



lobjId引数は削除するラージオブジェクトのOIDを指定します。
成功時に1を、失敗時に-1を返します。
    


サーバ側の関数





SQLからラージオブジェクトを操作するのに適応したサーバ側の関数を表33.1「SQL向けラージオブジェクト関数」に列挙します。
  
表33.1 SQL向けラージオブジェクト関数
	

        関数
       

       

        説明
       

       

        例
       

	
        
        lo_from_bytea ( loid oid, data bytea )
        oid
       

       

ラージオブジェクトを作成してそこにdataを格納する。
loidが0であれば、システムが空いているOIDを選び、そうでなければそのOIDが使われる(すでにそのOIDを持つラージオブジェクトがあればエラーになる)。
成功すれば、そのラージオブジェクトのOIDが返される。
       

       
        lo_from_bytea(0, '\xffffff00')
        24528
       

	
        
        lo_put ( loid oid, offset bigint, data bytea )
        void
       

       

ラージオブジェクト内の与えられたオフセットからdataを書き込む。必要であれば、ラージオブジェクトは拡張される。
       

       
        lo_put(24528, 1, '\xaa')
        
       

	
        
        lo_get ( loid oid [, offset bigint, length integer ] )
        bytea
       

       

そこからラージオブジェクトの内容または部分文字列を取り出す。
       

       
        lo_get(24528, 0, 3)
        \xffaaff
       






これまで説明したクライアント側の関数それぞれに対応する、追加のサーバ側の関数があります。
実際、ほとんどのクライアント側の関数は対応するサーバ側の関数に対する単なるインタフェースです。
SQLコマンドからの呼び出しが便利な関数は、lo_creat、lo_create、lo_unlink、lo_import、lo_exportです。
これらの使用例を示します。



CREATE TABLE image (
    name            text,
    raster          oid
);


SELECT lo_creat(-1);       -- 新しい空のラージオブジェクトのOIDを返します


SELECT lo_create(43213);   -- OID 43213でラージオブジェクトの生成を試行します


SELECT lo_unlink(173454);  -- OID 173454のラージオブジェクトを削除します

INSERT INTO image (name, raster)
    VALUES ('beautiful image', lo_import('/etc/motd'));


INSERT INTO image (name, raster)  -- 上と同じですが使用するOIDを指定します
    VALUES ('beautiful image', lo_import('/etc/motd', 68583));

SELECT lo_export(image.raster, '/tmp/motd') FROM image
    WHERE name = 'beautiful image';


  


サーバ側のlo_importおよびlo_export関数の動作はクライアント側の関数とかなり異なります。
この2つの関数はサーバのファイルシステム上のファイルの読み書きを、データベースを所有するユーザの権限で行います。
したがって、デフォルトではこれらの使用はスーパーユーザに限定されています。
対照的に、クライアント側のインポート関数とエクスポート関数はクライアントのファイルシステム上のファイルをクライアントプログラムの権限で読み書きします。
このクライアント側の関数は、対象となるラージオブジェクトの読み出し、書き込み権限を除き、データベース権限を必要としません。
  
注意


サーバサイドlo_importとlo_export関数に対してGRANT(7)を非スーパーユーザに適用することは可能ですが、その結果が意味することについて慎重な考慮が必要です。
そうした権限を持つ悪意のあるユーザは、（たとえば、サーバ設定ファイルを書き換えることによって）容易にその権限を拡張してスーパーユーザになることができるでしょう。
あるいは、そのようにしてデータベーススーパーユーザ権限を取得することなく、サーバのファイルシステムを攻撃することができるでしょう。
したがって、そうした権限を持つロールへのアクセスは、スーパーユーザロールへのアクセスとまったく同様に、注意深く防御されなければなりません。
にもかかわらず、サーバサイドのlo_importあるいはlo_exportを定形業務に使う必要があるなら、完全なスーパーユーザ権限よりは、そうした権限を持つロールを使う方が安全です。
偶発的な間違いから来る被害のリスクを減らすのに役立つからです。
   



またlo_readおよびlo_writeの機能はサーバサイドの呼び出しを介しても利用することができます。
しかしサーバサイドの関数名はクライアント側のインタフェースとは異なり、アンダースコアが含まれません。
loreadおよびlowriteとしてこれらの関数を呼び出さなければなりません。
  

サンプルプログラム





例33.1「Libpqを使用したラージオブジェクトのサンプルプログラム」は、libpqを使ったラージオブジェクトインタフェースの使い方を示すサンプルプログラムです。
プログラムの一部はコメントアウトされていますが、読者にわかりやすいようにそのまま残してあります。
このプログラムは、ソース配布物内のsrc/test/examplesにあります。

例33.1 Libpqを使用したラージオブジェクトのサンプルプログラム

/*-----------------------------------------------------------------
 *
 * testlo.c

 *    libpqによるラージオブジェクトを使用する試験
 *
 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *    src/test/examples/testlo.c
 *
 *-----------------------------------------------------------------
 */
#include <stdio.h>
#include <stdlib.h>

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

#include "libpq-fe.h"
#include "libpq/libpq-fs.h"

#define BUFSIZE         1024

/*
 * importFile -

 *    "in_filename"ファイルをラージオブジェクト"lobjOid"としてデータベースにインポートする。
 *
 */
static Oid
importFile(PGconn *conn, char *filename)
{
    Oid         lobjId;
    int         lobj_fd;
    char        buf[BUFSIZE];
    int         nbytes,
                tmp;
    int         fd;

    /*

     * 読み込むファイルを開く
     */
    fd = open(filename, O_RDONLY, 0666);
    if (fd < 0)

    {                           /* エラー時 */
        fprintf(stderr, "cannot open unix file\"%s\"\n", filename);
    }

    /*

     * ラージオブジェクトを作成する
     */
    lobjId = lo_creat(conn, INV_READ | INV_WRITE);
    if (lobjId == 0)
        fprintf(stderr, "cannot create large object");

    lobj_fd = lo_open(conn, lobjId, INV_WRITE);

    /*

     * Unixファイルから読み込み、転置ファイルへ書き出す
     */
    while ((nbytes = read(fd, buf, BUFSIZE)) > 0)
    {
        tmp = lo_write(conn, lobj_fd, buf, nbytes);
        if (tmp < nbytes)
            fprintf(stderr, "error while reading \"%s\"", filename);
    }

    close(fd);
    lo_close(conn, lobj_fd);

    return lobjId;
}

static void
pickout(PGconn *conn, Oid lobjId, int start, int len)
{
    int         lobj_fd;
    char       *buf;
    int         nbytes;
    int         nread;

    lobj_fd = lo_open(conn, lobjId, INV_READ);
    if (lobj_fd < 0)
        fprintf(stderr, "cannot open large object %u", lobjId);

    lo_lseek(conn, lobj_fd, start, SEEK_SET);
    buf = malloc(len + 1);

    nread = 0;
    while (len - nread > 0)
    {
        nbytes = lo_read(conn, lobj_fd, buf, len - nread);
        buf[nbytes] = '\0';
        fprintf(stderr, ">>> %s", buf);
        nread += nbytes;
        if (nbytes <= 0)
            break;              /* no more data? */
    }
    free(buf);
    fprintf(stderr, "\n");
    lo_close(conn, lobj_fd);
}

static void
overwrite(PGconn *conn, Oid lobjId, int start, int len)
{
    int         lobj_fd;
    char       *buf;
    int         nbytes;
    int         nwritten;
    int         i;

    lobj_fd = lo_open(conn, lobjId, INV_WRITE);
    if (lobj_fd < 0)
        fprintf(stderr, "cannot open large object %u", lobjId);

    lo_lseek(conn, lobj_fd, start, SEEK_SET);
    buf = malloc(len + 1);

    for (i = 0; i < len; i++)
        buf[i] = 'X';
    buf[i] = '\0';

    nwritten = 0;
    while (len - nwritten > 0)
    {
        nbytes = lo_write(conn, lobj_fd, buf + nwritten, len - nwritten);
        nwritten += nbytes;
        if (nbytes <= 0)
        {
            fprintf(stderr, "\nWRITE FAILED!\n");
            break;
        }
    }
    free(buf);
    fprintf(stderr, "\n");
    lo_close(conn, lobj_fd);
}


/*
 * exportFile -

 *    ラージオブジェクト"lobjOid"を"out_filename"ファイルにエクスポートする。
 *
 */
static void
exportFile(PGconn *conn, Oid lobjId, char *filename)
{
    int         lobj_fd;
    char        buf[BUFSIZE];
    int         nbytes,
                tmp;
    int         fd;

    /*

     * ラージオブジェクトを作成する
     */
    lobj_fd = lo_open(conn, lobjId, INV_READ);
    if (lobj_fd < 0)
        fprintf(stderr, "cannot open large object %u", lobjId);

    /*

     * 書き込むファイルを開く
     */
    fd = open(filename, O_CREAT | O_WRONLY | O_TRUNC, 0666);
    if (fd < 0)

    {                           /* エラー時 */
        fprintf(stderr, "cannot open unix file\"%s\"",
                filename);
    }

    /*

     * 転置ファイルから読み込み、Unixファイルへ書き出す。
     */
    while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0)
    {
        tmp = write(fd, buf, nbytes);
        if (tmp < nbytes)
        {
            fprintf(stderr, "error while writing \"%s\"",
                    filename);
        }
    }

    lo_close(conn, lobj_fd);
    close(fd);
}

static void
exit_nicely(PGconn *conn)
{
    PQfinish(conn);
    exit(1);
}

int
main(int argc, char **argv)
{
    char       *in_filename,
               *out_filename;
    char       *database;
    Oid         lobjOid;
    PGconn     *conn;
    PGresult   *res;

    if (argc != 4)
    {
        fprintf(stderr, "Usage: %s database_name in_filename out_filename\n",
                argv[0]);
        exit(1);
    }

    database = argv[1];
    in_filename = argv[2];
    out_filename = argv[3];

    /*

     * 接続を設定する
     */
    conn = PQsetdb(NULL, NULL, NULL, NULL, database);


    /* バックエンドとの接続が成功したかどうか確認する */
    if (PQstatus(conn) != CONNECTION_OK)
    {
        fprintf(stderr, "%s", PQerrorMessage(conn));
        exit_nicely(conn);
    }


    /* 常に安全なサーチパスを設定する。そのため、悪意のあるユーザは操作できない。 */
    res = PQexec(conn,
                 "SELECT pg_catalog.set_config('search_path', '', false)");
    if (PQresultStatus(res) != PGRES_TUPLES_OK)
    {
        fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
        PQclear(res);
        exit_nicely(conn);
    }
    PQclear(res);

    res = PQexec(conn, "begin");
    PQclear(res);
    printf("importing file \"%s\" ...\n", in_filename);
/*  lobjOid = importFile(conn, in_filename); */
    lobjOid = lo_import(conn, in_filename);
    if (lobjOid == 0)
        fprintf(stderr, "%s\n", PQerrorMessage(conn));
    else
    {
        printf("\tas large object %u.\n", lobjOid);

        printf("picking out bytes 1000-2000 of the large object\n");
        pickout(conn, lobjOid, 1000, 1000);

        printf("overwriting bytes 1000-2000 of the large object with X's\n");
        overwrite(conn, lobjOid, 1000, 1000);

        printf("exporting large object to file \"%s\" ...\n", out_filename);
/*      exportFile(conn, lobjOid, out_filename); */
        if (lo_export(conn, lobjOid, out_filename) < 0)
            fprintf(stderr, "%s\n", PQerrorMessage(conn));
    }

    res = PQexec(conn, "end");
    PQclear(res);
    PQfinish(conn);
    return 0;
}





第34章 ECPG — C言語による埋め込みSQL





本章では、PostgreSQL™の埋め込みSQLパッケージについて説明します。
このパッケージはCとC++言語で作成されました。
作者はLinus Tolke（<linus@epact.se>）とMichael Meskes（<meskes@postgresql.org>）です。
元々これはCで動作するように作成されました。
C++でも動作しますが、C++の構文すべてはまだ認識できません。
 


本書は完全なものではありません。
しかし、このインタフェースは標準化されているので、SQLに関するその他の資料から追加情報を入手できます。
 
概念





埋め込みSQLプログラムは通常のプログラミング言語（ここではC）で記述されたコードで、特別にマークされたセクション内のSQLコマンドとともに使用されます。
このプログラムを構築するには、まずソースコード (*.pgc) を埋め込みSQLプリプロセッサに渡します。
ソースコードは、プリプロセッサによって通常のCプログラム (*.c) に変換され、その後Cコンパイラによって処理されます。
(コンパイルとリンクの詳細については 「埋め込みSQLプログラムの処理」 を参照してください。)
変換されたECPGアプリケーションは、libpqライブラリにある関数を埋め込みSQLライブラリ (ecpglib) を介して呼び出し、通常のフロントエンド・バックエンドプロトコルを使ってPostgreSQLサーバと通信します。
  


CコードからSQLコマンドを扱う場合は、埋め込みSQLの方が他の手法よりも有効です。
まず、埋め込みSQLはCプログラムの変数との面倒な双方間の情報移行を処理してくれます。
さらに、プログラム内のSQLコードは構築時に正確な構文になっているかどうか検査されます。
また、C言語での埋め込みSQLは標準SQLで既に定義されており、他の様々なSQLデータベースシステムでサポートされています。
PostgreSQL™の実装は可能な限りこの標準に準拠するよう設計されています。
また通常の場合、他のSQLデータベース用に作成された埋め込みSQLプログラムを比較的簡単にPostgreSQL™へ移植することができます。
  


先に述べた通り、埋め込みSQLインタフェース用のプログラムは、通常のCプログラムに、データベース関連処理を行うための特別なコードを加えたものです。
この特別なコードは、常に、次のような形式になっています。


EXEC SQL ...;



このSQL文は、構文上でC言語の文の置き換えとなります。
SQL文によりますが、グローバルレベル、または関数内で記述することができます。
  


埋め込みSQL文における大文字小文字の区別の有無は、Cコードではなく、通常のSQLコードの規則に従います。
また、標準SQLに従い入れ子のC形式のコメントを許します。
しかし、プログラムのCの部分では、入れ子のコメントを受け付けないというC標準に従います。
同様に、埋め込みSQL文は引用符付きの文字列や識別子の解析に、Cの規則ではなく、SQLの規則を使います。
(それぞれ「文字列定数」と「識別子とキーワード」を参照してください。
ECPGはstandard_conforming_stringsがonであることを仮定することに注意してください。)
もちろん、プログラムのCの部分では、Cの引用の規則に従います。
  


以下の節で、すべての埋め込みSQL文について説明します。
  


データベース接続の管理





この節では、データベース接続の開始、終了、および切り替え方について解説します。
  
データベースサーバへの接続





以下のSQL文を使用して、データベースへ接続します。


EXEC SQL CONNECT TO target [AS connection-name] [USER user-name];



targetは以下の方法で指定されます。

   
	
      dbname[@hostname][:port]
     
	
      tcp:postgresql://hostname[:port][/dbname][?options]
     
	
      unix:postgresql://localhost[:port][/dbname][?options]
     
	

上の形式のいずれかを含むSQL文字列リテラル。
     
	

上の形式のいずれかを含む文字変数への参照。
     
	
      DEFAULT
     





DEFAULT接続対象は、デフォルトデータベース、デフォルトのユーザ名で接続を初期化します。
この場合は、ユーザ名と接続名を分けて指定することができません。
  


接続対象を直接(すなわち、文字列リテラルとしてでも、変数参照でもない形で)指定した場合、対象の要素は通常のSQLとして解析されて渡されます。これは、例えば、hostnameはドットで区切られた一つ以上のSQL識別子のようでなければならなず、識別子が二重引用符で括られていなければ大文字小文字は区別されないということを意味します。
optionsの値は、SQL識別子、整数、もしくは変数参照でなければなりません。
もちろん、二重引用符で括ることでSQL識別子の中にほぼ何でも入れることができます。
実際には、おそらく（単一引用符でくくられた）文字列リテラルもしくは変数の参照を使用した方がエラーをより防止できます。
  


ユーザ名を指定するには、別の方法もあります。

   
	
      username
     
	
      username/password
     
	
      username IDENTIFIED BY password
     
	
      username USING password
     





これまで同様、usernameとpasswordは、SQL識別子、SQL文字列リテラル、文字型変数への参照を取ることができます。
  


接続対象にoptionsを含めるのなら、keyword=value指定をアンパサンド(&)で区切って構成します。
許されるキーワードは、libpqが認識するものと同じです(「パラメータキーワード」を参照してください)。
keywordやvalueの前の空白は無視されますが、中や後の空白は無視されません。
valueの中に&を書く方法はないことに注意してください。
  


(unix:接頭辞で)ソケット接続を指定するときには、ホスト名は厳密にlocalhostでなければなりません。
デフォルトでないソケットディレクトリを選ぶためには、対象のoptions部分のhostオプションの値としてディレクトリのパス名を書いてください。
  


1つのプログラム内で複数の接続を処理する場合には、connection-nameを使用します。
プログラムで1つしか接続を使わない場合は省略して構いません。
最も最近に開かれた接続が現在の接続になり、SQL文を実行しようとする時にデフォルトでこの接続が使用されます（本章の後で説明します）。
  


以下にCONNECT文について、数例を示します。


EXEC SQL CONNECT TO mydb@sql.mydomain.com;

EXEC SQL CONNECT TO tcp:postgresql://sql.mydomain.com/mydb AS myconnection USER john;

EXEC SQL BEGIN DECLARE SECTION;
const char *target = "mydb@sql.mydomain.com";
const char *user = "john";
const char *passwd = "secret";
EXEC SQL END DECLARE SECTION;
 ...
EXEC SQL CONNECT TO :target USER :user USING :passwd;

/* もしくは EXEC SQL CONNECT TO :target USER :user/:passwd; */



最後の例では、文字変数参照として上を参照する機能を使用しています。
後の節で、接頭辞にコロンを持つ場合のSQL文内でのC変数の使用方法について説明します。
  


接続対象の書式は標準SQLでは規定されていないことに注意してください。
そのため、移植可能なアプリケーションを開発したいのであれば、上の例の最後の方法を基にして、接続対象文字列をどこかにカプセル化してください。
  


信用できないユーザが安全なスキーマ使用パターンを採用していないデータベースにアクセスできる場合、各セッションをsearch_pathから一般のユーザが書き込み可能なスキーマを取り除くことから始めます。
例えば、options=-c search_path=をoptionsに追加したり、接続後にEXEC SQL SELECT pg_catalog.set_config('search_path', '', false);を発行したりします。
この配慮はECPGに特有のものではありません。任意のSQLコマンドを実行するインタフェースすべてに当てはまります。
  

接続の選択





埋め込みSQLプログラム内のSQL文はデフォルトで現在の接続、つまり、最も最近に開いた接続上で実行されます。
複数の接続を管理する必要があるアプリケーションでは、これを処理する3つの方法があります。
  


1つ目の選択肢は、各SQL文で明示的に接続を選択することです。
以下に例を示します。


EXEC SQL AT connection-name SELECT ...;



アプリケーションが複数の接続を不特定な順番で使用する必要がある場合、この選択肢は特に適しています。
  


アプリケーションの実行に複数スレッドを使用する場合、スレッド間で接続を同時に共有できません。
接続へのアクセスを（ミューテクスを使用して）明示的に制御するか、または各スレッド用の接続を使用するかを行わなければなりません。
  


2つ目の選択肢は、現在の接続を切り替えるSQL文を実行することです。
以下のSQL文です。


EXEC SQL SET CONNECTION connection-name;



多くのSQL文を同一接続に対して使用する場合、この選択肢は特に便利です。
  


以下に複数のデータベースコネクションを管理しているプログラムの例を示します。


#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;
    char dbname[1024];
EXEC SQL END DECLARE SECTION;

int
main()
{
    EXEC SQL CONNECT TO testdb1 AS con1 USER testuser;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
    EXEC SQL CONNECT TO testdb2 AS con2 USER testuser;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
    EXEC SQL CONNECT TO testdb3 AS con3 USER testuser;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;


    /* この問い合わせは最後に開いたデータベース"testdb3"で実行される。 */
    EXEC SQL SELECT current_database() INTO :dbname;
    printf("current=%s (should be testdb3)\n", dbname);


    /* "testdb2"で問い合わせを実行するには"AT"を使う */
    EXEC SQL AT con2 SELECT current_database() INTO :dbname;
    printf("current=%s (should be testdb2)\n", dbname);


    /* 現在の接続を"testdb1"に切り替える。 */
    EXEC SQL SET CONNECTION con1;

    EXEC SQL SELECT current_database() INTO :dbname;
    printf("current=%s (should be testdb1)\n", dbname);

    EXEC SQL DISCONNECT ALL;
    return 0;
}




   この例は、次のような出力を生成します。


current=testdb3 (should be testdb3)
current=testdb2 (should be testdb2)
current=testdb1 (should be testdb1)


  


3つ目の選択肢は、接続に結び付いたSQL識別子を宣言することです。


EXEC SQL AT connection-name DECLARE statement-name STATEMENT;
EXEC SQL PREPARE statement-name FROM :dyn-string;



一度SQL識別子を接続に結び付ければ、AT句なしに動的なSQLを実行できます。
この選択肢はプリプロセッサ指示子のように振る舞いますので、結び付けはファイルの中でのみ可能です。
  


以下にこの選択肢を使用したプログラムの例を示します。


#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;
char dbname[128];
char *dyn_sql = "SELECT current_database()";
EXEC SQL END DECLARE SECTION;

int main(){
  EXEC SQL CONNECT TO postgres AS con1;
  EXEC SQL CONNECT TO testdb AS con2;
  EXEC SQL AT con1 DECLARE stmt STATEMENT;
  EXEC SQL PREPARE stmt FROM :dyn_sql;
  EXEC SQL EXECUTE stmt INTO :dbname;
  printf("%s\n", dbname);

  EXEC SQL DISCONNECT ALL;
  return 0;
}




この例は、たとえデフォルトの接続がtestdbであったとしても、次のような出力を生成します。


postgres


  

接続を閉じる





接続を閉じるには以下のSQL文を使用します。


EXEC SQL DISCONNECT [connection];



connectionは以下の方法で指定されます。

   
	
      connection-name
     
	
      CURRENT
     
	
      ALL
     





接続名の指定がなければ、現在の接続が閉じられます。
  


アプリケーションでは、過去に開いたすべての接続を明示的に閉じることを推奨します。
  


SQLコマンドの実行





すべてのSQLコマンドは、埋め込みSQLアプリケーション内で実行できます。
以下に例をいくつか示します。
  
SQL文の実行





テーブルの作成:


EXEC SQL CREATE TABLE foo (number integer, ascii char(16));
EXEC SQL CREATE UNIQUE INDEX num1 ON foo(number);
EXEC SQL COMMIT;


  


行の挿入:


EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, 'doodad');
EXEC SQL COMMIT;


  


行の削除:


EXEC SQL DELETE FROM foo WHERE number = 9999;
EXEC SQL COMMIT;


  


行の更新:


EXEC SQL UPDATE foo
    SET ascii = 'foobar'
    WHERE number = 9999;
EXEC SQL COMMIT;


  


   単一の行を返すSELECT文は、同様に EXEC SQL を用いて直接実行することができます。複数の行を扱うためには、アプリケーションはカーソルを使わなければなりません; 「カーソルの使用」 を参照してください。
(特殊なケースでは、アプリケーションは複数の行をホスト変数の配列に一度に読み込むことができます; 「配列」 を参照してください)
  


   単一行の検索:


EXEC SQL SELECT foo INTO :FooBar FROM table1 WHERE ascii = 'doodad';


  


   同様に、設定パラメータは SHOW コマンドによって取得することができます:


EXEC SQL SHOW search_path INTO :var;


  


:somethingという形のトークンはホスト変数です。
つまり、Cプログラム内の変数を参照するものです。
これについては「ホスト変数の使用」で説明します。
  

カーソルの使用





複数行の結果セットを受け取るためには、アプリケーションはカーソルを定義し、必要に応じてレコードを一行ずつ取り込む必要があります。カーソルを使った処理は、カーソルの宣言、カーソルのオープン、カーソルからのFETCH、カーソルのクローズという流れになります。
  


カーソルを用いたSELECT:


EXEC SQL DECLARE foo_bar CURSOR FOR
    SELECT number, ascii FROM foo
    ORDER BY ascii;
EXEC SQL OPEN foo_bar;
EXEC SQL FETCH foo_bar INTO :FooBar, DooDad;
...
EXEC SQL CLOSE foo_bar;
EXEC SQL COMMIT;


  


カーソルの宣言の詳細についてはDECLAREを参照してください。カーソルから行を取り出す詳細についてはFETCH(7)を参照してください。
  
注記


     ECPGの DECLARE コマンド自身は、PostgreSQLバックエンドに送られるSQL文を実行しません。OPEN コマンドが実行された段階で、バックエンド内部で（DECLAREコマンドで宣言された）カーソルが開かれます。
    


トランザクションの管理





デフォルトモードでは、SQL文はEXEC SQL COMMITが発行されることによってのみコミットされます。
埋め込みSQLインタフェースでも、ecpgコマンド（ecpg(1)を参照）の-tコマンドラインオプション、あるいは EXEC SQL SET AUTOCOMMIT TO ON文によって（psqlのデフォルトの振舞いに似た）トランザクションの自動コミットをサポートしています。
自動コミットモードでは、問い合わせが明示的なトランザクションブロックの内部にある場合を除き、すべての問い合わせが自動的にコミットされます。
自動コミットモードは、EXEC SQL SET AUTOCOMMIT TO OFFを使用して明示的に無効にすることができます。
  


以下のトランザクション管理コマンドを使用することができます:

    
	EXEC SQL COMMIT
	

        実行中のトランザクションのコミット。
       

	EXEC SQL ROLLBACK
	

        実行中のトランザクションのロールバック。
       

	EXEC SQL PREPARE TRANSACTION transaction_id
	

2相コミット用に現在のトランザクションをプリペアします。
       

	EXEC SQL COMMIT PREPARED transaction_id
	

プリペアド状態のトランザクションをコミットします。
       

	EXEC SQL ROLLBACK PREPARED transaction_id
	

プリペアド状態のトランザクションをロールバックします。
       

	EXEC SQL SET AUTOCOMMIT TO ON
	

        自動コミットモードの有効化。
       

	EXEC SQL SET AUTOCOMMIT TO OFF
	

        自動コミットモードの無効化。デフォルト状態。
       




   

プリペアド文





SQL文に渡す値がコンパイル時に決まらない場合、または同じSQL文を何度も実行する場合、プリペアド文が便利です。
   


SQL文はPREPAREコマンドを使ってプリペアします。
まだ決まっていない値については、プレースホルダ 「?」 を使います:


EXEC SQL PREPARE stmt1 FROM "SELECT oid, datname FROM pg_database WHERE oid = ?";


   


SQL文が一行のみの結果を返却する場合には、アプリケーションはSQL文をPREPAREした後、USINGを用いてプレースホルダに実際の値を与えてEXECUTEを実行することができます。


EXEC SQL EXECUTE stmt1 INTO :dboid, :dbname USING 1;


   


SQL文が複数の行を返却する場合には、アプリケーションはプリペアド文の宣言に対応したカーソルを利用することができます。
入力パラメータを設定するために、カーソルはUSINGとともに開かれなければなりません:


EXEC SQL PREPARE stmt1 FROM "SELECT oid,datname FROM pg_database WHERE oid > ?";
EXEC SQL DECLARE foo_bar CURSOR FOR stmt1;


/* 結果集合の最後に到達したら、whileループから抜ける */
EXEC SQL WHENEVER NOT FOUND DO BREAK;

EXEC SQL OPEN foo_bar USING 100;
...
while (1)
{
    EXEC SQL FETCH NEXT FROM foo_bar INTO :dboid, :dbname;
    ...
}
EXEC SQL CLOSE foo_bar;


   


プリペアド文をこれ以上必要としなくなったら、解放処理をしなければなりません:


EXEC SQL DEALLOCATE PREPARE name;


   


    PREPARE についての詳細は PREPARE を参照してください。
    また、プレースホルダと入力パラメータの利用についての詳細は 「動的SQL」 を参照してください。
   


ホスト変数の使用





「SQLコマンドの実行」では、埋め込みSQLプログラムでどのようにSQL文を実行するのかについて説明しました。
このSQL文の中には固定値しか使用しないものや、ユーザが指定する値をSQL文の中に挿入する手段を提供しないもの、問い合わせが返す値をプログラムで処理する手段を提供しないものがありました。
この種のSQL文は実際のアプリケーションでは役に立ちません。
本節では、ホスト変数という単純な機構を使用した、Cプログラムと埋め込みSQL文との間でデータをやり取りする方法を詳細に説明します。
埋め込みSQLプログラムでは、SQL文をホスト言語となるCプログラムコードにおけるゲストとみなします。
したがって、Cプログラムの変数はホスト変数と呼ばれます。
  


PostgreSQLバックエンドとECPGアプリケーションの間で値をやり取りするその他の方法は、「記述子領域の使用」で説明されているSQL記述子を使う方法です。
  
概要





埋め込みSQLにおけるCプログラムとSQL文との間でのデータのやり取りは特に単純です。
値に適切な引用符を付与するといった、様々な複雑な処理を伴う、プログラムにデータを文中に貼り付けさせるという方法はなく、単にSQL文の中に、先頭にコロンを付けたC変数名を書くだけです。
以下に例を示します。


EXEC SQL INSERT INTO sometable VALUES (:v1, 'foo', :v2);



このSQL文は、v1とv2という2つのC変数を参照し、また、通常のSQL文字列リテラルも使用しています。
これは、使用できるデータの種類は1つだけという制限がないことを表しています。
   


SQL文内にCの変数を挿入するこの様式は、SQL文で値式が想定されている所であればどこでも動作します。
   

宣言セクション





例えば問い合わせ内のパラメータとして、プログラムからデータベースへデータを渡す、もしくは、データベースからプログラムへデータを渡すためには、このようなデータを含むように意図されたC変数を、埋め込みSQLプリプロセッサが管理できるように、特殊な印のついたセクションで宣言する必要があります。
   


このセクションは以下で始まります。


EXEC SQL BEGIN DECLARE SECTION;



そして、以下で終わります。


EXEC SQL END DECLARE SECTION;



この行の間は、以下のような通常のC変数宣言でなければなりません。


int   x = 4;
char  foo[16], bar[16];



見てわかるとおり、省略可能ですが、変数に初期値を代入することができます。
変数のスコープはプログラム内の宣言セクションの場所により決まります。
また、以下のような暗黙的に宣言セクションを生成する構文を使って変数を宣言することもできます。


EXEC SQL int i = 4;



プログラム内に複数の宣言セクションを持たせることができます。
   


また、宣言は普通のC変数としてそのまま出力ファイルに出力されます。
ですので、これらを再度宣言する必要はありません。
通常、SQLコマンドで使用する予定がない変数はこの特別なセクションの外側で宣言されます。
   


構造体や共用体の定義もまた、DECLAREセクションの内側で表す必要があります。
さもないと、プリプロセッサはその定義が不明であるために、これらの型を扱うことができません。
   

クエリ実行結果の受け取り





ここまでで、プログラムで生成したデータをSQLコマンドに渡すことができるようになりました。
しかし、どのように問い合わせの結果を取り出すのでしょうか？
この目的のために、埋め込みSQLでは、通常のSELECTとFETCHを派生した、特殊なコマンドを提供しています。
これらのコマンドは特別なINTO句を持ち、ここで返された値をどのホスト変数に格納すればよいかを指定します。
SELECT は単一行を返却する問い合わせに使用され、FETCH は複数の行を返却する問い合わせにおいてカーソルとともに使用されます。
   


以下にサンプルを示します。


/*

 * 以下のテーブルを前提とする
 * CREATE TABLE test1 (a int, b varchar(50));
 */

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL SELECT a, b INTO :v1, :v2 FROM test;



INTO句が選択リストとFROM句の間に現れます。
選択リスト内の要素数とINTO直後のリスト（目的リストとも呼ばれます）の要素数は等しくなければなりません。
   


以下にFETCHコマンドの使用例を示します。


EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL DECLARE foo CURSOR FOR SELECT a, b FROM test;

 ...

do
{
    ...
    EXEC SQL FETCH NEXT FROM foo INTO :v1, :v2;
    ...
} while (...);



ここでは、INTO句が通常のすべての句の後ろに現れています。
   

データ型の対応





    ECPGアプリケーションがPostgreSQLバックエンドとCアプリケーションの間で値をやり取りする際、例えばサーバからクエリの結果を受け取る、または入力パラメータとともにSQL文を実行する場合、それらの値はPostgreSQLのデータ型とホスト言語の変数の型（具体的にはC言語のデータ型）の間で変換される必要があります。
    ECPGの重要な点のひとつは、ほとんどの場合においてECPGがこれらを自動的に扱うということです。
   


    この点において、2つのデータ型があります: いくつかの単純なPostgreSQLのデータ型、integer や text などは、アプリケーションから直接読んだり書いたりすることができます。
    その他のPostgreSQLのデータ型、timestamp や numeric などは、特別なライブラリ関数によってしかアクセスすることができません; 「特殊なデータ型へのアクセス」 を参照してください。
   


表34.1「PostgreSQLデータ型とC言語変数型の対応」には、PostgreSQLのどのデータ型がC言語のデータ型に対応するかが示されています。
与えられたPostgreSQLのデータ型へ値を書き込みまたは読み込みしたい場合には、対応するC言語のデータ型の変数を宣言セクションにおいて宣言しなければなりません。
   
表34.1 PostgreSQLデータ型とC言語変数型の対応
	PostgreSQLデータ型	ホスト変数型
	smallint	short
	integer	int
	bigint	long long int
	decimal	decimal[a]
	numeric	numeric[a]
	real	float
	double precision	double
	smallserial	short
	serial	int
	bigserial	long long int
	oid	unsigned int
	character(n), varchar(n), text	char[n+1], VARCHAR[n+1]
	name	char[NAMEDATALEN]
	timestamp	timestamp[a]
	interval	interval[a]
	date	date[a]
	boolean	bool[b]
	bytea	char *, bytea[n]
	[a] この型は特別なライブラリ関数を通してのみアクセスできます; 「特殊なデータ型へのアクセス」 を参照。

[b] ネイティブでなければ ecpglib.h で宣言。





文字列の処理





varcharやtextのような文字列のデータ型を扱うため、ホスト変数を宣言するための2つの方法があります。
    


ひとつは char の配列 char[] を使うことで、C言語において文字列データを扱うもっとも一般的な方法です。


EXEC SQL BEGIN DECLARE SECTION;
    char str[50];
EXEC SQL END DECLARE SECTION;



文字列の長さについて、自分自身で気を付けておく必要があります。
上記のホスト変数を49文字以上の文字列を返すクエリのターゲット変数として使った場合、バッファオーバーフローが発生します。
    


その他の方法は、ECPGによって提供される特殊なデータ型 VARCHAR を使う方法です。
VARCHAR の配列の定義は、すべての変数が名前の付いた struct に変換されます。
以下のような宣言は:


VARCHAR var[180];



次のように変換されます:


struct varchar_var { int len; char arr[180]; } var;



     メンバ変数 arr は終端のゼロの1バイトを含む文字列を保持します。
     よって、文字列を VARCHAR ホスト変数に格納する場合には、ホスト変数はゼロ終端を含んだ長さで宣言されなければなりません。
     メンバ変数 len は arr に格納された文字列のゼロ終端を含まない長さを保持します。
     ホスト変数をクエリの入力として使用する際、strlen(arr) と len が違った場合には短いものが使用されます。
    


     VARCHAR は大文字でも小文字でも記述することができますが、混在して記述することはできません。
    


     char と VARCHAR ホスト変数は、他のSQLのデータ型の値を文字列表現として保持することもできます。
    

特殊なデータ型へのアクセス





     ECPGには、PostgreSQLサーバからのいくつかの特殊なデータ型とやりとりするための特殊なデータ型があります。
     特に、numeric, decimal, date, timestamp, interval 型へのサポートを実装しています。
     これらのデータ型は複雑な内部構造を持つため、ホスト変数のプリミティブ型（int, long long int, または char[]）に対応させることはできません。
     アプリケーションは特別な型としてホスト変数を宣言し、pgtypesライブラリ内の関数を使ってアクセスすることで、これらの型を扱います。
     「pgtypes ライブラリ」 で詳細を解説されるpgtypesライブラリは、例えばタイムスタンプにインターバルを加算する際にクエリをSQLサーバに送らずに済ますような、これらの型を扱うための基本的な関数を含んでいます。
    


以降の副節は、これらの特殊なデータ型を説明します。
pgtypesライブラリ関数についての詳細は「pgtypes ライブラリ」を参照してください。
    
timestamp, date





      以下は、timestamp 変数をECPGホストアプリケーションで扱う典型的なパターンです。
     


      最初に、プログラムは timestamp 型のためのヘッダファイルをインクルードする必要があります:


#include <pgtypes_timestamp.h>


     


      次に、宣言セクションで timestamp 型のホスト変数を宣言します:


EXEC SQL BEGIN DECLARE SECTION;
timestamp ts;
EXEC SQL END DECLARE SECTION;


     


      そして、ホスト変数へ値を読み込んだら、pgtypesライブラリ関数を使って処理をします。
      以降の例では、timestamp の値は PGTYPEStimestamp_to_asc() 関数によって text (ASCII) 形式に変換されます:


EXEC SQL SELECT now()::timestamp INTO :ts;

printf("ts = %s\n", PGTYPEStimestamp_to_asc(ts));



この例は、以下のような結果を表示します。


ts = 2010-06-27 18:03:56.949343


     


また、DATE型も同じ方法で扱うことができます。
プログラムは pgtypes_date.h をインクルードし、ホスト変数を date 型として宣言し、PGTYPESdate_to_asc() 関数によって DATE の値を text 形式に変換します。
pgtypesライブラリ関数についての詳細は、「pgtypes ライブラリ」 を参照してください。
     

interval





      interval 型の扱い方は timestamp や date 型と似ています。
      但し、interval 型の値のために明示的にメモリを確保する必要があります。
      言い換えると、この変数のためのメモリ領域はスタックではなくヒープ上に確保されます。
     


      以下にプログラム例を示します:


#include <stdio.h>
#include <stdlib.h>
#include <pgtypes_interval.h>

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
    interval *in;
EXEC SQL END DECLARE SECTION;

    EXEC SQL CONNECT TO testdb;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    in = PGTYPESinterval_new();
    EXEC SQL SELECT '1 min'::interval INTO :in;
    printf("interval = %s\n", PGTYPESinterval_to_asc(in));
    PGTYPESinterval_free(in);

    EXEC SQL COMMIT;
    EXEC SQL DISCONNECT ALL;
    return 0;
}


     

numeric, decimal





      numeric と decimal 型の扱い方は interval 型と似ています: ポインタ宣言を必要とし、ヒープメモリを確保する必要があり、pgtypesライブラリ関数を使って変数にアクセスします。
      pgtypesライブラリ関数の詳細については、「pgtypes ライブラリ」 を参照してください。
     


      decimal 型に対する専用の関数は提供されていません。
      アプリケーションは処理を行うために pgtypesライブラリ関数を使って numeric 変数に変換する必要があります。
     


      以下に numeric および decimal 型の変数の処理の例を示します。


#include <stdio.h>
#include <stdlib.h>
#include <pgtypes_numeric.h>

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
    numeric *num;
    numeric *num2;
    decimal *dec;
EXEC SQL END DECLARE SECTION;

    EXEC SQL CONNECT TO testdb;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    num = PGTYPESnumeric_new();
    dec = PGTYPESdecimal_new();

    EXEC SQL SELECT 12.345::numeric(4,2), 23.456::decimal(4,2) INTO :num, :dec;

    printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 0));
    printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 1));
    printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 2));


    /* decimalの値を表示するためdecimalをnumericに変換する。 */
    num2 = PGTYPESnumeric_new();
    PGTYPESnumeric_from_decimal(dec, num2);

    printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 0));
    printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 1));
    printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 2));

    PGTYPESnumeric_free(num2);
    PGTYPESdecimal_free(dec);
    PGTYPESnumeric_free(num);

    EXEC SQL COMMIT;
    EXEC SQL DISCONNECT ALL;
    return 0;
}


     

bytea





bytea型の扱いは、VARCHARと似ています。
bytea型の配列の定義は、すべての変数が名前の付いたstructに変換されます。
以下のような宣言は:


bytea var[180];



     次のように変換されます:


struct bytea_var { int len; char arr[180]; } var;



メンバ変数arrはバイナリフォーマットデータを保持します。
VARCHARとは異なり、'\0'をデータの一部として扱うこともできます。
データは、ecpglibによりhex書式から、またはhex書式に変換されて、送信または受信されます。
     
注記


bytea変数は、bytea_outputがhexに設定されている場合にのみ使うことができます。
      



非プリミティブ型のホスト変数





ホスト変数として、配列、typedef、構造体およびポインタも使うことができます。
    
配列





ホスト変数としての配列の使い方には二通りの利用方法があります。
一つ目の使い方は、「文字列の処理」 で説明されたように char[] または VARCHAR[] の何らかのテキスト文字列を保持するための方法です。
二つ目の使い方は、カーソルを用いずに複数行を返却するクエリ結果を受け取るために使う方法です。
配列を使わない場合、複数行からなるクエリの実行結果を処理するには、カーソルと FETCH コマンドを使用する必要があります。
しかし、配列のホスト変数を使うと、複数行を一括して受け取ることができます。
配列の長さはすべての行を受け入れられるように定義されなければなりません。でなければバッファオーバーフローが発生するでしょう。
     


以下の例は pg_database システムテーブルをスキャンし、利用可能なデータベースのすべてのOIDとデータベース名を表示します:


int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
    int dbid[8];
    char dbname[8][16];
    int i;
EXEC SQL END DECLARE SECTION;

    memset(dbname, 0, sizeof(char)* 16 * 8);
    memset(dbid, 0, sizeof(int) * 8);

    EXEC SQL CONNECT TO testdb;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;


    /* 複数行を一度に配列へと取り出す。 */
    EXEC SQL SELECT oid,datname INTO :dbid, :dbname FROM pg_database;

    for (i = 0; i < 8; i++)
        printf("oid=%d, dbname=%s\n", dbid[i], dbname[i]);

    EXEC SQL COMMIT;
    EXEC SQL DISCONNECT ALL;
    return 0;
}




この例は、以下の結果を表示します。（実際の値はローカルな環境に依存します）


oid=1, dbname=template1
oid=11510, dbname=template0
oid=11511, dbname=postgres
oid=313780, dbname=testdb
oid=0, dbname=
oid=0, dbname=
oid=0, dbname=


     

構造体





メンバ変数の名前がクエリ結果のカラム名に合致する構造体は、複数のカラムを一括して受け取るために利用することができます。
構造体は複数のカラムの値を単一のホスト変数で扱うことを可能にします。
     


以下の例は、pg_databaseシステムテーブルおよびpg_database_size()関数を使って、利用可能なデータベースのOID、名前、サイズを取得します。
この例では、メンバ変数の名前がSELECT結果の各カラムに合致する構造体dbinfo_tが、複数のホスト変数に格納することなくFETCH文の一行の結果を受け取るために使用されています。


EXEC SQL BEGIN DECLARE SECTION;
    typedef struct
    {
       int oid;
       char datname[65];
       long long int size;
    } dbinfo_t;

    dbinfo_t dbval;
EXEC SQL END DECLARE SECTION;

    memset(&dbval, 0, sizeof(dbinfo_t));

    EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size FROM pg_database;
    EXEC SQL OPEN cur1;


    /* 結果集合の最後に到達したら、whileループから抜ける */
    EXEC SQL WHENEVER NOT FOUND DO BREAK;

    while (1)
    {

        /* 複数列を1つの構造体に取り込む。 */
        EXEC SQL FETCH FROM cur1 INTO :dbval;


        /* 構造体のメンバを表示する。 */
        printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname, dbval.size);
    }

    EXEC SQL CLOSE cur1;


     


この例は、次の結果を示します（実際の値はローカルな環境に依存します）


oid=1, datname=template1, size=4324580
oid=11510, datname=template0, size=4243460
oid=11511, datname=postgres, size=4324580
oid=313780, datname=testdb, size=8183012


     


構造体のホスト変数は、多数のカラムを構造体のフィールドとして「吸収」します。
追加のカラムは他のホスト変数に割り当てることができます。
例えば、上記のプログラムは構造体に含まれない size 変数を使って以下のように書き換えることができます。


EXEC SQL BEGIN DECLARE SECTION;
    typedef struct
    {
       int oid;
       char datname[65];
    } dbinfo_t;

    dbinfo_t dbval;
    long long int size;
EXEC SQL END DECLARE SECTION;

    memset(&dbval, 0, sizeof(dbinfo_t));

    EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size FROM pg_database;
    EXEC SQL OPEN cur1;


    /* 結果集合の最後に到達したら、whileループから抜ける */
    EXEC SQL WHENEVER NOT FOUND DO BREAK;

    while (1)
    {

        /* 複数列を1つの構造体に取り込む。 */
        EXEC SQL FETCH FROM cur1 INTO :dbval, :size;


        /* 構造体のメンバを表示する。 */
        printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname, size);
    }

    EXEC SQL CLOSE cur1;


     

typedef





新しい型と既存の型を対応付けるためには typedef キーワードを使ってください。


EXEC SQL BEGIN DECLARE SECTION;
    typedef char mychartype[40];
    typedef long serial_t;
EXEC SQL END DECLARE SECTION;



また、同様に以下を使うこともできます:


EXEC SQL TYPE serial_t IS long;



この宣言は、宣言セクションの一部である必要はありません。
つまり、typedefを通常のCステートメントとしても書けます。
     


typedefとして宣言したワードは、同じプログラム内で後でEXEC SQLコマンドのSQLキーワードとして使用できません。
例えば、これは機能しません。


EXEC SQL BEGIN DECLARE SECTION;
    typedef int start;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL START TRANSACTION;



ECPGは、START TRANSACTIONの構文エラーを報告します。
なぜなら、それはもはやSQLのキーワードとしてではなく、typedefとして認識するSTARTであるからです。
（もし、 競合があり、typedefの名前を変更することが現実的でないと思われる場合は、動的SQLを使用して書くことができます。）
     
注記


PostgreSQL™ v16より前では、typedef名としてSQLキーワードを使用すると、構文キーワードとして自分自身を使用するのではなく、typedef名前の使用に関連するSQLエラーが発生する可能性がありました。
新しい動作では、既存のECPGアプリケーションが新しいキーワードを使用して新しいPostgreSQL™のリリースで再コンパイルされる場合に問題が発生する可能性が低くなりました。
      


ポインタ





ほとんどの一般的な型のポインタを宣言することができます。
但し、自動メモリ確保を使わずにクエリのターゲット変数として使うことはできません。
自動メモリ確保については 「記述子領域の使用」 を参照してください。
     



EXEC SQL BEGIN DECLARE SECTION;
    int   *intp;
    char **charp;
EXEC SQL END DECLARE SECTION;


     



非プリミティブSQLデータ型の扱い方





本節では、非スカラ型およびユーザ定義のSQLデータ型をECPGアプリケーションで扱う方法を示します。
これは、前節で説明した非プリミティブ型のホスト変数の扱い方とは異なります。
   
配列





SQLの多次元配列は、ECPGにおいては直接的にはサポートされていません。
SQLの1次元配列をC言語の配列のホスト変数に対応させることはできますし、その逆もできます。
しかし、文の作成時にはecpgがその列の型を知らないので、C言語の配列を対応するSQLの配列に入力できるか確かめられません。
SQL文の出力を処理する時には、ecpgは必要な情報を持っていますので、どちらも配列であるか確かめます。
    


     もし、クエリが配列の 要素 に対して個別にアクセスした場合、ECPGにおける配列の利用を避けることができます。
     その際、要素に対応させることができる型のホスト変数を利用しなければなりません。
     例えば、カラムの型が integer の配列の場合、int 型のホスト変数を使用することができます。
     同様に、要素の型が varchar または text の場合、 char[] ないし VARCHAR[] 型のホスト変数を使用することができます。
    


     以下に例を示します。次のようなテーブルを仮定します:


CREATE TABLE t3 (
    ii integer[]
);

testdb=> SELECT * FROM t3;
     ii
-------------
 {1,2,3,4,5}
(1 row)




     以下のプログラム例は、配列の4番目の要素を取得し、それを int 型のホスト変数に保存します:


EXEC SQL BEGIN DECLARE SECTION;
int ii;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    EXEC SQL FETCH FROM cur1 INTO :ii ;
    printf("ii=%d\n", ii);
}

EXEC SQL CLOSE cur1;




     この例は以下のような結果を示します:


ii=4


    


     複数の配列の要素を、配列型のホスト変数の複数の要素にマッピングするためには、配列型のカラムの各要素とホスト変数配列の各要素は、以下の例のように別々に管理されなければなりません:


EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[1], ii[2], ii[3], ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    EXEC SQL FETCH FROM cur1 INTO :ii_a[0], :ii_a[1], :ii_a[2], :ii_a[3];
    ...
}


    


     繰り返しになりますが、以下の例は


EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

    /* 間違い */
    EXEC SQL FETCH FROM cur1 INTO :ii_a;
    ...
}



     この場合は正しく動作しません。なぜなら、配列型のカラムをホストの配列変数に直接対応させることはできないからです。
    


     もうひとつの回避策は、配列をホスト変数の char[] または VARCHAR[] 型に文字列表現として保存することです。
     この表現方法についての詳細は 「配列の値の入力」 を参照してください。
     このことは、配列にはホストプログラム内で自然な形ではアクセスできないことを意味しています（文字列表現を解析する追加処理が無ければ）。
    

複合型





複合型はECPGでは直接はサポートされていませんが、簡単な回避方法が利用可能です。
利用可能なワークアラウンドは、先に配列において説明されたものと似ています: 各属性に個別にアクセスするか、外部の文字列表現を使います。
    


以降の例のため、以下の型とテーブルを仮定します:


CREATE TYPE comp_t AS (intval integer, textval varchar(32));
CREATE TABLE t4 (compval comp_t);
INSERT INTO t4 VALUES ( (256, 'PostgreSQL') );




もっとも分かりやすい解決法は、各属性に個別にアクセスすることです。
以下のプログラムは、comp_t型の各要素を個別に選択することによってサンプルのテーブルからデータを受け取ります:


EXEC SQL BEGIN DECLARE SECTION;
int intval;
varchar textval[33];
EXEC SQL END DECLARE SECTION;


/* SELECTリストに複合型の列の各要素を書く。 */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

    /* 複合型の列の各要素をホスト変数に取り出す。 */
    EXEC SQL FETCH FROM cur1 INTO :intval, :textval;

    printf("intval=%d, textval=%s\n", intval, textval.arr);
}

EXEC SQL CLOSE cur1;


    


     この例を拡張して、 FETCH コマンドの値を格納するホスト変数を一つの構造体にまとめることができます。
     構造体の形のホスト変数の詳細については 「構造体」 を参照してください。
     構造体に変更するために、この例は以下のように変更することができます。
     二つのホスト変数 intval と textval を comp_t 構造体のメンバ変数とし、構造体を FETCH コマンドで指定します。


EXEC SQL BEGIN DECLARE SECTION;
typedef struct
{
    int intval;
    varchar textval[33];
} comp_t;

comp_t compval;
EXEC SQL END DECLARE SECTION;


/* SELECTリストに複合型の列の各要素を書く。 */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

    /* SELECTリストの値をすべて1つの構造体に取り込む。 */
    EXEC SQL FETCH FROM cur1 INTO :compval;

    printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}

EXEC SQL CLOSE cur1;




     構造体が FETCH コマンドで使われていますが、属性名は SELECT 句において各々が指定されています。
     これは、複合型の値のすべての属性を示す * を用いることで拡張することができます。


...
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).* FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

    /* SELECTリストの値をすべて1つの構造体に取り込む。 */
    EXEC SQL FETCH FROM cur1 INTO :compval;

    printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}
...



     この方法であれば、ECPGが複合型そのものを理解できないとしても、複合型はほぼシームレスに構造体に対応させることができます。
    


     最後に、char[] または VARCHAR[] 型のホスト変数に外部の文字列表現として複合型の値を格納することもできます。
     しかし、この方法ではホストプログラムから値のフィールドにアクセスするのは簡単ではありません。
    

ユーザ定義の基本型





     新しいユーザ定義の基本型は、ECPGでは直接的にはサポートされていません。
     外部の文字列表現、char[]またはVARCHAR[] 型のホスト変数を使うことができ、この解決法は多くの型について確かに適切かつ十分です。
    


以下に「ユーザ定義の型」に含まれるcomplex型を使った例を示します。
この型の外部文字列表現は(%f,%f)で、「ユーザ定義の型」のcomplex_in()関数およびcomplex_out()関数で定義されています。
以下の例は、カラムaとbに、complex型の値(1,1)および(3,3)を挿入し、その後、それらをテーブルからSELECTします。



EXEC SQL BEGIN DECLARE SECTION;
    varchar a[64];
    varchar b[64];
EXEC SQL END DECLARE SECTION;

    EXEC SQL INSERT INTO test_complex VALUES ('(1,1)', '(3,3)');

    EXEC SQL DECLARE cur1 CURSOR FOR SELECT a, b FROM test_complex;
    EXEC SQL OPEN cur1;

    EXEC SQL WHENEVER NOT FOUND DO BREAK;

    while (1)
    {
        EXEC SQL FETCH FROM cur1 INTO :a, :b;
        printf("a=%s, b=%s\n", a.arr, b.arr);
    }

    EXEC SQL CLOSE cur1;




     この例は、以下の結果を示します。


a=(1,1), b=(3,3)


   


     その他の回避方法は、ユーザ定義型をECPGにおいて直接的に使うことを避けることであり、ユーザ定義型とECPGが扱えるプリミティブ型を変換する関数またはキャストを作成することです。
     ただし、型のキャスト、特に暗黙のものは型システムにおいて慎重に導入されなければなりません。
    


     例を示します。


CREATE FUNCTION create_complex(r double, i double) RETURNS complex
LANGUAGE SQL
IMMUTABLE
AS $$ SELECT $1 * complex '(1,0')' + $2 * complex '(0,1)' $$;



    この定義の後、以下の例は


EXEC SQL BEGIN DECLARE SECTION;
double a, b, c, d;
EXEC SQL END DECLARE SECTION;

a = 1;
b = 2;
c = 3;
d = 4;

EXEC SQL INSERT INTO test_complex VALUES (create_complex(:a, :b), create_complex(:c, :d));



    以下と同じ効果をもたらします。


EXEC SQL INSERT INTO test_complex VALUES ('(1,2)', '(3,4)');


    


指示子





上の例ではNULL値を扱いません。
実際、取り出し例では、もしデータベースからNULL値が取り出された場合にはエラーが発生します。
データベースへNULL値を渡す、または、データベースからNULL値を取り出すためには、第二のホスト変数指定をデータを格納するホスト変数それぞれに追加しなければなりません。
第二のホスト変数は指示子と呼ばれ、データがNULLかどうかを表すフラグが含まれます。
NULLの場合、実際のホスト変数の値は無視されます。
以下に、NULL値の取り出しを正しく扱う例を示します。


EXEC SQL BEGIN DECLARE SECTION;
VARCHAR val;
int val_ind;
EXEC SQL END DECLARE SECTION:

 ...

EXEC SQL SELECT b INTO :val :val_ind FROM test1;



値がNULLでなければ、指示子変数val_indは0となります。
値がNULLならば負の値となります。
(Oracle特有の振舞いを有効にするには「Oracle™互換モード」を参照してください。)
   


指示子は他の機能を持ちます。
指示子の値が正ならば、値がNULLではありませんが、ホスト変数に格納する際に一部切り詰められたことを示します。
   


プリプロセッサecpgに引数-r no_indicatorが渡された場合、「no-indicator」モードで動作します。
no-indicatorモードでは、指示子変数が指定されなかった場合、（入力および出力において）文字列型に対して空の文字列としてNULL値が、integer型に対してはもっとも小さな値が割り当てられます（例えば、intの場合INT_MINです）。
   


動的SQL





多くの場合、アプリケーションが実行しなければならないSQL文は、アプリケーションを作成する段階で決まります。
しかし、中には、SQL文が実行時に構成されることや外部ソースで提供されることがあります。
このような場合、SQL文を直接Cソースコードに埋め込むことはできません。
しかし、文字列変数として提供される任意のSQL文を呼び出すことができる機能が存在します。
  
結果セットを伴わないSQL文の実行





    任意のSQL文を実行するもっとも簡単な方法は、EXECUTE IMMEDIATE コマンドを使用することです。
    例を示します:


EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "CREATE TABLE test1 (...);";
EXEC SQL END DECLARE SECTION;

EXEC SQL EXECUTE IMMEDIATE :stmt;



EXECUTE IMMEDIATEは結果セットを返却しないSQL文（例えば、DDL、INSERT、UPDATE、DELETE）に使用することができます。
結果を受け取るSQL文（例えば、SELECT）をこの方法で実行することはできません。
次節で、その実行方法を説明します。
   

入力パラメータを伴うSQL文の実行





任意のSQL文を実行するより強力な方法は、一度プリペアをし、その後でプリペアド文を実行したいところで実行することです。
また、SQL文を汎用化した形でプリペアし、パラメータを置き換えることで特定のSQL文を実行させることも可能です。
SQL文をプリペアする時、後でパラメータとして置き換えたいところには疑問符を記述してください。
以下に例を示します。


EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "INSERT INTO test1 VALUES(?, ?);";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
 ...
EXEC SQL EXECUTE mystmt USING 42, 'foobar';


   


プリペアド文が必要なくなった時、割当てを解除しなければなりません。


EXEC SQL DEALLOCATE PREPARE name;


   

結果セットを返却するSQL文の実行





    単一行を編訳するSQL文を実行するには、EXECUTE を使うことができます。
    結果を保存するには、INTO 句を追加します。


EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "SELECT a, b, c FROM test1 WHERE a > ?";
int v1, v2;
VARCHAR v3[50];
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
 ...
EXEC SQL EXECUTE mystmt INTO :v1, :v2, :v3 USING 37;




EXECUTEコマンドはINTO句、USING句、この両方を持つことも、どちらも持たないこともできます。
   


    クエリが2行以上の結果を返すことが想定される場合、以下の例のようにカーソルを使う必要があります。
    （カーソルの詳細については 「カーソルの使用」 を参照してください）


EXEC SQL BEGIN DECLARE SECTION;
char dbaname[128];
char datname[128];
char *stmt = "SELECT u.usename as dbaname, d.datname "
             "  FROM pg_database d, pg_user u "
             "  WHERE d.datdba = u.usesysid";
EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO testdb AS con1 USER testuser;
EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

EXEC SQL PREPARE stmt1 FROM :stmt;

EXEC SQL DECLARE cursor1 CURSOR FOR stmt1;
EXEC SQL OPEN cursor1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
    EXEC SQL FETCH cursor1 INTO :dbaname,:datname;
    printf("dbaname=%s, datname=%s\n", dbaname, datname);
}

EXEC SQL CLOSE cursor1;

EXEC SQL COMMIT;
EXEC SQL DISCONNECT ALL;


   


pgtypes ライブラリ





pgtypesライブラリはPostgreSQL™データベースの型をCプログラムで使用できるようにC言語に対応させます。
また、これらの型を使用したCの基本的な計算を行う関数も提供します。
この計算には、PostgreSQL™サーバを使用しません。
以下の例を参照してください。


EXEC SQL BEGIN DECLARE SECTION;
   date date1;
   timestamp ts1, tsout;
   interval iv1;
   char *out;
EXEC SQL END DECLARE SECTION;

PGTYPESdate_today(&date1);
EXEC SQL SELECT started, duration INTO :ts1, :iv1 FROM datetbl WHERE d=:date1;
PGTYPEStimestamp_add_interval(&ts1, &iv1, &tsout);
out = PGTYPEStimestamp_to_asc(&tsout);
printf("Started + duration: %s\n", out);
PGTYPESchar_free(out);



  
文字列





PGTYPESnumeric_to_ascのような一部の関数は新たに割り当てられた文字列へのポインタを返します。
この結果はfreeの代わりにPGTYPESchar_freeで解放することが必要です。
(これはWindows上でのみ重要です。Windowsではメモリの割り当てと解放は同じライブラリで実施されることが必要な場合があります。)
   

numeric 型





numeric 型では任意の精度での計算機能を提供します。
PostgreSQL™サーバにおける対応する型については「数値データ型」を参照してください。
任意の精度を持つために、この変数は動的に拡張、縮小できなければなりません。
これが、PGTYPESnumeric_newやPGTYPESnumeric_free関数では、ヒープ領域上にのみしか numeric 変数を作成できない理由です。
decimal 型も似ていますが精度が限定されていますので、ヒープ領域以外にスタック領域上でも作成可能です。
   


以下の関数は numeric 型で使用することができます:
   
	PGTYPESnumeric_new
	

新規割当ての numeric 型へのポインタを要求します。


numeric *PGTYPESnumeric_new(void);


      

	PGTYPESnumeric_free
	

numeric 型を解放し、そのメモリをすべて解放します。


void PGTYPESnumeric_free(numeric *var);


      

	PGTYPESnumeric_from_asc
	

文字列表記から numeric 型に変換します。


numeric *PGTYPESnumeric_from_asc(char *str, char **endptr);



有効な書式の例を示します。
-2、.794、+3.44、592.49E07、-32.84e-4。
値への変換に成功した場合、有効なポインタが返されます。
失敗した場合は NULL ポインタが返されます。
現在ECPGは文字列全体を解析しますので、現時点では*endptr内に最初の無効な文字のアドレスを格納することをサポートしません。
このためendptrを安全に NULL にすることができます。
      

	PGTYPESnumeric_to_asc
	

numeric 型numの文字列表現を持つ、mallocで割り当てられた文字列へのポインタを返します。


char *PGTYPESnumeric_to_asc(numeric *num, int dscale);



numericの値は、必要に応じて四捨五入され、dscale桁の10進数で出力されます。
結果はPGTYPESchar_free()で解放しなければなりません。
      

	PGTYPESnumeric_add
	

2つの numeric 変数を加算し、3番目の numeric 変数に格納します。


int PGTYPESnumeric_add(numeric *var1, numeric *var2, numeric *result);



この関数は変数var1と変数var2を加算し、その結果をresultに格納します。
成功時0を、エラー時-1を返します。
      

	PGTYPESnumeric_sub
	

2つの numeric 型変数を減算し、3番目の numeric 型変数に結果を格納します。


int PGTYPESnumeric_sub(numeric *var1, numeric *var2, numeric *result);



この関数は変数var1から変数var2を差し引きます。
演算結果を変数resultに格納します。
成功時0を、エラー時-1を返します。
      

	PGTYPESnumeric_mul
	

2つの numeric 型変数を乗算し、3番目の numeric 型変数に結果を格納します。


int PGTYPESnumeric_mul(numeric *var1, numeric *var2, numeric *result);



この関数は変数var1と変数var2を掛け合わせます。
演算結果を変数resultに格納します。
成功時0を、エラー時-1を返します。
      

	PGTYPESnumeric_div
	

2つの numeric 型変数で除算し、3番目の numeric 型変数に結果を格納します。


int PGTYPESnumeric_div(numeric *var1, numeric *var2, numeric *result);



この関数は変数var1を変数var2で割ります。
演算結果を変数resultに格納します。
成功時0を、エラー時-1を返します。
      

	PGTYPESnumeric_cmp
	

2つのnumeric型変数を比較します。


int PGTYPESnumeric_cmp(numeric *var1, numeric *var2)



この関数は2つのnumeric型変数を比較します。
エラーの場合INT_MAXが返ります。
成功時、この関数は以下のいずれかを返します:
       
	

          var1がvar2より大きければ1。
         

	

          var1がvar2より小さければ-1。
         

	

          var1がvar2と等しければ0。
         




      

	PGTYPESnumeric_from_int
	

int型変数をnumeric型変数に変換します。


int PGTYPESnumeric_from_int(signed int int_val, numeric *var);



この関数はsigned int型の変数を受付け、numeric型変数var内に格納します。
成功時0、失敗時-1が返ります。
      

	PGTYPESnumeric_from_long
	

long int型変数をnumeric型変数に変換します。


int PGTYPESnumeric_from_long(signed long int long_val, numeric *var);



この関数はsigned long int型の変数を受付け、numeric型変数var内に格納します。
成功時0、失敗時-1が返ります。
      

	PGTYPESnumeric_copy
	

numeric 型変数を他の numeric 型変数にコピーします。


int PGTYPESnumeric_copy(numeric *src, numeric *dst);



この関数は、srcが指し示す変数の値をdstが指し示す変数にコピーします。
成功時0、失敗時-1が返ります。
      

	PGTYPESnumeric_from_double
	

double型の変数を numeric 型変数に変換します。


int  PGTYPESnumeric_from_double(double d, numeric *dst);



この関数はdouble型の変数を受付け、変換結果をdstが指し示す変数内に格納します。
成功時0、失敗時-1が返ります。
      

	PGTYPESnumeric_to_double
	

numeric 型変数をdouble型に変換します。


int PGTYPESnumeric_to_double(numeric *nv, double *dp)



この関数はnvが指し示す numeric 型変数の値をdpが指し示すdouble型変数に変換します。
成功時0、オーバーフローを含むエラーが発生した時-1が返ります。
オーバーフローが発生した場合はさらに、グローバル変数errnoはPGTYPES_NUM_OVERFLOWに設定されます。
      

	PGTYPESnumeric_to_int
	

numeric型変数をint型に変換します。


int PGTYPESnumeric_to_int(numeric *nv, int *ip);



この関数はnvが指し示すnumeric型変数の値をipが指し示すinteger型変数に変換します。
成功時0、オーバーフローを含むエラーが発生した時-1が返ります。
オーバーフローが発生した場合はさらに、グローバル変数errnoはPGTYPES_NUM_OVERFLOWに設定されます。
      

	PGTYPESnumeric_to_long
	

numeric 型変数をlong型に変換します。


int PGTYPESnumeric_to_long(numeric *nv, long *lp);



この関数はnvが指し示すnumeric型の変数の値をlpが指し示すlong integer値に変換します。
成功時0、オーバーフローおよびアンダーフローを含むエラーが発生した時-1が返ります。
オーバーフローが発生した場合は、グローバル変数errnoはPGTYPES_NUM_OVERFLOWに設定され、アンダーフローが発生した場合は、errnoはPGTYPES_NUM_UNDERFLOWに設定されます。
      

	PGTYPESnumeric_to_decimal
	

numeric 型変数を decimal 型に変換します。


int PGTYPESnumeric_to_decimal(numeric *src, decimal *dst);



この関数はsrcが指し示す numeric 型変数の値をdstが指し示す decimal 型変数に変換します。
成功時0、オーバーフローを含むエラーが発生した時-1が返ります。
オーバーフローが発生した場合はさらに、グローバル変数errnoはPGTYPES_NUM_OVERFLOWに設定されます。
      

	PGTYPESnumeric_from_decimal
	

decimal 型変数を numeric 型に変換します。


int PGTYPESnumeric_from_decimal(decimal *src, numeric *dst);



この関数はsrcが指し示す decimal 型変数の値をdstが指し示す numeric 型変数に変換します。
成功時0、エラーが発生した時-1が返ります。
decimal 型は制限付の numeric 型として実装されていますので、この変換ではオーバーフローは起きません。
      




   

日付型





Cの日付型を使用して、プログラムからSQLの日付型を取り扱うことができます。
PostgreSQL™サーバにおける対応する型については「日付/時刻データ型」を参照してください。
   


日付型を操作するために以下の関数を使用することができます:
    
	PGTYPESdate_from_timestamp
	

タイムスタンプから日付部分を取り出します。


date PGTYPESdate_from_timestamp(timestamp dt);



この関数は唯一の引数としてタイムスタンプを受付け、そこから日付部分を取り出します。
       

	PGTYPESdate_from_asc
	

テキスト表現から日付型に変換します。


date PGTYPESdate_from_asc(char *str, char **endptr);



この関数はCのchar*型文字列strとCのchar*型文字列endptrへのポインタを受付けます。
現在ECPGは文字列全体を解析しますので、現時点では*endptrに最初の無効な文字のアドレスを格納することをサポートしません。
このためendptrを安全にNULLにすることができます。
       


この関数が常にMDY書式の日付を前提としている点に注意してください。
現在ECPGにはこれを変更するための変数がありません。
       


        表34.2「有効なPGTYPESdate_from_ascの入力書式」に許される入力書式を示します。
       
表34.2 有効なPGTYPESdate_from_ascの入力書式
	入力	結果
	January 8, 1999	January 8, 1999
	1999-01-08	January 8, 1999
	1/8/1999	January 8, 1999
	1/18/1999	January 18, 1999
	01/02/03	February 1, 2003
	1999-Jan-08	January 8, 1999
	Jan-08-1999	January 8, 1999
	08-Jan-1999	January 8, 1999
	99-Jan-08	January 8, 1999
	08-Jan-99	January 8, 1999
	08-Jan-06	January 8, 2006
	Jan-08-99	January 8, 1999
	19990108	ISO 8601; January 8, 1999
	990108	ISO 8601; January 8, 1999
	1999.008	年と年内日数
	J2451187	ユリウス日
	January 8, 99 BC	紀元前99年




	PGTYPESdate_to_asc
	

        日付型変数のテキスト表現を返します。


char *PGTYPESdate_to_asc(date dDate);



この関数は唯一の引数として日付型dDateを受付けます。
この関数は1999-01-18、つまりYYYY-MM-DD書式で日付を出力します。
結果はPGTYPESchar_free()で解放しなければなりません。
       

	PGTYPESdate_julmdy
	

        日付型の変数から、日、月、年の値を取り出します。


void PGTYPESdate_julmdy(date d, int *mdy);


       

この関数は日付型のdと、3つの整数値を持つ配列mdyへのポインタを受付けます。
この変数名はその並びを表し、mdy[0]には月数、mdy[1]には日数が、mdy[2]には年が入ります。
       

	PGTYPESdate_mdyjul
	

日付の日、月、年を指定した3つの整数からなる配列から日付値を作成します。


void PGTYPESdate_mdyjul(int *mdy, date *jdate);



この関数は、1番目の引数として3つの整数からなる配列(mdy)、2番目の引数として処理結果を格納する日付型の変数へのポインタを受付けます。
       

	PGTYPESdate_dayofweek
	

日付値から週内日数を表す数を返します。


int PGTYPESdate_dayofweek(date d);



この関数は唯一の引数としてdate型変数dを受付け、その日付の週内日数を表す整数を返します。
        
	

           0 - 日曜
          

	

           1 - 月曜
          

	

           2 - 火曜
          

	

           3 - 水曜
          

	

           4 - 木曜
          

	

           5 - 金曜
          

	

           6 - 土曜
          




       

	PGTYPESdate_today
	

現在の日付を取得します。


void PGTYPESdate_today(date *d);



この関数は現在の日付に設定されるdate型変数(d)を指し示すポインタを受付けます。
       

	PGTYPESdate_fmt_asc
	

書式マスクを使用してdate型変数をテキスト表現に変換します。


int PGTYPESdate_fmt_asc(date dDate, char *fmtstring, char *outbuf);



この関数は変換対象のdate型(dDate)、書式マスク(fmtstring)、日付のテキスト表現を格納するための文字列(outbuf)を受付けます。
       


成功時に0、エラーが発生した場合は負の値が返ります。
       


以下のリテラルを使用して、フィールドを指定することができます。
        
	

           dd - 月内の日数。
          

	

           mm - 年内の月数。
          

	

           yy - 二桁表記の年数
          

	

           yyyy - 四桁表記の年数
          

	

           ddd - 曜日の名前（省略形）
          

	

           mmm - 月の名前（省略形）
          





他の文字はすべて出力文字列にそのままコピーされます。
       


表34.3「有効なPGTYPESdate_fmt_ascの入力書式」にいくつかの可能性のある書式を示します。
この関数の使用方法に関するアイディアを提供しています。
出力行はすべて同じ日付、1959年11月23日に基づいています。
       
表34.3 有効なPGTYPESdate_fmt_ascの入力書式
	書式	結果
	mmddyy	112359
	ddmmyy	231159
	yymmdd	591123
	yy/mm/dd	59/11/23
	yy mm dd	59 11 23
	yy.mm.dd	59.11.23
	.mm.yyyy.dd.	.11.1959.23.
	mmm. dd, yyyy	Nov. 23, 1959
	mmm dd yyyy	Nov 23 1959
	yyyy dd mm	1959 23 11
	ddd, mmm. dd, yyyy	Mon, Nov. 23, 1959
	(ddd) mmm. dd, yyyy	(Mon) Nov. 23, 1959




	PGTYPESdate_defmt_asc
	

書式マスクを使用してCのchar*文字列からdate型の値に変換します。


int PGTYPESdate_defmt_asc(date *d, char *fmt, char *str);


        

この関数は、処理結果を格納するための日付型へのポインタ(d)、日付を解析するための書式マスク(fmt)、日付のテキスト表現を含むCのchar*文字列(str)を受付けます。
テキスト表現は書式マスクに合った表現であることが仮定されています。
しかし、文字列と書式マスクを1:1に対応付けする必要はありません。
この関数は並んだ順番に解析し、年の位置を表すyyまたはyyyyを、月の位置を表すmmを、日の位置を表すddを検索します。
       


表34.4「有効なrdefmtdateの入力書式」はいくつかの可能性のある書式を示します。
これはこの関数の使用方法に関するアイディアを提供します。
       
表34.4 有効なrdefmtdateの入力書式
	書式	文字列	結果
	ddmmyy	21-2-54	1954-02-21
	ddmmyy	2-12-54	1954-12-02
	ddmmyy	20111954	1954-11-20
	ddmmyy	130464	1964-04-13
	mmm.dd.yyyy	MAR-12-1967	1967-03-12
	yy/mm/dd	1954, February 3rd	1954-02-03
	mmm.dd.yyyy	041269	1969-04-12
	yy/mm/dd	In the year 2525, in the month of July, mankind will be alive on the 28th day	2525-07-28
	dd-mm-yy	I said on the 28th of July in the year 2525	2525-07-28
	mmm.dd.yyyy	9/14/58	1958-09-14
	yy/mm/dd	47/03/29	1947-03-29
	mmm.dd.yyyy	oct 28 1975	1975-10-28
	mmddyy	Nov 14th, 1985	1985-11-14







   

timestamp型





Cのタイムスタンプ型を使用してプログラムからSQLのタイムスタンプ型データを扱うことができます。
PostgreSQL™における対応する型については「日付/時刻データ型」を参照してください。
   


以下の関数を使用してタイムスタンプ型を扱うことができます:
    
	PGTYPEStimestamp_from_asc
	

テキスト表現のタイムスタンプをタイムスタンプ型変数に変換します。


timestamp PGTYPEStimestamp_from_asc(char *str, char **endptr);



この関数は変換対象の文字列(str)とC char*へのポインタ(endptr)を受付けます。
現在ECPGは文字列全体を解析しますので、現時点では*endptrに最初の無効な文字の場所を格納をすることサポートしません。
このためendptrを安全に NULL にすることができます。
       


この関数は成功時変換後のタイムスタンプを返します。
エラー時、PGTYPESInvalidTimestampが返され、errnoがPGTYPES_TS_BAD_TIMESTAMPに設定されます。
この値についての重要な注意書きについてPGTYPESInvalidTimestampを参照してください。
       


通常、入力文字列には許される日付指定の任意の組み合わせ、空白文字、許される時間指定を含むことができます。
時間帯はECPGでサポートされていない点に注意してください。
変換することはできますが、例えばPostgreSQL™サーバが行うような計算を行うことはできません。
時間帯指定は警告無しに無視されます。
       


表34.5「有効なPGTYPEStimestamp_from_ascの入力書式」に入力文字列の例をいくつか示します。
       
表34.5 有効なPGTYPEStimestamp_from_ascの入力書式
	入力	結果
	1999-01-08 04:05:06	1999-01-08 04:05:06
	January 8 04:05:06 1999 PST	1999-01-08 04:05:06
	1999-Jan-08 04:05:06.789-8	1999-01-08 04:05:06.789 (時間帯指定は無視されます。)
	J2451187 04:05-08:00	1999-01-08 04:05:00 (時間帯指定は無視されます。)




	PGTYPEStimestamp_to_asc
	

date型をC char*文字列に変換します。


char *PGTYPEStimestamp_to_asc(timestamp tstamp);



この関数はtimestamp型のtstampを唯一の引数として受付け、timestamp型のテキスト表現を含む割り当てられた文字列を返します。
結果はPGTYPESchar_free()で解放しなければなりません。
       

	PGTYPEStimestamp_current
	

現在のタイムスタンプを取り出します。


void PGTYPEStimestamp_current(timestamp *ts);



この関数は現在のタイムスタンプを取り出し、tsが指し示すtimestamp型変数に格納します。
       

	PGTYPEStimestamp_fmt_asc
	

書式マスクを使用してtimestamp型変数をC char*に変換します。


int PGTYPEStimestamp_fmt_asc(timestamp *ts, char *output, int str_len, char *fmtstr);



この関数は、最初の引数として変換対象のtimestamp型 (ts)を、出力バッファのポインタ(output)、出力バッファで割当て可能な最大長 (str_len)、変換に使用する書式マスク(fmtstr)を受付けます。
       


成功するとこの関数は0を返します。
エラーが発生した場合は負の値が返ります。
       


書式マスクには以下の書式指定を使用することができます。
書式指定はlibc™のstrftime関数で使用されるものと同じです。
書式指定以外は出力バッファにコピーされます。
        
        
	

%A - 各言語の曜日名称に置換されます。
          

	

%a - 各言語の曜日略称に置換されます。
          

	

%B - 各言語の月名称に置換されます。
          

	

%b - 各言語の月略称に置換されます。
          

	

%C - 年を100で割った10進数に置換されます。1桁の場合は先頭に0が付与されます。
          

	

%c - 各言語の日付時刻表現に置換されます。
          

	

%D - %m/%d/%yと同じです。
          

	

%d - 月内の10進日数(01–31)に置換されます。
          

	

%E* %O* - POSIXロケール拡張です。
           %Ec
           %EC
           %Ex
           %EX
           %Ey
           %EY
           %Od
           %Oe
           %OH
           %OI
           %Om
           %OM
           %OS
           %Ou
           %OU
           %OV
           %Ow
           %OW
           %Oy
という並びは別の表現を提供するものと仮定されています。
          


さらに、%OBは、（日に関する仕様がない単体で使用される）別の月名を表すものとして実装されています。
          

	

%e - 月内10進日数(1–31)に置換されます。1桁の場合は前に空白が付けられます。
          

	

%F - %Y-%m-%dと同じです。
          

	

%G - 世紀付の10進数として年に置換されます。
この年は週の部分がより多く含まれます。（月曜が週の最初の日です。）
          

	

%g -%G同様に年に置換されますが、世紀の部分を除く10進数(00–99)になります。
          

	

%H - 10進の時間(24時間単位)に置換されます(00–23)。
          

	

           %h - %bと同じです。
          

	

%I - 10進の時間（12時間単位）に置換されます(01–12)。
          

	

%j - 10進の年内日数に置換されます(001–366)。
          

	

%k - 10進の時間(24時間単位)に置換されます(0–23)。1桁の場合は先頭に空白が付けられます。
          

	

%l - 10進の時間（12時間単位）に置換されます(1–12)。1桁の場合は先頭に空白が付けられます。
          

	

%M - 10進の分数に置換されます(00–59)。
          

	

%m -10進の月数に置換されます(01–12)。
          

	

%n - 改行に置換されます。
          

	

%O* - %E*と同じです。
          

	

%p - 各言語の「午前」または「午後」に適切に置換されます。
          

	

%R - %H:%Mと同じです。
          

	

           %r - %I:%M:%S %pと同じです。
          

	

%S - 10進の秒数に置換されます(00–60)。
          

	

%s - エポック、UTCからの秒数に置換されます。
          

	

           %T - %H:%M:%Sと同じです。
          

	

%t - タブに置換されます。
          

	

           %U - 10進の週番号（日曜が週の先頭です）に置換されます(00–53)。
          

	

           %u - 10進の週番号（月曜が週の先頭です）に置換されます(1–7)。
          

	

%V - 10進の年内の週番号（月曜が週の先頭です）に置換されます(01–53)。
新しい年で、1月1日を含む週が4日以上存在する場合、その週が1となります。
さもなくば、この週は前年の週となり、次の週が1となります。
          

	

           %v - %e-%b-%Yと同じです。
          

	

%W - 10進の年内の週番号（月曜が週の先頭です）に置換されます(00–53)。
          

	

%w - 10進の週内日数（日曜が週の先頭です）に置換されます(0–6)。
          

	

%X - 各言語の時間表現に置換されます。
          

	

%x - 各言語の日付表現に置換されます。
          

	

%Y - 10進の世紀付年に置換されます。
          

	

%y - 10進の世紀なし年に置換されます(00–99)。
          

	

%Z - 時間帯名称に置換されます。
          

	

%z - UTCからの時間帯オフセットに置換されます。
UTCより東では正符号が先頭に付き、西では負符号が付きます。
それぞれ2桁の時間と分がその後に続きますが、その区切りはありません。（この形式はRFC 822の日付ヘッダでよく使用されます。）
          

	

%+ - 各言語の日付時刻表現に置換されます。
          

	

%-* - GNU libc拡張です。数値出力を行う際に何も文字を詰めません。
          

	

$_* - GNU libcの拡張です。明示的に空白文字を使用して文字を詰めます。
          

	

%0* - GNU libcの拡張です。明示的に0を使用して文字を詰めます。
          

	

           %% - %に置換されます。
          




       

	PGTYPEStimestamp_sub
	

タイムスタンプの減算を行い、その結果をinterval型の変数に格納します。


int PGTYPEStimestamp_sub(timestamp *ts1, timestamp *ts2, interval *iv);



この関数はts1が指し示すタイムスタンプ型変数からts2が指し示すタイムスタンプ型変数を差し引き、ivが指し示すinterval型変数に結果を格納します。
       


成功すると、この関数は0を返し、エラーが発生した場合は負の値を返します。
       

	PGTYPEStimestamp_defmt_asc
	

書式マスクを使用して、テキスト表現からtimestamp値へ変換します。


int PGTYPEStimestamp_defmt_asc(char *str, char *fmt, timestamp *d);



この関数はstr変数内に格納されたタイムスタンプのテキスト表現、fmt変数内に格納された使用される書式マスクを受付けます。
結果はdが指し示す変数内に格納されます。
       


書式マスクfmtが NULL ならば、この関数はデフォルトの書式マスク%Y-%m-%d %H:%M:%Sを使用するようになります。
       


これはPGTYPEStimestamp_fmt_asc関数の逆です。
使用できる書式マスク項目についてはその文書を参照してください。
       

	PGTYPEStimestamp_add_interval
	

timestamp型変数にinterval型変数を加算します。


int PGTYPEStimestamp_add_interval(timestamp *tin, interval *span, timestamp *tout);



この関数はtimestamp型変数tinへのポインタとinterval型変数spanへのポインタを受付けます。
これは、interval値をtimestamp値に加算し、その結果のtimestamp値をtoutが指し示す変数に格納します。
       


成功するとこの関数は0を返します。
エラーが発生した場合は負の値を返します。
       

	PGTYPEStimestamp_sub_interval
	

timestamp型変数からinterval型変数の値を引きます。


int PGTYPEStimestamp_sub_interval(timestamp *tin, interval *span, timestamp *tout);



この関数はtinが指し示すtimestamp型変数からspanが指し示すinterval型変数を引きます。
結果はtoutが指し示す変数に保存されます。
       


成功するとこの関数は0を、エラーが発生した場合は負の値を返します。
       




   

interval型





Cにおけるinterval型を用いることにより、プログラムからSQLのinterval型のデータを扱うことができます。
PostgreSQL™サーバにおける対応する型については「日付/時刻データ型」を参照してください。
   


以下の関数を使用して、interval型を扱うことができます。
    
	PGTYPESinterval_new
	

新しく割り当てたinterval型変数へのポインタを返します。


interval *PGTYPESinterval_new(void);


       

	PGTYPESinterval_free
	

以前に割り当てられたinterval型変数のメモリを解放します。


void PGTYPESinterval_free(interval *intvl);


       

	PGTYPESinterval_from_asc
	

テキスト表現からinterval型に変換します。


interval *PGTYPESinterval_from_asc(char *str, char **endptr);



この関数は入力文字列strを変換し、割当てられたinterval型へのポインタを返します。
現在ECPGは文字列全体を解析しますので、現時点では*endptrに最初の無効な文字のアドレスを格納することをサポートしません。
このためendptrを安全に NULL にすることができます。
       

	PGTYPESinterval_to_asc
	

interval型変数をテキスト表現に変換します。


char *PGTYPESinterval_to_asc(interval *span);



この関数はspanが指し示すinterval型変数をC char*に変換します。
出力は@ 1 day 12 hours 59 mins 10 secsのようになります。
結果はPGTYPESchar_free()で解放しなければなりません。
       

	PGTYPESinterval_copy
	

interval型変数をコピーします。


int PGTYPESinterval_copy(interval *intvlsrc, interval *intvldest);



この関数は、intvlsrcが指し示すinterval型変数を intvldestが指し示す変数にコピーします。
事前に格納先の変数用のメモリを割り当てる必要があることに注意してください。
       




   

decimal型





decimal型はnumeric型に似ています。
しかし、その最大精度は30有効桁に制限されています。
ヒープ上にしか作成できないnumeric型と比べ、decimal型はスタックまたはヒープ上に作成することができます。
（このためにはPGTYPESdecimal_newおよびPGTYPESdecimal_free関数を使用します。）
「Informix™互換モード」で説明するInformix™互換モードではdecimal型を扱う関数がより多く存在します。
   


以下の関数を使用してdecimal型を扱うことができます。
これらはlibcompatライブラリに含まれるものだけではありません。
    
	PGTYPESdecimal_new
	

新しく割り当てられたdecimal型変数へのポインタを要求します。


decimal *PGTYPESdecimal_new(void);


       

	PGTYPESdecimal_free
	

decimal型を解放し、そのメモリをすべて解放します。


void PGTYPESdecimal_free(decimal *var);


       




   

pgtypeslibのerrno値




    
	PGTYPES_NUM_BAD_NUMERIC
	

引数はnumeric型変数（またはnumeric型変数へのポインタ）を含んでいるはずですが、実際のメモリ上の表現は無効でした。
       

	PGTYPES_NUM_OVERFLOW
	

オーバーフローが発生しました。
numeric型はほぼ任意の精度を扱うことができますので、numeric型変数から他の型への変換ではオーバーフローが発生する可能性があります。
       

	PGTYPES_NUM_UNDERFLOW
	

アンダーフローが発生しました。
numeric型はほぼ任意の精度を扱うことができますので、numeric型変数から他の型への変換ではアンダーフローが発生する可能性があります。
       

	PGTYPES_NUM_DIVIDE_ZERO
	

ゼロ除算をしようとしました。
       

	PGTYPES_DATE_BAD_DATE
	

PGTYPESdate_from_asc関数に無効な日付文字列が渡されました。
       

	PGTYPES_DATE_ERR_EARGS
	

PGTYPESdate_defmt_asc関数に無効な引数が渡されました。
       

	PGTYPES_DATE_ERR_ENOSHORTDATE
	

PGTYPESdate_defmt_asc関数により入力文字列内に無効なトークンが見つかりました。
       

	PGTYPES_INTVL_BAD_INTERVAL
	

PGTYPESinterval_from_asc関数に無効な内部文字列が渡されました。
もしくはPGTYPESinterval_to_asc関数に無効な内部値が渡されました。
       

	PGTYPES_DATE_ERR_ENOTDMY
	

PGTYPESdate_defmt_asc関数内の日/月/年の代入において不整合がありました。
       

	PGTYPES_DATE_BAD_DAY
	

PGTYPESdate_defmt_asc関数により無効な月内日数が見つかりました。
       

	PGTYPES_DATE_BAD_MONTH
	

PGTYPESdate_defmt_asc関数によって無効な月値が見つかりました。
       

	PGTYPES_TS_BAD_TIMESTAMP
	

PGTYPEStimestamp_from_asc関数に無効なタイムスタンプ文字列が渡されました。
もしくはPGTYPEStimestamp_to_asc関数に無効なtimestamp値が渡されました。
       

	PGTYPES_TS_ERR_EINFTIME
	

コンテキスト内で扱うことができない、無限なタイムスタンプ値がありました。
       




   

pgtypeslibの特殊な定数




    
	PGTYPESInvalidTimestamp
	

無効なタイムスタンプを表すtimestamp型の値です。
これは解析エラーの場合にPGTYPEStimestamp_from_asc関数によって返されます。
timestampデータ型の内部表現のため、PGTYPESInvalidTimestampはまた同時に有効なタイムスタンプでもあります。
これは1899-12-31 23:59:59に設定されます。
エラーを検知するためには、PGTYPEStimestamp_from_ascを呼び出す度にその後、PGTYPESInvalidTimestampを試験するだけではなく、errno != 0も試験してください。
       




   


記述子領域の使用





SQL記述子領域はSELECT、FETCH、DESCRIBE文の結果を処理する、より洗練された手法です。
SQL記述子領域は1行のデータをメタデータ項目と一緒に1つのデータ構造体としてグループ化します。
特に動的SQL文を実行する場合は結果列の性質が前もってわかりませんので、メタデータが有用です。
PostgreSQLは記述子領域を使用するための2つの方法、名前付きSQL記述子領域とC構造化SQLDA、を提供します。
  
名前付きSQL記述子領域





名前付きSQL記述子領域は、記述子全体に関する情報を持つヘッダと、基本的に結果行内の1つの列を記述する、1つ以上の項目記述子領域から構成されます。
   


SQL記述子領域を使用可能にするためには、それを以下のように割り当てなければなりません。


EXEC SQL ALLOCATE DESCRIPTOR identifier;



この識別子は記述子領域の「変数名」として使用されます。

記述子が不要になったら、以下のように解放してください。


EXEC SQL DEALLOCATE DESCRIPTOR identifier;


   


記述子領域を使用するには、INTO句内の格納対象として、ホスト変数を列挙するのではなく、記述子領域を指定してください。


EXEC SQL FETCH NEXT FROM mycursor INTO SQL DESCRIPTOR mydesc;



結果セットが空の場合であっても、記述子領域には問い合わせのメタデータ、つまりフィールド名、が含まれます。
   


まだ実行されていないプリペアド問い合わせでは、結果セットのメタデータを入手するためにDESCRIBEを使用することができます。


EXEC SQL BEGIN DECLARE SECTION;
char *sql_stmt = "SELECT * FROM table1";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;


   


PostgreSQL 9.0より前では、SQLキーワードは省略可能でした。
このためDESCRIPTORおよびSQL DESCRIPTORは名前付きSQL記述子領域を生成しました。
これは強制事項になり、SQLキーワードを省略すると、SQLDA記述子領域を生成します。
「SQLDA記述子領域」を参照してください。
   


DESCRIBEおよびFETCH文では、INTOおよびUSINGキーワードを同じように使用することができます。
これらは結果セットと記述子領域内のメタデータを生成します。
   


さて、どうやって記述子領域からデータを取り出すのでしょうか。
この記述子領域を名前付きフィールドを持つ構造体とみなすことができます。
ヘッダからフィールド値を取り出し、それをホスト変数に格納するには、以下のコマンドを使用します。


EXEC SQL GET DESCRIPTOR name :hostvar = field;



今のところ、COUNTというヘッダフィールドが1つだけ定義されています。
これは、記述子領域に存在する項目数を表すものです
（つまり、結果内に含まれる列数です）。
このホスト変数はinteger型でなければなりません。
項目記述子領域からフィールドを取り出すには、以下のコマンドを使用します。


EXEC SQL GET DESCRIPTOR name VALUE num :hostvar = field;



numは整数リテラル、もしくは整数を持つホスト変数を取ることができます。
取り得るフィールドは以下の通りです。

    
	CARDINALITY (整数)
	

結果セット内の行数です。
       

	DATA
	

実際のデータ項目です
（したがってこのフィールドのデータ型は問い合わせに依存します）。
       

	DATETIME_INTERVAL_CODE (整数)
	

TYPEが9の場合、DATETIME_INTERVAL_CODEは、DATEでは1、TIMEでは2、TIMESTAMPでは3、TIME WITH TIME ZONEでは4、TIMESTAMP WITH TIME ZONEでは5という値を取ります。
       

	DATETIME_INTERVAL_PRECISION (整数)
	

未実装です。
       

	INDICATOR (整数)
	

（NULL値や値の切り詰めを示す）指示子です。
       

	KEY_MEMBER (整数)
	

実装されていません。
       

	LENGTH (整数)
	

データの文字列の長さです。
       

	NAME (文字列)
	

列名です。
       

	NULLABLE (整数)
	

実装されていません。
       

	OCTET_LENGTH (整数)
	

データの文字表現のバイト長です。
       

	PRECISION (整数)
	

（numeric型用の）精度です。
       

	RETURNED_LENGTH (整数)
	

データの文字数です。
       

	RETURNED_OCTET_LENGTH (整数)
	

データの文字表現のバイト長です。
       

	SCALE (整数)
	

（numeric型用の）桁です。
       

	TYPE (整数)
	

列のデータ型の数値コードです。
       




   


EXECUTE、DECLAREおよびOPEN文では、INTOおよびUSINGの効果は異なります。
また、問い合わせやカーソル用の入力パラメータを提供するために記述子領域は手作業で構築することができます。
USING SQL DESCRIPTOR nameは入力パラメータとパラメータ付きの問い合わせに渡す方法です。
名前付きSQL記述子領域を構築するSQL文は以下の通りです。


EXEC SQL SET DESCRIPTOR name VALUE num field = :hostvar;


   


PostgreSQLは、1つのFETCH文内の1レコードを複数取り出し、ホスト変数に格納することをサポートします。
この場合ホスト変数は配列であると仮定されます。


EXEC SQL BEGIN DECLARE SECTION;
int id[5];
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH 5 FROM mycursor INTO SQL DESCRIPTOR mydesc;

EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :id = DATA;



   

SQLDA記述子領域





SQLDA記述子領域は、問い合わせの結果セットとメタデータを取り出すために使用可能なC言語の構造体です。
1つの構造体には結果セットの1レコードが格納されます。


EXEC SQL include sqlda.h;
sqlda_t         *mysqlda;

EXEC SQL FETCH 3 FROM mycursor INTO DESCRIPTOR mysqlda;



SQLキーワードが省略されていることに注意してください。
「名前付きSQL記述子領域」のINTOおよびUSINGの使用状況に関する段落はここで多少追加して適用します。
DESCRIBE文では、INTOが使用されている場合DESCRIPTORキーワードは完全に省略可能です。


EXEC SQL DESCRIBE prepared_statement INTO mysqlda;


   


SQLDAを使用するプログラムの一般的な流れは以下の通りです。
     
	問い合わせをプリペアし、そのカーソルを宣言します。

	結果セット用のSQLDAを宣言します。

	入力パラメータ用のSQLDAを宣言し、初期化（メモリ割り当て、パラメータの設定）します。

	入力用SQLDAでカーソルを開きます。

	カーソルから行を取り出し、出力用SQLDAに格納します。

	出力用SQLDAから値をホスト変数に（必要に応じて変換を行い）読み取ります。

	カーソルを閉じます。

	入力用SQLDAに割り当てられたメモリ領域を解放します。



SQLDAのデータ構造





SQLDAはsqlda_t、sqlvar_t、struct sqlnameという３つの種類のデータ構造を使用します。
    
ヒント


PostgreSQLのSQLDAはIBM DB2ユニバーサルデータベースのものと似たデータ構造を持ちます。
このため、DB2のSQLDAに関する技術情報の一部はPostgreSQLのSQLDAの理解のより良い助けになるでしょう。
     

sqlda_t構造体





sqlda_t構造体は実際のSQLDAの型です。
これは１つのレコードを保持します。
そして２つ以上のsqlda_t構造体をdesc_nextフィールド内においてポインタを使ってリンクリスト内でつなげることができます。
こうして行の順序付き集合を表現します。
このため、２つ以上の行を取り出す時、アプリケーションは各sqlda_tノードのdesc_nextポインタを追うことでそれらを読み取ることができます。
     


sqlda_tの定義は以下の通りです。


struct sqlda_struct
{
    char            sqldaid[8];
    long            sqldabc;
    short           sqln;
    short           sqld;
    struct sqlda_struct *desc_next;
    struct sqlvar_struct sqlvar[1];
};

typedef struct sqlda_struct sqlda_t;




フィールドの意味は以下の通りです。

    
	sqldaid
	

ここには"SQLDA  "文字列リテラルが含まれます。
       

	sqldabc
	

ここにはバイト単位の割り当てられた領域のサイズが含まれます。
       

	sqln
	

USINGキーワードを使用してOPEN、DECLARE、EXECUTE文に渡される場合、ここにはパラメータ付き問い合わせの入力パラメータ数が含まれます。
SELECT、EXECUTE、FETCH文の出力として使用される場合、この値はsqld文と同じです。
       

	sqld
	

ここには結果セットのフィールド数が含まれます。
       

	desc_next
	

問い合わせが複数のレコードを返す場合、複数結び付いたSQLDA構造体が返されます。
desc_nextにリスト内の次の項目を指し示すポインタが保持されます。
       

	sqlvar
	

これは結果セット内の列の配列です。
       




     

sqlvar_t構造体





sqlvar_t構造体は列の値と型や長さなどのメタデータを保持します。
この型の定義は以下の通りです。



struct sqlvar_struct
{
    short          sqltype;
    short          sqllen;
    char          *sqldata;
    short         *sqlind;
    struct sqlname sqlname;
};

typedef struct sqlvar_struct sqlvar_t;




フィールドの意味は以下の通りです。

        
	sqltype
	

ここにはフィールドの型識別子が含まれます。
値についてはecpgtype.hのenum ECPGttypeを参照してください。
           

	sqllen
	

フィールドのバイナリ長が含まれます。
例えばECPGt_intでは4バイトです。
           

	sqldata
	

データそのものを指し示します。
データ書式は「データ型の対応」で説明します。
           

	sqlind
	

データのNULL指示子を指し示します。
0は非NULLを、-1はNULLを意味します。
           

	sqlname
	

フィールドの名前です。
           




     

struct sqlname構造体





struct sqlname構造体は列名を保持します。
sqlvar_t構造体のメンバとして使用されます。
構造体の定義は以下の通りです。


#define NAMEDATALEN 64

struct sqlname
{
        short           length;
        char            data[NAMEDATALEN];
};



フィールドの意味は以下の通りです。
            
	length
	

フィールド名の長さが含まれます。
                

	data
	

実際のフィールド名が含まれます。
                




     


SQLDAを使用した結果セットの取り出し





SQLDAを通して問い合わせの結果を取り出す一般的な手順は以下に示します。
     
	結果セットを受けとるためのsqlda_t構造体を宣言します。

	宣言したSQLDAを指定した問い合わせを処理するためにFETCH/EXECUTE/DESCRIBEを実行します。

	sqlda_t構造体のメンバsqlnを検索することにより結果セット内のレコード数を検査します。

	sqlda_t構造体のメンバsqlvar[0]、sqlvar[1]などから各列の値を入手します。

	sqlda_t構造体のメンバdesc_nextポインタを追い、次の行（sqlda_t構造体）に進みます。

	必要なだけ上を繰り返します。





以下にSQLDAを通して結果セットを取り出す例を示します。
    


まず、結果セットを受け取るsqlda_t構造体を宣言します。


sqlda_t *sqlda1;


    


次にコマンド内にSQLDAを指定します。
以下はFETCHコマンドの例です。


EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;


    


行を取り出すためにリンクリストを追うループを実行します。


sqlda_t *cur_sqlda;

for (cur_sqlda = sqlda1;
     cur_sqlda != NULL;
     cur_sqlda = cur_sqlda->desc_next)
{
    ...
}


    


ループの内側では、行の列データ（sqlvar_t構造体）それぞれを取り出す別のループを実行します。


for (i = 0; i < cur_sqlda->sqld; i++)
{
    sqlvar_t v = cur_sqlda->sqlvar[i];
    char *sqldata = v.sqldata;
    short sqllen  = v.sqllen;
    ...
}


    


列の値を入手するために、sqlvar_t構造体のメンバsqltypeの値を検査します。
そして、列の型に応じて、sqlvarフィールドからホスト変数にデータをコピーするための適切な方法に切り替えます。


char var_buf[1024];

switch (v.sqltype)
{
    case ECPGt_char:
        memset(&var_buf, 0, sizeof(var_buf));
        memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ? sizeof(var_buf) - 1 : sqllen));
        break;


    case ECPGt_int: /* 整数 */
        memcpy(&intval, sqldata, sqllen);
        snprintf(var_buf, sizeof(var_buf), "%d", intval);
        break;

    ...
}


    

SQLDAを使用した問い合わせパラメータ渡し





プリペアド問い合わせに入力パラメータを渡すためにSQLDAを使用する、一般的な手順は以下の通りです。
     
	プリペアド問い合わせ（プリペアド文）を作成します。

	入力用SQLDAとしてsqlda_t構造体を宣言します。

	入力用SQLDA用にメモリ領域を（sqlda_t構造体として）割り当てます。

	割り当てたメモリに入力値を設定（コピー）します。

	入力用SQLDAを指定してカーソルを開きます。





以下に例を示します。
    


まずプリペアド文を作成します。


EXEC SQL BEGIN DECLARE SECTION;
char query[1024] = "SELECT d.oid, * FROM pg_database d, pg_stat_database s WHERE d.oid = s.datid AND (d.datname = ? OR d.oid = ?)";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :query;


    


次にSQLDA用にメモリを割り当て、sqlda_t構造体のメンバ変数sqlnに入力パラメータ数を設定します。
プリペアド問い合わせで２つ以上の入力パラメータが必要な場合、アプリケーションは(パラメータ数 - 1) * sizeof(sqlvar_t)で計算される追加のメモリ空間を割り当てなければなりません。
ここで示す例では２つの入力パラメータ用にメモリ空間を割り当てます。


sqlda_t *sqlda2;

sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));


sqlda2->sqln = 2; /* 入力変数の個数 */


    


メモリを割り当てた後、sqlvar[]配列にパラメータ値を格納します。
（これは、SQLDAが結果セットを受け取る時に列値を取り出すために使用した配列と同じです。）
この例では、入力パラメータは文字列型を持つ"postgres"とinteger型を持つ1です。


sqlda2->sqlvar[0].sqltype = ECPGt_char;
sqlda2->sqlvar[0].sqldata = "postgres";
sqlda2->sqlvar[0].sqllen  = 8;

int intval = 1;
sqlda2->sqlvar[1].sqltype = ECPGt_int;
sqlda2->sqlvar[1].sqldata = (char *) &intval;
sqlda2->sqlvar[1].sqllen  = sizeof(intval);


    


ここまでで設定したSQLDAを指定するカーソルを開くことで、入力パラメータはプリペアド文に渡されます。


EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;


    


最後に、問い合わせ結果を受け取るために使用するSQLDAとは異なり、入力用SQLDAの使用後、割り当てたメモリ空間を明示的に解放しなければなりません。


free(sqlda2);


    

SQLDAを使用するサンプルアプリケーション





以下に、システムカタログから入力パラメータにより指定されたデータベースの統計情報にアクセスし取り出す方法を示す、プログラム例を示します。
    


このアプリケーションは、pg_databaseとpg_stat_databaseシステムテーブルをデータベースOIDで結合し、２つの入力パラメータ（データベースpostgresとOID1）により取り出されるデータベース統計情報を読み取り、表示します。
    


まず、入力用のSQLDAと出力用のSQLDAを宣言します。


EXEC SQL include sqlda.h;


sqlda_t *sqlda1; /* 出力記述子 */
sqlda_t *sqlda2; /* 入力記述子 */


    


次に、データベースに接続し、プリペアド文を作成し、プリペアド文用のカーソルを宣言します。


int
main(void)
{
    EXEC SQL BEGIN DECLARE SECTION;
    char query[1024] = "SELECT d.oid,* FROM pg_database d, pg_stat_database s WHERE d.oid=s.datid AND ( d.datname=? OR d.oid=? )";
    EXEC SQL END DECLARE SECTION;

    EXEC SQL CONNECT TO testdb AS con1 USER testuser;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    EXEC SQL PREPARE stmt1 FROM :query;
    EXEC SQL DECLARE cur1 CURSOR FOR stmt1;


    


次に、入力パラメータのために入力用SQLDA内にいくつかの値を格納します。
入力用SQLDAのためのメモリを割り当て、入力パラメータの個数をsqlnに設定します。
型、値、値の長さをsqlvar構造体内のsqltype、sqldata、sqllenに格納します。




    /* 入力パラメータ用のSQLDA構造体を作成する。 */
    sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
    memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));

    sqlda2->sqln = 2; /* 入力変数の数 */

    sqlda2->sqlvar[0].sqltype = ECPGt_char;
    sqlda2->sqlvar[0].sqldata = "postgres";
    sqlda2->sqlvar[0].sqllen  = 8;

    intval = 1;
    sqlda2->sqlvar[1].sqltype = ECPGt_int;
    sqlda2->sqlvar[1].sqldata = (char *)&intval;
    sqlda2->sqlvar[1].sqllen  = sizeof(intval);


    


入力用SQLDAを設定し終えた後、入力用SQLDAを付けたカーソルを開きます。




    /* 入力パラメータ付きでカーソルを開く。 */
    EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;


    


開いたカーソルから出力用SQLDA内に行を取り込みます。
（一般的に結果セット内の行をすべて取り込むためには、ループ内でFETCHを繰り返し呼び出さなければなりません。）


    while (1)
    {
        sqlda_t *cur_sqlda;


        /* 記述子をカーソルに割り当てる */
        EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;


    


次に、sqlda_t構造体のリンクリストを追うことで、SQLDAから取り込んだレコードを取り出します。


    for (cur_sqlda = sqlda1 ;
         cur_sqlda != NULL ;
         cur_sqlda = cur_sqlda->desc_next)
    {
        ...


    


最初のレコードから各列を読み取ります。
列数はsqldに、最初の列の実データはsqlvar[0]に格納されています。
どちらもsqlda_t構造体のメンバです。




        /* 1行の列をすべて表示する。 */
        for (i = 0; i < sqlda1->sqld; i++)
        {
            sqlvar_t v = sqlda1->sqlvar[i];
            char *sqldata = v.sqldata;
            short sqllen  = v.sqllen;

            strncpy(name_buf, v.sqlname.data, v.sqlname.length);
            name_buf[v.sqlname.length] = '\0';


    


ここで、列データがv変数内に格納されました。
列の型についてv.sqltypeを検索しながら、すべてのデータをホスト変数にコピーします。


            switch (v.sqltype) {
                int intval;
                double doubleval;
                unsigned long long int longlongval;

                case ECPGt_char:
                    memset(&var_buf, 0, sizeof(var_buf));
                    memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ? sizeof(var_buf)-1 : sqllen));
                    break;


                case ECPGt_int: /* 整数 */
                    memcpy(&intval, sqldata, sqllen);
                    snprintf(var_buf, sizeof(var_buf), "%d", intval);
                    break;

                ...

                default:
                    ...
            }

            printf("%s = %s (type: %d)\n", name_buf, var_buf, v.sqltype);
        }


    


すべてのレコードを処理した後カーソルを閉じ、データベースとの接続を切断します。


    EXEC SQL CLOSE cur1;
    EXEC SQL COMMIT;

    EXEC SQL DISCONNECT ALL;


    


プログラム全体を例34.1「SQLDAプログラムの例」に示します。
    
例34.1 SQLDAプログラムの例

#include <stdlib.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

EXEC SQL include sqlda.h;


sqlda_t *sqlda1; /* 出力記述子 */
sqlda_t *sqlda2; /* 入力記述子 */

EXEC SQL WHENEVER NOT FOUND DO BREAK;
EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
    EXEC SQL BEGIN DECLARE SECTION;
    char query[1024] = "SELECT d.oid,* FROM pg_database d, pg_stat_database s WHERE d.oid=s.datid AND ( d.datname=? OR d.oid=? )";

    int intval;
    unsigned long long int longlongval;
    EXEC SQL END DECLARE SECTION;

    EXEC SQL CONNECT TO uptimedb AS con1 USER uptime;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    EXEC SQL PREPARE stmt1 FROM :query;
    EXEC SQL DECLARE cur1 CURSOR FOR stmt1;


    /* 入力パラメータ用のSQLDA構造体を作成する */
    sqlda2 = (sqlda_t *)malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
    memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));

    sqlda2->sqln = 2; /* 入力変数の数 */

    sqlda2->sqlvar[0].sqltype = ECPGt_char;
    sqlda2->sqlvar[0].sqldata = "postgres";
    sqlda2->sqlvar[0].sqllen  = 8;

    intval = 1;
    sqlda2->sqlvar[1].sqltype = ECPGt_int;
    sqlda2->sqlvar[1].sqldata = (char *) &intval;
    sqlda2->sqlvar[1].sqllen  = sizeof(intval);


    /* 入力パラメータ付きでカーソルを開く。 */
    EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

    while (1)
    {
        sqlda_t *cur_sqlda;


        /* 記述子をカーソルに割り当てる */
        EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

        for (cur_sqlda = sqlda1 ;
             cur_sqlda != NULL ;
             cur_sqlda = cur_sqlda->desc_next)
        {
            int i;
            char name_buf[1024];
            char var_buf[1024];


            /* 1行の列をすべて表示する。 */
            for (i=0 ; i<cur_sqlda->sqld ; i++)
            {
                sqlvar_t v = cur_sqlda->sqlvar[i];
                char *sqldata = v.sqldata;
                short sqllen  = v.sqllen;

                strncpy(name_buf, v.sqlname.data, v.sqlname.length);
                name_buf[v.sqlname.length] = '\0';

                switch (v.sqltype)
                {
                    case ECPGt_char:
                        memset(&var_buf, 0, sizeof(var_buf));
                        memcpy(&var_buf, sqldata, (sizeof(var_buf)<=sqllen ? sizeof(var_buf)-1 : sqllen) );
                        break;


                    case ECPGt_int: /* 整数 */
                        memcpy(&intval, sqldata, sqllen);
                        snprintf(var_buf, sizeof(var_buf), "%d", intval);
                        break;

                    case ECPGt_long_long: /* bigint */
                        memcpy(&longlongval, sqldata, sqllen);
                        snprintf(var_buf, sizeof(var_buf), "%lld", longlongval);
                        break;

                    default:
                    {
                        int i;
                        memset(var_buf, 0, sizeof(var_buf));
                        for (i = 0; i < sqllen; i++)
                        {
                            char tmpbuf[16];
                            snprintf(tmpbuf, sizeof(tmpbuf), "%02x ", (unsigned char) sqldata[i]);
                            strncat(var_buf, tmpbuf, sizeof(var_buf));
                        }
                    }
                        break;
                }

                printf("%s = %s (type: %d)\n", name_buf, var_buf, v.sqltype);
            }

            printf("\n");
        }
    }

    EXEC SQL CLOSE cur1;
    EXEC SQL COMMIT;

    EXEC SQL DISCONNECT ALL;

    return 0;
}



この例の出力は以下のようなものになるはずです（一部の数値は変動します）。
     

oid = 1 (type: 1)
datname = template1 (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = t (type: 1)
datallowconn = t (type: 1)
dathasloginevt = f (type: 1)
datconnlimit = -1 (type: 5)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig =  (type: 1)
datacl = {=c/uptime,uptime=CTc/uptime} (type: 1)
datid = 1 (type: 1)
datname = template1 (type: 1)
numbackends = 0 (type: 5)
xact_commit = 113606 (type: 9)
xact_rollback = 0 (type: 9)
blks_read = 130 (type: 9)
blks_hit = 7341714 (type: 9)
tup_returned = 38262679 (type: 9)
tup_fetched = 1836281 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

oid = 11511 (type: 1)
datname = postgres (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = f (type: 1)
datallowconn = t (type: 1)
dathasloginevt = f (type: 1)
datconnlimit = -1 (type: 5)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig =  (type: 1)
datacl =  (type: 1)
datid = 11511 (type: 1)
datname = postgres (type: 1)
numbackends = 0 (type: 5)
xact_commit = 221069 (type: 9)
xact_rollback = 18 (type: 9)
blks_read = 1176 (type: 9)
blks_hit = 13943750 (type: 9)
tup_returned = 77410091 (type: 9)
tup_fetched = 3253694 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)






エラー処理





本節では、埋め込みSQLプログラムにおいて、例外条件や警告をどのように扱うことができるかについて説明します。
このために、共に使用できる２つの機能があります。

   
	

WHENEVERコマンドを使用して、警告条件、エラー条件を扱うようにコールバックを設定することができます。
     
	

エラーまたは警告に関する詳細情報はsqlca変数から入手することができます。
     



  
コールバックの設定





エラーや警告を受け取る簡単な手法の1つは、特定の条件が発生する度に特定の動作を実行するように設定することです。
一般的には以下のようになります。


EXEC SQL WHENEVER condition action;


   


    conditionは以下のいずれかを取ることができます。

    
	SQLERROR
	

SQL文の実行中にエラーが発生する度に、指定した動作が呼び出されます。
       

	SQLWARNING
	

SQL文の実行中に警告が発生する度に、指定した動作が呼び出されます。
       

	NOT FOUND
	

SQL文が0行を受け取る、もしくは0行に影響する時、指定した動作が呼び出されます。
（この条件はエラーではありませんが、これを特別に扱いたい場合があります。）
       




   


actionは以下のいずれかを取ることができます。

    
	CONTINUE
	

これは、実際のところ、その条件が無視されることを意味します。
これがデフォルトです。
       

	GOTO label, GO TO label
	

指定したラベルに移動します
（Cのgoto文を使用します）。
       

	SQLPRINT
	

標準エラーにメッセージを出力します。
これは、単純なプログラムやプロトタイプ作成時に役に立ちます。
メッセージの詳細は設定できません。
       

	STOP
	

プログラムを終了させるexit(1)を呼び出します。
       

	DO BREAK
	

Cのbreak文を実行します。
これはループ内、もしくはswitch文内でのみ使用しなければなりません。
       

	DO CONTINUE
	

Cのcontinue文を実行します。
これはループ文の中でのみ実行すべきものです。
実行した場合、制御の流れがループの先頭に戻ります。
       

	CALL name (args), DO name (args)
	

指定した引数で、指定したC関数を呼び出します。
（この使用法は通常のPostgreSQL構文でのCALLおよびDOとは意味が異なります。）
       






標準SQLではCONTINUEとGOTO（とGO TO）のみを提供しています。
   


簡単なプログラムで使用してみたくなるような例を以下に示します。
警告が発生した場合に簡単なメッセージを表示し、エラーが発生した場合にプログラムを中断します。


EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLERROR STOP;


   


EXEC SQL WHENEVER文はCの構文ではなく、SQLプリプロセッサのディレクティブです。
設定したエラーもしくは警告動作は、最初のEXEC SQL WHENEVERと条件を発生させたSQL文の間で、同一条件に異なる動作が設定されない限り、ハンドラを設定した箇所より後にある、すべての埋め込みSQL文に適用されます。
Cプログラムの制御フローは関係しません。
ですので、以下の2つのCプログラムの抜粋はどちらも望み通りの動作を行いません。


/*

 * 間違い
 */
int main(int argc, char *argv[])
{
    ...
    if (verbose) {
        EXEC SQL WHENEVER SQLWARNING SQLPRINT;
    }
    ...
    EXEC SQL SELECT ...;
    ...
}





/*

 * 間違い
 */
int main(int argc, char *argv[])
{
    ...
    set_error_handler();
    ...
    EXEC SQL SELECT ...;
    ...
}

static void set_error_handler(void)
{
    EXEC SQL WHENEVER SQLERROR STOP;
}


   

sqlca





より強力にエラーを扱うために、埋め込みSQLインタフェースは以下の構造体を持つsqlca（SQL通信領域）という名前のグローバル変数を提供します。


struct
{
    char sqlcaid[8];
    long sqlabc;
    long sqlcode;
    struct
    {
        int sqlerrml;
        char sqlerrmc[SQLERRMC_LEN];
    } sqlerrm;
    char sqlerrp[8];
    long sqlerrd[6];
    char sqlwarn[8];
    char sqlstate[5];
} sqlca;



（マルチスレッド化されたプログラムでは、各スレッドは自動的にsqlcaのコピーを独自に持ちます。
これは標準Cのerrnoグローバル変数の扱いと同様に動作します。）
   


sqlcaは警告とエラーの両方を対象としています。
1つのSQL文の実行時に複数の警告やエラーが発生した場合、sqlcaは最後のものに関した情報のみを含みます。
   


直前のSQL文でエラーがなければ、sqlca.sqlcodeは0に、sqlca.sqlstateは"00000"になります。
警告やエラーが発生した場合は、sqlca.sqlcodeは負の値に、sqlca.sqlstateは"00000"以外になります。
正のsqlca.sqlcodeは、直前の問い合わせが0行を返したなどの無害な条件を示します。
sqlca.sqlcodeとsqlca.sqlstateは2つの異なるエラーコードスキームです。
後で詳細に説明します。
   


直前のSQL文が成功すると、sqlca.sqlerrd[1]は処理された行のOIDが、もしあれば、格納されます。
また、もしそのコマンドで適切ならば、sqlca.sqlerrd[2]は処理された、もしくは返された行数が格納されます。
   


エラーもしくは警告の場合、sqlca.sqlerrm.sqlerrmcには、そのエラーを説明する文字列が格納されます。
sqlca.sqlerrm.sqlerrmlフィールドにはsqlca.sqlerrm.sqlerrmcに格納されたエラーメッセージ長が格納されます
（strlen()の結果です。おそらくCプログラマは必要としないでしょう）。
一部のメッセージは固定長のsqlerrmc配列には長過ぎることに注意してください。
この場合は切り詰められます。
   


警告の場合、sqlca.sqlwarn[2]はWに設定されます。
（他のすべての場合では、これはW以外の何かに設定されます。）
sqlca.sqlwarn[1]がWに設定された場合、ホスト変数に代入する際に値が切り詰められています。
他の要素が警告を示すように設定された場合、sqlca.sqlwarn[0]はWに設定されます。
   


今のところ、sqlcaid、sqlabc、sqlerrpならびにsqlerrdとsqlwarnの上記以外の要素は有用な情報を持ちません。
   


sqlcaは標準SQLでは定義されていません。
しかし、複数の他のSQLデータベースシステムで実装されています。
その定義は基本部分は似ていますが、移植性を持つアプリケーションを作成する場合は実装の違いを注意して調査しなければなりません。
   


ここでWHENEVERとsqlcaを組み合わせて使用して、エラーが発生した時にsqlcaの内容を表示する、１つの例を示します。
これはおそらく、より「ユーザ向け」のエラー処理を組み込む前の、アプリケーションのデバッグまたはプロトタイプで有用です。



EXEC SQL WHENEVER SQLERROR CALL print_sqlca();

void
print_sqlca()
{
    fprintf(stderr, "==== sqlca ====\n");
    fprintf(stderr, "sqlcode: %ld\n", sqlca.sqlcode);
    fprintf(stderr, "sqlerrm.sqlerrml: %d\n", sqlca.sqlerrm.sqlerrml);
    fprintf(stderr, "sqlerrm.sqlerrmc: %s\n", sqlca.sqlerrm.sqlerrmc);
    fprintf(stderr, "sqlerrd: %ld %ld %ld %ld %ld %ld\n", sqlca.sqlerrd[0],sqlca.sqlerrd[1],sqlca.sqlerrd[2],
                                                          sqlca.sqlerrd[3],sqlca.sqlerrd[4],sqlca.sqlerrd[5]);
    fprintf(stderr, "sqlwarn: %d %d %d %d %d %d %d %d\n", sqlca.sqlwarn[0], sqlca.sqlwarn[1], sqlca.sqlwarn[2],
                                                          sqlca.sqlwarn[3], sqlca.sqlwarn[4], sqlca.sqlwarn[5],
                                                          sqlca.sqlwarn[6], sqlca.sqlwarn[7]);
    fprintf(stderr, "sqlstate: %5s\n", sqlca.sqlstate);
    fprintf(stderr, "===============\n");
}




結果は以下のようになります（ここでのエラーはテーブル名の誤記述によるものです。）。



==== sqlca ====
sqlcode: -400
sqlerrm.sqlerrml: 49
sqlerrm.sqlerrmc: relation "pg_databasep" does not exist on line 38
sqlerrd: 0 0 0 0 0 0
sqlwarn: 0 0 0 0 0 0 0 0
sqlstate: 42P01
===============


   

SQLSTATE対SQLCODE





sqlca.sqlstateとsqlca.sqlcodeはエラーコードを提供する異なる2つの機構です。
共に標準SQLから派生されたものですが、SQLCODEはSQL-92版では廃れたものとされ、以降の版から削除されました。
したがって、新規アプリケーションではSQLSTATEを使用することを強く勧めます。
   


SQLSTATEは5要素の文字配列です。
この5文字は、各種のエラー条件、警告条件のコードを表現する数字、大文字から構成されます。
SQLSTATEは階層を持った機構です。
最初の2文字は条件を汎化したクラスを示し、残り3文字は汎化クラスの副クラスを示します。
成功状態は00000というコードで示されます。
SQLSTATEコードのほとんどは標準SQLで定義されています。
PostgreSQL™サーバは本質的にSQLSTATEエラーコードをサポートしています。
したがって、すべてのアプリケーションでこのエラーコードを使用することで、高度な一貫性を達成することができます。
詳細については付録A PostgreSQL™エラーコードを参照してください。
   


廃止されたエラーコードの機構であるSQLCODEは単なる整数です。
0という値は成功を意味し、正の値は追加情報を持った成功を、負の値はエラーを示します。
標準SQLでは、直前のコマンドが0行を返す、もしくは0行に影響したことを示す+100という正の値のみを定義しています。
負の値は規定されていません。
したがって、この機構では低い移植性しか達成できず、また、コード体系も階層を持っていません。
歴史的に、PostgreSQL™の埋め込みSQLプロセッサには、いくつかの特殊なSQLCODEの値が専用に割り当てられていました。
以下に、その数値とそのシンボル名の一覧を示します。
これらは他のSQL実装への移植性がないことを忘れないでください。
アプリケーションのSQLSTATE機構への移行を簡易化するために、対応するSQLSTATEも示しています。
しかし、2つのしくみの間の関係は1対1ではなく1対多です
（実際は多対多です）。
ですので、場合ごとに付録A PostgreSQL™エラーコードに示したグローバルな各SQLSTATEを参照しなければなりません。
   


以下は割り当て済みのSQLCODEです。

    
	0 (ECPG_NO_ERROR)
	

エラーがないことを示す。(SQLSTATE 00000)
      

	100 (ECPG_NOT_FOUND)
	

これは、最後に実行したコマンドが取り出した、または、処理した行がゼロ行であったこと、あるいは、カーソルの最後であることを示す、害のない条件です。(SQLSTATE 02000)
      


以下のように、カーソルをループ内で処理する時、ループを中断する時を検知する方法として、このコードを使用することができます。


while (1)
{
    EXEC SQL FETCH ... ;
    if (sqlca.sqlcode == ECPG_NOT_FOUND)
        break;
}



しかし、WHENEVER NOT FOUND DO BREAKはこれを内部で効率的に行います。
このため、通常、外部で明示的に記述する利点はありません。
      

	-12 (ECPG_OUT_OF_MEMORY)
	

仮想メモリ不足を示します。
この数値は-ENOMEMとして定義します。
（SQLSTATE YE001）
      

	-200 (ECPG_UNSUPPORTED)
	

ライブラリが把握していない何かをプリプロセッサが生成したことを示します。
おそらく、互換性がないプリプロセッサとライブラリのバージョンを使用しています。
（SQLSTATE YE002）
      

	-201 (ECPG_TOO_MANY_ARGUMENTS)
	

コマンドの想定より多くのホスト変数が指定されたことを意味します。
（SQLSTATE 07001もしくは07002）
      

	-202 (ECPG_TOO_FEW_ARGUMENTS)
	

コマンドの想定よりも少ないホスト変数が指定されたことを意味します。
（SQLSTATE 07001もしくは07002）
      

	-203 (ECPG_TOO_MANY_MATCHES)
	

問い合わせが複数行を返したけれども、SQL文では1つの結果の格納の準備だけしかしていなかったことを意味します
（例えば、指定された変数が配列ではなかった）。
（SQLSTATE 21000）
      

	-204 (ECPG_INT_FORMAT)
	

ホスト変数の型がintですが、データベース内のデータ型が異なり、その値をintとして解釈させることができませんでした。
ライブラリはこの変換にstrtol()を使用します。
（SQLSTATE 42804）
      

	-205 (ECPG_UINT_FORMAT)
	

ホスト変数の型がunsigned intですが、データベース内のデータ型が異なり、その値をunsigned intとして解釈させることができませんでした。
ライブラリはこの変換にstrtoul()を使用します。
（SQLSTATE 42804）
      

	-206 (ECPG_FLOAT_FORMAT)
	

ホスト変数の型がfloatですが、データベース内のデータ型が異なり、その値をfloatとして解釈させることができませんでした。
ライブラリはこの変換にstrtod()を使用します。
（SQLSTATE 42804）
      

	-207 (ECPG_NUMERIC_FORMAT)
	

ホスト変数の型がnumericですが、データベース内のデータ型が異なり、その値をnumericとして解釈させることができませんでした。
（SQLSTATE 42804）
      

	-208 (ECPG_INTERVAL_FORMAT)
	

ホスト変数の型がintervalであり、データベース内のデータが他の型であり、interval値として解釈することができない値を含みます。
       (SQLSTATE 42804)
      

	-209 (ECPG_DATE_FORMAT)
	

ホスト変数の型がdateであり、データベース内のデータが他の型であり、date値として解釈することができない値を含みます。
       (SQLSTATE 42804)
      

	-210 (ECPG_TIMESTAMP_FORMAT)
	

ホスト変数の型がtimestampであり、データベース内のデータが他の型であり、timestamp値として解釈することができない値を含みます。
(SQLSTATE 42804)
      

	-211 (ECPG_CONVERT_BOOL)
	

これは、ホスト変数の型がboolですが、データベース内のデータが't'でも'f'でもなかったことを意味します。
（SQLSTATE 42804）
      

	-212 (ECPG_EMPTY)
	

PostgreSQL™サーバに送信されたSQL文が空でした
（通常埋め込みSQLプログラムでは発生しません。ですので、これは内部エラーを示しているかもしれません）。
（SQLSTATE YE002）
      

	-213 (ECPG_MISSING_INDICATOR)
	

NULL値が返されましたが、NULL用の指示子変数が与えられていませんでした。
（SQLSTATE 22002）
      

	-214 (ECPG_NO_ARRAY)
	

配列が必要な箇所に普通の変数が使用されていました。
（SQLSTATE 42804）
      

	-215 (ECPG_DATA_NOT_ARRAY)
	

配列値が必要な箇所にデータベースが普通の変数を返しました。
（SQLSTATE 42804）
      

	-216 (ECPG_ARRAY_INSERT)
	

値を配列に挿入できません。
(SQLSTATE 42804)
      

	-220 (ECPG_NO_CONN)
	

存在しない接続にプログラムがアクセスしようとしました。
       （SQLSTATE 08003）
      

	-221 (ECPG_NOT_CONN)
	

存在するが開いていない接続にプログラムがアクセスしようとしました
（これは内部エラーです）。
（SQLSTATE YE002）
      

	-230 (ECPG_INVALID_STMT)
	

使用しようとしたSQL文がプリペアされていませんでした。
       （SQLSTATE 26000）
      

	-239 (ECPG_INFORMIX_DUPLICATE_KEY)
	

重複キーエラー。一意性制約違反（Informix互換モード）。
(SQLSTATE 23505)
      

	-240 (ECPG_UNKNOWN_DESCRIPTOR)
	

指定した記述子が見つかりませんでした。
使用しようとしたSQL文はプリペアされていませんでした。
（SQLSTATE 33000）
      

	-241 (ECPG_INVALID_DESCRIPTOR_INDEX)
	

記述子のインデックスが範囲外でした。
（SQLSTATE 07009）
      

	-242 (ECPG_UNKNOWN_DESCRIPTOR_ITEM)
	

無効な記述子項目が要求されました。（これは内部エラーです。）
（SQLSTATE YE002）
      

	-243 (ECPG_VAR_NOT_NUMERIC)
	

動的なSQL文の実行時にデータベースが数値を返しましたが、ホスト変数が数値でありませんでした。
（SQLSTATE 07006）
      

	-244 (ECPG_VAR_NOT_CHAR)
	

動的なSQL文の実行時にデータベースが数値以外を返しましたが、ホスト変数が数値でした。
       （SQLSTATE 07006）
      

	-284 (ECPG_INFORMIX_SUBSELECT_NOT_ONE)
	

副問い合わせの結果が単一行ではありません（Informix互換モード）。
(SQLSTATE 21000)
      

	-400 (ECPG_PGSQL)
	

PostgreSQL™サーバで何らかのエラーが発生しました。
このメッセージはPostgreSQL™サーバからのエラーメッセージを含みます。
      

	-401 (ECPG_TRANS)
	

PostgreSQL™サーバがトランザクションのコミットやロールバックを始めることができないことを通知しました。
（SQLSTATE 08007）
      

	-402 (ECPG_CONNECT)
	

データベースへの接続試行に失敗しました。
       (SQLSTATE 08001)
      

	-403 (ECPG_DUPLICATE_KEY)
	

重複キーエラー。一意性制約違反。
(SQLSTATE 23505)
      

	-404 (ECPG_SUBSELECT_NOT_ONE)
	

副問い合わせの結果が単一行ではありません。
(SQLSTATE 21000)
      

	-602 (ECPG_WARNING_UNKNOWN_PORTAL)
	

無効なカーソル名が指定されました。
(SQLSTATE 34000)
      

	-603 (ECPG_WARNING_IN_TRANSACTION)
	

トランザクションが進行中です。
(SQLSTATE 25001)
      

	-604 (ECPG_WARNING_NO_TRANSACTION)
	

活動中（進行中）のトランザクションがありません。
(SQLSTATE 25P01)
      

	-605 (ECPG_WARNING_PORTAL_EXISTS)
	

既存のカーソル名が指定されました。
(SQLSTATE 42P03)
      




  


プリプロセッサ指示子





ecpgプリプロセッサがファイルを解析および処理する方法を変更することができる、プリプロセッサ指示子が複数あります。
  
ファイルのインクルード





埋め込みSQLプログラムに外部ファイルをインクルードするには、以下を使用します。


EXEC SQL INCLUDE filename;
EXEC SQL INCLUDE <filename>;
EXEC SQL INCLUDE "filename";



埋め込みSQLプリプロセッサは、filename.hという名前のファイルを探し、その前処理を行い、最終的にC出力の中に含めます。
このようにして、ヘッダファイル内の埋め込みSQL文が正しく扱われます。
   


ecpgプリプロセッサは以下の順番で複数のディレクトリからファイルを検索します。

    
	カレントディレクトリ
	/usr/local/include
	ビルド時に設定されたPostgreSQLのインクルードディレクトリ (例えば、/usr/local/pgsql/include)
	/usr/include





しかしEXEC SQL INCLUDE "filename"が使われる場合、現在のディレクトリのみが検索されます。
   


各ディレクトリの中で、プリプロセッサはまず指定されたファイル名を探します。
見つからなければ（指定されたファイル名がこの接尾辞を持っていない限り）ファイル名に.hを付けて再検索します。
   


EXEC SQL INCLUDEは以下とは異なることに注意してください。


#include <filename.h>



このファイルにはSQLコマンド用前処理が行われないためです。
当然ながら、他のヘッダファイルをインクルードするCの#includeディレクティブを使用することができます。
   
注記


通常のSQLの大文字小文字の区別規則に従うEXEC SQL INCLUDEコマンドの一部であったとしても、インクルードファイルの名前は大文字小文字が区別されます。
    


defineおよびundef指示子





Cで既知の#define指示子と同様、埋め込みSQLでも似たような概念を持ちます。


EXEC SQL DEFINE name;
EXEC SQL DEFINE name value;



このため、以下のように名前を定義することができます。


EXEC SQL DEFINE HAVE_FEATURE;



また、定数を定義することもできます。


EXEC SQL DEFINE MYNUMBER 12;
EXEC SQL DEFINE MYSTRING 'abc';



事前の定義を削除するにはundefを使用します。


EXEC SQL UNDEF MYNUMBER;


   


当然、Cの#defineや#undefを埋め込みSQLプログラムで使用することは可能です。
違いは宣言した値がどこで評価されるかです。
EXEC SQL DEFINEを使用する場合、ecpgプリプロセッサがその定義を評価し、その値を置換します。
例えば、


EXEC SQL DEFINE MYNUMBER 12;
...
EXEC SQL UPDATE Tbl SET col = MYNUMBER;



と記載した場合、ecpgによる置換がすでに行われていますので、CコンパイラではMYNUMBERという名前や識別子を参照することはありません。
埋め込みSQL問い合わせで使用する予定の定数に#defineを使用することはできませんので注意してください。
この場合、埋め込みSQLプリプロセッサがこの宣言を参照することができないためです。
   


ecpgプリプロセッサのコマンドラインに複数の入力ファイルが指定されている場合、EXEC SQL DEFINEおよびEXEC SQL UNDEFの効果はファイル間で引き継がれません。
各ファイルはコマンドラインの-Dスイッチで定義されたシンボルのみで始まります。
   

ifdef、ifndef、elif、else、endif指示子





以下の指示子を使用して、コンパイルするコード部分を選択することができます。

   
	EXEC SQL ifdef name;
	

nameを検査し、そのnameがEXEC SQL define nameで定義されていた場合に後続の行を処理します。
     

	EXEC SQL ifndef name;
	

nameを検査し、そのnameがEXEC SQL define nameで定義されていない場合に後続の行を処理します。
     

	EXEC SQL elif name;
	

EXEC SQL ifdef nameまたはEXEC SQL ifndef name指示子の後で省略可能な代替セクションを開始します。
elifセクションはいくつでも現れることがあり得ます。
elifに続く行は、nameが定義されていて、かつ、同じifdef/ifndef...endif構文の前節が処理されていない場合に、処理されます。
     

	EXEC SQL else;
	

EXEC SQL ifdef nameまたはEXEC SQL ifndef name指示子の後で最後の代替セクションを開始します。
同じifdef/ifndef...endif構文の前のセクションが処理されていない場合に、後続の行が処理されます。
     

	EXEC SQL endif;
	

ifdef/ifndef...endif構文を終了します。
後続の行は普通に処理されます。
     




   


ifdef/ifndef...endif構文は127段階まで入れ子にできます。
   


この例は3つのSET TIMEZONEコマンドのうちちょうど1つをコンパイルします。


EXEC SQL ifdef TZVAR;
EXEC SQL SET TIMEZONE TO TZVAR;
EXEC SQL elif TZNAME;
EXEC SQL SET TIMEZONE TO TZNAME;
EXEC SQL else;
EXEC SQL SET TIMEZONE TO 'GMT';
EXEC SQL endif;


   


埋め込みSQLプログラムの処理





ここまでで、埋め込みSQL Cプログラムの作成方法は理解できたと思います。
ここからはそのコンパイル方法についてお話しします。
コンパイルの前に、そのファイルを埋め込みSQL Cプリプロセッサに通します。
これは、使用するSQL文を特別な関数呼び出しに変換します。
コンパイル後、必要な関数を持つ特別なライブラリとリンクしなければなりません。
これらの関数は引数から情報を取り出し、libpqを使用してそのSQLを実行し、出力用に指定された引数にその結果を格納します。
  


プリプロセッサプログラムはecpgという名前で、通常PostgreSQL™のインストレーションに含まれています。
通常、埋め込みSQLプログラムの拡張子は.pgcとします。
prog1.pgcという名前のプログラムファイルがある場合、単純に以下を呼び出すことで前処理を行うことができます。


ecpg prog1.pgc



これはprog1.cという名前のファイルを作成します。
入力ファイルがこの提案パターンに従った名前でない場合、-o オプションを使用して明示的に出力ファイルを指定することができます。
  


前処理後のファイルは普通にコンパイルできます。
以下に例を示します。


cc -c prog1.c



生成されたCソースファイルはPostgreSQL™インストレーションに付随するヘッダファイルをインクルードします。
ですので、デフォルトで検索されない場所にPostgreSQL™をインストールした場合は、コンパイル用のコマンドラインに-I/usr/local/pgsql/includeのようなオプションを追加しなければなりません。
  


埋め込みSQLプログラムをリンクするためには、以下のように、libecpgライブラリを含めなければなりません。


cc -o myprog prog1.o prog2.o ... -lecpg



繰り返しになりますが、コマンドラインに-L/usr/local/pgsql/libといったオプションを追加する必要があるかもしれません。
  


インストール先のパスを取得するために、パッケージ名libecpgでpg_configまたはpkg-configを使うことができます。
  


大規模プロジェクトの構築処理をmakeを使用して管理している場合、以下の暗黙規則をMakefileに含めておくと便利です。


ECPG = ecpg

%.c: %.pgc
        $(ECPG) $<


  


ecpgコマンドの完全な構文はecpg(1)に説明があります。
  


デフォルトではecpgはスレッドセーフです。
しかしクライアントコードのコンパイル時に他のスレッド関連のコマンドラインオプションを使用する必要があるかもしれません。
  

ライブラリ関数





libecpgライブラリには基本的に、埋め込みSQLコマンドで表現される機能を実装するために使用する「隠された」関数が含まれています。
しかし、直接呼び出すことができる便利な関数もあります。
これによりコードが移植不可能になることに注意してください。
  
	

ECPGdebug(int on, FILE *stream)は第1引数が0以外で渡された場合、デバッグログを有効にします。
デバッグログはstreamに出力されます。
このログには、すべての入力変数が挿入されたすべてのSQL文と、PostgreSQL™サーバが返した結果が含まれます。
SQL文のエラーを見つける時に非常に役に立ちます。
    
注記


Windowsでは、ecpgライブラリとアプリケーションが異なるフラグでコンパイルされると、この関数の呼び出しは、FILEポインタの内部表現が異なるため、アプリケーションをクラッシュさせる可能性があります。
特に、そのライブラリを使用するすべてのライブラリとすべてのアプリケーションに対して、multithreaded/single-threaded、release/debug、およびstatic/dynamicフラグは同じでなければなりません。
    


	

ECPGget_PGconn(const char *connection_name)は、指定された名前で識別されるライブラリデータベース接続ハンドルを返します。
connection_nameの設定がNULLの場合、現在の接続ハンドルが返されます。
接続ハンドルを識別できない場合、関数はNULLを返します。
必要ならば返される接続ハンドルを使用して、任意のlibpqの他の関数を呼び出すことができます。
     
注記


libpq関数を直接使用してecpgからデータベース接続ハンドルを操作することは推奨されません。
     


	

ECPGtransactionStatus(const char *connection_name)は、connection_nameで識別される指定接続の現在のトランザクション状態を返します。
返される状態コードの詳細については「接続状態関数」とlibpqのPQtransactionStatusを参照してください。
     

	

ECPGstatus(int lineno, const char* connection_name)はデータベースに接続している場合は真を、さもなくば偽を返します。
単一の接続を使用している場合はconnection_nameをNULLとすることができます。
    




ラージオブジェクト





ラージオブジェクトはECPGで直接サポートされていません。
しかしECPGアプリケーションは、ECPGget_PGconn()関数を呼び出して必要なPGconnを入手して、libpqラージオブジェクト関数を介してラージオブジェクトを操作することができます。
（しかしECPGget_PGconn()関数の使用とPGconnを直接触ることは非常に注意して行わなければなりません。理想を言えば他のECPGデータベースアクセス呼び出しと混在させないようにしてください。）
  


ECPGget_PGconn()に関しては「ライブラリ関数」を参照してください。
ラージオブジェクト関数インタフェースについては33章ラージオブジェクトを参照してください。
  


ラージオブジェクト関数をトランザクションブロック内で呼び出さなければなりません。
このため自動コミットが無効な場合、BEGINコマンドを明示的に発行しなければなりません。
  


例34.2「ラージオブジェクトにアクセスするECPGプログラム」では、ECPGアプリケーション内でラージオブジェクトの作成、書き出し、読み取りを行う方法を示すプログラム例を示します。
  
例34.2 ラージオブジェクトにアクセスするECPGプログラム

#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>
#include <libpq/libpq-fs.h>

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
    PGconn     *conn;
    Oid         loid;
    int         fd;
    char        buf[256];
    int         buflen = 256;
    char        buf2[256];
    int         rc;

    memset(buf, 1, buflen);

    EXEC SQL CONNECT TO testdb AS con1;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    conn = ECPGget_PGconn("con1");
    printf("conn = %p\n", conn);


    /* 作成 */
    loid = lo_create(conn, 0);
    if (loid &lt; 0)
        printf("lo_create() failed: %s", PQerrorMessage(conn));

    printf("loid = %d\n", loid);


    /* 書き出しテスト */
    fd = lo_open(conn, loid, INV_READ|INV_WRITE);
    if (fd &lt; 0)
        printf("lo_open() failed: %s", PQerrorMessage(conn));

    printf("fd = %d\n", fd);

    rc = lo_write(conn, fd, buf, buflen);
    if (rc &lt; 0)
        printf("lo_write() failed\n");

    rc = lo_close(conn, fd);
    if (rc &lt; 0)
        printf("lo_close() failed: %s", PQerrorMessage(conn));


    /* 読み取りテスト */
    fd = lo_open(conn, loid, INV_READ);
    if (fd &lt; 0)
        printf("lo_open() failed: %s", PQerrorMessage(conn));

    printf("fd = %d\n", fd);

    rc = lo_read(conn, fd, buf2, buflen);
    if (rc &lt; 0)
        printf("lo_read() failed\n");

    rc = lo_close(conn, fd);
    if (rc &lt; 0)
        printf("lo_close() failed: %s", PQerrorMessage(conn));


    /* 確認 */
    rc = memcmp(buf, buf2, buflen);
    printf("memcmp() = %d\n", rc);


    /* 後始末 */
    rc = lo_unlink(conn, loid);
    if (rc &lt; 0)
        printf("lo_unlink() failed: %s", PQerrorMessage(conn));

    EXEC SQL COMMIT;
    EXEC SQL DISCONNECT ALL;
    return 0;
}




C++アプリケーション





ECPGはC++アプリケーションを多少の制限がありますがサポートします。
本節ではいくつかの注意を説明します。
  


ecpgプリプロセッサはC（またはCのようなもの）と埋め込みSQLコマンドで記述された入力ファイルを取り、埋め込みSQLコマンドをC言語の小塊に変換し、最終的に.cファイルを作成します。
ecpgが生成するC言語の小塊で使用されるライブラリ関数のヘッダファイル定義は、C++で使用される場合extern "C" { ... }で囲まれます。
このためC++でも継ぎ目なく動作するはずです。
  


しかし一般的には、ecpgプリプロセッサはCのみを理解しています。
C++言語の特殊な構文や予約語を取り扱いません。
このため、C++に特化した複雑な機能を使用するC++アプリケーションコードの中に記述された埋め込みSQLコードの一部は、正しく前処理することに失敗する、または想定通りに動作しないかもしれません。
  


C++アプリケーションで埋め込みSQLコードを使用する安全な方法は、ECPGの呼び出しをCモジュール内に隠蔽し、残りのC++コードとまとめてリンクすることです。C++アプリケーションコードがデータベースにアクセスするためにはそのCモジュールを呼び出します。
「外部のCモジュールを用いたC++アプリケーションの開発」を参照してください。
  
ホスト変数のスコープ





ecpgプリプロセッサはCにおける変数のスコープを理解しています。
C言語では、変数のスコープはコードブロックに基づきますので、どちらかといえば単純です。
しかしC++では
クラスメンバ変数は宣言場所とは異なるコードブロック内で参照されます。
このためecpgプリプロセッサはクラスメンバ変数のスコープを理解していません。
   


例えば、以下の場合、ecpgプリプロセッサはtestメソッド内のdbname変数の定義を見つけることができません。
このためエラーになります。



class TestCpp
{
    EXEC SQL BEGIN DECLARE SECTION;
    char dbname[1024];
    EXEC SQL END DECLARE SECTION;

  public:
    TestCpp();
    void test();
    ~TestCpp();
};

TestCpp::TestCpp()
{
    EXEC SQL CONNECT TO testdb1;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
}

void Test::test()
{
    EXEC SQL SELECT current_database() INTO :dbname;
    printf("current_database = %s\n", dbname);
}

TestCpp::~TestCpp()
{
    EXEC SQL DISCONNECT ALL;
}




このコードは以下のようなエラーになります。


ecpg test_cpp.pgc
test_cpp.pgc:28: ERROR: variable "dbname" is not declared


   


このスコープ問題を回避するためには、testメソッドを中間格納領域としてローカル変数を使用するように変更することができます。
しかしこの手法は悪い回避策でしかありません。コードを醜くしますし性能も劣化させます。



void TestCpp::test()
{
    EXEC SQL BEGIN DECLARE SECTION;
    char tmp[1024];
    EXEC SQL END DECLARE SECTION;

    EXEC SQL SELECT current_database() INTO :tmp;
    strlcpy(dbname, tmp, sizeof(tmp));

    printf("current_database = %s\n", dbname);
}


   

外部のCモジュールを用いたC++アプリケーションの開発





C++におけるecpgの技術的な制限を理解しているのであれば、ECPG機能を使用するC++アプリケーションを実現するためには、リンク段階でCオブジェクトとC++オブジェクトをリンクする方が、C++コード内で埋め込みSQLコマンドを直接記述することより優れているという結論に至るでしょう。
本節では、簡単な例を用いて、C++アプリケーションコードから埋め込みSQLコマンドを分離する方法について説明します。
この例では、アプリケーションはC++で実装し、PostgreSQLサーバに接続するためにCおよびECPGを使用します。
   


Cファイル（*.pgc）、ヘッダファイル、C++ファイルという３種類のファイルを作成しなければなりません。

    
	test_mod.pgc
	

C内に埋め込まれたサブルーチンモジュールです。
プリプロセッサによりtest_mod.cに変換されます。



#include "test_mod.h"
#include <stdio.h>

void
db_connect()
{
    EXEC SQL CONNECT TO testdb1;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
}

void
db_test()
{
    EXEC SQL BEGIN DECLARE SECTION;
    char dbname[1024];
    EXEC SQL END DECLARE SECTION;

    EXEC SQL SELECT current_database() INTO :dbname;
    printf("current_database = %s\n", dbname);
}

void
db_disconnect()
{
    EXEC SQL DISCONNECT ALL;
}


       

	test_mod.h
	

Cモジュール（test_mod.pgc）内の関数宣言を持つヘッダファイルです。
test_cpp.cppでインクルードされます。
このファイルは、C++モジュールからリンクされますので、宣言を囲むextern "C"ブロックを持たなければなりません。



#ifdef __cplusplus
extern "C" {
#endif

void db_connect();
void db_test();
void db_disconnect();

#ifdef __cplusplus
}
#endif


       

	test_cpp.cpp
	

mainルーチンとこの例でのC++クラスを含む、アプリケーションの主要コードです。



#include "test_mod.h"

class TestCpp
{
  public:
    TestCpp();
    void test();
    ~TestCpp();
};

TestCpp::TestCpp()
{
    db_connect();
}

void
TestCpp::test()
{
    db_test();
}

TestCpp::~TestCpp()
{
    db_disconnect();
}

int
main(void)
{
    TestCpp *t = new TestCpp();

    t->test();
    return 0;
}


       




   


アプリケーションを構築するためには、以下の処理を行います。
ecpgを実行してtest_mod.pgcをtest_mod.cに変換します。
そしてCコンパイラを用いてtest_mod.cをコンパイルしtest_mod.oを生成します。


ecpg -o test_mod.c test_mod.pgc
cc -c test_mod.c -o test_mod.o


   


次にC++コンパイラを用いてtest_cpp.cppをコンパイルしtest_cpp.oを生成します。


c++ -c test_cpp.cpp -o test_cpp.o


   


最後に、C++コンパイラドライバを用いてtest_cpp.oおよびtest_mod.oというオブジェクトファイルを実行形式ファイルにリンクします。


c++ test_cpp.o test_mod.o -lecpg -o test_cpp


   


埋め込みSQLコマンド





本節では、埋め込みSQL固有のSQLコマンドをすべて説明します。
また、言及がない限り、埋め込みSQLでも使用することができる、SQLコマンドに列挙されたSQLコマンドを参照してください。
  


名前
ALLOCATE DESCRIPTOR — SQL記述子領域を割り当てる

概要

ALLOCATE DESCRIPTOR name


説明


ALLOCATE DESCRIPTORは、PostgreSQLサーバとホストプログラムとの間のデータ交換のために使用することができる、新しい名前付きSQL記述子領域を割り当てます。
    


記述子領域は、使用した後でDEALLOCATE DESCRIPTORコマンドを使用して解放しなければなりません。
    

パラメータ
	name
	

SQL記述子の名前です。
大文字小文字を区別します。
これはSQL識別子またはホスト変数になることができます。
       




例

EXEC SQL ALLOCATE DESCRIPTOR mydesc;


互換性


ALLOCATE DESCRIPTORは標準SQLで規定されています。
    

関連項目
DEALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR


名前
CONNECT — データベース接続を確立する

概要

CONNECT TO connection_target [ AS connection_name ] [ USER connection_user ]
CONNECT TO DEFAULT
CONNECT connection_user
DATABASE connection_target


説明


CONNECTコマンドはクライアントとPostgreSQLサーバとの間の接続を確立します。
    

パラメータ
	connection_target
	
        connection_target

以下の複数の形式の１つを使用して、接続する対象サーバを指定します。

        
	[ database_name ] [ @host ] [ :port ]
	

TCP/IPを介した接続。
           

	unix:postgresql://host [ :port ] / [ database_name ] [ ?connection_option ]
	

Unixドメインソケットを介した接続。
           

	tcp:postgresql://host [ :port ] / [ database_name ] [ ?connection_option ]
	

TCP/IPを介した接続。
           

	SQL文字列定数
	

上記形式のいずれかで記述された値を持ちます。
           

	ホスト変数
	

上記形式のいずれかで記述された値を持つchar[]またはVARCHAR[]型のホスト変数。
           




       

	connection_name
	

他のコマンドで参照することができる、このデータベース接続の識別子です。省略可能です。
これはSQL識別子またはホスト変数とすることができます。
       

	connection_user
	

データベース接続用のユーザ名です。
       


このパラメータは、user_name/password、user_name IDENTIFIED BY password、user_name USING passwordのいずれかの形式を使用して、ユーザ名とパスワードを指定することができます。
       


ユーザ名とパスワードは、SQL識別子、文字列定数、ホスト変数とすることができます。
       

	DEFAULT
	

libpqで定義された、デフォルトの接続パラメータすべてを使用します。
       




例


以下に接続パラメータを指定する複数の種類を示します。


EXEC SQL CONNECT TO "connectdb" AS main;
EXEC SQL CONNECT TO "connectdb" AS second;
EXEC SQL CONNECT TO "unix:postgresql://200.46.204.71/connectdb" AS main USER connectuser;
EXEC SQL CONNECT TO "unix:postgresql://localhost/connectdb" AS main USER connectuser;
EXEC SQL CONNECT TO 'connectdb' AS main;
EXEC SQL CONNECT TO 'unix:postgresql://localhost/connectdb' AS main USER :user;
EXEC SQL CONNECT TO :db AS :id;
EXEC SQL CONNECT TO :db USER connectuser USING :pw;
EXEC SQL CONNECT TO @localhost AS main USER connectdb;
EXEC SQL CONNECT TO REGRESSDB1 as main;
EXEC SQL CONNECT TO AS main USER connectdb;
EXEC SQL CONNECT TO connectdb AS :id;
EXEC SQL CONNECT TO connectdb AS main USER connectuser/connectdb;
EXEC SQL CONNECT TO connectdb AS main;
EXEC SQL CONNECT TO connectdb@localhost AS main;
EXEC SQL CONNECT TO tcp:postgresql://localhost/ USER connectdb;
EXEC SQL CONNECT TO tcp:postgresql://localhost/connectdb USER connectuser IDENTIFIED BY connectpw;
EXEC SQL CONNECT TO tcp:postgresql://localhost:20/connectdb USER connectuser IDENTIFIED BY connectpw;
EXEC SQL CONNECT TO unix:postgresql://localhost/ AS main USER connectdb;
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb AS main USER connectuser;
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER connectuser IDENTIFIED BY "connectpw";
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER connectuser USING "connectpw";
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb?connect_timeout=14 USER connectuser;


    


以下にホスト変数を使用して接続パラメータを指定する方法を示すプログラム例を示します。


int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;

    char *dbname     = "testdb";    /* データベース名 */
    char *user       = "testuser";  /* 接続ユーザ名 */
    char *connection = "tcp:postgresql://localhost:5432/testdb";
                                    /* 接続文字列 */
    char ver[256];                  /* バージョン文字列を保持するバッファ */
EXEC SQL END DECLARE SECTION;

    ECPGdebug(1, stderr);

    EXEC SQL CONNECT TO :dbname USER :user;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
    EXEC SQL SELECT version() INTO :ver;
    EXEC SQL DISCONNECT;

    printf("version: %s\n", ver);

    EXEC SQL CONNECT TO :connection USER :user;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
    EXEC SQL SELECT version() INTO :ver;
    EXEC SQL DISCONNECT;

    printf("version: %s\n", ver);

    return 0;
}


    

互換性


CONNECTは標準SQLで規定されていますが、接続パラメータの書式は実装に特化しています。
    

関連項目
DISCONNECT, SET CONNECTION


名前
DEALLOCATE DESCRIPTOR — SQL記述子領域の割り当てを解除する

概要

DEALLOCATE DESCRIPTOR name


説明


DEALLOCATE DESCRIPTORは名前付きSQL記述子領域の割り当てを解除します。
    

パラメータ
	name
	

割り当てを解除する記述子の名前です。
大文字小文字を区別します。
これはSQL識別子またはホスト変数にすることができます。
       




例

EXEC SQL DEALLOCATE DESCRIPTOR mydesc;


互換性


DEALLOCATE DESCRIPTORは標準SQLで規定されています。
    

関連項目
ALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR


名前
DECLARE — カーソルを定義する

概要

DECLARE cursor_name [ BINARY ] [ ASENSITIVE | INSENSITIVE ] [ [ NO ] SCROLL ] CURSOR [ { WITH | WITHOUT } HOLD ] FOR prepared_name
DECLARE cursor_name [ BINARY ] [ ASENSITIVE | INSENSITIVE ] [ [ NO ] SCROLL ] CURSOR [ { WITH | WITHOUT } HOLD ] FOR query


説明


DECLAREは、プリペアド文の結果セット全体を繰り返し処理するカーソルを宣言します。
このコマンドは直接的なDECLARESQLコマンドとは多少異なる意味を持ちます。
こちらは問い合わせを実行し、取り出し用の結果セットの準備を行いますが、埋め込みSQLコマンドでは、問い合わせの結果セット全体を繰り返す「ループ変数」の名前を宣言するだけです。
実際の実行はOPENコマンドでカーソルが開いた時に起こります。
    

パラメータ
	cursor_name
	

カーソル名です。
大文字小文字を区別します。
これはSQL識別子またはホスト変数とすることができます。
       

	prepared_name
	

プリペアド問い合わせの名前です。
SQL識別子またはホスト変数のいずれかです。
       

	query
	

このカーソルで返される行を供給するSELECT(7)またはVALUES(7)コマンドです。
       





カーソルオプションの意味についてはDECLARE(7)を参照してください。
    

例


以下に問い合わせ用のカーソルを宣言する例を示します。


EXEC SQL DECLARE C CURSOR FOR SELECT * FROM My_Table;
EXEC SQL DECLARE C CURSOR FOR SELECT Item1 FROM T;
EXEC SQL DECLARE cur1 CURSOR FOR SELECT version();


    


プリペアド文用のカーソルを宣言する例を示します。


EXEC SQL PREPARE stmt1 AS SELECT version();
EXEC SQL DECLARE cur1 CURSOR FOR stmt1;


    

互換性


DECLAREは標準SQLで規定されています。
    

関連項目
OPEN, CLOSE(7), DECLARE(7)


名前
DECLARE STATEMENT — SQL文識別子を宣言する

概要

EXEC SQL [ AT connection_name ] DECLARE statement_name STATEMENT


説明


DECLARE STATEMENTはSQL文識別子を宣言します。
SQL文識別子は接続と関連させることができます。
識別子が動的SQL文で使われれば、文は関連する接続を使って実行されます。
宣言の名前空間はプリプロセスの単位であり、同じSQL文識別子の複数回の宣言は認められていません。
プリプロセッサがInformix互換モードで動作していて、SQL文が宣言されているのなら、"database"はカーソル名として使えないことに注意してください。
    

パラメータ
	connection_name
	

CONNECTコマンドにより確立されたデータベース接続名。
       


AT句は省略可能ですが、そのような文は意味がありません。
       



	statement_name
	

SQL文識別子の名前で、SQL識別子かホスト変数のいずれかです。
       




注釈


宣言が物理的に動的文の上に置かれた場合にのみ、この関連は有効です。
    

例

EXEC SQL CONNECT TO postgres AS con1;
EXEC SQL AT con1 DECLARE sql_stmt STATEMENT;
EXEC SQL DECLARE cursor_name CURSOR FOR sql_stmt;
EXEC SQL PREPARE sql_stmt FROM :dyn_string;
EXEC SQL OPEN cursor_name;
EXEC SQL FETCH cursor_name INTO :column1;
EXEC SQL CLOSE cursor_name;


互換性


DECLARE STATEMENTは標準SQLの拡張ですが、有名なDBMSは利用できます。
    

関連項目
CONNECT, DECLARE, OPEN


名前
DESCRIBE — プリペアド文または結果セットに関する情報を入手する

概要

DESCRIBE [ OUTPUT ] prepared_name USING [ SQL ] DESCRIPTOR descriptor_name
DESCRIBE [ OUTPUT ] prepared_name INTO [ SQL ] DESCRIPTOR descriptor_name
DESCRIBE [ OUTPUT ] prepared_name INTO sqlda_name


説明


DESCRIBEは、実際に行を取り込むことなく、プリペアド文に含まれる結果列に関するメタデータ情報を取り出します。
    

パラメータ
	prepared_name
	

プリペアド文の名前です。
これはSQL識別子またはホスト変数とすることができます。
       

	descriptor_name
	

記述子の名前です。
大文字小文字を区別します。
これはSQL識別子またはホスト変数とすることができます。
       

	sqlda_name
	

SQLDA変数の名前です。
       




例

EXEC SQL ALLOCATE DESCRIPTOR mydesc;
EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;
EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :charvar = NAME;
EXEC SQL DEALLOCATE DESCRIPTOR mydesc;


互換性


DESCRIBEは標準SQLで規定されています。
    

関連項目
ALLOCATE DESCRIPTOR, GET DESCRIPTOR


名前
DISCONNECT — データベース接続を終了する

概要

DISCONNECT connection_name
DISCONNECT [ CURRENT ]
DISCONNECT ALL


説明


DISCONNECTはデータベースとの接続（またはすべての接続）を閉ざします。
    

パラメータ
	connection_name
	

CONNECTコマンドで確立したデータベース接続の名前です。
       

	CURRENT
	

直前に開いた接続またはSET CONNECTIONコマンドで設定された接続のいずれかである、「現在の」接続を閉ざします。
これはDISCONNECTに引数が与えられなかった場合のデフォルトです。
       

	ALL
	

開いているすべての接続を閉じます。
       




例

int
main(void)
{
    EXEC SQL CONNECT TO testdb AS con1 USER testuser;
    EXEC SQL CONNECT TO testdb AS con2 USER testuser;
    EXEC SQL CONNECT TO testdb AS con3 USER testuser;


    EXEC SQL DISCONNECT CURRENT;  /* con3を閉じる        */
    EXEC SQL DISCONNECT ALL;      /* con2とcon1を閉じる  */

    return 0;
}


互換性


DISCONNECTは標準SQLで規定されています。
    

関連項目
CONNECT, SET CONNECTION


名前
EXECUTE IMMEDIATE — SQL文を動的にプリペアし、実行する

概要

EXECUTE IMMEDIATE string


説明


EXECUTE IMMEDIATEは動的に指定されたSQL文を、結果行を受け取ることなく、即座にプリペアし実行します。
    

パラメータ
	string
	

文字列リテラル、または実行するSQL文を含むホスト変数です。
       




注釈


典型的な使い方では、stringは動的に構成されたSQL文を含む文字列へのホスト変数参照です。
リテラル文字列の場合はあまり有用ではありません。EXECUTE IMMEDIATEを余計にタイプせずに、単にSQL文を直接書くこともできるからです。
    


どうしてもリテラル文字列を使う場合には、SQL文に含める二重引用符は、通常のCのイディオムである\"ではなく、8進エスケープ(\042)として書かなければならないことを心に留めておいてください。
これは文字列がEXEC SQL内にあるからで、そのためECPG字句解析器はCの規則ではなくSQLの規則に従って解析します。
埋め込まれたバックスラッシュは後でCの規則に従って扱われます。ですが、\"はリテラルの終了とみなされますので、すぐに文法エラーを引き起こします。
    

例


以下に、EXECUTE IMMEDIATEとcommandホスト変数を使用してINSERTを実行する例を示します。


sprintf(command, "INSERT INTO test (name, amount, letter) VALUES ('db: ''r1''', 1, 'f')");
EXEC SQL EXECUTE IMMEDIATE :command;


    

互換性


EXECUTE IMMEDIATEは標準SQLで規定されています。
    



名前
GET DESCRIPTOR — SQL記述子領域から情報を入手する

概要

GET DESCRIPTOR descriptor_name :cvariable = descriptor_header_item [, ... ]
GET DESCRIPTOR descriptor_name VALUE column_number :cvariable = descriptor_item [, ... ]


説明


GET DESCRIPTORはSQL記述子領域から問い合わせ結果セットに関する情報を取り出し、それをホスト変数に格納します。
記述子領域は通常、このコマンドを使用してホスト言語変数に情報を転送する前に、FETCHまたはSELECTを用いて値が投入されます。
    


このコマンドには２つの構文があります。
１番目の構文では、そのまま結果セットに適用されている記述子の「ヘッダ」項目を取り出します。
行数が１つの例です。
列番号を追加のパラメータとして必要とする２番目の構文では特定の列に関する情報を取り出します。
例えば、列名と列の実際の値です。
    

パラメータ
	descriptor_name
	

記述子の名前です。
       

	descriptor_header_item
	

どのヘッダ情報を取り出すかを識別するトークンです。
結果セット内の列数を入手するCOUNTのみが現在サポートされています。
       

	column_number
	

情報を取り出す列の番号です。
１から数えます。
       

	descriptor_item
	

どの列に関する情報を取り出すかを識別するトークンです。
サポートされる項目のリストについては「名前付きSQL記述子領域」を参照してください。
       

	cvariable
	

記述子領域から取り出したデータを受け取るホスト変数です。
       




例


この例は結果セット内の列数を取り出します。


EXEC SQL GET DESCRIPTOR d :d_count = COUNT;


    


この例は最初の列のデータ長を取り出します。


EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length = RETURNED_OCTET_LENGTH;


    


この例は、２番目の列のデータ本体を文字列として取り出します。


EXEC SQL GET DESCRIPTOR d VALUE 2 :d_data = DATA;


    


以下は、SELECT current_database();を実行し、列数、列のデータ長、列のデータを表示する手続き全体を示す例です。


int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
    int  d_count;
    char d_data[1024];
    int  d_returned_octet_length;
EXEC SQL END DECLARE SECTION;

    EXEC SQL CONNECT TO testdb AS con1 USER testuser;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
    EXEC SQL ALLOCATE DESCRIPTOR d;


    /* カーソルを宣言して開いて、記述子をそのカーソルに割り当てる */
    EXEC SQL DECLARE cur CURSOR FOR SELECT current_database();
    EXEC SQL OPEN cur;
    EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d;


    /* 全列数を得る */
    EXEC SQL GET DESCRIPTOR d :d_count = COUNT;
    printf("d_count                 = %d\n", d_count);


    /* 返された列の長さを得る */
    EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length = RETURNED_OCTET_LENGTH;
    printf("d_returned_octet_length = %d\n", d_returned_octet_length);


    /* 返された列を文字列として取得する */
    EXEC SQL GET DESCRIPTOR d VALUE 1 :d_data = DATA;
    printf("d_data                  = %s\n", d_data);


    /* 閉じる */
    EXEC SQL CLOSE cur;
    EXEC SQL COMMIT;

    EXEC SQL DEALLOCATE DESCRIPTOR d;
    EXEC SQL DISCONNECT ALL;

    return 0;
}



この例を実行すると、結果は以下のようになります。


d_count                 = 1
d_returned_octet_length = 6
d_data                  = testdb


    

互換性


GET DESCRIPTORは標準SQLで規定されています。
    

関連項目
ALLOCATE DESCRIPTOR, SET DESCRIPTOR


名前
OPEN — 動的カーソルを開く

概要

OPEN cursor_name
OPEN cursor_name USING value [, ... ]
OPEN cursor_name USING SQL DESCRIPTOR descriptor_name


説明


OPENはカーソルを開き、省略することができますが、実際の値をカーソル定義内のプレースホルダにバインドします。
カーソルは事前にDECLAREコマンドを用いて宣言されていなければなりません。
OPENの実行により問い合わせがサーバ上で実行を開始されます。
    

パラメータ
	cursor_name
	

開くカーソルの名前です。
これはSQL識別子またはホスト変数とすることができます。
       

	value
	

カーソル内のプレースホルダにバインドされる値です。
これは、SQL定数、ホスト変数、指示子を持つホスト変数とすることができます。
       

	descriptor_name
	

カーソル内のプレースホルダにバインドされる値を含む記述子の名前です。
これはSQL識別子またはホスト変数とすることができます。
       




例

EXEC SQL OPEN a;
EXEC SQL OPEN d USING 1, 'test';
EXEC SQL OPEN c1 USING SQL DESCRIPTOR mydesc;
EXEC SQL OPEN :curname1;


互換性


OPENは標準SQLで規定されています。
    

関連項目
DECLARE, CLOSE(7)


名前
PREPARE — 実行のためにSQL文をプリペアする

概要

PREPARE prepared_name FROM string


説明


PREPAREは実行用に文字列として動的に指定されたSQL文をプリペアします。
これは、埋め込みプログラム内でも使用することができる、直接的なPREPARE(7) SQL文とは異なります。
EXECUTE(7)コマンドを使用して、どちらの種類のプリペアド文を実行することができます。
    

パラメータ
	prepared_name
	

プリペアド問い合わせ用の識別子です。
       

	string
	

リテラル文字列、または、プリペア可能なSQL文であるSELECT/INSERT/UPDATE/DELETEの1つを含むホスト変数、のいずれかです。
実行時に提供されるパラメータ値には疑問符(?)を使ってください。
       




注釈


典型的な使い方では、stringは動的に構成されたSQL文を含む文字列へのホスト変数参照です。
リテラル文字列の場合はあまり有用ではありません。単に直接SQL PREPARE文を書くこともできるからです。
    


どうしてもリテラル文字列を使う場合には、SQL文に含める二重引用符は、通常のCのイディオムである\"ではなく、8進エスケープ(\042)として書かなければならないことを心に留めておいてください。
これは文字列がEXEC SQL内にあるからで、そのためECPG字句解析器はCの規則ではなくSQLの規則に従って解析します。
埋め込まれたバックスラッシュは後でCの規則に従って扱われます。ですが、\"はリテラルの終了とみなされますので、すぐに文法エラーを引き起こします。
    

例

char *stmt = "SELECT * FROM test1 WHERE a = ? AND b = ?";

EXEC SQL ALLOCATE DESCRIPTOR outdesc;
EXEC SQL PREPARE foo FROM :stmt;

EXEC SQL EXECUTE foo USING SQL DESCRIPTOR indesc INTO SQL DESCRIPTOR outdesc;


互換性


PREPAREは標準SQLで規定されています。
    

関連項目
EXECUTE(7)


名前
SET AUTOCOMMIT — 現在のセッションの自動コミット動作を設定する

概要

SET AUTOCOMMIT { = | TO } { ON | OFF }


説明


SET AUTOCOMMITは現在のデータベースセッションの自動コミット動作を設定します。
デフォルトでは埋め込みSQLプログラムは自動コミットモードではありません。
このためCOMMITコマンドを必要なところで明示的に発行しなければなりません。
このコマンドはセッションを、個々のSQL文それぞれが暗黙的にコミットされる、自動コミットモードに変更することができます。
    

互換性


SET AUTOCOMMITはPostgreSQL ECPGの拡張です。
    



名前
SET CONNECTION — データベース接続を選択する

概要

SET CONNECTION [ TO | = ] connection_name


説明


SET CONNECTIONは、上書きされない限りすべてのコマンドが使用する、「現在の」データベース接続を設定します。
    

パラメータ
	connection_name
	

CONNECTコマンドで確立したデータベース接続の名前です。
       

	CURRENT
	

接続を現在の接続に設定します（したがって、何も起こりません）。
       




例

EXEC SQL SET CONNECTION TO con2;
EXEC SQL SET CONNECTION = con1;


互換性


SET CONNECTIONは標準SQLで規定されています。
    

関連項目
CONNECT, DISCONNECT


名前
SET DESCRIPTOR — SQL記述子領域に情報を設定する

概要

SET DESCRIPTOR descriptor_name descriptor_header_item = value [, ... ]
SET DESCRIPTOR descriptor_name VALUE number descriptor_item = value [, ...]


説明


SET DESCRIPTORはSQL記述子領域に値を投入します。
その後、通常、記述子領域はプリペアド問い合わせ実行においてパラメータをバインドするために使用されます。
    


このコマンドは２つの構文があります。
最初の構文は、特定のデータと独立した、記述子の「ヘッダ」に適用します。
２番目の構文は、番号で識別される特定のデータに値を割り当てます。
    

パラメータ
	descriptor_name
	

記述子の名前です。
       

	descriptor_header_item
	

設定するヘッダ情報項目を識別するトークンです。
記述子項目数を設定するCOUNTのみが現在サポートされています。
       

	number
	

設定する記述子項目の番号です。
番号は１から数えます。
       

	descriptor_item
	

記述子内のどの項目の情報を設定するかを識別するトークンです。
サポートされる項目のリストについては「名前付きSQL記述子領域」を参照してください。
       

	value
	

記述子項目に格納する値です。
これはSQL定数またはホスト変数とすることができます。
       




例

EXEC SQL SET DESCRIPTOR indesc COUNT = 1;
EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = 2;
EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = :val1;
EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val1, DATA = 'some string';
EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val2null, DATA = :val2;


互換性


SET DESCRIPTORは標準SQLで規定されています。
    

関連項目
ALLOCATE DESCRIPTOR, GET DESCRIPTOR


名前
TYPE — 新しいデータ型を定義する

概要

TYPE type_name IS ctype


説明


TYPEコマンドは新しいCの型を定義します。
これは宣言セクションにtypedefを記述することと同じです。
    


ecpgが-cオプション付きで実行された場合にのみこのコマンドは認識されます。
    

パラメータ
	type_name
	

新しい型の名前です。
これは有効なCの型名でなければなりません。
       

	ctype
	

Cの型指定です。
       




例

EXEC SQL TYPE customer IS
    struct
    {
        varchar name[50];
        int     phone;
    };

EXEC SQL TYPE cust_ind IS
    struct ind
    {
        short   name_ind;
        short   phone_ind;
    };

EXEC SQL TYPE c IS char reference;
EXEC SQL TYPE ind IS union { int integer; short smallint; };
EXEC SQL TYPE intarray IS int[AMOUNT];
EXEC SQL TYPE str IS varchar[BUFFERSIZ];
EXEC SQL TYPE string IS char[11];



以下にEXEC SQL TYPEを使用するプログラム例を示します。


EXEC SQL WHENEVER SQLERROR SQLPRINT;

EXEC SQL TYPE tt IS
    struct
    {
        varchar v[256];
        int     i;
    };

EXEC SQL TYPE tt_ind IS
    struct ind {
        short   v_ind;
        short   i_ind;
    };

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
    tt t;
    tt_ind t_ind;
EXEC SQL END DECLARE SECTION;

    EXEC SQL CONNECT TO testdb AS con1;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

    EXEC SQL SELECT current_database(), 256 INTO :t:t_ind LIMIT 1;

    printf("t.v = %s\n", t.v.arr);
    printf("t.i = %d\n", t.i);

    printf("t_ind.v_ind = %d\n", t_ind.v_ind);
    printf("t_ind.i_ind = %d\n", t_ind.i_ind);

    EXEC SQL DISCONNECT con1;

    return 0;
}




このプログラムの出力は以下のようになります。


t.v = testdb
t.i = 256
t_ind.v_ind = 0
t_ind.i_ind = 0


    

互換性


TYPEコマンドはPostgreSQLの拡張です。
    



名前
VAR — 変数を定義する

概要

VAR varname IS ctype


説明


VARコマンドは新しいCデータ型にホスト変数を割り当てます。
ホスト変数は宣言セクションで前もって宣言されていなければなりません。
    

パラメータ
	varname
	

Cの変数名です。
       

	ctype
	

Cの型指定です。
       




例

Exec sql begin declare section;
short a;
exec sql end declare section;
EXEC SQL VAR a IS int;


互換性


VARコマンドはPostgreSQLの拡張です。
    



名前
WHENEVER — SQL文により特定の分類の条件が発生する時に行う動作を指定する

概要

WHENEVER { NOT FOUND | SQLERROR | SQLWARNING } action


説明


SQL実行の結果において特殊な状態（行がない、SQL警告またはSQLエラー）で呼び出される動作を定義します。
    

パラメータ


パラメータの説明については「コールバックの設定」を参照してください。
    

例

EXEC SQL WHENEVER NOT FOUND CONTINUE;
EXEC SQL WHENEVER NOT FOUND DO BREAK;
EXEC SQL WHENEVER NOT FOUND DO CONTINUE;
EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLWARNING DO warn();
EXEC SQL WHENEVER SQLERROR sqlprint;
EXEC SQL WHENEVER SQLERROR CALL print2();
EXEC SQL WHENEVER SQLERROR DO handle_error("select");
EXEC SQL WHENEVER SQLERROR DO sqlnotice(NULL, NONO);
EXEC SQL WHENEVER SQLERROR DO sqlprint();
EXEC SQL WHENEVER SQLERROR GOTO error_label;
EXEC SQL WHENEVER SQLERROR STOP;



以下は、結果セットを通したループ処理を扱うためにWHENEVER NOT FOUND BREAKを使用する典型的なアプリケーションです。


int
main(void)
{
    EXEC SQL CONNECT TO testdb AS con1;
    EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
    EXEC SQL ALLOCATE DESCRIPTOR d;
    EXEC SQL DECLARE cur CURSOR FOR SELECT current_database(), 'hoge', 256;
    EXEC SQL OPEN cur;


    /* 結果集合の最後に到達したら、whileループから抜ける */
    EXEC SQL WHENEVER NOT FOUND DO BREAK;

    while (1)
    {
        EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d;
        ...
    }

    EXEC SQL CLOSE cur;
    EXEC SQL COMMIT;

    EXEC SQL DEALLOCATE DESCRIPTOR d;
    EXEC SQL DISCONNECT ALL;

    return 0;
}


    

互換性


WHENEVERは標準SQLで規定されていますが、ほとんどの動作はPostgreSQLの拡張です。
    


Informix™互換モード





ecpgをInformix互換モードというモードで動作させることができます。
このモードが有効ならば、Informix™ E/SQL用のInformix™プリプロセッサであるかのように動作します。
一般的にいうと、これにより埋め込みSQLコマンドを導入する際にEXEC SQLプリミティブの代わりにドル記号を使用することができます。


$int j = 3;
$CONNECT TO :dbname;
$CREATE TABLE test(i INT PRIMARY KEY, j INT);
$INSERT INTO test(i, j) VALUES (7, :j);
$COMMIT;


  
注記


$とその後に続くinclude、define、ifdefなどのプリプロセッサ指示子の間に空白文字を含めてはなりません。
こうしないと、プリプロセッサはトークンをホスト変数として解析します。
   



INFORMIX、INFORMIX_SEという2つの互換モードがあります。
  


互換モードを使用するプログラムをリンクする際、ECPGに同梱されるlibcompatとリンクすることを忘れないでください。
  


以前に説明した構文上の飾りの他に、Informix™互換モードでは、入力、出力、データ変換関数、E/SQLからECPGで既知の埋め込みSQL文変換に関する関数もいくつか移植しています。
  


Informix™互換モードはECPGのpgtypeslibライブラリと密接に関係しています。
pgtypeslibはSQLデータ型とCホストプログラム内のデータ型を対応付けし、ほとんどのInformix™互換モードで追加された関数を使用してこれらのCホストプログラム型を操作することができます。
しかし、互換範囲は制限されています。
これはInformix™の動作を真似ることはしません。
これを使用して、多少は同じ名前で同じ基本動作を行う関数を操作、提供できますが、Informix™を使用しているのであれば、完全な置き換えにはなりません。
さらに一部のデータ型は異なります。
例えば、PostgreSQL™の日付時刻やinterval型ではYEAR TO MINUTEのような範囲を持ちませんので、これらはECPGではサポートできないことがわかります。
  
追加の型





右側を切り詰めた文字列データを格納するInformixの特別な"string"仮想型はtypedefを使用せずともInformixモードでサポートされるようになりました。
実際Informixモードでは、ECPGはtypedef sometype string;を含むソースファイルの処理を拒絶します。


EXEC SQL BEGIN DECLARE SECTION;

string userid; /* この変数は切り詰められたデータを含むことになる */
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH MYCUR INTO :userid;


   

追加または存在しない埋め込みSQL文




    
	CLOSE DATABASE
	

このSQL文は現在の接続を閉じます。
実際、これはECPGのDISCONNECT CURRENTと同義です。



$CLOSE DATABASE;                /* 現在の接続を閉じる */
EXEC SQL CLOSE DATABASE;


       

	FREE cursor_name
	

InformixのESQL/Cと比べECPGの動作方法に違いがあります(すなわち、純粋に文法の変換がどの段階で行われ、背後の実行時ライブラリにどの段階で依存するか)ので、ECPGにはFREE cursor_name文はありません。
このためECPGにおいて、DECLARE CURSORがカーソル名を使用する実行時ライブラリ内の関数呼び出しに変換されません。
これはECPG実行時ライブラリ内ではSQLカーソルの実行状況を保持しておらず、PostgreSQLサーバ内のみで保持していることを意味します。
       

	FREE statement_name
	

FREE statement_nameはDEALLOCATE PREPARE statement_nameの類義語です。
       




   

Informix互換SQLDA記述子領域





Informix互換モードは「SQLDA記述子領域」の説明と異なる構造体をサポートします。
以下を参照してください。


struct sqlvar_compat
{
    short   sqltype;
    int     sqllen;
    char   *sqldata;
    short  *sqlind;
    char   *sqlname;
    char   *sqlformat;
    short   sqlitype;
    short   sqlilen;
    char   *sqlidata;
    int     sqlxid;
    char   *sqltypename;
    short   sqltypelen;
    short   sqlownerlen;
    short   sqlsourcetype;
    char   *sqlownername;
    int     sqlsourceid;
    char   *sqlilongdata;
    int     sqlflags;
    void   *sqlreserved;
};

struct sqlda_compat
{
    short  sqld;
    struct sqlvar_compat *sqlvar;
    char   desc_name[19];
    short  desc_occ;
    struct sqlda_compat *desc_next;
    void  *reserved;
};

typedef struct sqlvar_compat    sqlvar_t;
typedef struct sqlda_compat     sqlda_t;


   


大域的な属性を以下に示します。
    
	sqld
	

SQLDA記述子内のフィールド数です。
       

	sqlvar
	

フィールド単位の属性へのポインタです。
       

	desc_name
	

未使用です。
ゼロバイトで埋められます。
       

	desc_occ
	

割り当てられた構造体のサイズです。
       

	desc_next
	

結果セットに複数のレコードが含まれる場合、次のSQLDA構造体へのポインタです。
       

	reserved
	

未使用のポインタでNULLが含まれます。
Informix互換のために保持されます。
       






フィールド毎の属性を以下に示します。
これらはsqlvar配列内に格納されます。

    
	sqltype
	

フィールドの型です。
定数はsqltypes.h内に記載されています。
       

	sqllen
	

フィールドデータ長です。
       

	sqldata
	

フィールドデータへのポインタです。
このポインタはchar *型です。
指し示されるデータはバイナリ書式です。
以下に例を示します。


int intval;

switch (sqldata->sqlvar[i].sqltype)
{
    case SQLINTEGER:
        intval = *(int *)sqldata->sqlvar[i].sqldata;
        break;
  ...
}


       

	sqlind
	

NULL指示子へのポインタです。
DESCRIBEまたはFETCHで返される場合、常に有効なポインタです。
EXECUTE ... USING sqlda;への入力として使用される場合、NULLポインタ値はこのフィールドの値が非NULLであることを意味します。
さもなくば、有効なポインタとsqlitypeは適切に設定されなければなりません。
以下に例を示します。


if (*(int2 *)sqldata->sqlvar[i].sqlind != 0)
    printf("value is NULL\n");


       

	sqlname
	

フィールド名です。
ゼロ終端の文字列です。
       

	sqlformat
	

Informixでは予約されています。
このフィールドのPQfformatの値です。
       

	sqlitype
	

NULL指示子データの型です。
サーバからデータが返される場合は常にSQLSMINTです。
パラメータ付き問い合わせでSQLDAが使用される時、データは集合型にしたがって扱われます。
       

	sqlilen
	

NULL指示子データの長さです。
       

	sqlxid
	

フィールドの拡張型で、PQftypeの結果です。
       

	sqltypename, sqltypelen, sqlownerlen, sqlsourcetype, sqlownername, sqlsourceid, sqlflags, sqlreserved
	

未使用です。
       

	sqlilongdata
	

sqllenが32キロバイトより大きい場合sqldataと同じです。
       






以下に例を示します。


EXEC SQL INCLUDE sqlda.h;


    sqlda_t        *sqlda; /* これは埋め込まれたDECLARE SECTIONの中にある必要はない */

    EXEC SQL BEGIN DECLARE SECTION;
    char *prep_stmt = "select * from table1";
    int i;
    EXEC SQL END DECLARE SECTION;

    ...

    EXEC SQL PREPARE mystmt FROM :prep_stmt;

    EXEC SQL DESCRIBE mystmt INTO sqlda;

    printf("# of fields: %d\n", sqlda->sqld);
    for (i = 0; i < sqlda->sqld; i++)
      printf("field %d: \"%s\"\n", sqlda->sqlvar[i]->sqlname);

    EXEC SQL DECLARE mycursor CURSOR FOR mystmt;
    EXEC SQL OPEN mycursor;
    EXEC SQL WHENEVER NOT FOUND GOTO out;

    while (1)
    {
      EXEC SQL FETCH mycursor USING sqlda;
    }

    EXEC SQL CLOSE mycursor;


    free(sqlda); /* 主な構造体はすべてfree()される、
                  * sqldaとsqlda->sqlvarは1つの割り当て領域内にある */



より詳細についてはsqlda.hヘッダファイルとsrc/interfaces/ecpg/test/compat_informix/sqlda.pgcリグレッションテストを参照してください。
   

追加関数




    
	decadd
	

2つのdecimal型変数を加算します。


int decadd(decimal *arg1, decimal *arg2, decimal *sum);



この関数は、decimal型の最初の演算項目(arg1)へのポインタ、decimal型の2番目の演算項目(arg2)へのポインタ、加算結果を格納するdecimal型値(sum)へのポインタを受付けます。
成功すると、この関数は0を返します。
オーバーフローが発生した場合はECPG_INFORMIX_NUM_OVERFLOWが、アンダーフローの場合はECPG_INFORMIX_NUM_UNDERFLOWが返ります。
この他の失敗が発生した場合は-1が返り、errnoにはpgtypeslibにおける対応するerrno番号が設定されます。
       

	deccmp
	

2つのdecimal型変数を比較します。


int deccmp(decimal *arg1, decimal *arg2);



この関数は、最初のdecimal値(arg1)へのポインタ、2番目のdecimal値(arg2)へのポインタを受付け、どちらが大きいかを示すint値を返します。
        
	

arg1が指し示す値がarg2が指し示す値より大きければ1。
          

	

arg1が指し示す値がarg2が指し示す値より小さければ-1。
          

	

arg1が指し示す値とarg2が指し示す値が同じならば0。
          




       

	deccopy
	

decimal値をコピーします。


void deccopy(decimal *src, decimal *target);



この関数は、最初の引数としてコピー元のdecimal値(src)へのポインタ、2番目の引数としてdecimal型のコピー先構造体(target)へのポインタを受付けます。
       

	deccvasc
	

ASCII表現からdecimal型に値を変換します。


int deccvasc(char *cp, int len, decimal *np);



この関数は、変換対象の文字列表現を持つ文字列(cp)へのポインタとその文字列長lenを受付けます。
npはこの操作結果を格納するdecimal型の値へのポインタです。
       


有効な書式の例は以下の通りです。
         -2、
         .794、
         +3.44、
         592.49E07、
         -32.84e-4。
       


この関数は成功時0を返します。
オーバーフローやアンダーフローが発生した場合はECPG_INFORMIX_NUM_OVERFLOWやECPG_INFORMIX_NUM_UNDERFLOWが返されます。
ASCII表現の解析ができなかった場合はECPG_INFORMIX_BAD_NUMERICが、指数部分の解析に問題がある場合はECPG_INFORMIX_BAD_EXPONENTが返されます。
       

	deccvdbl
	

double型の値をdecimal型の値に変換します。


int deccvdbl(double dbl, decimal *np);



この関数は、最初の引数として変換対象のdouble型の変数(dbl)を受付けます。
2番目の引数(np)として、この関数は操作結果を格納するdecimal型変数へのポインタを受付けます。
       


この関数は成功時に0を返します。
変換が失敗した場合は負の値が返ります。
       

	deccvint
	

int型の値をdecimal型の値に変換します。


int deccvint(int in, decimal *np);



この関数は最初の引数として、変換対象のint型変数(in)を受付けます。
2番目の引数(np)として、この関数は変換結果を格納するdecimal型変数へのポインタを受付けます。
       


この関数は成功時に0を返します。
変換が失敗した場合は負の値が返ります。
       

	deccvlong
	

long型の値をdecimal型の値に変換します。


int deccvlong(long lng, decimal *np);



この関数は最初の引数として、変換対象のlong型変数(lng)を受付けます。
2番目の引数(np)として、この関数は変換結果を格納するdecimal型変数へのポインタを受付けます。
       


この関数は成功時に0を返します。
変換が失敗した場合は負の値が返ります。
       

	decdiv
	

2つのdecimal型変数の除算を行います。


int decdiv(decimal *n1, decimal *n2, decimal *result);



この関数は、1番目の演算項目(n1)と2番目の演算項目(n2)となる変数のポインタを受付け、n1/n2を計算します。
resultは、操作結果を格納する変数へのポインタです。
       


成功時0が返され、除算の失敗時には負の値が返されます。
オーバーフローやアンダーフローが発生した場合、この関数はそれぞれECPG_INFORMIX_NUM_OVERFLOW、ECPG_INFORMIX_NUM_UNDERFLOWを返します。
0割りが発生した場合はECPG_INFORMIX_DIVIDE_ZEROが返されます。
       

	decmul
	

2つのdecimal型変数を乗算します。


int decmul(decimal *n1, decimal *n2, decimal *result);



この関数は、1番目の演算項目(n1)と2番目の演算項目(n2)となる変数のポインタを受付け、n1*n2を計算します。
resultは、操作結果を格納する変数へのポインタです。
       


成功時0が返され、乗算の失敗時には負の値が返されます。
オーバーフローやアンダーフローが発生した場合、この関数はそれぞれECPG_INFORMIX_NUM_OVERFLOW、ECPG_INFORMIX_NUM_UNDERFLOWを返します。
       

	decsub
	

decimal型の値同士の引算を行います。


int decsub(decimal *n1, decimal *n2, decimal *result);



この関数は、1番目の演算項目(n1)と2番目の演算項目(n2)となる変数のポインタを受付け、n1-n2を計算します。
resultは、操作結果を格納する変数へのポインタです。
       


成功時0が返され、減算の失敗時には負の値が返されます。
オーバーフローやアンダーフローが発生した場合、この関数はそれぞれECPG_INFORMIX_NUM_OVERFLOW、ECPG_INFORMIX_NUM_UNDERFLOWを返します。
       

	dectoasc
	

decimal型変数をC char* 文字列のASCII表現に変換します。


int dectoasc(decimal *np, char *cp, int len, int right)



この関数はdecimal型変数(np)のポインタを受け付け、テキスト表現に変換します。
cpは変換結果を格納するためのバッファです。
rightパラメータは、10進小数点の右側の何桁を出力するかを指定します。
結果はこの10進桁数で丸められます。
rightを-1にすることで、すべての有効な桁数が出力されるようになります。
lenで示す出力バッファ長が、最後のNULL文字を含むテキスト表現を格納するのには不十分であった場合、結果には*という1文字が格納され、-1が返されます。
       


この関数は、cpバッファが小さすぎる場合に-1を返します。
メモリ不足の場合はECPG_INFORMIX_OUT_OF_MEMORYを返します。
       

	dectodbl
	

decimal型変数をdoubleに変換します。


int dectodbl(decimal *np, double *dblp);



この関数は変換対象のdecimal型変数(np)のポインタと処理結果を格納するdouble変数(dblp)へのポインタを受け付けます。
       


成功時0が、変換失敗時負の値が返されます。
       

	dectoint
	

decimal型変数をinteger型に変換します。


int dectoint(decimal *np, int *ip);



この関数は変換対象のdecimal型変数(np)のポインタと処理結果を格納するinteger型変数(ip)へのポインタを受け付けます。
       


成功時0が、変換失敗時負の値が返されます。
オーバーフローが発生した場合はECPG_INFORMIX_NUM_OVERFLOWが返されます。
       


このECPGの実装はInformix™の実装と異なることに注意してください。
Informix™では、integer範囲に-32767から32767までという制限をしていますが、ECPGでの制限はアーキテクチャに依存(INT_MIN .. INT_MAX)します。
       

	dectolong
	

decimal型変数をlong integer型に変換します。


int dectolong(decimal *np, long *lngp);



この関数は変換対象のdecimal型変数(np)のポインタと処理結果を格納するlong変数(lngp)へのポインタを受け付けます。
       


成功時0が、変換失敗時負の値が返されます。
オーバーフローが発生した場合はECPG_INFORMIX_NUM_OVERFLOWが返されます。
       


このECPGの実装はInformix™の実装と異なることに注意してください。
Informix™では、long integer範囲に-2,147,483,647から2,147,483,647までという制限をしていますが、ECPGでの制限はアーキテクチャに依存(-LONG_MAX .. LONG_MAX)します。
       

	rdatestr
	

date型をC char*文字列に変換します。


int rdatestr(date d, char *str);



この関数は2つの引数を受付けます。
最初の引数は変換対象のdate型(d)、2番目は変換後の文字列へのポインタです。
出力書式は常にyyyy-mm-ddですので、少なくとも11文字（NULL終端を含む）を結果文字列に割り当てなければなりません。
       


この関数は成功時0を、エラー時負の値を返します。
       


このECPGの実装はInformix™の実装と異なることに注意してください。
Informix™では、環境変数により書式を変更できます。
しかしECPGでは出力書式を変更することはできません。
       

	rstrdate
	

date型のテキスト表現を解析します。


int rstrdate(char *str, date *d);



この関数は、変換対象のdate型のテキスト表現(str)とdate型変数のポインタ(d)を受付けます。
この関数では書式マスクを指定することができません。
Informix™のデフォルトの書式マスクであるmm/dd/yyyyを使用します。
内部的には、この関数はrdefmtdateを使用して実装しています。
したがってrstrdateは速くありません。
もし選択肢があるのであれば、書式マスクを明示的に指定することができるrdefmtdateを選択すべきです。
       


この関数はrdefmtdateと同様の値を返します。
       

	rtoday
	

現在の日付を（date型で）入手します。


void rtoday(date *d);



この関数はdate型変数(d)へのポインタを受付け、そこに現在の日付を格納します。
       


内部的には、この関数はPGTYPESdate_today関数を使用します。
       

	rjulmdy
	

date型変数から、日、月、年の値を取り出します。


int rjulmdy(date d, short mdy[3]);



この関数は日付d、3つのshort integer型の値からなる配列mdyへのポインタを受付けます。
この変数名はその並びを表し、mdy[0]には月数、mdy[1]には日数が、mdy[2]には年が入ります。
       


現在この関数は常に0を返します。
       


内部的にはこの関数はPGTYPESdate_julmdy関数を使用します。
       

	rdefmtdate
	

書式マスクを使用して、文字列をdate型の値に変換します。


int rdefmtdate(date *d, char *fmt, char *str);



この関数は、処理結果を格納するためのdate型へのポインタ(d)、日付を解析するための書式マスク(fmt)、dateのテキスト表現を含むCのchar*文字列(str)を受付けます。
テキスト表現は書式マスクに合った表現であることが仮定されています。
しかし、文字列と書式マスクを1:1に対応付けする必要はありません。
この関数は並んだ順番に解析し、年の位置を表すyyまたはyyyyを、月の位置を表すmmを、日の位置を表すddを検索します。
       


この関数は以下の値を返します。
        
	

0 - 関数が正常に終了しました。
          

	

ECPG_INFORMIX_ENOSHORTDATE - 日付に、日、月、年を区切る文字がありませんでした。
この場合、入力文字列は6バイト、8バイトのいずれかでなければなりませんが、そうではありませんでした。
          

	

ECPG_INFORMIX_ENOTDMY - 書式文字列が正しく年月日の順番を示していません。
          

	

ECPG_INFORMIX_BAD_DAY - 入力文字列に有効な日が含まれていません。
          

	

ECPG_INFORMIX_BAD_MONTH - 入力文字列に有効な月が含まれていません。
          

	

ECPG_INFORMIX_BAD_YEAR - 入力文字列に有効な年が含まれていません。
          




       


内部的には、この関数はPGTYPESdate_defmt_asc関数を使用して実装しています。
この関数の説明には、入力例の表がありますので、こちらも参照してください。
       

	rfmtdate
	

書式マスクを使用してdate型変数をテキスト表現に変換します。


int rfmtdate(date d, char *fmt, char *str);



この関数は変換対象の日付(d)、書式マスク(fmt)、日付のテキスト表現を格納する文字列(str)を受付けます。
       


成功時0、エラーが発生した場合は負の値が返されます。
       


内部的にはこの関数はPGTYPESdate_fmt_asc関数を使用します。
例が記載されていますので、こちらも参照してください。
       

	rmdyjul
	

日付の日、月、年を表す3つのshort integer型からなる配列から日付型の値を作成します。


int rmdyjul(short mdy[3], date *d);



この関数は3つのshort integer型からなる配列(mdy)と処理結果を格納するdate型変数へのポインタを受付けます。
       


現在この関数は常に0を返します。
       


内部的にはこの関数はPGTYPESdate_mdyjul関数を使用して実装しています。
       

	rdayofweek
	

日付型の値の週内日数を示す値を返します。


int rdayofweek(date d);



この関数はdate型変数dをその唯一の引数として受付け、その日付の週内日数を示す整数を返します。
        
	

0 - 日曜
          

	

1 - 月曜
          

	

2 - 火曜
          

	

3 - 水曜
          

	

4 - 木曜
          

	

5 - 金曜
          

	

6 - 土曜
          




       


内部的にはこの関数は PGTYPESdate_dayofweek関数を使用して実装しています。
       

	dtcurrent
	

現在のタイムスタンプを取り出します。


void dtcurrent(timestamp *ts);



この関数は現在のタイムスタンプを受け取り、tsが指し示すタイムスタンプ型変数に格納します。
       

	dtcvasc
	

テキスト表現からtimestamp型変数にタイムスタンプを解析します。


int dtcvasc(char *str, timestamp *ts);



この関数は対象の文字列(str)と処理結果を格納するtimestamp型変数(ts)へのポインタを受付けます。
       


この関数は成功時0を返し、エラー時負の値を返します。
       


内部的にはこの関数はPGTYPEStimestamp_from_asc関数を使用します。
入力例の表がありますので、こちらも参照してください。
       

	dtcvfmtasc
	

書式マスクを使用してタイムスタンプのテキスト表現をtimestamp型変数に変換します。


dtcvfmtasc(char *inbuf, char *fmtstr, timestamp *dtvalue)



この関数は、対象とする文字列(inbuf)、使用する書式マスク(fmtstr)、処理結果を格納するtimestamp変数(dtvalue)へのポインタを受付けます。
       


この関数はPGTYPEStimestamp_defmt_asc関数を使用して実装されています。
使用可能な書式指定のリストがありますので、こちらも参照してください。
       


この関数は成功時に0を、エラー時負の値を返します。
       

	dtsub
	

timestamp型同士で減算を行い、interval型変数を返します。


int dtsub(timestamp *ts1, timestamp *ts2, interval *iv);



この関数はts1が指し示すtimestamp型変数からts2が指し示すtimestamp型変数を引きます。
結果はivが指し示すinterval型変数に格納されます。
       


成功時この関数は0を返し、エラー時負の値を返します。
       

	dttoasc
	

timestamp型変数をC char*文字列に変換します。


int dttoasc(timestamp *ts, char *output);



この関数は対象のtimestamp型変数(ts)へのポインタ、処理結果を格納する文字列(output)を受付けます。
これはtsを標準SQLに従うテキスト表現（YYYY-MM-DD HH:MM:SSとして定義）に変換します。
       


成功時この関数は0を返し、エラー時負の値を返します。
       

	dttofmtasc
	

書式マスクを使用してtimestamp型変数をC char*に変換します。


int dttofmtasc(timestamp *ts, char *output, int str_len, char *fmtstr);



この関数は、最初の引数として変換対象のタイムスタンプ(ts)を、出力バッファのポインタ(output)、出力バッファで割当て可能な最大長 (str_len)、変換に使用する書式マスク(fmtstr)を受付けます。
       


成功時この関数は0を返します。エラーが発生した場合は負の値を返します。
       


内部的に、この関数はPGTYPEStimestamp_fmt_asc関数を使用します。
使用できる書式マスクに関する情報がありますので、こちらも参照してください。
       

	intoasc
	

interval型変数をC char*文字列に変換します。


int intoasc(interval *i, char *str);



この関数は、変換対象のinterval型変数(i)へのポインタ、処理結果を格納する文字列(str)を受付けます。
これはiを標準SQLに従うテキスト表現（YYYY-MM-DD HH:MM:SSとして定義）に変換します。
       


成功時、この関数は0を返します。
エラーが発生した場合は負の値を返します。
       

	rfmtlong
	

long integer値を書式マスクを使用してテキスト表現に変換します。


int rfmtlong(long lng_val, char *fmt, char *outbuf);



この関数は、long型の値lng_val、書式マスクfmt、出力バッファoutbufへのポインタを受付けます。
これはlong型の値を書式マスクに従ってテキスト表現に変換します。
       


書式マスクは以下の書式指定文字を組み合わせることができます。
        
	

* (アスタリスク) - この位置が空白ならばアスタリスクで埋めます。
          

	

& (アンパサンド) - この位置が空白ならば0で埋めます。
          

	

           # - 先頭のゼロを空白に変換します。
          

	

           < - 文字列内で数値を左そろえします。
          

	

, (カンマ) - 4桁以上の数値をカンマで区切った3桁にグループ化します。
          

	

           . (ピリオド) - この文字は数値から小数部分を区別します。
          

	

           - (マイナス) - 数値が負の場合、マイナス記号を付けます。
          

	

           + (プラス) - 数値が正の場合プラス記号を付けます。
          

	

           ( - これは負の値の先頭のマイナス記号を置き換えます。
マイナス記号は現れません。
          

	

           ) - この文字はマイナス記号を置き換え、負の値の最後に出力します。
          

	

           $ - 通貨記号
          




       

	rupshift
	

文字列を大文字に変換します。


void rupshift(char *str);



この関数は文字列へのポインタを受付け、すべての小文字を大文字に変換します。
       

	byleng
	

文字列内の文字数を返します。
ただし、末尾の空白は数えません。


int byleng(char *str, int len);



この関数は最初の引数として、固定長の文字列(str)を、2番目の引数としてその文字列長 (len)想定しています。
これは、文字列から末尾の空白を取り除いた、有効文字の数を返します。
       

	ldchar
	

固定長の文字列をNULL終端の文字列に複製します。


void ldchar(char *src, int len, char *dest);



この関数はコピー対象の固定長の文字列(src)、文字列長(len)、格納先メモリ(dest)へのポインタを受付けます。
destが指し示す文字列には少なくともlen+1バイトを割り当てなければならない点に注意してください。
この関数は多くてもlenバイトを新しい場所にコピーします。
（元の文字列が末尾に空白文字を持つ場合に少なくなります。）
そして、NULL終端を付与します。
       

	rgetmsg
	


int rgetmsg(int msgnum, char *s, int maxsize);



この関数は存在しますが、現在実装されていません。
       

	rtypalign
	


int rtypalign(int offset, int type);



この関数は存在しますが、現在実装されていません。
       

	rtypmsize
	


int rtypmsize(int type, int len);



この関数は存在しますが、現在実装されていません。
       

	rtypwidth
	


int rtypwidth(int sqltype, int sqllen);



この関数は存在しますが、現在実装されていません。
       

	rsetnull
	

変数にNULLを設定します。


int rsetnull(int t, char *ptr);



この関数は、変数の種類を示す整数とC char*にキャストした変数自体へのポインタを受付けます。
       


以下の種類が存在します。
        
	

           CCHARTYPE - charまたは char*型の変数用
          

	

           CSHORTTYPE - short int型の変数用
          

	

           CINTTYPE - int型の変数用
          

	

           CBOOLTYPE - boolean型の変数用
          

	

           CFLOATTYPE - float型の変数用
          

	

           CLONGTYPE - long型の変数用
          

	

           CDOUBLETYPE - double型の変数用
          

	

           CDECIMALTYPE - decimal型の変数用
          

	

           CDATETYPE - date型の変数用
          

	

           CDTIMETYPE - timestamp型の変数用
          




       


以下にこの関数の呼び出し例を示します。


$char c[] = "abc       ";
$short s = 17;
$int i = -74874;

rsetnull(CCHARTYPE, (char *) c);
rsetnull(CSHORTTYPE, (char *) &s);
rsetnull(CINTTYPE, (char *) &i);



       

	risnull
	

変数がNULLか検査します。


int risnull(int t, char *ptr);



この関数は検査する変数の種類(t)、変数(ptr)へのポインタを受付けます。
後者はchar*にキャストする必要があることに注意してください。
取り得る変数種類については rsetnull関数を参照してください。
       


この関数の使用方法の例を示します。


$char c[] = "abc       ";
$short s = 17;
$int i = -74874;

risnull(CCHARTYPE, (char *) c);
risnull(CSHORTTYPE, (char *) &s);
risnull(CINTTYPE, (char *) &i);



       




   

追加の定数





ここで示す定数はすべてエラーを示すものであり、負の値を表すように定義されていることに注意してください。
また、他の定数の説明では、現在の実装で定数が表す数値がわかります。
しかし、この数値に依存してはなりません。
しかし、これらのすべてが負の値であることに依存することは可能です。
    
	ECPG_INFORMIX_NUM_OVERFLOW
	

計算時にオーバーフローが発生した場合、関数はこの値を返します。
内部的には-1200（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_NUM_UNDERFLOW
	

計算時にアンダーフローが発生した場合、関数はこの値を返します。
内部的には-1201（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_DIVIDE_ZERO
	

計算時にゼロ除算が発生した場合、関数はこの値を返します。
内部的には-1202（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_BAD_YEAR
	

日付の解析時に年の値が不正であった場合、関数はこの値を返します。
内部的には-1204（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_BAD_MONTH
	

日付の解析時に月の値が不正であった場合、関数はこの値を返します。
内部的には-1205（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_BAD_DAY
	

日付の解析時に日の値が不正であった場合、関数はこの値を返します。
内部的には-1206（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_ENOSHORTDATE
	

解析処理が短縮日付表現を必要としているが、正しい長さの日付文字列が得られなかった場合、関数はこの値を返します。
内部的には-1209（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_DATE_CONVERT
	

日付の書式付けの時にエラーが発生した場合、関数はこの値を返します。
内部的には-1210（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_OUT_OF_MEMORY
	

操作時にメモリが不足した場合、関数はこの値を返します。
内部的には-1211（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_ENOTDMY
	

解析処理が書式マスク（mmddyyのような）が存在することを前提としているが、すべてのフィールドが正しく列挙されていない場合、関数はこの値を返します。
内部的には-1212（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_BAD_NUMERIC
	

解析処理がエラーのため数値のテキスト表現を解析できなかった場合や数値変数の少なくとも1つが無効のため数値変数を使用した計算を完了できなかった場合、関数はこの値を返します。
内部的には-1213（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_BAD_EXPONENT
	

解析処理が指数の解析を行うことができなかった場合、関数はこの値を返します。
内部的には-1216（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_BAD_DATE
	

解析処理が日付を解析できなかった場合、関数はこの値を返します。
内部的には-1218（Informix™の定義）と定義されています。
       

	ECPG_INFORMIX_EXTRA_CHARS
	

解析処理が追加の文字列を解析できなかった場合、関数はこの値を返します。
内部的には-1264（Informix™の定義）と定義されています。
       




   


Oracle™互換モード





ecpgはいわゆるOracle互換モードで実行できます。
このモードが有効であれば、Oracle Pro*C™であるかのように振る舞おうとします。
  


特に、このモードは以下の3つの点でecpgを変更します。

   
	

文字列型を受け取る文字配列の末尾に、指定された長さまで空白を詰めます。
     

	

ゼロバイトでこの文字配列を終端し、切り詰められた場合には指示子変数を設定します。
     

	

文字配列が空の文字列型を受け取った場合には、NULL指示子を-1に設定します。
     




  

内部





本節では内部的なECPGの動作を説明します。
この情報はECPGの使用方法を理解する手助けとして有用なことがあります。
  


ecpgによって出力に書き込まれる最初の4行は固定されています。
2行はコメントで、残り2行はライブラリとのインタフェースのために必要なインクルード行です。
その後、プリプロセッサはファイル全体を読み取り、出力に書き出します。
通常は、単にすべてそのまま出力に書き出します。
   


EXEC SQLを検出すると、間に入り、それを変更します。
このコマンドはEXEC SQLで始まり、;で終わります。
この間のすべてはSQL文として扱われ、変数の置換のために解析されます。
   


変数置換は、シンボルがコロン（:）から始まる場合に発生します。
その名前の変数が、EXEC SQL DECLAREセクションで事前に宣言された変数の中から検索されます。
   


ライブラリ内で最も重要な関数はECPGdoです。
これが、ほとんどのコマンドの実行を管理します。
可変長の引数をとります。
すべてのプラットフォームで問題にならないことを祈っていますが、これは50程度の引数まで簡単に追加できます。
   


引数を以下に示します。

    
	行番号
	

元の行の行番号です。
エラーメッセージ内でのみ使用されます。
       

	文字列
	

発行すべきSQLコマンドです。
入力変数、つまり、コンパイル時に未知だったがそのコマンド内に与えるべき変数によって変更されます。
変数が文字列内に挿入される箇所は?となっています。
       

	入力変数
	

        すべての入力変数は10個の引数を作成します。（後述。）
       

	ECPGt_EOIT
	

        入力変数がもうないことを表すenumです。
       

	出力変数
	

すべての出力変数は10個の引数を作成します。（後述。）
これらの変数は関数によって埋められます。
       

	ECPGt_EORT
	

        変数がもうないことを表すenumです。
       




   


SQLコマンドの一部となるすべての変数に対して、この関数は以下の10個の引数を生成します。

    
	

特別シンボルとしての型。
      

	

値へのポインタ、もしくはポインタのポインタ。
      

	

変数がcharかvarcharの場合はそのサイズ。
      

	

配列の要素数（配列取り出し用）。
      

	

配列の次の要素のオフセット（配列取り出し用）。
      

	

特別シンボルとしての指示子変数の型。
      

	

指示子変数へのポインタ。
      

	
       0
      

	

指示子配列内の要素数（配列取り出し用）。
      

	

指示子配列内の次要素へのオフセット（配列取り出し用）。
      




   


すべてのSQLコマンドがこの方法で扱われるわけではないことに注意してください。
例えば、以下のカーソルを開くSQL文は出力にコピーされません。


EXEC SQL OPEN cursor;



その代わりにカーソルのDECLAREコマンドがOPENコマンドの場所で使用されます。
実際にこのコマンドがカーソルを開くからです。
   


以下に、foo.pgcファイルに対するプリプロセッサの出力を完全に説明する例を示します
（プリプロセッサのバージョンによって詳細が異なっているかもしれません）。


EXEC SQL BEGIN DECLARE SECTION;
int index;
int result;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT res INTO :result FROM mytable WHERE index = :index;



これは以下に翻訳されます。


/* Processed by ecpg (2.6.0) */
/* These two include files are added by the preprocessor */
#include <ecpgtype.h>;
#include <ecpglib.h>;

/* exec sql begin declare section */

#line 1 "foo.pgc"

 int index;
 int result;
/* exec sql end declare section */
...
ECPGdo(__LINE__, NULL, "SELECT res FROM mytable WHERE index = ?     ",
        ECPGt_int,&(index),1L,1L,sizeof(int),
        ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EOIT,
        ECPGt_int,&(result),1L,1L,sizeof(int),
        ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EORT);
#line 147 "foo.pgc"




ここで可読性のためにインデントを付けています。
プリプロセッサが行ったものではありません。
   

第35章 情報スキーマ





情報スキーマは、現在のデータベースで定義されたオブジェクトについての情報を持つビューの集合から構成されます。
情報スキーマは標準SQLで定義されています。
したがって、PostgreSQL™に特化し、実装上の事項にならって作成されるシステムカタログとは異なり、移植性があり、安定性を保持できるものと期待できます。
しかし、情報スキーマのビューには、PostgreSQL™固有の機能についての情報が含まれていません。
これに問い合わせを行うためには、システムカタログもしくはPostgreSQL™固有のビューに問い合わせを行う必要があります。
 
注記


制約情報についてデータベースに問い合わせるとき、一行を返すことが想定される標準に準拠したクエリが数行の結果を返す場合があります。
これは、制約名がスキーマ内で一意になることを標準SQLが要求しているのに対して、PostgreSQL™はこの制約を強制しないためです。
PostgreSQL™は自動生成される制約の名前がスキーマ内で重複することを防ぎますが、ユーザは重複する名前を指定できます。
  


この問題は、check_constraint_routine_usageやcheck_constraints、domain_constraints、referential_constraintsといった情報スキーマビューを検索するときに表面化することがあります。
いくつかの他のビューにも同様の問題がありますが、重複行を識別する助けになるテーブル名を含んでいます。例えばconstraint_column_usageやconstraint_table_usage、table_constraintsなどです。
  

スキーマ





情報スキーマ自身は、information_schemaという名前のスキーマです。
このスキーマは自動的にすべてのデータベース内に存在します。
このスキーマの所有者は、クラスタ内の最初のデータベースユーザであり、当然このユーザは、スキーマの削除を含むスキーマについてのすべての権限を持ちます
（しかし、削除したとしても節約できる領域はわずかです）。
  


デフォルトでは、情報スキーマはスキーマの検索パスには含まれません。
ですので、修飾した名前で情報スキーマ内のすべてのオブジェクトにアクセスする必要があります。
情報スキーマ内の一部のオブジェクトの名前はユーザアプリケーションでも使用されるような一般的な名前であるため、情報スキーマをパスに追加する場合は注意しなければなりません。
  


データ型





情報スキーマのビューの列では、情報スキーマ内で定義された特殊なデータ型を使用します。
これらは、通常の組み込み型の上位にあたる単純なドメインとして定義されます。
情報スキーマ外部で操作する時にはこれらの型を使用してはなりません。
しかし、情報スキーマを検索するようなアプリケーションではこれらの型への用意をしておかなければなりません。
  


これらの型を以下に記します。

   
	cardinal_number
	

非負の整数です。
      

	character_data
	

（最大文字長の指定がない）文字列です。
      

	sql_identifier
	

文字列です。
この型はSQL識別子用に使用され、character_dataはその他の任意のテキストデータに使用されます。
      

	time_stamp
	

timestamp with time zone型の上位ドメインです。
      

	yes_or_no
	

YESかNOのいずれかを持つ文字列ドメインです。
情報スキーマ内で論理(真/偽)データを表すために使用されます。
（情報スキーマはboolean型が標準SQLに追加される前に考案されました。
このため情報スキーマの後方互換性を維持するために、この記法が必要です。）
      






情報スキーマ内の列はすべてこれら5つの型のいずれかを取ります。
  

information_schema_catalog_name





information_schema_catalog_nameは、常に現在のデータベース名（SQL用語では現在のカタログ）を持つ1行1列からなるテーブルです。
  
表35.1 information_schema_catalog_nameの列
	

列 型
      

      

説明
      

	
       catalog_name sql_identifier
      

      

この情報スキーマを持つデータベースの名前です。
      





administrable_role_​authorizations





administrable_role_authorizationsビューは、現在のユーザがアドミンオプションを持つすべてのロールを示します。
  
表35.2 administrable_role_authorizationsの列
	

列 型
      

      

説明
      

	
       grantee sql_identifier
      

      

このロールのメンバ資格を付与したロールの名前です。
（現在のユーザかもしれませんし、入れ子状のロールメンバ資格の場合は異なるロールかもしれません。）
      

	
       role_name sql_identifier
      

      

ロール名です。
      

	
       is_grantable yes_or_no
      

      

常にYESです。
      





applicable_roles





applicable_rolesビューは、その権限を現在のユーザが使用することができるすべてのロールを示します。
これは、現在のユーザから問題のロールに付与されたロールの連鎖が存在することを意味します。
現在のユーザ自身もまた適用可能なロールです。
適用可能なロール群は通常権限の検査に使用されます。


  
表35.3 applicable_rolesの列
	

列 型
      

      

説明
      

	
       grantee sql_identifier
      

      

このロールのメンバ資格を付与したロールの名前です。
（現在のユーザかもしれませんし、入れ子状のロールメンバ資格の場合は異なるロールかもしれません。）
      

	
       role_name sql_identifier
      

      

ロール名です。
      

	
       is_grantable yes_or_no
      

      

付与者がこのロールにアドミンオプションを持つ場合YES、さもなくばNOです。
      





attributes





attributesビューには、データベース内で定義された複合データ型の属性に関する情報が含まれます。
（このビューが、PostgreSQLコンテキスト内でよく呼び出される属性である、テーブル列に関する情報を持たない点に注意してください。）
現在のユーザが（所有者であるかまたは複合データ型に対する権限を持っていて）アクセスする権限を持つ属性のみが表示されます。
  
表35.4 attributesの列
	

列 型
      

      

説明
      

	
       udt_catalog sql_identifier
      

      

データ型を含むデータベースの名前です（常に現在のデータベースです）。
      

	
       udt_schema sql_identifier
      

      

データ型を含むスキーマの名前です。
      

	
       udt_name sql_identifier
      

      

データ型の名前です。
      

	
       attribute_name sql_identifier
      

      

属性の名前です。
      

	
       ordinal_position cardinal_number
      

      

データ型の属性の序数位置です（1から始まります）。
      

	
       attribute_default character_data
      

      

属性のデフォルト式です。
      

	
       is_nullable yes_or_no
      

      

属性がNULLを持つことができる場合はYES、さもなくばNOです。
      

	
       data_type character_data
      

      

属性のデータ型が組み込み型の場合、そのデータ型です。
何らかの配列の場合、ARRAYです。
（この場合、element_typesビューを参照してください。）
さもなくばUSER-DEFINEDです。
（この場合、型はattribute_udt_nameと関連する列により識別されます。）
      

	
       character_maximum_length cardinal_number
      

      

data_typeが文字列またはビット列と識別される場合、その宣言された最大長です。
他のデータ型または最大長が宣言されていない場合はNULLです。
      

	
       character_octet_length cardinal_number
      

      

data_typeが文字列と識別される場合、オクテット（バイト）単位で表したデータの最大長です。
他のデータ型ではNULLです。
最大オクテット長は宣言された文字最大長(上述)とサーバ符号化方式に依存します。
      

	
       character_set_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       collation_catalog sql_identifier
      

      

属性の照合を含むデータベース(常に現在のデータベース)の名前で、デフォルトであるか属性のデータ型が照合可能でない場合はNULLです。
      

	
       collation_schema sql_identifier
      

      

属性の照合を含むスキーマの名前で、デフォルトであるか属性のデータ型が照合可能でない場合はNULLです。
      

	
       collation_name sql_identifier
      

      

属性の照合の名前で、デフォルトであるか属性のデータ型が照合可能でない場合はNULLです。
      

	
       numeric_precision cardinal_number
      

      

data_typeが数値型と識別される場合、この列は属性の型の（宣言された、あるいは暗黙的な）精度です。
この精度は有効桁を意味します。
numeric_precision_radix列の指定に従って、(10を基とした)10進数、または(2を基とした)2進数表記で表現されます。
他の全ての型の場合では、この列はNULLです。
      

	
       numeric_precision_radix cardinal_number
      

      

data_typeが数値型と識別される場合、この列は、numeric_precisionおよびnumeric_scaleで表現される値の基が何かを示します。
この値は2または10です。
他の全ての型の場合では、この列はNULLです。
      

	
       numeric_scale cardinal_number
      

      

data_typeが数値型と識別される場合、この列は、属性の型の（宣言された、あるいは暗黙的な）位取りが含まれます。
位取りは小数点以下の有効桁数を意味します。
numeric_precision_radix列の指定に従って、(10を基とした)10進数、または(2を基とした)2進数表記で表現されます。
他の全ての型の場合では、この列はNULLです。
      

	
       datetime_precision cardinal_number
      

      

data_typeが日付、時刻、タイムスタンプ、または間隔型と識別される場合、この列は（宣言されたか暗黙的な）この属性に対する分数秒精度を包含します。
つまり、秒の値の小数点に続く保存された10進桁数です。
他の全ての型の場合では、この列はNULLです。
      

	
       interval_type character_data
      

      

data_typeが時間間隔型と識別される場合、この列はこの属性の時間間隔値がどのフィールドを含むかの仕様を含みます。例えば、YEAR TO MONTH、DAY TO SECONDなどです。
もしフィールド制約が指定されていない(時間間隔が全てのフィールドを受け付ける)場合や、他の全てのデータ型の場合はこのフィールドはNULLです。
      

	
       interval_precision cardinal_number
      

      

PostgreSQL™で利用できない機能に適用されるものです。(インターバル型の属性の秒未満の精度についてはdatetime_precisionを参照してください)
      

	
       attribute_udt_catalog sql_identifier
      

      

属性のデータ型が定義されたデータベースの名前です
（常に現在のデータベースです）。
      

	
       attribute_udt_schema sql_identifier
      

      

属性のデータ型が定義されたスキーマの名前です。
      

	
       attribute_udt_name sql_identifier
      

      

属性のデータ型の名前です。
      

	
       scope_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       scope_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       scope_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       maximum_cardinality cardinal_number
      

      

常にNULLです。PostgreSQL™では配列の次数は無制限だからです。
      

	
       dtd_identifier sql_identifier
      

      

属性のデータ型記述子の、複合データ型に属するデータ型記述子内で一意な識別子です。
この識別子のインスタンスを結合する時に、主に有用です。
（識別子の書式仕様は定義されておらず、今後のバージョンで同一性を維持する保証もありません。）
      

	
       is_derived_reference_attribute yes_or_no
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      






後述の「columns」も参照してください。
ビューの構造が似ていますし、一部の列では更なる情報も記載されています。
  

character_sets





このcharacter_setsビューは、現在のデータベースで利用可能な文字集合を示します。
PostgreSQLはひとつのデータベース内で複数の文字集合をサポートしないので、このビューは常にデータベースエンコーディングの一行だけを表示します。
  


以下の用語の標準SQLでの使われ方に注意してください。
   
	文字レパートリ
	

例えばUNICODEやUCS、LATIN1といった抽象的な文字レパートリです。SQLオブジェクトとしては出てきませんが、このビューで参照できます。
      

	文字符号化形式
	

文字レパートリの符号化方式です。
ほとんどの古い文字レパートリはひとつの符号化形式を使うため、それらについては分離した名称はありません(たとえば、LATIN2はLATIN2集合に適用可能な符号化形式です)。
しかし例えばUnicodeにはUTF8、UTF16などの符号化形式があります（PostgreSQLでは一部だけサポートしています）。
符号化形式はSQLオブジェクトとして表にでませんが、このビューで参照できます。
      

	文字集合
	

文字レパートリ、文字符号化方式とデフォルトの照合を識別する順序名前つきのSQLオブジェクトです。定義済みの文字集合は、一般的に符号化形式と同じ名前を持ちますが、ユーザは他の名前を定義できます。
例えば、文字集合UTF8は一般的に文字レパートリUCS、符号化形式UTF8と何らかのデフォルト照合を示します。
      






PostgreSQLにおける「encoding」は、文字集合または文字符号化形式のいずれかと考えられます。これらは同じ名前を持ち一つのデータベースでは一つだけ存在できます。
  
表35.5 character_setsの列
	

列 型
      

      

説明
      

	
       character_set_catalog sql_identifier
      

      

文字集合はスキーマオブジェクトとして実装されていないので、この列はNULLです。
      

	
       character_set_schema sql_identifier
      

      

文字集合はスキーマオブジェクトとして実装されていないので、この列はNULLです。
      

	
       character_set_name sql_identifier
      

      

文字集合の名前で、現在はデータベースエンコーディングを表示するように実装されています。
      

	
       character_repertoire sql_identifier
      

      

文字レパートリで、エンコーディングがUTF8の場合はUCSを、それ以外の場合は単にエンコーディング名を表示します。
      

	
       form_of_use sql_identifier
      

      

文字符号化形式で、データベースエンコーディングと同じです。
      

	
       default_collate_catalog sql_identifier
      

      

デフォルト照合を含むデータベース(いずれかの照合が識別された場合は常に現在のデータベース)の名前です。
      

	
       default_collate_schema sql_identifier
      

      

デフォルト照合を含むスキーマの名前です。
      

	
       default_collate_name sql_identifier
      

      

デフォルト照合の名前です。デフォルト照合は、現在のデータベースのCOLLATEとCTYPE設定に一致する照合として識別されます。そのような照合が存在しない場合は、この列や対応するスキーマやカタログの列はNULLです。
      





check_constraint_routine_usage





check_constraint_routine_usageは検査制約で使用される処理（関数およびプロシージャ）を示します。
現在有効なロールが所有する処理のみが表示されます。
  
表35.6 check_constraint_routine_usageの列
	

列 型
      

      

説明
      

	
       constraint_catalog sql_identifier
      

      

制約が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       constraint_schema sql_identifier
      

      

制約が含まれるスキーマの名前です。
      

	
       constraint_name sql_identifier
      

      

制約の名前です。
      

	
       specific_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       specific_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       specific_name sql_identifier
      

      

関数の「仕様名称」です。
詳細は「routines」を参照してください。
      





check_constraints





check_constraintsビューには、現在有効なロールが所有している、テーブル上もしくはドメイン上のどちらかにある、全ての検査制約が含まれます。
（テーブルもしくはドメインの所有者がこの制約の所有者です。）
  


標準SQLでは、非NULL制約はCHECK（column_nameIS NOT NULL）式を持つ検査制約とみなされます。
したがって、非NULL制約もここに含まれ、個別のビューはありません。
  
表35.7 check_constraintsの列
	

列 型
      

      

説明
      

	
       constraint_catalog sql_identifier
      

      

制約が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       constraint_schema sql_identifier
      

      

制約が含まれるスキーマの名前です。
      

	
       constraint_name sql_identifier
      

      

制約の名前です。
      

	
       check_clause character_data
      

      

この検査制約の検査式です。
      





collations





collationsビューは現在のデータベースで利用可能な照合を含みます
  
表35.8 collationsの列
	

列 型
      

      

説明
      

	
       collation_catalog sql_identifier
      

      

照合を含むデータベースの名前です（常に現在のデータベースです）。
      

	
       collation_schema sql_identifier
      

      

照合を含むスキーマの名前です。
      

	
       collation_name sql_identifier
      

      

デフォルト照合の名前です。
      

	
       pad_attribute character_data
      

      

常にNO PADです。(もう一方のPAD SPACEはPostgreSQLではサポートされていません。)
      





collation_character_set_​applicability





collation_character_set_applicabilityビューは、利用可能な照合がどの文字集合に適用可能かを示します。
PostgreSQLでは、データベースごとに一つの文字集合しか存在しない(「character_sets」の説明を参照してください)ので、このビューは有益な情報を提供しません。
  
表35.9 collation_character_set_applicabilityの列
	

列 型
      

      

説明
      

	
       collation_catalog sql_identifier
      

      

照合を含むデータベースの名前です（常に現在のデータベースです）。
      

	
       collation_schema sql_identifier
      

      

照合を含むスキーマの名前です。
      

	
       collation_name sql_identifier
      

      

デフォルト照合の名前です。
      

	
       character_set_catalog sql_identifier
      

      

文字集合はスキーマオブジェクトとして実装されていないので、この列はNULLです。
      

	
       character_set_schema sql_identifier
      

      

文字集合はスキーマオブジェクトとして実装されていないので、この列はNULLです。
      

	
       character_set_name sql_identifier
      

      

文字集合の名前です。
      





column_column_usage





column_column_usageビューは、同じテーブル内の別の基底列に基づくすべての生成列を示します。
現在有効なロールが所有するテーブルのみが含まれます。
  
表35.10 column_column_usageの列
	

列 型
      

      

説明
      

	
       table_catalog sql_identifier
      

      

テーブルを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

テーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

テーブルの名前です。
      

	
       column_name sql_identifier
      

      

生成された列が基づく元の列の名前です。
      

	
       dependent_column sql_identifier
      

      

生成された列の名前です。
      





column_domain_usage





column_domain_usageビューは、現在のデータベース内で定義され、現在有効なロールが所有するあるドメインを使用する（テーブルもしくはビューの）全ての列を示します。
  
表35.11 column_domain_usageの列
	

列 型
      

      

説明
      

	
       domain_catalog sql_identifier
      

      

ドメインを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       domain_schema sql_identifier
      

      

ドメインを持つスキーマの名前です。
      

	
       domain_name sql_identifier
      

      

ドメインの名前です。
      

	
       table_catalog sql_identifier
      

      

テーブルを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

テーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

テーブルの名前です。
      

	
       column_name sql_identifier
      

      

列の名前です。
      





column_options





column_optionsビューは、現在のデータベースにある外部テーブルの列に定義された全てのオプションを含みます。
現在のユーザが(所有者であるかまたは権限を持っていて)アクセスする権限を持つ外部テーブル列のみが表示されます。
  
表35.12 column_optionsの列
	

列 型
      

      

説明
      

	
       table_catalog sql_identifier
      

      

外部テーブルが含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

外部テーブルを含むスキーマの名前です。
      

	
       table_name sql_identifier
      

      

外部テーブルの名前です。
      

	
       column_name sql_identifier
      

      

列の名前です。
      

	
       option_name sql_identifier
      

      

オプションの名前です。
      

	
       option_value character_data
      

      

オプションの値です。
      





column_privileges





column_privilegesビューは、現在有効なロールに対し、または現在有効なロールによって、列に与えられた権限を全て示します。
列と許可を与えた者、許可を受けた者の組み合わせごとに1行があります。
  


権限がテーブル全体に付与されていた場合、このビューでは各列に権限が付与された場合と同じように表示されます。
しかし、SELECT、INSERT、UPDATE、REFERENCESといった列単位で設定可能な種類の権限のみを対象範囲とします。
  
表35.13 column_privilegesの列
	

列 型
      

      

説明
      

	
       grantor sql_identifier
      

      

権限を与えたロールの名前です。
      

	
       grantee sql_identifier
      

      

権限を与えられたロールの名前です。
      

	
       table_catalog sql_identifier
      

      

その列を含むテーブルを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

その列を含むテーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

その列を含むテーブルの名前です。
      

	
       column_name sql_identifier
      

      

列の名前です。
      

	
       privilege_type character_data
      

      

権限の種類です。
SELECT、INSERT、UPDATE、もしくはREFERENCESです。
      

	
       is_grantable yes_or_no
      

      

この権限を付与可能な場合はYES、さもなくばNOです。
      





column_udt_usage





column_udt_usageビューは、現在有効なロールが所有するデータ型を使用する全ての列を示します。
PostgreSQL™では、組み込みデータ型がユーザ定義型同様に振舞いますので、組み込みデータ型も同様にここに含まれます。
詳細は「columns」も参照してください。
  
表35.14 column_udt_usageの列
	

列 型
      

      

説明
      

	
       udt_catalog sql_identifier
      

      

列データ型（もし適用されていたら背後にあるドメインの型）を定義したデータベースの名前です（常に現在のデータベースです）。
      

	
       udt_schema sql_identifier
      

      

列データ型（もし適用されていたら背後にあるドメインの型）を定義したスキーマの名前です。
      

	
       udt_name sql_identifier
      

      

列データ型（もし適用されていたら背後にあるドメインの型）の名前です。
      

	
       table_catalog sql_identifier
      

      

テーブルを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

テーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

テーブルの名前です。
      

	
       column_name sql_identifier
      

      

列の名前です。
      





columns





columnsビューには、データベース内の全てのテーブル列（もしくはビューの列）についての情報が含まれます。
システム列（ctidなど）は含まれません。
現在のユーザが（所有者である、権限を持っているなどの方法で）アクセスできる列のみが示されます。
  
表35.15 columnsの列
	

列 型
      

      

説明
      

	
       table_catalog sql_identifier
      

      

テーブルを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

テーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

テーブルの名前です。
      

	
       column_name sql_identifier
      

      

列の名前です。
      

	
       ordinal_position cardinal_number
      

      

テーブル内の列の位置（1から始まる序数）です。
      

	
       column_default character_data
      

      

列のデフォルト式です。
      

	
       is_nullable yes_or_no
      

      

列がNULLを持つことができる場合はYES、NULLを持つことができなければNOです。
非NULL制約は、列にNULLを持たせないようにする方法の1つですが、その他にも存在します。
      

	
       data_type character_data
      

      

組み込み型の場合、列のデータ型、配列の場合、ARRAY（この場合はelement_typesビューを参照してください）、さもなくば、USER-DEFINEDです（この場合、型はudt_nameと関連する列で識別されます）。
列がドメインに基づくものであれば、その列はドメインの背後にある型を示します
（そして、ドメインはdomain_nameと関連する列によって識別されます）。
      

	
       character_maximum_length cardinal_number
      

      

data_typeが文字列またはビット列と識別される場合、その宣言された最大長です。
他のデータ型または最大長が宣言されていない場合はNULLです。
      

	
       character_octet_length cardinal_number
      

      

data_typeが文字列と識別される場合、オクテット（バイト）単位で表したデータの最大長です。
他のデータ型ではNULLです。
最大オクテット長は宣言された文字最大長(上述)とサーバ符号化方式に依存します。
      

	
       numeric_precision cardinal_number
      

      

data_typeが数値型と識別される場合、ここには、その列の型の（宣言された、もしくは暗黙的な）精度が含まれます。
この精度は有意な桁数を示します。
numeric_precision_radix列の指定に従い、10進数（10を底）、もしくは2進数（2を底）で表現されます。
他の全ての型の場合では、この列はNULLです。
      

	
       numeric_precision_radix cardinal_number
      

      

data_typeが数値型と識別される場合、この列は、numeric_precisionおよびnumeric_scaleで表現される値の基が何かを示します。
この値は2または10です。
他の全ての型の場合では、この列はNULLです。
      

	
       numeric_scale cardinal_number
      

      

data_typeが高精度数値型と識別される場合、ここには、その列の型の（宣言された、あるいは暗黙的な）位取りが含まれます。
位取りとは、小数点より右側の有意な桁数です。
numeric_precision_radix列の指定に従い、10進数（10を底）、もしくは2進数（2を底）で表現されます。
他の全ての型の場合では、この列はNULLです。
      

	
       datetime_precision cardinal_number
      

      

data_typeが日付、時刻、タイムスタンプ、間隔型と識別される場合、この列の型の秒以下の（宣言された、または暗黙的な）精度、つまり、秒値の小数点以降に保持する10進桁数、です。
他の全ての型の場合では、この列はNULLです。
      

	
       interval_type character_data
      

      

data_typeが時間間隔型と識別される場合、この列はこの属性の時間間隔値がどのフィールドを含むかの仕様を含みます。例えば、YEAR TO MONTH、DAY TO SECONDなどです。
もしフィールド制約が指定されていない(時間間隔が全てのフィールドを受け付ける)場合や、他の全てのデータ型の場合はこのフィールドはNULLです。
      

	
       interval_precision cardinal_number
      

      

PostgreSQL™で利用できない機能に適用されるものです。(時間間隔型の属性の秒未満の精度についてはdatetime_precisionを参照してください)
      

	
       character_set_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       collation_catalog sql_identifier
      

      

列の照合を含むデータベース(常に現在のデータベース)の名前で、デフォルトであるか属性のデータ型が照合可能でない場合はNULLです。
      

	
       collation_schema sql_identifier
      

      

属性の照合を含むスキーマの名前で、デフォルトであるか属性のデータ型が照合可能でない場合はNULLです。
      

	
       collation_name sql_identifier
      

      

列の照合の名前で、デフォルトであるか列のデータ型が照合可能でない場合はNULLです。
      

	
       domain_catalog sql_identifier
      

      

列がドメイン型の場合、そのドメインを定義したデータベースの名前です
（常に現在のデータベースです）。
さもなくば、NULLです。
      

	
       domain_schema sql_identifier
      

      

列がドメイン型の場合、そのドメインを定義したスキーマの名前です。
さもなくば、NULLです。
      

	
       domain_name sql_identifier
      

      

列がドメイン型の場合、そのドメインの名前です。
さもなくば、NULLです。
      

	
       udt_catalog sql_identifier
      

      

列データ型（もし適用されていたら背後にあるドメインの型）を定義したデータベースの名前です（常に現在のデータベースです）。
      

	
       udt_schema sql_identifier
      

      

列データ型（もし適用されていたら背後にあるドメインの型）を定義したスキーマの名前です。
      

	
       udt_name sql_identifier
      

      

列データ型（もし適用されていたら背後にあるドメインの型）の名前です。
      

	
       scope_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       scope_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       scope_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       maximum_cardinality cardinal_number
      

      

常にNULLです。PostgreSQL™では配列の次数は無制限だからです。
      

	
       dtd_identifier sql_identifier
      

      

列のデータ型記述子の、テーブルに属するデータ型記述子内で一意な識別子です。
この識別子のインスタンスを結合する時に、主に有用です。
（識別子の書式仕様は定義されておらず、今後のバージョンで同一性を維持する保証もありません。）
      

	
       is_self_referencing yes_or_no
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       is_identity yes_or_no
      

      

列が識別列であればYES、そうでなければNOです。
      

	
       identity_generation character_data
      

      

列が識別列であれば、列の定義を反映してALWAYSまたはBY DEFAULTです。
      

	
       identity_start character_data
      

      

列が識別列であれば内部シーケンスの開始値、そうでなければNULLです。
      

	
       identity_increment character_data
      

      

列が識別列であれば内部シーケンスの増分、そうでなければNULLです。
      

	
       identity_maximum character_data
      

      

列が識別列であれば内部シーケンスの最大値、そうでなければNULLです。
      

	
       identity_minimum character_data
      

      

列が識別列であれば内部シーケンスの最小値、そうでなければNULLです。
      

	
       identity_cycle yes_or_no
      

      

列が識別列であれば、内部シーケンスが周回する場合にYES、周回しない場合にNO、識別列でなければNULLです。
      

	
       is_generated character_data
      

      

列が生成された列であればALWAYS、そうでなければNEVERです。
      

	
       generation_expression character_data
      

      

列が生成された列であれば生成式、そうでなければNULLです。
      

	
       is_updatable yes_or_no
      

      

列が更新可能な場合YES、さもなくばNOです。
（ベーステーブルの列は常に更新可能です。ビューの列では不要です。）
      






データ型は、複数の方法でSQLにより定義でき、さらにPostgreSQL™にはデータ型定義に別の方法も追加されていますので、情報スキーマにおけるデータ型表現は多少難しくなっています。
data_type列は、列の背後にある組み込み型を識別できるようになっていなければなりません。
PostgreSQL™では、型がpg_catalogシステムカタログスキーマで定義されていることを意味します。
よく知られた組み込み型を特別に扱うことができるアプリケーション（例えば、数値型を異なる書式にする、精度列内のデータを使用する）の場合、この列が有用な場合があります。
udt_name、udt_schema、udt_catalog列は、たとえドメインに基づいた列であっても、常に列の背後にあるデータ型を識別します
（PostgreSQL™は、組み込み型をユーザ定義型と同様に扱いますので、ここには組み込み型も現れます。これは標準SQLからの拡張です）。
アプリケーションが型に従って異なる処理を行う場合、これらの列を使用しなければなりません。
このような場合、本当はドメインに基づいている列なのかどうかが関係ないからです。
列がドメインに基づく場合、ドメインの識別子はdomain_name、domain_schema、domain_catalog列に保持されます。
関連するデータ型と列の組み合わせを作りたい場合や、ドメインを別の型として扱いたい場合は、coalesce(domain_name, udt_name)などとすることができます。
  

constraint_column_usage





constraint_column_usageビューは、現在のデータベースで制約を使用する全ての列を示します。
現在有効なロールが所有するテーブル内の列のみが表示されます。
検査制約では、このビューは検査式で使用される列を示します。
非NULL以制約の場合、このビューは、その制約が定義されている列を識別します。
外部キー制約では、このビューは外部キーを参照する列を示します。
一意性制約もしくは主キー制約では、このビューは制約される列を示します。
  
表35.16 constraint_column_usageの列
	

列 型
      

      

説明
      

	
       table_catalog sql_identifier
      

      

ある制約で使用される列を含むテーブルを持つデータベースの名前です
（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

ある制約で使用される列を含むテーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

ある制約で使用される列を持つテーブルの名前です。
      

	
       column_name sql_identifier
      

      

ある制約で使用される列の名前です。
      

	
       constraint_catalog sql_identifier
      

      

制約を持つデータベースの名前です（常に現在のデータベースです）。
      

	
       constraint_schema sql_identifier
      

      

制約を持つスキーマの名前です。
      

	
       constraint_name sql_identifier
      

      

制約の名前です。
      





constraint_table_usage





constraint_table_usageビューは、ある制約で使用され、かつ、現在有効なロールが所有する、現在のデータベース内の全てのテーブルを識別します
（これは、全てのテーブル制約とそれを定義したテーブルを識別する。table_constraintsとは異なります。）
外部キー制約では、このビューは外部キーが参照するテーブルを示します。
一意性制約もしくは主キー制約では、このビューは単に制約が属するテーブルを示します。
検査制約と非NULL制約はこのビューには含まれません。
  
表35.17 constraint_table_usageの列
	

列 型
      

      

説明
      

	
       table_catalog sql_identifier
      

      

ある制約で使用されるテーブルを持つデータベースの名前です
（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

ある制約で使用されるテーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

ある制約で使用されるテーブルの名前です。
      

	
       constraint_catalog sql_identifier
      

      

制約を持つデータベースの名前です（常に現在のデータベースです）。
      

	
       constraint_schema sql_identifier
      

      

制約を持つスキーマの名前です。
      

	
       constraint_name sql_identifier
      

      

制約の名前です。
      





data_type_privileges





data_type_privilegesビューは、記述子が示すオブジェクトの所有者である、何かしらの権限を持っているといった方法で現在のユーザがアクセスできる全てのデータ型記述子を示します。
あるデータ型がテーブル列やドメイン、関数（パラメータとして、あるいは戻り値として）の定義内で使用されると、そのデータ型記述子は生成され、そして、データ型がそのインスタンスでどのように使用されるか（例えば、もし適切ならば、宣言された最大長）についての情報が格納されます。
各データ型記述子は、1つのオブジェクト（テーブル、ドメイン、関数）に割り当てられたデータ型記述子の中で一意となる任意の識別子が割り振られます。
このビューはおそらくアプリケーションではあまり使用されませんが、情報スキーマ内の他のビューを定義する際に使用されます。
  
表35.18 data_type_privilegesの列
	

列 型
      

      

説明
      

	
       object_catalog sql_identifier
      

      

記述子が示すオブジェクトを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       object_schema sql_identifier
      

      

記述子が示すオブジェクトを持つスキーマの名前です。
      

	
       object_name sql_identifier
      

      

記述子が示すオブジェクトの名前です。
      

	
       object_type character_data
      

      

記述子が示すオブジェクトの種類です。
TABLE（データ型記述子がそのテーブルの列に属します）、DOMAIN（データ型記述子がそのドメインに属します）、ROUTINE（データ型記述子がその関数のパラメータあるいは戻り値データ型に属します）のいずれかです。
      

	
       dtd_identifier sql_identifier
      

      

データ型記述子の識別子です。
これは同一オブジェクトに対するデータ型記述子の中で一意なものです。
      





domain_constraints





domain_constraintsビューには、現在有効なロールが所有するドメインに属する全ての制約があります。
現在のユーザが（所有者である、権限を持っているなどの方法で）アクセスできるドメインのみが示されます。
  
表35.19 domain_constraintsの列
	

列 型
      

      

説明
      

	
       constraint_catalog sql_identifier
      

      

制約を持つデータベースの名前です（常に現在のデータベースです）。
      

	
       constraint_schema sql_identifier
      

      

制約を持つスキーマの名前です。
      

	
       constraint_name sql_identifier
      

      

制約の名前です。
      

	
       domain_catalog sql_identifier
      

      

ドメインを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       domain_schema sql_identifier
      

      

ドメインを持つスキーマの名前です。
      

	
       domain_name sql_identifier
      

      

ドメインの名前です。
      

	
       is_deferrable yes_or_no
      

      

制約が遅延可能ならばYES、さもなくばNOです。
      

	
       initially_deferred yes_or_no
      

      

制約が遅延可能で初期状態が遅延であればYES、さもなくばNOです。
      





domain_udt_usage





domain_udt_usageビューは、現在有効なロールが所有するデータ型に基づいたすべてのドメインを示します。
PostgreSQL™では組み込みデータ型はユーザ定義型と同様に振舞いますので、ここにも同様に現れることに注意してください。
  
表35.20 domain_udt_usageの列
	

列 型
      

      

説明
      

	
       udt_catalog sql_identifier
      

      

ドメインデータ型を定義したデータベースの名前です（常に現在のデータベースです）。
      

	
       udt_schema sql_identifier
      

      

ドメインデータ型を定義したスキーマの名前です。
      

	
       udt_name sql_identifier
      

      

ドメインデータ型の名前です。
      

	
       domain_catalog sql_identifier
      

      

ドメインを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       domain_schema sql_identifier
      

      

ドメインを持つスキーマの名前です。
      

	
       domain_name sql_identifier
      

      

ドメインの名前です。
      





domains





domainsビューには、現在のデータベースで定義された全てのドメインが含まれます。
現在のユーザが（所有者である、権限を持っているなどの方法で）アクセスできるドメインのみが示されます。
  
表35.21 domainsの列
	

列 型
      

      

説明
      

	
       domain_catalog sql_identifier
      

      

ドメインを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       domain_schema sql_identifier
      

      

ドメインを持つスキーマの名前です。
      

	
       domain_name sql_identifier
      

      

ドメインの名前です。
      

	
       data_type character_data
      

      

組み込み型の場合は、ドメインのデータ型、何らかの配列の場合はARRAYです
（後者の場合はelement_typesビューを参照してください）。
さもなくば、USER-DEFINEDです
（この場合、その型はudt_nameと関連する列で識別されます）。
      

	
       character_maximum_length cardinal_number
      

      

ドメインが、文字もしくはビット文字列型の場合、宣言された最大長です。
他のデータ型、あるいは最大長の宣言がない場合はNULLです。
      

	
       character_octet_length cardinal_number
      

      

ドメインが文字型の場合、1つのデータの可能最大長をオクテット（バイト）で示します。
他のデータ型の場合はNULLです。
最大オクテット長は宣言された文字最大長(上述)とサーバ符号化方式に依存します。
      

	
       character_set_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       collation_catalog sql_identifier
      

      

ドメインの照合を含むデータベース(常に現在のデータベース)の名前で、デフォルトであるかドメインのデータ型が照合可能でない場合はNULLです。
      

	
       collation_schema sql_identifier
      

      

ドメインの照合を含むスキーマの名前で、デフォルトであるかドメインのデータ型が照合可能でない場合はNULLです。
      

	
       collation_name sql_identifier
      

      

ドメインの照合の名前で、デフォルトであるかドメインのデータ型が照合可能でない場合はNULLです。
      

	
       numeric_precision cardinal_number
      

      

ドメインが数値型の場合、この列は、そのドメインの型の（宣言された、もしくは暗黙的な）精度を持ちます。
この精度は有効桁数を示すものです。
numeric_precision_radix 列が示す通り、10進数（10を底）でも2進数（2を底）でも表現できます。
他の全ての型の場合では、この列はNULLです。
      

	
       numeric_precision_radix cardinal_number
      

      

ドメインが数値型の場合、この列は、numeric_precisionとnumeric_scaleで表現されるその列の値の底数がどちらかを示します。
2もしくは10の値となります。
他の全ての型の場合では、この列はNULLです。
      

	
       numeric_scale cardinal_number
      

      

ドメインが高精度数値型の場合、この列は、そのドメインの型の（宣言された、もしくは暗黙的な）位取りを持ちます。
位取りは、小数点より右側の有効桁数を示すものです。
numeric_precision_radix列の指定に従い、10進数（10を底）、もしくは2進数（2を底）で表現されます。
他の全ての型の場合では、この列はNULLです。
      

	
       datetime_precision cardinal_number
      

      

data_typeが日付、時刻、タイムスタンプ、間隔型と識別される場合、この列はこのドメインの型で（宣言された、または暗黙的な）秒の端数の精度、つまり、秒値の小数点以下で保持される10進の桁数です。
他の全ての型の場合では、この列はNULLです。
      

	
       interval_type character_data
      

      

data_typeが時間間隔型と識別される場合、この列はこのドメインの時間間隔値がどのフィールドを含むかの仕様を含みます。例えば、YEAR TO MONTH、DAY TO SECONDなどです。
もしフィールド制約が指定されていない(時間間隔が全てのフィールドを受け付ける)場合や、他の全てのデータ型の場合はこのフィールドはNULLです。
      

	
       interval_precision cardinal_number
      

      

PostgreSQL™で利用できない機能に適用されるものです。(時間間隔型のドメインの秒未満の精度についてはdatetime_precisionを参照してください)
      

	
       domain_default character_data
      

      

ドメインのデフォルト式です。
      

	
       udt_catalog sql_identifier
      

      

ドメインデータ型を定義したデータベースの名前です（常に現在のデータベースです）。
      

	
       udt_schema sql_identifier
      

      

ドメインデータ型を定義したスキーマの名前です。
      

	
       udt_name sql_identifier
      

      

ドメインデータ型の名前です。
      

	
       scope_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       scope_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       scope_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       maximum_cardinality cardinal_number
      

      

常にNULLです。PostgreSQL™では配列の次数は無制限だからです。
      

	
       dtd_identifier sql_identifier
      

      

そのドメインに属するデータ型記述子間で一意な、データ型記述子の識別子です
（ドメインには1つのデータ型記述子しかありませんのでこれは些細なものです）。
これは主に、こうした識別子の他のインスタンスを結合する時に有用です。
（識別子の書式の仕様は定義されておらず、将来のバージョンでそのまま維持されるかどうかも保証されません。）
      





element_types





element_typesには、配列の要素のデータ型記述子が含まれます。
テーブル列、複合データ型属性、ドメイン、関数パラメータ、関数の戻り値が配列型であると宣言された場合、
情報スキーマの各ビューでは、data_type列にARRAYだけが含まれます。
配列の要素の型についての情報を取り出すには、各ビューとこのビューを結合することで可能です。
例えば、テーブルの列のデータ型と、もし適切ならば、配列の要素型を表示するには、以下のように行います。


SELECT c.column_name, c.data_type, e.data_type AS element_type
FROM information_schema.columns c LEFT JOIN information_schema.element_types e
     ON ((c.table_catalog, c.table_schema, c.table_name, 'TABLE', c.dtd_identifier)
       = (e.object_catalog, e.object_schema, e.object_name, e.object_type, e.collection_type_identifier))
WHERE c.table_schema = '...' AND c.table_name = '...'
ORDER BY c.ordinal_position;



このビューは、所有者である、適切な権限を持っているといった方法で、現在のユーザがアクセスできるオブジェクトのみが含まれます。
  
表35.22 element_typesの列
	

列 型
      

      

説明
      

	
       object_catalog sql_identifier
      

      

記述される配列を使用するオブジェクトを持つデータベースの名前です
（常に現在のデータベースです）。
      

	
       object_schema sql_identifier
      

      

記述される配列を使用するオブジェクトを持つスキーマの名前です。
      

	
       object_name sql_identifier
      

      

記述される配列を使用するオブジェクトの名前です。
      

	
       object_type character_data
      

      

記述される配列を使用するオブジェクトの種類です。
TABLE（その配列がテーブルの列によって使用される）、USER-DEFINED TYPE（その配列が複合データ型の属性によって使用される）、DOMAIN（その配列がドメインによって使用される）、ROUTINE（その配列が関数のパラメータ、もしくは戻り値の型によって使用される）のいずれかです。
      

	
       collection_type_identifier sql_identifier
      

      

記述される配列のデータ型記述子の識別子です。他の情報スキーマビューのdtd_identifier列と結合するのに使用してください。
      

	
       data_type character_data
      

      

組み込み型の場合は配列要素のデータ型です。さもなくば、USER-DEFINEDです
（この場合、型はudt_nameと関連する列で識別されます）。
      

	
       character_maximum_length cardinal_number
      

      

常にNULLです。
この情報は、PostgreSQL™における配列要素のデータ型には当てはまらないからです。
      

	
       character_octet_length cardinal_number
      

      

常にNULLです。
この情報は、PostgreSQL™における配列要素のデータ型には当てはまらないからです。
      

	
       character_set_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       collation_catalog sql_identifier
      

      

要素データ型の照合を含むデータベース(常に現在のデータベース)の名前で、デフォルトであるか要素のデータ型が照合可能でない場合はNULLです。
      

	
       collation_schema sql_identifier
      

      

要素データ型の照合を含むスキーマの名前で、デフォルトであるか要素のデータ型が照合可能でない場合はNULLです。
      

	
       collation_name sql_identifier
      

      

要素データ型の照合の名前で、デフォルトであるか要素のデータ型が照合可能でない場合はNULLです。
      

	
       numeric_precision cardinal_number
      

      

常にNULLです。
この情報は、PostgreSQL™における配列要素のデータ型には当てはまらないからです。
      

	
       numeric_precision_radix cardinal_number
      

      

常にNULLです。
この情報は、PostgreSQL™における配列要素のデータ型には当てはまらないからです。
      

	
       numeric_scale cardinal_number
      

      

常にNULLです。
この情報は、PostgreSQL™における配列要素のデータ型には当てはまらないからです。
      

	
       datetime_precision cardinal_number
      

      

常にNULLです。
この情報は、PostgreSQL™における配列要素のデータ型には当てはまらないからです。
      

	
       interval_type character_data
      

      

常にNULLです。
この情報は、PostgreSQL™における配列要素のデータ型には当てはまらないからです。
      

	
       interval_precision cardinal_number
      

      

常にNULLです。
この情報は、PostgreSQL™における配列要素のデータ型には当てはまらないからです。
      

	
       udt_catalog sql_identifier
      

      

要素のデータ型を定義したデータベースの名前です
（常に現在のデータベースです）。
      

	
       udt_schema sql_identifier
      

      

要素のデータ型を定義したスキーマの名前です。
      

	
       udt_name sql_identifier
      

      

要素のデータ型の名前です。
      

	
       scope_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       scope_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       scope_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       maximum_cardinality cardinal_number
      

      

常にNULLです。PostgreSQL™では配列の次数は無制限だからです。
      

	
       dtd_identifier sql_identifier
      

      

要素のデータ型記述子の識別子です。現在は用途はありません。
      





enabled_roles





enabled_rolesビューは、現在「有効なロール」を示します。
有効なロールは、現在のユーザと自動継承によって有効なロールに付与されたすべてのロールとして再帰的に定義されます。
言い換えると、これは、現在のユーザが直接または間接的に属するメンバ資格の継承により自動的に持つすべてのロールです。
   
   
  


権限検査では、「適用可能なロール」群が適用されます。
これは、有効なロールよりも広範になる可能性があります。
したがって一般的にはこのビューよりもapplicable_rolesビューを使用する方が良いでしょう。
applicable_rolesビューの詳細については「applicable_roles」を参照してください。
  
表35.23 enabled_rolesの列
	

列 型
      

      

説明
      

	
       role_name sql_identifier
      

      

ロール名です。
      





foreign_data_wrapper_options





foreign_data_wrapper_optionsビューには現在のデータベース内の外部データラッパー用に定義されたすべてのオプションが含まれます。
現在のユーザが（所有者または何らかの権限を持つことで）アクセス可能な外部データラッパーのみが表示されます。
  
表35.24 foreign_data_wrapper_optionsの列
	

列 型
      

      

説明
      

	
       foreign_data_wrapper_catalog sql_identifier
      

      

外部データラッパーを定義したデータベースの名前です（常に現在のデータベースです）。
      

	
       foreign_data_wrapper_name sql_identifier
      

      

外部データラッパーの名前です。
      

	
       option_name sql_identifier
      

      

オプションの名前です。
      

	
       option_value character_data
      

      

オプションの値です。
      





foreign_data_wrappers





foreign_data_wrappersビューには現在のデータベース内で定義された、すべての外部データラッパーが含まれます。
現在のユーザが（所有者である、または、何らかの権限を持つことにより）アクセス可能な外部データラッパーのみが表示されます。
  
表35.25 foreign_data_wrappersの列
	

列 型
      

      

説明
      

	
       foreign_data_wrapper_catalog sql_identifier
      

      

外部データラッパーを含むデータベース名です（常に現在のデータベースです）。
      

	
       foreign_data_wrapper_name sql_identifier
      

      

外部データラッパーの名前です。
      

	
       authorization_identifier sql_identifier
      

      

外部サーバの所有者の名前です。
      

	
       library_name character_data
      

      

この外部データラッパーを実装するライブラリの名前です。
      

	
       foreign_data_wrapper_language character_data
      

      

この外部データラッパーを実装するのに使用される言語です。
      





foreign_server_options





foreign_server_optionsビューには、現在のデータベース内の外部サーバ用に定義されたすべてのオプションが含まれます。
現在のユーザが（所有者である、または何らかの権限を持つことにより）アクセス可能な外部サーバのみが表示されます。
  
表35.26 foreign_server_optionsの列
	

列 型
      

      

説明
      

	
       foreign_server_catalog sql_identifier
      

      

外部サーバを定義したデータベースの名前です（常に現在のデータベースです）。
      

	
       foreign_server_name sql_identifier
      

      

外部サーバの名前
      

	
       option_name sql_identifier
      

      

オプションの名前です。
      

	
       option_value character_data
      

      

オプションの値です。
      





foreign_servers





foreign_serversビューには、現在のデータベース内で定義されたすべての外部サーバが含まれます。
現在のユーザが（所有者である、または何らかの権限を持つことにより）アクセス可能な外部サーバのみが表示されます。
  
表35.27 foreign_serversの列
	

列 型
      

      

説明
      

	
       foreign_server_catalog sql_identifier
      

      

外部サーバを定義したデータベースの名前です（常に現在のデータベースです）。
      

	
       foreign_server_name sql_identifier
      

      

外部サーバの名前
      

	
       foreign_data_wrapper_catalog sql_identifier
      

      

外部サーバで使用される外部データラッパーを含むデータベースの名前です（常に現在のデータベースです）。
      

	
       foreign_data_wrapper_name sql_identifier
      

      

外部サーバにより使用される外部データラッパーの名前です。
      

	
       foreign_server_type character_data
      

      

作成時点で指定されている場合、その外部サーバの種類情報です。
      

	
       foreign_server_version character_data
      

      

作成時点で指定されている場合、その外部サーバのバージョン情報です。
      

	
       authorization_identifier sql_identifier
      

      

外部サーバの所有者の名前です。
      





foreign_table_options





foreign_table_optionsビューは、現在のデータベースの外部テーブルに定義された全てのオプションを含みます。(所有者であるか何らかの権限を持っていて)現在のユーザがアクセスできる外部テーブルだけが表示されます。
  
表35.28 foreign_table_optionsの列
	

列 型
      

      

説明
      

	
       foreign_table_catalog sql_identifier
      

      

外部テーブルが含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       foreign_table_schema sql_identifier
      

      

外部テーブルを含むスキーマの名前です。
      

	
       foreign_table_name sql_identifier
      

      

外部テーブルの名前です。
      

	
       option_name sql_identifier
      

      

オプションの名前です。
      

	
       option_value character_data
      

      

オプションの値です。
      





foreign_tables





foreign_tablesビューは、現在のデータベースで定義されている全ての外部テーブルを含みます。(所有者であるか何らかの権限を持っていて)現在のユーザがアクセスできる外部テーブルだけが表示されます。
  
表35.29 foreign_tablesの列
	

列 型
      

      

説明
      

	
       foreign_table_catalog sql_identifier
      

      

外部テーブルを含むデータベースの名前です（常に現在のデータベースです）。
      

	
       foreign_table_schema sql_identifier
      

      

外部テーブルを含むスキーマの名前です。
      

	
       foreign_table_name sql_identifier
      

      

外部テーブルの名前です。
      

	
       foreign_server_catalog sql_identifier
      

      

外部サーバを定義したデータベースの名前です（常に現在のデータベースです）。
      

	
       foreign_server_name sql_identifier
      

      

外部サーバの名前
      





key_column_usage





key_column_usageビューは、現在のデータベースにおいて、ある一意性制約、主キー制約、外部キー制約によって制限を受けている全ての列を示します。
検査制約はこのビューには含まれません。
現在のユーザが所有者である、または何らかの権限を持ち、アクセスできるテーブル内のこうした列のみがここに示されます。
  
表35.30 key_column_usageの列
	

列 型
      

      

説明
      

	
       constraint_catalog sql_identifier
      

      

制約を持つデータベースの名前です（常に現在のデータベースです）。
      

	
       constraint_schema sql_identifier
      

      

制約を持つスキーマの名前です。
      

	
       constraint_name sql_identifier
      

      

制約の名前です。
      

	
       table_catalog sql_identifier
      

      

この制約によって制限を受ける列を含むテーブルを持つデータベースの名前です
（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

この制約によって制限を受ける列を持つテーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

この制約によって制限を受ける列を持つテーブルの名前です。
      

	
       column_name sql_identifier
      

      

この制約によって制限を受ける列の名前です。
      

	
       ordinal_position cardinal_number
      

      

制約キー内の列の位置を（1から始まる）序数で表したものです。
      

	
       position_in_unique_constraint cardinal_number
      

      

外部キー制約では、一意性制約内部の被参照列の位置の序数（1から始まります）です。
その他の場合はNULLです。
      





parameters





parametersビューには、現在のデータベースにある全ての関数のパラメータ（引数）についての情報があります。
現在のユーザが（所有している、あるいはある権限を持っているといった方法で）アクセスできる関数についてのみが示されます。
  
表35.31 parametersの列
	

列 型
      

      

説明
      

	
       specific_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       specific_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       specific_name sql_identifier
      

      

関数の「仕様名称」です。
詳細は「routines」を参照してください。
      

	
       ordinal_position cardinal_number
      

      

関数の引数リストにおけるパラメータの位置の序数（1から始まる）です。
      

	
       parameter_mode character_data
      

      

入力パラメータではIN、出力パラメータではOUT、入出力パラメータではINOUT です。
      

	
       is_result yes_or_no
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       as_locator yes_or_no
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       parameter_name sql_identifier
      

      

名前付きパラメータです。
無名のパラメータの場合はNULLです。
      

	
       data_type character_data
      

      

組み込み型の場合、パラメータのデータ型です。
何らかの配列の場合はARRAYです
（この場合、element_typesビューを参照してください）。
さもなくば、USER-DEFINEDです
（この場合、型はudt_name と関連する列で識別されます）。
      

	
       character_maximum_length cardinal_number
      

      

常にNULLです。
PostgreSQL™では、この情報はパラメータデータ型に適用されないからです。
      

	
       character_octet_length cardinal_number
      

      

常にNULLです。
PostgreSQL™では、この情報はパラメータデータ型に適用されないからです。
      

	
       character_set_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       collation_catalog sql_identifier
      

      

常にNULLです。
PostgreSQL™では、この情報はパラメータデータ型に適用されないからです。
      

	
       collation_schema sql_identifier
      

      

常にNULLです。
PostgreSQL™では、この情報はパラメータデータ型に適用されないからです。
      

	
       collation_name sql_identifier
      

      

常にNULLです。
PostgreSQL™では、この情報はパラメータデータ型に適用されないからです。
      

	
       numeric_precision cardinal_number
      

      

常にNULLです。
PostgreSQL™では、この情報はパラメータデータ型に適用されないからです。
      

	
       numeric_precision_radix cardinal_number
      

      

常にNULLです。
PostgreSQL™では、この情報はパラメータデータ型に適用されないからです。
      

	
       numeric_scale cardinal_number
      

      

常にNULLです。
PostgreSQL™では、この情報はパラメータデータ型に適用されないからです。
      

	
       datetime_precision cardinal_number
      

      

常にNULLです。
PostgreSQL™では、この情報はパラメータデータ型に適用されないからです。
      

	
       interval_type character_data
      

      

常にNULLです。
PostgreSQL™では、この情報はパラメータデータ型に適用されないからです。
      

	
       interval_precision cardinal_number
      

      

常にNULLです。
PostgreSQL™では、この情報はパラメータデータ型に適用されないからです。
      

	
       udt_catalog sql_identifier
      

      

パラメータのデータ型を定義したデータベースの名前です
（常に現在のデータベースです）。
      

	
       udt_schema sql_identifier
      

      

パラメータのデータ型を定義したスキーマの名前です。
      

	
       udt_name sql_identifier
      

      

パラメータのデータ型の名前です。
      

	
       scope_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       scope_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       scope_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       maximum_cardinality cardinal_number
      

      

常にNULLです。PostgreSQL™では配列の次数は無制限だからです。
      

	
       dtd_identifier sql_identifier
      

      

関数に属するデータ型記述子内で一意なパラメータのデータ型記述子の識別子です。
これは主に、こうした識別子の他のインスタンスと結合する時に有用です。
（識別子の書式の仕様は定義されておらず、また、今後のバージョンでも同一のままであるという保証もありません。）
      

	
       parameter_default character_data
      

      

パラメータのデフォルト式であり、存在しない場合または現在有効なロールがその関数の所有者でない場合にはNULLです。
      





referential_constraints





referential_constraintsビューには、現在のデータベース内にある全ての参照（外部キー）制約があります。現在のユーザが、参照テーブルに（所有者、またはSELECT以外の何らかの権限を持つという方法で）書き込みアクセスを持つと言う事でこれらの制約は示されます。
  
表35.32 referential_constraintsの列
	

列 型
      

      

説明
      

	
       constraint_catalog sql_identifier
      

      

制約が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       constraint_schema sql_identifier
      

      

制約が含まれるスキーマの名前です。
      

	
       constraint_name sql_identifier
      

      

制約の名前です。
      

	
       unique_constraint_catalog sql_identifier
      

      

外部キー制約が参照する一意性制約、もしくは主キー制約を持つデータベースの名前です
（常に現在のデータベースです）。
      

	
       unique_constraint_schema sql_identifier
      

      

外部キー制約が参照する一意性制約、もしくは主キー制約を持つスキーマの名前です。
      

	
       unique_constraint_name sql_identifier
      

      

外部キー制約が参照する一意性制約、もしくは主キー制約の名前です。
      

	
       match_option character_data
      

      

外部キー制約の一致オプションです。
FULL、PARTIAL、NONEのいずれかです。
      

	
       update_rule character_data
      

      

外部キー制約の更新規則です。
CASCADE、SET NULL、SET DEFAULT、RESTRICT、NO ACTIONのいずれかです。
      

	
       delete_rule character_data
      

      

外部キー制約の削除規則です。
CASCADE、SET NULL、SET DEFAULT、RESTRICT、NO ACTIONのいずれかです。
      





role_column_grants





role_column_grantsビューは、譲与者または被譲与者が現在有効なロールである場合、列に付与された全ての権限を示します。
詳細な情報はcolumn_privilegesの中にあります。
このビューとcolumn_privilegesとの間の実質的な違いは、このビューでは現在のユーザがPUBLICに与えられた権限によりアクセスできるようになった列を省略していることだけです。
  
表35.33 role_column_grantsの列
	

列 型
      

      

説明
      

	
       grantor sql_identifier
      

      

権限を与えたロールの名前です。
      

	
       grantee sql_identifier
      

      

権限を与えられたロールの名前です。
      

	
       table_catalog sql_identifier
      

      

その列を含むテーブルを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

その列を含むテーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

その列を含むテーブルの名前です。
      

	
       column_name sql_identifier
      

      

列の名前です。
      

	
       privilege_type character_data
      

      

権限の種類です。
SELECT、INSERT、UPDATE、もしくはREFERENCESです。
      

	
       is_grantable yes_or_no
      

      

この権限を付与可能な場合はYES、さもなくばNOです。
      





role_routine_grants





role_routine_grantsビューは、現在有効なロールが譲与者、または被譲与者で関数上に与えられた全ての権限を示します。
詳細な情報はroutine_privilegesの中にあります。
このビューとroutine_privilegesとの間の実質的な違いは、このビューでは現在のユーザがPUBLICに与えられた権限によりアクセスできるようになった関数を省略していることだけです。
  
表35.34 role_routine_grantsの列
	

列 型
      

      

説明
      

	
       grantor sql_identifier
      

      

権限を与えたロールの名前です。
      

	
       grantee sql_identifier
      

      

権限を与えられたロールの名前です。
      

	
       specific_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       specific_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       specific_name sql_identifier
      

      

関数の「仕様名称」です。
詳細は「routines」を参照してください。
      

	
       routine_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       routine_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       routine_name sql_identifier
      

      

関数の名前です（オーバーロードされている場合は重複する可能性があります）。
      

	
       privilege_type character_data
      

      

常にEXECUTEです（関数用の唯一の権限です）。
      

	
       is_grantable yes_or_no
      

      

この権限を付与可能な場合はYES、さもなくばNOです。
      





role_table_grants





role_table_grantsビューは、現在有効なロールが譲与者または被譲与者であるテーブルやビュー上に与えられた全ての権限を示します。
詳細な情報はtable_privilegesの中にあります。
このビューとtable_privilegesとの間の実質的な違いは、このビューでは現在のユーザがPUBLICに与えられた権限によりアクセスできるようになったテーブルを省略していることだけです。
  
表35.35 role_table_grantsの列
	

列 型
      

      

説明
      

	
       grantor sql_identifier
      

      

権限を与えたロールの名前です。
      

	
       grantee sql_identifier
      

      

権限を与えられたロールの名前です。
      

	
       table_catalog sql_identifier
      

      

テーブルを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

テーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

テーブルの名前です。
      

	
       privilege_type character_data
      

      

権限の種類は、
SELECT、INSERT、UPDATE、DELETE、TRUNCATE、REFERENCES、またはTRIGGERのいずれかです。
      

	
       is_grantable yes_or_no
      

      

この権限を付与可能な場合はYES、さもなくばNOです。
      

	
       with_hierarchy yes_or_no
      

      

標準SQLでは、WITH HIERARCHY OPTIONは、継承テーブル階層に対するある操作を許可する独立した（副次）権限です。
PostgreSQLでは、これはSELECT権限に含まれているため、この列は権限がSELECTの場合はYES、それ以外の場合はNOです。
      





role_udt_grants





role_udt_grantsビューは、現在有効なロールが付与者また被付与者である、ユーザ定義型に付与されたUSAGE権限を識別することを意図したものです。それ以上の情報はudt_privilegesで見つかります。
このビューとudt_privilegesビューとの間の実質的な違いは、このビューでは現在のユーザがPUBLICに与えられた権限によりアクセスできるようになったオブジェクトを省略していることだけです。
PostgreSQLではデータ型は実際の権限を持たず、PUBLICに対する暗黙の権限付与しか持たないため、このビューは空です。
  
表35.36 role_udt_grantsの列
	

列 型
      

      

説明
      

	
       grantor sql_identifier
      

      

権限を与えたロールの名前
      

	
       grantee sql_identifier
      

      

権限が与えられたロールの名前
      

	
       udt_catalog sql_identifier
      

      

型を持つデータベースの名前（常に現在のデータベースです）。
      

	
       udt_schema sql_identifier
      

      

型を持つスキーマの名前
      

	
       udt_name sql_identifier
      

      

型の名前
      

	
       privilege_type character_data
      

      

常にTYPE USAGE
      

	
       is_grantable yes_or_no
      

      

この権限を付与可能な場合はYES、さもなくばNOです。
      





role_usage_grants





role_usage_grantsビューは、譲与者または被譲与者が現在有効なロールである多くの種類のオブジェクトに対し、USAGE権限を示します。
詳細な情報はusage_privilegesの中にあります。
このビューとusage_privilegesビューとの間の実質的な違いは、このビューでは現在のユーザがPUBLICに与えられた権限によりアクセスできるようになったオブジェクトを省略していることだけです。
  
表35.37 role_usage_grantsの列
	

列 型
      

      

説明
      

	
       grantor sql_identifier
      

      

権限を与えたロールの名前
      

	
       grantee sql_identifier
      

      

権限が与えられたロールの名前
      

	
       object_catalog sql_identifier
      

      

オブジェクトを持つデータベースの名前（常に現在のデータベースです）。
      

	
       object_schema sql_identifier
      

      

適用されるオブジェクトを持つスキーマの名前。そうでなければ空文字列
      

	
       object_name sql_identifier
      

      

オブジェクトの名前です。
      

	
       object_type character_data
      

      

COLLATIONまたはDOMAINまたはFOREIGN DATA WRAPPERまたはFOREIGN SERVERまたはSEQUENCE
      

	
       privilege_type character_data
      

      

常にUSAGEです。
      

	
       is_grantable yes_or_no
      

      

この権限を付与可能な場合はYES、さもなくばNOです。
      





routine_column_usage





routine_column_usageビューは、SQL本体またはパラメータのデフォルト式のいずれかで関数またはプロシージャによって使用されるすべての列を識別します。
（これは、引用符で囲まれていないSQL本体に対してのみ機能し、引用符で囲まれた本文や他の言語の関数では機能しません。）
列が含まれるのは、そのテーブルが現在有効なロールによって所有されている場合のみです。
  
表35.38 routine_column_usage Columns
	

列 型
      

      

説明
      

	
       specific_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       specific_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       specific_name sql_identifier
      

      

関数の「仕様名称」です。
詳細は「routines」を参照してください。
      

	
       routine_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       routine_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       routine_name sql_identifier
      

      

関数の名前です（オーバーロードされている場合は重複する可能性があります）。
      

	
       table_catalog sql_identifier
      

      

関数で使用されるテーブルを含むデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

関数で使用されるテーブルを含むスキーマの名前です。
      

	
       table_name sql_identifier
      

      

関数で使用されるテーブルの名前です。
      

	
       column_name sql_identifier
      

      

関数で使用される列の名前です。
      





routine_privileges





routine_privilegesビューは、現在有効なロールに与えられた権限、あるいは現在有効なロールによって関数に与えられた権限を全て示します。
関数、権限の譲与者と被譲与者の組み合わせごとに1行あります。
  
表35.39 routine_privilegesの列
	

列 型
      

      

説明
      

	
       grantor sql_identifier
      

      

権限を与えたロールの名前です。
      

	
       grantee sql_identifier
      

      

権限を与えられたロールの名前です。
      

	
       specific_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       specific_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       specific_name sql_identifier
      

      

関数の「仕様名称」です。
詳細は「routines」を参照してください。
      

	
       routine_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       routine_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       routine_name sql_identifier
      

      

関数の名前です（オーバーロードされている場合は重複する可能性があります）。
      

	
       privilege_type character_data
      

      

常にEXECUTEです（関数用の唯一の権限です）。
      

	
       is_grantable yes_or_no
      

      

この権限を付与可能な場合はYES、さもなくばNOです。
      





routine_routine_usage





routine_routine_usageビューは、SQL本体またはパラメータのデフォルト式のいずれかで、別の（または同じ）関数またはプロシージャによって使用される、すべての関数またはプロシージャを識別します。
（これは、引用符で囲まれていないSQL本体に対してのみ機能し、引用符で囲まれた本文や他の言語の関数では機能しません。）
ここにエントリが含まれるのは、使用される関数が現在使用可能なロールによって所有されている場合のみです。
（使用する関数にこのような制限はありません。）
  


ビュー内の両方の関数のエントリは、ルーチンに関する他の情報スキーマビューと矛盾する方法で列名が使用されていても、ルーチンの「仕様」名称を参照していることに注意してください。
これは標準SQLに従っていますが、間違いなく設計ミスです。
仕様名称の詳細は「routines」を参照してください。
  
表35.40 routine_routine_usage Columns
	

列 型
      

      

説明
      

	
       specific_catalog sql_identifier
      

      

使用する関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       specific_schema sql_identifier
      

      

使用する関数が含まれるスキーマの名前です。
      

	
       specific_name sql_identifier
      

      

使用する関数の「仕様名称」です。
      

	
       routine_catalog sql_identifier
      

      

最初の関数で使用される関数を含むデータベースの名前です（常に現在のデータベースです）。
      

	
       routine_schema sql_identifier
      

      

最初の関数で使用される関数を含むスキーマの名前です。
      

	
       routine_name sql_identifier
      

      

最初の関数で使用される関数の「仕様名称」です。
      





routine_sequence_usage





routine_sequence_usageビューは、SQL本体またはパラメータのデフォルト式のいずれかで関数またはプロシージャによって使用されるすべてのシーケンスを識別します。
（これは、引用符で囲まれていないSQL本体に対してのみ機能し、引用符で囲まれた本文や他の言語の関数では機能しません。）
シーケンスが含まれるのは、そのシーケンスが現在有効なロールによって所有されている場合のみです。
  
表35.41 routine_sequence_usage Columns
	

列 型
      

      

説明
      

	
       specific_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       specific_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       specific_name sql_identifier
      

      

関数の「仕様名称」です。
詳細は「routines」を参照してください。
      

	
       routine_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       routine_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       routine_name sql_identifier
      

      

関数の名前です（オーバーロードされている場合は重複する可能性があります）。
      

	
       schema_catalog sql_identifier
      

      

関数で使用されるシーケンスを含むデータベースの名前です（常に現在のデータベースです）。
      

	
       sequence_schema sql_identifier
      

      

関数で使用されるシーケンスを含むスキーマの名前です。
      

	
       sequence_name sql_identifier
      

      

関数で使用されるシーケンスの名前です。
      





routine_table_usage





routine_table_usageビューは、関数またはプロシージャで使用される全てのテーブルを識別することを目的としています。
現在PostgreSQL™では、この情報は追跡されません。
  
表35.42 routine_table_usage Columns
	

列 型
      

      

説明
      

	
       specific_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       specific_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       specific_name sql_identifier
      

      

関数の「仕様名称」です。
詳細は「routines」を参照してください。
      

	
       routine_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       routine_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       routine_name sql_identifier
      

      

関数の名前です（オーバーロードされている場合は重複する可能性があります）。
      

	
       table_catalog sql_identifier
      

      

関数で使用されるテーブルを含むデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

関数で使用されるテーブルを含むスキーマの名前です。
      

	
       table_name sql_identifier
      

      

関数で使用されるテーブルの名前です。
      





routines





routinesビューには現在のデータベース内の全ての関数とプロシージャがあります。
表示される関数とプロシージャは、現在のユーザが（所有者である、何らかの権限を持っているといった方法で）アクセスできるものだけです。
  
表35.43 routinesの列
	

列 型
      

      

説明
      

	
       specific_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       specific_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       specific_name sql_identifier
      

      

関数の「仕様名称」です。
これは、その関数の実際の名前がオーバーロードされていたとしても、スキーマ内の関数を一意に識別する名前です。
仕様名称の書式は定義されておらず、特定の関数名の他のインスタンスと比較するためにのみ使用されます。
      

	
       routine_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       routine_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       routine_name sql_identifier
      

      

関数の名前です（オーバーロードされている場合は重複する可能性があります）。
      

	
       routine_type character_data
      

      

関数に対してはFUNCTION、プロシージャに対してはPROCEDUREです。
      

	
       module_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       module_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       module_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       udt_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       udt_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       udt_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       data_type character_data
      

      

関数の戻り値が組み込み型の場合、そのデータ型です。
何らかの配列の場合はARRAYです
（この場合は、element_typesビューを参照してください）。
さもなくば、USER-DEFINEDです
（この場合、その型はtype_udt_nameと関連する列によって識別されます）。
プロシージャに対してはNULLです。
      

	
       character_maximum_length cardinal_number
      

      

常にNULLです。PostgreSQL™では、この情報は戻り値のデータ型に当てはまらないからです。
      

	
       character_octet_length cardinal_number
      

      

常にNULLです。PostgreSQL™では、この情報は戻り値のデータ型に当てはまらないからです。
      

	
       character_set_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       collation_catalog sql_identifier
      

      

常にNULLです。PostgreSQL™では、この情報は戻り値のデータ型に当てはまらないからです。
      

	
       collation_schema sql_identifier
      

      

常にNULLです。PostgreSQL™では、この情報は戻り値のデータ型に当てはまらないからです。
      

	
       collation_name sql_identifier
      

      

常にNULLです。PostgreSQL™では、この情報は戻り値のデータ型に当てはまらないからです。
      

	
       numeric_precision cardinal_number
      

      

常にNULLです。PostgreSQL™では、この情報は戻り値のデータ型に当てはまらないからです。
      

	
       numeric_precision_radix cardinal_number
      

      

常にNULLです。PostgreSQL™では、この情報は戻り値のデータ型に当てはまらないからです。
      

	
       numeric_scale cardinal_number
      

      

常にNULLです。PostgreSQL™では、この情報は戻り値のデータ型に当てはまらないからです。
      

	
       datetime_precision cardinal_number
      

      

常にNULLです。PostgreSQL™では、この情報は戻り値のデータ型に当てはまらないからです。
      

	
       interval_type character_data
      

      

常にNULLです。PostgreSQL™では、この情報は戻り値のデータ型に当てはまらないからです。
      

	
       interval_precision cardinal_number
      

      

常にNULLです。PostgreSQL™では、この情報は戻り値のデータ型に当てはまらないからです。
      

	
       type_udt_catalog sql_identifier
      

      

関数の戻り値のデータ型が定義されたデータベースの名前です
（常に現在のデータベースです）。
プロシージャに対してはNULLです。
      

	
       type_udt_schema sql_identifier
      

      

関数の戻り値のデータ型が定義されたスキーマの名前です。
プロシージャに対してはNULLです。
      

	
       type_udt_name sql_identifier
      

      

関数の戻り値のデータ型の名前です。
プロシージャに対してはNULLです。
      

	
       scope_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       scope_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       scope_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       maximum_cardinality cardinal_number
      

      

常にNULLです。PostgreSQL™では配列の次数は無制限だからです。
      

	
       dtd_identifier sql_identifier
      

      

この関数に属するデータ型記述子中で一意な、関数の戻り値のデータ型のデータ型記述子の識別子です。
これは主に、そうした識別子の他のインスタンスと結合する際に有用です。
（識別子の書式仕様は定義されておらず、将来のバージョンで同じままであるという保証もありません。）
      

	
       routine_body character_data
      

      

関数がSQL関数ならばSQL、さもなくばEXTERNALです。
      

	
       routine_definition character_data
      

      

関数のソーステキストです
（現在有効なロールがその関数の所有者でなければNULLです）。
（標準SQLに従うと、routine_bodyがSQLの場合にのみ適用されます。
しかし、PostgreSQL™では、関数が作成された時に指定されたソーステキストが常に含まれます。）
      

	
       external_name character_data
      

      

関数がC関数の場合関数の外部名（リンクシンボル）、さもなくばNULLです。
（これはroutine_definitionで示した値と同じになるように動作します。）
      

	
       external_language character_data
      

      

その関数を作成した言語です。
      

	
       parameter_style character_data
      

      

常にGENERALです
（標準SQLでは他のパラメータ様式も定義していますが、これらはPostgreSQL™では使用できません）。
      

	
       is_deterministic yes_or_no
      

      

関数が不変である（標準SQLでは決定性があると呼びます）と宣言されている場合YES、さもなくばNOです。
（情報スキーマ経由ではPostgreSQL™で使用できる他の変動レベルを問い合わせることはできません。）
      

	
       sql_data_access character_data
      

      

常に、関数がSQLデータを変更することができることを意味するMODIFIESです。
この情報はPostgreSQL™では有用ではありません。
      

	
       is_null_call yes_or_no
      

      

その関数の引数のいずれかがNULLの場合に、自動的にNULLを返す場合はYES、さもなくばNOです。
プロシージャに対してはNULLです。
      

	
       sql_path character_data
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       schema_level_routine yes_or_no
      

      

常にYESです。
（この反対はユーザ定義の種類による方法となります。
これはPostgreSQL™では使用できない機能です。）
      

	
       max_dynamic_result_sets cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       is_user_defined_cast yes_or_no
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       is_implicitly_invocable yes_or_no
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       security_type character_data
      

      

現在のユーザ権限で関数が動作する場合INVOKER、定義したユーザの権限で関数が動作する場合DEFINERです。
      

	
       to_sql_specific_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       to_sql_specific_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       to_sql_specific_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       as_locator yes_or_no
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       created time_stamp
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       last_altered time_stamp
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       new_savepoint_level yes_or_no
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       is_udt_dependent yes_or_no
      

      

現在は常にNOです。もう一方のYESはPostgreSQL™で利用できない機能に適用されるものです。
      

	
       result_cast_from_data_type character_data
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_as_locator yes_or_no
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_char_max_length cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_char_octet_length cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_char_set_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_char_set_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_char_set_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_collation_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_collation_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_collation_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_numeric_precision cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_numeric_precision_radix cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_numeric_scale cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_datetime_precision cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_interval_type character_data
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_interval_precision cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_type_udt_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_type_udt_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_type_udt_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_scope_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_scope_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_scope_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_maximum_cardinality cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       result_cast_dtd_identifier sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      





schemata





schemataビューには、現在のデータベースの中で現在のユーザが（所有者である、または、何らかの権限を持つために）アクセスできるすべてのスキーマがあります。
  
表35.44 schemataの列
	

列 型
      

      

説明
      

	
       catalog_name sql_identifier
      

      

スキーマを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       schema_name sql_identifier
      

      

スキーマの名前です。
      

	
       schema_owner sql_identifier
      

      

スキーマの所有者の名前です。
      

	
       default_character_set_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       default_character_set_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       default_character_set_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       sql_path character_data
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      





sequences





sequencesビューは、現在のデータベース内で定義されたすべてのシーケンスがあります。
現在のユーザが（所有者である、または、何らかの権限を持つために）アクセスできるシーケンスのみが表示されます。
  
表35.45 sequencesの列
	

列 型
      

      

説明
      

	
       sequence_catalog sql_identifier
      

      

シーケンスを含むデータベースの名前です（常に現在のデータベースです）。
      

	
       sequence_schema sql_identifier
      

      

シーケンスを含むスキーマの名前です。
      

	
       sequence_name sql_identifier
      

      

シーケンスの名前です。
      

	
       data_type character_data
      

      

シーケンスのデータ型です。
      

	
       numeric_precision cardinal_number
      

      

この列は（宣言された、あるいは、暗黙的な）シーケンスデータ型の精度（上述）です。
精度は有効桁数を意味します。
numeric_precision_radixの指定に従い、これは10進数（10を基とする）または2進数（2を基とする）で表現されます。
      

	
       numeric_precision_radix cardinal_number
      

      

この列は、numeric_precisionおよびnumeric_scaleで表現される値の基が何かを示します。
値は2または10です。
      

	
       numeric_scale cardinal_number
      

      

この列はシーケンスデータ型の（宣言された、または、暗黙的な）位取り（上述）です。
位取りは、小数点以下の有効桁数を意味します。
numeric_precision_radixの指定に従い、これは10進数（10を基とする）または2進数（2を基とする）で表現されます。
      

	
       start_value character_data
      

      

シーケンスの開始値です。
      

	
       minimum_value character_data
      

      

シーケンスの最小値です。
      

	
       maximum_value character_data
      

      

シーケンスの最大値です。
      

	
       increment character_data
      

      

シーケンスの増加値です。
      

	
       cycle_option yes_or_no
      

      

シーケンスが周回する場合はYES、それ以外はNOです。
      






標準SQLに従い、開始、最小、最大および増加の値が文字列で返されることに注意してください。
  

sql_features





sql_featuresテーブルには、標準SQLで定義された公式な機能のどれがPostgreSQL™でサポートされているかについての情報があります。
これは付録D SQLへの準拠内に記された情報と同じものです。
また、ここには背景について追加情報がいくつかあります。
  
表35.46 sql_featuresの列
	

列 型
      

      

説明
      

	
       feature_id character_data
      

      

機能の識別文字列です。
      

	
       feature_name character_data
      

      

機能の説明的な名前です。
      

	
       sub_feature_id character_data
      

      

副機能の識別子です。副機能がない場合は空の文字列です。
      

	
       sub_feature_name character_data
      

      

副機能の説明的な名前です。副機能がない場合は空の文字列です。
      

	
       is_supported yes_or_no
      

      

現在のバージョンのPostgreSQL™で機能が完全にサポートされている場合はYES、さもなくばNOです。
      

	
       is_verified_by character_data
      

      

常にNULLです。
PostgreSQL™開発グループは機能が準拠しているかどうかについて公式な試験を行っていないからです。
      

	
       comments character_data
      

      

おそらく機能のサポート状況についてのコメントです。
      





sql_implementation_info





sql_implementation_infoテーブルには、標準SQLで実装依存で定義するものとされている各種状況に関する情報があります。
この情報は主にODBCインタフェース環境での使用を意図しています。
他のインタフェースのユーザはおそらくこの情報があまり役に立たないものと考えるでしょう。
このため、個々の実装情報項目をここでは記載しません。
ODBCインタフェースの説明に記載されています。
  
表35.47 sql_implementation_infoの列
	

列 型
      

      

説明
      

	
       implementation_info_id character_data
      

      

実装情報項目の識別文字列です。
      

	
       implementation_info_name character_data
      

      

実装情報項目の説明的な名前です。
      

	
       integer_value cardinal_number
      

      

実装情報項目の値です。
その値がcharacter_valueにある場合はNULLです。
      

	
       character_value character_data
      

      

実装情報項目の値です。
その値がinteger_valueにある場合はNULLです。
      

	
       comments character_data
      

      

おそらく実装情報項目に関するコメントです。
      





sql_parts





sql_partsテーブルは、標準SQLのどの部分がPostgreSQL™でサポートされているかに関する情報を持ちます。
  
表35.48 sql_partsの列
	

列 型
      

      

説明
      

	
       feature_id character_data
      

      

部品番号を含む識別文字列です。
      

	
       feature_name character_data
      

      

部品の説明的な名称です。
      

	
       is_supported yes_or_no
      

      

PostgreSQL™の現在のバージョンで部品が完全にサポートされている場合YES、さもなくばNOです。
      

	
       is_verified_by character_data
      

      

常にNULLです。
PostgreSQL™開発グループは機能が準拠しているかどうかについて公式な試験を行っていないからです。
      

	
       comments character_data
      

      

おそらく部品のサポート状況に関するコメントです。
      





sql_sizing





sql_sizingテーブルには、PostgreSQL™中の各種サイズ制限と上限値に関する情報があります。
この情報は主にODBCインタフェース環境での使用を意図しています。
他のインタフェースのユーザはおそらくこの情報があまり役に立たないものと考えるでしょう。
このため、個々のサイズ調整項目はここでは記載しません。
ODBCインタフェースの説明に記載されています。
  
表35.49 sql_sizingの列
	

列 型
      

      

説明
      

	
       sizing_id cardinal_number
      

      

サイズ調整項目の識別子です。
      

	
       sizing_name character_data
      

      

サイズ調整項目の説明的な名前です。
      

	
       supported_value cardinal_number
      

      

サイズ調整項目の値です。サイズに制限がない場合や決定できない場合はゼロです。
サイズ調整項目を適用する機能がサポートされない場合はNULLです。
      

	
       comments character_data
      

      

おそらくサイズ調整項目に関するコメントです。
      





table_constraints





table_constraintsビューには、現在のユーザが所有する、または何らかのSELECT以外の権限を持つテーブルに属する全ての制約があります。
  
表35.50 table_constraintsの列
	

列 型
      

      

説明
      

	
       constraint_catalog sql_identifier
      

      

制約を持つデータベースの名前です（常に現在のデータベースです）。
      

	
       constraint_schema sql_identifier
      

      

制約を持つスキーマの名前です。
      

	
       constraint_name sql_identifier
      

      

制約の名前です。
      

	
       table_catalog sql_identifier
      

      

テーブルを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

テーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

テーブルの名前です。
      

	
       constraint_type character_data
      

      

制約の種類です。
CHECK（非NULL制約を含む）、FOREIGN KEY、PRIMARY KEY、UNIQUEのいずれかです。
      

	
       is_deferrable yes_or_no
      

      

制約が遅延可能ならばYES、さもなくばNOです。
      

	
       initially_deferred yes_or_no
      

      

制約が遅延可能で初期状態が遅延であればYES、さもなくばNOです。
      

	
       enforced yes_or_no
      

      

制約が強制ならばYES、さもなくばNOです。
      

	
       nulls_distinct yes_or_no
      

      

制約が一意性制約である場合、制約がNULLを区別して扱う場合はYES、制約がNULLを区別しないで扱う場合はNO、他の種類の制約の場合はNULLです。
      





table_privileges





table_privilegesビューは、現在有効なロールに対し、または現在有効なロールによって、テーブルもしくはビューに与えられた権限を全て示します。
テーブル、譲与者、被譲与者の組み合わせごとに1行があります。
  
表35.51 table_privilegesの列
	

列 型
      

      

説明
      

	
       grantor sql_identifier
      

      

権限を与えたロールの名前です。
      

	
       grantee sql_identifier
      

      

権限を与えられたロールの名前です。
      

	
       table_catalog sql_identifier
      

      

テーブルを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

テーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

テーブルの名前です。
      

	
       privilege_type character_data
      

      

権限の種類は、
SELECT、INSERT、UPDATE、DELETE、TRUNCATE、REFERENCES、またはTRIGGERのいずれかです。
      

	
       is_grantable yes_or_no
      

      

この権限を付与可能な場合はYES、さもなくばNOです。
      

	
       with_hierarchy yes_or_no
      

      

標準SQLでは、WITH HIERARCHY OPTIONは、継承テーブル階層に対するある操作を許可する独立した（副次）権限です。
PostgreSQLでは、これはSELECT権限に含まれているため、この列は権限がSELECTの場合はYES、それ以外の場合はNOです。
      





tables





tablesビューには、現在のデータベースで定義された全てのテーブルとビューがあります。
現在のユーザが（所有している、何らかの権限を持っているといった方法で）アクセスできるテーブルとビューのみが表示されます。
  
表35.52 tablesの列
	

列 型
      

      

説明
      

	
       table_catalog sql_identifier
      

      

テーブルを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

テーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

テーブルの名前です。
      

	
       table_type character_data
      

      

テーブルの種類です。
永続テーブル（普通のテーブルの種類）ではBASE TABLE、ビューではVIEW、外部テーブルではFOREIGN、一時テーブルではLOCAL TEMPORARYです。
      

	
       self_referencing_column_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       reference_generation character_data
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       user_defined_type_catalog sql_identifier
      

      

テーブルが型付けされたテーブルの場合、背後のデータ型を持つデータベースの名前です（常に現在のデータベースです）。
さもなくばNULLです。
      

	
       user_defined_type_schema sql_identifier
      

      

テーブルが型付けされたテーブルである場合、背後のデータ型を含むスキーマの名前です。
さもなくばNULLです。
      

	
       user_defined_type_name sql_identifier
      

      

テーブルが型付けされたテーブルである場合、背後のデータ型の名前です。
さもなくばNULLです。
      

	
       is_insertable_into yes_or_no
      

      

テーブルが挿入可能な場合YES、さもなくばNOです。
（ベーステーブルは常に挿入可能ですが、ビューはそうとも限りません。）
      

	
       is_typed yes_or_no
      

      

テーブルが型付けされたテーブルの場合YES、そうでなければNOです。
      

	
       commit_action character_data
      

      

未実装です。
      





transforms





ビューtransformsは現在のデータベースで定義されている変換についての情報を含んでいます。
より正確に言えば、変換に含まれる各関数（「from SQL」あるいは「to SQL」関数）について1行ずつあります。
  
表35.53 transformsの列
	

列 型
      

      

説明
      

	
       udt_catalog sql_identifier
      

      

変換の適用対象の型を含むデータベースの名前です（常に現在のデータベースです）。
      

	
       udt_schema sql_identifier
      

      

変換の適用対象の型を含むスキーマの名前です。
      

	
       udt_name sql_identifier
      

      

変換の適用対象の型の名前です。
      

	
       specific_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       specific_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       specific_name sql_identifier
      

      

関数の「仕様名称」です。
詳細は「routines」を参照してください。
      

	
       group_name sql_identifier
      

      

標準SQLでは変換を「グループ」で定義して、実行時にグループを選択することを認めています。
PostgreSQLはこれをサポートしていません。
代わりに、変換は言語ごとに別々になっています。
妥協として、このフィールドには変換の対象となる言語が入っています。
      

	
       transform_type character_data
      

      

FROM SQLまたはTO SQL
      





triggered_update_columns





列リスト(UPDATE OF column1, column2など)を指定する現在のデータベース内のトリガに関して、triggered_update_columnsビューはこれらの列を示します。
列リストを指定しないトリガはこのビューには含まれません。
これらの列の内、現在のユーザが所有するまたはSELECT以外の何らかの権限を持つもののみが示されます。
  
表35.54 triggered_update_columnsの列
	

列 型
      

      

説明
      

	
       trigger_catalog sql_identifier
      

      

トリガを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       trigger_schema sql_identifier
      

      

トリガを持つスキーマの名前です。
      

	
       trigger_name sql_identifier
      

      

トリガの名前です。
      

	
       event_object_catalog sql_identifier
      

      

トリガが定義されたテーブルを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       event_object_schema sql_identifier
      

      

トリガが定義されたテーブルを持つスキーマの名前です。
      

	
       event_object_table sql_identifier
      

      

トリガが定義されたテーブルの名前です。
      

	
       event_object_column sql_identifier
      

      

トリガが定義された列の名前です。
      





triggers





triggersビューには、現在のデータベース内で、現在のユーザが所有するあるいは何らかのSELECT以外の権限を持つテーブルまたはビューに定義された、全てのトリガがあります。
  
表35.55 triggersの列
	

列 型
      

      

説明
      

	
       trigger_catalog sql_identifier
      

      

トリガを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       trigger_schema sql_identifier
      

      

トリガを持つスキーマの名前です。
      

	
       trigger_name sql_identifier
      

      

トリガの名前です。
      

	
       event_manipulation character_data
      

      

トリガを発するイベントです
（INSERT、UPDATEもしくはDELETEです）。
      

	
       event_object_catalog sql_identifier
      

      

トリガが定義されたテーブルを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       event_object_schema sql_identifier
      

      

トリガが定義されたテーブルを持つスキーマの名前です。
      

	
       event_object_table sql_identifier
      

      

トリガが定義されたテーブルの名前です。
      

	
       action_order cardinal_number
      

      

同じテーブルで同じevent_manipulation、action_timing、action_orientationのトリガを発行する順序です。
PostgreSQL™では、トリガは名前順に発行されますので、この列はそれを反映しています。
      

	
       action_condition character_data
      

      

トリガのWHEN条件です。なければNULLです
(現在有効なロールが所有していないテーブルの場合もNULLです)。
      

	
       action_statement character_data
      

      

トリガによって実行される文です
（現在は常にEXECUTE FUNCTION function(...)です）。
      

	
       action_orientation character_data
      

      

トリガの発行が処理行ごとか文ごとかを識別します
（ROWもしくはSTATEMENTです）。
      

	
       action_timing character_data
      

      

トリガを発する時期です
（BEFORE、AFTERもしくはINSTEAD OFです）。
      

	
       action_reference_old_table sql_identifier
      

      

「old」遷移テーブルの名前です。なければNULLです。
      

	
       action_reference_new_table sql_identifier
      

      

「new」遷移テーブルの名前です。なければNULLです。
      

	
       action_reference_old_row sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       action_reference_new_row sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       created time_stamp
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      






PostgreSQL™におけるトリガには、標準SQLと比べ、2つの非互換があり、これらは情報スキーマの表現に影響を与えます。
1つ目は、PostgreSQL™ではトリガ名は、独立したスキーマオブジェクトではなく、それぞれのテーブル内で局所的であることです。
そのため、別のテーブルに属している場合、1つのスキーマ内でトリガ名を重複させることができます。
（trigger_catalogとtrigger_schemaは実際、そのトリガが定義されたテーブルに属する値となります。）
2つ目は、PostgreSQL™ではトリガは複数のイベントで発行できる点です（例えばON INSERT OR UPDATEです）。
一方、標準SQLでは1つのみしか許されません。
トリガが複数のイベントで発行するように定義された場合、それぞれのイベントで1行という形で、情報スキーマ内では複数の行として表現されます。
これらの2つの問題の結果、triggersビューの主キーは実際、標準SQLで定義された(trigger_catalog, trigger_schema, trigger_name)ではなく、(trigger_catalog, trigger_schema, event_object_table, trigger_name, event_manipulation)となります。
それでもなお、標準SQLに準拠している（スキーマ内でトリガ名を一意とし、トリガに対し1種類のイベントしか持たせないという）手法でトリガを定義していれば、これは影響ありません。
  
注記


PostgreSQL™ 9.1 より前は、このビューの列の
action_timing、
action_reference_old_table、
action_reference_new_table、
action_reference_old_row、
action_reference_new_row
はそれぞれ
condition_timing、
condition_reference_old_table、
condition_reference_new_table、
condition_reference_old_row、
condition_reference_new_row
という名前でした。これらの命名は SQL: 1999標準におけるものです。新しい名前はSQL:2003以降に準拠しています。
   


udt_privileges





udt_privilegesビューは、現在有効なロールが付与者または被付与者である、ユーザ定義型に付与されたUSAGE権限を示します。
型、付与者、被付与者の組み合わせごとに行があります。
このビューは複合データ型のみを表示します（理由は「user_defined_types」を参照してください）。
ドメイン権限については「usage_privileges」を参照してください。
  
表35.56 udt_privilegesの列
	

列 型
      

      

説明
      

	
       grantor sql_identifier
      

      

権限を与えたロールの名前です。
      

	
       grantee sql_identifier
      

      

権限を与えられたロールの名前です。
      

	
       udt_catalog sql_identifier
      

      

型を持つデータベースの名前（常に現在のデータベースです）。
      

	
       udt_schema sql_identifier
      

      

型を持つスキーマの名前
      

	
       udt_name sql_identifier
      

      

型の名前
      

	
       privilege_type character_data
      

      

常にTYPE USAGE
      

	
       is_grantable yes_or_no
      

      

この権限を付与可能な場合はYES、さもなくばNOです。
      





usage_privileges





usage_privilegesビューは、現在有効なロールに、もしくは現在有効なロールによって与えられた、各種オブジェクト上のUSAGE権限を示します。
これは今のところ、PostgreSQL™では照合、ドメイン、外部データラッパー、外部サーバ、およびシーケンスに適用します。
オブジェクトと許可を与えた者、許可を受けた者の組み合わせごとに1行があります。
  


PostgreSQL™では、照合は実際の権限を所有しませんので、このビューは全ての照合に対して所有者からPUBLICに与えられた暗黙の付与できないUSAGE権限を示します。
しかし、その他のオブジェクトの種類は実際の権限を示します。
  


PostgreSQLでは、シーケンスはUSAGEに加えてSELECTとUPDATE権限もサポートします。これらは非標準であるため、情報スキーマのビューでは参照できません。
  
表35.57 usage_privilegesの列
	

列 型
      

      

説明
      

	
       grantor sql_identifier
      

      

権限を与えたロールの名前です。
      

	
       grantee sql_identifier
      

      

権限を与えられたロールの名前です。
      

	
       object_catalog sql_identifier
      

      

オブジェクトを持つデータベースの名前（常に現在のデータベースです）。
      

	
       object_schema sql_identifier
      

      

適用されるオブジェクトを持つスキーマの名前。そうでなければ空文字列
      

	
       object_name sql_identifier
      

      

オブジェクトの名前です。
      

	
       object_type character_data
      

      

COLLATIONまたはDOMAINまたはFOREIGN DATA WRAPPERまたはFOREIGN SERVERまたはSEQUENCE
      

	
       privilege_type character_data
      

      

常にUSAGEです。
      

	
       is_grantable yes_or_no
      

      

この権限を付与可能な場合はYES、さもなくばNOです。
      





user_defined_types





user_defined_typesビューは、現在は現在のデータベースで定義された全ての複合データ型を含みます。
表示される型は、現在のユーザが（所有者である、何らかの権限を持っているといった方法で）アクセスできるものだけです。
  


SQLは二種類のユーザ定義データ型を知っています。構造化型（PostgreSQL™では複合データ型として知られています）と特殊型（PostgreSQL™では実装されていません）。
将来を見越して、user_defined_type_category列をこれらを区別するために使用します。
PostgreSQL™の拡張である基本型や列挙型といった他のユーザ定義型はここには表示されません。
ドメインについては代わりに「domains」を参照してください。
  
表35.58 user_defined_typesの列
	

列 型
      

      

説明
      

	
       user_defined_type_catalog sql_identifier
      

      

型を持つデータベースの名前です（常に現在のデータベースです）。
      

	
       user_defined_type_schema sql_identifier
      

      

型を持つスキーマの名前です。
      

	
       user_defined_type_name sql_identifier
      

      

型の名前
      

	
       user_defined_type_category character_data
      

      

現在は常にSTRUCTUREDです。
      

	
       is_instantiable yes_or_no
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       is_final yes_or_no
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       ordering_form character_data
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       ordering_category character_data
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       ordering_routine_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       ordering_routine_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       ordering_routine_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       reference_type character_data
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       data_type character_data
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_maximum_length cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_octet_length cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       character_set_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       collation_catalog sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       collation_schema sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       collation_name sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       numeric_precision cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       numeric_precision_radix cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       numeric_scale cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       datetime_precision cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       interval_type character_data
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       interval_precision cardinal_number
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       source_dtd_identifier sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      

	
       ref_dtd_identifier sql_identifier
      

      

PostgreSQL™では利用できない機能に適用されるものです。
      





user_mapping_options





user_mapping_optionsビューは現在のデータベースでユーザマッピングに定義された全てのオプションを含みます。
現在のユーザが対応する外部サーバへのアクセスを所有しているとき（所有者または何らかの権限を持っていることで）表示されます。
  
表35.59 user_mapping_optionsの列
	

列 型
      

      

説明
      

	
       authorization_identifier sql_identifier
      

      

マップされているユーザ名、またはマッピングがpublicの場合PUBLICです。
      

	
       foreign_server_catalog sql_identifier
      

      

このマッピングにより使用される外部サーバが定義されたデータベース名です（常に現在のデータベースです）。
      

	
       foreign_server_name sql_identifier
      

      

このマッピングに使用される外部サーバ名です。
      

	
       option_name sql_identifier
      

      

オプションの名前です。
      

	
       option_value character_data
      

      

オプションの値です。
この列は、現在のユーザがマップされたユーザか、マッピングがPUBLIC用かつ現在のユーザがサーバ所有者、もしくは現在のユーザがスーパーユーザでない限りNULLを示します。
ユーザマッピングオプションとして格納されているパスワード情報を保護するためです。
      





user_mappings





user_mappingsビューは現在のデータベースで定義されたユーザマッピングすべてを含みます。
現在のユーザが対応する外部サーバへアクセスを持っているとき（所有者か、何らかの権限を持っていることとして）それらのユーザのマッピングのみを示します。
  
表35.60 user_mappingsの列
	

列 型
      

      

説明
      

	
       authorization_identifier sql_identifier
      

      

マップされているユーザ名、またはマッピングがpublicの場合PUBLICです。
      

	
       foreign_server_catalog sql_identifier
      

      

このマッピングにより使用される外部サーバが定義されたデータベース名です（常に現在のデータベースです）。
      

	
       foreign_server_name sql_identifier
      

      

このマッピングに使用される外部サーバ名です。
      





view_column_usage





view_column_usageビューは、ビューの問い合わせ式（ビューを定義するSELECT文）で使用される全ての列を示します。
現在有効なロールがその列を含むテーブルの所有者であるもののみが含まれます。
  
注記


システムテーブルの列は含まれません。
これはいつか修正しなければなりません。
   

表35.61 view_column_usageの列
	

列 型
      

      

説明
      

	
       view_catalog sql_identifier
      

      

ビューを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       view_schema sql_identifier
      

      

ビューを持つスキーマの名前です。
      

	
       view_name sql_identifier
      

      

ビューの名前です。
      

	
       table_catalog sql_identifier
      

      

ビューで使用される列を含むテーブルを持つデータベースの名前です
（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

ビューで使用される列を持つテーブルが含まれるスキーマの名前です。
      

	
       table_name sql_identifier
      

      

ビューで使用される列を持つテーブルの名前です。
      

	
       column_name sql_identifier
      

      

ビューで使用される列の名前です。
      





view_routine_usage





view_routine_usageビューは、ビューの問い合わせ式（ビューを定義するSELECT文）で使用されるすべてのルーチン（関数およびプロシージャ）を示します。
現在有効なロールが所有するルーチンのみが含まれます。
  
表35.62 view_routine_usageの列
	

列 型
      

      

説明
      

	
       table_catalog sql_identifier
      

      

ビューを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

ビューを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

ビューの名前です。
      

	
       specific_catalog sql_identifier
      

      

関数が含まれるデータベースの名前です（常に現在のデータベースです）。
      

	
       specific_schema sql_identifier
      

      

関数が含まれるスキーマの名前です。
      

	
       specific_name sql_identifier
      

      

関数の「仕様名称」です。
詳細は「routines」を参照してください。
      





view_table_usage





view_table_usageビューは、ビューの問い合わせ式（ビューを定義するSELECT文）で使用されるすべてのテーブルを示します。
現在有効なロールがそのテーブルの所有者であるもののみが含まれます。
  
注記


システムテーブルは含まれません。
これはいつか修正しなければなりません。
   

表35.63 view_table_usageの列
	

列 型
      

      

説明
      

	
       view_catalog sql_identifier
      

      

ビューを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       view_schema sql_identifier
      

      

ビューを持つスキーマの名前です。
      

	
       view_name sql_identifier
      

      

ビューの名前です。
      

	
       table_catalog sql_identifier
      

      

ビューで使用されるテーブルを持つデータベースの名前です
（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

ビューで使用されるテーブルを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

ビューで使用されるテーブルの名前です。
      





views





viewsビューには、現在のデータベースで定義されたすべてのビューがあります。
現在のユーザが（所有者である、何らかの権限を持っているといった方法で）アクセスすることができるビューのみが表示されます。
  
表35.64 viewsの列
	

列 型
      

      

説明
      

	
       table_catalog sql_identifier
      

      

ビューを持つデータベースの名前です（常に現在のデータベースです）。
      

	
       table_schema sql_identifier
      

      

ビューを持つスキーマの名前です。
      

	
       table_name sql_identifier
      

      

ビューの名前です。
      

	
       view_definition character_data
      

      

ビューを定義する問い合わせ式です
（現在有効なロールがビューの所有者でない場合はNULLです）。
      

	
       check_option character_data
      

      

ビューにCHECK OPTIONが定義されている場合はCASCADEDまたはLOCAL、さもなくばNONEです。
      

	
       is_updatable yes_or_no
      

      

ビューが更新可能（UPDATEおよびDELETEが可能）な場合YES、さもなくばNOです。
      

	
       is_insertable_into yes_or_no
      

      

ビューが挿入可能（INSERTが可能）な場合YES、さもなくばNOです。
      

	
       is_trigger_updatable yes_or_no
      

      

ビューにINSTEAD OF UPDATEトリガが定義されている場合はYES、さもなくばNOです。
      

	
       is_trigger_deletable yes_or_no
      

      

ビューにINSTEAD OF DELETEトリガが定義されている場合はYES、さもなくばNOです。
      

	
       is_trigger_insertable_into yes_or_no
      

      

ビューにINSTEAD OF INSERTトリガが定義されている場合はYES、さもなくばNOです。
      





パート V. サーバプログラミング






ここでは、ユーザ定義関数、データ型、トリガなどを使用してサーバの機能を拡張する方法について説明します。
これらはPostgreSQL™に関するユーザ向けの文書を理解した後に取り組むべき上級者向けのトピックです。
また、最後の数章でPostgreSQL™に附属するサーバサイドのプログラミング言語についても説明します。
同時にサーバサイドのプログラミング言語に関する一般的な問題についても説明します。
サーバサイドのプログラミング言語の章に進む前に、少なくとも、36章SQLの拡張（関数も説明しています）の最初の数節を読破することは重要です。
   


第36章 SQLの拡張





本節では以下を追加することでPostgreSQL™のSQL問い合わせ言語をどのように拡張できるかを説明します。

   
	

関数（「ユーザ定義関数」から）。
     

	

集約（「ユーザ定義の集約」から）。
     

	

データ型（「ユーザ定義の型」から）。
     

	

演算子（「ユーザ定義の演算子」から）。
     

	

インデックス用演算子クラス（「インデックス拡張機能へのインタフェース」から）。
     

	

      関連オブジェクトのパッケージ（「関連するオブジェクトを拡張としてパッケージ化」から）。
     




  
拡張の作用法





PostgreSQL™の動作は、カタログに定義された方法で駆動されているため拡張が可能です。
もし標準のリレーショナルデータベースシステムに慣れ親しんでいるのであれば、システムカタログとして一般に知られている中に、データベース、テーブル、列などの情報が格納されていることは知っていると思います。
（システムによってはデータディクショナリと呼ぶものもあります。）
このカタログはユーザの目には他のテーブルと同じように見えますが、DBMSは内部情報をそこに格納しているのです。
PostgreSQL™と標準的なリレーショナルデータベースシステムの重要な違いは、PostgreSQL™はカタログにより多くの情報を格納するということです。
テーブルと列に関する情報だけではなく、データ型、関数、アクセスメソッドなどの情報も格納されています。
これらのテーブルはユーザが変更できます。そして、PostgreSQL™は操作をこれらのテーブルに基づいて行うので、これはPostgreSQL™がユーザによって拡張できることを意味します。
これに対して、一般のデータベースシステムでは、ソースコード内にハードコーディングされたプロシージャを変えるか、DBMSベンダによって特別に書かれたモジュールをロードしなければ拡張できません。
   


さらにPostgreSQL™サーバは動的ロードによってユーザの作成したコードを取り入れることができます。
つまり、ユーザが新しい型か関数を実装するオブジェクトコードファイル（例えば共有ライブラリ）を指定でき、PostgreSQL™は要求された時にロードします。
SQLで作成されたコードをサーバに追加するのはさらに簡単です。
このように演算を「その場で」変えることができるため、PostgreSQL™は新しいアプリケーションや格納構造をラピッドプロトタイプする場合に適しています。
   


PostgreSQL™の型システム





PostgreSQL™のデータ型は、基本型、コンテナ型、ドメイン、疑似型に分類されます。
   
基本型





基本型はintegerのように、SQL言語レベル以下で実装されたものです
（通常はCのような低レベル言語で作成されます）。
一般的にこれらは抽象データ型とも呼ばれるものに対応します。
PostgreSQL™は、ユーザによって提供された関数を通してのみ、こうした型に対する操作が可能で、また、こうした型の動作をユーザが記述する限りにおいてのみ理解します。
組み込みの基本型は、8章データ型に記載されています。
    


列挙(enum)型は基本型の一種とみなすことができます。
主な違いは、列挙型は低レベルプログラミング無しに、SQLコマンドだけで作ることができることです。
より詳細については、「列挙型」を参照してください。
    

コンテナ型





PostgreSQL™には三種類の「コンテナ」型があります。これは他の型の複数の値を含む型です。
配列、複合型、範囲型があります。
    


配列は、全て同じ型の複数の値を保持できます。
配列型は各基本型、複合型、範囲型およびドメイン型に対して自動的に作られます。
しかし、配列の配列はありません。
この型システムにおいては多次元配列は一次元配列と同じです。
より詳細については、「配列」を参照してください。
    


ユーザがテーブルを作成すると、複合型、もしくは行型が作成されます。
関連するテーブルを持たない「スタンドアローン」の複合型をCREATE TYPE(7)を使用して定義することもできます。
複合型は関連したフィールド名を持つ基本型の単なるリストです。
複合型の値は行もしくはフィールド値のレコードです。
より詳細については、「複合型」を参照してください。
    


範囲型は同じ型の二つの値を保持できます。これらは範囲の下限と上限です。
範囲型はユーザによって作られますが、少数の組み込みの型もあります。
より詳細については、「範囲型」を参照してください。
    

ドメイン





ドメインは、特定の元となる型に基づいたもので、多くの目的では、その元となる型と交換可能です。
しかし、ドメインは元となる基本型で許可される範囲内で値の有効範囲を制限する制約を持つことができます。
ドメインはSQLコマンドのCREATE DOMAIN(7)を使って作られます。
より詳細については、「ドメイン型」を参照してください。
    

疑似データ型





特殊な目的用に数個の「疑似型」があります。
疑似型はテーブルの列やコンテナ型の構成要素として現れることはありません。
しかし、関数の引数や結果型を宣言する際に使用できます。
これは、型システム内で特殊な関数クラスを識別するための機構を提供します。
表8.27「疑似データ型」に既存の疑似型を列挙します。
    

多様型





いくつかの特殊な用途を持つ疑似型は多様型で、多様関数を宣言するのに使われます。
この強力な機能により、特定の呼び出しで実際に渡されたデータ型で決定される具体的なデータ型について、一つの関数定義で多数の異なるデータ型を処理できるようになります。
多様型を表36.1「多様型」に示します。
これらの使用例は「多様SQL関数」にあります。
    
表36.1 多様型
	名前	族	説明
	anyelement	Simple	関数があらゆるデータ型を受け付けることを示します
	anyarray	Simple	関数があらゆる配列データ型を受け付けることを示します
	anynonarray	Simple	関数があらゆる配列でないデータ型を受け付けることを示します
	anyenum	Simple	関数があらゆる列挙型（「列挙型」を参照）を受け付けることを示します
        
	anyrange	Simple	関数があらゆる範囲データ型（「範囲型」を参照）を受け付けることを示します
        
	anymultirange	Simple	関数があらゆる多重範囲データ型（「範囲型」を参照）を受け付けることを示します
        
	anycompatible	Common	さまざまな引数の共通データ型への自動昇格によって、関数があらゆるデータ型を受け付けることを示します
        
	anycompatiblearray	Common	さまざまな引数の共通データ型への自動昇格によって、関数があらゆる配列データ型を受け付けることを示します
        
	anycompatiblenonarray	Common	さまざまな引数の共通データ型への自動昇格によって、関数があらゆる配列でないデータ型を受け付けることを示します
        
	anycompatiblerange	Common	さまざまな引数の共通データ型への自動昇格によって、配列があらゆる範囲データ型を受け付けることを示します
        
	anycompatiblemultirange	Common	さまざまな引数の共通データ型への自動昇格によって、配列があらゆる多重範囲データ型を受け付けることを示します
        





多様の引数と結果は互いに結びつけられていて、多様関数を呼ぶ問い合わせが解析されるときに特定のデータ型に決定されます。
2つ以上の多様引数がある時には、入力値の実データ型は後述するように合わせなければなりません。
関数の結果型が多様、あるいは、多様型の出力パラメータを持つ場合には、それらの結果の型は後述するように多様入力の実際の型から導出されます。
    


多様型の「simple」族では、一致と導出の規則は以下のように動作します。
    


anyelementとして宣言された位置（引数もしくは戻り値）にはそれぞれ、任意の実データ型を指定できますが、1つの呼び出しでは、これらはすべて同一の実データ型でなければなりません。
anyarrayとして宣言された位置にはそれぞれ、任意の配列データ型を持つことができますが、同様にこれらはすべて同じデータ型でなければなりません。
anyrangeと宣言された位置にはそれぞれ、同様にすべて同じ範囲型でなければなりません。
anymultirangeについても同様です。
    


さらに、anyarrayと宣言された位置とanyelementと宣言された位置の両方がある場合、anyarrayの位置の実際の配列型は、その要素の型がanyelement位置に現れる型と同じでなければなりません。
anynonarrayは、実際の型が配列型であってはならないという制限が加わっている点を除き、anyelementとまったく同様に扱われます。
anyenumは、実際の型が列挙型でなければならないという制約が加わっている点を除き、anyelementとまったく同様に扱われます。
    


同様にanyrangeと宣言された位置とanyelementもしくはanyarrayと宣言された位置の両方がある場合、anyrangeの位置の実際の範囲型は、その範囲の派生元型がanyelement位置に現れる型と同じであり、anyarray位置の要素の型と同じでなければなりません。
anymultirangeと宣言された位置がある場合、実際の多重範囲型には、宣言された位置とanyrangeが一致する範囲と、宣言された位置anyelementおよびanyarrayと一致する基本要素が含まれている必要があります。
    


このように、2つ以上の引数位置が多様型と宣言されると、全体の効果として、実引数型の特定の組み合わせのみが許されるようになります。
例えば、equal(anyelement, anyelement)と宣言された関数は、2つの引数が同じデータ型である限り、任意の入力値を2つ取ることになります。
    


関数の戻り値を多様型として宣言する時、少なくとも1つの引数位置も多様でなければなりません。
そして多様の引数として与えられる実データ型がその呼び出しの実結果型を決定します。
例えば、配列添字機構がなかったとすると、subscript(anyarray, integer) returns anyelementとして添字機構を実装する関数を定義できます。
この宣言で最初の実引数は配列型に制約され、パーサはこの最初の実引数の型から正しい結果型を推論できます。
他にも例えば、f(anyarray) returns anyenumと宣言された関数は列挙型の配列のみを受け付けます。
    


ほとんどの場合、パーサは同じ族の異なる多様型の引数から多様結果型の実データ型を推論できます。
例えば、anyarrayをanyelementから、もしくはその逆から推定できます。
例外はanyrange型の多様結果はanyrange型の引数を必要とします。
anyarrayもしくはanyelementの引数からは推定できません。
これは、同じ派生元型の複数の範囲型が存在する可能性があるためです。
    


anynonarray型とanyenum型が、別個の型変数を表していないことに注意してください。
これはanyelementと同じ型で、追加の制約が付いているだけです。
例えば、f(anyelement, anyenum)として関数を宣言することは、f(anyenum, anyenum)と宣言することと同一です。
両方の実引数は同じ列挙型でなければなりません。
    


多様型の「common」族については、一致と導出の規則は概ね「simple」と同じに動作しますが、一つの大きな違いがあります。
一つの共通型へ暗黙にキャスト可能である限り、引数の実際の型が同一である必要がありません。
共通型はUNIONや関連する構文と同じ規則（「UNION、CASEおよび関連する構文」を参照）に従って選択されます。
共通型の選択では、anycompatibleやanycompatiblenonarrayの入力の実際の型、anycompatiblearray入力の配列要素型、anycompatiblerange入力の範囲型とanycompatiblemultirange入力の多重範囲型、anycompatiblerange入力の範囲の派生元型が、考慮されます。
anycompatiblenonarrayが存在する場合、共通型は配列でない型である必要があります。
共通データ型が特定されたなら、anycompatibleおよびanycompatiblenonarrayの位置の引数は自動的にその型にキャストされ、anycompatiblearray位置の引数は自動的にその型に対する配列にキャストされます。
    


その派生元型だけ分かっている範囲型を選択する方法がないため、anycompatiblerangeおよび/またはanycompatiblemultirangeの使用には、その型で宣言されているすべての引数が同じ実際の範囲型および/または多重範囲型を持ち、また、その型の派生元型は選択された共通型に即したものである必要があり、そのため、範囲値のキャストは必要ありません。
anyrangeおよびanymultirangeと同様に、anycompatiblerangeおよびanymultirangeを関数の結果型として使用するには、anycompatiblerangeまたはanycompatiblemultirangeの引数がある必要があります。
    


anycompatibleenum型は無いことに注意してください。
通常、列挙型への暗黙キャストはありません。これは異なる列挙入力に対する共通型を決める方法が無いことを意味します。そのため、このような型はあまり有益ではないでしょう。
    


「simple」と「common」の多様族は型変数の二つの独立したセットに相当します。
例えば以下を考えてください。


CREATE FUNCTION myfunc(a anyelement, b anyelement,
                       c anycompatible, d anycompatible)
RETURNS anycompatible AS ...



この関数の実際の呼び出しでは、最初の2つの入力は正確に同じ型を持たなければなりません。
最後の2つの入力は共通型に昇格できなければなりませんが、この型が最初の2つの入力型と何らか関係がある必要はありません。
結果は最後の2つの入力の共通型を持ちます。
    


可変長引数の関数（「可変長引数を取るSQL関数」で説明する可変個の引数を取る関数）を多様とすることができます。
最後のパラメータをVARIADIC anyarrayまたはVARIADIC anycompatiblearrayと宣言することで実現されます。
引数を一致させ、実際の結果型を決めるために、こうした関数はanynonarrayまたはanycompatiblenonarrayパラメータをあたかも適切な個数記述した場合と同様に動作します。
    


ユーザ定義関数





PostgreSQL™は4種類の関数を提供します。

   
	

問い合わせ言語関数（SQLで作成された関数）（「問い合わせ言語（SQL）関数」）
     

	

手続型言語関数（PL/pgSQLやPL/Tclなどで作成された関数）（「手続き型言語関数」）
     

	

内部関数（「内部関数」）
     

	

C言語関数（「C言語関数」）
     




  


すべての関数は、基本型、複合型、またはこの組み合わせを引数（パラメータ）として受け付けることが可能です。
また、すべての関数は基本型または複合型を返すことが可能です。
関数は、基本型の集合または複合型の集合を返すようにも定義できます。
  


多くの関数は（多様型のような）特定の疑似型を引数としたり返したりできます。
しかし、利用できる機能は様々です。
詳細は各関数の種類の説明を参照してください。
  


SQL関数の定義の方法が最も簡単ですので、そちらから説明します。
SQL関数にある概念のほとんどは、他の種類の関数にも適用できます。
  


本章の全体に関して、その例をより理解するために、CREATE FUNCTIONコマンドのリファレンスページを一読することが有用です。
本章の例のいくつかはPostgreSQL™ソース配布物内のsrc/tutorialディレクトリにあるfuncs.sqlとfuncs.cにあります。
  

ユーザ定義プロシージャ





プロシージャは関数と似たデータベースオブジェクトです。
重要な違いは以下の通りです。

    
	

プロシージャはCREATE FUNCTIONではなくて、CREATE PROCEDUREコマンドで定義します。
      

	

プロシージャは関数値を返しません。ですからCREATE PROCEDUREにはRETURNS句がありません。
しかしプロシージャはその代わりに出力パラメータを通じて呼び出し元にデータを返すことができます。
      

	

関数が問い合わせやDMLコマンドの一部として呼び出されるのに対し、プロシージャはCALLコマンドを使って独立して呼び出されます。
      

	

起動したCALLコマンドが明示的なトランザクションブロックの一部でない限り、プロシージャは実行中にトランザクションをコミットあるいはロールバックできます（そして自動的に新しいトランザクションを開始します）。
関数はそれができません。
      

	

たとえば厳密性(strictness)のようなある種の関数の性質はプロシージャには適用されません。
これらは問い合わせの中で関数がどのように使われるかを制御する性質であり、プロシージャには関係ありません。
      




   


次節を含む以降の節で説明するユーザ定義関数の定義方法は、上で述べた点を除けばプロシージャにも当てはまります。
   


関数とプロシージャは、ひとまとめにルーチンとも言われます。
関数とプロシージャを区別することなしに操作できるALTER ROUTINEやDROP ROUTINEなどのコマンドがあります。
しかしながら、CREATE ROUTINEコマンドは無いことに注意してください。
   

問い合わせ言語（SQL）関数





SQL関数は、任意のSQL文のリストを実行し、そのリストの最後の問い合わせの結果を返します。
単純な（集合ではない）場合、最後の問い合わせの結果の最初の行が返されます。
（複数行の結果のうちの「最初の行」は、ORDER BYを使用しない限り定義付けることができないことを覚えておいてください。）
最後の問い合わせが何も行を返さない時はNULL値が返されます。
   


他にも、SQL関数は、SETOF sometype型を返すように指定すること、または同意のRETURNS TABLE(columns)と宣言することにより、集合（つまり複数の行）を返すように宣言もできます。
この場合、最後の問い合わせの結果のすべての行が返されます。
詳細は後で説明します。
   


SQL関数の本体は、セミコロンで区切ったSQL文のリストでなければなりません。
最後の文の後のセミコロンは省略可能です。
関数がvoidを返すものと宣言されていない限り、最後の文はSELECT、またはRETURNING句を持つINSERT、UPDATE、DELETE、またはMERGEでなければなりません。
   


SQL言語で作成された、任意のコマンド群はまとめて、関数として定義できます。
SELECT問い合わせ以外に、データ変更用の問い合わせ（つまり、INSERT、UPDATE、DELETEおよびMERGE）やその他のSQLコマンドを含めることができます。
（SQL関数ではCOMMIT、SAVEPOINTなどのトランザクション制御コマンドおよびVACUUMなどのユーティリティコマンドは使用できません。）
しかし、最後のコマンドは、関数の戻り値型として定義したものを返すSELECT、またはRETURNING句があるものでなければなりません。
その他にも、何か動作をさせるが、有用な値を返さないSQL関数を定義したいのであれば、voidを返すものと定義することで実現可能です。
たとえば、以下の関数はempテーブルから負の給料となっている行を削除します。



CREATE FUNCTION clean_emp() RETURNS void AS '
    DELETE FROM emp
        WHERE salary < 0;
' LANGUAGE SQL;

SELECT clean_emp();

 clean_emp
-----------

(1 row)


    


これをプロシージャとして書くこともできるので、戻り値の型の問題を避けることができます。
例を示します。


CREATE PROCEDURE clean_emp() AS '
    DELETE FROM emp
        WHERE salary < 0;
' LANGUAGE SQL;

CALL clean_emp();



このような単純な例では、voidを返す関数とプロシージャの違いはほとんど様式的なものです。
しかし、プロシージャは関数では不可能なトランザクションの制御のような追加機能を提供します。
また、voidを返す関数がPostgreSQLの拡張であるのに対し、プロシージャは標準SQLです。
    


CREATE FUNCTIONコマンドの構文では、関数本体は文字列定数として作成される必要があります。
この文字列定数の記述には、通常、ドル引用符付け（「ドル記号で引用符付けされた文字列定数」）が最も便利です。
文字列定数を単一引用符で括る通常の構文では、関数本体中で使用される単一引用符（'）とバックスラッシュ（\）（エスケープ文字列構文を仮定）を二重にしなければなりません（「文字列定数」を参照）。
   
SQL関数用の引数





SQL関数の引数は関数本体内で名前または番号を用いて参照できます。
両方の方法の例を後で示します。
    


名前を使用するためには、関数引数を名前を持つものとして宣言し、その名前を関数本体内で記述するだけです。
引数名が関数内の現在のSQLコマンドにおける任意の列名と同じ場合は、列名が優先されます。
これを上書きするためには、function_name.argument_nameのように、引数名を関数自身の名前を付けて修飾してください。
（もしこれも修飾された列名と競合する場合は、列名が優先されます。
SQLコマンド内でテーブルに他の別名を付けることで、この曖昧さを防止できます。）
    


古い番号による方法では、引数は関数本体内で$nという構文を用いて表すことができます。
つまり、$1は第1引数を示し、$2は第2引数のようになります。
これは特定の引数が名前付きで宣言されているかどうかに関係なく動作します。
    


引数が複合型の場合、argname.fieldnameや$1.fieldnameのようなドット表記を用いて引数の属性にアクセスできます。
ここでも、引数名を持つ形式で曖昧さが発生する場合には関数名で引数名を修飾してください。
    


SQL関数の引数は、識別子としてではなく、データ値としてのみ使用できます。
したがって、例えば


INSERT INTO mytable VALUES ($1);



は正しいものですが、以下は動作しません。


INSERT INTO $1 VALUES (42);


    
注記


SQL関数の引数を参照するために名前を使用できる機能は、PostgreSQL™ 9.2で追加されました。
これより古いサーバ内で使われる関数は$n記法を使用しなければなりません。
     


基本型を使用するSQL関数





最も簡単なSQL関数は、引数を取らずに単にintegerのような基本型を返すものです。



CREATE FUNCTION one() RETURNS integer AS $$
    SELECT 1 AS result;
$$ LANGUAGE SQL;


-- 文字列リテラルの別の構文では
CREATE FUNCTION one() RETURNS integer AS '
    SELECT 1 AS result;
' LANGUAGE SQL;

SELECT one();

 one
-----
   1


    


関数本体内で関数の結果用に列の別名を（resultという名前で）定義したことに注目してください。
しかし、この列の別名はこの関数の外部からは可視ではありません。
したがって、その結果はresultではなく、oneというラベルで表示されています。
    


基本型を引数として取る、SQL関数を定義することはほとんどの場合簡単です。



CREATE FUNCTION add_em(x integer, y integer) RETURNS integer AS $$
    SELECT x + y;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

 answer
--------
      3


    


この他に、引数の名前を省いて、番号を使用することもできます。



CREATE FUNCTION add_em(integer, integer) RETURNS integer AS $$
    SELECT $1 + $2;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

 answer
--------
      3


    


以下にもう少し役に立つ関数を示します。
これは銀行口座からの引き落としに使用できます。



CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
    UPDATE bank
        SET balance = balance - debit
        WHERE accountno = tf1.accountno;
    SELECT 1;
$$ LANGUAGE SQL;




以下のように、ユーザはこの関数を使用して、口座番号17から100ドルを引き出すことが可能です。



SELECT tf1(17, 100.0);


    


この例では、第一引数の名前にaccountnoを選びましたが、これはbankテーブルの列の名前と同じです。
UPDATEコマンドの中では、accountnoはbank.accountno列を参照しますので、引数を参照するためにはtf1.accountnoを使用しなければなりません。
もちろんこれは、引数に別の名前を使用することで防ぐことができます。
    


実際には、関数の結果を定数1よりもわかりやすい形にするために、以下のように定義するとよいでしょう。



CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
    UPDATE bank
        SET balance = balance - debit
        WHERE accountno = tf1.accountno;
    SELECT balance FROM bank WHERE accountno = tf1.accountno;
$$ LANGUAGE SQL;




これは残高を調整し、更新後の残高を返します。
同じことはRETURNINGを使用して１つのコマンドで行えます。



CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
    UPDATE bank
        SET balance = balance - debit
        WHERE accountno = tf1.accountno
    RETURNING balance;
$$ LANGUAGE SQL;


    


SQL関数の最後のSELECT句やRETURNING句が関数で定義された結果型を正確に返さない場合、PostgreSQL™は可能な場合に暗黙的キャストまたは代入キャストで必要な型に自動でキャストします。
そうでない場合は明示的にキャストをする必要があります。
例えば、前出のadd_em関数が代わりにfloat8型を返して欲しいとします。
次のように記述すれば十分です。



CREATE FUNCTION add_em(integer, integer) RETURNS float8 AS $$
    SELECT $1 + $2;
$$ LANGUAGE SQL;




integerの和はfloat8に暗黙キャストできるからです。
（キャストについての詳細は10章型変換またはCREATE CAST(7)を参照して下さい）。
    

複合型を使用するSQL関数





関数の引数に複合型を記述した場合、必要な引数を指定するだけではなく、必要とする引数の属性（フィールド）も指定する必要があります。
例えば、empが従業員データを持つテーブルとすると、この名前はそのテーブル内の各行を表す複合型の名前でもあります。
以下に示すdouble_salary関数は、該当する従業員の給料が倍増したらどうなるかを計算します。



CREATE TABLE emp (
    name        text,
    salary      numeric,
    age         integer,
    cubicle     point
);

INSERT INTO emp VALUES ('Bill', 4200, 45, '(2,1)');

CREATE FUNCTION double_salary(emp) RETURNS numeric AS $$
    SELECT $1.salary * 2 AS salary;
$$ LANGUAGE SQL;

SELECT name, double_salary(emp.*) AS dream
    FROM emp
    WHERE emp.cubicle ~= point '(2,1)';

 name | dream
------+-------
 Bill |  8400


    


$1.salaryという構文を使用して、引数の行値の1フィールドを選択していることに注目してください。
また、table_name.*を使用したSELECTコマンドの呼び出しでは、複合型の値として、現在のテーブル行全体を表すテーブル名を使用していることにも注目してください。
別の方法として、テーブル行は以下のようにテーブル名だけを使用して参照できます。


SELECT name, double_salary(emp) AS dream
    FROM emp
    WHERE emp.cubicle ~= point '(2,1)';



しかし、この使用方法は混乱しやすいためお勧めしません。
（テーブル行の複合型の値に対するこの二つの表記の詳細は「問い合わせでの複合型の使用」を参照してください）
    


その場で複合型の引数値を作成することが便利な場合があります。
これはROW式で行うことができます。
例えば、以下のようにして関数に渡すデータを調整できます。


SELECT name, double_salary(ROW(name, salary*1.1, age, cubicle)) AS dream
    FROM emp;


    


複合型を返す関数を作成することもできます。
以下に単一のemp行を返す関数の例を示します。



CREATE FUNCTION new_emp() RETURNS emp AS $$
    SELECT text 'None' AS name,
        1000.0 AS salary,
        25 AS age,
        point '(2,2)' AS cubicle;
$$ LANGUAGE SQL;




ここでは、各属性を定数で指定していますが、この定数を何らかの演算に置き換えることもできます。
    


関数を定義する上で、2つの重要な注意点を以下に示します。

     
	

問い合わせにおける選択リストの順番は、複合型に列が現れる順番と正確に一致する必要があります。
（上で行ったように列に名前を付けても、システムは認識しません。）
       

	

各式の型が対応する複合型の列にキャストができるようにする必要があります。
さもなくば、以下のようなエラーとなります。



ERROR:  return type mismatch in function declared to return emp
DETAIL:  Final statement returns text instead of point at column 4.




基本型の場合と同様に、システムは明示的キャストを自動では挿入せず、暗黙または代入キャストのみをします。
       




    


同じ関数を以下のように定義することもできます。



CREATE FUNCTION new_emp() RETURNS emp AS $$
    SELECT ROW('None', 1000.0, 25, '(2,2)')::emp;
$$ LANGUAGE SQL;




ここで、正しい複合型の単一の列を単に返すSELECTを記述しました。
今回の例ではこれはより優れたものとはいえませんが、例えば、必要な複合値を返す他の関数を呼び出して結果を計算しなければならない場合など、便利な解法になることがあります。
他の例としては、単なる複合型ではなく複合型のドメインを返す関数を書こうとしてる場合に、単一列を返すように書くことが常に必要となります。
なぜなら、行全体の結果を強制する方法がないからです。
    


この関数を、評価式で使って直接呼び出せますし、



SELECT new_emp();

         new_emp
--------------------------
 (None,1000.0,25,"(2,2)")




テーブル関数として呼び出しても直接呼び出せます。



SELECT * FROM new_emp();

 name | salary | age | cubicle
------+--------+-----+---------
 None | 1000.0 |  25 | (2,2)




2番目の方法については、「テーブルソースとしてのSQL関数」でより詳しく説明します。
    


複合型を返す関数を使用する時に、その結果から1つのフィールド（属性）のみを使用したいという場合があります。
これは、以下のような構文で行うことができます。



SELECT (new_emp()).name;

 name
------
 None




パーサが混乱しないように、括弧を追加する必要があります。
括弧なしで行おうとすると、以下のような結果になります。



SELECT new_emp().name;
ERROR:  syntax error at or near "."
LINE 1: SELECT new_emp().name;
                        ^


    


また、関数表記を使用して属性を抽出することもできます。



SELECT name(new_emp());

 name
------
 None




「問い合わせでの複合型の使用」で述べるように、フィールド表記と関数表記は等価です。
    


複合型を結果として返す関数を使用する他の方法は、その結果を、その行型を入力として受け付ける関数に渡す、以下のような方法です。



CREATE FUNCTION getname(emp) RETURNS text AS $$
    SELECT $1.name;
$$ LANGUAGE SQL;

SELECT getname(new_emp());
 getname
---------
 None
(1 row)


    

出力パラメータを持つSQL関数





関数の結果の記述方法には、他にも出力パラメータを使用して定義する方法があります。
以下に例を示します。



CREATE FUNCTION add_em (IN x int, IN y int, OUT sum int)
AS 'SELECT x + y'
LANGUAGE SQL;

SELECT add_em(3,7);
 add_em
--------
     10
(1 row)




「基本型を使用するSQL関数」で示したadd_em版と基本的な違いはありません。
複数列を返す関数を定義する簡単な方法を提供することが出力パラメータの本来の価値です。
以下に例を示します。



CREATE FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int)
AS 'SELECT x + y, x * y'
LANGUAGE SQL;

 SELECT * FROM sum_n_product(11,42);
 sum | product
-----+---------
  53 |     462
(1 row)




これは基本的に、関数結果用の無名の複合型の作成を行います。
上の例では、以下と同じ最終結果になります。



CREATE TYPE sum_prod AS (sum int, product int);

CREATE FUNCTION sum_n_product (int, int) RETURNS sum_prod
AS 'SELECT $1 + $2, $1 * $2'
LANGUAGE SQL;




しかし、独立した複合型定義に悩まされることがなくなり、便利であるともいえます。
出力パラメータに割り振られた名前が単なる飾りではなく、無名複合型の列名を決定するものであることに注意してください。
（出力パラメータの名前を省略した場合、システム自身が名前を選びます。）
    


SQLからこうした関数を呼び出す時、出力パラメータが呼び出し側の引数リストに含まれないことに注意してください。
PostgreSQL™では入力パラメータのみが関数の呼び出しシグネチャを定義するとみなしているためです。
これはまた、関数を削除することなどを目的に関数を参照する場合、入力パラメータのみが考慮されることを意味しています。
上の関数は、次のいずれかの方法で削除できます。



DROP FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int);
DROP FUNCTION sum_n_product (int, int);


    


パラメータには、IN（デフォルト）、OUT、INOUT、またはVARIADICという印を付与できます。
INOUTパラメータは、入力パラメータ（呼び出し引数リストの一部）と出力パラメータ（結果のレコード型の一部）の両方を提供します。
VARIADICパラメータは入力パラメータですが、下で説明するように特別に扱われます。
    

出力パラメータを持つSQLプロシージャ





プロシージャでも出力パラメータがサポートされていますが、関数とは少し違った動作になります。
CALLコマンドでは、出力パラメータは引数リストに含まれていなければなりません。
たとえば、先程の銀行口座からの引き落としのルーチンはこのように書くことができます。


CREATE PROCEDURE tp1 (accountno integer, debit numeric, OUT new_balance numeric) AS $$
    UPDATE bank
        SET balance = balance - debit
        WHERE accountno = tp1.accountno
    RETURNING balance;
$$ LANGUAGE SQL;



このプロシージャを呼び出すには、OUTに対応する引数を含めなければなりません。
習慣としてNULLを書きます。


CALL tp1(17, 100.0, NULL);



これ以外を書くなら、入力パラメータ同様、そのパラメータの宣言型に暗黙的に矯正できる式でなければなりません。
しかし、そのような式は評価されないことに注意してください。
    


PL/pgSQLからプロシージャを呼び出す際にはNULLと書く代わりにプロシージャの出力を受け取る変数を書かなければなりません。
詳細は「プロシージャを呼び出す」をご覧ください。
    

可変長引数を取るSQL関数





すべての「オプションの」引数が同じデータ型の場合、SQL関数は可変長の引数を受け付けるように宣言できます。
オプションの引数は配列として関数に渡されます。
この関数は最後のパラメータをVARIADICと印を付けて宣言されます。
このパラメータは配列型であるとして宣言されなければなりません。
例をあげます。



CREATE FUNCTION mleast(VARIADIC arr numeric[]) RETURNS numeric AS $$
    SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

SELECT mleast(10, -1, 5, 4.4);
 mleast
--------
     -1
(1 row)




実際、VARIADICの位置以降の実引数はすべて、あたかも以下のように記述したかのように、1次元の配列としてまとめられます。




SELECT mleast(ARRAY[10, -1, 5, 4.4]);    -- 動作しません




しかし、実際にこのように記述することはできません。
少なくとも、この関数定義に一致しません。
VARIADIC印の付いたパラメータは、自身の型ではなく、その要素型が１つ以上存在することに一致します。
    


時として、variadic関数に既に構築された配列を渡せることは有用です。
１つのvariadic関数が、自身の配列パラメータを他のものに渡したいとき特に便利です。
また、これが、信用できないユーザがオブジェクトを作成できるスキーマにあるvariadic関数を呼び出す唯一の安全な方法です。「関数」を参照してください。
これは、呼び出しにVARIADICを指定することで行えます。



SELECT mleast(VARIADIC ARRAY[10, -1, 5, 4.4]);




これは関数のvariadicパラメータがその要素型に拡張するのを防ぎます。
その結果、配列引数値が標準的にマッチされるようになります。
VARIADICは関数呼び出しの最後の実引数としてのみ付加できます。
    


呼び出しでVARIADICを指定することは、variadic関数に空の配列を渡す唯一の方法でもあります。例えば、



SELECT mleast(VARIADIC ARRAY[]::numeric[]);




variadicパラメータが少なくとも1つの実引数と一致しなければなりませんので、単にSELECT mleast()と書くだけでは上手くいきません。
（もしそのような呼び出しを許可したいのなら、mleastという名前のパラメータのない第2の関数を定義できます。）
    


variadicパラメータから生成される配列要素パラメータは、それ自身にはまったく名前を持たないものとして扱われます。
これは、名前付き引数（「関数呼び出し」）を使用して可変長の関数を呼び出すことができないことを意味します。
ただし、VARIADICを指定する場合は例外です。
たとえば、以下は動作しますが、



SELECT mleast(VARIADIC arr => ARRAY[10, -1, 5, 4.4]);




以下は動作しません。



SELECT mleast(arr => 10);
SELECT mleast(arr => ARRAY[10, -1, 5, 4.4]);


    

引数にデフォルト値を持つSQL関数





一部またはすべての入力引数にデフォルト値を持つ関数を宣言できます。
デフォルト値は、関数が実際の引数の数に足りない数の引数で呼び出された場合に挿入されます。
引数は実引数リストの終端から省略できますので、デフォルト値を持つパラメータの後にあるパラメータはすべて、同様にデフォルト値を持たなければなりません。
（名前付きの引数記法を使用してこの制限を緩和させることもできますが、まだ位置引数記法が実用的に動作できることが強制されています。）
使うかどうかに関わりなく、この能力は、あるユーザが他のユーザを信用しないデータベースで関数を呼び出す時に、セキュリティの事前の対策を必要とします。「関数」を参照してください。
    


以下に例を示します。


CREATE FUNCTION foo(a int, b int DEFAULT 2, c int DEFAULT 3)
RETURNS int
LANGUAGE SQL
AS $$
    SELECT $1 + $2 + $3;
$$;

SELECT foo(10, 20, 30);
 foo
-----
  60
(1 row)

SELECT foo(10, 20);
 foo
-----
  33
(1 row)

SELECT foo(10);
 foo
-----
  15
(1 row)


SELECT foo();  -- 最初の引数にデフォルトがないため失敗
ERROR:  function foo() does not exist



=記号をDEFAULTキーワードの代わりに使用することもできます。
    

テーブルソースとしてのSQL関数





すべてのSQL関数は問い合わせのFROM句で使用できますが、複合型を返す関数に特に便利です。
関数が基本型を返すよう定義されている場合、テーブル関数は1列からなるテーブルを作成します。
関数が複合型を返すよう定義されている場合、テーブル関数は複合型の列のそれぞれに対して1つの列を作成します。
    


以下に例を示します。



CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES (1, 1, 'Joe');
INSERT INTO foo VALUES (1, 2, 'Ed');
INSERT INTO foo VALUES (2, 1, 'Mary');

CREATE FUNCTION getfoo(int) RETURNS foo AS $$
    SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT *, upper(fooname) FROM getfoo(1) AS t1;

 fooid | foosubid | fooname | upper
-------+----------+---------+-------
     1 |        1 | Joe     | JOE
(1 row)




例からわかる通り、関数の結果の列を通常のテーブルの列と同じように扱うことができます。
    


この関数の結果得られたのは1行のみであることに注意してください。
これはSETOFを指定しなかったためです。
これについては次節で説明します。
    

集合を返すSQL関数





SQL関数がSETOF sometypeを返すよう宣言されている場合、関数の最後の問い合わせは最後まで実行され、各出力行は結果集合の要素として返されます。
    


この機能は通常、関数をFROM句内で呼び出す時に使用されます。
この場合、関数によって返される各行は、問い合わせによって見えるテーブルの行になります。
例えば、テーブルfooの内容が上記と同じであれば以下のようになります。



CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
    SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;




この出力は以下の通りです。


 fooid | foosubid | fooname
-------+----------+---------
     1 |        1 | Joe
     1 |        2 | Ed
(2 rows)


    


また、以下のように出力パラメータで定義された列を持つ複数の行を返すことも可能です。



CREATE TABLE tab (y int, z int);
INSERT INTO tab VALUES (1, 2), (3, 4), (5, 6), (7, 8);

CREATE FUNCTION sum_n_product_with_tab (x int, OUT sum int, OUT product int)
RETURNS SETOF record
AS $$
    SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;

SELECT * FROM sum_n_product_with_tab(10);
 sum | product
-----+---------
  11 |      10
  13 |      30
  15 |      50
  17 |      70
(4 rows)




ここで重要な点は、関数が1行だけではなく複数行を返すことを示すためにRETURNS SETOF recordを記述しなければならない点です。
出力パラメータが１つしか存在しない場合は、recordではなく、そのパラメータの型を記述してください。
    


集合を返す関数を、それぞれの呼び出し時に連続するテーブル行または副問い合わせに由来するパラメータを付けて、複数回呼び出すことで問い合わせ結果を構築することはしばしば有用です。
お勧めする方法は、「LATERAL 副問い合わせ」で説明するLATERALキーワードを使用することです。
以下は集合を返す関数を使用して、ツリー構造の要素を模擬する例です。



SELECT * FROM nodes;
   name    | parent
-----------+--------
 Top       |
 Child1    | Top
 Child2    | Top
 Child3    | Top
 SubChild1 | Child1
 SubChild2 | Child1
(6 rows)

CREATE FUNCTION listchildren(text) RETURNS SETOF text AS $$
    SELECT name FROM nodes WHERE parent = $1
$$ LANGUAGE SQL STABLE;

SELECT * FROM listchildren('Top');
 listchildren
--------------
 Child1
 Child2
 Child3
(3 rows)

SELECT name, child FROM nodes, LATERAL listchildren(name) AS child;
  name  |   child
--------+-----------
 Top    | Child1
 Top    | Child2
 Top    | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)




この例は単純な結合でできない何かを行うものではありません。
しかしより複雑な計算では、何らかの作業を関数内に押し込むオプションはかなり便利です。
    


集合を返す関数は問い合わせの選択リスト内でも呼び出すことができます。
問い合わせ自身によって生成する各行に対し、集合を返す関数が呼び出され、関数の結果集合の各要素に対して出力行が生成されます。
上の例は以下のような問い合わせでも実現できます。



SELECT listchildren('Top');
 listchildren
--------------
 Child1
 Child2
 Child3
(3 rows)

SELECT name, listchildren(name) FROM nodes;
  name  | listchildren
--------+--------------
 Top    | Child1
 Top    | Child2
 Top    | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)




最後のSELECTにおいて、Child2とChild3などが出力行に表示されていないことに注意してください。
これは、listchildrenがこの入力に対して空の集合を返すため出力行が生成されないからです。
LATERAL構文を使用した時の関数の結果との内部結合から得る場合と同じ動作です。
    


選択リストにある集合を返す関数に対するPostgreSQL™の振舞いは、集合を返す関数がLATERAL FROM句に書かれている場合とほとんど同じです。
例えば


SELECT x, generate_series(1,5) AS g FROM tab;



は、以下とほぼ同じです。


SELECT x, g FROM tab, LATERAL generate_series(1,5) AS g;



この特定の例では、gは実際にはtabにLATERALには依存しませんので、プランナがネステッドループ結合の外にgを置くことを選ぶかもしれないという点を除いて、全く同じです。
そのため、出力行の順番が異なる結果になるかもしれません。
選択リスト内の集合を返す関数は、FROM句からの次の行が考慮される前に関数の実行が完了するよう、FROM句の残りとのネステッドループ結合の中にあるかのように必ず評価されます。
    


問い合わせの選択リスト内に集合を返す関数が2つ以上ある場合には、振舞いは一つのLATERAL ROWS FROM( ... ) FROM句に関数を置いた場合に得られるものと似ています。
元となる問い合わせからの各行に対して、各関数からの最初の結果を使った出力行、2番目の結果を使った出力行、と続きます。
集合を返す関数の中に他のものより出力の数が少ないものがある場合には、欠けたデータの代わりにNULL値が使われますので、1つの元となる行から作られる行の合計の数は、一番多くの出力を出力する集合を返す関数に対するのと同じだけになります。
そのため、集合を返す関数はすべてが尽きるまで「歩調を合わせて」実行され、それから次の元となる行へと実行が続きます。
    


集合を返す関数は、FROM句内では許されていませんが、選択リスト内では入れ子にできます。
その場合、入れ子の各階層は、別々のLATERAL ROWS FROM( ... )であるかのように別々に扱われます。
例えば、


SELECT srf1(srf2(x), srf3(y)), srf4(srf5(z)) FROM tab;



では、集合を返す関数srf2、srf3、srf5はtabの各行に対して歩調を合わせて実行され、次に階層の低い関数が生成した各行に対してsrf1とsrf4が歩調を合わせて適用されます。
    


集合を返す関数はCASEやCOALESCEのような条件を評価する構成の中では使えません。
例えば、次のように考えてみてください。


SELECT x, CASE WHEN x > 0 THEN generate_series(1, 5) ELSE 0 END FROM tab;



これは、x > 0である入力行の5回の繰り返しとそうでないものの1回の繰り返しを生成するように思えるかもしれません。しかし、実際には、generate_series(1, 5)はCASEが評価される前に暗黙のLATERAL FROMの中で実行されますので、各入力行に対して5回の繰り返しを生成します。
混乱を減らすため、そのような場合にはその代わりに解析時エラーになります。
    
注記


もし関数の最後のコマンドがRETURNINGを持つINSERT、UPDATE、DELETE、MERGEである場合、関数がSETOF付きで宣言されていない、または呼び出す問い合わせがすべての結果行を取り出さなくても、そのコマンドは完了まで実行されます。
RETURNING句で生成される余計な行はすべて警告無しに削除されますが、コマンド対象のテーブルの変更はそれでも起こります（そして、関数から戻る前にすべて完了します）。
     

注記


PostgreSQL™ 10より前では、集合を返す関数を2つ以上同じ選択リストに置くと常に等しい数の行を生成しない限りあまり賢くは振舞いませんでした。
そうでなければ、得られるのは、集合を返す関数が生成する行の数の最小公倍数に等しい数の出力行でした。
また、入れ子の集合を返す関数は上に書いたようには動作しませんでした。代わりに、集合を返す関数は多くても1つの集合を返す引数を持ち、集合を返す関数の各入れ子は独立に実行されました。
また、条件実行（CASE等の内側にある集合を返す関数）は以前は認められており、事態をより複雑にしていました。
PostgreSQL™の古いバージョンで動作が必要な問い合わせを書く場合には、バージョンが異なっても一貫した結果を返しますので、LATERAL構文を使うことを勧めます。
集合を返す関数の条件実行に頼った問い合わせがあるのなら、条件確認を独自の集合を返す関数の中に移動することで修正できます。
例えば


SELECT x, CASE WHEN y > 0 THEN generate_series(1, z) ELSE 5 END FROM tab;



は、以下のようになります。


CREATE FUNCTION case_generate_series(cond bool, start int, fin int, els int)
  RETURNS SETOF int AS $$
BEGIN
  IF cond THEN
    RETURN QUERY SELECT generate_series(start, fin);
  ELSE
    RETURN QUERY SELECT els;
  END IF;
END$$ LANGUAGE plpgsql;

SELECT x, case_generate_series(y > 0, 1, z, 5) FROM tab;



この定式化はPostgreSQL™のバージョンすべてで同じように動作します。
     


TABLEを返すSQL関数





集合を返すものとして関数を宣言するには、他にも方法があります。
RETURNS TABLE(columns)構文を使用することです。
これは１つ以上のOUTパラメータを使い、さらに、関数をSETOF record（または、適切ならば単一の出力パラメータの型のSETOF）を返すものと印を付けることと等価です。
この記法は標準SQLの最近の版で規定されたものですので、SETOFを使用するより移植性がより高いかもしれません。
    


例えば前述の合計と積の例はこのように書けます。



CREATE FUNCTION sum_n_product_with_tab (x int)
RETURNS TABLE(sum int, product int) AS $$
    SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;




RETURNS TABLE記法と一緒に、明示的OUTまたはINOUTパラメータは使用できません。
すべての出力列をTABLEリストに含めなければなりません。
    

多様SQL関数





SQL関数は、「多様型」の多様型を受け付け、返すように宣言できます。
以下のmake_array多様関数は、任意の2つのデータ型要素から配列を作成します。


CREATE FUNCTION make_array(anyelement, anyelement) RETURNS anyarray AS $$
    SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;

SELECT make_array(1, 2) AS intarray, make_array('a'::text, 'b') AS textarray;
 intarray | textarray
----------+-----------
 {1,2}    | {a,b}
(1 row)


    


'a'::textという型キャストを使用して、引数がtext型であることを指定していることに注目してください。
これは引数が単なる文字列リテラルである場合に必要です。
さもないと、unknown型として扱われてしまうため、無効なunknownの配列を返そうとしてしまいます。
型キャストがないと、以下のようなエラーが発生します。


ERROR:  could not determine polymorphic type because input has type unknown


    


上記のようにmake_arrayを宣言した場合、まったく同じデータ型の2つの引数を指定する必要があります。
システムは型の違いを解決しようとしません。
したがって、例えばこれはうまくいきません。


SELECT make_array(1, 2.5) AS numericarray;
ERROR:  function make_array(integer, numeric) does not exist



別の方法として、「共通」族の多様型を使用する方法があります。
これにより、システムは適切な共通の型を特定できます。


CREATE FUNCTION make_array2(anycompatible, anycompatible)
RETURNS anycompatiblearray AS $$
    SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;

SELECT make_array2(1, 2.5) AS numericarray;
 numericarray
--------------
 {1,2.5}
(1 row)



すべての入力が未知の型である場合、共通の型を解決するルールはデフォルトでtext型を選択するので、これも動作します。


SELECT make_array2('a', 'b') AS textarray;
 textarray
-----------
 {a,b}
(1 row)


    


固定の戻り値型を持ちながら多様引数を持つことは許されますが、逆は許されません。
以下に例を示します。


CREATE FUNCTION is_greater(anyelement, anyelement) RETURNS boolean AS $$
    SELECT $1 > $2;
$$ LANGUAGE SQL;

SELECT is_greater(1, 2);
 is_greater
------------
 f
(1 row)

CREATE FUNCTION invalid_func() RETURNS anyelement AS $$
    SELECT 1;
$$ LANGUAGE SQL;
ERROR:  cannot determine result data type
DETAIL:  A result of type anyelement requires at least one input of type anyelement, anyarray, anynonarray, anyenum, or anyrange.


    


出力引数を持つ関数でも多様性を使用できます。
以下に例を示します。


CREATE FUNCTION dup (f1 anyelement, OUT f2 anyelement, OUT f3 anyarray)
AS 'select $1, array[$1,$1]' LANGUAGE SQL;

SELECT * FROM dup(22);
 f2 |   f3
----+---------
 22 | {22,22}
(1 row)


    


多様性はvariadic関数とともに使用できます。例をあげます。


CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
    SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

SELECT anyleast(10, -1, 5, 4);
 anyleast
----------
       -1
(1 row)

SELECT anyleast('abc'::text, 'def');
 anyleast
----------
 abc
(1 row)

CREATE FUNCTION concat_values(text, VARIADIC anyarray) RETURNS text AS $$
    SELECT array_to_string($2, $1);
$$ LANGUAGE SQL;

SELECT concat_values('|', 1, 4, 2);
 concat_values
---------------
 1|4|2
(1 row)


    

照合順序を持つSQL関数





SQL関数が照合順序の変更が可能なデータ型のパラメータを１つ以上持つ場合、「照合順序サポート」で説明されているように、それぞれの関数呼び出しに対して、実引数に割り当てられた照合順序に応じて、照合順序が識別されます。
照合順序の識別に成功した（つまり、暗黙的な照合順序がすべての引数で競合しない）場合、すべての照合順序の変更が可能なパラメータは暗黙的に照合順序を持つものとして扱われます。
これは関数内の照合順序に依存する操作の振舞いに影響します。
例えば、上記のanyleastを使って考えます。


SELECT anyleast('abc'::text, 'ABC');



この結果はデータベースのデフォルト照合順序に依存します。
CロケールではABCという結果になりますが、他の多くのロケールではabcになります。
使用される照合順序をCOLLATE句を付与することで強制できます。
例を以下に示します。


SELECT anyleast('abc'::text, 'ABC' COLLATE "C");



この他、呼び出し元の照合順序とは関係なく特定の照合順序で動作する関数にしたければ、関数定義において必要な所にCOLLATE句を付けてください。
以下のanyleastでは、文字列を比較する際に常にen_USロケールを使用します。


CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
    SELECT min($1[i] COLLATE "en_US") FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;



しかし、もし照合順序の変更ができないデータ型が与えられた場合にエラーになってしまうことに注意してください。
    


実引数全体で共通の照合順序を識別できない場合、SQL関数はパラメータがそのデータ型のデフォルト照合順序（通常はデータベースのデフォルトの照合順序ですが、ドメイン型のパラメータでは異なる可能性があります）を持つものとみなします。
    


照合順序の変更ができるパラメータの動作は、テキストのデータ型にのみ適用できる、限定された多様性と考えることができます。
    


関数のオーバーロード





使用する引数が異なるのであれば、同じSQL名の関数を1つ以上定義できます。
つまり、関数名はオーバーロードが可能です。
使うかどうかに関わりなく、この能力は、あるユーザが他のユーザを信用しないデータベースで関数を呼び出す時に、セキュリティの事前の対策を必要とします。「関数」を参照してください。
問い合わせが実行された時、サーバは与えられた引数のデータ型と数によって呼び出すべき関数を決定します。
またオーバーロードは可変長引数を取る関数を有限の最大数までシミュレートするためにも使用できます。
   


オーバーロード関数を作成する時、曖昧さが発生しないように注意しなければなりません。
例えば、以下のような関数を考えてみます。


CREATE FUNCTION test(int, real) RETURNS ...
CREATE FUNCTION test(smallint, double precision) RETURNS ...



test(1, 1.5)のような平凡な入力でも、どちらの関数を呼び出すのかはすぐには明確ではありません。
現在実装されている解決規則は10章型変換にて説明していますが、この動作に巧妙に依存するようにシステムを設計することは推奨しません。
   


一般的に、1つの複合型の引数を取る関数は、その型の属性（フィールド）と同じ名前を持ってはいけません。
attribute(table)がtable.attributeと等価とみなされることを思い出してください。
複合型に対する関数と複合型の属性との間に曖昧さがあるような場合、属性の方が常に使用されます。
この振舞いは関数名をスキーマで修飾する（つまり、schema.func(table)）ことにより変更できますが、競合する名前を使用しないことで問題を防ぐ方が良いでしょう。
   


可変長引数を取る関数と可変長引数を取らない関数の間に、他にも競合する可能性があります。
例えば、foo(numeric)とfoo(VARIADIC numeric[])の両方を作成可能です。
この場合、単一の数値引数を取った呼び出し、例えばfoo(10.1)をどちらに一致するものとすべきか不明瞭です。
検索パスのより前にある関数が使われる、もし2つの関数が同一スキーマにあれば可変長引数を取らない関数が優先されるというのが、この場合の規則です。
   


C言語関数をオーバーロードする場合、さらに制約があります。
オーバーロードされた関数群内の各関数のCの名前は、内部か動的ロードされたかに関係なく他のすべての関数のCの名前と異なる必要があります。
この規則に反した場合は、この動作は移植性がありません。
実行時リンカエラーになるかもしれませんし、関数群のどれか（たいていは内部関数）が呼び出されるかもしれません。
CREATE FUNCTION SQLコマンドの別形式のAS句は、SQL関数名とCソースコード内の関数名とを分離します。
以下に例を示します。


CREATE FUNCTION test(int) RETURNS int
    AS 'filename', 'test_1arg'
    LANGUAGE C;
CREATE FUNCTION test(int, int) RETURNS int
    AS 'filename', 'test_2arg'
    LANGUAGE C;



ここでのC関数の名前は多くの取り得る規約の1つを反映しています。
   

関数の変動性分類





すべての関数は変動性区分を持ちます。
取り得る区分は、VOLATILE、STABLE、もしくはIMMUTABLEです。
CREATE FUNCTIONコマンドで分類の指定がなければデフォルトでVOLATILEになります。
変動性に関する分類は、その関数の動作に関するオプティマイザへの約束事です。

   
	

VOLATILE関数は、データベースの変更を含む、すべてを行うことができます。
同一引数で続けて呼び出したとしても異なる結果を返すことができます。
オプティマイザはこうした関数の振舞いに対する前提を持ちません。
VOLATILE関数を使用した問い合わせは、その行の値を必要とするすべての行においてその関数を再評価します。
     

	

STABLE関数はデータベースを変更できません。
また、単一の文内ですべての行に対して同一の引数を渡した場合に同一の結果を返すことが保証されています。
この区分により、オプティマイザは複数の関数の呼び出しを１つの呼び出しに最適化できます。
特に、インデックススキャン条件内でこうした関数を含んだ式を使用することは安全です。
（インデックススキャンは行ごとに一度ではなく、一度だけ比較値の評価を行いますので、インデックススキャン条件内でVOLATILE関数を使用することは意味がありません。）
     

	

IMMUTABLE関数はデータベースを変更できません。
また、同一引数に対する呼び出しは常に同一の結果を返すことが保証されています。
問い合わせが定数の引数でこうした関数を呼び出した場合、オプティマイザはこの関数を事前に評価できます。
例えば、SELECT ... WHERE x = 2 + 2といった問い合わせは、SELECT ... WHERE x = 4のように単純化できます。
これは、整数加算演算子の基になる関数がIMMUTABLEとして宣言されているためです。
     




   


最適化の結果を最善にするためには、関数に対して有効かつ最も厳密な変動性区分を付けなければなりません。
   


副作用を持つ関数はすべてVOLATILEと付けなければなりません。
こうした関数は最適化できないためです。
関数が副作用を持たなかったとしても、単一問い合わせ内で値が変動する場合はVOLATILEと付けなければなりません。
例えば、random()、currval()、timeofday()などです。
   


その他の重要な例は、current_timestamp系列の関数は、それらの値がトランザクション内で変わらないことから、STABLEと見なされます。
   


計画作成を行い、すぐに実行されるような単一の対話式問い合わせを考えた場合、相対的にSTABLE区分とIMMUTABLE区分との違いはあまりありません。
このような場合、関数が計画作成中に一度実行されるか、問い合わせ実行中に一度実行されるかがあまり問題になりません。
しかし、計画が保存され、後で再利用される場合は大きな違いが現れます。
本来ならば関数が計画作成段階で早めに定数を保持できない場合にIMMUTABLEを付けると、その後にこの計画を使用する時に古くて意味のない値が再利用されてしまうことになります。
これは、プリペアド文や計画をキャッシュする関数言語（PL/pgSQLなど）を使用する場合は危険です。
   


SQLもしくは標準手続き言語で作成された関数では、変動性分類で決定される２番目に重要な性質があります。
すなわち、その関数を呼び出すSQLコマンドによりなされてきたすべてのデータ変更の可視性です。
VOLATILE関数はそのような変更を捕らえますが、STABLEまたはIMMUTABLE関数はそうしません。
この動作はMVCC（13章同時実行制御を参照）のスナップショット処理の動作を使用して実装されています。
STABLEとIMMUTABLE関数は、呼び出す問い合わせの開始時点で成立したスナップショットを使用しますが、VOLATILE関数はそれぞれの問い合わせの実行開始時点の作りたてのスナップショットを取得します。
   
注記


しかし、C言語で作成された関数は、どのようにでもスナップショットを管理できますが、通常C関数でもこのように動作させることは良い考えです。
    



このスナップショット処理の動作のため、同時実行の問い合わせによって別途変更されている可能性があるテーブルから選択していたとしても、SELECTコマンドのみを含む関数は、安全にSTABLE印を付けられます。
PostgreSQL™は、呼び出し元の問い合わせに対して確立されたスナップショットを使用してSTABLE関数のすべてのコマンドを実行します。
したがってその問い合わせの間、データベースに対して固定された視点で値を参照することになります。
   


IMMUTABLE関数内のSELECTコマンドも同様のスナップショット処理の動作を使用します。
ただし、一般的に、IMMUTABLE関数内でデータベースのテーブルを検索（SELECT）することは勧められません。
テーブルの内容が変わってしまった場合にその不変性が壊れてしまうためです。
しかし、PostgreSQL™では強制的に検索（SELECT）できないようにはしていません。
   


よくあるエラーは、設定パラメータに依存する結果となる関数にIMMUTABLEと付けることです。
例えば、タイムスタンプを操作する関数は、おそらくTimeZoneの設定に依存した結果になります。
こうした関数は、安全のため代わりにSTABLEと付けてください。
   
注記


PostgreSQL™はデータの変更を防ぐためにSTABLE関数とIMMUTABLE関数がSELECT以外のSQLコマンドを含まないことを要求します。
（こうした関数はまだデータベースを変更するVOLATILE関数を呼び出すことができますので、これは防弾条件として完全ではありません。
これを行うと、STABLEもしくはIMMUTABLE関数は、そのスナップショットからそれらが隠されていることから、呼び出した関数によるデータベースの変更に気がつきません。）
    


手続き型言語関数





PostgreSQL™ではSQLやC言語以外の言語でユーザ定義の関数を作成できます。
これらの他の言語は一般に手続き言語（PL）と呼ばれます。
手続き言語はPostgreSQL™サーバに組み込まれておらず、ロード可能モジュールとして提供されています。
詳細は40章手続き言語と以下の章を参照してください。
   

内部関数





内部関数とは、Cで作成された、PostgreSQL™サーバに静的にリンクされた関数です。
関数定義の「本体」では関数のC言語における名前を指定します。
この名前をSQLでの使用のために宣言される名前と同じにする必要はありません。
（後方互換性のため、C言語関数名がSQL名と同じであるという意味として、空の本体も受け付けられます。）
   


通常、サーバに存在するすべての内部関数は、データベースクラスタの初期化（「データベースクラスタの作成」参照）の際に宣言されますが、ユーザはCREATE FUNCTIONを使用して、内部関数の別名をさらに作成できます。
内部関数はinternalという言語名を付けたCREATE FUNCTIONによって宣言されます。
例えば、sqrt関数の別名を作成するには以下のようにします。


CREATE FUNCTION square_root(double precision) RETURNS double precision
    AS 'dsqrt'
    LANGUAGE internal
    STRICT;



（ほとんどの内部関数は「strict」として宣言されることを想定しています。）
   
注記


「定義済みの」関数のすべてが上の意味での「内部」ではありません。
SQLで作成された定義済み関数もあります。
    


C言語関数





ユーザ定義の関数はC（もしくはC++のようなCと互換性のある言語）で作成できます。
そのような関数は動的ロード可能オブジェクト（共有ライブラリとも呼ばれます）としてコンパイルされ、必要に応じてサーバにロードされます。
動的ロード機能が、「C言語」関数を「内部」関数と区別するものです。
コーディング方法は基本的に両方とも同じです。
（したがって、標準内部関数ライブラリはユーザ定義のC関数のコーディング例の豊富な情報源となります。）
   


現在、1つの呼び出し規約だけがC関数で使用されています(「version 1」)。
その呼び出し規約をサポートしていることは、以下に示すように、その関数用に呼び出しマクロPG_FUNCTION_INFO_V1()を書くことで示されます。
   
動的ロード





特定のロード可能オブジェクト内のユーザ定義の関数がセッションで最初に呼び出されると、動的ローダは、その関数を呼び出すことができるように、オブジェクトファイルをメモリ内に読み込みます。
そのため、ユーザ定義のC関数用のCREATE FUNCTIONはその関数について、ロード可能オブジェクトファイルの名前とオブジェクトファイル中の呼び出される特定の関数のC名称（リンクシンボル）という2つの情報を指定しなければなりません。
C名称が明示的に指定されなかった場合、SQLにおける関数名と同じものと仮定されます。
   


CREATE FUNCTIONコマンドで与えられた名前に基づいて、共有オブジェクトファイルの場所を見つける際に以下のアルゴリズムが使用されます。

    
	

名前が絶対パスの場合、指定されたファイルが読み込まれます。
      

	

名前が$libdirという文字列から始まる場合、その部分はPostgreSQL™パッケージのライブラリディレクトリで置き換えられます。
このディレクトリはビルド時に決定されます。

      

	

名前にディレクトリ部分がない場合、そのファイルはdynamic_library_path設定変数で指定されたパス内から検索されます。

      

	

上記以外の場合（ファイルがパス内に存在しない場合や相対ディレクトリ部分を持つ場合）、動的ローダは指定された名前をそのまま使用し、ほとんどの場合は失敗します。
（これは現在の作業ディレクトリに依存するため信頼できません。）
      






ここまでの流れがうまくいかなかった場合、プラットフォーム独自の共有ライブラリファイル拡張子（多くの場合.so）が指定された名前に追加され、再度この流れを試みます。
同様に失敗した場合は、読み込みは失敗します。
   


共有ライブラリを$libdirから相対的に、もしくは動的ライブラリパスの通った所に配置することを推奨します。
異なる場所に新しいインストレーションを配置する場合にバージョンアップを簡単にします。
$libdirが示す実際のディレクトリはpg_config --pkglibdirコマンドを使用することでわかります。
   


PostgreSQL™サーバの実効ユーザIDはロード予定のファイルのパスまで到達できなければなりません。
よくある失敗として、postgresユーザに対して読み込み、実行、または両方の権限がそのファイルとその上位ディレクトリに与えられていないことがあります。
   


どの場合でも、CREATE FUNCTIONコマンドに与えたファイル名はそのままシステムカタログに保存されます。
ですので、もしそのファイルを再度読み込む必要がある場合、同じ処理が適用されます。
   
注記


PostgreSQL™はC関数を自動的にコンパイルしません。
CREATE FUNCTIONコマンドで参照する前に、そのオブジェクトファイルはコンパイルされていなければなりません。
さらなる情報については「動的にロードされる関数のコンパイルとリンク」を参照してください。
    



確実に、動的にロードされるモジュールが互換性がないサーバにロードされないように、PostgreSQL™は、そのファイルに適切な内容を持つ「マジックブロック」が含まれているかどうか検査します。
これによりサーバは、メジャーバージョンが異なるPostgreSQL™用にコンパイルされたモジュールなど、明確に互換性がないことを検知できます。
マジックブロックを含めるためには、以下をモジュールのソースファイルに一度（一度だけ）、fmgr.hヘッダファイルをincludeさせた後で、記述してください。



PG_MODULE_MAGIC;



または


PG_MODULE_MAGIC_EXT(parameters);


   


亜種PG_MODULE_MAGIC_EXTを使用すると、モジュールに関する追加情報を指定できます。
現在は、名前およびバージョン文字列、またはいずれか一方を追加できます。（将来、さらに多くのフィールドが許可される可能性があります。）
次のように記述します。



PG_MODULE_MAGIC_EXT(
    .name = "my_module_name",
    .version = "1.2.3"
);




その後、名前とバージョンはpg_get_loaded_modules()関数を介して調べることができます。
バージョン文字列の意味はPostgreSQL™によって制限されませんが、セマンティックバージョニングルールの使用をお勧めします。
   


最初に使用された後も、動的にロードされたオブジェクトファイルはメモリ内に保持されます。
同一セッションにおいてそのファイル内の関数をその後に呼び出した場合、シンボルテーブルの検索に要する小さなオーバーヘッドしかかかりません。
例えば再コンパイルした後など、そのオブジェクトファイルを強制的に再度読み込ませる必要がある場合は、新しいセッションを開始してください。
   


省略できますが、動的にロードされるファイルに初期化処理関数を含めることができます。
_PG_initという関数がファイルに存在すると、この関数はファイルがロードされた直後に呼び出されます。
この関数は引数を取らずvoid型を返さなければなりません。
現在、動的にロードされたファイルをアンロードする方法はありません。
   

C言語関数における基本型





C言語関数の作成方法を理解するためには、PostgreSQL™が基本データ型を内部でどのように表現し、どのようにそれらを関数とやり取りしているかを理解する必要があります。
内部的にPostgreSQL™は基本型を「メモリの小さな塊」とみなします。
ある型を定義するユーザ定義関数は、言い換えると、PostgreSQL™がそれを操作できる方法を定義します。
つまり、PostgreSQL™はデータの格納、ディスクからの取り出しのみを行い、データの入力や処理、出力にはユーザ定義関数を使用します。
    


基本型は下記の3つのいずれかの内部書式を使用しています。

     
	

固定長の値渡し
       

	

固定長の参照渡し
       

	

可変長の参照渡し
       




    


値渡しは、1、2、4バイト長の型のみで使用できます（使用するマシンのsizeof(Datum)が8の場合は8バイトも使用できます）。
データ型を定義する際、その型がすべてのアーキテクチャにおいて同一の大きさ（バイト数）となるように定義するように注意してください。
例えば、long型はマシンによっては4バイトであったり、8バイトであったりして危険ですが、int型はほとんどのUnixマシンでは4バイトです。
Unixマシンにおけるint4の理論的な実装は以下のようになります。




/* 4バイト整数、値渡し */
typedef int int4;




（実際のPostgreSQLのCコードではこの型をint32と呼びます。
intXXがXX ビットであることはCにおける規約だからです。
したがってint8というCの型のサイズは１バイトであることに注意してください。
int8というSQLの型はCではint64と呼ばれます。
表36.2「組み込みSQL型に相当するCの型」も参照してください。）
    


一方、任意の大きさの固定長の型は参照として引き渡すことができます。
例として以下にPostgreSQL™の型の実装サンプルを示します。




/* 16バイト構造体、参照渡し */
typedef struct
{
    double  x, y;
} Point;




それらの型のポインタのみがPostgreSQL™関数の入出力時に使用できます。
それらの型の値を返すためには、palloc()を使用して正しい大きさのメモリ領域を割り当て、そのメモリ領域に値を入力し、それのポインタを返します。
（また、入力引数の1つと同じ型かつ同じ値を返したいのであれば、pallocを行う手間を省くことができます。
この場合は入力値へのポインタを単に返してください。）
    


最後に、すべての可変長型は参照として引き渡す必要があります。
また、すべての可変長型は正確に4バイトの不透明なlengthフィールドから始まる必要があります。
このフィールドはSET_VARSIZEで設定されます。決して直接このフィールドを設定してはいけません。
その型に格納されるすべてのデータはlengthフィールドのすぐ後のメモリ領域に置かれる必要があります。
lengthフィールドにはその構造体の総長が格納されます。つまり、lengthフィールドそのものもその大きさに含まれます。
    


この他の重要な点は、データ型の値の中で初期化されていないビットを残さないことです。
例えば、構造体内に存在する可能性がある整列用のパディングバイトを注意してすべてゼロクリアしてください。
こうしないと、独自データ型の論理的に等価な定数がプランナにより一致しないものと判断され、（不正確ではありませんが）非効率的な計画をもたらすかもしれません。
    
警告


参照渡しの入力値の内容を決して変更しないでください。
指定したポインタがディスクバッファを直接指し示している可能性がよくありますので、変更すると、ディスク上のデータを破壊してしまうかもしれません。
この規則の唯一の例外について「ユーザ定義の集約」で説明します。
     



例えば、text型を定義するには、下記のように行えます。



typedef struct {
    int32 length;
    char data[FLEXIBLE_ARRAY_MEMBER];
} text;




[FLEXIBLE_ARRAY_MEMBER]表記は、データ部分の実際の長さはこの宣言では指定されないことを意味します。
    


可変長型を操作する時、正確な大きさのメモリを割り当て、lengthフィールドを正確に設定することに注意する必要があります。
例えば、40バイトをtext構造体に保持させたい場合、下記のようなコードを使用します。



#include "postgres.h"
...

char buffer[40]; /* 私たちの元のデータ */
...
text *destination = (text *) palloc(VARHDRSZ + 40);
SET_VARSIZE(destination, VARHDRSZ + 40);
memcpy(destination->data, buffer, 40);
...





VARHDRSZはsizeof(int32)と同一ですが、可変長型のオーバーヘッド分の大きさを参照する時には、VARHDRSZマクロを使用する方が好ましい形式とみなされています。
また長さフィールドを単なる代入ではなくSET_VARSIZEマクロを使用して設定しなければなりません。
    


表36.2「組み込みSQL型に相当するCの型」に、PostgreSQL™の組み込みSQLデータ型の多くに関連するCの型を示します。
「定義場所」列でその定義を得るためにincludeすべきヘッダファイルがわかります（実際の定義は、リストされたファイルにincludeされている別のファイルにあるかもしれません。定義されたインタフェースだけをユーザは考慮することをお勧めします。）
サーバのコードのソースファイルでは、必ずpostgres.hを最初にincludeすべきであることに注意してください。
なぜなら、結局必要になる多くのことを宣言していること、他のファイルを最初にincludeすると移植性の問題が起きる可能性があるからです。
    
表36.2 組み込みSQL型に相当するCの型
	

SQL型
         	

C 言語型
         	

定義場所
         
	boolean	bool	postgres.h（コンパイラで組み込み済みの可能性があります）
	box	BOX*	utils/geo_decls.h
	bytea	bytea*	postgres.h
	"char"	char	（コンパイラで組み込み済み）
	character	BpChar*	postgres.h
	cid	CommandId	postgres.h
	date	DateADT	utils/date.h
	float4 (real)	float4	postgres.h
	float8 (double precision)	float8	postgres.h
	int2 (smallint)	int16	postgres.h
	int4 (integer)	int32	postgres.h
	int8 (bigint)	int64	postgres.h
	interval	Interval*	datatype/timestamp.h
	lseg	LSEG*	utils/geo_decls.h
	name	Name	postgres.h
	numeric	Numeric	utils/numeric.h
	oid	Oid	postgres.h
	oidvector	oidvector*	postgres.h
	path	PATH*	utils/geo_decls.h
	point	POINT*	utils/geo_decls.h
	regproc	RegProcedure	postgres.h
	text	text*	postgres.h
	tid	ItemPointer	storage/itemptr.h
	time	TimeADT	utils/date.h
	time with time zone	TimeTzADT	utils/date.h
	timestamp	Timestamp	datatype/timestamp.h
	timestamp with time zone	TimestampTz	datatype/timestamp.h
	varchar	VarChar*	postgres.h
	xid	TransactionId	postgres.h





ここまでで基本型に関してあり得る構造体のすべてを記述しましたので、実際の関数の例をいくつか示すことができます。
    

Version 1 呼び出し規約





Version-1呼び出し規約では、引数と結果の引き渡しの複雑さをなくすためにマクロを使用しています。
Version-1関数のC言語宣言は必ず下記のように行います。


Datum funcname(PG_FUNCTION_ARGS)



さらに、マクロ呼び出し


PG_FUNCTION_INFO_V1(funcname);



が同じソースファイルに書かれている必要があります。
（一般には、関数の直前に書かれます。）
PostgreSQL™ではすべての内部関数はVersion-1であると認識するので、このマクロの呼び出しはinternal言語関数では必要ありません。
しかし、動的にロードされる関数では必要です。
    


Version-1関数では、それぞれの実引数は、引数のデータ型に合ったPG_GETARG_xxx()マクロを使用して取り出されます。
（厳格でない関数では、PG_ARGISNULL()を使って引数がNULLかどうか事前に確認が必要です。下記参照。）
結果は戻り値の型に合ったPG_RETURN_xxx()マクロを使用して返されます。
PG_GETARG_xxx()は、その引数として、取り出す関数引数の番号（ゼロから始まります）を取ります。
PG_RETURN_xxx()は、その引数として、実際に返す値を取ります。
    


別のVersion-1関数を呼び出すために、DirectFunctionCalln(func, arg1, ..., argn)を使用できます。
これは、SQLシグネチャに類似したインタフェースを使用して、標準の内部ライブラリで定義された関数を呼び出す場合に特に便利です。
    


これらの便利な関数および類似の関数は、fmgr.hにあります。
DirectFunctionCalln族はC関数の名前を最初の引数として想定しています。
また、対象関数のOIDを受け取るOidFunctionCallnや、その他の亜種もあります。
これらはすべて、関数の引数がDatumとして提供されることを想定しており、同様にDatumとして返します。
これらの便利な関数を使用する場合、引数も結果もNULLではないことを想定していることに注意してください。
    


例えば、C言語からstarts_with(text, text)関数を呼び出すために、カタログを検索して、Datum text_starts_with(PG_FUNCTION_ARGS)関数がC言語実装であることを確認できます。
通常、このような関数を呼び出すにはDirectFunctionCall2(text_starts_with, ...)を使用します。
ただし、starts_with(text, text)は照合順序情報を必要とするため、この方法で呼び出すと「文字列比較で使用する照合順序を特定できませんでした」というエラーが発生します。
かわりにDirectFunctionCall2Coll(text_starts_with, ...)を使用して必要な照合順序を指定する必要があり、これは通常、以下の例に示すようにPG_GET_COLLATION()からそのまま渡されます。
    


fmgr.hは、Cの型とDatumの間の変換を容易にするマクロも提供しています。
例えば、Datumをtext*に変換するために、DatumGetTextPP(X)を使用できます。
いくつかの型は、逆変換用にTypeGetDatum(X)のようなマクロを持ちますが、text*にはありません。
その場合は、汎用マクロPointerGetDatum(X)を使用すれば十分です。
拡張機能が追加の型を定義している場合は、通常、それらの型にも同様のマクロを定義すると便利です。
    


Version-1呼出し規約を使った例をいくつか以下に示します。
    

#include "postgres.h"
#include <string.h>
#include "fmgr.h"
#include "utils/geo_decls.h"
#include "varatt.h"

PG_MODULE_MAGIC;


/* 値渡し */

PG_FUNCTION_INFO_V1(add_one);

Datum
add_one(PG_FUNCTION_ARGS)
{
    int32   arg = PG_GETARG_INT32(0);

    PG_RETURN_INT32(arg + 1);
}


/* 固定長の参照渡し */

PG_FUNCTION_INFO_V1(add_one_float8);

Datum
add_one_float8(PG_FUNCTION_ARGS)
{

    /* FLOAT8用のマクロは参照渡しという性質を隠します */
    float8   arg = PG_GETARG_FLOAT8(0);

    PG_RETURN_FLOAT8(arg + 1.0);
}

PG_FUNCTION_INFO_V1(makepoint);

Datum
makepoint(PG_FUNCTION_ARGS)
{

    /* ここのPoint型の参照渡しという性質は隠されていません */
    Point     *pointx = PG_GETARG_POINT_P(0);
    Point     *pointy = PG_GETARG_POINT_P(1);
    Point     *new_point = (Point *) palloc(sizeof(Point));

    new_point->x = pointx->x;
    new_point->y = pointy->y;

    PG_RETURN_POINT_P(new_point);
}


/* 可変長の参照渡し */

PG_FUNCTION_INFO_V1(copytext);

Datum
copytext(PG_FUNCTION_ARGS)
{
    text     *t = PG_GETARG_TEXT_PP(0);

    /*

     * VARSIZEは、そのヘッダのVARHDRSZまたはVARHDRSZ_SHORTを引いた
     * 構造体の総長をバイト数で表したものです。
     * 完全な長さのヘッダと合わせたコピーを作成します。
     */
    text     *new_t = (text *) palloc(VARSIZE_ANY_EXHDR(t) + VARHDRSZ);
    SET_VARSIZE(new_t, VARSIZE_ANY_EXHDR(t) + VARHDRSZ);

    /*

     * VARDATAは新しい構造体のデータ領域へのポインタです。
     * コピー元はshortデータかもしれませんので、VARDATA_ANYでデータを取り出します。
     */
    memcpy(VARDATA(new_t),          /* destination */
           VARDATA_ANY(t),          /* source */
           VARSIZE_ANY_EXHDR(t));   /* how many bytes */
    PG_RETURN_TEXT_P(new_t);
}

PG_FUNCTION_INFO_V1(concat_text);

Datum
concat_text(PG_FUNCTION_ARGS)
{
    text  *arg1 = PG_GETARG_TEXT_PP(0);
    text  *arg2 = PG_GETARG_TEXT_PP(1);
    int32 arg1_size = VARSIZE_ANY_EXHDR(arg1);
    int32 arg2_size = VARSIZE_ANY_EXHDR(arg2);
    int32 new_text_size = arg1_size + arg2_size + VARHDRSZ;
    text *new_text = (text *) palloc(new_text_size);

    SET_VARSIZE(new_text, new_text_size);
    memcpy(VARDATA(new_text), VARDATA_ANY(arg1), arg1_size);
    memcpy(VARDATA(new_text) + arg1_size, VARDATA_ANY(arg2), arg2_size);
    PG_RETURN_TEXT_P(new_text);
}

/* A wrapper around starts_with(text, text) */

PG_FUNCTION_INFO_V1(t_starts_with);

Datum
t_starts_with(PG_FUNCTION_ARGS)
{
    text       *t1 = PG_GETARG_TEXT_PP(0);
    text       *t2 = PG_GETARG_TEXT_PP(1);
    Oid         collid = PG_GET_COLLATION();
    bool        result;

    result = DatumGetBool(DirectFunctionCall2Coll(text_starts_with,
                                                  collid,
                                                  PointerGetDatum(t1),
                                                  PointerGetDatum(t2)));
    PG_RETURN_BOOL(result);
}




上のコードがファイルfuncs.cに用意されていて、共有オブジェクトにコンパイルされているとしたら、以下のようにPostgreSQL™にコマンドで関数を定義できます。
    

CREATE FUNCTION add_one(integer) RETURNS integer
     AS 'DIRECTORY/funcs', 'add_one'
     LANGUAGE C STRICT;


-- SQL関数名"add_one"のオーバーロードに注意
CREATE FUNCTION add_one(double precision) RETURNS double precision
     AS 'DIRECTORY/funcs', 'add_one_float8'
     LANGUAGE C STRICT;

CREATE FUNCTION makepoint(point, point) RETURNS point
     AS 'DIRECTORY/funcs', 'makepoint'
     LANGUAGE C STRICT;

CREATE FUNCTION copytext(text) RETURNS text
     AS 'DIRECTORY/funcs', 'copytext'
     LANGUAGE C STRICT;

CREATE FUNCTION concat_text(text, text) RETURNS text
     AS 'DIRECTORY/funcs', 'concat_text'
     LANGUAGE C STRICT;

CREATE FUNCTION t_starts_with(text, text) RETURNS boolean
     AS 'DIRECTORY/funcs', 't_starts_with'
     LANGUAGE C STRICT;



ここでは、DIRECTORYは共有ライブラリファイルのディレクトリ（例えばPostgreSQL™のチュートリアルのディレクトリ、そこにはこの節で使われている例のコードがあります）を表しています。
(DIRECTORYを検索パスに追加した後にAS句で'funcs'だけを使うのがより良いやり方でしょう。
どの場合でも、共有ライブラリを表すシステムに特有の拡張子、普通は.soを省略できます。)
    


関数を「strict」と指定したことに注意してください。これは入力値のいずれかがNULLだった場合、システムが自動的に結果をNULLと決めてしまうことを意味します。
こうすることで、関数のコード内でNULLの入力を確認しなければならないことを避けています。
これがなければ、PG_ARGISNULL()を使ってNULL値を明示的に確認しなければなりません。
    


PG_ARGISNULL(n)マクロにより関数は各入力がNULLであるかどうかの検査を行うことができます。
（もちろんこれは、「厳密」と宣言されていない関数でのみ必要です。）
PG_GETARG_xxx()マクロと同様、入力引数の番号はゼロから始まります。
引数がNULLでないことを確認するまでは、PG_GETARG_xxx()の実行は控えなければなりません。
結果としてNULLを返す場合は、PG_RETURN_NULL()を実行します。
これは、厳密な関数と厳密でない関数の両方で使用可能です。
    


一見、Version-1のコーディング規約は、普通のCの呼出し規約と比較すると、無意味なあいまいなものの様に見えるかもしれません。
しかし、NULLになりうる引数や戻り値、「TOASTされた」（圧縮または行外）値を扱うことができます。
    


Version 1のインタフェースでは、その他のオプションとしてPG_GETARG_xxx()マクロの変形を2つ提供しています。
1つ目のPG_GETARG_xxx_COPY()によって、安全に書き込むことができる指定引数のコピーが確実に返されます。
（通常のマクロは、物理的にテーブルに格納されている値へのポインタを返すことがあるので、書き込んではなりません。
PG_GETARG_xxx_COPY()マクロの結果は書き込み可能であることが保証されています。）
2つ目の変形は、引数を3つ取るPG_GETARG_xxx_SLICE()マクロからなります。
1つ目は関数の引数の番号（上記の通り）です。
2つ目と3つ目は、オフセットと返されるセグメントの長さです。
オフセットはゼロから始まり、負の長さは残りの値を返すことを要求します。
これらのマクロを使用すると、ストレージ種類が「external」（外部）である大きな値の一部へアクセスする際に非常に効果的です。
（列のストレージ種類はALTER TABLE tablename ALTER COLUMN colname SET STORAGE storagetypeを使用して指定できます。
storagetypeは、plain、external、extended、またはmainのいずれかです。）
    


最後に、Version-1関数呼び出し規約では、結果集合（「集合を返す」）を返すこと、およびトリガ関数（37章トリガ）と手続型言語の呼び出しハンドラ（57章手続き言語ハンドラの作成）を実装できます。
詳細についてはソース配布物内のsrc/backend/utils/fmgr/READMEを参照してください。
    

コードの作成





より先進的な話題に入る前に、PostgreSQL™ C言語関数のコーディングについての規則をいくつか説明します。
C言語以外の言語で記述した関数をPostgreSQL™に組み込みむことは可能であるかもしれませんが、例えばC++、FORTRANやPascalといった言語はC言語と同じ呼び出し規約に従いませんので、多くの場合、（可能であったとしても）困難です。
それはつまり、他の言語では同じ方法で関数に引数を渡したり、関数から結果を返すことを行わないということです。
このため、C言語関数は実際にC言語で書かれているものと仮定します。
    


C関数の作成と構築の基本規則を以下に示します。

     
	

pg_config --includedir-serverを使用して、使用中のシステム（もしくはユーザが実行するシステム）にてPostgreSQL™サーバのヘッダファイルがインストールされた場所を見つけます。

       

	

PostgreSQL™に動的にロードできるように独自コードをコンパイル/リンクする時には常に、特別なフラグが必要となります。
特定のオペレーティングシステムにおけるコンパイル/リンク方法については「動的にロードされる関数のコンパイルとリンク」を参照してください。
       

	

忘れずに「動的ロード」で説明した「マジックブロック」を共有ライブラリで定義してください。
       

	

メモリを割り当てる際、Cライブラリのmallocとfreeではなく、PostgreSQL™のpallocとpfreeを使用してください。

pallocで割り当てられたメモリは各トランザクションの終わりに自動的に解放され、メモリリークを防ぎます。
       

	

memsetを使用して、構造体を必ずゼロクリアしてください（または最初の段階でpalloc0を用いて割り当ててください）。
構造体の各フィールドを割り当てたとしても、ゴミの値を持つ整列用のパディング（構造体内の穴）があるかもしれません。
こうしないと、ハッシュインデックスやハッシュ結合をサポートすることが困難です。
ハッシュを計算するには、データ構造体内の有意なビットのみを取り出す必要があるためです。
プランナはまた時折ビット単位の等価性を用いて定数の比較を行います。
このため論理的にな値がビット単位で等価でない場合に望まない計画になってしまう可能性があります。
       

	

ほとんどのPostgreSQL™の内部型はpostgres.hに宣言されています。
一方、関数管理インタフェース（PG_FUNCTION_ARGSなど）はfmgr.hで宣言されています。
したがって、少なくともこの2つのファイルをincludeする必要があります。
移植性に関する理由により、postgres.hをその他のシステムヘッダファイル、ユーザヘッダファイルよりも先にincludeしておくことが最善です。
postgres.hをincludeすることはelog.h、palloc.hもincludeすることになります。
       

	

オブジェクトファイルで定義されているシンボル名は、互いに、またはPostgreSQL™サーバの実行ファイルで定義されているものと異なっている必要があります。
これに関するエラーが表示される場合は、関数名または変数名を変更する必要があります。
       




    

動的にロードされる関数のコンパイルとリンク





Cで書かれたPostgreSQL™の拡張関数を使うためには、それらを特別な方法でコンパイルとリンクをして、サーバが動的にロードできるファイルを作る必要があります。
正確には共有ライブラリを作る必要があります。


 


本節の説明以上の詳しい情報はオペレーティングシステムのドキュメント、特にCコンパイラccとリンクエディタldのマニュアルページを参照してください。
さらに、PostgreSQL™のソースコードのcontribディレクトリにいくつか実例があります。
しかし、もしこれらの例に頼るとPostgreSQL™ソースコードが利用できることに依存したモジュールが作られてしまいます。
 


共有ライブラリの作成は一般的に実行プログラムのリンクに類似しています。
まずソースファイルがオブジェクトファイルにコンパイルされ、そのオブジェクトファイル同士がリンクされます。
これらのオブジェクトファイルは位置独立なコード（PIC）として作られる必要があります。

それは概念的には、実行プログラムから呼び出される時にメモリの適当な場所に置くことができるということです。
（実行プログラム用として作られたオブジェクトファイルはそのようにはコンパイルされません。）
共有ライブラリをリンクするコマンドは実行プログラムのリンクと区別するための特別なフラグがあります（少なくとも理論上ではそのようになっています。システムによってはもっと醜い実際が見受けられます）。
 


次の例ではソースコードはfoo.cファイルにあると仮定し、foo.soという共有ライブラリを作るとします。
中間のオブジェクトファイルは特別な記述がない限りfoo.oと呼ばれます。
共有ライブラリは1つ以上のオブジェクトファイルを持つことができますが、ここでは1つしか使いません。
 
	
     FreeBSD
     
     
    
	

PICを作るためのコンパイラフラグは-fPICです。
共有ライブラリを作るコンパイラフラグは-sharedです。


cc -fPIC -c foo.c
cc -shared -o foo.so foo.o



これはFreeBSDのバージョン13.0に適用されます。古いバージョンではgccコンパイラを使用していました。
     

	
     Linux
     
     
    
	

PICを作るためのコンパイラフラグは-fPICです。
共有ライブラリを作るコンパイラフラグは-sharedです。
完全な例は下記のようになります。


cc -fPIC -c foo.c
cc -shared -o foo.so foo.o


     

	
     macOS
     
     
    
	

例を以下に示します。
開発者用ツールがインストールされていることが前提です。


cc -c foo.c
cc -bundle -flat_namespace -undefined suppress -o foo.so foo.o


     

	
     NetBSD
     
     
    
	

PICを作るためのコンパイラフラグは-fPICです。
ELFシステムでは-sharedコンパイラフラグを使用して共有ライブラリをリンクします。
より古い非ELFシステムではld -Bshareableが使われます。


gcc -fPIC -c foo.c
gcc -shared -o foo.so foo.o


     

	
     OpenBSD
     
     
    
	

PICを作成するためのコンパイラフラグは-fPICです。
共有ライブラリをリンクするにはld -Bshareableを使用します。


gcc -fPIC -c foo.c
ld -Bshareable -o foo.so foo.o


     

	
     Solaris
     
     
    
	

PICを作るためのコンパイラフラグはSunコンパイラでは-KPICで、GCCでは-fPICです。
共有ライブラリをリンクするためには、どちらのコンパイラでもコンパイラオプションは-Gで、GCCの場合、代わりに-sharedオプションを使うこともできます。


cc -KPIC -c foo.c
cc -G -o foo.so foo.o



もしくは


gcc -fPIC -c foo.c
gcc -G -o foo.so foo.o


     



ヒント


これがあまりに難しいようであれば、GNU Libtool™の使用を検討すべきです。
これはプラットフォームの違いを、統一されたインタフェースで判らないようにします。
  



これで完成した共有ライブラリファイルはPostgreSQL™にロードすることができます。
CREATE FUNCTIONコマンドにファイル名を指定する時には、中間オブジェクトファイルではなく共有ライブラリファイルの名前を与えてください。
システムの標準共有ライブラリ用の拡張子（通常.soあるいは.sl）はCREATE FUNCTIONで省略することができ、そして移植性を最も高くするため通常は省略されます。
 


サーバがライブラリファイルをどこに見つけるかに関しては「動的ロード」を見直してください。
 

サーバAPIとABIの安定性に関する手引





本節には、PostgreSQL™サーバでのAPIとABIの安定性について、拡張機能やその他のサーバプラグインの作成者向けの手引があります。
    
概要





PostgreSQL™サーバには、サーバプラグイン用の明確に区別された複数のAPIがあり、例えば関数マネージャ（fmgr、この章で説明）、SPI (45章サーバプログラミングインタフェース)、および拡張機能用に特別に設計された様々なフックなどがあります。
これらのインタフェースは、長期的な安定性と互換性を確保するために慎重に管理されています。
ただし、サーバ内のグローバル関数と変数のセット全体は、実質的に一般に使用可能なAPIを構成しており、そのほとんどは拡張性と長期的な安定性を念頭に置いて設計されたものではありません。
     


したがって、これらのインタフェースを利用することは有効ですが、確立された道筋から離れるほど、一部のポイントでAPIまたはABIの互換性に関する問題に遭遇する可能性が高くなります。
拡張機能の作者は、自身の要件についてフィードバックを提供することが推奨され、これによって時間の経過とともに新しい使用パターンが発生したときに、特定のインタフェースがより安定していると位置づけられたり、新しい、より優れた設計のインタフェースの追加が可能となったりします。
     

API互換性





API、すなわちアプリケーションプログラミングインタフェースは、コンパイル時に使用されるインタフェースです。
     
メジャーバージョン





PostgreSQL™メジャーバージョン間のAPI互換性の約束はありません。
したがって、拡張機能のコードでは、複数のメジャーバージョンで使用するためにソースコードの変更が必要になる場合があります。
これらは通常、#if PG_VERSION_NUM >= 160000などのプリプロセッサ条件で管理できます。
明確に区切られたインタフェースを超えて使用する高度な拡張機能では、通常、サーバのメジャーバージョンごとにこのような変更をいくつか行う必要があります。
      

マイナーバージョン





PostgreSQL™は、マイナーリリースでのサーバAPIの破損を避けるために努力しています。
一般的に、あるマイナーリリースでコンパイルされ動作する拡張機能のコードは、同じメジャーバージョンの過去または将来の他のマイナーリリースでも同様にコンパイルされ動作するはずです。
      


変更が必要な場合には、拡張機能の要件を考慮しつつ、慎重に管理されます。
そのような変更は、リリースノート付録E リリースノートで伝達されます。
      


ABI互換性





ABI、すなわちアプリケーションバイナリインタフェースは、実行時に使用されるインタフェースです。
      
メジャーバージョン





異なるメジャーバージョンのサーバには、意図的に互換性のないABIがあります。
したがって、サーバAPIを使用する拡張機能は、メジャーリリースごとに再コンパイルする必要があります。
PG_MODULE_MAGIC（「動的ロード」参照）を含めることで、あるメジャーバージョン向けにコンパイルされたコードが他のメジャーバージョンでは拒否されることが保証されます。

      

マイナーバージョン





PostgreSQL™は、マイナーリリースでのサーバABIの破損を避けるために努力しています。
一般的に、あるマイナーリリースでコンパイルされた拡張機能は、同じメジャーバージョンの過去または将来の他のマイナーリリースでも同様に動作するはずです。
      


変更が必要な場合、PostgreSQL™は可能な限り侵襲性の低い変更、例えば、新しいフィールドをパディングスペースに詰め込むか、構造体の末尾に追加するといった選択をします。
これらの種類の変更は、非常に特殊なコードパターンを使用している場合を除き、拡張機能に影響を与えることはありません。
      


しかし、まれに、このような非侵襲的な変更でさえ現実的ではない、または不可能な場合があります。
このような場合、変更は拡張機能の要件を考慮しつつ、慎重に管理されます。
このような変更は、リリースノート(付録E リリースノート)にも記載されます。
      


ただし、サーバの多くの部分は、公的に利用可能なAPIとして設計・保守されていない点に留意してください（そして、ほとんどの場合、実際の境界も明確に定義されていません）。
緊急の必要性が発生した場合、それらの部分の変更は、明確に定義され広く利用されているインタフェースの変更に比べると、拡張機能コードをあまり考慮せずに行われるのが自然です。
      


また、そのような変更は自動的に検出されないため、保証はできませんが、歴史的にはそのような互換性を損なう変更は非常にまれです。
      



複合型引数





複合型ではCの構造体のような固定のレイアウトがありません。
複合型のインスタンスはNULLフィールドを持つことができます。
さらに、複合型で継承階層の一部であるものは、同じ継承階層の他のメンバとは異なるフィールドを持つこともできます。
そのため、PostgreSQL™はC言語から複合型のフィールドにアクセスするための関数インタフェースを提供します。
    


以下のような問い合わせに答える関数を書こうとしていると仮定します。



SELECT name, c_overpaid(emp, 1500) AS overpaid
    FROM emp
    WHERE name = 'Bill' OR name = 'Sam';




Version 1呼び出し規約を使用すると、c_overpaidは以下のように定義できます。



#include "postgres.h"

#include "executor/executor.h"  /* GetAttributeByName()用 */

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(c_overpaid);

Datum
c_overpaid(PG_FUNCTION_ARGS)
{
    HeapTupleHeader  t = PG_GETARG_HEAPTUPLEHEADER(0);
    int32            limit = PG_GETARG_INT32(1);
    bool isnull;
    Datum salary;

    salary = GetAttributeByName(t, "salary", &isnull);
    if (isnull)
        PG_RETURN_BOOL(false);

    /* この他、salaryがNULLの場合用にPG_RETURN_NULL()を行った方が良いでしょう */

    PG_RETURN_BOOL(DatumGetInt32(salary) > limit);
}



    


GetAttributeByNameは、指定された行から属性を返す、PostgreSQL™システム関数です。
これには3つの引数があります。
それらは、関数に渡されたHeapTupleHeader型の引数、求められた属性の名前、属性がNULLであるかどうかを通知する返りパラメータです。
GetAttributeByNameは適切なDatumGetXXX()関数を使用して適切なデータ型に変換可能なDatum型の値を返します。
このNULLフラグが設定されている場合、戻り値の意味がないことに注意し、この結果で何かを行おうとする前に常に、NULLフラグを検査してください。
    


対象列を名前ではなく列番号で選択するGetAttributeByNumもあります。
    


下記のコマンドでc_overpaid関数をSQLで宣言します。



CREATE FUNCTION c_overpaid(emp, integer) RETURNS boolean
    AS 'DIRECTORY/funcs', 'c_overpaid'
    LANGUAGE C STRICT;




入力引数がNULLかどうかを検査する必要がないようにSTRICTを使用していることに注意してください。
    

行（複合型）を返す





C言語関数から行もしくは複合型の値を返すために、複合型の複雑な作成のほとんどを隠蔽するマクロや関数を提供する、特別なAPIを使用できます。
このAPIを使用するためには、ソースファイルで以下をincludeする必要があります。


#include "funcapi.h"


    


複合型のデータ値（以降「タプル」と記す）を作成する2つの方法があります。
Datum値の配列から作成する方法、もしくはタプルのある列の型の入力変換関数に渡すことができるC文字列の配列から作成することです。
どちらの方法でも、まずタプル構造体用のTupleDesc記述子を入手、あるいは作成しなければなりません。
Datumを使用する場合は、TupleDescをBlessTupleDescに渡し、各行に対してheap_form_tupleを呼び出します。
C文字列を使用する場合は、TupleDesc をTupleDescGetAttInMetadataに渡し、各行に対して BuildTupleFromCStringsを呼び出します。
タプルの集合を返す関数の場合、この設定段階を最初の関数呼び出しで一度にまとめて行うことができます。
    


必要なTupleDescの設定用の補助用関数がいくつかあります。
ほとんどの複合型を返す関数での推奨方法は、以下の関数を呼び出し、


TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo,
                                   Oid *resultTypeId,
                                   TupleDesc *resultTupleDesc)



呼び出し元の関数自身に渡されるfcinfo構造体と同じものを渡すことです。
（これにはもちろん、version 1呼び出し規約を使用していることが必要です。）
resultTypeIdをNULLとすることも、ローカル変数のアドレスを指定して関数の戻り値型のOIDを受け取ることができます。
resultTupleDescはローカルなTupleDesc変数のアドレスでなければなりません。
結果がTYPEFUNC_COMPOSITEかどうかを確認してください。
TYPEFUNC_COMPOSITEであった場合、resultTupleDescには必要なTupleDescが格納されています。
（TYPEFUNC_COMPOSITEではなかった場合、「function returning record called in context that cannot accept type record（レコード型を受け付けられないコンテキストでレコードを返す関数が呼び出されました）」というエラーを報告できます。）
    
ヒント


get_call_result_typeは、多様性関数の結果の実際の型を解決できます。
ですので、複合型を返す関数だけではなく、スカラの多様結果を返す関数でも有意です。
resultTypeId出力は主にスカラの多様結果を返す関数で有意です。
     

注記


get_call_result_typeは、get_expr_result_typeと似たような関数で、関数呼び出しで想定される出力型を式のツリー構造として解決します。
関数自身以外から結果型を決定したい場合に、これを使用できます。
また、get_func_result_typeという関数もあります。
これは関数のOIDが利用できる場合にのみ使用できます。
しかし、これらの関数は、record型を返すものと宣言された関数では使用できません。
また、get_func_result_typeは多様型を解決できません。
したがって、優先してget_call_result_typeを使用すべきです。
     



古く、廃止予定のTupleDescを入手するための関数を以下に示します。


TupleDesc RelationNameGetTupleDesc(const char *relname)



これを指名したリレーションの行型用のTupleDescを取り出すために使用してください。
また、


TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases)



これを型のOIDに基づいてTupleDescを取り出すために使用してください。
これは、基本型もしくは複合型のTupleDescを取り出すために使用可能です。
これはrecordを返す関数ではうまく動作しません。
また、多様型を解決することもできません。
    


TupleDescを獲得した後に、Datumを使用する場合は以下を呼び出してください。


TupleDesc BlessTupleDesc(TupleDesc tupdesc)



C文字列を使用する場合は以下を呼び出してください。


AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc)



集合を返す関数を作成する場合は、これらの関数の結果をFuncCallContext構造体に格納してください。
それぞれtuple_descとattinmetaを使用します。
    


Datumを使用する場合は、以下を使用して


HeapTuple heap_form_tuple(TupleDesc tupdesc, Datum *values, bool *isnull)



ユーザデータをDatum形式に格納したHeapTupleを構築し、
    


C文字列を使用する場合は、以下を使用して


HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)



ユーザデータをC文字列形式に格納したHeapTupleを構築します。
valuesは行の各属性を1要素としたC文字列の配列です。
各C文字列は、属性のデータ型用の入力関数が受け付け可能な形式でなければなりません。
属性の値をNULL値として返すためには、values配列の対応するポインタにNULLを設定してください。
この関数は返す行それぞれに対して繰り返し呼び出す必要があります。
    


関数から返すタプルを構築し終わったら、それをDatumに変換しなければなりません。
以下を使用して、


HeapTupleGetDatum(HeapTuple tuple)



HeapTupleを有効なDatumに変換してください。
単一行のみを返すのであれば、このDatumを直接返すことができます。
さもなくば、集合を返す関数における現在の戻り値として使用できます。
    


次節に例を示します。
    

集合を返す





C言語関数から集合（複数行）を返すには2つ選択肢があります。
一つは、ValuePerCallモードと呼ばれる方法で、集合を返す関数が繰り返し呼び出され（毎回同じ引数を渡します）、返す行がなくなるまで呼び出しごとに1つの新しい行を返し、返す行がなくなったらNULLを返します。
したがって、集合を返す関数（SRF）は、呼び出し間に十分な状態を保存し何をしていたかを記憶して、呼び出しの度に次の項目を返す必要があります。
もう一つは、Materializeモードと呼ばれる方法で、集合を返す関数は結果全体を含むタプルストアオブジェクトを埋めて返します。
結果全体に対して１つの呼び出しだけが発生し、呼び出し間の状態は必要ありません。
    


ValuePerCallモードを使用する場合、問い合わせが完全に実行される保証はないことに注意してください。
つまり、LIMITなどのオプションがあるため、全ての行をフェッチする前に、エグゼキュータが集合を返す関数の呼び出しを中止することがあります。
これは、実行されない可能性があるため、最後の呼び出しでクリーンアップ活動を実行するのは安全ではないことを意味します。
ファイル記述子などの外部リソースにアクセスする必要がある関数には、Materializeモードを使用することをお勧めします。
    


本節の残りの部分では、ValuePerCallモードを使用する集合を返す関数で一般に使用される補助マクロのセット（ただし、使用は必須ではありませんが）について説明します。
Materializeモードの詳細については、src/backend/utils/fmgr/READMEを参照してください。
また、PostgreSQL™ソース配布物内のcontribモジュールには、ValuePerCallとMaterializeモードの両方を使用する、集合を返す関数のより多くの例があります。
    


ここで説明するValuePerCallサポートマクロを使用するには、funcapi.hをincludeします。
これらのマクロは、複数の呼び出しにわたって保存する必要がある状態を含むFuncCallContext構造体が備わっています。
集合を返す関数内では、fcinfo->flinfo->fn_extraは、呼び出し間でFuncCallContextへのポインタを保持するために使用されます。
マクロは、最初の使用時に自動的にそのフィールドを埋め、その後の使用時に同じポインタを見つけることを期待します。


typedef struct FuncCallContext
{
    /*

     * 既に行われた呼び出しの回数。
     *

     * SRF_FIRSTCALL_INIT()によってcall_cntrが0に初期化され、
     * SRF_RETURN_NEXT()が呼び出される度に増分されます。
     */
    uint64 call_cntr;

    /*

     * 省略可能 : 呼び出しの最大数
     *
     * max_callsは、便宜上用意されているだけで、設定は省略可能です。
     * 設定されていなければ、関数が終了したことを知るための別の方法を
     * 用意する必要があります。
     */
    uint64 max_calls;

    /*

     * 省略可能 : 様々なユーザによるコンテキスト情報へのポインタ
     *
     * user_fctxは、関数の呼び出し間の任意のコンテキスト情報を
     * 取得するためのユーザ独自の構造へのポインタとして使用されます。
     */
    void *user_fctx;

    /*

     * 省略可能 : 属性型入力メタ情報を含んだ構造体へのポインタ
     *
     * attinmeta はタプル（つまり複合データ型）を返す際に使用され、
     * 基本データ型を返す場合には必要ありません。
     * BuildTupleFromCStrings()を使用して返されるタプルを作成する場合にのみ必要です。
     */
    AttInMetadata *attinmeta;

    /*

     *  複数の呼び出しで必要とされる構造体に使われるメモリコンテキスト
     *
     * multi_call_memory_ctxは、SRF_FIRSTCALL_INIT()によってに設定され、
     * SRF_RETURN_DONE()がクリーンアップの際に使用します。
     * これはSRFの複数呼び出しで再利用される全てのメモリ用に最も適切なメモリコンテキストです。
     */
    MemoryContext multi_call_memory_ctx;

    /*

     * 省略可能: タプル説明を含む構造体へのポインタ。
     * tuple_descはタプル（つまり複合データ型）を返す場合に使用され、BuildTupleFromCStrings()
     * ではなくheap_form_tuple()を使用してタプルを作成する場合にのみ必要です。
     * 通常ここに格納されるTupleDescは最初にBlessTupleDesc()を最初に実行したものでなければなり
     * ません。
     */
    TupleDesc tuple_desc;

} FuncCallContext;


    


この基盤を使用して、SRFが使用するマクロは以下の通りです。


SRF_IS_FIRSTCALL()



これを使用して、関数が初めて呼び出されたのか、2回目以降に呼び出されたのかを判別します。
最初の呼び出し（のみ）で、


SRF_FIRSTCALL_INIT()



を呼び出し、FuncCallContextを初期化します。
最初の呼び出しを含むすべての呼び出しで、


SRF_PERCALL_SETUP()



を呼び出し、FuncCallContextを使用するように設定します。
    


現在の呼び出しで返すべきデータが関数にある場合は、次の


SRF_RETURN_NEXT(funcctx, result)



を使用して、そのデータを呼び出し側に返します。
（先に説明した通り resultはDatum型、つまり1つの値またはタプルである必要があります。）
最後に、関数がデータを返し終わったら、


SRF_RETURN_DONE(funcctx)



を使用してSRFを片付け、終了します。
    


SRFの呼び出し時に現行になっているメモリコンテキストは一時的なコンテキストで、各呼び出しの間に消去されます。
つまりpallocを使用して割り当てたもののすべてをpfreeする必要はありません。
これらはいずれ消去されるものだからです。
しかし、データ構造体を複数の呼び出しに渡って使用するように割り当てる場合は、どこか別の場所に置いておく必要があります。
multi_call_memory_ctxによって参照されるメモリコンテキストは、SRFの実行が終わるまで使用可能にしなければならないデータの保管場所として適しています。
つまり、ほとんどの場合、最初の呼び出しのセットアップ中にmulti_call_memory_ctxへ切り替える必要があるということです。
funcctx->user_fctxを使用して、このような複数の呼び出しに渡るデータ構造体へのポインタを保持します。
（multi_call_memory_ctxに配置したデータは、問い合わせが終了すると自動的に削除されるので、そのデータを手動で解放する必要はありません。）
    
警告


関数の実引数は呼出しの間変わらないままですが、一時的なコンテキストで引数の値をTOAST解除した場合には（これは通常、PG_GETARG_xxxマクロにより透過的に行なわれます）、TOAST解除されたコピーが各サイクルで解放されます。
従って、user_fctx内のその値への参照を保持する場合には、TOAST解除した後にmulti_call_memory_ctxにそれらをコピーするか、その値をTOAST解除するのはそのコンテキストの中だけであること確実にしなければなりません。
     



     完全な疑似コードの例を示します。


Datum
my_set_returning_function(PG_FUNCTION_ARGS)
{
    FuncCallContext  *funcctx;
    Datum             result;
    further declarations as needed

    if (SRF_IS_FIRSTCALL())
    {
        MemoryContext oldcontext;

        funcctx = SRF_FIRSTCALL_INIT();
        oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);

        /* 一度限りのセットアップコードがここに入ります: */
        user code
        if returning composite
            build TupleDesc, and perhaps AttInMetadata
        endif returning composite
        user code
        MemoryContextSwitchTo(oldcontext);
    }


    /* 毎回実行するセットアップコードがここに入ります: */
    user code
    funcctx = SRF_PERCALL_SETUP();
    user code


    /* これは、終了したかどうかをテストする方法の1つです: */
    if (funcctx->call_cntr < funcctx->max_calls)
    {

        /* ここで、別の項目を返します: */
        user code
        obtain result Datum
        SRF_RETURN_NEXT(funcctx, result);
    }
    else
    {

        /* これで項目を返し終わりました。 その事実を報告します。 */
        /* （ここにクリーンアップコードを置く誘惑に抵抗してください。） */
        SRF_RETURN_DONE(funcctx);
    }
}


    


複合型を返す単純なSRFの完全な例は以下の通りです。


PG_FUNCTION_INFO_V1(retcomposite);

Datum
retcomposite(PG_FUNCTION_ARGS)
{
    FuncCallContext     *funcctx;
    int                  call_cntr;
    int                  max_calls;
    TupleDesc            tupdesc;
    AttInMetadata       *attinmeta;


     /* 関数の最初の呼び出し時にのみ実行 */
    if (SRF_IS_FIRSTCALL())
    {
        MemoryContext   oldcontext;


        /* 呼び出し間で永続化する関数コンテキストを作成 */
        funcctx = SRF_FIRSTCALL_INIT();


        /* 複数関数呼び出しに適切なメモリコンテキストへの切り替え */
        oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);


        /* 返されるタプルの合計数 */
        funcctx->max_calls = PG_GETARG_INT32(0);


        /*  結果型用のタプル記述子を作成 */
        if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
            ereport(ERROR,
                    (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
                     errmsg("function returning record called in context "
                            "that cannot accept type record")));

        /*

         * 後で未加工のC文字列からタプルを作成するために必要となる
         * 属性メタデータの生成
         */
        attinmeta = TupleDescGetAttInMetadata(tupdesc);
        funcctx->attinmeta = attinmeta;

        MemoryContextSwitchTo(oldcontext);
    }


    /* 全ての関数呼び出しで実行 */
    funcctx = SRF_PERCALL_SETUP();

    call_cntr = funcctx->call_cntr;
    max_calls = funcctx->max_calls;
    attinmeta = funcctx->attinmeta;


    if (call_cntr < max_calls)    /* 他にも送るものがある場合  */
    {
        char       **values;
        HeapTuple    tuple;
        Datum        result;

        /*

         * 返すタプルを構築するためのvalues配列を用意します。
         * これは、後で適切な入力関数で処理される
         * C文字列の配列でなければなりません。
         */
        values = (char **) palloc(3 * sizeof(char *));
        values[0] = (char *) palloc(16 * sizeof(char));
        values[1] = (char *) palloc(16 * sizeof(char));
        values[2] = (char *) palloc(16 * sizeof(char));

        snprintf(values[0], 16, "%d", 1 * PG_GETARG_INT32(1));
        snprintf(values[1], 16, "%d", 2 * PG_GETARG_INT32(1));
        snprintf(values[2], 16, "%d", 3 * PG_GETARG_INT32(1));


        /* タプルの作成 */
        tuple = BuildTupleFromCStrings(attinmeta, values);


        /* タプルをdatumに変換 */
        result = HeapTupleGetDatum(tuple);


        /* クリーンアップ（これは必須ではありません） */
        pfree(values[0]);
        pfree(values[1]);
        pfree(values[2]);
        pfree(values);

        SRF_RETURN_NEXT(funcctx, result);
    }

    else    /* 何も残っていない場合 */
    {
        SRF_RETURN_DONE(funcctx);
    }
}





以下にこの関数をSQLで宣言する一例を示します。


CREATE TYPE __retcomposite AS (f1 integer, f2 integer, f3 integer);

CREATE OR REPLACE FUNCTION retcomposite(integer, integer)
    RETURNS SETOF __retcomposite
    AS 'filename', 'retcomposite'
    LANGUAGE C IMMUTABLE STRICT;



他にも以下のようにOUTパラメータを使用する方法もあります。


CREATE OR REPLACE FUNCTION retcomposite(IN integer, IN integer,
    OUT f1 integer, OUT f2 integer, OUT f3 integer)
    RETURNS SETOF record
    AS 'filename', 'retcomposite'
    LANGUAGE C IMMUTABLE STRICT;



この方法では、関数の出力型は形式上無名のrecord型になることに注意してください。
    

引数と戻り値の多様性





C言語関数は、「多様型」で説明されている多様型を受け付ける、または返すように宣言できます。
関数の引数もしくは戻り値が多様型として定義される時、関数の作成者は前もって呼び出しにおけるデータ型や返すべきデータ型が何であるかを知ることはできません。
Version-1 C関数で引数の実データ型と、返すべきと想定された型を発見できるための2つのルーチンがfmgr.hに用意されています。
このルーチンはget_fn_expr_rettype(FmgrInfo *flinfo)とget_fn_expr_argtype(FmgrInfo *flinfo, int argnum)という名前です。
これらは結果もしくは引数型のOIDを返します。
ただし、もし情報が利用できなければInvalidOidを返します。
flinfo構造体は通常fcinfo->flinfoとしてアクセスされます。
argnumパラメータは0から始まります。
また、get_fn_expr_rettypeの代わりにget_call_result_typeを使用することもできます。
また、variadic変数が配列に吸収されたかどうかを判定するために使用できるget_fn_expr_variadicがあります。
そのような吸収はvariadic関数が普通の配列型をとる場合に必ず起こりますので、これは特にVARIADIC "any"の場合に有用です。
    


例えば、任意の型の単一要素を受け付け、その型の1次元配列を返す関数を考えてみます。



PG_FUNCTION_INFO_V1(make_array);
Datum
make_array(PG_FUNCTION_ARGS)
{
    ArrayType  *result;
    Oid         element_type = get_fn_expr_argtype(fcinfo->flinfo, 0);
    Datum       element;
    bool        isnull;
    int16       typlen;
    bool        typbyval;
    char        typalign;
    int         ndims;
    int         dims[MAXDIM];
    int         lbs[MAXDIM];

    if (!OidIsValid(element_type))
        elog(ERROR, "could not determine data type of input");


    /* 与えられた要素がNULLかどうか注意しつつ、要素を取り出します。*/
    isnull = PG_ARGISNULL(0);
    if (isnull)
        element = (Datum) 0;
    else
        element = PG_GETARG_DATUM(0);


    /* 次元数は1 */
    ndims = 1;

    /* 要素を1つ */
    dims[0] = 1;

    /* 下限は1 */
    lbs[0] = 1;


    /* この要素型に関する必要情報を取り出す。 */
    get_typlenbyvalalign(element_type, &typlen, &typbyval, &typalign);


    /* ここで配列を作成 */
    result = construct_md_array(&element, &isnull, ndims, dims, lbs,
                                element_type, typlen, typbyval, typalign);

    PG_RETURN_ARRAYTYPE_P(result);
}


    


以下のコマンドはSQLでmake_array関数を宣言します。



CREATE FUNCTION make_array(anyelement) RETURNS anyarray
    AS 'DIRECTORY/funcs', 'make_array'
    LANGUAGE C IMMUTABLE;


    


C言語関数でのみ使用できる多様性の変異体があります。
"any"型のパラメータを取るように宣言できます。
（この型名は、SQL予約語でもあるため二重引用符で括らなくてはならないことに注意してください。）
これは、他の"any"引数が同じ型になることを強要することも、関数の結果型の決定を支援することもない点を除いて、anyelementのように動作します。
C言語関数は最終パラメータがVARIADIC "any"であるように宣言可能です。
これは任意の型の１つ以上の実引数と一致します（同じ型である必要はありません）。
これらの引数は、通常のvariadic関数で起こったように、配列の中にまとめられません。
それらは単に別々に関数に渡されるだけです。
PG_NARGS()マクロと上に記載したメソッドは、この機能を使用するときに実際の引数とその型を決定するため使用されなければなりません。
また、こうした関数のユーザは、その関数呼び出しにおいて、関数が配列要素を分離した引数として扱うだろうという予想のもとでVARIADICキーワードを良く使用するかもしれません。
関数自身は必要ならば、get_fn_expr_variadicを実行した後で、実引数がVARIADIC付きであることを検出した場合に、その動作を実装しなければなりません。
    

共有メモリ



起動時の共有メモリの要求





アドインはサーバ起動時に共有メモリを予約できます。
そのためには、shared_preload_librariesで指定して、こうしたアドインの共有ライブラリを事前にロードしなければなりません。
共有ライブラリは、_PG_init関数にshmem_request_hookを登録する必要があります。
このshmem_request_hookは以下を呼び出すことで共有メモリを予約できます。


void RequestAddinShmemSpace(Size size)



各バックエンドは、以下を呼び出すことによって、予約された共有メモリへのポインタを取得する必要があります。


void *ShmemInitStruct(const char *name, Size size, bool *foundPtr)



この関数がfoundPtrをfalseに設定する場合、呼び出し元は予約された共有メモリの内容を初期化する必要があります。
foundPtrがtrueに設定されている場合、共有メモリは他のバックエンドによって既に初期化されており、呼び出し元はそれ以上初期化する必要はありません。
     


競合状態を避けるために、各バックエンドは、以下のように共有メモリの割り当てを初期化する際にLWLockのAddinShmemInitLockを使用する必要があります。


static mystruct *ptr = NULL;
bool        found;

LWLockAcquire(AddinShmemInitLock, LW_EXCLUSIVE);
ptr = ShmemInitStruct("my struct name", size, &found);
if (!found)
{
    ... initialize contents of shared memory ...
    ptr->locks = GetNamedLWLockTranche("my tranche name");
}
LWLockRelease(AddinShmemInitLock);



shmem_startup_hookは初期化コードを便利に提供しますが、このフックにすべてのコードを置く必要はありません。
Windows（および EXEC_BACKENDが定義されている他の場所）では、各バックエンドは、共有メモリに接続した直後に登録されたshmem_startup_hookを実行し、上の例に示すように、アドインはこのフック内でAddinShmemInitLockを取得する必要があります。
他のプラットフォームでは、postmasterプロセスのみがshmem_startup_hookを実行し、各バックエンドは共有メモリへのポインタを自動的に継承します。
     


shmem_request_hookとshmem_startup_hookの例は、PostgreSQL™ソースツリーのcontrib/pg_stat_statements/pg_stat_statements.cにあります。
     

起動後の共有メモリの要求





サーバ起動後にshmem_request_hookの外部で行うことができる、より柔軟な共有メモリの予約方法がもう1つあります。
そのためには、共有メモリを使用する各バックエンドは、以下の関数を呼び出すことで共有メモリへのポインタを取得する必要があります。


void *GetNamedDSMSegment(const char *name, size_t size,
                         void (*init_callback) (void *ptr),
                         bool *found)



指定された名前の動的共有メモリセグメントがまだ存在しない場合、この関数はそれを割り当て、init_callbackコールバック関数で初期化します。
セグメントが他のバックエンドによってすでに割り当てられ、初期化されている場合、この関数は単に既存の動的共有メモリセグメントを現在のバックエンドに接続します。
     


サーバ起動時に予約される共有メモリとは異なり、GetNamedDSMSegmentで共有メモリを予約する際にAddinShmemInitLockを取得したり、競合状態を回避するための他の処理を行う必要はありません。
この関数は、セグメントを割り当てて初期化するバックエンドが1つだけであり、他のすべてのバックエンドが完全に割り当てられ、初期化されたセグメントへのポインタを受け取ることを保証します。
     


GetNamedDSMSegmentの完全な使用例は、PostgreSQL™ソースツリーのsrc/test/modules/test_dsm_registry/test_dsm_registry.cにあります。
     


LWLocks



起動時のLWLocksの要求





アドインはサーバ起動時にLWLocks（軽量ロック）を予約できます。
サーバ起動時に予約される共有メモリと同様に、アドインの共有ライブラリはshared_preload_librariesで指定して事前にロードする必要があり、_PG_init関数でshmem_request_hookを登録する必要があります。
このshmem_request_hookは以下を呼び出すことでLWLockを予約できます。


void RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)



これにより、num_lwlocks LWLocksの配列がtranche_nameという名前で利用可能になります。
この配列へのポインタは、以下を呼び出すことで取得できます。


LWLockPadded *GetNamedLWLockTranche(const char *tranche_name)


     

起動後のLWLocksの要求





サーバ起動後、shmem_request_hookの外部で、LWLockを取得するためのもっと柔軟な方法があります。
そのためには、まず以下を呼び出してtranche_idを割り当てます。


int LWLockNewTrancheId(void)



次に、新しいtranche_idを引数として渡して、各LWLockを初期化します。


void LWLockInitialize(LWLock *lock, int tranche_id)



共有メモリと同様に、各バックエンドは、新しいtranche_idを1つのプロセスだけが割り当て、新しいLWLockをそれぞれ初期化するようにする必要があります。
これを行う1つの方法は、AddinShmemInitLockを排他的に保持しておくことで、共有メモリ初期化コード内でこれらの関数を呼び出すことだけです。
GetNamedDSMSegmentを使用する場合、init_callbackコールバック関数でこれらの関数を呼び出すことで、競合状態を回避できます。
     


最後に、tranche_idを使用する各バックエンドは、次の呼び出しによってtranche_nameを関連付ける必要があります。


void LWLockRegisterTranche(int tranche_id, const char *tranche_name)


     


LWLockNewTrancheId、LWLockInitialize、LWLockRegisterTrancheの完全な使用例は、PostgreSQL™ソースツリーのcontrib/pg_prewarm/autoprewarm.cにあります。
     


カスタム待機イベント





アドインは、次の呼び出しを行うことで、待機イベントのタイプExtensionの下にカスタム待機イベントを定義できます。


uint32 WaitEventExtensionNew(const char *wait_event_name)



待機イベントはユーザ向けのカスタム文字列に関連付けられています。
例は、PostgreSQLソースツリーのsrc/test/modules/worker_spiにあります。
    


カスタム待機イベントはpg_stat_activityで見ることができます。


=# SELECT wait_event_type, wait_event FROM pg_stat_activity
     WHERE backend_type ~ 'worker_spi';
 wait_event_type |  wait_event
-----------------+---------------
 Extension       | WorkerSpiMain
(1 row)


    

インジェクションポイント





与えられたnameを持つインジェクションポイントは、マクロを使って宣言されます。


INJECTION_POINT(name, arg);




サーバコード内の戦略的なポイントに、すでにいくつかのインジェクションポイントが宣言されています。
新しいインジェクションポイントを追加した後、そのインジェクションポイントをバイナリで使用できるようにするには、コードをコンパイルする必要があります。
C言語で記述されたアドインは、同じマクロを使用して、独自のコードでインジェクションポイントを宣言できます。
インジェクションポイント名は小文字を使用し、単語はハイフンで区切る必要があります。
argは、実行時にコールバックに与えられるオプションの引数値です。
    


インジェクションポイントを実行すると、少量のメモリ割当てが必要になる場合がありますが、これは失敗する可能性があります。
動的割当てが許可されていないクリティカルセクションにインジェクションポイントが必要な場合は、以下のマクロによる2段階のアプローチを使用できます:


INJECTION_POINT_LOAD(name);
INJECTION_POINT_CACHED(name, arg);




クリティカルセクションに入る前にINJECTION_POINT_LOADを呼び出します。
共有メモリの状態を確認し、アクティブの場合はバックエンドプライベートメモリにコールバックをロードします。
クリティカルセクションでは、INJECTION_POINT_CACHEDを使用してコールバックを実行します。
    


アドインは、次の呼び出しを行うことで、すでに宣言されているインジェクションポイントにコールバックを結びつけることができます。


extern void InjectionPointAttach(const char *name,
                                 const char *library,
                                 const char *function,
                                 const void *private_data,
                                 int private_data_size);




nameは、実行時にlibraryからロードされたfunctionを実行する際のインジェクションポイントの名前です。
private_dataは、実行時にコールバックに引数として与えられるサイズprivate_data_sizeのデータのプライベート領域です。
    


InjectionPointCallbackのコールバックの例を以下に示します。


static void
custom_injection_callback(const char *name,
                          const void *private_data,
                          void *arg)
{
    uint32 wait_event_info = WaitEventInjectionPointNew(name);

    pgstat_report_wait_start(wait_event_info);
    elog(NOTICE, "%s: executed custom callback", name);
    pgstat_report_wait_end();
}



このコールバックは、深刻度がNOTICEのメッセージをサーバのエラーログに出力しますが、コールバックはより複雑なロジックを実装することができます。
    


インジェクションポイントに到達したときに実行する処理を定義するもう1つの方法は、通常のソースコードにならべてテストコードを追加することです。
これは、処理がロードされたモジュールにアクセスできないローカル変数に依存している場合などに便利です。
IS_INJECTION_POINT_ATTACHEDマクロを使うと、インジェクションポイントがアタッチされているかどうか確認できます、以下に例を示します:


#ifdef USE_INJECTION_POINTS
if (IS_INJECTION_POINT_ATTACHED("before-foobar"))
{
    /* change a local variable if injection point is attached */
    local_var = 123;

    /* also execute the callback */
    INJECTION_POINT_CACHED("before-foobar", NULL);
}
#endif



インジェクションポイントにアタッチされたコールバックは、IS_INJECTION_POINT_ATTACHEDマクロによって実行されないことに注意してください。
コールバックを実行したい場合は、上記の例のようにINJECTION_POINT_CACHEDも呼び出す必要があります。
    


オプションで、次の呼び出しによってインジェクションポイントを切り離すことができます。


extern bool InjectionPointDetach(const char *name);



成功した場合はtrue、それ以外の場合はfalseを返します。
    


インジェクションポイントに結び付けられたコールバックは、InjectionPointAttachが呼び出された後に起動されたバックエンドを含む全てのバックエンドで利用可能です。
サーバが実行中の間は結び付けられたままで、InjectionPointDetachを使用してインジェクションポイントが切り離されるまで結び付けられたままです。
    


例は、PostgreSQLソースツリーのsrc/test/modules/injection_pointsにあります。
    


インジェクションポイントを有効にするには、configureで--enable-injection-pointsを指定するか、Mesonで-Dinjection_points=trueを指定します。
    

カスタム累積統計





C言語で記述されたアドインは、累積統計システムに登録されているカスタムタイプの累積統計を利用することが可能です。
    


まず、登録されているカスタムタイプに関連するすべての情報を含むPgStat_KindInfoを定義します。
以下に例を示します:


static const PgStat_KindInfo custom_stats = {
    .name = "custom_stats",
    .fixed_amount = false,
    .shared_size = sizeof(PgStatShared_Custom),
    .shared_data_off = offsetof(PgStatShared_Custom, stats),
    .shared_data_len = sizeof(((PgStatShared_Custom *) 0)->stats),
    .pending_size = sizeof(PgStat_StatCustomEntry),
}




次に、このカスタムタイプを使用する必要のある各バックエンドは、pgstat_register_kindと、この統計情報の種類に関連するエントリを格納するために使用される一意のIDとともにこれを登録する必要があります:


extern PgStat_Kind pgstat_register_kind(PgStat_Kind kind,
                                        const PgStat_KindInfo *kind_info);



新しい拡張機能を開発する場合は、kindにPGSTAT_KIND_EXPERIMENTALを使用してください。
ユーザに拡張機能をリリースする準備ができたら、カスタム累積統計ページで種類IDを予約してください。
    


PgStat_KindInfoのAPIの詳細については、src/include/utils/pgstat_internal.hを参照してください。
    


登録された統計のタイプは、名前とユニークIDに関連付けられ、共有メモリ上でサーバ全体に共有されます。
統計のカスタムタイプを使用する各バックエンドは、各カスタムPgStat_KindInfoの情報を格納するローカルキャッシュを維持します。
    


 カスタム累積統計タイプを実装する拡張機能モジュールをshared_preload_librariesに設定し、PostgreSQL™の起動時に早期にロードされるようにします。
    


カスタム統計の登録方法と使用方法を説明する例は、src/test/modules/injection_pointsにあります。
    

拡張へのC++の利用





以下のガイドラインに従うことで、PostgreSQL™の拡張を構築するためC++モードのコンパイラを利用できます。

     
	

バックエンドからアクセスされる関数はすべてバックエンドに対してCインタフェースを提供しなければなりません。
このC関数はC++関数を呼びだすことができます。
例えば、バックエンドからアクセスされる関数にはextern Cリンクが必要です。
これはバックエンドとC++コードの間でポインタとして渡される関数にも必要です。
       

	

適切な解放メソッドを使ってメモリを解放してください。
例えば、ほとんどのバックエンドメモリはpalloc()で確保されますので、pfree()を使って解放してください。
この場合にC++のdelete()を使うと失敗するでしょう。
       

	

例外がCコードへ伝播しないようにしてください（extern C関数すべての最上位ですべての例外を捕捉するブロックを使ってください）。
メモリ不足のようなイベントにより例外が発生する可能性がありますので、C++コードが何も例外を発生させない場合であっても、これは必要です。
例外はすべて捕捉しなければなりません。
そして適切なエラーをCインタフェースに渡してください。
可能であれば、例外を完全に除去できるように-fno-exceptionsを付けてC++をコンパイルしてください。
その場合、例えばnew()で返されるNULLの検査など、C++コード内で失敗の検査を行わなければなりません。
       

	

C++コードからバックエンド関数を呼び出す場合には、C++呼び出しスタック内にC言語互換構造体（POD）のみが含まれていることを確認してください。
バックエンドのエラーは、非PODオブジェクトを持つC++呼び出しスタックを適切に戻すことができない、長距離longjmp()を生成しますので、これは必要です。
       




    


まとめると、バックエンドとやりとりするための壁の役割を担うextern C関数の背後にC++コードを配置して、例外、メモリ、呼び出しスタックそれぞれの漏れを避けるのが最善です。
    


関数最適化に関する情報





デフォルトでは、関数は、データベースシステムがその振舞いについてごく一部しか知らない単なる「ブラックボックス」です。
しかし、これは、関数を使う問い合わせがその実力よりもずっと効率悪く実行されるかもしれないことを意味します。
プランナが関数呼び出しを最適化するのを助ける補足の情報を提供できます。
   


CREATE FUNCTIONコマンドで宣言的な注釈として、いくつかの基本的な実態を提供できます。
この中でも最も重要なものは、関数の変動性分類(IMMUTABLE、STABLEまたはVOLATILE)です。関数を定義する時にはこれを正しく指定するよう常に注意すべきです。
並列問い合わせでその関数を使いたいのなら、並列処理での安全性の性質(PARALLEL UNSAFE、PARALLEL RESTRICTEDまたはPARALLEL SAFE)も指定しなければなりません。
関数の推定実行コストや集合を返す関数が返すと推定される行数を指定することも有用な場合があります。
しかし、この2つの実態を指定する宣言的な方法は定数を指定することしか許しておらず、それは多くの場合不適切です。
   


SQLで呼び出せる関数（対応する対象関数と呼ばれます）にプランナサポート関数を結び付け、それによって複雑すぎて宣言的に表現できない対象関数に関する知識を提供することも可能です。
（対象関数はそうではありませんが）プランナサポート関数はCで書かなければなりませんので、これは比較的少数の人が使う先進的な機能です。
   


プランナサポート関数には以下のSQLシグネチャがなければなりません。


supportfn(internal) returns internal



対象関数を作成する時にSUPPORT句を指定することで対象関数に結び付けられます。
   


プランナサポート関数のAPIの詳細は、PostgreSQL™ソースコードのファイルsrc/include/nodes/supportnodes.hで見つけられます。
ここではプランナサポート関数ができることの概略を説明するにとどめます。
サポート関数へ可能なリクエストの集合は拡張可能ですので、将来のバージョンではより多くのことが可能になっているでしょう。
   


一部の関数呼び出しでは、関数固有の属性に基づいて計画作成中に単純化できます。
例えば、int4mul(n, 1)はnだけに単純化できます。
この種の変形は、SupportRequestSimplifyリクエスト型プランナサポート関数に実装することにより実行されます。
問い合わせ解析木で見つかった対象関数それぞれに対して、サポート関数が呼び出されます。
特定の呼出しが別の形に単純化できることが分かれば、その式を表現する解析木を作成して返します。
これは、その関数に基づく演算子に対しても自動的に行なわれます—上の例ではn * 1もnへと単純化されます。
（しかし、これは単なる例であることに注意してください。この特定の最適化は、標準のPostgreSQL™では実際には行なわれません。）
サポート関数が単純化する状況では、PostgreSQL™が対象関数を呼び出すことはないとは保証しません。
単純化された式と対象関数の実際の実行が厳密に等しいことを確実にしてください。
   


booleanを返す対象関数に対しては、その関数を使ったWHERE句により選択される行の割合を推定するのが有用な場合がよくあります。
これはSupportRequestSelectivityリクエスト型を実装したサポート関数で行なえます。
   


対象関数の実行時間が、その入力に大きく依存する場合には、それに対応する定数でないコスト推定を提供するのが有用でしょう。
これはSupportRequestCostリクエスト型を実装したサポート関数で行なえます。
   


集合を返す対象関数に対しては、その関数が返す行の数の定数でない推定を提供するのが有用な場合がよくあります。
これはSupportRequestRowsリクエスト型を実装したサポート関数で行なえます。
   


booleanを返す対象関数に対しては、WHERE句に現れる関数呼び出しをインデックス可能な演算子句に変換できる場合があります。
変換された句は、正確にその関数の条件と等しいか幾分弱い（すなわち、関数の条件が受け付けない値も受け付けるかもしれません）でしょう。
後者の場合、インデックスの条件は損失があると言われます。それでもインデックスのスキャンには使えますが、それが本当にWHERE条件を満たすのかどうか、インデックスにより返された各行に対して関数呼び出しを実行しないといけません。
そのような条件を作るには、サポート関数はSupportRequestIndexConditionリクエスト型を実装しなければなりません。
   

ユーザ定義の集約





PostgreSQL™における集約関数は、状態値と状態遷移関数で定義されています。
つまり集約は、入力行を順次処理して更新される状態値を使用することで動作します。
新しい集約関数を定義するためには、状態値のデータ型、初期状態値、そして状態遷移関数のデータ型を選択します。
状態遷移関数は、前の状態値と現在行の集約のための入力値(複数可)を取り、新たな状態値を返します。
実行中に保持する状態値と求めている集約の結果のデータが違う場合は、最終関数を指定することもできます。
最終関数は、最後の状態値を取り、そして集約の結果として望まれているものを返します。
原則として、遷移関数と最終関数は、通常の関数であり集約以外の状況でも使用することができます。
（実際には、集約の一部として呼び出されて動作する専用の遷移関数を作成することは、多くの場合パフォーマンス上の理由から役立ちます。）
  


したがって、集約のユーザに見える引数と結果のデータ型に加え、引数と結果の型のどちらとも違う可能性がある内部状態値のデータ型があります。
  


最終関数を使わない集約を定義した場合は、列の値を行ごとに計算する関数を実行することで集約ができます。
sumはそのような集約の一例です。
sumは0から始まり、常に現在の行の値をその時点までの総和に追加します。
例えば、もしsum集約を複素数(complex)のデータ型で動作するようにしたければ、そのデータ型の加算関数だけが必要になります。
集約の定義は以下のようになります。



CREATE AGGREGATE sum (complex)
(
    sfunc = complex_add,
    stype = complex,
    initcond = '(0,0)'
);




これは以下のように使用します。



SELECT sum(a) FROM test_complex;

   sum
-----------
 (34,53.9)




（関数のオーバーロード機能に依存していることに注意してください。
sumという名前の集約関数は複数存在しますが、PostgreSQL™は列のcomplex型に適用できるsum関数を見つけ出すことができます。）
  


上記のsumの定義は、もし非NULLの入力値がなければ0（初期状態）を返します。
本来はこの場合NULLを返したいのではないかと思いますし、標準SQLではsumがそのように動作することを期待しています。
そうするためには、単にinitcond句を省略すれば、初期状態がNULLになります。
通常このことは、sfuncがNULL状態の入力をチェックする必要があることを意味します。
しかしsumや、その他max、minのような単純な集約にとっては、状態変数に最初の非NULL入力値を挿入し、
２番目の非NULL入力値で状態遷移関数の適用を開始すれば十分です。
PostgreSQL™は、もし初期状態がNULLで状態遷移関数が「strict（厳密）」と宣言されている場合、自動的にそのように動作します（つまりNULL入力では呼び出されないようになります）。
  


もう1つの「strict」な状態遷移関数のデフォルト動作としては、NULL入力値が現れると前の状態値が変わらずに維持されるということがあります。
したがって、NULL値は無視されます。
もしNULL入力に対し他の動作が必要な場合は、状態遷移関数をstrict宣言しないようにします。その代わりにNULL入力の検査をおこなうようにコーディングし、必要なことをすればよいのです。
  


avg（平均値計算）はもっと複雑な集約の一例です。
それには2つの変動する状態が必要になります。入力の合計と入力数のカウントです。
最終的な結果はこれらの値を割算することによって得られます。
平均値計算は配列を状態遷移値として使う典型的な実装です。
例えば、avg(float8)の組み込みの実装は以下のようになっています。



CREATE AGGREGATE avg (float8)
(
    sfunc = float8_accum,
    stype = float8[],
    finalfunc = float8_avg,
    initcond = '{0,0,0}'
);


  
注記


float8_accumは、入力の総和と個数だけではなく二乗和も蓄積しますので、２要素ではなく、３要素の配列を必要とします。
それは、avg以外の他の集約でも使用できるようにするためです。
   



SQLの集約関数はオプションによりDISTINCTとORDER BYを許可します。それは集約の遷移関数に渡される行や順序を制御します。これらのオプションは裏側で実装されるので、集約のサポート関数が気にする必要はありません。
  


さらなる詳細については、CREATE AGGREGATE(7)コマンドを参照してください。
  
移動集約モード





集約関数は、移動集約モードをオプションでサポートします。それは、ウィンドウ内のフレーム開始点を移動することで、集約関数の実行を大幅に高速にすることができます。
(集約関数としてのウィンドウ関数の使用に関する情報は「ウィンドウ関数」と 「ウィンドウ関数呼び出し」 を参照してください。)
基本的な考え方は、通常の「順方向」の遷移関数に加えて、集約は逆方向遷移関数を提供します。これによりウィンドウフレームが終了した時点で、集約の実行中の状態値から行を除外することが可能になります。
例えば、sum集約では、順方向遷移関数として加算を使用しており、逆方向遷移関数として減算を使用します。
逆方向遷移関数を持たないとウィンドウ関数は、フレームの開始点に移動するたびに一から集約を再計算しなければなりません。
その実行時間は、入力行の数のフレーム長の平均回数倍に比例します。
逆遷移関数を使用すると実行時間は、入力行の数にのみ比例します。
  


逆遷移関数には、現在の状態値と現在の状態が含まれる最も古い行の集約入力値（複数可）を渡されます。
与えられた入力行が集約されていなかった場合は、それに続く行のみ状態値を再構築する必要があります。
これは時々、順方向遷移関数は通常の集約モードよりも必要な状態を持つことが必要になります。
そのため、移動集約モードは、通常のモードから完全に分離した実装を使用します。
必要に応じて、独自の状態データ型、独自の順方向遷移関数、及びそれ独自の最終関数を持ちます。
これらは必要がない場合、通常モードのデータ型および関数と同じでも構いません。
  


例として、移動集約モードをサポートするために、以下のようにsum集約を拡張できます。



CREATE AGGREGATE sum (complex)
(
    sfunc = complex_add,
    stype = complex,
    initcond = '(0,0)',
    msfunc = complex_add,
    minvfunc = complex_sub,
    mstype = complex,
    minitcond = '(0,0)'
);




mで始まる名前のパラメータは、移動集約の実装を定義します。
逆遷移関数minvfunc以外はmのない通常の集約パラメータに対応しています。
  


移動集約モードのための順方向遷移関数は、新しい状態値としてnullを返すことが許されていません。
逆遷移関数がnullを返した場合、関数はこの特定の入力に対して状態計算を逆にできないことを示すものと考えます。そのような集約計算は、現在のフレーム開始位置からやり直すことになります。
この規則は、実行中の状態値から逆転することが現実的でないような、まれなケースで使用することが出来ます。
逆遷移関数はこれらのケースで「諦め」ますが、大部分のケースで動作することが出来ます。
例として、浮動小数点数を扱う集約は、NaN(非数)の入力が実行されている状態値から除去されなければならない時に諦めることを選択するかもしれません。
  


移動集約サポート関数を記述する際には、逆遷移関数が正しい状態値を正確に再構築できていることを確認することが重要です。
それ以外の場合は、移動集約モードが使用されているかどうかに応じてユーザに見える結果に違いがあるかもしれません。
逆遷移関数を追加する最初の簡単な例は、要件を満たせていないfloat4やfloat8入力のsumです。
稚拙なsum(float8)の宣言です。



CREATE AGGREGATE unsafe_sum (float8)
(
    stype = float8,
    sfunc = float8pl,
    mstype = float8,
    msfunc = float8pl,
    minvfunc = float8mi
);




しかし、この集約は、逆遷移関数を持たない場合と比較すると著しく異なる結果になります。
例を考えます。



SELECT
  unsafe_sum(x) OVER (ORDER BY n ROWS BETWEEN CURRENT ROW AND 1 FOLLOWING)
FROM (VALUES (1, 1.0e20::float8),
             (2, 1.0::float8)) AS v (n,x);




この問い合わせは ２行目の結果が期待した1ではなく0を返します。
 原因は、浮動小数点値で制限された精度です：1e20に1を加えても結果は再び1e20になります。その結果から1e20を引くと1ではなく0になります。
これは、PostgreSQL™限定ではなくて、一般的な浮動小数点演算の制限であることに注意してください。
  

多様引数と可変長引数集約





集約関数は多様状態遷移関数や多様最終関数を使用することができます。これにより、同じ関数を使用して複数の集約を実装することができます。
「多様型」に多様関数の説明があります。
もう少し細かく言うと、集約関数自体が、単一の集約定義で複数の入力データ型を扱うことができるように、多様入力型(複数可)と多様状態型を指定することができるということです。
以下に多様型の集約の例を示します。



CREATE AGGREGATE array_accum (anycompatible)
(
    sfunc = array_append,
    stype = anycompatiblearray,
    initcond = '{}'
);




ここでは、任意の呼び出しが出来る集約として実際の状態型を（実際の入力型がその要素となる）配列型にしています。
この集約の動作は、その配列型に全ての入力を連結することです。
（組み込みの集約関数array_aggは、この定義での動作よりもより良い性能で、類似の機能を提供しています。）
  


以下に2つの異なる実データ型を引数として使用した出力例を示します。



SELECT attrelid::regclass, array_accum(attname)
    FROM pg_attribute
    WHERE attnum > 0 AND attrelid = 'pg_tablespace'::regclass
    GROUP BY attrelid;

   attrelid    |              array_accum
---------------+---------------------------------------
 pg_tablespace | {spcname,spcowner,spcacl,spcoptions}
(1 row)

SELECT attrelid::regclass, array_accum(atttypid::regtype)
    FROM pg_attribute
    WHERE attnum > 0 AND attrelid = 'pg_tablespace'::regclass
    GROUP BY attrelid;

   attrelid    |        array_accum
---------------+---------------------------
 pg_tablespace | {name,oid,aclitem[],text[]}
(1 row)


  


通常、上記の例のように多様型の結果を返す集約関数は多様状態型を持ちます。
それは、最終関数を適正に宣言するために以下が必要になります。結果の型は多様型であり、引数の型は多様型でない必要があります。そうでないとCREATE FUNCTIONは、呼び出しから結果の型を推定することができないので拒否されます。
しかし、状態型として多様型を使用するのは時に不便です。
最も一般的なケースでは集約サポート関数は、C言語で状態型をinternal（内部データ）と宣言して書かれる必要があります。なぜなら、SQLには同等のものがないためです。
このケースに対処するために、集約の入力引数と一致する追加の「ダミー」引数を取るように最終関数を宣言することが可能です。
最終関数が呼び出されたときに特定の値を使用できないため、このようなダミー引数は常にnull値として渡されます。
それらは、多様最終関数の結果の型を集約の入力型（複数可）に合わせる場合のみ使用します。
 例えば以下の定義は、組み込み集約のarray_aggと等価です。



CREATE FUNCTION array_agg_transfn(internal, anynonarray)
  RETURNS internal ...;
CREATE FUNCTION array_agg_finalfn(internal, anynonarray)
  RETURNS anyarray ...;

CREATE AGGREGATE array_agg (anynonarray)
(
    sfunc = array_agg_transfn,
    stype = internal,
    finalfunc = array_agg_finalfn,
    finalfunc_extra
);




ここで、finalfunc_extraオプションは最終関数が状態値に加えて、集約の入力引数（複数可）に対応する追加のダミー引数（複数可）を受け取れることを指定します。
array_agg_finalfnの追加引数anynonarrayにより有効であると宣言をすることができます。
  


集約関数は、通常の関数の場合とほとんど同じ方法で、最後の引数をVARIADIC配列として宣言することで、可変長の引数を受け入れるようにすることができます。 「可変長引数を取るSQL関数」を参照してください。
集約の遷移関数(複数可)は、それら最後の引数と同じ配列型を持っている必要があります。
遷移関数(複数可)は、典型的には、VARIADIC付きになりますが、これは必須ではありません。
  
注記


可変長集約は、ORDER BYオプション（「集約式」を参照してください）との組み合わせでは、パーサが実引数かどうかを見分けることができないので、簡単に誤用されるようになります。
ORDER BYの右側にあるすべてのものは、集約への引数ではなく、ソートキーであることに留意してください。
例えば、


SELECT myaggregate(a ORDER BY a, b, c) FROM ...



パーサには集約関数の引数１つと３つのソートキーと見えます。
しかし、これは以下のようにユーザが意図している可能性があります。


SELECT myaggregate(a, b, c ORDER BY a) FROM ...



もしmyaggregateが可変長引数の場合、これらの呼び出しが両方とも妥当かもしれません。
   


同じ理由で、通常の引数の数とは違う同じ名前の集約関数を作成する前に二度考えるのが賢明です。
   


順序集合の集約





これまでに記述された集約は「通常の」集約です。
PostgreSQL™は、順序集合集約もサポートします。それは、通常の集約とは２つの大きな違いがあります。
第一に、入力行ごとに評価される通常の集約引数に加えて、順序集合集約は、集約の呼び出しの時に一度だけ評価される「直接」引数を持つことが出来ます。
第二に、集約引数の構文は通常、明示的にソート順を指定します。
順序集合集約は通常、呼び出すソート順が必要な局面、例えば順位や百分位数(パーセンタイル)のような特定の行の順序に依存して計算する実装のために使用されます。
例えば、以下は組み込み関数percentile_discの定義と同じです。



CREATE FUNCTION ordered_set_transition(internal, anyelement)
  RETURNS internal ...;
CREATE FUNCTION percentile_disc_final(internal, float8, anyelement)
  RETURNS anyelement ...;

CREATE AGGREGATE percentile_disc (float8 ORDER BY anyelement)
(
    sfunc = ordered_set_transition,
    stype = internal,
    finalfunc = percentile_disc_final,
    finalfunc_extra
);




この集約は、float8型の直接引数（百分位数）と、任意のソート可能なデータ型を集約の入力として取ります。
それは、以下のように家計所得の中央値を得ることができます。



SELECT percentile_disc(0.5) WITHIN GROUP (ORDER BY income) FROM households;
 percentile_disc
-----------------
           50489




ここで0.5は直接の引数です。百分位数が行毎に変化する値であったら意味がありません。
  


通常の集約の場合とは違って、順序集合集約のための入力行のソートは、裏側でおこなわれていません。それは集約のサポート関数の責任です。
典型的な実装方法は、集約の状態値に「tuplesort」オブジェクトへの参照を保持し、そのオブジェクトに入ってくる行を供給した後、ソートを完了し、最終関数内でデータを読み出すことです。
この設計は、最終関数がソートされるデータに追加の「架空」行を注入するなどの特別な操作を実行するのを可能にします。
通常の集約は多くの場合、PL/pgSQLまたは別のPL言語で書かれたサポート関数で実装することができますが、順序集合集約は状態値が任意のSQLデータ型のように定義可能ではないため一般的にC言語で書かれます。
(上の例では、状態値が内部型 — として宣言されていることに気づくでしょう。これは典型的なものです。)
また、最終関数がソートを実行しますので、遷移関数を後で再び実行し、引き続き入力行を追加することはできません。
これは最終関数がREAD_ONLYではないことを意味します。追加の最終関数呼び出しで既にソートされた状態を使えるのなら、CREATE AGGREGATEでREAD_WRITEまたはSHAREABLEと宣言しなければなりません。
  


順序集合集約のための状態遷移関数は、現在の状態値を加えた行ごとに集約入力値を受信し、更新された状態値を返します。
これは通常の集約と同じ定義ですが、（もしあっても）直接の引数が提供されていないことに注意してください。
最終関数は、最後の状態値、もしあれば直接の引数の値、および（finalfunc_extraが指定された場合）集約入力（複数）に対応するnull値を受信します。
通常の集約と同様に、finalfunc_extraは集約が多様(型)である場合にのみ便利です。そのとき集約の入力型(複数可)が、最終関数の結果の型と合わせるために追加のダミー引数が必要になります。
  


現在、順序集合集約は、ウィンドウ関数として使用することができないので移動集約モードをサポートする必要はありません。
  

部分集約





省略可能ですが、集約関数は部分集約をサポート出来ます。
部分集約の考え方は、入力データの異なるサブセットに状態遷移関数を独立して実行し、その後、それらのサブセットから得られた状態値を結合します。こうすることで、単一の操作ですべての入力をスキャンした結果であったのと同じ状態値を生成します。
このモードは、別のワーカープロセスをテーブルの異なる部分をスキャンさせることによって並列集約のために使用することが出来ます。
それぞれのワーカーが、部分状態値を生成し、最後にこれらの状態値を結合して最終状態値を生成します。
（将来このモードは、ローカルとリモートのテーブルの集計を結合させるなどの目的のために使用されるかもしれません。それはまだ実装されていません。）
  


部分集約をサポートするためには、集約定義が結合関数を提供しなければなりません。
それは、２つの集約の状態型（入力行の２つのサブセットに対する集約した結果を表わす）の値を取り、状態型の新しい値を生成します。状態は、それらの行の集合の組み合わせを集約した後であろうものを表します。
２つのセットからの入力行の相対的な順序であったであろうものが指定されません。
これは入力行の順序に敏感な集約のための結合関数を定義することは通常不可能だということを意味します。
  


簡単な例を示します。MAXとMIN集約は、その遷移関数として使用される「２つの大なり」比較、又は「２つの小なり」比較関数と同じ結合関数を指定することで部分集約をサポートすることが出来ます。
SUM集約は結合関数として加算関数が必要になります。
（ここでも、入力データ型よりも状態値が広い場合を除き遷移関数と同じです。）
  


結合関数は、２番目の引数として、基本となる入力型ではなく状態型の値を取りますが、遷移関数のように扱われています。
具体的には、null値とstrict関数に対処するためのルールは似ています。
また、initcondが非nullである集約定義を指定する場合、各部分集約の実行のための初期状態として使用されるだけでなく、各部分の結果をその状態に結合するために呼び出される結合関数の初期状態としても使用されることに留意してください。
  


集約の状態型がinternalで宣言されている場合、その結果が集約状態値の正しいメモリコンテキストに割り当てられていることは結合関数の責任です。
これは特に、以下のことを意味します。最初の入力がNULLだと、単純に２番目の入力を返すのは無効です。なぜなら、その値が間違ったコンテキストになり、そして十分な寿命を持っていないことになります。
  


集約の状態型をinternalで宣言することは、シリアライズ関数とデシリアライズ関数を提供するために通常適切です。これらの関数は、状態値を１つのプロセスから別のプロセスにコピーすることを可能にします。
これらの関数がなければ、並列集約を行うことができず、ローカル/リモート集約などの将来のアプリケーションも、おそらく動作しません。
  


シリアライズ関数は、internalの単一の引数を取り、フラットなblobのバイト状態値パッケージを表わすbytea型を返します。
逆にデシリアライズ関数はその変換を逆にします。
bytea型とinternal型の２つの引数を取り、internal型を返します。
（第２引数は使用せず常に０ですが、型の安全性の理由のために必要とされます。）
デシリアライズ関数の結果は単純に、現在のメモリコンテキストに割り当てる必要があります。結合関数の結果とは異なり、長寿命でありません。
  


集約を並列に実行するために、集約自体にPARALLEL SAFEマークが、されなければならないというのは注目する価値があります。
それのサポート関数のパラレルセーフマークは参照されません。
  

集約サポート関数





C言語で作成された関数は、AggCheckCallContextを呼び出して、集約サポート関数として呼び出されているかを検出することができます。
例えば、


if (AggCheckCallContext(fcinfo, NULL))



この検査を行う理由の１つは、これが真の場合、先頭の入力は一時的な状態値であるはずなので、新規に割り当ててコピーを持つことなくそのまま変更しても安全だからです。
例としてint8inc()を参照してください。
（集約遷移関数は常に遷移値をその場で変更できますが、集約最終関数ではそのようなことをするのは一般には勧められません。もし、そうするなら集約を定義する時にその振舞いを宣言しなければなりません。
より詳しくはCREATE AGGREGATE(7)を見てください。）
  


AggCheckCallContextの第２引数は、集約の状態値が保管されているメモリコンテキストを取得するために使用できます。
これは状態値として「展開された」オブジェクト（「TOASTの考慮」を参照）を使用する遷移関数に便利です。
最初の呼び出しで、遷移関数はメモリコンテキストが集約状態のコンテキストの子である展開されたオブジェクトを返し、その後の呼び出しで同じ展開されたオブジェクトを保持し続ける必要があります。
array_append()の例を参照してください。
（array_append()は組み込み集約の遷移関数ではありませんが、カスタム集約の遷移関数で使用すると効率的に動作するように書かれています。）
  


別のサポートルーチンとしてC言語で書かれたAggGetAggref集約関数が利用可能です。それは、集約の呼び出しを定義するAggrefパースノードを返します。
これは主に順序集合集約で有用です。これはソートの順序をどう実現するかAggrefノードの内部構造まで検査することができます。
その例は、PostgreSQL™ソースコード中のorderedsetaggs.cから見つけることができます。
  


ユーザ定義の型





「PostgreSQL™の型システム」に述べられているように、PostgreSQL™は、新しい型をサポートするように拡張することができます。
本節では、SQL言語以下のレベルで定義されるデータ型である基本型を新しく定義する方法について説明します。
新しい基本型の作成には、低レベル言語、通常Cで作成された型を操作する関数の実装が必要です。
  


本節で使用する例は、ソース配布物内のsrc/tutorialディレクトリにcomplex.sqlとcomplex.cという名前で置いてあります。
この例の実行方法についてはディレクトリ内のREADMEを参照してください。
  

  
  
  
  

ユーザ定義データ型では必ず入力関数と出力関数が必要です。
これらの関数は、その型が（ユーザによる入力とユーザへの出力のための）文字列としてどのように表現されるかと、その型がメモリ中でどう構成されるかを決定します。
入力関数は引数としてヌル終端文字列を取り、その型の（メモリ中の）内部表現を返します。
出力関数は引数としてその型の内部表現を取り、ヌル終端文字列を返します。
単に格納するだけではなく、その型に操作を加えたいのであれば、その型に持たせたいすべての操作を実装した関数をさらに提供しなければなりません。
 


例えば、複素数を表現するcomplex型を定義することを考えます。
おそらく、次のようなC構造体で複素数をメモリ中で表現することがごく自然な方法です。



typedef struct Complex {
    double      x;
    double      y;
} Complex;




単一のDatum値で扱うには大き過ぎるので、これは参照渡し型にしなければなりません。
 


この型の外部文字列表現として(x,y)形式の文字列を使用することを選択します。
 


入出力関数、特に出力関数を作成することは困難ではありません。
しかし、この型の外部表現文字列を定義する時、その表現のための完全で堅牢なパーサを入力関数として作成しなければなりません。
以下に例を示します。



PG_FUNCTION_INFO_V1(complex_in);

Datum
complex_in(PG_FUNCTION_ARGS)
{
    char       *str = PG_GETARG_CSTRING(0);
    double      x,
                y;
    Complex    *result;

    if (sscanf(str, " ( %lf , %lf )", &x, &y) != 2)
        ereport(ERROR,
                (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
                 errmsg("invalid input syntax for type %s: \"%s\"",
                        "complex", str)));

    result = (Complex *) palloc(sizeof(Complex));
    result->x = x;
    result->y = y;
    PG_RETURN_POINTER(result);
}





出力関数は以下のように簡単にできます。



PG_FUNCTION_INFO_V1(complex_out);

Datum
complex_out(PG_FUNCTION_ARGS)
{
    Complex    *complex = (Complex *) PG_GETARG_POINTER(0);
    char       *result;

    result = psprintf("(%g,%g)", complex->x, complex->y);
    PG_RETURN_CSTRING(result);
}



 


入出力関数は各々の逆関数になるように注意しなければなりません。
そうしないと、データをファイルにダンプし、それを読み戻そうとする際に、深刻な問題が発生するでしょう。
これは特に浮動小数点数が関係する際によく発生する問題です。
 


省略することができますが、ユーザ定義型はバイナリ入出力関数を提供することができます。
バイナリ入出力は通常テキスト入出力より高速ですが、テキスト入出力より移植性がありません。
テキスト入出力と同様に、外部バイナリ表現を正確に定義することは作成者の責任です。
ほとんどの組み込みデータ型は、マシンに依存しないバイナリ表現を提供しようとしています。
complex型ではfloat8型のバイナリ入出力コンバータを元にします。



PG_FUNCTION_INFO_V1(complex_recv);

Datum
complex_recv(PG_FUNCTION_ARGS)
{
    StringInfo  buf = (StringInfo) PG_GETARG_POINTER(0);
    Complex    *result;

    result = (Complex *) palloc(sizeof(Complex));
    result->x = pq_getmsgfloat8(buf);
    result->y = pq_getmsgfloat8(buf);
    PG_RETURN_POINTER(result);
}

PG_FUNCTION_INFO_V1(complex_send);

Datum
complex_send(PG_FUNCTION_ARGS)
{
    Complex    *complex = (Complex *) PG_GETARG_POINTER(0);
    StringInfoData buf;

    pq_begintypsend(&buf);
    pq_sendfloat8(&buf, complex->x);
    pq_sendfloat8(&buf, complex->y);
    PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}



 


入出力関数を作成し共有ライブラリ内にコンパイルすれば、SQLでcomplex型を定義することができます。
まずシェル型として宣言します。



CREATE TYPE complex;




これは、入出力関数を定義する時にこの型を参照することができるプレースホルダとして動作します。
この後以下のように、入出力関数を定義することができます。



CREATE FUNCTION complex_in(cstring)
    RETURNS complex
    AS 'filename'
    LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_out(complex)
    RETURNS cstring
    AS 'filename'
    LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_recv(internal)
   RETURNS complex
   AS 'filename'
   LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_send(complex)
   RETURNS bytea
   AS 'filename'
   LANGUAGE C IMMUTABLE STRICT;


 


最後にデータ型の完全な定義を提供することができます。


CREATE TYPE complex (
   internallength = 16,
   input = complex_in,
   output = complex_out,
   receive = complex_recv,
   send = complex_send,
   alignment = double
);


 

  
  

新しい基本型を定義すると、PostgreSQL™は自動的にその型の配列のサポートを提供します。
配列型は通常、基本型の名前の前にアンダースコア文字_が付いた名前になります。
 


データ型が存在するようになると、そのデータ型に対する有用な操作を提供する関数を宣言することができます。
そしてその関数を使用する演算子も定義できます。
また、必要に応じて、そのデータ型用のインデックスをサポートするための演算子クラスも作成することができます。
こうした追加層については後の節で説明します。
 


データ型の内部表現が可変長であるなら、内部表現は可変長データの標準配置に従わなければなりません。先頭の4バイトはchar[4]フィールドで、直接アクセスされることは決してありません（慣習的にvl_len_と呼ばれます）。
SET_VARSIZE()マクロを使用してデータの総量をこのフィールドに格納し、また、VARSIZE()を使用して取り出さなければなりません。
(長さフィールドはプラットフォームに依存してエンコードされるかもしれませんので、このマクロが存在します。)
 


詳細についてはCREATE TYPE(7)コマンドの説明を参照してください。
 
TOASTの考慮





データ型の値により（内部形式で）容量が変動する場合、そのデータ型をTOAST可能とすることが通常は望ましいです（「TOAST」を参照してください）。
ヘッダのオーバーヘッドを減らすことでTOASTは小さなデータに対しても容量を抑えることができますので、データが常に圧縮したり外部に格納したりするには小さ過ぎる場合でも、これを行なうことを推奨します。
 


TOAST格納をサポートするために、そのデータ型を扱うC関数は常に、PG_DETOAST_DATUMを使用して、渡されたTOAST化値を注意深く展開しなければなりません。
（通常、こうした詳細は型独自のGETARG_DATATYPE_Pマクロを定義して隠蔽します。）
その後、CREATE TYPEコマンドを実行する際に、内部長をvariableと指定し、また、plain以外の適当な格納オプションを選択してください。
 


データの整列が（単なる特定の関数向けやデータ型が常にバイト単位の整列を規定しているため）重要でない場合、PG_DETOAST_DATUMのオーバーヘッドの一部を省くことができます。
代わりにPG_DETOAST_DATUM_PACKEDを使用してください（通常はGETARG_DATATYPE_PPマクロを定義することで隠蔽されます）。
そして、VARSIZE_ANY_EXHDRおよびVARDATA_ANYマクロを使用して、圧縮されている可能性があるデータにアクセスしてください。
ここでも、これらのマクロから返されるデータは、たとえデータ型定義で整列を規定していたとしても、整列されません。
整列が重要であれば、通常のPG_DETOAST_DATUMインタフェースを介して実行してください。
 
注記


古めのコードではしばしばvl_len_をchar[4]ではなくint32として宣言しています。
この構造体定義が少なくともint32で整列されたフィールドを持っている限り、これは問題ありません。
しかし、整列されていない可能性があるデータを扱う場合に、こうした構造体定義を使用することは危険です。
データが実際に整列されていると仮定することをコンパイラの規則としているかもしれず、この場合、整列に厳密なアーキテクチャではコアダンプしてしまいます。
  



TOASTのサポートにより有効になるもう一つの機能は以下のような可能性です。ディスクに格納されたフォーマットよりも扱うのにより便利な展開されたインメモリデータ表現を持てるかもしれません。
通常のもしくは「単純な」varlena格納フォーマットは結局のところ単なるバイトのblobです。例えば、メモリの別の場所にコピーされるかもしれませんのでポインタを含むことができません。
複雑なデータ型に対しては、単純なフォーマットは扱うのにかなり高価になるかもしれません。そこで、PostgreSQL™は計算するのにより適した表現に単純なフォーマットを「展開する」方法を提供し、そのフォーマットをインメモリでそのデータ型の関数から関数へと渡します。
 


展開された格納を使うためには、データ型はsrc/include/utils/expandeddatum.hにある規則に従う展開されたフォーマットを定義し、単純なvarlenaの値を展開されたフォーマットに「展開する」関数や展開されたフォーマットを通常のvarlena表現に「戻す」関数を提供しなければなりません。
そのデータ型のC関数はすべてどちらの表現でも確実に受け付けられるようにしてください。おそらく、受け取ったらすぐに一方からもう一方に変換することによって実現することになるでしょう。
これはそのデータ型の既存の関数をすべて一度に修正することを要求するものでありません。なぜなら、PG_DETOAST_DATUMマクロが展開された入力を通常の単純なフォーマットに変換するために定義されているからです。
そのため、単純なvarlenaフォーマットを扱う既存の関数は、わずかに非効率ではありますが、展開された入力も続けて扱えるでしょう。より良いパフォーマンスが重要になるまで、変更は必要ありません。
 


展開された表現の扱い方を知っているC関数は典型的には以下の2つに分類されます。展開されたフォーマットのみを扱えるものと、展開されたものも単純なvarlena入力も扱えるものです。
前者は書くのが簡単ですが、全般にあまり効率的ではないかもしれません。なぜなら、一つの関数による使用のために単純な入力を展開された形に変換することは、展開されたフォーマットで操作することで節約されることよりコストが掛かるかもしれないからです。
展開されたフォーマットのみ扱うことが必要であるなら、単純な入力の展開された形への変換は引数を取得するマクロの中に隠すことができます。それゆえ、関数は伝統的なvarlena入力を扱うものよりもより複雑に見えることはありません。
両方の型の入力を扱うためには、外部やショートヘッダや圧縮されたvarlenaの入力はトースト解除をするけれども展開された入力に対してはトースト解除をしないような、引数を取得する関数を書いてください。
そのような関数は、単純なvarlenaフォーマットと展開されたフォーマットの共用体へのポインタを返すよう定義できます。
呼び出し側はどちらのフォーマットを受け取ったのか確定するのにVARATT_IS_EXPANDED_HEADER()マクロを使えます。
 


TOAST基盤により、通常のvarlenaの値を展開された値から区別できるようになるだけでなく、展開された値への「読み書き可能」なポインタと「読み取りのみ」のポインタを区別できるようになります。
展開された値を検査することが必要なだけのものや安全で意味論的に不可視の方法で変更するC関数は、受け取ったポインタがどちらの種類であるか気にする必要はありません。
入力値の修正されたバージョンを生成するC関数は、読み書き可能なポインタを受け取ったのであれば展開された入力値をその場で修正できますが、読み取りのみのポインタを受け取ったのであれば入力を変更してはなりません。その場合には、まず値をコピーして、修正するための新しい値を生成しなければなりません。
展開された値を新しく作成したC関数は、必ずそこへの読み書き可能なポインタを返すことを推奨します。
また、読み書き可能な展開された値をその場で修正するC関数は、途中で失敗した場合に気をつけて値を健全な状態のままにしておくことを推奨します。
 


展開された値を扱う例は、標準配列基盤、特にsrc/backend/utils/adt/array_expanded.cを見てください。
 


ユーザ定義の演算子





演算子は裏側で実際の作業を行う関数を呼び出す「構文上の飾り」です。
ですから、演算子を作成する前にまずこの基礎となる関数を作成する必要があります。
しかし、演算子は単なる構文上の飾りではありません。
問い合わせプランナによる演算子を使用する問い合わせの最適化を補助する追加情報をやり取りするからです。
次節では、この追加情報について重点的に説明します。
  


PostgreSQL™では前置演算子、中置演算子をサポートしています。
演算子はオーバーロード可能です。

つまり、同じ演算子名をオペランドの数と型が異なる演算子に対して使用することができるということです。
問い合わせが実行されると、システムは与えられたオペランドの数と型より呼び出すべき演算子を決定します。
  


以下に2つの複素数の加算を行う演算子を作成する例を示します。
既にcomplex型の定義（「ユーザ定義の型」を参照）を作成していることを前提としています。
まず、実作業を行う関数が必要です。
その後、演算子を定義できます。



CREATE FUNCTION complex_add(complex, complex)
    RETURNS complex
    AS 'filename', 'complex_add'
    LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR + (
    leftarg = complex,
    rightarg = complex,
    function = complex_add,
    commutator = +
);


  


これで以下のような問い合わせを実行できるようになります。



SELECT (a + b) AS c FROM test_complex;

        c
-----------------
 (5.2,6.05)
 (133.42,144.95)


  


ここでは二項演算子をどのように作成するのかを示しました。
前置演算子を作成するには、単にleftargを省略するだけです。
function句と引数用の句のみがCREATE OPERATORでの必須項目です。
例で示したcommutator句は省略可能で、問い合わせオプティマイザへのヒントとなります。
commutatorやその他のオプティマイザへのヒントについての詳細は次節で説明します。
  

演算子最適化に関する情報





PostgreSQL™の演算子定義では、システムに演算子がどう振舞うかに関する有用なことを通知する、いくつかのオプション句を持つことができます。
これらの句により演算子を使用する問い合わせの実行速度がかなり向上しますので、これらの句は適切な時には常に提供しなければなりません。
しかし、提供する時にはそれらが正しいことを確認しなければいけません！
間違って最適化用の句を使用すると、問い合わせの低速化、わけのわからないおかしな出力、その他有害な事が起こり得ます。
最適化用の句についてわからなければ、使用しなくても構いません。
使用された時よりも問い合わせの実行が遅くなるかもしれないというだけです。
   


PostgreSQL™の今後のバージョンで、最適化用の句はさらに追加される可能性があります。
ここで説明するものはすべて、バージョン18.0で有効なものです。
   


演算子の基となる関数にプランナサポート関数を結び付けて、システムに演算子の振舞いを通知する別の方法を提供することも可能です。
より詳細な情報については「関数最適化に関する情報」を参照してください。
   
COMMUTATOR





COMMUTATOR句が与えられた場合、それは定義する演算子の交代演算子となる演算子の名前です。
取り得る全ての入力値x、yに対して、(x A y)が(y B x)と等しい時、演算子Aは演算子Bの交代演算子であると言います。
また、BはAの交代演算子となることにも注意してください。
例えば、通常、特定のデータ型用の演算子<と>は互いの交代演算子になります。
また、通常、演算子+は自身が交代演算子となります。
しかし、通常、演算子-は交代演算子を持ちません。
    


交代可能な演算子の左オペランドの型は、その交代演算子の右オペランドの型と同一で、その逆もまた同様です。
したがって、PostgreSQL™で交代演算子を検索する時に必要なものは交代演算子の名前のみになりますので、COMMUTATOR句でそれのみを与えておけば十分です。
    


インデックスや結合句で使用される演算子では交代演算子の情報を提供することが必須です。
これにより、問い合わせオプティマイザがその句を他の種類の実行計画で必要とされる形式に「ひっくり返す」ことができるためです。
例えば、tab1.x = tab2.yのようなWHERE句を持った問い合わせを考えてみます。
ここでtab1.xとtab2.yはユーザ定義型で、tab2.yにはインデックスが付いていると仮定します。
オプティマイザは、この句をtab2.y = tab1.xという形にひっくり返す方法を知らない限り、インデックススキャンを生成できません。
インデックススキャン機構は演算子の左側にインデックス付けされた列があることを想定しているためです。
PostgreSQL™は簡単にこの変形が有効であると前提しません。
=演算子の作成者がこれが有効であることを、交代演算子情報を持つ演算子であると印付けて指定しなければなりません。
    

NEGATOR





NEGATOR句が与えられた場合、それは定義する演算子の否定子となる演算子の名前です。
入力値xとyの取り得るすべての値に対して両方の演算子が論理値を返し、(x A y)がNOT (x B y)と等しい場合、演算子Aは演算子Bの否定子であると言います。
また、BはAの否定子でもあることに注意してください。
例えば、ほとんどのデータ型では<と>=は否定子の対となります。
演算子が自身の否定子になることは決してありません。
    


交代演算子と異なり、単項演算子の対は互いに否定子として有効に指定されます。
つまりすべてのxに対して(A x)がNOT (B x)と等しいことを意味します。
   


ある演算子の否定子は、その演算子定義の左オペランド、右オペランドと同じ型を持たなければなりません。
ですので、COMMUTATOR句と同様に演算子の名前のみNEGATOR句で与えるだけで済みます。
   


NOT (x = y)という式をx <> yという形に単純化させることが可能なので、否定子があると問い合わせオプティマイザにとって非常に役に立ちます。
他の再配置の結果としてNOT操作が挿入されることがありますので、この現象は思ったより頻繁に起こります。
   

RESTRICT





RESTRICT句が与えられた場合、それは、その演算子用の制限選択評価関数を指定します。
（演算子名ではなく関数名であることに注意してください。）
RESTRICT句はboolean型を返す二項演算子に対してのみ有効です。
制限選択評価の目的は、現在の演算子と特定の定数値についてのWHERE句


column OP constant



の条件を満たすテーブル内の行の割合を推測することです。
この形式を持ったWHERE句によって、どのくらいの行が除外されるのかを通知することで、オプティマイザの手助けをします。
（定数値が左項にあったら何が起こるかという疑問が生じるかもしれませんが、それはCOMMUTATORが存在する理由の1つでもあります。）
   


新しい制限選択評価関数の記述方法は本章の内容を超えていますが、幸いなことに、数多いユーザ定義の演算子に対し通常いくつかのシステム標準の評価関数を使用すれば事足ります。
システム標準の制限評価関数には下記のものがあります。
    
	=用のeqsel
	<>用のneqsel
	<用のscalarltsel
	<=用のscalarlesel
	>用のscalargtsel
	>=用のscalargesel


   


非常に高いもしくは低い選択性を所有する演算子が、まったく等しいか等しくないかにかかわらず、eqselまたはneqselを使用しないことも往々にして可能です。
例えば、近似等号用の幾何演算子はテーブルのエントリの小部分にのみに合致すると仮定してeqselを使用します。
   


範囲比較のために数値スカラに変換することに多少の有意性があるデータ型を比較するために、scalarltsel、scalarlesel、scalargtsel、scalargeselを使用することも可能です。
できればsrc/backend/utils/adt/selfuncs.cのconvert_to_scalar()のルーチンで理解できるところにデータ型を追加してください。
（今後、このルーチンはpg_typeシステムカタログの列で識別された、データ型ごとの関数で置き換えられなければなりませんが、まだ行われていません。）
これを行わなくても動きますが、オプティマイザは本来の推測機能を十分発揮することができません。
   


もう1つの便利な組み込みの選択評価関数はmatchingselで、入力データ型に対して標準的な最頻値やヒストグラム統計を収集する場合、ほぼすべての二項演算子に対して動作します。
デフォルトの評価はeqselで設定されているデフォルトの評価の2倍に設定されており、等価性ほど厳密でないような比較演算子には最適です。
(裏で実行されるgeneric_restriction_selectivity関数に異なるデフォルトの評価を与えて呼び出すこともできます。)
   


さらにsrc/backend/utils/adt/geo_selfuncs.cには、幾何演算子に対する選択評価関数areasel、positionsel、contselがあります。
本章の執筆時点では、これらは単なるスタブですが、ともかく使いたい（あるいは改良したい）こともあるでしょう。
   

JOIN





JOIN句が与えられた場合、それはその演算子用の結合選択評価関数の名前を指定します。
（これが演算子名ではなく関数名であることに注意してください。）
JOIN句はboolean型を返す二項演算子に対してのみ有効です。
結合選択評価の目的は、現在の演算子について、WHERE句


table1.column1 OP table2.column2



を満たすテーブルの組み合わせの行の割合を推測することです。
RESTRICT句の使用と同様、これはいくつかの取り得る結合手順のうち、どれが最も仕事量が少ないように考えられるのかをオプティマイザに計算させることで、大きなオプティマイザへの援助となります。
    


以前と同様、本章でも結合選択評価関数の作成方法は説明しません。
しかし適用できるものがあれば、単に標準の評価関数を使用することをお勧めします。
     
	=用のeqjoinsel 
	<>用のneqjoinsel
	<用のscalarltjoinsel
	<=用のscalarlejoinsel
	>用のscalargtjoinsel
	>=用のscalargejoinsel
	汎用の一致演算子用のmatchingjoinsel
	2次元面積を基にした比較用のareajoinsel
	2次元位置を基にした比較用のpositionjoinsel
	2次元包含関係を基にした比較用のcontjoinsel


    

HASHES





HASHES句が存在する場合、それはシステムに対して、この演算子に基づいた結合にハッシュ結合方法を使っても問題がないことを伝えます。
HASHES句はboolean型を返す二項演算子にのみ有効です。
実際には、この演算子はあるデータ型またはデータ型の組み合わせの等価性を表現しなければなりません。
    


ハッシュ結合の基礎となっている仮定は、結合演算子は左項と右項の値が同じハッシュコードを持つ時にのみ真を返すことができるということです。
2つの値が異なるハッシュのバケットに置かれた場合、結合演算子の結果が必ず偽であるという仮定を、結合は暗黙的に行い、それらを比べることをしません。
したがって、何らかの等価性を表さない演算子にHASHES句を指定することはまったく意味がありません。
ほとんどの場合、両辺に同一のデータ型をとる演算子に対してハッシュ機能をサポートすることが現実的です。
しかし時として、２つ以上のデータ型に対して互換的なハッシュ関数、つまり、値自体が異なる表現形態を持っていたとしても「等しい」値に対して同一のハッシュコードを生成する関数を設計することもできます。
例えば、サイズが異なる整数に対するハッシュでは、この性質を調整することで大変単純になります。
    


HASHES印を付けるためには、結合演算子はハッシュインデックスの演算子族内になければなりません。
演算子を作成する時には参照する演算子族がまだ存在しませんので、演算子の作成時にこれは強制されていません。
しかし、演算子族が存在しない場合に、この演算子をハッシュ結合で使用しようとすると、実行時に失敗します。
システムは、演算子の入力データ型用のデータ型特有のハッシュ関数を検索するために、演算子族を必要とします。
もちろん、演算子族を作成する前に適切なハッシュ関数を作成しなければなりません。
    


ハッシュ関数を準備する時には注意が必要です。
マシンに依存することから、ハッシュ結合が適切な処理を行わずに失敗することがあるからです。
例えば、データ型が不要な部分を埋めるビットを持つ可能性がある構造体である場合、（推奨する戦略である、他の演算子と関数を作成して、不要なビットが常にゼロになることを保証しない限り、）その構造体全体を単にhash_anyに渡すことはできません。
この他の例として、IEEE浮動小数点標準を満たすマシンでは、マイナス0とプラス0は異なる値（異なるビット列）になりますが、この比較は等価と定義されます。
浮動小数点数値がマイナス0を持つ可能性があるのであれば、それがプラス0と同じハッシュコードを確実に生成するような処置が必要です。
    


ハッシュ結合可能な演算子は、同一演算子族内に存在する交代演算子を持たなければなりません。
（２つの入力データ型が同じ場合はその演算子自体が交代演算子となります。異なる場合は関連する等価性演算子となります。）
これを満たさないと、演算子の使用時にプランナエラーが発生します。
また、複数のデータ型をサポートするハッシュ演算子族に対して、データ型の組み合わせすべてに対する等価性演算子を持たせることを推奨します（必要ではありません）。
これにより、より優れた最適化が可能になります。
    
注記


ハッシュ結合可能演算子の基となる関数はimmutableもしくはstableでなければなりません。
volatileの場合、システムはその演算子を決してハッシュ結合に使用しません。
    

注記


ハッシュ結合可能演算子の基となる関数が厳密（strict）な場合、その関数は完全、つまり2つの非NULL入力に対して、真または偽を返し、決してNULLを返さないものである必要があります。
この規則に従わないと、IN操作におけるハッシュ最適化は間違った結果を生成する可能性があります。
（特に、標準に従うとNULLが正しい答えになるところでINは偽を返すかもしれません。
もしくは、NULLという結果に対する準備をしていないといったエラーを生成するかもしれません。）
    


MERGES





MERGES句が存在する場合、それはシステムに対して、この演算子に基づいた結合にマージ結合方法を使っても問題がないことを伝えます。
MERGES句はboolean型を返す二項演算子にのみ有効です。
実際には、演算子がデータ型またはデータ型の組み合わせの等価性を表すものであることが必要です。
    


マージ結合は、左側のテーブル、右側のテーブルを順序よくソートし、並列にスキャンするという考えに基づいています。
したがって、両データ型には完全な順序付け機能が必要であり、結合演算子はソート順で「同じ場所」にある値の対のみを成功したものとするものである必要があります。
実際問題として、これは、結合演算子は等価性のような振舞いをしなければならないことを意味しています。
しかし、マージ結合は論理的な互換性を持つ別の2つのデータ型を取ることができます。
例えば、smallint対integerの等価性演算子はマージ結合が可能です。
両方のデータ型を論理的な互換性を保つ順番にソートする演算子のみが必要です。
    


MERGES印を付けるためには、結合演算子は、btreeインデックス演算子族の等価性メンバとして存在しなければなりません。
演算子を作成する時には参照する演算子族がまだ存在しませんので、演算子の作成時にこれは強制されていません。
しかし、対応する演算子族が存在しない限り、実際にマージ結合に使用されることはありません。
このように、MERGESフラグは、プランナが対応する演算子族を検索すべきかどうかを決定する際のヒントとして動作します。
    


マージ結合可能な演算子は、同一演算子族内に存在する交代演算子を持たなければなりません。
（２つの入力データ型が同じ場合はその演算子自体が交代演算子となります。異なる場合は関連する等価性演算子となります。）
これを満たさないと、演算子の使用時にプランナエラーが発生します。
また、複数のデータ型をサポートするbtree演算子族に対して、データ型の組み合わせすべてに対する等価性演算子を持たせることを推奨します（必要ではありません）。
これにより、より優れた最適化が可能になります。
    
注記


マージ結合可能演算子の背後にある関数はimmutableもしくはstableでなければなりません。
volatileの場合、システムはその演算子を決してマージ結合に使用しようとはしません。
    



インデックス拡張機能へのインタフェース





これまでのところでは、新しい型や新しい関数、および新しい演算子をどの様に定義するかについて説明してきました。
しかしながら、新しい型の列に対するインデックスをまだ作成することができません。
このためには、新しいデータ型に対する演算子クラスを定義する必要があります。
本節では、複素数を値の絶対値の昇順にソートし格納するB-treeインデックスメソッドを使った新しい演算子クラスについての実行例を用いて、演算子クラスの概念を説明します。
  


演算子クラスを演算子族にまとめ、意味的に互換性を持つクラス間の関係を表すことができます。
1つのデータ型のみが含まれる場合、演算子クラスで十分です。
そこでまずこうした状況に注目し、その後で演算子族に戻ります。
  
インデックスメソッドと演算子クラス





演算子クラスは、B-TreeやGINなどのインデックスアクセスメソッドに関連付けられています。
カスタムインデックスアクセスメソッドはCREATE ACCESS METHOD(7)で定義できます。
詳細は63章インデックスアクセスメソッドのインタフェース定義を参照してください。
  


インデックスメソッドのルーチンには、直接的にインデックスメソッドが演算するデータ型の情報は何も与えられていません。
代わりに、演算子クラスが、特定のデータ型の操作においてインデックスメソッドを使用する必要がある演算の集合を識別します。

演算子クラスという名前の由来は、それらが指定するものの1つにインデックスで使用できる（つまり、インデックススキャン条件に変換できる）WHERE句演算子の集合があるからです。
また、演算子クラスは、インデックスメソッドの内部演算で必要な、しかしインデックスで使用できるWHERE句演算子には直接的には対応しない、サポート関数をいくつか指定することができます。
  


同じ入力データ型およびインデックスメソッドに対して複数の演算子クラスを定義することが可能です。
これにより、1つのデータ型に対して、複数のインデックス付けセマンティクスの集合を定義することができます。
例えば、B-treeインデックスでは、処理するデータ型ごとにソート順を定義する必要があります。
複素数データ型では、複素数の絶対値によりデータをソートするB-tree演算子クラスと、実部の数値によりソートするB-tree演算子クラスを持つといった方法は、有用かもしれません。
通常は演算子クラスの1つが一般的に最も有用であると判断され、そのデータ型およびインデックスメソッドに対するデフォルトの演算子クラスとして設定されます。
  


複数の異なるインデックスメソッドに、同一の演算子クラス名を使用することができます（例えば、B-treeとハッシュインデックスメソッドは、両方ともint4_opsという名前の演算子クラスを持つことができます）。
ただし、そのような各クラスは独立した実体であり、別々に定義される必要があります。
  

インデックスメソッドのストラテジ





演算子クラスに関連付けられている演算子は、「ストラテジ番号」により識別されます。
「ストラテジ番号」は、演算子クラスのコンテキスト内における各演算子のセマンティクスを識別するためのものです。
例えば、B-treeの場合、キーが小さい方から大きい方へ厳密に並んでいなければなりません。
したがって、B-treeに関しては、「より小さい」および「以上」のような演算子は興味深いと言えます。
PostgreSQL™ではユーザが演算子を定義できるため、PostgreSQL™は演算子の名前（例えば<や>=）を見つけても、その演算子がどのような比較を行うかを判断することはできません。
その代わり、インデックスメソッドは「ストラテジ」の集合を定義します。
「ストラテジ」は汎用演算子と考えることができます。
各演算子クラスは、特定のデータ型およびインデックスセマンティクスの解釈において、実際のどの演算子が各ストラテジに対応しているかを指定します。
  


表36.3「B-treeストラテジ」に示すように、B-treeインデックスメソッドではストラテジを5つ定義します。
  
表36.3 B-treeストラテジ
	演算	ストラテジ番号
	小なり	1
	以下	2
	等しい	3
	以上	4
	大なり	5





ハッシュインデックスは等価性のみをサポートします。
したがって、表36.4「ハッシュストラテジ」に示すように、ストラテジを1つのみ定義します。
  
表36.4 ハッシュストラテジ
	演算	ストラテジ番号
	等しい	1





GiSTインデックスはより柔軟です。
固定のストラテジの集合をまったく持ちません。
代わりに、特定のGiST演算子クラスの「consistent」サポートルーチンが、ストラテジ番号が何を意味するかを解釈します。

例として、2次元幾何オブジェクトをインデックス付けし、「R-tree」ストラテジを提供する組み込みのGiSTインデックス演算子クラスのいくつかを表36.5「GiSTによる2次元の「R-tree」ストラテジ」に示します。
この内4個は2次元に対する（重複、合同、包含、被包含）試験です。
残りの内4個はX方向のみに対する、残り4個はY方向のみに対する同一の試験を提供します。
  
表36.5 GiSTによる2次元の「R-tree」ストラテジ
	演算	ストラテジ番号
	完全に左側	1
	右側にはみ出さない	2
	重なる	3
	左側にはみ出さない	4
	完全に右側	5
	同じ	6
	含む	7
	含まれる	8
	上側にはみ出さない	9
	完全に下側	10
	完全に上側	11
	下側にはみ出さない	12





SP-GiSTインデックスは柔軟性という点でGiSTと似ており、固定のストラテジ群を持ちません。
その代わりに、各演算子クラスのサポートルーチンが演算子クラスの定義に従ってストラテジ番号を解釈します。
例として、点に対する組み込みの演算子クラスで使用されるストラテジ番号を表36.6「SP-GiSTの点に関するストラテジ」に示します。
  
表36.6 SP-GiSTの点に関するストラテジ
	演算	ストラテジ番号
	厳密に左側	1
	厳密に右側	5
	同一	6
	包含される	8
	厳密に下	10
	厳密に上	11





GINインデックスは、いずれも固定のストラテジ群を持たないという点で、GiSTおよびSP-GiSTインデックスと似ています。
その代わりに、各演算子クラスのサポートルーチンが演算子クラスの定義に従ってストラテジ番号を解釈します。
例として、配列に対する組み込みの演算子クラスで使用されるストラテジ番号を表36.7「GIN 配列のストラテジ」に示します。
  
表36.7 GIN 配列のストラテジ
	演算	ストラテジ番号
	重複	1
	包含	2
	包含される	3
	等しい	4





BRINインデックスは、いずれも固定のストラテジ群を持たないという点で、GiST、SP-GiSTおよびGINインデックスと似ています。
その代わりに、各演算子クラスのサポートルーチンが演算子クラスの定義に従ってストラテジ番号を解釈します。
例として、組み込みのMinmax演算子クラスで使用されるストラテジ番号を表36.8「BRIN Minmaxストラテジ」に示します。
  
表36.8 BRIN Minmaxストラテジ
	演算	ストラテジ番号
	小なり	1
	以下	2
	等しい	3
	以上	4
	大なり	5





上記の演算子はすべて論理値を返すことに注意してください。
実際、インデックスで使用されるためにWHERE句の最上位レベルで現れなければなりませんので、インデックスメソッド検索演算子として定義された、すべての演算子の戻り値の型はbooleanでなければなりません。
（一部のインデックスアクセスメソッドは、通常論理型の値を返さない順序付け演算子もサポートします。
この機能については「順序付け演算子」で説明します。）
  

インデックスメソッドのサポートルーチン





ストラテジは通常、システムがインデックスを使う方法を判断するために十分な情報ではありません。
実際には、インデックスメソッドが動作するためには、さらにサポートルーチンを必要とします。
例えばB-treeインデックスメソッドは、2つのキーを比較し、より大きいのか、等しいのか、より小さいのかを決定できなければなりません。
同様に、ハッシュインデックスは、キー値のハッシュコードを計算できなければなりません。
これらの操作はSQLコマンドの条件内で使用される演算子とは対応しません。
これらはインデックスメソッドで内部的に使用される管理用ルーチンです。
  


ストラテジと同じように、演算子クラスにより、与えられたデータ型およびセマンティクス解釈に対して、どの特定の関数がこれらの各役割を果たすべきであるかが識別されます。
インデックスメソッドは必要な関数の集合を定義し、演算子クラスは、これらをインデックスメソッドで指定された「サポート関数番号」に代入することによって、使用すべき正しい関数を識別します。
  


さらに、演算子クラスの中には、ユーザがその振る舞いを制御するパラメータを指定できるものもあります。
各組み込みインデックスアクセスメソッドには省略可能なoptionsサポート関数があり、演算子クラスに固有のパラメータの集合を定義しています。
  


表36.9「B-treeサポート関数」に示すように、B-treeは比較サポート関数を必須とし、演算子クラスの作者が望めば4つの追加サポート関数を与えることができます。
これらのサポート関数の要件は「B-Treeサポート関数」でさらに詳しく解説されています。
  
表36.9 B-treeサポート関数
	関数	サポート番号
	

2つのキーを比較し、最初のキーが2番目のキーより小さいか、等しいか、大きいかを示す、0未満、0、もしくは0より大きい整数を返します
       	1
	

C言語から呼び出し可能なソートサポート関数のアドレスを返します（省略可能）
       	2
	

テスト値をベース値にオフセットを加減算したものと比較して、比較結果に従って真または偽を返します（省略可能）
       	3
	

演算子クラスを使うインデックスがB-tree重複排除最適化を安全に適用できるかどうかを決定します（省略可能）
       	4
	

この演算子クラスに固有のオプションを定義します（省略可能）
       	5
	

C言語から呼び出し可能なスキップサポート関数のアドレスを返します（省略可能）
       	6





表36.10「ハッシュサポート関数」に示すようにハッシュインデックスでは一つのサポート関数が必須で、演算子クラス作者が望むなら、さらに2つのサポート関数を与えることができます。
  
表36.10 ハッシュサポート関数
	関数	サポート番号
	キーの32ビットハッシュ値を計算	1
	

64bitソルトが与えられたキーに対する64ビットハッシュ値を計算します。
ソルトが0なら結果の下位32ビットは関数1で計算された値と一致しなければなりません（省略可能）
       	2
	

この演算子クラスに固有のオプションを定義します（省略可能）
       	3





表36.11「GiSTサポート関数」に示すように、GiSTインデックスには12のサポート関数があり、また、そのうち7つは省略可能です。
(詳細については「GiSTインデックス」を参照してください。)
  
表36.11 GiSTサポート関数
	関数	説明	サポート番号
	consistent	キーが問い合わせ条件を満たすかどうかを決定します	1
	union	キー集合の和集合を計算します	2
	compress	キーまたはインデックス付けされる値の圧縮表現を計算します（省略可能）	3
	decompress	圧縮されたキーを伸張した表現を計算します（省略可能）	4
	penalty	指定された副ツリーキーを持つ副ツリーに新しいキーを挿入する時のペナルティを計算します	5
	picksplit	ページのどのエントリを新しいページに移動させるかを決定し、結果ページ用の統合キーを計算します	6
	same	2つのキーを比較し、等しければ真を返します	7
	distance	キーと問い合わせ値との間の距離を決定します（省略可能）	8
	fetch	インデックスオンリースキャンのために圧縮されたキーの元の表現を計算します（省略可能）	9
	options	この演算子クラスに固有のオプションを定義します（省略可能）	10
	sortsupport	高速インデックス構築で使用されるソート比較を提供する（省略可能）	11
	translate_cmptype	比較型を演算子クラスで使用されるストラテジ番号に変換します（省略可能）	12





表36.12「SP-GiSTサポート関数」に示すように、SP-GiSTインデックスでは6つのサポート関数があり、また、そのうち1つは省略可能です。
(詳細については「SP-GiSTインデックス」を参照してください。)
  
表36.12 SP-GiSTサポート関数
	関数	説明	サポート番号
	config	演算子クラスに関する基本情報を提供します	1
	choose	新しい値を内部タプルに挿入する方法を決定します	2
	picksplit	値集合を分割する方法を決定します	3
	inner_consistent	ある問い合わせでサブパーティションの検索が必要かどうか決定します	4
	leaf_consistent	キーが問い合わせ修飾子を満たすかどうか決定します	5
	options	この演算子クラスに固有のオプションの集合を定義します（省略可能）	6





表36.13「GINサポート関数」に示すように、GINインデックスには、7つのサポート関数があり、また、そのうち4つは省略可能です。
(詳細については「GINインデックス」を参照してください。)
  
表36.13 GINサポート関数
	関数	説明	サポート番号
	compare	

2つのキーを比較し、0未満、0、0より大きな整数を返します。
それぞれ最初のキーの方が大きい、等しい、小さいを示します
       	1
	extractValue	インデックス付けされる値からキーを抽出します	2
	extractQuery	問い合わせ条件からキーを抽出します	3
	consistent	

問い合わせ条件に一致する値かどうかを決定します(2値の亜種)。
(サポート関数6があれば、省略可能)
       	4
	comparePartial	

問い合わせからの部分キーとインデックスからのキーを比較し、それぞれ、GINがこのインデックス項目を無視しなければならないか、一致する項目として扱わなければならないか、インデックススキャンを中止しなければならないかを示す、ゼロより小さい、ゼロ、ゼロより大きい整数値のいずれかを返します（省略可能）
       	5
	triConsistent	

問い合わせ条件に一致する値かどうかを決定します(3値の亜種)。
(サポート関数4があれば、省略可能)
       	6
	options	

この演算子クラスに固有のオプションの集合を定義します（省略可能）
       	7





表36.14「BRINサポート関数」に示すようにBRINインデックスには、5つの基本サポート関数があり、また、そのうち1つは省略可能です。
基本関数の版には追加のサポート関数の提供を要求するものもあります。
(詳細については「拡張性」を参照してください。)
  
表36.14 BRINサポート関数
	関数	説明	サポート番号
	opcInfo	

インデックスが貼られた列の要約データを記述する内部情報を返します
       	1
	add_value	既存のサマリインデックスタプルに新しい値を足します	2
	consistent	値が問い合わせ条件に一致するかどうかを決めます	3
	union	

2つのサマリタプルの結合を計算します
       	4
	options	

この演算子クラスに固有のオプションの集合を定義します（省略可能）
       	5





検索演算子と異なり、サポート関数は特定のインデックスメソッドが想定するデータ型、例えばB-tree用の比較関数の場合、符号付き整数を返します。
同様に各サポート関数に渡す引数の数と型はインデックスメソッドに依存します。
B-treeとハッシュでは、比較関数とハッシュ処理サポート関数はその演算子クラスに含まれる演算子と同じ入力データ型を取りますが、GIN、SP-GiST、GiST、およびBRINサポート関数のほとんどはそうではありません。
  

例





ここまでで概念について説明してきました。
ここで、新しい演算子クラスを作成する有用な例を紹介します。
（この例を作業できるように、ソース配布物内のsrc/tutorial/complex.cとsrc/tutorial/complex.sqlにコピーがあります。）
この演算子クラスは、複素数をその絶対値による順番でソートする演算子をカプセル化します。
ですので、その名前にcomplex_abs_opsを選びました。
最初に演算子の集合が必要になります。
演算子を定義する処理は「ユーザ定義の演算子」で説明しました。
B-tree上の演算子クラスでは、以下の演算子が必要です。

   
	絶対値による、小なり（ストラテジ1）
	絶対値による、以下（ストラテジ2）
	絶対値による、等しい（ストラテジ3）
	絶対値による、以上（ストラテジ4）
	絶対値による、大なり（ストラテジ5）



  


比較演算子の関連する集合を定義する時にエラーの発生を最小にする方法は、まず、B-tree比較サポート関数を作成し、その後に、他の関数をサポート関数に対する1行のラッパーとして作成することです。
これにより、境界となる条件で一貫性のない結果を得る確率が減少します。
この手法に従って、まず以下を作成します。



#define Mag(c)  ((c)->x*(c)->x + (c)->y*(c)->y)

static int
complex_abs_cmp_internal(Complex *a, Complex *b)
{
    double      amag = Mag(a),
                bmag = Mag(b);

    if (amag < bmag)
        return -1;
    if (amag > bmag)
        return 1;
    return 0;
}





これで、小なり関数は以下のようになります。



PG_FUNCTION_INFO_V1(complex_abs_lt);

Datum
complex_abs_lt(PG_FUNCTION_ARGS)
{
    Complex    *a = (Complex *) PG_GETARG_POINTER(0);
    Complex    *b = (Complex *) PG_GETARG_POINTER(1);

    PG_RETURN_BOOL(complex_abs_cmp_internal(a, b) < 0);
}





他の4関数での違いは、内部関数の結果とゼロとをどのように比べるかだけです。
  


次に、関数と、この関数に基づく演算子をSQLで宣言します。



CREATE FUNCTION complex_abs_lt(complex, complex) RETURNS bool
    AS 'filename', 'complex_abs_lt'
    LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR < (
   leftarg = complex, rightarg = complex, procedure = complex_abs_lt,
   commutator = > , negator = >= ,
   restrict = scalarltsel, join = scalarltjoinsel
);



正しく交代演算子と否定演算子を指定する他、適切な制限選択性関数と結合関数を指定することが重要です。さもないと、オプティマイザはインデックスを効率的に使用することができません。
  


他にも注意すべきことがここで発生します。

  
	

例えば、complex型を両オペランドに取る=という名前の演算子を1つしか作成できません。
この場合、complex用の他の=演算子を持てません。
しかし、実際にデータ型を作成しているとしたら、おそらく、複素数の（絶対値の等価性ではない）通常の等価性演算を行う=を欲するでしょう。
この場合、complex_abs_eq用の演算子名に別の名前を使用しなければなりません。
    

	

PostgreSQL™では異なる引数のデータ型であれば同じSQL名の演算子を使うことができますが、Cでは1つの名前で1つのグローバル関数が使えるだけです。
ですから、C関数はabs_eqのような単純な名前にするべきではありません。
通常は、他のデータ型の関数と衝突しないように、C関数名にデータ型名を入れておくことを勧めます。
    

	

abs_eq関数のSQL名は、PostgreSQL™が引数のデータ型によって同じ名前を持つ他のSQL関数から区別してくれることを期待して作ることができます。
ここでは例を簡単にするために、関数にCレベルとSQLレベルで同じ名前を与えています。
    




  


次のステップは、B-treeに必要なサポートルーチンの登録です。
これを実装するCコードは、演算子関数と同じファイルに入っています。
以下は、関数をどのように宣言するかを示します。



CREATE FUNCTION complex_abs_cmp(complex, complex)
    RETURNS integer
    AS 'filename'
    LANGUAGE C IMMUTABLE STRICT;


  


これまでで、必要な演算子およびサポートルーチンを持つようになりました。
最後に演算子クラスを作成することができます。



CREATE OPERATOR CLASS complex_abs_ops
    DEFAULT FOR TYPE complex USING btree AS
        OPERATOR        1       < ,
        OPERATOR        2       <= ,
        OPERATOR        3       = ,
        OPERATOR        4       >= ,
        OPERATOR        5       > ,
        FUNCTION        1       complex_abs_cmp(complex, complex);



  


これで終わりです！
これでcomplex列にB-treeインデックスを作って使用することが可能になったはずです。
  


以下のように、演算子エントリをより冗長に記述することができます。


        OPERATOR        1       < (complex, complex) ,



しかし、演算子が、演算子クラスの定義と同一のデータ型を取る場合、このような記述をする必要はありません。
  


上記の例は、ユーザがこの新しい演算子クラスをcomplexデータ型のデフォルトのB-tree演算子クラスにしようとしていると仮定しています。
このようにしない場合、DEFAULTという単語を取り除いてください。
  

演算子クラスと演算子族





これまでは暗黙的に、演算子クラスは1つのデータ型のみを扱うものと仮定してきました。
確かに特定のインデックス列にはたった1つのデータ型しかあり得ませんが、異なるデータ型の値とインデックス列の比較を行うインデックス操作はよく役に立ちます。
また、演算子クラスと関連したデータ型を跨る演算子を使用できる場合、他のデータ型は独自の関連した演算子クラスを持つことがよくあります。
SQL問い合わせを最適化する際にプランナを補助することができますので、関連したクラスを明示的に関連付けることは（どのように動作するかに関する知識をプランナは多く持ちますので、特にB-tree演算子クラスで）有用です。
  


こうした要望に応えるためにPostgreSQL™は演算子族という概念を使用します。
演算子族は1つ以上の演算子クラスから構成されます。
また、演算子族全体に属するが、演算子族内の個々のクラスには属さないインデックス可能演算子や対応するサポート関数を含めることもできます。
こうした演算子や関数を、特定のクラスに束縛されていないことから、演算子族内で「自由」であると呼びます。
通常、各演算子クラスは1つのデータ型演算子を持ちますが、データ型を跨る演算子は演算子族内で自由になります。
  


演算子族内の演算子と関数はすべて、意味的な互換性を持たなければなりません。
この互換性についての必要条件はインデックスメソッドによって設定されます。
このため、なぜ演算子族の特定の部分集合をわざわざ演算子クラスとして選び出しているのか疑問を持つかもしれません。
実際多くの目的では、演算子クラスの分類は重要ではなく、演算子族が唯一の興味のあるグループ化です。
演算子クラスを定義する理由は、演算子族のどれだけの部分が何らかのインデックスをサポートするために必要かを指定することです。
ある演算子クラスを使用するインデックスが存在する場合、その演算子クラスはそのインデックスを削除しない限り削除できません。
しかし、演算子族の他の部分、すなわち、他の演算子クラスや自由な演算子は削除できます。
したがって、演算子クラスは、特定のデータ型に対するインデックスを使う上で適度に必要とされる最少の演算子と関数の集合を含むように指定すべきです。
そしてその後で、関連するが基本的なものではない演算子を演算子族の自由なメンバとして追加できます。
  


例えばPostgreSQL™にはinteger_opsという組み込みのB-tree演算子族があります。
ここにはbigint (int8)、integer (int4)、smallint (int2)型の列上へのインデックスにそれぞれ対応したint8_ops、int4_ops、int2_opsという演算子クラスが含まれています。
また、上記の型の内任意の2つの型を比較できるように、この演算子族にはデータ型を跨る比較演算子も含まれます。
このため、上記の型のいずれかに対するインデックスを他の型の値との比較の際に使用することができます。
この演算子族は以下の定義により多重化されています。



CREATE OPERATOR FAMILY integer_ops USING btree;

CREATE OPERATOR CLASS int8_ops
DEFAULT FOR TYPE int8 USING btree FAMILY integer_ops AS
  -- standard int8 comparisons
  -- 標準int8比較
  OPERATOR 1 < ,
  OPERATOR 2 <= ,
  OPERATOR 3 = ,
  OPERATOR 4 >= ,
  OPERATOR 5 > ,
  FUNCTION 1 btint8cmp(int8, int8) ,
  FUNCTION 2 btint8sortsupport(internal) ,
  FUNCTION 3 in_range(int8, int8, int8, boolean, boolean) ,
  FUNCTION 4 btequalimage(oid) ,
  FUNCTION 6 btint8skipsupport(internal) ;

CREATE OPERATOR CLASS int4_ops
DEFAULT FOR TYPE int4 USING btree FAMILY integer_ops AS
  -- standard int4 comparisons
  -- 標準int4比較
  OPERATOR 1 < ,
  OPERATOR 2 <= ,
  OPERATOR 3 = ,
  OPERATOR 4 >= ,
  OPERATOR 5 > ,
  FUNCTION 1 btint4cmp(int4, int4) ,
  FUNCTION 2 btint4sortsupport(internal) ,
  FUNCTION 3 in_range(int4, int4, int4, boolean, boolean) ,
  FUNCTION 4 btequalimage(oid) ,
  FUNCTION 6 btint4skipsupport(internal) ;

CREATE OPERATOR CLASS int2_ops
DEFAULT FOR TYPE int2 USING btree FAMILY integer_ops AS
  -- standard int2 comparisons
  -- 標準int2比較
  OPERATOR 1 < ,
  OPERATOR 2 <= ,
  OPERATOR 3 = ,
  OPERATOR 4 >= ,
  OPERATOR 5 > ,
  FUNCTION 1 btint2cmp(int2, int2) ,
  FUNCTION 2 btint2sortsupport(internal) ,
  FUNCTION 3 in_range(int2, int2, int2, boolean, boolean) ,
  FUNCTION 4 btequalimage(oid) ,
  FUNCTION 6 btint2skipsupport(internal) ;

ALTER OPERATOR FAMILY integer_ops USING btree ADD
  -- cross-type comparisons int8 vs int2
  -- 型を跨ぐ比較 int8対int2
  OPERATOR 1 < (int8, int2) ,
  OPERATOR 2 <= (int8, int2) ,
  OPERATOR 3 = (int8, int2) ,
  OPERATOR 4 >= (int8, int2) ,
  OPERATOR 5 > (int8, int2) ,
  FUNCTION 1 btint82cmp(int8, int2) ,

  -- cross-type comparisons int8 vs int4
  -- 型を跨ぐ比較 int8対int4
  OPERATOR 1 < (int8, int4) ,
  OPERATOR 2 <= (int8, int4) ,
  OPERATOR 3 = (int8, int4) ,
  OPERATOR 4 >= (int8, int4) ,
  OPERATOR 5 > (int8, int4) ,
  FUNCTION 1 btint84cmp(int8, int4) ,

  -- cross-type comparisons int4 vs int2
  -- 型を跨ぐ比較 int4対int2
  OPERATOR 1 < (int4, int2) ,
  OPERATOR 2 <= (int4, int2) ,
  OPERATOR 3 = (int4, int2) ,
  OPERATOR 4 >= (int4, int2) ,
  OPERATOR 5 > (int4, int2) ,
  FUNCTION 1 btint42cmp(int4, int2) ,

  -- cross-type comparisons int4 vs int8
  -- 型を跨ぐ比較 int4対int8
  OPERATOR 1 < (int4, int8) ,
  OPERATOR 2 <= (int4, int8) ,
  OPERATOR 3 = (int4, int8) ,
  OPERATOR 4 >= (int4, int8) ,
  OPERATOR 5 > (int4, int8) ,
  FUNCTION 1 btint48cmp(int4, int8) ,

  -- cross-type comparisons int2 vs int8
  -- 型を跨ぐ比較 int2対int8
  OPERATOR 1 < (int2, int8) ,
  OPERATOR 2 <= (int2, int8) ,
  OPERATOR 3 = (int2, int8) ,
  OPERATOR 4 >= (int2, int8) ,
  OPERATOR 5 > (int2, int8) ,
  FUNCTION 1 btint28cmp(int2, int8) ,

  -- cross-type comparisons int2 vs int4
  -- 型を跨ぐ比較 int2対int4
  OPERATOR 1 < (int2, int4) ,
  OPERATOR 2 <= (int2, int4) ,
  OPERATOR 3 = (int2, int4) ,
  OPERATOR 4 >= (int2, int4) ,
  OPERATOR 5 > (int2, int4) ,
  FUNCTION 1 btint24cmp(int2, int4) ,

  -- cross-type in_range functions
  FUNCTION 3 in_range(int4, int4, int8, boolean, boolean) ,
  FUNCTION 3 in_range(int4, int4, int2, boolean, boolean) ,
  FUNCTION 3 in_range(int2, int2, int8, boolean, boolean) ,
  FUNCTION 3 in_range(int2, int2, int4, boolean, boolean) ;





 この定義は演算子ストラテジ関数番号とサポート関数番号を「上書き」していることに注意してください。
各番号は演算子族内で複数回現れます。
特定番号のインスタンスがそれぞれ異なる入力データ型を持つ限り、これは許されます。
入力型の両方が演算子クラスの入力型と同じインスタンスは、演算子クラスの主演算子および主サポート関数であり、ほとんどの場合、演算子族の自由メンバではなく演算子クラスの一部として宣言しなければなりません。
  


詳細が「B-Tree演算子クラスの振る舞い」で示されている通り、B-tree演算子族では演算子族内のすべての演算子は互換性をもってソートしなければなりません。
演算子族内の各演算子では、演算子と同じデータ型の2つのデータ型を取るサポート関数が存在しなければなりません。
演算子族を完結させること、つまり、データ型の組み合わせそれぞれに対する演算子をすべて含めることを推奨します。
各演算子クラスは、自身のデータ型に対してデータ型を跨らない演算子とサポート関数だけを含めなければなりません。
  


複数データ型のハッシュ演算子族を構築するには、演算子族でサポートされるデータ型それぞれに対する互換性を持つハッシュサポート関数を作成しなければなりません。
ここで、互換性とは、関数がその演算子族の等価性演算子で等価であるとみなされる任意の2つの値では同一のハッシュコードが生成されることを保証することを意味します。
通常、型が異なる物理表現を持つ場合、これを実現することは困難ですが、実現可能な場合もあります。
さらに、暗黙的またはバイナリ変換により、ある演算子族で表現されるデータ型から同じ演算子族で表現されるデータ型に値をキャストしても、計算されたハッシュ値を変更してはいけません。
データ型1つに対してサポート関数が1つしか存在しないことに注意してください。
等価性演算子ごとに１つではありません。
演算子族を完結させること、つまり、データ型の組み合わせそれぞれに対する等価性演算子をすべて含めることを推奨します。
各演算子クラスは、自身のデータ型に対してデータ型を跨らない演算子とサポート関数だけを含めなければなりません。
  


GiST、SP-GiST、GINインデックスではデータ型を跨る操作についての明示的な記法はありません。
サポートされる演算子群は単に指定演算子クラスの主サポート関数が扱うことができるものです。
  


BRINでは、要求は演算子クラスを提供するフレームワークに依存します。
minmaxに基づく演算子クラスに対しては、求められる振る舞いはB-tree演算子クラスに対するものと同じです。族内のすべての演算子はソート互換でなければならず、キャストは関連するソート順序を変更してはいけません。
  
注記


PostgreSQL™ 8.3より前のバージョンでは演算子族という概念はありませんでした。
そのため、インデックスで使用する予定のデータ型を跨る演算子はすべて、インデックスの演算子クラスに結びつけなければなりませんでした。
この手法もまだ使用できますが、インデックスの依存性を広げる点、および、両データ型が同一演算子族内で演算子を持つ場合、プランナがデータ型を跨った比較をより効率的に扱うことができる点より、廃止予定です。
   


システムの演算子クラスに対する依存性





PostgreSQL™は演算子クラスを、単にインデックスで使用できるかどうかだけではなく、多くの方式で演算子の性質を推定するために使用します。
したがって、データ型の列をインデックス付けするつもりがなくても、演算子クラスを作成した方が良い可能性があります。
  


具体的には、ORDER BYやDISTINCTなど、値の比較とソートを必要とするSQL機能があります。
ユーザ定義のデータ型に対してこの機能を実装するために、PostgreSQL™はそのデータ型用のデフォルトのB-tree演算子クラスを検索します。
この演算子クラスの「等価判定」メンバが、GROUP BYやDISTINCT用の値の等価性についてのシステムの意向を定義し、この演算子クラスによって強制されるソート順序が、デフォルトのORDER BY順序を定義します。
  


データ型用のデフォルトのB-tree演算子クラスが存在しないと、システムはデフォルトのハッシュ演算子クラスを検索します。
しかし、この種類の演算子クラスは等価性のみを提供しますので、ソートではなくグループ化のみサポートできます。
  


データ型用のデフォルトの演算子クラスが存在しない場合に、こうしたSQL機能をデータ型に使用しようとすると、「順序付け演算子を識別できなかった」といったエラーとなります。
  
注記


PostgreSQL™バージョン7.4より前まででは、ソートやグループ化演算は暗黙的に=、<、>という名前の演算子を使用していました。
この新しい、デフォルトの演算子クラスに依存する振舞いによって、特定の名前を持つ演算子の振舞いについて何らかの仮定を立てることを防止しています。
    



演算子クラスの小なり演算子をUSINGオプションに指定することで、デフォルトでないB-tree演算子クラスによるソートが可能です。
以下に例を示します。


SELECT * FROM mytable ORDER BY somecol USING ~<~;



代わりにUSINGで演算子クラスの大なり演算子を指定すると降順ソートが行われます。
  


ユーザ定義型の配列の比較も型のデフォルトB-tree演算子クラスで定義された意味に依存します。
デフォルトのB-tree演算子クラスが無く、しかしデフォルトのハッシュ演算子クラスがある場合、配列の順比較ではなく同等比較がサポートされます。
  


データ型特有の知識をさらに必要とする他のSQL仕様としては、ウィンドウ関数（「ウィンドウ関数呼び出し」を参照してください）のRANGE offset PRECEDING/FOLLOWINGフレームオプションがあります。
下記のような問い合わせに対して、


SELECT sum(x) OVER (ORDER BY x RANGE BETWEEN 5 PRECEDING AND 10 FOLLOWING)
  FROM mytable;



これはどのようにxで整列するかを知るのに十分ではありません。
データベースは現在のウィンドウフレームの境界を識別するためにどのように現在行のxの値に「5を減算」や「10を加算」を行うかを理解する必要もあります。
ORDER BY整列を定義するB-tree演算子クラスで提供される比較演算子を使って結果として生じる他の行のx値への範囲を比較することは可能です。
しかし、加算、減算演算子は演算子クラスの一部ではありません。では、どの演算子が使われるべきでしょうか。
異なるソート順序（異なるB-tree演算子クラス）では異なる振る舞いを要するかもしれないため、選択を決め打ちすることは望ましくありません。
そのため、B-tree演算子クラスはそのソート順に意味がある加算と減算の振る舞いをカプセル化するin_rangeサポート関数を指定することができます。
RANGE句のオフセットとして使う意味のある複数のデータ型がある場合にむけて、複数のin_rangeサポート関数を提供することもできます。
ウィンドウのORDER BY句と関連しているB-tree演算子クラスが、一致するin_rangeサポート関数を持たない場合、RANGE offset PRECEDING/FOLLOWINGオプションはサポートされません。
  


他の重要な点として、ハッシュ演算子族内に現れる等価性演算子がハッシュ結合、ハッシュ集約、関連する最適化の候補となることがあります。
使用するハッシュ関数を識別するため、ここでのハッシュ演算子族は基本的なものです。
  

順序付け演算子





一部のインデックスアクセスメソッド（現時点ではGiSTとSP-GiSTのみ）は順序付け演算子という概念をサポートします。
これまで説明してきたものは検索演算子でした。
検索演算子は、WHERE indexed_column operator constantを満たすすべての行を見つけるために、インデックスを検索可能にするためのものです。
一致した行がどの順序で返されるかについては保証がないことに注意してください。
反対に、順序付け演算子は返すことができる行集合を限定しませんが、その順序を決定します。
順序付け演算子は、ORDER BY indexed_column operator constantで表される順序で行を返すために、インデックスをスキャン可能にするためのものです。
このように順序付け演算子を定義する理由は、その演算子が距離を測るものであれば最近傍検索をサポートすることです。
例えば以下のような問い合わせを考えます。


SELECT * FROM places ORDER BY location <-> point '(101,456)' LIMIT 10;




これは指定した対象地点に最も近い10地点を見つけ出します。
<->は順序付け演算子ですので、location列上のGiSTインデックスは、これを効率的に行うことができます。
  


検索演算子が論理値結果を返さなければなりませんが、順序付け演算子は普通、距離を表す浮動小数点や数値型など、何らかの他の型を返します。
この型は通常、インデックス対象のデータ型と同じにはなりません。
異なるデータ型の動作についての固定化された前提を防ぐために、順序付け演算子の定義では、結果データ型のソート順序を指定するB-tree演算子族の名前を必要とします。
前節で述べたように、B-tree演算子族はPostgreSQL™の順序付け記法を定義します。
ですのでこれは自然な表現です。
pointに対する<->演算子はfloat8を返しますので、演算子クラスを作成するコマンド内で以下のように指定します。


OPERATOR 15    <-> (point, point) FOR ORDER BY float_ops




ここでfloat_opsは、float8に対する操作を含んだ組み込みの演算子族です。
この宣言は、インデックスが<->演算子の値が増加する方向で行を返すことができることを表しています。
  

演算子クラスの特殊な機能





演算子クラスには、まだ説明していない2つの特殊な機能があります。
説明していない主な理由は、最もよく使用するインデックスメソッドでは、これらがあまり有用ではないためです。
  


通常、演算子を演算子クラス（または演算子族）のメンバとして宣言すると、インデックスメソッドでその演算子を使用して、WHERE条件を満たす行の集合を正確に抽出することができます。
以下に例を示します。


SELECT * FROM table WHERE integer_column < 4;



この式は、整数列にB-treeインデックスを使用することにより、正確に満たすことができます。
しかし、一致する行へ厳密ではなくとも導く手段としてインデックスが有用である場合があります。
例えば、GiSTインデックスで、幾何オブジェクトの外接矩形のみを格納したとします。
その結果、多角形のような長方形でないオブジェクトとの重なりをテストするWHERE条件は正確に満たすことができません。
もっとも、このインデックスを使用して、対象オブジェクトの外接矩形に重なる外接矩形を持つオブジェクトを検索し、さらに、検索されたオブジェクトのみに対して正確に重なるかどうかをテストすることはできます。
この筋書きを適用する場合、インデックスは演算子に対して「非可逆」と言われます。
非可逆インデックス検索は、ある行が問い合わせ条件を実際に満足するかしないかの時にrecheckフラグを返すインデックスメソッドを持つことで実装されます。
コアシステムは、そこで有効なマッチとして行が返されるか否かを確認するために、抽出された行に対して元の問い合わせ条件を検査します。
この手法はインデックスがすべての必要な行を返すことが保証された上で、元の演算子呼び出しを実行することによって除外することができる、いくつか余分な行を返す可能性がある場合に動作します。
非可逆検索を提供するインデックス方式（現時点ではGiST、SP-GiSTおよびGIN）は個々の演算子クラスのサポート関数がrecheckフラグを設定することを許可します。
このためこれは原則的に演算子クラスの機能です。
  


再度、多角形のような複雑なオブジェクトの外接矩形のみをインデックスに格納している状況を考えてみてください。
この場合、インデックスエントリに多角形全体を格納するのは、それほど有用なことではありません。
単に、より単純なbox型のオブジェクトを格納した方が良いかもしれません。
このような状況は、CREATE OPERATOR CLASSのSTORAGEオプションによって表現することができます。
例えば、以下のように記述します。



CREATE OPERATOR CLASS polygon_ops
    DEFAULT FOR TYPE polygon USING gist AS
        ...
        STORAGE box;




現時点では、GiST、SP-GiST、GINおよびBRINインデックスメソッドが、列のデータ型と異なるSTORAGE型をサポートしています。
STORAGEが使用された場合、GiSTのcompressおよびdecompressサポートルーチンは、データ型を変換する必要があります。
SP-GiSTも同様に、STORAGE型が異なる場合に変換するためのcompressサポート関数を必要とします。
SP-GiST演算子クラスがデータの取得もサポートする場合、逆変換はconsistent関数で処理する必要があります。
GINでは、STORAGE型は「キー」の値の型を識別します。
通常これはインデックス付けされる列の型とは異なります。
例えば、整数配列の列用の演算子クラスは単なる整数をキーとして持つかもしれません。
GINのextractValueおよびextractQueryサポートルーチンが、インデックス付けされた値からキーを取り出す責任を負います。
BRINはGINと同様です。STORAGE型は格納された要約値の型を識別し、演算子クラスのサポートプロシージャは要約値を正しく解釈する責任を負います。
  


関連するオブジェクトを拡張としてパッケージ化





PostgreSQL™への有用な拡張は通常、複数のSQLオブジェクトを含んでいます。
例えば、新しいデータ型は新しい関数、新しい演算子、おそらく新しいインデックス演算子クラスを必要とします。
これらのオブジェクトをすべて単一のパッケージとしてまとめることは、データベース管理を単純化するために役に立ちます。
PostgreSQL™ではこうしたパッケージを拡張とよびます。
拡張を定義するためには、少なくとも、拡張のオブジェクトを作成するためのSQLコマンドを含むスクリプトファイル、拡張自身の数個の基本属性を指定する制御ファイルが必要です。
また拡張がCコードを含む場合、通常Cコードで構築された共有ライブラリが存在します。
これらのファイルがあれば、単純なCREATE EXTENSIONコマンドがそのオブジェクトをデータベース内に読み込みます。
   


拡張を使用する主な利点は、SQLスクリプトを実行するだけでデータベースに「粗な」なオブジェクトの群をロードできることではなく、PostgreSQL™が拡張のオブジェクトをまとまったものと理解できることです。
単一のDROP EXTENSIONコマンドでオブジェクトすべてを削除できます（個々の「アンインストール」スクリプトを保守する必要はありません）。
もっと有用なことは、pg_dumpが拡張の個々のメンバオブジェクトをダンプしてはならないことを把握していることです。
代わりにダンプ内にはCREATE EXTENSIONコマンドだけが含まれます。
これは、古いバージョンよりも多くのまたは異なるオブジェクトを含む可能性がある、拡張の新しいバージョンへの移行を大きく単純化します。
しかし、こうしたダンプを新しいデータベースにロードする際には、拡張の制御ファイル、スクリプトファイル、その他のファイルが利用できるようにしておく必要があります。
   


PostgreSQL™はユーザに、拡張全体を削除させる以外に、拡張内に含まれる個々のオブジェクトを削除させません。
また、拡張のメンバオブジェクトの定義を変更する（例えば関数ではCREATE OR REPLACE FUNCTIONを介して変更する）ことはできますが、変更した定義はpg_dumpによりダンプされないことに留意してください。
こうした変更は通常、同時に拡張のスクリプトファイルにも同じ変更を行った場合のみ認識できます。
（しかし設定データを持つテーブルに対しては特殊な準備があります。「拡張設定テーブル」を参照してください。）
本番環境では、拡張メンバオブジェクトへの変更を処理するために拡張更新スクリプトを作成するのが一般により良い方法です。
   


拡張スクリプトは、GRANT文とREVOKE文を使って拡張の一部のオブジェクトに権限を設定するかもしれません。
それぞれのオブジェクト（どれかが設定される場合）の最終的な権限のセットは、pg_init_privsシステムカタログに格納されます。
pg_dumpが使用されると、CREATE EXTENSIONコマンドがダンプ内に含まれ、オブジェクトの権限をダンプが取られた時点のものに設定するために必要となるGRANT文とREVOKE文が後に続きます。
   


PostgreSQL™は、現在拡張スクリプトにてCREATE POLICY文やSECURITY LABEL文の発行をサポートしていません。
これらは拡張が作成された後に設定されるべきです。
拡張オブジェクトのすべての行セキュリティポリシーとセキュリティラベルはpg_dumpによって作成されたダンプに含まれます。
   


また拡張機構は、拡張に含まれるSQLオブジェクトの定義を調整するパッケージ調整スクリプトを準備しています。
例えば、拡張のバージョン1.1でバージョン1.0と比べて１つの関数を追加し、他の関数本体を変更する場合、拡張の作成者はこれらの２つの変更のみを行う更新スクリプトを提供できます。
そしてALTER EXTENSION UPDATEコマンドを使用して、これらの変更を適用し、指定されたデータベース内に実際にインストールされた拡張のバージョンが何かを記録します。
   


拡張のメンバとなり得るSQLオブジェクトの種類をALTER EXTENSIONで説明します。
拡張は１つのデータベースの中でのみ認識されますので、データベース、ロール、テーブル空間などデータベースクラスタ全体のオブジェクトは拡張のメンバにすることができないことに注意してください。
（拡張のスクリプトでこうしたオブジェクトを生成することは禁止されていませんが、作成したとしても、拡張の一部として記録されません。）
また、テーブルは拡張のメンバになることができますが、インデックスなどそれに付随するオブジェクトは拡張の直接的なメンバとはみなされません。
もう一つの重要な点は、スキーマは拡張に属すことがありますがその逆はないということです。
拡張は非修飾名でいかなるスキーマ「の中に」も存在しません。
しかし、拡張のメンバオブジェクトはオブジェクトの型が適切であればスキーマに属します。
拡張が自身のメンバオブジェクトが属するスキーマを所有することは適切かも知れませんし、そうでないかも知れません。
   


ある拡張のスクリプトが（一時テーブルのような）一時オブジェクトを作成する場合、現在のセッションで、以降そのオブジェクトは拡張のメンバとして扱われます。
しかしすべての一時オブジェクト同様、セッションの終わりに削除されます。
これは、拡張全体を削除することなしに、拡張のメンバオブジェクトは削除できない、という規則の例外です。
   
拡張のファイル





CREATE EXTENSIONコマンドは各拡張に関して、拡張と同じ名前に.controlという拡張子を持つファイル名である必要がある、制御ファイルに依存します。
また、このファイルはインストレーションのSHAREDIR/extensionディレクトリ内に存在しなければなりません。
また少なくとも１つの、extension--version.sqlという命名規約（例えばfoo拡張のバージョン1.0ではfoo--1.0.sql）に従ったSQLスクリプトファイルが存在しなければなりません。
デフォルトでは、このスクリプトファイルもSHAREDIR/extensionディレクトリに格納されますが、制御ファイルでスクリプトファイルを別のディレクトリに指定できます。
    


拡張の制御ファイルを格納する追加の場所は、extension_control_pathパラメータを使用して設定できます。
    


拡張の制御ファイルのファイル書式はpostgresql.confファイルと同じです。
すなわち、parameter_name = valueという代入を１行当たり１つ記述します。
空行および#から始まるコメントが許されます。
単一の単語または数字ではない値にはすべて引用符で確実にくくってください。
    


制御ファイルは以下のパラメータを設定できます。
    
	directory (string)
	

拡張のSQLスクリプトファイルを含むディレクトリです。
絶対パスが指定されていない限り、その名前は制御ファイルが見つかったディレクトリからの相対パスになります。
デフォルトでは、スクリプトファイルは制御ファイルが見つかったディレクトリから検索されます。
       

	default_version (string)
	

拡張のデフォルトのバージョン（CREATE EXTENSIONでバージョン指定がない場合にインストールされるバージョン）です。
これは省略できますが、その場合VERSIONオプションがないCREATE EXTENSIONは失敗します。
ですので通常省略しようとは思わないでしょう。
       

	comment (string)
	

拡張に関するコメント（任意の文字列）です。
最初に拡張が作成されるときにコメントは適用されますが、拡張が更新される間はされません（ユーザが追加したコメントを上書いてしまうため）。
この他の方法として、スクリプトファイル内でCOMMENT(7)コマンドを使用してコメントを設定できます。
       

	encoding (string)
	

スクリプトファイルで使用される文字集合符号化方式です。
スクリプトファイルに何らかの非ASCII文字が含まれる場合に指定しなければなりません。
指定がなければ、ファイルはデータベース符号化方式であると仮定されます。
       

	module_pathname (string)
	

このパラメータの値でスクリプトファイル内のMODULE_PATHNAMEの出現箇所が置換されます。
設定されていない場合は置換は行われません。
通常このパラメータは単にshared_library_nameと設定され、C言語関数ではCREATE FUNCTIONコマンドの中でMODULE_PATHNAMEが使用されます。
これにより、スクリプトファイル内で共有ライブラリの名前を直接書き込む必要がなくなります。
       

	requires (string)
	

拡張が依存する拡張の名前のリストです。
例えばrequires = 'foo, bar'です。
対象の拡張がインストールできるようになる前に、これらの拡張がインストールされていなければなりません。
       

	no_relocate (string)
	

この拡張が依存していて、ALTER EXTENSION ... SET SCHEMAでスキーマを変更することを禁止される拡張の名前の一覧です。
この拡張のスクリプトが、(@extschema:name@構文を使って)必要な拡張のスキーマの名前を参照し、名前変更を追跡できない場合に必要です。
       

	superuser (boolean)
	

このパラメータがtrue（デフォルト）の場合、スーパーユーザのみが拡張を作成または新しいバージョンに更新できます（ただし、後述するtrustedも参照してください）。
falseに設定されている場合は、インストール中のコマンド実行またはスクリプト更新のために必要な権限のみが必要とされます。
いずれかスクリプトコマンドがスーパーユーザ権限を必要とするなら、通常はtrueに設定されるべきです。
（このようなコマンドはいずれにせよ失敗するでしょうけれども、前もってエラーを出す方がよりユーザフレンドリです。）
       

	trusted (boolean)
	

このパラメータは、true（デフォルトではありません）に設定されている場合、一部の非スーパーユーザがsuperuserにtrueを設定している拡張をインストールできるようにします。
具体的には、現在のデータベースにCREATE権限を持っているユーザにインストールが許可されるようになります。
CREATE EXTENSIONを実行するユーザがスーパーユーザでないけれども本パラメータの効力でインストールできるとき、インストールやスクリプトの更新は実行したユーザではなく、サービス起動のスーパーユーザとして実行されます。
superuserがfalseの場合、本パラメータは無意味です。
一般に、ファイルシステムのアクセスなど、別の方法ではスーパーユーザのみができることにアクセスができる拡張に対して、これをtrueにすべきではありません。
また、拡張をtrustedとして作成するには、拡張のインストールとスクリプト更新を安全に記述するために、かなりの追加の労力が影響が必要です。「拡張のためのセキュリティに関する考慮事項」を参照してください。
       

	relocatable (boolean)
	

拡張を最初に作成した後に拡張により含まれるオブジェクトを別のスキーマに移動できる場合、拡張は再配置可能です。
デフォルトはfalse、つまり、拡張は再配置可能ではありません。
詳しくは「拡張の再配置性」を参照してください。
       

	schema (string)
	

このパラメータは再配置可能ではない拡張に対してのみ設定できます。
拡張が指名したスキーマのみにロードされ、他にはロードされないことを強制します。
schemaパラメータは、拡張を最初に作成するときにのみ参照され、拡張が更新される間はされません。
詳しくは「拡張の再配置性」を参照してください。
       





主制御ファイルextension.controlに加え、拡張はextension--version.controlという形の名前の副制御ファイルを持つことができます。
これらを提供する場合は、スクリプトファイルディレクトリに格納しなければなりません。
副制御ファイルは主制御ファイルと同じ書式に従います。
拡張の対応するバージョンをインストールまたは更新する時、副制御ファイル内で設定されるパラメータはいずれも、主制御ファイルを上書きします。
しかしdirectoryおよびdefault_versionパラメータは副制御ファイルで設定することはできません。
    


拡張のSQLスクリプトファイルにはトランザクション制御コマンド（BEGIN、COMMITなど）およびトランザクションブロックの内側で実行できないコマンド（VACUUMなど）を除く任意のSQLコマンドを含めることができます。
スクリプトファイルが暗黙的にトランザクションブロック内で実行されるためです。
    


拡張のSQLスクリプトファイルには、\echoから始まる行を含めることができます。
この行は拡張の機構では無視されます（コメントとして扱われます）。
これは、このスクリプトがCREATE EXTENSION（「拡張の例」のスクリプト例を参照）ではなくpsqlに渡された場合にエラーを発生するために一般的に使用するために用意されたものです。
これがないと、ユーザは間違って拡張としてではなく、「まとまっていない」オブジェクトとして拡張の内容をロードしてしまい、復旧が多少困難な状態になる可能性があります。
    


拡張のスクリプトに文字列@extowner@が含まれている場合、この文字列は、CREATE EXTENSIONやALTER EXTENSIONを実行した（適切にクォートされた）ユーザ名で置き換えられます。
典型的には、この機能はtrustedと印付けされた拡張が選択されたオブジェクトにサービス起動のスーパーユーザではなく実行したユーザを所有者として割り当てる際に使われます。
（とはいえ、このようにするには注意深くすべきです。例えば、C言語関数の所有者を非スーパーユーザに割り当てると、そのユーザに権限昇格の経路を作ることになるでしょう）
    


スクリプトファイルは指定した符号化方式で認められる任意の文字を含めることができますが、PostgreSQL™が制御ファイルの符号化方式が何かを把握する方法がありませんので、制御ファイルにはASCII文字のみを含めなければなりません。
実際には、拡張のコメントに非ASCII文字を含めたい場合にのみ、これが問題になります。
このような場合には、制御ファイルのcommentを使用せず、代わりにコメントを設定するためにスクリプトファイル内でCOMMENT ON EXTENSIONを使用することを勧めます。
    

拡張の再配置性





ユーザは拡張に含まれるオブジェクトを拡張の作成者が考えていたスキーマとは別のスキーマにロードしたいとよく考えます。
再配置性に関して３つのレベルがサポートされます。
    
	

完全な再配置可能な拡張は、いつでも、データベースにロードされた後であっても、他のスキーマに移動させることができます。
これは、自動的にすべてのメンバオブジェクトを新しいスキーマに名前を変更する、ALTER EXTENSION SET SCHEMAを用いて行います。
通常これは、拡張がオブジェクトが含まれるスキーマが何かに関して内部的な仮定を持たない場合のみ可能です。
また、拡張のオブジェクト（手続き言語など何らかのスキーマに属さないオブジェクトは無視して）はすべて最初に１つのスキーマ内に存在しなければなりません。
制御ファイル内でrelocatable = trueと設定することで、完全な再配置可能と印付けます。
      

	

拡張はインストール処理の間再配置可能ですが、その後再配置することはできません。
通常これは、拡張のスクリプトファイルが、SQL関数用のsearch_path属性の設定など、対象のスキーマを明示的に参照する必要がある場合です。
こうした拡張では、制御ファイルでrelocatable = falseと設定し、スクリプトファイル内で対象のスキーマを参照するために@extschema@を設定してください。
この文字列の出現箇所はすべて、スクリプトが実行される前に、(必要ならば二重引用符で括られて)実際の対象のスキーマ名に置換されます。
ユーザはCREATE EXTENSIONのSCHEMAオプションを使用して対象のスキーマを設定できます。
      

	

拡張が再配置をまったくサポートしない場合、制御ファイルでrelocatable = falseを設定し、かつ、schemaを意図している対象スキーマの名前に設定してください。
これは、制御ファイル内で指定されたスキーマと同じ名前が指定されていない限り、CREATE EXTENSIONのSCHEMAオプションの指定を阻止します。
この選択は通常、拡張が@extschema@を使用して置き換えることができないスキーマ名について内部的な仮定を持つ場合に必要です。
@extschema@置換機構はこの場合でも使用できますが、スキーマ名が制御ファイルによって決定されますので、用途は限定されます。
      





すべての場合において、スクリプトファイルは対象のスキーマを指し示すようにあらかじめ設定したsearch_pathを用いて実行されます。
つまりCREATE EXTENSIONは以下と同じことを行います。


SET LOCAL search_path TO @extschema@, pg_temp;



これによりスクリプトファイルで作成されるオブジェクトを対象のスキーマ内に格納できます。
スクリプトファイルは要望に応じてsearch_pathを変更できますが、一般的には望まれません。
CREATE EXTENSIONの実行後、search_pathは以前の設定に戻されます。
    


対象のスキーマは制御ファイル内のschemaパラメータがあればこのパラメータにより決定されます。
このパラメータがなければ、CREATE EXTENSIONのSCHEMAがあればこの値で決まり、これ以外の場合は現在のデフォルトのオブジェクト生成用スキーマ（呼び出し元のsearch_pathの最初のもの）になります。
制御ファイルのschemaパラメータが使用される時、対象のスキーマが存在しない場合は作成されますが、これ以外の２つの場合ではすでに存在しなければなりません。
    


何らかの事前に必要な拡張が制御ファイル内のrequiresに列挙されていた場合、それらのターゲットスキーマは新しい機能拡張のターゲットスキーマに続いてsearch_pathの初期設定に追加されます。
これにより新しい拡張のスクリプトファイルからそれらのオブジェクトが可視になります。
    


安全のため、全てのケースにおいてpg_tempは自動的にsearch_pathの最後に追記されます。
    


再配置不可能な拡張は複数スキーマにまたがるオブジェクトを含めることができますが、通常、外部使用を意図したオブジェクトはすべて単一スキーマに格納することが望まれます。
この単一スキーマが拡張の対象のスキーマとみなされます。
こうした調整は依存する拡張を作成する間、デフォルトのsearch_path設定を都合に合わせて扱います。
    


拡張が別の拡張に属するオブジェクトを参照する場合は、それらの参照をスキーマ修飾することをお勧めします。
これを行うには、拡張のスクリプトファイルに@extschema:name@と記述します。ここで、nameは他の拡張の名前です(他の拡張はこの拡張のrequiresリストに記載されていることが必要です)。
この文字列は、その拡張の対象スキーマの名前に(必要なら二重引用符で括られて)置き換えられます。
この表記では、拡張のスクリプトファイルでスキーマ名が固定されているという仮定の必要性は回避されますが、この表記を使用すると、この拡張のインストールされたオブジェクトに他の拡張のスキーマ名を埋め込むことになります。
（通常、これは@extschema:name@が関数本体やsearch_path設定などの文字列リテラルの内部で使用される場合に発生します。
その他の場合では、オブジェクト参照は解析中にOIDへと縮小され、その後の検索は必要ありません。）
他の拡張のスキーマ名がそのように埋め込まれている場合は、インストール後に他の拡張が再配置されないようにすることが必要です。これを行うには、他の拡張の名前をこの拡張のno_relocateリストに追加します。
    

拡張設定テーブル





一部の拡張は、拡張をインストールした後でユーザにより追加または変更される可能性があるデータを持つ設定テーブルを含みます。
通常、テーブルが拡張の一部である場合、テーブル定義もその内容もpg_dumpによりダンプされません。
しかしこの振舞いは設定テーブルの場合望まれません。
ユーザによってなされたデータ変更はダンプ内に含まれなければなりません。
さもないとダンプしリストアした後で拡張の動作が変わってしまいます。
    


この問題を解消するために、拡張のスクリプトファイルでは設定リレーションとして作成されるテーブル、またはシーケンスに印を付け、pg_dumpにテーブルの、またはシーケンスの内容をダンプに含める（定義は含まれません）ようにさせることができます。
このためには、以下の例のようにテーブル、またはシーケンスを作成した後にpg_extension_config_dump(regclass, text)関数を呼び出してください。


CREATE TABLE my_config (key text, value text);
CREATE SEQUENCE my_config_seq;

SELECT pg_catalog.pg_extension_config_dump('my_config', '');
SELECT pg_catalog.pg_extension_config_dump('my_config_seq', '');



任意数のテーブル、またはシーケンスをこの方法で印付けることができます。
serial列またはbigserial列に関連したシーケンスが、同様に印付けることができます。
    


pg_extension_config_dumpの第２引数が空文字列である場合、テーブルのすべての内容がpg_dumpによりダンプされます。
これは、拡張のスクリプトによって作成された初期段階においてテーブルが空である場合のみ正しいものです。
テーブルの中で初期データとユーザが提供したデータが混在する場合、pg_extension_config_dumpの第２引数においてダンプすべきデータを選択するWHERE条件を提供します。
以下に例を示します。


CREATE TABLE my_config (key text, value text, standard_entry boolean);

SELECT pg_catalog.pg_extension_config_dump('my_config', 'WHERE NOT standard_entry');



このようにした後、拡張のスクリプトで作成される行のみでstandard_entryが確実に真になるようにします。
    


シーケンスにおいて、pg_extension_config_dumpの第２引数は何も影響を及ぼしません。
    


初期状態で提供される行がユーザによって変更されるようなもっと複雑な状況では、設定テーブルに対するトリガを作成して、変更された行が正しく印付けられることを確実にするように取り扱うことができます。
    


pg_extension_config_dumpを再度呼び出すことにより、設定テーブルに関連付いたフィルタ条件を変更できます。
（通常これは拡張の更新スクリプト内で役に立つでしょう。）
設定ファイルからテーブルを取り除くように印付ける方法は、ALTER EXTENSION ... DROP TABLEを用いてテーブルを拡張から分離するしかありません。
    


このテーブルとの外部キーの関係は、テーブルがpg_dumpによってダンプされる順序に影響します。
特に、pg_dumpは参照しているテーブルの前に参照されているテーブルをダンプしようとします。
外部キーの関係はCREATE EXTENSION時(データがテーブルにロードされる前)に設定されますので、循環依存はサポートされません。
循環依存が存在すれば、データはダンプされますが、そのダンプを直接はリストアできず、ユーザの介入が必要になります。
    


serial列またはbigserial列に関連したシーケンスは、それらの状態をダンプするために直接印付けする必要があります。
親リレーションを印付けすることは、この目的に十分ではありません。
    

拡張の更新





拡張機構の１つの利点は、拡張のオブジェクトを定義するSQLコマンドの更新を簡便に管理する方法を提供していることです。
これは、拡張のインストール用スクリプトのリリース版それぞれにバージョン名称またはバージョン番号を関連付けることで行われます。
さらに、ユーザにあるバージョンから次のバージョンへ動的にデータベースを更新させることができるようにしたい場合、あるバージョンから次のバージョンまでの間に行われる必要な変更を行う更新スクリプトを提供しなければなりません。
更新スクリプトはextension--old_version--target_version.sqlというパターンに従った名前（例えば、foo--1.0--1.1.sqlはfoo拡張のバージョン1.0からバージョン1.1に変更するコマンドを含みます。）を持たなければなりません。
    


適切な更新スクリプトが利用可能である場合、ALTER EXTENSION UPDATEコマンドはインストール済みの拡張を指定した新しいバージョンへ更新します。
更新スクリプトは、CREATE EXTENSIONがインストール用スクリプト向けに提供する環境と同じ環境で実行されます。
具体的にはsearch_pathは同じ方法で設定され、スクリプトにより作成される新しいオブジェクトはすべて自動的に拡張に追加されます。
また、スクリプトが拡張のメンバオブジェクトを削除する場合には、それらのメンバオブジェクトは拡張から自動的に分離されます。
    


拡張が副制御ファイルを持つ場合、更新スクリプトで使用される制御パラメータは、スクリプトの対象の（新しい）バージョンに関連付けされたものになります。
    


ALTER EXTENSIONは、要求される更新を実現するために更新スクリプトファイルを連続して実行できます。
例えばfoo--1.0--1.1.sqlとfoo--1.1--2.0.sqlのみが利用可能であるとすると、現在1.0がインストールされている時にバージョン2.0への更新が要求された場合、ALTER EXTENSIONはこれらを順番に適用します。
    


PostgreSQL™はバージョン名称の特性についてまったく仮定を行いません。
例えば1.0の次が1.1であるかどうかを把握しません。
これは利用可能なバージョン名をかみ合わせ、もっとも少ない数の更新スクリプトを適用するために必要な経路を続けるだけです。
（バージョン名には、--を含まず先頭または最後に-が付かなければ、任意の文字を取ることができます。）
    


「ダウングレード」スクリプトを提供することが便利な場合があります。
例えばfoo--1.1--1.0.sqlは、バージョン1.1に関連した変更を元に戻すことができます。
この場合、ダウングレードスクリプトがより短いパスを生成するために、予期せず適用されてしまう可能性に注意してください。
複数のバージョンをまたがって更新する「近道」更新スクリプトと近道の開始バージョンへのダウングレードスクリプトが存在する場合に危険性があります。
ダウングレードしてから近道となる更新スクリプトを実行する方が、バージョンを１つずつ進めるよりも少ない処理で済んでしまうかもしれません。
ダウングレードスクリプトが取り返しがつかないオブジェクトを何か削除してしまう場合、望まない結果になってしまいます。
    


想定外の更新経路かどうかを検査するためには、以下のコマンドを使用してください。


SELECT * FROM pg_extension_update_paths('extension_name');



これは指定した拡張の個々の既知のバージョン名の組み合わせをそれぞれ、元のバージョンから対象のバージョンへ進む時に取られる更新経路順、またはもし利用できる更新経路がなければNULLを付けて、表示します。
経路は--を区切り文字として使用したテキスト形式で表示されます。
配列形式の方が良ければregexp_split_to_array(path,'--')を使用できます。
    

更新スクリプトを利用した拡張のインストール





以前から存在している拡張は、おそらく複数のバージョンに渡って存在しているので、拡張の作者は更新スクリプトを開発する必要性が出てきます。
たとえば、拡張fooがバージョン1.0、1.1、1.2をリリースしていたとすると、更新スクリプトfoo--1.0--1.1.sqlとfoo--1.1--1.2.sqlが存在しなければなりません。
PostgreSQL™ 10より前では、新しい拡張のバージョンを直接作成するスクリプトファイルfoo--1.1.sqlとfoo--1.2.sqlも新規に作る必要がありました。
これらがないと、新しいバージョンの拡張を直接インストールすることはできず、1.0をインストールしてから更新するしかありませんでした。
それにはうんざりしますし、また冗長です。
しかし、今ではCREATE EXTENSIONが自動的に更新連鎖を追跡してくるので、それは不要になりました。
たとえば、foo--1.0.sql、foo--1.0--1.1.sql、foo--1.1--1.2.sqlだけしかない場合、バージョン1.2のインストールのリクエストは、これらのスクリプトを順に実行することによって達成されます。
この手順は、最初に1.0をインストールして、1.2にアップデートする場合でも同じです。
（ALTER EXTENSION UPDATEは、複数の手順がある場合には、最短の手順を選びます。）
この方法で拡張のスクリプトを調整することにより、小さな更新を複数作成するための保守の手間を減らすことができます。
    


この方法で保守している拡張に二次的な（バージョン固有の）制御ファイルがある場合は、スタンドアローンのインストールスクリプトがない場合でも、各バージョンで制御ファイルが必要になることに注意してください。
そのバージョンへと更新する暗黙的な方法を、制御ファイルが決定するからです。
たとえば、foo--1.0.controlがrequires = 'bar'を指定しているのに、fooの他の制御ファイルが指定していないとすると、1.0から他のバージョンに更新した際にbarへの依存性が削除されてしまうでしょう。
    

拡張のためのセキュリティに関する考慮事項





広く配布される拡張では、インストールされるデータベースについて想定していないはずです。
このため、拡張はサーチパスに基づく攻撃を受けないよう、安全なスタイルで拡張によって提供される関数記述するのが適切です。
    


superuserプロパティを真にしている拡張はインストールや更新スクリプトの中で行われるアクションのセキュリティ面での危険も考慮しなければなりません。
悪意あるユーザが不用意に書かれた拡張スクリプトを悪用してトロイの木馬を作成し、スーパーユーザ権限を獲得できるようにすることは、そう難しくありません。
    


拡張がtrustedと印付けされている場合、そのインストールスキーマはインストールするユーザにより選択できます。そのユーザはスーパーユーザ権限を獲得することを狙って意図的に安全でないスキーマを使用するかもしれません。
したがって、trustedの拡張はセキュリティ観点から極めて危険で、そのスクリプトのコマンドは危険性がないことを確実にするため注意深く検証されなければなりません。
    


関数を安全に書くためのアドバイスは以下のリンクから提供されます。
「拡張関数のためのセキュリティに関する考慮事項」
また、インストールスクリプトを安全に書くためのアドバイスは以下のリンクから提供されます。
「拡張スクリプトのためのセキュリティに関する考慮事項」
    
拡張関数のためのセキュリティに関する考慮事項





拡張により提供されるSQL言語とPL言語関数は実行されるときにサーチパスに基づく攻撃を受ける危険性があります。
これらの関数は作成時ではなく、実行時に解析されるためです。
     


CREATE FUNCTIONのリファレンスページにはSECURITY DEFINER関数を安全に書くためのアドバイスが記載されています。
拡張が提供するあらゆる関数は、強い権限を持つユーザから実行されることがあるので、これらのテクニックを適用することは、良い習慣です。
     


search_pathに安全なスキーマだけを設定できない場合は、修飾されていない名前は悪意あるユーザが定義したオブジェクトとして名前解決されうることを想定してください。
暗黙的にsearch_pathに依存する構文に注意してください。
例えば、INや CASE 式 WHENは常にサーチパスを使って演算子を選びます。
これらの場所には、OPERATOR(スキーマ.=) ANYやCASE WHEN 式を使用してください。
     


汎用の拡張は通常、安全なスキーマにインストールされることを想定するべきではありません。これはスキーマ修飾された自身のオブジェクトであっても完全にリスクがないわけではないことを意味しています。
例えば、拡張が myschema.myfunc(bigint)という関数を定義しているとき、myschema.myfunc(42)というような呼び出しは、悪意ある関数myschema.myfunc(integer)に捕捉される可能性があります。
必要に応じて明示的なキャストを使用して関数と演算子のデータ型が引数の型と厳密に一致するように注意してください。
     

拡張スクリプトのためのセキュリティに関する考慮事項





拡張のインストールや更新スクリプトはスクリプト実行時にサーチパスに基づく攻撃を防ぐように記述されなければなりません。
スクリプトが参照するオブジェクトがスクリプトの作者が意図したものではないオブジェクトとして解決されうる場合、即座もしくは、誤って定義された拡張オブジェクトが使われたときに攻撃を受ける可能性があります。
     


CREATE FUNCTIONやCREATE OPERATOR CLASSなどのDDLコマンドは一般的には安全ですが、汎用的な式を構成に持つコマンドには注意が必要です。
例えば、CREATE FUNCTIONのDEFAULT式に行うのと同様にCREATE VIEWには審査が必要です。
     


拡張スクリプトには汎用SQLを実行する必要があることがあります。
例えば、DDLではできないカタログの調整などです。
そのようなコマンドは安全なsearch_path使って実行するように気をつけてください。
CREATE/ALTER EXTENSIONで提供されるパスが安全であると信用しないでください。
最も良い方法は一時的にsearch_pathをpg_catalog, pg_tempにセットし、必要な箇所に明示的に拡張のインストールスキーマの参照を記述する方法です(この方法はビューを作成する場合にも参考になります)。
例は配布されるPostgreSQL™ソースコードのcontribに見つけることができます。
     


拡張間で安全に参照するためには、関数と演算子の引数の型を注意深く一致させることに加えて、@extschema:name@の構文を使用して他の拡張のオブジェクト名をスキーマ修飾することが通常必要です。
     


拡張の例





ここでは、SQLのみの拡張の完全な例を示します。
「k」と「v」という名称の２つの要素からなる複合型であり、そのスロットには任意の型の値を格納できるものです。
格納の際テキスト以外の値は自動的にテキストに変換されます。
    


pair--1.0.sqlスクリプトファイルは以下のようになります。



-- complain if script is sourced in psql, rather than via CREATE EXTENSION
-- スクリプトが、CREATE EXTENSION経由ではなく、psqlのソースとして使われた場合には文句を言う
\echo Use "CREATE EXTENSION pair" to load this file. \quit

CREATE TYPE pair AS ( k text, v text );

CREATE FUNCTION pair(text, text)
RETURNS pair LANGUAGE SQL AS 'SELECT ROW($1, $2)::@extschema@.pair;';

CREATE OPERATOR ~> (LEFTARG = text, RIGHTARG = text, FUNCTION = pair);

-- "SET search_path" is easy to get right, but qualified names perform better.
CREATE FUNCTION lower(pair)
RETURNS pair LANGUAGE SQL
AS 'SELECT ROW(lower($1.k), lower($1.v))::@extschema@.pair;'
SET search_path = pg_temp;

CREATE FUNCTION pair_concat(pair, pair)
RETURNS pair LANGUAGE SQL
AS 'SELECT ROW($1.k OPERATOR(pg_catalog.||) $2.k,
               $1.v OPERATOR(pg_catalog.||) $2.v)::@extschema@.pair;';



    


pair.control制御ファイルは以下のようになります。



# pair extension
comment = 'A key/value pair data type'
default_version = '1.0'
# cannot be relocatable because of use of @extschema@
relocatable = false


    


これらの２つのファイルを正しいディレクトリにインストールするためにmakefileを作成する必要はほとんどありませんが、以下を含むMakefileを使用できます。



EXTENSION = pair
DATA = pair--1.0.sql

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)




このmakefileは「拡張構築基盤」で説明するPGXSに依存します。
make installコマンドは制御ファイルとスクリプトファイルをpg_configで報告される正しいディレクトリにインストールします。
    


ファイルがインストールされた後、CREATE EXTENSIONコマンドを使用してオブジェクトを任意の特定のデータベースにロードしてください。
    


拡張構築基盤





PostgreSQL™拡張モジュールの配布を考えているのであれば、移植可能な構築システムを準備することはかなり難しいものになるかもしれません。
このためPostgreSQL™インストレーションは単純な拡張モジュールをすでにインストールされているサーバに対して簡単に構築できるように、PGXSと呼ばれる拡張向けの構築基盤を提供します。
PGXSは主にCコードを含む拡張を意図していますが、SQLのみからなる拡張でも使用できます。
PGXSがPostgreSQL™と相互に作用する任意のソフトウェアを構築するために使用できるような万能な構築システムを意図したものではないことに注意してください。
これは単に、単純なサーバ拡張用の一般的な構築規則を自動化するものです。
より複雑なパッケージでは、独自の構築システムを作成する必要があるかもしれません。
   


独自の拡張でPGXS基盤を使用するためには、簡単なmakefileを作成する必要があります。
このmakefileの中で、いくつか変数を設定し、大域的なPGXSmakefileをインクルードする必要があります。
以下にisbn_issnという名称の拡張モジュールを構築する例を示します。
このモジュールはいくつかのCコードを含む共有ライブラリ、拡張の制御ファイル、SQLスクリプト、インクルードファイル（他のモジュールが拡張の関数にSQLを経由せずにアクセスする必要があるかもしれない場合にのみ必要です）、ドキュメントテキストファイルから構成されます。


MODULES = isbn_issn
EXTENSION = isbn_issn
DATA = isbn_issn--1.0.sql
DOCS = README.isbn_issn
HEADERS_isbn_issn = isbn_issn.h

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)



最後の３行は常に同じです。
ファイルのこの前に変数の設定と独自のmakeルールを記載してください。
   


以下の３個の変数の１つを構築対象に指定してください。

    
	MODULES
	

同じ家系のソースファイルから構築される共有ライブラリのリストです。
（このリストにはライブラリ接頭辞を含めないでください。）
       

	MODULE_big
	

複数のソースファイルから構築される共有ライブラリです。
（OBJSにオブジェクトファイルを列挙します。）
       

	PROGRAM
	

構築する実行プログラムです。
（OBJSにオブジェクトファイルを列挙します。）
       






以下の変数も設定できます。

    
	EXTENSION
	

拡張の名前です。
各名前に対して、prefix/share/extensionにインストールされるextension.controlファイルを提供しなければなりません。
       

	MODULEDIR
	

DATAおよびDOCSファイルのインストール先となるはずのprefix/shareサブディレクトリです。
（設定がない場合、デフォルトはEXTENSIONが設定されている場合はextensionに、設定されていない場合はcontribになります。）
       

	DATA
	

prefix/share/$MODULEDIRにインストールされる様々なファイルです。
       

	DATA_built
	

prefix/share/$MODULEDIRにインストールされる、最初に構築しなければならない様々なファイルです。
       

	DATA_TSEARCH
	

prefix/share/tsearch_data以下にインストールされる様々なファイルです。
       

	DOCS
	

prefix/doc/$MODULEDIR以下にインストールされる様々なファイルです。
       

	HEADERS, HEADERS_built
	

（必要に応じてビルドして）prefix/include/server/$MODULEDIR/$MODULE_big以下にインストールをするファイル。
       


DATA_builtと違って、HEADERS_builtのファイルはcleanターゲットによって削除されません。削除したい場合には、それらをEXTRA_CLEANにも加えるか、削除を行う独自のルールを追加してください。
       

	HEADERS_$MODULE, HEADERS_built_$MODULE
	

（指定されていたならビルド後に）prefix/include/server/$MODULEDIR/$MODULEの下にインストールするファイル。ここでの$MODULEはMODULESかMODULE_bigで使われているモジュール名でなければなりません。
       


DATA_builtと違って、HEADERS_built_$MODULEのファイルはcleanターゲットによって削除されません。削除したい場合には、これらをEXTRA_CLEANにも加えるか、削除を行う独自のルールを追加してください。
       


同じモジュールあるいは任意の組み合わせに対して両方の変数を使うことは正当ですが、MODULESリストにプレフィックスbuilt_の有無しか異ならない二つのモジュール名を書く場合を除きます。これは両義解釈をひき起こすでしょう。
このような（おそらくありそうにない）場合、HEADERS_built_$MODULE変数だけを使うべきです。
       

	SCRIPTS
	

prefix/binにインストールされるスクリプトファイルです（バイナリファイルではありません）。
       

	SCRIPTS_built
	

prefix/binにインストールされる、最初に構築しなければならないスクリプトファイルです（バイナリファイルではありません）。
       

	REGRESS
	

リグレッションテストケース（接尾辞がない）のリストです。
後述します。
       

	REGRESS_OPTS
	

pg_regressに渡す追加オプションです。
       

	ISOLATION
	

分離性試験のリストです。
詳細は後述します。
       

	ISOLATION_OPTS
	

pg_isolation_regressに渡す追加オプションです。
       

	TAP_TESTS
	

TAPテストを実行する必要があるかどうかを定義するオプションです。
後述します。
       

	NO_INSTALL
	

installターゲットを定義しません。
構築物をインストールする必要のないテストモジュールに有用です。
       

	NO_INSTALLCHECK
	

installcheckターゲットを定義しません。
テストの際に特殊な設定が必要、あるいはpg_regressを使用しない場合などに有用です。
       

	EXTRA_CLEAN
	

make cleanで削除される追加ファイルです。
       

	PG_CPPFLAGS
	

CPPFLAGSの先頭に加えられます。
       

	PG_CFLAGS
	

CFLAGSに加えられます。
       

	PG_CXXFLAGS
	

CXXFLAGSに加えられます。
       

	PG_LDFLAGS
	

LDFLAGSの先頭に加えられます。
       

	PG_LIBS
	

PROGRAMのリンク行に追加されます。
       

	SHLIB_LINK
	

MODULE_bigリンク行に追加されます。
       

	PG_CONFIG
	

構築対象のPostgreSQL™インストレーション用のpg_configプログラムへのパスです。
（通常はPATH内の最初に見つかるpg_configが単純に使用されます）
       




   


このmakefileをMakefileとして拡張を保管するディレクトリ内に保管してください。
その後コンパイルするためにmakeを、モジュールをインストールするためにmake installを行うことができます。
デフォルトでは、PATHの中で最初に見つかるpg_configプログラムが対応するPostgreSQL™インストレーション用に拡張はコンパイルされ、インストールされます。
makefileまたはmakeのコマンドラインのいずれかでPG_CONFIGを別のpg_configプログラムを指し示すように設定することで、別のインストレーションを使用できます。
   


make installを実行するときにmakeの変数prefixを次のように設定することで、拡張ファイルのインストール先として異なるディレクトリの接頭辞を選択することができます。


make install prefix=/usr/local/postgresql



これにより、拡張の制御ファイルとSQLファイルが/usr/local/postgresql/shareにインストールされ、共有モジュールが/usr/local/postgresql/libにインストールされます。
接頭辞にpostgresやpgsqlなどの文字列が含まれていない、たとえば以下のような場合は、


make install prefix=/usr/local/extras



ディレクトリ名にpostgresqlが追加され、制御ファイルとSQLファイルが/usr/local/extras/share/postgresql/extensionにインストールされ、共有モジュールが/usr/local/extras/lib/postgresqlにインストールされます。
いずれにしても、PostgreSQL™サーバがファイルを検索できるようにするには、extension_control_pathとdynamic_library_pathを以下のように設定する必要があります。


extension_control_path = '/usr/local/extras/share/postgresql:$system'
dynamic_library_path = '/usr/local/extras/lib/postgresql:$libdir'


   


構築ディレクトリを別にしておきたいのであれば、拡張のソースツリーの外のディレクトリでmakeを実行することもできます。
この方法はVPATH構築とも呼ばれます。
以下にやり方を示します。


mkdir build_dir
cd build_dir
make -f /path/to/extension/source/tree/Makefile
make -f /path/to/extension/source/tree/Makefile install


   


あるいは、コアコードと同様な方法でVPATH構築用のディレクトリを設定できます。
そのようにする1つの方法は、コアスクリプトconfig/prep_buildtreeを使うことです。
一度そうすれば、make変数VPATHを以下のように設定することで、構築できます。


make VPATH=/path/to/extension/source/tree
make VPATH=/path/to/extension/source/tree install



この方法はより様々なディレクトリのレイアウトで機能します。
   


REGRESS変数に列挙されたスクリプトは、make installを実行した後でmake installcheckによって呼び出すことができる、作成したモジュールのリグレッションテストで使用されます。
これが動作するためには、PostgreSQL™サーバが実行していなければなりません。
REGRESS変数に列挙されたスクリプトは、拡張のディレクトリ内のsql/という名前のサブディレクトリ内に存在しなければなりません。
これらのファイルは.sqlという拡張子を持たなければなりません。
この拡張子はmakefile内のREGRESSリストには含まれません。
また試験ごとにexpected/という名前のサブディレクトリ内に想定出力を内容として含む、同じステムに.out拡張子を付けた名前のファイルがなければなりません。
make installcheckはpsqlを用いて各試験スクリプトを実行し、結果出力が想定ファイルに一致するかどうか比較します。
何らかの差異はdiff -c書式でregression.diffsに書き出されます。
想定ファイルがない試験を実行しようとすると「問題」として報告されます。
このためすべての想定ファイルがあることを確認してください。
   


ISOLATION変数に列挙されたスクリプトは、make installを実行した後でmake installcheckによって呼び出すことができるモジュールでの同時実行中のセッションの振舞いの負荷テストで使用されます。
これが動作するためには、PostgreSQL™サーバが実行していなければなりません。
ISOLATION変数に列挙されたスクリプトは、拡張のディレクトリ内のspecs/という名前のサブディレクトリ内に存在しなければなりません。
これらのファイルは.specという拡張子を持たなければなりません。
この拡張子はmakefile内のISOLATIONリストには含まれません。
また試験ごとにexpected/という名前のサブディレクトリ内に想定出力を内容として含む、同じステムに.out拡張子を付けた名前のファイルがなければなりません。
make installcheckは各試験スクリプトを実行し、結果出力が想定ファイルに一致するかどうか比較します。
何らかの差異はdiff -c書式でoutput_iso/regression.diffsに書き出されます。
想定ファイルがない試験を実行しようとすると「問題」として報告されます。
このためすべての想定ファイルがあることを確認してください。
   


 TAP_TESTSはTAPテストの指定を有効にします。
各試験の実行によるデータはtmp_check/という名前のサブディレクトリに含まれます。
詳細は「TAPテスト」を参照してください。
   
ヒント


想定ファイルを作成する最も簡単な方法は、空のファイルを作成し、試験を実行する（当然差異が報告されます）ことです。
（REGRESSの試験による）results/ディレクトリまたは（ISOLATIONの試験による）output_iso/results/ディレクトリ内で見つかる実際の結果ファイルを確認し、テストの想定結果と合致するのであれば、expected/にコピーしてください。
    


第37章 トリガ





本章ではトリガ関数の作成に関する一般的な情報を示します。
トリガ関数は、PL/pgSQL (41章PL/pgSQL — SQL手続き言語)、PL/Tcl (42章PL/Tcl — Tcl手続き言語)、PL/Perl (43章PL/Perl — Perl手続き言語)、PL/Python (PL/Python)など、利用可能な手続き言語のほとんどで作成することができます。
本章を読んだ後、好みの手続き言語に関する章を参照して、トリガ作成に関する言語特有の詳細を確認すべきです。
  


また、C言語でトリガ関数を作成することができます。
しかし、ほとんどの方は、手続き言語のいずれかで作成する方が簡単であることに気づくでしょう。
現時点では、普通のSQL関数言語ではトリガ関数を作成することはできません。
  
トリガ動作の概要





トリガとは、データベースが、ある特定の操作が行われた時に常に自動的に実行しなければならない特定の機能に関する規定です。
トリガはテーブル（パーティション化されているかどうかにかかわらず）、ビュー、外部テーブルに付与することができます。
  


テーブルおよび外部テーブル上では、トリガをINSERT、UPDATEまたはDELETE操作の前後に、行を変更する度、あるいはSQL文ごとに実行するように定義することができます。
さらに、UPDATEトリガについては、特定のカラムがUPDATE文のSET句の対象になった時のみ発動するよう設定することができます。
また、トリガはTRUNCATE文についても発動できます。
トリガイベントが起こると、トリガ関数がそのイベントを扱う適切な時点で呼び出されます。
   


ビュー上では、トリガをINSERT、UPDATEまたはDELETE操作の代わりに実行するものとして定義できます。
そうしたINSTEAD OFトリガは、ビュー内の変更を行うために必要となる行それぞれに対して一度発行されます。
ビューの元になっている基底テーブルへの必要な変更の実施、そして必要に応じて、ビュー上で見えるであろう変更された行を返却するのは、トリガ関数の責任です。
ビューへのトリガは、SQL文ごとに、INSERT、UPDATEまたはDELETE操作の前後で実行させるよう定義することもできます。
しかし、そうしたトリガは、ビューにINSTEAD OFトリガがあるときにだけ発行されます。
INSTEAD OFトリガを定義しない場合は、ビューを操作しようとする文は、元になる基底テーブルに影響を与える文に書き換えなければなりません。
その結果、発行されるトリガは、基底テーブルに付けられたトリガとなります。
   


トリガ関数は、トリガ自体が作成される前までに定義しておく必要があります。
トリガ関数は、引数を取らない、trigger型を返す関数として宣言される必要があります。
（トリガ関数は、通常の関数で使用される引数という形ではなく、TriggerData構造体で入力を受け取ります。）
   


適切なトリガ関数が作成されると、CREATE TRIGGER(7)を使用してトリガを構築することができます。
同一のトリガ関数を複数のトリガに使用することができます。
   


PostgreSQL™は、行単位のトリガと文単位のトリガの両方を提供します。
行単位のトリガでは、トリガを発行した文によって影響を受ける行ごとにトリガ関数が呼び出されます。
反対に、文単位のトリガでは、適切な文が実行された時に、その文で何行が影響を受けたかどうかは関係なく、一度だけ呼び出されます。
特に、行に影響を与えない文であっても、適切な文単位のトリガがあれば実行されます。
この2種類のトリガはそれぞれ行レベルトリガと文レベルトリガと呼ばれることがあります。
TRUNCATEに対するトリガは、行単位ではなく、文レベルにのみに定義することができます。
   


また、トリガはそれらが操作の前、後または代わりのどれで実行されるかに応じて分けられます。
これらはそれぞれBEFOREトリガ、AFTERトリガ、そしてINSTEAD OFトリガと呼ばれます。
文レベルのBEFOREトリガは、もちろん文が何かを始める前に発行され、文レベルのAFTERトリガは文の本当に最後に発行されます。
これらのタイプのトリガはテーブル、ビュー、あるいは外部テーブルに定義できます。
行レベルのBEFOREトリガは、特定の行が操作される直前に発行され、行レベルのAFTERトリガは文の終わり（ただし、全ての文レベルのAFTERトリガの前）に発行されます。
これらのタイプのトリガは、テーブルおよび外部テーブルにのみ定義でき、ビューには定義できません。
INSTEAD OFトリガはビューにのみ定義され、行レベルのみが許されます。
つまり、ビュー上のそれぞれの行で処理が必要と判断された場合には、即座に発動します。
   


制約トリガとして定義されている場合、AFTERトリガの実行は、トリガ実行を文の終わりではなく、トランザクションの終わりまで保留することができます。
すべての場合において、トリガはトリガが引き金となった文と同じトランザクションの一部として実行されるため、文またはトリガのいずれかがエラーを引き起こした場合、両方の結果がロールバックされます。
また、トリガは常にトリガイベントを待ち行列に入れたロールで実行されます。
ただし、トリガ関数がSECURITY DEFINERと印付けられている場合は、関数の所有者で実行されます。
   


INSERTがON CONFLICT DO UPDATE句を含む場合、トリガの発生した行では、行レベルのBEFORE INSERTトリガが実行され、次に行レベルのBEFORE UPDATEトリガが実行される可能性があります。
BEFORE INSERTトリガによって行われた変更が、EXCLUDED列への変更を含めて、BEFORE UPDATEトリガから見えるので、トリガが冪等ではない場合、このような相互作用は複雑になる可能性があります。
   


文レベルのUPDATEトリガはON CONFLICT DO UPDATEが指定されたとき、そのUPDATEによって行が影響を受けたかどうかに関わらず（そしてその代替であるUPDATE部分が実行されたかどうかに関わらず）実行されることに注意してください。
ON CONFLICT DO UPDATE句のあるINSERTでは、まず文レベルのBEFORE INSERTトリガ、次に文レベルのBEFORE UPDATEトリガ、次いで文レベルのAFTER UPDATEトリガ、最後に文レベルのAFTER INSERTトリガを実行します。
   


継承あるいはパーティショニング階層において、親テーブルをターゲットとする文は、影響を受けた子テーブルの文レベルトリガを発動しません。
すなわち、親テーブルの文レベルトリガのみが発動します。
しかし、影響を受けた子テーブルの行レベルトリガは発動します。
   


あるパーティション化されたテーブルに適用されたUPDATEの結果、行が他のパーティションに移動することになるなら、元のパーティションでDELETEし、続いて新しいパーティションにINSERTする操作として実行されます。
この場合、すべての行レベルBEFORE UPDATEトリガとBEFORE DELETEトリガが元のパーティションで発動します。
そして、すべての行レベルBEFORE INSERTトリガが移動先のパーティションで発動します。
これらのトリガが移動対象の行に対して影響を及ぼす際に、驚くべき結果となる可能性を考慮しておくべきでしょう。
AFTER ROWトリガに関しては、AFTER DELETEとAFTER INSERTトリガが適用されます。しかし、AFTER UPDATEトリガは適用されません。なぜなら、UPDATEはDELETEとINSERTに変換されるからです。
文レベルのトリガに関しては、たとえ行の移動が起こったとしてもDELETEトリガもINSERTトリガも発動されません。UPDATE文中に現れた対象テーブルに定義されたUPDATEトリガだけが発動されます。
   


MERGEには個別のトリガは定義されません。
代わりに、文レベルまたは行レベルのUPDATE、DELETEおよびINSERTトリガが、MERGE問い合わせで指定されたアクション（文レベルトリガの場合）および実行されたアクション（行レベルトリガの場合）に応じて起動されます。
   


MERGEコマンドの実行中、文レベルのBEFOREおよびAFTERトリガは、アクションが最終的に実行されるかどうかに関係なく、MERGEコマンドのアクションで指定されたイベントに対して発行されます。
これは、行を更新しないUPDATE文と同じですが、文レベルのトリガは発行されます。
行レベルのトリガは、行が実際に更新、挿入または削除されたときにのみ発行されます。
したがって、文レベルのトリガが特定のタイプのアクションに対して発行されるものの、同じ種類のアクションに対して行レベルのトリガが発行されないことは完全に合法です。
   


文単位のトリガによって呼び出されるトリガ関数は常にNULLを返さなければなりません。
行単位のトリガによって呼び出されるトリガ関数は呼び出し元のエグゼキュータにテーブル行（HeapTuple型の値）を返すように選択することができます。
操作前に発行された行レベルのトリガでは以下の選択肢があります。

    
	

NULLを返して、現在の行への操作をスキップできます。
これは、エグゼキュータにトリガの元になった行レベルの操作（特定のテーブル行の挿入、更新、削除）を行わないよう指示します。
      

	

行レベルのINSERTおよびUPDATEトリガの場合のみ、返される行が挿入される、もしくは実際に更新される行になります。
これにより、トリガ関数で、挿入される行もしくは更新される行を変更することができます。
      






これらの動作をさせたくない行レベルのBEFOREトリガについては、渡された行（つまり、INSERTおよびUPDATEトリガではNEW行、DELETEの場合はOLD行）と同じ行結果を返すように気を付ける必要があります。
   


行レベルのINSTEAD OFトリガは、ビューの元となった元テーブルのデータをまったく変更しないことを表すNULL、または、渡されたビューの行（INSERTとUPDATE操作の場合NEW行、DELETE操作の場合OLD行）を返さなければなりません。
非NULLの戻り値は、そのトリガがビューにおいて必要なデータ変更を実行したことを通知するために使用されます。
これにより影響を受けた行数を数えるカウンタは増加されます。
INSERTとUPDATE操作のみ、トリガは戻す前にNEW行を変更することができます。
これはINSERT RETURNINGまたはUPDATE RETURNINGで返されるデータを変更しますので、ビューが提供されたデータと正確に同じ結果を返さない場合に有益です。
   


操作の後に発生する行レベルトリガでは戻り値は無視されますので、これらはNULLを返すことができます。
   


生成列に対してはいくつか考慮が必要です。
格納された生成列は、BEFOREトリガの後、AFTERトリガの前に計算されます。
そのため、生成される値はAFTERトリガで調べることができます。
BEFOREトリガでは、皆さんが期待している通りOLD行は以前の生成された値を含んでいますが、NEW行は新しく生成される値をまだ含んでおらず、アクセスすべきではありません。
C言語インタフェースでは、この時点では列の内容は未定義です。高レベルプログラム言語は、BEFOREトリガ内ではNEW行の生成列へのアクセスを避けるべきです。
BEFOREトリガでの生成列の値の変更は無視され、上書きされます。
仮想生成列は、トリガが起動したときに計算されることはありません。
C言語インタフェースでは、トリガ関数内ではその内容は未定義です。
高レベルプログラミング言語は、トリガ内では仮想生成列へのアクセスを避けるべきです。
   


同一リレーション、同一イベントに対して1つ以上のトリガが定義された場合、トリガはその名前のアルファベット順に発生します。
BEFOREトリガとINSTEAD OFトリガの場合では、各トリガで返される、変更された可能性がある行が次のトリガの入力となります。
もし、あるBEFOREトリガやINSTEAD OFトリガがNULLを返したら、(いまのところ)操作はその行で中断し、残りのトリガは発生しません。
   


トリガ定義は、トリガを発動するかどうかをWHEN句の論理条件で指定することも可能です。
行レベルトリガにおいて、WHEN条件は行の列の古い値と(あるいは)新しい値を検索することができます。
(あまり有用ではありませんが、文レベルトリガでもWHEN条件で同じことができます。)
BEFOREトリガでは、実質的にトリガ関数の開始時と同じ条件で検査できるように、WHEN条件の評価が関数の実施直前になされます。
したがって、WHENを使用することは、トリガ関数の最初に同じ条件をテストすることと実質的に変わりません。
しかしAFTERトリガでは、WHEN条件の評価は行の更新直後に行われ、文の終わり(コミット時)にトリガを発動するためのイベントを待ち行列に入れるかどうかを決めます。
そのため、あるAFTERトリガのWHEN条件が真を返さなかった場合は、イベントを待ち行列に入れる必要も文の終わりに行を再取得する必要もありません。
これは、大量の行の変更が発生するけれども、トリガがその内の少数の行に対してのみ発動させる必要がある、といった文の処理速度を大幅に上げる効果があります。
INSTEAD OFトリガはWHEN条件をサポートしていません。
   


通常、行レベルのBEFOREトリガは、挿入あるいは更新される予定のデータの検査や変更のために使用されます。
例えば、BEFOREトリガは、timestamp型の列に現在時刻を挿入するために、あるいは行の2つの要素の整合性を検査するために使用される可能性があります。
行レベルのAFTERトリガは、ほとんど常識的に他のテーブルに更新を伝播させるために、あるいは他のテーブルとの整合性を検査するために使用されます。
こうした仕事の切り分け理由は、AFTERトリガは行の最終値を見ることができ、BEFOREトリガは見ることができないという点です。
その後に他のBEFOREトリガが起動する可能性があります。
トリガをBEFOREにするかAFTERにするかを決める時に特別な理由がないのであれば、操作の情報を行が終わるまで保持する必要がない分、BEFOREを使う方が効率的です。
   


トリガ関数がSQLコマンドを処理する場合、これらの問い合わせがトリガを再度発行することがあります。
これはカスケードされたトリガと呼ばれます。
カスケードの段数に直接的な制限はありません。
カスケードの場合、同じトリガを再帰的に呼び出すことが可能です。
例えば、INSERTトリガで同じテーブルに追加の行を挿入する問い合わせが実行された場合、その結果としてINSERTトリガが再度発行されます。
こうした状況で無限再帰を防ぐのは、トリガプログラマの責任です。
   


外部キー制約が参照アクション（すなわち、カスケード更新または削除）を指定している場合、これらのアクションは、参照テーブル上の通常のSQL UPDATEまたはDELETEコマンドを介して実行されます。
特に、参照テーブルに存在するトリガは、これらの変更に対して起動されます。
このようなトリガがこれらのコマンドのいずれかの効果を変更またはブロックすると、最終的に参照整合性を破壊する可能性があります。
それを回避するのはトリガプログラマの責任です。
   

    
    

トリガを定義する時、そのトリガ用の引数を指定することができます。
トリガ定義に引数を含めた目的は、似たような要求の異なるトリガに同じ関数を呼び出すことができるようにすることです。
例えば、2つの列名を引数とし、片方に現在のユーザをもう片方に現在のタイムスタンプを取る、汎化トリガ関数があるとします。
適切に作成すれば、この関数が特定のトリガの発行元となるテーブルに依存することはなくなります。
同じ関数を使用して、例えば、トランザクションテーブルに作成記録を自動的に登録させるために、適切な列を持つ任意のテーブルのINSERTイベントに使用することができます。
また、UPDATEとして定義すれば、最終更新イベントを追跡するために使用することも可能です。
   


トリガをサポートするプログラミング言語はそれぞれ独自の方法で、トリガ関数で利用できるトリガの入力データを作成します。
この入力データには、トリガイベントの種類（例えばINSERTやUPDATE）、およびCREATE TRIGGERで指定された引数が含まれます。
行レベルトリガの入力データには、INSERTおよびUPDATEトリガの場合はNEW行が、UPDATEおよびDELETEトリガの場合はOLD行が含まれます。
   


デフォルトでは、文レベルトリガには文によって変更された個々の行を検査するための手段がありません。
しかし、トリガがアクセスできる影響を受けた行の集合を作成するために、AFTER STATEMENTトリガは、遷移テーブル(transition tables)の作成を依頼することができます。
AFTER ROWトリガも遷移テーブルを依頼できるので、発動中の個々の行における変更だけでなく、テーブル全体におけるすべての変更を見ることができます。
遷移テーブルを検査する方法も使用中のプログラミング言語に依存しますが、典型的な方法は、トリガ関数の中で発行するSQLコマンドでアクセスできる、読み込み専用の一時テーブルのように振る舞う遷移テーブルを作成することです。
   


データ変更の可視性





トリガ関数内でSQLコマンドを実行し、このコマンドがトリガの元となったテーブルにアクセスする場合、データの可視性規則に注意する必要があります。
この規則が、SQLコマンドがトリガの発行原因となったデータ変更を見ることができるかどうかを決定するからです。
簡単に以下に示します。

    
	

文レベルトリガは次に示す簡単な可視性規則に従います。
文によってなされた変更は、文レベルのBEFOREトリガでは不可視です。
一方、文レベルのAFTERトリガでは全ての変更が可視です。
      

	

当然ながら行レベルのBEFOREトリガ内のSQLコマンドでは、トリガの発生原因となったデータ変更（挿入、更新、削除）はまだ発生していませんので、可視ではありません。
      

	

しかし、行レベルのBEFOREトリガで実行されるSQLコマンドは、その外側のコマンドで以前に処理された行へのデータ変更の影響を見ることになるでしょう。
これらの変更イベントの順序は一般的に予測できませんので、注意が必要です。
複数行に影響するSQLコマンドはどのような順番でもその行を更新することができます。
      

	

同様に、行レベルのINSTEAD OFトリガは、同じ外側のコマンドで以前に処理されたINSTEAD OFトリガよる変更結果を見ることになるでしょう。
      

	

行レベルのAFTERトリガが発生すると、その外側のコマンドによってなされた全ての変更は既に完了していますので、呼び出されたトリガ関数から可視になります。
      




   


もし、あなたのトリガが標準的な手続き型言語のいずれかで記述されている時、上記の可視性は関数がVOLATILEで定義されている場合のみ適用されます。
STABLE、もしくはIMMUTABLEで定義されている関数は、どのようなケースにおいても、呼び出しコマンドによる変更は見ないでしょう。
   


データ可視性規則に関する詳細は「データ変更の可視性」にあります。
「完全なトリガの例」の例にこの規則を示します。
   

Cによるトリガ関数の作成





本節ではトリガ関数とのインタフェースについて低レベルな詳細を説明します。
この情報はC言語でトリガ関数を作成する時にのみ必要です。
高レベルな言語で作成すれば、こうした詳細は代わりに扱ってもらえます。
たいていの場合、Cでトリガを作成する前に手続き言語を使用することを検討すべきです。
各手続き言語の文書で、その言語を使用したトリガの作成方法を説明します。
   


トリガ関数は「version 1」関数マネージャインタフェースを使わなくてはいけません。
   


関数がトリガマネージャから呼び出される時は、通常の引数が渡されるのではなく、TriggerData構造体を指す「context」ポインタが渡されます。
C関数は、トリガマネージャから呼び出されたのかどうかを以下のマクロを実行することで検査することができます。


CALLED_AS_TRIGGER(fcinfo)



これは以下に展開されます。


((fcinfo)->context != NULL && IsA((fcinfo)->context, TriggerData))



もしこれが真を返す場合、fcinfo->contextをTriggerData *型にキャストし、指されたTriggerData構造体を使用することは安全です。
その関数は、TriggerData構造体やそれが指すどのようなデータも変更してはいけません。
   


struct TriggerDataはcommands/trigger.hの中で定義されています。



typedef struct TriggerData
{
    NodeTag          type;
    TriggerEvent     tg_event;
    Relation         tg_relation;
    HeapTuple        tg_trigtuple;
    HeapTuple        tg_newtuple;
    Trigger         *tg_trigger;
    TupleTableSlot  *tg_trigslot;
    TupleTableSlot  *tg_newslot;
    Tuplestorestate *tg_oldtable;
    Tuplestorestate *tg_newtable;
    const Bitmapset *tg_updatedcols;
} TriggerData;




メンバは下記のように定義されています。

    
	type
	

常にT_TriggerDataです。
       

	tg_event
	

その関数が呼び出されたイベントを記述します。
tg_eventを調べるためには下記のマクロを使うことができます。

        
	TRIGGER_FIRED_BEFORE(tg_event)
	

トリガが操作の前に(before)発行された場合に真を返します。
           

	TRIGGER_FIRED_AFTER(tg_event)
	

トリガが操作の後に(after)発行された場合に真を返します。
           

	TRIGGER_FIRED_INSTEAD(tg_event)
	

トリガがINSTEAD OFで発行された場合に真を返します。
           

	TRIGGER_FIRED_FOR_ROW(tg_event)
	

トリガが行レベルのイベントで発行された場合に真を返します。
           

	TRIGGER_FIRED_FOR_STATEMENT(tg_event)
	

トリガが文レベルのイベントで発行された場合に真を返します。
           

	TRIGGER_FIRED_BY_INSERT(tg_event)
	

トリガがINSERTコマンドで発行された場合に真を返します。
           

	TRIGGER_FIRED_BY_UPDATE(tg_event)
	

トリガがUPDATEコマンドで発行された場合に真を返します。
           

	TRIGGER_FIRED_BY_DELETE(tg_event)
	

トリガがDELETEコマンドで発行された場合に真を返します。
           

	TRIGGER_FIRED_BY_TRUNCATE(tg_event)
	

トリガがTRUNCATEコマンドで発行された場合に真を返します。
           




       

	tg_relation
	

トリガの発行元のリレーションを記述する構造体へのポインタです。
この構造体についての詳細は、utils/rel.hを参照してください。
最も興味深いのは、tg_relation->rd_att（リレーションタプルの記述子）とtg_relation->rd_rel->relnameです（リレーション名、これはchar*ではなくNameDataです。
名前のコピーが必要な場合は、char*を得るためにSPI_getrelname(tg_relation)を使用してください）。
       

	tg_trigtuple
	

トリガが発行された行へのポインタです。
これは挿入される、削除される、あるいは更新される行です。
もしINSERT/DELETEでこのトリガが発行された時、この行を別のもので置き換えたくない（INSERTの場合）場合や、その操作をスキップしたくない場合は、これをこの関数から返してください。
外部テーブルのトリガに対しては、システム列の値はここでは指定されません。
       

	tg_newtuple
	

トリガがUPDATEで発行された場合は、行の新しいバージョンへのポインタです。
INSERTもしくはDELETEの場合は、NULLです。
UPDATEイベントの時、この行を別のもので置き換えたくない場合や操作をスキップしたくない場合は、これをこの関数から返してください。
外部テーブルのトリガに対しては、システム列の値はここでは指定されません。
       

	tg_trigger
	

以下のようにutils/reltrigger.hで定義された、Trigger構造体へのポインタです。



typedef struct Trigger
{
    Oid         tgoid;
    char       *tgname;
    Oid         tgfoid;
    int16       tgtype;
    char        tgenabled;
    bool        tgisinternal;
    bool        tgisclone;
    Oid         tgconstrrelid;
    Oid         tgconstrindid;
    Oid         tgconstraint;
    bool        tgdeferrable;
    bool        tginitdeferred;
    int16       tgnargs;
    int16       tgnattr;
    int16      *tgattr;
    char      **tgargs;
    char       *tgqual;
    char       *tgoldtable;
    char       *tgnewtable;
} Trigger;




ここで、tgnameがトリガの名前、tgnargsがtgargs内の引数の数、tgargsはCREATE TRIGGER文で指定された引数へのポインタの配列です。
他のメンバは内部でのみ使用されます。
       

	tg_trigslot
	

tg_trigtupleを含むスロット、またはタプルが存在しない場合はNULLポインタです。
       

	tg_newslot
	

tg_newtupleを含むスロット、またはタプルが存在しない場合はNULLポインタです。
       

	tg_oldtable
	

tg_relationで指定するフォーマットの0以上の行を含むTuplestorestate型の構造体へのポインタです。
OLD TABLE遷移リレーションが存在しない場合はNULLポインタです。
       

	tg_newtable
	

tg_relationで指定するフォーマットの0以上の行を含むTuplestorestate型の構造体へのポインタです。
NEW TABLE遷移リレーションが存在しない場合はNULLポインタです。
       

	tg_updatedcols
	

UPDATEトリガに対しては、トリガコマンドにより更新された列を示すビットマップ集合です。
汎用のトリガ関数はこれを使って、変更されていない列を扱わないことで動作を最適化できます。
       


例として、属性番号attnum(1始まり)の列がこのビットマップ集合のメンバであるかどうか判定するために、bms_is_member(attnum - FirstLowInvalidHeapAttributeNumber, trigdata->tg_updatedcols))を呼び出します。
       


UPDATEトリガ以外のトリガに対しては、これはNULLになります。
       




   


SPIを使って遷移テーブルを参照するクエリを発行する方法については、SPI_register_trigger_data(3)を参照してください。
   


トリガ関数はHeapTupleポインタもしくはNULLポインタ（SQLのNULLではありません。
したがって、isNullは真にはなりません）のどちらかを返さなければなりません。
操作対象の行を変更したくない場合は、注意して、tg_trigtupleかtg_newtupleの適切な方を返してください。
   

完全なトリガの例





C言語で作成したトリガ関数に関するとても簡単な例をここに示します
（手続き言語で作成したトリガの例は、その手続き言語の文書に記載されています。）
   


trigf関数は、ttestテーブル内にある行数を報告し、問い合わせがxにNULL値を挿入しようとしていた場合は、その操作をスキップします。
（つまり、このトリガは、トランザクションを中断させないNOT NULL制約のような動作をします。）
   


まず、以下のようにテーブルを定義します。


CREATE TABLE ttest (
    x integer
);


   


以下がトリガ関数のソースコードです。


#include "postgres.h"
#include "fmgr.h"

#include "executor/spi.h"       /* これはSPIを使用する場合に必要なもの */
#include "commands/trigger.h"   /* これはトリガで必要なもの */
#include "utils/rel.h"          /* これはリレーションで必要なもの */

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(trigf);

Datum
trigf(PG_FUNCTION_ARGS)
{
    TriggerData *trigdata = (TriggerData *) fcinfo->context;
    TupleDesc   tupdesc;
    HeapTuple   rettuple;
    char       *when;
    bool        checknull = false;
    bool        isnull;
    int         ret, i;


    /* トリガとして呼び出されたかどうかを確認 */
    if (!CALLED_AS_TRIGGER(fcinfo))
        elog(ERROR, "trigf: not called by trigger manager");


    /* エグゼキュータに返すタプル */
    if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
        rettuple = trigdata->tg_newtuple;
    else
        rettuple = trigdata->tg_trigtuple;


    /* NULL値をチェック */
    if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event)
        && TRIGGER_FIRED_BEFORE(trigdata->tg_event))
        checknull = true;

    if (TRIGGER_FIRED_BEFORE(trigdata->tg_event))
        when = "before";
    else
        when = "after ";

    tupdesc = trigdata->tg_relation->rd_att;

    /* SPIマネージャに接続 */
    SPI_connect();


    /* テーブル中の行数を取得 */
    ret = SPI_exec("SELECT count(*) FROM ttest", 0);

    if (ret < 0)
        elog(ERROR, "trigf (fired %s): SPI_exec returned %d", when, ret);


    /* count(*)はint8を返すため、変換に注意してください */
    i = DatumGetInt64(SPI_getbinval(SPI_tuptable->vals[0],
                                    SPI_tuptable->tupdesc,
                                    1,
                                    &isnull));

    elog (INFO, "trigf (fired %s): there are %d rows in ttest", when, i);

    SPI_finish();

    if (checknull)
    {
        SPI_getbinval(rettuple, tupdesc, 1, &isnull);
        if (isnull)
            rettuple = NULL;
    }

    return PointerGetDatum(rettuple);
}



   


ソースコードをコンパイル（「動的にロードされる関数のコンパイルとリンク」を参照してください）した後に、以下の様に関数とトリガを宣言します。


CREATE FUNCTION trigf() RETURNS trigger
    AS 'filename'
    LANGUAGE C;

CREATE TRIGGER tbefore BEFORE INSERT OR UPDATE OR DELETE ON ttest
    FOR EACH ROW EXECUTE FUNCTION trigf();

CREATE TRIGGER tafter AFTER INSERT OR UPDATE OR DELETE ON ttest
    FOR EACH ROW EXECUTE FUNCTION trigf();


   


これで、トリガの操作を確認することができます。


=> INSERT INTO ttest VALUES (NULL);
INFO:  trigf (fired before): there are 0 rows in ttest
INSERT 0 0


-- 挿入操作はスキップされ、また、AFTERトリガも発行されません。

=> SELECT * FROM ttest;
 x
---
(0 rows)

=> INSERT INTO ttest VALUES (1);
INFO:  trigf (fired before): there are 0 rows in ttest
INFO:  trigf (fired after ): there are 1 rows in ttest
                                       ^^^^^^^^

                             可視性の説明を思い出してください。
INSERT 167793 1
vac=> SELECT * FROM ttest;
 x
---
 1
(1 row)

=> INSERT INTO ttest SELECT x * 2 FROM ttest;
INFO:  trigf (fired before): there are 1 rows in ttest
INFO:  trigf (fired after ): there are 2 rows in ttest
                                       ^^^^^^

                             可視性の説明を思い出してください。
INSERT 167794 1
=> SELECT * FROM ttest;
 x
---
 1
 2
(2 rows)

=> UPDATE ttest SET x = NULL WHERE x = 2;
INFO:  trigf (fired before): there are 2 rows in ttest
UPDATE 0
=> UPDATE ttest SET x = 4 WHERE x = 2;
INFO:  trigf (fired before): there are 2 rows in ttest
INFO:  trigf (fired after ): there are 2 rows in ttest
UPDATE 1
vac=> SELECT * FROM ttest;
 x
---
 1
 4
(2 rows)

=> DELETE FROM ttest;
INFO:  trigf (fired before): there are 2 rows in ttest
INFO:  trigf (fired before): there are 1 rows in ttest
INFO:  trigf (fired after ): there are 0 rows in ttest
INFO:  trigf (fired after ): there are 0 rows in ttest
                                       ^^^^^^

                             可視性の説明を思い出してください。
DELETE 2
=> SELECT * FROM ttest;
 x
---
(0 rows)



   


src/test/regress/regress.cとspiにはもっと複雑な例があります。
   

第38章 イベントトリガ





37章トリガで説明されたトリガの機能を補完するために、PostgreSQL™はイベントトリガを提供します。
一つのテーブルに付与され、DMLイベントのみ対象にしたこれまでのトリガと違い、イベントトリガは特定のデータベースに大域的であり、DDLイベントを対象に実行できます。
  


これまでのトリガと違い、イベントトリガは普通のSQLではなく、イベントトリガがサポートする手続き言語やC言語で記述することができます。
  
イベントトリガ動作の概要





イベントトリガは、定義されたデータベース内で関連づけられたイベントが起こるたびに起動します。
今のところサポートされているイベントは、login、ddl_command_start、ddl_command_end、table_rewrite、およびsql_dropです。
今後のリリースで新たなイベントが追加されるかもしれません。
   
login





loginイベントは、認証されたユーザがシステムにログインするときに発生します。
このイベントのトリガプロシージャにおけるバグは、システムへのログインの成功を妨げる可能性があります。
このようなバグは、接続文字列または設定ファイルでevent_triggersをfalseに設定することで回避できます。
あるいは、シングルユーザモードでシステムを再起動することでも回避できます（このモードではイベントトリガが無効になっているため）。
シングルユーザモードの使用方法の詳細については、postgres(1)のリファレンスページを参照してください。
loginイベントはスタンバイサーバでも実行されます。
サーバがアクセスできなくなるのを防ぐために、このようなトリガは、スタンバイで実行されているときにはデータベースに何も書き込まないようにする必要があります。
また、loginイベントトリガでの長時間実行する問い合わせは避けることをお勧めします。
例えば、psqlで接続を取り消しても進行中のloginトリガを中断しないことに注意してください。
   


loginイベントトリガの使用方法の例については、「データベースログインイベントトリガの例」を参照してください。
   

ddl_command_start





ddl_command_startイベントは、DDLコマンドが実行される直前に発生します。
この文脈でのDDLコマンドは、次の通りです。
     
	CREATE

	ALTER

	DROP

	COMMENT

	GRANT

	IMPORT FOREIGN SCHEMA

	REINDEX

	REFRESH MATERIALIZED VIEW

	REVOKE

	SECURITY LABEL





ddl_command_startは、SELECT INTOコマンドが実行される直前にも発生します。
このコマンドはCREATE TABLE ASと同等であるためです。
   


例外として、このイベントは共有オブジェクトを対象とするDDLコマンドでは発生しません。
     
	データベース

	ロール（ロール定義とロールメンバ資格）

	テーブル空間

	パラメータ権限

	ALTER SYSTEM





このイベントは、イベントトリガ自体を対象とするコマンドでも発生しません。
   


イベントトリガが起動する前に、影響を受けるオブジェクトが存在するかどうかは確認されません。
   

ddl_command_end





ddl_command_endイベントは、ddl_command_startイベントの対象と同じコマンド集合の実行直後に発生します。
発生したDDL操作のより詳細を取得するには、ddl_command_endイベントトリガコードで集合を返す関数pg_event_trigger_ddl_commands()を使用してください（「イベントトリガ関数」を参照してください）。
トリガはアクションが起きた後（ただし、トランザクションのコミットの前）に起動するため、システムカタログは既に変更されたものとして読まれることに注意してください。
   

sql_drop





sql_dropイベントは、データベースオブジェクトを削除する操作に対するddl_command_endイベントトリガの直前に発生します。
明らかなDROPコマンドの他に、いくつかのALTERコマンドでもsql_dropイベントが発生する可能性があります。
   


削除されたオブジェクトの一覧を確認するには、sql_dropイベントトリガコードで集合を返す関数pg_event_trigger_dropped_objects()を使用してください（「イベントトリガ関数」を参照してください）。
トリガはシステムカタログからオブジェクトが削除された後に実行されるため、それ以降それらのオブジェクトは検索できないことに注意してください。
   

table_rewrite





table_rewriteイベントは、ALTER TABLEやALTER TYPEコマンドのアクションによりテーブルが書き換えられる直前に発生します。
CLUSTERやVACUUMのような他の制御文でもテーブルは書き換えられますが、それらではtable_rewriteイベントは発生しません。
書き換えられたテーブルのOIDを見つけるには、関数pg_event_trigger_table_rewrite_oid()を使用し、書き換えられた理由を知るには、関数pg_event_trigger_table_rewrite_reason()を使用します（「イベントトリガ関数」を参照してください）。
   

中断したトランザクションでのイベントトリガ





イベントトリガは（他の関数のように）中断したトランザクションでは実行されません。
従って、DDLコマンドがエラーで失敗した場合、関連するddl_command_endトリガは実行されません。
逆に、もしddl_command_startトリガがエラーで失敗した場合、他のイベントトリガは起動されず、コマンド自体も実行されません。
同様に、もしddl_command_endトリガがエラーで失敗した場合、それを含むトランザクションが失敗した場合のようにDDL文はロールバックされます。
   

イベントトリガの作成





イベントトリガは、コマンドCREATE EVENT TRIGGER(7)を使用して作成されます。
イベントトリガを作成するために、まず特別な型event_triggerを返す関数を作る必要があります。
この関数は値を返す必要はありません。というのも、その戻り値型は単にシグナルとして、その関数がイベントトリガを呼び出していることを示しているだけだからです。
   


特定のイベントに対して複数のイベントトリガが定義された場合、トリガ名のアルファベット順で起動されます。
   


トリガ定義はWHEN条件で特定されます。そのため、例えばddl_command_startトリガはユーザが望む特定のコマンドのみを契機に実行させることができます。
このようなトリガの一般的な使い方として、ユーザが実行するかもしれないDDL文の範囲を狭めることができます。
   



C言語によるイベントトリガ関数の書き方





本節ではトリガ関数とのインタフェースについて低レベルな詳細を説明します。
この情報はC言語でトリガ関数を作成する時にのみ必要です。
高レベルな言語で作成すれば、こうした詳細は代わりに扱ってもらえます。
たいていの場合、Cでトリガを作成する前に手続き言語を使用することを検討すべきです。
各手続き言語の文書で、その言語を使用したイベントトリガの作成方法を説明します。
   


トリガ関数は「version 1」関数マネージャインタフェースを使わなくてはいけません。
   


関数がイベントトリガマネージャから呼び出される時は、通常の引数が渡されるのではなく、EventTriggerData構造体を指す「context」ポインタが渡されます。
C関数は、イベントトリガマネージャから呼び出されたのかどうかを以下のマクロを実行することで検査することができます。


CALLED_AS_EVENT_TRIGGER(fcinfo)



これは以下に展開されます。


((fcinfo)->context != NULL && IsA((fcinfo)->context, EventTriggerData))



もしこれが真を返す場合、fcinfo->contextをEventTriggerData *型にキャストし、指されたEventTriggerData構造体を使用することは安全です。
その関数は、TriggerData構造体やそれが指すどのようなデータも変更してはいけません。
   


struct EventTriggerDataはcommands/event_trigger.hの中で定義されています。



typedef struct EventTriggerData
{
    NodeTag     type;

    const char *event;      /* イベント名 */
    Node       *parsetree;  /* 解析ツリー */
    CommandTag  tag;        /* コマンドタグ */
} EventTriggerData;




メンバは下記のように定義されています。

    
	type
	

常にT_EventTriggerDataです。
       

	event
	

その関数が呼び出されたイベント、"login"、"ddl_command_start"、"ddl_command_end"、"sql_drop"、"table_rewrite"のうちの１つを記述します。
これらのイベントの内容は、「イベントトリガ動作の概要」を参照してください。
       

	parsetree
	

コマンドの解析ツリーへのポインタです。
詳細はPostgreSQLのソースコードを確認してください。
解析ツリーの構造は予告なく変更されることがあります。
       

	tag
	

イベントトリガの実行対象となるイベントに関連するコマンドタグです。たとえば、"CREATE FUNCTION"です。
       




   


イベントトリガ関数はNULLポインタ（SQLのNULLではありません。したがって、isNullは真にはなりません）を返さなければなりません。
   

完全なイベントトリガの例





C言語で作成したイベントトリガ関数に関するとても簡単な例をここに示します。
（手続き言語で作成したトリガの例は、その手続き言語の文書に記載されています。）
   


noddl関数は、呼ばれるたびに例外を発生させます。
このイベントトリガは、この関数とddl_command_startイベントを関連づけます。
そのため、(「イベントトリガ動作の概要」で言及した例外はありますが例外を含む)すべてのDDLコマンドは、実行できません。
   


以下がトリガ関数のソースコードです。


#include "postgres.h"

#include "commands/event_trigger.h"
#include "fmgr.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(noddl);

Datum
noddl(PG_FUNCTION_ARGS)
{
    EventTriggerData *trigdata;


    if (!CALLED_AS_EVENT_TRIGGER(fcinfo))  /* 内部エラー */
        elog(ERROR, "not fired by event trigger manager");

    trigdata = (EventTriggerData *) fcinfo->context;

    ereport(ERROR,
            (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
             errmsg("command \"%s\" denied",
                    GetCommandTagName(trigdata->tag))));

    PG_RETURN_NULL();
}


   


ソースコードをコンパイル（「動的にロードされる関数のコンパイルとリンク」を参照してください）した後に、以下の様に関数とトリガを宣言します。


CREATE FUNCTION noddl() RETURNS event_trigger
    AS 'noddl' LANGUAGE C;

CREATE EVENT TRIGGER noddl ON ddl_command_start
    EXECUTE FUNCTION noddl();


   


これで、トリガの操作を確認することができます。


=# \dy
                     List of event triggers
 Name  |       Event       | Owner | Enabled | Function | Tags
-------+-------------------+-------+---------+----------+------
 noddl | ddl_command_start | dim   | enabled | noddl    |
(1 row)

=# CREATE TABLE foo(id serial);
ERROR:  command "CREATE TABLE" denied


   


この状況では、DDLコマンドを必要なときに実行できるようにするには、このイベントトリガを削除するか、無効化しなければなりません。
以下のように、トランザクションの期間中だけトリガを無効化するのが、便利かもしれません。


BEGIN;
ALTER EVENT TRIGGER noddl DISABLE;
CREATE TABLE foo (id serial);
ALTER EVENT TRIGGER noddl ENABLE;
COMMIT;



(イベントトリガ自体が関係するDDLコマンドは、イベントトリガの影響を受けないことを思い出してください。)
   

テーブル書き換えイベントトリガの例





table_rewriteイベントのおかげで、メンテナンスウィンドウでの書き換えを許可するだけでテーブル書き換えポリシーを実装できます。
   


これが、そのようなポリシーを実装した例です。


CREATE OR REPLACE FUNCTION no_rewrite()
 RETURNS event_trigger
 LANGUAGE plpgsql AS
$$
---

--- ローカルテーブル書き換えポリシーの実装:
---   public.fooは書き換えが許可されていません
---   その他のテーブルは100ブロック以下であれば、
---   午前1時から午前6時までの間だけ書き換えが許可されます
---
DECLARE
  table_oid oid := pg_event_trigger_table_rewrite_oid();
  current_hour integer := extract('hour' from current_time);
  pages integer;
  max_pages integer := 100;
BEGIN
  IF pg_event_trigger_table_rewrite_oid() = 'public.foo'::regclass
  THEN
        RAISE EXCEPTION 'you''re not allowed to rewrite the table %',
                        table_oid::regclass;
  END IF;

  SELECT INTO pages relpages FROM pg_class WHERE oid = table_oid;
  IF pages > max_pages
  THEN
        RAISE EXCEPTION 'rewrites only allowed for table with less than % pages',
                        max_pages;
  END IF;

  IF current_hour NOT BETWEEN 1 AND 6
  THEN
        RAISE EXCEPTION 'rewrites only allowed between 1am and 6am';
  END IF;
END;
$$;

CREATE EVENT TRIGGER no_rewrite_allowed
                  ON table_rewrite
   EXECUTE FUNCTION no_rewrite();


   

データベースログインイベントトリガの例





loginイベントのイベントトリガは、ユーザログインの記録、接続の検証と現在の状況に応じたロールの割り当て、あるいは、セッションデータの初期設定に有用です。
loginイベントを使用するイベントトリガは、書き込みを実行する前にデータベースがリカバリ中であるかどうかを確認することが非常に重要です。
スタンバイサーバに書き込むとアクセスできなくなります。
    


以下は、これらの機能付加を示す例です。


-- create test tables and roles
-- テスト用のテーブルとロールを作成
CREATE TABLE user_login_log (
  "user" text,
  "session_start" timestamp with time zone
);
CREATE ROLE day_worker;
CREATE ROLE night_worker;

-- the example trigger function
-- トリガ関数の例
CREATE OR REPLACE FUNCTION init_session()
  RETURNS event_trigger SECURITY DEFINER
  LANGUAGE plpgsql AS
$$
DECLARE
  hour integer = EXTRACT('hour' FROM current_time at time zone 'utc');
  rec boolean;
BEGIN
-- 1. Forbid logging in between 2AM and 4AM.
-- 1. AM2時から4時までのログインを禁止する。
IF hour BETWEEN 2 AND 4 THEN
  RAISE EXCEPTION 'Login forbidden';
END IF;

-- The checks below cannot be performed on standby servers so
-- ensure the database is not in recovery before we perform any
-- operations.
-- これより先のチェックはスタンバイサーバでは実行できないので、
-- 操作を実行する前にデータベースがリカバリ中でないことを確認する。
SELECT pg_is_in_recovery() INTO rec;
IF rec THEN
  RETURN;
END IF;

-- 2. Assign some roles. At daytime, grant the day_worker role, else the
-- night_worker role.
-- 2. ロールを割り当てる。
-- 日中はday_workerロール、さもなくば night_workerロール。
IF hour BETWEEN 8 AND 20 THEN
  EXECUTE 'REVOKE night_worker FROM ' || quote_ident(session_user);
  EXECUTE 'GRANT day_worker TO ' || quote_ident(session_user);
ELSE
  EXECUTE 'REVOKE day_worker FROM ' || quote_ident(session_user);
  EXECUTE 'GRANT night_worker TO ' || quote_ident(session_user);
END IF;

-- 3. Initialize user session data
-- 3. ユーザのセッションデータを初期化する。
CREATE TEMP TABLE session_storage (x float, y integer);
ALTER TABLE session_storage OWNER TO session_user;

-- 4. Log the connection time
-- 4. 接続時刻を記録する。
INSERT INTO public.user_login_log VALUES (session_user, current_timestamp);

END;
$$;

-- trigger definition
CREATE EVENT TRIGGER init_session
  ON login
  EXECUTE FUNCTION init_session();
ALTER EVENT TRIGGER init_session ENABLE ALWAYS;


    

第39章 ルールシステム





本章ではPostgreSQL™のルールシステムについて説明します。
本番で稼働するルールシステムは概念としては単純ですが、実際に使ってみると、わかりにくいところが少なからずあります。



通常それらはストアドプロシージャとトリガですが、他のいくつかのデータベースシステムは能動的データベースルールを定義しています。
PostgreSQL™では関数とトリガとして実装されています。



ルールシステム（より正確に言うと問い合わせ書き換えルールシステム）はストアドプロシージャとトリガとはまったく異なります。
ルールシステムはルールを参照して問い合わせを修正し、修正した問い合わせを、計画作成と実行のために問い合わせプランナに渡します。
これは非常に強力なため、問い合わせ言語プロシージャ、ビューあるいはバージョンなど多くのパターンで使用することができます。
このルールシステムの基礎理論と能力は[ston90b]および[ong90]で解説されています。

問い合わせツリーとは





どのようにルールシステムが機能するかを理解するためには、ルールがどのように起動され、その入力と結果は何かを理解しなければなりません。



ルールシステムは問い合わせパーサとプランナの中間に位置します。
ルールシステムは、入力としてパーサの出力、単一の問い合わせツリー、および何らかの特別な情報を持つ問い合わせツリーでもあるユーザ定義の書き換えルールを取り、結果として0個以上の問い合わせツリーを生成します。
ルールシステムの入力と出力は常にパーサ自体でも生成することができるもので、参照する対象は基本的にSQL文として表現できるものです。



では問い合わせツリーとは何でしょうか。
それは、SQL文を構成する個々の部品を別々に記憶した、SQL文の内部表現です。
debug_print_parse、debug_print_rewritten、もしくはdebug_print_plan設定パラメータを設定していれば、サーバログ内で問い合わせツリーを見ることができます。
ルールアクションもpg_rewriteシステムカタログ内に問い合わせツリーとして格納されています。
これはログ出力のように整形されていませんが、まったく同じ情報を持っています。



問い合わせツリーそのものを読むためにはある程度の経験が必要です。
ルールシステムを理解するためには問い合わせツリーのSQL表現で十分ですので、本章ではその読み方については説明しません。



本章の問い合わせツリーのSQL表現形式を読む時に必要なのは、問い合わせツリー構造の中に分解された、ある文の部品を識別できることです。
問い合わせツリーには以下の部品があります。


	

コマンド種類
    
	

これはどのコマンド（SELECT、INSERT、UPDATE、DELETE）が構文解析ツリーを作ったかを示す単純な値です。
    

	

範囲テーブル
      
    
	

範囲テーブルは問い合わせで使われるリレーションのリストです。
SELECT文ではこれはFROMキーワードの後で与えられるリレーションになります。
    


範囲テーブルのそれぞれの項目はテーブルもしくはビューを識別し、問い合わせの別の部品ではどんな名前で呼び出されるかを示します。
問い合わせツリーでは範囲テーブルの項目は名前よりも番号で参照されることが多いため、ここではSQL文とは違い、重複する名前があるかということは問題になりません。
これはルールの範囲テーブルがマージされた後に起こる可能性があります。
本章の例ではその状況を含んでいません。
    

	

結果リレーション
    
	

問い合わせの結果が格納されるリレーションを識別する範囲テーブルへのインデックスです。
    


SELECT問い合わせは結果リレーションを持ちません。
（SELECT INTOの場合は特別ですが、INSERT ... SELECTが付いたCREATE TABLEとほぼ同じですので、ここでは個別には説明しません。）
    


INSERT、UPDATE、DELETEコマンドでは、結果リレーションは変更が有効になるテーブル（もしくはビュー）です。
    

	

目的リスト
    
    
	

目的リストは問い合わせの結果を定義する式のリストです。
SELECTの場合、この式は問い合わせの最終結果を構築するものです。
これらはSELECTとFROMキーワードの間にある式に対応します。
（*は単にリレーションの全ての列名の省略です。
これはパーサによって個別の列に展開されますので、ルールシステムが見ることはありません。）
    


DELETEコマンドは結果を返しませんので、通常の目的リストは必要ありません。
その代わり、プランナは空の目的リストに特別なCTID項目を追加し、エグゼキュータが削除すべき行を見つけられるようにします。
（CTIDは結果リレーションが通常のテーブルの場合に追加されます。
もしビューであれば「ビューの更新について」で述べるように、代わりに行全体の変数がルールシステムによって追加されます。）
    


INSERT問い合わせでは、目的リストは結果リレーションへ入る新規の行を示します。
これはVALUES句かINSERT ... SELECTの中のSELECT句の式です。
書き換え処理の最初のステップでは、元の問い合わせでは割り当てられず、デフォルト値となっている列の目的リストの項目を追加します。
残った列（値が与えられていない列、かつデフォルト値を持たない列）は全て、プランナによって定数NULL式で埋められます。
    


UPDATEコマンドでは、目的リストは古いものを置き換えるべき新しい行を示します。
ルールシステムではコマンド内のSET column = expression部分にある式だけを持っています。
プランナは、古い行から新しい行へ値をコピーする式を挿入することにより、抜けている列を処理します。
DELETEの場合と同様、エグゼキュータが更新すべき行を見つけられるように、CTIDもしくは行全体の変数が追加されます。
    


目的リストの各項目は、定数値、範囲テーブル内のリレーション中の1つの列を指し示す変数、パラメータ等の式を保持するか、または、関数呼び出し、定数、変数、演算子などにより作られた式のツリーを保持します。
    

	

条件
    
	

問い合わせの条件は目的リストの項目に含まれている式によく似た式です。
この式の結果は、最終的な結果の行を得るための（INSERT、UPDATE、DELETEまたはSELECT）演算を実行すべきかどうかを示すブール値です。
それはSQL文の中のWHERE句に対応します。
    

	

結合ツリー
    
	

問い合わせの結合ツリーはFROM句の構造を表します。
SELECT ... FROM a, b, cのような単純な問い合わせでは、結合ツリーは単なるFROM項目のリストです。
なぜならこれらはどんな順番で結合しても構わないためです。
しかしJOIN式、特に外部結合が使われた場合は、その結合が示す順番通りに結合しなければいけません。
この場合結合ツリーはJOIN式の構造を表します。
特定のJOIN句と関連付けられた制約（ONもしくはUSING式からのもの）はこれらの結合ツリーノードに付加された条件として格納されます。
頂点レベルのWHERE式を頂点レベルの結合ツリー項目に付加された条件として格納することも便利です。
ですから、結合ツリーはSELECTのFROM句とWHERE句の両方を表しているわけです。
    

	

その他
    
	

ORDER BY句のような、問い合わせツリーのその他の部品は、ここでは取り上げません。
ルールシステムはルールを適用している時にそこで項目を入れ替えることもありますが、これはルールシステムの基本とはあまり関係しません。
    







ビューとルールシステム





PostgreSQL™におけるビューはルールシステムを使って実装されています。
ビューは基本的に、ON SELECT DO INSTEADルールのある空のテーブルです（実際の記憶域はありません）。
慣例的に、そのルールは_RETURNという名前です。
ですので、以下のようなビューは



CREATE VIEW myview AS SELECT * FROM mytab;




以下と同じものに非常に近いです。



CREATE TABLE myview (same column list as mytab);
CREATE RULE "_RETURN" AS ON SELECT TO myview DO INSTEAD
    SELECT * FROM mytab;




ですが、テーブルはON SELECTルールを持つことができませんので、これを実際には書くことはできません。



ビューには他の種類のDO INSTEADルールもあり、基礎となる記憶域がないにもかかわらず、ビューに対してINSERT、UPDATE、またはDELETEコマンドを実行できるようにします。
これについては、以下の「ビューの更新について」でさらに説明します。

SELECTルールの動き





たとえコマンドがINSERT、UPDATE、DELETEなどであっても、ON SELECTルールは全ての問い合わせに対し最後に適用されます。
そして、このルールは他のコマンド種類のルールと異なるセマンティクスを持っていて、問い合わせツリーを新規に生成せずに、そこにあるものを修正します。
したがってSELECTルールを一番初めに記述します。



現在のところ、ON SELECTルールでは1つのアクションしか許されず、それはINSTEADである無条件のSELECTアクションでなければいけません。
この制約は、一般のユーザが何をしても、ルールシステムが堅牢であるために必要であり、ON SELECTのルールはビュー同様の動作に限定されます。



本章の例として挙げているのは、ちょっとした演算をする2つの結合のビューと、次にこれらの機能を利用するいくつかのビューです。
初めの2つのビューのうちの1つは、INSERT、UPDATE、DELETE操作に対するルールを後で追加することでカスタマイズされ、最終結果は何らかの魔法の機能によりあたかも実テーブルのように振舞うビューになります。
初めて学ぶための例としては決して簡単ではなく先に進むことを躊躇させるかもしれません。
しかし、多くの別々の例を持ち出して頭の混乱を招くよりも、全ての論点をステップごとに追う1つの例を挙げる方が良いでしょう。



最初の2つのルールシステムの説明で必要とする実テーブルを以下に示します。




CREATE TABLE shoe_data (
    shoename   text,          -- 主キー
    sh_avail   integer,       -- 在庫
    slcolor    text,          -- 望ましい靴紐の色
    slminlen   real,          -- 靴紐の最短サイズ
    slmaxlen   real,          -- 靴紐の最長サイズ
    slunit     text           -- 長さの単位
);


CREATE TABLE shoelace_data (
    sl_name    text,          -- 主キー
    sl_avail   integer,       -- 在庫
    sl_color   text,          -- 靴紐の色
    sl_len     real,          -- 靴紐の長さ
    sl_unit    text           -- 長さの単位
);


CREATE TABLE unit (
    un_name    text,          -- 主キー
    un_fact    real           -- cmに変換するファクタ
);




これでわかるかもしれませんが、これらは靴屋のデータを表しています。



ビューを以下のように作成します。



CREATE VIEW shoe AS
    SELECT sh.shoename,
           sh.sh_avail,
           sh.slcolor,
           sh.slminlen,
           sh.slminlen * un.un_fact AS slminlen_cm,
           sh.slmaxlen,
           sh.slmaxlen * un.un_fact AS slmaxlen_cm,
           sh.slunit
      FROM shoe_data sh, unit un
     WHERE sh.slunit = un.un_name;

CREATE VIEW shoelace AS
    SELECT s.sl_name,
           s.sl_avail,
           s.sl_color,
           s.sl_len,
           s.sl_unit,
           s.sl_len * u.un_fact AS sl_len_cm
      FROM shoelace_data s, unit u
     WHERE s.sl_unit = u.un_name;

CREATE VIEW shoe_ready AS
    SELECT rsh.shoename,
           rsh.sh_avail,
           rsl.sl_name,
           rsl.sl_avail,
           least(rsh.sh_avail, rsl.sl_avail) AS total_avail
      FROM shoe rsh, shoelace rsl
     WHERE rsl.sl_color = rsh.slcolor
       AND rsl.sl_len_cm >= rsh.slminlen_cm
       AND rsl.sl_len_cm <= rsh.slmaxlen_cm;




shoelaceビュー（今ある一番簡単なビュー）用のCREATE VIEWコマンドは、shoelaceリレーションと、問い合わせ範囲テーブルの中でshoelaceリレーションが参照される時はいつでも、適用されるべき書き換えルールの存在を示す項目をpg_rewriteに作ります。
ルールはルール条件（SELECTルールは現在持つことができませんので、非SELECTルールのところで取り上げます）を持たないINSTEADです。
ルール条件は問い合わせ条件とは異なることに注意してください！
ルールアクションは問い合わせ条件を持っています。
このルールアクションは、ビュー作成コマンド内のSELECTのコピーである、1つの問い合わせツリーです。

注記


pg_rewrite項目のNEWとOLDに対する2つの特別な範囲テーブル項目はSELECTルールには関係ありません。
    



ではここでunit、shoe_data、shoelace_dataにデータを入れ、ビューに簡単な問い合わせを行います。



INSERT INTO unit VALUES ('cm', 1.0);
INSERT INTO unit VALUES ('m', 100.0);
INSERT INTO unit VALUES ('inch', 2.54);

INSERT INTO shoe_data VALUES ('sh1', 2, 'black', 70.0, 90.0, 'cm');
INSERT INTO shoe_data VALUES ('sh2', 0, 'black', 30.0, 40.0, 'inch');
INSERT INTO shoe_data VALUES ('sh3', 4, 'brown', 50.0, 65.0, 'cm');
INSERT INTO shoe_data VALUES ('sh4', 3, 'brown', 40.0, 50.0, 'inch');

INSERT INTO shoelace_data VALUES ('sl1', 5, 'black', 80.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl2', 6, 'black', 100.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl3', 0, 'black', 35.0 , 'inch');
INSERT INTO shoelace_data VALUES ('sl4', 8, 'black', 40.0 , 'inch');
INSERT INTO shoelace_data VALUES ('sl5', 4, 'brown', 1.0 , 'm');
INSERT INTO shoelace_data VALUES ('sl6', 0, 'brown', 0.9 , 'm');
INSERT INTO shoelace_data VALUES ('sl7', 7, 'brown', 60 , 'cm');
INSERT INTO shoelace_data VALUES ('sl8', 1, 'brown', 40 , 'inch');

SELECT * FROM shoelace;

 sl_name   | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
-----------+----------+----------+--------+---------+-----------
 sl1       |        5 | black    |     80 | cm      |        80
 sl2       |        6 | black    |    100 | cm      |       100
 sl7       |        7 | brown    |     60 | cm      |        60
 sl3       |        0 | black    |     35 | inch    |      88.9
 sl4       |        8 | black    |     40 | inch    |     101.6
 sl8       |        1 | brown    |     40 | inch    |     101.6
 sl5       |        4 | brown    |      1 | m       |       100
 sl6       |        0 | brown    |    0.9 | m       |        90
(8 rows)


   


これは、ビューに対する最も簡単なSELECTですので、この機会にビュールールの基本を説明します。
SELECT * FROM shoelaceはパーサによって処理され、次の問い合わせツリーが生成されます。



SELECT shoelace.sl_name, shoelace.sl_avail,
       shoelace.sl_color, shoelace.sl_len,
       shoelace.sl_unit, shoelace.sl_len_cm
  FROM shoelace shoelace;




このツリーがルールシステムに伝えられます。
ルールシステムは範囲テーブルを参照し、何らかのリレーションに対してルールが存在するか調べます。
shoelace（現時点では唯一のビュー）についての範囲テーブル項目を処理する際、問い合わせツリーで_RETURNルールを検出します。



SELECT s.sl_name, s.sl_avail,
       s.sl_color, s.sl_len, s.sl_unit,
       s.sl_len * u.un_fact AS sl_len_cm
  FROM shoelace old, shoelace new,
       shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;





ビューを展開するために、リライタは単純にルールのアクション問い合わせツリーを持つ副問い合わせ範囲テーブルの項目を作り、ビューを参照していた元の範囲テーブルを置き換えます。
書き換えられた結果の問い合わせツリーは、以下のように入力した場合とほぼ同じです。



SELECT shoelace.sl_name, shoelace.sl_avail,
       shoelace.sl_color, shoelace.sl_len,
       shoelace.sl_unit, shoelace.sl_len_cm
  FROM (SELECT s.sl_name,
               s.sl_avail,
               s.sl_color,
               s.sl_len,
               s.sl_unit,
               s.sl_len * u.un_fact AS sl_len_cm
          FROM shoelace_data s, unit u
         WHERE s.sl_unit = u.un_name) shoelace;




しかし1つだけ違いがあります。
副問い合わせの範囲テーブルが2つの余分な項目shoelace oldとshoelace newを持っていることです。
これらの項目は副問い合わせの結合ツリーや目的リストで参照されませんので、直接問い合わせでは使われません。
リライタはそれらを使用して、ビューを参照した範囲テーブルの項目に元々存在したアクセス権限確認情報を格納します。
この方法で、書き換えられた問い合わせで直接ビューを使用していなくても、エグゼキュータはユーザがそのビューにアクセスするための正しい権限を持っているか確認します。



これが最初に適用されるルールです。
ルールシステムは最上位の問い合わせの残り（この例ではこれ以上ありません）の範囲テーブルの項目をチェックし続けます。
そしてルールシステムは、追加された副問い合わせの範囲テーブルの項目がビューを参照するかを再帰的に確認します。
（しかしoldやnewは展開しません。
そうでなければ無限再帰になってしまいます！）
この例ではshoelace_dataやunit用の書き換えルールはありません。
ですから書き換えは完結し、上記がプランナに渡される最終的な結果となります。



さて、店に置いてある靴紐（の色とサイズ）に一致する靴が店にあるか、完全に一致する靴の在庫数が2以上あるかどうかを把握する問い合わせを書いてみましょう。



SELECT * FROM shoe_ready WHERE total_avail >= 2;

 shoename | sh_avail | sl_name | sl_avail | total_avail
----------+----------+---------+----------+-------------
 sh1      |        2 | sl1     |        5 |           2
 sh3      |        4 | sl7     |        7 |           4
(2 rows)





今回のパーサの出力は以下の問い合わせツリーです。



SELECT shoe_ready.shoename, shoe_ready.sh_avail,
       shoe_ready.sl_name, shoe_ready.sl_avail,
       shoe_ready.total_avail
  FROM shoe_ready shoe_ready
 WHERE shoe_ready.total_avail >= 2;




最初に適用されるルールはshoe_readyビュー用のもので、問い合わせツリーにおける結果は以下のようになります。



SELECT shoe_ready.shoename, shoe_ready.sh_avail,
       shoe_ready.sl_name, shoe_ready.sl_avail,
       shoe_ready.total_avail
  FROM (SELECT rsh.shoename,
               rsh.sh_avail,
               rsl.sl_name,
               rsl.sl_avail,
               least(rsh.sh_avail, rsl.sl_avail) AS total_avail
          FROM shoe rsh, shoelace rsl
         WHERE rsl.sl_color = rsh.slcolor
           AND rsl.sl_len_cm >= rsh.slminlen_cm
           AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail >= 2;




同じように、shoeとshoelace用のルールは副問い合わせの範囲テーブルとして代用され、3レベルの最終問い合わせツリーへと導きます。



SELECT shoe_ready.shoename, shoe_ready.sh_avail,
       shoe_ready.sl_name, shoe_ready.sl_avail,
       shoe_ready.total_avail
  FROM (SELECT rsh.shoename,
               rsh.sh_avail,
               rsl.sl_name,
               rsl.sl_avail,
               least(rsh.sh_avail, rsl.sl_avail) AS total_avail
          FROM (SELECT sh.shoename,
                       sh.sh_avail,
                       sh.slcolor,
                       sh.slminlen,
                       sh.slminlen * un.un_fact AS slminlen_cm,
                       sh.slmaxlen,
                       sh.slmaxlen * un.un_fact AS slmaxlen_cm,
                       sh.slunit
                  FROM shoe_data sh, unit un
                 WHERE sh.slunit = un.un_name) rsh,
               (SELECT s.sl_name,
                       s.sl_avail,
                       s.sl_color,
                       s.sl_len,
                       s.sl_unit,
                       s.sl_len * u.un_fact AS sl_len_cm
                  FROM shoelace_data s, unit u
                 WHERE s.sl_unit = u.un_name) rsl
         WHERE rsl.sl_color = rsh.slcolor
           AND rsl.sl_len_cm >= rsh.slminlen_cm
           AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail > 2;


   


これは非効率的に見えるかもしれませんが、プランナは副問い合わせを「引っ張り上げること」で、これを単一レベルの問い合わせツリーに縮めてから、手で書き出したかのように結合を計画します。
そのため、問い合わせツリーを縮めるという最適化を、書き換えシステム自身で意識する必要はありません。
   

非SELECT文のビュールール





これまでのビュールールの説明では問い合わせツリーの2つの詳細について触れませんでした。
それらは、コマンドタイプと結果リレーションです。
実際、コマンドタイプはビュールールでは必要とされませんが、結果リレーションがビューの場合には特別な考慮が必要ですので、結果リレーションは問い合わせリライタの動作に影響するかもしれません。



SELECTと他のコマンドに対する問い合わせツリーの間には大きな違いはありません。
明らかに、それらは違うコマンドタイプを持っていて、SELECT以外のコマンドでは、結果リレーションは結果の格納先となる範囲テーブルの項目を指し示します。
それ以外ではまったく同じです。
ですから、aとbの列を持つテーブルt1、t2に対する以下の2つの文の問い合わせツリーは、



SELECT t2.b FROM t1, t2 WHERE t1.a = t2.a;

UPDATE t1 SET b = t2.b FROM t2 WHERE t1.a = t2.a;




ほとんど同じです。
以下に、具体的に示します。

    
	

範囲テーブルには、テーブルt1とt2に対する項目があります。
        

	

目的リストにはテーブルt2に対する範囲テーブル項目のb列を指し示す1つの変数があります。
        

	

条件式は、範囲テーブルの両項目のa列の等価性を比較します。
        

	

結合ツリーはt1とt2の単純な結合を表しています。
        




   


結果として、両方の問い合わせツリーは似たような実行計画になります。
それらはともに2つのテーブルの結合です。
UPDATEではt1から抜けている列はプランナによって目的リストに追加され、最終の問い合わせツリーは、以下のようになります。



UPDATE t1 SET a = t1.a, b = t2.b FROM t2 WHERE t1.a = t2.a;




そして、結合を実行したエグゼキュータは、



SELECT t1.a, t2.b FROM t1, t2 WHERE t1.a = t2.a;




の結果集合とまったく同じ結果集合を作成します。
とは言ってもUPDATEにはちょっとした問題があります。
結合を行うエグゼキュータの計画の部分は、結合の結果が何に向けられているかに関与しません。
エグゼキュータは単に結果となる行の集合を作成するだけです。
1つはSELECTコマンドでもう1つはUPDATEコマンドであるという事実は、エグゼキュータの中のより上位で扱われます。
そこでは、これがUPDATEであるとわかっていて、この結果がテーブルt1に入らなければいけないことを知っています。
しかし、そこにあるどの行が新しい行によって置換されなければならないのでしょうか。



この問題を解決するため、UPDATE文（DELETE文の場合も同様）の目的リストに別の項目が付け加えられます。
それは、現在のタプルID（CTID）です。

これはその行のファイルブロック番号とブロック中の位置を持つシステム列です。
テーブルがわかっている場合、CTIDを使用して、元のt1行を抽出して更新することができます。
CTIDを目的リストに追加すると、問い合わせは以下のようになります。



SELECT t1.a, t2.b, t1.ctid FROM t1, t2 WHERE t1.a = t2.a;




では、PostgreSQL™の別の詳細説明に入りましょう。
テーブルの行は上書きされませんので、ROLLBACK処理は速いのです。
UPDATEでは、（CTIDを取り除いた後）テーブルに新しい結果行が挿入され、CTIDが指し示す古い行の行ヘッダ内のcmaxとxmax項目は現在のコマンドカウンタと現在のトランザクションIDに設定されます。
このようにして、古い行は隠され、トランザクションがコミットされた後、vacuum掃除機が不必要になった行をそのうちに削除できます。



これらの詳細が全部理解できれば、どんなコマンドに対してもまったく同じようにしてビューのルールを簡単に適用することができます。
そこには差異がありません。


PostgreSQL™におけるビューの能力





ここまでで、ルールシステムがどのようにビューの諸定義を元の問い合わせツリーに組み入れるかを解説しました。
第2の例では、1つのビューからの単純なSELECTによって、最終的に4つのテーブルを結合する問い合わせツリーが生成されました（unitは違った名前で2回使われました）。



ビューをルールシステムで実装する利点は、どのテーブルをスキャンすべきか、それらのテーブル間の関連性、ビューからの制約条件、元の問い合わせ条件に関する情報を全て、プランナが1つの問い合わせツリーの中に持っていることです。
元の問い合わせが既にビューに対する結合である時も同様です。
プランナはここでどれが問い合わせ処理の最適経路かを決定しなければなりません。
プランナは保持する情報が多ければ多いほど、より良い決定を下すことができます。
そしてPostgreSQL™に実装されているルールシステムはこれが現時点で、提供されている全ての情報であることを保証します。


ビューの更新について





ビューがINSERT、UPDATE、DELETE、MERGEなどの対象リレーションとして名付けられた場合はどうなるのでしょうか？
上で説明したような置換をすると、結果リレーションが副問い合わせの範囲テーブル項目を指す問い合わせツリーができてしまい、それは上手く機能しません。しかし、いくつかのケースではPostgreSQL™はビューの更新をサポートする事ができます。
ユーザエクスペリエンスの複雑さの順に、ビューから参照されているテーブルでの自動的な置換、ユーザ定義トリガの実行、ユーザ定義ルールごとの問い合わせの書き換えがあります。
これらのオプションについては、以下で説明します。



副問い合わせが単一の基底リレーションを参照しかつ十分に単純である時、リライタは副問い合わせを基となる基底リレーションに自動的に置き換え、したがって、INSERT、UPDATE、DELETEあるいはMERGEを適切な方法で基底リレーションに適用できます。
この場合の「十分に単純」なビューは自動的に更新可能であると呼ばれます。
自動的に更新可能なビューに関するより詳細な情報については、CREATE VIEW(7)を参照してください。



もう一つの方法として、ビューに対するユーザ定義のINSTEAD OFトリガによってこれらのコマンドを処理できます（CREATE TRIGGER(7)を参照してください）。
この場合、書き換えは少々違う形で行われます。
INSERTに対しては、リライタはビューに全く何もせず、問い合わせの結果リレーションをそのままにします。
UPDATE、DELETE、MERGEに対しては、コマンドが更新、削除もしくはマージしようとする「古い」行を生成するためにビュー問い合わせを展開する必要がまだあります。
そのため、ビューは通常通り展開されますが、もう一つの展開されない範囲テーブル項目が結果リレーションとしてビューを表す問い合わせに追加されます。



ここで起こる問題はビューで更新される行をどのように特定するかということです。
結果リレーションがテーブルの場合、更新する行の物理的な位置を特定するために特別なCTID項目が目的リストに追加されることを思い出して下さい。
ビューの行には実際の物理的な位置がないため、ビューにはCTIDがありませんので、これは結果リレーションがビューの場合には上手くいきません。
その代わり、UPDATE、DELETE、MERGE操作では、特別な行全体の項目が目的リストに追加されていて、それはビューからすべての列を含むように展開されています。
エグゼキュータはこの値を使って「古い」行をINSTEAD OFトリガに提供します。
新旧の行の値に基づいて更新するものを計算するのはトリガの責任です。



別の方法としては、ビューに対するINSERT、UPDATE、DELETEコマンドに代替の動作を指定するINSTEADルールを定義する事です。
これらのルールは、ビューではなくコマンドを、通常は1つもしくは複数のテーブルを更新するコマンドに書き換えます。
それが「INSERT、UPDATE、DELETEについてのルール」の論題になります。
これはMERGEでは機能しないことに注意してください。現在、SELECTルール以外の対象リレーションでのルールをサポートしていません。



ルールが最初に評価され、元の問い合わせが計画され実行される前にそれを書き換えることに注意して下さい。
そのためビューにINSTEAD OFトリガとINSERTやUPDATEやDELETEに関するルールがあった場合、ルールが最初に評価され、その結果よってはトリガが全く使われないかもしれません。



単純なビューに対するINSERT、UPDATE、DELETEあるいはMERGE問い合わせの自動書き換えは常に最後に試みられます。
したがって、ビューがルールもしくはトリガを持っていた場合、これらは自動的に更新可能なビューのデフォルト動作を上書きします。



ビューにINSTEADルールもINSTEAD OFトリガも定義されておらず、かつ、リライタが問い合わせを自動的に基となる基底リレーションへの更新に書き換える事ができなかった場合、エグゼキュータはビューを更新できませんのでエラーが発生します。



マテリアライズドビュー





PostgreSQL™におけるマテリアライズドビューはビューのようにルールシステムを使用しますが、あたかもテーブルであるかのような形態で結果を保持します。
以下の



CREATE MATERIALIZED VIEW mymatview AS SELECT * FROM mytab;




と



CREATE TABLE mymatview AS SELECT * FROM mytab;




の間の主な違いは、その後にマテリアライズドビューを直接更新できない事と、マテリアライズドビューを作成するために使われた問い合わせがビューと全く同様の方法で保持され、以下のコマンドを用いて最新のデータでマテリアライズドビューを再構築できる事です。



REFRESH MATERIALIZED VIEW mymatview;




マテリアライズドビューに関する情報はPostgreSQL™システムカタログでビューやテーブルに対するものと全く同様に保持されています。
そのため、パーサにとってマテリアライズドビューはテーブルやビューと同じリレーションです。
問い合わせでマテリアライズドビューが参照された時、あたかもテーブルのように、データはマテリアライズドビューから直接返されます。ルールはマテリアライズドビューにデータを投入する時にだけ使用されます。



多くの場合、マテリアライズドビューに格納されているデータの参照は、ビューを通して、あるいはビューから参照されているテーブルを直接参照するよりも高速ですが、データが常に最新であるとは限りません。ですが、時には最新のデータは必要でない事もあります。
販売履歴を記録するテーブルの例を考えてみましょう。




CREATE TABLE invoice (
    invoice_no    integer        PRIMARY KEY,
    seller_no     integer,       -- 販売員のID
    invoice_date  date,          -- 販売日
    invoice_amt   numeric(13,2)  -- 販売量
);




もし利用者が過去の販売データを速やかにグラフ化可能であってほしいと考えるなら、彼らはデータの要約を望むのであって、最新のデータが不完全である事は気にしないでしょう。



CREATE MATERIALIZED VIEW sales_summary AS
  SELECT
      seller_no,
      invoice_date,
      sum(invoice_amt)::numeric(13,2) as sales_amt
    FROM invoice
    WHERE invoice_date < CURRENT_DATE
    GROUP BY
      seller_no,
      invoice_date;

CREATE UNIQUE INDEX sales_summary_seller
  ON sales_summary (seller_no, invoice_date);




このマテリアライズドビューは営業担当用に作成されるダッシュボードのグラフを表示するのにぴったりでしょう。
以下のSQLを使った統計情報を更新するジョブを毎晩スケジュールしておくことができます。



REFRESH MATERIALIZED VIEW sales_summary;





それ以外のマテリアライズドビューの用途として、外部データラッパーを通じてリモートシステムから取得したデータの高速化が挙げられます。
以下の例はfile_fdwを用いた単純な例で、実行時間を含みますが、これはローカルシステムのキャッシュ機構を用いているため、リモートシステムへのアクセスと比較した違いの方がここで示したものより劇的です。
マテリアライズドビューにはインデックスを設定することもできますが、file_fdwはインデックスをサポートしないことに注意してください。
この有利な点は、他の種類の外部データアクセスには当てはまらないでしょう。



セットアップ:



CREATE EXTENSION file_fdw;
CREATE SERVER local_file FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE words (word text NOT NULL)
  SERVER local_file
  OPTIONS (filename '/usr/share/dict/words');
CREATE MATERIALIZED VIEW wrd AS SELECT * FROM words;
CREATE UNIQUE INDEX wrd_word ON wrd (word);
CREATE EXTENSION pg_trgm;
CREATE INDEX wrd_trgm ON wrd USING gist (word gist_trgm_ops);
VACUUM ANALYZE wrd;




字句のスペルチェックをしてみましょう。
直接file_fdwを使って：



SELECT count(*) FROM words WHERE word = 'caterpiler';

 count
-------
     0
(1 row)




EXPLAIN ANALYZEによれば以下の通りです:



 Aggregate  (cost=21763.99..21764.00 rows=1 width=0) (actual time=188.180..188.181 rows=1.00 loops=1)
   ->  Foreign Scan on words  (cost=0.00..21761.41 rows=1032 width=0) (actual time=188.177..188.177 rows=0.00 loops=1)
         Filter: (word = 'caterpiler'::text)
         Rows Removed by Filter: 479829
         Foreign File: /usr/share/dict/words
         Foreign File Size: 4953699
 Planning time: 0.118 ms
 Execution time: 188.273 ms




代わりにマテリアライズドビューを使った場合、問い合わせは非常に速くなります。



 Aggregate  (cost=4.44..4.45 rows=1 width=0) (actual time=0.042..0.042 rows=1.00 loops=1)
   ->  Index Only Scan using wrd_word on wrd  (cost=0.42..4.44 rows=1 width=0) (actual time=0.039..0.039 rows=0.00 loops=1)
         Index Cond: (word = 'caterpiler'::text)
         Heap Fetches: 0
         Index Searches: 1
 Planning time: 0.164 ms
 Execution time: 0.117 ms




どちらの場合でも、wordの綴りは間違っています。では、我々が望んでいたであろう結果を得るために、もう一度file_fdwとpg_trgmを使ってみます。
（訳注：検索条件の正しい綴りは「caterpillar」）



SELECT word FROM words ORDER BY word <-> 'caterpiler' LIMIT 10;

     word
---------------
 cater
 caterpillar
 Caterpillar
 caterpillars
 caterpillar's
 Caterpillar's
 caterer
 caterer's
 caters
 catered
(10 rows)





 Limit  (cost=11583.61..11583.64 rows=10 width=32) (actual time=1431.591..1431.594 rows=10.00 loops=1)
   ->  Sort  (cost=11583.61..11804.76 rows=88459 width=32) (actual time=1431.589..1431.591 rows=10.00 loops=1)
         Sort Key: ((word <-> 'caterpiler'::text))
         Sort Method: top-N heapsort  Memory: 25kB
         ->  Foreign Scan on words  (cost=0.00..9672.05 rows=88459 width=32) (actual time=0.057..1286.455 rows=479829.00 loops=1)
               Foreign File: /usr/share/dict/words
               Foreign File Size: 4953699
 Planning time: 0.128 ms
 Execution time: 1431.679 ms




マテリアライズドビューを使用した場合:



 Limit  (cost=0.29..1.06 rows=10 width=10) (actual time=187.222..188.257 rows=10.00 loops=1)
   ->  Index Scan using wrd_trgm on wrd  (cost=0.29..37020.87 rows=479829 width=10) (actual time=187.219..188.252 rows=10.00 loops=1)
         Order By: (word <-> 'caterpiler'::text)
         Index Searches: 1
 Planning time: 0.196 ms
 Execution time: 198.640 ms




定期的にリモートのデータをローカルに更新せねばならない事を許容できるのであれば、代わりに性能上の便益を得られることでしょう。


INSERT、UPDATE、DELETEについてのルール





INSERT、UPDATE、DELETEに定義するルールは前節で解説したビューのルールとはまったく異なります。
第一点として、これらのCREATE RULEコマンドでは以下を行うことができます。

    
	

アクションがないルールも可能です。
        

	

複数のアクションを持てます。
        

	

INSTEADもしくはALSO（デフォルト）を取ることができます。
        

	

疑似リレーションNEWとOLDが役立つようになります。
        

	

ルール条件を持たせることができます。
        






第二点として、その場で問い合わせツリーを変更しません。
その代わりに新規の0個以上の問い合わせツリーを生成して、オリジナルを破棄することができます。

注意


多くの場合、INSERT/UPDATE/DELETEにおけるルールによって実行できるタスクは、トリガで実行した方が良いでしょう。
トリガは概念としては少し複雑ですが、意味を理解するにはとても単純です。
元の問い合わせにvolatile関数を含む場合、ルールは驚かせる結果を返すことがよくあります。（volatile関数はルールを遂行する過程で予期していた回数より多く実行されてしまうかもしれません）
 


また、これらのタイプのルールが全くサポートしない場合もあります。
特にWITH句を元の問い合わせに含む場合とUPDATE問い合わせのSETリストの中で複数列に代入するサブSELECTの場合です。
これはルール問い合わせにこれらの構造を複製すると副問い合わせを複数回評価し、問い合わせの作者が表現したかった意図と異なる結果となるためです。
 

更新ルールの動作








CREATE [ OR REPLACE ] RULE name AS ON event
    TO table [ WHERE condition ]
    DO [ ALSO | INSTEAD ] { NOTHING | command | ( command ; command ... ) }




上記の構文を覚えておいてください。
以下では、更新ルールはINSERT、UPDATE、DELETEに定義されたルールを意味します。



更新ルールは、問い合わせツリーの結果リレーションとコマンド種類がCREATE RULEで与えられるオブジェクトとイベントと等しい場合にルールシステムによって適用されます。
更新ルールに対してルールシステムは問い合わせツリーのリストを生成します。
最初は問い合わせツリーリストは空です。
0（NOTHINGキーワード）、1つまたは複数のアクションが有効です。
簡単にするため、ここでは1つのアクションのルールを取り上げます。
このルールは条件を持っていても持っていなくても構いませんし、またINSTEADかALSO（デフォルト）のいずれかを取ることができます。



ルール条件とはどんなものでしょうか。
それはルールのアクションを行わなければならない時と、行ってはならない時を指定する条件です。
基本的に（特別な意味合いを持った）オブジェクトとして与えられるリレーションであるNEW疑似リレーションかOLD疑似リレーション、または、その両者のみをこの条件は参照することができます。



1アクションのルールに対し、以下の問い合わせツリーを生成する3つの場合があります。

    
	ALSOまたはINSTEADで条件がない場合。
	

元の問い合わせツリーの条件が追加された、ルールアクションからの問い合わせツリー
       

	条件付き、かつALSO
	

ルール条件と元の問い合わせツリーの条件が追加された、ルールアクションからの問い合わせツリー
       

	条件付き、かつINSTEAD
	

ルール条件と元の問い合わせツリーの条件が追加された、ルールアクションからの問い合わせツリーとルール条件の否定条件が追加された元の問い合わせツリー
       






最後に、もしルールがALSOの場合、変更されていない元の問い合わせツリーがリストに付け加えられます。
条件付きのINSTEADルールのみが既に元の構文解析ツリーに追加をしているので、最後は1つのアクションを持つルールに対して1つもしくは2つの問い合わせツリーにたどり着きます。



ON INSERTルールでは、元の問い合わせは、（INSTEADにより止められていない限り）ルールによって追加されたアクションの前に実行されます。
これにより、アクションは挿入された行（複数可）を参照することができます。
しかし、ON UPDATEとON DELETEルールでは、元の問い合わせはルールによって追加されたアクションの後に実行されます。
これは、アクションが更新される予定の、または削除される予定の行を参照できることを保証します。
さもないと、条件に一致する行を見つけることができないためにアクションが作動しなくなる可能性が起こります。



ルールアクションで生成された問い合わせツリーは、再度書き換えシステムに渡され、より多くのルールの適用を受けて問い合わせツリーが増やされたり減らされたりするかもしれません。
ですから、ルールのアクションはルール自身とは異なるコマンド種類か、異なる結果リレーションを持っていなければなりません。
さもないと、この再帰的処理により無限ループに陥ってしまいます。
(ルールの再帰展開は検知され、エラーとして報告されます。)



pg_rewriteシステムカタログのアクションにある問い合わせツリーは単なるテンプレートです。
これらはNEWとOLDに対する範囲テーブルの項目を参照することができるため、使用される前に何らかの置換措置がとられていなければなりません。
NEWを参照する全てに対し、元の問い合わせの目的リストは対応する項目があるかどうか検索されます。
項目が見つかった場合には、その項目式が参照を置き換えます。
項目がなかった場合、NEWはOLDと同じ意味になる（UPDATEの場合）か、NULLによって置き換えられます（INSERTの場合）。
OLDに対する参照は全て結果リレーションである範囲テーブルの項目への参照に置き換えられます。



更新ルールの適用が終わると、システムはそこで作られた構文解析ツリーにビュールールを適用します。
ビューは、新しい更新アクションを挿入できないため、ビュー書き換えの結果に更新ルールを適用する必要はありません。

最初のルール、ステップバイステップ





shoelace_dataリレーションのsl_avail列の変化を追跡してみたいと思います。
そこでログ用テーブルと、shoelace_dataに対して行われるUPDATEをログに記録するルールを用意しました。




CREATE TABLE shoelace_log (
    sl_name    text,          -- 変更された靴紐
    sl_avail   integer,       -- 新しい現在値
    log_who    text,          -- 誰が行ったか
    log_when   timestamp      -- いつ行ったか
);

CREATE RULE log_shoelace AS ON UPDATE TO shoelace_data
    WHERE NEW.sl_avail <> OLD.sl_avail
    DO INSERT INTO shoelace_log VALUES (
                                    NEW.sl_name,
                                    NEW.sl_avail,
                                    current_user,
                                    current_timestamp
                                );





ここで誰かが以下を実行します。



UPDATE shoelace_data SET sl_avail = 6 WHERE sl_name = 'sl7';




ログテーブルを見てみましょう。



SELECT * FROM shoelace_log;

 sl_name | sl_avail | log_who | log_when
---------+----------+---------+----------------------------------
 sl7     |        6 | Al      | Tue Oct 20 16:14:45 1998 MET DST
(1 row)


   


思った通りの結果が出ました。
以下に裏で何が起こったのかを説明します。
パーサがまず以下の構文解析ツリーを生成しました。



UPDATE shoelace_data SET sl_avail = 6
  FROM shoelace_data shoelace_data
 WHERE shoelace_data.sl_name = 'sl7';




ルールlog_shoelaceには、ON UPDATEを持つルール条件式



NEW.sl_avail <> OLD.sl_avail




と以下のアクションがあります。



INSERT INTO shoelace_log VALUES (
       new.sl_name, new.sl_avail,
       current_user, current_timestamp )
  FROM shoelace_data new, shoelace_data old;




（通常、INSERT ... VALUES ... FROMを書くことはできないのでちょっと奇妙に見えるかもしれません。
ここのFROM句は単にnewとoldの問い合わせツリーの範囲テーブル項目があることを示しているだけです。
これらは、INSERTコマンドの問い合わせツリー中の変数から参照されるために必要なのです。）



このルールは条件付きのALSOルールですので、ルールシステムは変更されたルールアクションと元の問い合わせツリーという2つの問い合わせツリーを返さなければなりません。
第1の段階で元の問い合わせの範囲テーブルはルールアクション問い合わせツリーに取り込まれます。
そして、次の結果を生みます。



INSERT INTO shoelace_log VALUES (
       new.sl_name, new.sl_avail,
       current_user, current_timestamp )
  FROM shoelace_data new, shoelace_data old,
       shoelace_data shoelace_data;




第2段階で、以下のようにルール条件が付け加えられます。
これにより、この結果集合はsl_availが変更した行に限定されます。



INSERT INTO shoelace_log VALUES (
       new.sl_name, new.sl_avail,
       current_user, current_timestamp )
  FROM shoelace_data new, shoelace_data old,
       shoelace_data shoelace_data
 WHERE new.sl_avail <> old.sl_avail;




（INSERT ... VALUESはWHERE句を持たないため、これはさらに奇妙です。
しかし、プランナとエグゼキュータには問題はありません。
これらはどのみちINSERT ... SELECTのために同じ機能をサポートしなければなりません。）
   


第3段階で、以下のように元の問い合わせツリーの条件が付け加えられ、結果集合は元の問い合わせで変更された行のみにさらに限定されます。



INSERT INTO shoelace_log VALUES (
       new.sl_name, new.sl_avail,
       current_user, current_timestamp )
  FROM shoelace_data new, shoelace_data old,
       shoelace_data shoelace_data
 WHERE new.sl_avail <> old.sl_avail
   AND shoelace_data.sl_name = 'sl7';


   


第4段階では、以下のように元の問い合わせツリーの目的リスト項目、または結果リレーションの該当する変数参照で、NEWの参照を置換します。



INSERT INTO shoelace_log VALUES (
       shoelace_data.sl_name, 6,
       current_user, current_timestamp )
  FROM shoelace_data new, shoelace_data old,
       shoelace_data shoelace_data
 WHERE 6 <> old.sl_avail
   AND shoelace_data.sl_name = 'sl7';



   


第5段階は、以下のようにOLD参照を結果リレーション参照に置き換えます。



INSERT INTO shoelace_log VALUES (
       shoelace_data.sl_name, 6,
       current_user, current_timestamp )
  FROM shoelace_data new, shoelace_data old,
       shoelace_data shoelace_data
 WHERE 6 <> shoelace_data.sl_avail
   AND shoelace_data.sl_name = 'sl7';


   


これで終わりです。このルールはALSOのため、元の問い合わせツリーも出力します。
まとめると、ルールシステムからの出力は以下の文に対応する2つの問い合わせツリーのリストです。



INSERT INTO shoelace_log VALUES (
       shoelace_data.sl_name, 6,
       current_user, current_timestamp )
  FROM shoelace_data
 WHERE 6 <> shoelace_data.sl_avail
   AND shoelace_data.sl_name = 'sl7';

UPDATE shoelace_data SET sl_avail = 6
 WHERE sl_name = 'sl7';




この2つは順番通りに処理され、正確にルールが定義した通りです。
   


元の問い合わせが例えば下記のような場合に、置換と追加された条件は、



UPDATE shoelace_data SET sl_color = 'green'
 WHERE sl_name = 'sl7';




ログには何も書かれないことを確実にします。
この場合、元の問い合わせツリーの目的リストにはsl_availの項目がありませんので、NEW.sl_availがshoelace_data.sl_availに置き換えられます。
その結果、このルールによって以下のような特別の問い合わせが生成されます。



INSERT INTO shoelace_log VALUES (
       shoelace_data.sl_name, shoelace_data.sl_avail,
       current_user, current_timestamp )
  FROM shoelace_data
 WHERE shoelace_data.sl_avail <> shoelace_data.sl_avail
   AND shoelace_data.sl_name = 'sl7';




そしてこの条件は決して真にはなりません。
   


もし元の問い合わせが複数の行を変更してもうまくいきます。
ですから、誰かが下記のようなコマンドを実行したとします。



UPDATE shoelace_data SET sl_avail = 0
 WHERE sl_color = 'black';




この場合、実際には4行が更新されます（sl1、sl2、sl3およびsl4）。
しかしsl3は既にsl_avail = 0を持っています。
この場合、元の問い合わせツリーの条件を満たさず、その結果、以下のような特別の問い合わせツリーがルールによって生成されます。



INSERT INTO shoelace_log
SELECT shoelace_data.sl_name, 0,
       current_user, current_timestamp
  FROM shoelace_data
 WHERE 0 <> shoelace_data.sl_avail
   AND shoelace_data.sl_color = 'black';




この構文解析ツリーは確実に3つの新しいログ項目を挿入します。
これはまったく正しい動作です。
[訳注：sl3行はWHERE 0 != shoelace_data.sl_avail条件を満たさない（0!=0）ので、実際に更新される4行-1の3行分のログ項目が挿入されます]。



ここで元の構文解析ツリーが最後に実行されるということが重要な理由がわかります。
もしUPDATEが先に実行されたとしたら、全ての行は0にセットされ、0 <> shoelace_data.sl_availである行をログ書き込み時のINSERTの段階で見つけられなくなります。



ビューとの協調





誰かがビューに対してINSERT、UPDATE、DELETEを発行するといった、前述の可能性からビューリレーションを保護する簡単な方法は、それらの構文解析ツリーを破棄してしまうことです。
このために以下のルールを作ることができます。



CREATE RULE shoe_ins_protect AS ON INSERT TO shoe
    DO INSTEAD NOTHING;
CREATE RULE shoe_upd_protect AS ON UPDATE TO shoe
    DO INSTEAD NOTHING;
CREATE RULE shoe_del_protect AS ON DELETE TO shoe
    DO INSTEAD NOTHING;




誰かがshoeビューリレーションに上記の操作を行おうとすると、ルールシステムはルールを適用します。
ルールにはアクションがなく、かつ、INSTEADですから、結果の問い合わせツリーリストは空になります。
ルールシステムの処理が完了した後に最適化されるものや実行されるべきものが何も残っていませんので、問い合わせ全体が無効になります。



より洗練されたルールシステムの使用方法は、実テーブルに適当な操作を行う問い合わせツリーへの書き換えを行うルールを作ることです。
shoelaceビューにこれを適用するために以下のルールを作ります。



CREATE RULE shoelace_ins AS ON INSERT TO shoelace
    DO INSTEAD
    INSERT INTO shoelace_data VALUES (
           NEW.sl_name,
           NEW.sl_avail,
           NEW.sl_color,
           NEW.sl_len,
           NEW.sl_unit
    );

CREATE RULE shoelace_upd AS ON UPDATE TO shoelace
    DO INSTEAD
    UPDATE shoelace_data
       SET sl_name = NEW.sl_name,
           sl_avail = NEW.sl_avail,
           sl_color = NEW.sl_color,
           sl_len = NEW.sl_len,
           sl_unit = NEW.sl_unit
     WHERE sl_name = OLD.sl_name;

CREATE RULE shoelace_del AS ON DELETE TO shoelace
    DO INSTEAD
    DELETE FROM shoelace_data
     WHERE sl_name = OLD.sl_name;


   


このビュー上でRETURNING問い合わせをサポートしたい場合、ビューの行を計算するRETURNING句を含むルールを作成しなければなりません。
これは通常、単一テーブルに対するビューでは非常に簡単ですが、shoelaceのような結合されたビューの場合は多少やっかいです。
挿入する場合を例として以下に示します。



CREATE RULE shoelace_ins AS ON INSERT TO shoelace
    DO INSTEAD
    INSERT INTO shoelace_data VALUES (
           NEW.sl_name,
           NEW.sl_avail,
           NEW.sl_color,
           NEW.sl_len,
           NEW.sl_unit
    )
    RETURNING
           shoelace_data.*,
           (SELECT shoelace_data.sl_len * u.un_fact
            FROM unit u WHERE shoelace_data.sl_unit = u.un_name);




この1つのルールが、ビューに対するINSERT問い合わせとINSERT RETURNING問い合わせルールをサポートすることに注意してください。
INSERTではRETURNING句が無視されるだけです。
   


ルールのRETURNING句内では、OLDとNEWは、結果のリレーション内の古い/新しい行ではなく、書き換えられた問い合わせに範囲テーブルの余分な項目として追加された擬似リレーションを参照することに注意してください。
したがって、例えば、このビューでUPDATEの問い合わせをサポートするルールでは、RETURNING句がold.sl_nameを含む場合、ビュー上の問い合わせ内のRETURNING句がOLDまたはNEWを指定したかどうかに関係なく、古い名前が常に返されます。これは混乱を招くかもしれません。
この混乱を回避しビューの問い合わせで古い値と新しい値を返すことをサポートするように、ルール定義内のRETURNING句は、OLDやNEWを指定せず、shoelace_data.sl_nameのように結果リレーションの項目を参照すべきです。
   


ここで店には不定期に靴紐のケースが分厚い送り状とともに届けられると仮定します。
しかし、毎回毎回手作業でshoelaceビューを更新したくはありません。
代わりに、送り状から品目を挿入するテーブルと特殊な仕掛けを持つテーブルの2つの小さなテーブルを用意します。
以下はそれらを作成するコマンドです。



CREATE TABLE shoelace_arrive (
    arr_name    text,
    arr_quant   integer
);

CREATE TABLE shoelace_ok (
    ok_name     text,
    ok_quant    integer
);

CREATE RULE shoelace_ok_ins AS ON INSERT TO shoelace_ok
    DO INSTEAD
    UPDATE shoelace
       SET sl_avail = sl_avail + NEW.ok_quant
     WHERE sl_name = NEW.ok_name;




これで、送り状のデータをshoelace_arriveテーブルに投入することができます。



SELECT * FROM shoelace_arrive;

 arr_name | arr_quant
----------+-----------
 sl3      |        10
 sl6      |        20
 sl8      |        20
(3 rows)




そして現在のデータをチェックします。



SELECT * FROM shoelace;

 sl_name  | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------
 sl1      |        5 | black    |     80 | cm      |        80
 sl2      |        6 | black    |    100 | cm      |       100
 sl7      |        6 | brown    |     60 | cm      |        60
 sl3      |        0 | black    |     35 | inch    |      88.9
 sl4      |        8 | black    |     40 | inch    |     101.6
 sl8      |        1 | brown    |     40 | inch    |     101.6
 sl5      |        4 | brown    |      1 | m       |       100
 sl6      |        0 | brown    |    0.9 | m       |        90
(8 rows)




さて、届いた靴紐を移動します。



INSERT INTO shoelace_ok SELECT * FROM shoelace_arrive;




そして結果を確認します。



SELECT * FROM shoelace ORDER BY sl_name;

 sl_name  | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------
 sl1      |        5 | black    |     80 | cm      |        80
 sl2      |        6 | black    |    100 | cm      |       100
 sl7      |        6 | brown    |     60 | cm      |        60
 sl4      |        8 | black    |     40 | inch    |     101.6
 sl3      |       10 | black    |     35 | inch    |      88.9
 sl8      |       21 | brown    |     40 | inch    |     101.6
 sl5      |        4 | brown    |      1 | m       |       100
 sl6      |       20 | brown    |    0.9 | m       |        90
(8 rows)

SELECT * FROM shoelace_log;

 sl_name | sl_avail | log_who| log_when
---------+----------+--------+----------------------------------
 sl7     |        6 | Al     | Tue Oct 20 19:14:45 1998 MET DST
 sl3     |       10 | Al     | Tue Oct 20 19:25:16 1998 MET DST
 sl6     |       20 | Al     | Tue Oct 20 19:25:16 1998 MET DST
 sl8     |       21 | Al     | Tue Oct 20 19:25:16 1998 MET DST
(4 rows)


   


1つのINSERT ... SELECTからこの結果になるには、長い道のりがあります。
本章での問い合わせツリーの変形に関する説明はこれが最後です。
まず、以下のようなパーサの出力があります。



INSERT INTO shoelace_ok
SELECT shoelace_arrive.arr_name, shoelace_arrive.arr_quant
  FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok;




最初のshoelace_ok_insルールが適用され、結果は以下のようになります。



UPDATE shoelace
   SET sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant
  FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
       shoelace_ok old, shoelace_ok new,
       shoelace shoelace
 WHERE shoelace.sl_name = shoelace_arrive.arr_name;




そして、shoelace_okに対する元のINSERTを破棄します。
この書き換えられた問い合わせは再びルールシステムに渡されて、2番目に適用されるshoelace_updルールは以下を生成します。



UPDATE shoelace_data
   SET sl_name = shoelace.sl_name,
       sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant,
       sl_color = shoelace.sl_color,
       sl_len = shoelace.sl_len,
       sl_unit = shoelace.sl_unit
  FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
       shoelace_ok old, shoelace_ok new,
       shoelace shoelace, shoelace old,
       shoelace new, shoelace_data shoelace_data
 WHERE shoelace.sl_name = shoelace_arrive.arr_name
   AND shoelace_data.sl_name = shoelace.sl_name;




これは再びINSTEADルールですので、以前の問い合わせツリーは破棄されます。
この問い合わせはshoelaceビューを引き続き使用していることに注意してください。
しかし、この段階ではルールシステムは終了していないため、引き続き_RETURNルールが適用され、下記のようになります。



UPDATE shoelace_data
   SET sl_name = s.sl_name,
       sl_avail = s.sl_avail + shoelace_arrive.arr_quant,
       sl_color = s.sl_color,
       sl_len = s.sl_len,
       sl_unit = s.sl_unit
  FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
       shoelace_ok old, shoelace_ok new,
       shoelace shoelace, shoelace old,
       shoelace new, shoelace_data shoelace_data,
       shoelace old, shoelace new,
       shoelace_data s, unit u
 WHERE s.sl_name = shoelace_arrive.arr_name
   AND shoelace_data.sl_name = s.sl_name;




最後に、log_shoelaceルールが適用され、以下のような特別な問い合わせツリーが生成されます。



INSERT INTO shoelace_log
SELECT s.sl_name,
       s.sl_avail + shoelace_arrive.arr_quant,
       current_user,
       current_timestamp
  FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
       shoelace_ok old, shoelace_ok new,
       shoelace shoelace, shoelace old,
       shoelace new, shoelace_data shoelace_data,
       shoelace old, shoelace new,
       shoelace_data s, unit u,
       shoelace_data old, shoelace_data new
       shoelace_log shoelace_log
 WHERE s.sl_name = shoelace_arrive.arr_name
   AND shoelace_data.sl_name = s.sl_name
   AND (s.sl_avail + shoelace_arrive.arr_quant) <> s.sl_avail;




この後、ルールシステムはルールを使い切り、生成された問い合わせツリーを返します。
   


そして、以下のSQL文と等価となる2つの最終問い合わせツリーで終結します。



INSERT INTO shoelace_log
SELECT s.sl_name,
       s.sl_avail + shoelace_arrive.arr_quant,
       current_user,
       current_timestamp
  FROM shoelace_arrive shoelace_arrive, shoelace_data shoelace_data,
       shoelace_data s
 WHERE s.sl_name = shoelace_arrive.arr_name
   AND shoelace_data.sl_name = s.sl_name
   AND s.sl_avail + shoelace_arrive.arr_quant <> s.sl_avail;

UPDATE shoelace_data
   SET sl_avail = shoelace_data.sl_avail + shoelace_arrive.arr_quant
  FROM shoelace_arrive shoelace_arrive,
       shoelace_data shoelace_data,
       shoelace_data s
 WHERE s.sl_name = shoelace_arrive.sl_name
   AND shoelace_data.sl_name = s.sl_name;




結果は、1つのリレーションから来たデータが別のリレーションに挿入され、3つ目のリレーションの更新に変更され、4つ目の更新と5つ目への最終更新のログ記録に変更され、最終的に2つの問い合わせに縮小されます。



ちょっと見苦しい小さな事項があります。
でき上がった2つの問い合わせを見ると、1つに縮小されたはずのshoelace_dataリレーションが範囲テーブルに二度出てきます。
プランナは処理をしないので、INSERTのルールシステムの出力に対する実行計画は次のようになります。



Nested Loop
  ->  Merge Join
        ->  Seq Scan
              ->  Sort
                    ->  Seq Scan on s
        ->  Seq Scan
              ->  Sort
                    ->  Seq Scan on shoelace_arrive
  ->  Seq Scan on shoelace_data




一方、余計な範囲テーブル項目を省略することで、



Merge Join
  ->  Seq Scan
        ->  Sort
              ->  Seq Scan on s
  ->  Seq Scan
        ->  Sort
              ->  Seq Scan on shoelace_arrive




ログテーブルにまったく同じ項目が作られます。
ですから、ルールシステムは、まったく必要のないshoelace_dataリレーションに対する余計なスキャンを一度行うことになります。
そしてUPDATEでも同様な不要なスキャンが再度実行されます。
しかしながら、これらを全て可能にするのは大変な仕事です。



最後にPostgreSQL™のルールシステムとその効力を示しましょう。
例えば、まったく売れそうもない靴紐をデータベースに追加してみます。



INSERT INTO shoelace VALUES ('sl9', 0, 'pink', 35.0, 'inch', 0.0);
INSERT INTO shoelace VALUES ('sl10', 1000, 'magenta', 40.0, 'inch', 0.0);




全ての靴に合わない色がshoelace項目にあるかどうかを検査するビューを作成したいと考えます。
ビューは以下のようになります。



CREATE VIEW shoelace_mismatch AS
    SELECT * FROM shoelace WHERE NOT EXISTS
        (SELECT shoename FROM shoe WHERE slcolor = sl_color);




この出力は以下のようになります。



SELECT * FROM shoelace_mismatch;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------
 sl9     |        0 | pink     |     35 | inch    |      88.9
 sl10    |     1000 | magenta  |     40 | inch    |     101.6


   


ここで、合う靴がない靴紐のうち、在庫がないものをデータベースから削除するように設定してみます。
これはPostgreSQL™では困難な作業ですので、直接削除しません。
代わりに、以下のようにもう1つビューを作成します。



CREATE VIEW shoelace_can_delete AS
    SELECT * FROM shoelace_mismatch WHERE sl_avail = 0;




そして、以下を行います。



DELETE FROM shoelace WHERE EXISTS
    (SELECT * FROM shoelace_can_delete
             WHERE sl_name = shoelace.sl_name);




結果は次のとおりです。



SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------
 sl1     |        5 | black    |     80 | cm      |        80
 sl2     |        6 | black    |    100 | cm      |       100
 sl7     |        6 | brown    |     60 | cm      |        60
 sl4     |        8 | black    |     40 | inch    |     101.6
 sl3     |       10 | black    |     35 | inch    |      88.9
 sl8     |       21 | brown    |     40 | inch    |     101.6
 sl10    |     1000 | magenta  |     40 | inch    |     101.6
 sl5     |        4 | brown    |      1 | m       |       100
 sl6     |       20 | brown    |    0.9 | m       |        90
(9 rows)


   


合計4つのネスト/結合されたビューを副問い合わせの条件として持ち、その中の1つはビューを含む副問い合わせ条件を持ち、かつ演算を施されたビューの列が使われる場合の、ビューに対するDELETEが、実テーブルから要求されたデータを削除する単一の問い合わせツリーに書き換えられます。



このような構造が必要な状況は実社会ではほとんどないと思われます。
しかし、実際に動くことを確認できれば安心できます。



ルールと権限





PostgreSQL™のルールシステムによる問い合わせの書き換えによって、オリジナルの問い合わせで使われたものではない他のテーブル/ビューがアクセスされます。
更新ルールを使うことによってテーブルへの書き込みアクセスを包含することができます。



書き換えルールに別々の所有者はいません。
リレーション（テーブルまたはビュー）の所有者は自動的にそれに定義された書き換えルールの所有者となります。
PostgreSQL™のルールシステムはデフォルトのアクセス制御システムの振舞いを変更します。
セキュリティ実行者ビュー（CREATE VIEWを参照）に関連付けられているSELECTルールを除いて、ルールのために使用されるすべてのリレーションは、ルールを起動するユーザではなくルール所有者の権限でチェックされます。
このことは、セキュリティ実行者ビューを除き、ユーザは問い合わせで明記するテーブル/ビューに対しての権限だけあればよいことを示しています。



例えば、以下のようにします。
あるユーザが、いくつかは個人用の、その他は事務所で秘書が利用するための、電話番号のリストを持っていたとします。
ユーザは次のようにして構築することができます。



CREATE TABLE phone_data (person text, phone text, private boolean);
CREATE VIEW phone_number AS
    SELECT person, CASE WHEN NOT private THEN phone END AS phone
    FROM phone_data;
GRANT SELECT ON phone_number TO assistant;




そのユーザ（とデータベースのスーパーユーザ）以外はphone_dataテーブルにアクセスできません。
しかし、GRANTにより秘書はphone_numberビューに対しSELECTできます。
ルールシステムはphone_numberからのSELECT操作をphone_dataからのSELECT操作に書き換えます。
そのユーザはphone_numberの所有者、したがってルールの所有者ですから、phone_dataの読み込みに対するアクセスはそのユーザの権限に従ってチェックされ、問い合わせを受け付けてもよいことになります。
phone_numberへのアクセスもチェックされますが、これは呼び出したユーザに対して行われますので、秘書とユーザ以外は使うことができません。



権限はルールごとにチェックされます。
ですから秘書だけが今のところ公開の電話番号を参照することができます。
しかし、秘書は別のビューを作成し、それにPUBLICに対するアクセス許可を与えることができます。
こうすると秘書のビューを通して誰もがphone_numberデータを見ることができます。
秘書ができないことはphone_dataに直接アクセスするビューを作ることです。
（実際には作成はできますが、アクセスは全て、権限チェックで拒絶されます。）
そして、秘書が独自のphone_numberビューを開いたことにユーザが気付いた時点で、秘書の権限を取り上げることができます。
秘書のビューへのアクセスは即座に失敗に終わります。



このルールごとのチェックがセキュリティホールになると考える人がいるかもしれませんが、実際にはそうではありません。
もしこのように機能しないとなると、秘書はphone_numberと同じ列を持ったテーブルを用意して、1日1回データをそこにコピーするかもしれません。
そうなると、データは彼のものですから、誰にアクセス権を与えようが彼の自由です。
GRANTは「あなたを信用しています」ということです。
信用している誰かがこのようなことを行った場合は、考えを変えてREVOKEしてください。



上に示したような手法を使ってある列の内容を隠すのにビューは使えますが、security_barrierフラグが設定されていない限り、見えない行にあるデータを隠す信頼できる方法ではない事に注意してください。
例えば、以下のビューは安全ではありません。


CREATE VIEW phone_number AS
    SELECT person, phone FROM phone_data WHERE phone NOT LIKE '412%';



ルールシステムがphone_numberからのSELECTをphone_dataからのSELECTに書き換え、phoneが412で始まらない項目のみが必要だという条件を追加しますので、このビューは安全に見えます。
しかし、ユーザが自身の関数を作成できるのであれば、NOT LIKE式の前にユーザ定義の関数を実行するようプランナを説得することは難しくありません。
例えば以下の通りです。


CREATE FUNCTION tricky(text, text) RETURNS bool AS $$
BEGIN
    RAISE NOTICE '% => %', $1, $2;
    RETURN true;
END;
$$ LANGUAGE plpgsql COST 0.0000000000000000000001;

SELECT * FROM phone_number WHERE tricky(person, phone);



プランナはより高価なNOT LIKEの前に安価なtricky関数を実行することを選びますので、phone_dataテーブルの人と電話番号はすべてNOTICEとして表示されます。
たとえユーザが新しい関数を定義できない場合でも、同様の攻撃で組み込み関数が使えます。
（例えば、ほとんどの型変換関数は生成するエラーメッセージに入力値を含んでいます。）



同様の考慮は更新ルールにも適用できます。
前節の例において、データベースのテーブルの所有者はshoelaceビューに対し、誰かにSELECT、INSERT、UPDATE、DELETE権限を与えることができます。
しかし、shoelace_logに対してはSELECTだけです。
ログ項目を書き込むルールアクションは支障なく実行され、また、他のユーザはログ項目を見ることができます。
しかし、他のユーザは項目を捏造したり、既に存在する項目を操作する、あるいは削除することはできません。
この場合、shoelace_logを参照しているルールは条件のないINSERTだけですので、操作の順序を変えるようにプランナを説得することでルールを破壊する可能性はありません。
これはより複雑な状況では正しくないかもしれません。



ビューが行単位セキュリティを提供する場合には、そのビューにはsecurity_barrier属性を付与するべきです。
これは、悪意を持って選ばれた関数や演算子が、ビューが適用されるより前に渡された行に対して実行されないようにします。
例えば、上記のビューが次のように定義された場合、これは安全です。


CREATE VIEW phone_number WITH (security_barrier) AS
    SELECT person, phone FROM phone_data WHERE phone NOT LIKE '412%';



security_barrierを付けて定義されたビューは、このオプションなしのビューよりも性能の劣る問い合わせ実行プランを生成します。一般的に、最も高速だが、セキュリティ上の問題がある問い合わせ実行プランを破棄しなければならないという状況は不可避です。そのため、このオプションはデフォルトでは有効になっていません。



問い合わせプランナは副作用が無い関数をもう少し柔軟に扱います。
これらの関数はLEAKPROOF属性を持っており、等価演算子など、単純で広く用いられる演算子も多く含まれます。
利用者に対して不可視な行に対するこれら関数の呼び出しはいかなる情報も漏洩させないため、プランナはこれらの関数をどのような場所でも安全に実行させる事ができます。
さらに、引数をとらなかったり、セキュリティバリアビューから引数を渡されない関数は、ビューからデータを渡されることは決して無いため、プッシュダウンされるためのLEAKPROOFをマークする必要はありません。
一方、受け取った引数の値に応じてエラー（例えばオーバーフローやゼロ除算など）を発生させるかもしれない関数は漏洩防止関数ではありません。
これがもしセキュリティビューの条件句でフィルタリングされるより前に適用されたなら、不可視行に関する何か重要な情報を与える事ができてしまいます。



例えば、WHERE句で使われている演算子がインデックスの演算子族に関連付けられているものの、基礎となる関数がLEAKPROOFとマークされていない場合には、セキュリティバリアビュー（または行レベルポリシーを持つテーブル）での問い合わせにインデックススキャンは選択できません。
psql(1)プログラムの\dAo+メタコマンドは演算子族を一覧し、どの演算子が漏洩防止とマークされているか判断するのに有用です。



ビューがsecurity_barrier属性付きで定義されたとしても、それは限定的な意味で安全である、つまり不可視な行の内容が潜在的に安全でない関数に渡される事がないという事を意図しているにすぎません。
利用者には不可視な行に対して何らかの推測を行う他の手段があるかもしれません。例えば、EXPLAINを用いて問い合わせ実行プランを見たり、ビューに対する問い合わせ実行時間を計測したりすることです。
悪意の攻撃者は不可視データの量を推測したり、分布や最頻値（なぜなら、これらはオプティマイザの統計情報を通じて実行プランの選択、ひいては実行時間に影響するかもしれません）に関する何らかの情報を得る事ができるかもしれません。
もし、この種の"隠れチャネル"攻撃に対する対策が必要であれば、とにかくデータに対するアクセスを許可するのは得策ではありません。


ルールおよびコマンドの状態





PostgreSQL™サーバでは、受け取った問い合わせのそれぞれに対して、INSERT 149592 1のようなコマンド状態文字列を返します。
これは簡単ですが、ルールが使用されていない場合には十分なものです。
しかし、問い合わせがルールにより書き換えられた場合、どのようになるでしょうか。



ルールはコマンド状態に以下のように影響を与えます。

    
	

問い合わせに無条件のINSTEADルールが使用されていない場合、元々与えられていた問い合わせが実行され、そのコマンド状態は通常通り返されます。
（しかし、条件付きINSTEADルールが使用されている場合、その条件の否定が元の問い合わせに追加されることに注意してください。
これにより、処理する行の数が減り、その結果報告される状態が影響を受けるかもしれません）。
      

	

問い合わせに無条件のINSTEADルールが使用されている場合、元の問い合わせはまったく実行されません。
この場合、サーバでは、（条件付きもしくは無条件の）INSTEADルールによって挿入され、かつ、元の問い合わせと同じ種類（INSERT、UPDATEまたはDELETE）の最後の問い合わせについてコマンド状態を返します。
この条件に合致する問い合わせがルールによって追加されない場合、返されるコマンド状態は、元の問い合わせの種類と行数およびOIDフィールドに0が表示されます。
      







後者の場合、プログラマは、有効ルールの中でアルファベット順の最後のルール名を与えることによって、必要なINSTEADルールを最後に実行することができます。そして、そのことによって、コマンド状態が確実にそのルールで設定されるようにできます。


ルール対トリガ





トリガによって行われる多くの操作はPostgreSQL™のルールシステムで実装可能です。
ルールで実装できないものの1つはある種の制約、特に外部キーに関してです。
もし他のテーブルに列の値がなかった場合、条件ルールでコマンドをNOTHINGに書き換えてしまうことも可能です。
しかし、これではデータがだまって消去されてしまい、良いアイディアとは言えません。
有効な値のチェックが必要で、無効な値の場合にエラーメッセージを生成する必要がある場合、トリガで行う必要があります。



この章ではビューを更新するのにルールを使うことに焦点を当ててきました。
この章の更新ルールの例はすべてビューのINSTEAD OFトリガを使っても実装できます。
特に更新を実行するのに複雑な論理が要求される場合には、そのようなトリガを書くことはしばしばルールを書くよりも簡単です。



どちらでも実装できる事項に関してどちらがベストかはデータベースの使用方法によります。
トリガは各行に対して一度起動します。
ルールは問い合わせを修正するか追加の問い合わせを生成します。
ですから、1つの文が多くの行に影響を与える場合、1つの行を処理する度に呼び出され、何をするかを何度も再決定しなければならないトリガよりも、追加の問い合わせを1つ発行するルールの方がほとんどの場合高速になります。
しかし、トリガ方式は概念的にルールシステムよりかなり単純であり、初心者は簡単に正しく扱うことができます。



ここで、ある状況下でルールとトリガのどちらを選択するかを示す例を挙げます。
例えば、2つのテーブルがあるとします。




CREATE TABLE computer (
    hostname        text,    -- インデックスあり
    manufacturer    text     -- インデックスあり
);


CREATE TABLE software (
    software        text,    -- インデックスあり
    hostname        text     -- インデックスあり
);




2つのテーブルにはともに数千の行があって、hostname上のインデックスは一意です。
ルール/トリガは削除されたホストを参照する、softwareの行を削除する制約を実装しなければなりません。
トリガの場合は以下のコマンドを使用します。



DELETE FROM software WHERE hostname = $1;




computerから削除された行1つひとつに対してこのトリガが呼び出されますので、このコマンドの準備を行い、計画を保存し、パラメータとしてhostnameを渡すことができます。
ルールの場合は以下のように作成されます。



CREATE RULE computer_del AS ON DELETE TO computer
    DO DELETE FROM software WHERE hostname = OLD.hostname;


   


ここで別の類の削除を考えてみましょう。以下のような場合には、



DELETE FROM computer WHERE hostname = 'mypc.local.net';




computerはインデックスにより（高速に）スキャンされます。
トリガによってこのコマンドが発行された場合もインデックススキャンが使用されます（高速です）。
ルールによる追加コマンドは以下のようになります。



DELETE FROM software WHERE computer.hostname = 'mypc.local.net'
                       AND software.hostname = computer.hostname;




適切なインデックスが設定されていますので、プランナは以下の計画を作成します。



Nestloop
  ->  Index Scan using comp_hostidx on computer
  ->  Index Scan using soft_hostidx on software




ですので、トリガとルールの実装間での速度差はあまりありません。
   


次の削除処理ではhostnameがoldで始まる2,000台全てのcomputerを削除しようと思います。
方法として2つの有効な問い合わせがあります。
1つは以下のようなものです。



DELETE FROM computer WHERE hostname >= 'old'
                       AND hostname <  'ole'




ルールによって追加されるコマンドは以下のようになります。



DELETE FROM software WHERE computer.hostname >= 'old' AND computer.hostname < 'ole'
                       AND software.hostname = computer.hostname;




これに対する計画は以下のようになります。



Hash Join
  ->  Seq Scan on software
  ->  Hash
    ->  Index Scan using comp_hostidx on computer




もう1つのコマンドは以下のようなものです。



DELETE FROM computer WHERE hostname ~ '^old';




これにより、ルールによって追加されるコマンド用の実行計画は以下のようになります。



Nestloop
  ->  Index Scan using comp_hostidx on computer
  ->  Index Scan using soft_hostidx on software




これが示していることは、ANDで結合された複数の検索条件が存在する場合、プランナは正規表現版のコマンドでは行っていることですが、computer上のhostnameに対する検索条件をsoftware上のインデックススキャンにも同様に使用できることを理解しないということです。
トリガは削除されるべき2,000台の旧式コンピュータのそれぞれについて1回呼び出され、結果computer上で1回のインデックススキャンとsoftware上で2,000回のインデックススキャンが行われます。
ルールによる実装ではインデックスを使用する2つの問い合わせによって実行されます。
シーケンシャルスキャンの場合でもルールがより速いかどうかはsoftwareテーブルの大きさに依存します。
参照する全てのインデックスブロックがすぐにキャッシュに現れるとしても、トリガによるSPIマネージャ経由の2,000回のコマンドの実行には時間を要します。



最後のコマンドを見てみましょう。



DELETE FROM computer WHERE manufacturer = 'bim';




この文でもcomputerから多くの行が削除される結果となります。
ですので、ここでもトリガはエグゼキュータを通して多くのコマンドを実行することになります。
ルールで作成されるコマンドは以下のようなものです。



DELETE FROM software WHERE computer.manufacturer = 'bim'
                       AND software.hostname = computer.hostname;




このコマンド用の計画もまた前回同様2つのインデックススキャンのネステッドループとなります。
computerの別のインデックスを使用する点のみが異なります。



Nestloop
  ->  Index Scan using comp_manufidx on computer
  ->  Index Scan using soft_hostidx on software




いずれの場合においても、ルールシステムが生成する追加コマンドは影響を受ける行数からは多かれ少なかれ独立しています。



まとめると、問い合わせ結果が大きく、プランナがうまく結合条件を設定できないような状況下でのみルールはトリガに比べて明らかに遅くなります。


第40章 手続き言語





PostgreSQL™では、SQLやC言語以外の言語でユーザ定義の関数を作成することができます。
これらの他の言語は一般に手続き言語（PL）と呼ばれます。
手続き言語で関数が記述されていた場合、データベースサーバにはその関数のソースをどのように解釈すればよいかについての知識が組み込まれていません。
代わりに、その処理はその言語を解釈する特別なハンドラに引き渡されます。
そのハンドラは解析、構文分析、実行などすべてのことを行うこともできますし、PostgreSQL™と存在するプログラミング言語の実装との「橋渡し」ともなり得ます。
ハンドラそのものはC言語関数で、他のC言語関数と同様に、共有オブジェクトにコンパイルされ、要求に応じてロードされます。
  


現在PostgreSQL™の標準配布物では、PL/pgSQL（41章PL/pgSQL — SQL手続き言語）、PL/Tcl（42章PL/Tcl — Tcl手続き言語）、PL/Perl（43章PL/Perl — Perl手続き言語）、PL/Python（PL/Python）という4つの手続き言語があります。
さらに、コア配布物には含まれない手続き言語があります。
付録H 外部プロジェクトでその見つけ方を説明します。
ユーザは他の言語を定義することもできます。
新しい手続き言語の開発について、その基礎を57章手続き言語ハンドラの作成で説明します。
  
手続き言語のインストール





手続き言語は、それらが使用されるデータベースすべてに「インストール」されている必要があります。
しかし、template1データベースにインストールされた手続き言語は、template1内の項目はCREATE DATABASEによってコピーされますので、その後に作成されたすべてのデータベースで自動的に使用できます。
したがって、データベース管理者はどのデータベースにどの言語を使用するかを決定できますし、デフォルトで使用できる言語も決定できます。
   


標準配布物で提供される言語では、その言語を現在のデータベースにインストールするにはCREATE EXTENSION language_nameの実行のみが必要です。
下記の手作業は、拡張機能としてパッケージ化されていない言語をインストールする場合にのみ行うことを推奨します。
   
手順40.1 手続き言語の手作業によるインストール方法


手続き言語を次の5段階でデータベースにインストールすることができます。
この作業はデータベースのスーパーユーザで行う必要があります。
ほとんどの場合、必要なSQLコマンドは「拡張機能」のインストールスクリプトとしてパッケージ化されていますので、この作業を実行するのにCREATE EXTENSIONが利用できます。
    
	

その言語ハンドラ用の共有オブジェクトがコンパイルされ、適切なライブラリディレクトリにインストールされている必要があります。
これは、通常のユーザ定義のC関数を使ってモジュールを構築しインストールする時と同じです。
「動的にロードされる関数のコンパイルとリンク」を参照してください。
実際のプログラミング言語エンジンを提供する外部ライブラリに、言語ハンドラが依存していることがよくあります。
この場合はそのライブラリもインストールしなければなりません。
     

	

ハンドラは下記のコマンドで宣言されなければなりません。


CREATE FUNCTION handler_function_name()
    RETURNS language_handler
    AS 'path-to-shared-object'
    LANGUAGE C;



language_handlerという特別な戻り値の型は、この関数が定義済みのSQLデータ型を返さず、SQL文では直接使用できないことをデータベースシステムに伝えます。
     

	

省略可能ですが、言語ハンドラは、この言語で書かれた無名コードブロック(DOコマンド)を実行する「インライン」ハンドラ関数を提供することができます。
インラインハンドラ関数が言語により提供されるのであれば、以下のようなコマンドで宣言されます。


CREATE FUNCTION inline_function_name(internal)
    RETURNS void
    AS 'path-to-shared-object'
    LANGUAGE C;


     

	

省略可能ですが、言語ハンドラは、実際に実行することなく関数定義の正確性を検査する「有効性検査」関数を提供することができます。
もし存在すれば、有効性検査関数はCREATE FUNCTIONで呼び出されます。
有効性検査関数が言語により提供されるのであれば、以下のようなコマンドで宣言されます。


CREATE FUNCTION validator_function_name(oid)
    RETURNS void
    AS 'path-to-shared-object'
    LANGUAGE C STRICT;


     

	

最終的に、PLは下記のコマンドで宣言されなければいけません。


CREATE [TRUSTED] LANGUAGE language_name
    HANDLER handler_function_name
    [INLINE inline_function_name]
    [VALIDATOR validator_function_name] ;



TRUSTEDというオプションキーワードは、ユーザがアクセス権を持たないデータに対して、その言語がアクセス権を持たないことを指定します。
TRUSTEDである言語は（スーパーユーザ権限を持たない）一般ユーザ用に設計されており、安全に関数やプロシージャを作成できます。
PL関数はデータベースサーバの内部で実行されますので、TRUSTEDフラグはデータベースサーバ内部やファイルシステムへのアクセスを持たない言語のみが使わなければなりません。
PL/pgSQLとPL/Tcl、PL/Perl言語はTRUSTEDと考えられています。
提供される機能が無制限に設計されているPL/TclU、PL/PerlU、PL/PythonU言語については、TRUSTEDを指定してはなりません。
     





例40.1「PL/Perlの手作業によるインストール」に、手作業によるインストール手順がPL/Perl言語でどのように動作するかを示します。
   
例40.1 PL/Perlの手作業によるインストール


以下のコマンドは、データベースサーバにPL/Perl言語の呼び出しハンドラ関数用の共有ライブラリの存在場所を通知します。



CREATE FUNCTION plperl_call_handler() RETURNS language_handler AS
    '$libdir/plperl' LANGUAGE C;


     


PL/Perlはインラインハンドラ関数と有効性検査関数を有していますので、以下のようにも宣言します。



CREATE FUNCTION plperl_inline_handler(internal) RETURNS void AS
    '$libdir/plperl' LANGUAGE C STRICT;

CREATE FUNCTION plperl_validator(oid) RETURNS void AS
    '$libdir/plperl' LANGUAGE C STRICT;


     


以下のコマンドは、


CREATE TRUSTED LANGUAGE plperl
    HANDLER plperl_call_handler
    INLINE plperl_inline_handler
    VALIDATOR plperl_validator;



直前に宣言された関数を、言語属性がplperlである関数やプロシージャ用に呼び出さなければならないことを定義します。
     




デフォルトのPostgreSQL™インストレーションでは、PL/pgSQL言語用のハンドラは構築され、「ライブラリ」ディレクトリにインストールされます。
さらに、PL/pgSQL言語自体がデータベースすべてにインストールされます。
Tclのサポート付きで構築した場合、PL/TclとPL/TclU用のハンドラも構築されライブラリディレクトリにインストールされますが、言語自体はデフォルトではどのデータベースにもインストールされません。
同様に、Perlサポート付きで構築した場合はPL/PerlとPL/PerlUハンドラが、Pythonサポート付きで構築した場合はPL/PythonUハンドラが構築され、インストールされますが、言語自体はデフォルトではインストールされません。
   


第41章 PL/pgSQL — SQL手続き言語



概要





PL/pgSQLは、PostgreSQL™データベースシステム用のロード可能な手続き言語です。
PL/pgSQLの設計目的は、次のようなロード可能な手続き言語でした。

    
	

関数、プロシージャとトリガを作成するために使用できること
      

	

SQL言語に制御構造を追加すること
      

	

複雑な演算が可能であること
      

	

全てのユーザ定義型、関数、プロシージャ、演算子を継承すること
      

	

サーバによって信頼できるものと定義できること
      

	

使いやすいこと
      




   


PL/pgSQLで作成した関数は、組み込み関数が使えるところであれば、どこでも使用できます。
例えば、複雑な条件のある演算処理関数の作成が可能ですし、作成した関数を使用して演算子を定義することも、インデックス式にその関数を使用することも可能です。
   


PostgreSQL™ 9.0以降ではPL/pgSQLはデフォルトでインストールされます。
しかしこれはまだロード可能なモジュールですので、特にセキュリティに厳しい管理者は削除することもできます。
   
PL/pgSQLを使用することの利点





SQLはPostgreSQL™およびその他のほとんどのリレーショナルデータベースが問い合わせ言語として使用している言語です。
移植性があり、習得が容易です。
しかし、あらゆるSQL文はデータベースサーバによって個々に実行されなければいけません。
    


これはクライアントアプリケーションに対して以下のようなことを要求しています。
まず、データベースサーバに問い合わせを送信します。
次にそれが処理されるのを待ちます。
次に、結果を取得して処理します。
次に若干の計算を行います。
そして、サーバに次の問い合わせを送信します。
クライアントがデータベースサーバマシンと異なるマシンの場合、これが招いたプロセス間通信により、ネットワークオーバーヘッドを起こすでしょう。
    


PL/pgSQLを使うことで、計算と複数の問い合わせをデータベースサーバ内部でひとまとめに実行することができます。
このように、手続き言語の能力とSQLの使いやすさを持ち合わせているにもかかわらず、クライアント/サーバ通信のオーバーヘッドをかなり節約できます。
    
	クライアント・サーバ間の余計なやり取りを排除する。

	クライアントサーバ間において、クライアントに不必要な中間結果の整理と転送を不要とする。

	一連の問い合わせに、複数の解析が不要である。



これにより、ストアドプロシージャを使用しないアプリケーションに比較して、かなり性能を向上させることができます。
    


また、PL/pgSQLではSQL全てのデータ型、演算子、関数を使用することができます。
    

引数と結果データ型のサポート





PL/pgSQLで作成された関数は、サーバでサポートされる任意のスカラデータ型や配列データ型を引数として受け付けることができ、また、これらの型を結果として返すことができます。
また、任意の、名前で指定された複合型（行型）を受け付けたり、返したりすることもできます。
さらに、「テーブル関数」で説明されているように、PL/pgSQL関数がrecordを受け入れるように、すなわち、任意の複合型を入力としたりrecordを返すように宣言することも可能です。recordを返す場合の結果は、その各列が呼び出す問い合わせの中での指定で決まる行型です。
    


PL/pgSQL関数はVARIADIC記号を使用して可変長の引数を受け付けられるように宣言することができます。
これは「可変長引数を取るSQL関数」で説明したように、SQL関数と全く同じ方法で動作します。
    


また、PL/pgSQL関数を、「多様型」で説明されている多様型を受け付けたり、返したりするように宣言することもできます。
これにより、関数によって処理される実際のデータ型は呼び出しごとに変動することができます。
例を「関数引数の宣言」に示します。
    


PL/pgSQL関数は、1つのインスタンスとして返すことができる任意のデータ型の「集合」（テーブル）を返すように宣言できます。
こうした関数は、結果集合の必要な要素に対してRETURN NEXTを実行すること、または問い合わせの評価結果を得るためにRETURN QUERYを使用することで、その出力を生成します。
    


最後に、有用な戻り値を持たない場合、PL/pgSQL関数は、voidを返すように宣言することができます。
（あるいは、この場合はプロシージャとして書くこともできます。）
    


PL/pgSQL関数は戻り値の型を明確に指定する代わりに、出力パラメータと共に宣言することもできます。
これは言語に対して基本的な能力を追加するものではありませんが、特に複数の値を返す時にしばしば便利です。
RETURNS TABLE表記はRETURNS SETOFの代わりとして使用できます。
    


関連する例は「関数引数の宣言」および「関数からの復帰」にあります。
    



PL/pgSQLの構造





PL/pgSQLで書かれた関数はCREATE FUNCTION(7)コマンドを実行することでサーバに定義されます。
そのようなコマンドは通常、例えば次のようになります。


CREATE FUNCTION somefunc(integer, text) RETURNS integer
AS 'function body text'
LANGUAGE plpgsql;



関数本体はCREATE FUNCTIONにとっては単なる文字列リテラルです。
関数本体を書くのには、普通の単一引用符構文よりは、ドル引用符(「ドル記号で引用符付けされた文字列定数」を参照)を使うのが、多くの場合役に立ちます。
ドル引用符でなければ、関数本体内の単一引用符やバックスラッシュをすべて二重化してエスケープしなければなりません。
この章のほぼすべての例では、関数本体にドル記号で括られたリテラルを使っています。
  


PL/pgSQLはブロック構造の言語です。
関数本体のテキスト全体はブロックでなければなりません。
ブロックは以下のように定義されます。



[ <<label>> ]
[ DECLARE
    declarations ]
BEGIN
    statements
END [ label ];


    


ブロック内の宣言や文はそれぞれ、セミコロンで終わります。
上に示したように、他のブロック内に出現するブロックのENDの後にはセミコロンが必要ですが、関数本体を完結する最後のENDには不要です。
    
ヒント


BEGINの直後にセミコロンを書くことも、同じように間違いです。
これは不正であり、構文エラーとなります。
     



labelが必要となるのは、EXIT文が使用されるブロックを特定したい場合、またはブロック内で宣言された変数名を修飾したい場合だけです。
ENDの後にラベルを配置する時は、そのブロックの先頭ラベルと一致させなければなりません。
    


全てのキーワードは大文字と小文字を区別しません。
識別子は二重引用符でくくられていない限り、通常のSQLコマンドと同様に、暗黙的に小文字に変換されます。
    


PL/pgSQLコード内では、通常のSQLと同じ方法のコメントが動作します。
二重のダッシュ(--)はその行末までをコメントとするコメントを開始します。
/*はコメントブロックの始まりを意味し、次に*/が現れるまでをコメントとします。
ブロックコメントは入れ子になります。
    


ブロックの文節内の全ての文は副ブロックになることができます。
副ブロックは論理的なグループ分けや変数を文の小さな集まりに局所化するのに使用できます。
副ブロックにおいて宣言された変数は、副ブロック内部では外側のブロックにおける同名の変数を遮蔽しますが、外側のラベルを変数名に付加して指定すればアクセスできます。
以下に例を示します。


CREATE FUNCTION somefunc() RETURNS integer AS $$
<< outerblock >>
DECLARE
    quantity integer := 30;
BEGIN

    RAISE NOTICE 'Quantity here is %', quantity;  -- Quantity here is 30と表示
    quantity := 50;
    --

    -- 副ブロックの作成
    --
    DECLARE
        quantity integer := 80;
    BEGIN

        RAISE NOTICE 'Quantity here is %', quantity;  -- Quantity here is 80と表示
        RAISE NOTICE 'Outer quantity here is %', outerblock.quantity;  -- Quantity here is 50と表示
    END;


    RAISE NOTICE 'Quantity here is %', quantity;  -- Quantity here is 50と表示

    RETURN quantity;
END;
$$ LANGUAGE plpgsql;


    
注記


PL/pgSQL関数の本体を囲む、隠れた「外側のブロック」が存在します。
この隠れたブロックにおいて、関数のパラメータがあれば宣言をして、同様にFOUNDのような特殊な変数（「結果ステータスの取得」を参照）を提供します。
この外側のブロックのラベルは関数名となります。
つまりパラメータと特殊な変数は関数名によって修飾することを意味します。
     



PL/pgSQLにおける文をまとめるためのBEGIN/ENDとトランザクション制御用の同名のSQLコマンドとを取り違えないようにすることが重要です。
PL/pgSQLのBEGIN/ENDは単にまとめるためのもので、トランザクションを始めたり終わらせたりしません。
トランザクションをPL/pgSQL内で制御するための情報に関しては、「トランザクション制御」を参照してください。
また、EXCEPTION句を含むブロックは外側のトランザクションに影響しないでロールバックできるサブトランザクションを、実質的に作成できます。
これについては「エラーの捕捉」を参照してください。
    

宣言





ブロック内で使用される全ての変数はそのブロックの宣言部で宣言されなければなりません。
（唯一の例外は、FORループである整数値の範囲に渡って繰り返されるループ変数で、これは、自動的に整数型変数として宣言されます。
同様に、カーソルの結果に対して繰り返し適用されるFORループのループ変数はレコード変数として自動的に宣言されます。）
    


PL/pgSQL変数は、integer、varchar、charといった、任意のSQLデータ型を持つことができます。
    


変数宣言の例を以下に示します。


user_id integer;
quantity numeric(5);
url varchar;
myrow tablename%ROWTYPE;
myfield tablename.columnname%TYPE;
arow RECORD;


    


変数宣言の一般的な構文は以下の通りです。


name [ CONSTANT ] type [ COLLATE collation_name ] [ NOT NULL ] [ { DEFAULT | := | = } expression ];



DEFAULT句が指定された場合、ブロックに入った時に変数に代入される初期値を指定します。
DEFAULT句が指定されない場合、変数はSQLのNULL値に初期化されます。
CONSTANTオプションにより、そのブロック内でその値が不変になるように、その変数への初期化後の代入は禁止されます。
COLLATEオプションは、変数として使用するための照合を指定します（「PL/pgSQL変数の照合」を参照してください）。
NOT NULLが指定された場合、NULL値の代入は実行時エラーになります。
NOT NULLとして宣言した変数は全て、非NULLのデフォルト値を指定しなければなりません。
等号（=）がPL/SQLにおける代入記号（:=）の代わりに使用できます。
     


変数のデフォルト値はブロックに入る度に評価され、変数に代入されます（関数を呼び出す時に一度だけではありません）。
ですから、例えばnow()をtimestamp型の変数に代入することで、その変数には関数をプリコンパイルした時刻ではなく、関数呼び出し時の現在時刻が格納されます。
     


例：


quantity integer DEFAULT 32;
url varchar := 'http://mysite.com';
transaction_time CONSTANT timestamp with time zone := now();


     


宣言された変数の値は、同じブロック内の後の初期化式で使用できます。
次に例を示します。


DECLARE
  x integer := 1;
  y integer := x + 1;


     
関数引数の宣言





関数に渡されるパラメータの名前には$1、$2という識別子が付けられます。
省略することもできますが、$nというパラメータ名に別名を宣言することができ、可読性が向上します。
別名、数字による識別子の両方とも引数の値を参照する時に使用することができます。
     


別名を作成する方法は2つあり、望ましい方法はCREATE FUNCTIONコマンドの中でパラメータを命名するものです。
以下に例を示します。


CREATE FUNCTION sales_tax(subtotal real) RETURNS real AS $$
BEGIN
    RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;



他の方法は、宣言構文を用いて別名を明確に宣言するものです。



name ALIAS FOR $n;




以下にこの方法による例を示します。


CREATE FUNCTION sales_tax(real) RETURNS real AS $$
DECLARE
    subtotal ALIAS FOR $1;
BEGIN
    RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;


     
注記


この二例は完全に同等ではありません。
最初の例では、subtotalをsales_tax.subtotalで参照できますが、次の例ではできません。
（その代わり、内部ブロックにラベルを付与すれば、subtotalをラベルで修飾することができます。）
     



さらに数例を示します。


CREATE FUNCTION instr(varchar, integer) RETURNS integer AS $$
DECLARE
    v_string ALIAS FOR $1;
    index ALIAS FOR $2;
BEGIN

    -- v_string とインデックスを使用した何らかの演算を行なう
END;
$$ LANGUAGE plpgsql;


CREATE FUNCTION concat_selected_fields(in_t sometablename) RETURNS text AS $$
BEGIN
    RETURN in_t.f1 || in_t.f3 || in_t.f5 || in_t.f7;
END;
$$ LANGUAGE plpgsql;


     


PL/pgSQL関数が出力パラメータと共に宣言されると、通常の入力パラメータと同様に、出力パラメータには$nというパラメータ名と任意の別名が与えられます。
出力パラメータは実質的には最初がNULL値の変数であり、関数の実行中に値が指定されるはずです。
出力パラメータの最後の値は戻り値です。
例えば、消費税の例題は、次のようにすることもできます。



CREATE FUNCTION sales_tax(subtotal real, OUT tax real) AS $$
BEGIN
    tax := subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;




RETURNS realを省略したことに注意してください。
含めることもできますが、冗長になります。
     


OUTパラメータの付いた関数を呼び出すには、関数呼び出しで出力パラメータを省略してください。


SELECT sales_tax(100.00);


     


出力パラメータは複数の値を返す時に最も有用になります。
簡単な例題を示します。



CREATE FUNCTION sum_n_product(x int, y int, OUT sum int, OUT prod int) AS $$
BEGIN
    sum := x + y;
    prod := x * y;
END;
$$ LANGUAGE plpgsql;

SELECT * FROM sum_n_product(2, 4);
 sum | prod
-----+------
   6 |    8




「出力パラメータを持つSQL関数」で述べたように、この方法は関数の結果に対する匿名のレコード型を実質的に作成します。
RETURNS句が与えられた時は、RETURNS recordと言わなければなりません。
     


これは以下のようにプロシージャでも機能します。



CREATE PROCEDURE sum_n_product(x int, y int, OUT sum int, OUT prod int) AS $$
BEGIN
    sum := x + y;
    prod := x * y;
END;
$$ LANGUAGE plpgsql;




プロシージャの呼び出しでは、すべてのパラメータを指定しなければなりません。
普通のSQLからプロシージャを呼び出す場合には、出力パラメータに対してはNULLを指定します。


CALL sum_n_product(2, 4, NULL, NULL);
 sum | prod
-----+------
   6 |    8




しかしながら、PL/pgSQLからプロシージャを呼び出すときには、出力パラメータに対して変数を書かないといけません。変数は呼び出しの結果を受け取ります。
詳細は「プロシージャを呼び出す」を参照してください。
     


PL/pgSQL関数を宣言する他の方法として、RETURNS TABLEを伴うことが挙げられます。
以下に例を示します。



CREATE FUNCTION extended_sales(p_itemno int)
RETURNS TABLE(quantity int, total numeric) AS $$
BEGIN
    RETURN QUERY SELECT s.quantity, s.quantity * s.price FROM sales AS s
                 WHERE s.itemno = p_itemno;
END;
$$ LANGUAGE plpgsql;




これは、１つ、またはそれ以上のOUTパラメータを宣言すること、およびRETURNS SETOF 何らかのデータ型を指定することと全く等価です。
     


PL/pgSQL関数の戻り値が多様型（「多様型」を参照）として宣言されると、特別な$0パラメータが作成されます。
このデータ型が、実際の入力型から推定された関数の実際の戻り値の型です。
これにより、関数は「型のコピー」に示すように、実際の戻り値の型にアクセスできます。
$0はNULLで初期化され、関数内で変更することができます。
ですので、必須ではありませんが、これを戻り値を保持するために使用しても構いません。
また$0に別名を付与することもできます。
例えば、以下の関数は+演算子を持つ任意のデータ型に対して稼働します。



CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3 anyelement)
RETURNS anyelement AS $$
DECLARE
    result ALIAS FOR $0;
BEGIN
    result := v1 + v2 + v3;
    RETURN result;
END;
$$ LANGUAGE plpgsql;


     


1つ以上の出力パラメータを多様型として宣言することにより、同様の結果を得ることができます。
この場合、特殊な$0パラメータは使用されません。
出力パラメータ自身が同じ目的を果たします。
以下に例を示します。



CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3 anyelement,
                                 OUT sum anyelement)
AS $$
BEGIN
    sum := v1 + v2 + v3;
END;
$$ LANGUAGE plpgsql;


     


実際には型にanycompatible族を使用して多様関数を宣言する方が有用である可能性があります。そうすれば、 入力引数が共通の型に自動的に昇格されます。
以下に例を示します。



CREATE FUNCTION add_three_values(v1 anycompatible, v2 anycompatible, v3 anycompatible)
RETURNS anycompatible AS $$
BEGIN
    RETURN v1 + v2 + v3;
END;
$$ LANGUAGE plpgsql;




この例は



SELECT add_three_values(1, 2, 4.7);




自動的に整数の入力を数値データに昇格して呼び出しが動作します。
anyelementを使用する関数では、3つの入力を同じ型に手動でキャストする必要があります。
     

ALIAS




newname ALIAS FOR oldname;



ALIAS構文は前節で示したものより一般的です。
関数の引数だけではなく、任意の変数に別名を宣言することができます。
この現実的な使用は主に、トリガ関数におけるNEWやOLDなど、前もって決まった名前の変数に別の名前を割り当てることです。
   


以下に例を示します。


DECLARE
  prior ALIAS FOR old;
  updated ALIAS FOR new;


   


ALIASは同じオブジェクトを命名する2つの異なる手段を提供しますので、無制限に使用すると混乱を招くかもしれません。
前もって決まっている名前を上書きする目的に限定して使用することが最善です。
   

型のコピー




name table.column%TYPE
name variable%TYPE



%TYPEはテーブル列や以前に宣言されたPL/pgSQL変数のデータ型を提供します。
これを使用してデータベース値を保持する変数を宣言できます。
例えば、usersテーブルにuser_idという列があるものとします。
users.user_idと同じデータ型の変数を宣言するには、以下のように記述します。


user_id users.user_id%TYPE;


   


%TYPEの後に配列修飾を書くことも可能で、それによって参照される型の配列を保持する変数が作成されます。


user_ids users.user_id%TYPE[];

user_ids users.user_id%TYPE ARRAY[4];  -- 上と同じ



配列であるテーブル列を宣言する際と同様に、複数の括弧のペアを書くか、特定の配列の次元を書くかは問題ではありません。
PostgreSQL™は、次元性に関係なく、与えられた要素型の配列をすべて同じ型として扱います。
（「配列型の宣言」を参照してください。）
   


%TYPEを使用することで、参照する構造のデータ型を把握する必要がなくなります。
また、これが最も重要なことですが、参照される項目のデータ型が将来変更された（例えば、user_idのテーブル定義をintegerからrealに変更した）場合でも、関数定義を変更する必要をなくすことができます。
   


内部変数用のデータ型は呼び出す度に変わるかもしれませんので%TYPEは特に多様関数で有用です。
関数の引数や結果用のプレースホルダに%TYPEを適用することで、適切な変数を作成することができます。
   

行型




name table_name%ROWTYPE;
name composite_type_name;



複合型の変数は、行変数（または行型変数）と呼ばれます。
こういった変数には、問い合わせの列集合が変数の型宣言と一致する限り、SELECTやFOR問い合わせの結果の行全体を保持することができます。
行変数の個々のフィールド値には、例えば、rowvar.fieldといったドット記法を使用してアクセスすることができます。
   


table_name%ROWTYPEという記法を使用して、既存のテーブルやビューの行と同じ型を持つ行変数を宣言することができます。
もしくは、複合型の名前を付与して宣言することができます。
（全てのテーブルは、同じ名前の関連する複合型を持ちますので、実際のところPostgreSQL™では、%ROWTYPEと書いても書かなくても問題にはなりません。
しかし、%ROWTYPEの方がより移植性が高まります。）
   


%TYPEと同様に、%ROWTYPEの後に配列修飾を付けることで、参照される複合型の配列を保持する変数を宣言できます。
   


関数へのパラメータとして複合型（テーブル行全体）を取ることができます。
その場合、対応する識別子$nは行変数であり、そのフィールドを、例えば、$1.user_idで選択することができます。
   


以下に複合型を使用する例を示します。
table1及びtable2は、
少なくとも言及するフィールドを有する既存のテーブルです。



CREATE FUNCTION merge_fields(t_row table1) RETURNS text AS $$
DECLARE
    t2_row table2%ROWTYPE;
BEGIN
    SELECT * INTO t2_row FROM table2 WHERE ... ;
    RETURN t_row.f1 || t2_row.f3 || t_row.f5 || t2_row.f7;
END;
$$ LANGUAGE plpgsql;

SELECT merge_fields(t.*) FROM table1 t WHERE ... ;


   

レコード型




name RECORD;



レコード変数は行型変数と似ていますが、事前に定義された構造を持っていません。
これはSELECTやFORコマンドの間で代入された行の実際の行構造を取ります。
レコード変数の副構造は、代入を行う度に変更できます。
つまり、レコード変数は、最初に代入されるまで副構造を持たず、したがって、フィールドへのアクセスを試みると実行時エラーが発生します。
   


RECORDは本当のデータ型ではなく、単なるプレースホルダであることに注意してください。
PL/pgSQL関数がrecord型を返す時、この関数ではレコード変数を使用してその結果を保持することができますが、これはレコード変数としての概念とはまったく異なることを認識すべきです。
両方とも、関数の作成段階では実際の行構造は不明です。
しかし、レコード変数はその場その場でその行構造を変更できるにもかかわらず、recordを返す関数では呼び出し元の問い合わせが解析された時点で実際の構造は決定されます。
   

PL/pgSQL変数の照合





PL/pgSQL関数が照合可能なデータ型のパラメータを 1つ以上保有する場合、「照合順序サポート」に記述したように、実際の引数に割り当てられた照合に従って、関数呼び出し毎に照合が識別されます。
照合の識別に成功した場合（すなわち、引数の間に事実上の照合における衝突がない場合）、照合可能な全てのパラメータは暗黙の照合を有するとして扱われます。
これは関数内部において、照合に依存する操作の作用に影響します。
以下の例を考えてください。



CREATE FUNCTION less_than(a text, b text) RETURNS boolean AS $$
BEGIN
    RETURN a < b;
END;
$$ LANGUAGE plpgsql;

SELECT less_than(text_field_1, text_field_2) FROM table1;
SELECT less_than(text_field_1, text_field_2 COLLATE "C") FROM table1;




第一の使用方法においてless_thanは、text_field_1とtext_field_2の比較のための通常の照合として用いられます。
第二の使用方法においては、C照合として用いられます。
   


さらに、識別された照合は、照合可能なデータ型の全ての局所変数の照合としても仮定されます。
したがって、この関数は下に記述する関数と差異なく作動します。



CREATE FUNCTION less_than(a text, b text) RETURNS boolean AS $$
DECLARE
    local_a text := a;
    local_b text := b;
BEGIN
    RETURN local_a < local_b;
END;
$$ LANGUAGE plpgsql;


   


照合可能なデータ型のパラメータが存在しない場合、または、それらで共通する照合順序を識別できない場合、パラメータと局所変数は自身のデータ型のデフォルトの照合順序（通常これはデータベースのデフォルトの照合順序ですが、ドメイン型の変数の場合は異なるかもしれません）を使用します。
   


照合可能なデータ型の局所変数は、宣言内でCOLLATEオプションを含めることにより、別の照合と関連づけることができます。
例を示します。



DECLARE
    local_a text COLLATE "en_US";




このオプションは上記ルールにより、変数に他の方法で付与されるはずであった照合を上書きします。
   


また当然ながら、強制的に特定の操作において特定の照合順序を使用したい場合、明示的なCOLLATE句を関数内部に記述することができます。
例を示します。



CREATE FUNCTION less_than_c(a text, b text) RETURNS boolean AS $$
BEGIN
    RETURN a < b COLLATE "C";
END;
$$ LANGUAGE plpgsql;




単純なSQLコマンドで起こるように、これはテーブルの列、パラメータ、または式の中の局所変数に関連づけられた照合を上書きします。
   


式





PL/pgSQL文で使用される式は全て、サーバの主SQLエグゼキュータを使用して処理されます。
例えば、以下のPL/pgSQL文


IF expression THEN ...



が記述された時、PL/pgSQLは


SELECT expression



を主SQLエンジンに供給して、上式を評価します。
「変数置換」において詳細を説明したように、SELECTコマンドの形成においてPL/pgSQL変数名は、その都度問い合わせパラメータによって置換されます。
これにより、SELECTの問い合わせ計画は一度だけ準備することができ、その後の評価で異なった変数値を代入して再利用されます。
すなわち、式の最初の使用においては、実質的にPREPAREコマンドと同等です。
例えば、2つの整数変数xとyを宣言して、


IF x < y THEN ...



という条件式を記述すると背後では


PREPARE statement_name(integer, integer) AS SELECT $1 < $2;



と同等なプリペアドステートメントが作成されます。
そしてIF文を実行する度にPL/pgSQLの最新の変数値をパラメータ値として供給して、このプリペアドステートメントに対してEXECUTEを行います。
通常この詳細は、PL/pgSQLユーザにとって重要ではありませんが、この知識は問題点の解析に有用です。
それ以外の情報は、「計画のキャッシュ」に記述されています。
    


expressionはSELECTコマンドに変換されますので、通常のSELECTが含むことのできるものと同じ句を含むことができます。ただし、トップレベルのUNION、INTERSECT、EXCEPT句は含むことができません。
そのため、例えば、以下によりテーブルが空でないか確かめることができます。


IF count(*) > 0 FROM my_table THEN ...



IFとTHEN間の式はSELECT count(*) > 0 FROM my_tableであるかのように解析されるからです。
SELECTは1つの列、2つ以上でない行を生成しなければなりません。
（行を生成しないのであれば、結果はNULLとして受け付けられます。）
    

基本的な文





本節および次節では、明示的にPL/pgSQLで解釈される、全ての種類の文について説明します。
これらの種類の文として認められないものはすべて、SQLコマンドであると仮定され、「SQLコマンドの実行」において記述したように、メインデータベースエンジンに送信され実行されます。
   
代入





値をPL/pgSQL変数に代入する場合は以下のように記述します。


variable { := | = } expression;



上述した通り、このような文中にある式は、メインデータベースエンジンに送信されるSELECT SQLコマンドによって評価されます。
式は1つの値を生成しなければなりません
（変数が行変数またはレコード変数の場合は行値となるかもしれません）。
対象の変数は単純な変数(ブロック名で修飾可能)、行またはレコードの対象のフィールド、または配列の対象の要素またはスライスとすることができます。
等号（=）がPL/SQLにおける代入記号（:=）の代わりに使用できます。
    


式の結果データ型が変数のデータ型に一致しない場合、値は代入キャスト（「値の格納」を参照）と同様に変換されます。
関係する二つのデータ型のための代入キャストが無いときには、PL/pgSQLインタプリタは結果値を、変数のデータ型の入力関数に続けて結果データ型の出力関数を適用することで、テキストとして変換しようとします。
結果値の文字列形式が入力関数で受け付けることができない場合に、入力関数において実行時エラーが発生するかもしれないことに注意してください。
    


例：


tax := subtotal * 0.06;
my_record.user_id := 20;
my_array[j] := 20;
my_array[1:3] := array[1,2,3];
complex_array[n].realpart = 12.3;


    

SQLコマンドの実行





一般に、行を返さないSQLコマンドはPL/pgSQL関数内にそのコマンドを書くだけで実行されます。
例えば、テーブルを作成してデータを入れるには以下のように書けます。


CREATE TABLE mytable (id int primary key, data text);
INSERT INTO mytable VALUES (1,'one'), (2,'two');


    


コマンドが行を返すのであれば(例えばSELECTやRETURNINGを伴うINSERT/UPDATE/DELETE/MERGEなど)、処理する方法が2つあります。
コマンドが多くても1行を返す場合、もしくは出力の最初の行だけに関心がある場合には、「1行の結果を返すコマンドの実行」に書かれているように、出力を取得するためのINTO句を追加する以外は通常通りコマンドを書いてください。
出力行をすべて処理するためには、「問い合わせ結果による繰り返し」に書かれているように、FORループに対するデータソースとしてコマンドを書いてください。
    


通常、静的に定義されたSQLコマンドを実行するだけでは十分ではありません。
典型的には、可変のデータ値を使ったり、さらには異なる時には異なるテーブル名を使うなどより基本的な方法で変化したりするコマンドを使いたいでしょう。
今回も、状況に応じて2つの方法があります。
    


PL/pgSQL変数値は、最適化可能なSQLコマンドに自動的に挿入できます。最適化可能なSQLコマンドとは、SELECT、INSERT、UPDATE、DELETE、MERGEとEXPLAINやCREATE TABLE ... AS SELECTのようなこのうちの1つを含む特定のユーティリティコマンドのことです。
このコマンドでは、コマンドテキストに現れるすべてのPL/pgSQL変数名は、問い合わせパラメータで置き換えられ、その後、実行時のパラメータ値として、その時点の変数値が提供されます。
これは以前に述べた式に関する処理と全く同じです。詳細は「変数置換」を参照してください。
    


最適化可能なSQLコマンドがこのように実行されると、「計画のキャッシュ」に記述したように、PL/pgSQLはコマンドのために、実行計画をキャッシュして再利用します。
    


最適化可能ではないSQLコマンド(ユーティリティコマンドとも呼ばれます)は問い合わせパラメータを受け付けられません。
そのため、PL/pgSQL変数の自動置換はそのようなコマンド内では機能しません。
PL/pgSQLから実行されるユーティリティコマンドに不変ではないテキストを含めるには、「動的コマンドの実行」で述べたように、ユーティリティコマンドを文字列として構築し、それをEXECUTEしなければなりません。
    


例えば、テーブル名を変更するなど、データ値を提供する以外の方法でコマンドを修正したい場合にも、EXECUTEを使わなければなりません。
    


式またはSELECT問い合わせを評価して結果を破棄することが、役に立つ場合があります。
例えば、関数の呼び出しにおいて、副次的な成果を取得できるが、結果は無用である場合です。
このような時PL/pgSQLでは、PERFORM文を使用してください。



PERFORM query;




これはqueryを実行し、その結果を破棄します。
SQLのSELECT文と同じ方法でqueryを記述しますが、最初のキーワードSELECTをPERFORMに置き換えてください。
WITH問い合わせに対しては、PERFORM を使用して、問い合わせをカッコ内に配置してください。
（この場合、問い合わせは1行だけ返すことができます。）
上述のように、PL/pgSQL変数は問い合わせ内に置き換えられ、計画は同様にキャッシュされます。
また、特殊な変数であるFOUNDは問い合わせ結果が1行でも生成された場合は真に設定され、生成されない場合は偽に設定されます（「結果ステータスの取得」を参照してください）。
    
注記


直接SELECTを記述すれば、この結果を得ることができると考えるかもしれませんが、現時点でこれを行う方法はPERFORMしかありません。
SELECTのように行を返すSQLコマンドは、エラーとして拒絶されます。
なお、INTO句を有する時は例外であり、次節で説明します。
     



以下に例を示します。


PERFORM create_mv('cs_session_page_requests_mv', my_query);


    

1行の結果を返すコマンドの実行





（多分、複数列の）1行を返すSQLコマンドの結果は、レコード変数、行型の変数、スカラ変数のリストに代入することができます。
これは、基本的なSQLコマンドを記述して、それにINTO句を追加することによって行われます。
以下に例を示します。



SELECT select_expressions INTO [STRICT] target FROM ...;
INSERT ... RETURNING expressions INTO [STRICT] target;
UPDATE ... RETURNING expressions INTO [STRICT] target;
DELETE ... RETURNING expressions INTO [STRICT] target;
MERGE ... RETURNING expressions INTO [STRICT] target;




ここで、targetはレコード変数、行変数、あるいは、単純な変数とレコード/行変数のフィールドをカンマで区切ったリストです。
上述のようにPL/pgSQL変数によりコマンドの残り(すなわち、INTO句以外のすべて)が置換され、同じように計画がキャッシュされます。
このように作動するのは、SELECT、RETURNINGを伴ったINSERT/UPDATE/DELETE/MERGEおよびEXPLAINのような行セットの結果を返す特定のユーティリティコマンドです。
INTO句以外では、SQLコマンドはPL/pgSQLの外部に記述したものと同じです。
    
ヒント


通常のPostgreSQL™のSELECT INTO文では、INTOの対象は新しく作成されるテーブルです。
しかし、INTOを伴ったSELECTでは、この解釈が通常と大きく異なることに注意してください。
PL/pgSQL関数内部でSELECTの結果からテーブルを作成したい場合は、CREATE TABLE ... AS SELECT構文を使用してください。
    



行変数または変数リストが対象に使用された場合、列数とデータ型においてコマンドの結果と対象の構造が正確に一致しなければなりません。
さもないと、実行時エラーが発生します。
レコード変数が対象の場合は、コマンドの結果の列の行型に自身を自動的に設定します。
    


INTO句はSQLコマンドのほとんど任意の場所に記述することができます。
習慣的には、SELECT文においてはselect_expressionsの直前または直後に、他のコマンドにおいては文の終わりに記述されます。
将来のバージョンでPL/pgSQLのパーサがより厳格になる場合に備えて、この習慣に従うことを推奨します。
    


INTO句においてSTRICTが指定されない場合、targetはコマンドが返す最初の行となり、コマンドが行を返さない時はNULLとなります。
（「最初の行」とはORDER BYを使用しないと定義できないことに注意してください。）
2行目以降の行の結果は、全て破棄されます。
以下のように、特殊なFOUND変数（「結果ステータスの取得」を参照してください）を調べて、行が返されたかどうかを検査することができます。



SELECT * INTO myrec FROM emp WHERE empname = myname;
IF NOT FOUND THEN
    RAISE EXCEPTION 'employee % not found', myname;
END IF;




STRICTオプションが指定された場合、コマンドは正確に1行を返さなければなりません。
さもないと、行がない時はNO_DATA_FOUND、2行以上が返った時はTOO_MANY_ROWSという実行時エラーが生じます。
エラーを捕捉したい時は、例外ブロックを使用できます。
以下に例を示します。



BEGIN
    SELECT * INTO STRICT myrec FROM emp WHERE empname = myname;
    EXCEPTION
        WHEN NO_DATA_FOUND THEN
            RAISE EXCEPTION 'employee % not found', myname;
        WHEN TOO_MANY_ROWS THEN
            RAISE EXCEPTION 'employee % not unique', myname;
END;



STRICTを指定したコマンドが成功すると、FOUND変数は常に真に設定されます。
    


PL/pgSQLはSTRICTが指定されない場合でも、RETURNINGを伴ったINSERT/UPDATE/DELETE/MERGEが2行以上を返した時は、エラーとなります。
なぜなら、どの1行を返すか決定するORDER BYのようなオプションが存在しないからです。
    


print_strict_paramsが関数に利用可能であり、かつ要求がSTRICTでないためにエラーが発生した場合、エラーメッセージのDETAIL部分はコマンドに渡したパラメータに関する情報を含みます。
plpgsql.print_strict_paramsを指定することにより、全ての関数のprint_strict_params設定を変更できます。
しかし、変更後にコンパイルした関数にだけ有効です。
コンパイルオプションを使用すれば、個々の関数を基準とした設定変更もできます。
例を示します。


CREATE FUNCTION get_userid(username text) RETURNS int
AS $$
#print_strict_params on
DECLARE
userid int;
BEGIN
    SELECT users.userid INTO STRICT userid
        FROM users WHERE users.username = get_userid.username;
    RETURN userid;
END;
$$ LANGUAGE plpgsql;



失敗したとき、この関数は次のようなエラーメッセージを生成します。


ERROR:  query returned no rows
DETAIL:  parameters: username = 'nosuchuser'
CONTEXT:  PL/pgSQL function get_userid(text) line 6 at SQL statement


    
注記


STRICTオプションは、OracleのPL/SQLのSELECT INTOおよび関連した文に対応します。
     


動的コマンドの実行





PL/pgSQL関数の内部で、動的コマンド、つまり実行する度に別のテーブルや別のデータ型を使用するコマンドを生成したいということがよくあるでしょう。
PL/pgSQLが通常行うコマンドの計画のキャッシュは（「計画のキャッシュ」で述べたように）このような状況では動作しません。
この種の問題を扱うために、以下のEXECUTE文が用意されています。



EXECUTE command-string [ INTO [STRICT] target ] [ USING expression [, ... ] ];




ここで、command-stringは実行されるコマンドを含む（text型の）文字列を生成する式です。
オプションのtargetはレコード変数、行変数、あるいは、単純な変数とレコード/行変数のフィールドをカンマで区切ったリストで、その中にコマンドの結果が格納されます。
オプションのUSING式はコマンドに挿入される値を与えます。
    


PL/pgSQL変数は、この演算用のコマンド文字列へ置換されません。
必要な変数の値はすべてコマンド文字列を作成する時に埋め込まなければなりません。
もしくは、以下に説明するパラメータを使用することもできます。
    


また、EXECUTEを介して実行されるコマンド計画をキャッシュすることはありません。
代わりに、コマンドは文が実行されるとき常に計画されます。
したがって、異なるテーブルと列に対する操作を実行できるように、コマンド文字列を関数内部で動的に作成することができます。
    


INTO句は、行を返すSQLコマンドの結果を代入するべき場所を指定します。
行変数または変数リストが用いられる時、それはコマンドの結果の構造と正確に一致しなければなりません。レコード変数が使用される時、自動的に結果の構造と一致するように自身を構築させます。
複数の行が返された時、最初の行だけがINTO変数に代入されます。
1行も返されない時、NULLがINTO変数に代入されます。
INTO句が指定されない時、コマンドの結果は捨てられます。
    


STRICTオプションが指定された時、コマンドの結果が正確に1行の場合を除き、エラーとなります。
    


コマンド文字列はパラメータ値を使用可能で、それらは$1、$2等としてコマンドの中で参照されます。
これらの記号はUSINGで与えられる値を参照します。
この方式はデータの値をテキストとしてコマンド文字列の中に挿入する際、よく好まれます。
それは値をテキストに変換、そしてその逆を行う場合の実行時オーバーヘッドを防止するとともに、引用符付けするとか、エスケープをする必要がないため、SQLインジェクション攻撃に対してより襲われにくくなります。
以下に例を示します。


EXECUTE 'SELECT count(*) FROM mytable WHERE inserted_by = $1 AND inserted <= $2'
   INTO c
   USING checked_user, checked_date;


    


パラメータ記号はデータ値のみ使用可能です。
もし動的に決定されるテーブルや列名を使用したい場合、テキストでコマンド文字列にそれらを挿入する必要があります。
例えば、先行する問い合わせが、動的に選択されたテーブルに対して処理される必要がある時は、次のようにします。


EXECUTE 'SELECT count(*) FROM '
    || quote_ident(tabname)
    || ' WHERE inserted_by = $1 AND inserted <= $2'
   INTO c
   USING checked_user, checked_date;



よりきれいな方法は、format()の%I指定を使い自動引用符付けされたテーブル名または列名を挿入することです。


EXECUTE format('SELECT count(*) FROM %I '
   'WHERE inserted_by = $1 AND inserted <= $2', tabname)
   INTO c
   USING checked_user, checked_date;



（この例は、改行により分割された文字列リテラルが暗黙に連結されるというSQL規則に依存しています。）
    


他にもパラメータ記号は最適化可能なSQLコマンド（SELECT、INSERT、UPDATE、DELETE、MERGE、およびこのうちの1つを含む特定のコマンド）でしか動作しない、という制限があります。
他の種類の文（一般的にユーティリティ文と呼ばれます）では、単なるデータ値であったとしてもテキストの値として埋め込まなければなりません。
    


最初の例のように、単純な定数コマンドとUSINGパラメータを使ったEXECUTEは、コマンドを直接PL/pgSQLで書いて、PL/pgSQL変数を自動的に置換したものと機能的に同じです。
重要な差異として、EXECUTEが現在のパラメータ値に特化した計画を生成し、コマンドを実行する度に計画を再作成することです。
一方、PL/pgSQLはその他に汎用的な計画を作成し、再使用に備えキャッシュします。
最適な計画がパラメータ値に大きく依存する場合、汎用的な計画が選択されないことを確保するために、EXECUTEの使用は助けになります。
    


SELECT INTOはEXECUTEでは現在サポートされません。
代わりに、普通のSELECTコマンドを実行し、EXECUTEの一部としてINTOを記述してください。
    
注記


PL/pgSQL EXECUTE文はPostgreSQL™サーバでサポートされているEXECUTE SQL文とは関連がありません。
サーバのEXECUTE文はPL/pgSQL関数内で使用することはできません（使用する必要もありません）。
    

例41.1 動的問い合わせの中の値の引用符付け


動的コマンドを使用する時、しばしば単一引用符をエスケープしなければなりません。
関数本体における固定のテキストを引用符付けする推奨方法は、ドル引用符を使用する方法です。
（ドル引用符を用いない旧式のコードを保有している場合は、「引用符の扱い」の概要を参照することが、理解しやすいコードへの変換作業の手助けになります。）
    


動的な値は引用符を含んでいる可能性があるので注意深い取り扱いが必要です。
以下にformat()を使う例を示します（ここでは関数にドル引用符を用いる方法を使用すると仮定しているので、引用符を二重化する必要はありません）。


EXECUTE format('UPDATE tbl SET %I = $1 '
   'WHERE key = $2', colname) USING newvalue, keyvalue;



クォート関数を直接呼び出すことも可能です。


EXECUTE 'UPDATE tbl SET '
        || quote_ident(colname)
        || ' = '
        || quote_literal(newvalue)
        || ' WHERE key = '
        || quote_literal(keyvalue);


    


この例は、quote_identとquote_literal関数（「文字列関数と演算子」を参照）の使用方法を示しています。
安全のため、列またはテーブル識別子を含む式は動的問い合わせに挿入する前にquote_identを介して渡されなくてはなりません。
組み立てられるコマンドの中のリテラル文字列となるはずの値を含む式は、quote_literalを介して渡されなければなりません。
これらの関数は、すべての特殊文字を適切にエスケープして埋め込んだ、二重引用符または単一引用符で囲まれた入力テキストを返すために、適切な手順を踏みます。
    


quote_literalはSTRICTラベル付けされているため、NULL引数で呼び出された場合、常にNULLを返します。
上記の例で、newvalueまたはkeyvalueがNULLの場合、動的問い合わせ文字列全体がNULLとなり、EXECUTEからのエラーを導きます。
quote_nullable関数を使用することで、この問題を回避することができます。
その動作は、NULL引数付きで呼び出された場合に文字列NULLを返すことを除いてquote_literalと同一です。
以下に例を示します。


EXECUTE 'UPDATE tbl SET '
        || quote_ident(colname)
        || ' = '
        || quote_nullable(newvalue)
        || ' WHERE key = '
        || quote_nullable(keyvalue);



NULLの可能性のある値を処理するのであれば、通常quote_literalの代わりにquote_nullableを使用しなければなりません。
    


いつものように、問い合わせの中のNULL値は意図しない結果を確実にもたらさないよう配慮をしなければなりません。
例えば次のようなWHERE句の結果はどうなるのでしょう。


'WHERE key = ' || quote_nullable(keyvalue)



これはkeyvalueがNULLである限り成功しません。
その理由は、等価演算子=をNULLオペランドで使用するとその結果は常にNULLとなるからです。
NULLを通常のキーの値と同じように動作させたい場合、上記を、以下のように書き換えなければなりません。


'WHERE key IS NOT DISTINCT FROM ' || quote_nullable(keyvalue)



（現時点では、IS NOT DISTINCT FROMは=よりもより効率性が少なく扱われますので、必要に迫られた場合以外は行わないようにしてください。
NULLとIS DISTINCTについての更なる情報は「比較関数および演算子」を参照してください。）
    


ドル引用符は固定のテキストを引用符付けする場合のみ有用であるということに注意してください。
この例を次のように記述するのは非常に悪い考えです。


EXECUTE 'UPDATE tbl SET '
        || quote_ident(colname)
        || ' = $$'
        || newvalue
        || '$$ WHERE key = '
        || quote_literal(keyvalue);



なぜなら、newvalueの内容がたまたま$$を含む時は、途中で次の処理へ移ってしまうからです。
同様の不測事態は、ドル引用符の他の区切り文字を選んだ時も起こります。
したがって、テキストの内容を把握していない時は、安全にテキストを引用符付けするために、quote_literal、quote_nullable、またはquote_ident関数を適切に使用しなければなりません。
    


動的なSQL文もformat関数（「format」を参照）を使って安全に作ることができます。例を示します。


EXECUTE format('UPDATE tbl SET %I = %L '
   'WHERE key = %L', colname, newvalue, keyvalue);



%Iはquote_identと同等で、%Lはquote_nullableと同等です。
format関数はUSING句と共に使用できます。


EXECUTE format('UPDATE tbl SET %I = $1 WHERE key = $2', colname)
   USING newvalue, keyvalue;



変数が、無条件にテキストに変換されて%Lで引用符付けされることなく、固有のデータ形式で処理されるため、この形式はより優れています。
また、より効率的です。
    




動的問い合わせとEXECUTEの長大な例は例41.10「他の関数を生成するPL/SQLをPL/pgSQLに移植」にあります。
それは新しい関数を定義するためにCREATE FUNCTIONコマンドを組み立て実行するものです。
    

結果ステータスの取得





コマンドの効果を判断するにはいくつか方法があります。
最初の方法は以下のような形式のGET DIAGNOSTICSを使用する方法です。



GET [ CURRENT ] DIAGNOSTICS variable { = | := } item [ , ... ];




このコマンドによってシステムステータスインジケータを取り出すことができます。
CURRENTは無意味な単語です（しかし「エラーに関する情報の取得」のGET STACKED DIAGNOSTICSも参照してください）。
各itemは、指定されたvariable（これは受け取るために正しいデータ型でなければなりません）に代入されるステータス値を識別するキーワードです。
現在使用可能なステータス項目は、表41.1「使用できるステータス項目」で示されています。
代入記号（:=）が標準SQLにおける等号（=）の代わりに使用できます。
以下に例を示します。


GET DIAGNOSTICS integer_var = ROW_COUNT;


    
表41.1 使用できるステータス項目
	名前	型	説明
	ROW_COUNT	bigint	最後のSQLコマンドにより処理された行数
	PG_CONTEXT	text	現在の呼び出しスタックを記述したテキストの行
          （「実行位置情報の取得」を参照）
	PG_ROUTINE_OID	oid	現在の関数のOID





コマンドの効果を判断する2番目の方法は、FOUNDというboolean型の特殊な変数を検査することです。
PL/pgSQLの各関数呼び出しで使用される際、FOUNDは最初は偽に設定されています。
以下のように、それぞれの文の種類によって設定が変更されます。

         
	

SELECT INTO文は、行が代入された場合は真、返されなかった場合は偽をFOUNDに設定します。
           

	

PERFORM文は、1つ以上の行が生成（破棄）された場合は真、まったく生成されなかった場合は偽をFOUNDに設定します。
           

	

UPDATE、INSERT、DELETE、およびMERGE文は、少なくとも1行が影響を受けた場合は真、まったく影響を受けなかった場合は偽をFOUNDに設定します。
           

	

FETCH文は、行が返された場合は真、まったく返されなかった場合は偽をFOUNDに設定します。
           

	

MOVE文は、カーソルの移動が成功した場合は真、失敗した場合は偽をFOUNDに設定します。
           

	

FOR文またはFOREACH文は、1回以上繰り返しが行われた場合は真、行われなかった場合は偽をFOUNDに設定します。
FOUNDはループが終了した際、このように設定されます。
ループ実行中はループ文によるFOUNDの変更はありません。
ただし、ループ本体内の他種類の文を実行することによって、変更されるかもしれません。
           

	

RETURN QUERYとRETURN QUERY EXECUTE文は、問い合わせが行を１つでも返せば真、行が返されなければ偽をFOUNDに設定します。
           






他のPL/pgSQL文はFOUNDの状態を変更しません。
特に、EXECUTEはGET DIAGNOSTICSの出力を変更しますが、FOUNDを変更しないことに注意してください。
    


FOUNDはそれぞれのPL/pgSQL関数内部のローカル変数です。
FOUNDに対して行われた全ての変更は、現在の関数にのみ影響します。
    

まったく何もしない





何もしないプレースホルダ文が有用になることがあります。
例えば、IF/THEN/ELSE文の一部が空文であることを明示したい時です。
このような目的にはNULL文を使用します。



NULL;


    


例えば、次の2つのコードは同等です。


BEGIN
    y := x / 0;
EXCEPTION
    WHEN division_by_zero THEN

        NULL;  -- 誤りを無視する
END;





BEGIN
    y := x / 0;
EXCEPTION

    WHEN division_by_zero THEN  -- 誤りを無視する
END;



どちらが望ましいと思うかは、好みの問題です。
    
注記


OracleのPL/SQLでは無記述の文は許されませんので、こうした状況ではNULL文が必須です。
しかしPL/pgSQLでは無記述の文が許可されています。
     



制御構造





制御構造はおそらくPL/pgSQLの最も有用（かつ重要）な部分です。
PL/pgSQLの制御構造を使用して、PostgreSQL™のデータを非常に柔軟、強力に操作することができます。
   
関数からの復帰





関数からデータを返すために使用できるコマンドが2つあります。
RETURNおよびRETURN NEXTです。
    
RETURN




RETURN expression;



式を持つRETURNは関数を終了し、expressionの値を呼び出し元に返します。
この形式は集合を返さないPL/pgSQL関数で使用されます。
     


スカラ型を返す関数において、代入のところで説明したように、式の結果は自動的に関数の戻り値の型にキャストされます。
しかし、複合（行）値を返すためには、要求された列集合を正確に導出する式を記述しなければなりません。
これにより、明示的なキャストの使用が必要となることがあります。
     


出力パラメータを持った関数を宣言した時は、式の無いRETURNを記述してください。
その時点における出力パラメータの値が返されます。
     


voidを返すように関数を宣言した場合でも、関数を直ちに抜け出すためにRETURNを使用できますが、RETURNの後に式を記述しないでください。
     


関数の戻り値は未定義とさせたままにすることはできません。
制御が、RETURN文が見つからない状態で関数の最上位のブロックの終わりまで達した時、実行時エラーが発生します。
しかし、この制限は出力パラメータを持った関数及びvoidを返す関数には当てはまりません。
このような場合は最上位のブロックが終わった時、RETURN文が自動的に実行されます。
     


例を示します。




-- スカラ型を返す関数
RETURN 1 + 2;
RETURN scalar_var;


-- 複合型を返す関数
RETURN composite_type_var;

RETURN (1, 2, 'three'::text);  -- 正しい型の列にキャストしなければなりません


     

RETURN NEXTおよびRETURN QUERY




RETURN NEXT expression;
RETURN QUERY query;
RETURN QUERY EXECUTE command-string [ USING expression [, ... ] ];



PL/pgSQL関数がSETOF sometypeを返すように宣言した場合、後続の処理が多少違います。
この場合、戻り値の個々の項目は、RETURN NEXTコマンドまたはRETURN QUERYコマンドで指定されます。
そして、引数のない最後のRETURNコマンドにより、関数が実行を終了したことが示されます。
RETURN NEXTは、スカラ型および複合型の両方で使用することができます。
複合型の場合、結果の「テーブル」全体が返されます。
RETURN QUERYは、問い合わせを実行した結果を関数の結果集合に追加します。
RETURN NEXTとRETURN QUERYは、単一の集合を返す関数の中で自由に混合できます。
この場合、連結されたものが結果となります。
     


実際には、RETURN NEXTおよびRETURN QUERYは関数から戻りません。
単に関数の結果集合に行を追加しているだけです。
そして、その実行はPL/pgSQL関数内の次の文に継続します。
RETURN NEXTまたはRETURN QUERYコマンドが連続して実行されると、結果集合が作成されます。
最後の、引数を持ってはならないRETURNにより、関数の終了を制御します
（または制御を関数の最後に移すことができます）。
     


RETURN QUERYにはRETURN QUERY EXECUTEという亜種があり、それは問い合わせが動的に実行されることを指定します。
パラメータ式を、EXECUTEコマンド内と全く同じように、USINGによって演算された問い合わせ文字列に挿入することができます。
     


出力パラメータを持つ関数を宣言した時は、式の無いRETURN NEXTだけを記述してください。
実行の度に、その時点における出力パラメータの値が、関数からの戻り値のために結果の行として保存されます。
出力パラメータを持つ集合を返す関数を作成するためには、出力パラメータが複数の時はSETOF recordを返すように関数を宣言し、単一のsometype型の出力パラメータの時はSETOF sometypeを返すように関数を宣言しなければならないことに注意してください。
     


RETURN NEXTを使用する関数の例を以下に示します。



CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT);
INSERT INTO foo VALUES (1, 2, 'three');
INSERT INTO foo VALUES (4, 5, 'six');

CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS
$BODY$
DECLARE
    r foo%rowtype;
BEGIN
    FOR r IN
        SELECT * FROM foo WHERE fooid > 0
    LOOP

        -- ここで処理を実行できます
        RETURN NEXT r; -- SELECTの現在の行を返します
    END LOOP;
    RETURN;
END;
$BODY$
LANGUAGE plpgsql;

SELECT * FROM get_all_foo();


     


RETURN QUERYを使用する関数の例を以下に示します。



CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS
$BODY$
BEGIN
    RETURN QUERY SELECT flightid
                   FROM flight
                  WHERE flightdate >= $1
                    AND flightdate < ($1 + 1);


-- 実行が終わっていないので、行が返されたか検査して、行がなければ例外を発生させます。
    IF NOT FOUND THEN
        RAISE EXCEPTION 'No flight at %.', $1;
    END IF;

    RETURN;
 END;
$BODY$
LANGUAGE plpgsql;


-- 利用できるフライトを返し、フライトがない場合は例外を発生させます。
SELECT * FROM get_available_flightid(CURRENT_DATE);


     
注記


上記のように、RETURN NEXTおよびRETURN QUERYの現在の実装では、関数から返される前に結果集合全体を保管します。
これにより、PL/pgSQL関数が非常に大量の結果集合を返した場合、性能が低下する可能性があります。
メモリの枯渇を避けるため、データはディスクに書き込まれます。
しかし、関数自体は結果集合全体が生成されるまでは戻りません。
将来のPL/pgSQLのバージョンでは、この制限を受けずに集合を返す関数をユーザが定義できるようになるかもしれません。
現在、データがディスクに書き込まれ始まる時点はwork_mem設定変数によって制御されています。
大量の結果集合を保管するのに十分なメモリがある場合、管理者はこのパラメータの値を大きくすることを考慮すべきです。
      



プロシージャからの戻り





プロシージャは戻り値を持ちません。
したがって、プロシージャはRETURN文なしで終了できます。
早期にコードを抜けるためにRETURN文を使いたいときには、式を伴わないRETURNだけを書いてください。
    


プロシージャが出力パラメータを持っている場合、出力パラメータ変数の最終の値が呼び出し元に返されます。
    

プロシージャを呼び出す





PL/pgSQLの関数、プロシージャ、DOブロックは、CALLを使ってプロシージャを呼び出しできます。
CALLを普通のSQLで実行する場合とは、出力パラメータの扱いが異なります。
プロシージャの各OUTもしくはINOUTパラメータはCALL文の変数と対応しなければならず、プロシージャが返すものはすべて、CALL文が返った後にこの変数に書き戻されます。
以下に例を示します。


CREATE PROCEDURE triple(INOUT x int)
LANGUAGE plpgsql
AS $$
BEGIN
    x := x * 3;
END;
$$;

DO $$
DECLARE myvar int := 5;
BEGIN
  CALL triple(myvar);
  RAISE NOTICE 'myvar = %', myvar;  -- prints 15
END;
$$;



出力パラメータに対応する変数は、単純な変数または複合型の変数のフィールドです。
今のところ配列の要素は使えません。
    

条件分岐





IFとCASE文はある条件に基づいて代わりのコマンドを実行させます。
PL/pgSQLには、以下のような３つのIFの形式があります。
    
	IF ... THEN ... END IF

	IF ... THEN ... ELSE ... END IF

	IF ... THEN ... ELSIF ... THEN ... ELSE ... END IF






また、以下のような２つのCASEの形式があります。
    
	CASE ... WHEN ... THEN ... ELSE ... END CASE

	CASE WHEN ... THEN ... ELSE ... END CASE




    
IF-THEN




IF boolean-expression THEN
    statements
END IF;



IF-THEN文は最も単純なIFの形式です。
THENとEND IFの間の文が条件が真の場合に実行されます。
さもなければそれらは飛ばされます。
       


例：


IF v_user_id <> 0 THEN
    UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;


       

IF-THEN-ELSE




IF boolean-expression THEN
    statements
ELSE
    statements
END IF;



IF-THEN-ELSE文はIF-THENに加え、条件評価が偽の場合に実行すべき代替となる文の集合を指定することができます。
（これには条件がNULLと評価した場合も含まれることに注意してください。）
       


例：


IF parentid IS NULL OR parentid = ''
THEN
    RETURN fullname;
ELSE
    RETURN hp_true_filename(parentid) || '/' || fullname;
END IF;





IF v_count > 0 THEN
    INSERT INTO users_count (count) VALUES (v_count);
    RETURN 't';
ELSE
    RETURN 'f';
END IF;


     

IF-THEN-ELSIF




IF boolean-expression THEN
    statements
[ ELSIF boolean-expression THEN
    statements
[ ELSIF boolean-expression THEN
    statements
    ...
]
]
[ ELSE
    statements ]
END IF;



選択肢が２つだけではなくより多くになる場合があります。
IF-THEN-ELSIFは、順番に複数の代替手段を検査する、より便利な方法を提供します。
IF条件は最初の真である結果が見つかるまで連続して検査されます。
そして関連した文が実行され、その後END IF以降の次の文に制御が渡されます。
（以降にあるIF条件の検査はすべて実行されません。）
全てのIF条件が真でない場合、ELSEブロックが（もし存在すれば）実行されます。
       


以下に例を示します。



IF number = 0 THEN
    result := 'zero';
ELSIF number > 0 THEN
    result := 'positive';
ELSIF number < 0 THEN
    result := 'negative';
ELSE

    -- ふうむ、残る唯一の可能性はその値がNULLであることだ
    result := 'NULL';
END IF;


       


ELSIFキーワードはELSEIFのように書くことができます。
       


同じ作業を遂行する別の方法は、以下の例のようにIF-THEN-ELSE文を入れ子にすることです。



IF demo_row.sex = 'm' THEN
    pretty_sex := 'man';
ELSE
    IF demo_row.sex = 'f' THEN
        pretty_sex := 'woman';
    END IF;
END IF;


       


しかし、この方法はそれぞれのIFに対応するEND IFの記述が必要です。
従って、多くの選択肢がある場合ELSIFを使用するよりも厄介です。
       

単純なCASE




CASE search-expression
    WHEN expression [, expression [ ... ]] THEN
      statements
  [ WHEN expression [, expression [ ... ]] THEN
      statements
    ... ]
  [ ELSE
      statements ]
END CASE;



CASEの単純な形式はオペランドの等価性にもとづく条件的実行を提供します。
search-expressionは（一度だけ）評価され、その後WHEN句内のそれぞれのexpressionと比較されます。
一致するものが見つかると、関連したstatementsが実行され、END CASEの次の文に制御が渡されます。
（以降のWHEN式は評価されません。）
一致するものが見つからない場合、ELSE statementsが実行されますが、ELSEが無いときはCASE_NOT_FOUND例外を引き起こします。
      


以下は簡単な例です。



CASE x
    WHEN 1, 2 THEN
        msg := 'one or two';
    ELSE
        msg := 'other value than one or two';
END CASE;


      

検索付きCASE




CASE
    WHEN boolean-expression THEN
      statements
  [ WHEN boolean-expression THEN
      statements
    ... ]
  [ ELSE
      statements ]
END CASE;



CASEの検索された形式は論理値式の真の結果に基づく条件付き実行を提供します。
それぞれのWHEN句のboolean-expressionはtrueとなる１つが見つかるまで順番に評価されます。
その後、関連するstatementsが実行され、その結果END CASEの次の文に制御が渡されます。
（以降のWHEN式は評価されません。）
真となる結果が見つからない場合、ELSE statementsが実行されますが、ELSEが存在しないときはCASE_NOT_FOUND例外を引き起こします。
      


以下は簡単な例です。



CASE
    WHEN x BETWEEN 0 AND 10 THEN
        msg := 'value is between zero and ten';
    WHEN x BETWEEN 11 AND 20 THEN
        msg := 'value is between eleven and twenty';
END CASE;


      


この形式のCASEは、判定基準が省略されたELSE句に達した場合に何もしないのではなくエラーなる点を除き、IF-THEN-ELSIFと全く同一です。
      


単純なループ





LOOP、EXIT、CONTINUE、WHILE、FOR、FOREACH文を使用して、PL/pgSQL関数で、一連のコマンドを繰り返すことができます。
    
LOOP




[ <<label>> ]
LOOP
    statements
END LOOP [ label ];



LOOPは、EXIT文またはRETURN文によって終了されるまで無限に繰り返される、条件なしのループを定義します。
省略可能なlabelは、ネステッドループにおいてEXITおよびCONTINUE文がどのレベルの入れ子を参照するかを指定するために使用されます。
     

EXIT




EXIT [ label ] [ WHEN boolean-expression ];



labelが指定されない場合、最も内側のループを終わらせ、END LOOPの次の文がその後に実行されます。
labelが指定された場合、それは現在またはその上位のネステッドループやブロックのラベルである必要があります。
その後、指名されたループまたはブロックを終わらせ、そのループまたはブロックの対応するENDの次の文に制御を移します。
       


WHENが指定された場合、boolean-expressionが真の場合のみループの終了が起こります。
さもなければ、EXITの後の行に制御が移ります。
       


EXITは、すべての種類のループと共に使用できます。
条件なしのループでの使用に限定されません。
       


BEGINブロックと共に使用した時、EXITによりブロックの次の文に制御が移ります。
この目的のためにラベルが使用されなければならないことに注意してください。
ラベル無しのEXITはBEGINブロックに対応するとは決して考えられません。
（これは、ラベル無しのEXITがBEGINブロックに対応することを許容するPostgreSQL™の8.4より前のリリースからの変更です。）
       


例：


LOOP

    -- 何らかの演算
    IF count > 0 THEN

        EXIT;  -- ループを抜け出す
    END IF;
END LOOP;

LOOP

    -- 何らかの演算
    EXIT WHEN count > 0;  -- same result as previous example
END LOOP;

<<ablock>>
BEGIN

    -- 何らかの演算
    IF stocks > 100000 THEN

        EXIT ablock;  -- これによりBEGINブロックを抜け出す
    END IF;

    -- stocks > 100000 であればここでの演算は省略
END;


       

CONTINUE




CONTINUE [ label ] [ WHEN boolean-expression ];



labelが無い場合、すぐ外側のループの次の繰り返しが開始されます。
すなわち、ループ本体の残りの文は飛ばされて、他のループの繰り返しが必要かどうかを決めるため、制御がループ制御式(もし存在すれば)に戻ります。
labelが存在する場合、実行を継続するループのラベルを指定します。
       


WHENが指定された場合、boolean-expressionが真の場合のみループにおける次の繰り返しが始まります。
さもなければ、CONTINUEの後の行に制御が移ります。
       


CONTINUEは全ての種類のループで使用可能です。
条件なしのループに限定されません。
       


例


LOOP

    -- 何らかの演算
    EXIT WHEN count > 100;
    CONTINUE WHEN count < 50;

    -- 50から100を数える、何らかの演算
END LOOP;


       

WHILE




[ <<label>> ]
WHILE boolean-expression LOOP
    statements
END LOOP [ label ];



WHILE文はboolean-expressionの評価が真である間、一連の文を繰り返します。
条件式は、ループ本体に入る前にのみ検査されます。
       


以下に例を示します。


WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP

    -- ここで演算をいくつか行います。
END LOOP;

WHILE NOT done LOOP

    -- ここで演算をいくつか行います。
END LOOP;


       

整数FORループ




[ <<label>> ]
FOR name IN [ REVERSE ] expression .. expression [ BY expression ] LOOP
    statements
END LOOP [ label ];



この形式のFORは整数値の範囲内で繰り返すループを生成します。
name変数はinteger型として自動的に定義され、ループ内部のみで存在します
（ループ外部で定義しても、ループ内部では全て無視されます）。
範囲の下限、上限として与えられる2つの式はループに入った時に一度だけ評価されます。
BY句を指定しない時の繰り返し刻みは1ですが、BY句を用いて指定でき、ループに入った時に一度だけ評価されます。
REVERSEが指定された場合、繰り返し刻みの値は加算されるのではなく、繰り返しごとに減算されます。
       


整数FORループの例を以下に示します。


FOR i IN 1..10 LOOP

    -- i はループ内で 1、2、3、4、5、6、7、8、9、10 の値を取ります。
END LOOP;

FOR i IN REVERSE 10..1 LOOP

    -- i はループ内で 10、9、8、7、6、5、4、3、2、1 の値を取ります。
END LOOP;

FOR i IN REVERSE 10..1 BY 2 LOOP

    -- i はループ内で 10、8、6、4、2 の値を取ります。
END LOOP;


       


下限が上限よりも大きい（REVERSEの場合はより小さい）場合、ループ本体はまったく実行されません。
エラーは発生しません。
       


labelをFORループに付加することにより、labelを用いて修飾した名前の整数ループ変数を参照できます。
       


問い合わせ結果による繰り返し





別の種類のFORループを使用して、問い合わせの結果を繰り返し、そのデータを扱うことができます。
以下に構文を示します。


[ <<label>> ]
FOR target IN query LOOP
    statements
END LOOP [ label ];



targetは、レコード変数、行変数またはカンマで区切ったスカラ変数のリストです。
targetには順次、queryの結果の全ての行が代入され、各行に対してループ本体が実行されます。
以下に例を示します。


CREATE FUNCTION refresh_mviews() RETURNS integer AS $$
DECLARE
    mviews RECORD;
BEGIN
    RAISE NOTICE 'Refreshing all materialized views...';

    FOR mviews IN
       SELECT n.nspname AS mv_schema,
              c.relname AS mv_name,
              pg_catalog.pg_get_userbyid(c.relowner) AS owner
         FROM pg_catalog.pg_class c
    LEFT JOIN pg_catalog.pg_namespace n ON (n.oid = c.relnamespace)
        WHERE c.relkind = 'm'
     ORDER BY 1
    LOOP


        -- ここで"mviews"はマテリアライズドビューの情報の1つのレコードを持ちます

        RAISE NOTICE 'Refreshing materialized view %.% (owner: %)...',
                     quote_ident(mviews.mv_schema),
                     quote_ident(mviews.mv_name),
                     quote_ident(mviews.owner);
        EXECUTE format('REFRESH MATERIALIZED VIEW %I.%I', mviews.mv_schema, mviews.mv_name);
    END LOOP;

    RAISE NOTICE 'Done refreshing materialized views.';
    RETURN 1;
END;
$$ LANGUAGE plpgsql;




このループがEXIT文で終了した場合、最後に割り当てられた行の値はループを抜けた後でもアクセスすることができます。
    


この種類のFOR文のqueryとしては、呼び出し元に行を返すSQLコマンドをすべて使用できます。
通常はSELECTですが、RETURNING句を持つINSERT、UPDATE、DELETEまたはMERGEも使用できます。
EXPLAINなどのユーティリティコマンドも作動します。
    


PL/pgSQL変数は問い合わせパラメータで置き換えられます。
問い合わせ計画は、「変数置換」および「計画のキャッシュ」で述べたように、再利用のためにキャッシュされます。
    


FOR-IN-EXECUTE文は行を繰り返すもう1つの方法です。


[ <<label>> ]
FOR target IN EXECUTE text_expression [ USING expression [, ... ] ] LOOP
    statements
END LOOP [ label ];



この方法は、問い合わせのソースが文字列式で指定される点を除き、前の形式と似ています。
この式はFORループの各項目で評価され、再計画が行われます。
これにより、プログラマは、通常のEXECUTE文と同じように事前に計画された問い合わせによる高速性と、動的な問い合わせの持つ柔軟性を選択することができます。
EXECUTEの場合と同様、パラメータ値はUSINGにより動的コマンドに挿入できます。
    


結果を通して繰り返さなければならない問い合わせを指定するもう１つの方法として、カーソルの宣言があります。
これは「カーソル結果に対するループ」で説明します。
    

配列を巡回





FOREACHループはFORループにとてもよく似ています。
しかし、SQL 問い合わせが抽出した行を繰り返す代わりに、配列の要素を繰り返します。
（一般的にFOREACHは、複合値で表現される構成要素の巡回を意味しますが、配列でない複合値も巡回する亜種が将来は追加されるかもしれません。）
配列を巡回するFOREACH文を示します。



[ <<label>> ]
FOREACH target [ SLICE number ] IN ARRAY expression LOOP
    statements
END LOOP [ label ];


    


SLICEがない、またはSLICE 0が指定された場合、ループはexpressionによって評価されて作成された配列の各要素を繰り返します。
target変数が各要素の値に順次割り当てられ、各要素に対してループ本体が実行されます。
整数配列の要素を巡回する例を示します。



CREATE FUNCTION sum(int[]) RETURNS int8 AS $$
DECLARE
  s int8 := 0;
  x int;
BEGIN
  FOREACH x IN ARRAY $1
  LOOP
    s := s + x;
  END LOOP;
  RETURN s;
END;
$$ LANGUAGE plpgsql;




配列の次元数に関係なく、要素は格納した順番で処理されます。
通常targetは単一の変数ですが、複合値（レコード）の配列を巡回するときは、変数のリストも可能です。
その場合、配列の各要素に対して、変数は複合値（レコード）の列から連続的に割り当てられます。
    


正のSLICE値を持つ場合、FOREACHは単一の要素ではなく多次元配列の低次元部分配列を通して繰り返します。
SLICE値は、配列の次元数より小さい整数定数でなければなりません。
target変数は配列でなければなりません。
この変数は、配列値から連続した部分配列を受けとります。
ここで部分配列はSLICEで指定した次数となります。
以下に1次元の部分配列を通した繰り返しの例を示します。



CREATE FUNCTION scan_rows(int[]) RETURNS void AS $$
DECLARE
  x int[];
BEGIN
  FOREACH x SLICE 1 IN ARRAY $1
  LOOP
    RAISE NOTICE 'row = %', x;
  END LOOP;
END;
$$ LANGUAGE plpgsql;

SELECT scan_rows(ARRAY[[1,2,3],[4,5,6],[7,8,9],[10,11,12]]);

NOTICE:  row = {1,2,3}
NOTICE:  row = {4,5,6}
NOTICE:  row = {7,8,9}
NOTICE:  row = {10,11,12}


    

エラーの捕捉





デフォルトでは、PL/pgSQL関数の内部でエラーが発生すると関数とそれを囲むトランザクションをアボートします。
BEGINブロックおよびEXCEPTION句を使用すれば、エラーを捕捉してその状態から回復できます。
その構文は通常のBEGINブロックの構文を拡張したものです。



[ <<label>> ]
[ DECLARE
    declarations ]
BEGIN
    statements
EXCEPTION
    WHEN condition [ OR condition ... ] THEN
        handler_statements
    [ WHEN condition [ OR condition ... ] THEN
          handler_statements
      ... ]
END;


    


エラーが発生しない時、この形式のブロックは単に全てのstatementsを実行し、ENDの次の文に制御が移ります。
しかし、statementsの内部でエラーが発生すると、それ以後のstatementsの処理は中断され、EXCEPTIONリストに制御が移ります。
そしてリストの中から、発生したエラーと合致する最初のconditionを探します。
合致するものがあれば、対応するhandler_statementsを実行し、ENDの次の文に制御が移ります。
合致するものがなければ、EXCEPTION句が存在しないのと同じで、エラーは外側に伝播します。
EXCEPTIONを含んだ外側のブロックはエラーを捕捉できますが、失敗すると関数の処理は中断されます。
    


全てのconditionの名前は付録A PostgreSQL™エラーコードに示したもののいずれかを取ることができます。
分類名はそこに分類される全てのエラーに合致します。
OTHERSという特別の状態名はQUERY_CANCELEDとASSERT_FAILUREを除く全てのエラーに合致します。
（QUERY_CANCELEDとASSERT_FAILUREを名前で捕捉することは可能ですが、賢明ではありません。）
状態名は大文字小文字を区別しません。
同時に、エラー状態はSQLSTATEコードで指定可能です。
例えば以下は等価です。


WHEN division_by_zero THEN ...
WHEN SQLSTATE '22012' THEN ...


    


エラーが該当するhandler_statements内部で新たに発生した時、EXCEPTION句はそのエラーを捕捉できずエラーは外側に伝播します。
なお、上位のEXCEPTION句はそのエラーを捕捉できます。
    


EXCEPTION句がエラーを捕捉した時、PL/pgSQL関数のローカル変数はエラーが起こった後の状態を保ちます。
しかし、ブロック内部における永続的なデータベースの状態は、ロールバックされます。
そのような例を以下に示します。



INSERT INTO mytab(firstname, lastname) VALUES('Tom', 'Jones');
BEGIN
    UPDATE mytab SET firstname = 'Joe' WHERE lastname = 'Jones';
    x := x + 1;
    y := x / 0;
EXCEPTION
    WHEN division_by_zero THEN
        RAISE NOTICE 'caught division_by_zero';
        RETURN x;
END;




制御が変数yの代入に移ると、division_by_zeroエラーとなり、EXCEPTION句がそのエラーを捕捉します。
RETURN文による関数の戻り値は、1を加算した後のxの値となりますが、UPDATEコマンドによる結果はロールバックされます。
しかし、前のブロックのINSERTコマンドはロールバックされません。
したがって、データベースの内容の最終結果はTom Jonesであり、Joe Jonesではありません。
    
ヒント


EXCEPTION句を含んだブロックの実行に要する時間は、含まないブロックに比べてとても長くなります。
したがって、必要のない時にEXCEPTIONを使用してはいけません。
     

例41.2 UPDATE/INSERTの例外



これはUPDATEまたはINSERTの実行における例外処理を使用した適当な例題です。
アプリケーションでは実際にこの方式を使うよりも、ON CONFLICT DO UPDATEを伴ったINSERTを使うことが推奨されます。本例は主としてPL/pgSQLの制御構造の使い方を示すものです。



CREATE TABLE db (a INT PRIMARY KEY, b TEXT);

CREATE FUNCTION merge_db(key INT, data TEXT) RETURNS VOID AS
$$
BEGIN
    LOOP

        -- 最初にキーを更新する
        UPDATE db SET b = data WHERE a = key;
        IF found THEN
            RETURN;
        END IF;

        -- キーが存在しないので、キーの挿入を試行する
        -- 他者がすでに同一のキーを挿入していたならば
        -- 一意性に違反する欠陥となります
        BEGIN
            INSERT INTO db(a,b) VALUES (key, data);
            RETURN;
        EXCEPTION WHEN unique_violation THEN

            -- 何もしないで、更新を再試行します
        END;
    END LOOP;
END;
$$
LANGUAGE plpgsql;

SELECT merge_db(1, 'david');
SELECT merge_db(1, 'dennis');




このコーディングではunique_violationエラーの原因がINSERTによるものであり、テーブルのトリガ関数内部のINSERTによるものでないと仮定します。
また、テーブルに2つ以上の一意インデックスが存在した場合、どちらのインデックスがエラーの原因になろうと操作を再試行するので、誤作動となります。
捕捉したエラーが予測したものであるか検証するために、次節で記述するエラー情報を利用すれば、より安全となります。
    


エラーに関する情報の取得





例外ハンドラはしばしば、起こった特定のエラーを識別する必要があります。
PL/pgSQLで現在の例外に関する情報を取得する方法は2つあります。
特殊な変数とGET STACKED DIAGNOSTICSコマンドです。
    


例外ハンドラの内部では、特殊な変数SQLSTATE変数が起こった例外に対応したエラーコード（表A.1「PostgreSQL™エラーコード」のエラーコード表を参照してください）を保有します。
特殊な変数SQLERRMは例外に関連したエラーメッセージを保有します。
これらの変数は、例外ハンドラの外部では定義されていません。
    


例外ハンドラの内部では、GET STACKED DIAGNOSTICSコマンドを使用して、現在の例外に関する情報を取り出すこともできます。
次のようなやり方となります。



GET STACKED DIAGNOSTICS variable { = | := } item [ , ... ];




各itemは、指定されたvariable（これは受け取るために正しいデータ型でなければなりません）に代入される状態値を識別するキーワードです。
現在使用可能なステータス項目は表41.2「エラーの診断値」に表示されています。
    
表41.2 エラーの診断値
	名前	型	説明
	RETURNED_SQLSTATE	text	例外のSQLSTATEエラーコード
	COLUMN_NAME	text	例外に関する列名
	CONSTRAINT_NAME	text	例外に関する制約名
	PG_DATATYPE_NAME	text	例外に関するデータ型名
	MESSAGE_TEXT	text	例外の主要なメッセージのテキスト
	TABLE_NAME	text	例外に関するテーブル名
	SCHEMA_NAME	text	例外に関するスキーマ名
	PG_EXCEPTION_DETAIL	text	例外の詳細なメッセージのテキスト、存在する場合
	PG_EXCEPTION_HINT	text	例外のヒントとなるメッセージのテキスト、存在する場合
	PG_EXCEPTION_CONTEXT	text	例外時における呼び出しスタックを記述するテキストの行（「実行位置情報の取得」を参照）





例外が項目の値を設定しない場合、空文字列が返されます。
    


以下に例を示します。


DECLARE
  text_var1 text;
  text_var2 text;
  text_var3 text;
BEGIN

  -- 例外を引き起こす処理
  ...
EXCEPTION WHEN OTHERS THEN
  GET STACKED DIAGNOSTICS text_var1 = MESSAGE_TEXT,
                          text_var2 = PG_EXCEPTION_DETAIL,
                          text_var3 = PG_EXCEPTION_HINT;
END;


    


実行位置情報の取得





以前、「結果ステータスの取得」に記載されていたGET DIAGNOSTICSコマンドは、現在の実行状態に関する情報を取得します（対して、前述のGET STACKED DIAGNOSTICSコマンドは一つ前のエラー時点の実行状態を報告します）。
これのPG_CONTEXTステータス項目は現在の実行位置を識別するのに役立ちます。
PG_CONTEXTは呼び出しスタックを記述したテキスト行を含むテキスト文字列を返します。
最初の行は現在の関数と現在実行中のGET DIAGNOSTICSコマンドを参照します。
次行および後の行は、呼び出しスタック上の呼び出し関数を参照します。
例を示します。



CREATE OR REPLACE FUNCTION outer_func() RETURNS integer AS $$
BEGIN
  RETURN inner_func();
END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION inner_func() RETURNS integer AS $$
DECLARE
  stack text;
BEGIN
  GET DIAGNOSTICS stack = PG_CONTEXT;
  RAISE NOTICE E'--- Call Stack ---\n%', stack;
  RETURN 1;
END;
$$ LANGUAGE plpgsql;

SELECT outer_func();

NOTICE:  --- Call Stack ---
PL/pgSQL function inner_func() line 5 at GET DIAGNOSTICS
PL/pgSQL function outer_func() line 3 at RETURN
CONTEXT:  PL/pgSQL function outer_func() line 3 at RETURN
 outer_func
 ------------
           1
(1 row)



   


    GET STACKED DIAGNOSTICS ... PG_EXCEPTION_CONTEXTは同種のスタックトレースを返しますが、現在の位置ではなく、エラーが検出されたところの位置を記述します。
   


カーソル





問い合わせ全体を一度に実行するのではなく、カーソルを設定して、問い合わせをカプセル化し、問い合わせの結果を一度に数行ずつ読み取ることができます。
これを行う理由の1つは、結果内に多数の行がある場合のメモリの枯渇を防ぐことです。
（しかし、PL/pgSQLユーザは通常これを心配する必要はありません。
FORループは自動的にカーソルを内部的に使用してメモリの問題を防ぐからです。）
より興味深い使用方法として、呼び出し元が行を読み取ることをできるように、作成されたカーソルへの参照を返す方法があります。
これにより、関数から大量の行集合を返す際の効率が向上します。
   
カーソル変数の宣言





PL/pgSQLにおけるカーソルへのアクセスは全て、カーソル変数を経由します。
カーソル変数は、常に特殊なrefcursorデータ型です。
カーソル変数を作成する1つの方法は、単にrefcursor型の変数として宣言することです。
他の方法は、カーソル宣言構文を使用することです。
以下にその一般形を示します。


name [ [ NO ] SCROLL ] CURSOR [ ( arguments ) ] FOR query;



（Oracle™との互換性のため、FORはISに置き換えることができます。）
もしSCROLLを指定すれば、カーソルは逆方向に移動できます。
もしNO SCROLLを指定すれば、逆方向の行の取り出しはできません。
どちらも指定しない時、逆方向に取り出しできるかは問い合わせに依存します。
もしargumentsがあれば、name datatypeをカンマで区切ったリストで、与えられた問い合わせ内のパラメータ値として置換される名前を定義します。
その名前に実際に置換される値は、カーソルを開いた時点より後に指定されます。
    


以下に例を示します。


DECLARE
    curs1 refcursor;
    curs2 CURSOR FOR SELECT * FROM tenk1;
    curs3 CURSOR (key integer) FOR SELECT * FROM tenk1 WHERE unique1 = key;



これら3つの変数は全てrefcursorデータ型を持ちますが、最初のものは全ての問い合わせに使用でき、2番目には完全な問い合わせが既にバインドされています（結び付けられています）。
また、最後のものには、パラメータ付きの問い合わせがバインドされています。
（keyはカーソルが開いた時に整数パラメータ値に置き換えられます。）
curs1変数は、特定の問い合わせに結び付けられていませんので、バインドされていないと呼ばれます。
    


カーソルの問い合わせがFOR UPDATE/SHAREを使っている場合、SCROLLオプションは使えません。
また、揮発性の関数を伴う問い合わせにはNO SCROLLを使うことが最善です。
SCROLLの実装は、問い合わせの出力を再読み込みすると一貫した結果が返えることを仮定していて、これは揮発性の関数ではそうではありません。
    

カーソルを開く





カーソルを使用して行を取り出す前に、カーソルは開かれる必要があります。
（これはDECLARE CURSOR SQLコマンドの動作と同じです。）
PL/pgSQLには3種類のOPEN文があり、そのうちの2つはバインドされていないカーソル変数を使用し、残りの1つはバインドされたカーソル変数を使用します。
    
注記


バインドされたカーソル変数は「カーソル結果に対するループ」で説明されているFOR文で、明示的にカーソルを開かなくても使用できます。
FORループはカーソルを開き、ループが完了すると再び閉じます。
     



カーソルを開くと、ポータルと呼ばれるサーバ内部のデータ構造が作成されます。ポータルは、カーソルの問い合わせの実行状態を保持します。
ポータルには名前があり、ポータルの存続期間中はセッション内で一意でなければなりません。
デフォルトでは、PL/pgSQLは作成する各ポータルに一意の名前を割り当てます。
しかし、カーソル変数にNULL文字列以外の値を割り当てると、その文字列がポータル名として使用されます。
この機能は「カーソルを返す」で説明するように使うことができます。
    
OPEN FOR query




OPEN unbound_cursorvar [ [ NO ] SCROLL ] FOR query;



カーソル変数は開かれ、実行するよう指定した問い合わせが付与されます。
既に開いたカーソルを開くことはできず、また、バインドされていないカーソル変数として（つまり、単なるrefcursor変数として）宣言されていなければなりません。
この問い合わせはSELECT文であるか、または（EXPLAINのように）何らかの行を返すものでなければなりません。
この問い合わせは、他のPL/pgSQLのSQL文と同様の方法で扱われます。
PL/pgSQLの変数名は置き換えられ、問い合わせ計画は再利用できるようにキャッシュされます。
PL/pgSQL変数がカーソルを使用する問い合わせに代入された時、変数はOPEN時の値となり、その後の変更はカーソルの動きに影響しません。
SCROLLおよびNO SCROLLオプションの意味はバインドされたカーソルと同様です。
       


以下に例を示します。


OPEN curs1 FOR SELECT * FROM foo WHERE key = mykey;


       

OPEN FOR EXECUTE




OPEN unbound_cursorvar [ [ NO ] SCROLL ] FOR EXECUTE query_string
                                     [ USING expression [, ... ] ];



カーソル変数は開かれ、実行するよう指定した問い合わせが付与されます。
既に開いたカーソルを開くことはできず、また、バインドされていないカーソル変数として（つまり、単なるrefcursor変数として）宣言されていなければなりません。
問い合わせは、EXECUTEコマンドと同じ方法による文字列式として指定されます。
通常と同様に、これにより、次回に実行する際に違った問い合わせを計画できる柔軟性が得られます（「計画のキャッシュ」参照）。
また、変数置換がコマンド文字列上で行われないことも意味します。
EXECUTEと同様にformat()とUSINGを介して動的コマンドにパラメータ値を挿入することができます。
SCROLLおよびNO SCROLLオプションの意味はバインドされたカーソルと同様です。
         


以下に例を示します。


OPEN curs1 FOR EXECUTE format('SELECT * FROM %I WHERE col1 = $1',tabname) USING keyvalue;



この例では、テーブル名は問い合わせにformat()で挿入されています。
col1との比較値はUSING経由で埋め込まれますので、引用符を付ける必要がありません。
       

バインドされたカーソルを開く




OPEN bound_cursorvar [ ( [ argument_name { := | => } ] argument_value [, ...] ) ];



宣言時に問い合わせが結び付いたカーソル変数を開くために使用されるOPENの形式です。
既に開いたカーソルを開くことはできません。
実引数の式のリストはカーソルが引数を取るものと宣言された場合にのみ現れます。
これらの値は問い合わせの中で置き換えられます。
         


バインドされたカーソルの問い合わせ計画は常にキャッシュ可能とみなされます。
この場合、EXECUTEと等価なものはありません。
SCROLLおよびNO SCROLLをOPENにおいて指定できないことに注意してください。
カーソル移動の仕様はすでに決まっているからです。
         


位置的表記または記名的表記を使用して、引数の値を渡すことができます。
位置的表記では、全ての引数が順番に指定されます。
記名的表記では、引数の式と区別するために:=または=>を使用して、各々の引数の名前が指定されます。
「関数呼び出し」に記述した関数呼び出しと同様に、位置的表記と記名的表記を混用できます。
         


例を示します（ここでは上例のカーソル宣言を使用します）。


OPEN curs2;
OPEN curs3(42);
OPEN curs3(key := 42);
OPEN curs3(key => 42);


         


変数の代入はバインドされたカーソルの問い合わせで行われるため、カーソルへ値を渡す方法が2つあります。
OPENコマンドの明確な引数とするものと、問い合わせにおけるPL/pgSQL変数として暗黙的に参照するものです。
しかし、バインドされたカーソルの宣言より前に宣言した変数だけが代入されます。
どちらの場合も、OPENの実行時に変数値が決まります。
例えば、上例のcurs3と同じ結果を取得する方法を、以下に示します。


DECLARE
    key integer;
    curs4 CURSOR FOR SELECT * FROM tenk1 WHERE unique1 = key;
BEGIN
    key := 42;
    OPEN curs4;


         


カーソルの使用





カーソルを開いてから、ここで説明する文を使用してカーソルを扱うことができます。
    


これらの操作は、カーソルを開始するために開いた関数内で行う必要はありません。
関数からrefcursor値を返し、呼び出し元でそのカーソルの操作をさせることもできます。
（内部的にはrefcursor値は、カーソルへの有効な問い合わせを持つポータルの名前を示す単なる文字列です。
この名前は、ポータルを壊すことなく、他のrefcursor型の変数に渡したり、代入したりすることなどができます。）
    


全てのポータルは、暗黙的にトランザクションの終わりで閉ざされます。
したがって、refcursor値はそのトランザクションの終わりまでの間のみ開いたカーソルへの参照として有効です。
    
FETCH




FETCH [ direction { FROM | IN } ] cursor INTO target;



FETCHはSELECT INTOと同様に、カーソルから次の行を（指定された方向に）抽出し、対象に格納します。
対象とは、行変数、レコード変数、または単純な変数をカンマで区切ったリストです。
適切な行がない場合、ターゲットはNULLに設定されます。
SELECT INTOの場合と同様、特殊なFOUND変数を検査することで、行が取得できたかどうかを確認できます。
行が取得されない場合、カーソルは移動方向に応じて最後の行の後または最初の行の前に位置します。
    


direction句は複数行を取り出すことができるコマンドを除き、SQL FETCH(7)で許可されたどのようなコマンドも可能です。
すなわち、以下のものです。
     NEXT,
     PRIOR,
     FIRST,
     LAST,
     ABSOLUTE count,
     RELATIVE count,

     FORWARDまたは
     BACKWARD.

direction句の省略は、NEXTの指定と同じです。
countを使う形式では、countはいかなる整数値の式も可能です（SQL FETCHコマンドとは異なります。あちらは整数定数のみを受け付けます）。
SCROLLオプションを用いてカーソルを宣言または開かないと、directionの値による逆方向への移動の要求は失敗します。
    


cursor名は、開いているカーソルのポータルを参照するrefcursor変数名でなければなりません。
    


例：


FETCH curs1 INTO rowvar;
FETCH curs2 INTO foo, bar, baz;
FETCH LAST FROM curs3 INTO x, y;
FETCH RELATIVE -2 FROM curs4 INTO x;


       

MOVE




MOVE [ direction { FROM | IN } ] cursor;



MOVEコマンドは、データを取り出さないでカーソルの位置を変更します。
MOVEコマンドは、移動先の行を返さないでカーソルの位置だけを変更することを除けば、FETCHコマンドと同様の働きをします。
direction句は、SQL FETCH(7)コマンドで許可されるどのような形式も可能で、複数行を取り出すことができるものも含まれます。
カーソルはそのような行の最後に位置します。
（しかし、direction句が単にキーワードのないcount式である場合は、PL/pgSQLでは非推奨です。
この構文は、direction句がすべて省略された場合との区別が曖昧であるため、countが定数でない場合は失敗する可能性があります。）
SELECT INTOと同様に、特殊な変数FOUNDを用いて、移動先に行が存在するかどうかを検査できます。
そのような行がない場合、カーソルは移動方向に応じて最後の行の後または最初の行の前に位置します。
    


例:


MOVE curs1;
MOVE LAST FROM curs3;
MOVE RELATIVE -2 FROM curs4;
MOVE FORWARD 2 FROM curs4;


       

UPDATE/DELETE WHERE CURRENT OF




UPDATE table SET ... WHERE CURRENT OF cursor;
DELETE FROM table WHERE CURRENT OF cursor;



カーソルの位置をテーブルの行に変更すれば、カーソルによって特定した行を更新または消去できます。
カーソル問い合わせは何が許されているのか（特にグループ化しないとき）についての制限があり、それはカーソル内でFOR UPDATEを使用することが最善です。
より詳細についてはDECLARE(7)リファレンスページを参照下さい。
       


以下に例を示します。


UPDATE foo SET dataval = myval WHERE CURRENT OF curs1;


       

CLOSE




CLOSE cursor;



CLOSEは、開いているカーソルの背後にあるポータルを閉じます。
これを使用してトランザクションの終わりよりも前にリソースを解放することができ、また、カーソル変数を解放し、再度開くことができます。
       


例：


CLOSE curs1;


       

カーソルを返す





PL/pgSQL関数では、呼び出し元にカーソルを返すことができます。
この方法は、関数から複数行または複数列を返す場合、特にその結果集合が非常に大きい場合に有用です。
これを行うには、関数はカーソルを開き、呼び出し元にカーソル名を返します（もしくは、もし呼び出し元でポータル名がわかっていれば、単純に指定されたポータル名を使用してカーソルを開きます）。
これにより、呼び出し元はカーソルから行を取り出すことができるようになります。
カーソルは呼び出し元で閉じることができます。
または、トランザクションが終了した際に自動的に閉じられます。
       


カーソル用のポータル名は、プログラマが指定するか、または自動的に生成されます。
ポータル名を指定するには、開く前に、単にrefcursor変数に文字列を代入します。
refcursor変数の文字列値はOPENによって、背後のポータル名として使用されます。
しかし、refcursor変数の値がNULLの場合（デフォルトではそうなっています）、OPENは自動的に既存のポータルと競合しない名前を生成し、それをrefcursor変数に代入します。
       
注記


PostgreSQL™ 16以前は、バインドされたカーソル変数は、NULLではなく自身の名前を含むように初期化されていました。そのため、背後にあるポータル名はデフォルトでカーソル変数の名前と同じになっていました。
これは、異なる関数内の同じような名前のカーソル間で競合するリスクがあまりにも大きくなるため、変更されました。
        



以下の例は、呼び出し元でカーソル名を指定する方法を示しています。



CREATE TABLE test (col text);
INSERT INTO test VALUES ('123');

CREATE FUNCTION reffunc(refcursor) RETURNS refcursor AS '
BEGIN
    OPEN $1 FOR SELECT col FROM test;
    RETURN $1;
END;
' LANGUAGE plpgsql;

BEGIN;
SELECT reffunc('funccursor');
FETCH ALL IN funccursor;
COMMIT;


       


以下の例では、自動的に生成されたカーソル名を使用しています。



CREATE FUNCTION reffunc2() RETURNS refcursor AS '
DECLARE
    ref refcursor;
BEGIN
    OPEN ref FOR SELECT col FROM test;
    RETURN ref;
END;
' LANGUAGE plpgsql;


-- カーソルを使用するには、トランザクション内部である必要があります。
BEGIN;
SELECT reffunc2();

      reffunc2
--------------------
 <unnamed cursor 1>
(1 row)

FETCH ALL IN "<unnamed cursor 1>";
COMMIT;


       


以下の例は単一関数から複数のカーソルを返す方法を示しています。



CREATE FUNCTION myfunc(refcursor, refcursor) RETURNS SETOF refcursor AS $$
BEGIN
    OPEN $1 FOR SELECT * FROM table_1;
    RETURN NEXT $1;
    OPEN $2 FOR SELECT * FROM table_2;
    RETURN NEXT $2;
END;
$$ LANGUAGE plpgsql;


-- カーソルを使用するには、トランザクション内部である必要があります。
BEGIN;

SELECT * FROM myfunc('a', 'b');

FETCH ALL FROM a;
FETCH ALL FROM b;
COMMIT;


       


カーソル結果に対するループ





カーソルで返される行に対して反復することができるFOR文の亜種があります。
構文は以下のようになります。



[ <<label>> ]
FOR recordvar IN bound_cursorvar [ ( [ argument_name { := | => } ] argument_value [, ...] ) ] LOOP
    statements
END LOOP [ label ];




カーソル変数は宣言されたとき、何らかの問い合わせと結び付けられて（バインドされて）いなければならず、また既に開かれていてはなりません。
FOR文は自動的にカーソルを開き、ループから抜けたときに再度閉じます。
実際の引数値式のリストは、カーソルが引数を取ることを宣言された場合に限ってのみ出現できます。
これらの値は、OPEN過程と同じ方法で、問い合わせの中で置換されます（「バインドされたカーソルを開く」を参照してください）。
   


recordvar変数は、record型として自動的に定義され、ループ内でのみ存在します
（存在するいかなる変数名の定義もループ内では無視されます）。
カーソルによって返されたそれぞれの行はこのレコード変数に引き続いて割り当てられ、ループ本体が実行されます。
    


トランザクション制御





CALLコマンドで呼び出されたプロシージャ、また同様に無名コードブロック（DOコマンド）では、COMMITおよびROLLBACKコマンドを使ってトランザクションを終えることができます。
トランザクションをこれらコマンドで終了した後、新たなトランザクションが自動的に開始されます。そのため、別途のSTART TRANSACTIONはありません。
（PL/pgSQLではBEGINとENDは別の意味を持つことに注意してください。）
   


以下に例を示します。


CREATE PROCEDURE transaction_test1()
LANGUAGE plpgsql
AS $$
BEGIN
    FOR i IN 0..9 LOOP
        INSERT INTO test1 (a) VALUES (i);
        IF i % 2 = 0 THEN
            COMMIT;
        ELSE
            ROLLBACK;
        END IF;
    END LOOP;
END;
$$;

CALL transaction_test1();


   


新しいトランザクションは、トランザクション分離レベル等のデフォルトのトランザクションの特性で開始します。
トランザクションがループ内でコミットされた場合、新しいトランザクションは前のトランザクションと同じ特性で自動的に開始するのが好ましいかもしれません。
コマンドCOMMIT AND CHAINとROLLBACK AND CHAINはそのように動作します。
   


トランザクション制御は、トップレベル、または、他の干渉するコマンドを伴わない入れ子のCALLまたはDO呼び出しからの、CALLまたはDOによる呼び出しのみで可能です。
例えば、呼び出しスタックがCALL proc1() → CALL proc2() → CALL proc3()である場合、二番目と三番目のプロシージャはトランザクション制御を実行できます。
しかし、呼び出しスタックがCALL proc1() → SELECT func2() → CALL proc3()である場合、間のSELECTのため、最後のプロシージャはトランザクション制御を実行できません。
   


PL/pgSQLはセーブポイント（SAVEPOINT/ROLLBACK TO SAVEPOINT/RELEASE SAVEPOINTコマンド）をサポートしません。
セーブポイントの典型的な使用パターンは、例外ハンドラを持つブロックに置き換えることができます（「エラーの捕捉」を参照してください）。
内部では、例外ハンドラを持つブロックがサブトランザクションを形成します。これは、そのようなブロック内ではトランザクションを終了できないことを意味します。
   


カーソルループには特別な考慮事項が当てはまります。
以下の例をよく確認してください。


CREATE PROCEDURE transaction_test2()
LANGUAGE plpgsql
AS $$
DECLARE
    r RECORD;
BEGIN
    FOR r IN SELECT * FROM test2 ORDER BY x LOOP
        INSERT INTO test1 (a) VALUES (r.x);
        COMMIT;
    END LOOP;
END;
$$;

CALL transaction_test2();



通常、カーソルはトランザクションのコミット時に自動的に閉じられます。
しかしながら、このようにループの一部として作られたカーソルは、最初のCOMMITまたはROLLBACKから自動的に保持可能カーソルに変換されます。
このことは、カーソルが行ごとではなく、最初にCOMMITやROLLBACKされた時点で全体として評価されることを意味します。
従来通りカーソルはループ後に自動で削除されるので、このことはユーザにほとんど認識されません。
しかし、カーソルの問い合わせによって取得されたテーブルまたは行のロックは、最初のCOMMITまたはROLLBACKの後にはもはや保持されないことに留意しなければなりません。
   


トランザクションコマンドは、読み込み専用でないコマンド（例えばUPDATE ... RETURNING）で駆動されるカーソルループ内では許可されません。
   

エラーとメッセージ



エラーとメッセージの報告





RAISE文を使用してメッセージを報告し、エラーを発生することができます。



RAISE [ level ] 'format' [, expression [, ... ]] [ USING option { = | := } expression [, ... ] ];
RAISE [ level ] condition_name [ USING option { = | := } expression [, ... ] ];
RAISE [ level ] SQLSTATE 'sqlstate' [ USING option { = | := } expression [, ... ] ];
RAISE [ level ] USING option { = | := } expression [, ... ];
RAISE ;




levelオプションはエラーの深刻度を指定します。
使用可能なレベルはDEBUG、LOG、INFO、NOTICE、WARNINGおよびEXCEPTIONで、EXCEPTIONがデフォルトです。
EXCEPTIONはエラーを発生させ、現在のトランザクションをアボートします。
他のレベルは異なる優先度レベルのメッセージを生成するだけです。
特定の優先度のエラーメッセージがクライアントに報告するか、サーバログに書き込むか、またはその両方はlog_min_messagesおよびclient_min_messages設定変数によって制御されます。
詳細については、19章サーバ設定を参照してください。
   


最初の構文の形式では、もしlevelがあればその後にformat文字列を記述します（これは評価式ではなく、単純な文字列リテラルでなければなりません）。
書式文字列は報告されるエラーメッセージテキストを指定します。
書式文字列の後には、メッセージに挿入される省略可能な引数の式を指定できます。
書式文字列内では、%は次の省略可能な引数の値の文字列表現で書き換えられます。
%%と記述することで%リテラルを表すことができます。
引数の数は書式文字列のプレースホルダ%の数と一致しなければいけません。さもなくば、関数のコンパイル時にエラーが起きます。
   


以下の例では、v_job_idの値は文字列内の%を置き換えます。


RAISE NOTICE 'Calling cs_create_job(%)', v_job_id;


   


2番目と3番目の構文の形式では、condition_nameとsqlstateはそれぞれエラー条件名と5文字のSQLSTATEコードを指定します。
有効なエラー条件名と定義済みのSQLSTATEコードについては付録A PostgreSQL™エラーコードを参照してください。
   


以下は、condition_nameとsqlstateの使用方法の例です。


RAISE division_by_zero;
RAISE WARNING SQLSTATE '22012';


   


いずれの構文の形式でも、USINGの後にoption = expressionの項目を記述することで、エラー報告に追加の情報を加えることができます。
各expressionは、どのような文字列による式も可能です。
使用可能なoptionキーワードは以下です。

    
	MESSAGE
	
エラーメッセージテキストを指定します。
このオプションは、既にメッセージが指定されている最初の構文の形式では使用できません。
       

	DETAIL
	エラー詳細メッセージを出力します。

	HINT
	ヒントメッセージを出力します。

	ERRCODE
	
報告するエラーコード（SQLSTATE）を、付録A PostgreSQL™エラーコードで示されている条件名で指定するか、または5文字のSQLSTATEコードで直接指定します。
このオプションは、既にエラーコードが指定されている2番目と3番目の構文の形式では使用できません。
       

	COLUMN, CONSTRAINT, DATATYPE, TABLE, SCHEMA
	関連するオブジェクト名を出力します。




   


以下の例は、与えられたエラーメッセージとヒントを付けてトランザクションをアボートします。


RAISE EXCEPTION 'Nonexistent ID --> %', user_id
      USING HINT = 'Please check your user ID';


   


以下の２つの例は、SQLSTATEを設定する等価な方法を示しています。


RAISE 'Duplicate user ID: %', user_id USING ERRCODE = 'unique_violation';
RAISE 'Duplicate user ID: %', user_id USING ERRCODE = '23505';



以下は、同じ結果になる別の方法です。


RAISE unique_violation USING MESSAGE = 'Duplicate user ID: ' || user_id;


   


4番目の構文の形式で示されているように、RAISE USINGまたはRAISE level USINGと記述して、全て一括してUSINGリスト内に書き加えることも可能です。
   


最後のRAISE亜種はパラメータを全く取りません。
この形式はBEGINブロックのEXCEPTION句で使用されるのみです。
これは、現在処理中のエラーを再発生させます。
   
注記


PostgreSQL™ 9.1より前のバージョンでは、パラメータのないRAISEは稼働している例外ハンドラを含むブロックからのエラーの再発生と解釈されました。
したがって、例外ハンドラの中で入れ子となったEXCEPTION句は、RAISEが入れ子となったEXCEPTION句のブロック内にあるときでも、エラーを捕捉できないことになりました。
これは驚くべきことであり、オラクルの PL/SQLと非互換でした。
    



RAISE EXCEPTIONコマンド内で状況名もSQLSTATEも指定されない場合、デフォルトはraise_exception (P0001)を使用します。
メッセージテキストが指定されない場合、デフォルトは状況名、またはSQLSTATEをメッセージテキストとして使用します。
   
注記


SQLSTATEコードでエラーコードを指定する場合、事前に定義されたエラーコードに制約されることはありません。
00000以外の５桁の数字かASCIIの大文字からなるどんなエラーコードも選択できます。
３つのゼロで終わるエラーコードの出力を避けるように推奨されています。
と言うのは、そこには分類コードがあり、それらは全ての分類から捕捉することによってのみ補足可能だからです。
    


アサート検査





ASSERT文は、PL/pgSQL関数にデバッグ用検査を差し込むための便利な省略形です。



ASSERT condition [ , message ];




conditionは常に真と評価されると想定される論理値式で、結果が真ならASSERT文がさらに何かすることはありません。
結果が偽かNULLなら、ASSERT_FAILURE例外が発生します。
（もし、conditionを評価する間にエラーが生じた場合、それは通常のエラーと同様に報告されます。）
   


省略可能なmessageが与えられた場合、その式の結果で（NULLでないなら）、conditionに失敗した際のデフォルトエラーメッセージ文「assertion failed」が置き換えられます。
message式はアサートに成功する通常の場合には評価されません。
   


アサート検査は、設定パラメータplpgsql.check_assertsで有効または無効にできます。設定値は真偽値で、デフォルトはonです。
offのときには、ASSERT文は何もしません。
   


ASSERTはプログラムのバグを見つけるためのものであって、通常のエラー条件を報告するものではないことに注意してください。
そのためには前述のRAISEを使ってください。
   


トリガ関数





PL/pgSQLはデータ変更やデータベースのイベントによるトリガ関数の定義に使用できます。
トリガ関数は、CREATE FUNCTIONコマンドを使って、(データ変更トリガには)trigger、(データベースイベントトリガには)event_triggerという戻り値の型を持った引数のない関数として作成されます。
その呼出しのトリガの原因となった条件を記述するため、TG_somethingという名前の特別な局所変数が自動的に定義されます。
  
データ変更によるトリガ





データ変更トリガはtriggerという戻り値の型を持った引数のない関数として宣言されます。
その関数は、たとえ、CREATE TRIGGERにて引数を取るものとしていたとしても、引数を持たないものと宣言しなければならないことに注意してください。
トリガの引数は、後述する通り、TG_ARGV経由で渡されます。
  


PL/pgSQL関数がトリガとして呼び出された場合、いくつかの特殊な変数が自動的に最上位レベルのブロックで作成されます。
それらを以下に示します。

   
	NEW record
	

行レベルのトリガでのINSERT/UPDATE操作での新しいデータベースの行。
この変数は、文レベルのトリガおよびDELETE操作ではNULLになります。
      

	OLD record
	

行レベルのトリガでのUPDATE/DELETE操作での更新される前のデータベースの行。
この変数は、文レベルのトリガおよびINSERT操作ではNULLになります。
      

	TG_NAME name
	

発行されたトリガの名前。
      

	TG_WHEN text
	

トリガの定義に依存して、BEFORE、AFTER、またはINSTEAD OF。
      

	TG_LEVEL text
	

トリガの定義に依存して、ROWまたはSTATEMENT。
      

	TG_OP text
	

トリガを起動した操作: INSERT、UPDATE、DELETE、または TRUNCATE。
      

	TG_RELID oid (references pg_class.oid)
	

トリガの起動元のテーブルのオブジェクトID。
      

	TG_RELNAME name
	

トリガを起動したテーブル。
これは現在は非推奨であり、将来のリリースで削除される可能性があります。
代わりにTG_TABLE_NAMEを使用してください。
      

	TG_TABLE_NAME name
	

トリガを起動したテーブル。
      

	TG_TABLE_SCHEMA name
	

トリガを起動したテーブルのスキーマ。
      

	TG_NARGS integer
	

CREATE TRIGGER文におけるトリガ関数に与えられる引数の数。
      

	TG_ARGV text[]
	

CREATE TRIGGER文での引数。
このインデックスは0から始まります。
無効なインデックス（0未満やtg_nargs以上）は、NULL値という結果になります。
      




  


トリガ関数はNULLまたは、トリガの発行元になったテーブルの構造を正確に持ったレコード/行を返さなければなりません。
   


BEFOREとして発行された行レベルトリガがNULLを返す場合には、トリガマネージャに実際の行への操作を取りやめるように通知します
（つまり、その後にトリガが発行されず、そのINSERT/UPDATE/DELETEはその行に対して実行されません）。
非NULL値を返す場合には、その操作はその行値で処理されます。
元のNEWの値と異なる行値を返すことは、挿入、更新される値を変更します。
したがってトリガ関数が行値を変更せずにトリガ処理を普通に成功させたい場合は、NEW(またはその等価な値)を返さなければなりません。
格納する行を変更するために、NEWの個々の値を直接置き換え、変更したNEWを返すことも、新しいレコード/行を完全に作成して返すことも可能です。
DELETEに対するBEFOREトリガの場合、返される値は直接的な影響を与えませんが、トリガ動作を継続させるためには非NULLを返さなければなりません。
DELETEトリガではNEWがNULLであり、これを返すことは通常無意味であることに注意して下さい。
DELETEトリガにおける通常の慣例はOLDを返すことです。
   


INSTEAD OFトリガ（これは常に行レベルトリガであり、ビューに対してのみ使用可能です）は、まったく更新を行わなかったためにこの行に対する残りの操作を飛ばさなければならない（つまり後続のトリガは発行されず、 トリガの発生元のINSERT/UPDATE/DELETEにおいて影響を受けた行数として数えられない）ことを通知するNULLを返すことができます。
この他の場合は、トリガが要求された操作を実行したことを通知するために、非NULLの値を返さなければなりません。
INSERTおよびUPDATE操作では、戻り値は、トリガ関数がINSERT RETURNINGおよびUPDATE RETURNINGをサポートするために変更しているかもしれない、NEWとなるはずです
（これは後続のトリガ、または、ON CONFLICT DO UPDATE句を伴うINSERT文の中で特別なEXCLUDED別名参照に渡される行値にも影響します）。
DELETE操作では、戻り値はOLDとなるはずです。
   


行レベルのAFTERトリガ、文レベルのBEFOREまたはAFTERトリガの戻り値は常に無視されます。
NULLとしても構いません。
しかし、これらの種類のトリガでも、エラーを発生させることで操作全体を中断させることが可能です。
   


例41.3「PL/pgSQLトリガ関数」にPL/pgSQLのトリガ関数の例を示します。
   
例41.3 PL/pgSQLトリガ関数


このトリガの例では、テーブルの行が挿入または更新された時には必ず、現在のユーザ名と時刻がその行に入っていることを確実にします。
そして、従業員名が与えられていることとその給料が正の値であることを確認します。
    

CREATE TABLE emp (
    empname           text,
    salary            integer,
    last_date         timestamp,
    last_user         text
);

CREATE FUNCTION emp_stamp() RETURNS trigger AS $emp_stamp$
    BEGIN

        -- empnameとsalaryが与えられていることをチェック
        IF NEW.empname IS NULL THEN
            RAISE EXCEPTION 'empname cannot be null';
        END IF;
        IF NEW.salary IS NULL THEN
            RAISE EXCEPTION '% cannot have null salary', NEW.empname;
        END IF;


        -- 支払時に問題が起こらないように
        IF NEW.salary < 0 THEN
            RAISE EXCEPTION '% cannot have a negative salary', NEW.empname;
        END IF;


        -- 誰がいつ変更したかを記録
        NEW.last_date := current_timestamp;
        NEW.last_user := current_user;
        RETURN NEW;
    END;
$emp_stamp$ LANGUAGE plpgsql;

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
    FOR EACH ROW EXECUTE FUNCTION emp_stamp();





テーブルにおける変更のログを取る他の方法は、挿入、更新または削除の各々に対する行を保有する新テーブルを作成することです。
この方法はテーブルにおける変更の監査と考えることができます。
例41.4「PL/pgSQLによる監査用のトリガ関数」はPL/pgSQLによる監査用トリガ関数の一例を示します。
   
例41.4 PL/pgSQLによる監査用のトリガ関数


このトリガの例では、empテーブルにおける行の挿入、更新または削除のどれもがemp_auditテーブルの中へ確実に記録（すなわち監査）されます。
現在時刻とユーザ名は、行った操作の種類とともにemp_auditの行の中に記録されます。
    

CREATE TABLE emp (
    empname           text NOT NULL,
    salary            integer
);

CREATE TABLE emp_audit(
    operation         char(1)   NOT NULL,
    stamp             timestamp NOT NULL,
    userid            text      NOT NULL,
    empname           text      NOT NULL,
    salary            integer
);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS $emp_audit$
    BEGIN
        --

        -- empで行った操作を反映する行をemp_auditに作成
        -- 操作の種類を決定するために、特殊な変数TG_OPを活用
        --
        IF (TG_OP = 'DELETE') THEN
            INSERT INTO emp_audit SELECT 'D', now(), current_user, OLD.*;
        ELSIF (TG_OP = 'UPDATE') THEN
            INSERT INTO emp_audit SELECT 'U', now(), current_user, NEW.*;
        ELSIF (TG_OP = 'INSERT') THEN
            INSERT INTO emp_audit SELECT 'I', now(), current_user, NEW.*;
        END IF;

        RETURN NULL; -- AFTERトリガですので、結果は無視されます
    END;
$emp_audit$ LANGUAGE plpgsql;

CREATE TRIGGER emp_audit
AFTER INSERT OR UPDATE OR DELETE ON emp
    FOR EACH ROW EXECUTE FUNCTION process_emp_audit();





前例の変形では、各エントリが最終修正された時を表示するため、主テーブルを監査テーブルに結合したビューを使用します。
この方法でもテーブルの変化の監査証跡を全て記録できますが、監査証跡から抽出した各エントリの最終修正のタイムスタンプ表示することにより、監査証跡の簡単なビューを表示することにもなります。
例41.5「監査のためのPL/pgSQLビュートリガ関数」で示すものは、PL/pgSQLを用いたビューの監査トリガの例です。
   
例41.5 監査のためのPL/pgSQLビュートリガ関数


この例では、ビューを更新可能とし、その行の挿入、更新、削除をemp_auditテーブルに確実に記録（つまり監査）するためにビューに対するトリガを使用します。
現在時刻とユーザ名が実行された操作種類と一緒に記録されます。
ビューは各行の最終更新時間を表示します。
    

CREATE TABLE emp (
    empname           text PRIMARY KEY,
    salary            integer
);

CREATE TABLE emp_audit(
    operation         char(1)   NOT NULL,
    userid            text      NOT NULL,
    empname           text      NOT NULL,
    salary            integer,
    stamp             timestamp NOT NULL
);

CREATE VIEW emp_view AS
    SELECT e.empname,
           e.salary,
           max(ea.stamp) AS last_updated
      FROM emp e
      LEFT JOIN emp_audit ea ON ea.empname = e.empname
     GROUP BY 1, 2;

CREATE OR REPLACE FUNCTION update_emp_view() RETURNS TRIGGER AS $$
    BEGIN
        --

        -- 要求された操作を emp に実行し
        -- emp_audit に行を作成し
        -- emp の変化を反映する
        --
        IF (TG_OP = 'DELETE') THEN
            DELETE FROM emp WHERE empname = OLD.empname;
            IF NOT FOUND THEN RETURN NULL; END IF;

            OLD.last_updated = now();
            INSERT INTO emp_audit VALUES('D', current_user, OLD.*);
            RETURN OLD;
        ELSIF (TG_OP = 'UPDATE') THEN
            UPDATE emp SET salary = NEW.salary WHERE empname = OLD.empname;
            IF NOT FOUND THEN RETURN NULL; END IF;

            NEW.last_updated = now();
            INSERT INTO emp_audit VALUES('U', current_user, NEW.*);
            RETURN NEW;
        ELSIF (TG_OP = 'INSERT') THEN
            INSERT INTO emp VALUES(NEW.empname, NEW.salary);

            NEW.last_updated = now();
            INSERT INTO emp_audit VALUES('I', current_user, NEW.*);
            RETURN NEW;
        END IF;
    END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER emp_audit
INSTEAD OF INSERT OR UPDATE OR DELETE ON emp_view
    FOR EACH ROW EXECUTE FUNCTION update_emp_view();





トリガの使用目的の1つは、あるテーブルのサマリテーブルを維持することです。
結果のサマリテーブルは、元のテーブルに代わって、ある種の問い合わせに対して使用でき、しばしば実行時間を大幅に縮小します。
通常この手法は、計測または観測データ（ファクトテーブルと言います）が非常に大きくなるかもしれない、データウェアハウスに使用されます。
データウェアハウス内のファクトテーブルに対してサマリテーブルを維持するPL/pgSQLのトリガ関数の例を例41.6「サマリテーブルを維持するためのPL/pgSQLトリガ関数」に示します。
   
例41.6 サマリテーブルを維持するためのPL/pgSQLトリガ関数


ここに述べるスキーマの一部はRalph KimballによるThe Data Warehouse ToolkitのGrocery Storeの例に基づいています。
    

--

-- time dimensionとsales factの主テーブル
--
CREATE TABLE time_dimension (
    time_key                    integer NOT NULL,
    day_of_week                 integer NOT NULL,
    day_of_month                integer NOT NULL,
    month                       integer NOT NULL,
    quarter                     integer NOT NULL,
    year                        integer NOT NULL
);
CREATE UNIQUE INDEX time_dimension_key ON time_dimension(time_key);

CREATE TABLE sales_fact (
    time_key                    integer NOT NULL,
    product_key                 integer NOT NULL,
    store_key                   integer NOT NULL,
    amount_sold                 numeric(12,2) NOT NULL,
    units_sold                  integer NOT NULL,
    amount_cost                 numeric(12,2) NOT NULL
);
CREATE INDEX sales_fact_time ON sales_fact(time_key);

--

-- sales by timeのサマリテーブル
--
CREATE TABLE sales_summary_bytime (
    time_key                    integer NOT NULL,
    amount_sold                 numeric(15,2) NOT NULL,
    units_sold                  numeric(12) NOT NULL,
    amount_cost                 numeric(15,2) NOT NULL
);
CREATE UNIQUE INDEX sales_summary_bytime_key ON sales_summary_bytime(time_key);

--

-- 更新、挿入および削除によりサマリテーブルの列を修正する関数とトリガ
--
CREATE OR REPLACE FUNCTION maint_sales_summary_bytime() RETURNS TRIGGER
AS $maint_sales_summary_bytime$
    DECLARE
        delta_time_key          integer;
        delta_amount_sold       numeric(15,2);
        delta_units_sold        numeric(12);
        delta_amount_cost       numeric(15,2);
    BEGIN


        -- 増加または減少量を算出
        IF (TG_OP = 'DELETE') THEN

            delta_time_key = OLD.time_key;
            delta_amount_sold = -1 * OLD.amount_sold;
            delta_units_sold = -1 * OLD.units_sold;
            delta_amount_cost = -1 * OLD.amount_cost;

        ELSIF (TG_OP = 'UPDATE') THEN


            -- time_keyを変更する更新を禁止します
            -- （削除 + 挿入の方法により大部分の変更を行うため
            -- それほど厄介ではありません）。
            IF ( OLD.time_key != NEW.time_key) THEN
                RAISE EXCEPTION 'Update of time_key : % -> % not allowed',
                                                      OLD.time_key, NEW.time_key;
            END IF;

            delta_time_key = OLD.time_key;
            delta_amount_sold = NEW.amount_sold - OLD.amount_sold;
            delta_units_sold = NEW.units_sold - OLD.units_sold;
            delta_amount_cost = NEW.amount_cost - OLD.amount_cost;

        ELSIF (TG_OP = 'INSERT') THEN

            delta_time_key = NEW.time_key;
            delta_amount_sold = NEW.amount_sold;
            delta_units_sold = NEW.units_sold;
            delta_amount_cost = NEW.amount_cost;

        END IF;



        -- サマリテーブルの行を挿入または新しい値で更新します。
        <<insert_update>>
        LOOP
            UPDATE sales_summary_bytime
                SET amount_sold = amount_sold + delta_amount_sold,
                    units_sold = units_sold + delta_units_sold,
                    amount_cost = amount_cost + delta_amount_cost
                WHERE time_key = delta_time_key;

            EXIT insert_update WHEN found;

            BEGIN
                INSERT INTO sales_summary_bytime (
                            time_key,
                            amount_sold,
                            units_sold,
                            amount_cost)
                    VALUES (
                            delta_time_key,
                            delta_amount_sold,
                            delta_units_sold,
                            delta_amount_cost
                           );

                EXIT insert_update;

            EXCEPTION
                WHEN UNIQUE_VIOLATION THEN

                    -- 何もしません
            END;
        END LOOP insert_update;

        RETURN NULL;

    END;
$maint_sales_summary_bytime$ LANGUAGE plpgsql;

CREATE TRIGGER maint_sales_summary_bytime
AFTER INSERT OR UPDATE OR DELETE ON sales_fact
    FOR EACH ROW EXECUTE FUNCTION maint_sales_summary_bytime();

INSERT INTO sales_fact VALUES(1,1,1,10,3,15);
INSERT INTO sales_fact VALUES(1,2,1,20,5,35);
INSERT INTO sales_fact VALUES(2,2,1,40,15,135);
INSERT INTO sales_fact VALUES(2,3,1,10,1,13);
SELECT * FROM sales_summary_bytime;
DELETE FROM sales_fact WHERE product_key = 1;
SELECT * FROM sales_summary_bytime;
UPDATE sales_fact SET units_sold = units_sold * 2;
SELECT * FROM sales_summary_bytime;





AFTERトリガは、トリガ文により変更された行の集合全体を調べるために遷移テーブルを使うこともできます。
CREATE TRIGGERコマンドで名前を1つまたは2つの遷移テーブルに割り当てると、関数はその名前を読み込み専用の一時テーブルであるかのように参照できます。
例41.7「遷移テーブルでの監査」に例を示します。
   
例41.7 遷移テーブルでの監査


この例は例41.4「PL/pgSQLによる監査用のトリガ関数」と同じ結果になりますが、行毎に起動するトリガを使う代わりに、関係のある情報を遷移テーブルに集めた後に文毎に1回起動するトリガを使っています。
これは、呼び出された文が多くの行を変更する場合には行トリガの方法よりとても速くなる場合があります。
REFERENCING句はそれぞれの場合で異ならなければなりませんので、それぞれの種類のイベントに対して別々のトリガ宣言をしなければならないことに注意してください。
ですが、もし選ぶのなら、このために単一のトリガ関数が使えなくなることはありません。
（実際には、3つに別れた関数を使い、実行時のTG_OPの確認を避ける方が良いでしょう。）
    

CREATE TABLE emp (
    empname           text NOT NULL,
    salary            integer
);

CREATE TABLE emp_audit(
    operation         char(1)   NOT NULL,
    stamp             timestamp NOT NULL,
    userid            text      NOT NULL,
    empname           text      NOT NULL,
    salary            integer
);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS $emp_audit$
    BEGIN
        --

        -- empで実行された操作を反映するためにemp_auditに行を作り、
        -- 操作を完了するために特殊な変数TG_OPを使う。
        --
        IF (TG_OP = 'DELETE') THEN
            INSERT INTO emp_audit
                SELECT 'D', now(), current_user, o.* FROM old_table o;
        ELSIF (TG_OP = 'UPDATE') THEN
            INSERT INTO emp_audit
                SELECT 'U', now(), current_user, n.* FROM new_table n;
        ELSIF (TG_OP = 'INSERT') THEN
            INSERT INTO emp_audit
                SELECT 'I', now(), current_user, n.* FROM new_table n;
        END IF;

        RETURN NULL; -- これはAFTERトリガなので結果は無視される
    END;
$emp_audit$ LANGUAGE plpgsql;

CREATE TRIGGER emp_audit_ins
    AFTER INSERT ON emp
    REFERENCING NEW TABLE AS new_table
    FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();
CREATE TRIGGER emp_audit_upd
    AFTER UPDATE ON emp
    REFERENCING OLD TABLE AS old_table NEW TABLE AS new_table
    FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();
CREATE TRIGGER emp_audit_del
    AFTER DELETE ON emp
    REFERENCING OLD TABLE AS old_table
    FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();




イベントによるトリガ





PL/pgSQLはイベントトリガの定義に使用できます。
イベントトリガとして呼び出される関数は、引数のない関数として宣言され、戻り値の型はevent_triggerとなることがPostgreSQL™では必須です。
   


PL/pgSQL関数がイベントトリガとして呼び出された場合、数個の特別な変数が最高レベルのブロックで自動的に作成されます。
以下に示します。

   
	TG_EVENT text
	

トリガが起動されるイベント。
      

	TG_TAG text
	

トリガが起動されるコマンドタグ。
      




  


例41.8「PL/pgSQLイベントトリガ関数」はPL/pgSQLにおけるイベントトリガ関数の一例を示します。
   
例41.8 PL/pgSQLイベントトリガ関数


以下の例では、サポートされたコマンドが実行されたとき、トリガはNOTICEを発生させるだけです。
    

CREATE OR REPLACE FUNCTION snitch() RETURNS event_trigger AS $$
BEGIN
    RAISE NOTICE 'snitch: % %', tg_event, tg_tag;
END;
$$ LANGUAGE plpgsql;

CREATE EVENT TRIGGER snitch ON ddl_command_start EXECUTE FUNCTION snitch();





PL/pgSQLの秘訣





本節では、PL/pgSQL利用者の知識として重要な、実装の詳細を述べます。
   
変数置換





PL/pgSQL関数内のSQL文および式は変数および関数のパラメータを参照することができます。
背後では、PL/pgSQLはこうした参照を問い合わせパラメータに置き換えます。
文法的に許されているところでのみ問い合わせパラメータは置換されます。
極端な場合として、以下のよろしくないプログラミングスタイルの例を考えてみましょう。


INSERT INTO foo (foo) VALUES (foo(foo));



最初に現れるfooの場所は文法的にはテーブル名でなければなりません。
このため関数がfooという名前の変数を持っていたとしても、置換されません。
2番目の場所はそのテーブルの列名でなければなりません。このためこれも置換されません。
同様に、3番目の場所は関数名でなければなりません。このためこれも置換されません。
最後の場所のみがPL/pgSQLの関数の変数参照の候補です。
   


これを理解する別の方法は、変数の置換はSQLコマンドへデータ値を挿入できるだけだということです。コマンドが参照するデータベースオブジェクトを動的には変更できません。
（そのようにしたければ、「動的コマンドの実行」に書かれているように、コマンド文字列を動的に構成しなければなりません。）
   


変数名は文法的にはテーブル列名と違いがありませんので、テーブルを参照する文の中であいまいさが出る可能性があります。
与えられた名前はテーブル列を意味するのでしょうか、それとも変数なのでしょうか。
前の例を次のように変えてみましょう。


INSERT INTO dest (col) SELECT foo + bar FROM src;



ここでは、destおよびsrcはテーブル名でなければなりません。
また、colはdestの列でなければなりませんが、fooおよびbarは理論上関数の変数かもしれませんし、srcの列かもしれません。
   


デフォルトでPL/pgSQLはSQL文における名前が変数かテーブル列のいずれかを参照可能な場合にエラーを報告します。
変数または列の名前を変更することやあいまいな参照を修飾すること、PL/pgSQLにどちらを優先して解釈するかを通知することで、こうした問題を解消することができます。
   


最も簡単な解法は変数名または列名を変更することです。
一般的なコーディング法として、列の命名とPL/pgSQL変数の命名とで規約を分ける方法があります。
例えば、一貫して関数の変数はv_somethingという名前とし、列名はv_で始まらないようにすれば、競合は起こりません。
   


その他、あいまいな参照を明確にするために修飾することができます。
上の例では、src.fooによりテーブル列への参照についてあいまいさが解消します。
あいまい性のない変数参照を行うためには、ラベル付けしたブロック内で変数を宣言し、そのブロックのラベルを使用します（「PL/pgSQLの構造」参照）。
以下に例を示します。


<<block>>
DECLARE
    foo int;
BEGIN
    foo := ...;
    INSERT INTO dest (col) SELECT block.foo + bar FROM src;



ここでblock.fooはsrcにfoo列があったとしても、変数を意味することになります。
FOUNDなどの特別な変数を含め、関数パラメータを関数名で修飾することができます。
これらは暗黙的に関数名をラベル名とした上位ブロック内で宣言されているためです。
   


PL/pgSQLの大規模な本体コードにおける、すべてのあいまいな参照を修正することが現実的ではない場合があります。
こうした場合、PL/pgSQLにあいまいな参照を変数として解決すべき(この動作はPostgreSQL™ 9.0より前のPL/pgSQLの動作と互換性を持ちます)、または、テーブル列参照として解決すべき(Oracle™などの他のシステムと互換性を持ちます)と指定することができます。
   


システム全体に対してこの動作を変更するためにはplpgsql.variable_conflict設定パラメータをerror、use_variable、use_columnのいずれかに設定します（errorが標準配布におけるデフォルトです）。
このパラメータは以降のPL/pgSQL関数の文のコンパイルに影響しますが、現在のセッションでコンパイル済みの文には影響を与えません。
この設定を変更することで、PL/pgSQLの動作において予期できない変化が発生することがありますので、これはスーパーユーザのみが変更することができます。
   


また、関数テキストの先頭に以下の特殊なコマンドの1つをいれることで、関数単位で動作を設定することもできます。


#variable_conflict error
#variable_conflict use_variable
#variable_conflict use_column



これらのコマンドを記述した関数に対してのみ、コマンドは影響を与え、plpgsql.variable_conflictの設定を上書きします。
以下に例を示します。


CREATE FUNCTION stamp_user(id int, comment text) RETURNS void AS $$
    #variable_conflict use_variable
    DECLARE
        curtime timestamp := now();
    BEGIN
        UPDATE users SET last_modified = curtime, comment = comment
          WHERE users.id = id;
    END;
$$ LANGUAGE plpgsql;



UPDATEコマンドにおいて、curtime、commentおよびidは、usersに同名の列があるか否かに関わらず、関数の変数またはパラメータを参照します。
テーブル列を参照させるためにWHERE句においてusers.idと参照を修飾する必要があったことに注意して下さい。
しかしUPDATEリストの対象としてのcommentへの参照は修飾させる必要がありませんでした。
これは文法的にusersの列でなければならないためです。
以下のようにvariable_conflictの設定に依存せずに同じ関数を作成することもできます。


CREATE FUNCTION stamp_user(id int, comment text) RETURNS void AS $$
    <<fn>>
    DECLARE
        curtime timestamp := now();
    BEGIN
        UPDATE users SET last_modified = fn.curtime, comment = stamp_user.comment
          WHERE users.id = stamp_user.id;
    END;
$$ LANGUAGE plpgsql;


   


変数置換はEXECUTEコマンドまたはその亜種におけるコマンド文字列の中では起こりません。
そのようなコマンドに可変値を挿入する時は、「動的コマンドの実行」に述べたように、文字列の値を構成するものの一部とするかUSINGを使用してください。
   


今のところ変数置換は、SELECTとINSERTとUPDATEとDELETEコマンドと(EXPLAINやCREATE TABLE ... AS SELECTのような)このうちの1つを含むコマンドの中だけで作動します。
メインSQLエンジンが問い合わせパラメータをこれらのコマンドでしか許可しないからです。
他の種類の文（通常ユーティリティ文といいます）において可変名または可変値を使用するには、文字列としてユーティリティ文を構成しEXECUTEしてください。
   

計画のキャッシュ





PL/pgSQLインタプリタは、初めてその関数が（各セッションで）呼び出された時に、関数のソーステキストを解析し、バイナリ形式の命令ツリーを内部で作成します。
この命令ツリーは完全にPL/pgSQL文構造に変換されますが、関数内部の個々のSQL式とSQLコマンドは即座に変換されません。
   

    
    

各式やSQLコマンドが初めてその関数で実行される時に、PL/pgSQLインタプリタはSPIマネージャのSPI_prepare関数を使用して、プリペアドステートメントを作成するためにコマンドを解析します。
その後にその式やコマンドが行われる時には、そのプリペアドステートメントを再利用します。
こうして、めったに分岐されない条件付きコードパスを持つ関数では、現在のセッションで実行されないそれらのコマンドの解析によるオーバーヘッドを背負いこむことはありません。
欠点は特定の式や問い合わせのエラーが、関数の該当部分が実行されるまで検出されないことです。
（典型的な構文エラーは、最初の解釈において検出されますが、それより深いエラーは、実行の時まで検出されません。）
   


PL/pgSQLは（正確にはSPIマネージャは）さらに特定のプリペアドステートメントに関する実行計画のキャッシュを試行できます。
キャッシュした実行計画が使用されなかった場合、プリペアドステートメントが呼び出される度に新しい実行計画が作成され、選択した実行計画を最適にするために、最新のパラメータ値（すなわちPL/pgSQLの変数値）が使用されます。
プリペアドステートメントがパラメータを持たないか何回も使用される場合、SPIマネージャは特定のパラメータ値に依存しない一般的な実行計画の作成を考え、再使用のためにキャッシュします。
典型的には、これは参照したPL/pgSQLの変数値が、実行計画にさほど影響しない場合にだけ起こります。
それならば、毎回の実行計画の作成の方が優れています。
プリペアドステートメントに関する詳細はPREPARE(7)を参照してください。
   


このようにPL/pgSQLはプリペアドステートメントおよび時には実行計画を保存しますので、PL/pgSQL関数内に直接現れるSQLコマンドは実行の度に同じテーブルとフィールドを参照しなければなりません。
つまり、SQLコマンドにて、テーブルやフィールドの名前としてパラメータを使用することができません。
実行の度に新しく実行計画を作成して解析する無駄を覚悟で、PL/pgSQLのEXECUTE文を使った動的問い合わせを構成することで、この制限を回避できます。
   


レコード変数の変わりやすいという性質はこの接続において別の問題となります。
レコード変数のフィールドが式や文の中で使用される場合、そのフィールドのデータ型を関数を呼び出す度に変更してはいけません。
それぞれの式が最初に実行された時のデータ型を使用して、その式が解析されているからです。
必要な場合EXECUTEを使用してこの問題を回避することができます。
    


同一の関数が2つ以上のテーブルのトリガとして使用される場合、PL/pgSQLはテーブルごとのプリペアドステートメントをキャッシュします。
すなわち、各々のトリガ関数とテーブルの組ごとにキャッシュするのであり、トリガ関数ごとではありません。
このため、データ型の変更に伴う問題の一部を軽減します。
例えば、別のテーブルにある異なったデータ型であっても、keyと命名した列に対してトリガ関数は有効に作動します。
    


同様に、多様型の引数を持った関数は、実際に呼び出す引数の型の組み合わせごとに別々のプリペアドステートメントをキャッシュします。
そのため、データ型の差異が原因で予期しない失敗が起こることはありません。
    


プリペアドステートメントのキャッシュにより、時間に依存する値の解釈の結果に違いが現れることがあります。
例えば、以下の2つの関数の結果は異なります。



CREATE FUNCTION logfunc1(logtxt text) RETURNS void AS $$
    BEGIN
        INSERT INTO logtable VALUES (logtxt, 'now');
    END;
$$ LANGUAGE plpgsql;




および



CREATE FUNCTION logfunc2(logtxt text) RETURNS void AS $$
    DECLARE
        curtime timestamp;
    BEGIN
        curtime := 'now';
        INSERT INTO logtable VALUES (logtxt, curtime);
    END;
$$ LANGUAGE plpgsql;


    


logfunc1の場合では、PostgreSQL™のメインパーサは、INSERTを解析する時に、logtableの対象列の型から'now'をtimestampと解釈しなければならないことを把握しています。
こうして、パーサはINSERTが解析された時点で'now'をtimestamp定数に変換し、その定数値をその後のセッションの有効期間におけるlogfunc1の全ての呼び出しで使用します。
言うまでもありませんが、これはプログラマが意図した動作ではありません。
now()またはcurrent_timestamp関数の使用が優れています。
    


logfunc2の場合では、PostgreSQL™のメインパーサは'now'の型を決定することができません。
そのため、nowという文字列を持つtext型のデータ値を返します。
curtimeローカル変数に代入する時に、PL/pgSQLインタプリタはこの文字列をtextoutとtimestamp_in関数を変換に使用してtimestamp型にキャストします。
ですから、演算されたタイムスタンプは、プログラマが意図した通り、実行の度に更新されます。
この方法でたまたま意図した通り動くけれど、それほど効率的ではありません。
ですから、now()関数の使用の方が優れています。
    


PL/pgSQLによる開発向けのヒント





PL/pgSQLで開発する1つの良い方法は、関数を作成するのに自分の好きなテキストエディタを使い、もう1つのウィンドウでpsqlを使用して関数を読み込ませて試験を行うことです。
この方法で行う場合にはCREATE OR REPLACE FUNCTIONを使用して関数を作成する方が良いでしょう。
この方法でファイルを再読み込みすると、関数定義を更新することができます。
例えば以下のようにします。


CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $$
          ....
$$ LANGUAGE plpgsql;


   


psqlを実行し、以下のように関数定義ファイルを読み込み、または再読み込みすることができます。


\i filename.sql



その後すぐに、関数を試験するためにSQLコマンドを発行することができます。
   


PL/pgSQLにおける開発のもう1つの良い方法は、手続き言語の開発機能を持つGUIデータベースアクセスツールを使用することです。
他にもありますが、pgAdminがこうしたツールの一例です。
こうしたツールは、単一引用符をエスケープさせたり、関数の作り直しやデバッグが容易に行えたりする便利な機能をよく持っています。
   
引用符の扱い





PL/pgSQL関数のコードはCREATE FUNCTION内で文字列リテラルとして指定されます。
単一引用符で囲む通常のやり方で文字列リテラルを記述する時、関数本体内部の全ての単一引用符を二重化しなければなりません。
同様に、全てのバックスラッシュを二重化しなければなりません。
なお、文字列としてエスケープする構文が使用されると仮定します。
引用符を単に重ねるやり方は最も冗長であり、簡単に想像できると思いますが、複雑な状態では数個以上の隣接した引用符が必要となるため、コードを率直には理解しにくくなります。
それに代わって推奨されるのは、関数本体を「ドル引用符」の文字列リテラルとして記述することです（「ドル記号で引用符付けされた文字列定数」を見てください）。
ドル引用符を用いるやり方では他の引用符を二重化する必要はありませんが、それぞれの入れ子になった階層ごとに異なったドル引用符による区切り符号を用いなければなりません。
例えば、CREATE FUNCTIONコマンドを以下のように記述しても構いません。


CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $PROC$
          ....
$PROC$ LANGUAGE plpgsql;



このやり方では、SQLコマンドの中で単純なリテラル文字列に対して引用符を使用でき、文字列として集積したSQLコマンドの断片を区切るために$$を使用できます。
もし$$を含んだテキストを引用符で囲む時は、$Q$のような記述を使用できます。
   


以下の表はドル引用符を用いない時の引用符の記述法を示したものです。
ドル引用符を用いる以前における引用符の記述を理解するのに、この表は役立つと思われます。
  
	1つの引用符
	

関数本体の先頭と末尾。
以下に例を示します。


CREATE FUNCTION foo() RETURNS integer AS '
          ....
' LANGUAGE plpgsql;



関数本体内部では引用符は必ずペアで現れます。
     

	2つの引用符
	

関数本体内部の文字列リテラル用。
以下に例を示します。


a_output := ''Blah'';
SELECT * FROM users WHERE f_name=''foobar'';



ドル引用符を用いる時は、次のように記述します。


a_output := 'Blah';
SELECT * FROM users WHERE f_name='foobar';



どちらもPL/pgSQLパーサから見ると同一となります。
     

	4つの引用符
	

関数本体内部の文字列リテラル内の単一引用符がある場合。
以下に例を示します。


a_output := a_output || '' AND name LIKE ''''foobar'''' AND xyz''



実際にa_outputに追加される値は、 AND name LIKE 'foobar' AND xyzです。
     


ドル引用符を用いる時は、次のように記述します。


a_output := a_output || $$ AND name LIKE 'foobar' AND xyz$$



なお、ドル引用符の区切り文字は$$だけとは限らないことに注意してください。
     

	6つの引用符
	

関数本体内部の文字列内の単一引用符が、文字列定数の末尾にある場合。
以下に例を示します。


a_output := a_output || '' AND name LIKE ''''foobar''''''



実際にa_outputに追加される値は、 AND name LIKE 'foobar'です。
     


ドル引用符を用いる時は、次のようになります。


a_output := a_output || $$ AND name LIKE 'foobar'$$


     

	10個の引用符
	

文字列定数内に 2つの単一引用符を持たせたい場合（これで8個の単一引用符になり）、かつ、この文字列定数の末尾にある場合（これで2個追加されます）。
おそらく、他の関数を生成する関数を作成する場合（例41.10「他の関数を生成するPL/SQLをPL/pgSQLに移植」）のみにこれが必要になるでしょう。
以下に例を示します。


a_output := a_output || '' if v_'' ||
    referrer_keys.kind || '' like ''''''''''
    || referrer_keys.key_string || ''''''''''
    then return ''''''  || referrer_keys.referrer_type
    || ''''''; end if;'';



a_outputの値は以下のようになります。


if v_... like ''...'' then return ''...''; end if;


     


ドル引用符を用いる時は、次のようになります。


a_output := a_output || $$ if v_$$ || referrer_keys.kind || $$ like '$$
    || referrer_keys.key_string || $$'
    then return '$$  || referrer_keys.referrer_type
    || $$'; end if;$$;



ここで単一引用符は使用前に再評価されるため、a_output内部だけで必要であると仮定します。
     




コンパイル時と実行時の付加的チェック





単純でありふれた問題が有害となる前の実例を発見するユーザを助けるためPL/PgSQLは付加的checksを提供します。
可能かどうかは設定に依存しますが、関数のコンパイルのときWARNINGまたはERRORを省略して使用できます。
WARNINGを指定された関数は、それ以上のメッセージを生成しないで実行できます。
したがって、分離された開発環境でテストを実行できます。
   


開発環境やテスト環境では、plpgsql.extra_warningsやplpgsql.extra_errorsを適切に"all"に設定することを勧めます。
   


この付加的チェックでは、設定変数plpgsql.extra_warningsを警告のためにplpgsql.extra_errorsをエラーのために使用できます。
どちらも、カンマで区切ったチェックリストまたは"none"または"all"と設定できます。
デフォルトは"none"です。
現在指定できるチェックの一覧は以下の通りです。
    
	shadowed_variables
	

宣言が以前に定義した変数を隠すかどうかチェックする。
       

	strict_multi_assignment
	

PL/pgSQLコマンドのいくつかは、SELECT INTOのように、一度に2つ以上の変数に値を割り当てることを許しています。
PL/pgSQLは、ない値に対してはNULLを使い、余分な変数は無視しますが、通常は対象の変数の数と元の変数の数は一致するべきです。
このチェックを有効にすると、PL/pgSQLは対象の変数の数と元の変数の数が異なる場合には必ずWARNINGまたはERRORを発生するようになります。
       

	too_many_rows
	

このチェックを有効にすると、PL/pgSQLはINTO句が使われている場合、与えられた問い合わせが2行以上の行を返すかどうか確認します。
INTO文は必ず1行に対してのみ使われますので、複数の行を返す問い合わせがあるということは一般に非効率かつ/または非決定論的であり、そのためおそらくエラーです。
       






以下の例では、plpgsql.extra_warningsをshadowed_variablesに設定した結果を示します。


SET plpgsql.extra_warnings TO 'shadowed_variables';

CREATE FUNCTION foo(f1 int) RETURNS int AS $$
DECLARE
f1 int;
BEGIN
RETURN f1;
END;
$$ LANGUAGE plpgsql;
WARNING:  variable "f1" shadows a previously defined variable
LINE 3: f1 int;
        ^
CREATE FUNCTION



以下の例では、plpgsql.extra_warningsをstrict_multi_assignmentに設定した結果を示します。


SET plpgsql.extra_warnings TO 'strict_multi_assignment';

CREATE OR REPLACE FUNCTION public.foo()
 RETURNS void
 LANGUAGE plpgsql
AS $$
DECLARE
  x int;
  y int;
BEGIN
  SELECT 1 INTO x, y;
  SELECT 1, 2 INTO x, y;
  SELECT 1, 2, 3 INTO x, y;
END;
$$;

SELECT foo();
WARNING:  number of source and target fields in assignment does not match
DETAIL:  strict_multi_assignment check of extra_warnings is active.
HINT:  Make sure the query returns the exact list of columns.
WARNING:  number of source and target fields in assignment does not match
DETAIL:  strict_multi_assignment check of extra_warnings is active.
HINT:  Make sure the query returns the exact list of columns.

 foo
-----

(1 row)


   


Oracle™ PL/SQLからの移植





本節ではOracle®からPostgreSQL™へアプリケーションを移植する開発者の手助けとなるように、PostgreSQL™のPL/pgSQL言語とOracleのPL/SQL言語の違いについて説明します。
  


PL/pgSQLは多くの点でPL/SQLに似ています。
それはブロックで構成されていて、厳格な言語であり、全ての変数は宣言されなければならない点です。
代入やループ、条件分岐も同様です。
PL/SQLからPL/pgSQLに移植する際に注意しなければならない、主な違いを以下に示します。

    
	

SQLコマンド内に使用された名前が、コマンドで使われているテーブルの列名または関数の変数への参照のどちらにもなり得る場合、PL/SQLは列名として処理します。
デフォルトではPL/pgSQLは名前が曖昧であるというエラーを発生します。
「変数置換」の説明のようにplpgsql.variable_conflict = use_columnと指定することで、この振舞いをPL/SQLに合わせることができます。
初期段階において、そのようなあいまいさを避けることが最善です。
しかしこの動作に依存するコードの量が多いものを移植しなければならない場合、variable_conflictを使用することが最善の解法かもしれません。
      

	

PostgreSQL™の関数本体は文字列リテラルとして書かなければなりません。
したがって、関数本体内部でドル引用符を使用するか、単一引用符をエスケープする必要があります。
（「引用符の扱い」を参照してください。）
      

	

データ型名はしばしば翻訳が必要です。
たとえば、Oracleでは文字列の値はよくvarchar2型と宣言されますが、それは非標準SQL型です。
PostgreSQL™では、その代わりにvarchar型またはtext型を使ってください。
同様に、number型はnumeric型で置き換えるか、より適切なものがあるなら他の数値データ型を使ってください。
      

	

パッケージの代わりに、スキーマを使用して関数群をグループにまとめてください。
      

	

パッケージがないため、パッケージレベルの変数もありません。
これは幾分か厄介なことです。
代わって、セッションごとの状態を一時テーブル内部に保存できます。
      

	

REVERSEを付けた整数FORループの処理は異なります。
PL/SQLでは最後の数から最初の数へ減少しながら処理しますが、PL/pgSQLでは最初の数から最後の数へ減少しながら処理します。
移植において、ループの両端となる最初の数と最後の数を交換する必要があります。
この非互換性は不幸なことですが、変わりそうもありません。
（「整数FORループ」を見てください。）
      

	

問い合わせ上のFORループも（カーソルを除いて）異なって処理されます。
対象の変数は宣言されなければなりませんが、PL/SQLは常にそれらを暗黙的に宣言します。
この優位点は変数値をループを抜けてからでも依然としてアクセスできることです。
      

	

カーソル変数の使用に対する様々な表記上の違いがあります。
      




   
移植例





例41.9「簡単な関数のPL/SQLからPL/pgSQLへの移植」に簡単な関数のPL/SQLからPL/pgSQLへの移植方法を示します。
   
例41.9 簡単な関数のPL/SQLからPL/pgSQLへの移植


以下はOracle™ PL/SQLの関数です。


CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar2,
                                                  v_version varchar2)
RETURN varchar2 IS
BEGIN
    IF v_version IS NULL THEN
        RETURN v_name;
    END IF;
    RETURN v_name || '/' || v_version;
END;
/
show errors;


    


この関数を通じて、PL/pgSQLとの違いを見てみましょう。

     
	

型名varchar2は、varcharまたはtextに変えなければなりません。
この節の例ではvarcharを使いますが、文字列を特定の長さに制限する必要がないのであればtextの方がたいていは良い選択です。
       

	

関数プロトタイプ内のRETURNキーワード（関数本体ではありません）はPostgreSQL™ではRETURNSになります。
同様にISはASになります。
PL/pgSQL以外の言語でも関数を記述できるため、LANGUAGE句が必要となります。
       

	

PostgreSQL™は関数本体を文字列リテラルと考えます。
したがって、それを囲むドル引用符または他の引用符が必要です。
これは/で終了するOracleの方法の代替です。
       

	

PostgreSQL™にはshow errorsコマンドはありません。
また、エラーが自動的に表示されるため、必要ありません。
       




    


それではPostgreSQL™に移植されると、この関数がどのようになるか見てみましょう。



CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar,
                                                  v_version varchar)
RETURNS varchar AS $$
BEGIN
    IF v_version IS NULL THEN
        RETURN v_name;
    END IF;
    RETURN v_name || '/' || v_version;
END;
$$ LANGUAGE plpgsql;


    




例41.10「他の関数を生成するPL/SQLをPL/pgSQLに移植」は、他の関数を生成する関数を移植する方法、ならびに、その結果発生する引用符問題を扱う方法を示します。
   
例41.10 他の関数を生成するPL/SQLをPL/pgSQLに移植


以下の手続きは、SELECT文からの行を取って、効率のためにIF文で結果を巨大な関数に埋め込んでいます。
    


以下はOracle版です。


CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc IS
    CURSOR referrer_keys IS
        SELECT * FROM cs_referrer_keys
        ORDER BY try_order;
    func_cmd VARCHAR(4000);
BEGIN
    func_cmd := 'CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host IN VARCHAR2,
                 v_domain IN VARCHAR2, v_url IN VARCHAR2) RETURN VARCHAR2 IS BEGIN';

    FOR referrer_key IN referrer_keys LOOP
        func_cmd := func_cmd ||
          ' IF v_' || referrer_key.kind
          || ' LIKE ''' || referrer_key.key_string
          || ''' THEN RETURN ''' || referrer_key.referrer_type
          || '''; END IF;';
    END LOOP;

    func_cmd := func_cmd || ' RETURN NULL; END;';

    EXECUTE IMMEDIATE func_cmd;
END;
/
show errors;


    


この関数をPostgreSQL™で記述するとこうなるでしょう。


CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc() AS $func$
DECLARE
    referrer_keys CURSOR IS
        SELECT * FROM cs_referrer_keys
        ORDER BY try_order;
    func_body text;
    func_cmd text;
BEGIN
    func_body := 'BEGIN';

    FOR referrer_key IN referrer_keys LOOP
        func_body := func_body ||
          ' IF v_' || referrer_key.kind
          || ' LIKE ' || quote_literal(referrer_key.key_string)
          || ' THEN RETURN ' || quote_literal(referrer_key.referrer_type)
          || '; END IF;' ;
    END LOOP;

    func_body := func_body || ' RETURN NULL; END;';

    func_cmd :=
      'CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host varchar,
                                                        v_domain varchar,
                                                        v_url varchar)
        RETURNS varchar AS '
      || quote_literal(func_body)
      || ' LANGUAGE plpgsql;' ;

    EXECUTE func_cmd;
END;
$func$ LANGUAGE plpgsql;



関数本体を別途作成し、それをquote_literalに渡して本体内の引用符を二重化する方法に注目してください。
新規の関数を定義する時ドル引用符の使用が安全とは限らないため、この方法が必要となります。
それはreferrer_key.key_stringの領域に、どのような文字列が書き込まれているか不明だからです。
（referrer_key.kindは常に信用できるhostかdomainかurlであると仮定しますが、どんなものでもreferrer_key.key_stringになり得るので、ドル記号を含む可能性があります。）
この関数はOracle版より実際に改善されています。
それはreferrer_key.key_stringまたはreferrer_key.referrer_typeが引用符を含む時、おかしなコードを生成しないからです。
    




例41.11「文字列操作を行い、OUTパラメータを持つPL/SQLプロシージャのPL/pgSQLへの移植」は、OUTパラメータを持ち、文字列操作を行う関数の移植方法を示します。
PostgreSQL™には組み込みのinstr関数はありませんが、他の関数を組み合わせることで作成できます。
「付録」に、移植を簡略化できるようにinstrのPL/pgSQLによる実装を示します。
   
例41.11 文字列操作を行い、OUTパラメータを持つPL/SQLプロシージャのPL/pgSQLへの移植


以下のOracle™ PL/SQLプロシージャは、URLを解析していくつかの要素（ホスト、パス、問い合わせ）を返します。
    


以下はOracle版です。


CREATE OR REPLACE PROCEDURE cs_parse_url(
    v_url IN VARCHAR2,

    v_host OUT VARCHAR2,  -- この値は戻されます
    v_path OUT VARCHAR2,  -- この値も戻されます
    v_query OUT VARCHAR2) -- この値も戻されます
IS
    a_pos1 INTEGER;
    a_pos2 INTEGER;
BEGIN
    v_host := NULL;
    v_path := NULL;
    v_query := NULL;
    a_pos1 := instr(v_url, '//');

    IF a_pos1 = 0 THEN
        RETURN;
    END IF;
    a_pos2 := instr(v_url, '/', a_pos1 + 2);
    IF a_pos2 = 0 THEN
        v_host := substr(v_url, a_pos1 + 2);
        v_path := '/';
        RETURN;
    END IF;

    v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
    a_pos1 := instr(v_url, '?', a_pos2 + 1);

    IF a_pos1 = 0 THEN
        v_path := substr(v_url, a_pos2);
        RETURN;
    END IF;

    v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
    v_query := substr(v_url, a_pos1 + 1);
END;
/
show errors;


    


PL/pgSQLへの可能な変換は以下のようになります。


CREATE OR REPLACE FUNCTION cs_parse_url(
    v_url IN VARCHAR,

    v_host OUT VARCHAR,  -- この値は戻されます
    v_path OUT VARCHAR,  -- この値も戻されます
    v_query OUT VARCHAR) -- この値も戻されます
AS $$
DECLARE
    a_pos1 INTEGER;
    a_pos2 INTEGER;
BEGIN
    v_host := NULL;
    v_path := NULL;
    v_query := NULL;
    a_pos1 := instr(v_url, '//');

    IF a_pos1 = 0 THEN
        RETURN;
    END IF;
    a_pos2 := instr(v_url, '/', a_pos1 + 2);
    IF a_pos2 = 0 THEN
        v_host := substr(v_url, a_pos1 + 2);
        v_path := '/';
        RETURN;
    END IF;

    v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
    a_pos1 := instr(v_url, '?', a_pos2 + 1);

    IF a_pos1 = 0 THEN
        v_path := substr(v_url, a_pos2);
        RETURN;
    END IF;

    v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
    v_query := substr(v_url, a_pos1 + 1);
END;
$$ LANGUAGE plpgsql;




この関数は以下のように使用できます。


SELECT * FROM cs_parse_url('http://foobar.com/query.cgi?baz');


    




例41.12「PL/SQLプロシージャのPL/pgSQLへの移植」は、Oracleに特化した多くの機能を使用したプロシージャの移植方法を示します。
   
例41.12 PL/SQLプロシージャのPL/pgSQLへの移植


以下はOracle版です。



CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id IN INTEGER) IS
    a_running_job_count INTEGER;
BEGIN
    LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

    SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

    IF a_running_job_count > 0 THEN

        COMMIT; -- ロックを解放
        raise_application_error(-20000,
                 'Unable to create a new job: a job is currently running.');
    END IF;

    DELETE FROM cs_active_job;
    INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

    BEGIN
        INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, now());
    EXCEPTION

        WHEN dup_val_on_index THEN NULL; -- 既存であっても問題なし
    END;
    COMMIT;
END;
/
show errors


   


それでは、このプロシージャをPL/pgSQLに移植することができた方法を見てみましょう。



CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id integer) AS $$
DECLARE
    a_running_job_count integer;
BEGIN
    LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

    SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

    IF a_running_job_count > 0 THEN

        COMMIT; -- ロックを解放
        RAISE EXCEPTION 'Unable to create a new job: a job is currently running'; -- [image: 1]
    END IF;

    DELETE FROM cs_active_job;
    INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

    BEGIN
        INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, now());
    EXCEPTION
        WHEN unique_violation THEN -- [image: 2]

            -- 既存であっても問題なし
    END;
    COMMIT;
END;
$$ LANGUAGE plpgsql;



    
	[image: 1] 
	

基本のRAISE exception_nameである場合は同様に操作できますが、RAISE構文はOracleにおける文とかなり異なります。
      

	[image: 2] 
	

PL/pgSQLがサポートする例外の名称は、Oracleと異なります。
提供する例外の名称は、はるかに広範囲です（付録A PostgreSQL™エラーコードを参照してください）。
今のところ、ユーザ定義の例外名称を宣言できません。
しかし代わりにユーザが選択したSQLSTATE値を返すことができます。
      




   



その他の注意事項





本節では、Oracle PL/SQL関数のPostgreSQL™への移植における、その他の注意事項を説明します。
   
例外後の暗黙的ロールバック





PL/pgSQLにおいてEXCEPTION句が例外を捕捉すると、BEGIN以降のそのブロックにおけるデータベースの変更が自動的にロールバックされます。
すなわち、Oracleで以下のプログラムと同等の処理が実行されます。



BEGIN
    SAVEPOINT s1;
    ... code here ...
EXCEPTION
    WHEN ... THEN
        ROLLBACK TO s1;
        ... code here ...
    WHEN ... THEN
        ROLLBACK TO s1;
        ... code here ...
END;




このような方式でSAVEPOINTとROLLBACK TOを使用したOracleのプロシージャの書き換えは簡単です。
単にSAVEPOINTとROLLBACK TOの処理を削除すればよいだけです。
これと異なった方式でSAVEPOINTとROLLBACK TOを使用したプロシージャの時は、それに応じた工夫が必要になると思われます。
    

EXECUTE





PL/pgSQLのEXECUTEはPL/SQL版とよく似ています。
しかし「動的コマンドの実行」で説明されているquote_literalとquote_identを使うことを覚えておかなければいけません。
これらの関数を使用しない限りEXECUTE ''SELECT * from $1'';という構文の動作には、信頼性がありません。
    

PL/pgSQL関数の最適化





PostgreSQL™には実行を最適化するために2つの関数生成修飾子があります。
「揮発性」（同じ引数が与えられた場合常に同じ結果を返すかどうか）と「厳密性」（引数のいずれかにNULLが含まれる場合NULLを返します）です。
詳細はCREATE FUNCTION(7)リファレンスページを参照してください。
    


これらの最適化属性を利用するためには、CREATE FUNCTION文を以下のようにします。



CREATE FUNCTION foo(...) RETURNS integer AS $$
...
$$ LANGUAGE plpgsql STRICT IMMUTABLE;


    


付録





本節には、移植作業を簡略化するために使用できる、Oracle互換のinstr関数のコードがあります。
   

--
-- instr functions that mimic Oracle's counterpart
-- Syntax: instr(string1, string2 [, n [, m]])
-- where [] denotes optional parameters.
-- Oracleのものと同じ動作をするinstr関数
-- 構文: instr(string1, string2 [, n [, m]])
-- ただし、[]は省略可能なパラメータ
--
-- Search string1, beginning at the nth character, for the mth occurrence
-- of string2.  If n is negative, search backwards, starting at the abs(n)'th
-- character from the end of string1.
-- If n is not passed, assume 1 (search starts at first character).
-- If m is not passed, assume 1 (find first occurrence).
-- Returns starting index of string2 in string1, or 0 if string2 is not found.
-- string1内のn番目の文字から始めて、m番目のstring2を探します。
-- nが負の場合、string1の終わりからabs(n)番目の文字から始めて、逆方向に検索します。
-- nが渡されなかった場合は、1とみなします（最初の文字から探し始めます）。
-- mが渡されなかった場合は、1とみなします（最初に一致するものを見つけます）。
-- string1内のstring2の開始位置を、string2が見つからなければ0を返します。
--

CREATE FUNCTION instr(varchar, varchar) RETURNS integer AS $$
BEGIN
    RETURN instr($1, $2, 1);
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;


CREATE FUNCTION instr(string varchar, string_to_search_for varchar,
                      beg_index integer)
RETURNS integer AS $$
DECLARE
    pos integer NOT NULL DEFAULT 0;
    temp_str varchar;
    beg integer;
    length integer;
    ss_length integer;
BEGIN
    IF beg_index > 0 THEN
        temp_str := substring(string FROM beg_index);
        pos := position(string_to_search_for IN temp_str);

        IF pos = 0 THEN
            RETURN 0;
        ELSE
            RETURN pos + beg_index - 1;
        END IF;
    ELSIF beg_index < 0 THEN
        ss_length := char_length(string_to_search_for);
        length := char_length(string);
        beg := length + 1 + beg_index;

        WHILE beg > 0 LOOP
            temp_str := substring(string FROM beg FOR ss_length);
            IF string_to_search_for = temp_str THEN
                RETURN beg;
            END IF;

            beg := beg - 1;
        END LOOP;

        RETURN 0;
    ELSE
        RETURN 0;
    END IF;
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;


CREATE FUNCTION instr(string varchar, string_to_search_for varchar,
                      beg_index integer, occur_index integer)
RETURNS integer AS $$
DECLARE
    pos integer NOT NULL DEFAULT 0;
    occur_number integer NOT NULL DEFAULT 0;
    temp_str varchar;
    beg integer;
    i integer;
    length integer;
    ss_length integer;
BEGIN
    IF occur_index <= 0 THEN
        RAISE 'argument ''%'' is out of range', occur_index
          USING ERRCODE = '22003';
    END IF;

    IF beg_index > 0 THEN
        beg := beg_index - 1;
        FOR i IN 1..occur_index LOOP
            temp_str := substring(string FROM beg + 1);
            pos := position(string_to_search_for IN temp_str);
            IF pos = 0 THEN
                RETURN 0;
            END IF;
            beg := beg + pos;
        END LOOP;

        RETURN beg;
    ELSIF beg_index < 0 THEN
        ss_length := char_length(string_to_search_for);
        length := char_length(string);
        beg := length + 1 + beg_index;

        WHILE beg > 0 LOOP
            temp_str := substring(string FROM beg FOR ss_length);
            IF string_to_search_for = temp_str THEN
                occur_number := occur_number + 1;
                IF occur_number = occur_index THEN
                    RETURN beg;
                END IF;
            END IF;

            beg := beg - 1;
        END LOOP;

        RETURN 0;
    ELSE
        RETURN 0;
    END IF;
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;




第42章 PL/Tcl — Tcl手続き言語





PL/Tclとは、PostgreSQL™データベースシステムにロード可能な手続き言語で、Tcl言語を使ったPostgreSQL™関数やプロシージャを作成できます。
  
概要





PL/Tclは、いくつか制限がありますが、C言語で書かれた関数と同じような能力を提供します。
さらに、Tclで利用できる、強力な文字列処理ライブラリを持っています。
   


すべてがTclインタプリタの安全なコンテキスト内で実行されるという制約はやむを得ないものですが、逆に良い制約でもあります。
安全なTclの制約付きのコマンドセットに、SPIを使ってデータベースにアクセスするコマンドと、elog()を使ってメッセージを処理するためのコマンドなどの、わずかなコマンドが追加されています。
C関数では可能ですが、PL/Tclにはデータベースサーバ内部にアクセスする方法や、PostgreSQL™サーバプロセスの権限によるOSレベルのアクセスを行う方法はありません。
この結果、非特権データベースユーザがこの言語を信頼して使用することができます。
つまり、無制限の権限は与えられません。
   


その他の注意すべき実装上の制約として、Tcl関数を使用して新しいデータ型用の入出力関数を作成することはできません。
   


例えば、メールを送るTcl関数が必要な場合など、安全なTclに制約されないTcl関数を書くことが望ましい場合があります。
このような場合、PL/TclU（信頼されないTcl）というPL/Tclの亜種を使用します。
これは、完全なTclインタプリタが使用されているという点以外の違いはありません。
PL/TclUを使用する場合は、信頼されていない手続き言語としてインストールする必要があります。
そうすることによって、データベースのスーパーユーザのみが関数を作成することができるようになります。
PL/TclU関数ではデータベース管理者としてログインしたユーザができるあらゆることの実行が可能となるので、作成する際に、この関数が意図された以外のことを行わないように細心の注意を払う必要があります。
   


インストール時にTclサポートの設定が指定されていれば、PL/TclとPL/TclU呼び出しハンドラの共有オブジェクトコードは自動的に作成され、PostgreSQL™のライブラリディレクトリにインストールされます。
PL/TclまたはPL/TclUの一方あるいは両方を特定のデータベースにインストールしたい場合は、CREATE EXTENSIONコマンドを使用してください。
例えば、CREATE EXTENSION pltclあるいはCREATE EXTENSION pltcluです。
   


PL/Tcl関数と引数





PL/Tcl言語で関数を作成するには、以下の標準的なCREATE FUNCTION(7)構文を使用してください。



CREATE FUNCTION funcname (argument-types) RETURNS return-type AS $$

    # PL/Tcl関数本体
$$ LANGUAGE pltcl;




PL/TclUでも、言語にpltcluを指定しなければならない点以外は同様です。
    


関数本体は、単なる小さなTclスクリプトです。
関数が呼び出された時、引数の値はTclスクリプトに1 ... nという名前の変数として渡されます。
結果は通常通りreturn文を使用してTclのコードから返されます。
プロシージャでは、Tclコードからの戻り値は無視されます。
    


例えば、2つの整数のうち大きな方を返す関数は以下のように定義できます。



CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
    if {$1 > $2} {return $1}
    return $2
$$ LANGUAGE pltcl STRICT;




STRICT句に注意してください。
これによりプログラマは、入力にNULL値が与えられた場合を検討する手間を省くことができます。
NULLが渡された場合、関数はまったく呼び出されず、単にNULLという結果が自動的に返されます。
    


厳密（strict）でない関数では、引数の実際の値がNULLである場合、対応する$n変数は空文字列に設定されます。
ある引数がNULLかどうかを検出するためには、argisnull関数を使用してください。
例えば、引数の片方がNULL、もう片方が非NULLであって、NULLではなく、非NULLの引数の方を返すtcl_maxを考えると、以下のようになります。



CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
    if {[argisnull 1]} {
        if {[argisnull 2]} { return_null }
        return $2
    }
    if {[argisnull 2]} { return $1 }
    if {$1 > $2} {return $1}
    return $2
$$ LANGUAGE pltcl;


    


上で示した通り、NULL値をPL/Tcl関数から返すためには、return_nullを実行してください。
これは、関数が厳密かどうかに関係なく、実行することができます。
    


複合型の引数は、Tcl配列として関数に渡されます。
配列の要素名は複合型の属性名です。
渡された行の属性がNULL値の場合、その属性は配列内には現れません。
以下に例を示します。



CREATE TABLE employee (
    name text,
    salary integer,
    age integer
);

CREATE FUNCTION overpaid(employee) RETURNS boolean AS $$
    if {200000.0 < $1(salary)} {
        return "t"
    }
    if {$1(age) < 30 && 100000.0 < $1(salary)} {
        return "t"
    }
    return "f"
$$ LANGUAGE pltcl;


    


PL/Tcl関数は複合型の結果を返すこともできます。
このためには、Tclコードは期待する結果型と一致する列の名前/値のペアのリストを返さなければなりません。
そのリストで省略された列名は結果がNULLになり、期待されない列名があるとエラーが生じます。
例を示します。



CREATE FUNCTION square_cube(in int, out squared int, out cubed int) AS $$
    return [list squared [expr {$1 * $1}] cubed [expr {$1 * $1 * $1}]]
$$ LANGUAGE pltcl;


    


プロシージャの出力引数は同様に返されます。以下に例を示します。



CREATE PROCEDURE tcl_triple(INOUT a integer, INOUT b integer) AS $$
    return [list a [expr {$1 * 3}] b [expr {$2 * 3}]]
$$ LANGUAGE pltcl;

CALL tcl_triple(5, 10);


    
ヒント


array get Tclコマンドを使って、希望するタプルの配列表現から結果リストを作成できます。
以下に例を示します。



CREATE FUNCTION raise_pay(employee, delta int) RETURNS employee AS $$
    set 1(salary) [expr {$1(salary) + $2}]
    return [array get 1]
$$ LANGUAGE pltcl;


     



PL/Tcl関数は集合を返すことができます。
このためにはTclコードで、return_nextを返却する行ごとに呼び出します。
スカラ値を返却する場合は適切な値を、複合型を返す場合は列の名前/値ペアのリストを渡します。
スカラ型を返す例を示します。



CREATE FUNCTION sequence(int, int) RETURNS SETOF int AS $$
    for {set i $1} {$i < $2} {incr i} {
        return_next $i
    }
$$ LANGUAGE pltcl;




複合型を返す例を示します。



CREATE FUNCTION table_of_squares(int, int) RETURNS TABLE (x int, x2 int) AS $$
    for {set i $1} {$i < $2} {incr i} {
        return_next [list x $i x2 [expr {$i * $i}]]
    }
$$ LANGUAGE pltcl;


    

PL/Tclにおけるデータの値





PL/Tcl関数コードに与えられる引数の値は、単に、テキスト形式（SELECT文によりそれを表示した場合と同じ形式）に変換された入力引数です。
逆に、returnコマンドとreturn_nextコマンドは、その関数宣言における戻り値の型、あるいは複合型の戻り値型の入力書式として受け付けることができる、任意の文字列を受け付けます。
    

PL/Tclにおけるグローバルデータ





ある関数の複数の呼び出し間で保持される、もしくは、異なる関数間で共有されるような、いくつかのグローバルデータを持つことが有意な場合があります。
これはPL/Tclで簡単に実現できますが、理解する必要がある制限がいくつかあります。
    


セキュリティ上の理由のため、PL/Tclは、任意のSQLロールによって呼び出された関数をそのロール用の別のTclインタプリタで実行します。
これにより、あるユーザの事故または悪意によって他のユーザのPL/Tcl関数の動作が干渉されてしまうことを防ぎます。
こうしたインタプリタはそれぞれ独自の「グローバル」なTcl変数を持ちます。
したがって、同じSQLロールにより実行されていれば、２つのPL/Tcl関数は同じグローバル変数を共有します。
単一セッション内で（SECURITY DEFINER関数またはSET ROLEなどを通して）複数のSQLロールでコードを実行するアプリケーションでは、PL/Tcl関数が確実にデータを共有できるように明示的な処理を行う必要があるかもしれません。
このためには、通信しなければならない関数が同一ユーザで所有されていること、および、それがSECURITY DEFINERとして印がついていることを確実にしてください。
当然ながら、こうした関数が意図しない動作を行うために使われることのないよう注意しなければなりません。
    


セッション内で使用されるすべてのPL/TclU関数は、当然ながらPL/Tcl関数とは別のインタプリタですが、同一のTclインタプリタ内で実行されます。
このためPL/TclU関数間ではグローバルデータは自動的に共有されます。
すべてのPL/TclU関数は同じ信頼レベル、すなわちデータベーススーパーユーザで実行されますので、これはセキュリティ上危険とはみなされません。
    


PL/Tcl関数が予期しない相互作用に巻き込まれないようにするために、upvarコマンドを使用することによって、各関数でアクセスできるグローバルな配列を作成することができます。
この変数のグローバル名は関数の内部名で、ローカル名はGDとなります。
関数の永続局所データではGDを使用することを推奨します。
複数の関数で共用させる予定の値に対してのみ、通常のTclのグローバル変数を使用してください。
（GD配列が特定のインタプリタ内のみでグローバルであることに注意してください。
このため、これらは上記のセキュリティ制限を迂回することはありません。）
    


後述のspi_execpの例の中にGDの使用例があります。
    

PL/Tclからのデータベースアクセス





この節では、通常のTclの規約に従い、構文の概要でオプションの要素を示すのに角括弧ではなく疑問符を使います。
下記のコマンドは、PL/Tcl関数内からデータベースアクセスを行う時に使用できるコマンドです。

    
	spi_exec [-count n] [-array name] command [loop-body]
	

文字列として与えられたSQL問い合わせを実行します。
コマンド内のエラーは、エラーの発生となります。
さもなければ、このspi_execの戻り値はコマンドによって処理（選択、挿入、更新、削除）された行数、または、コマンドがユーティリティ文の場合はゼロとなります。
さらに、コマンドがSELECT文の場合、選択された列の値は以下のようにTclの変数に格納されます。
       


オプションの-count値は、spi_execに対し、問い合わせにLIMIT句が含まれているかのように、n行を取得すると停止するよう指示します。
nが0の場合、問い合わせは完了するまで実行されます。これは、-countが省略された場合と同じです。
       


コマンドがSELECT文の場合、その結果得られた列の値は、列名にちなんだ名前のTcl変数に格納されます。
-arrayオプションが付与された場合は、列の値は指定された名前の連想配列の要素に格納され、その配列のインデックスとして列名が使用されます。
加えて、結果内での現在の行番号（ゼロから数えます）が「.tupno」という名前の配列要素に格納されます。ただし、その名前が結果内の列名として使われていない場合に限られます。
       


問い合わせ文がSELECT文、かつ、loop-bodyスクリプトが付与されなかった場合、結果のうち最初の行だけがTclの変数または配列要素に格納されます。
他にも行があったとしても、それらは無視されます。
問い合わせが行を返さなかった場合は、変数への格納は発生しません。
（spi_execの戻り値を検査することで、これを検出することができます。）
以下に例を示します。


spi_exec "SELECT count(*) AS cnt FROM pg_proc"



これは、$cnt Tcl変数を、pg_procシステムカタログの行数に設定します。
       


loop-bodyオプション引数が付与された場合、それは、問い合わせの結果内の行それぞれに対して一度だけ実行される小さなTclスクリプトです。
（loop-bodyはSELECT以外の問い合わせで付与された場合は無視されます。）
処理中の行の列値は、各繰り返しの前にTclの変数または配列要素に格納されます。
以下に例を示します。


spi_exec -array C "SELECT * FROM pg_class" {
    elog DEBUG "have table $C(relname)"
}



これは、pg_classの各行に対してログメッセージを出力します。
この機能は他のTclの繰り返し構文でも同様に動作します。
特にループ本体内のcontinueとbreakは通常通り動作します。
       


問い合わせの結果、列がNULLであった場合、対象となる変数は代入されずに、「未設定状態」になります。
       

	spi_prepare query typelist
	

後の実行のために問い合わせ計画の準備、保存を行います。
保存された計画は現在のセッションが終了するまで保持されます。

       


問い合わせはパラメータ、つまり、計画が実際に実行される時に常に与えられる値用のプレースホルダを持つことができます。
問い合わせ文字列の中では、$1 ... $nというシンボルを使用して引数を参照してください。
問い合わせがパラメータを使用する場合、Tclのリストとしてパラメータの型名を指定する必要があります。
（パラメータを使用しない場合はtypelistには空のリストを指定してください。）
       


spi_prepareの戻り値は問い合わせIDです。
このIDは後にspi_execpを呼び出す時に使用されます。
使用例についてはspi_execpを参照してください。
       

	spi_execp [-count n] [-array name] [-nulls string] queryid [value-list] [loop-body]
	

spi_prepareにより事前に準備された問い合わせを実行します。
queryidはspi_prepareにより返されたIDです。
その問い合わせがパラメータを参照する場合、value-listを与える必要があります。
これは、そのパラメータの実際の値を持つTclのリストです。
このリストの長さは、事前にspi_prepareで指定した引数型のリストの長さと同じでなければなりません。
問い合わせにパラメータがない場合は、value-listを省略してください。
       


-nullsオプションの値は、空白文字と'n'という文字からなる文字列で、spi_execpに対し、どの引数がNULL値かを示します。
指定された場合、その文字列の長さはvalue-listの長さと正確に一致していなければなりません。
指定されない場合は、すべてのパラメータの値は非NULLです。
       


問い合わせとそのパラメータをどこで指定するのかという点を除き、spi_execpはspi_execと同様に動作します。
-count、-array、loop-bodyオプションも、そして、結果の値も同じです。
       


ここで、プリペアド計画を使用した、PL/Tcl関数の例を示します。



CREATE FUNCTION t1_count(integer, integer) RETURNS integer AS $$
    if {![ info exists GD(plan) ]} {

        # 最初の呼び出しでは保存する計画を準備します。
        set GD(plan) [ spi_prepare \
                "SELECT count(*) AS cnt FROM t1 WHERE num >= \$1 AND num <= \$2" \
                [ list int4 int4 ] ]
    }
    spi_execp -count 1 $GD(plan) [ list $1 $2 ]
    return $cnt
$$ LANGUAGE pltcl;




spi_prepareに与える問い合わせ文字列の内側では、$n記号が確実にそのままspi_prepareに渡され、Tcl変数の代入による置き換えが起こらないようにバックスラッシュが必要です。

       

	subtransaction command
	

commandに含まれるTclスクリプトが、SQLサブトランザクション中で実行されます。
スクリプトがエラーを返すと、上位のTclコードにエラーを返す前に、そのサブトランザクションをロールバックします。
更なる詳細と使用例については「PL/Tclにおける明示的サブトランザクション」を参照してください。
       

	quote string
	

指定された文字列内のすべての単一引用符とバックスラッシュ文字を二重化します。
spi_execやspi_prepareで与えられたSQL問い合わせに挿入される予定の文字列を安全に引用符付けするために、これを使用することができます。
例えば、以下のような問い合わせ文字列を考えます。



"SELECT '$val' AS ret"




ここで、val Tcl変数にdoesn'tが実際に含まれているものとします。
これは最終的に以下の問い合わせ文字列になってしまいます。



SELECT 'doesn't' AS ret




これでは、spi_execまたはspi_prepareの実行中に解析エラーが発生してしまいます。
正しく稼働させるには、実行したい問い合わせは以下のようにしなければなりません。



SELECT 'doesn''t' AS ret




これは、PL/Tclでは以下により形成することができます。



"SELECT '[ quote $val ]' AS ret"




spi_execpの持つ1つの利点は、パラメータはSQL問い合わせ文字列の一部として解析されることがありませんので、このようにパラメータの値を引用符付けする必要がないことです。
       

	
       elog level msg
       
       
      
	

ログまたはエラーメッセージを発行します。
使用できるレベルは、DEBUG、LOG、INFO、NOTICE、WARNING、ERROR、およびFATALです。
ERRORはエラー状態を発生します。
その上位レベルのTclコードで例外が捕捉されなければ、このエラーは問い合わせ呼び出し処理の外部へ伝播され、その結果、現在のトランザクションもしくはサブトランザクションはアボートされます。
これは実質的にTclのerrorコマンドと同一です。
FATALはトランザクションをアボートし、現在のセッションを停止させます。
（PL/Tcl関数においてこのエラーレベルを使用すべき理由はおそらく存在しませんが、完全性のために用意されています。）
他のレベルは、異なる重要度のメッセージを生成するだけです。
log_min_messagesとclient_min_messages設定パラメータは、特定の重要度のメッセージをクライアントに報告するか、サーバのログに書き出すか、あるいはその両方かを制御します。
詳細については19章サーバ設定および「PL/Tclのエラー処理」を参照してください。
       




    

PL/Tclのトリガ関数





トリガ関数をPL/Tclで作成することができます。
PostgreSQL™では、トリガとして呼び出される関数は、trigger型の戻り値を返す引数のない関数として宣言する必要があります。
    


トリガマネージャからの情報は、以下の変数内に格納されて関数本体に渡されます。

     
	$TG_name
	

CREATE TRIGGER文によるトリガ名。
        

	$TG_relid
	

そのトリガ関数の呼び出しを発生させたテーブルのオブジェクトID。
        

	$TG_table_name
	

そのトリガ関数の呼び出しを発生させたテーブルの名前。
        

	$TG_table_schema
	

そのトリガプロシージャ呼び出しが発生したテーブルのスキーマ。
        

	$TG_relatts
	

先頭に空のリスト要素を持つ、テーブルの列名のTclリスト。
Tclのlsearchコマンドを使用して、そのリストから列名を検索することで、最初の列を1とした要素番号が返されます。
これは、PostgreSQL™での通常の列の番号付けと同じです。
（また空のリスト要素は、右側の列の属性番号を正しくするために、削除された列の位置に現れます。）
        

	$TG_when
	

トリガイベントの種類に応じた、BEFORE、AFTERまたはINSTEAD OFという文字列。
        

	$TG_level
	

トリガイベントの種類に応じた、ROWまたはSTATEMENTという文字列。
        

	$TG_op
	

トリガイベントの種類に応じた、INSERT、UPDATE、DELETE、またはTRUNCATEの文字列。
        

	$NEW
	

INSERT/UPDATE動作の場合は新しいテーブル行の値を、DELETE動作の場合は空を持つ連想配列。
配列のインデックスは列名です。
NULLの列はこの配列内には現れません。
文レベルのトリガに対しては設定されません。
        

	$OLD
	

UPDATE/DELETE動作の場合は古いテーブル行の値を、INSERT動作の場合は空を持つ連想配列。
配列のインデックスは列名です。
NULLの列はこの配列内には現れません。
文レベルのトリガに対しては設定されません。
        

	$args
	

CREATE TRIGGER文で指定された、関数への引数のTclリスト。
この引数は、関数本体から$1 ... $nとしてもアクセスすることができます。
        




    


トリガ関数からの戻り値は、OKという文字列、SKIPという文字列、列名/値の組のリスト、の内の1つを取ることができます。
戻り値がOKの場合、トリガを発行した操作（INSERT/UPDATE/DELETE）は正常に処理されます。
SKIPはトリガマネージャにこの行に対する操作を何も出力せずに中止するように通知します。
リストが返された場合は、PL/Tclに対し、変更した行をトリガマネージャに返すことを通知します。変更行の内容はリスト内の列名と値により指定されます。
リストで言及されなかった列は全てNULLが置かれます。
変更された行を返すことは、$NEW内で与えられる行ではなく変更された行が挿入される、行レベルのBEFORE INSERTまたはUPDATEトリガ、または、返される行がINSERT RETURNINGおよびUPDATE RETURNING句の元データとして使われる、行レベルのINSTEAD OF INSERTまたはUPDATEトリガでのみ有意です。
行レベルのBEFORE DELETEまたはINSTEAD OF DELETEトリガでは、変更された行が返されることがOKが返されるのと同じ効果を持ち、その操作は処理されます。
この他の種類のトリガでは戻り値は無視されます。
    
ヒント


結果リストはarray get Tclコマンドによる変更されたタプルの配列表現から作ることができます。
     



ここで、テーブル内の整数値としてその行に対する更新数を記録させる、小さめのトリガプロシージャの例を示します。
新規の行が挿入された場合は、その値はゼロに初期化され、その後の各更新操作時に1が加算されます。



CREATE FUNCTION trigfunc_modcount() RETURNS trigger AS $$
    switch $TG_op {
        INSERT {
            set NEW($1) 0
        }
        UPDATE {
            set NEW($1) $OLD($1)
            incr NEW($1)
        }
        default {
            return OK
        }
    }
    return [array get NEW]
$$ LANGUAGE pltcl;

CREATE TABLE mytab (num integer, description text, modcnt integer);

CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
    FOR EACH ROW EXECUTE FUNCTION trigfunc_modcount('modcnt');




トリガ関数自身は列名を認識していない点に注目してください。
これはトリガの引数として与えられます。
これにより、このトリガ関数を別のテーブルで再利用することができます。
    

PL/Tclにおけるイベントトリガ関数





イベントトリガ関数をPL/Tclで作成することができます。
PostgreSQL™では、イベントトリガとして呼び出される関数は、event_trigger型の戻り値を返す引数のない関数として宣言する必要があります。
    


トリガマネージャからの情報は、以下の変数内に格納されて関数本体に渡されます。

     
	$TG_event
	

トリガが発行されたイベント名
        

	$TG_tag
	

トリガが発行されたコマンドタグ
        




    


トリガ関数の戻り値は無視されます。
    


サポートするコマンドが実行される度に、単にNOTICEメッセージを発行するイベントトリガ関数の例を、以下に示します。



CREATE OR REPLACE FUNCTION tclsnitch() RETURNS event_trigger AS $$
  elog NOTICE "tclsnitch: $TG_event $TG_tag"
$$ LANGUAGE pltcl;

CREATE EVENT TRIGGER tcl_a_snitch ON ddl_command_start EXECUTE FUNCTION tclsnitch();


    

PL/Tclのエラー処理





PL/Tcl関数中の、あるいはPL/Tcl関数から呼ばれるTclコードは、無効な演算の実行により、あるいはTclのerrorコマンドやPL/Tclのelogコマンドを使ってエラーを生成することにより、エラーとなることがありえます。
これらエラーはTclのcatchコマンドを使ってTcl内で捕捉することができます。
あるエラーが捕捉されず、PL/Tcl関数実行のトップレベルに伝播することが許容されているなら、関数が呼び出している問い合わせにおけるSQエラーとして報告されます。
    


逆に、PL/Tclのspi_exec、spi_prepare、spi_execpコマンドの中で起きるSQLエラーは、Tclのエラーとして報告され、したがって、これらはTclのcatchコマンドにより捕捉できます。
（各々のPL/Tclコマンドは、エラー時にロールバックするSQL操作をサブトランザクション中で実行するので、部分的に完了した操作は自動的に後始末されます。）
ここでも同様に、捕捉されることなくトップレベルに伝播するならSQLエラーに戻ります。
    


Tclは、Tclプログラムで解釈しやすい形式でエラーに関する追加情報を表現できるerrorCode変数を提供します。
変数の中身はTclリスト形式で、1番目の語でエラーを報告したサブシステムまたはライブラリを識別します。それ以降の内容は個々のサブシステムやライブラリに任されています。
PL/Tclコマンドで報告されるデータベースエラーむけには、1番目の語がPOSTGRES、2番目の語がPostgreSQLのバージョン番号で、それ続く語はエラーの詳細情報を提供するフィールド名と値の組です。
フィールドSQLSTATE、condition、およびmessageは常に与えられます（最初の2つは付録A PostgreSQL™エラーコードにあるエラーコードと状態名です）。
出現しうるフィールドとしては、detail、hint、context、schema、table、column、datatype、constraint、statement、cursor_position、filename、linenoおよびfuncnameがあります。
    


PL/TclのerrorCode情報を処理する便利な方法は、それを配列に読み込むことです。これによりフィールド名は配列の添え字になります。
これを行うコードは以下のようになります。


if {[catch { spi_exec $sql_command }]} {
    if {[lindex $::errorCode 0] == "POSTGRES"} {
        array set errorArray $::errorCode
        if {$errorArray(condition) == "undefined_table"} {
            # deal with missing table
        } else {
            # deal with some other type of SQL error
        }
    }
}



（二重コロンはerrorCodeがグローバル変数であることを明示的に指定します。）
    

PL/Tclにおける明示的サブトランザクション





「PL/Tclのエラー処理」で説明されているように、データベースアクセスによって生じたエラーからの回復により、操作のうちいくつかが失敗する前に他の操作が成功し、エラーからの回復後、データの一貫性が失われた望ましくない状態になってしまう可能性があります。
PL/Tclは明示的なトランザクションの手法でこの問題を解決する手段を提供しています。
    


2つのアカウントの間の送金を実装する関数を考えます。


CREATE FUNCTION transfer_funds() RETURNS void AS $$
    if [catch {
        spi_exec "UPDATE accounts SET balance = balance - 100 WHERE account_name = 'joe'"
        spi_exec "UPDATE accounts SET balance = balance + 100 WHERE account_name = 'mary'"
    } errormsg] {
        set result [format "error transferring funds: %s" $errormsg]
    } else {
        set result "funds transferred successfully"
    }
    spi_exec "INSERT INTO operations (result) VALUES ('[quote $result]')"
$$ LANGUAGE pltcl;



ふたつ目のUPDATE文で例外が発生する結果になると、この関数は失敗を記録しますが、それにもかかわらず、最初のUPDATEはコミットされます。
言い換えると、Joeのアカウントから資金が引き出されたのに、Maryのアカウントには転送されません。
これは、それぞれのspi_execが別々のサブトランザクションになっていて、そのうち一つのサブトランザクションだけがロールバックされるからです。
    


このような状況に対応するには、複数のデータベース操作を、全体が成功するか、あるいは失敗する明示的なサブトランザクションで包みます。
PL/Tclは、これを管理するためのsubtransactionコマンドを提供しています。
関数を以下のように書き直せます。


CREATE FUNCTION transfer_funds2() RETURNS void AS $$
    if [catch {
        subtransaction {
            spi_exec "UPDATE accounts SET balance = balance - 100 WHERE account_name = 'joe'"
            spi_exec "UPDATE accounts SET balance = balance + 100 WHERE account_name = 'mary'"
        }
    } errormsg] {
        set result [format "error transferring funds: %s" $errormsg]
    } else {
        set result "funds transferred successfully"
    }
    spi_exec "INSERT INTO operations (result) VALUES ('[quote $result]')"
$$ LANGUAGE pltcl;



この目的のために、catchが必要であることに注意してください。
そうでないと、エラーが関数のトップレベルまで伝搬し、期待したようなoperationsテーブルへの挿入が阻害されてしまいます。
subtransactionコマンドはエラーを補足しません。
エラーが報告された際に、スコープの内側で実行されたすべてのデータベース操作がロールバックされることを保証するだけです。
    


明示的なサブトランザクションのロールバックは、Tclのコードの中でエラーが報告された際だけでなく、データベースアクセスに起因するエラーの際にも起こります。
ですから、subtransactionコマンド内の内側で起こった通常のTcl例外は、サブトランザクションのロールバックも引き起こします。
しかし、Tclコードからのエラーによらない脱出（たとえばreturnによるもの）は、ロールバックをもたらしません。
    

トランザクション制御





トップレベル、あるいは、トップレベルから呼ばれた無名コードブロック（DOコマンド）から呼ばれたプロシージャでは、トランザクションを制御できます。
現在のトランザクションをコミットするには、commitコマンドを呼びます。
現在のトランザクションをロールバックするには、rollbackコマンドを呼びます。
（SQLコマンドのCOMMITやROLLBACKをspi_execなどを通して実行することはできない点に注意してください。前述の関数を使って行う必要があります。）
トランザクションが終了した後、新たなトランザクションが自動的に開始されますので、開始するための別途のコマンドはありません。
    


以下に例を示します。


CREATE PROCEDURE transaction_test1()
LANGUAGE pltcl
AS $$
for {set i 0} {$i < 10} {incr i} {
    spi_exec "INSERT INTO test1 (a) VALUES ($i)"
    if {$i % 2 == 0} {
        commit
    } else {
        rollback
    }
}
$$;

CALL transaction_test1();


    


明示的なサブトランザクションの中ではトランザクションを終了することはできません。
    

PL/Tclの設定





この節では、PL/Tclに影響がある設定パラメータを列挙します。
    
	
       pltcl.start_proc (string)
       
       
      
	

このパラメータが空文字以外に設定された場合、PL/Tclのための新しいTclインタプリタが作成された際に実行すべきパラメータなしのPL/Tcl関数の名前（スキーマ修飾される場合もあります）を指定します。
そうした関数は、追加のTclコードをロードするような、Tclセッションごとの初期化を実施できます。
データベースセッションの中で新しいPL/Tcl関数が最初に実行された際、あるいはPL/Tcl関数が新しいロールから呼び出されたためにインタプリタを追加で作成しなければならない際に、新しいTclインタプリタが作られます。
       


参照されている関数はpltcl言語で記述しなければならず、またSECURITY DEFINERとしてマークされていてはいけません。
（この制約により、その関数が初期化すると想定しているインタプリタ内で実行されることが保証されます。）
また、現在のユーザはその関数を呼び出すことが許可されていなければなりません。
       


関数がエラーで失敗すると、関数呼び出しをアボートし、その結果新しいインタプリタが作成され、エラーは呼び出し元のクエリに伝搬し、現在のトランザクションあるいはサブトランザクションがアボートします。
Tcl内でそれまでに行われた操作は取り消されません。
しかし、インタプリタは再使用できません。
言語が再び使用されると、新しいTclインタプリタ内で初期化が再び試みられます。
       


スーパーユーザだけがこの設定を変更できます。
この設定はセッション内で変更できますが、すでに作成されたTclインタプリタには影響しません。
       

	
       pltclu.start_proc (string)
       
       
      
	

このパラメータはPL/TclUに適用される点を除けば、pltcl.start_procと完全に類似しています。
参照される関数はpltclu言語で書かれていなければなりません。
       




Tclプロシージャ名





PostgreSQL™では、関数が異なるスキーマにある場合や、引数の数または引数の型が異なる場合に、同じ関数名を異なる関数定義に使用できます。
しかし、Tclではプロシージャ名の重複は許されません。
PL/Tclでは、引数の型名を内部Tclプロシージャ名に含め、必要に応じて関数のオブジェクトID（OID）を内部Tclプロシージャ名に追加することで、これに対応しています。これにより、同じTclインタプリタに以前にロードされたすべての関数とは異なる名前になります。
したがって、異なる引数の型を持つ同じ名前のPostgreSQL™関数も、異なるTclプロシージャになります。
PL/Tclプログラマにとって、普段は問題にはなりませんが、デバッグの際に表面に現れます。
    


この理由などにより、PL/Tclの関数は、他の関数を直接（つまり、Tclの内部で）呼び出すことはできません。
その必要がある場合、spi_execまたは関連するコマンドを使用して、SQLを経由することが必要です。
    

第43章 PL/Perl — Perl手続き言語





PL/PerlはPerlプログラミング言語を使用してPostgreSQL™関数とプロシージャを作成することができる、ロード可能な手続き言語です。
  


PL/Perlを使用する主たる利点は、ストアド関数やプロシージャの中で、Perlで使用可能なさまざまな「文字列操作」や関数を使用できるという点です。
複雑な文字列解析は、PL/pgSQLで提供される文字列関数や制御構造体を使用するよりPerlを使用する方が簡単に行うことができます。
  


PL/Perlを特定のデータベースにインストールするには、CREATE EXTENSION plperlを使用してください。
  
ヒント


言語をtemplate1にインストールすると、その後に作成されるデータベース全てにその言語は自動的にインストールされます。
   

注記


ソースパッケージを使用するユーザは、インストール作業時にPL/Perlを特別に使用可能にする必要があります。
（詳細については、17章ソースコードからインストールを参照してください。）
バイナリパッケージを使用する場合は、別個のサブパッケージにPL/Perlが入っている可能性があります。
   

PL/Perl関数と引数





PL/Perl言語で関数を作成するには、以下の標準的なCREATE FUNCTION(7)構文を使用してください。



CREATE FUNCTION funcname (argument-types)
RETURNS return-type

-- 関数の属性はここに来る
AS $$

    # PL/Perl関数本体はここに来る
$$ LANGUAGE plperl;




関数本体は通常のPerlのコードです。
実際、PL/Perlの糊付けコードは、これをPerlのサブルーチンの内部に格納します。
PL/Perl関数はスカラコンテキストとして呼び出されます。このためリストを返すことはできません。
後述の通り、参照を返すことによりスカラ以外の値（配列、レコード、集合）を返すことができます。
  


PL/Perlプロシージャでは、Perlコードからのあらゆる戻り値は無視されます。
  


またPL/PerlはDO(7)文で呼び出される匿名コードブロックをサポートします。



DO $$
    # PL/Perl code
$$ LANGUAGE plperl;




匿名コードブロックは引数を取りません。
また何らかの値を返したとしても破棄されます。
その他は関数と同様に動作します。
  
注記


Perl、特にその閉ざされたスコープで局所変数を参照するような場合では、名前付きの入れ子状サブルーチンの使用は危険です。
PL/Perl関数はサブルーチン内に格納されますので、内部に記述した名前付きのサブルーチンはすべて入れ子にされます。
一般的に、コード参照を介して呼び出す匿名サブルーチンを作成する方がかなり安全です。
詳細はperldiagマニュアルページ内のVariable "%s" will not stay sharedおよびVariable "%s" is not availableを参照してください。
またはインターネットで「perl nested named subroutine」を検索してください。
   



CREATE FUNCTIONコマンドの構文では、関数本体は文字列定数として記述されることを必須としています。
通常、文字列定数にはドル引用符付け（「ドル記号で引用符付けされた文字列定数」を参照）を使用することが最も便利です。
エスケープ文字列構文E''を使用することを選択した場合、関数本体で使用される単一引用符（'）とバックスラッシュ（\）をすべて二重にしなければなりません（「文字列定数」を参照）。
  


引数と結果は他のPerlサブルーチンと同様に扱われます。
引数は@_の中に渡され、結果値はreturn、または、その関数で最後に評価された式として返されます。
  


例えば、2つの整数のうち大きな方を返す関数は以下のように定義できます。



CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
    if ($_[0] > $_[1]) { return $_[0]; }
    return $_[1];
$$ LANGUAGE plperl;


  
注記


PL/Perl内部での使用のため、引数はデータベースの符号化方式からUTF-8に変換され、返されるときにUTF-8からデータベースの符号化方式に戻されます。
    



SQLのNULL値が関数に渡された場合、その引数値はPerlにおける「未定義」として現れます。

上の関数定義では、NULL値が入力された場合うまく動作しないでしょう（実際はそれがゼロであるかのように動作するでしょう）。
STRICTを関数定義に加えることで、PostgreSQL™の動作をより合理的にすることができます。
NULL値が渡された場合、関数はまったく呼び出されず、単にNULLという結果が自動的に返されます。
他の方法として、関数本体で未定義な入力を検査することもできます。
例えば、perl_maxの引数の片方がNULL、もう片方が非NULLの場合に、NULL値ではなく非NULLの引数を返すようにするとします。



CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
    my ($x, $y) = @_;
    if (not defined $x) {
        return undef if not defined $y;
        return $y;
    }
    return $x if not defined $y;
    return $x if $x > $y;
    return $y;
$$ LANGUAGE plperl;



上で示した通り、PL/Perl関数からSQLのNULL値を返すためには、未定義値を返すようにしてください。
これは、関数が厳密かどうかに関係なく、実行することができます。
  


関数引数の内で参照ではないものは、対応するデータ型向けのPostgreSQL™の標準的な外部テキスト表現で表された文字列です。
通常の数値やテキスト型では、Perlは正確に処理を行いますので、通常プログラマは心配することはありません。
しかし、この他の場合では、引数をPerlでより使用しやすいように変換する必要があります。
例えば、decode_bytea関数はbytea型の引数をエスケープしないバイナリに変換するために使用することができます。
  


同様に、PostgreSQL™に戻される値を外部テキスト表現書式で表さなければなりません。
例えば、bytea型の戻り値をバイナリデータにエスケープするためにencode_byteaを使用することができます。
  


特に重要な場合の1つは真偽値です。
つい先ほど述べたように、bool値のデフォルトの振舞いはPerlにテキストとして、すなわち't'または'f'で渡されるというものです。
Perlは'f'を偽とは扱いませんので、これは問題をはらんでいます。
「変換」(CREATE TRANSFORM(7)を参照してください)を使って問題を改善することができます。
適切な変換がbool_plperl拡張で提供されています。
使うには、拡張をインストールします。



CREATE EXTENSION bool_plperl;  -- PL/PerlUに対してはbool_plperlu



次にboolを受け取ったり返したりするPL/Perl関数に対してTRANSFORM関数属性を使います。例えば以下の通りです。


CREATE FUNCTION perl_and(bool, bool) RETURNS bool
TRANSFORM FOR TYPE bool
AS $$
  my ($a, $b) = @_;
  return $a && $b;
$$ LANGUAGE plperl;



この変換が適用されると、bool引数はPerlからは1もしくは空、すなわち正しく真または偽と見えます。
関数の結果が型boolなら、Perlが戻り値を真と評価したかどうかに従って真または偽となります。
同様の変換は、関数の内部で行われる真偽値の問い合わせ引数やSPI問い合わせの結果(「PL/Perlからのデータベースアクセス」)でも実行されます。
  


Perlは、PostgreSQL™の配列をPerl配列への参照として返すことができます。
以下に例を示します。



CREATE OR REPLACE function returns_array()
RETURNS text[][] AS $$
    return [['a"b','c,d'],['e\\f','g']];
$$ LANGUAGE plperl;

select returns_array();


  


PerlはPostgreSQL™の配列をblessされたPostgreSQL::InServer::ARRAYオブジェクトとして渡します。
9.1より過去のPostgreSQL™で作成されたPerlコードを実行させるための後方互換性のため、このオブジェクトは配列への参照または文字列として扱うことができます。
以下に例を示します。



CREATE OR REPLACE FUNCTION concat_array_elements(text[]) RETURNS TEXT AS $$
    my $arg = shift;
    my $result = "";
    return undef if (!defined $arg);


    # 配列への参照として
    for (@$arg) {
        $result .= $_;
    }


    # 文字列としても働く
    $result .= $arg;

    return $result;
$$ LANGUAGE plperl;

SELECT concat_array_elements(ARRAY['PL','/','Perl']);



  
注記


Perlプログラマの常識のように、多次元配列は低次元配列の参照への参照として表現されます。
   


  


複合型の引数はハッシュへの参照として関数に渡されます。
ハッシュのキーは複合型の属性名です。
以下に例を示します。



CREATE TABLE employee (
    name text,
    basesalary integer,
    bonus integer
);

CREATE FUNCTION empcomp(employee) RETURNS integer AS $$
    my ($emp) = @_;
    return $emp->{basesalary} + $emp->{bonus};
$$ LANGUAGE plperl;

SELECT name, empcomp(employee.*) FROM employee;


  


必要な属性を持つハッシュの参照を返すという同じ方法で、PL/Perl関数は複合型の結果を返すことができます。
以下に例を示します。



CREATE TYPE testrowperl AS (f1 integer, f2 text, f3 text);

CREATE OR REPLACE FUNCTION perl_row() RETURNS testrowperl AS $$
    return {f2 => 'hello', f1 => 1, f3 => 'world'};
$$ LANGUAGE plperl;

SELECT * FROM perl_row();




宣言された結果データ型の任意の列の内、ハッシュ内に存在しないものはNULL値として返されます。
  


同様に、プロシージャの出力引数はハッシュ参照で返すことができます。



CREATE PROCEDURE perl_triple(INOUT a integer, INOUT b integer) AS $$
    my ($a, $b) = @_;
    return {a => $a * 3, b => $b * 3};
$$ LANGUAGE plperl;

CALL perl_triple(5, 10);


  


また、PL/Perl関数はスカラ型の配列や複合型の配列を返すこともできます。
通常ならば、起動処理の高速化とメモリ内の結果セット全体を待ち行列に保持できることから、1度に1行を返す方がよいでしょう。
以下に示すreturn_nextを使用して、これを行うことができます。
最後のreturn_nextの後で、returnまたはreturn undef（推奨）を記述しなければならないことに注意してください。



CREATE OR REPLACE FUNCTION perl_set_int(int)
RETURNS SETOF INTEGER AS $$
    foreach (0..$_[0]) {
        return_next($_);
    }
    return undef;
$$ LANGUAGE plperl;

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set()
RETURNS SETOF testrowperl AS $$
    return_next({ f1 => 1, f2 => 'Hello', f3 => 'World' });
    return_next({ f1 => 2, f2 => 'Hello', f3 => 'PostgreSQL' });
    return_next({ f1 => 3, f2 => 'Hello', f3 => 'PL/Perl' });
    return undef;
$$ LANGUAGE plperl;




小規模な結果セットでは、それぞれ単純な型、配列型、複合型に対応する、スカラ、配列への参照、ハッシュへの参照を含む配列への参照を返すことができます。
以下に、配列への参照として結果セット全体を返す単純な例をいくつか示します。



CREATE OR REPLACE FUNCTION perl_set_int(int) RETURNS SETOF INTEGER AS $$
    return [0..$_[0]];
$$ LANGUAGE plperl;

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set() RETURNS SETOF testrowperl AS $$
    return [
        { f1 => 1, f2 => 'Hello', f3 => 'World' },
        { f1 => 2, f2 => 'Hello', f3 => 'PostgreSQL' },
        { f1 => 3, f2 => 'Hello', f3 => 'PL/Perl' }
    ];
$$ LANGUAGE plperl;

SELECT * FROM perl_set();


  


コード内でstrictプラグマを使用したいのであればいくつか選択肢があります。
一時的に大域的に使用するために、SET plperl.use_strictを真にすることができます。
このパラメータは、その後のPL/Perl関数のコンパイルに影響しますが、現在のセッションでコンパイル済みの関数には影響しません。
永続的に大域的に使用するためには、postgresql.confファイル内でplperl.use_strictを真に設定します。
  


特定の関数で永続的に使用するためには単純に


use strict;



を関数本体の先頭に記載してください。
  


また、Perlのバージョンが5.10.0以上であればuseでfeatureプラグマが利用可能です。
  


PL/Perlにおけるデータ値





PL/Perl関数のコードに渡される引数値は、単に(SELECT文で表示される場合と同様の)テキスト形式に変換された入力引数です。
反対にreturnおよびreturn_nextコマンドは、関数の宣言された戻り値の型で受け付け可能な入力書式で表された任意の文字列を受け付けます。
  


この動作が特定の場合には不都合であるなら、前にbool値の例で説明したように、変換を使って改善できます。
変換モジュールの例がいくつかPostgreSQL™の配布物に含まれています。
  

組み込み関数



PL/Perlからのデータベースアクセス





Perl関数からデータベースそのものにアクセスするには以下の関数で行います。
  
	
      spi_exec_query(query [, limit])
      
      
     
	

spi_exec_queryはSQLコマンドを実行し、行セット全体をハッシュへの参照を要素とする配列への参照として返します。
limitが指定され、それがゼロより大きい場合、spi_exec_queryは、問い合わせにLIMIT句が含まれている場合と同様に、最大limit行を取得します。
limitを省略するか、ゼロを指定すると、行の制限はなくなります。
      


結果セットが相対的に小規模であることが分かっている場合にのみ、このコマンドを使用してください。
以下に最大行数オプションを持った問い合わせ（SELECTコマンド）の例を示します。



$rv = spi_exec_query('SELECT * FROM my_table', 5);



これはmy_tableテーブルから5行までを返します。
my_tableにmy_column列がある場合、結果の第$i行の列値を以下のように取り出すことができます。


$foo = $rv->{rows}[$i]->{my_column};



SELECT問い合わせから返される行の総数は以下のようにアクセスできます。


$nrows = $rv->{processed}


      


以下は他の種類のコマンドを使用する例です。


$query = "INSERT INTO my_table VALUES (1, 'test')";
$rv = spi_exec_query($query);



この後、以下のようにコマンドステータス（例えばSPI_OK_INSERT）にアクセスすることができます。


$res = $rv->{status};



影響を受けた行数を取り出すには以下を行います。


$nrows = $rv->{processed};


      


以下に複雑な例を示します。


CREATE TABLE test (
    i int,
    v varchar
);

INSERT INTO test (i, v) VALUES (1, 'first line');
INSERT INTO test (i, v) VALUES (2, 'second line');
INSERT INTO test (i, v) VALUES (3, 'third line');
INSERT INTO test (i, v) VALUES (4, 'immortal');

CREATE OR REPLACE FUNCTION test_munge() RETURNS SETOF test AS $$
    my $rv = spi_exec_query('select i, v from test;');
    my $status = $rv->{status};
    my $nrows = $rv->{processed};
    foreach my $rn (0 .. $nrows - 1) {
        my $row = $rv->{rows}[$rn];
        $row->{i} += 200 if defined($row->{i});
        $row->{v} =~ tr/A-Za-z/a-zA-Z/ if (defined($row->{v}));
        return_next($row);
    }
    return undef;
$$ LANGUAGE plperl;

SELECT * FROM test_munge();


    

	
      spi_query(command)
      
      
     , 
      spi_fetchrow(cursor)
      
      
     , 
      spi_cursor_close(cursor)
      
      
     
	

spi_queryおよびspi_fetchrowは、大規模になる可能性がある行セット用、または、行を順番通りに返したい場合向けに組み合わせて動作します。
spi_fetchrowはspi_queryと一緒でなければ動作しません。
組み合わせて使用する方法について、以下の例で示します。



CREATE TYPE foo_type AS (the_num INTEGER, the_text TEXT);

CREATE OR REPLACE FUNCTION lotsa_md5 (INTEGER) RETURNS SETOF foo_type AS $$
    use Digest::MD5 qw(md5_hex);
    my $file = '/usr/share/dict/words';
    my $t = localtime;
    elog(NOTICE, "opening file $file at $t" );
    open my $fh, '<', $file # ooh, it's a file access!
        or elog(ERROR, "cannot open $file for reading: $!");
    my @words = <$fh>;
    close $fh;
    $t = localtime;
    elog(NOTICE, "closed file $file at $t");
    chomp(@words);
    my $row;
    my $sth = spi_query("SELECT * FROM generate_series(1,$_[0]) AS b(a)");
    while (defined ($row = spi_fetchrow($sth))) {
        return_next({
            the_num => $row->{a},
            the_text => md5_hex($words[rand @words])
        });
    }
    return;
$$ LANGUAGE plperlu;

SELECT * from lotsa_md5(500);


    


通常spi_fetchrowは、読み取る行がなくなったことを示すundefが返されるまで繰り返されるはずです。
spi_fetchrowがundefを返すとspi_queryで返されるカーソルは自動的に解放されます。
すべての行を読み取りたくない場合は代わりにspi_cursor_closeを呼び出してカーソルを解放してください。
これに失敗するとメモリリークという結果になります。
    

	
      spi_prepare(command, argument types)
      
      
     , 
      spi_query_prepared(plan, arguments)
      
      
     , 
      spi_exec_prepared(plan [, attributes], arguments)
      
      
     , 
      spi_freeplan(plan)
      
      
     
	

spi_prepare、spi_query_prepared、spi_exec_prepared、spi_freeplanは、プリペアド問い合わせ用に同様の機能を実装します。
spi_prepareは番号付き引数プレースホルダ($1、$2など)を持つ問い合わせ文字列と引数の型を表す文字列リストを受け付けます。


$plan = spi_prepare('SELECT * FROM test WHERE id > $1 AND name = $2',
                                                     'INTEGER', 'TEXT');



spi_prepareを呼び出すことで問い合わせ計画が準備されると、spi_exec_queryにより返されるものと同様の結果となるspi_exec_preparedやspi_queryとまったく同じカーソルが返されるspi_query_prepared(このカーソルは後でspi_fetchrowに渡すことができます)の中で、その計画を問い合わせ文字列の代わりに使用することができます。
spi_exec_preparedの省略可能な第二パラメータは属性のハッシュ参照です。
現在サポートされる唯一の属性は、問い合わせで返される最大行数を設定するlimitです。
limitを省略するか、ゼロを指定すると、行制限はなくなります。
    


プリペアド問い合わせの利点は、1つの準備された計画を複数回使用して問い合わせを実行することができるという点です。
計画が不要になった後、spi_freeplanを使用して、計画を解放することができます。


CREATE OR REPLACE FUNCTION init() RETURNS VOID AS $$
        $_SHARED{my_plan} = spi_prepare('SELECT (now() + $1)::date AS now',
                                        'INTERVAL');
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION add_time( INTERVAL ) RETURNS TEXT AS $$
        return spi_exec_prepared(
                $_SHARED{my_plan},
                $_[0]
        )->{rows}->[0]->{now};
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION done() RETURNS VOID AS $$
        spi_freeplan( $_SHARED{my_plan});
        undef $_SHARED{my_plan};
$$ LANGUAGE plperl;

SELECT init();
SELECT add_time('1 day'), add_time('2 days'), add_time('3 days');
SELECT done();

  add_time  |  add_time  |  add_time
------------+------------+------------
 2005-12-10 | 2005-12-11 | 2005-12-12



spi_prepare内のパラメータ添字が$1、$2、$3などを介して定義されることに注意してください。
そのため、検出困難な不具合が簡単に発生することになる二重引用符内での問い合わせ文字列宣言はやめてください。
    


他の例は、spi_exec_preparedにおける省略可能なパラメータの使用について示しています。


CREATE TABLE hosts AS SELECT id, ('192.168.1.'||id)::inet AS address
                      FROM generate_series(1,3) AS id;

CREATE OR REPLACE FUNCTION init_hosts_query() RETURNS VOID AS $$
        $_SHARED{plan} = spi_prepare('SELECT * FROM hosts
                                      WHERE address << $1', 'inet');
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION query_hosts(inet) RETURNS SETOF hosts AS $$
        return spi_exec_prepared(
                $_SHARED{plan},
                {limit => 2},
                $_[0]
        )->{rows};
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION release_hosts_query() RETURNS VOID AS $$
        spi_freeplan($_SHARED{plan});
        undef $_SHARED{plan};
$$ LANGUAGE plperl;

SELECT init_hosts_query();
SELECT query_hosts('192.168.1.0/30');
SELECT release_hosts_query();

    query_hosts
-----------------
 (1,192.168.1.1)
 (2,192.168.1.2)
(2 rows)


    

	
      spi_commit()
      
     , 
      spi_rollback()
      
     
	

現在のトランザクションをコミットあるいはロールバックします。
これはプロシージャ、あるいはトップレベルから呼ばれた無名コードブロック（DOコマンド）の中からのみ呼び出すことができます。
（SQLコマンドのCOMMITやROLLBACKをspi_exec_queryなどを通して実行することはできない点に注意してください。前述の関数を使って行う必要があります。）
トランザクションが終了した後、新たなトランザクションが自動的に開始されますので、開始するための別途の関数はありません。
      


以下に例を示します。


CREATE PROCEDURE transaction_test1()
LANGUAGE plperl
AS $$
foreach my $i (0..9) {
    spi_exec_query("INSERT INTO test1 (a) VALUES ($i)");
    if ($i % 2 == 0) {
        spi_commit();
    } else {
        spi_rollback();
    }
}
$$;

CALL transaction_test1();


      




PL/Perlのユーティリティ関数



	
      elog(level, msg)
      
      
     
	

ログまたはエラーメッセージを発行します。
使用できるレベルは、DEBUG、LOG、INFO、NOTICE、WARNING、およびERRORです。
ERRORはエラー状態を発生します。
その上位のPerlコードでこのエラーを捕捉しない場合、エラーは問い合わせの呼び出し元まで伝播し、その結果、現在のトランザクションもしくはサブトランザクションはアボートします。
これは実質Perlのdieコマンドと同じです。
他のレベルは、異なる重要度のメッセージを生成するだけです。
log_min_messagesとclient_min_messages設定パラメータは、特定の重要度のメッセージをクライアントに報告するか、サーバのログに書き出すか、あるいはその両方かを制御します。
詳細は19章サーバ設定を参照してください。
      

	
      quote_literal(string)
      
      
     
	

与えられた文字列を、SQL文の文字列内で文字列リテラルとして使用するために適切に引用符付けして返します。
埋め込まれた単一引用符およびバックスラッシュは適切に二重化されます。
quote_literalは入力がundefならばundefを返すことに注意してください。
引数がundefの可能性があるのであれば、quote_nullableの方が適しています。
      

	
      quote_nullable(string)
      
      
     
	

与えられた文字列を、SQL文の文字列内で文字列リテラルとして使用するために適切に引用符付けして返します。
引数がundefの場合引用符付けされない文字列"NULL"を返します。
埋め込まれた単一引用符およびバックスラッシュは適切に二重化されます。
      

	
      quote_ident(string)
      
      
     
	

与えられた文字列を、SQL文の文字列内で識別子として使用するために適切に引用符付けして返します。
必要な場合(つまり文字列に識別子用ではない文字列が含まれる、または、大文字小文字を保持する場合)のみ引用符が付けられます。
埋め込まれた引用符は適切に二重化されます。
      

	
      decode_bytea(string)
      
      
     
	

与えられた文字列の内容を表す、エスケープのないバイナリデータを返します。
これはbytea符号化でなければなりません。
        

	
      encode_bytea(string)
      
      
     
	

与えられた文字列の内容をバイナリデータ形式で符号化したbyteaを返します。
        

	
      encode_array_literal(array)
      
      
     , 
      encode_array_literal(array, delimiter)
     
	

参照先の配列の内容を、配列リテラル書式で表した文字列として返します(「配列の値の入力」参照)。
配列への参照でない場合は引数の値は変更されません。
配列リテラルの要素間の区切り文字は指定がない、または、undefの場合、デフォルトで", "です。
        

	
      encode_typed_literal(value, typename)
      
      
     
	

Perl変数を2番目の引数として渡されたデータ型の値に変換し、その値の文字列表現を返します。
入れ子状の配列や複合型の値を正しく扱います。
       

	
      encode_array_constructor(array)
      
      
     
	

参照先の配列の内容を配列生成書式で表した文字列として返します(「配列コンストラクタ」参照)。
個々の値はquote_nullableを使用して引用符付けされます。
配列への参照でない場合は、quote_nullableを使用して引用符付けされた引数の値が返されます。
        

	
      looks_like_number(string)
      
      
     
	

与えられた文字列の内容がPerlの流儀で数値でありそうな場合に真値を、さもなくば偽を返します。
引数がundefならばundefを返します。
先頭の空白、末尾の空白は無視されます。
InfおよびInfinityは数値とみなします。
        

	
      is_array_ref(argument)
      
      
     
	

指定された引数が配列参照として扱うことができる場合、つまり、引数のrefがARRAYまたはPostgreSQL::InServer::ARRAYの場合、真を返します。
さもなくば偽を返します。
      





PL/Perlにおけるグローバルな値





現在のセッションの有効期間中の関数呼び出し間でデータ（コード参照を含む）を受け渡しするためにグローバルな%_SHAREDハッシュを使用することができます。
  


データの共有について簡単な例を以下に示します。


CREATE OR REPLACE FUNCTION set_var(name text, val text) RETURNS text AS $$
    if ($_SHARED{$_[0]} = $_[1]) {
        return 'ok';
    } else {
        return "cannot set shared variable $_[0] to $_[1]";
    }
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION get_var(name text) RETURNS text AS $$
    return $_SHARED{$_[0]};
$$ LANGUAGE plperl;

SELECT set_var('sample', 'Hello, PL/Perl!  How''s tricks?');
SELECT get_var('sample');


  


以下は、コード参照を使用した、多少複雑な例です。



CREATE OR REPLACE FUNCTION myfuncs() RETURNS void AS $$
    $_SHARED{myquote} = sub {
        my $arg = shift;
        $arg =~ s/(['\\])/\\$1/g;
        return "'$arg'";
    };
$$ LANGUAGE plperl;


SELECT myfuncs(); /* 関数の初期化 */


/* 引用符関数を使用する関数を作成 */

CREATE OR REPLACE FUNCTION use_quote(TEXT) RETURNS text AS $$
    my $text_to_quote = shift;
    my $qfunc = $_SHARED{myquote};
    return &$qfunc($text_to_quote);
$$ LANGUAGE plperl;




（可読性を犠牲にすると、上はreturn $_SHARED{myquote}->($_[0]);という1行のみで置き換えることができます。）
  


セキュリティ上の理由により、PL/Perlは、あるSQLロールで呼び出された関数をそのロール用に独立したPerlインタプリタ内で実行します。
これにより、あるユーザの事故または悪意によって他のユーザのPL/Perl関数の動作が干渉されてしまうことを防ぎます。
こうしたインタプリタはそれぞれ独自の%_SHAREDなどのグローバル状態を持ちます。
したがって、同一のSQLロールによって実行された場合のみ、２つのPL/Perl関数は同じ%_SHARED値を共有します。
１つのセッション内で複数のSQLロールの元でコードを（SECURITY DEFINER経由、SET ROLEの使用などで）実行するアプリケーションでは、確実にPL/Perl関数が%_SHAREDを介してデータを共有できるように、明示的な処理を行う必要があります。
このためには、通信しなければならない関数が同じユーザによって所有されること、およびSECURITY DEFINERと印付けられていることを確実にしなければなりません。
当然ながら、こうした関数が意図していないことを行うために使用できないように注意しなければなりません。
  

信頼されたPL/Perlおよび信頼されないPL/Perl





通常、PL/Perlはplperlという名前で「信頼された」プログラミング言語としてインストールされます。
この設定では、セキュリティを確保するためにPerlの特定の操作は無効にされます。
一般的には、制限される操作は環境に作用するものです。
これには、ファイルハンドル操作やrequire、use（外部モジュール用）が含まれます。
C関数では可能ですが、Perlでは、データベースサーバ内部にアクセスする方法や、サーバプロセスの権限によるOSレベルのアクセスを行う方法はありません。
この結果、データベースの全ての非特権ユーザはこの言語を使用することができます。
  
警告


信頼されたPL/Perlは、セキュリティを保つためにPerl Opcodeモジュールに依存しています。
Perlは、このモジュールが信頼されたPL/Perlのユースケースに対して有効ではないことを文書化しています。
セキュリティの必要性がその警告の不確実性と両立しない場合は、REVOKE USAGE ON LANGUAGE plperl FROM PUBLICの実行を検討してください。
   



セキュリティ上の理由により許されていないファイルシステム操作を行うため、うまく動作しない関数の例を以下に示します。


CREATE FUNCTION badfunc() RETURNS integer AS $$
    my $tmpfile = "/tmp/badfile";
    open my $fh, '>', $tmpfile
        or elog(ERROR, qq{could not open the file "$tmpfile": $!});
    print $fh "Testing writing to a file\n";
    close $fh or elog(ERROR, qq{could not close the file "$tmpfile": $!});
    return 1;
$$ LANGUAGE plperl;



許されていない操作の使用が検証機能によって検出されますので、この関数の作成は失敗します。
  


制限のないPerl関数の作成が望ましい場合があります。
例えば、Perl 関数を使用してメールを送信するような場合です。
このような場合を扱うために、PL/Perlを「信頼されない」言語（通常PL/PerlUと呼ばれます）としてインストールすることもできます。
この場合は完全なPerl言語を使用することができます。
言語がインストールされた場合、plperluという言語名によって、信頼されないPL/Perlの亜種が選択されます。
  


PL/PerlU関数の作成者は、その関数を不必要なことに使用できないように注意する必要があります。
この関数は、データベース管理者としてログインしたユーザが実行できることを全て実行できるからです。
データベースシステムはデータベースのスーパーユーザにのみ信頼されない言語による関数作成を許可していることに注意してください。
  


上記の関数が、スーパーユーザによってplperlu言語を使用して作成された場合、実行は可能となります。
  


同じ方法で、言語をplperlではなくplperluと指定することで、Perl内に作成された匿名コードブロックは制限された操作を使用することができます。
ただし呼び出し元はスーパーユーザでなければなりません。
  
注記


PL/Perl関数はSQLロール毎に別々のPerlインタプリタ内で実行されますが、あるセッションで実行されるPL/PerlU関数はすべて、単一のPerlインタプリタ（PL/Perl関数用に使用されるインタプリタのいずれかではありません）内で実行されます。
これによりPL/PerlU関数はデータを自由に共有することができます。
しかしPL/Perl関数とPL/PerlU関数の間で通信することはできません。
   

注記


Perlは適切なフラグ、すなわちusemultiplicityまたはuseithreadsを付けて構築していない限り、１つのプロセス内で複数のインタプリタをサポートすることはできません。
（実際にスレッドの使用が必要でなければusemultiplicityを勧めます。
詳細はperlembedマニュアルページを参照してください。）
PL/Perlがこの方法で構築されていないPerlのコピーを使用する場合、１つのセッション内で１つのPerlインタプリタしか持つことができません。
このため、１つのセッションでは、PL/PerlU関数、もしくは、すべて同一のSQLロールで呼び出されるPL/Perl関数のいずれかのみを実行することができます。
   


PL/Perlトリガ





PL/Perlを使用してトリガ関数を作成することができます。
トリガ関数では、$_TDというハッシュへの参照に、現在のトリガイベントに関する情報が含まれています。
$_TDは大域変数であり、各トリガ呼び出しに対して局所的な値を別々に取り出します。
以下に$_TDというハッシュへの参照のフィールドを示します。

   
	$_TD->{new}{foo}
	

NEWのfoo列値。
      

	$_TD->{old}{foo}
	

OLDのfoo列値。
      

	$_TD->{name}
	

呼び出されたトリガの名前。
      

	$_TD->{event}
	

トリガイベント。
INSERT、UPDATE、DELETE、TRUNCATE、もしくはUNKNOWN。
      

	$_TD->{when}
	

トリガがいつ呼び出されたか。
BEFORE、AFTER、INSTEAD OFもしくはUNKNOWN。
      

	$_TD->{level}
	

トリガレベル。
ROW、STATEMENT、もしくはUNKNOWN。
      

	$_TD->{relid}
	

トリガの発行元テーブルのOID。
      

	$_TD->{table_name}
	

トリガの発行元テーブルの名前。
      

	$_TD->{relname}
	

トリガの発行元テーブルの名前。
これは廃止予定で、将来のリリースで削除される可能性があります。
代わりに$_TD->{table_name}を使用してください。
      

	$_TD->{table_schema}
	

トリガの発行元テーブルが存在するスキーマの名前。
      

	$_TD->{argc}
	

トリガ関数の引数の数。
      

	@{$_TD->{args}}
	

トリガ関数の引数。
$_TD->{argc}が0の場合は存在しません。
      




  


行レベルトリガは以下のいずれかを返すことができます。

   
	return;
	

操作を実行します。
      

	"SKIP"
	

操作を実行しません。
      

	"MODIFY"
	

トリガ関数によってNEW行が変更されたことを示します。
      




  


以下はトリガ関数の例で、ここまでの説明の一部を例証するものです。


CREATE TABLE test (
    i int,
    v varchar
);

CREATE OR REPLACE FUNCTION valid_id() RETURNS trigger AS $$
    if (($_TD->{new}{i} >= 100) || ($_TD->{new}{i} <= 0)) {

        return "SKIP";    # INSERT/UPDATEコマンドを取消します。
    } elsif ($_TD->{new}{v} ne "immortal") {
        $_TD->{new}{v} .= "(modified by trigger)";

        return "MODIFY";  # 行を変更し、INSERT/UPDATEコマンドを実行します。
    } else {

        return;           # INSERT/UPDATEコマンドを実行します。
    }
$$ LANGUAGE plperl;

CREATE TRIGGER test_valid_id_trig
    BEFORE INSERT OR UPDATE ON test
    FOR EACH ROW EXECUTE FUNCTION valid_id();


  

PL/Perlイベントトリガ





PL/Perlを使用してイベントトリガ関数を作成することができます。
イベントトリガ関数では、$_TDというハッシュへの参照に、現在のトリガイベントに関する情報が含まれています。
$_TDはグローバル変数であり、各トリガ呼び出しに対してローカルな値を別々に取り出します。
以下に$_TDというハッシュへの参照のフィールドを示します。

   
	$_TD->{event}
	

イベントトリガ名が発行された
      

	$_TD->{tag}
	

トリガの発行元コマンドタグ
      




  


トリガ関数の戻り値は無視されます
  


以下はトリガ関数の例で、ここまでの説明の一部を例証するものです。


CREATE OR REPLACE FUNCTION perlsnitch() RETURNS event_trigger AS $$
  elog(NOTICE, "perlsnitch: " . $_TD->{event} . " " . $_TD->{tag} . " ");
$$ LANGUAGE plperl;

CREATE EVENT TRIGGER perl_a_snitch
    ON ddl_command_start
    EXECUTE FUNCTION perlsnitch();


  

PL/Perlの内部



設定





本節ではPL/Perlに影響する設定パラメータを列挙します。
  
	
       plperl.on_init (string)
      
      
      
	

Perlインタプリタが最初に初期化され、plperlまたはplperluでの使用のための準備がなされる前に実行されるperlコードを指定します。
このコードが実行される時にはSPI関数を利用できません。
このコードがエラーで失敗した場合、インタプリタの初期化は中断され、呼び出し元の問い合わせに伝わり、現在のトランザクションまたはサブトランザクションがアボートすることになります。
       


このPerlコードは単一文字列に制限されます。
長いコードをモジュール化し、on_init文字列でロードすることができます。
以下に例を示します。


plperl.on_init = 'require "plperlinit.pl"'
plperl.on_init = 'use lib "/my/app"; use MyApp::PgInit;'


       


plperl.on_initにより直接または間接的に読み込まれるモジュールはすべて、plperlにより使用可能になります。
これはセキュリティの危険性が発生する可能性があります。
どんなモジュールが読み込まれたかを確認するためには以下を使用します。


DO 'elog(WARNING, join ", ", sort keys %INC)' LANGUAGE plperl;


       


plperlライブラリがshared_preload_librariesに含まれている場合、初期化はpostmaster内部で起こります。
この場合、postmasterが不安定になる危険が出てくるため、一層の考慮が必要です。
この機能を使用できるようにした大きな理由は、plperl.on_initでロードされるPerlモジュールはpostmaster起動時点のみでロードされなければならないためです。
このため個々のデータベースセッション内にロードというオーバーヘッドをもたらすことなく即座に利用できるようになります。
しかし、データベースセッションで最初に使用されるPerlインタプリタ（PL/PerlUまたはPL/Perl関数を呼び出す最初のSQLロール用のPL/Perl）に対してのみ、このオーバーヘッドを防ぐことができる点に注意してください。
データベースセッション内でその後に作成されるPerlインタプリタはすべて、新たにplperl.on_initを実行する必要があります。
また、postmasterプロセス内で作成されるPerlインタプリタは子プロセスに伝播されませんので、Windowsにおける事前ロードには何かを節約することはまったくありません。
       


このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
       

	
       plperl.on_plperl_init (string)
       
       
      , 
       plperl.on_plperlu_init (string)
       
       
      
	

これらのパラメータはそれぞれ、plperlまたはplperlu用にPerlインタプリタを特化する時に実行されるPerlコードを指定します。
これは、データベースセッション内でPL/PerlまたはPL/PerlU関数が最初に実行される時、または、他の言語が呼び出されたため、あるいは新しいSQLロールでPL/Perl関数が呼び出されたために追加のインタプリタを呼び出す必要があった時に起こります。
この後にplperl.on_initによる初期化が行われます。
このコードを実行する時にはSPI関数は利用できません。
plperl.on_plperl_init内のPerlコードはインタプリタを「権限で制限した」後に実行されます。
このためPerlコードは信頼できる操作のみを行うことができます。
       


コードがエラーで失敗した場合、初期化は中断され、呼び出し元にエラーが伝わります。
その結果現在のトランザクションまたはサブトランザクションはアボートします。
Perl内ですでに行われた処理は取り消されません。
言語が再度使用される時、初期化は新しいインタプリタの中で再度試行されます。
       


スーパーユーザのみがこれらの設定を変更することができます。
これらの設定はセッション内で変更することができますが、このような変更は関数を実行するためにすでに使用されたPerlインタプリタには影響を与えません。
       

	
       plperl.use_strict (boolean)
       
       
      
	

真の場合、その後のPL/Perl関数のコンパイルはstrictプラグマが有効になります。
このパラメータは現在のセッションでコンパイル済みの関数には影響しません。
       




制限および存在しない機能





現時点では、以下の機能はPL/Perlにありません。
各機能の寄稿を歓迎します。

   
	

PL/Perl関数は互いに直接呼び出すことができません。
     

	

SPIはまだ完全に実装されていません。
     

	

spi_exec_queryを使用して、非常に大規模なデータセットを取り出そうとする場合、これらがすべてメモリ内に保存されることに注意しなければなりません。
上で示した通り、spi_query/spi_fetchrowを使用することで、これを避けることができます。
     


集合を返す関数が大規模な行セットをreturnを介してPostgreSQLに返す場合、同様の問題が起こります。
前述の通り、この問題もreturn_nextを使用して行毎に返すことで避けることができます。
     

	

セッションが正常に終了した時、致命的なエラーによるものでなければ、定義された任意のENDブロックが実行されます。
現在、その他の動作は行われません。
特にファイルハンドルは自動的にフラッシュされません。
またオブジェクトも自動的に破棄されません。
      




  


第44章 PL/Python — Python手続き言語





PL/Python手続き言語を使用してPostgreSQL™の関数やプロシージャをPython言語で作成できます。
 


PL/Pythonを特定のデータベースにインストールするには、CREATE EXTENSION plpython3uを使用してください。
 
ヒント


言語をtemplate1にインストールすると、その後に作成されるデータベース全てにその言語は自動的にインストールされます。
   



PL/Pythonは「信頼されない」、つまり、ユーザが実行可能なことを制限する方法を提供しない言語としてのみ利用可能です。
したがって、plpython3uという名前に変更されました。
Pythonで新しい安全な実行手法が開発されたら、将来信頼できるplpythonの亜種は利用可能になるかもしれません。
データベース管理者としてログインしたユーザにより行えることをすべて行うことができますので、信頼されないPL/Pythonによる関数開発者は、その関数は不必要なものを行うために使用できないことに注意しなければなりません。
スーパーユーザのみがplpython3uなどの信頼されない言語で関数を作成することができます。
 
注記


ソースパッケージを使用するユーザは、インストール処理の過程でPL/Pythonの構築が有効になるように指定する必要があります。
（詳細については、インストール手順を参照してください。）
バイナリパッケージを使用する場合は、別のサブパッケージにPL/Pythonが入っている可能性があります。
  

PL/Python関数





PL/Pythonで作成された関数は標準的なCREATE FUNCTION(7)構文で宣言されます。



CREATE FUNCTION funcname (argument-list)
  RETURNS return-type
AS $$
  # PL/Python function body
$$ LANGUAGE plpython3u;


  


関数本体は単なるPythonスクリプトです。
関数が呼び出されると、引数はargs[]リストの要素として渡されます。
名前付きの引数も通常の変数としてPythonスクリプトに渡されます。
通常、名前付き引数の方が可読性が高くなります。
結果は、Pythonコードから通常の方法、returnまたはyield（結果セット文の場合）で返されるものです。
戻り値を提供しない場合、PythonはデフォルトのNoneを返します。
PL/PythonはPythonのNoneをSQLのNULL値に変換します。
プロシージャでは、Pythonコードからの結果はNoneでなければなりません（典型的にはreturn文を使わずプロシージャを終了したり、return文を引数無しで使うことで達成されます）。
さもないとエラーが起きます。
  


たとえば、2つの整数の内大きな数を返す関数は以下のように定義することができます。



CREATE FUNCTION pymax (a integer, b integer)
  RETURNS integer
AS $$
  if a > b:
    return a
  return b
$$ LANGUAGE plpython3u;




関数定義の本体として提供されたPythonのコードはPythonの関数に変換されます。
例えば上の例は以下のようになります。



def __plpython_procedure_pymax_23456():
  if a > b:
    return a
  return b




ここで、23456はPostgreSQL™により割り当てられたこの関数のOIDです。
  


引数はグローバル変数として設定されます。
Pythonのスコープ規則のため、これは、ブロック内でグローバルとして再宣言されていない限り、関数内で引数変数に変数名自身を含む式の値として再代入できないという難解な結果をもたらします。
例えば以下は動作しません。


CREATE FUNCTION pystrip(x text)
  RETURNS text
AS $$
  x = x.strip()  # error
  return x
$$ LANGUAGE plpython3u;



xへの代入は、xをブロック全体に対するローカル変数にしようとし、そして、代入の右辺のxがPL/Pythonの関数パラメータではなく、まだ割り当てられていないローカル変数xを参照するためです。
global文を使用することで、動作するようになります。


CREATE FUNCTION pystrip(x text)
  RETURNS text
AS $$
  global x
  x = x.strip()  # ok now
  return x
$$ LANGUAGE plpython3u;



しかし、PL/Pythonのこうした詳細な実装に依存しないようにすることを勧めます。
関数パラメータは読み取りのみとして扱うことを勧めます。
  


データ値





一般的にいって、PL/Pythonの目標はPostgreSQLとPythonの世界の間で「自然な」対応付けを提供することです。
これは以下のようなデータの対応付けを形成します。
  
データ型の対応付け





PL/Python関数が呼ばれると、その引数は、以下のようにPostgreSQLの型から対応するPython型に変換されます。

    
	

PostgreSQLのbooleanはPythonのboolに変換されます。
      

	

PostgreSQLのsmallint、int、bigintおよびoidはPythonのintに変換されます。
      

	

PostgreSQLのrealおよびdoubleはPythonのfloatに変換されます。
      

	

PostgreSQLのnumericはPythonのDecimalに変換されます。
この型は可能ならばcdecimalパッケージからインポートできます。
可能でなければ、標準ライブラリのdecimal.Decimalが使用できます。
cdecimalはdecimalより高速です。
しかしPython 3.3から、cdecimalはdecimalという名前で標準ライブラリに統合されたので、もはや差異はありません。
      

	

PostgreSQLのbyteaは、Pythonのbytesに変換されます。
      

	

PostgreSQLの文字列型を含む、上記以外のデータ型はすべてPythonのstrに(すべてのPython文字列と同様にUnicodeで)変換されます。
      

	

スカラデータ型以外については後述します。
      




   


PL/Python関数が戻る時には、その戻り値は、以下のようにPostgreSQLの宣言された戻り値データ型に変換されます。

    
	

PostgreSQLの戻り値の型がbooleanの場合、戻り値はPythonの規約に従った真に対して評価されます。
つまり、0や空文字列は偽です。
'f'が真となることには注意してください。
      

	

PostgreSQLの戻り値の型がbyteaの場合、対応するPythonのビルトインを使用してPythonのbytesに変換され、その結果がbyteaに変換されます。
      

	

この他のPostgreSQLの戻り値型では、返される値はPythonのビルトインstrを使用して文字列に変換され、その結果がPostgreSQLデータ型の入力関数に渡されます。
(Pythonの値がfloatであれば、精度が失われるのを避けるため、strの代わりにreprビルトインを使って変換されます。)
      


文字列はPostgreSQLに渡される時に、自動的にPostgreSQLサーバの符号化方式に変換されます。
      

	

スカラデータ型以外については後述します。
      






宣言されたPostgreSQLの戻り値型と実際に返されるオブジェクトのPythonデータ型との間の論理的な不整合が伝わらないことに注意してください。
値はいかなる場合でも変換されます。
   

NullとNone





SQLのNULL値が関数に渡されると、その引数値はPythonではNoneとなります。

例えば、「PL/Python関数」に示されたpymax関数の定義では、NULL入力に対して間違った結果が返されます。
関数定義にSTRICTを付与してPostgreSQL™を、NULL値が渡された場合にその関数を呼び出さず、自動的に単にNULL結果を返すという、より理想的に動作させることができます。
他に、関数本体でNULL入力を検査することもできます。



CREATE FUNCTION pymax (a integer, b integer)
  RETURNS integer
AS $$
  if (a is None) or (b is None):
    return None
  if a > b:
    return a
  return b
$$ LANGUAGE plpython3u;




上で示したように、PL/Python関数からSQL NULL値を返すには、Noneという値を返してください。
関数を厳密とした場合でも厳密としない場合でも、これを行うことができます。
  

配列、リスト





SQL配列値はPythonのリストとしてPL/Pythonに渡されます。
PL/Python関数の外部にSQL配列値を返すためには、Pythonのリストを返します。



CREATE FUNCTION return_arr()
  RETURNS int[]
AS $$
return [1, 2, 3, 4, 5]
$$ LANGUAGE plpython3u;

SELECT return_arr();
 return_arr
-------------
 {1,2,3,4,5}
(1 row)




多次元配列はPL/Pythonに入れ子のPythonのリストとして渡されます。
例えば、2次元配列はリストのリストです。
PL/Pythonから多次元のSQLの配列を返す場合には、各レベルの内側のリストはすべて同じ大きさでなければなりません。
例えば、



CREATE FUNCTION test_type_conversion_array_int4(x int4[]) RETURNS int4[] AS $$
plpy.info(x, type(x))
return x
$$ LANGUAGE plpython3u;

SELECT * FROM test_type_conversion_array_int4(ARRAY[[1,2,3],[4,5,6]]);
INFO:  ([[1, 2, 3], [4, 5, 6]], <type 'list'>)
 test_type_conversion_array_int4
---------------------------------
 {{1,2,3},{4,5,6}}
(1 row)




タプル等のその他のPythonのシーケンスも、PostgreSQLバージョン9.6以下との後方互換性のために受け入れられます。当時は、多次元配列はサポートされていませんでした。
しかしながら、複合型と区別できないため、常に1次元配列として扱われます。
同じ理由で、複合型を多次元配列内で使う場合、リストではなくタプルとして表現しなければなりません。
  


Pythonでは、文字列はシーケンスであることに注意してください。
これは予想できない影響を与えることがありますが、Pythonプログラマには慣れたものでしょう。



CREATE FUNCTION return_str_arr()
  RETURNS varchar[]
AS $$
return "hello"
$$ LANGUAGE plpython3u;

SELECT return_str_arr();
 return_str_arr
----------------
 {h,e,l,l,o}
(1 row)


  

複合型





複合型の引数はPythonのマップとして渡されます。
マップの要素名は複合型の属性名です。
渡された行の属性値がNULLの場合、マップ上ではNoneという値となります。
以下に例を示します。



CREATE TABLE employee (
  name text,
  salary integer,
  age integer
);

CREATE FUNCTION overpaid (e employee)
  RETURNS boolean
AS $$
  if e["salary"] > 200000:
    return True
  if (e["age"] < 30) and (e["salary"] > 100000):
    return True
  return False
$$ LANGUAGE plpython3u;


  


Python関数から行または複合型を返す方法は複数存在します。
以下の例はそれを前提とします。



CREATE TYPE named_value AS (
  name   text,
  value  integer
);




複合型の結果は以下のように返されます。

   
	シーケンス型（タプルまたはリスト。ただしインデックス付けができないためsetは不可）
	

返されるシーケンスオブジェクトは、結果の複合型が持つフィールドと同じ項目数をもたなければなりません。
0というインデックスの項目が複合型の最初のフィールド、1が次のフィールド、などとなります。
以下に例を示します。



CREATE FUNCTION make_pair (name text, value integer)
  RETURNS named_value
AS $$
  return ( name, value )

  # もしくは、リストとして返すなら: return [ name, value ]
$$ LANGUAGE plpython3u;




任意の列でSQL NULL値を返すには、対応する位置にNoneを挿入します。
      


複合型の配列を返す場合、Pythonのリストが複合型を表しているのか、また別の配列の次元を表しているのかあいまいですので、リストとして返すことはできません。
      

	マップ（辞書）
	

結果型の列の値は、列名をキーとして持つマップから取り出されます。
以下に例を示します。



CREATE FUNCTION make_pair (name text, value integer)
  RETURNS named_value
AS $$
  return { "name": name, "value": value }
$$ LANGUAGE plpython3u;




余計な辞書のキーと値の組み合わせは無視されます。
存在しないキーはエラーとして扱われます。
任意の列でSQL NULLを返すためには、対応する列名をキーとしてNoneを挿入してください。
      

	オブジェクト（__getattr__メソッドを提供する任意のオブジェクト）
	

これはマップと同じように動作します。
以下に例を示します。



CREATE FUNCTION make_pair (name text, value integer)
  RETURNS named_value
AS $$
  class named_value:
    def __init__ (self, n, v):
      self.name = n
      self.value = v
  return named_value(name, value)

  # or simply
  class nv: pass
  nv.name = name
  nv.value = value
  return nv
$$ LANGUAGE plpython3u;


      




  


OUTパラメータを用いる関数もサポートされています。
以下に例を示します。


CREATE FUNCTION multiout_simple(OUT i integer, OUT j integer) AS $$
return (1, 2)
$$ LANGUAGE plpython3u;

SELECT * FROM multiout_simple();


   


プロシージャの出力パラメータは同様に戻されます。
以下に例を示します。


CREATE PROCEDURE python_triple(INOUT a integer, INOUT b integer) AS $$
return (a * 3, b * 3)
$$ LANGUAGE plpython3u;

CALL python_triple(5, 10);


   

集合を返す関数





また、PL/Python関数はスカラまたは複合型の集合を返すこともできます。
返されるオブジェクトは内部的にイテレータに変換されるため、複数の実現方法があります。
以下の例では、以下の複合型が存在することを仮定します。



CREATE TYPE greeting AS (
  how text,
  who text
);




集合という結果は以下から返されます。

   
	シーケンス型（タプル、リスト、セット）
	


CREATE FUNCTION greet (how text)
  RETURNS SETOF greeting
AS $$
  # return tuple containing lists as composite types
  # all other combinations work also
  return ( [ how, "World" ], [ how, "PostgreSQL" ], [ how, "PL/Python" ] )
$$ LANGUAGE plpython3u;


      

	
イテレータ（__iter__メソッドと__next__メソッドを提供する任意のオブジェクト）
     
	


CREATE FUNCTION greet (how text)
  RETURNS SETOF greeting
AS $$
  class producer:
    def __init__ (self, how, who):
      self.how = how
      self.who = who
      self.ndx = -1

    def __iter__ (self):
      return self

    def __next__(self):
      self.ndx += 1
      if self.ndx == len(self.who):
        raise StopIteration
      return ( self.how, self.who[self.ndx] )

  return producer(how, [ "World", "PostgreSQL", "PL/Python" ])
$$ LANGUAGE plpython3u;


      

	ジェネレータ(yield)
	


CREATE FUNCTION greet (how text)
  RETURNS SETOF greeting
AS $$
  for who in [ "World", "PostgreSQL", "PL/Python" ]:
    yield ( how, who )
$$ LANGUAGE plpython3u;



      




  


（RETURNS SETOF recordを使用して）OUTパラメータを持つ集合を返す関数もサポートされます。
以下に例を示します。


CREATE FUNCTION multiout_simple_setof(n integer, OUT integer, OUT integer) RETURNS SETOF record AS $$
return [(1, 2)] * n
$$ LANGUAGE plpython3u;

SELECT * FROM multiout_simple_setof(3);


   


データの共有





グローバルなSD辞書は、同じ関数に対する繰り返しの呼び出しの間でのプライベートなデータ保存のために使用することができます。
グローバルなGD辞書は、共有データであり、セッション内の全てのPython関数で使用することができます。注意して使用してください。

  


各関数は、Pythonインタプリタ内で自身の実行環境を入手します。
そのため、myfuncによるグローバルデータと関数の引数はmyfunc2から使用することはできません。
上記で説明した通り、GD辞書内のデータは例外です。
  

匿名コードブロック





PL/PythonはDO(7)文で呼び出される匿名コードブロックもサポートします。



DO $$
    # PL/Python code
$$ LANGUAGE plpython3u;




匿名コードブロックは引数を持たず、また、何か値を返したとしても破棄されます。
その他は関数とまったく同様に動作します。
  

トリガ関数





トリガとして関数を使用した場合、TD辞書にトリガに関連した値が格納されます。
   
	TD["event"]
	

次のイベントが文字列として格納されます。
INSERT、UPDATE、DELETE、TRUNCATE
      

	TD["when"]
	

BEFORE、AFTER、またはINSTEAD OFのいずれかが格納されます。
      

	TD["level"]
	

ROWまたはSTATEMENTが格納されます。
      

	TD["new"], TD["old"]
	

行レベルトリガにおいてトリガイベントに依存して、これらのフィールドの片方または両方に対応するトリガ行が格納されます。
      

	TD["name"]
	

トリガ名が格納されます。
      

	TD["table_name"]
	

トリガの発生元のテーブルの名前が格納されます。
      

	TD["table_schema"]
	

トリガの発生元のテーブルのスキーマが格納されます。
      

	TD["relid"]
	

トリガの発生元テーブルのOIDが格納されます。
      

	TD["args"]
	

CREATE TRIGGERに引数が含まれていた場合、その引数はTD["args"][0]からTD["args"][n-1]までの範囲で使用することができます。
      




  


TD["when"]がBEFOREまたはINSTEAD OFで、かつ、TD["level"]がROWの場合、Pythonの関数から、行が変更されないことを示すNoneまたは"OK"、イベントを中断したことを示す"SKIP"を返すことができます。
また、TD["event"]がINSERTまたはUPDATEの場合、行を変更したことを示す"MODIFY"を返すことができます。
さもなければ、戻り値は無視されます。
  

データベースアクセス





PL/Python言語モジュールは自動的にplpyというPythonモジュールをインポートします。
このモジュールの関数と定数は、plpy.fooのように作成したPythonコードから使用することができます。
  
データベースアクセス関数





plpyモジュールはデータベースコマンドを実行するために数個の関数を用意しています。
  
	plpy.execute(query [, limit])
	

plpy.executeを、問い合わせ文字列および省略可能な行数制限引数を付けて呼び出すと、問い合わせが実行され、結果オブジェクトとして問い合わせ結果が返ります。
     


limitが指定され、ゼロより大きい場合、plpy.executeは、問い合わせにLIMIT句が含まれているかのように、最大limit行を取得します。
limitを省略するか、ゼロとして指定すると、行制限はありません。
     


結果オブジェクトはリストもしくは辞書オブジェクトをエミュレートします。
結果オブジェクトは、行番号や列名によってアクセスすることができます。
例を示します。


rv = plpy.execute("SELECT * FROM my_table", 5)



これは、my_tableから5行までを返します。
my_tableにmy_column列が存在する場合、その列には以下のようにアクセスできます。


foo = rv[i]["my_column"]



戻った行数はビルトインlen関数を使用して取得できます。
     


結果オブジェクトには以下のメソッドが追加されています。
      
	nrows()
	

コマンドによる処理の行数を返します。
戻った行数と同じとは限らないことに注意してください。
例えば、UPDATEコマンドではゼロでない値を返しますが、行を戻すことはありません（RETURNINGを使用したときは別です）。
         

	status()
	

SPI_execute()関数の戻り値を返します。
         

	colnames(), coltypes(), coltypmods()
	

各々、列名のリスト、列の型OIDのリスト、列に関する型独自の型修飾子のリストを返します。
         


RETURNINGを持たないUPDATEやDROP TABLEなど、結果セットを生成しないコマンドによる結果オブジェクトに対して呼び出された場合、これらのメソッドは例外を発生します。
しかし、ゼロ行の結果セットに対してこれらのメソッドを使用することには問題ありません。
         

	__str__()
	

標準の__str__メソッドが定義されていますので、例えば問い合わせの実行結果をplpy.debug(rv)を使ってデバッグできます。
         




     


結果オブジェクトは変更できます。
     


plpy.executeを呼び出すことにより、結果セット全体がメモリ内に読み込まれることに注意してください。
結果セットが比較的小さいことが確実な場合だけ、この関数を使用してください。
大規模な結果を取り込む場合の過度のメモリ使用に関する危険を回避したい場合は、plpy.executeではなくplpy.cursorを使用してください。
     

	plpy.prepare(query [, argtypes]), plpy.execute(plan [, arguments [, limit]])
	


plpy.prepareは問い合わせの実行計画を準備します。
問い合わせ内にパラメータ参照がある場合、問い合わせ文字列および引数型のリストとともに呼び出されます。
例を示します。


plan = plpy.prepare("SELECT last_name FROM my_users WHERE first_name = $1", ["text"])



textは$1として渡される変数の型です。
問い合わせにパラメータを渡さない場合、2番目の引数は省略可能です。
     


文を準備した後、それを実行するために関数plpy.executeの亜種を使用します。


rv = plpy.execute(plan, ["name"], 5)



実行計画を（問い合わせ文字列ではなく）最初の引数として渡してください。
問い合わせに代入する値のリストを、2番目の引数として渡してください。
問い合わせにパラメータがない場合、2番目の引数は省略可能です。
3番目の引数は、前に述べた省略可能な行数制限引数です。
     


代わりに、計画オブジェクトのexecuteメソッドを呼び出すことができます。


rv = plan.execute(["name"], 5)


     


問い合わせパラメータおよび結果行のフィールドは「データ値」で示した通り、PostgreSQLとPythonのデータ型の間で変換されます。
     


PL/Pythonモジュールを使用して準備した計画は自動的に保存されます。
これが何を意味するのかについてはSPIの文書（45章サーバプログラミングインタフェース）を参照してください。
これを複数呼び出しにおいて効果的に使用するためには、永続的な格納用辞書であるSDまたはGD（「データの共有」を参照）のいずれかを使用する必要があります。
例を示します。


CREATE FUNCTION usesavedplan() RETURNS trigger AS $$
    if "plan" in SD:
        plan = SD["plan"]
    else:
        plan = plpy.prepare("SELECT 1")
        SD["plan"] = plan
    # rest of function
$$ LANGUAGE plpython3u;


     

	plpy.cursor(query), plpy.cursor(plan [, arguments])
	

plpy.cursor関数はplpy.executeと同じ引数を受け取り（行数制限引数を除いた）カーソルオブジェクトとして返します。
これにより大規模な結果セットをより小さな塊の中で処理することができます。
plpy.executeの場合と同様、問い合わせ文字列または引数リスト付きの計画オブジェクトを使用できますし、計画オブジェクトのメソッドとしてcursor関数を呼ぶことができます。
     


カーソルオブジェクトは、整数パラメータを受付け、結果オブジェクトを返すfetchメソッドを提供します。
fetchを呼び出す度に、返されるオブジェクトには次の一群の行が含まれます。
この行数はパラメータ値より多くなることはありません。
全ての行が出し尽くされると、fetchは空の結果オブジェクトを返すようになります。
カーソルオブジェクトはまた、すべての行を出し尽くすまで一度に１行を生成するイテレータインタフェースを提供します。
この方法で取り出されたデータは結果オブジェクトとしては返されず、１つの辞書が単一の結果行に対応する辞書群として返されます。
     


大きなテーブルのデータを処理する、2つの方法の例を示します。


CREATE FUNCTION count_odd_iterator() RETURNS integer AS $$
odd = 0
for row in plpy.cursor("select num from largetable"):
    if row['num'] % 2:
         odd += 1
return odd
$$ LANGUAGE plpython3u;

CREATE FUNCTION count_odd_fetch(batch_size integer) RETURNS integer AS $$
odd = 0
cursor = plpy.cursor("select num from largetable")
while True:
    rows = cursor.fetch(batch_size)
    if not rows:
        break
    for row in rows:
        if row['num'] % 2:
            odd += 1
return odd
$$ LANGUAGE plpython3u;

CREATE FUNCTION count_odd_prepared() RETURNS integer AS $$
odd = 0
plan = plpy.prepare("select num from largetable where num % $1 <> 0", ["integer"])

rows = list(plpy.cursor(plan, [2]))  # または = list(plan.cursor([2]))

return len(rows)
$$ LANGUAGE plpython3u;


     


カーソルは自動的に処分されます。
しかし、カーソルが保有していた資源を明示的に解放したい場合は、closeメソッドを使用してください。
閉じた後、カーソルからこれ以上取り込むことはできません。
     
ヒント


plpy.cursorによって作成されたオブジェクトと、PythonデータベースAPI仕様において定義されたDB-APIカーソルとを混同しないでください。
名称以外の共通点はありません。
      





エラーの捕捉





データベースにアクセスする関数はエラーに遭遇し、エラーが関数をアボートして例外を発生させる原因となります。
plpy.executeおよびplpy.prepareは、デフォルトでは関数を終了させるplpy.SPIErrorのサブクラスのインスタンスを発生させることができます。
このエラーは、try/except構文を使用して、Pythonの他の例外と同様に処理できます。
例を示します。


CREATE FUNCTION try_adding_joe() RETURNS text AS $$
    try:
        plpy.execute("INSERT INTO users(username) VALUES ('joe')")
    except plpy.SPIError:
        return "something went wrong"
    else:
        return "Joe added"
$$ LANGUAGE plpython3u;


   


発生される例外の実クラスはエラーを引き起こした特定の条件と対応します。
表A.1「PostgreSQL™エラーコード」にあり得る条件のリストがありますので参照してください。
plpy.spiexceptionsモジュールはPostgreSQL™の条件それぞれに対して、その条件名に因んだ名前の例外クラスを定義しています。
例えばdivision_by_zeroはDivisionByZero、unique_violationはUniqueViolationに、fdw_errorはFdwErrorなどのようになります。
これらの例外クラスはそれぞれSPIErrorを継承したものです。
このように分離することで特定のエラーをより簡単に扱うことができるようになります。
以下に例を示します。


CREATE FUNCTION insert_fraction(numerator int, denominator int) RETURNS text AS $$
from plpy import spiexceptions
try:
    plan = plpy.prepare("INSERT INTO fractions (frac) VALUES ($1 / $2)", ["int", "int"])
    plpy.execute(plan, [numerator, denominator])
except spiexceptions.DivisionByZero:
    return "denominator cannot equal zero"
except spiexceptions.UniqueViolation:
    return "already have that fraction"
except plpy.SPIError as e:
    return "other error, SQLSTATE %s" % e.sqlstate
else:
    return "fraction inserted"
$$ LANGUAGE plpython3u;



plpy.spiexceptionsモジュールからの全ての例外はSPIErrorを継承するため、例外を処理するexcept句は全てのデータベースアクセスエラーを捕捉することに注意してください。
   


異なったエラー条件を処理する代りの方法として、SPIError例外を捕捉して、例外オブジェクトのsqlstate属性を調べることにより、exceptブロック内部の明細なエラー条件を決定できます。
この属性は「SQLSTATE」エラーコードを含む文字列値です。
この方法は、ほぼ同じ機能を提供します。
   


明示的サブトランザクション





「エラーの捕捉」で説明したデータベースアクセスによって引き起こるエラーからの復旧は、操作の中の１つが失敗する前に、一部の操作が成功し、エラーからの復旧の後一貫性のないデータが残ってしまうという望ましくない状態を導く可能性があります。
PL/Pythonは明示的サブトランザクションにより、この問題の解法を提供します。
  
サブトランザクションのコンテキスト管理





2つの口座の間の振替えを実装する関数を考えてみます。


CREATE FUNCTION transfer_funds() RETURNS void AS $$
try:
    plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name = 'joe'")
    plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name = 'mary'")
except plpy.SPIError as e:
    result = "error transferring funds: %s" % e.args
else:
    result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpython3u;



2番目のUPDATE文が例外を発生させる結果となった場合、この関数はエラーを記録しますが、それにもかかわらず最初のUPDATEはコミットされます。
言い換えると、資金はジョーの口座から引き落とされますが、メアリーの口座には移転しません。
   


こうした問題を防ぐために、plpy.execute呼び出しを明示的なサブトランザクションで囲むことができます。
plpyモジュールは、plpy.subtransaction()関数で作成される明示的なサブトランザクションを管理するための補助オブジェクトを提供します。
この関数によって作成されるオブジェクトはコンテキストマネージャインタフェースを実装します。
明示的なサブトランザクションを使用して、上の関数を以下のように書き換えることができます。


CREATE FUNCTION transfer_funds2() RETURNS void AS $$
try:
    with plpy.subtransaction():
        plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name = 'joe'")
        plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name = 'mary'")
except plpy.SPIError as e:
    result = "error transferring funds: %s" % e.args
else:
    result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpython3u;



try/exceptの使用がまだ必要なことに注意してください。
さもないと例外がPythonスタックの最上位まで伝播され、関数全体がPostgreSQL™エラーにより中断され、この結果、operationsテーブルには挿入されるはずの行が存在しないことになります。
サブトランザクションのコンテキストマネージャはエラーを捕捉しません。
これはそのスコープの内側で実行されるデータベース操作すべてが、原子的にコミットされるかロールバックされるかだけを保証します。
サブトランザクションブロックのロールバックは、データベースアクセスを元にしたエラーによって引き起こる例外だけではなく、何らかの種類の例外終了でも起こります。
明示的なサブトランザクションブロックの内側で発生した通常のPython例外も同様にサブトランザクションをロールバックさせます。
   


トランザクション制御





トップレベル、またはトップレベルから呼ばれた無名コードブロック（DOコマンド）から呼ばれたプロシージャでは、トランザクションの制御が可能です。
現在のトランザクションをコミットするには、plpy.commit()を呼びます。
現在のロールバックするには、plpy.rollback()を呼びます。
（SQLコマンドのCOMMITやROLLBACKをplpy.executeなどを通して実行することはできない点に注意してください。前述の関数を使って行う必要があります。）
トランザクションが終了した後は新たなトランザクションが自動的に開始されますので、開始のための別の関数はありません。
  


以下に例を示します。


CREATE PROCEDURE transaction_test1()
LANGUAGE plpython3u
AS $$
for i in range(0, 10):
    plpy.execute("INSERT INTO test1 (a) VALUES (%d)" % i)
    if i % 2 == 0:
        plpy.commit()
    else:
        plpy.rollback()
$$;

CALL transaction_test1();


  


トランザクションは明示的なサブトランザクションの中では終了できません。
  

ユーティリティ関数





plpyモジュールでは以下の関数も提供しています。
   
	plpy.debug(msg, **kwargs)
	plpy.log(msg, **kwargs)
	plpy.info(msg, **kwargs)
	plpy.notice(msg, **kwargs)
	plpy.warning(msg, **kwargs)
	plpy.error(msg, **kwargs)
	plpy.fatal(msg, **kwargs)


   
   

plpy.errorおよびplpy.fatalは、実際にPythonの例外を発生させます。
これが捕捉されない場合、呼び出し中の問い合わせに伝わり、その結果、現在のトランザクションもしくはサブトランザクションがアボートします。
raise plpy.Error(msg)およびraise plpy.Fatal(msg)は、それぞれplpy.error(msg)およびplpy.fatal(msg)の呼び出しと同じですが、raise形式ではキーワード引数を渡すことができません。
他の関数は異なる重要度のメッセージを生成するだけです。
log_min_messagesとclient_min_messages設定変数は、特定の重要度のメッセージをクライアントに報告するか、サーバのログに書き出すか、あるいはその両方かを制御します。
詳細は19章サーバ設定を参照してください。
  


msg引数は位置引数として与えられます。
後方互換性のために、2つ以上の位置引数を与えることができます。
その場合、位置引数のタプルの文字列表現がクライアントに報告されるメッセージになります。
  


以下のキーワードのみの引数を受け付けます。
   
	detail
	hint
	sqlstate
	schema_name
	table_name
	column_name
	datatype_name
	constraint_name



キーワードのみの引数として渡されたオブジェクトの文字列表現は、クライアントへ報告されるメッセージを豊富にするのに使われます。
例えば、



CREATE FUNCTION raise_custom_exception() RETURNS void AS $$
plpy.error("custom exception message",
           detail="some info about exception",
           hint="hint for users")
$$ LANGUAGE plpython3u;

=# SELECT raise_custom_exception();
ERROR:  plpy.Error: custom exception message
DETAIL:  some info about exception
HINT:  hint for users
CONTEXT:  Traceback (most recent call last):
  PL/Python function "raise_custom_exception", line 4, in <module>
    hint="hint for users")
PL/Python function "raise_custom_exception"


  


この他のユーティリティ関数群にはplpy.quote_literal(string)、plpy.quote_nullable(string)およびplpy.quote_ident(string)があります。
これらは「文字列関数と演算子」で説明する組み込みの引用符付け関数と同等です。
これらはその場限りの問い合わせを構築する時に有用です。
例41.1「動的問い合わせの中の値の引用符付け」の動的SQLと同等なPL/Pythonを以下に示します。


plpy.execute("UPDATE tbl SET %s = %s WHERE key = %s" % (
    plpy.quote_ident(colname),
    plpy.quote_nullable(newvalue),
    plpy.quote_literal(keyvalue)))


  

Python 2対Python 3





PL/PythonはPython 3のみをサポートします。
PostgreSQL™の以前のバージョンでは、plpythonuとplpython2uという言語名を使用してPython 2がサポートされていました。
  

環境変数





Pythonインタプリタにより受け付けられる環境変数の一部はまた、PL/Pythonの動作を変更するために使用することができます。
これらは例えば起動スクリプト内など主PostgreSQLサーバプロセスの環境で設定される必要があります。
利用可能な環境変数はPythonのバージョンに依存します。
詳細に付いてはPythonの文書を参照してください。
適切なバージョンのPythonであることが前提ですが、本章の執筆時点では以下の環境変数がPL/Pythonに影響を与えます。
   
	PYTHONHOME

	PYTHONPATH

	PYTHONY2K

	PYTHONOPTIMIZE

	PYTHONDEBUG

	PYTHONVERBOSE

	PYTHONCASEOK

	PYTHONDONTWRITEBYTECODE

	PYTHONIOENCODING

	PYTHONUSERBASE

	PYTHONHASHSEED






（pythonマニュアルページに列挙された環境変数の一部はコマンドラインインタプリタでのみ影響を与え、組み込みPythonインタプリタには影響しないというPL/Pythonの制御を超えたPythonの詳細実装があるようです。）
  

第45章 サーバプログラミングインタフェース





サーバプログラミングインタフェース（SPI）は、ユーザ定義のC関数が関数やプロシージャからSQLコマンドを実行する機能をユーザに提供します。
SPIはパーサ、プランナ、エグゼキュータへのアクセスを単純化したインタフェース関数の集合です。
また、SPIは多少のメモリ管理を行います。
 
注記


利用可能な手続き言語は、関数からSQLコマンドを実行するための各種手段を提供します。
これらのほとんどは、SPIを基にしていますので、この文書はこれらの言語のユーザにとっても有用な場合があります。
  



コマンドがSPIの失敗を起こした場合、その制御はC関数には戻らないことに注意してください。
それどころか、プロシージャを実行していたトランザクションもしくは副トランザクションはロールバックされます。
（これはSPI関数のほとんどでエラーを返す規約があることから奇妙に思われるかもしれません。
しかし、こうした規約はSPI関数自身でエラーを検知した時にのみ適用されるものです。）
失敗する可能性があるSPI呼び出しを囲む副トランザクションを独自に用意することで、エラーの後の制御を戻すことができます。
 


SPI関数は成功時に非負の結果を（戻り値、もしくは後述のSPI_resultグローバル変数の中に）返します。
エラー時、負の結果もしくはNULLを返します。
 


SPIを使用するソースコードファイルではexecutor/spi.hヘッダファイルをincludeしなければなりません。
 
インタフェース関数





インタフェースサポート関数





以下で説明する関数は、SPI_executeや他のSPI関数で返される結果セットから情報を取り出すためのインタフェースを提供します。
 


本節で説明する関数は全て、接続、未接続のC関数のどちらからでも使用することができます。
 


名前
SPI_fname — 指定した列番号に対する列名を決定する

概要

char * SPI_fname(TupleDesc rowdesc, int colnumber)


説明


SPI_fname は指定した列の列名のコピーを返します。
（名前のコピーが不要になった場合pfreeを使用してその領域を解放することができます。）
  

引数
	TupleDesc rowdesc
	

入力行の記述
     

	int colnumber
	

（1から始まる）列番号
     




戻り値


列の名前です。
colnumberが範囲外の場合はNULLです。
エラー時、SPI_resultはSPI_ERROR_NOATTRIBUTEに設定されます。
  



名前
SPI_fnumber — 指定した列名から列番号を決定する

概要

int SPI_fnumber(TupleDesc rowdesc, const char * colname)


説明


SPI_fnumberは指定した名前の列の列番号を返します。
  


colnameが（ctidなどの）システム列を参照する場合、適切な負の列番号が返されます。
呼び出し元は、エラーを検知するために戻り値がSPI_ERROR_NOATTRIBUTEと正確に同一であるかどうかを注意して検査しなければなりません。
システム列を拒絶させたくなければ、結果が0あるいは0未満かを検査するという方法は、正しくありません。
  

引数
	TupleDesc rowdesc
	

入力行の記述
     

	const char * colname
	

列名
     




戻り値


（ユーザ定義の列について1から始まる）列番号。
指定された名前の列が見つからなければ、SPI_ERROR_NOATTRIBUTEです。
  



名前
SPI_getvalue — 指定された列の文字列値を返す

概要

char * SPI_getvalue(HeapTuple row, TupleDesc rowdesc, int colnumber)


説明


SPI_getvalueは指定された列の値の文字列表現を返します。
  


結果は、pallocを使用して割り当てられたメモリ内に返されます。
（不要になった段階で、pfreeを使用してメモリを解放することができます。）
  

引数
	HeapTuple row
	

検査対象の入力行
     

	TupleDesc rowdesc
	

入力行の記述
     

	int colnumber
	

（1から始まる）列番号
     




戻り値


列の値。
列がNULLの場合、あるいはcolnumberが範囲外の場合はNULLです（SPI_resultがSPI_ERROR_NOATTRIBUTEに設定されます）。
利用できる出力関数が存在しない場合は、NULLです。
（SPI_resultがSPI_ERROR_NOOUTFUNCに設定されます。）
  



名前
SPI_getbinval — 指定した列のバイナリ値を返す

概要

Datum SPI_getbinval(HeapTuple row, TupleDesc rowdesc, int colnumber,
                    bool * isnull)


説明


SPI_getbinval は指定された列の値を内部形式で（Datumとして）返します。
  


この関数はデータ用に新しい領域を確保しません。
参照渡しのデータ型の場合、戻り値は渡された行の内部を示すポインタとなります。
  

引数
	HeapTuple row
	

対象とする入力行
     

	TupleDesc rowdesc
	

入力行の記述
     

	int colnumber
	

（1から始まる）列番号
     

	bool * isnull
	

列のNULL値についてのフラグ
     




戻り値


列のバイナリ値が返されます。
isnullで指し示される変数は、列がNULLならば真に、さもなくば、偽に設定されます。
  


エラー時、SPI_resultはSPI_ERROR_NOATTRIBUTEに設定されます。
  



名前
SPI_gettype — 指定された列のデータ型名を返す

概要

char * SPI_gettype(TupleDesc rowdesc, int colnumber)


説明


SPI_gettypeは指定された列のデータ型名のコピーを返します。
（不要になった段階で、pfreeを使用して名前のコピーを解放することができます。）
  

引数
	TupleDesc rowdesc
	

入力行の記述
     

	int colnumber
	

（1から始まる）列番号
     




戻り値


指定された列のデータ型名。
エラー時はNULLです。
エラー時、SPI_resultはSPI_ERROR_NOATTRIBUTEに設定されます。
  



名前
SPI_gettypeid — 指定された列のデータ型のOIDを返す

概要

Oid SPI_gettypeid(TupleDesc rowdesc, int colnumber)


説明


   SPI_gettypeidは指定された列のデータ型のOIDを返します。
  

引数
	TupleDesc rowdesc
	

入力行の記述
     

	int colnumber
	

（1から始まる）列番号
     




戻り値


指定された列のデータ型のOIDです。
エラー時はInvalidOidです。
エラー時、SPI_resultはSPI_ERROR_NOATTRIBUTEに設定されます。
  



名前
SPI_getrelname — 指定されたリレーションの名前を返す

概要

char * SPI_getrelname(Relation rel)


説明


SPI_getrelnameは指定リレーションの名前のコピーを返します。
（不要になった段階で、pfreeを使用して名前のコピーを解放することができます。）
  

引数
	Relation rel
	

入力リレーション
     




戻り値


指定されたリレーションの名前です。
  



名前
SPI_getnspname — 指定されたリレーションの名前空間を返す

概要

char * SPI_getnspname(Relation rel)


説明


SPI_getnspnameは、指定したRelationが属する名前空間名のコピーを返します。
これはリレーションのスキーマと同じです。
作業終了時に、この関数の戻り値に対してpfreeを行わなければなりません。
  

引数
	Relation rel
	

入力リレーション
     




戻り値


指定したリレーションの名前空間の名称です。
  



名前
SPI_result_code_string — 文字列でエラーコードを返します

概要

const char * SPI_result_code_string(int code);


説明


SPI_result_code_stringは、様々なSPI関数から返されたか、SPI_resultに格納された結果コードの文字列表現を返します。
  

引数
	int code
	

結果コード
     




戻り値


結果コードの文字列表現
  


メモリ管理




    
    

PostgreSQL™は、メモリコンテキスト内にメモリを確保します。
これは、様々な場所で、必要な有効期間がそれぞれ異なるような割り当てを管理する便利な方法を提供します。
コンテキストを破壊することで、そこで割り当てられた全てのメモリを解放します。
したがって、メモリリークを防ぐための個々のオブジェクトの追跡を維持することは不要です。
その代わり、相対的に少量のコンテキストを管理する必要があります。
pallocと関連する関数は「現在の」コンテキストからメモリを確保します。
  


SPI_connectは新しくメモリコンテキストを作成し、それを現在のコンテキストとします。
SPI_finishは直前の現在のメモリコンテキストを戻し、SPI_connectで作成されたコンテキストを破壊します。
これらの動作により、C関数内で割り当てが行われる一時的なメモリがC関数の終了時に回収され、メモリリークが防止されることが保証されます。
  


しかし、（参照渡しのデータ型の値といった）C関数が割り当てられたメモリ内のオブジェクトを返す必要がある場合、少なくともSPIに接続していない期間は、pallocを使用してメモリを確保することができません。
これを試行すると、そのオブジェクトはSPI_finishで解放されてしまい、C関数は正しく動作しないでしょう。
この問題を解決するには、SPI_pallocを使用して、戻り値となるオブジェクト用のメモリを確保してください。
SPI_pallocは「上位エグゼキュータコンテキスト」内にメモリを割り当てます。
このメモリコンテキストは、SPI_connectが呼び出された時点において現在のコンテキストだったものであり、C関数の戻り値用のコンテキストとしてまさに正しいものです。
この章で説明されているほかのユーティリティ関数のいくつかも、上位エグゼキュータコンテキスト内で作成されたオブジェクトを返します。
  


SPI_connectが呼び出されると、SPI_connectによって作成されるC関数固有のコンテキストが現在のコンテキストに作成されます。
palloc、repalloc、SPIユーティリティ関数（この章で説明されているものは除きます）によって作成される割り当ては全て、このコンテキスト内に作成されます。
C関数がSPIマネージャから（SPI_finish経由で）切断した時、現在のコンテキストは上位エグゼキュータコンテキストに戻され、C関数のメモリコンテキスト内で割り当てられたメモリは全て解放され、二度と使用することができません。
  


名前
SPI_palloc — 上位エグゼキュータコンテキスト内にメモリを割り当てる

概要

void * SPI_palloc(Size size)


説明


SPI_pallocは上位エグゼキュータコンテキスト内にメモリを割り当てます。
  


この関数はSPIに接続されている間にのみ使うことができます。
それ以外の場合はエラーを発生させます。
  

引数
	Size size
	

割り当てる領域のバイト数
     




戻り値


指定サイズの新しい格納領域へのポインタ
  



名前
SPI_repalloc — 上位エグゼキュータコンテキスト内にメモリを再割り当てる

概要

void * SPI_repalloc(void * pointer, Size size)


説明


SPI_repallocは、以前にSPI_pallocを使用して割り当てられたメモリセグメントのサイズを変更します。
  


この関数はもはや通常のrepallocとは異なるものではありません。
単に既存コードの後方互換性のために保持されています。
  

引数
	void * pointer
	

変更する既存の領域へのポインタ
     

	Size size
	

割り当てる領域のバイト数
     




戻り値


指定サイズに新規に割り当てられ、既存領域の内容をコピーした領域へのポインタ
  



名前
SPI_pfree — 上位エグゼキュータコンテキスト内のメモリを解放する

概要

void SPI_pfree(void * pointer)


説明


SPI_pfreeは、以前にSPI_pallocやSPI_repallocを使用して割り当てられたメモリを解放します。
  


この関数はもはや通常のpfreeとは異なるものではありません。
単に既存コードの後方互換性のために保持されています。
  

引数
	void * pointer
	

解放する既存の領域へのポインタ
     






名前
SPI_copytuple — 上位エグゼキュータ内に行のコピーを作成する

概要

HeapTuple SPI_copytuple(HeapTuple row)


説明


SPI_copytupleは上位エグゼキュータコンテキスト内に行のコピーを作成します。
これは通常、トリガから変更した行を返す時に使用されます。
複合型を返すものと宣言された関数では、代わりにSPI_returntupleを使用してください。
  


この関数はSPIに接続されている間にのみ使うことができます。
それ以外の場合はNULLを返し、SPI_resultをSPI_ERROR_UNCONNECTEDにセットします。
  

引数
	HeapTuple row
	

コピーされる行
     




戻り値


コピーされた行、あるいはエラー時はNULL
（エラーの表示についてはSPI_resultを参照してください）
  



名前
SPI_returntuple — Datumとしてタプルを返す準備をする

概要

HeapTupleHeader SPI_returntuple(HeapTuple row, TupleDesc rowdesc)


説明


SPI_returntupleは上位エグゼキュータコンテキスト内に行の複製を作成し、それを行型のDatum形式で返します。
返されるポインタは、返す前にPointerGetDatumを使用してDatumに変換することのみが必要です。
  


この関数はSPIに接続されている間にのみ使うことができます。
それ以外の場合はNULLを返し、SPI_resultをSPI_ERROR_UNCONNECTEDにセットします。
  


この関数は複合型を返すものと宣言された関数に対して使用しなければなりません。
トリガでは使用されません。
トリガで変更された行を返すにはSPI_copytupleを使用してください。
  

引数
	HeapTuple row
	

コピーされる行
     

	TupleDesc rowdesc
	

行の記述子（最も効率的にキャッシュを行えるように毎回同一の記述子を渡してください）
     




戻り値


コピーされた行を指し示すHeapTupleHeader、あるいはエラー時はNULLです。
（エラーの表示についてはSPI_resultを参照してください）
  



名前
SPI_modifytuple — 与えられた行の選択フィールドを置き換えた行を作成する

概要

HeapTuple SPI_modifytuple(Relation rel, HeapTuple row, int ncols,
                          int * colnum, Datum * values, const char * nulls)


説明


SPI_modifytupleは、選択された列は新しい値で置き換え、その他の位置は元の行の列をコピーした、新しい行を作成します。
入力行は変更されません。
新しい行は上位エグゼキュータコンテキスト内に返されます。
  


この関数はSPIに接続されている間にのみ使うことができます。
それ以外の場合はNULLを返し、SPI_resultをSPI_ERROR_UNCONNECTEDにセットします。
  

引数
	Relation rel
	

行の行記述子のソースとしてのみ使用されます。
（行記述子ではなくリレーションを渡すことは設計ミスです。）
     

	HeapTuple row
	

変更される行
     

	int ncols
	

変更された列数
     

	int * colnum
	

変更される列番号を含む、ncols長の配列（列番号は1から始まります）
     

	Datum * values
	

指定された列の新しい値を含む、ncols長の配列
     

	const char * nulls
	

新しい値のどれがNULLかを記述する、ncols長の配列
     


nullsがNULLであれば、SPI_modifytupleはどの新しい値もnullでないとみなします。
さもなければ、nulls配列の各項目は、対応するパラメータが非NULLならば' '、対応するパラメータがNULLならば'n'です。
（後者の場合、values内の対応する値は注意されません。）
nullsはテキスト文字列ではなく単なる配列であることに注意してください。
'\0'終端は必要ありません。
     




戻り値


変更された新しい行。上位エグゼキュータコンテキストに割り当てられます。
エラー時はNULLです。
（エラーの表示についてはSPI_resultを参照してください）
  


エラー時、SPI_resultが以下のように設定されます。
   
	SPI_ERROR_ARGUMENT
	

relがNULLの場合、rowがNULLの場合、ncolsが0以下の場合、colnumがNULLの場合、valuesがNULLの場合。
      

	SPI_ERROR_NOATTRIBUTE
	

colnumが無効な列番号を持つ場合
（0以下、rowの列数以上）
      

	SPI_ERROR_UNCONNECTED
	

SPIが動作していない場合
      




  



名前
SPI_freetuple — 上位エグゼキュータコンテキスト内に割り当てられた行を解放する

概要

void SPI_freetuple(HeapTuple row)


説明


SPI_freetupleは以前に上位エグゼキュータコンテキスト内に割り当てられた行を解放します。
  


この関数はもはや通常のheap_freetupleとは異なるものではありません。
単に既存コードの後方互換性のために保持されています。
  

引数
	HeapTuple row
	

解放する行
     






名前
SPI_freetuptable — SPI_executeや類似の関数によって生成された行セットを解放する

概要

void SPI_freetuptable(SPITupleTable * tuptable)


説明


SPI_freetuptableは、以前にSPI_executeなどのSPIコマンド実行関数によって作成された行セットを解放します。
そのため、この関数はよくSPI_tuptableグローバル変数を引数として呼び出されます。
  


この関数はSPIプロシージャが複数のコマンドを実行する必要があり、かつ、初期のコマンドの結果を終わりまで保持したくない場合に有用です。
解放されない行セットは、SPI_finish時に全て解放されることに注意してください。
また副トランザクションが始まった後SPIプロシージャの実行中にアボートした場合、SPIは自動的に副トランザクションが実行中に作成された行セットすべてを解放します。
  


PostgreSQL™ 9.3からSPI_freetuptableには同一行セットに対して重複する削除要求から保護する保護ロジックが含まれます。
過去のリリースでは重複する削除がクラッシュをもたらすかもしれませんでした。
  

引数
	SPITupleTable * tuptable
	

解放する行セットへのポインタ。または何も行わないことを示すNULL。
     






名前
SPI_freeplan — 以前に保存した準備済み文を解放する

概要

int SPI_freeplan(SPIPlanPtr plan)


説明


SPI_freeplanは、以前にSPI_prepareから返された、あるいはSPI_keepplanやSPI_saveplanで保存された準備済み文を解放します。
  

引数
	SPIPlanPtr plan
	

解放する文へのポインタ
     




戻り値


成功時は0。
planがNULLまたは無効な場合、SPI_ERROR_ARGUMENTです。
  


トランザクション制御





COMMITやROLLBACKといったトランザクション制御コマンドをSPI_executeなどのSPI関数を通して実行することはできません。
しかしながら、SPIを通してトランザクション制御ができる別のインタフェース関数があります。
  


どこで呼び出されるかという文脈を考慮することなく、ユーザ定義された任意のSQL呼び出し可能な関数でトランザクションを開始・終了することは、一般的に安全でも思慮のあることではありません。
例えば、SQLコマンドの一部の複雑なSQL式の一部である関数中のトランザクションブロックは、おそらく不明瞭な内部エラーやクラッシュになります。
ここに示されるインタフェース関数は、CALL起動の文脈を考慮しており、主としてCALLコマンドから起動される手続き言語から使われることを意図しています。
SPIを使ったCで実装されたプロシージャは同じロジックを実装できますが、その詳細は本文書の範囲を超えます。
  


名前
SPI_commit, SPI_commit_and_chain — 現在のトランザクションをコミットする

概要

void SPI_commit(void)


void SPI_commit_and_chain(void)


説明


SPI_commitは現在のトランザクションをコミットします。
これはSQLコマンドのCOMMITを実行することと概ね同等です。
トランザクションがコミットされた後には、新しいトランザクションが自動的にデフォルトのトランザクションの特性を使って開始されます。ですので、呼び出し元はSPIを使い続けることができます。
コミット中に失敗した場合、現在のトランザクションは代わりにロールバックされ、新しいトランザクションが開始され、その後、通常通りエラーが発生します。
  


SPI_commit_and_chainは同じですが、新しいトランザクションは、SQLコマンドCOMMIT AND CHAINと同じように、直前に完了したものと同じトランザクションの特性で開始されます。
  


これらの関数はSPI接続がSPI_connect_extの呼び出しで非原子的と設定されている場合のみ、実行できます。
  



名前
SPI_rollback, SPI_rollback_and_chain — 現在のトランザクションを中断する

概要

void SPI_rollback(void)


void SPI_rollback_and_chain(void)


説明


SPI_rollbackは現在のトランザクションをロールバックします。
これはSQLコマンドのROLLBACKを実行することと概ね同等です。
トランザクションがロールバックされた後には、新しいトランザクションが自動的にデフォルトのトランザクションの特性を使って開始されます。ですので、呼び出し元はSPIを使い続けることができます。
  


SPI_rollback_and_chainは同じですが、新しいトランザクションは、SQLコマンドROLLBACK AND CHAINと同じように、直前に完了したものと同じトランザクションの特性で開始されます。
  


これらの関数はSPI接続がSPI_connect_extの呼び出しで非原子的と設定されている場合のみ、実行できます。
  



名前
SPI_start_transaction — 廃れた関数

概要

void SPI_start_transaction(void)


説明


SPI_start_transactionは何もしません。以前のPostgreSQL™のリリースとのコードの互換性のためだけに存在します。
SPI_commitまたはSPI_rollbackの呼び出しの後で要求されていましたが、今はこれらの関数は自動的に新しいトランザクションを開始します。
  


データ変更の可視性





SPI（や他の任意のC関数）を使用する関数内のデータの可視性は、以下の規則に従います。

   
	

SQLコマンドの実行中、そのコマンドで行われたデータ変更はそのコマンドからは不可視です。
例えば、


INSERT INTO a SELECT * FROM a;



では、挿入された行はSELECT部からは不可視です。
     

	

コマンドCで行われた変更は、Cの後に開始された全てのコマンドからは可視です。
Cの内側（処理中）に開始したかCの処理後に開始したかは関係ありません。
     

	

SQLコマンドによって呼び出される関数（普通の関数やトリガ関数）の内側で、SPIを使用して実行されるコマンドは、SPIに渡される読み書きフラグに応じて上の規則のいくつかに従います。
読み取りのみモードで実行されるコマンドは、呼び出し中のコマンドの変更は不可視であるという最初の規則に従います。
読み書きモードで実行されるコマンドは、今までに行われた変更はすべて可視であるという2番目の規則に従います。
     

	

標準の手続き言語は全て、関数の変動属性に応じてSPI読み書きモードを設定します。
STABLEおよびIMMUTABLE関数のコマンドは、読み取りのみモードで行われ、VOLATILE関数のコマンドは読み書きモードで行われます。
C言語関数の作者はこの規約を無視することができますが、それはほとんどの場合勧められません。
     




  


次節には、これら規則の適用についてを示す例があります。
  

例





本節には、SPIを使用する非常に簡単な例があります。
C関数execqは1つ目の引数としてSQLコマンドを、2つ目の引数として行数を取り、SPI_execコマンドを実行し、そのコマンドで処理された行数を返します。
SPIのより複雑な例はソースツリー内のsrc/test/regress/regress.cとspiモジュールにあります。
  

#include "postgres.h"

#include "executor/spi.h"
#include "utils/builtins.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(execq);

Datum
execq(PG_FUNCTION_ARGS)
{
    char *command;
    int cnt;
    int ret;
    uint64 proc;


    /* 与えられたテキストオブジェクトをC文字列に変換 */
    command = text_to_cstring(PG_GETARG_TEXT_PP(0));
    cnt = PG_GETARG_INT32(1);

    SPI_connect();

    ret = SPI_exec(command, cnt);

    proc = SPI_processed;

    /*

     * 何らかの行が取り出された場合は、行をelog(INFO)を使用して表示
     */
    if (ret > 0 && SPI_tuptable != NULL)
    {
        SPITupleTable *tuptable = SPI_tuptable;
        TupleDesc tupdesc = tuptable->tupdesc;
        char buf[8192];
        uint64 j;

        for (j = 0; j < tuptable->numvals; j++)
        {
            HeapTuple tuple = tuptable->vals[j];
            int i;

            for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++)
                snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " %s%s",
                        SPI_getvalue(tuple, tupdesc, i),
                        (i == tupdesc->natts) ? " " : " |");
            elog(INFO, "EXECQ: %s", buf);
        }
    }

    SPI_finish();
    pfree(command);

    PG_RETURN_INT64(proc);
}



以下は、コンパイルし共有ライブラリ（「動的にロードされる関数のコンパイルとリンク」を参照）を作成した後で、関数を宣言する方法です。



CREATE FUNCTION execq(text, integer) RETURNS int8
    AS 'filename'
    LANGUAGE C STRICT;


  


以下はセッションの例です。



=> SELECT execq('CREATE TABLE a (x integer)', 0);
 execq
-------
     0
(1 row)

=> INSERT INTO a VALUES (execq('INSERT INTO a VALUES (0)', 0));
INSERT 0 1
=> SELECT execq('SELECT * FROM a', 0);

INFO:  EXECQ:  0    -- execqによって挿入された
INFO:  EXECQ:  1    -- execqによって返され、上位のINSERTによって挿入された

 execq
-------
     2
(1 row)

=> SELECT execq('INSERT INTO a SELECT x + 2 FROM a RETURNING *', 1);

INFO:  EXECQ:  2    -- 0 + 2、それから実行はカウントによって止められた
 execq
-------
     1
(1 row)

=> SELECT execq('SELECT * FROM a', 10);
INFO:  EXECQ:  0
INFO:  EXECQ:  1
INFO:  EXECQ:  2

 execq
-------

     3              -- 10は最大値を示すのみで、3が実際の行数
(1 row)

=> SELECT execq('INSERT INTO a SELECT x + 10 FROM a', 1);
 execq
-------

     3              -- すべての行が処理された。何も返されないので、カウントでは止まらない
(1 row)

=> SELECT * FROM a;
 x
----
  0
  1
  2
 10
 11
 12
(6 rows)

=> DELETE FROM a;
DELETE 6
=> INSERT INTO a VALUES (execq('SELECT * FROM a', 0) + 1);
INSERT 0 1
=> SELECT * FROM a;
 x
---

 1                  -- 0 (aには行がない) + 1
(1 row)

=> INSERT INTO a VALUES (execq('SELECT * FROM a', 0) + 1);
INFO:  EXECQ:  1
INSERT 0 1
=> SELECT * FROM a;
 x
---
 1

 2                  -- 1 (aには1行ある) + 1
(2 rows)


-- これはデータ変更に関する可視性規則を説明する。
-- execqは2回呼ばれ、各回で異なる行数を見る。

=> INSERT INTO a SELECT execq('SELECT * FROM a', 0) * x FROM a;

INFO:  EXECQ:  1    -- 1回目のexecqの結果
INFO:  EXECQ:  2

INFO:  EXECQ:  1    -- 2回目のexecqの結果
INFO:  EXECQ:  2
INFO:  EXECQ:  2
INSERT 0 2
=> SELECT * FROM a;
 x
---
 1
 2

 2                  -- 2 行 * 1 (最初の行のx)
 6                  -- 3 行 (2 + ちょうど挿入された1) * 2 (2行目のx)
(4 rows)


  

第46章 バックグラウンドワーカープロセス





PostgreSQLはユーザ提供のコードを別のプロセスとして実行するように拡張できます。
このプロセスはpostgresによって起動、終了、監視され、サーバの状態に密接にリンクした寿命を持つことができます。
これらのプロセスはPostgreSQL™の共有メモリ領域にアタッチされ、データベースの内部に接続するオプションを持ちます。
これらはまた、通常のクライアントに接続された実際のサーバプロセスのように複数のトランザクションを連続して実行できます。
また、アプリケーションはlibpqとリンクすることにより通常のクライアントアプリケーションのようにサーバに接続して動作できます。
 
警告


バックグラウンドワーカーを使うにあたっては、堅牢性とセキュリティリスクを考慮しなくてはなりません。なぜならば、C言語で書かれており、データへのアクセスが制限されていないためです。
バックグラウンドワーカープロセスを含むモジュールを有効にしたいと思っている管理者は、細心の注意を払って実践してください。
バックグラウンドワーカープロセスの実行は、注意深く検査されたモジュールだけを許可する必要があります。
  



バックグラウンドワーカーは、モジュールをshared_preload_librariesに記すことによって、PostgreSQL™スタート時に初期化できます。
バックグラウンドワーカーとして実行したいモジュールは、_PG_init()関数からRegisterBackgroundWorker(BackgroundWorker *worker)を呼び出すことで登録できます。
バックグラウンドワーカーはシステム起動後もRegisterDynamicBackgroundWorker(BackgroundWorker *worker, BackgroundWorkerHandle **handle)を呼び出すことによって開始できます。
postmasterプロセスからのみ呼び出すことができるRegisterBackgroundWorkerとは異なり、RegisterDynamicBackgroundWorkerは通常のバックエンドまたは他のバックグラウンドワーカーから呼び出す必要があります。
 


BackgroundWorkerの構造体は以下のように定義されます。


typedef void (*bgworker_main_type)(Datum main_arg);
typedef struct BackgroundWorker
{
    char        bgw_name[BGW_MAXLEN];
    char        bgw_type[BGW_MAXLEN];
    int         bgw_flags;
    BgWorkerStartTime bgw_start_time;
    int         bgw_restart_time;       /* in seconds, or BGW_NEVER_RESTART */
    char        bgw_library_name[MAXPGPATH];
    char        bgw_function_name[BGW_MAXLEN];
    Datum       bgw_main_arg;
    char        bgw_extra[BGW_EXTRALEN];
    pid_t       bgw_notify_pid;
} BackgroundWorker;


  


bgw_nameやbgw_typeは、ログメッセージ、プロセス一覧、および同様の場面で使用される文字列です。
bgw_typeは、同じ種類のバックグラウンドワーカーで全て同じになるため、例えば同じ種類のワーカーをプロセス一覧でグループ化できます。
一方でbgw_nameは、特定のプロセスに関する追加情報を含むことができます。
（通常、bgw_nameの文字列は何らかの形で種類に関する情報を含んでいますが、必須であるというわけではありません。）
  


bgw_flagsは、モジュールが要求する機能をOR演算したビットマスクです。可能な値は以下の通りです。
   
	BGWORKER_SHMEM_ACCESS
	
       

共有メモリへのアクセスを要求します。
このフラグは必須です。
      

	BGWORKER_BACKEND_DATABASE_CONNECTION
	


トランザクションや問い合わせの実行が出来るデータベース接続を要求します。
BGWORKER_BACKEND_DATABASE_CONNECTIONを使用してデータベースに接続するバックグラウンドワーカーはBGWORKER_SHMEM_ACCESSを使用して共有メモリにアタッチしなければなりません。さもなければ起動時に失敗します。
      





  


bgw_start_timeは、postgresがプロセスを起動するべきタイミングを指定します。
そのタイミングは、以下のうちの１つです。
BgWorkerStart_PostmasterStart（postgres自身が初期化を終えるとすぐに起動します。これを要求するプロセスはデータベース接続に望ましいものではありません）、
BgWorkerStart_ConsistentState（ホットスタンバイで一貫性のある状態に到達し、データベースに接続して参照のみの問い合わせが実行できるようになると起動します）、
BgWorkerStart_RecoveryFinished（システムが通常の参照/更新の問い合わせを実行できるようになると起動します）。
最後の２つの値は、ホットスタンバイでないサーバでは同等であることに注意してください。
この設定はいつプロセスが起動されるかを示すだけであることに注意してください。
これらのプロセスは、違う状態になったときに停止するわけではありません。
  


bgw_restart_timeは、万が一プロセスがクラッシュした場合にpostgresがそのプロセスを再起動するために待つ必要のある間隔を秒単位で指定します。
これは任意の正の値、またはクラッシュしても再起動させない場合にBGW_NEVER_RESTARTを指定します。
  


bgw_library_nameは、バックグラウンドワーカーの初期エントリポイントのためのライブラリ名です。
その指定されたライブラリがワーカープロセスによって動的にロードされます。呼び出すべき関数を特定するためにbgw_function_nameが使用されます。
コアコード内の関数を呼び出す場合、"postgres"を設定する必要があります。
  


bgw_function_nameは、新しいバックグラウンドワーカーの初期エントリポイントとして使用する関数の名前です。
この関数が動的にロードされたライブラリ内にある場合、PGDLLEXPORT（staticではない）とマークする必要があります。
  


bgw_main_argは、バックグラウンドワーカーのメイン関数のDatum引数です。
メイン関数は単一のDatum引数を取り、voidを返します。
bgw_main_argは引数として渡されます。
加えて、グローバル変数MyBgworkerEntryは、登録時に渡されたBackgroundWorker構造体のコピーを指しています。
ワーカーはこの構造を調べることがあり、役に立ちます。
  


Windowsの（どこか他の場所でEXEC_BACKENDが定義されている）場合、または動的バックグラウンドワーカーは、Datumを参照で渡すのは安全ではありません。値のみで渡してください。
引数が必要な場合は、int32型または他の小さな値を渡し、共有メモリに割り当てられた配列へのインデックスとしてそれを使用するのが最も安全です。
cstringやtextのようなポインタを渡された場合は、新しいバックグラウンドワーカープロセスから有効になりません。
  


bgw_extraはバックグラウンドワーカーに渡す追加データを含めることが出来ます。
bgw_main_argとは異なり、このデータはワーカーのメイン関数の引数として渡されていませんが、上述したようにMyBgworkerEntryを介してアクセスできます。
  


bgw_notify_pidは、プロセスの開始時と終了時にpostmasterがSIGUSR1を送信するPostgreSQLバックエンドプロセスのPIDです。
それはpostmasterの起動時に登録されたワーカーの場合、またはワーカーを登録しているバックエンドがワーカーの起動を待ちたくない場合は0にする必要があります。
それ以外の場合は、MyProcPidで初期化する必要があります。
  

ひとたび実行すると、このプロセスはBackgroundWorkerInitializeConnection(char *dbname, char *username, uint32 flags)またはBackgroundWorkerInitializeConnectionByOid(Oid dboid, Oid useroid, uint32 flags)を呼び出すことによって、データベースに接続できます。
これにより、プロセスはSPIインタフェースを使用してトランザクションと問い合わせを実行できます。
もし、dbnameがNULL、またはdboidがInvalidOidである場合には、そのセッションは特定のデータベースに接続しません。しかし、共有カタログにはアクセス出来ます。
もし、usernameがNULL、またはuseroidがInvalidOidである場合には、そのプロセスはinitdb時に作成されたスーパーユーザとして実行されます。
flagsとしてBGWORKER_BYPASS_ALLOWCONNが設定されている場合、ユーザ接続を許可しないデータベースへの接続制約を回避できます。
flagsとしてBGWORKER_BYPASS_ROLELOGINCHECKが設定されている場合、データベースへの接続に使用されるロールのログインチェックを回避できます。
バックグラウンドワーカーはこれら２つの関数をどちらかを一度だけ呼ぶことが出来ます。
データベースを切り替えることができません。
  


バックグラウンドワーカーのメイン関数に制御が達したとき、シグナルは最初にブロックされています。このブロックは解除されなければなりません。
これは、必要に応じてプロセスがシグナルハンドラをカスタマイズできるようにするためです。
シグナルは、新しいプロセスでBackgroundWorkerUnblockSignalsを呼び出すことにより解除でき、BackgroundWorkerBlockSignalsを呼び出すことでブロックできます。
  


バックグラウンドワーカーは、bgw_restart_timeがBGW_NEVER_RESTARTに設定されている場合、または終了コード0で終了した場合、またはTerminateBackgroundWorkerによって終了した場合、postmasterに自動的に登録が解除されて終了します。
それ以外の場合、bgw_restart_timeで設定された時間の後に再起動します。または、バックエンドの障害のためにpostmasterがクラスタを再初期化した場合は、すぐに再起動します。
一時的に実行を中断するだけでよいバックエンドは、終了するのではなく、割り込み可能なスリープを使用する必要があります。
これはWaitLatch()を呼び出すことによって可能になります。
この関数を呼び出すときにはWL_POSTMASTER_DEATHフラグが設定されているか確認し、postgres自身が終了する緊急事態には、リターンコードを確認するようにしてください。
  


バックグラウンドワーカーをRegisterDynamicBackgroundWorker関数により登録している場合、登録を実行するバックエンドはワーカーの状態に関する情報を取得することが可能です。
取得したい場合はRegisterDynamicBackgroundWorkerに2番目の引数としてBackgroundWorkerHandle *のアドレスを渡す必要があります。
もし登録に成功した場合、このポインタは後でGetBackgroundWorkerPid(BackgroundWorkerHandle *,pid_t *)またはTerminateBackgroundWorker(BackgroundWorkerHandle *)に渡すことができるopaque(不透明)ハンドルで、初期化されます。
GetBackgroundWorkerPidはワーカーの状態を監視できます。以下の戻り値が得られます。
BGWH_NOT_YET_STARTEDワーカーはまだpostmasterにより開始されていない。
BGWH_STOPPED開始されたが、もはや実行されていない。
BGWH_STARTED実行中です。
この最後のケースでは、PIDは、2番目の引数を介して返されます。
TerminateBackgroundWorkerはワーカーが実行していた場合postmasterがワーカーにSIGTERMを送信し、実行が終了次第すぐに登録を解除します。
  


場合によっては、バックグラウンドワーカーが起動するのを待ってから、ワーカーを登録したい場合もあるでしょう。
これは bgw_notify_pidをMyProcPidで初期化し、登録時に得られたBackgroundWorkerHandle *を使用してWaitForBackgroundWorkerStartup(BackgroundWorkerHandle *handle,pid_t *)関数を呼び出すことで実現します。
postmasterがバックグラウンドワーカーを開始しようと試みたか、postmasterが死ぬまで、この関数はブロックします。
バックグラウンドワーカーが実行されている場合、戻り値はBGWH_STARTEDとなり、指定されたアドレスにPIDが書き込まれます。
そうでない場合、戻り値はBGWH_STOPPEDまたはBGWH_POSTMASTER_DIEDになります。
  


登録時に得られたBackgroundWorkerHandle *を使用してWaitForBackgroundWorkerShutdown(BackgroundWorkerHandle *handle)関数を呼び出すことで、バックグラウンドワーカーがシャットダウンするのを待つこともできます。
バックグラウンドワーカーが終了するか、postmasterが死ぬまで、この関数はブロックします。
バックグラウンドワーカーが終了した場合の戻り値はBGWH_STOPPED、postmasterが死んだ場合の戻り値はBGWH_POSTMASTER_DIEDになります。
  


バックグラウンドワーカーは、SPI経由でNOTIFYコマンドを使用して、あるいはAsync_Notify()で直接、非同期通知メッセージを送ることができます。
そのような通知はトランザクションのコミット時に送信されます。
バックグラウンドワーカーは、LISTENコマンドによる非同期通知メッセージの受信登録をすべきではありません。
ワーカーがそのような通知を消費する基盤が存在しないからです。
  


バックグラウンドワーカーの実例として、src/test/modules/worker_spiというモジュールがあります。
これはいくつかの有用な技術を示しています。
  


登録できるバックグラウンドワーカーの最大数はmax_worker_processesによって制限されています。
  

第47章 ロジカルデコーディング





PostgreSQLは、SQLによって実行された更新結果を外部の消費者にストリーミングする基盤を提供しています。
この機能は、レプリケーションソリューションや監査など、さまざまな目的に使用できます。
  


更新結果は、論理レプリケーションスロット(logical replication slots)で識別されるストリームに送出されます。
  


ストリームに送出される更新データのフォーマットは、使用する出力プラグインで決まります。
サンプルプラグインがPostgreSQLの配布物に含まれています。
追加のプラグインを書くことにより、PostgreSQLのコア部分のコードを一切変更することなく、利用可能なフォーマットの選択肢を増やすことができます。
すべての出力プラグインから、INSERTによって作成された個々の新しい行と、UPDATEによって作成された新しいバージョンの行にアクセスできます。
UPDATEとDELETEによって生じた古いバージョンの行へのアクセスが可能かどうかは、レプリカアイデンティティ(replica identity)の設定によって決まります（REPLICA IDENTITY参照）。
  


変更データの消費は、ストリーミングレプリケーションのプロトコル（「ストリーミングレプリケーションプロトコル」と「ストリーミングレプリケーションプロトコルインタフェース」を参照）を使うか、SQLを使って関数を呼び出します（「ロジカルデコーディングSQLインタフェース」を参照）。
また、コア部分に手を入れなくても、レプリケーションスロットの出力を消費する別の方法を実装することもできます（「ロジカルデコーディング出力ライタ」参照）。
  
ロジカルデコーディングの例





以下はロジカルデコーディングをSQLを使って制御する例です。
   


ロジカルデコーディングを使う前に、wal_levelをlogicalに、そしてmax_replication_slotsを少なくとも1に設定しなければなりません。
次に、使用するデータベースにスーパーユーザ(以下の例ではpostgres)として接続します。
   

postgres=# -- Create a slot named 'regression_slot' using the output plugin 'test_decoding'
postgres=# -- 出力プラグイン'test_decoding'を使用して'regression_slot'という名前のスロットを作成します。
postgres=# SELECT * FROM pg_create_logical_replication_slot('regression_slot', 'test_decoding', false, true);
    slot_name    |    lsn
-----------------+-----------
 regression_slot | 0/16B1970
(1 row)

postgres=# SELECT slot_name, plugin, slot_type, database, active, restart_lsn, confirmed_flush_lsn FROM pg_replication_slots;
    slot_name    |    plugin     | slot_type | database | active | restart_lsn | confirmed_flush_lsn
-----------------+---------------+-----------+----------+--------+-------------+-----------------
 regression_slot | test_decoding | logical   | postgres | f      | 0/16A4408   | 0/16A4440
(1 row)

postgres=# -- There are no changes to see yet
postgres=# -- まだ変更はありません
postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----+-----+------
(0 rows)

postgres=# CREATE TABLE data(id serial primary key, data text);
CREATE TABLE

postgres=# -- DDL isn't replicated, so all you'll see is the transaction
postgres=# -- DDLはレプリケーションされないので、見えるのはトランザクションだけです
postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
    lsn    |  xid  |     data
-----------+-------+--------------
 0/BA2DA58 | 10297 | BEGIN 10297
 0/BA5A5A0 | 10297 | COMMIT 10297
(2 rows)

postgres=# -- Once changes are read, they're consumed and not emitted
postgres=# -- in a subsequent call:
postgres=# -- 変更が読み込まれると、それらは消費され、次の呼び出しで送出されません:
postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----+-----+------
(0 rows)

postgres=# BEGIN;
postgres=*# INSERT INTO data(data) VALUES('1');
postgres=*# INSERT INTO data(data) VALUES('2');
postgres=*# COMMIT;

postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
    lsn    |  xid  |                          data
-----------+-------+---------------------------------------------------------
 0/BA5A688 | 10298 | BEGIN 10298
 0/BA5A6F0 | 10298 | table public.data: INSERT: id[integer]:1 data[text]:'1'
 0/BA5A7F8 | 10298 | table public.data: INSERT: id[integer]:2 data[text]:'2'
 0/BA5A8A8 | 10298 | COMMIT 10298
(4 rows)

postgres=# INSERT INTO data(data) VALUES('3');

postgres=# -- You can also peek ahead in the change stream without consuming changes
postgres=# -- 変更を消費せずに変更ストリームを先読みすることもできます
postgres=# SELECT * FROM pg_logical_slot_peek_changes('regression_slot', NULL, NULL);
    lsn    |  xid  |                          data
-----------+-------+---------------------------------------------------------
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299
(3 rows)

postgres=# -- The next call to pg_logical_slot_peek_changes() returns the same changes again
postgres=# -- pg_logical_slot_peek_changes()の次の呼び出しでも同じ変更が返されます
postgres=# SELECT * FROM pg_logical_slot_peek_changes('regression_slot', NULL, NULL);
    lsn    |  xid  |                          data
-----------+-------+---------------------------------------------------------
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299
(3 rows)

postgres=# -- options can be passed to output plugin, to influence the formatting
postgres=# -- 出力プラグインにオプションを渡すことで、フォーマットに影響を与えることができます
postgres=# SELECT * FROM pg_logical_slot_peek_changes('regression_slot', NULL, NULL, 'include-timestamp', 'on');
    lsn    |  xid  |                          data
-----------+-------+---------------------------------------------------------
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299 (at 2017-05-10 12:07:21.272494-04)
(3 rows)

postgres=# -- Remember to destroy a slot you no longer need to stop it consuming
postgres=# -- server resources:
postgres=# -- サーバのリソースの消費を停止するためにもう必要ないスロットを破棄することを忘れないでください
postgres=# SELECT pg_drop_replication_slot('regression_slot');
 pg_drop_replication_slot
-----------------------

(1 row)



以下はPostgreSQLに付属するプログラムpg_recvlogical(1)を用いてロジカルデコーディングをストリーミングレプリケーションのプロトコルによって制御する例です。
この方法を使うには、レプリケーション接続を許すようにクライアント認証を設定し(「認証」参照)、max_wal_sendersを十分に大きくして追加の接続ができるようにしておかなければなりません。
2番目の例は、2相トランザクションをストリームする例です。
2相コマンドを使用する前に、max_prepared_transactionsを少なくとも1に設定する必要があります。
   

Example 1:
$ pg_recvlogical -d postgres --slot=test --create-slot
$ pg_recvlogical -d postgres --slot=test --start -f -
Control+Z
$ psql -d postgres -c "INSERT INTO data(data) VALUES('4');"
$ fg
BEGIN 693
table public.data: INSERT: id[integer]:4 data[text]:'4'
COMMIT 693
Control+C
$ pg_recvlogical -d postgres --slot=test --drop-slot

Example 2:
$ pg_recvlogical -d postgres --slot=test --create-slot --enable-two-phase
$ pg_recvlogical -d postgres --slot=test --start -f -
Control+Z
$ psql -d postgres -c "BEGIN;INSERT INTO data(data) VALUES('5');PREPARE TRANSACTION 'test';"
$ fg
BEGIN 694
table public.data: INSERT: id[integer]:5 data[text]:'5'
PREPARE TRANSACTION 'test', txid 694
Control+Z
$ psql -d postgres -c "COMMIT PREPARED 'test';"
$ fg
COMMIT PREPARED 'test', txid 694
Control+C
$ pg_recvlogical -d postgres --slot=test --drop-slot



以下の例では、準備されたトランザクションのデコードに使用できるSQLインタフェースを示します。
2相コミットコマンドを使用する前に、max_prepared_transactionsを少なくとも1に設定しなければなりません。
pg_create_logical_replication_slotを使用してスロットを作成する際に、2相パラメータを'true'に設定しておく必要もあります。
トランザクションがまだデコードされていない場合は、コミット後にトランザクション全体をストリームすることに注意してください。
  

postgres=# BEGIN;
postgres=*# INSERT INTO data(data) VALUES('5');
postgres=*# PREPARE TRANSACTION 'test_prepared1';

postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
    lsn    | xid |                          data
-----------+-----+---------------------------------------------------------
 0/1689DC0 | 529 | BEGIN 529
 0/1689DC0 | 529 | table public.data: INSERT: id[integer]:3 data[text]:'5'
 0/1689FC0 | 529 | PREPARE TRANSACTION 'test_prepared1', txid 529
(3 rows)

postgres=# COMMIT PREPARED 'test_prepared1';
postgres=# select * from pg_logical_slot_get_changes('regression_slot', NULL, NULL);
    lsn    | xid |                    data
-----------+-----+--------------------------------------------
 0/168A060 | 529 | COMMIT PREPARED 'test_prepared1', txid 529
(4 row)

postgres=#-- you can also rollback a prepared transaction
postgres=#-- 準備されたトランザクションをロールバックすることもできます
postgres=# BEGIN;
postgres=*# INSERT INTO data(data) VALUES('6');
postgres=*# PREPARE TRANSACTION 'test_prepared2';
postgres=# select * from pg_logical_slot_get_changes('regression_slot', NULL, NULL);
    lsn    | xid |                          data
-----------+-----+---------------------------------------------------------
 0/168A180 | 530 | BEGIN 530
 0/168A1E8 | 530 | table public.data: INSERT: id[integer]:4 data[text]:'6'
 0/168A430 | 530 | PREPARE TRANSACTION 'test_prepared2', txid 530
(3 rows)

postgres=# ROLLBACK PREPARED 'test_prepared2';
postgres=# select * from pg_logical_slot_get_changes('regression_slot', NULL, NULL);
    lsn    | xid |                     data
-----------+-----+----------------------------------------------
 0/168A4B8 | 530 | ROLLBACK PREPARED 'test_prepared2', txid 530
(1 row)



ロジカルデコーディングのコンセプト



ロジカルデコーディング





ロジカルデコーディングは、データベースのテーブルへの恒久的な更新を、一貫性があって、データベース内部の状態に関する詳細な知識がなくても容易に理解できる形式として取得するプロセスです。
    


PostgreSQL™においてロジカルデコーディングは、記憶装置のレベルで更新を記述する先行書き込みログ（WAL）の内容を、タプルやSQL文のストリームといったアプリケーション固有の形式にデコードすることによって実装されています。
    

レプリケーションスロット





論理レプリケーションの文脈ではスロットは、元のサーバで行われた変更と同じ順序でクライアント上でリプレイできるようなストリームを表します。
それぞれのスロットは、単一のデータベース上の変更操作の連鎖をストリームとして流します。
    
注記
またPostgreSQL™には、ストリーミングレプリケーションスロットがあります
(「ストリーミングレプリケーション」参照)。しかし、ここでの説明とは少し違う使い方がされています。
     



それぞれのレプリケーションスロットはPostgreSQL™クラスタの中で一意な識別子を持っています。
スロットは、そのために使用される接続とは独立しており、クラッシュセーフです。
    


ロジカルスロットは、通常の操作においては、各々の変更操作を一度だけ送出します。
それぞれのスロットにおける現在位置は、チェックポイントのときにだけ永続的になります。
ですからクラッシュすると、スロットは以前のLSNに戻ってしまうかもしれませんし、サーバの再起動時には最近の変更が再送されることになります。
ロジカルデコーディングのクライアントは、同じメッセージを複数回扱うことによる好ましくない結果を避けることに対して責任を追っています。
クライアントはデコーディングの際に最後に確認したLSNを記録し、繰り返されるデータをスキップしたり、（レプリケーションプロトコルを使う場合に）サーバに開始時点を決めさせるのではなく、記録しておいたLSNからデコーディングを始めるように要求するかもしれません。
レプリケーション進捗追跡機能はこの目的のために設計されています。
replication originsを参照してください。
    


単一のデータベース中に、お互いに独立した複数のスロットが存在しても構いません。
それぞれのスロットは自分自身の状態を持っており、データベース更新のストリーム上の別の場所から変更データを受信する異なる消費者があり得ます。
多くのアプリケーションにとっては、各消費者に対して個別のスロットが必要となるでしょう。
    


論理レプリケーションスロットは、受信者の状態については関知しません。
同時にでなければ、同じスロットを使う複数の異なる受信者を持つことさえできます。
その場合は、直近の受信者がストリームの消費を終了した時点から更新データを受信するだけです。
どの時点でも1つのスロットからの変更を消費できるのは1つの受信側だけです。
    


論理レプリケーションスロットは、ホットスタンバイ上でも作成できます。
システムカタログから必要な行をVACUUMが削除するのを防ぐためには、スタンバイ上でhot_standby_feedbackを設定する必要があります。
それでも、必要な行が削除されると、スロットは無効になります。
プライマリとスタンバイの間に物理スロットを使用することを強くお勧めします。
そうしないと、hot_standby_feedbackが動作するのは接続が生きている間だけです（たとえばノードの再起動で破壊されます）。
その場合、プライマリはスタンバイ上のロジカルデコーディングが必要とするシステムカタログ行を削除するかもしれません（スタンバイ上のcatalog_xminについては知らないため）。
既存のスタンバイ上のロジカルスロットも、プライマリ上のwal_levelがlogicalよりも小さくなると無効になります。
これはスタンバイがWALストリームでそのような変更を検出したときにすぐに行われます。
これは、遅れているwalsender（もしあれば）に対して、プライマリでのwal_levelパラメータの変更までの一部のWALレコードがデコードされないことを意味します。
    


ロジカルスロットの作成には、現在実行中のすべてのトランザクションに関する情報が必要です。
プライマリではこの情報は直接利用できますが、スタンバイではこの情報をプライマリから取得する必要があります。
したがって、スロットの作成はプライマリで何らかのアクティビティが発生するのを待つ必要があるかもしれません。
プライマリがアイドル状態の場合、スタンバイ上でのロジカルスロットの作成にはかなりの時間がかかるかもしれません。
これは、プライマリでpg_log_standby_snapshot関数を呼び出すことで高速化できます。
    
注意


レプリケーションスロットは、クラッシュをまたがって永続し、消費者の状態については関知しません。
スロットを使う接続がない場合でも、消費者が必要としているリソースが削除されることを防ぎます。
これによりストレージが消費されます。何故ならば、関連するWALもシステムカタログの行も、レプリケーションスロットが必要とする限りVACUUMによって削除されないからです。
極端な場合、トランザクションIDの周回（「トランザクションIDの周回エラーの防止」を参照）を防ぐためのデータベース停止をもたらす可能性があります。
したがって、必要でなくなったスロットは削除すべきです。
     


レプリケーションスロットの同期





プライマリ上の論理レプリケーションスロットは、ホットスタンバイと同期させることができます。
これは、スロットの作成時にpg_create_logical_replication_slotのfailoverパラメータを指定するか、CREATE SUBSCRIPTIONのfailoverオプションを指定することで可能です。
さらに、スタンバイでsync_replication_slotsを有効にする必要があります。
スタンバイでsync_replication_slotsを有効にすると、フェイルオーバースロットをスロット同期ワーカーによって定期的に同期させることができます。
同期を機能させるには、プライマリとスタンバイの間に物理レプリケーションスロットが必要であり（つまり、スタンバイでprimary_slot_nameが設定されている必要があります）、スタンバイではhot_standby_feedbackが有効になっている必要があります。
また、primary_conninfoに有効なdbnameを指定する必要があります。
この物理レプリケーションスロットを、プライマリのsynchronized_standby_slotsリスト内に指定することを強くお勧めします。
これは、サブスクライバーがホットスタンバイよりも早く変更を消費しないようにするためです。
正しく設定されていても、synchronized_standby_slots内に指定されたスロットを待つため、サブスクライバーに変更を送信するときに多少の遅延が予想されます。
synchronized_standby_slotsが使用されている場合、synchronized_standby_slotsで指定された物理レプリケーションスロットに関連付けられた対応するスタンバイが、プライマリサーバ上の最新のフラッシュされた位置までWALを受信することを確認するまで、プライマリサーバは完全にはシャットダウンしません。
    
注記


sync_replication_slotsを有効にすると、フェイルオーバースロットの定期的な自動同期が可能になりますが、スタンバイ上でpg_sync_replication_slots関数を使用して手動で同期することもできます。
ただし、この関数は主にテストとデバッグを目的としており、注意して使用する必要があります。
自動同期とは異なり、周期的な再試行が行われないため、同期が失敗しやすくなります。
特に、スロットに必要なWALファイルまたはカタログ行がすでに削除されているか、スタンバイ上で削除されている可能性がある初期同期のシナリオではその傾向が強くなります。
それとは対照的に、sync_replication_slotsを介した自動同期はスロットを継続的に更新するため、シームレスなフェイルオーバーと高可用性を実現します。
そのため、スロットの同期には自動同期を推奨します。
     



スロットの同期が推奨通りに設定され、初期同期が自動的にまたはpg_sync_replication_slotsを介して手動で行われた場合、プライマリ上の論理レプリケーションスロットがスタンバイ上で必要なWALおよびシステムカタログ行を保持している場合にのみ、スタンバイは同期されたスロットを永続化できます。
これにより、データの整合性が確保され、昇格後も論理レプリケーションをスムーズに継続できます。
必要なWALまたはカタログ行がスタンバイからすでに削除されている場合、スロットはデータ損失を回避するために永続化されません。
このような場合、次のログメッセージが表示されることがあります。


LOG:  could not synchronize replication slot "failover_slot"
DETAIL:  Synchronization could lead to data loss, because the remote slot needs WAL at LSN 0/3003F28 and catalog xmin 754, but the standby has LSN 0/3003F28 and catalog xmin 756.



論理レプリケーションスロットが消費者によって活発に使用されている場合、手作業による介入は必要ありません。
スロットは自動的に進み、同期は次のサイクルで再開されます。
ただし、消費者が設定されていない場合は、pg_logical_slot_get_changesまたはpg_logical_slot_get_binary_changesを使用してプライマリ上のスロットを手動で進め、同期を続行できるようにすることをお勧めします。
    


フェイルオーバー後に論理レプリケーションを再開できるかどうかは、フェイルオーバー時のスタンバイ上で同期されていたスロットの持つpg_replication_slots.syncedの値によって決まります。
フェイルオーバー前に、スタンバイで同期状態が真となっている永続スロットだけが、フェイルオーバー後の論理レプリケーションに使用できます。
同期されていた一時スロットはロジカルデコーディングには使用できないため、これらのスロットによる論理レプリケーションは再開できません。
例えば、サブスクリプション無効になっているため、同期されたスロットがスタンバイ上で永続化できなかった場合、フェイルオーバー後にサブスクリプションを有効にしても、そのサブスクリプションは再利用できません。
    


同期されたロジカルスロットからフェイルオーバーの後に論理レプリケーションを再開するには、サブスクリプションの'conninfo'オプションを新しいプライマリサーバを指すように変更する必要があります。
これはALTER SUBSCRIPTION ... CONNECTIONを使用して行います。
スタンバイが昇格する前に先にサブスクリプションを無効にし、接続文字列を変更した後に再度有効にすることをお勧めします。
    
注意


昇格中に古いプライマリが再度起動する場合があります。
このときサブスクリプションが無効なっていない場合、サブスクライバーは昇格後も接続文字列が変更されるまで、古いプライマリサーバからデータを受信し続ける可能性があります。
これによりデータの不整合の問題が生じ、サブスクライバーが新しいプライマリからのレプリケーションを継続できなくなる可能性があります。
     


出力プラグイン





出力プラグインは、先行書き込みログ（WAL）の内部データ表現を、レプリケーションスロットの消費者が必要とする形式に変換します。
    

スナップショットのエクスポート





ストリーミングレプリケーションのインタフェースを使って新しいスロットを作ると（CREATE_REPLICATION_SLOT参照）、スナップショットがエクスポートされます（「スナップショット同期関数」参照）。
このスナップショットはまさにその時点でのデータベースの状態を示しており、スナップショット以後のすべての変更は更新ストリームに含まれるようになります。
このことを利用して、スロットが作られた際のデータベースの状態をSET TRANSACTION SNAPSHOTを使って読み込むことにより、新しいレプリカを作ることができます。
このトランザクションは、その時点のデータベースの状態をダンプするために使用することができます。
また、スロットに含まれるデータを使って、ダンプした後で行われた更新を失うことなくデータベースを更新できます。
    


スナップショットのエクスポートが必要ないアプリケーションは、SNAPSHOT 'nothing'オプションを使ってスナップショットのエクスポートを抑止できます。
    


ストリーミングレプリケーションプロトコルインタフェース





コマンド
    
	CREATE_REPLICATION_SLOT slot_name LOGICAL output_plugin

	DROP_REPLICATION_SLOT slot_name [ WAIT ]

	START_REPLICATION SLOT slot_name LOGICAL ...





は、それぞれレプリケーションスロットに対して更新データを生成、削除、ストリームします。
これらのコマンドは、レプリケーション接続でのみ使用できます。
SQLでは使用できません。
これらのコマンドの詳細については「ストリーミングレプリケーションプロトコル」を参照してください。
   


コマンドpg_recvlogical(1)を使ってストリーミングコネクション上のロジカルデコーディングを制御できます。
（このコマンドは内部で上記のコマンドを使っています。）
   

ロジカルデコーディングSQLインタフェース





ロジカルデコーディングのSQLレベルのAPIの詳細については、「レプリケーション管理関数」を参照してください。
   


同期レプリケーション(「同期レプリケーション」参照)は、ストリーミングレプリケーションによるレプリケーションスロット上でのみサポートされます。
関数インタフェースおよびコアに対する追加のインタフェースでは同期レプリケーションをサポートしていません。
   

ロジカルデコーディング関連のシステムカタログ





pg_replication_slotsビューとpg_stat_replicationビューは、レプリケーションスロット、ストリーミングレプリケーションのコネクションのそれぞれの現在の状態に関する情報を提供します。
これらのビューは物理レプリケーションと論理レプリケーションの両方に適用されます。
pg_stat_replication_slotsビューは、論理レプリケーションスロットに関する統計情報を提供します。
   

ロジカルデコーディングの出力プラグイン





PostgreSQLのソースコードのサブディレクトリ
     contrib/test_decoding
    にサンプル出力プラグインがあります。
   
初期化関数





出力プラグインは、出力プラグインの名前をライブラリのベース名として持つ共有ライブラリを動的にロードすることによってロードされます。
通常のライブラリ検索パスがライブラリを探します。
必要な出力プラグインコールバックを提供し、そのライブラリが実際に出力プラグインであることを示すために、_PG_output_plugin_initという名前の関数を作成しなければなりません。
この関数には、各々のアクションに対応するコールバック関数へのポインタを持つ構造体が渡されます。


typedef struct OutputPluginCallbacks
{
    LogicalDecodeStartupCB startup_cb;
    LogicalDecodeBeginCB begin_cb;
    LogicalDecodeChangeCB change_cb;
    LogicalDecodeTruncateCB truncate_cb;
    LogicalDecodeCommitCB commit_cb;
    LogicalDecodeMessageCB message_cb;
    LogicalDecodeFilterByOriginCB filter_by_origin_cb;
    LogicalDecodeShutdownCB shutdown_cb;
    LogicalDecodeFilterPrepareCB filter_prepare_cb;
    LogicalDecodeBeginPrepareCB begin_prepare_cb;
    LogicalDecodePrepareCB prepare_cb;
    LogicalDecodeCommitPreparedCB commit_prepared_cb;
    LogicalDecodeRollbackPreparedCB rollback_prepared_cb;
    LogicalDecodeStreamStartCB stream_start_cb;
    LogicalDecodeStreamStopCB stream_stop_cb;
    LogicalDecodeStreamAbortCB stream_abort_cb;
    LogicalDecodeStreamPrepareCB stream_prepare_cb;
    LogicalDecodeStreamCommitCB stream_commit_cb;
    LogicalDecodeStreamChangeCB stream_change_cb;
    LogicalDecodeStreamMessageCB stream_message_cb;
    LogicalDecodeStreamTruncateCB stream_truncate_cb;
} OutputPluginCallbacks;

typedef void (*LogicalOutputPluginInit) (struct OutputPluginCallbacks *cb);



コールバック関数のbegin_cb、change_cb、および、commit_cbは必須ですが、startup_cb、truncate_cb、message_cb、filter_by_origin_cb、および、shutdown_cbは必須ではありません。
truncate_cbが設定されていないけれども、TRUNCATEがデコードされることになった場合、この動作は無視されます。
    


出力プラグインは、大きな継続中(in-progress)トランザクションのストリーミングをサポートする関数を定義することもできます。
stream_start_cb、stream_stop_cb、stream_abort_cb、stream_commit_cb、stream_change_cbは必須ですが、stream_message_cbとstream_truncate_cbは必須ではありません。
出力プラグインが2相コミットもサポートする場合は、stream_prepare_cbも必須です。
    


出力プラグインは、PREPARE TRANSACTIONでアクションをデコードできるようにする2相コミットをサポートする関数を定義することもできます。
begin_prepare_cb、prepare_cb、commit_prepared_cb、rollback_prepared_cbコールバックは必須ですが、filter_prepare_cbは必須ではありません。
出力プラグインが大きな進行中のトランザクションのストリーミングもサポートしている場合は、stream_prepare_cbも必須です。
    

機能





更新データをデコード、整形、出力するために、出力関数を呼び出すことを含め、出力プラグインはバックエンドの通常のインフラストラクチャのほとんどを利用できます。
テーブルは、initdbで作られ、pg_catalogスキーマに含まれているか、以下のコマンドでユーザ定義のカタログテーブルであると印が付けられている限り、読み込み専用のアクセスが許可されます。


ALTER TABLE user_catalog_table SET (user_catalog_table = true);
CREATE TABLE another_catalog_table(data text) WITH (user_catalog_table = true);



出力プラグイン内のユーザカタログテーブルまたは通常のシステムカタログテーブルへのアクセスは、systable_*スキャンAPIを介してのみ行う必要があることに注意してください。
heap_*スキャンAPIを介したアクセスはエラーになります。
さらに、トランザクションIDの割り当てにつながるアクションは禁止されています。
これには、テーブルへの書き込み、DDL変更の実行、pg_current_xact_id()の呼び出しなどが含まれます。
    

出力モード





出力プラグインコールバックは、かなり自由な形式で消費者にデータを渡すことができます。
SQLで変更データを見るような場合、任意のかたちでデータを返すことのできるデータ型(たとえばbytea)は扱いにくいです。
出力プラグインがサーバエンコーディングのテキストデータのみを含むことにするには、起動コールバックで、OutputPluginOptions.output_typeにOUTPUT_PLUGIN_BINARY_OUTPUTではなく、OUTPUT_PLUGIN_TEXTUAL_OUTPUTを設定することによって宣言できます。
この場合、textdatumが格納することができるように、すべてのデータはサーバエンコーディングでエンコードされていなければなりません。
これは、アサーションが有効なビルドでチェックされます。
    

出力プラグインコールバック





出力プラグインには、必要に応じて発生した更新に関する通知が様々なコールバックを通じて送られます。
    


同時に実行されたトランザクションは、コミットした順番にデコードされます。
指定したトランザクションに含まれる更新だけがbeginとcommitの間のコールバックによってデコードされます。
明示的あるいは暗黙的にロールバックされたトランザクションは、決してデコードされません。
成功したセーブポイントは、実行された順番にセーブポイントが実行されたトランザクションの中に折り込まれます。
PREPARE TRANSACTIONを使用して2相コミット用に準備されたトランザクションも、デコードに必要な出力プラグインコールバックが提供されていればデコードされます。
ROLLBACK PREPAREDコマンドを使用して、現在準備されているトランザクションが同時にアボートされる可能性があります。
その場合、このトランザクションのロジカルデコーディングもアボートされます。
そのようなトランザクションのすべての変更は、アボートが検出され、prepare_cbコールバックが呼び出されるとスキップされます。
このように、同時にアボートされた場合でも、デコードされたROLLBACK PREPAREDを適切に処理するために十分な情報が出力プラグインに提供されます。
    
注記


ディスクに安全にフラッシュされたトランザクションだけがデコードされます。
そのため、synchronous_commitがoffの場合には、直後に呼び出されたpg_logical_slot_get_changes()がそのCOMMITをデコードしないことがあります。
     

開始コールバック





ストリームに投入可能な更新の数に関係なく、レプリケーションスロットが作られるか、ストリームの変更がリクエストされた場合にオプションのstartup_cbコールバック呼び出されます。


typedef void (*LogicalDecodeStartupCB) (struct LogicalDecodingContext *ctx,
                                        OutputPluginOptions *options,
                                        bool is_init);



is_init パラメータは、レプリケーションスロットが作られる際にはtrue、それ以外ではfalseになります。
optionsは、出力プラグインが書き込む以下の構造体を指します。


typedef struct OutputPluginOptions
{
    OutputPluginOutputType output_type;
    bool        receive_rewrites;
} OutputPluginOptions;



output_typeはOUTPUT_PLUGIN_TEXTUAL_OUTPUTかOUTPUT_PLUGIN_BINARY_OUTPUTのどちらかです。
「出力モード」も参照してください。
receive_rewritesが真なら、何らかDDL操作時のヒープ書き換えで生じた変更に対して、出力プラグインも呼ばれます。
これはDDLレプリケーションを処理するプラグインを対象としていますが、これらは特別な処理を必要とします。
     


開始コールバックでは、ctx->output_plugin_optionsで指定されるオプションを検証しましょう。
出力プラグインが状態を持つ必要がある場合には、ctx->output_plugin_privateを利用できます。
     

終了コールバック





以前アクティブだったレプリケーションスロットが使われなくなったら、いつでもshutdown_cbコールバックが呼び出され、出力プラグインのプライベートリソースが解放されます。
スロットは削除される必要はありません。単にストリームが停止します。


typedef void (*LogicalDecodeShutdownCB) (struct LogicalDecodingContext *ctx);


     

トランザクション開始コールバック





必須であるbegin_cbコールバックは、コミットしたトランザクションの開始がデコードされる際に必ず呼び出されます。
アボートしたトランザクションとその内容は決してデコードされません。


typedef void (*LogicalDecodeBeginCB) (struct LogicalDecodingContext *ctx,
                                      ReorderBufferTXN *txn);



txn引数は、コミット時のタイムスタンプやトランザクションIDなどのトランザクションに関するメタ情報を含みます。
     

トランザクション終了コールバック





必須であるcommit_cbコールバックは、トランザクションのコミットがデコードされる際に必ず呼び出されます。
行が更新された場合は、それぞれの行に対してchange_cbコールバックが、commit_cbの前に呼び出されます。


typedef void (*LogicalDecodeCommitCB) (struct LogicalDecodingContext *ctx,
                                       ReorderBufferTXN *txn,
                                       XLogRecPtr commit_lsn);


     

更新コールバック





トランザクション内のINSERT、UPDATE、DELETEの更新に対して、必須コールバックであるchange_cbが呼び出されます。
元の更新コマンドが複数の行を一度に更新する場合は、それぞれの行に対してこのコールバックが呼び出されます。
change_cbコールバックは、システムまたはユーザカタログテーブルにアクセスして、行変更の詳細を出力する処理を支援することができます。
準備された(まだコミットされていない)トランザクションをデコードする場合、またはコミットされていないトランザクションをデコードする場合、この変更コールバックは、まったく同じトランザクションが同時にロールバックされるためにエラーになることもあります。
この場合、このアボートされたトランザクションのロジカルデコーディングは正常に停止されます。


typedef void (*LogicalDecodeChangeCB) (struct LogicalDecodingContext *ctx,
                                       ReorderBufferTXN *txn,
                                       Relation relation,
                                       ReorderBufferChange *change);



ctxとtxnは、begin_cb、commit_cbコールバックでは同じ内容になります。
これに加えてrelationは行が属するリレーションを指定し、行の変更を記述するchangeパラメータが渡されます。
     
注記


ユーザ定義テーブルでは、ログを取らないテーブル（UNLOGGED参照）ではなく、一時テーブル（TEMPORARYまたはTEMP参照）でもないテーブルが、ロジカルデコーディングを使って更新データを取得できます。
      


TRUNCATEコールバック





オプションのtruncate_cbコールバックは、TRUNCATEコマンドに対して呼ばれます。


typedef void (*LogicalDecodeTruncateCB) (struct LogicalDecodingContext *ctx,
                                         ReorderBufferTXN *txn,
                                         int nrelations,
                                         Relation relations[],
                                         ReorderBufferChange *change);



パラメータはchange_cbコールバックと似ています。
しかしながら、外部キーで結びついたテーブル群のTRUNCATE動作は一緒に実行される必要があるため、このコールバックは単一リレーションではなく、リレーションの配列を受け取ります。
詳しくはTRUNCATE(7)文の説明を参照してください。
     

オリジンフィルタコールバック





オプションのfilter_by_origin_cbコールバックは、origin_idからリプレイされたデータが出力プラグインの対象となるかどうかを判定するために呼び出されます。


typedef bool (*LogicalDecodeFilterByOriginCB) (struct LogicalDecodingContext *ctx,
                                               RepOriginId origin_id);



ctxパラメータは、他のコールバックと同じ内容を持ちます。
オリジンの情報だけが得られます。
渡されたノードで発生した変更が無関係であることを伝えるには、trueを返します。
これにより、その変更は無視されることになります。
無視されたトランザクション変更に関わる他のコールバックは呼び出されません。
     


これは、カスケード、あるいは双方向レプリケーションソリューションを実装する際に有用です。
オリジンでフィルタすることにより、そのような構成で、同じ変更のレプリケーションが往復するのを防ぐことができます。
トランザクションや変更もオリジンに関する情報を持っていますが、このコールバックでフィルタするほうがずっと効率的です。
     

汎用メッセージコールバック





オプションのmessage_cbコールバックは、ロジカルデコーディングメッセージがデコードされる度に呼び出されます。


typedef void (*LogicalDecodeMessageCB) (struct LogicalDecodingContext *ctx,
                                        ReorderBufferTXN *txn,
                                        XLogRecPtr message_lsn,
                                        bool transactional,
                                        const char *prefix,
                                        Size message_size,
                                        const char *message);



txnパラメータは、コミット時のタイムスタンプとXIDのような、トランザクションに関するメタ情報を含んでいます。
ただし、そのメッセージがトランザクション扱いではなく、メッセージをログしたトランザクションにXIDが割り当てられてない場合はNULLになることに注意してください。
lsnは、メッセージに対応するWALの位置です。
transactionalは、メッセージがトランザクションとして送られたものかどうかを表しています。
変更コールバックと同様に、準備された(まだコミットされていない)トランザクションをデコードする場合、またはコミットされていないトランザクションをデコードする場合、このメッセージコールバックも、まったく同じトランザクションの同時ロールバックのためにエラーになることがあります。
この場合、アボートされたトランザクションのロジカルデコーディングは正常に停止されます。

prefixはnull終端された任意の接頭辞で、現在のプラグインが興味のあるメッセージを特定するために利用できます。
最後に、messageパラメータは、大きさがmessage_sizeの、実際のメッセージを保持します。
     


出力プラグインが利用を考慮している接頭辞が一意になるように、特に注意を払ってください。
拡張の名前か、出力プラグインの名前を使うのが良い場合が多いです。
     

フィルタコールバックの準備





オプションのfilter_prepare_cbコールバックは、現在の2相コミットトランザクションの一部であるデータを、この準備段階でデコードするか、またはCOMMIT PREPARED時に通常の1相トランザクションとしてデコードするかを決定するために呼び出されます。
デコードをスキップするように合図するには、trueを返します。
そうでなければfalseを返します。
コールバックが定義されていない場合、falseが想定されます(すなわち、フィルタリングなしで、2相コミットを使用するすべてのトランザクションも同様に2相でデコードされます)。


typedef bool (*LogicalDecodeFilterPrepareCB) (struct LogicalDecodingContext *ctx,
                                              TransactionId xid,
                                              const char *gid);



ctxパラメータは他のコールバックと同じ内容です。
パラメータxidとgidは、トランザクションを識別するための2つの異なる方法を提供します。
後のCOMMIT PREPAREDまたはROLLBACK PREPAREDは両方の識別子を持ち、出力プラグインに何を使用するかの選択を提供します。
     


このコールバックは、デコードするトランザクションごとに複数回呼び出すことができ、呼び出されるたびにxidとgidの与えられたペアに対して同じ静的な答えを提供しなければなりません。
     

トランザクション開始準備コールバック





必須であるbegin_prepare_cbコールバックは、準備されたトランザクションの開始がデコードされるたびに呼び出されます。
txnパラメータの一部であるgidフィールドをこのコールバックで使用して、プラグインがこのPREPAREを既に受信しているかどうかをチェックできます。
この場合、エラーになるか、トランザクションの残りの変更をスキップできます。


typedef void (*LogicalDecodeBeginPrepareCB) (struct LogicalDecodingContext *ctx,
                                             ReorderBufferTXN *txn);


     

トランザクション準備コールバック





必須であるprepare_cbコールバックは、2相コミット用に準備されたトランザクションがデコードされるたびに呼び出されます。
修正された行がある場合、すべての修正された行に対するchange_cbコールバックはこの前に呼び出されています。
txnパラメータの一部であるgidフィールドは、このコールバックで使用できます。


typedef void (*LogicalDecodePrepareCB) (struct LogicalDecodingContext *ctx,
                                        ReorderBufferTXN *txn,
                                        XLogRecPtr prepare_lsn);


     

トランザクションコミット準備コールバック





必須であるcommit_prepared_cbコールバックは、トランザクションCOMMIT PREPAREDがデコードされるたびに呼び出されます。
txnパラメータの一部であるgidフィールドは、このコールバックで使用できます。


typedef void (*LogicalDecodeCommitPreparedCB) (struct LogicalDecodingContext *ctx,
                                               ReorderBufferTXN *txn,
                                               XLogRecPtr commit_lsn);


     

トランザクションロールバック準備コールバック





必須であるrollback_prepared_cbコールバックは、トランザクションROLLBACK PREPAREDがデコードされるたびに呼び出されます。
txnパラメータの一部であるgidフィールドは、このコールバックで使用できます。
パラメータprepare_end_lsnとprepare_timeは、プラグインがこのPREPARE TRANSACTIONを受信したかどうかをチェックするために使用できます。
この場合、プラグインはロールバックを適用できます。
そうでない場合は、ロールバック操作をスキップできます。
gidだけでは十分ではありません。
なぜなら、下流ノードは同じ識別子を持つ準備されたトランザクションを持つことができるからです。


typedef void (*LogicalDecodeRollbackPreparedCB) (struct LogicalDecodingContext *ctx,
                                                 ReorderBufferTXN *txn,
                                                 XLogRecPtr prepare_end_lsn,
                                                 TimestampTz prepare_time);


     

ストリーム開始コールバック





必須であるstream_start_cbコールバックは、進行中のトランザクションからストリーム化された変更ブロックを開くときに呼び出されます。


typedef void (*LogicalDecodeStreamStartCB) (struct LogicalDecodingContext *ctx,
                                            ReorderBufferTXN *txn);


     

ストリーム停止コールバック





必須であるstream_stop_cbコールバックは、進行中のトランザクションからのストリーミング変更ブロックを閉じるときに呼び出されます。


typedef void (*LogicalDecodeStreamStopCB) (struct LogicalDecodingContext *ctx,
                                           ReorderBufferTXN *txn);


     

ストリームアボートコールバック





必須であるstream_abort_cbコールバックは、以前にストリームされたトランザクションを中止するために呼び出されます。


typedef void (*LogicalDecodeStreamAbortCB) (struct LogicalDecodingContext *ctx,
                                            ReorderBufferTXN *txn,
                                            XLogRecPtr abort_lsn);


     

ストリーム準備コールバック





stream_prepare_cbコールバックは、2相コミットの一部としてストリーミングされているトランザクションを準備するために呼び出されます。
 このコールバックは、出力プラグインが大きな進行中のトランザクションと2相コミットの両方をストリーミングする場合に必要です。
      

typedef void (*LogicalDecodeStreamPrepareCB) (struct LogicalDecodingContext *ctx,
                                              ReorderBufferTXN *txn,
                                              XLogRecPtr prepare_lsn);


     

ストリームコミットコールバック





必須であるstream_commit_cbコールバックは、以前にストリーミングされたトランザクションをコミットするために呼び出されます。


typedef void (*LogicalDecodeStreamCommitCB) (struct LogicalDecodingContext *ctx,
                                             ReorderBufferTXN *txn,
                                             XLogRecPtr commit_lsn);


     

ストリーム変更コールバック





必須であるstream_change_cbコールバックは、ストリーム化された変更のブロック（stream_start_cbとstream_stop_cb呼び出しで区切られます）で変更を送信するときに呼び出されます。
実際の変更は表示されません。
なぜなら、トランザクションは後の時点でアボートする可能性があり、アボートされたトランザクションの変更はデコードされないからです。


typedef void (*LogicalDecodeStreamChangeCB) (struct LogicalDecodingContext *ctx,
                                             ReorderBufferTXN *txn,
                                             Relation relation,
                                             ReorderBufferChange *change);


     

ストリームメッセージコールバック





オプションのstream_message_cbコールバックは、ストリーム化された変更のブロック（stream_start_cbとstream_stop_cbコールで区切られた）で汎用メッセージを送信するときに呼び出されます。
トランザクションメッセージのメッセージ内容は表示されません。
なぜなら、トランザクションは後の時点でアボートする可能性があり、アボートされたトランザクションの変更はデコードされないからです。


typedef void (*LogicalDecodeStreamMessageCB) (struct LogicalDecodingContext *ctx,
                                              ReorderBufferTXN *txn,
                                              XLogRecPtr message_lsn,
                                              bool transactional,
                                              const char *prefix,
                                              Size message_size,
                                              const char *message);


     

ストリームTRUNCATEコールバック





オプションのstream_truncate_cbコールバックは、ストリーム化された変更のブロック（stream_start_cbとstream_stop_cb呼び出しで区切られます）内のTRUNCATEコマンドに対して呼び出されます。


typedef void (*LogicalDecodeStreamTruncateCB) (struct LogicalDecodingContext *ctx,
                                               ReorderBufferTXN *txn,
                                               int nrelations,
                                               Relation relations[],
                                               ReorderBufferChange *change);



パラメータはstream_change_cbコールバックに類似しています。
ただし、外部キーで接続されたテーブルに対するTRUNCATEアクションは一緒に実行する必要があるため、このコールバックは単一のリレーションではなくリレーションの配列を受け取ります。
詳細はTRUNCATE(7)文の説明を参照してください。
     


出力生成関数





begin_cb、commit_cb、change_cbコールバックにおいて、出力プラグインは実際にデータ出力するためにctx->outのStringInfo出力バッファに書き込みます。
出力バッファに書き込む前に、OutputPluginPrepareWrite(ctx, last_write)を呼び出します。
また、書き込みバッファにデータを書き終えたら、OutputPluginWrite(ctx, last_write)を呼び出してデータの書き込みを実施します。
last_write引数により、その書き込みがコールバックの最終的な書き込みであるかどうかを指定します。
    


以下の例では、出力プラグインにおいて消費者に向けてデータを出力する方法を示します。


OutputPluginPrepareWrite(ctx, true);
appendStringInfo(ctx->out, "BEGIN %u", txn->xid);
OutputPluginWrite(ctx, true);


    


ロジカルデコーディング出力ライタ





ロジカルデコーディングに、別な出力方法を追加することもできます。
src/backend/replication/logical/logicalfuncs.cを参照してください。
基本的に、3つの関数を用意する必要があります。
WALを読む関数、出力データの書き込みを準備する関数、それに出力データを書き込む関数です。
(「出力生成関数」参照)。
   

ロジカルデコーディングにおける同期レプリケーションのサポート



概要





ストリーミングレプリケーションにおける同期レプリケーションと同じユーザインタフェースで、ロジカルデコーディングを使って同期レプリケーションソリューションを構築することができます。
そのためには、ストリーミングレプリケーションインタフェース（「ストリーミングレプリケーションプロトコルインタフェース」参照）を使ってデータをストリーム出力します。
クライアントは、ストリーミングレプリケーションクライアントと同様に、スタンバイ状態の更新(F)メッセージを送信する必要があります（「ストリーミングレプリケーションプロトコル」参照）。
    
注記


synchronous_standby_namesがサーバ全体に適用されるのに対し、ロジカルデコーディングを通じて変更データを受け取る同期レプリカは、単一のデータベースのスコープの範囲で動作します。
このことにより、複数のデータベースが同時に使用される環境では、ロジカルデコーディングを使った同期レプリケーションはうまく動きません。
     


警告





同期レプリケーション設定では、トランザクションが[user]カタログテーブルを排他的にロックした場合、デッドロックが発生する可能性があります。
ユーザカタログテーブルに関する情報については「機能」を参照してください。
これは、トランザクションのロジカルデコーディングがカタログテーブルをロックしてアクセスできるためです。
これを回避するために、ユーザは[user]カタログテーブルに対する排他ロックの取得を控える必要があります。
これは以下の方法で発生します。

     
	

トランザクションのpg_classに対する明示的なLOCKの発行。
       

	

トランザクション内のpg_classに対してCLUSTERを実行。
       

	

pg_class上のLOCKコマンドの後にPREPARE TRANSACTIONを実行し、2相トランザクションのロジカルデコーディングを可能にする。
       

	

pg_trigger上のCLUSTERコマンドの後にPREPARE TRANSACTIONを実行し、2相トランザクションのロジカルデコーディングを可能にする。
これにより、発行されたテーブルにトリガがある場合にのみデッドロックが発生します。
       

	

トランザクションの[user]カタログテーブルに対してTRUNCATEを実行。
       






これらのコマンドは、上記のシステムカタログテーブルだけでなく、他のカタログテーブルにもデッドロックを引き起こす可能性があることに注意してください。
    


ロジカルデコーディングための大規模トランザクションのストリーミング





基本的な出力プラグインコールバック(begin_cb、change_cb、commit_cb、message_cbなど)は、トランザクションが実際にコミットしたときにのみ呼び出されます。
変更はトランザクションログからデコードされますが、コミット時に出力プラグインに渡されるだけです(トランザクションがアボートした場合は破棄されます)。
   


つまり、デコードは増分的に行われ、メモリ使用量を制御するためにディスクにオーバーフローする場合がありますが、デコードされたすべての変更は、トランザクションが最終的にコミットされたとき(より正確には、コミットがトランザクションログからデコードされたとき)に送信される必要があります。
トランザクションおよびネットワーク帯域幅のサイズによっては、転送時間によって適用ラグが大幅に増加する場合があります。
   


大規模なトランザクションによって発生する適用遅延を軽減するために、出力プラグインは、継続中のトランザクションの増分ストリーミングをサポートする追加のコールバックを提供できます。
複数の必要なストリーミングコールバック(stream_start_cb、stream_stop_cb、stream_abort_cb、stream_commit_cbおよびstream_change_cb)と2つのオプションのコールバック(stream_message_cbおよびstream_truncate_cb)があります。
2相コマンドのストリーミングをサポートする場合は、追加のコールバックを提供する必要があります。
（詳細は「ロジカルデコーディングための2相コミット」を参照してください。）
   


継続中のトランザクションをストリーミングする場合、変更(およびメッセージ)はstream_start_cbおよびstream_stop_cbコールバックで区切られたブロックでストリーミングされます。
デコードされたすべての変更が送信されると、トランザクションはstream_commit_cbコールバックを使用してコミットできます(またはstream_abort_cbコールバックを使用してアボートできます)。
2相コミットがサポートされている場合、トランザクションはstream_prepare_cbコールバックを使用して準備できます。
COMMIT PREPAREDはcommit_prepared_cbコールバックを使用して準備できます。
またはrollback_prepared_cbを使用してアボートできます。
   


1つのトランザクションに対するストリーミングコールバック呼び出しのシーケンスの例は、次のようになります。


stream_start_cb(...);   <-- start of first block of changes
  stream_change_cb(...);
  stream_change_cb(...);
  stream_message_cb(...);
  stream_change_cb(...);
  ...
  stream_change_cb(...);
stream_stop_cb(...);    <-- end of first block of changes

stream_start_cb(...);   <-- start of second block of changes
  stream_change_cb(...);
  stream_change_cb(...);
  stream_change_cb(...);
  ...
  stream_message_cb(...);
  stream_change_cb(...);
stream_stop_cb(...);    <-- end of second block of changes


[a. when using normal commit]
stream_commit_cb(...);    <-- commit of the streamed transaction

[b. when using two-phase commit]
stream_prepare_cb(...);   <-- prepare the streamed transaction
commit_prepared_cb(...);  <-- commit of the prepared transaction


   


もちろん、実際のコールバック呼び出しのシーケンスはもっと複雑かもしれません。
ストリーム化された複数のトランザクションにブロックがあったり、一部のトランザクションがアボートされたりするなどです。
   


ディスクへのスピル動作と同様に、ストリーミングは、WALからデコードされた変更の合計量(すべての継続中のトランザクションについて)がlogical_decoding_work_mem設定で定義された制限を超えたときにトリガされます。
その時点で、最大のトップレベルトランザクション(デコードされた変更に現在使用されているメモリ量で測定されます)が選択され、ストリーミングされます。
ただし、場合によっては、ストリーミングが有効になっていても、メモリしきい値を超えても完全なタプルがまだデコードされていない(例えば、メインテーブルの挿入ではなくトーストテーブルの挿入のみがデコードされているなど)ため、ディスクへのスピルが必要になることがあります。
   


大規模なトランザクションをストリーミングする場合でも、変更はコミット順に適用され、非ストリーミングモードと同じ保証が維持されます。
   

ロジカルデコーディングための2相コミット





基本的な出力プラグインコールバック(例えば、begin_cb、change_cb、commit_cb、message_cb)では、PREPARE TRANSACTION、COMMIT PREPARED、ROLLBACK PREPAREDのような2相コミットコマンドはデコードされません。
PREPARE TRANSACTIONは無視されますが、COMMIT PREPAREDはCOMMITとしてデコードされ、ROLLBACK PREPAREDはROLLBACKとしてデコードされます。
   


2相コマンドのストリーミングをサポートするために、出力プラグインは追加のコールバックを提供する必要があります。
複数の必要な2相コミットコールバック(begin_prepare_cb、prepare_cb、commit_prepared_cb、rollback_prepared_cb、stream_prepare_cb)とオプションのコールバック(filter_prepare_cb)があります。
   


2相コミットコマンドをデコードするための出力プラグインコールバックが提供されている場合、PREPARE TRANSACTIONで、そのトランザクションの変更がデコードされ、出力プラグインに渡され、prepare_cbコールバックが呼び出されます。
これは、トランザクションがコミットされたときにのみ変更が出力プラグインに渡される基本的なデコード設定とは異なります。
準備されたトランザクションの開始は、begin_prepare_cbコールバックによって示されます。
   


準備されたトランザクションがROLLBACK PREPAREDを使用してロールバックされると、rollback_prepared_cbコールバックが呼び出されます。
準備されたトランザクションがCOMMIT PREPAREDを使用してコミットされると、commit_prepared_cbコールバックが呼び出されます。
   


オプションで、出力プラグインはfilter_prepare_cbを使ってフィルタリング規則を定義し、特定のトランザクションのみを2つの相でデコードすることができます。
これはgidでパターンマッチングを行うか、xidを使って検索することで実現できます。
   


準備されたトランザクションをデコードしようとするユーザは、以下の点に注意する必要があります。

    
	

準備されたトランザクションが[user]カタログテーブルを排他的にロックしている場合、メイントランザクションがコミットされるまで準備のデコードをブロックできます。
      

	

この機能を使用して分散2相コミットを構築する論理レプリケーションソリューションは、準備されたトランザクションが[user]カタログテーブルを排他的にロックした場合にデッドロックを発生する可能性があります。
これを回避するために、ユーザはこのようなトランザクションでカタログテーブルをロック(例えば明示的なLOCKコマンド)しないようにしなければなりません。
詳細については「警告」を参照してください。
      




   

第48章 レプリケーション進捗の追跡





レプリケーション起点(replication origins)は、ロジカルデコーディングの上に、論理レプリケーションソリューションを実装しやすくすることを意図しています。
以下の2つの良くある問題に対して解決の方策を提供します。
  
	レプリケーション進捗をどうやって安全に追跡するか

	たとえば双方向レプリケーションにおけるループを回避するために、起点の行ごとに、いかにしてレプリケーションの挙動を変えるか




 


レプリケーション起点は、名前とIDから構成されます。
システム中で起点を参照する際に使われる名前は、任意のtextです。
その名前は、たとえばレプリケーションソリューションの名前を接頭辞にすることにより、別々のレプリケーションソリューションによって作成されたレプリケーション起点が衝突することがないように使われるべきです。
IDは、空間効率が重要な場合に、長い名前を格納することを避けたいときにのみ使用します。
システム間で共有すべきものではありません。
 


レプリケーション起点はpg_replication_origin_create()で作成し、pg_replication_origin_drop()で削除し、pg_replication_originシステムカタログを使って参照します。
 


レプリケーションソリューションを構築する際に無視できない問題は、どうやってリプレイの進捗を安全に追跡するか、ということです。
(訳注: ログを)適用するプロセス、あるいはシステム全体が死んだ時に、どこまでデータのレプリケーションが成功したかを見つけることができなければなりません。
トランザクションのリプレイの度にテーブルの行を更新するような素朴なソリューションは、実行時のオーバーヘッドとデータベースの肥大化問題を起こします。
 


レプリケーション起点のインフラを使用することにより、あるセッションに対してリモートノードからリプレイしていることの目印を付けることができます。(pg_replication_origin_session_setup()を使います)
また、  pg_replication_origin_xact_setup()を使ってすべてのソーストランザクションに対してトランザクション単位でLSNとタイムスタンプを記録するように設定することができます。
終了後は、クラッシュに対して安全な方法で、レプリケーションの進捗は永続的に記録されます。
すべてのレプリケーション起点のリプレイの進捗は、pg_replication_origin_statusビューで参照できます。
たとえばレプリケーションの再開の際などには、個々の起点の進捗を、pg_replication_origin_progress()で参照できます。
現在のセッションに起点が設定されている場合は、pg_replication_origin_session_progress()を使用します。
 


厳密に一つのシステムから別の一つのシステムにレプリケーションする以上のより複雑なレプリケーションのトポロジでは、リプレイされた行を再びレプリケーションするのを避けるのが難しいという別な問題が発生するかもしれません。
これにより、レプリケーションの巡回と、非効率性の両方が発生するかもしれません。
レプリケーション起点には、この問題を認識し、避けるためのオプションの機構があります。
前段で言及した関数を使うと、出力プラグインコールバック(「ロジカルデコーディングの出力プラグイン」参照)に渡されるすべての更新とトランザクションに、セッションを生成しているレプリケーション起点がタグ付けされます。
これにより、出力プラグインの中でそれらの扱いを分けることができます。たとえばローカルに起因する行以外はすべて無視するような場合です。
また追加で、ソースに基づくロジカルデコーディングの変更ストリームをフィルタするためにfilter_by_origin_cbコールバックを使うことができます。
これは柔軟ではありませんが、アウトプットプラグインを通してフィルタリングするのはずっと効率的です。
 

第49章 アーカイブモジュール





PostgreSQLは、継続的アーカイブのためのカスタムモジュールを作成するためのインフラストラクチャを提供します（「継続的アーカイブとポイントインタイムリカバリ（PITR）」を参照）。
シェルコマンド（すなわちarchive_command）によるアーカイブは非常に簡単ですが、カスタムアーカイブモジュールはしばしば非常に堅牢でパフォーマンスが高いでしょう。
 


カスタムarchive_libraryが設定されている場合、PostgreSQLは完了したWALファイルをモジュールに送信します。
サーバは、モジュールがファイルが正常にアーカイブされたことを示すまで、これらのWALファイルの再利用や削除を回避します。
各WALファイルをどうするかは最終的にモジュール次第ですが、「WALアーカイブの設定」には多くの推奨事項が記載されています。
 


アーカイブモジュールは、少なくとも初期化関数（「初期化関数」を参照）と必要なコールバック（「アーカイブモジュールコールバック」を参照）で構成されている必要があります。
しかし、アーカイブモジュールはさらに多くのこと（GUCの宣言やバックグラウンドワーカーの登録など）も許可されています。
 


contrib/basic_archiveモジュールには、いくつかの有用なテクニックを示す実用的な例が含まれています。
 
初期化関数





アーカイブライブラリは、archive_libraryの名前をライブラリ・ベース名とする共有ライブラリを動的にロードすることによってロードされます。
通常のライブラリ検索パスを使用してライブラリが検索されます。
必要なアーカイブモジュールコールバックを提供し、ライブラリが実際にアーカイブモジュールであることを示すには、_PG_archive_module_initという名前の関数を提供する必要があります。
関数の結果は、コアコードがアーカイブモジュールを利用するために必要なすべての情報を含むArchiveModuleCallbacks型の構造体へのポインタである必要があります。
戻り値は、サーバのライフタイムである必要があります。これは、通常、グローバルスコープでstatic const変数として定義することによって達成されます。



typedef struct ArchiveModuleCallbacks
{
    ArchiveStartupCB startup_cb;
    ArchiveCheckConfiguredCB check_configured_cb;
    ArchiveFileCB archive_file_cb;
    ArchiveShutdownCB shutdown_cb;
} ArchiveModuleCallbacks;
typedef const ArchiveModuleCallbacks *(*ArchiveModuleInit) (void);




archive_file_cbコールバックのみが必要です。
その他はオプションです。
  


アーカイブモジュールコールバック





アーカイブコールバックは、モジュールの実際のアーカイブ動作を定義します。
サーバは、個々のWALファイルを処理するために必要に応じてこれらを呼び出します。
  
スタートアップコールバック





startup_cbコールバックは、モジュールがロードされた直後に呼び出されます。
このコールバックは、必要な追加の初期化を実行するために使用できます。
アーカイブモジュールに状態がある場合は、state->private_dataを使用して保存できます。



typedef void (*ArchiveStartupCB) (ArchiveModuleState *state);


   

チェックコールバック





check_configured_cbコールバックは、モジュールが完全に設定されていて、WALファイルを受け入れる準備ができているかどうかを判断するために呼び出されます（たとえば、構成パラメータが適切な値に設定されているかどうかを判断します）。
check_configured_cbが定義されていない場合、サーバは常にモジュールが設定されていると想定します。



typedef bool (*ArchiveCheckConfiguredCB) (ArchiveModuleState *state);




trueが返された場合、サーバはarchive_file_cbコールバックを呼び出してファイルのアーカイブを続行します。
falseが返された場合、アーカイブは続行されず、アーカイバはサーバログに次のメッセージを出力します:


WARNING:  archive_mode enabled, yet archiving is not configured



後者の場合、サーバは定期的にこの関数を呼び出し、trueが返された場合のみアーカイブが続行されます。
   
注記


falseを返すときに、一般的な警告メッセージに追加情報を加えると便利な場合があります。
そのためには、falseを返す前にarch_module_check_errdetailマクロにメッセージを指定します。
errdetail()と同様に、このマクロはフォーマット文字列とそれに続くオプショナルリストの引数を受け入れます。
結果の文字列は警告メッセージのDETAIL行として出力されます。
    


アーカイブコールバック





archive_file_cbコールバックは、単一のWALファイルをアーカイブするために呼び出されます。



typedef bool (*ArchiveFileCB) (ArchiveModuleState *state, const char *file, const char *path);




trueが返された場合、サーバはファイルが正常にアーカイブされたかのように処理を進めます。
これには元のWALファイルのリサイクルまたは削除が含まれる場合があります。
falseが返されたかエラーが生じた場合には、サーバは元のWALファイルを保持し、後でアーカイブを再試行します。
fileにはアーカイブするWALファイルのファイル名だけが含まれ、pathにはWALファイルのフルパス（ファイル名を含む）が含まれます。
fileにはアーカイブするWALファイルのファイル名だけが含まれ、pathにはWALファイルのフルパス（ファイル名を含む）が含まれます。
   
注記


archive_file_cbコールバックは、呼び出し毎にリセットされる存続期間の短いメモリコンテキストで、呼び出されます。
存続期間の長いストレージが必要な場合は、モジュールのstartup_cbコールバックにメモリコンテキストを作成します。
    


シャットダウンコールバック





shutdown_cbコールバックは、アーカイバプロセスが終了するとき（たとえばエラー後など）、またはarchive_libraryの値が変更されたときに呼び出されます。
shutdown_cbが定義されていない場合、これらの状況では特別な処理は行われません。
アーカイブモジュールが何らかの状態を持っている場合、このコールバックはメモリリークを防ぐためにそれを解放すべきです。



typedef void (*ArchiveShutdownCB) (ArchiveModuleState *state);


   


第50章 OAuth検証器モジュール





PostgreSQL™は、カスタムモジュールを作成してサーバ側のOAuthベアラトークン検証を実行するためのインフラストラクチャを提供します。
OAuthの実装は非常に多様であり、ベアラトークン検証は発行側に大きく依存しているため、サーバはトークン自身をチェックすることができません。検証器モジュールはサーバと使用するOAuthプロバイダ間の統合レイヤを提供します。
 


OAuth検証器モジュールは、少なくとも初期化関数（「初期化関数」を参照）と、バリデーションを実行するために必要なコールバック（「検証コールバック」を参照）で構成されている必要があります。
 
警告


不正な動作をする検証器は、許可されていないユーザをデータベースに入れる可能性があるため、正しい実装はサーバの安全にとって非常に重要です。
設計の考慮事項については、「検証器モジュールを安全に設計する」を参照してください。
  

検証器モジュールを安全に設計する



警告


検証器モジュールを実装する前にこのセクション全体を読んで理解してください。
機能不全の検証器は、それが提供する誤った安全感と、OAuthエコシステムの他の部分に対する攻撃に寄与する可能性があるため、全くセキュリティがないよりも潜在的に悪いです。
   

検証器の役割





異なるモジュールは、トークンバリデーションに対して非常に異なるアプローチをとることがありますが、実装は一般に、3つの別個のアクションを実行する必要があります。
   
	トークンを検証する
	

検証器は、まず、提示されたトークンが実際にクライアント認証で使用するための有効なベアラトークンであることを確認する必要があります。
これを行う正しい方法はプロバイダに依存しますが、通常は、トークンが信頼できる組織によって作成されたことを証明するための暗号処理（オフラインバリデーション）、またはバリデーションを実行できるようにその信頼できる組織にトークンを提示する（オンラインバリデーション）ことが含まれます。
      


オンライン検証（通常はOAuthトークンイントロスペクションを介して実装される）では、検証器モジュールの手順が少なくて済み、盗難または誤発行されたイベントのトークンを一元的に失効させることができます。
ただし、モジュールは、認証の試行ごとに少なくとも1つのネットワーク呼び出しを行う必要があります（これらはすべて、設定されたauthentication_timeout内で完了する必要があります）。
また、プロバイダは、外部リソースサーバが使用するイントロスペクションエンドポイントを提供しない場合があります。
      


オフライン検証ははるかに複雑であり、通常検証器はプロバイダのトラステッド署名キーのリストを維持し、チェックはトークンの暗号署名とその内容を維持する必要があります。
実装は、発行者（「このトークンはどこから来たのか?」）、オーディエンス（「このトークンは誰のためのものか?」）、有効性ピリオド（「このトークンはいつ使用できるのか?」）の検証を含む、プロバイダの指示に従わなければなりません。
モジュールとプロバイダの間には通信がないため、このメソッドを使用してトークンを一元的に取り消すことはできません。
オフライン検証器の実装では、トークンの有効性ピリオドの最大長さに制限を設けることができます。
      


トークンが検証できない場合、モジュールは直ちに失敗します。
ベアラトークンが信頼できる組織によって発行されていない場合、それ以上の認証／認可は無意味です。
      

	クライアントの認可
	

次に検証器は、エンドユーザが、彼らに代わってサーバによるクライアントアクセスの許可を与えていることを確認しなければなりません。
これには通常、現在のHBAパラメータによるデータベースアクセスをカバーしていることを確認するために、トークンにアサインされたスコープをチェックすることが含まれます。
      


このステップの目的は、OAuthクライアントが虚偽の理由でトークンを取得するのを防ぐことです。
検証器がすべてのトークンにデータベースアクセスを可能にする内容を伴うことを要求する場合、処理中にプロバイダはユーザにアクセス許可を明示的に求める必要があります。
これにより、クライアントが資格情報を使用してデータベースに接続することになっていない場合に、リクエストを拒否する機会が与えられます。
      


デプロイされたアーキテクチャに関する外部から得た知識を用いることで、明示的なスコープを用いずにクライアント認可を確立することも可能ですが、そうするとユーザを処理の中から排除し、設定の誤りに気が付かなくなることになり、その誤りが気が付かないうちに悪用されることになります。
もしユーザが追加のスコープの入力を求められない場合は、データベースへのアクセスは信頼できるユーザ
       [17]

       にのみしっかりと制限されなければなりません。
      


認可が失敗した場合でも、モジュールは、監査およびデバッグで使用するために、トークンから認証情報を引き続き取得し続けることを選択できます。
      

	エンドユーザを認証する
	

最後に、検証器は、プロバイダにこの情報を要求するか、トークン自身からこの情報を抽出することによって、識別子をサーバに返します（サーバはHBA設定を使用して最終的な認可を決定します）。
log_connectionsが有効になっている場合、この識別子はsystem_userを介してセッション内で使用可能になり、サーバログに記録されます。
      


様々なプロバイダが、あるエンドユーザの様々な認証情報を記録する場合があります、通常は要求（claims）と呼ばれます。
プロバイダは通常、これらの要求のうち、許可決定に使用できるほど信頼できるものと信頼できないものを記録します。
（たとえば、多くのプロバイダでは、ユーザがディスプレイ名を任意に変更できるので、エンドユーザのフルネームを認証の識別子として使用することは賢明ではありません。）
結局のところ、どの要求（または要求の組合せ）を使用するかの選択は、プロバイダの実装とアプリケーションの要件に依存します。
      


ユーザマップ委任を有効にすることで、匿名/仮名のログインも可能であることに注意してください。「ユーザの認可（ユーザマップ移譲）」を参照してください。
      




一般的なコーディングガイドライン





開発者は、トークンバリデーションを実装する際に、次の点に留意する必要があります。
   
	トークンの機密性
	

モジュールは、サーバログにトークンまたはトークンの断片を書き込むべきではありません。
モジュールがトークンを無効だと見なしたとしても、これは当てはまります。クライアントを混乱させて間違ったプロバイダと通信させようとする攻撃者が、ディスクから（そうでなければ有効な）トークンを取得できるべきではありません。
      


（例えば、プロバイダとオンライントークンバリデーションを行うために）ネットワークを介してトークンを送信する実装は、ピアを認証し、強力なトランスポートセキュリティが使用されていることを確認する必要があります。
      

	ログ書き込み
	

モジュールは、標準の拡張機能と同様に、同じロギングファシリティを使用できます。ただし、コネクションの認証フェーズ中にクライアントへログエントリを出力する際のルールは、微妙に異なります。
一般的に、認証されていないクライアントへの情報の漏洩を回避するために、ERROR/FATALを使用してスタックを巻き戻すのではなく、検証上の問題をCOMMERRORレベルでログに記録し、正常に終了する方が適切です。
      

	Interruptibility
	

モジュールは、サーバが正しく認証タイムアウトとpg_ctlからのシャットダウンシグナルを処理できるように、シグナルによる割り込みが可能でなければなりません。
たとえば、ソケット上のブロッキング呼び出しは、一般的にソケットイベントと割り込みの両方を競合せずに処理するコードに置き換えるべきで（WaitLatchOrSocket()、WaitEventSetWait()、などを参照してください）、長時間実行されるループはCHECK_FOR_INTERRUPTS()定期的に呼び出しする必要があります。
このガイダンスに従わないと、バックエンドセッションが応答しなくなる可能性があります。
      

	テスト
	

OAuthシステムのテストの幅は、この文書のスコープをはるかに超えていますが、少なくともネガティブテストは必須であると考えるべきです。
許可されたユーザをログインさせるモジュールを設計するのは簡単です。
システムの全体的なポイントは、許可されていないユーザを締め出すことです。
      

	文書化
	

DBAがpg_identマップを作成するためにこの情報を使用する必要があるかもしれないので、実装はサーバに報告される各ユーザの認証されたIDの内容と形式を文書化する必要があります。
（たとえば、それはメールアドレスか？組織ID番号か？UUIDか？）
また、モジュールをdelegate_ident_mapping=1モードで使用するのが安全かどうか、そしてそうするための追加の設定は何かも文書化するのが良いでしょう。
      




ユーザの認可（ユーザマップ移譲）





検証モジュールの標準的な成果物はユーザ識別子であり、サーバは設定されたpg_ident.confマッピングと比較して、エンドユーザが接続を認可されているかどうかを判断します。
ただし、OAuthは自分自身で認可フレームワークであり、トークンはユーザ特権に関する情報を運ぶ場合があります。
たとえば、トークンはユーザが属する組織グループに関連付けられたり、ユーザが引き受ける役割をリストに関連付けられたりすることがあり、その情報をすべてのサーバのローカルユーザマップに複製することは望ましくない場合があります。
   


ユーザ名マッピングをバイパスし、検証器モジュールにユーザ接続を許可する追加の責任を負わせるには、HBAをdelegate_ident_mappingで構成します。
モジュールは、トークンスコープまたは同等のメソッドを使用して、ユーザが目的のロールの下で接続できるかどうかを決定します。
ユーザ識別子はサーバによって記録されますが、コネクションを継続するかどうかを決定する際には関係ありません。
   


この方式を使用すると、認証自体はオプショナルになります。
モジュールがコネクションが許可されていることを報告する限り、ユーザ識別子がまったく記録されていなくてもログインは続行されます。
これにより、データベースに匿名または仮名のアクセスを実装することが可能になります。
この場合、サードパーティプロバイダは必要な認証をすべて実行しますが、ユーザを識別する情報をサーバに提供しません。
（プロバイダによっては、後で監査するために、代わりに記録できる匿名化されたID番号を作成する場合があります。）
   


ユーザマップ委任は、最も柔軟なアーキテクチャを提供しますが、検証器モジュールをコネクション認可の単一障害点にしてしまいます。
注意して使用してください。
   




[17] 

つまり、OAuthクライアントとPostgreSQL™サーバが同じエンティティによって制御されているという意味での「信頼できる」です。
特に、libpqによってサポートされているデバイス認証クライアントフローは、パブリック/信頼できないクライアントによって使用されるように設計されているため、通常はこの基準を満たしません。
        



初期化関数





OAuth検証器モジュールは、oauth_validator_librariesにリストされている共有ライブラリから動的にロードされます。
モジュールは、進行中のログインからリクエストされたときにオンデマンドでロードされます。
通常のライブラリ検索パスは、ライブラリの位置を特定するために使用されます。
検証器コールバックを提供し、ライブラリがOAuth検証器モジュールであることを示すには、_PG_oauth_validator_module_initという名前の関数を提供する必要があります。
関数の戻り値は、OAuthValidatorCallbacks型の構造体へのポインタである必要があり、構造体はマジックナンバーとモジュールのトークン検証関数へのポインタを含みます。
戻されるポインタの存続期間はサーバの生存期間である必要があり、これは通常、グローバルスコープのstatic const変数として定義することで実現されます。


typedef struct OAuthValidatorCallbacks
{
    uint32        magic;            /* must be set to PG_OAUTH_VALIDATOR_MAGIC */

    ValidatorStartupCB startup_cb;
    ValidatorShutdownCB shutdown_cb;
    ValidatorValidateCB validate_cb;
} OAuthValidatorCallbacks;

typedef const OAuthValidatorCallbacks *(*OAuthValidatorModuleInit) (void);




validate_cbコールバックのみ必須、他はオプショナルです。
  

OAuth検証器コールバック





OAuth検証器モジュールは、一連のコールバックを定義することでその機能を実装します。
サーバは、ユーザからのプロセス認証リクエストを処理するために、必要に応じてそれらを呼び出します。
  
スタートアップコールバック





startup_cbコールバックは、モジュールのロード直後に実行されます。
このコールバックは、ローカルの状態を設定し、必要に応じて追加の初期設定を実行するために使用できます。
検証器モジュールに状態がある場合は、state->private_dataを使用してそれを格納できます。



typedef void (*ValidatorStartupCB) (ValidatorModuleState *state);


   

検証コールバック





validate_cbコールバックは、ユーザがOAuthを使用して認証しようとするときに、OAuth交換中に実行されます。
以前の呼び出しで設定された状態は、state->private_dataで使用できます。



typedef bool (*ValidatorValidateCB) (const ValidatorModuleState *state,
                                     const char *token, const char *role,
                                     ValidatorModuleResult *result);




トークンには、検証対象のベアラトークンが含まれます。
PostgreSQLは、トークンが構文的に整形式であることを確認していますが、他のバリデーションは実行されていません。
ロールには、ユーザがログインとして要求したロールが含まれます。
コールバックはresult構造体に出力パラメータを設定する必要があり、これは次のように定義されます。



typedef struct ValidatorModuleResult
{
    bool        authorized;
    char       *authn_id;
} ValidatorModuleResult;




モジュールがresult->authorizedをtrueに設定した場合のみ、コネクションが続行されます。
ユーザを認証するために、認証されたユーザ名（トークンを使用して決定されたもの）はpallocされ、result->authn_idフィールドで返される必要があります。
または、result->authn_idトークンが有効であるが、関連付けられたユーザIDを決定できない場合は、NULLに設定される場合があります。
   


検証器は、内部エラーを示すためにfalseを返すことができ、この場合、すべての結果パラメータが無視され、接続は失敗します。
そうでない場合、検証器はtrueを返して、トークンを処理し、認可決定を行ったことを示す必要があります。
   


validate_cbが返された後の動作は、特定のHBA設定によって異なります。
通常、result->authn_idユーザ名は、ユーザがログインしようとしているロールと正確に一致する必要があります。
（この振る舞いはユーザマップで変更できます。）
しかし、delegate_ident_mappingが有効なHBAルールに対して認証する場合、PostgreSQL™はresult->authn_idの値をまったくチェックしません。この場合、トークンが指示されたroleの下でユーザがログインするのに十分な権限を持つかどうかは、検証器に委ねられます。
   

シャットダウンコールバック





shutdown_cbコールバックは、接続に関連付けられたバックエンドプロセスが終了するときに実行されます。
検証器モジュールにメモリを割り当てられた状態がある場合、このコールバックはリソースリークを回避するためにフリーする必要があります。


typedef void (*ValidatorShutdownCB) (ValidatorModuleState *state);


   


パート VI. リファレンス






このリファレンス内の項目では、対応する主題に関する信頼できる、完全な、形式の整った要約を、適切な長さで提供することが意図されています。
PostgreSQL™の使用に関する詳細は、物語、チュートリアル、例形式として、本書の他の部分にて説明されています。
各リファレンスページで挙げたクロスリファレンスを参照してください。
  


このリファレンスは伝統的な「man」ページとしても入手できます。
  


SQLコマンド







ここにはPostgreSQL™でサポートされるSQLコマンドのリファレンス情報があります。
「SQL」とは一般に言語を意味し、各コマンドの標準への準拠や互換性に関する情報がそれぞれの対応するリファレンスページから分かります。
   



名前
ABORT — 現在のトランザクションをアボートする

概要

ABORT [ WORK | TRANSACTION ] [ AND [ NO ] CHAIN ]


説明


ABORTは現在のトランザクションをロールバックし、そのトランザクションで行われた全ての更新を廃棄します。
このコマンドの動作は標準SQLのROLLBACKコマンドと同一であり、歴史的な理由のためだけに存在しています。
  

パラメータ
	WORK, TRANSACTION
	

省略可能なキーワードです。何も効果がありません。
     

	AND CHAIN
	

AND CHAINが指定されていれば、新しいトランザクションは、直前に終了したものと同じトランザクションの特性(SET TRANSACTIONを参照してください)で即時に開始されます。
そうでなければ、新しいトランザクションは開始されません。
     




注釈


トランザクションを正常に終了させる場合はCOMMITを使用してください。
  


トランザクションブロックの外部でABORTを発行すると警告が発生しますが、それ以外は何の効果もありません。
  

例


全ての変更をアボートします。


ABORT;


互換性


このコマンドはPostgreSQL™の拡張で、歴史的な理由で存在します。
ROLLBACKは、このコマンドと等価な標準SQLコマンドです。
  

関連項目
BEGIN(7), COMMIT(7), ROLLBACK(7)


名前
ALTER AGGREGATE — 集約関数定義を変更する

概要

ALTER AGGREGATE name ( aggregate_signature ) RENAME TO new_name
ALTER AGGREGATE name ( aggregate_signature )
                OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER AGGREGATE name ( aggregate_signature ) SET SCHEMA new_schema


ここでaggregate_signatureは以下の通りです。

* |
[ argmode ] [ argname ] argtype [ , ... ] |
[ [ argmode ] [ argname ] argtype [ , ... ] ] ORDER BY [ argmode ] [ argname ] argtype [ , ... ]


説明


ALTER AGGREGATEは集約関数の定義を変更します。
  


ALTER AGGREGATEを使用するには集約関数の所有者でなければなりません。
集約関数のスキーマを変更するには、新しいスキーマにおけるCREATE権限も必要です。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールは集約関数のスキーマにおいてCREATE権限を持たなければなりません。
（この制限により、集約関数の削除と再作成を行ってもできないことが、所有者の変更によってもできないようにしています。
しかし、スーパーユーザはすべての集約関数の所有者を変更できます。）
  

パラメータ
	name
	

既存の集約関数の名前です（スキーマ修飾名も可）。
     

	argmode
	

引数のモードで、INあるいはVARIADICです。
省略された時のデフォルトはINです。
     

	argname
	

引数の名前です。
ALTER AGGREGATEは実際には引数の名前を無視することに注意してください。
これは、集約関数の本体を特定するのに必要になるのは、引数のデータ型だけだからです。
     

	argtype
	

集約関数が演算する入力データ型です。
引数を持たない集約関数を参照するには、引数指定のリストに*と記載してください。
順序集約関数を参照するには、直接引数の指定と集約引数の指定の間にORDER BYと書いてください。
     

	new_name
	

新しい集約関数の名前です。
     

	new_owner
	

新しい集約関数の所有者です。
     

	new_schema
	

集約関数の新しいスキーマです。
     




注釈


順序集約関数を参照するときの推奨される構文は、CREATE AGGREGATEと同じ形式で、直接引数の指定と集約引数の指定の間にORDER BYと書くことです。
しかし、ORDER BYを省略して、単に直接引数と集約引数を1つのリストにまとめても動作します。
VARIADIC "any"が直接引数のリストと集約引数のリストの両方に対して使われていた場合、この省略形式ではVARIADIC "any"を1度だけ書いてください。
   

例


integer型用のmyavg集約関数の名前をmy_averageに変更します。


ALTER AGGREGATE myavg(integer) RENAME TO my_average;


  


integer型用のmyavg集約関数の所有者をjoeに変更します。


ALTER AGGREGATE myavg(integer) OWNER TO joe;


  


直接引数がfloat8型、集約引数がinteger型の順序集約関数mypercentileをmyschemaスキーマに移動します。


ALTER AGGREGATE mypercentile(float8 ORDER BY integer) SET SCHEMA myschema;



以下も動作します。


ALTER AGGREGATE mypercentile(float8, integer) SET SCHEMA myschema;


互換性


標準SQLにはALTER AGGREGATE文はありません。
  

関連項目
CREATE AGGREGATE(7), DROP AGGREGATE(7)


名前
ALTER COLLATION — 照合順序の定義を変更する

概要

ALTER COLLATION name REFRESH VERSION

ALTER COLLATION name RENAME TO new_name
ALTER COLLATION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER COLLATION name SET SCHEMA new_schema


説明


ALTER COLLATIONは照合順序の定義を変更します。
  


ALTER COLLATIONを使用するためには照合順序を所有していなければなりません。
所有者を変更するためには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールが照合順序のスキーマにおけるCREATE権限を持たなければなりません。
（この制限により、照合順序の削除と再作成を行ってもできないことが所有者の変更で行えないようにします。
ただし、スーパーユーザはすべての照合順序の所有者を変更することができます。）
  

パラメータ
	name
	

既存の照合順序の名前（スキーマ修飾可）です。
     

	new_name
	

照合順序の新しい名前です。
     

	new_owner
	

照合順序の新しい所有者です。
     

	new_schema
	

照合順序の新しいスキーマです。
     

	REFRESH VERSION
	

照合順序のバージョンを更新します。
以下の注釈を参照してください。
     




注釈


照合順序オブジェクトを作成する時に、照合順序の提供者固有のバージョンがシステムカタログに記録されます。
照合順序が使われるとき、現在のバージョンと記録されているバージョンが比較され、不適合の場合は以下の例のように警告が発行されます。


WARNING:  collation "xx-x-icu" has version mismatch
DETAIL:  The collation in the database was created using version 1.2.3.4, but the operating system provides version 2.3.4.5.
HINT:  Rebuild all objects affected by this collation and run ALTER COLLATION pg_catalog."xx-x-icu" REFRESH VERSION, or build PostgreSQL with the right library version.



データベースシステムは、保存されたオブジェクトが一定のソート順になっていることに依存しているため、照合順序を変更するとインデックスが破損するなどといった問題につながります。
一般的にこれは避けるべきですが、オペレーティングシステムを新しいメジャーバージョンにアップグレードしたり、pg_upgradeを使って新しいバージョンのICUライブラリとリンクされたサーバのバイナリへとアップグレードしたりする場合など、仕方のない場合もあります。
これが発生する場合は、照合順序に依存するすべてのオブジェクトを、例えばREINDEXを使って再構築します。
これがされれば、照合順序のバージョンをコマンドALTER COLLATION ... REFRESH VERSIONを使って更新できます。
これにより、システムカタログが更新されて照合順序の現在のバージョンが記録され、警告が出なくなります。
これは、影響を受けるすべてのオブジェクトが正しく再構築されたかどうかを実際に確認するわけではないことに注意してください。
  


libcが提供する照合順序を使う場合、GNU Cライブラリ(ほとんどのLinuxシステム)、FreeBSD、Windowsを使ってバージョン情報がシステムに記録されます。
ICUが提供する照合順序を使う場合、バージョン情報はICUライブラリにより提供され、すべてのプラットフォームで利用できます。
  
注記


照合順序にGNU Cライブラリを使う場合、Cライブラリのものは照合順序のプロキシとして使われます。
多くのLinuxのディストリビューションではCライブラリをアップデートする時にのみ照合順序の定義を変更しますが、メンテナは新しい照合順序の定義を古いCライブラリのリリースに自由にバックポートできますので、この方法は不完全なものです。
   


照合順序にWindowsを使う場合、バージョン情報は、en-USのようなBCP 47言語タグで定義された照合順序のみが利用可能です。
   



データベースのデフォルト照合順序に対しては、類似のコマンドALTER DATABASE ... REFRESH COLLATION VERSIONがあります。
  


以下の問い合わせを使って、現在のデータベース内の更新が必要なすべての照合順序と、それに依存するオブジェクトを特定することができます。


SELECT pg_describe_object(refclassid, refobjid, refobjsubid) AS "Collation",
       pg_describe_object(classid, objid, objsubid) AS "Object"
  FROM pg_depend d JOIN pg_collation c
       ON refclassid = 'pg_collation'::regclass AND refobjid = c.oid
  WHERE c.collversion <> pg_collation_actual_version(c.oid)
  ORDER BY 1, 2;


例


照合順序de_DEの名前をgermanに変更します。


ALTER COLLATION "de_DE" RENAME TO german;


  


照合順序en_USの所有者をjoeに変更します。


ALTER COLLATION "en_US" OWNER TO joe;


互換性


標準SQLにはALTER COLLATION文はありません。
  

関連項目
CREATE COLLATION(7), DROP COLLATION(7)


名前
ALTER CONVERSION — 変換の定義を変更する

概要

ALTER CONVERSION name RENAME TO new_name
ALTER CONVERSION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER CONVERSION name SET SCHEMA new_schema


説明


ALTER CONVERSIONは変換の定義を変更します。
  


ALTER CONVERSIONを使用するには変換の所有者でなければなりません。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールは変換のスキーマにおいてCREATE権限を持たなければなりません。
（この制限により、所有者の変更に伴い変換の削除や再作成ができなくなるといった問題が起こらないようになります。
しかし、スーパーユーザはすべての変換の所有者を変更できます。）
  

パラメータ
	name
	

既存の変換の名前です（スキーマ修飾名も可）。
     

	new_name
	

変換の新しい名前です。
     

	new_owner
	

変換の新しい所有者です。
     

	new_schema
	

変換の新しいスキーマです。
     




例


変換iso_8859_1_to_utf8の名前をlatin1_to_unicodeへ変更します。


ALTER CONVERSION iso_8859_1_to_utf8 RENAME TO latin1_to_unicode;


  


変換iso_8859_1_to_utf8の所有者をjoeに変更します。


ALTER CONVERSION iso_8859_1_to_utf8 OWNER TO joe;


互換性


標準SQLにはALTER CONVERSION文はありません。
  

関連項目
CREATE CONVERSION(7), DROP CONVERSION(7)


名前
ALTER DATABASE — データベースを変更する

概要

ALTER DATABASE name [ [ WITH ] option [ ... ] ]


ここでoptionは以下の通りです。

    ALLOW_CONNECTIONS allowconn
    CONNECTION LIMIT connlimit
    IS_TEMPLATE istemplate

ALTER DATABASE name RENAME TO new_name

ALTER DATABASE name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

ALTER DATABASE name SET TABLESPACE new_tablespace

ALTER DATABASE name REFRESH COLLATION VERSION

ALTER DATABASE name SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER DATABASE name SET configuration_parameter FROM CURRENT
ALTER DATABASE name RESET configuration_parameter
ALTER DATABASE name RESET ALL


説明


ALTER DATABASEはデータベースの属性を変更します。
  


最初の構文はデータベース毎の設定を変更します。
（詳細は後述します。）
データベース所有者とスーパーユーザのみがこの設定を変更できます。
  


2番目の構文は、データベースの名前を変更します。
データベースの名前を変更できるのは、データベースの所有者またはスーパーユーザのみです。
ただし、スーパーユーザではない所有者はCREATEDB権限を所有していなければなりません。
現在のデータベースの名前を変更することはできません（必要ならば、別のデータベースに接続してください）。
  


3番目の構文は、データベースの所有者を変更します。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。さらに、CREATEDB権限も持たなければなりません。
（スーパーユーザはこれらの権限を自動的に持っていることに注意してください。）
  


4番目の構文は、データベースのデフォルトのテーブル空間を変更します。
データベースの所有者またはスーパーユーザのみがこれを行うことができます。
また、新しいテーブル空間における作成権限を持つ必要があります。
このコマンドはデータベースの古いデフォルトのテーブル空間にあるテーブルまたはインデックスを新しいテーブル空間に物理的にすべて移動します。
新しいデフォルトのテーブル空間は、このデータベースについては空でなければならず、誰もデータベースに接続されていてはなりません。
デフォルト以外のテーブル空間にあるテーブルまたはインデックスには影響がありません。
ファイルを新しいテーブル空間にコピーするために使用される方法は、file_copy_method設定の影響を受けます。
  


残りの構文は、PostgreSQL™データベースにおける実行時設定変数のセッションのデフォルト値を変更します。
コマンド実行後にデータベースで開始される新規セッションにおいて、指定された値がデフォルト値になります。
データベース固有のデフォルト値は、postgresql.confファイルに記述されている設定やpostgresコマンドラインから受け取った設定よりも優先します。
データベースにおけるセッションのデフォルト値を変更できるのは、データベースの所有者またはスーパーユーザのみです。
この方法では設定できない変数や、スーパーユーザのみが設定できる変数も存在します。
  

パラメータ
	name
	

        属性変更の対象となるデータベースの名前です。
       

	allowconn
	

falseの場合、このデータベースには誰も接続できません。
        

	connlimit
	

データベースへの最大同時接続数です。
-1は無制限を意味します。
       

	istemplate
	

trueの場合、CREATEDB権限のあるユーザは誰でも、このデータベースを複製できます。
falseの場合、スーパーユーザ、あるいはデータベースの所有者のみが、このデータベースを複製できます。
        

	new_name
	

新しいデータベース名です。
     

	new_owner
	

新しいデータベースの所有者です。
     

	new_tablespace
	

新しいデータベースのデフォルトのテーブル空間です。
     


この構文のコマンドはトランザクションブロックの内側で実行することはできません。
     

	REFRESH COLLATION VERSION
	

データベースの照合順序のバージョンを更新します。
背景については注釈を参照してください。
     

	configuration_parameter, value
	

指定した設定パラメータについて、データベースのセッションのデフォルト値を指定した値に設定します。
valueがDEFAULTの場合、あるいは等価なRESETが使用されている場合、データベース固有の設定は無効になり、新しいセッションではシステム全体のデフォルト設定が継承されます。
全てのデータベース固有の設定をクリアするには、RESET ALLを使用してください。
SET FROM CURRENTは、データベース固有の値としてセッションにおけるパラメータの現在値を保管します。
       


設定可能なパラメータ名とその値に関する詳細についてはSET(7)および19章サーバ設定を参照してください。
       




注釈


データベースではなく特定のロールにセッションのデフォルト値を関連付けることもできます。
ALTER ROLE(7)を参照してください。
設定が競合する場合には、ロール固有の設定が、データベース固有の設定を上書きします。
  

例


データベースtest内のインデックススキャンをデフォルトで無効にします。



ALTER DATABASE test SET enable_indexscan TO off;


互換性


ALTER DATABASE文はPostgreSQL™の拡張です。
  

関連項目
CREATE DATABASE(7), DROP DATABASE(7), SET(7), CREATE TABLESPACE(7)


名前
ALTER DEFAULT PRIVILEGES — デフォルトのアクセス権限を定義する

概要

ALTER DEFAULT PRIVILEGES
    [ FOR { ROLE | USER } target_role [, ...] ]
    [ IN SCHEMA schema_name [, ...] ]
    abbreviated_grant_or_revoke


ここでabbreviated_grant_or_revokeは以下のいずれかです。

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER | MAINTAIN }
    [, ...] | ALL [ PRIVILEGES ] }
    ON TABLES
    TO { [ GROUP ] role_name | PUBLIC } [, ...] [ WITH GRANT OPTION ]

GRANT { { USAGE | SELECT | UPDATE }
    [, ...] | ALL [ PRIVILEGES ] }
    ON SEQUENCES
    TO { [ GROUP ] role_name | PUBLIC } [, ...] [ WITH GRANT OPTION ]

GRANT { EXECUTE | ALL [ PRIVILEGES ] }
    ON { FUNCTIONS | ROUTINES }
    TO { [ GROUP ] role_name | PUBLIC } [, ...] [ WITH GRANT OPTION ]

GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON TYPES
    TO { [ GROUP ] role_name | PUBLIC } [, ...] [ WITH GRANT OPTION ]

GRANT { { USAGE | CREATE }
    [, ...] | ALL [ PRIVILEGES ] }
    ON SCHEMAS
    TO { [ GROUP ] role_name | PUBLIC } [, ...] [ WITH GRANT OPTION ]

GRANT { { SELECT | UPDATE }
    [, ...] | ALL [ PRIVILEGES ] }
    ON LARGE OBJECTS
    TO { [ GROUP ] role_name | PUBLIC } [, ...] [ WITH GRANT OPTION ]

REVOKE [ GRANT OPTION FOR ]
    { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER | MAINTAIN }
    [, ...] | ALL [ PRIVILEGES ] }
    ON TABLES
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { USAGE | SELECT | UPDATE }
    [, ...] | ALL [ PRIVILEGES ] }
    ON SEQUENCES
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { EXECUTE | ALL [ PRIVILEGES ] }
    ON { FUNCTIONS | ROUTINES }
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { USAGE | ALL [ PRIVILEGES ] }
    ON TYPES
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { USAGE | CREATE }
    [, ...] | ALL [ PRIVILEGES ] }
    ON SCHEMAS
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { SELECT | UPDATE }
    [, ...] | ALL [ PRIVILEGES ] }
    ON LARGE OBJECTS
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]


説明


ALTER DEFAULT PRIVILEGESを使用すると、将来作成されるオブジェクトに適用される権限を設定できます。
（既存のオブジェクトに割り当てられている権限には影響しません。）
権限は大域的に（つまり現在のデータベース内に作成されるすべてのオブジェクトに対して）設定することも、指定したスキーマ内に作成されるオブジェクトのみに対して設定することもできます。
  


ユーザ自身のデフォルト権限とユーザがメンバとして属するロールのデフォルト権限は変更できますが、オブジェクト作成時には、新しいオブジェクト権限は現在のロールのデフォルト権限のみに影響され、現在のロールがメンバであるロールから継承されることはありません。
  


「権限」の説明にある通り、どの種類のオブジェクトについてもデフォルト権限は通常、オブジェクト所有者に対して付与可能な権限すべてを付与します。
さらに、PUBLICに対して一部の権限を付与することがあります。
しかしALTER DEFAULT PRIVILEGESを用いて大域デフォルト権限を変更することで、この動作を変更できます。
  


現時点ではスキーマ、テーブル（ビュー、外部テーブルを含む）、シーケンス、関数、型（ドメインを含む）、ラージオブジェクト用の権限のみを変更可能です。
このコマンドでは、関数は集約とプロシージャを含みます。
FUNCTIONSとROUTINESは、このコマンドでは同じです。
(ROUTINESが、関数とプロシージャを合わせた標準の用語ですので、今後は好まれます。
PostgreSQLの以前のリリースではFUNCTIONSだけが許されていました。
関数とプロシージャに対して別々にデフォルト権限を設定することはできません。)
  


スキーマ単位で指定されるデフォルト権限は、大域的な個々の種類のオブジェクト用のデフォルト権限に追加されます。
これは、スキーマ単位の権限が(デフォルトであれ、以前のスキーマを指定しないALTER DEFAULT PRIVILEGESコマンドよってであれ)大域的に付与されているのなら、それを取り消せないことを意味します。
スキーマ単位のREVOKEは、以前のスキーマ単位のGRANTの効果を取り消すのにのみ有用です。
  
パラメータ
	target_role
	

target_roleによって作成されたオブジェクトのデフォルト権限、または指定されていない場合は現在のロールの権限を変更します。
     

	schema_name
	

既存のスキーマの名前です。
指定された場合、そのスキーマ内で後に作成されるオブジェクトに対するデフォルト権限が変更されます。
IN SCHEMAを省略した場合、大域的なデフォルト権限が変更されます。
スキーマはネストできず、ラージオブジェクトはスキーマに属さないため、スキーマとラージオブジェクトに対する権限を設定する場合にはIN SCHEMAを指定できません。
     

	role_name
	

権限を付与または取り消す、既存のロールの名前です。
このパラメータ、およびabbreviated_grant_or_revoke内の他のパラメータは、 GRANT(7)やREVOKE(7)の説明通りに動作します。
ただし、指定したオブジェクトではなくオブジェクトクラス全体に対して権限を設定する点が異なります。
     





注釈


デフォルト権限としてすでに割り当てられている情報を入手するためにはpsql(1)の\ddpコマンドを使用してください。
権限の表示の意味は、「権限」の\dpの説明と同じです。
  


デフォルト権限を変更したロールを削除したい場合、デフォルト権限の項目を取り除くために、そのデフォルト権限の変更を元に戻すかDROP OWNED BYを使用する必要があります。
  

例


スキーマmyschema内に今後作成されるすべてのテーブル（およびビュー）に対して、全員にSELECT権限を付与します。
また、ロールwebuserにはそれらに挿入できるようにします。



ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT SELECT ON TABLES TO PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT INSERT ON TABLES TO webuser;


  


今後作成されるテーブルが通常以外の権限を持たないように、上を元に戻します。



ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE SELECT ON TABLES FROM PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE INSERT ON TABLES FROM webuser;


  


今後adminロールにより作成されるすべての関数について、通常関数に付与される、全員に対するEXECUTE権限を取り除きます。


ALTER DEFAULT PRIVILEGES FOR ROLE admin REVOKE EXECUTE ON FUNCTIONS FROM PUBLIC;



しかしながら、スキーマ1つに限定されたコマンドではそのような効果は達成できないということに注意してください。
対応するGRANTを取り消さない限り、以下のコマンドは効果がありません。


ALTER DEFAULT PRIVILEGES IN SCHEMA public REVOKE EXECUTE ON FUNCTIONS FROM PUBLIC;



スキーマ単位のデフォルト権限は、大域的な設定に権限を追加できるだけで、付与された権限を削除することはできないからです。
  

互換性


標準SQLにはALTER DEFAULT PRIVILEGES文はありません。
  

関連項目
GRANT(7), REVOKE(7)


名前
ALTER DOMAIN — 

ドメイン定義を変更する
  

概要

ALTER DOMAIN name
    { SET DEFAULT expression | DROP DEFAULT }
ALTER DOMAIN name
    { SET | DROP } NOT NULL
ALTER DOMAIN name
    ADD domain_constraint [ NOT VALID ]
ALTER DOMAIN name
    DROP CONSTRAINT [ IF EXISTS ] constraint_name [ RESTRICT | CASCADE ]
ALTER DOMAIN name
     RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER DOMAIN name
    VALIDATE CONSTRAINT constraint_name
ALTER DOMAIN name
    OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER DOMAIN name
    RENAME TO new_name
ALTER DOMAIN name
    SET SCHEMA new_schema


ここでdomain_constraintは以下の通りです。

[ CONSTRAINT constraint_name ]
{ NOT NULL | CHECK (expression) }


説明


ALTER DOMAINは既存ドメインの定義を変更します。
以下に示す副構文があります。
  
	SET/DROP DEFAULT
	

この構文はドメインのデフォルト値の設定または削除を行います。
指定したデフォルト値は、その後のINSERTコマンドのみに適用されることに注意してください。
そのドメインを使用したテーブルの既存の行には影響を与えません。
     

	SET/DROP NOT NULL
	

この構文はドメインがNULL値を持つことができるかどうかを変更します。
SET NOT NULLを実行できるのは、ドメインを使用する列にNULL値が含まれていない場合のみです。
     

	ADD domain_constraint [ NOT VALID ]
	

この構文はドメインに新しい制約を付与します。
新しい制約がドメインに追加された時、そのドメインを使用するすべての列が新しく追加された制約に対して検査されます。
NOT VALIDオプションを使用して新しい制約を追加することでこれらの検査を抑制することができます。
ALTER DOMAIN ... VALIDATE CONSTRAINTを使用することで、後で制約を有効にすることができます。
新しく挿入または更新される行については、NOT VALIDと印が付いていたとしても、常にすべての制約が検査されます。
NOT VALIDはCHECK制約でのみ受け付けられます。
     

	DROP CONSTRAINT [ IF EXISTS ]
	

この構文はドメイン上の制約を削除します。
IF EXISTSが指定された場合、制約が存在しなくてもエラーになりません。
この場合は代わりに注意メッセージが発生します。
     

	RENAME CONSTRAINT
	

この構文はドメイン上の制約名を変更します。
     

	VALIDATE CONSTRAINT
	

この構文は、以前にNOT VALIDとして追加された制約を検証します。
つまり、そのドメイン型のテーブル列の値すべてが指定された制約を満たすかどうかを検証します。
     

	OWNER
	

この構文はドメインの所有者を指定したユーザに変更します。
     

	RENAME
	

この構文はドメインの名前を変更します。
     

	SET SCHEMA
	

この構文はドメインのスキーマを変更します。
ドメインに関連する制約もすべて新しいスキーマに移動します。
     





ALTER DOMAINを使用するにはドメインを所有していなければなりません。
ドメインのスキーマを変更するには、新しいスキーマにおけるCREATE権限も持たなければなりません。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールはドメインのスキーマにおいてCREATE権限を持たなければなりません。
（この制限により、所有者の変更により、ドメインの削除と再作成でできないことは何もできないようにしています。
しかし、スーパーユーザはすべてのドメインの所有者を変更することができます。）
  

パラメータ

    
	name
	

変更対象となる既存のドメインの名前です（スキーマ修飾名も可）。
       

	domain_constraint
	

ドメイン用の新しいドメイン制約です。
       

	constraint_name
	

削除または名前を変更する既存の制約名です。
       

	NOT VALID
	

既存の格納されたデータについて制約の妥当性を検証しません。
       

	CASCADE
	

その制約に依存するオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
       

	RESTRICT
	

依存するオブジェクトがある場合、制約の削除要求を拒否します。
これがデフォルトの動作です。
       

	new_name
	

ドメインの新しい名前です。
       

	new_constraint_name
	

制約の新しい名前です。
       

	new_owner
	

ドメインの新しい所有者となるユーザの名前です。
       

	new_schema
	

ドメインの新しいスキーマです。
       




   

注釈


ALTER DOMAIN ADD CONSTRAINTは、既存の格納されたデータが新しい制約を満たすか検証しようとしますが、この確認は万全なものではありません。このコマンドが新しく挿入または更新されてまだコミットされていないテーブル行を「見る」ことはできないからです。
同時に実行される操作が不正なデータを挿入する危険があり、処理方法がNOT VALIDオプションを使った制約を追加することであるなら、そのコマンドをコミットして、そのコミットよりも前に開始したトランザクションがすべて完了するのを待ってから、制約に違反するデータを探すためにALTER DOMAIN VALIDATE CONSTRAINTを発行してください。
制約が一度コミットされれば、新しいトランザクションはすべてドメイン型の新しい値に対してその制約を強制していることが保証されますので、この方法は信頼できます。
  


今のところ、ALTER DOMAIN ADD CONSTRAINT、ALTER DOMAIN VALIDATE CONSTRAINTおよびALTER DOMAIN SET NOT NULLは、指定ドメインまたは任意の派生ドメインがデータベース内のいずれかのテーブルのコンテナ型の列（複合型、配列型もしくは範囲型の列）で使用されていた場合、失敗します。
これは将来的には、こうした入れ子になった値に対する新しい制約を検証できるように改良されるべきです。
  

例


ドメインにNOT NULL制約を付与します。


ALTER DOMAIN zipcode SET NOT NULL;



ドメインからNOT NULL制約を削除します。


ALTER DOMAIN zipcode DROP NOT NULL;


  


ドメインにCHECK制約を付与します。


ALTER DOMAIN zipcode ADD CONSTRAINT zipchk CHECK (char_length(VALUE) = 5);


  


ドメインからCHECK制約を削除します。


ALTER DOMAIN zipcode DROP CONSTRAINT zipchk;


  


ドメイン上の検査制約の名前を変更します。


ALTER DOMAIN zipcode RENAME CONSTRAINT zipchk TO zip_check;


  


ドメインを新しいスキーマに移動します。


ALTER DOMAIN zipcode SET SCHEMA customers;


互換性


ALTER DOMAIN文は標準SQLに準拠しています。
ただし、OWNER、RENAME、SET SCHEMA、VALIDATE CONSTRAINT構文は例外で、PostgreSQL™の拡張です。
ADD CONSTRAINT構文のNOT VALID句もPostgreSQL™の拡張です。
  

関連項目
CREATE DOMAIN(7), DROP DOMAIN(7)


名前
ALTER EVENT TRIGGER — イベントトリガの定義を変更する

概要

ALTER EVENT TRIGGER name DISABLE
ALTER EVENT TRIGGER name ENABLE [ REPLICA | ALWAYS ]
ALTER EVENT TRIGGER name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER EVENT TRIGGER name RENAME TO new_name


説明


ALTER EVENT TRIGGERは既存のイベントトリガの属性を変更します。
  


イベントトリガを変更するためにはスーパーユーザでなければなりません。
  

パラメータ
	name
	

変更する既存のトリガの名前です。
     

	new_owner
	

イベントトリガの新しい所有者となるユーザの名前です。
     

	new_name
	

イベントトリガの新しい名前です。
     

	DISABLE/ENABLE [ REPLICA | ALWAYS ]
	

この構文はイベントトリガの発行処理を設定します。
無効化されたトリガはまだシステムで認識されていますが、きっかけとなるイベントが起きたとしても実行されません。
session_replication_roleも参照してください。
     




互換性


標準SQLにはALTER EVENT TRIGGER文はありません。
  

関連項目
CREATE EVENT TRIGGER(7), DROP EVENT TRIGGER(7)


名前
ALTER EXTENSION — 

拡張の定義を変更する
  

概要

ALTER EXTENSION name UPDATE [ TO new_version ]
ALTER EXTENSION name SET SCHEMA new_schema
ALTER EXTENSION name ADD member_object
ALTER EXTENSION name DROP member_object


ここでmember_objectは以下の通りです。

  ACCESS METHOD object_name |
  AGGREGATE aggregate_name ( aggregate_signature ) |
  CAST (source_type AS target_type) |
  COLLATION object_name |
  CONVERSION object_name |
  DOMAIN object_name |
  EVENT TRIGGER object_name |
  FOREIGN DATA WRAPPER object_name |
  FOREIGN TABLE object_name |
  FUNCTION function_name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ] |
  MATERIALIZED VIEW object_name |
  OPERATOR operator_name (left_type, right_type) |
  OPERATOR CLASS object_name USING index_method |
  OPERATOR FAMILY object_name USING index_method |
  [ PROCEDURAL ] LANGUAGE object_name |
  PROCEDURE procedure_name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ] |
  ROUTINE routine_name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ] |
  SCHEMA object_name |
  SEQUENCE object_name |
  SERVER object_name |
  TABLE object_name |
  TEXT SEARCH CONFIGURATION object_name |
  TEXT SEARCH DICTIONARY object_name |
  TEXT SEARCH PARSER object_name |
  TEXT SEARCH TEMPLATE object_name |
  TRANSFORM FOR type_name LANGUAGE lang_name |
  TYPE object_name |
  VIEW object_name


またaggregate_signatureは以下の通りです。

* |
[ argmode ] [ argname ] argtype [ , ... ] |
[ [ argmode ] [ argname ] argtype [ , ... ] ] ORDER BY [ argmode ] [ argname ] argtype [ , ... ]


説明


ALTER EXTENSIONはインストールされた拡張の定義を変更します。
複数の副構文があります。

   
	UPDATE
	

この構文は拡張を新しいバージョンに更新します。
拡張は、現在インストールされているバージョンから要求するバージョンに変更することができる、適切な更新スクリプト（またはスクリプト群）を提供しなければなりません。
     

	SET SCHEMA
	

この構文は拡張のオブジェクトを別のスキーマに移動します。
このコマンドを成功させるためには、拡張は再配置可能でなければなりません。
     

	ADD member_object
	

この構文は既存のオブジェクトを拡張に追加します。
これは主に拡張の更新スクリプトで有用です。
オブジェクトはその後拡張のメンバとして扱われます。
特に、オブジェクトの削除は拡張の削除によってのみ可能です。
     

	DROP member_object
	

この構文は拡張からメンバオブジェクトを削除します。
これは主に拡張の更新スクリプトで有用です。
オブジェクトは削除されません。拡張との関連がなくなるだけです。
     






これらの操作の詳細については「関連するオブジェクトを拡張としてパッケージ化」を参照してください。
  


ALTER EXTENSIONを使用するためには拡張の所有者でなければなりません。
ADD/DROP構文では追加されるオブジェクトまたは削除されるオブジェクトの所有者でもなければなりません。
  

パラメータ

   
	name
	

インストールされた拡張の名前です。
      

	new_version
	

更新したい新しい拡張のバージョンです。
これは識別子または文字列リテラルのいずれかで記述することができます。
指定がない場合、ALTER EXTENSION UPDATEは拡張の制御ファイル内でデフォルトバージョンとして示されるものへの更新を試行します。
      

	new_schema
	

拡張の新しいスキーマです。
      

	object_name, aggregate_name, function_name, operator_name, procedure_name, routine_name
	

拡張に追加する、または、拡張から削除するオブジェクトの名前です。
テーブル、集約、ドメイン、外部テーブル、関数、演算子、演算子クラス、演算子族、プロシージャ、ルーチン、シーケンス、全文検索オブジェクト、型、ビューの名前はスキーマ修飾可能です。
      

	source_type
	

キャストの変換元データ型の名前です。
      

	target_type
	

キャストの変換先データ型の名前です。
      

	argmode
	

関数、プロシージャ、または集約の引数のモードでIN、OUT、INOUT、VARIADICのいずれかです。
省略時のデフォルトはINです。
関数を識別するためには入力引数だけが必要ですので、実際のところALTER EXTENSIONはOUT引数を考慮しないことに注意してください。
このためIN、INOUTおよびVARIADIC引数を列挙するだけで十分です。
      

	argname
	

関数、プロシージャ、または集約の引数の名前です。
関数を識別するためには入力引数だけが必要ですので、実際のところALTER EXTENSIONは引数名を考慮しないことに注意してください。
      

	argtype
	

関数、プロシージャ、または集約の引数のデータ型です。
      

	left_type, right_type
	

演算子の引数のデータ型（スキーマ修飾可）です。
前置演算子における存在しない引数にはNONEと記述してください。
      

	PROCEDURAL
	

これは無意味な単語です。
      

	type_name
	

変換のデータ型の名前です。
      

	lang_name
	

変換の言語の名前です。
      




  

例


hstore拡張をバージョン2.0に更新します。


ALTER EXTENSION hstore UPDATE TO '2.0';


  


hstore拡張のスキーマをutilsに変更します。


ALTER EXTENSION hstore SET SCHEMA utils;


  


hstore拡張に既存の関数を追加します。


ALTER EXTENSION hstore ADD FUNCTION populate_record(anyelement, hstore);


互換性


ALTER EXTENSIONはPostgreSQL™の拡張です。
  

関連項目
CREATE EXTENSION(7), DROP EXTENSION(7)


名前
ALTER FOREIGN DATA WRAPPER — 外部データラッパーの定義を変更する

概要

ALTER FOREIGN DATA WRAPPER name
    [ HANDLER handler_function | NO HANDLER ]
    [ VALIDATOR validator_function | NO VALIDATOR ]
    [ OPTIONS ( [ ADD | SET | DROP ] option ['value'] [, ... ]) ]
ALTER FOREIGN DATA WRAPPER name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER FOREIGN DATA WRAPPER name RENAME TO new_name


説明


ALTER FOREIGN DATA WRAPPERは外部データラッパーの定義を変更します。
このコマンドの第1の構文はサポート関数または外部データラッパーの一般的なオプションを変更します。
（少なくとも1つの句が必要です。）
第2の構文は外部データラッパーの所有者を変更します。
  


スーパーユーザのみが外部データラッパーを変更することができます。
さらにスーパーユーザのみが外部データラッパーを所有することができます。
  

パラメータ
	name
	

既存の外部データラッパーの名前です。
     

	HANDLER handler_function
	

外部データラッパー用の新しいハンドラ関数を指定します。
     

	NO HANDLER
	

これを使用して外部データラッパーがハンドラ関数を持たないことを指定します。
     


ハンドラを持たない外部データラッパーを使用する外部テーブルにはアクセスできないことに注意してください。
     

	VALIDATOR validator_function
	

外部データラッパー用の新しい検証関数を指定します。
     


外部データラッパーや依存するサーバ、ユーザマップ、外部テーブルの既存のオプションが新しい検証関数に対して無効となる可能性があることに注意してください。
PostgreSQL™はこの検査を行いません。
変更された外部データラッパーを使用する前にこれらのオプションが正しいことを確実にすることはユーザの責任です。
しかしこのALTER FOREIGN DATA WRAPPERコマンドで指定されたオプションはすべて新しい検証関数で検査されます。
     

	NO VALIDATOR
	

これは、外部データラッパーが検証関数を持たないことを指定するために使用されます。
     

	OPTIONS ( [ ADD | SET | DROP ] option ['value'] [, ... ] )
	

外部データラッパー用のオプションを変更します。
ADD、SET、DROPは実行する動作を指定します。
明示的な動作の指定がなければADDとみなされます。
オプション名は一意でなければなりません。
また名前と値は外部データラッパーの検証関数を使用して検証されます。
     

	new_owner
	

外部データラッパーの新しい所有者のユーザ名です。
     

	new_name
	

外部データラッパーの新しい名前です。
     




例


外部データラッパーdbiを変更し、fooオプションを追加し、barオプションを削除します。


ALTER FOREIGN DATA WRAPPER dbi OPTIONS (ADD foo '1', DROP bar);


  


外部データラッパーdbiの検証関数をbob.myvalidatorに変更します。


ALTER FOREIGN DATA WRAPPER dbi VALIDATOR bob.myvalidator;


互換性


ALTER FOREIGN DATA WRAPPERはISO/IEC 9075-9 (SQL/MED)に準拠しています。
ただし、 HANDLER、VALIDATOR、OWNER TO、RENAME句は拡張です。
  

関連項目
CREATE FOREIGN DATA WRAPPER(7), DROP FOREIGN DATA WRAPPER(7)


名前
ALTER FOREIGN TABLE — 外部テーブルの定義を変更する

概要

ALTER FOREIGN TABLE [ IF EXISTS ] [ ONLY ] name [ * ]
    action [, ... ]
ALTER FOREIGN TABLE [ IF EXISTS ] [ ONLY ] name [ * ]
    RENAME [ COLUMN ] column_name TO new_column_name
ALTER FOREIGN TABLE [ IF EXISTS ] name
    RENAME TO new_name
ALTER FOREIGN TABLE [ IF EXISTS ] name
    SET SCHEMA new_schema


ここでactionは以下のいずれかです。

    ADD [ COLUMN ] column_name data_type [ COLLATE collation ] [ column_constraint [ ... ] ]
    DROP [ COLUMN ] [ IF EXISTS ] column_name [ RESTRICT | CASCADE ]
    ALTER [ COLUMN ] column_name [ SET DATA ] TYPE data_type [ COLLATE collation ]
    ALTER [ COLUMN ] column_name SET DEFAULT expression
    ALTER [ COLUMN ] column_name DROP DEFAULT
    ALTER [ COLUMN ] column_name { SET | DROP } NOT NULL
    ALTER [ COLUMN ] column_name SET STATISTICS integer
    ALTER [ COLUMN ] column_name SET ( attribute_option = value [, ... ] )
    ALTER [ COLUMN ] column_name RESET ( attribute_option [, ... ] )
    ALTER [ COLUMN ] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }
    ALTER [ COLUMN ] column_name OPTIONS ( [ ADD | SET | DROP ] option ['value'] [, ... ])
    ADD table_constraint [ NOT VALID ]
    VALIDATE CONSTRAINT constraint_name
    DROP CONSTRAINT [ IF EXISTS ]  constraint_name [ RESTRICT | CASCADE ]
    DISABLE TRIGGER [ trigger_name | ALL | USER ]
    ENABLE TRIGGER [ trigger_name | ALL | USER ]
    ENABLE REPLICA TRIGGER trigger_name
    ENABLE ALWAYS TRIGGER trigger_name
    SET WITHOUT OIDS
    INHERIT parent_table
    NO INHERIT parent_table
    OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
    OPTIONS ( [ ADD | SET | DROP ] option ['value'] [, ... ])


説明


ALTER FOREIGN TABLEは既存の外部テーブルの定義を変更します。
以下のように複数の副構文があります。

  
	ADD COLUMN
	

この構文は、CREATE FOREIGN TABLEと同じ文法を使用して、外部テーブルに新しい列を追加します。
通常のテーブルに列を追加する場合と異なり、背後のストレージには何も起こりません。
この操作は単に、外部テーブルを通して何らかの新しい列がアクセスできるようになったことを宣言します。
     

	DROP COLUMN [ IF EXISTS ]
	

この構文は外部テーブルから列を削除します。
ビューなど何らかのその他のテーブルがこの列に依存する場合、CASCADEを付けなければなりません。
IF EXISTSが指定された場合、列が存在しなくてもエラーになりません。
この場合、注意メッセージが代わりに発生します。
     

	SET DATA TYPE
	

この構文は外部テーブルの列の型を変更します。
この場合も、背後のストレージには何の影響もありません。
この動作は単に、PostgreSQL™が想定しているその列の型を変更するだけです。
     

	SET/DROP DEFAULT
	

この構文は列に対するデフォルト値の設定または削除を行います。
デフォルト値はその後に行われるINSERTまたはUPDATEコマンドにのみ適用されます。
すでにテーブル内に存在する行の変更は行われません。
     

	SET/DROP NOT NULL
	

列にNULL値を許すか許さないかどうか印を付けます。
     

	SET STATISTICS
	

この構文は、この後のANALYZE操作における列単位の統計情報収集目標を設定します。
詳細についてはALTER TABLEの類似の構文を参照してください。
     

	SET ( attribute_option = value [, ... ] ), RESET ( attribute_option [, ... ] )
	

この構文は属性単位のオプションを設定またはリセットします。
詳細についてはALTER TABLEにおける類似の構文を参照してください。
     

	
     SET STORAGE
    
	

この構文は、列のストレージモードを設定します。
詳しくはALTER TABLEの類似の構文を参照して下さい。
ストレージモードは、テーブルの外部データラッパーがそれに注意するようになっていなければ、何の効果もないことに注意して下さい。
     

	ADD table_constraint [ NOT VALID ]
	

この構文は、CREATE FOREIGN TABLEと同じ構文を使って、外部テーブルに新しい制約を追加します。
現在のところ、CHECKとNOT NULL制約のみがサポートされています。
     


通常のテーブルに制約を追加する場合とは異なり、制約が正しいことを検証するために、何も実行されません。
そうではなく、この動作は単に、ある新しい条件が、外部テーブルのすべての行に対して成り立つことを仮定すべきだと宣言するものです。
（CREATE FOREIGN TABLEの記述を参照して下さい。）
制約がNOT VALIDであるとされている場合（CHECKの場合にのみ許可されています）、それが成り立つことは仮定されず、将来利用される場合に備えて記録されているだけになります。
     

	VALIDATE CONSTRAINT
	

この構文は、それまでNOT VALIDであるとされていた制約をvalidに変更します。
制約を検証するために何の動作も実行されませんが、以後の問い合わせではそれが成り立つと仮定されます。
     

	DROP CONSTRAINT [ IF EXISTS ]
	

この構文は、外部テーブル上の指定された制約を削除します。
IF EXISTSが指定され、その制約が存在しない場合は、エラーにはなりません。
その場合、代わりに注意が発行されます。
     

	DISABLE/ENABLE [ REPLICA | ALWAYS ] TRIGGER
	

これらの構文は外部テーブルに属するトリガの発行について設定します。
詳細についてはALTER TABLEにおける類似の構文を参照してください。
     

	SET WITHOUT OIDS
	

システム列oidを削除する、後方互換のための構文です。
システム列oidは今では追加できませんので、これは効果がありません。
     

	INHERIT parent_table
	

この構文は対象の外部テーブルを指定した親テーブルの新しい子テーブルとして追加します。
詳しくはALTER TABLEの類似の構文を参照して下さい。
     

	NO INHERIT parent_table
	

この構文は、対象の外部テーブルを指定した親テーブルの子テーブルのリストから削除します。
     

	OWNER
	

この構文は外部テーブルの所有者を指定ユーザに変更します。
     

	OPTIONS ( [ ADD | SET | DROP ] option ['value'] [, ... ] )
	

外部テーブルもしくはその列の１つについてのオプションを変更します。
ADD、SET、DROPは実行する操作を指定します。
明示的な操作指定がない場合ADDとみなされます。
重複したオプション名は許されません。
（しかしテーブルオプションと列オプションとで同じ名前を持たせることは問題ありません。）
またオプションの名前と値は外部データラッパーのライブラリを使用して検証されます。
     

	RENAME
	

RENAME構文は外部テーブルの名前または外部テーブル内の個々の列の名前を変更します。
     

	SET SCHEMA
	

この構文は外部テーブルを別のスキーマに移動します。
     




  


RENAMEおよびSET SCHEMA以外の操作はすべて、複数変更項目リストにまとめて並行に適用することができます。
例えば、複数の列の追加、複数の列の型変更、またはその両方を単一のコマンドで行うことができます。
  


コマンドがALTER FOREIGN TABLE IF EXISTS ...と記述されていて外部テーブルが存在しない場合、エラーにはなりません。
この場合、注意が発行されます。
  


ALTER FOREIGN TABLEを使用するためにはテーブルの所有者でなければなりません。
また外部テーブルのスキーマを変更するためには、新しいスキーマに対してCREATE権限を持っていなければなりません。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールはテーブルのスキーマにおいてCREATE権限を持たなければなりません。
（これらの制限により、テーブルの削除と再作成を行ってもできないことを所有者の変更で行えないようにします。
しかし、スーパーユーザはどのテーブルの所有者も変更できます。）
列の追加または列の型の変更を行うためには、そのデータ型に対するUSAGE権限も必要です。
  

パラメータ
	name
	

変更対象の既存外部テーブルの名前（スキーマ修飾可）です。
テーブル名の前にONLYが指定されていた場合、そのテーブルのみが変更されます。
ONLYが指定されていない場合、そのテーブルと、そのすべての子孫のテーブル（あれば）が変更されます。
子孫のテーブルが含まれることを明示的に示すために、テーブル名の後に*を指定することができますが、これは省略可能です。
       

	column_name
	

新しい列または既存の列の名前です。
       

	new_column_name
	

既存の列に対する新しい名前です。
       

	new_name
	

テーブルの新しい名前です。
       

	data_type
	

新しい列のデータ型、または既存の列に対する新しいデータ型です。
       

	table_constraint
	

外部テーブルの新しいテーブル制約です。
       

	constraint_name
	

削除する既存の制約の名前です。
       

	CASCADE
	

削除される列または制約に依存するオブジェクト（その列を参照するビューなど）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
       

	RESTRICT
	

依存するオブジェクトが存在する場合、列または制約の削除を拒否します。
これがデフォルトの動作です。
       

	trigger_name
	

無効にする、あるいは有効にするトリガの名前です。
       

	ALL
	

外部テーブルに属するすべてのトリガを無効、あるいは有効にします。
(内部的に生成されたトリガが含まれる場合、スーパーユーザ権限が必要です。
コアシステムは外部テーブルにそのようなトリガを追加することはありませんが、アドオンが追加することはあり得ます。)
       

	USER
	

内部的に生成されたトリガを除き、外部テーブルに属するすべてのトリガを無効、あるいは有効にします。
       

	parent_table
	

外部テーブルと関連付ける、あるいは関連を取り消す親テーブルです。
       

	new_owner
	

テーブルの新しい所有者のユーザ名です。
       

	new_schema
	

テーブルの移動先となるスキーマの名前です。
       




注釈


COLUMNキーワードには意味がなく、省略可能です。
   


ADD COLUMNまたはDROP COLUMNにより列が追加、削除される時、NOT NULLまたはCHECK制約が追加される時、SET DATA TYPEにより列の型が変更される時、外部サーバとの一貫性は検査されません。
確実にテーブル定義をリモート側に合わせることはユーザの責任です。
   


有効なパラメータに関する詳しい説明についてはCREATE FOREIGN TABLEを参照してください。
   

例


列を非NULLと印付けします。


ALTER FOREIGN TABLE distributors ALTER COLUMN street SET NOT NULL;


  


外部テーブルのオプションを変更します。


ALTER FOREIGN TABLE myschema.distributors OPTIONS (ADD opt1 'value', SET opt2 'value2', DROP opt3);


互換性


ADD、DROP、SET DATA TYPE構文は標準SQLに準拠しています。
他の構文は標準SQLに対するPostgreSQL™の拡張です。
単一のALTER FOREIGN TABLEコマンドに複数の操作を指定する機能も拡張です。
  


ALTER FOREIGN TABLE DROP COLUMNを用いて外部テーブルのたった1つの列を削除してゼロ列のテーブルとすることができます。
これは拡張であり、SQLではゼロ列の外部テーブルを許しません。
  

関連項目
CREATE FOREIGN TABLE(7), DROP FOREIGN TABLE(7)


名前
ALTER FUNCTION — 関数定義を変更する

概要

ALTER FUNCTION name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    action [ ... ] [ RESTRICT ]
ALTER FUNCTION name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    RENAME TO new_name
ALTER FUNCTION name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER FUNCTION name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    SET SCHEMA new_schema
ALTER FUNCTION name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    [ NO ] DEPENDS ON EXTENSION extension_name


ここでactionは以下のいずれかです。

    CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
    IMMUTABLE | STABLE | VOLATILE
    [ NOT ] LEAKPROOF
    [ EXTERNAL ] SECURITY INVOKER | [ EXTERNAL ] SECURITY DEFINER
    PARALLEL { UNSAFE | RESTRICTED | SAFE }
    COST execution_cost
    ROWS result_rows
    SUPPORT support_function
    SET configuration_parameter { TO | = } { value | DEFAULT }
    SET configuration_parameter FROM CURRENT
    RESET configuration_parameter
    RESET ALL


説明


ALTER FUNCTIONは関数定義を変更します。
  


ALTER FUNCTIONを使用するには関数の所有者でなければなりません。
関数のスキーマを変更するには、新しいスキーマにおけるCREATE権限も必要です。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールは関数のスキーマにおいてCREATE権限を持たなければなりません。
（この制限により、関数の削除と再作成で行うことができない処理を所有者の変更で行えないようになります。
しかし、スーパーユーザはすべての関数の所有者を変更することができます。）
  

パラメータ
	name
	

既存の関数名です（スキーマ修飾名も可）。
引数リストを指定しない場合、名前はスキーマ内で一意でなければなりません。
     

	argmode
	

引数のモードで、IN、OUT、INOUT、VARIADICのいずれかです。
省略された場合のデフォルトはINです。
関数の識別を行うには入力引数のみが必要ですので、実際にはALTER FUNCTIONがOUT引数を無視することに注意してください。
ですので、IN、INOUTおよびVARIADIC引数を列挙することで十分です。
     

	argname
	

引数の名前です。
関数の識別を行うには引数のデータ型のみが必要ですので、実際にはALTER FUNCTIONは引数の名前を無視することに注意してください。
     

	argtype
	

もしあれば、その関数の引数のデータ型（スキーマ修飾可能）です。
     

	new_name
	

新しい関数名です。
     

	new_owner
	

新しい関数の所有者です。
関数にSECURITY DEFINERが指定されている場合、その後は新しい所有者の権限で関数が実行されることに注意してください。
     

	new_schema
	

関数の新しいスキーマです。
     

	DEPENDS ON EXTENSION extension_name, NO DEPENDS ON EXTENSION extension_name
	

この構文は、関数が拡張に依存している、もしくはNOが指定された場合には拡張にもはや依存していないと印を付けます。
拡張に依存していると印を付けられた関数は、CASCADEが指定されていなくても拡張が削除されると自動的に削除されます。
関数は複数の拡張に依存することができ、これらの拡張のうちどれか一つが削除されるとその関数は削除されます。
     

	CALLED ON NULL INPUT, RETURNS NULL ON NULL INPUT, STRICT
	CALLED ON NULL INPUTは、引数の一部またはすべてがNULLの場合に関数が呼び出されるように変更します。
RETURNS NULL ON NULL INPUTもしくはSTRICTは、引数の一部がNULLの場合に関数が呼び出されないように変更します。
代わりに自動的にNULLという結果とされます。
詳細はCREATE FUNCTION(7)を参照してください。
      

	IMMUTABLE, STABLE, VOLATILE
	

関数の揮発性を指定した設定に変更します。
詳細についてはCREATE FUNCTION(7)を参照してください。
      

	[ EXTERNAL ] SECURITY INVOKER, [ EXTERNAL ] SECURITY DEFINER
	

関数のセキュリティを定義者にするか否かを変更します。
EXTERNALキーワードはSQLとの互換性のためのものであり、無視されます。
この機能の詳細についてはCREATE FUNCTION(7)を参照してください。
     

	PARALLEL
	

関数が並列処理に対して安全であると見なされるかどうかを変更します。
詳しくはCREATE FUNCTION(7)を参照してください。
     

	LEAKPROOF
	

関数を漏洩防止関数とみなすか否かを変更します。
この機能に関する詳細についてはCREATE FUNCTION(7)を参照してください。
     

	COST execution_cost
	

関数の推定実行コストを変更します。
詳細についてはCREATE FUNCTION(7)を参照してください。
      

	ROWS result_rows
	

集合を返す関数で返される推定行数を変更します。
詳細についてはCREATE FUNCTION(7)を参照してください。
      

	SUPPORT support_function
	

この関数のために使うプランナサポート関数を設定もしくは変更します。
詳細は「関数最適化に関する情報」を参照してください。
このオプションを使うにはスーパーユーザでなければなりません。
     


新しいサポート関数の名前でなければならないため、このオプションはサポート関数を同時に削除するのに使うことはできません。
そうする必要があるなら、CREATE OR REPLACE FUNCTIONを使ってください。
     

	configuration_parameter, value
	

関数呼び出し時に設定パラメータに対して行われる設定を追加または変更します。
valueがDEFAULT、またはそれと等価なRESETが使用された場合、関数の局所的な設定は削除されます。
このため、関数はその環境内に存在する値で実行されます。
すべての関数の局所的な設定を消去したければRESET ALLを使用してください。
SET FROM CURRENTは、ALTER FUNCTIONが実行された時点でのパラメータの現在値を、関数起動時に適用される値として保管します。
       


設定可能なパラメータとその値に関する詳細については、SET(7)および19章サーバ設定を参照してください。
       

	RESTRICT
	

標準SQLとの互換性のためのものであり、無視されます。
     




例


integer型用のsqrt関数の名前をsquare_rootに変更します。


ALTER FUNCTION sqrt(integer) RENAME TO square_root;


  


integer型用のsqrt関数の所有者をjoeに変更します。


ALTER FUNCTION sqrt(integer) OWNER TO joe;


  


integer型用のsqrt関数のスキーマをmathsに変更します。


ALTER FUNCTION sqrt(integer) SET SCHEMA maths;


  


integer型に対する関数sqrtが、拡張mathlibに依存するとして印をつけるには、次のようにします。


ALTER FUNCTION sqrt(integer) DEPENDS ON EXTENSION mathlib;


  


関数用に検索パスを自動的に設定するように調整します。


ALTER FUNCTION check_password(text) SET search_path = admin, pg_temp;


  


関数用のsearch_pathの自動設定を無効にします。


ALTER FUNCTION check_password(text) RESET search_path;



呼び出し元で使用される検索パスでこの関数が実行されるようになります。
  

互換性


この文は標準SQLのALTER FUNCTION文に部分的に従っています。
標準ではより多くの関数の属性を変更できますが、関数名の変更、関数を定義者の権限で実行するかどうかの変更、関数と設定パラメータ値の関連付け、関数の所有者やスキーマ、揮発性の変更を行う機能はありません。
また、標準ではRESTRICTキーワードを必須としていますが、PostgreSQL™では省略可能です。
  

関連項目
CREATE FUNCTION(7), DROP FUNCTION(7), ALTER PROCEDURE(7), ALTER ROUTINE(7)


名前
ALTER GROUP — ロールの名前またはメンバ資格を変更する

概要

ALTER GROUP role_specification ADD USER user_name [, ... ]
ALTER GROUP role_specification DROP USER user_name [, ... ]


ここでrole_specificationは以下の通りです。

    role_name
  | CURRENT_ROLE
  | CURRENT_USER
  | SESSION_USER

ALTER GROUP group_name RENAME TO new_name


説明


ALTER GROUPはユーザグループの属性を変更します。
後方互換性のために受け付けられていますが、このコマンドは廃止予定です。
グループ（ユーザも同様）は、より一般化されたロールという概念に置き換えられたからです。
  


最初の2つの構文は、ユーザをグループに追加もしくはグループから削除します。
（この場合、任意のロールを「ユーザ」部分として、または「グループ」 部分として使用できます。）
この種の構文は、実のところ、「グループ」として指名されたロール内のメンバ資格の付与、取消と同じです。
ですので、GRANTやREVOKEを使用する方法を薦めます。
GRANTやREVOKEには、ADMIN OPTIONを付与したり取り消したりする機能や、権限を付与する者を指定する機能など、このコマンドでは使用できない追加のオプションがあります。
  


3番目の構文はグループの名前を変更します。
これは、ALTER ROLEを使用したロール名の変更とまったく同じです。
  

パラメータ
	group_name
	

変更するグループ（ロール）の名前です。
     

	user_name
	

グループに追加または削除されるユーザ（ロール）です。
指定するユーザは存在するものでなければいけません。
ALTER GROUPは、ユーザの作成も削除も行いません。
     

	new_name
	

新しいグループ名です。
     




例


ユーザをグループに追加します。



ALTER GROUP staff ADD USER karl, john;




ユーザをグループから削除します。



ALTER GROUP workers DROP USER beth;


互換性


標準SQLにはALTER GROUP文はありません。
  

関連項目
GRANT(7), REVOKE(7), ALTER ROLE(7)


名前
ALTER INDEX — インデックス定義を変更する

概要

ALTER INDEX [ IF EXISTS ] name RENAME TO new_name
ALTER INDEX [ IF EXISTS ] name SET TABLESPACE tablespace_name
ALTER INDEX name ATTACH PARTITION index_name
ALTER INDEX name [ NO ] DEPENDS ON EXTENSION extension_name
ALTER INDEX [ IF EXISTS ] name SET ( storage_parameter [= value] [, ... ] )
ALTER INDEX [ IF EXISTS ] name RESET ( storage_parameter [, ... ] )
ALTER INDEX [ IF EXISTS ] name ALTER [ COLUMN ] column_number
    SET STATISTICS integer
ALTER INDEX ALL IN TABLESPACE name [ OWNED BY role_name [, ... ] ]
    SET TABLESPACE new_tablespace [ NOWAIT ]


説明


ALTER INDEXは既存のインデックスの定義を変更します。
以下のような副構文が存在します。
要求されるロックレベルはそれぞれの副構文によって異なることに注意してください。
特に記述がなければACCESS EXCLUSIVEロックを取得します。
複数のサブコマンドが使われるときは、それらのサブコマンドが要求するうち、もっとも高いレベルのロックを取得します。

  
	RENAME
	

このRENAME構文は、インデックスの名前を変更します。
インデックスがテーブル制約（UNIQUE、PRIMARY KEY、EXCLUDEのいずれか）と関連付けられていた場合、制約名も変更されます。
格納されたデータには影響しません。
     


インデックスの名前の変更にはSHARE UPDATE EXCLUSIVEロックが必要です。
     

	SET TABLESPACE
	

この構文は、インデックスのテーブル空間を指定したテーブル空間に変更し、インデックスに関連するデータファイルを移動します。
インデックスのテーブル空間を変更するには、インデックスの所有者であり、かつ新しいテーブル空間のCREATE権限を有している必要があります。
ALL IN TABLESPACE構文を使うことで、テーブル空間内の現在のデータベースのすべてのインデックスを移動することができます。
この場合、移動されるすべてのインデックスがロックされ、それから1つずつ移動されます。
この構文はOWNED BYもサポートしており、これを使うと、指定のロールが所有しているインデックスだけを移動します。
NOWAITオプションを指定した場合、必要とするすべてのロックを即座に獲得できなければ、このコマンドは失敗します。
このコマンドではシステムカタログは移動されないことに注意してください。
必要であれば、ALTER DATABASEを使うか、あるいはALTER INDEXで明示的に指定してください。
CREATE TABLESPACEも参照してください。
     

	ATTACH PARTITION index_name
	

指定されたインデックス（スキーマ修飾可）を変更するインデックスに付加します。
指定されたインデックスは、変更するインデックスを持つテーブルのパーティションに対するもので、かつ、同じ定義を持たなければなりません。
付加されたインデックスは、それ自身として削除できず、親インデックスが削除された場合に自動的に削除されます。
     

	DEPENDS ON EXTENSION extension_name, NO DEPENDS ON EXTENSION extension_name
	

この構文は、インデックスが拡張に依存している、もしくはNOが指定された場合には拡張にもはや依存していないと印を付けます。
拡張に依存していると印をつけられたインデックスは、拡張が削除されると自動的に削除されます。
     

	SET ( storage_parameter [= value] [, ... ] )
	

この構文は、インデックスに対し、インデックスメソッド固有の1つ以上の格納パラメータを変更します。
設定可能なパラメータについてはCREATE INDEXを参照してください。
このコマンドにより、インデックスの内容がすぐに変更されるわけではないことに注意してください。
パラメータによりますが、期待する効果を得るためにREINDEXを使用してインデックスを再構築しなければならない場合もあります。
     

	RESET ( storage_parameter [, ... ] )
	

この構文は、1つ以上のインデックスメソッド固有の格納パラメータをデフォルト値に再設定します。
SET同様、インデックスを完全に更新するためにREINDEXが必要になる場合があります。
     

	ALTER [ COLUMN ] column_number SET STATISTICS integer
	

この構文は、以後のANALYZE操作にむけた、列ごとの統計情報収集目標を設定します。ただし、式として定義されたインデックス列のみに使えます。
式には一意な名前が無いため、これらはインデックス列の序数を使って参照します。
目標は0から10000の範囲で設定できます。代わりに-1と設定すると、システムのデフォルト統計情報目標（default_statistics_target）に戻します。
PostgreSQL™の問い合わせプランナによる統計の利用についての詳細は「プランナで使用される統計情報」を参照してください。
     




  

パラメータ
	IF EXISTS
	

インデックスが存在しない場合にエラーとしません。
この場合注意メッセージが発生します。
       

	column_number
	

インデックス列の順序位置（左から右）を参照する序数。
       

	name
	

変更対象の既存のインデックスの名前です（スキーマ修飾名も可）。
       

	new_name
	

インデックスの新しい名前です。
       

	tablespace_name
	

インデックスの移動先のテーブル空間です。
       

	extension_name
	

インデックスが依存することになる拡張の名前です。
       

	storage_parameter
	

インデックスメソッド固有の格納パラメータの名前です。
       

	value
	

インデックスメソッド固有の格納パラメータの新しい値です。
パラメータに応じてこれが数値になることも文字列になることもあります。
       




注釈


これらの操作はALTER TABLEを使用して行うこともできます。
実際には、ALTER INDEXは、ALTER TABLEのインデックス用構文の別名に過ぎません。
   


以前はALTER INDEX OWNERという種類の構文がありましたが、（警告の上）無視されるようになりました。
インデックスの所有者は基のテーブルの所有者と異なるものにすることができません。
テーブルの所有者を変更すると自動的にインデックスの所有者も変わります。
   


システムカタログ用インデックスに対する変更は許されていません。
   

例


既存のインデックスの名前を変更します。


ALTER INDEX distributors RENAME TO suppliers;


  


インデックスを別のテーブル空間に移動します。


ALTER INDEX distributors SET TABLESPACE fasttablespace;


  


インデックスのフィルファクタを変更します（インデックスメソッドがフィルファクタをサポートしていることを前提とします）。


ALTER INDEX distributors SET (fillfactor = 75);
REINDEX INDEX distributors;



式インデックスに対して統計収集対象を設定します。


CREATE INDEX coord_idx ON measured (x, y, (z + t));
ALTER INDEX coord_idx ALTER COLUMN 3 SET STATISTICS 1000;


互換性


ALTER INDEXはPostgreSQL™の拡張です。
  

関連項目
CREATE INDEX(7), REINDEX(7)


名前
ALTER LANGUAGE — 手続き言語の定義を変更する

概要

ALTER [ PROCEDURAL ] LANGUAGE name RENAME TO new_name
ALTER [ PROCEDURAL ] LANGUAGE name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }


説明


ALTER LANGUAGEは、手続き言語の定義を変更します。
言語名の変更および言語の所有者の変更のみが可能です。
ALTER LANGUAGEを使用するためにはスーパーユーザまたは言語の所有者でなければなりません。
  

パラメータ
	name
	

言語の名前です。
     

	new_name
	

新しい言語の名前です。
     

	new_owner
	

新しい言語の所有者です。
     




互換性


標準SQLにはALTER LANGUAGE文はありません。
  

関連項目
CREATE LANGUAGE(7), DROP LANGUAGE(7)


名前
ALTER LARGE OBJECT — ラージオブジェクトの定義を変更する

概要

ALTER LARGE OBJECT large_object_oid OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }


説明


ALTER LARGE OBJECTはラージオブジェクトの定義を変更します。
  


ALTER LARGE OBJECTを使用するためにはラージオブジェクトを所有していなければなりません。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。
(しかし、スーパーユーザはラージオブジェクトを変更できます。)
今のところ、唯一の機能は新しい所有者の割り当てですので、両方の制限が常に適用されます。
  

パラメータ
	large_object_oid
	

変更対象のラージオブジェクトのOIDです。
     

	new_owner
	

ラージオブジェクトの新しい所有者です。
     




互換性


標準SQLにはALTER LARGE OBJECT文はありません。
  

関連項目
33章ラージオブジェクト


名前
ALTER MATERIALIZED VIEW — マテリアライズドビューの定義を変更する

概要

ALTER MATERIALIZED VIEW [ IF EXISTS ] name
    action [, ... ]
ALTER MATERIALIZED VIEW name
    [ NO ] DEPENDS ON EXTENSION extension_name
ALTER MATERIALIZED VIEW [ IF EXISTS ] name
    RENAME [ COLUMN ] column_name TO new_column_name
ALTER MATERIALIZED VIEW [ IF EXISTS ] name
    RENAME TO new_name
ALTER MATERIALIZED VIEW [ IF EXISTS ] name
    SET SCHEMA new_schema
ALTER MATERIALIZED VIEW ALL IN TABLESPACE name [ OWNED BY role_name [, ... ] ]
    SET TABLESPACE new_tablespace [ NOWAIT ]


ここでactionは以下のいずれかです。

    ALTER [ COLUMN ] column_name SET STATISTICS integer
    ALTER [ COLUMN ] column_name SET ( attribute_option = value [, ... ] )
    ALTER [ COLUMN ] column_name RESET ( attribute_option [, ... ] )
    ALTER [ COLUMN ] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }
    ALTER [ COLUMN ] column_name SET COMPRESSION compression_method
    CLUSTER ON index_name
    SET WITHOUT CLUSTER
    SET ACCESS METHOD new_access_method
    SET TABLESPACE new_tablespace
    SET ( storage_parameter [= value] [, ... ] )
    RESET ( storage_parameter [, ... ] )
    OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }


説明


ALTER MATERIALIZED VIEWは既存のマテリアライズドビューの各種補助属性を変更します。
  


ALTER MATERIALIZED VIEWを使用するためにはそのマテリアライズドビューを所有していなければなりません。
マテリアライズドビューのスキーマを変更するためには、新しいスキーマに対するCREATE権限を持たなければなりません。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールはマテリアライズドビューのスキーマに対してCREATE権限を持たなければなりません。
（これらの制限により、マテリアライズドビューを削除し再作成することによってできる以上のことを所有者の変更で行えないようにします。
しかしスーパーユーザはいずれにせよ任意のビューの所有権を変更することができます。）
  


ALTER MATERIALIZED VIEW文で利用可能な副構文と操作は、ALTER TABLEで利用できるものの部分集合であり、マテリアライズドビューに対して使用した場合も同じ意味を持ちます。
詳細についてはALTER TABLEの説明を参照してください。
  

パラメータ
	name
	

既存のマテリアライズドビューの名前（スキーマ修飾可）です。
      

	column_name
	

既存の列の名前です。
      

	extension_name
	

マテリアライズドビューが依存する(もしくはNOが指定された場合にはもはや依存していない)拡張の名前です。
拡張に依存していると印をつけられたマテリアライズドビューは、拡張が削除されると自動的に削除されます。
      

	new_column_name
	

既存の列に対する新しい名前です。
      

	new_owner
	

マテリアライズドビューの新しい所有者となるユーザの名前です。
     

	new_name
	

マテリアライズドビューの新しい名前です。
     

	new_schema
	

マテリアライズドビューの新しいスキーマです。
     




例


マテリアライズドビューfooの名前をbarに変更します。


ALTER MATERIALIZED VIEW foo RENAME TO bar;


互換性


ALTER MATERIALIZED VIEWはPostgreSQL™の拡張です。
  

関連項目
CREATE MATERIALIZED VIEW(7), DROP MATERIALIZED VIEW(7), REFRESH MATERIALIZED VIEW(7)


名前
ALTER OPERATOR — 演算子の定義を変更する

概要

ALTER OPERATOR name ( { left_type | NONE } , right_type )
    OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

ALTER OPERATOR name ( { left_type | NONE } , right_type )
    SET SCHEMA new_schema

ALTER OPERATOR name ( { left_type | NONE } , right_type )
    SET ( {  RESTRICT = { res_proc | NONE }
           | JOIN = { join_proc | NONE }
           | COMMUTATOR = com_op
           | NEGATOR = neg_op
           | HASHES
           | MERGES
          } [, ... ] )


説明


ALTER OPERATORは演算子の定義を変更します。
  


ALTER OPERATORを使用するには演算子の所有者でなければなりません。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールは演算子のスキーマにおいてCREATE権限を持たなければなりません。
（この制限により、演算子の削除と再作成で行うことができない処理を所有者の変更で行えないようになります。
しかし、スーパーユーザはすべての演算子の所有者を変更することができます。）
  

パラメータ
	name
	

既存の演算子の名前です（スキーマ修飾名も可）。
     

	left_type
	

演算子の左オペランドのデータ型です。
左オペランドがない演算子の場合はNONEを指定します。
     

	right_type
	

演算子の右オペランドのデータ型です。
     

	new_owner
	

演算子の新しい所有者です。
     

	new_schema
	

演算子の新しいスキーマです。
     

	res_proc
	

この演算子の制約選択評価関数です。
既存の制約選択評価関数を削除するにはNONEを指定します。
       

	join_proc
	

この演算子の結合選択評価関数です。
既存の結合選択評価関数を削除するにはNONEを指定します。
       

	com_op
	

この演算子の交換子。
演算子に既存の交換子がない場合にのみ変更できます。
     

	neg_op
	

この演算子の否定子。
演算子に既存の否定子がない場合にのみ変更できます。
     

	HASHES
	

この演算子がハッシュ結合をサポートできることを示します。
有効にできるだけで、無効にはできません。
     

	MERGES
	

この演算子がマージ結合をサポートできることを示します。
有効にできるだけで、無効にはできません。
     




注釈


詳細は「ユーザ定義の演算子」と「演算子最適化に関する情報」を参照してください。
  


交換子は互いに交換子である対になっているので、ALTER OPERATOR SET COMMUTATORはcom_opの交換子も対象演算子に設定します。
同様に、ALTER OPERATOR SET NEGATORはneg_opの否定子も対象演算子に設定します。
したがって、対象演算子と同様に交換子または否定子演算子を所有する必要があります。
  

例


text型用の独自の演算子a @@ bの所有者を変更します。


ALTER OPERATOR @@ (text, text) OWNER TO joe;


  


int[]型用の独自の演算子a && bの制約および結合選択評価関数を変更します。


ALTER OPERATOR && (int[], int[]) SET (RESTRICT = _int_contsel, JOIN = _int_contjoinsel);


  


&&演算子をそれ自身の交換子として印を付けます。


ALTER OPERATOR && (int[], int[]) SET (COMMUTATOR = &&);


  

互換性


標準SQLにはALTER OPERATOR文はありません。
  

関連項目
CREATE OPERATOR(7), DROP OPERATOR(7)


名前
ALTER OPERATOR CLASS — 演算子クラスの定義を変更する

概要

ALTER OPERATOR CLASS name USING index_method
    RENAME TO new_name

ALTER OPERATOR CLASS name USING index_method
    OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

ALTER OPERATOR CLASS name USING index_method
    SET SCHEMA new_schema


説明


ALTER OPERATOR CLASSは演算子クラスの定義を変更します。
  


ALTER OPERATOR CLASSを使用するには演算子クラスの所有者でなければなりません。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールは演算子クラスのスキーマにおいてCREATE権限を持たなければなりません。
（この制限により、演算子クラスの削除と再作成で行うことができない処理を所有者の変更で行えないようになります。
しかし、スーパーユーザはすべての演算子クラスの所有者を変更することができます。）
  

パラメータ
	name
	

既存の演算子クラスの名前です（スキーマ修飾名も可）。
     

	index_method
	

演算子クラス用のインデックスメソッドの名前です。
     

	new_name
	

新しい演算子クラス名です。
     

	new_owner
	

演算子クラスの新しい所有者です。
     

	new_schema
	

演算子クラスの新しいスキーマです。
     




互換性


標準SQLにはALTER OPERATOR CLASS文はありません。
  

関連項目
CREATE OPERATOR CLASS(7), DROP OPERATOR CLASS(7), ALTER OPERATOR FAMILY(7)


名前
ALTER OPERATOR FAMILY — 演算子族の定義を変更する

概要

ALTER OPERATOR FAMILY name USING index_method ADD
  {  OPERATOR strategy_number operator_name ( op_type, op_type )
              [ FOR SEARCH | FOR ORDER BY sort_family_name ]
   | FUNCTION support_number [ ( op_type [ , op_type ] ) ]
              function_name [ ( argument_type [, ...] ) ]
  } [, ... ]

ALTER OPERATOR FAMILY name USING index_method DROP
  {  OPERATOR strategy_number ( op_type [ , op_type ] )
   | FUNCTION support_number ( op_type [ , op_type ] )
  } [, ... ]

ALTER OPERATOR FAMILY name USING index_method
    RENAME TO new_name

ALTER OPERATOR FAMILY name USING index_method
    OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

ALTER OPERATOR FAMILY name USING index_method
    SET SCHEMA new_schema


説明


ALTER OPERATOR FAMILYは演算子族の定義を変更します。
演算子やサポート関数を演算子族に追加することやそれらを演算子族から削除すること、演算子族の名前や所有者を変更することが可能です。
  


ALTER OPERATOR FAMILYを使用して演算子とサポート関数が演算子族に追加される時、これらは演算子族内の特定の演算子クラスの一部とはならず、単に演算子族内で「自由」なものになります。
これは、これらの演算子と関数が演算子族と意味的な互換性を持つが、特定のインデックスの正しい動作には必要とされないことを意味します。
（必要な演算子と関数は演算子クラスの一部として宣言しなければなりません。
CREATE OPERATOR CLASS(7)を参照してください。）
PostgreSQL™では演算子族の自由なメンバをいつでも演算子族から削除することができます。
しかし演算子クラス内のメンバは、クラス全体と依存するインデックスすべてを削除しなければ削除することはできません。
通常、単一データ型の演算子と関数は、特定のデータ型に対するインデックスをサポートするために必要ですので、演算子クラスの一部となります。
一方、データ型を跨る演算子と関数は、演算子族内の自由なメンバとなります。
  


ALTER OPERATOR FAMILYを使用するには、スーパーユーザでなければなりません。
（誤った演算子族定義はサーバを混乱させクラッシュさせることさえありますので、この制限がなされています。）
  


現時点ではALTER OPERATOR FAMILYは、インデックスメソッドで必要とされる演算子族がすべての演算子と関数を含んでいるかどうかを検査しません。
また、演算子と関数が自身で整合性のある集合を形成しているかどうかも検査しません。
有効な演算子族を定義することはユーザの責任です。
  


詳細は「インデックス拡張機能へのインタフェース」を参照してください。
  

パラメータ
	name
	

既存の演算子族の名前です（スキーマ修飾可）。
     

	index_method
	

演算子族が対象とするインデックスメソッドの名前です。
     

	strategy_number
	

演算子族と関連した演算子に対するインデックスメソッドの戦略番号です。
     

	operator_name
	

演算子族と関連した演算子の名前です（スキーマ修飾可）。
     

	op_type
	

OPERATOR句では演算子の入力データ型、または前置演算子を表すNONEです。
CREATE OPERATOR CLASSと類似の構文と異なり、入力データ型を常に指定しなければなりません。
     


ADD FUNCTION句では、関数がサポートする予定の入力データ型です（関数の入力データ型と異なる場合）。
B-tree比較関数およびHash関数では、関数の入力データ型は常に正しく使用するデータ型であるため、op_typeを指定する必要がありません。
B-treeソートサポート関数、B-tree等価イメージ関数とGiST、SP-GiST、GIN演算子クラスのすべての関数では、関数が使用する入力データ型を指定する必要があります。
     


DROP FUNCTION句では、関数がサポートする予定の入力データ型を指定しなければなりません。
     

	sort_family_name
	

順序付け演算子に関連するソート順序を記述する、既存のbtree演算子族の名前（スキーマ修飾も可）です。
     


FOR SEARCHもFOR ORDER BYも指定されない場合、FOR SEARCHがデフォルトです。
     

	support_number
	

演算子族に関連する関数用のインデックスメソッドのサポート関数の番号です。
     

	function_name
	

演算子族用のインデックスメソッドのサポート関数となる関数の名前です（スキーマ修飾名でも可）。
引数リストを指定しない場合、名前はスキーマ内で一意でなければなりません。
     

	argument_type
	

関数のパラメータのデータ型です。
     

	new_name
	

演算子族の新しい名前です。
     

	new_owner
	

演算子族の新しい所有者です。
     

	new_schema
	

演算子族の新しいスキーマです。
     





OPERATORとFUNCTION句は任意の順番で記述できます。
  

注釈


DROP構文が、戦略番号またはサポート番号と入力データ型という、演算子族の「スロット」のみを指定していることに注意してください。
そのスロットに存在する演算子または関数の名前については言及されません。
また、DROP FUNCTIONでは、指定する型は関数がサポートする予定の入力データ型です。
GiST、SP-GiSTおよびGINインデックスでは、関数の実際の入力引数の型と関連しない可能性があります。
  


インデックス機構は使用する前に関数のアクセス権限を検査しません。
演算子族内の関数や演算子を含めることは、公的な実行権限を与えることと同じです。
これは通常、演算子族内で使用される関数では問題になりません。
  


演算子をSQL関数で定義してはいけません。
SQL関数はよく、呼び出し元の問い合わせ内でインライン展開されます。
すると、オプティマイザが問い合わせがインデックスに一致するかどうか認識できなくなります。
  

例


以下のコマンド例は、データ型を跨る演算子とサポート関数をint4とint2データ型用のB-Tree演算子クラスをすでに含む演算子族に追加します。
  

ALTER OPERATOR FAMILY integer_ops USING btree ADD

  -- int4 vs int2
  OPERATOR 1 < (int4, int2) ,
  OPERATOR 2 <= (int4, int2) ,
  OPERATOR 3 = (int4, int2) ,
  OPERATOR 4 >= (int4, int2) ,
  OPERATOR 5 > (int4, int2) ,
  FUNCTION 1 btint42cmp(int4, int2) ,

  -- int2 vs int4
  OPERATOR 1 < (int2, int4) ,
  OPERATOR 2 <= (int2, int4) ,
  OPERATOR 3 = (int2, int4) ,
  OPERATOR 4 >= (int2, int4) ,
  OPERATOR 5 > (int2, int4) ,
  FUNCTION 1 btint24cmp(int2, int4) ;



これらの項目を再度削除します。
  

ALTER OPERATOR FAMILY integer_ops USING btree DROP

  -- int4 vs int2
  OPERATOR 1 (int4, int2) ,
  OPERATOR 2 (int4, int2) ,
  OPERATOR 3 (int4, int2) ,
  OPERATOR 4 (int4, int2) ,
  OPERATOR 5 (int4, int2) ,
  FUNCTION 1 (int4, int2) ,

  -- int2 vs int4
  OPERATOR 1 (int2, int4) ,
  OPERATOR 2 (int2, int4) ,
  OPERATOR 3 (int2, int4) ,
  OPERATOR 4 (int2, int4) ,
  OPERATOR 5 (int2, int4) ,
  FUNCTION 1 (int2, int4) ;


互換性


標準SQLにはALTER OPERATOR FAMILY文はありません。
  

関連項目
CREATE OPERATOR FAMILY(7), DROP OPERATOR FAMILY(7), CREATE OPERATOR CLASS(7), ALTER OPERATOR CLASS(7), DROP OPERATOR CLASS(7)


名前
ALTER POLICY — 行単位のセキュリティポリシーの定義を変更する

概要

ALTER POLICY name ON table_name RENAME TO new_name

ALTER POLICY name ON table_name
    [ TO { role_name | PUBLIC | CURRENT_ROLE | CURRENT_USER | SESSION_USER } [, ...] ]
    [ USING ( using_expression ) ]
    [ WITH CHECK ( check_expression ) ]


説明


ALTER POLICYは既存の行単位のセキュリティポリシーの定義を変更します。
ALTER POLICYはポリシーが適用されるロールの集合、およびUSINGとWITH CHECKの式を変更できるだけであることに注意してください。
適用されるコマンドや、許容と制限の別といったその他のポリシーの属性を変更するには、ポリシーを削除して再作成しなければなりません。
  


ALTER POLICYを使うには、ポリシーの適用対象のテーブルの所有者でなければなりません。
  


ALTER POLICYの2番目の構文で、ロールのリスト、using_expression、check_expressionが指定された時は、それぞれ独立して置換されます。
それらの1つが省略された場合、ポリシーのその部分については変更されません。
  

パラメータ
	name
	

変更対象の既存のポリシーの名前です。
     

	table_name
	

ポリシーが適用されているテーブルの名前（スキーマ修飾可）です。
     

	new_name
	

ポリシーの新しい名前です。
     

	role_name
	

ポリシーの適用対象のロールです。
複数のロールを一度に指定することができます。
ポリシーをすべてのロールに適用するには、PUBLICを指定します。
     

	using_expression
	

ポリシーのUSING式です。
詳しくはCREATE POLICY(7)を参照して下さい。
     

	check_expression
	

ポリシーのWITH CHECK式です。
詳しくはCREATE POLICY(7)を参照して下さい。
     




互換性


ALTER POLICYはPostgreSQL™の拡張です。
  

関連項目
CREATE POLICY(7), DROP POLICY(7)


名前
ALTER PROCEDURE — プロシージャの定義を変更する

概要

ALTER PROCEDURE name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    action [ ... ] [ RESTRICT ]
ALTER PROCEDURE name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    RENAME TO new_name
ALTER PROCEDURE name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER PROCEDURE name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    SET SCHEMA new_schema
ALTER PROCEDURE name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    [ NO ] DEPENDS ON EXTENSION extension_name


ここでactionは以下のいずれかです。

    [ EXTERNAL ] SECURITY INVOKER | [ EXTERNAL ] SECURITY DEFINER
    SET configuration_parameter { TO | = } { value | DEFAULT }
    SET configuration_parameter FROM CURRENT
    RESET configuration_parameter
    RESET ALL


説明


ALTER PROCEDUREはプロシージャ定義を変更します。
  


ALTER PROCEDUREを使用するにはプロシージャの所有者でなければなりません。
プロシージャのスキーマを変更するには、新しいスキーマにおけるCREATE権限も必要です。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールはプロシージャのスキーマにおいてCREATE権限を持たなければなりません。
（この制限により、プロシージャの削除と再作成で行うことができない処理を所有者の変更で行えないようになります。
しかし、スーパーユーザはすべての関数の所有者を変更することができます。）
  

パラメータ
	name
	

既存のプロシージャ名です（スキーマ修飾も可）。
引数リストを指定しない場合、名前はスキーマ内で一意でなければなりません。
     

	argmode
	

引数モードで、INかOUTかINOUTかVARIADICのいずれかです。
省略した場合のデフォルトはINです。
     

	argname
	

引数の名前です。
プロシージャの識別を行うには引数のデータ型のみが使われますので、実際にはALTER PROCEDUREは引数の名前を無視することに注意してください。
     

	argtype
	

もしあれば、そのプロシージャの引数のデータ型（スキーマ修飾も可）です。
引数のデータ型を使用したプロシージャ検索方法の詳細については、DROP PROCEDURE(7)を参照してください。
     

	new_name
	

新たなプロシージャ名。
     

	new_owner
	

新しいプロシージャの所有者です。
プロシージャにSECURITY DEFINERが指定されている場合、その後は新しい所有者の権限でプロシージャが実行されることに注意してください。
     

	new_schema
	

プロシージャの新しいスキーマ。
     

	extension_name
	

この形式は、プロシージャが拡張機能に依存するか、NOが指定されている場合は拡張機能に依存しないことを示します。
カスケードが指定されていない場合でも、拡張機能が削除されると、拡張機能に依存しているとマークされているプロシージャは削除されます。
プロシージャは複数の拡張機能に依存することができ、これらの拡張機能のいずれかが削除されると削除されます。
     

	[ EXTERNAL ] SECURITY INVOKER, [ EXTERNAL ] SECURITY DEFINER
	

プロシージャを定義者セキュリティにするか否かを変更します。
EXTERNALキーワードはSQLとの互換性のためのものであり、無視されます。
この機能の詳細についてはCREATE PROCEDURE(7)を参照してください。
     

	configuration_parameter, value
	

プロシージャ呼び出し時に設定パラメータに対して行われる設定を追加または変更します。
valueがDEFAULT、またはそれと等価なRESETが使用された場合、プロシージャの局所的な設定は削除されます。
このため、プロシージャはその環境内に存在する値で実行されます。
すべてのプロシージャの局所的な設定を消去したければRESET ALLを使用してください。
SET FROM CURRENTは、ALTER PROCEDUREが実行された時点でのパラメータの現在値を、プロシージャ起動時に適用される値として保管します。
       


使用できるパラメータ名と値についての更なる詳細はSET(7)と19章サーバ設定を参照してください。
       

	RESTRICT
	

標準SQLに準拠するためのものであり、無視されます。
     




例


integer型の二つの引数を持つプロシージャinsert_dataをinsert_recordに名前変更します。


ALTER PROCEDURE insert_data(integer, integer) RENAME TO insert_record;


  


integer型の二つの引数を持つプロシージャinsert_dataの所有者をjoeに変更します。


ALTER PROCEDURE insert_data(integer, integer) OWNER TO joe;


  


integer型の二つの引数を持つプロシージャinsert_dataのスキーマをaccountingに変更します。


ALTER PROCEDURE insert_data(integer, integer) SET SCHEMA accounting;


  


プロシージャinsert_data(integer, integer)を拡張myextに依存するものと印付けします。


ALTER PROCEDURE insert_data(integer, integer) DEPENDS ON EXTENSION myext;


  


プロシージャに対して自動的に設定されるようにサーチパスを調整します。


ALTER PROCEDURE check_password(text) SET search_path = admin, pg_temp;


  


プロシージャに対するsearch_pathの自動的な設定を無効化します。


ALTER PROCEDURE check_password(text) RESET search_path;



このプロシージャは何であれ呼び出し側で使われるサーチパスで実行されるようになります。
  

互換性


この文は標準SQLのALTER PROCEDUREと部分的に互換性があります。
標準ではより多くのプロシージャの属性を変更できますが、プロシージャの名前変更、定義者の権限で実行するかどうかの変更、設定パラメータ値の付与、および、プロシージャの所有者、スキーマ、変動性の変更は提供されません。
また、標準ではRESTRICTキーワードが必要ですが、PostgreSQL™では省略可能です。
  

関連項目
CREATE PROCEDURE(7), DROP PROCEDURE(7), ALTER FUNCTION(7), ALTER ROUTINE(7)


名前
ALTER PUBLICATION — パブリケーションの定義を変更する

概要

ALTER PUBLICATION name ADD publication_object [, ...]
ALTER PUBLICATION name SET publication_object [, ...]
ALTER PUBLICATION name DROP publication_object [, ...]
ALTER PUBLICATION name SET ( publication_parameter [= value] [, ... ] )
ALTER PUBLICATION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER PUBLICATION name RENAME TO new_name


ここでpublication_objectは以下のいずれかです。

    TABLE [ ONLY ] table_name [ * ] [ ( column_name [, ... ] ) ] [ WHERE ( expression ) ] [, ... ]
    TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ... ]


説明


コマンドALTER PUBLICATIONはパブリケーションの属性を変更できます。
  


最初の3つの構文では、パブリケーションにどのテーブル/スキーマが含まれるかを変更します。
SET句は、パブリケーションのテーブル/スキーマのリストを指定したリストで置き換えます。パブリケーション内の既存のテーブル/スキーマは削除されます。
ADD句とDROP句はパブリケーションに1つ以上のテーブル/スキーマを追加または削除します。
既にサブスクライブされているパブリケーションにテーブル/スキーマを追加した場合、それを有効にするにはサブスクライブしている側でALTER SUBSCRIPTION ... REFRESH PUBLICATIONの操作を行う必要があることに注意してください。
DROP TABLES IN SCHEMAはFOR TABLE/ADD TABLEを使って指定されたスキーマテーブルを削除せず、WHERE句のついたDROPとの組み合わせは認められていないことにも注意してください。
  


このコマンドの概要に挙げられている4番目の構文では、CREATE PUBLICATION(7)で指定されたすべてのパブリケーションの属性を変更できます。
このコマンドで属性を指定しなかったものについては、以前の設定が保持されます。
  


残りの構文では、パブリケーションの所有者および名前を変更します。
  


ALTER PUBLICATIONを使用するには、そのパブリケーションを所有していなければなりません。
パブリケーションにテーブルを追加するには、さらにそのテーブルを所有していることが必要です。
パブリケーションへのADD TABLES IN SCHEMAとSET TABLES IN SCHEMAには、実行するユーザがスーパーユーザであることが必要です。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールはデータベースにCREATE権限を持っていなければなりません。
また、FOR ALL TABLESやFOR TABLES IN SCHEMAのパブリケーションの新しい所有者はスーパーユーザでなければなりません。
しかし、スーパーユーザはこれらの制限に関わらずパブリケーションの所有者を変更できます。
  


パブリケーションが列リストを持つテーブルもパブリッシュする場合、またはその逆の場合のスキーマの追加/設定はサポートされていません。
  

パラメータ
	name
	

定義の変更の対象となる既存のパブリケーションの名前です。
     

	table_name
	

既存のテーブルの名前です。
テーブル名の前にONLYが指定されたときは、そのテーブルだけが影響を受けます。
テーブル名の前にONLYが指定されていないときは、そのテーブルとそのすべての子テーブル（あれば）が影響を受けます。
オプションでテーブル名の後に*を指定して、子テーブルが含まれることを明示的に示すことができます。
     


オプションで、列リストを指定できます。
詳細はCREATE PUBLICATION(7)を参照してください。
同じテーブルが異なる列リストでパブリッシュされた複数のパブリケーションを持つサブスクリプションはサポートされていないことに注意してください。
列リストを変更するときに発生する可能性のある問題の詳細は警告: 複数のパブリケーションからの列リストの統合を参照してください。
     


オプションのWHERE句が指定されている場合、expressionが偽またはNULLと評価される行はパブリッシュされません。
式を括弧で囲む必要があることに注意してください。
expressionは、レプリケーション接続に使用されるロールで評価されます。
     

	schema_name
	

既存のスキーマの名前。
     

	SET ( publication_parameter [= value] [, ... ] )
	

この句では、元はCREATE PUBLICATION(7)により設定されたパブリケーションのパラメータを変更します。
詳細な情報はそちらを参照してください。
     
注意


publish_via_partition_rootパラメータを変更すると、パブリッシュされたテーブルのスキーマやアイデンティティが変更されるため、データ損失や重複が発生する恐れがあります。
これは、パーティションルートテーブルがレプリケーションの対象として指定されている場合にのみ発生することに注意してください。
      


この問題は、ALTER PUBLICATION ... SETのあと、ALTER SUBSCRIPTION ... REFRESH PUBLICATIONが実行されるまでパーティションリーフテーブルの変更を控え、かつcopy_data = offオプションを使用してリフレッシュすることでのみ回避できます。
      


	new_owner
	

パブリケーションの新しい所有者のユーザ名です。
     

	new_name
	

パブリケーションの新しい名前です。
     




例


deleteとupdateのみをパブリッシュするようにパブリケーションを変更します。


ALTER PUBLICATION noinsert SET (publish = 'update, delete');


  


パブリケーションにいくつかのテーブルを追加します。


ALTER PUBLICATION mypublication ADD TABLE users (user_id, firstname), departments;



テーブルのパブリッシュする列のセットを変更します。


ALTER PUBLICATION mypublication SET TABLE users (user_id, firstname, lastname), TABLE departments;



パブリケーションsales_publicationにスキーマmarketingとsalesを追加します。


ALTER PUBLICATION sales_publication ADD TABLES IN SCHEMA marketing, sales;


  


パブリケーションproduction_publicationにテーブルusers、departments、スキーマproductionを追加します。


ALTER PUBLICATION production_publication ADD TABLE users, departments, TABLES IN SCHEMA production;


互換性


ALTER PUBLICATIONはPostgreSQL™の拡張です。
  

関連項目
CREATE PUBLICATION(7), DROP PUBLICATION(7), CREATE SUBSCRIPTION(7), ALTER SUBSCRIPTION(7)


名前
ALTER ROLE — データベースロールを変更する

概要

ALTER ROLE role_specification [ WITH ] option [ ... ]


ここでoptionは以下の通りです。

      SUPERUSER | NOSUPERUSER
    | CREATEDB | NOCREATEDB
    | CREATEROLE | NOCREATEROLE
    | INHERIT | NOINHERIT
    | LOGIN | NOLOGIN
    | REPLICATION | NOREPLICATION
    | BYPASSRLS | NOBYPASSRLS
    | CONNECTION LIMIT connlimit
    | [ ENCRYPTED ] PASSWORD 'password' | PASSWORD NULL
    | VALID UNTIL 'timestamp'

ALTER ROLE name RENAME TO new_name

ALTER ROLE { role_specification | ALL } [ IN DATABASE database_name ] SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER ROLE { role_specification | ALL } [ IN DATABASE database_name ] SET configuration_parameter FROM CURRENT
ALTER ROLE { role_specification | ALL } [ IN DATABASE database_name ] RESET configuration_parameter
ALTER ROLE { role_specification | ALL } [ IN DATABASE database_name ] RESET ALL


ここでrole_specificationは以下の通りです。

    role_name
  | CURRENT_ROLE
  | CURRENT_USER
  | SESSION_USER


説明


ALTER ROLEはPostgreSQL™のロールの属性を変更します。
  


このコマンドの最初の構文では、CREATE ROLEで指定可能な多くのロール属性を変更できます。
（指定し得るすべての属性に対応していますが、メンバ資格の追加および削除用のオプションはありません。
追加および削除にはGRANTとREVOKEを使用してください。）
このコマンドで指定しなかった属性は以前の設定のまま残ります。
データベーススーパーユーザは、ブートストラップスーパーユーザのSUPERUSER属性を変更することを除き、すべてのロールに対して設定すべてを変更できます。
CREATEROLE権限を持つ非スーパーユーザロールは、ほとんどの属性を変更できますが、ADMIN OPTIONを付与された非スーパーユーザロールと非レプリケーションロールに対してのみです。
非スーパーユーザはSUPERUSER属性を変更できず、対応する属性を自身が所有している場合にのみCREATEDB、REPLICATION、BYPASSRLS属性を変更できます。
通常のロールは自身のパスワードのみを変更できます。
  


2番目の構文ではロールの名前を変更できます。
データベーススーパーユーザはすべてのロールの名前を変更できます。
CREATEROLE権限を持つロールは、ADMIN OPTIONを付与された非スーパーユーザロールに対してその名前を変更できます。
現在のセッションユーザの名前を変更することはできません。
（必要ならば別のユーザで接続してください。）
MD5暗号化パスワードではロール名を暗号用のソルトとして使用しますので、パスワードがMD5で暗号化されている場合、ロール名を変更するとパスワードは空になります。
  


残りの構文では、全データベース用、またはIN DATABASE句が指定された場合はそのデータベース用のセッションに対するロールの設定変数についてのセッションデフォルトを変更します。
ロール名の代わりにALLを指定すると、すべてのロール用の設定を変更します。
ALLとIN DATABASEを一緒に使用することは実質ALTER DATABASE ... SET ...コマンドの使用と同じです。
  


その後、ロールが新しいセッションを始めると常に、postgresql.conf内の設定やpostgresコマンドラインから受け取った設定よりも優先されて、指定された値がセッションのデフォルトとなります。
これはログイン時のみに発生します。
SET ROLEまたはSET SESSION AUTHORIZATIONを実行しても新しい設定値は設定されません。
全データベースに対する設定よりも、ロールに割り当てたデータベース固有の設定が優先します。
特定のデータベースまたは特定のロールに対する設定は、すべてのロールに対する設定よりも優先します。
  


スーパーユーザはすべてのユーザのセッションのデフォルトを変更できます。
CREATEROLE権限を持つロールはADMIN OPTIONを付与された非スーパーユーザロールのデフォルトを変更できます。
通常のロールは自身のデフォルトのみを設定できます。
設定変数の中にはこの方法で変更できないものがあります。
また、スーパーユーザがこのコマンドを発行した時にのみ変更できるものもあります。
スーパーユーザのみがすべてのデータベースにおけるすべてのロール用の設定を変更できます。
  

パラメータ
	name
	

属性を変更するロールの名前です。
       

	CURRENT_ROLE, CURRENT_USER
	

明示的にロールを指定する代わりに現在のユーザを変更します。
       

	SESSION_USER
	

明示的にロールを指定する代わりに現在のセッションユーザを変更します。
       

	SUPERUSER, NOSUPERUSER, CREATEDB, NOCREATEDB, CREATEROLE, NOCREATEROLE, INHERIT, NOINHERIT, LOGIN, NOLOGIN, REPLICATION, NOREPLICATION, BYPASSRLS, NOBYPASSRLS, CONNECTION LIMIT connlimit, [ ENCRYPTED ] PASSWORD 'password', PASSWORD NULL, VALID UNTIL 'timestamp'
	

これらの句は、元々CREATE ROLEで設定された属性を変更します。
詳細はCREATE ROLEのリファレンスページを参照してください。
       

	new_name
	

ロールの新しい名前です。
       

	database_name
	

設定変数を設定する対象のデータベースの名前です。
         

	configuration_parameter, value
	

指定した設定パラメータに対して、ロールのセッションデフォルトを指定した値に設定します。
valueがDEFAULT、またはRESETが使用されていた場合、ロール固有の変数設定は削除され、新しいセッションではロールはシステム全体のデフォルト設定を継承します。
すべてのロール固有の設定を削除するにはRESET ALLを使用してください。
SET FROM CURRENTはセッションのパラメータ値をロール固有の値として保管します。
IN DATABASEが指定された場合、設定パラメータは指定されたロールとデータベースのみで設定または削除されます。
       


ロール固有の変数設定はログイン時のみに影響を与えます。
SET ROLEおよびSET SESSION AUTHORIZATIONはロール固有の変数設定を処理しません。
       


取り得るパラメータ名とその値に関する詳細はSET(7)および19章サーバ設定を参照してください。
       




注釈


新規にロールを追加するにはCREATE ROLEを使用してください。
また、ロールを削除するにはDROP ROLEを使用してください。
  


ALTER ROLEではロールのメンバ資格を変更できません。
メンバ資格の変更にはGRANTおよびREVOKEを使用してください。
  


このコマンドで暗号化しないパスワードを指定するときには注意しなければなりません。
パスワードはサーバに平文で送信されます。
クライアントのコマンド履歴やサーバのログにこれが残ってしまうかもしれません。
psql(1)には\passwordコマンドがあります。
これを使用してロールのパスワードを平文のパスワードをさらすことなく変更することができます。
  


ロールではなくデータベースにセッションのデフォルトを結びつけることもできます。
ALTER DATABASE(7)を参照してください。
競合する場合、データベースとロールの組み合わせに固有な設定はロール固有の設定よりも優先し、ロール固有の設定はデータベース固有の設定よりも優先します。
  

例


ロールのパスワードを変更します。



ALTER ROLE davide WITH PASSWORD 'hu8jmn3';


  


ロールのパスワードを削除します。



ALTER ROLE davide WITH PASSWORD NULL;


  


パスワードの有効期限を変更し、UTCの1時間進んだタイムゾーンを使用して、2015年5月4日正午にパスワードが無効となるように指定します。


ALTER ROLE chris VALID UNTIL 'May 4 12:00:00 2015 +1';


  


パスワードの有効期限を無効にします。


ALTER ROLE fred VALID UNTIL 'infinity';


  


ロールに他のロールの管理権限と新しいデータベースの作成権限を与えます。



ALTER ROLE miriam CREATEROLE CREATEDB;


  


ロールにmaintenance_work_memパラメータ用のデフォルトとは異なる設定を与えます。



ALTER ROLE worker_bee SET maintenance_work_mem = 100000;


  


ロールにデータベース固有のclient_min_messagesパラメータ用のデフォルトとは異なる設定を与えます。



ALTER ROLE fred IN DATABASE devel SET client_min_messages = DEBUG;


互換性


ALTER ROLE文はPostgreSQL™の拡張です。
  

関連項目
CREATE ROLE(7), DROP ROLE(7), ALTER DATABASE(7), SET(7)


名前
ALTER ROUTINE — ルーチンの定義を変更する

概要

ALTER ROUTINE name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    action [ ... ] [ RESTRICT ]
ALTER ROUTINE name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    RENAME TO new_name
ALTER ROUTINE name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER ROUTINE name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    SET SCHEMA new_schema
ALTER ROUTINE name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ]
    [ NO ] DEPENDS ON EXTENSION extension_name


ここでactionは以下のいずれかです。

    IMMUTABLE | STABLE | VOLATILE
    [ NOT ] LEAKPROOF
    [ EXTERNAL ] SECURITY INVOKER | [ EXTERNAL ] SECURITY DEFINER
    PARALLEL { UNSAFE | RESTRICTED | SAFE }
    COST execution_cost
    ROWS result_rows
    SET configuration_parameter { TO | = } { value | DEFAULT }
    SET configuration_parameter FROM CURRENT
    RESET configuration_parameter
    RESET ALL


説明


ALTER ROUTINEはルーチン、すなわち、集約関数や通常の関数、プロシージャの定義を変更します。
パラメータ説明や更なる例、より詳細については、ALTER AGGREGATE(7)、ALTER FUNCTION(7)、ALTER PROCEDURE(7)を参照してください。
  

例


integer型に対するルーチンfooをfoobarに名前変更します。


ALTER ROUTINE foo(integer) RENAME TO foobar;



このコマンドはfooが集約、関数、プロシージャの何れであるかによらず動作します。
  

互換性


この文は標準SQLのALTER ROUTINE文と部分的に互換性があります。
より詳しくはALTER FUNCTION(7)とALTER PROCEDURE(7)を参照してください。
ルーチン名が集約関数を参照できるのはPostgreSQL™の拡張です。
  

関連項目
ALTER AGGREGATE(7), ALTER FUNCTION(7), ALTER PROCEDURE(7), DROP ROUTINE(7)

CREATE ROUTINEコマンドは無いことに注意してください。
  



名前
ALTER RULE — ルールの定義を変更する

概要

ALTER RULE name ON table_name RENAME TO new_name


説明


ALTER RULEは既存のルールの属性を変更します。
現時点で利用可能な操作はルールの名称変更のみです。
  


ALTER RULEを使用するためには、ルールを適用するテーブルまたはビューの所有者でなければなりません。
  

パラメータ
	name
	

変更対象の既存のルールの名前です。
     

	table_name
	

ルールを適用するテーブルまたはビューの名前（スキーマ修飾可）です。
     

	new_name
	

ルールの新しい名前です。
     




例


既存のルールの名前を変更します。


ALTER RULE notify_all ON emp RENAME TO notify_me;


互換性


ALTER RULEはPostgreSQL™の言語拡張で、問い合わせ書き換えシステム全体も言語拡張です。
  

関連項目
CREATE RULE(7), DROP RULE(7)


名前
ALTER SCHEMA — スキーマ定義を変更する

概要

ALTER SCHEMA name RENAME TO new_name
ALTER SCHEMA name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }


説明


ALTER SCHEMAはスキーマ定義を変更します。
  


ALTER SCHEMAを使用するにはスキーマの所有者でなければなりません。
スキーマ名を変更するには、そのデータベースのCREATE権限を持たなければなりません。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールがデータベースにおいてCREATE権限を持たなければなりません。
（スーパーユーザがこれらの権限をすべて自動的に持つことに注意してください。）
  

パラメータ
	name
	

既存のスキーマの名前です。
     

	new_name
	

新しいスキーマの名前です。
pg_から始まる名前は、システムスキーマとして予約されているため使用することができません。
     

	new_owner
	

スキーマの新しい所有者です。
     




互換性


標準SQLにはALTER SCHEMA文はありません。
  

関連項目
CREATE SCHEMA(7), DROP SCHEMA(7)


名前
ALTER SEQUENCE — 

   シーケンスジェネレータの定義を変更する
  

概要

ALTER SEQUENCE [ IF EXISTS ] name
    [ AS data_type ]
    [ INCREMENT [ BY ] increment ]
    [ MINVALUE minvalue | NO MINVALUE ] [ MAXVALUE maxvalue | NO MAXVALUE ]
    [ [ NO ] CYCLE ]
    [ START [ WITH ] start ]
    [ RESTART [ [ WITH ] restart ] ]
    [ CACHE cache ]
    [ OWNED BY { table_name.column_name | NONE } ]
ALTER SEQUENCE [ IF EXISTS ] name SET { LOGGED | UNLOGGED }
ALTER SEQUENCE [ IF EXISTS ] name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER SEQUENCE [ IF EXISTS ] name RENAME TO new_name
ALTER SEQUENCE [ IF EXISTS ] name SET SCHEMA new_schema


説明


ALTER SEQUENCEは、既存のシーケンスジェネレータのパラメータを変更します。
ALTER SEQUENCEで指定されなかったパラメータについては、以前の設定が保持されます。
  


ALTER SEQUENCEを使用するには、シーケンスの所有者でなければなりません。
シーケンスのスキーマを変更するには、新しいスキーマにおけるCREATE権限も持たなければなりません。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。またそのロールはシーケンスのスキーマ上にCREATE権限を持たなければなりません。
（これらの制限は、シーケンスの削除および再作成によりユーザが実行できないことを、所有者の変更により実行されないようにするためのものです。
しかし、スーパーユーザはすべてのシーケンスの所有者を変更できます。）
  

パラメータ

    
	name
	

変更するシーケンスの名前です（スキーマ修飾名も可）。
       

	IF EXISTS
	

シーケンスが存在しない場合にエラーとしません。
この場合、注意メッセージが発生します。
       

	data_type
	

オプション句AS data_typeはシーケンスのデータ型を変更します。
有効な型はsmallint、integer、bigintです。
       


データ型を変更したとき、以前の最小値と最大値は、古いデータ型の最小値と最大値に一致している場合に限り（別の言い方をすれば、暗示的にせよ明示的にせよ、シーケンスがNO MINVALUEまたはNO MAXVALUEで作られていた場合に）、シーケンスの最小値および最大値が自動的に変更されます。
そうでない場合、新しい値が同じコマンドの一部として指定されているのでなければ、最小値と最大値は保存されます。
最小値と最大値が新しいデータ型に適合しない場合は、エラーが生成されます。
       

	increment
	

INCREMENT BY increment句は省略可能です。
正の値が指定された時は昇順のシーケンス、負の値が指定された時は降順のシーケンスにします。
指定がない場合、以前の増分値が保持されます。
       

	minvalue, NO MINVALUE
	

MINVALUE minvalue句はシーケンスジェネレータが生成する最小値を決定します。この句は省略可能です。
NO MINVALUEが指定された場合、昇順の時は1、降順の時はデータ型の最小値がデフォルトになります。
どちらのオプションも指定されていなければ、現在の最小値が保持されます。
       

	maxvalue, NO MAXVALUE
	

MAXVALUE maxvalue句はシーケンスが生成する最大値を決定します。この句は省略可能です。
NO MAXVALUEが指定された場合、昇順の時はデータ型の最大値、降順の時は-1がデフォルトになります。
どちらのオプションも指定されていなければ、現在の最大値が保持されます。
       

	CYCLE
	

CYCLEキーワードを使用すると、シーケンスが限界値（昇順の場合はmaxvalue、降順の場合はminvalue）に達した時、そのシーケンスを周回させることができます。
限界値に達した時、次に生成される番号は、昇順の場合はminvalue、降順の場合はmaxvalueになります。
       

	NO CYCLE
	

NO CYCLEキーワードが指定されると、シーケンスの限界値に達した後のnextval呼び出しは全てエラーとなります。
CYCLEもNO CYCLEも指定されていない場合は、以前の周回動作が保持されます。
       

	start
	

START WITH start句は、記録されているシーケンスの開始値を変更します。この句は省略可能です。
これは現在のシーケンス値に影響しません。
単に将来実行されるALTER SEQUENCE RESTARTコマンドが使用する値を設定するだけです。
       

	restart
	

RESTART WITH restart句は、シーケンスの現在値を変更します。この句は省略可能です。
これはis_called = falseとしてsetval関数を呼び出すことと似ています。
指定した値は次のnextval呼出時に返されます。
restartを付けずにRESTARTと記述することは、CREATE SEQUENCEで記録、または前回ALTER SEQUENCE START WITHで設定された開始値を指定することと同じです。
       


setvalの呼び出しとは異なり、シーケンスに対するRESTARTの操作はトランザクション的で、同時実行中のトランザクションが同じシーケンスから値を取得するのをブロックします。
それが期待する動作でないときは、setvalを使用してください。
       

	cache
	

CACHE cache句を使用すると、アクセスを高速化するために、シーケンス番号を事前に割り当て、メモリに保存しておくことができます。
最小値は1です（一度に生成する値が1つだけなので、キャッシュがない状態になります）。
指定がなければ、以前のキャッシュ値が保持されます。
       

	SET { LOGGED | UNLOGGED }
	

この構文は、シーケンスをログを取らないものからログを取るものに、またはその逆に変更します(CREATE SEQUENCE(7)を参照してください)。
一時シーケンスには適用できません。
       

	OWNED BY table_name.column_name, OWNED BY NONE
	

OWNED BYオプションにより、シーケンスは指定されたテーブル列に関連付けられ、その列（やテーブル全体）が削除されると、自動的にシーケンスも一緒に削除されるようになります。
指定があると、以前に指定されたシーケンスの関連は、指定された関連に置き換えられます。
指定するテーブルは、シーケンスと同一所有者でなければならず、また、同一のスキーマ内に存在しなければなりません。
OWNED BY NONEを指定することで、既存の関連は削除され、シーケンスは「独立」したものになります。
     

	new_owner
	

シーケンスの新しい所有者のユーザ名です。
     

	new_name
	

シーケンスの新しい名称です。
     

	new_schema
	

シーケンスの新しいスキーマです。
     




   

注釈


ALTER SEQUENCEは、コマンドを実行したバックエンド以外のバックエンドにおけるnextvalに対しては、すぐには効力を発揮しません。
これらのバックエンドに事前に割り当てられた（キャッシュされた）シーケンス値がある場合、この値を全て使い果たした後に、変更されたシーケンス生成パラメータを検知します。
コマンドを実行したバックエンドには、即座に変更が反映されます。
  


ALTER SEQUENCEはシーケンスのcurrval状態には影響しません。
（8.3より前のPostgreSQL™では影響を与える場合がありました。）
  


ALTER SEQUENCEは、同時に実行されるnextval、currval、lastval、setvalの呼び出しをブロックします。
  


歴史的な理由によりALTER TABLEはシーケンスにも使用することができます。
しかし、シーケンスに対して許されるALTER TABLEの構文は、上で示した構文と等価なものだけです。
  

例


serialというシーケンスを105から再開します。


ALTER SEQUENCE serial RESTART WITH 105;


互換性


ALTER SEQUENCEは、標準SQLに準拠していますが、PostgreSQL™の拡張であるAS、START WITH、OWNED BY、OWNER TO、RENAME TO、SET SCHEMA構文を除きます。
  

関連項目
CREATE SEQUENCE(7), DROP SEQUENCE(7)


名前
ALTER SERVER — 外部サーバの定義を変更する

概要

ALTER SERVER name [ VERSION 'new_version' ]
    [ OPTIONS ( [ ADD | SET | DROP ] option ['value'] [, ... ] ) ]
ALTER SERVER name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER SERVER name RENAME TO new_name


説明


ALTER SERVERは外部サーバの定義を変更します。
第1の構文はサーバのバージョン文字列、またはサーバの一般的なオプションを変更します。
（少なくとも1つの句が必要です。）
第2の構文はサーバの所有者を変更します。
  


サーバを変更するためには、サーバの所有者でなければなりません。
さらに所有者を変更するためには、新しい所有者ロールに対してSET ROLEができなければなりません。また、サーバの外部データラッパーに対してUSAGE権限も必要です。
（スーパーユーザはこれらの判定基準すべてを自動的に満たしていることに注意してください。）
  

パラメータ
	name
	

既存のサーバの名前です。
     

	new_version
	

新しいサーバのバージョンです。
     

	OPTIONS ( [ ADD | SET | DROP ] option ['value'] [, ... ] )
	

サーバのオプションを変更します。
ADD、SET、DROPは行う動作を指定します。
明示的な動作の指定がない場合ADDとみなされます。
オプション名は一意でなければなりません。
また、名前と値はサーバの外部データラッパーのライブラリを使用して検証されます。
     

	new_owner
	

外部サーバの新しい所有者のユーザ名です。
     

	new_name
	

外部サーバの新しい名前です。
     




例


サーバfooを変更し、接続オプションを追加します。


ALTER SERVER foo OPTIONS (host 'foo', dbname 'foodb');


  


サーバfooを変更し、バージョンとhostオプションを変更します。


ALTER SERVER foo VERSION '8.4' OPTIONS (SET host 'baz');


互換性


ALTER SERVERはISO/IEC 9075-9 (SQL/MED)に準拠しています。
OWNER TOとRENAME構文はPostgreSQLの拡張です。
  

関連項目
CREATE SERVER(7), DROP SERVER(7)


名前
ALTER STATISTICS — 

拡張統計オブジェクトの定義を変更する
  

概要

ALTER STATISTICS name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER STATISTICS name RENAME TO new_name
ALTER STATISTICS name SET SCHEMA new_schema
ALTER STATISTICS name SET STATISTICS { new_target | DEFAULT }


説明


ALTER STATISTICSは既存の拡張統計オブジェクトのパラメータを変更します。
ALTER STATISTICSコマンドで明示的に設定されないパラメータは、以前の設定を保持します。
  


ALTER STATISTICSを使用するには、その統計オブジェクトを所有していなければなりません。
統計オブジェクトのスキーマを変更するには、新しいスキーマに対するCREATE権限も持っていなければなりません。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールは統計オブジェクトのスキーマに対するCREATE権限を持っていなければなりません。
（これらの制限は、統計オブジェクトを削除し、そして再作成することによって実現できないことを、所有者を変更することで実現できることがないことを強制するものです。
しかし、スーパーユーザはどの統計オブジェクトの所有者も変更できます。）
  

パラメータ

    
	name
	

変更の対象となる統計オブジェクトの名前（オプションでスキーマ修飾可）です。
       

	new_owner
	

統計オブジェクトの新しい所有者のユーザ名です。
       

	new_name
	

統計オブジェクトの新しい名前です。
       

	new_schema
	

統計オブジェクトの新しいスキーマです。
       

	new_target
	

後続のANALYZE操作でこの統計オブジェクトについて統計情報を集める目標です。
目標は0から10000の範囲で設定できます。
システムのデフォルトの統計目標(default_statistics_target)を使うように戻すためには、DEFAULTに設定します。
（値を -1 に設定するのは、同じ結果を得るための古い方法です。）
PostgreSQL™問い合わせプランナによる統計情報の使用に関する詳細な情報は「プランナで使用される統計情報」を参照してください。
       




   

互換性


標準SQLにはALTER STATISTICSコマンドはありません。
  

関連項目
CREATE STATISTICS(7), DROP STATISTICS(7)


名前
ALTER SUBSCRIPTION — サブスクリプションの定義を変更する

概要

ALTER SUBSCRIPTION name CONNECTION 'conninfo'
ALTER SUBSCRIPTION name SET PUBLICATION publication_name [, ...] [ WITH ( publication_option [= value] [, ... ] ) ]
ALTER SUBSCRIPTION name ADD PUBLICATION publication_name [, ...] [ WITH ( publication_option [= value] [, ... ] ) ]
ALTER SUBSCRIPTION name DROP PUBLICATION publication_name [, ...] [ WITH ( publication_option [= value] [, ... ] ) ]
ALTER SUBSCRIPTION name REFRESH PUBLICATION [ WITH ( refresh_option [= value] [, ... ] ) ]
ALTER SUBSCRIPTION name ENABLE
ALTER SUBSCRIPTION name DISABLE
ALTER SUBSCRIPTION name SET ( subscription_parameter [= value] [, ... ] )
ALTER SUBSCRIPTION name SKIP ( skip_option = value )
ALTER SUBSCRIPTION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER SUBSCRIPTION name RENAME TO new_name


説明


ALTER SUBSCRIPTIONはCREATE SUBSCRIPTION(7)で指定できるサブスクリプションの属性のほとんどを変更できます。
  


ALTER SUBSCRIPTIONを使用するには、そのサブスクリプションを所有していなければなりません。
サブスクリプションの名前を変更したり、所有者を変更したりするには、データベースに対するCREATE権限が必要です。
さらに、所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。
所有者を変更するには、また、そのロールは型のスキーマにおいてCREATE権限を持たなければなりません。
サブスクリプションがpassword_required=falseである場合、スーパーユーザのみが変更できます。
  


パブリケーションを更新するときには、もうパブリケーションの一部ではないリレーションを削除し、存在すればテーブル同期スロットも削除します。
リモートホストでサブスクリプションのために割り当てられたリソースを解放するために、これらのスロットを解放することが必要です。
ネットワーク切れやその他のエラーによりPostgreSQL™がスロットを削除できなかった場合、エラーが報告されます。
この状況で処理を進めるためには、ユーザは操作を再度試みるか、または、スロットをサブスクリプションから切り離し、DROP SUBSCRIPTION(7)で説明するようサブスクリプションを削除することが必要です。
  


コマンドALTER SUBSCRIPTION ... REFRESH PUBLICATIONとrefreshオプションがtrueのALTER SUBSCRIPTION ... {SET|ADD|DROP} PUBLICATION ...、ALTER SUBSCRIPTION ... SET (failover = true|false)、そしてALTER SUBSCRIPTION ... SET (two_phase = false)は、トランザクションブロック内では実行できません。
  


サブスクリプションがtwo_phaseコミットを有効にしている場合でも、copy_dataがfalseでない限り、コマンドALTER SUBSCRIPTION ... REFRESH PUBLICATIONとrefreshオプションがtrueのALTER SUBSCRIPTION ... {SET|ADD|DROP} PUBLICATION ...は実行できません。
実際の2相状態を知るには、pg_subscriptionのsubtwophasestate列を参照してください。
  

パラメータ
	name
	

属性の変更の対象となるサブスクリプションの名前です。
     

	CONNECTION 'conninfo'
	

この句では、元はCREATE SUBSCRIPTION(7)により設定された接続文字列を置き換えます。
詳細な情報はそちらを参照してください。
     

	SET PUBLICATION publication_name, ADD PUBLICATION publication_name, DROP PUBLICATION publication_name
	

この形式はサブスクライブするパブリケーションのリストを変更します。
SETはパブリケーションのリスト全体を新しいリストで置き換え、ADDは追加のパブリケーションをパブリケーションのリストに追加し、DROPはパブリケーションをパブリケーションのリストから削除します。
ユーザが後から追加できるよう存在しないパブリケーションをADDやSETで指定することを許容します。
詳細はCREATE SUBSCRIPTION(7)を参照してください。
デフォルトでは、このコマンドはREFRESH PUBLICATIONのような動作もします。
     


publication_optionは、この操作についての追加のオプションを指定します。
以下のオプションがサポートされています。

      
	refresh (boolean)
	

falseにすると、このコマンドはテーブル情報を更新しません。
後で別にREFRESH PUBLICATIONを実行することになります。
デフォルトはtrueです。
         






さらに、暗黙の更新動作を制御するためにREFRESH PUBLICATIONの項で説明されているオプションを指定できます。
     

	REFRESH PUBLICATION
	

不足しているテーブル情報をパブリッシャーから取得します。
CREATE SUBSCRIPTION、あるいは最後のREFRESH PUBLICATIONの実行の後でサブスクライブ対象のパブリケーションに追加されたテーブルの複製が、これにより開始されます。
     


refresh_optionは更新(refresh)の操作について追加のオプションを指定します。
以下のオプションがサポートされています。

      
	copy_data (boolean)
	

サブスクライブ対象のパブリケーションにある既存のデータが、レプリケーションの開始時にコピーされるかどうかを指定します。
デフォルトはtrueです。
         


テーブルの行フィルタWHERE句が変更されていても、以前にサブスクライブされたテーブルはコピーされません。
         


copy_data = trueがoriginパラメータとどのように相互作用するかの詳細については、注釈を参照してください。
         


バイナリ形式の既存のデータをコピーする詳細については、CREATE SUBSCRIPTIONのbinaryパラメータを参照してください。
         




	ENABLE
	

以前に無効化されたサブスクリプションを有効化し、トランザクションの終了時に論理レプリケーションワーカーを起動します。
     

	DISABLE
	

実行中のサブスクリプションを無効化し、トランザクションの終了時に論理レプリケーションワーカーを停止します。
     

	SET ( subscription_parameter [= value] [, ... ] )
	

この句では、元はCREATE SUBSCRIPTION(7)により設定されたパラメータを変更します。
詳細な情報はそちらを参照してください。
変更できるパラメータは、
slot_name、
synchronous_commit、
binary、
streaming、
disable_on_error、
password_required、
run_as_owner、
origin、
failover、そして
two_phase
です。
スーパーユーザだけがpassword_required = falseを設定できます。
     


slot_nameを変更する際、指定されたスロットのfailoverとtwo_phaseの値が、サブスクリプションで指定された対応するfailoverおよびtwo_phaseパラメータと異なる可能性があります。
スロットを作成する際、スロットプロパティのfailoverおよびtwo_phaseが対応するサブスクリプションパラメータと一致することを確認してください。
そうしないと、パブリッシャー上のスロットがこれらサブスクリプションオプションで指定されている内容とは異なる動作をする場合があります。
例えば、サブスクリプションオプションのfailoverが無効になっていても、パブリッシャー上のスロットがスタンバイと同期されたり、逆にサブスクリプションオプションのfailoverが有効になっている場合でも、同期が行われなかったりする可能性があります。
     


failoverおよびtwo_phaseパラメータは、サブスクリプションが無効になっている場合にのみ変更できます。
     


two_phaseをtrueからfalseに変更する際、適用ワーカーによって実行されたプリペアドトランザクション（two_phaseパラメータがまだtrueだった時点から）が見つかった場合は、バックエンドプロセスはエラーを報告します。
パブリッシャーノードでプリペアドトランザクションを解決するか、サブスクライバーノードで手動ロールバックを行ってから再試行することができます。
特定のサブスクリプションに対応する適用ワーカーによって準備されたトランザクションは次のようなパターンを持ちます。
「pg_gid_%u_%u」（パラメータ：サブスクリプションoid、リモートトランザクションIDxid）。
このようなトランザクションを手動で解決するには、関連するサブスクリプションIDを名前に持つすべてのプリペアドトランザクションをロールバックする必要があります。
アプリケーションはpg_prepared_xactsを確認して、必要なプリペアドトランザクションを見つけることができます。
two_phaseオプションをtrueからfalseに変更すると、パブリッシャーはそれらのトランザクションがコミットされたときに再度レプリケートします。
     

	SKIP ( skip_option = value )
	

リモートトランザクションのすべての変更の適用をスキップします。
受信データが何らかの制約に違反している場合、解決されるまで論理レプリケーションは停止します。
ALTER SUBSCRIPTION ... SKIPコマンドを使用すると、論理レプリケーションワーカーはトランザクション内のすべてのデータ修正変更をスキップします。
このオプションは、サブスクライバーでtwo_phaseを有効にしてすでに準備されているトランザクションには影響しません。
論理レプリケーションワーカーがトランザクションをスキップするかトランザクションを終了することに成功した後、LSN（pg_subscription.subskiplsnに格納されています）がクリアされます。
論理レプリケーションの競合の詳細については「コンフリクト」を参照してください。
     


skip_optionは、この操作のオプションを指定します。
サポートされているオプションは以下の通りです。

      
	lsn (pg_lsn)
	

論理レプリケーションワーカーによって変更がスキップされるリモートトランザクションの終了LSNを指定します。
終了LSNは、トランザクションがコミットまたは準備されるLSNです。
個々のサブトランザクションのスキップはサポートされません。
NONEを設定すると、LSNがリセットされます。
         




	new_owner
	

サブスクリプションの新しい所有者のユーザ名です。
     

	new_name
	

サブスクリプションの新しい名前です。
     





boolean型のパラメータを指定する場合、= valueの部分を省略できます。これはTRUEを指定するのと同じです。
  

例


サブスクリプションがサブスクライブするパブリケーションをinsert_onlyに変更します。


ALTER SUBSCRIPTION mysub SET PUBLICATION insert_only;


  


サブスクリプションを無効化（停止）します。


ALTER SUBSCRIPTION mysub DISABLE;


互換性


ALTER SUBSCRIPTIONはPostgreSQL™の拡張です。
  

関連項目
CREATE SUBSCRIPTION(7), DROP SUBSCRIPTION(7), CREATE PUBLICATION(7), ALTER PUBLICATION(7)


名前
ALTER SYSTEM — サーバの設定パラメータを変更する

概要

ALTER SYSTEM SET configuration_parameter { TO | = } { value [, ...] | DEFAULT }

ALTER SYSTEM RESET configuration_parameter
ALTER SYSTEM RESET ALL


説明


ALTER SYSTEMはデータベースクラスタ全体にわたるサーバの設定パラメータを変更するのに使われます。
手作業でpostgresql.confファイルを編集するという伝統的な方法よりも、この方が便利かもしれません。
ALTER SYSTEMは指定されたパラメータ設定をpostgresql.auto.confファイルに書き出し、これがpostgresql.confに加えて読み込まれます。
パラメータをDEFAULTに設定する、あるいはこれの別表記であるRESETを使うと、postgresql.auto.confファイルから、その設定のエントリを削除します。
そのような設定のエントリをすべて削除するにはRESET ALLを使用してください。
  


ALTER SYSTEMで設定された値は、次回のサーバ設定の再ロードで、またサーバ開始時にのみ変更可能なパラメータについては次回のサーバ再起動で有効になります。
サーバ設定の再ロードは、SQL関数pg_reload_conf()の呼び出し、pg_ctl reloadの実行、あるいはメインのサーバプロセスにSIGHUPを送信することで実行できます。
  


スーパーユーザとパラメータに関するALTER SYSTEM権限を付与されたユーザだけが、ALTER SYSTEMを使ってパラメータを変更できます。
また、このコマンドはファイルシステムに直接作用し、ロールバックできないため、トランザクションブロックや関数の内部で使うことはできません。
  

パラメータ
	configuration_parameter
	

設定する設定パラメータの名前です。
利用可能なパラメータに付いては19章サーバ設定に記述されています。
     

	value
	

パラメータの新しい値です。
値は、対象のパラメータとして適切な文字列定数、識別子、数値あるいはそれらをカンマで区切ったリストで指定できます。
数字でも有効な識別子でもない値は、引用符で囲む必要があります。
DEFAULTと指定することができ、このとき、パラメータとその値をpostgresql.auto.confから削除します。
     


リストを受け付ける一部のパラメータでは、引用符付きの値は、空白とカンマが保持されるように二重引用符で囲まれた出力になります。
その他のパラメータでは、この効果を得るために、単一引用符で囲まれた文字列内で二重引用符を使用する必要があります。
     




注釈


このコマンドは、data_directory、allow_alter_systemを設定するのに使うことはできませんし、postgresql.confで設定できないパラメータ（例えば設定済みのオプション）を設定するのに使うこともできません。
  


パラメータを設定するその他の方法については「パラメータの設定」を参照してください。
  


ALTER SYSTEMはallow_alter_systemをoffに設定することで無効にできますが、（そのパラメータのドキュメントで詳細に説明されているように）これはセキュリティ機構ではありません。
  

例


wal_levelを設定します。


ALTER SYSTEM SET wal_level = replica;


  


それを取り消して、postgresql.confで有効だった設定に戻します。


ALTER SYSTEM RESET wal_level;


互換性


ALTER SYSTEM文はPostgreSQL™の拡張です。
  

関連項目
SET(7), SHOW(7)


名前
ALTER TABLE — テーブル定義を変更する

概要

ALTER TABLE [ IF EXISTS ] [ ONLY ] name [ * ]
    action [, ... ]
ALTER TABLE [ IF EXISTS ] [ ONLY ] name [ * ]
    RENAME [ COLUMN ] column_name TO new_column_name
ALTER TABLE [ IF EXISTS ] [ ONLY ] name [ * ]
    RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER TABLE [ IF EXISTS ] name
    RENAME TO new_name
ALTER TABLE [ IF EXISTS ] name
    SET SCHEMA new_schema
ALTER TABLE ALL IN TABLESPACE name [ OWNED BY role_name [, ... ] ]
    SET TABLESPACE new_tablespace [ NOWAIT ]
ALTER TABLE [ IF EXISTS ] name
    ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec | DEFAULT }
ALTER TABLE [ IF EXISTS ] name
    DETACH PARTITION partition_name [ CONCURRENTLY | FINALIZE ]


ここでactionは以下のいずれかです。

    ADD [ COLUMN ] [ IF NOT EXISTS ] column_name data_type [ COLLATE collation ] [ column_constraint [ ... ] ]
    DROP [ COLUMN ] [ IF EXISTS ] column_name [ RESTRICT | CASCADE ]
    ALTER [ COLUMN ] column_name [ SET DATA ] TYPE data_type [ COLLATE collation ] [ USING expression ]
    ALTER [ COLUMN ] column_name SET DEFAULT expression
    ALTER [ COLUMN ] column_name DROP DEFAULT
    ALTER [ COLUMN ] column_name { SET | DROP } NOT NULL
    ALTER [ COLUMN ] column_name SET EXPRESSION AS ( expression )
    ALTER [ COLUMN ] column_name DROP EXPRESSION [ IF EXISTS ]
    ALTER [ COLUMN ] column_name ADD GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [ ( sequence_options ) ]
    ALTER [ COLUMN ] column_name { SET GENERATED { ALWAYS | BY DEFAULT } | SET sequence_option | RESTART [ [ WITH ] restart ] } [...]
    ALTER [ COLUMN ] column_name DROP IDENTITY [ IF EXISTS ]
    ALTER [ COLUMN ] column_name SET STATISTICS { integer | DEFAULT }
    ALTER [ COLUMN ] column_name SET ( attribute_option = value [, ... ] )
    ALTER [ COLUMN ] column_name RESET ( attribute_option [, ... ] )
    ALTER [ COLUMN ] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }
    ALTER [ COLUMN ] column_name SET COMPRESSION compression_method
    ADD table_constraint [ NOT VALID ]
    ADD table_constraint_using_index
    ALTER CONSTRAINT constraint_name [ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] [ ENFORCED | NOT ENFORCED ]
    ALTER CONSTRAINT constraint_name [ INHERIT | NO INHERIT ]
    VALIDATE CONSTRAINT constraint_name
    DROP CONSTRAINT [ IF EXISTS ]  constraint_name [ RESTRICT | CASCADE ]
    DISABLE TRIGGER [ trigger_name | ALL | USER ]
    ENABLE TRIGGER [ trigger_name | ALL | USER ]
    ENABLE REPLICA TRIGGER trigger_name
    ENABLE ALWAYS TRIGGER trigger_name
    DISABLE RULE rewrite_rule_name
    ENABLE RULE rewrite_rule_name
    ENABLE REPLICA RULE rewrite_rule_name
    ENABLE ALWAYS RULE rewrite_rule_name
    DISABLE ROW LEVEL SECURITY
    ENABLE ROW LEVEL SECURITY
    FORCE ROW LEVEL SECURITY
    NO FORCE ROW LEVEL SECURITY
    CLUSTER ON index_name
    SET WITHOUT CLUSTER
    SET WITHOUT OIDS
    SET ACCESS METHOD { new_access_method | DEFAULT }
    SET TABLESPACE new_tablespace
    SET { LOGGED | UNLOGGED }
    SET ( storage_parameter [= value] [, ... ] )
    RESET ( storage_parameter [, ... ] )
    INHERIT parent_table
    NO INHERIT parent_table
    OF type_name
    NOT OF
    OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
    REPLICA IDENTITY { DEFAULT | USING INDEX index_name | FULL | NOTHING }


また、partition_bound_specは以下の通りです。

IN ( partition_bound_expr [, ...] ) |
FROM ( { partition_bound_expr | MINVALUE | MAXVALUE } [, ...] )
  TO ( { partition_bound_expr | MINVALUE | MAXVALUE } [, ...] ) |
WITH ( MODULUS numeric_literal, REMAINDER numeric_literal )


また、column_constraintは以下の通りです。

[ CONSTRAINT constraint_name ]
{ NOT NULL [ NO INHERIT ] |
  NULL |
  CHECK ( expression ) [ NO INHERIT ] |
  DEFAULT default_expr |
  GENERATED ALWAYS AS ( generation_expr ) [ STORED | VIRTUAL ] |
  GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [ ( sequence_options ) ] |
  UNIQUE [ NULLS [ NOT ] DISTINCT ] index_parameters |
  PRIMARY KEY index_parameters |
  REFERENCES reftable [ ( refcolumn ) ] [ MATCH FULL | MATCH PARTIAL | MATCH SIMPLE ]
    [ ON DELETE referential_action ] [ ON UPDATE referential_action ] }
[ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] [ ENFORCED | NOT ENFORCED ]


また、table_constraintは以下の通りです。

[ CONSTRAINT constraint_name ]
{ CHECK ( expression ) [ NO INHERIT ] |
  NOT NULL column_name [ NO INHERIT ] |
  UNIQUE [ NULLS [ NOT ] DISTINCT ] ( column_name [, ... ] [, column_name WITHOUT OVERLAPS ] ) index_parameters |
  PRIMARY KEY ( column_name [, ... ] [, column_name WITHOUT OVERLAPS ] ) index_parameters |
  EXCLUDE [ USING index_method ] ( exclude_element WITH operator [, ... ] ) index_parameters [ WHERE ( predicate ) ] |
  FOREIGN KEY ( column_name [, ... ] [, PERIOD column_name ] ) REFERENCES reftable [ ( refcolumn [, ... ]  [, PERIOD refcolumn ] ) ]
    [ MATCH FULL | MATCH PARTIAL | MATCH SIMPLE ] [ ON DELETE referential_action ] [ ON UPDATE referential_action ] }
[ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] [ ENFORCED | NOT ENFORCED ]


またtable_constraint_using_indexは以下の通りです。

    [ CONSTRAINT constraint_name ]
    { UNIQUE | PRIMARY KEY } USING INDEX index_name
    [ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDIATE ]


UNIQUE、PRIMARY KEY、および、EXCLUDE制約でのindex_parametersは以下の通りです。

[ INCLUDE ( column_name [, ... ] ) ]
[ WITH ( storage_parameter [= value] [, ... ] ) ]
[ USING INDEX TABLESPACE tablespace_name ]


EXCLUDE制約でのexclude_elementは以下の通りです。

{ column_name | ( expression ) } [ COLLATE collation ] [ opclass [ ( opclass_parameter = value [, ... ] ) ] ] [ ASC | DESC ] [ NULLS { FIRST | LAST } ]

referential_action in a FOREIGN KEY/REFERENCES constraint is:

{ NO ACTION | RESTRICT | CASCADE | SET NULL [ ( column_name [, ... ] ) ] | SET DEFAULT [ ( column_name [, ... ] ) ] }


説明


ALTER TABLEは既存のテーブルの定義を変更します。
以下のようにいくつかの副構文があります。
要求されるロックレベルはそれぞれの副構文によって異なることに注意してください。
特に記述がなければACCESS EXCLUSIVEロックを取得します。
複数のサブコマンドが使われるときは、それらのサブコマンドが要求するうち、もっとも高いレベルのロックを取得します。

  
	ADD COLUMN [ IF NOT EXISTS ]
	

この構文を使用すると、CREATE TABLEと同じ構文を使って新しい列をテーブルに追加できます。
IF NOT EXISTSが指定され、その名前の列が既に存在している場合は、エラーが発生しません。
     

	DROP COLUMN [ IF EXISTS ]
	

この構文を使用すると、テーブルから列を削除できます。
削除する列を含んでいるインデックスおよびテーブル制約も自動的に削除されます。
削除する列を参照する多変量統計がある場合、列の削除の結果、その統計が1つの列のデータしか含まないようになるなら、それも削除されます。
また、削除する列にテーブル以外が依存（例えば、外部キー制約、ビューなど）している場合、CASCADEを付ける必要があります。
IF EXISTSが指定されている場合、もしその列がなかったとしてもエラーにはなりません。
この場合は代わりに注意が出力されます。
     

	SET DATA TYPE
	

この構文を使用すると、テーブルの列の型を変更できます。
その列を含むインデックスと簡単なテーブル制約は、元々与えられた式を再解析し、新しい型を使用するように自動的に変換されます。
COLLATE句を使うと、新しい列の照合順を指定できます。
省略時の照合順は新しい列の型のデフォルトになります。
USING句を使うと、古い列値をどのように新しい値に計算するかを指定できます。
省略された場合、デフォルトの変換は、古いデータ型から新しいデータ型への代入キャストと同じになります。
古いデータ型から新しいデータ型への暗黙キャストあるいは代入キャストがない場合、USING句を指定しなければなりません。
     


この構文を使用すると列の統計情報が削除されるので、後でテーブルに対してANALYZEを実行することをお勧めします。
仮想生成列は統計情報を持たないため、ANALYZEは必要ありません。
     

	SET/DROP DEFAULT
	

これらの構文を使用すると、列のデフォルト値を設定または削除できます（ここで、削除はデフォルト値をNULLに設定することと等価です）。
新しいデフォルト値は、変更後に行われるINSERTまたはUPDATEコマンドにのみ適用されます。
テーブル内の既存の行は変更されません。
     

	SET/DROP NOT NULL
	

これらの構文は、列の値としてNULL値を認めるか拒絶するかを変更します。
     


SET NOT NULLは、テーブルの項目でその列がNULL値であるものが1つもない場合にのみ、その列に設定可能です。
NOT VALIDが指定されていない限り、通常ALTER TABLE中にテーブル全体をスキャンすることで確認されます。
しかしながら、NULLが存在できないことを示す有効なCHECK制約（同じコマンドで削除されない）が存在すれば、テーブルスキャンは省略されます。
列に無効な非NULL制約がある場合、SET NOT NULLはその制約を検証します。
     


このテーブルがパーティションの場合、親テーブルでNOT NULLの印がつけられている列についてDROP NOT NULLを実行することはできません。
すべてのパーティションからNOT NULL制約を削除するには、親テーブルでDROP NOT NULLを実行してください。
親テーブルにNOT NULL制約がない場合でも、必要に応じて各パーティションにそのような制約を追加することができます。
つまり、親テーブルがNULLを許していても子テーブルでNULLを禁止することができますが、その逆はできません。
NOT NULL制約は、ONLYを使用して親テーブルから削除し、子テーブルからは削除しないこともできます。
     

	SET EXPRESSION AS
	

この構文は、生成列の式を置き換えます。
格納生成列の既存のデータは書き換えられ、以後の変更はすべて新しい生成式を適用します。
     


格納生成列に対してこの構文を使用すると列の統計情報が削除されるので、後でテーブルに対してANALYZEを実行することをお勧めします。
仮想生成列は統計情報を持たないため、ANALYZEは必要ありません。
     

	DROP EXPRESSION [ IF EXISTS ]
	

この構文は、格納された生成列を通常の基本列に変換します。
列の既存のデータは保持されますが、以後の変更はもはや生成式を適用しません。
     


この構文は現在格納生成列に対してのみサポートされています（仮想生成列ではサポートされていません）。
     


DROP EXPRESSION IF EXISTSが指定され、その列が生成列でない場合は、エラーを発生させません。
この場合、代わりに注意メッセージが発行されます。
     

	ADD GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY, SET GENERATED { ALWAYS | BY DEFAULT }, DROP IDENTITY [ IF EXISTS ]
	

この構文では、列が識別列であるかどうか、または既存の識別列の生成属性を変更することができます。
詳細はCREATE TABLEを参照してください。
SET DEFAULT同様に、この構文は、変更後に行われるINSERTまたはUPDATEコマンドにのみ適用されます。
テーブル内の既存の行は変更されません。
     


DROP IDENTITY IF EXISTSが指定され、その列が識別列でない場合は、エラーを発生させません。
この場合、注意メッセージが発行されます。
     

	SET sequence_option, RESTART
	

この構文では、既存の識別列に紐付けられているシーケンスを変更します。
sequence_optionはINCREMENT BYなどALTER SEQUENCEがサポートするオプションです。
     

	SET STATISTICS
	

この構文は、以後のANALYZE操作において、列単位での統計情報収集目標を設定します。
目標として、0から10000までの範囲の値を設定可能です。
DEFAULTに設定すると、システムのデフォルト統計情報目標（default_statistics_target）を使用するように戻されます。
（値を -1 に設定する方法は、同じ結果を得るための古い方法です。）
PostgreSQL™の問い合わせプランナによる統計情報の使用に関する詳細は、「プランナで使用される統計情報」を参照してください。
     


SET STATISTICSはSHARE UPDATE EXCLUSIVEロックを取得します。
     

	SET ( attribute_option = value [, ... ] ), RESET ( attribute_option [, ... ] )
	

この構文は属性単位のオプションの設定または設定解除を行います。
現時点では属性単位のオプションで定義されているのはn_distinctおよびn_distinct_inheritedのみです。
これらのオプションは、その後のANALYZE操作により生成される個別値数の推定値を上書きします。
n_distinctはテーブル自身の統計情報に影響を与え、n_distinct_inheritedはテーブルとそれを継承した子テーブルから集めた統計情報に影響を与えます。
正の値の場合、ANALYZEは、その列には、正確に指定された個数の非NULLの個別値が存在するものとみなします。
負の値の場合、この値は-1以上でなければなりませんが、ANALYZEは、その列内の非NULLの個別値はテーブルのサイズに線形であるとみなし、推定テーブルサイズに指定した値の絶対値を乗じた値が個別値数であるとみなします。
たとえば、-1という値は、列内のすべての値に重複がないことを意味し、-0.5という値は個々の値は平均して2回現れることを意味します。
テーブルの行数との乗算は問い合わせ計画を作成するまで行われませんので、テーブルサイズが変わり続けるような場合にこれは有用かもしれません。
0という値を指定することで、個別値数の推定を通常に戻します。
PostgreSQL™問い合わせプランナにおける統計情報の使用に関しては「プランナで使用される統計情報」を参照してください。
     


属性単位のオプションの変更はSHARE UPDATE EXCLUSIVEロックを取得します。
     

	
     SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }
     
     
    
	

この構文は、列の格納モードを設定します。
列をインラインで保持するか補助TOASTテーブルに保持するか、また、データを圧縮するかどうかを制御できます。
PLAINは、integerのような固定長の値に対して使用します。インラインで保持され、圧縮されません。
MAINは、インラインで保持されていて、圧縮可能なデータに使用します。
EXTERNALは圧縮されていない外部データに使用します。
EXTENDEDは圧縮された外部データに使用します。
DEFAULTと書くと、列のデータ型に対して格納モードをデフォルトのモードに設定します。
EXTENDEDは、PLAIN以外の保管をサポートするほとんどのデータ型におけるデフォルトです。
EXTERNALを使用すると、非常に長いtextおよびbytea列に対する部分文字列操作の処理速度が向上しますが、必要な保管容量が増えるというデメリットがあります。
ALTER TABLE ... SET STORAGE自体はテーブルをまったく変更しないことに注意してください。
以後のテーブルの更新時に遂行する戦略を設定するだけです。
詳細は「TOAST」を参照してください。
     

	
     SET COMPRESSION compression_method
    
	

この構文を使用すると、列の圧縮方式を設定し、将来挿入される値がどのように圧縮されるかを決定できます（格納モードで圧縮が許可されている場合）。
これによってテーブルが書き換えられることはないため、既存のデータは他の圧縮方式で圧縮されたままの可能性があります。
テーブルをpg_restoreでリストアした場合、すべての値は設定された圧縮方式で書き直されます。
しかし、データが別のリレーションから挿入された場合(例えばINSERT ... SELECTによって)、元となるテーブルからの値は必ずしも非TOAST化されるとは限らないため、以前に圧縮されたデータは、対象列の圧縮方式で再圧縮されるのではなく、既存の圧縮方式を保持する場合があります。
サポートされている圧縮方式は、pglzとlz4です。
（lz4は、PostgreSQL™のビルド時に--with-lz4が使用された場合にのみ使用できます。）
さらに、compression_methodをdefaultにすることができ、これにより、データ挿入時にdefault_toast_compression設定を参照して、使用する方法を決定するデフォルトの動作が選択されます。
     

	ADD table_constraint [ NOT VALID ]
	

この構文は、CREATE TABLEと同じ制約構文に加え、現時点では外部キー制約、CHECK制約、および非NULL制約でのみ許されるNOT VALIDオプションを使って新しい制約をテーブルに追加します。
     


通常この構文は、テーブルの既存の行が新しい制約を満たすか確認するため、テーブルのスキャンを引き起こします。
しかし、NOT VALIDオプションが使われていれば、時間がかかるかもしれないこのスキャンは省略されます。
それでも、制約はその後の挿入や更新に対して適用されます（つまり、外部キー制約の場合、被参照テーブルに一致する行が存在しない限り失敗します。指定された検査制約に一致する新しい行が存在しない限り失敗します）。
しかしデータベースは、VALIDATE CONSTRAINTオプションを使用して検証されるまで、テーブル内のすべての行で制約が保持されているとみなしません。
NOT VALIDオプションを使うことに関する更なる情報は注釈以下を参照してください。
     


ADD table_constraintのほとんどの構文ではACCESS EXCLUSIVEロックが必要ですが、ADD FOREIGN KEYではSHARE ROW EXCLUSIVEロックだけが必要です。
ADD FOREIGN KEYは、制約を宣言したテーブルでのロックに加えて、被参照テーブルのSHARE ROW EXCLUSIVEロックも取得することに注意してください。
     


一意性制約や主キー制約がパーティションテーブルに追加される場合、追加の制限が適用されます。
CREATE TABLEを参照してください。
     

	ADD table_constraint_using_index
	

この構文は、既存の一意性インデックスに基づき、テーブルにPRIMARY KEYまたはUNIQUE制約を新たに追加します。
インデックスのすべての列がこの制約に含まれます。
     


このインデックスは式列を持つことはできず、また部分インデックスであってはいけません。
またこれはデフォルトのソート順序を持つB-Treeインデックスでなければなりません。
これらの制限により、このインデックスが通常のADD PRIMARY KEYまたはADD UNIQUEコマンドにより構築されたインデックスと等価であることを確実にします。
     


PRIMARY KEYが指定され、インデックスの列がNOT NULLと印付けされていない場合、このコマンドはこうした列のそれぞれに対してALTER COLUMN SET NOT NULLの実施を試みます。
これは列にNULLが含まれないことを検証するために完全なテーブルスキャンを必要とします。
この他の場合においては、これが高速な操作です。
     


制約名が提供された場合、インデックスの名前は制約名に合うように変更されます。
提供されない場合は制約にはインデックスと同じ名前が付けられます。
     


このコマンドの実行後、インデックスは、制約により「所有」され、それはインデックスが通常のADD PRIMARY KEYまたはADD UNIQUEにより構築された場合と同様です。
特にこの制約を削除するとインデックスも消えてしまいます。
     


この形式は今のところパーティションテーブルではサポートされません。
     
注記


既存のインデックスを使用した制約の追加は、テーブル更新を長時間ブロックすることなく新しい制約を追加しなければならない場合に有用になる可能性があります。
このためには、CREATE UNIQUE INDEX CONCURRENTLYを用いてインデックスを作成し、この構文を使用して制約に変換してください。
後述の例を参照してください。
      


	ALTER CONSTRAINT
	

この構文は以前に作成された制約の属性を変更します。
現在、この方法で変更できるのは外部キー制約のみですが、以下を参照してください。
     

	ALTER CONSTRAINT ... INHERIT, ALTER CONSTRAINT ... NO INHERIT
	

これらの構文は、継承可能な制約を継承できないように変更します。
その逆も同様です。
現在のところ、この方法で変更できるのは非NULL制約のみです。
制約の継承可能状態を変更することに加えて、継承できない制約が継承可能とマークされている場合、もしそのテーブルに子テーブルがあれば、同等の制約がそれらに追加されます。
子テーブルを持つテーブルで継承可能な制約を継承不可としてマークすると、子テーブル上の対応する制約はもはや継承されないものとしてマークされますが、削除はされません。
      

	VALIDATE CONSTRAINT
	

この構文は、以前にNOT VALIDとして作成された外部キー制約、検査制約、または非NULL制約を、これらの制約を満たさない行が存在しないことを確認するために、テーブルをスキャンして検証します。
制約がNOT ENFORCEDと設定されていた場合は、エラーが発生します。
制約がすでに有効であると記録されている場合は何も起こりません。
（このコマンドの有用性の説明は注釈以下を参照してください。）
     


このコマンドはSHARE UPDATE EXCLUSIVEロックを取得します。
     

	DROP CONSTRAINT [ IF EXISTS ]
	

この構文はテーブル上の指定した制約を、制約の基となるインデックスと共に削除します。
IF EXISTSが指定された場合、その制約がなくてもエラーになりません。
この場合は代わりに注意が出力されます。
     

	DISABLE/ENABLE [ REPLICA | ALWAYS ] TRIGGER
	

この構文を使用すると、テーブルに属するトリガの発行について設定できます。
無効にされたトリガはシステム上に存在し続けますが、トリガイベントが発生したとしても実行されません。
（遅延トリガの場合、有効無効状態の確認は、トリガ関数を実際に実行しようとする時ではなく、イベントの発生時に行われます。）
名前でトリガを1つ指定して有効または無効にすることもできますし、テーブル上のすべてのトリガを有効または無効にすることもできます。
また、ユーザトリガのみを有効または無効にすることも可能です
（このオプションは、外部キー制約、遅延可能な一意性および排他制約を実装するために使用される内部向けに生成される制約トリガを除外します。）
内部向けに生成される制約トリガを有効または無効にするにはスーパーユーザ権限が必要です。
トリガが実行されなかった場合は当然ながら制約の整合性が保証されませんので、制約トリガの無効化は注意して実行しなければなりません。
     


トリガ発行機構は設定変数session_replication_roleの影響も受けます。
単に有効としたトリガ（デフォルト）では、レプリケーションロールが「origin」（デフォルト）または「local」の場合に発行されます。
ENABLE REPLICAと設定されたトリガでは、セッションが「replica」モードである場合のみ発行されます。
そして、ENABLE ALWAYSと設定されたトリガでは、現在のレプリケーションロールに関係なく発行されます。
     


この仕組みの効果はデフォルト設定ではレプリカ上でトリガが発行しないことです。
トリガがオリジンでテーブル間でデータを伝播するのに使われている場合にレプリケーションシステムは伝播したデータもレプリケーションします。レプリカ上でトリガが再度発動すべきではありませんので、これは有用です。
しかしながら、トリガが外部的な警告を発するなどの他の意図で使われている場合、レプリカでもトリガが発行されるようにENABLE ALWAYSを設定するのが適切と言えます。
     


このコマンドがパーティション化されたテーブルに適用されると、ONLYが指定されていない限り、パーティション内の対応するクローントリガの状態も更新されます。
     


このコマンドはSHARE ROW EXCLUSIVEロックを取得します。
     

	DISABLE/ENABLE [ REPLICA | ALWAYS ] RULE
	

この構文を使用すると、テーブルに属する書き換えルールの実行について設定することができます。
ルールは無効にしてもシステムに残りますが、問い合わせ書き換え時に適用されません。
この意味はトリガの有効化、無効化と同じです。
この設定はON SELECTルールでは無視されます。
現在のセッションがデフォルト以外のレプリケーションモードであったとしても、ビュー操作を維持するために常に適用されます。
     


前述のトリガと同様に、ルール発行機構は設定変数session_replication_roleの影響を受けます。
     

	DISABLE/ENABLE ROW LEVEL SECURITY
	

これらの構文は、テーブルの行セキュリティポリシーの適用を制御します。
有効にされ、かつテーブルにポリシーが存在しない場合は、デフォルトの拒絶ポリシーが適用されます。
行単位セキュリティが無効になっている場合でも、テーブルのセキュリティが存在し得ることに注意してください。
この場合、ポリシーは適用されず、無視されます。
CREATE POLICYも参照してください。
     

	NO FORCE/FORCE ROW LEVEL SECURITY
	

これらの構文は、ユーザがテーブルの所有者である場合について、テーブルの行セキュリティポリシーの適用を制御します。
有効の場合、ユーザがテーブルの所有者であれば、行セキュリティポリシーが適用されます。
無効（デフォルト）の場合、ユーザがテーブルの所有者であれば、行セキュリティポリシーは適用されません。
CREATE POLICYも参照してください。
     

	CLUSTER ON
	

この構文は、以後のCLUSTER操作用のデフォルトインデックスを選択します。
テーブルの再クラスタ化は実際には行いません。
     


clusterオプションの変更はSHARE UPDATE EXCLUSIVEロックを取得します。
     

	SET WITHOUT CLUSTER
	

この構文は、テーブルから、一番最後に適用されたCLUSTERインデックス指定を削除します。
以後のインデックスを指定しないクラスタ操作に影響を及ぼします。
     


clusterオプションの変更はSHARE UPDATE EXCLUSIVEロックを取得します。
     

	SET WITHOUT OIDS
	

システム列oidを削除する、後方互換のための構文です。
システム列oidは今では追加できませんので、これは効果がありません。
     

	SET ACCESS METHOD
	

この構文は、指定のアクセスメソッドを使ってテーブルのアクセスメソッドを書き換えることにより変更します。DEFAULTを指定すると、default_table_access_method設定パラメータとして設定されたアクセスメソッドが選ばれます。
詳細は62章テーブルアクセスメソッドのインタフェース定義を参照してください。
     


パーティションテーブルに適用すると、書き換えるデータはありませんが、後で作成されるパーティションはUSING句で上書きされない限り、指定されたアクセスメソッドがデフォルトになります。
DEFAULTを指定すると、以前の値が削除され、以降のパーティションはdefault_table_access_methodがデフォルトになります。
     

	SET TABLESPACE
	

この構文を使用すると、テーブルのテーブル空間を指定したテーブル空間に変更し、テーブルに関連するデータファイルを新しいテーブル空間に移動することができます。
テーブルにインデックスがあっても移動されません。
インデックスを移動するには、別途SET TABLESPACEコマンドを実行します。
パーティションテーブルに適用された場合には何も移動されませんが、以後CREATE TABLE PARTITION OFで作られるパーティションは、TABLESPACE句により上書きされない限り、そのテーブル空間を使うようになります。
     


ALL IN TABLESPACE構文を使うことで、テーブル空間内の現在のデータベースのすべてのテーブルを移動することができます。
この場合、移動されるすべてのテーブルがまずロックされ、それから一つずつ移動されます。
この構文はOWNED BYもサポートしており、これを使うと、指定のロールが所有しているテーブルだけを移動します。
NOWAITを指定した場合、必要とするすべてのロックを即座に獲得できなければ、このコマンドは失敗します。
このコマンドではシステムカタログは移動されないことに注意し、必要なら代わりにALTER DATABASEを使うか、あるいはALTER TABLEで明示的に指定してください。
information_schemaのリレーションはシステムカタログとはみなされないので、移動されます。
CREATE TABLESPACEも参照してください。
     

	SET { LOGGED | UNLOGGED }
	

この構文は、テーブルをログを取らないテーブルからログを取るテーブルに変更、あるいはその逆を行います（UNLOGGED参照）。
これは一時テーブルに対して使うことはできません。
     


これは、テーブルにリンクされたシーケンス(ID列またはシリアル列)の永続性も変更します。
一方、このようなシーケンスの永続性を個別に変更することもできます。
     


この構文はパーティションテーブルではサポートされません。
     

	SET ( storage_parameter [= value] [, ... ] )
	

この構文は、1つ以上のテーブルの格納パラメータを変更します。
設定可能なパラメータの詳細に関してはCREATE TABLE文書の格納パラメータを参照してください。
このコマンドによってテーブルの内容が即座に変更されない点に注意してください。
パラメータによりますが、期待する効果を得るためにテーブルを書き換える必要がある場合があります。
このためには、VACUUM FULL、CLUSTERまたはテーブルを強制的に書き換えるALTER TABLEの構文のいずれかを使用してください。
プランナに関連するパラメータについては、次にテーブルがロックされた時に変更が有効になるため、現在実行中の問い合わせは影響を受けません。
     


fillfactor、TOAST、およびautovacuumのストレージパラメータおよびプランナに関連するパラメータparallel_workersについてはSHARE UPDATE EXCLUSIVEロックが獲得されます。
     

	RESET ( storage_parameter [, ... ] )
	

この構文は、1つ以上の格納パラメータをデフォルト値に再設定します。
SET同様、テーブル全体を更新するためにテーブルの書き換えが必要になる場合があります。
     

	INHERIT parent_table
	

この構文は、指定した親テーブルの新しい子テーブルとして対象のテーブルを追加します。
その後、親テーブルへの問い合わせには対象テーブルの項目も含まれます。
子テーブルとして追加するためには、対象テーブルには親テーブルと同じ列がすべて含まれていなければなりません（追加の列を持つこともできます）。
これらの列のデータ型は一致している必要があります。
     


さらに、親テーブルに存在するCHECK制約とNOT NULL制約すべてが、子テーブルにも存在している必要があります。
ただし、親テーブルにおいて継承不可と印付けされている（つまりALTER TABLE ... ADD CONSTRAINT ... NO INHERITで作成された）制約は除きます（これらは無視されます）。
一致する子テーブルの制約はすべて、継承不可と印付けされていてはなりません。
現時点ではUNIQUE、PRIMARY KEY、およびFOREIGN KEY制約は無視されますが、将来変更されるかもしれません。
     

	NO INHERIT parent_table
	

この構文は、指定した親テーブルの子テーブル群から対象のテーブルを削除します。
親テーブルへの問い合わせでは、対象としたテーブルからのデータが含まれなくなります。
     

	OF type_name
	

この構文は、CREATE TABLE OFで形成されたかのように、テーブルと複合型とを関連付けします。
テーブルの列名とその型のリストは、複合型のものと正確に一致していなければなりません。
テーブルはどのテーブルも継承していてはいけません。
これらの制限によりCREATE TABLE OFにより作成できるテーブル定義と同等になります。
     

	NOT OF
	

この構文は型と型付けされたテーブルの関連を取り除きます。
     

	OWNER TO
	

この構文を使用すると、テーブル、シーケンス、ビュー、マテリアライズドビュー、または外部テーブルの所有者を、指定したユーザに変更できます。
     

	REPLICA IDENTITY
	

この形式は、先行書き込みログ（WAL）に書き込まれる情報を変更して、更新または削除された行を識別します。
ほとんどの場合、各列の古い値は、新しい値と異なる場合にのみログに記録されます。
ただし、古い値が外部に保存されている場合は、変更されたかどうかに関係なく、常にログに記録されます。
このオプションは、論理レプリケーションが使用されている場合を除いて何の効果もありません。
     
	DEFAULT
	

主キーの列の古い値を記録します。
これは、非システムテーブルのデフォルトです。
主キーがない場合の動作は、NOTHINGと同じです。
        

	USING INDEX index_name
	

指定されたインデックスによってカバーされる列の古い値を記録します。
これは、一意であり、部分的ではなく、遅延可能でなく、NOT NULLとマークされた列のみを含む必要があります。
このインデックスが削除された場合、動作はNOTHINGと同じです。
        

	FULL
	

行のすべての列の古い値を記録します。
        

	NOTHING
	

古い行に関する情報は記録されません。
これは、システムテーブルのデフォルトです。
        




	RENAME
	

RENAME構文を使用すると、テーブル（もしくは、インデックス、シーケンス、ビュー、マテリアライズドビュー、外部テーブル）の名前、テーブルの個々の列名、テーブルの制約名を変更できます。
元となるインデックスを持つ制約名を変更するとき、インデックス名も同様に変更されます。
格納されているデータへの影響はありません。
     

	SET SCHEMA
	

この構文を使用して、テーブルを別のスキーマに移動することができます。
関連するインデックスや制約、テーブル列により所有されるシーケンスも同様に移動されます。
     

	ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec | DEFAULT }
	

この構文は、既存のテーブル（それ自体がパーティションテーブルのこともあります）を対象テーブルのパーティションとして追加します。
テーブルは、FOR VALUESを使って指定の値のパーティションとして、あるいは、DEFAULTを使ってデフォルトパーティションとして追加できます。
対象テーブルの各インデックスについて、対応するインデックスが付加されるテーブルに作られます。
また、同等のインデックスが既にある場合には、そのインデックスが、ALTER INDEX ATTACH PARTITIONが実行された場合と同様に、対象テーブルのインデックスに付加されます。
既存のテーブルが外部テーブルの場合、今のところ対象テーブルにUNIQUEインデックスがあるときにはテーブルを対象テーブルのパーティションとして追加することはできない点に注意してください（CREATE FOREIGN TABLE(7)も参照してください）。
対象テーブルにある各ユーザ定義の行レベルのトリガに対しては、対応するものが付加されるテーブルに作られます。
     


FOR VALUESを使ったパーティションはpartition_bound_specでCREATE TABLEと同じ構文を使います。
パーティション境界の指定は、対象テーブルのパーティション戦略とパーティションキーと対応していなければなりません。
付加されるテーブルは、対象と全て同じ列を持ち、それ以上の列は持たず、列の型も一致していなければなりません。
また、対象テーブルにある全てのNOT NULLおよびCHECK制約を持たなければならず、NO INHERITと印付けされていてはなりません。
今のところ、FOREIGN KEY制約は考慮されません。
親テーブルのUNIQUEおよびPRIMARY KEY制約は、既に在るのでなければ、パーティションに作られます。
     


新しいパーティションが通常のテーブルの場合、テーブルに存在する行がパーティションの制約に違反しないことを確認するため、テーブルの全件スキャンが行われます。
このコマンドを実行するより前に、望まれるパーティションの制約を満たす行だけしか許さないような有効なCHECK制約をテーブルに追加すれば、この全件スキャンを避けることができます。
CHECK制約は、パーティションの制約を確認するためにテーブルをスキャンする必要がないか決めるために使われます。
しかし、パーティションキーに式が一つでもあり、パーティションがNULL値を受け付けないときは、この仕組みは機能しません。
NULL値を受け付けないリストパーティションに追加するときも、それが式でないなら、パーティションキーの列にNOT NULL制約を追加してください。
     


新しいパーティションが外部テーブルの場合、外部テーブルのすべての行がパーティションの制約に従うかどうかの確認は何も行われません。
（外部テーブルの制約についてはCREATE FOREIGN TABLE(7)の説明を参照してください。）
     


テーブルがデフォルトパーティションを持っている場合、新たなパーティションの定義はデフォルトパーティションに対するパーティション制約を変更します。
デフォルトパーティションは新パーティションに移動すべきいかなる行を含むことができず、そのような行が無いことを確認するためスキャンが行われます。
このスキャンは、新パーティションのスキャンと同様に、適切なCHECK制約があれば回避できます。
やはり、新パーティションのスキャンと同様に、デフォルトパーティションが外部テーブルであるときは、このスキャンは常に省略されます。
     


パーティションの追加は、追加されるテーブルと（もしあれば）デフォルトパーティションでのACCESS EXCLUSIVEロックに加えて、親テーブルでSHARE UPDATE EXCLUSIVEロックを取得します。
     


追加されるテーブル自体がパーティションテーブルである場合は、すべてのサブパーティションでさらにロックを保持する必要があります。
デフォルトパーティション自体がパーティションテーブルである場合も同様です。
「パーティションの保守」で説明されているように、サブパーティションのロックはCHECK制約を追加することで回避できます。
     

	DETACH PARTITION partition_name [ CONCURRENTLY | FINALIZE ]
	

この構文は、指定したパーティションを対象のテーブルから切り離します。
切り離されたパーティションは単独のテーブルとして存在し続けますが、切り離される前のテーブルとの紐付けはなくなります。
対象テーブルのインデックスに付加されていた全てのインデックスも切り離されます。
対象テーブルのものの複製として作られたトリガは削除されます。
SHAREロックは、外部キー制約でこのパーティションテーブルを参照するすべてのテーブルで取得されます。
     


CONCURRENTLYが指定されている場合、パーティションテーブルにアクセスしている可能性のある他のセッションをブロックしないように、ロックレベルを下げて実行します。
このモードでは、2つのトランザクションが内部で使用されます。
最初のトランザクションでは、SHARE UPDATE EXCLUSIVEロックが親テーブルとパーティションの両方で取得され、パーティションはデタッチ中としてマークされます。
その時点で、トランザクションはコミットされ、パーティションテーブルを使用する他のすべてのトランザクションは待機されます。
これらのトランザクションがすべて完了すると、2番目のトランザクションがパーティションテーブルのSHARE UPDATE EXCLUSIVEを取得し、パーティションでACCESS EXCLUSIVEを取得し、デタッチプロセスが完了します。
パーティション制約と重複するCHECK制約がパーティションに追加されます。
CONCURRENTLYはトランザクションブロック内で実行することはできず、パーティションテーブルにデフォルトパーティションが含まれる場合は許可されません。
     


FINALIZEが指定されている場合、キャンセルまたは中断された以前のDETACH CONCURRENTLYの呼び出しは完了します。
パーティションテーブル内で多くても1つのパーティションが一度にデタッチを保留できます。
     




  


RENAME、SET SCHEMA、ATTACH PARTITION、およびDETACH PARTITIONを除き、1つのテーブルに対して作用するALTER TABLEのすべての構文は、複数の変更リストに結合してまとめて処理することができます。
例えば、複数の列の追加、型の変更を単一のコマンドで実行することができます。
これは特に巨大なテーブルでは便利です。
変更のために必要なテーブル全体のスキャンが1回で済むからです。
  


ALTER TABLEコマンドを使用するには、変更するテーブルを所有している必要があります。
テーブルのスキーマあるいはテーブル空間を変更するには、新しいスキーマあるいはテーブル空間におけるCREATE権限も持っていなければなりません。
テーブルを親テーブルの新しい子テーブルとして追加するには、親テーブルも所有している必要があります。
またテーブルをテーブルのパーティションとして追加する場合、追加されるテーブルを所有している必要があります。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールはテーブルのスキーマにおいてCREATE権限を持たなければなりません。
（この制限により、テーブルの削除と再作成を行ってもできないことが、所有者の変更によってもできないようにしています。
ただし、スーパーユーザはすべてのテーブルの所有者を変更することができます。）
列の追加、列の型の変更、OF句の使用を行うためには、データ型に対するUSAGE権限を持たなければなりません。
  

パラメータ
	IF EXISTS
	

テーブルが存在しない場合でもエラーとしません。
この場合は注意メッセージが発行されます。
       

	name
	

変更対象となる既存のテーブルの名前です（スキーマ修飾名も可）。
テーブル名の前にONLYが指定された場合、そのテーブルのみが変更されます。
ONLYが指定されていない場合、そのテーブルおよび（もしあれば）そのテーブルを継承する全てのテーブルが更新されます。
オプションで、テーブル名の後に*を指定することで、明示的に継承するテーブルも含まれることを示すことができます。
       

	column_name
	

新規または既存の列の名前です。
       

	new_column_name
	

既存の列の新しい名前です。
       

	new_name
	

テーブルの新しい名前です。
       

	data_type
	

新しい列のデータ型、もしくは既存の列に対する新しいデータ型です。
       

	table_constraint
	

テーブルの新しいテーブル制約です。
       

	constraint_name
	

新しい、あるいは既存の制約の名前です。
       

	CASCADE
	

削除された列や制約に依存しているオブジェクト（例えば、削除された列を参照しているビューなど）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
       

	RESTRICT
	

依存しているオブジェクトがある場合、列または制約の削除要求を拒否します。
これがデフォルトの動作です。
       

	trigger_name
	

有効または無効にする単一のトリガの名前です。
       

	ALL
	

テーブルに属するすべてのトリガを有効または無効にします。
（外部キー制約、遅延可能な一意性および排他制約を実装するために使用される、内部向けに生成される制約トリガが含まれる場合、スーパーユーザ権限が必要です。）
       

	USER
	

外部キー制約、遅延可能な一意性および排他制約を実装するために使用される、内部向けに生成されるトリガを除く、テーブルに属するトリガすべてを有効または無効にします。
       

	index_name
	

既存のインデックスの名前です。
       

	storage_parameter
	

テーブルの格納パラメータの名前です。
       

	value
	

テーブルの格納パラメータの新しい値です。
パラメータによりこれは数値となることも文字列となることもあります。
       

	parent_table
	

このテーブルに関連付ける、または、このテーブルから関連付けを取り除く親テーブルです。
       

	new_owner
	

テーブルの新しい所有者のユーザ名です。
       

	new_access_method
	

テーブルを変換する先のアクセスメソッドの名前です。
       

	new_tablespace
	

テーブルを移動する先のテーブル空間の名前です。
       

	new_schema
	

テーブルを移動する先のスキーマの名前です。
       

	partition_name
	

新しいパーティションとして追加する、またはテーブルから切り離すテーブルの名前です。
       

	partition_bound_spec
	

新しいパーティションのパーティション境界の指定です。
その構文の詳細についてはCREATE TABLE(7)を参照してください。
       




注釈


COLUMNキーワードには意味がなく、省略可能です。
   


ADD COLUMNで列が追加されて非不安定（non-volatile）なDEFAULTが指定された場合、その文の実行時にデフォルト値が評価され、その結果がテーブルのメタデータに格納されます。
既存の行にアクセスするとその値が返されます。
この値はテーブルが書き換えられたときにのみ適用されるため、大きなテーブルでもALTER TABLEが非常に高速になります。
列制約が指定されていない場合は、NULLがDEFAULTとして使用されます。
どちらの場合も、テーブルを書き換える必要はありません。
   


不安定（volatile）なDEFAULT（例えば、clock_timestamp()）を持つ列、格納生成列、識別列、または制約を持つドメインデータ型の列を追加すると、テーブル全体とそのインデックスが書き換えられます。
仮想生成列を追加する場合、書き直す必要はありません。
   


既存の列の型を変更すると、通常テーブル全体とそのインデックスが書き換えられます。
例外として、既存列の型を変更するとき、USING句が列の内容を変更せず、かつ、古い型が新しい型とバイナリ変換可能であるか新しい型全体に対する制約のないドメインである場合、テーブルの書き換えは必要ありません。
ただし、新しいインデックスが既存のものと論理的に等しいとシステムが確認できないのであれば、インデックスは再構築されるでしょう。
例えば、列の照合順序が変更された場合には、新しいソート順が異なるかもしれませんので、インデックスの再構築は必要になります。
しかし、照合順序の変更がなければ、インデックスの再構築なしで列をtextからvarcharへ（またはその逆）と変更できます。
データ型のソートが同一だからです。
   


テーブルが巨大な場合、テーブル、インデックスまたはその両方の再構築には非常に時間がかかる可能性があります。
また、一時的に2倍のディスク容量が必要とされます。
   


CHECK制約またはNOT NULL制約を追加する時は、既存の行が制約に従うかどうかを検証するためにテーブルのスキャンが必要になりますが、テーブルの書き換えは必要ありません。
CHECK制約がNOT ENFORCEDとして追加された場合、検証は実行されません。
   


同様に、新しいパーティションを追加するときは、既存の行がパーティションの制約を満たすかどうかを確認するため、テーブルがスキャンされるかもしれません。
   


単一のALTER TABLE内に複数の変更を指定できるオプションを提供する主な理由は、複数のテーブルスキャンや書き換えを1回のテーブルスキャンにまとめることができるようにすることです。
   


新しい外部キー、検査制約、または非NULL制約を検証するために大きなテーブルをスキャンするのは長い時間が掛かる可能性があり、ALTER TABLE ADD CONSTRAINTコマンドがコミットされるまで、そのテーブルのその他の更新は締め出されます。
NOT VALID制約オプションの主な目的は、同時実行中の更新に制約を追加する影響を減らすことです。
NOT VALIDを付ければ、ADD CONSTRAINTコマンドはテーブルをスキャンせず、すぐにコミットされます。
その後で、VALIDATE CONSTRAINTコマンドを発行して、既存の行が制約を満たすか検証できます。
他のトランザクションが挿入したり更新したりする行に対しては制約が強制されていることは分かっていますので、この検証操作では同時実行中の更新を締め出す必要はありません。
既に存在する行だけ確認する必要があります。
それゆえ、検証には変更するテーブルのSHARE UPDATE EXCLUSIVEロックのみが必要です。
（制約が外部キーなら、制約が参照するテーブルのROW SHAREロックも必要です。）
同時実行性をさらに向上させるため、テーブルに既に制約違反が存在することを知っている場合にNOT VALIDとVALIDATE CONSTRAINTを使うことは有用かもしれません。
一度制約が設定されれば、新しい違反は挿入されることはありませんし、既存の問題は、VALIDATE CONSTRAINTを最終的に成功するまで使って、余裕のある時に修正できます。
   


DROP COLUMN構文は、列を物理的には削除せず、SQLの操作に対して不可視にします。
このコマンドを実行した後、テーブルに挿入または更新が行われると、削除した列にはNULLが格納されます。
したがって、列の削除は短時間で行えます。
しかし、削除された列が占めていた領域がまだ回収されていないため、テーブルのディスク上のサイズはすぐには小さくなりません。
この領域は、その後既存の行が更新されるにつれて回収されます。
   


削除した列が占有していたスペースを即座に再利用できるようにするには、テーブル全体を書き換える構文のALTER TABLEを使用することができます。
この結果、各行の削除される列がNULL値で再構成されます。
   


テーブルを書き換える構文のALTER TABLEはMVCC的に安全ではありません。
同時実行中のトランザクションが、テーブル書き換えが発生する前に取得したスナップショットを使っている場合、テーブルの書き換え後はそのトランザクションにはテーブルが空であるように見えます。
詳しくは「警告」を参照して下さい。
   


SET DATA TYPEのUSINGオプションでは、その行の古い値を含め、どのような式でも指定できます。
つまり、変換対象の列と同様に、その他の列も参照することができます。
そのため、一般的な変換をSET DATA TYPE構文で行うことができます。
この柔軟性のため、USING式は列のデフォルト値には（仮に存在していても）適用されません。
結果が定数式にならない可能性があるためです（デフォルト値は定数式でなければいけません）。
したがって、古い型から新しい型への暗黙キャストや代入キャストが存在しない場合、USING句が指定されていても、SET DATA TYPEがデフォルト値の変換に失敗する可能性があります。
この場合は、DROP DEFAULTでデフォルト値を削除し、ALTER TYPEを実行した後で、SET DEFAULTを使用して再度適切なデフォルト値を指定してください。
変更対象の列を含むインデックスと制約も同様の配慮が必要です。
   


そのテーブルを継承するテーブルがある場合、子テーブルに同じ処理を実行しなければ、親テーブルに対する列の追加、列の名前、列の型の変更を実行することはできません。
この制限により、子テーブルの列が常に親テーブルと一致していることが保証されます。
同様に、すべての子テーブルでCHECK制約の名前を変更し、それが親と子の間で一致するようにしなければ、親テーブルのCHECK制約の名前を変更することはできません。
（しかし、この制限はインデックスの基づく制約にはあらわれません。）
また、親テーブルからSELECTすると、その子テーブルからもSELECTすることになるため、親テーブルの制約は、それが子テーブルでも有効であると印を付けられるまで、有効であると印を付けられません。
これらのすべての場合において、ALTER TABLE ONLYは受け付けられません。
   


再帰的なDROP COLUMN操作では、子テーブルが他の親テーブルからその列を継承しておらず、かつ、その列について独立した定義を持っていない場合のみ、その子テーブルの列を削除します。
再帰的でないDROP COLUMN（つまり、ALTER TABLE ONLY ... DROP COLUMN）操作では、継承された列は削除されません。
削除する代わりに、その列は継承されておらず独立して定義されているという印を付けます。
再帰的でないDROP COLUMNコマンドは、パーティションテーブルでは失敗します。
テーブルのすべてのパーティションは、パーティションの最上位と同じ列を持っていなければならないからです。
   


識別列についての操作（ADD GENERATED、SET、DROP IDENTITYなど）およびCLUSTER、OWNERおよびTABLESPACEの操作は子テーブルに再帰的に伝わりません。
つまり、常にONLYが指定されているかのように動作します。
トリガの状態に影響を与える操作は、(ONLYが指定されていない限り)パーティション化されたテーブルのパーティションに再帰的に伝わりますが、従来の継承の子孫には再帰的に伝わりません。
制約の追加は、NO INHERIT印がないCHECK制約に関してのみ再帰的に伝わります。
   


システムカタログテーブルについては、いかなる部分の変更も許可されていません。
   


有効なパラメータの詳しい説明はCREATE TABLE(7)を参照してください。
5章データ定義に、継承に関するさらに詳しい情報があります。
   

例


varchar型の列をテーブルに追加します。


ALTER TABLE distributors ADD COLUMN address varchar(30);



これはテーブルの既存の行すべてで、新しい列をNULL値で埋めることになります。
  


デフォルトが非NULLの列を追加します。


ALTER TABLE measurements
  ADD COLUMN mtime timestamp with time zone DEFAULT now();



既存の行では、新しい列の値として現在時刻が入ります。また、新しい行では挿入時刻を受け取ります。
  


列を追加して、後で使われるデフォルトとは異なる値で埋めます。


ALTER TABLE transactions
  ADD COLUMN status varchar(30) DEFAULT 'old',
  ALTER COLUMN status SET default 'current';



既存の行はoldで埋められますが、後続のコマンドに対するデフォルトはcurrentになります。
別々のALTER TABLEコマンドで2つの副コマンドを発行する場合と、効果は同じです。
  


テーブルから列を削除します。


ALTER TABLE distributors DROP COLUMN address RESTRICT;


  


1つの操作で既存の2つの列の型を変更します。


ALTER TABLE distributors
    ALTER COLUMN address TYPE varchar(80),
    ALTER COLUMN name TYPE varchar(100);


  


USING句を使用して、Unixタイムスタンプを持つinteger型の列をtimestamp with time zoneに変更します。


ALTER TABLE foo
    ALTER COLUMN foo_timestamp SET DATA TYPE timestamp with time zone
    USING
        timestamp with time zone 'epoch' + foo_timestamp * interval '1 second';


  


上と同じことをします。
ただし、その列は、自動的に新しいデータ型にキャストされないデフォルト式を持つ場合についてです。


ALTER TABLE foo
    ALTER COLUMN foo_timestamp DROP DEFAULT,
    ALTER COLUMN foo_timestamp TYPE timestamp with time zone
    USING
        timestamp with time zone 'epoch' + foo_timestamp * interval '1 second',
    ALTER COLUMN foo_timestamp SET DEFAULT now();


  


既存の列の名前を変更します。


ALTER TABLE distributors RENAME COLUMN address TO city;


  


既存のテーブルの名前を変更します。


ALTER TABLE distributors RENAME TO suppliers;


  


既存の制約の名前を変更します。


ALTER TABLE distributors RENAME CONSTRAINT zipchk TO zip_check;


  


列に非NULL制約を付与します。


ALTER TABLE distributors ALTER COLUMN street SET NOT NULL;



列から非NULL制約を削除します。


ALTER TABLE distributors ALTER COLUMN street DROP NOT NULL;


  


テーブルとそのすべての子テーブルにCHECK制約を付与します。


ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5);


  


そのテーブルのみに適用され、その子テーブルには適用されない検査制約を追加します。


ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5) NO INHERIT;



（この検査制約はこの後作成される子テーブルにも継承されません。）
  


テーブルとそのすべての子テーブルからCHECK制約を削除します。


ALTER TABLE distributors DROP CONSTRAINT zipchk;


  


1つのテーブルのみから検査制約を削除します。


ALTER TABLE ONLY distributors DROP CONSTRAINT zipchk;



（この検査制約はすべての子テーブルで残ったままです。）
  


テーブルに外部キー制約を付与します。


ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFERENCES addresses (address);


  


テーブルへの外部キー制約の追加で、他の作業への影響を最小限にするには、以下のようにします。


ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFERENCES addresses (address) NOT VALID;
ALTER TABLE distributors VALIDATE CONSTRAINT distfk;


  


テーブルに（複数列の）一意性制約を付与します。


ALTER TABLE distributors ADD CONSTRAINT dist_id_zipcode_key UNIQUE (dist_id, zipcode);


  


自動的に命名される主キー制約をテーブルに付与します。
1つのテーブルが持てる主キーは1つだけであることに注意してください。


ALTER TABLE distributors ADD PRIMARY KEY (dist_id);


  


テーブルを別のテーブル空間に移動します。


ALTER TABLE distributors SET TABLESPACE fasttablespace;


  


テーブルを別のスキーマに移動します。


ALTER TABLE myschema.distributors SET SCHEMA yourschema;


  


インデックスを再構築している間の更新をブロックすることなく、主キー制約を再作成します。


CREATE UNIQUE INDEX CONCURRENTLY dist_id_temp_idx ON distributors (dist_id);
ALTER TABLE distributors DROP CONSTRAINT distributors_pkey,
    ADD CONSTRAINT distributors_pkey PRIMARY KEY USING INDEX dist_id_temp_idx;



範囲パーティションテーブルにパーティションを追加します。


ALTER TABLE measurement
    ATTACH PARTITION measurement_y2016m07 FOR VALUES FROM ('2016-07-01') TO ('2016-08-01');



リストパーティションテーブルにパーティションを追加します。


ALTER TABLE cities
    ATTACH PARTITION cities_ab FOR VALUES IN ('a', 'b');



ハッシュパーティションテーブルにパーティションを追加します。


ALTER TABLE orders
    ATTACH PARTITION orders_p4 FOR VALUES WITH (MODULUS 4, REMAINDER 3);



パーティションテーブルにデフォルトパーティションを追加します。


ALTER TABLE cities
    ATTACH PARTITION cities_partdef DEFAULT;



パーティションテーブルからパーティションを切り離します。


ALTER TABLE measurement
    DETACH PARTITION measurement_y2015m12;


互換性


ADD [COLUMN]、DROP [COLUMN]、DROP IDENTITY、RESTART、SET DEFAULT、（USINGのない）SET DATA TYPE、SET GENERATED、およびSET sequence_optionの構文は標準SQLに準拠しています。
USING INDEX句とNOT VALID句が省略され、制約の種別がCHECK、UNIQUE、PRIMARY KEY、またはREFERENCESの場合、構文ADD table_constraintは標準SQLに準拠しています。
他の構文は標準SQLに対するPostgreSQL™の拡張です。
また、単一のALTER TABLEコマンド内に複数の操作を指定する機能もPostgreSQL™の拡張です。
  


ALTER TABLE DROP COLUMNを使って、1つしか列がないテーブルから列を削除して、列がないテーブルを作成することができます。
これはPostgreSQL™の拡張です。SQLでは、列を持たないテーブルは認められていません。
  

関連項目
CREATE TABLE(7)


名前
ALTER TABLESPACE — テーブル空間の定義を変更する

概要

ALTER TABLESPACE name RENAME TO new_name
ALTER TABLESPACE name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER TABLESPACE name SET ( tablespace_option = value [, ... ] )
ALTER TABLESPACE name RESET ( tablespace_option [, ... ] )


説明


ALTER TABLESPACEはテーブル空間の定義を変更するのに使うことができます。
  


テーブル空間の定義を変更するにはテーブル空間の所有者でなければなりません。
所有者を変更するには、新しい所有者ロールに対してSET ROLEもできなければなりません。
（スーパーユーザがこれらの権限を自動的に持つことに注意してください。）
  

パラメータ
	name
	

既存のテーブル空間の名前です。
     

	new_name
	

テーブル空間の新しい名前です。
pg_から始まる名前は、システムのテーブル空間用に予約されているため使用することができません。
     

	new_owner
	

テーブル空間の新しい所有者です。
     

	tablespace_option
	

値を設定あるいはリセットするテーブル空間のパラメータです。
現在、利用可能なパラメータはseq_page_cost、random_page_cost、effective_io_concurrency、maintenance_io_concurrencyのみです。
特定のテーブル空間について、この値を設定すると、プランナがそのテーブル空間内のテーブルからページを読み込むコストの通常の推定値や、発行される同時I/Oの数について、通常参照する同じ名前の設定パラメータ（seq_page_cost、random_page_cost、effective_io_concurrency、maintenance_io_concurrencyを参照）よりも優先します。
テーブル空間が、他のI/Oサブシステムより高速あるいは低速なディスク上にある時は、これが有用でしょう。
     




例


テーブル空間index_spaceをfast_raidという名前に変更します。


ALTER TABLESPACE index_space RENAME TO fast_raid;


  


テーブル空間index_spaceの所有者を変更します。


ALTER TABLESPACE index_space OWNER TO mary;


互換性


標準SQLにはALTER TABLESPACE文はありません。
  

関連項目
CREATE TABLESPACE(7), DROP TABLESPACE(7)


名前
ALTER TEXT SEARCH CONFIGURATION — テキスト検索設定の定義を変更する

概要

ALTER TEXT SEARCH CONFIGURATION name
    ADD MAPPING FOR token_type [, ... ] WITH dictionary_name [, ... ]
ALTER TEXT SEARCH CONFIGURATION name
    ALTER MAPPING FOR token_type [, ... ] WITH dictionary_name [, ... ]
ALTER TEXT SEARCH CONFIGURATION name
    ALTER MAPPING REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
    ALTER MAPPING FOR token_type [, ... ] REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
    DROP MAPPING [ IF EXISTS ] FOR token_type [, ... ]
ALTER TEXT SEARCH CONFIGURATION name RENAME TO new_name
ALTER TEXT SEARCH CONFIGURATION name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER TEXT SEARCH CONFIGURATION name SET SCHEMA new_schema


説明


ALTER TEXT SEARCH CONFIGURATIONはテキスト検索設定の定義を変更します。
トークン型から辞書への対応付けの変更、または、設定名称の変更、設定の所有者の変更を行うことができます。
  


ALTER TEXT SEARCH CONFIGURATIONを使用するためには、設定の所有者でなければなりません。
  

パラメータ
	name
	

既存のテキスト検索設定の名称（スキーマ修飾可）です。
     

	token_type
	

設定のパーサが発行するトークン型の名称です。
     

	dictionary_name
	

指定したトークン型（複数可）で考慮されるテキスト検索辞書の名称です。
複数の辞書が列挙された場合、指定された順序で参照されます。
     

	old_dictionary
	

対応付けにて置換されるテキスト検索辞書の名称です。
     

	new_dictionary
	

old_dictionaryを置き換えるテキスト検索辞書の名称です。
     

	new_name
	

テキスト検索設定の新しい名称です。
     

	new_owner
	

テキスト検索設定の新しい所有者です。
     

	new_schema
	

テキスト検索設定の新しいスキーマです。
     





ADD MAPPING FOR構文は指定したトークン型で参照される辞書のリストをインストールします。
既にそのトークン型に対する対応付けが存在する場合はエラーになります。
ALTER MAPPING FOR構文は、まず既存の対象トークン型に対する対応付けを削除する点を除き、同一です。
ALTER MAPPING REPLACE構文は、すべてのold_dictionaryをnew_dictionaryで置き換えます。
FORがあれば、これは指定したトークン型に対してのみ行われ、なければ、設定におけるすべての対応付けに対して行われます。
DROP MAPPING構文は指定したトークン型（複数可）に対するすべての辞書を削除します。
この結果、このテキスト検索設定ではこれらの型のトークンが無視されるようになります。
IF EXISTSがない限り、トークン型に対する対応付けが存在しない場合はエラーになります。
  

例


次の例は、my_config内でenglishが使用されるすべてに対し、english辞書をswedish辞書で置換します。
  

ALTER TEXT SEARCH CONFIGURATION my_config
  ALTER MAPPING REPLACE english WITH swedish;


互換性


標準SQLにはALTER TEXT SEARCH CONFIGURATION文はありません。
  

関連項目
CREATE TEXT SEARCH CONFIGURATION(7), DROP TEXT SEARCH CONFIGURATION(7)


名前
ALTER TEXT SEARCH DICTIONARY — テキスト検索辞書の定義を変更する

概要

ALTER TEXT SEARCH DICTIONARY name (
    option [ = value ] [, ... ]
)
ALTER TEXT SEARCH DICTIONARY name RENAME TO new_name
ALTER TEXT SEARCH DICTIONARY name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER TEXT SEARCH DICTIONARY name SET SCHEMA new_schema


説明


ALTER TEXT SEARCH DICTIONARYはテキスト検索辞書の定義を変更します。
辞書のテンプレート固有のオプションの変更、辞書の名称、辞書の所有者を変更することができます。
  


ALTER TEXT SEARCH DICTIONARYを使用するには、辞書の所有者でなければなりません。
  

パラメータ
	name
	

既存のテキスト検索辞書の名称（スキーマ修飾可）です。
     

	option
	

この辞書に設定される、テンプレート固有のオプションの名称です。
     

	value
	

テンプレート固有のオプションで使用される、新しい値です。
等号記号と値が省略された場合、そのオプションの以前の設定は辞書から削除され、デフォルト値が使用されます。
     

	new_name
	

テキスト検索辞書の新しい名称です。
     

	new_owner
	

テキスト検索辞書の新しい所有者です。
     

	new_schema
	

テキスト検索辞書の新しいスキーマです。
     





テンプレート固有のオプションは任意の順序で記述することができます。
  

例


次の例は、雪だるま式に増加する辞書のストップワードを変更します。
他のパラメータはそのまま変更されません。
  

ALTER TEXT SEARCH DICTIONARY my_dict ( StopWords = newrussian );



次の例は、言語オプションをdutch(オランダ語)に変更し、ストップワードオプションを完全に消去します。
  

ALTER TEXT SEARCH DICTIONARY my_dict ( language = dutch, StopWords );



次の例は、実際には何も変更しませんが、辞書の定義を「更新」します。



ALTER TEXT SEARCH DICTIONARY my_dict ( dummy );




（無効なオプションが存在しても、オプションを消去するコードでエラーとしないため、これは動作します。）
このトリックは、辞書用の設定ファイルを変更する際に有用です。
このALTERにより既存のデータベースセッションは強制的に設定ファイルを再度読み込みます。
こうしないと、以前に読み込んだ設定ファイルを再読み込みすることはありません。
  

互換性


標準SQLにはALTER TEXT SEARCH DICTIONARY文はありません。
  

関連項目
CREATE TEXT SEARCH DICTIONARY(7), DROP TEXT SEARCH DICTIONARY(7)


名前
ALTER TEXT SEARCH PARSER — テキスト検索パーサの定義を変更する

概要

ALTER TEXT SEARCH PARSER name RENAME TO new_name
ALTER TEXT SEARCH PARSER name SET SCHEMA new_schema


説明


ALTER TEXT SEARCH PARSERはテキスト検索パーサの定義を変更します。
現時点では、パーサ名称の変更機能のみがサポートされています。
  


ALTER TEXT SEARCH PARSERを使用するためにはスーパーユーザでなければなりません。
  

パラメータ
	name
	

既存のテキスト検索パーサの名称（スキーマ修飾可）です。
     

	new_name
	

新しいテキスト検索パーサの名称です。
     

	new_schema
	

全文検索パーサの新しいスキーマです。
     




互換性


標準SQLにはALTER TEXT SEARCH PARSER文はありません。
  

関連項目
CREATE TEXT SEARCH PARSER(7), DROP TEXT SEARCH PARSER(7)


名前
ALTER TEXT SEARCH TEMPLATE — テキスト検索テンプレートの定義を変更する

概要

ALTER TEXT SEARCH TEMPLATE name RENAME TO new_name
ALTER TEXT SEARCH TEMPLATE name SET SCHEMA new_schema


説明


ALTER TEXT SEARCH TEMPLATEはテキスト検索テンプレートの定義を変更します。
現時点では、テンプレート名称の変更機能のみがサポートされています。
  


ALTER TEXT SEARCH TEMPLATEを使用するためにはスーパーユーザでなければなりません。
  

パラメータ
	name
	

既存のテキスト検索テンプレートの名称（スキーマ修飾可）です。
     

	new_name
	

新しいテキスト検索テンプレートの名称です。
     

	new_schema
	

テキスト検索テンプレートの新しいスキーマです。
     




互換性


標準SQLにはALTER TEXT SEARCH TEMPLATE文はありません。
  

関連項目
CREATE TEXT SEARCH TEMPLATE(7), DROP TEXT SEARCH TEMPLATE(7)


名前
ALTER TRIGGER — トリガ定義を変更する

概要

ALTER TRIGGER name ON table_name RENAME TO new_name
ALTER TRIGGER name ON table_name [ NO ] DEPENDS ON EXTENSION extension_name


説明


ALTER TRIGGERは既存のトリガのプロパティを変更します。
  


RENAME句は、トリガ定義を変更せずに、指定されたトリガの名前を変更します。
トリガがあるテーブルがパーティションテーブルである場合、パーティション内の対応するクローントリガも名前が変更されます。
  


DEPENDS ON EXTENSION句は、トリガを拡張に依存するものとして印づけます。これにより、拡張が削除されると、トリガも自動的に削除されるようになります。
  


トリガのプロパティを変更するには、トリガで処理されるテーブルを所有している必要があります。
  

パラメータ
	name
	

変更の対象となる既存のトリガの名前です。
     

	table_name
	

このトリガで処理されるテーブルの名前です。
     

	new_name
	

トリガの新しい名前です。
     

	extension_name
	

トリガが依存する(もしくはNOが指定された場合にはもはや依存していない)拡張の名前です。
拡張に依存していると印をつけられたトリガは、拡張が削除されると自動的に削除されます。
     




注釈


トリガを一時的に有効または無効にする機能はALTER TABLEが提供します。
ALTER TRIGGERではありません。
ALTER TRIGGERには、一度にテーブルのトリガを有効または無効にするオプションを表現する、簡便な方法がないからです。
   

例


既存のトリガの名前を変更します。


ALTER TRIGGER emp_stamp ON emp RENAME TO emp_track_chgs;



トリガが拡張に依存するという印を付けます。


ALTER TRIGGER emp_stamp ON emp DEPENDS ON EXTENSION emplib;


互換性


ALTER TRIGGERは、標準SQLに対するPostgreSQL™の拡張です。
  

関連項目
ALTER TABLE(7)


名前
ALTER TYPE — 

型定義を変更する
  

概要

ALTER TYPE name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER TYPE name RENAME TO new_name
ALTER TYPE name SET SCHEMA new_schema
ALTER TYPE name RENAME ATTRIBUTE attribute_name TO new_attribute_name [ CASCADE | RESTRICT ]
ALTER TYPE name action [, ... ]
ALTER TYPE name ADD VALUE [ IF NOT EXISTS ] new_enum_value [ { BEFORE | AFTER } neighbor_enum_value ]
ALTER TYPE name RENAME VALUE existing_enum_value TO new_enum_value
ALTER TYPE name SET ( property = value [, ... ] )


ここでactionは以下のいずれかです。

    ADD ATTRIBUTE attribute_name data_type [ COLLATE collation ] [ CASCADE | RESTRICT ]
    DROP ATTRIBUTE [ IF EXISTS ] attribute_name [ CASCADE | RESTRICT ]
    ALTER ATTRIBUTE attribute_name [ SET DATA ] TYPE data_type [ COLLATE collation ] [ CASCADE | RESTRICT ]


説明


ALTER TYPEは既存の型の定義を変更します。
複数の副構文があります。

  
	OWNER
	

この構文は型の所有者を変更します。
     

	RENAME
	

この構文は型の名前を変更します。
     

	SET SCHEMA
	

この構文は型を他のスキーマに移動します。
     

	RENAME ATTRIBUTE
	

この構文は複合型に対してのみ利用可能です。
型の個々の属性の名前を変更します。
     

	ADD ATTRIBUTE
	

この構文は、CREATE TYPEと同じ構文を用いて、複合型に新しい属性を追加します。
     

	DROP ATTRIBUTE [ IF EXISTS ]
	

この構文は複合型から属性を削除します。
IF EXISTSが指定された時はその属性が存在しなくてもエラーにはなりません。
この場合は代わりに注意が発せられます。
     

	ALTER ATTRIBUTE ... SET DATA TYPE
	

この構文は複合型の属性の型を変更します。
     

	ADD VALUE [ IF NOT EXISTS ] [ BEFORE | AFTER ]
	

この構文は列挙型に新しい値を追加します。
列挙型の順序中での新しい値の場所は、既存の値のBEFOREまたはAFTERという形式で指定することができます。
指定がなければ新しい項目は値のリストの最後に追加されます。
     


IF NOT EXISTSが指定されている場合、型の中に新しい値が既に含まれていたとしてもエラーになりません。
注意が発生されますが、他の動作は行われません。
そうでなければ、新しい値がすでに存在しているとエラーが起こります。
     

	RENAME VALUE
	

この構文では列挙型の値の名前を変更します。
列挙型の順序における値の位置は変更されません。
指定の値が存在しない、あるいは新しい名前が既に存在する場合はエラーが発生します。
     

	
     SET ( property = value [, ... ] )
    
	

この構文は基本型に対してのみ適用可能です。
CREATE TYPEで設定できる基本型属性のサブセットを調整できます。
特に、以下の属性が変更できます。
      
	

RECEIVEでバイナリ入力関数の名前を設定できます。NONEはその型のバイナリ入力関数を削除します。
このオプションを使うにはスーパーユーザ権限が必要です。
        

	

SENDでバイナリ出力関数の名前を設定できます。NONEはその型のバイナリ出力関数を削除します。
このオプションを使うにはスーパーユーザ権限が必要です。
        

	

TYPMOD_INで型修飾子入力関数の名前を設定できます。NONEはその型の型修飾子入力関数を削除します。
このオプションを使うにはスーパーユーザ権限が必要です。
        

	

TYPMOD_OUTで型修飾子出力関数の名前を設定できます。NONEはその型の型修飾子出力関数を削除します。
このオプションを使うにはスーパーユーザ権限が必要です。
        

	

ANALYZEは型固有の統計情報収集関数の名前を設定できます。NONEはその型の統計情報収集関数を削除します。
このオプションを使うにはスーパーユーザ権限が必要です。
        

	

SUBSCRIPTは型固有の添字ハンドラ関数の名前を設定できます。NONEはその型の添字ハンドラ関数を削除します。
このオプションを使うにはスーパーユーザ権限が必要です。
        

	
         STORAGE

STORAGEはplain、extended、external、mainに設定できます(それぞれが何を意味するかの詳細は「TOAST」を参照してください)。
しかしながら、plainからその他の設定へ変更するにはスーパーユーザ権限が必要であり(その型のC関数がすべてTOASTの準備ができていることが必要だからです)、plainへその他の設定から変更することは全く許されていません(その型に、既にTOASTされた値がデータベース内にあるかもしれないためです)。
このオプションを変更することは、それだけでは格納されたデータを変更せず、今後作成されるテーブル列で使われるデフォルトのTOAST戦略を設定するだけであることに注意してください。
既存のテーブル列のTOAST戦略を変更するにはALTER TABLE(7)を参照してください。
        





この型属性についての詳細はCREATE TYPE(7)を参照してください。
基本型に対する属性の変更は、適切な場合その型に基づくドメインに自動的に伝播することに注意してください。
     




  


ADD ATTRIBUTE、DROP ATTRIBUTE、ALTER ATTRIBUTE操作は複数の変更リストにまとめて、並行して適用することができます。
例えば、複数の属性の追加、複数の属性の変更、またはその両方を１つのコマンドで実行することができます。
  


ALTER TYPEを使用するには型の所有者でなければなりません。
型のスキーマを変更するには、新しいスキーマにおけるCREATE権限も必要です。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールは型のスキーマにおいてCREATE権限を持たなければなりません。
（この制限により、型の削除と再作成で行うことができない処理は所有者の変更で行えないようになります。
しかし、スーパーユーザはすべての型の所有者を変更することができます。）
属性を追加または属性の型の変更を行うためには、その属性のデータ型に対するUSAGE権限を持たなければなりません。
  

パラメータ

    
	name
	

変更対象の既存の型の名前です（スキーマ修飾名も可）。
       

	new_name
	

新しい型の名前です。
       

	new_owner
	

新しい型の所有者のユーザ名です。
       

	new_schema
	

型の新しいスキーマです。
       

	attribute_name
	

追加、変更または削除する属性の名前です。
       

	new_attribute_name
	

変名する属性の新しい名前です。
       

	data_type
	

追加する属性のデータ型、または、変更する属性の新しい型です。
       

	new_enum_value
	

列挙型リストの値に追加する新しい値、あるいは既存の値につける新しい名前です。
すべての列挙型のリテラル同様、引用符を付けなければなりません。
       

	neighbor_enum_value
	

列挙型の並び順序において新しい値をその直前または直後に追加する、既存の列挙型の値です。
すべての列挙型のリテラル同様、引用符を付けなければなりません。
       

	existing_enum_value
	

名前の変更の対象となる既存の列挙型の値です。
すべての列挙型のリテラルと同様、引用符を付ける必要があります。
       

	property
	

修正する基本型属性の名前です。可能な値については上を参照してください。
       

	CASCADE
	

変更される型で型付けされたテーブルとその子テーブルに、この操作を自動的に伝播します。
       

	RESTRICT
	

変更対象の型がテーブルの型付けに使用されている場合に操作を拒絶します。
これがデフォルトです。
       




   

注釈


ALTER TYPE ... ADD VALUE（列挙型に新しい値を追加する構文）がトランザクションブロック内で実行された場合、トランザクションがコミットされるまで新しい値は使えません。
  


列挙型に追加された値を含む比較は、列挙型の元々の要素のみを含む比較よりも低速になることがあります。
通常これは、新しい値のソート位置がリストの最後ではなくBEFOREまたはAFTERを用いて設定された場合のみで起こります。
しかし最後に新しい値が追加された場合であっても起こる可能性があります。
（これは、OIDカウンタが元の列挙型を作成してから「周回」した場合に起こります。）
この速度の低下は通常は大きくありません。
しかしこれが問題であれば、列挙型を削除し再作成する、あるいはデータベースをダンプしリストアすることで最適な性能まで戻すことができます。
  

例


データ型の名前を変更します。


ALTER TYPE electronic_mail RENAME TO email;


  


email型の所有者をjoeに変更します。


ALTER TYPE email OWNER TO joe;


  


email型のスキーマをcustomersに変更します。


ALTER TYPE email SET SCHEMA customers;


  


複合型に新しい属性を追加します。


ALTER TYPE compfoo ADD ATTRIBUTE f3 int;


  


列挙型の特定のソート位置に新しい値を追加します。


ALTER TYPE colors ADD VALUE 'orange' AFTER 'red';


  


列挙型の値の名前を変更します。


ALTER TYPE colors RENAME VALUE 'purple' TO 'mauve';


  


既存の基本型に対するバイナリI/O関数を作成します。


CREATE FUNCTION mytypesend(mytype) RETURNS bytea ...;
CREATE FUNCTION mytyperecv(internal, oid, integer) RETURNS mytype ...;
ALTER TYPE mytype SET (
    SEND = mytypesend,
    RECEIVE = mytyperecv
);


互換性


属性の追加および削除を行う構文は標準SQLの一部です。
他の構文はPostgreSQLの拡張です。
  

関連項目
CREATE TYPE(7), DROP TYPE(7)


名前
ALTER USER — データベースロールを変更する

概要

ALTER USER role_specification [ WITH ] option [ ... ]


ここでoptionは以下の通りです。

      SUPERUSER | NOSUPERUSER
    | CREATEDB | NOCREATEDB
    | CREATEROLE | NOCREATEROLE
    | INHERIT | NOINHERIT
    | LOGIN | NOLOGIN
    | REPLICATION | NOREPLICATION
    | BYPASSRLS | NOBYPASSRLS
    | CONNECTION LIMIT connlimit
    | [ ENCRYPTED ] PASSWORD 'password' | PASSWORD NULL
    | VALID UNTIL 'timestamp'

ALTER USER name RENAME TO new_name

ALTER USER { role_specification | ALL } [ IN DATABASE database_name ] SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER USER { role_specification | ALL } [ IN DATABASE database_name ] SET configuration_parameter FROM CURRENT
ALTER USER { role_specification | ALL } [ IN DATABASE database_name ] RESET configuration_parameter
ALTER USER { role_specification | ALL } [ IN DATABASE database_name ] RESET ALL


ここでrole_specificationは以下の通りです。

    role_name
  | CURRENT_ROLE
  | CURRENT_USER
  | SESSION_USER


説明


ALTER USERはALTER ROLEの別名になりました。
  

互換性


ALTER USER文は、PostgreSQL™の拡張です。
標準SQLでは、ユーザの定義は実装に任されています。
  

関連項目
ALTER ROLE(7)


名前
ALTER USER MAPPING — ユーザマップの定義を変更する

概要

ALTER USER MAPPING FOR { user_name | USER | CURRENT_ROLE | CURRENT_USER | SESSION_USER | PUBLIC }
    SERVER server_name
    OPTIONS ( [ ADD | SET | DROP ] option ['value'] [, ... ] )


説明


ALTER USER MAPPINGはユーザマップの定義を変更します。
  


外部サーバの所有者は任意のユーザに対するそのサーバ向けのユーザマップを変更することができます。
また、サーバ上でUSAGE権限がユーザに付与されていた場合、ユーザは自身の持つユーザ名に対応するユーザマップを変更することができます。
  

パラメータ
	user_name
	

対応付けするユーザ名です。
CURRENT_ROLE、CURRENT_USERとUSERは現在のユーザ名に対応します。
PUBLICは現在および将来にシステム上に存在するすべてのユーザに対応させるために使用します。
     

	server_name
	

ユーザマップのサーバ名です。
     

	OPTIONS ( [ ADD | SET | DROP ] option ['value'] [, ... ] )
	

ユーザマップのオプションを変更します。
新しいオプションは過去に指定されたオプションをすべて上書きします。
ADD、SET、DROPは実行する動作を指定します。
明示的な動作指定がない場合、ADDとみなされます。
オプション名は一意でなければなりません。
またオプションはサーバの外部データラッパーにより検証されます。
     




例


サーバfooのユーザマップbobのパスワードを変更します。


ALTER USER MAPPING FOR bob SERVER foo OPTIONS (SET password 'public');


互換性


ALTER USER MAPPINGはISO/IEC 9075-9(SQL/MED)に準拠しています。
小さな構文上の問題があります。
標準ではFORキーワードを省略します。
CREATE USER MAPPINGとDROP USER MAPPINGではFORを似たような位置で使用し、またIBM DB2（他の主なSQL/MED実装になっています）ではALTER USER MAPPINGで必要としていますので、PostgreSQLは、一貫性と相互運用性を目的に、標準と違いを持たせています。
  

関連項目
CREATE USER MAPPING(7), DROP USER MAPPING(7)


名前
ALTER VIEW — ビュー定義を変更する

概要

ALTER VIEW [ IF EXISTS ] name ALTER [ COLUMN ] column_name SET DEFAULT expression
ALTER VIEW [ IF EXISTS ] name ALTER [ COLUMN ] column_name DROP DEFAULT
ALTER VIEW [ IF EXISTS ] name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
ALTER VIEW [ IF EXISTS ] name RENAME [ COLUMN ] column_name TO new_column_name
ALTER VIEW [ IF EXISTS ] name RENAME TO new_name
ALTER VIEW [ IF EXISTS ] name SET SCHEMA new_schema
ALTER VIEW [ IF EXISTS ] name SET ( view_option_name [= view_option_value] [, ... ] )
ALTER VIEW [ IF EXISTS ] name RESET ( view_option_name [, ... ] )


説明


ALTER VIEWはビューの各種補助属性を変更します。
（ビューを定義する問い合わせを変更したい場合はCREATE OR REPLACE VIEWを使用してください。）
  


ALTER VIEWを使用するためには、ビューの所有者でなければなりません。
またビューのスキーマを変更するためには、新しいスキーマ上にCREATE権限を持たなければなりません。
所有者を変更するには、新しい所有者ロールに対してSET ROLEができなければなりません。また、そのロールはビューのスキーマに対してCREATE権限を持たなければなりません。
（これらの制限は、ビューの削除および再作成によりユーザが実行できないことを、所有者の変更により実行できないようにするためのものです。
しかし、スーパーユーザはすべてのビューの所有者を変更することができます。）
  

パラメータ
	name
	

既存のビューの名前（スキーマ修飾可）です。
     

	column_name
	

既存の列の名前です。
     

	new_column_name
	

既存の列に対する新しい名前です。
     

	IF EXISTS
	

ビューが存在しない場合でもエラーとしません。
この場合には注意メッセージが発行されます。
     

	SET/DROP DEFAULT
	

この構文は列のデフォルト値を設定または削除します。
ビューの列のデフォルト値は、ビューに対するルールやトリガが適用される前にビューを対象とした任意のINSERTまたはUPDATEコマンド内に代入されます。
したがってビューのデフォルトは基となるリレーションのデフォルト値よりも優先度が高くなります。
     

	new_owner
	

ビューの新しい所有者のユーザ名です。
     

	new_name
	

ビューの新しい名前です。
     

	new_schema
	

ビューの新しいスキーマです。
     

	SET ( view_option_name [= view_option_value] [, ... ] ), RESET ( view_option_name [, ... ] )
	

ビューのオプションを設定またはクリアします。
現在、サポートされるオプションは以下の通りです。
      
	check_option (enum)
	

ビューのcheck optionを変更します。
値はlocalまたはcascadedのいずれかでなければなりません。
         

	security_barrier (boolean)
	

ビューのsecurity-barrier属性を変更します。
値はtrueやfalseのような論理値でなければなりません。
         

	security_invoker (boolean)
	

ビューのsecurity-invoker属性を変更します。
値はtrueやfalseのような論理値でなければなりません。
         







注釈


歴史的な理由により、ALTER TABLEをビューに対して使用することができます。
ただし、使用可能な構文は上記のビューに対して許される構文に対応するALTER TABLEの構文のみです。
  

例


ビューfooの名前をbarに変更します。


ALTER VIEW foo RENAME TO bar;


  


更新可能ビューにデフォルトの列値を付与します。


CREATE TABLE base_table (id int, ts timestamptz);
CREATE VIEW a_view AS SELECT * FROM base_table;
ALTER VIEW a_view ALTER COLUMN ts SET DEFAULT now();
INSERT INTO base_table(id) VALUES(1);  -- ts will receive a NULL
INSERT INTO a_view(id) VALUES(2);  -- ts will receive the current time


互換性


ALTER VIEWは標準SQLに対するPostgreSQL™の拡張です。
  

関連項目
CREATE VIEW(7), DROP VIEW(7)


名前
ANALYZE — データベースに関する統計を収集する

概要

ANALYZE [ ( option [, ...] ) ] [ table_and_columns [, ...] ]


ここでoptionは以下の一つです。

    VERBOSE [ boolean ]
    SKIP_LOCKED [ boolean ]
    BUFFER_USAGE_LIMIT size


またtable_and_columnsは以下の通りです。

    [ ONLY ] table_name [ * ] [ ( column_name [, ...] ) ]


説明


ANALYZEはデータベース内のテーブルの内容に関する統計情報を収集し、その結果をpg_statisticシステムカタログに保存します。
問い合わせプランナが最も効率の良い問い合わせの実行計画を決定する際、この統計情報が使用されます。
  


table_and_columnsリストがない場合、ANALYZEは現在のデータベース内で現在のユーザが解析する権限のあるすべてのテーブルとマテリアライズドビューを処理します。
リストがある場合、ANALYZEは指定されたテーブルのみを処理します。
さらにテーブルの列名のリストを与え、その列の統計情報のみを収集することも可能です。
  

パラメータ
	VERBOSE
	

INFOレベルで進行状況の表示を有効にします。
     

	SKIP_LOCKED
	

リレーション上で動作を開始する時に、ANALYZEは衝突しているロックが解放されるのを待たないことを指定します。リレーションを待つことなく即時にロックできない場合、そのリレーションは飛ばされます。
このオプションを指定しても、リレーションのインデックスを開く時、パーティションやテーブル継承の子、ある種類の外部テーブルからサンプル行を取得する時には、ANALYZEがブロックするかもしれないことに注意してください。
また、通常ANALYZEは指定されたパーティションテーブルのパーティションをすべて処理しますが、このオプションによりANALYZEは、パーティションテーブル上に衝突するロックがあれば、パーティションをすべてスキップします。
     

	BUFFER_USAGE_LIMIT
	

ANALYZEのバッファアクセスストラテジリングバッファサイズを指定します。
このサイズは、このストラテジのパートとして再利用される共有バッファの数を計算するために使用されます。
0はバッファアクセスストラテジの使用を無効にします。
このオプションが指定されていない場合、ANALYZEはvacuum_buffer_usage_limitの値を使用します。
設定を高くするとANALYZEの実行速度が速くなりますが、設定が大き過ぎると、とても多くの他の有用なページが共有バッファから追い出されてしまう可能性があります。
最小値は128 kBで、最大値は16 GBです。
     

	boolean
	

選択したオプションを有効にするか無効にするか指定します。
オプションを有効にする場合にはTRUE、ONまたは1と書くことができ、無効にする場合にはFALSE、OFFまたは0と書くことができます。
booleanの値は省略することもでき、その場合にはTRUEとみなされます。
     

	size
	

メモリの量をキロバイト単位で指定します。
サイズは、数値のサイズに続いて、B(バイト)、kB(キロバイト)、MB(メガバイト)、GB(ギガバイト)またはTB(テラバイト)のいずれか1つのメモリ単位を含む文字列として指定することもできます。
     

	table_name
	

解析の対象とするテーブルの名前です（スキーマ修飾名も可）。
省略された場合、現在のデータベースの中のすべての通常のテーブル、パーティションテーブル、マテリアライズドビュー（外部テーブルは除く）が解析されます。
テーブル名の前にONLYが指定されている場合は、そのテーブルのみ解析されます。
ONLYが指定されていない場合は、対象のテーブルとその継承の子テーブルやパーティション（もしあれば）がすべて解析されます。
オプションで、テーブル名の後に*を指定することで、継承の子テーブル（またはパーティション）が解析の対象であると明示的に示すことができます。
     

	column_name
	

解析の対象とする列名です。
デフォルトは全ての列です。
     




出力


VERBOSEが指定された場合、ANALYZEは進捗メッセージとして処理中のテーブルを表示します。
さらに、テーブルについての各種統計情報も表示されます。
   

注釈


テーブルを解析するためには、通常そのテーブルに対するMAINTAIN権限が必要です。
しかしながら、データベースの所有者は、共有カタログを除いて、そのデータベースのテーブルをすべて解析できます。
ANALYZEは呼び出したユーザが解析する権限のないテーブルをスキップします。
  


外部テーブルは明示的に選択された場合にのみ解析されます。
すべての外部データラッパーがANALYZEをサポートしているとは限りません。
テーブルのラッパーがANALYZEをサポートしない場合、コマンドは警告を出力し、何も行いません。
  


デフォルトのPostgreSQL™の設定では、自動バキュームデーモン（「自動バキュームデーモン」参照）が、データが最初にロードされた時や通常の操作を通して変更された時にテーブルの自動解析まで面倒をみます。
もし自動バキュームが無効にしているならばANALYZEは定期的に、もしくは、テーブルの内容に大きな変更がある度に行うことを推奨します。
統計情報が正確であれば、プランナが最も適切な問い合わせ計画を選択できるようになります。
これによって、問い合わせ処理の速度が向上します。
読み取りの多いデータベースでは、VACUUMとANALYZEは、1日1回、データベースがあまり使用されていない時間帯に実行することが一般的です。
（非常に更新が激しい場合、これでは十分ではありません。）
  


ANALYZEの実行中、search_pathは一時的にpg_catalog, pg_tempに変更されます。
  


ANALYZEは、対象とするテーブルの読み取りロックのみを必要とします。したがって、そのテーブルに対する他の非DDL操作と並行して実行できます。
  


通常、ANALYZEによって収集される統計情報には、各列の最頻値と各列の近似的なデータ分布を示すヒストグラムが含まれます。
ANALYZEによってあまり意味がないとみなされた場合（例えば、一意性制約が付加された列では、頻出値というものは存在しません）や、列のデータ型が適切な演算子をサポートしていない場合は、片方もしくは両方の情報を省略することがあります。
24章定常的なデータベース保守作業に、統計情報についての詳細が記載されています。
  


巨大なテーブルでは、ANALYZEは、全ての行を検査するのではなく、テーブルの中からランダムにサンプルを取り出して使用します。
これによって、非常に巨大なテーブルであっても短時間で解析することが可能です。
しかし、このようにして得られた統計情報はおおよそのものでしかなく、テーブルの内容に変更がなくてもANALYZEを実行する度に変化することに注意してください。
これにより、EXPLAINが表示する、プランナの推定コストも多少変化する可能性があります。
稀に、このような不確定要素のせいで、プランナがANALYZEを実行した後に異なる問い合わせ計画を選択してしまうことがあります。
これを防止するには、以下に示すようにANALYZEで収集される統計情報の量を増やしてください。
  


設定パラメータ変数default_statistics_targetを調整するか、もしくはALTER TABLE ... ALTER COLUMN ... SET STATISTICSを使用して列単位の統計情報目標を列毎に設定することで、解析の範囲を制御することができます。
目標値として設定するのは、典型的な値のリストにおけるエントリ数の最大値とヒストグラムのビンの最大数です。
デフォルトの目標値は100です。
しかし、この値は、プランナの推定精度とANALYZEの処理時間、pg_statisticの占める容量とのトレードオフによって大きくも小さくも調整されることがあります。
統計情報目標を0に設定すると、その列に関する統計情報の収集は無効になります。
決してWHERE句、GROUP BY句、ORDER BY句に使用されない列に対しては、このような設定が有用です。
プランナにとってそのような列の統計情報は不要だからです。
  


解析対象列の統計情報目標の最大値によって、統計情報を作成するためにテーブルから抽出する行数が決定します。
目標を大きくすると、比例して、ANALYZEに要する時間とディスク容量が増加します。
  


ANALYZEで推定される値の1つに各列に出現する個別値の個数があります。
行の部分集合のみしか検査されませんので、統計情報目標をできる限り大きくしたとしても、この推定値はかなり不正確になることが時々あり得ます。
この不正確性のために悪い問い合わせ計画となる場合、より正確な値を手作業で求めて、ALTER TABLE ... ALTER COLUMN ... SET (n_distinct = ...)で設定することができます。
  


解析中のテーブルが継承の子テーブルを持つ場合、ANALYZEは統計情報を2組収集します。1組目は親テーブルのみの行に関するもので、2組目は親テーブルとその子テーブルすべての両方の行を含むものです。
継承ツリーを全体として処理する問い合わせの計画作成では、この2組目の統計情報が必要です。
しかし自動バキュームデーモンでは、そのテーブルに対して自動的に解析を行うかどうかを決定する際に親テーブル上の挿入や更新のみを考慮します。
このテーブルへの挿入や更新がほとんどなければ、継承関係に対する統計情報は手作業でANALYZEを実行しない限り最新状態にはなりません。
デフォルトでは、ANALYZEは各継承の子テーブルの統計情報も再帰的に収集して更新します。
これを無効にするには、ONLYキーワードを使用します。
  


パーティションテーブルの場合、ANALYZEはすべてのパーティションの行をサンプリングして統計情報を収集します。
デフォルトでは、ANALYZEは各パーティションの統計情報も再帰的に収集して更新します。
これを無効にするには、ONLYキーワードを使用します。
  


自動バキュームデーモンはパーティション化テーブルを処理しませんし、子だけが変更された場合に継承の親を処理することもありません。
テーブル階層の統計情報を最新に保つためには、周期的に手動でANALYZEを実行することが通常は必要です。
  


子テーブルやパーティションが、外部データラッパーがANALYZEをサポートしない外部テーブルであった場合には、そのテーブルは継承統計情報を集めるときに無視されます。
  


解析しようとするテーブルが完全に空である場合、ANALYZEはそのテーブルに対する新しい解析情報を記録しません。
これまでの統計情報はすべて保持されます。
  


ANALYZEを実行している各バックエンドはその進捗をpg_stat_progress_analyzeビューで報告します。
詳細は「ANALYZEの進捗状況のレポート」を参照してください。
  

互換性


標準SQLにはANALYZE文はありません。
  


PostgreSQL™バージョン11より前では次の構文が使われていましたが、今でもサポートされています。


ANALYZE [ VERBOSE ] [ table_and_columns [, ...] ]


  

関連項目
VACUUM(7), vacuumdb(1), 「コストに基づくVacuum遅延」, 「自動バキュームデーモン」, 「ANALYZEの進捗状況のレポート」


名前
BEGIN — トランザクションブロックを開始する

概要

BEGIN [ WORK | TRANSACTION ] [ transaction_mode [, ...] ]


transaction_modeは以下のいずれかです。

    ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
    READ WRITE | READ ONLY
    [ NOT ] DEFERRABLE


説明


BEGINはトランザクションブロックを初期化します。
BEGINコマンド以降の文は全て、明示的なCOMMITもしくはROLLBACKが与えられるまで、単一のトランザクションの中で実行されます。
デフォルト（BEGINがない場合）は、PostgreSQL™はトランザクションを「自動コミット」で実行します。
つまり、各文はそれぞれ固有のトランザクションの中で実行され、文の終わりで暗黙的にコミットが実行されます（これは実行が成功した場合です。失敗した場合はロールバックされます）。
  


トランザクションブロック内では、文はより迅速に実行されます。
なぜなら、トランザクションの開始やコミットは、CPUとディスクにかなり高い負荷をかけるからです。
また、1つのトランザクションで複数の文を実行することは、複数の関連するテーブルを更新する際、確実に一貫性を保つためにも役立ちます。
関連する更新の中に完了していないものが存在する中間的な状態が、他のセッションから参照できなくなるからです。
  


分離レベル、読み書きモード、または遅延モードが指定されている場合、新しいトランザクションは、SET TRANSACTIONが実行された時と同様の特性を持ちます。
  

パラメータ
	WORK, TRANSACTION
	

省略可能なキーワードです。何も効果がありません。
     





BEGIN文のこの他のパラメータについては、SET TRANSACTION(7)を参照してください。
  

注釈


START TRANSACTIONにはBEGINと同じ機能があります。
  


トランザクションを終了させるにはCOMMITまたはROLLBACKを使用してください。
  


トランザクションブロック内でBEGINを発行すると、警告メッセージが表示されます。
ただし、トランザクションの状態には影響ありません。
トランザクションブロック内でトランザクションを入れ子にするには、セーブポイントを使用してください
（詳しくはSAVEPOINT(7)を参照してください）。
  


後方互換性の保持のため、連続するtransaction_modes間のカンマは省略することができます。
  

例


トランザクションブロックを開始します。



BEGIN;


互換性


BEGINはPostgreSQL™の拡張です。
標準SQLのSTART TRANSACTIONコマンドと等価です。
そのリファレンスページには互換性に関する詳細な情報が含まれます。
  


DEFERRABLE transaction_modeはPostgreSQL™の言語拡張です。
  


埋め込みSQLでは、BEGINというキーワードを異なった目的に使用しています。
データベースアプリケーションを移植する時は、トランザクションの意味で使用されているのかどうかに注意してください。
  

関連項目
COMMIT(7), ROLLBACK(7), START TRANSACTION(7), SAVEPOINT(7)


名前
CALL — プロシージャを呼び出す

概要

CALL name ( [ argument ] [, ...] )


説明


CALLは、プロシージャを実行します。
  


プロシージャがいくつかの出力パラメータを持っている場合、それらの出力パラメータの値を含んだ結果の行を返します。
  

パラメータ
	name
	

プロシージャの名前です（スキーマ修飾名も可）。
     

	argument
	

プロシージャの呼び出しに対する引数式です。
     


引数は、name => valueという構文を使ってパラメータ名を含むことができます。
これは通常の関数呼び出しと同様に動作します。詳細は「関数呼び出し」を参照してください。
     


引数は、OUTパラメータを含む、デフォルトのないプロシージャパラメータすべてに対して与えなければなりません。
しかしながら、OUTパラメータに一致する引数は評価されませんので、それらに対してはNULLとだけ書くのが慣例です。
(OUTパラメータに対して何か他のものを書くと、PostgreSQL™の将来のバージョンで互換性の問題が起きるかもしれません。)
     




注釈


プロシージャの呼び出しを許可されるためには、ユーザがプロシージャに対するEXECUTE権限を持つ必要があります。
  


関数（プロシージャではなく）の呼び出しには、代わりにSELECTを使用します。
  


トランザクションブロック内でCALLが実行される場合、呼び出されたプロシージャはトランザクション制御文を実行できません。
トランザクション制御文は、CALLが自身のトランザクション内で実行された場合のみ許可されます。
  


PL/pgSQLではCALLコマンド内の出力パラメータの扱いが異なります。
「プロシージャを呼び出す」を参照してください。
  

例

CALL do_db_maintenance();


互換性


CALLは、出力パラメータの扱いを除いて標準SQLに準拠しています。
ユーザは出力パラメータの値を受け取る変数を書くべきだと標準は述べています。
  

関連項目
CREATE PROCEDURE(7)


名前
CHECKPOINT — 先行書き込みログ（WAL）のチェックポイントを強制的に実行する

概要

CHECKPOINT


説明


チェックポイントとは、ログ内の情報を反映するために全てのデータファイルを更新する、先行書き込みログ（WAL）のある一時点を指します。
チェックポイントによって、全てのデータファイルがディスクに書き出されます。
チェックポイントの間に何が起きるかについては、「WALの設定」を参照してください。
  


CHECKPOINTコマンドは、コマンドが発行された時、（「チェックポイント」によって制御される）システムによって予定された通常のチェックポイントを待たず、即座に強制的にチェックポイント処理を行います。
通常の運用時にCHECKPOINTが使用されることは想定していません。
  


リカバリ中に実行された場合、CHECKPOINTは新しくチェックポイントを書き出さずにリスタートポイント（「WALの設定」参照）を強制します。
  


CHECKPOINTを呼び出すことができるのは、スーパーユーザまたはpg_checkpointロールの権限を持つユーザのみです。
  

互換性


CHECKPOINTコマンドは、PostgreSQL™の拡張です。
  



名前
CLOSE — カーソルを閉じる

概要

CLOSE { name | ALL }


説明


CLOSEは、開いたカーソルに関連するリソースを解放します。
カーソルが閉じられた後は、そのカーソルに対する操作はできません。
カーソルは必要がなくなった時点で閉じるべきです。
  


トランザクションがCOMMITもしくはROLLBACKで終了された時点で、開いている保持不可能カーソルは全て暗黙的に閉じられます。
ROLLBACKにより保持可能カーソルを作成したトランザクションをアボートした場合、この保持可能カーソルは暗黙的に閉じられます。
作成したトランザクションが正常にコミットされた場合、保持可能カーソルは明示的にCLOSEが実行されるまで、あるいは、クライアントとの接続が切断されるまで、開いたままになります。
  

パラメータ
	name
	

閉じる対象となる、現在開いているカーソルの名前です。
     

	ALL
	

すべてのカーソルを閉じます。
     




注釈


PostgreSQL™には明示的なカーソルのOPEN文がありません。
カーソルは宣言された時に開いたとみなされます。
カーソルの宣言にはDECLARE文を使用してください。
  


pg_cursorsシステムビューを問い合わせることにより利用可能なすべてのカーソルを確認することができます。
  


カーソルがセーブポイントの後に閉じられ、後にロールバックした場合には、CLOSEはロールバックされません。
つまり、そのカーソルは閉じたままとなります。
  

例


カーソルliahonaを閉じます。


CLOSE liahona;


互換性


CLOSEは標準SQLと完全な互換性を持ちます。
ただし、CLOSE ALLはPostgreSQL™の拡張です。
  

関連項目
DECLARE(7), FETCH(7), MOVE(7)


名前
CLUSTER — インデックスに従ってテーブルをクラスタ化する

概要

CLUSTER [ ( option [, ...] ) ] [ table_name [ USING index_name ] ]


ここでoptionは以下のいずれかです。

    VERBOSE [ boolean ]


説明


CLUSTERは、index_nameで指定されたインデックスに基づき、table_nameで指定されたテーブルをクラスタ化するように、PostgreSQL™に指示します。
このインデックスは前もってtable_name上に定義されていなければなりません。
  


テーブルがクラスタ化されると、それぞれのテーブルはインデックス情報に基づいて物理的に並べ直されます。
クラスタ化は、1回限りの操作です。
クラスタ化後にテーブルが更新されても、その変更はクラスタ化されません。
つまり、新規に追加された行や更新された行は、インデックス順には保管されません。
（インデックス順に保管したい場合は、コマンドを再度入力し、定期的に再クラスタ化を行います。
また、更新される行は十分な領域が利用可能ならば同一ページ内に保持されますので、テーブルのfillfactor格納パラメータを100%より小さく設定することで、更新処理中のクラスタ順序付けを保護するのに役に立ちます。）
  


テーブルがクラスタ化されると、PostgreSQL™はクラスタ化に使用されたインデックスを記録します。
CLUSTER table_nameという構文によって、以前と同じインデックスを使用してテーブルを再クラスタ化します。
またALTER TABLEのCLUSTERもしくはSET WITHOUT CLUSTER構文を使用して、将来のクラスタ化操作で使用するインデックスを設定したり、過去の設定を取り消すことができます。
  


table_nameを指定しないでCLUSTERを実行した場合、現在のデータベース内の以前にクラスタ化されたテーブルのうち、呼び出したユーザが権限を持つすべてのテーブルを再クラスタ化します。
この形式のCLUSTERを、トランザクションブロック内では実行できません。
  


クラスタ化を行っているテーブルでは、ACCESS EXCLUSIVEロックが獲得されています。
これにより、CLUSTERが終わるまで、そのテーブルに対するデータベース操作（読み書き両方）はできません。
  

パラメータ
	table_name
	

テーブルの名前です（スキーマ修飾名も可）。
     

	index_name
	

インデックスの名前です。
     

	VERBOSE
	

各テーブルのクラスタ化を行う時にINFOレベルで進行状況報告を出力します。
     

	boolean
	

選択したオプションを有効にするか無効にするか指定します。
オプションを有効にする場合にはTRUE、ONまたは1と書くことができ、無効にする場合にはFALSE、OFFまたは0と書くことができます。
booleanの値は省略することもでき、その場合にはTRUEとみなされます。
     




注釈


テーブルをクラスタ化するには、テーブルに対するMAINTAIN権限が必要です。
   


テーブル内の個々の行にランダムにアクセスする場合、テーブル内のデータの順序は重要でありません。
しかし、テーブル内の特定のデータにアクセスが集中していて、それらのデータをひとまとめにしているインデックスが存在する時は、CLUSTERによる利益を享受できます。
テーブルからインデックスの値の範囲や、一致する複数の行を保有する1つのインデックスの値を要求する場合、CLUSTERが役に立ちます。
一度インデックスが一致する最初の行に対するテーブルページを認識すると、一致する他の全ての行も同じテーブルページに存在する可能性が高いので、ディスクアクセスを減らして問い合わせ処理の速度を向上することができるからです。
   


CLUSTERは、指定されたインデックスによるインデックススキャン、または（インデックスがB-Treeの場合）シーケンシャルスキャン後のソートのいずれかを用いて、テーブルを再ソートすることができます。
プランナのコストパラメータと利用可能な統計情報に基づき、より高速な方式の選択を試みます。
   


CLUSTERの実行中、search_pathは一時的にpg_catalog, pg_tempに変更されます。
   


インデックススキャンが使用される場合、インデックス順にテーブルデータを並べた、テーブルの一時コピーが作成されます。
同様に、テーブルの各インデックスの一時コピーも作成されます。
したがって、ディスクには、少なくともテーブルとインデックスの合計サイズと同じ容量の空き領域が必要です。
   


シーケンシャルスキャンとソートが使用される場合も一時的なソートファイルが作成されます。
一時的に必要となるサイズの最大値はテーブルサイズの倍のサイズにインデックスサイズを加えた値となります。
この方式はインデックススキャンより高速になることが多いのですが、必要なディスク容量に耐えられない場合は、一時的にenable_sortをoffにすることで、この方式を無効にすることができます。
   


クラスタ処理の前にmaintenance_work_memを程良く大きな値に設定することを勧めます。
（しかしCLUSTER操作専用に割り当てられるRAMの容量を超えないようにしてください。）
   


プランナはテーブルの順序付けに関する統計情報を記録しているため、新しくクラスタ化されたテーブルでは、ANALYZEを実行することが推奨されます。
そうしないと、プランナが問い合わせ計画を適切に選択できない可能性があります。
   


CLUSTERはどのインデックスでクラスタ化したかを記録していますので、対象のテーブルを定期的に再クラスタ化できるように、最初にクラスタ化したいテーブルを手作業でクラスタ化し、その後にパラメータをまったく持たないCLUSTERを実行する定期的な保守用スクリプトを設定することができます。
   


CLUSTERを実行している各バックエンドはその進捗をpg_stat_progress_clusterビューで報告します。
詳細は「CLUSTERの進捗状況のレポート」を参照してください。
  


パーティションテーブルをクラスタ化すると、指定したパーティションインデックスのパーティションを使用して各パーティションがクラスタ化されます。
パーティションテーブルをクラスタ化する場合は、インデックスを省略できません。
パーティションテーブルのCLUSTERは、トランザクションブロック内では実行できません。
   

例


インデックスemployees_indに基づいて、テーブルempをクラスタ化します。


CLUSTER employees USING employees_ind;


  


以前に使用したインデックスを使用して、テーブルemployeesをクラスタ化します。


CLUSTER employees;


  


データベース内の、以前にクラスタ化されたテーブルを全てクラスタ化します。


CLUSTER;


互換性


標準SQLにはCLUSTER文はありません。
  


次の構文は、PostgreSQL™ 17より前のバージョンで使われていたもので、今でもサポートされています。


CLUSTER [ VERBOSE ] [ table_name [ USING index_name ] ]


  


次の構文は、PostgreSQL™ 8.3より前のバージョンで使われていたもので、今でもサポートされています。


CLUSTER index_name ON table_name


  

関連項目
clusterdb(1), 「CLUSTERの進捗状況のレポート」


名前
COMMENT — オブジェクトのコメントを定義する、または変更する

概要

COMMENT ON
{
  ACCESS METHOD object_name |
  AGGREGATE aggregate_name ( aggregate_signature ) |
  CAST (source_type AS target_type) |
  COLLATION object_name |
  COLUMN relation_name.column_name |
  CONSTRAINT constraint_name ON table_name |
  CONSTRAINT constraint_name ON DOMAIN domain_name |
  CONVERSION object_name |
  DATABASE object_name |
  DOMAIN object_name |
  EXTENSION object_name |
  EVENT TRIGGER object_name |
  FOREIGN DATA WRAPPER object_name |
  FOREIGN TABLE object_name |
  FUNCTION function_name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ] |
  INDEX object_name |
  LARGE OBJECT large_object_oid |
  MATERIALIZED VIEW object_name |
  OPERATOR operator_name (left_type, right_type) |
  OPERATOR CLASS object_name USING index_method |
  OPERATOR FAMILY object_name USING index_method |
  POLICY policy_name ON table_name |
  [ PROCEDURAL ] LANGUAGE object_name |
  PROCEDURE procedure_name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ] |
  PUBLICATION object_name |
  ROLE object_name |
  ROUTINE routine_name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ] |
  RULE rule_name ON table_name |
  SCHEMA object_name |
  SEQUENCE object_name |
  SERVER object_name |
  STATISTICS object_name |
  SUBSCRIPTION object_name |
  TABLE object_name |
  TABLESPACE object_name |
  TEXT SEARCH CONFIGURATION object_name |
  TEXT SEARCH DICTIONARY object_name |
  TEXT SEARCH PARSER object_name |
  TEXT SEARCH TEMPLATE object_name |
  TRANSFORM FOR type_name LANGUAGE lang_name |
  TRIGGER trigger_name ON table_name |
  TYPE object_name |
  VIEW object_name
} IS { string_literal | NULL }


ここでaggregate_signatureは以下の通りです。

* |
[ argmode ] [ argname ] argtype [ , ... ] |
[ [ argmode ] [ argname ] argtype [ , ... ] ] ORDER BY [ argmode ] [ argname ] argtype [ , ... ]


説明


COMMENTは、データベースオブジェクトに関するコメントを保存します。
  


各オブジェクトに保存できるコメント文字列は1つだけです。
ですので、コメントを編集するためには、同一オブジェクトに対して新しくCOMMENTコマンドを発行してください。
コメントを削除するには、テキスト文字列の部分にNULLを記述してください。
オブジェクトが削除された時、コメントは自動的に削除されます。
  


コメントを付加するオブジェクトでは、SHARE UPDATE EXCLUSIVEロックが獲得されます。
  


ほとんどの種類のオブジェクトでは、オブジェクトの所有者のみがコメントを設定できます。
ロールには所有者がありませんので、COMMENT ON ROLEにおける規則は、スーパーユーザロールに対するコメント付けはスーパーユーザでなければならない、または、CREATEROLE権限を持ち、対象のロールに対してADMIN OPTIONを付与されていなければならないとなります。
同様に、アクセスメソッドには所有者がいないため、アクセスメソッドにコメントをつけるにはスーパーユーザでなければなりません。
当然ながらスーパーユーザは何にでもコメントを付けることができます。
  


コメントは、psqlの\d系のコマンドで表示できます。
obj_description()、col_description()、shobj_descriptionという名前の、psqlが使用する組み込み関数を使うように構築することで、他のユーザインタフェースを使ってコメントを取り出せるようになります
（表9.82「コメント情報関数」を参照してください）。
  

パラメータ
	object_name, relation_name.column_name, aggregate_name, constraint_name, function_name, operator_name, policy_name, procedure_name, routine_name, rule_name, trigger_name
	

コメントを付加するオブジェクトの名前です。
スキーマの中にあるオブジェクト(テーブル、関数など)の名前はスキーマ修飾可能です。
列にコメントを付与する場合、relation_nameはテーブル、ビュー、複合型、外部テーブルを参照するものでなければなりません。
     

	table_name, domain_name
	

制約、トリガ、ルール、ポリシーにコメントを作成する場合、これらのパラメータはオブジェクトが定義されているテーブルまたはドメインの名前を指定します。
     

	source_type
	

キャストの変換元データ型の名前です。
      

	target_type
	

キャストの変換先のデータ型の名前です。
      

	argmode
	

関数、プロシージャまたは集約の引数のモードで、IN、OUT、INOUT、VARIADICのいずれかです。
省略時のデフォルトはINです。
関数を識別するには入力引数のみが必要ですので、COMMENTが実際にはOUT引数を無視することに注意してください。
したがって、IN、INOUTおよびVARIADIC引数を列挙することで十分です。
     

	argname
	

関数、プロシージャまたは集約の引数の名前です。
関数の識別には引数データ型のみが必要ですので、COMMENTが実際には引数の名前を無視することに注意してください。
     

	argtype
	

関数、プロシージャまたは集約の引数のデータ型です。
     

	large_object_oid
	

ラージオブジェクトのOIDです。
     

	left_type, right_type
	

演算子の引数のデータ型（スキーマ修飾も可）です。
前置演算子における存在しない引数についてはNONEと記述してください。
     

	PROCEDURAL
	

これには意味はありません。
      

	type_name
	

変換のデータ型の名前です。
      

	lang_name
	

変換の言語の名前です。
      

	string_literal
	

新しいコメントの内容です。文字列リテラルとして記述します。
     

	NULL
	

コメントを削除するにはNULLと記述します。
     




注釈


現在、コメントの閲覧に関するセキュリティ機構は存在しません。
データベースに接続したユーザは誰でも、そのデータベース内のオブジェクトのコメントを参照することができます。
データベース、ロール、テーブル空間などの共有オブジェクトに対するコメントは大域的に格納され、クラスタ内の任意のデータベースに接続した任意のユーザが共有オブジェクトに対するコメントをすべて見ることができます。
そのため、コメントにはセキュリティ的に重大な情報を記載してはいけません。
  

例


テーブルmytableにコメントを付けます。



COMMENT ON TABLE mytable IS 'This is my table.';




先ほどのコメントを削除します。



COMMENT ON TABLE mytable IS NULL;


  


その他の例をいくつか示します。



COMMENT ON ACCESS METHOD gin IS 'GIN index access method';
COMMENT ON AGGREGATE my_aggregate (double precision) IS 'Computes sample variance';
COMMENT ON CAST (text AS int4) IS 'Allow casts from text to int4';
COMMENT ON COLLATION "fr_CA" IS 'Canadian French';
COMMENT ON COLUMN my_table.my_column IS 'Employee ID number';
COMMENT ON CONVERSION my_conv IS 'Conversion to UTF8';
COMMENT ON CONSTRAINT bar_col_cons ON bar IS 'Constrains column col';
COMMENT ON CONSTRAINT dom_col_constr ON DOMAIN dom IS 'Constrains col of domain';
COMMENT ON DATABASE my_database IS 'Development Database';
COMMENT ON DOMAIN my_domain IS 'Email Address Domain';
COMMENT ON EVENT TRIGGER abort_ddl IS 'Aborts all DDL commands';
COMMENT ON EXTENSION hstore IS 'implements the hstore data type';
COMMENT ON FOREIGN DATA WRAPPER mywrapper IS 'my foreign data wrapper';
COMMENT ON FOREIGN TABLE my_foreign_table IS 'Employee Information in other database';
COMMENT ON FUNCTION my_function (timestamp) IS 'Returns Roman Numeral';
COMMENT ON INDEX my_index IS 'Enforces uniqueness on employee ID';
COMMENT ON LANGUAGE plpython IS 'Python support for stored procedures';
COMMENT ON LARGE OBJECT 346344 IS 'Planning document';
COMMENT ON MATERIALIZED VIEW my_matview IS 'Summary of order history';
COMMENT ON OPERATOR ^ (text, text) IS 'Performs intersection of two texts';
COMMENT ON OPERATOR - (NONE, integer) IS 'Unary minus';
COMMENT ON OPERATOR CLASS int4ops USING btree IS '4 byte integer operators for btrees';
COMMENT ON OPERATOR FAMILY integer_ops USING btree IS 'all integer operators for btrees';
COMMENT ON POLICY my_policy ON mytable IS 'Filter rows by users';
COMMENT ON PROCEDURE my_proc (integer, integer) IS 'Runs a report';
COMMENT ON PUBLICATION alltables IS 'Publishes all operations on all tables';
COMMENT ON ROLE my_role IS 'Administration group for finance tables';
COMMENT ON ROUTINE my_routine (integer, integer) IS 'Runs a routine (which is a function or procedure)';
COMMENT ON RULE my_rule ON my_table IS 'Logs updates of employee records';
COMMENT ON SCHEMA my_schema IS 'Departmental data';
COMMENT ON SEQUENCE my_sequence IS 'Used to generate primary keys';
COMMENT ON SERVER myserver IS 'my foreign server';
COMMENT ON STATISTICS my_statistics IS 'Improves planner row estimations';
COMMENT ON SUBSCRIPTION alltables IS 'Subscription for all operations on all tables';
COMMENT ON TABLE my_schema.my_table IS 'Employee Information';
COMMENT ON TABLESPACE my_tablespace IS 'Tablespace for indexes';
COMMENT ON TEXT SEARCH CONFIGURATION my_config IS 'Special word filtering';
COMMENT ON TEXT SEARCH DICTIONARY swedish IS 'Snowball stemmer for Swedish language';
COMMENT ON TEXT SEARCH PARSER my_parser IS 'Splits text into words';
COMMENT ON TEXT SEARCH TEMPLATE snowball IS 'Snowball stemmer';
COMMENT ON TRANSFORM FOR hstore LANGUAGE plpython3u IS 'Transform between hstore and Python dict';
COMMENT ON TRIGGER my_trigger ON my_table IS 'Used for RI';
COMMENT ON TYPE complex IS 'Complex number data type';
COMMENT ON VIEW my_view IS 'View of departmental costs';


互換性


標準SQLにはCOMMENTはありません。
  



名前
COMMIT — 現在のトランザクションをコミットする

概要

COMMIT [ WORK | TRANSACTION ] [ AND [ NO ] CHAIN ]


説明


COMMITは現在のトランザクションをコミットします。
そのトランザクションで行われた全ての変更が他のユーザから見えるようになり、クラッシュが起きても一貫性が保証されるようになります。
  

パラメータ
	WORK, TRANSACTION
	

省略可能なキーワードです。何も効果はありません。
     

	AND CHAIN
	

AND CHAINが指定されていれば、新しいトランザクションは、直前に終了したものと同じトランザクションの特性(SET TRANSACTION(7)を参照してください)で即時に開始されます。
そうでなければ、新しいトランザクションは開始されません。
     




注釈


トランザクションをアボートするにはROLLBACK(7)を使用してください。
  


トランザクションの外部でCOMMITを発行しても特に問題は発生しません。
ただし、警告メッセージが表示されます。
トランザクションの外部でCOMMIT AND CHAINを発行するとエラーになります。
  

例


現在のトランザクションをコミットし、全ての変更を永続化します。


COMMIT;


互換性


コマンドCOMMITは標準SQLに準拠しています。
COMMIT TRANSACTIONの構文はPostgreSQLでの拡張です。
  

関連項目
BEGIN(7), ROLLBACK(7)


名前
COMMIT PREPARED — 二相コミット用に事前に準備されたトランザクションをコミットする

概要

COMMIT PREPARED transaction_id


説明


COMMIT PREPAREDは準備された状態のトランザクションをコミットします。
  

パラメータ
	transaction_id
	

コミット対象のトランザクションのトランザクション識別子です。
     




注釈


準備されたトランザクションをコミットするには、元のトランザクションを実行したユーザと同じユーザか、スーパーユーザでなければなりません。
しかし、トランザクションを実行したセッションと同じセッションである必要はありません。
  


このコマンドはトランザクションブロックの内側では実行できません。
準備されたトランザクションは即座にコミットされます。
  


利用可能な準備されたトランザクションはすべて、pg_prepared_xactsシステムビューで列挙されます。
  

例


foobarトランザクション識別子で識別されるトランザクションをコミットします。



COMMIT PREPARED 'foobar';


互換性


COMMIT PREPAREDはPostgreSQL™の拡張です。
これは外部のトランザクション管理システムによる利用を意図したものです。
トランザクション管理システムの一部（X/Open XAなど）は標準化されていますが、こうしたシステムのSQL側は標準化されていません。
  

関連項目
PREPARE TRANSACTION(7), ROLLBACK PREPARED(7)


名前
COPY — ファイルとテーブルの間でデータをコピーする

概要

COPY table_name [ ( column_name [, ...] ) ]
    FROM { 'filename' | PROGRAM 'command' | STDIN }
    [ [ WITH ] ( option [, ...] ) ]
    [ WHERE condition ]

COPY { table_name [ ( column_name [, ...] ) ] | ( query ) }
    TO { 'filename' | PROGRAM 'command' | STDOUT }
    [ [ WITH ] ( option [, ...] ) ]


ここでoptionは以下の一つです。

    FORMAT format_name
    FREEZE [ boolean ]
    DELIMITER 'delimiter_character'
    NULL 'null_string'
    DEFAULT 'default_string'
    HEADER [ boolean | MATCH ]
    QUOTE 'quote_character'
    ESCAPE 'escape_character'
    FORCE_QUOTE { ( column_name [, ...] ) | * }
    FORCE_NOT_NULL { ( column_name [, ...] ) | * }
    FORCE_NULL { ( column_name [, ...] ) | * }
    ON_ERROR error_action
    REJECT_LIMIT maxerror
    ENCODING 'encoding_name'
    LOG_VERBOSITY verbosity


説明


COPYコマンドは、PostgreSQL™のテーブルと標準のファイルシステムのファイル間でデータを移動します。
COPY TOコマンドはテーブルの内容をファイルにコピーします。
また、COPY FROMコマンドは、ファイルからテーブルへとデータをコピーします（この時、既にテーブルにあるデータにコピーした内容を追加します）。
また、COPY TOによりSELECT問い合わせの結果をコピーすることができます。
  


列リストが指定されている場合、COPY TOは指定された列のデータのみをファイルへコピーします。
COPY FROMでは、ファイルの各フィールドが順に指定された列に挿入されます。
COPY FROMの列リストに含まれていないテーブル列には、デフォルト値が挿入されます。
  


ファイル名付きのCOPYコマンドは、PostgreSQL™サーバに対して直接ファイルへの読み書きをするように命じます。
指定したファイルは必ずPostgreSQL™ユーザ(サーバを実行しているユーザID)からアクセスできる必要があります。
また、ファイル名はサーバから見たように指定されなければなりません。
PROGRAMが指定された場合、サーバは指定したコマンドを実行しその標準出力を読み取る、または、プログラムの標準入力に書き出します。
コマンドはサーバからの視点で指定しなければならず、また、PostgreSQL™ユーザによって実行できなければなりません。
STDINやSTDOUTが指定された場合、データはクライアントとサーバ間を流れます。
  


COPYを実行している各バックエンドはその進捗をpg_stat_progress_copyビューで報告します。
詳細は「COPYの進捗状況のレポート」を参照してください。
  


デフォルトでは、COPYは処理中にエラーが発生した場合に失敗します。
ファイル全体のロードを可能な限り試みるのが望ましい場合、ON_ERROR句を使用して別の動作を指定できます。
  

パラメータ
	table_name
	

既存のテーブルの名前です（スキーマ修飾名も可）。
     

	column_name
	

コピー対象の列リストで、省略可能です。
列リストが指定されていない場合は、生成列を除いてテーブルの全ての列がコピーされます。
     

	query
	

SELECT、VALUES、INSERT、UPDATE、DELETEあるいはMERGEコマンドで、その結果がコピーされます。
問い合わせを括弧でくくる必要があることに注意してください。
     


INSERT、UPDATE、DELETEおよびMERGEの問い合わせについてはRETURNING句を付けなければならず、また、対象のリレーションには、複数の文に展開される条件付きルール、ALSOルール、INSTEADルールがあってはなりません。
     

	filename
	

入出力ファイルのパス名です。
入力ファイル名は絶対パスでも相対パスでも記述することができますが、出力ファイル名は絶対パスでなければなりません。
Windowsユーザの場合、E''文字列を使用し、パス名内のバックスラッシュを二重にする必要があるかもしれません。
     

	PROGRAM
	

実行するコマンドです。
COPY FROMでは、入力はコマンドの標準出力から読み取られ、COPY TOでは、出力はコマンドの標準入力に書き出されます。
     


コマンドはシェルから呼び出されることに注意してください。このため信頼できない入力元からの任意の引数を渡す必要がある場合、シェルにとって特殊な意味を持つかもしれない特殊文字の除去やエスケープを注意深く実施してください。
セキュリティ上の理由のため、固定のコマンド文字列を使用することが最善です。または少なくともユーザからの入力を含めることを避けてください。
     

	STDIN
	

入力がクライアントアプリケーションからであることを指定します。
     

	STDOUT
	

出力がクライアントアプリケーションへであることを指定します。
     

	boolean
	

選択したオプションを有効にするか無効にするか指定します。
オプションを有効にする場合にはTRUE、ONまたは1と書くことができ、無効にする場合にはFALSE、OFFまたは0と書くことができます。
booleanの値は省略することもでき、その場合にはTRUEとみなされます。
     

	FORMAT
	

読み取りまたは書き込みに使用するデータ形式を選択します。
text、csv（カンマ区切り値）、またはbinaryです。
デフォルトはtextです。
詳細は、後述のFile Formatsを参照してください。
     

	FREEZE
	

あたかもVACUUM FREEZEコマンドを実行した後のように、行を凍結した状態のデータコピー処理を要求します。
これは、初期データロード処理用の性能オプションとしての利用を意図しています。
ロード元のテーブルが現在の副トランザクションで作成または切り詰めされ、開いているカーソルは存在せず、またこのトランザクションで保持される古めのスナップショットが存在しない場合のみ、行は凍結されます。
今のところ、パーティションテーブルと外部テーブルではCOPY FREEZEを実行できません。
このオプションはCOPY FROMでのみ使用できます。
     


データのロードに成功すると、他のすべてのセッションから即座にデータが参照可能になることに注意してください。
これはMVCC可視性に関する一般的な規則に違反しますので、ユーザはこれが引き起こすかもしれない潜在的な問題に注意しなければなりません。
     

	DELIMITER
	

ファイルの各行内の列を区切る文字を指定します。
テキスト形式でのデフォルトはタブ文字、CSV形式ではカンマです。
これは単一の1バイト文字でなければなりません。
このオプションはbinary形式を使用する場合は許されません。
     

	NULL
	

NULL値を表す文字列を指定します。
デフォルトは、テキスト形式では\N（バックスラッシュN）、CSV形式では引用符のない空文字です。
NULL値と空文字列を区別する必要がない場合は、テキスト形式であっても空文字列を使用した方が良いかもしれません。
このオプションはbinary形式を使用する場合は許されません。
     
注記


COPY FROMの場合、この文字列と一致するデータ要素はNULL値として格納されます。
COPY TO実行時に使用した同じ文字列を使用するようにしてください。
      


	DEFAULT
	

デフォルト値を表す文字列を指定します。
文字列が入力ファイルで見つかるたびに、対応する列のデフォルト値が使用されます。
このオプションは、COPY FROMでのみ使用でき、binary形式を使用しない場合にのみ使用できます。
     

	HEADER
	

ファイルがファイル内の各列の名前を持つヘッダ行を含むことを指定します。
出力時には、最初の行にテーブルの列名が含まれます。
入力時には、このオプションがtrue(または同等の論理値)に設定されている場合、最初の行は破棄されます。
このオプションがMATCHに設定されている場合、ヘッダ行の列の番号と名前が、テーブルの実際の列名と順番に一致しなければなりません。一致しない場合は、エラーが発生します。
binary形式を使用している場合、このオプションは使用できません。
MATCHオプションはCOPY FROMコマンドでのみ有効です。
     

	QUOTE
	

データ値を引用符付けする際に使用される引用符文字を指定します。
デフォルトは二重引用符です。
これは単一の1バイト文字でなければなりません。
このオプションはCSV形式を使用する場合にのみ許されます。
     

	ESCAPE
	

データ内の文字がQUOTEの値と一致する場合に、その前に現れなければならない文字を指定します。
デフォルトはQUOTEの値と同じです（このためデータ内に引用符用文字があるときは二つ続けます）。
これは単一の1バイト文字でなければなりません。
このオプションはCSV形式を使用する場合のみ許されます。
     

	FORCE_QUOTE
	

指定された各列内にある全ての非NULL値を強制的に引用符で囲みます。
NULL出力は引用符で囲まれません。
*が指定された場合、非NULL値はすべての列で引用符付けされます。
このオプションはCOPY TOにおいて、かつ、CSV形式を使用する場合のみ許されます。
     

	FORCE_NOT_NULL
	

指定された列の値をNULL文字列に対して比較しません。
NULL文字列が空であるデフォルトでは、空の値は引用符付けされていなくてもNULLではなく長さが0の文字列として読み取られることを意味します。
*が指定されている場合、このオプションはすべての列に適用されます。
このオプションはCOPY FROMで、かつ、CSV形式を使用する場合のみで許されます。
     

	FORCE_NULL
	

指定された列の値を、それが引用符付きであったとしても、NULL文字列と比較し、一致した場合は値をNULLにセットします。
NULL文字列が空であるデフォルトでは、引用符付きの空文字列をNULLに変換します。
*が指定されている場合、このオプションはすべての列に適用されます。
このオプションはCOPY FROMで、かつCSV形式を使用する場合のみ許されます。
     

	ON_ERROR
	

列の入力値をそのデータ型に変換する際にエラーが発生した場合の動作を指定します。
error_actionの値がstopの場合、コマンドは失敗します。ignoreの場合、入力行は破棄され、次の行に移ります。
デフォルトはstopです。
     


ignoreオプションは、FORMATがtextまたはcsvの場合のCOPY FROMにのみ適用できます。
     


少なくとも1行が破棄された場合、COPY FROMの最後に、無視された行数を含むNOTICEメッセージが出力されます。
LOG_VERBOSITYオプションがverboseに設定されている場合、破棄された各行に対して、入力ファイルの行と入力変換に失敗した列名を含むNOTICEメッセージが出力されます。
silentに設定されている場合、無視された行に関してメッセージは出力されません。
     

	REJECT_LIMIT
	

ON_ERRORがignoreに設定されている場合、列の入力値をそのデータ型に変換するときに許容されるエラーの最大数を指定します。
入力が指定された値よりも多くのエラーを引き起こした場合、COPYコマンドはON_ERRORがignoreに設定されている場合でも失敗します。
この句はON_ERROR=ignoreと組み合わせて使用することが必要で、またmaxerrorは正のbigintでなければなりません。
指定されていない場合、ON_ERROR=ignoreはエラーの数に制限がないため、COPYはエラーのあるデータをすべてスキップします。
     

	ENCODING
	

ファイルがencoding_nameで符号化されていることを指定します。
このオプションが省略された場合、現在のクライアント符号化方式が使用されます。
後述の注釈を参照してください。
     

	LOG_VERBOSITY
	

COPYコマンドが出力するメッセージの量を指定します。
default、verboseまたはsilentです。
verboseが指定された場合、処理中に追加のメッセージが出力されます。
silentではverboseとdefaultの両方のメッセージが抑制されます。
     


これは現在、ON_ERRORオプションがignoreに設定されている場合にCOPY FROMコマンドで使用されます。
      

	WHERE
	

省略可能なWHERE句の一般的な形は以下の通りです。


WHERE condition



ここでconditionは、評価の結果がboolean型になる任意の式です。
この条件を満たさない行はテーブルに挿入されません。
変数参照を実際の行の値で置き換えた時に真を返す場合に、行は条件を満たします。
   


今のところ、WHERE式の中での副問い合わせは認められていませんし、評価はCOPY自身により行われた変更を見ることはありません(これは、式がVOLATILE関数の呼び出しを含む場合に問題になります)。
   




出力


正常に完了した場合、COPYコマンドは以下の形式のコマンドタグを返します。


COPY count



countはコピーされた行数です。
  
注記


psqlはコマンドがCOPY ... TO STDOUTであった場合、および、それと同等なpsqlのメタコマンド\copy ... to stdoutであった場合は、このコマンドタグを表示しません。
これは、コマンドタグが表示されたデータと混同されないようにするためです。
   


注釈


COPY TOは通常のテーブルとデータが格納されたマテリアライズドビューで使用できます。
例えば、COPY table TOはSELECT * FROM ONLY tableと同じ行をコピーします。
ただし、パーティションテーブル、継承の子テーブル、またはビューなど、他のリレーションタイプを直接サポートすることはありません。
このようなリレーションからすべての行をコピーするには、COPY (SELECT * FROM table) TOを使用します。
   


COPY FROMは通常のテーブル、外部テーブル、パーティションテーブルおよびINSTEAD OF INSERTトリガを持つビューに対して使用することができます。
   


COPY TOの場合は値を読み込むテーブルに対するSELECT権限が、COPY FROMの場合は値を挿入するテーブルに対するINSERT権限が必要です。
コマンド内で列挙された列に対する列権限があれば十分です。
   


テーブルの行単位セキュリティが有効な場合、適切なSELECTポリシーがCOPY table TO文に適用されます。
現在のところ、COPY FROMは行単位セキュリティが有効なテーブルに対してはサポートされません。
代わりにそれと等価なINSERTを使ってください。
   


COPYコマンドで指定するファイルは、クライアントアプリケーションではなく、サーバが直接読み込み/書き込みを行います。
したがって、それらのファイルは、クライアントではなく、データベースサーバマシン上に存在するか、または、データベースサーバマシンからアクセス可能である必要があります。
さらに、クライアントではなく、PostgreSQL™ユーザ（サーバを実行しているユーザID）が、アクセス権限と読み書き権限を持っている必要があります。
同様に、PROGRAMで指定されたコマンドは、クライアントアプリケーションではなくサーバにより直接実行されるため、PostgreSQL™ユーザによって実行可能でなければなりません。
ファイル名またはコマンドを指定したCOPYの実行は、データベースのスーパーユーザとロールpg_read_server_files、pg_write_server_files、pg_execute_server_programの内の1つの権限を許可されたユーザのみに許可されています。このコマンドによって、サーバがアクセス権限を持つ全てのファイルの読み込み、書き込みやプログラムの実行が可能になってしまうためです。
   


COPYをpsqlの\copyと混同しないでください。
\copyはCOPY FROM STDINやCOPY TO STDOUTを呼び出し、psqlクライアントからアクセスできるファイルにデータの書き込み/読み込みを行います。
したがって、\copyコマンドでは、ファイルへのアクセスが可能かどうかと、ファイルに対するアクセス権限の有無は、サーバではなくクライアント側に依存します。
   


COPYでファイル名を指定する時は、常に絶対パスで記述することをお勧めします。
COPY TOコマンドの場合はサーバによって絶対パス指定に変更させられますが、COPY FROMコマンドでは相対パスで指定されたファイルを読み込むことも可能となっています。
後者では、クライアントの作業ディレクトリではなく、サーバプロセスの作業ディレクトリ（通常はクラスタのデータディレクトリ）からの相対的なディレクトリとして解釈されます。
   


PROGRAMを用いたコマンド実行は、SELinuxなどのオペレーティングシステムのアクセス制御機構によって制限されるかもしれません。
   


COPY FROMは、宛先テーブル上で任意のトリガと検査制約を呼び出します。
ただし、ルールは呼び出しません。
   


識別列については、COPY FROMコマンドはINSERTのオプションOVERRIDING SYSTEM VALUEと同じように、必ず入力データが提供した列の値を書き込みます。
   


COPYの入出力はDateStyleの影響を受けます。
デフォルト以外のDateStyleが設定された可能性があるPostgreSQL™インストレーションとの移植を確実に行いたい場合は、COPYを使う前にDateStyleをISOに設定しなければなりません。
また、IntervalStyleをsql_standardとしてデータをダンプすることは避けることを勧めます。
負の時間間隔値が別のIntervalStyle設定を持つサーバで誤解釈される可能性があるためです。
   


たとえデータがクライアント経由ではなくサーバにより直接ファイルから読み書きされるとしても、入力データはENCODINGオプションまたは現在のクライアント符号化方式にしたがって解釈され、出力データはENCODINGオプションまたは現在のクライアント符号化方式で符号化されます。
   


COPY FROMコマンドは、処理の進行中に入力行を物理的にテーブルに挿入します。
コマンドが失敗した場合、これらの行は削除された状態のままになります。
これらの行は表示されませんが、ディスク領域を占有します。
これは、大規模なコピー操作の途中で失敗した場合、かなりのディスク領域を浪費することになるかもしれません。
浪費された領域を回復するにはVACUUMを使用してください。
   


FORCE_NULLとFORCE_NOT_NULLは同じ列について同時に使うことができます。
その場合の結果は、引用符付きのNULL文字列をNULL値に変換し、引用符なしのNULL文字列を空文字列に変換します。
   

ファイルの形式
テキスト形式


text形式を使用する場合、読み書きされるデータはテーブルの1つの行を1行で表したテキストファイルとなります。
行内の列は区切り文字で区切られます。
列の値自体は、その属性のデータ型の出力関数で生成された、または、その入力関数で受け付け可能な文字列です。
値がNULLの列では、代わりに指定されたNULL値を表す文字列が使用されます。
入力ファイルのいずれかの行にある列数が予期された数と違う場合、COPY FROMはエラーを発生します。
   


データの終了は、バックスラッシュとピリオド（\.）のみから構成される1行で表されます。
ファイルの終了により同じ動作になるので、ファイルからの読み込みの場合はデータの終了の印は不要です。そのような状況では、この規定は後方互換性のためだけに存在します。
ただし、psqlでは、\.を使用してCOPY FROM STDIN操作（つまり、SQLスクリプト内のインラインCOPYデータの読み込み）を終了します。
そのような状況では、スクリプトの終わりの前に操作を終了できるようにするためこの規則が必要です。
   


バックスラッシュ文字（\）は、COPY対象データ内で、行や列の区切り文字と判定される可能性があるデータ文字列の引用符付けに使用します。
特に、バックスラッシュ自体、改行、復帰、使用中の区切り文字などの文字が列の値に含まれている場合は、必ず前にバックスラッシュを付けなければなりません。
   


指定されたNULL文字列はバックスラッシュを付けずにCOPY TOに送られます。
一方、COPY FROMでは、バックスラッシュを削除する前にNULL文字列と入力を比較します。
したがって、\NといったNULL文字列が実際の\Nというデータ値と混乱することはあり得ません。
（これは\\Nとして表現されます。）
   


COPY FROMは、バックスラッシュで始まる次のような文字の並びを識別します。

   
	文字の並び	表現
	\b	バックスペース（ASCII 8）
	\f	改ページ（ASCII 12）
	\n	改行（ASCII 10）
	\r	復帰（ASCII 13）
	\t	タブ（ASCII 9）
	\v	垂直タブ（ASCII 11）
	\数字	バックスラッシュに続き1から3個の8進数の数字をコード番号として指定すると、そのコード番号が表すバイトを指定できます。
	\x数字	バックスラッシュ、xという並びに続き1から2個の16進数の数字を指定すると、そのコード番号が表すバイトを指定できます。





現在、COPY TOは、バックスラッシュの後ろに8進数や16進数を付けた形式で文字を出力することはありませんが、上記一覧にある制御文字については、バックスラッシュの文字並びを使用します。
   


上表で記載されていないバックスラッシュ付きの文字はすべて、その文字自体として解釈されます。
しかし、不要なバックスラッシュの追加には注意してください。
偶然にデータの終了の印（\.）やヌル文字列（デフォルトでは\N）と合致する文字列を生成してしまうかもしれないためです。
これらの文字列は他のバックスラッシュの処理を行う前に解釈されます。
   


COPYデータを生成するアプリケーションは、データ内の改行と復帰をそれぞれ、\nと\rに変換することを強く推奨されています。
現在のところ、バックスラッシュと復帰文字でデータ内の復帰を表したり、バックスラッシュと改行文字でデータ内の改行を表すことが可能です。
しかし、こういった表現は今後のリリースでは、受け付けられなくなる可能性があります。
また、COPYファイルが異なるマシンをまたがって転送される場合、破損するおそれがかなりあります
（例えば、UnixからWindowsあるいはその逆）。
   


バックスラッシュで始まる文字の並びはすべて符号化方式変換の後で解釈されます。
バックスラッシュの後ろに8進数や16進数を付けた形式で指定されたバイトはデータベース符号化方式において有効な文字でなければなりません。
   


COPY TOは各行の行末にUnix形式の改行（「\n」）を出力します。
なお、Microsoft Windowsで稼働するサーバの場合は、サーバ上のファイルへのCOPYの場合にのみ復帰/改行（「\r\n」）を出力します。
プラットフォームをまたがる一貫性のために、サーバのプラットフォームにかかわらず、COPY TO STDOUTは常に「\n」を送信します。
COPY FROMは、改行、復帰、復帰/改行を行末として扱うことができます。
データを意図したバックスラッシュのない改行や復帰によるエラーの危険性を減らすために、COPY FROMは、入力行の行末が全て共通でない場合に警告を発します。
   

CSV形式


この形式オプションは、スプレッドシートなど他の多くのプログラムで使用されるカンマ区切り値（CSV）ファイル形式をインポート、エクスポートするために使用されます。
PostgreSQL™の標準テキスト形式で使用されるエスケープ規則の代わりに、一般的なCSVのエスケープ機構を生成、認識します。
   


各レコードの値はDELIMITER文字で区切られます。
区切り文字、QUOTE文字、NULL文字列、復帰、改行文字を含む値の場合、全体の値の前後にQUOTE文字が付与されます。値の中でQUOTE文字やESCAPE文字が現れる場合、その前にエスケープ用の文字が付与されます。
また、FORCE_QUOTEを使用して、特定列内の非NULL値を出力する時に強制的に引用符を付与することもできます。
   


CSV形式にはNULL値と空文字列とを区別する標準的な方法はありません。
PostgreSQL™のCOPYでは引用符によってこれを区別しています。
NULLはNULLパラメータの文字列として出力され、引用符で囲まれません。
一方、NULLパラメータの文字列に一致する非NULL値は引用符で囲まれます。
たとえばデフォルトの設定では、NULLは引用符付けのない空文字列として出力され、空文字列のデータ値は2つの引用符（""）で出力されます。
データの読み込みの際も同様の規則に従います。
FORCE_NOT_NULLを使用して、特定列に対しNULL入力の比較を行わないようにすることもできます。
またFORCE_NULLを使うことで、引用符付きのNULL文字列のデータの値をNULLに変換することもできます。
   


バックスラッシュはCSV形式では特殊文字でないため、テキストモードで使われるデータの終了の印（\.）は、通常、CSVデータを読み取る際には特殊文字として扱われません。
例外は、psqlが、テキストであってもCSVモードであっても\.のみを含む行でCOPY FROM STDIN操作（つまり、SQLスクリプト内のインラインCOPYデータの読み込み）を終了することです。
   
注記


PostgreSQL™のv18以前のバージョンでは、別のファイルから読み込んだ場合でも、引用符で囲まれていない\.をデータの終了の印として認識していました。
古いバージョンとの互換性のため、COPY TOは1行に\.だけがある場合、必要でないとしてもこれを引用符で囲みます。
    

注記


CSV形式では文字はすべて意味を持ちます。
空白文字で括られた引用符付きの値などDELIMITER以外のすべての文字がこうした文字に含まれます。
これにより、固定長にするためにCSVの行に空白文字を埋めるシステムから取り出したデータをインポートする時にエラーが発生する可能性があります。
このような状況になった場合、PostgreSQL™にデータをインポートする前に、そのCSVファイルから余分な空白を除去する前処理が必要になります。
    

注記


CSV形式は、復帰文字や改行文字が埋め込まれ引用符で囲まれた値を含むCSVファイルを認識し、生成します。
したがって、このファイルでは、テキスト形式とは異なり、1つのテーブル行が1行で表されているとは限りません。
    

注記


奇妙な（時には間違った）CSVファイルを生成するプログラムは多く存在するので、このファイル形式は標準というよりも慣習と言えるものです。
したがって、この機能でインポートできないファイルが存在するかもしれませんし、COPYが他のプログラムで処理できないファイルを生成するかもしれません。
    


バイナリ形式


binary形式オプションにより、すべてのデータはテキストではなくバイナリ形式で書き込み/読み取りされるようになります。
テキストやCSV形式よりも多少高速になりますが、バイナリ形式のファイルはマシンアーキテクチャやPostgreSQL™のバージョンをまたがる移植性が落ちます。
またバイナリ形式はデータ型に非常に依存します。
たとえば、smallint列からバイナリデータを出力し、それをinteger列として読み込むことはできません。同じことをテキスト形式で実行すれば動作するのですが。
   


binaryファイルの形式は、ファイルヘッダ、行データを含む0以上のタプル、ファイルトレーラから構成されます。
ヘッダとデータはネットワークバイトオーダーです。
   
注記


7.4以前のリリースのPostgreSQL™では異なるバイナリファイル形式を使用していました。
    

ファイルヘッダ


ファイルヘッダは15バイトの固定フィールドとその後に続く可変長ヘッダ拡張領域から構成されます。
固定フィールドは以下の通りです。

    
	署名
	

PGCOPY\n\377\r\n\0という11バイトの並びです — この署名の必須部分にNULLバイトが含まれていることに注意してください。
（この署名は、8ビットを通過させない転送方式によってファイルが破損した場合、これを容易に識別できるように設計されています。
署名は、改行コード変換やNULLバイトの削除、上位ビット落ち、パリティの変更などによって変化します。）
       

	フラグフィールド
	

このファイル形式の重要な部分となる32ビット整数のビットマスクです。
ビットには0（LSB） から31（MSB）までの番号が付いています。
このフィールドは、このファイル形式で使用される他の全ての整数フィールドも同様、ネットワークバイトオーダー（最上位バイトが最初に現れる）で保存されていることに注意してください。
ファイル形式上の致命的な問題を表すために、16–31ビットは予約されています。
この範囲に想定外のビットが設定されていることが判明した場合、読み込み先は処理を中断しなければなりません。
後方互換における形式の問題を通知するために、0–15ビットは予約されています。
この範囲に想定外のビットが設定されていても、読み込み先は無視すべきです。
現在、1つのビットだけがフラグビットとして定義されており、残りは0でなければなりません。
        
	ビット16
	

1ならば、OIDがデータに含まれています。0ならば、含まれていません。
OIDシステム列は今はもうPostgreSQL™でサポートされていませんが、フォーマットには指標が含まれています。
           




	ヘッダ拡張領域長
	

自分自身を除いた、ヘッダの残り部分のバイト長を示す32ビットの整数です。
現在、これは0となっており、すぐ後に最初のタプルが続きます。
今後、ヘッダ内に追加データを格納するような形式の変更があるかもしれません。
読み込み側では、ヘッダ拡張データの扱いがわからない場合、そのデータをスキップしなければなりません。
       




    


ヘッダ拡張領域は、それ自身で認識することができる塊の並びを保持するために用意されています。
フラグフィールドは読み込み先に拡張領域の内容を知らせるものではありません。
ヘッダ拡張内容の個々の設計は今後のリリースのために残してあります。
    


この設計によって、後方互換性を維持するヘッダの追加（ヘッダ拡張チャンクの追加や下位フラグビットの設定）と後方互換性のない変更（変更を通知するための高位フラグビットの設定や必要に応じた拡張領域へのサポート情報追加）の両方に対応できます。
    

タプル


全てのタプルはタプル内のフィールド数を表す16ビットの整数から始まります（現時点では、テーブル内の全てのタプルは同一のフィールド数を持つことになっていますが、今後、これは変更される可能性があります）。
その後に、タプル中のそれぞれのフィールドが続きます。これらのフィールドには、先頭にフィールドデータが何バイトあるかを表す32ビット長のワードが付けられています。
（このワードが表す長さには自分自身は含まれません。したがって、0になることもあります。）
特殊な値としてNULLフィールドを表す-1が用意されています。
このNULLが指定された場合、値用のバイトはありません。
    


フィールド間には整列用のパッドやその他の余計なデータはありません。
    


現在、バイナリ形式のファイル内の全てのデータ値は、バイナリ形式（形式コード1）であると想定されています。
将来の拡張によって、列単位に形式コードを指定するヘッダフィールドが追加される可能性があります。
    


実際のタプルデータとして適切なバイナリ形式を決定するためには、PostgreSQL™のソース、特に各列のデータ型用の*send 関数と*recv関数（通常はソースの配布物内のsrc/backend/utils/adtディレクトリにあります）を調べなければなりません。
    


このファイルにOIDが含まれる場合、OIDフィールドがフィールド数ワードの直後に続きます。
これは、フィールド数に含まれない点を除いて、通常のフィールドです。
OIDシステム列はPostgreSQL™の現在のバージョンではサポートされていないことに注意してください。
    

ファイルトレーラ


ファイルトレーラは、16ビットの整数ワードで構成され、-1が入っています。
タプルのフィールド数ワードとは、容易に区別できます。
    


読み込み側は、フィールドカウントワードが-1でも、想定した列数でもなかった場合はエラーを報告しなければなりません。
これにより、何らかの理由でデータと一致しなかったことを判定する特別な検査を行うことが可能になります。
    



例


次の例では、フィールド区切り文字として縦棒（|）を使用してテーブルをクライアントにコピーします。


COPY country TO STDOUT (DELIMITER '|');


  


ファイルからcountryテーブルにデータをコピーします。


COPY country FROM '/usr1/proj/bray/sql/country_data';


  


名前が'A'から始まる国のみをファイルにコピーします。


COPY (SELECT * FROM country WHERE country_name LIKE 'A%') TO '/usr1/proj/bray/sql/a_list_countries.copy';


  


圧縮したファイルにコピーするためには、以下のように出力を外部の圧縮プログラムにパイプで渡すことができます。


COPY country TO PROGRAM 'gzip > /usr1/proj/bray/sql/country_data.gz';


  


これはSTDINからテーブルにコピーするのに適したデータの例です。


AF      AFGHANISTAN
AL      ALBANIA
DZ      ALGERIA
ZM      ZAMBIA
ZW      ZIMBABWE



各行の空白文字は実際にはタブ文字であることに注意してください。
  


以下は同一のデータをバイナリ形式で出力したものです。
データをUnixユーティリティod -cを使ってフィルタしたものを示します。
テーブルには3列あり、最初のデータ型はchar(2)、2番目はtext、3番目はintegerです。
全ての行の3列目はNULL値です。


0000000   P   G   C   O   P   Y  \n 377  \r  \n  \0  \0  \0  \0  \0  \0
0000020  \0  \0  \0  \0 003  \0  \0  \0 002   A   F  \0  \0  \0 013   A
0000040   F   G   H   A   N   I   S   T   A   N 377 377 377 377  \0 003
0000060  \0  \0  \0 002   A   L  \0  \0  \0 007   A   L   B   A   N   I
0000100   A 377 377 377 377  \0 003  \0  \0  \0 002   D   Z  \0  \0  \0
0000120 007   A   L   G   E   R   I   A 377 377 377 377  \0 003  \0  \0
0000140  \0 002   Z   M  \0  \0  \0 006   Z   A   M   B   I   A 377 377
0000160 377 377  \0 003  \0  \0  \0 002   Z   W  \0  \0  \0  \b   Z   I
0000200   M   B   A   B   W   E 377 377 377 377 377 377


互換性


標準SQLにはCOPY文はありません。
  


以下の構文は、PostgreSQL™バージョン9.0より前に使用されていたもので、まだサポートされています。



COPY table_name [ ( column_name [, ...] ) ]
    FROM { 'filename' | STDIN }
    [ [ WITH ]
          [ BINARY ]
          [ DELIMITER [ AS ] 'delimiter_character' ]
          [ NULL [ AS ] 'null_string' ]
          [ CSV [ HEADER ]
                [ QUOTE [ AS ] 'quote_character' ]
                [ ESCAPE [ AS ] 'escape_character' ]
                [ FORCE NOT NULL column_name [, ...] ] ] ]

COPY { table_name [ ( column_name [, ...] ) ] | ( query ) }
    TO { 'filename' | STDOUT }
    [ [ WITH ]
          [ BINARY ]
          [ DELIMITER [ AS ] 'delimiter_character' ]
          [ NULL [ AS ] 'null_string' ]
          [ CSV [ HEADER ]
                [ QUOTE [ AS ] 'quote_character' ]
                [ ESCAPE [ AS ] 'escape_character' ]
                [ FORCE QUOTE { column_name [, ...] | * } ] ] ]




この構文では、BINARYとCSVがFORMATオプションの引数ではなく、独立したキーワードとして扱われることに注意してください。
  


以下の構文は、PostgreSQL™バージョン7.3より前に使用されていたもので、まだサポートされています。



COPY [ BINARY ] table_name
    FROM { 'filename' | STDIN }
    [ [USING] DELIMITERS 'delimiter_character' ]
    [ WITH NULL AS 'null_string' ]

COPY [ BINARY ] table_name
    TO { 'filename' | STDOUT }
    [ [USING] DELIMITERS 'delimiter_character' ]
    [ WITH NULL AS 'null_string' ]


関連項目
「COPYの進捗状況のレポート」


名前
CREATE ACCESS METHOD — 新しいアクセスメソッドを定義する

概要

CREATE ACCESS METHOD name
    TYPE access_method_type
    HANDLER handler_function


説明


CREATE ACCESS METHODは新しいアクセスメソッドを作成します。
  


アクセスメソッドの名前はデータベース内で一意でなければなりません。
  


スーパーユーザのみが新しいアクセスメソッドを定義できます。
  

パラメータ
	name
	

作成するアクセスメソッドの名前です。
     

	access_method_type
	

この句では定義するアクセスメソッドの型を指定します。
現在のところ、TABLEとINDEXだけがサポートされています。
     

	handler_function
	

handler_functionはアクセスメソッドを表す、事前に登録された関数の名前（スキーマ修飾可）です。
ハンドラ関数はinternal型の引数を1つだけ取るものとして定義される必要があります。
戻り値の型はアクセスメソッドの型に依存し、TABLEアクセスメソッドの場合はtable_am_handlerでなければならず、INDEXのアクセスメソッドの場合はindex_am_handlerでなければなりません。
ハンドラ関数が実装しなければならないC言語でのAPIはアクセスメソッドの型によって変わります。
TABLEのアクセスメソッドのAPIについては62章テーブルアクセスメソッドのインタフェース定義で、INDEXのアクセスメソッドのAPIについては63章インデックスアクセスメソッドのインタフェース定義で説明されています。
     




例


INDEXのアクセスメソッドheptreeをハンドラ関数heptree_handlerで作成するには、次のようにします。


CREATE ACCESS METHOD heptree TYPE INDEX HANDLER heptree_handler;


互換性


CREATE ACCESS METHODはPostgreSQL™の拡張です。
  

関連項目
DROP ACCESS METHOD(7), CREATE OPERATOR CLASS(7), CREATE OPERATOR FAMILY(7)


名前
CREATE AGGREGATE — 新しい集約関数を定義する

概要

CREATE [ OR REPLACE ] AGGREGATE name ( [ argmode ] [ argname ] arg_data_type [ , ... ] ) (
    SFUNC = sfunc,
    STYPE = state_data_type
    [ , SSPACE = state_data_size ]
    [ , FINALFUNC = ffunc ]
    [ , FINALFUNC_EXTRA ]
    [ , FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE } ]
    [ , COMBINEFUNC = combinefunc ]
    [ , SERIALFUNC = serialfunc ]
    [ , DESERIALFUNC = deserialfunc ]
    [ , INITCOND = initial_condition ]
    [ , MSFUNC = msfunc ]
    [ , MINVFUNC = minvfunc ]
    [ , MSTYPE = mstate_data_type ]
    [ , MSSPACE = mstate_data_size ]
    [ , MFINALFUNC = mffunc ]
    [ , MFINALFUNC_EXTRA ]
    [ , MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE } ]
    [ , MINITCOND = minitial_condition ]
    [ , SORTOP = sort_operator ]
    [ , PARALLEL = { SAFE | RESTRICTED | UNSAFE } ]
)

CREATE [ OR REPLACE ] AGGREGATE name ( [ [ argmode ] [ argname ] arg_data_type [ , ... ] ]
                        ORDER BY [ argmode ] [ argname ] arg_data_type [ , ... ] ) (
    SFUNC = sfunc,
    STYPE = state_data_type
    [ , SSPACE = state_data_size ]
    [ , FINALFUNC = ffunc ]
    [ , FINALFUNC_EXTRA ]
    [ , FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE } ]
    [ , INITCOND = initial_condition ]
    [ , PARALLEL = { SAFE | RESTRICTED | UNSAFE } ]
    [ , HYPOTHETICAL ]
)


または以下の旧構文

CREATE [ OR REPLACE ] AGGREGATE name (
    BASETYPE = base_type,
    SFUNC = sfunc,
    STYPE = state_data_type
    [ , SSPACE = state_data_size ]
    [ , FINALFUNC = ffunc ]
    [ , FINALFUNC_EXTRA ]
    [ , FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE } ]
    [ , COMBINEFUNC = combinefunc ]
    [ , SERIALFUNC = serialfunc ]
    [ , DESERIALFUNC = deserialfunc ]
    [ , INITCOND = initial_condition ]
    [ , MSFUNC = msfunc ]
    [ , MINVFUNC = minvfunc ]
    [ , MSTYPE = mstate_data_type ]
    [ , MSSPACE = mstate_data_size ]
    [ , MFINALFUNC = mffunc ]
    [ , MFINALFUNC_EXTRA ]
    [ , MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE } ]
    [ , MINITCOND = minitial_condition ]
    [ , SORTOP = sort_operator ]
)


説明


CREATE AGGREGATEは、新しい集約関数を定義します。
CREATE OR REPLACE AGGREGATEは、新しい集約関数を定義するか、既存の定義を置き換えます。
配布物には基本的、かつ、よく使用される集約関数がいくつか含まれています。これらの集約関数については、「集約関数」に文書化されています。
新しい型を定義する場合、またはまだ提供されていない集約関数が必要な場合、必要な機能を実現するためにCREATE AGGREGATEを使うことができます。
  


既存の定義を置き換える場合には、引数の型、結果の型、直接引数の数を変えることはできません。
また、新しい定義は古いものと同じ種類(通常の集約、順序集合集約、仮想集合集約)でなければなりません。
  


スキーマ名が付けられている場合（例えば、CREATE AGGREGATE myschema.myagg ...）、集約関数は指定されたスキーマに作成されます。
スキーマ名がなければ、集約関数は現在のスキーマに作成されます。
  


集約関数は名前と入力データ型(複数可)の組み合わせによって識別されます。
演算の対象となる入力データ型が異なっていれば、同じスキーマ内に同じ名前の集約関数があっても構いません。
1つのスキーマ内では、集約関数の名前と入力データ型の組み合わせは、通常の関数の名前と入力データ型の組み合わせと異なる必要があります。
この動作は通常の関数名についてオーバーロードする時と同じです（CREATE FUNCTION(7)を参照してください）。
  


単純な集約関数は1つか2つの通常の関数から作られます。
状態遷移関数sfuncと最終計算関数ffunc(省略可能)です。
これらは以下のように使われます。



sfunc( 内部状態, 次のデータ値 ) ---> 次の内部状態
ffunc( 内部状態 ) ---> 集約の結果


  


PostgreSQL™は、集約の現在の内部状態を保持するstypeデータ型の一時変数を作成します。
それぞれの入力行に対して、集約引数の値が計算され、現在の状態値と新しい引数値で状態遷移関数が呼び出され、新しい内部状態変数が計算されます。
全ての行が処理されると、最終関数が1回呼び出され、集約の出力値が計算されます。
最終関数がない場合は、終了時の状態値がそのまま返されます。
  


集約関数は、初期条件、つまり内部状態値の初期値を提供することができます。
これはtext型の値としてデータベースに格納されますが、状態値データ型の定数として有効な外部表現でなければいけません。
初期状態が与えられていない場合、状態値はNULLから始まります。
  


状態遷移関数が「strict」と宣言されている場合、NULLを入力値にして呼び出すことはできません。
そのような遷移関数では、集約は次のように実行されます。
NULL入力値を持つ行は無視されます。
（関数は呼び出されず、前回の状態値が保持されます。）
初期状態値がNULLである場合、初めて入力行がすべて非NULL入力値であった時にその最初の引数の値で状態値を置き換え、以後、すべて非NULL入力値のそれぞれの行について、遷移関数が呼び出されます。
このような動作は、maxのような集約を実装するには便利です。
ただし、state_data_typeが最初のarg_data_typeと同じ時にのみ有効であることに注意してください。
これらの型が異なる時は、非NULL初期値を供給するか、strictでない遷移関数を使わなければいけません。
  


状態遷移関数がstrictでない場合は、それぞれの入力行に対してその関数が無条件に呼び出されるので、NULL入力とNULL状態値を自分で処理しなければいけません。
これは、関数の作成者が、集約関数におけるNULL値の扱いを完全に制御できることを意味します。
  


最終関数が「strict」と宣言されていると、終了状態値がNULLの時は、最終関数が呼び出されません。
その場合、NULLという結果が自動的に出力されます。
（もちろんこれは、strictな関数の一般的な動作に過ぎません。）
いずれにせよ、最終関数はNULLを返すことができます。
例えば、avgの最終関数は、入力が0行だとわかるとNULLを返します。
  


最終関数を、状態値だけでなく、集約の入力値に対応する追加パラメータも取るように宣言すると便利なことがあります。
こうすることの主な理由に、最終関数が多様型で、状態値のデータ型だけでは結果の型を決定するのに不十分である、ということがあります。
これらの追加パラメータは必ずNULLとして渡されます(従ってFINALFUNC_EXTRAオプションが使われている場合、最終関数はstrictであってはいけません)が、それでも有効なパラメータです。
最終関数は、現在の呼び出しでの実際の引数の型を特定するために、例えばget_fn_expr_argtypeを使うことができます。
  


集約は、「移動集約モード」に記述されているように移動集約モードをサポートすることができます。
このためには、MSFUNC、MINVFUNC、MSTYPEのパラメータを指定する必要があり、またオプションでMSSPACE、MFINALFUNC、MFINALFUNC_EXTRA、MFINALFUNC_MODIFY、MINITCONDのパラメータを指定できます。
MINVFUNCを除き、これらのパラメータは、Mのない単純集約の対応するパラメータのように動作しますが、集約について逆変換関数を含む別の実装を定義します。
  


パラメータのリストにORDER BYを含む構文は、順序集合集約と呼ばれる特別な種類の集約を作ります。
またHYPOTHETICALが指定されている場合は、仮想集合集約が作られます。
これらの集約は、ソートされた値のグループに対して、順序に依存した方法で作用するため、入力についてのソート順の指定は、呼び出しにおける本質的な部分になります。
また、これらの集約は直接引数をとることができます。
直接引数は、行毎に一度ではなく、集約に対して一度だけ評価されます。
仮想集合集約は、順序集合集約のサブクラスで、直接引数のいくつかが、集約される引数の列と、数とデータ型についてマッチする必要があります。
これにより、直接引数の値を、「仮想的な」行として、集約の入力行の集合に加えることができます。
  


「部分集約」で説明されている通り、集約では部分集約をサポートすることができます。
このためにはCOMBINEFUNCパラメータを指定する必要があります。
state_data_typeがinternalの場合、通常はSERIALFUNCおよびDESERIALFUNCパラメータも提供して、並列集約を可能にするのが適切でしょう。
並列集約を可能にするには、集約にPARALLEL SAFEの印をつける必要もあることに注意してください。
  


MINやMAXのような振舞いをする集約では、すべての入力行をスキャンせずにインデックスを検索することで最適化できることがあります。
このように最適化される集約の場合、ソート演算子を指定することで明示してください。
その演算子で生成されるソート順で集約の最初の要素が生成されなければならないということが基本的な必要条件です。
言い換えると、


SELECT agg(col) FROM tab;



が以下と同じでなければならないということです。


SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;



更に、集約がNULL入力を無視すること、および、NULL以外の入力がまったくなかった時にのみNULLという結果を返すことも前提となります。
通常、データ型の<演算子はMINのソート演算子として、また、>演算子はMAXのソート演算子として適切です。
指定した演算子がB-treeインデックス演算子クラスの「より小さい」ストラテジか「より大きい」ストラテジのメンバでない限り、最適化が実際には効果がないことに注意してください。
  


集約関数を作成するためには、引数の型、状態の型、戻り値の型に対するUSAGE権限およびサポート関数に対するEXECUTE権限を持たなければなりません。
  

パラメータ
	name
	

      作成する集約関数の名前です（スキーマ修飾名も可）。
     

	argmode
	

引数のモードで、INまたはVARIADICです。
(集約関数はOUTの引数をサポートしません。)
省略した場合のデフォルトはINです。
VARIADICを指定できるのは、最後の引数だけです。
     

	argname
	

引数の名前です。
現在は、文書化を目的とする場合にのみ有効です。
省略した場合、引数には名前がありません。
     

	arg_data_type
	

集約関数が演算する入力データ型です。
引数が存在しない集約関数を作成するには、引数指定のリストに*と記載してください。
（例えば count(*)などの集約です。）
     

	base_type
	

CREATE AGGREGATEの旧構文では、入力データ型は集約の名前の次に記載されたものではなくbasetypeパラメータにより指定されます。
この構文では入力パラメータを1つしかとれないことに注意してください。
この構文で引数を持たない集約を定義するためには、basetypeを"ANY" （*ではありません）と指定してください。
順序集合集約関数は旧構文では定義できません。
     

	sfunc
	

それぞれの入力行に対して呼び出される状態遷移関数の名前です。
通常のN引数を持つ集約関数では、sfuncはN+1個の引数を取らなければなりません。
最初の引数はstate_data_type型で、残りはその集約の入力データ型として宣言したものと一致していなければなりません。
この関数はstate_data_type型の値を返さなければなりません。
この関数は、現在の状態値と現在の入力データ値を受け取り、次の状態値を返します。
     


順序集合(仮想集合を含む)集約では、状態遷移関数は現在値と集約引数のみを受け取り、直接引数は受け取りません。
それ以外の点は全く同じです。
     

	state_data_type
	

集約の状態値のデータ型です。
     

	state_data_size
	

集約の状態値のおおよその平均サイズ(単位はバイト)です。
このパラメータを省略した場合、あるいはゼロを指定した場合、state_data_typeに基づいたデフォルトの推定が使われます。
プランナは、グループ化された集約のクエリに必要なメモリを推定するのに、この値を使います。
     

	ffunc
	

最終関数の名前です。最終関数は、全ての入力行に対する処理が終わった後、集約の結果を計算するために呼び出されます。
通常の集約では、この関数はstate_data_type型の引数を1つ取らなければなりません。
集約の出力データ型はこの関数の戻り値として定義されます。
ffuncが指定されない場合には、集約の結果として終了時の状態値が使われます。出力型はstate_data_typeになります。
     


順序集合(仮想集合を含む)集約では、最終関数は終了時の状態値だけでなく、すべての直接引数の値も受け取ります。
     


FINALFUNC_EXTRAが指定された場合、最終関数は、終了時の状態値と直接引数に加えて、集約の通常の(集約された)引数に対応する追加のNULL値を受け取ります。
これは主に、多様型の集約が定義されているときに、集約の結果の型を正しく解決するのに役立ちます。
     

	FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }
	

このオプションは、最終関数が引数を変更しない純粋な関数であるかどうかを指定します。
READ_ONLYは変更しないことを示します。他の2つの値は遷移状態値を変更するかもしれないことを示します。
さらなる詳細は以下の注釈をご覧ください。
順序集合集約ではデフォルトがREAD_WRITEであることを除き、デフォルトはREAD_ONLYです。
     

	combinefunc
	

集約関数が部分集約をサポートできるようにするために、combinefuncを指定することができます。
これが指定されると、combinefuncは、入力値の何らかの部分集合に対する集約の結果を含む2つのstate_data_type値を結合し、両方の入力に対する集約結果を表す新しいstate_data_typeを生成しなければなりません。
この関数は、個々の入力行に対して作用してそれを集約中の状態に追加するのではなく、実行中の状態に別の集約状態を追加するsfuncとして考えることができます。
     


combinefuncは、state_data_typeの引数を2つ取り、state_data_typeの値を返すものとして宣言されなければなりません。
この関数は「strict」とすることもできます。
その場合、入力状態の一方がNULLのときは関数が呼び出されず、他方の状態が正しい結果であると見なされます。
     


state_data_typeがinternalの集約関数では、combinefuncをSTRICTにすることはできません。
この場合、combinefuncはNULL状態を正しく処理し、返される状態が集約のメモリコンテキスト内に適切に保存されることを確実にする必要があります。
     

	serialfunc
	

state_data_typeがinternalの集約関数は、serialfunc関数がある場合に限り、並列集約に参加することができます。
serialfuncは、集約の状態を他のプロセスに転送するためにbyteaの値にシリアライズしなければなりません。
この関数はinternal型の引数を1つ取り、bytea型を返さなければなりません。
これに対応するdeserialfuncも必要です。
     

	deserialfunc
	

以前にシリアライズされた集約状態をデシリアライズしてstate_data_typeに戻します。
この関数はbytea型およびinternal型の2つの引数を取り、internal型の結果を生成しなければなりません。
（注意：2番目のinternalの引数は使用されませんが、型の安全性の理由から必要となっています。）
     

	initial_condition
	

状態値の初期設定です。
データ型state_data_typeとして受け取り可能な文字列定数でなければいけません。
このパラメータが指定されない場合、状態値はNULLから始まります。
     

	msfunc
	

移動集約モードにおいて、それぞれの入力行に対して呼び出される前方状態遷移関数の名前です。
これは最初の引数と結果がmstate_data_type型で、state_data_typeとは異なるかもしれないことを除けば、通常の遷移関数と全く同じです。
     

	minvfunc
	

移動集約モードで使われる逆状態遷移関数の名前です。
この関数はmsfuncと同じ引数および結果型を持ちますが、現在の集約状態に対して、値を追加するのではなく、取り除くために使われます。
逆遷移関数は前方状態遷移関数と同じstrictさの属性を持っていなければなりません。
     

	mstate_data_type
	

移動集約モードを使うときの、集約状態値のデータ型です。
     

	mstate_data_size
	

移動集約モードを使うときの、集約状態値のおおよその平均サイズ(バイト単位)です。
state_data_sizeと同じように作用します。
     

	mffunc
	

移動集約モードを使うときに、すべての入力行がスキャンされた後で、集約結果を計算するために呼び出される最終関数の名前です。
これは、最初の引数の型がmstate_data_typeであり、MFINALFUNC_EXTRAにより追加のダミー引数を指定できることを除けば、ffuncと同じように作用します。
mffuncまたはmstate_data_typeによって決定される集約結果の型は、集約の通常の実装によって決定される型と適合しなければなりません。
     

	MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }
	

このオプションはFINALFUNC_MODIFYと似ていますが、移動集約最終関数の挙動を記述します。
     

	minitial_condition
	

移動集約モードを使うときの、状態値の初期設定です。
これは、initial_conditionと同じように作用します。
     

	sort_operator
	

MINまたはMAXのような集約に対して関連付けされるソート演算子です。
これは単なる演算子の名前です（スキーマ修飾可能）。
この演算子は集約（これは単一引数の通常の集約でなければなりません）と同じ入力データ型を持つと前提されています。
     

	PARALLEL = { SAFE | RESTRICTED | UNSAFE }
	

PARALLEL SAFE、PARALLEL RESTRICTED、PARALLEL UNSAFEの意味はCREATE FUNCTIONにおけるものと同じです。
集約は、その印がPARALLEL UNSAFE（これがデフォルトです！）あるいはPARALLEL RESTRICTEDとなっている場合、並列処理での使用を考慮されません。
プランナは集約のサポート関数の並列処理安全性の印を考慮せず、集約自体の印のみを参照することに注意してください。
     

	HYPOTHETICAL
	

順序集合集約についてのみ、このフラグは、仮想集合集約の要求に従って集約の引数が処理されることを指定します。
つまり、最後のいくつかの引数が、集約される(WITHIN GROUPの)引数と適合しなければなりません。
HYPOTHETICALフラグは実行時の動作には何の影響もなく、集約の引数のデータ型と照合についての解析時の解決にのみ影響します。
     





CREATE AGGREGATEのパラメータは、任意の順番で記述することができます。上記の順番で記述する必要はありません。
  

注釈


サポート関数名を指定するパラメータでは、必要なら、SFUNC = public.sumのようにスキーマ名を書くことができます。
しかし、引数の型をそこに書くことはできません。
サポート関数の引数の型は、他のパラメータにより決定されるからです。
   


通常PostgreSQL関数は入力値を変更しない純粋な関数であることが期待されます。
しかし集約のコンテキストで使用される場合には、集約遷移関数は、これを偽ってその状態遷移引数を直接変更することが許されます。
これにより、遷移状態の新しいコピーを都度作るのに比べると、かなりの性能上の利点が期待できます。
   


同様に、集約最終関数は入力値を変更しない純粋な関数であることが期待されますが、状態遷移引数を変更するのを避けることが実用的でないことがあります。
そうした挙動はFINALFUNC_MODIFY引数を使って宣言しなければなりません。
READ_WRITE値は、最終関数が遷移状態を明示されていない方法で変更することを示します。
この値はwindow関数として集約を使うことを回避します。
また、同じ入力値と遷移関数を共有する集約の遷移状態をマージすることを回避します。
SHAREABLE値は、遷移関数が最終関数の後に適用できないが、最終関数の複数回の呼び出しを終了遷移状態値に適用できることを示します。
この値はwindow関数として集約を使うことを回避しますが、遷移状態のマージを許容します。
（つまり、ここでの最適化の眼目は、同じ最終関数を繰り返し適用することではなく、異なる最終関数を同じ終了遷移状態値に適用することです。
これは最終関数のうちREAD_WRITEと印付けられているものが一つもない限り許容されます。）
   


集約が移動集約モードをサポートしていると、移動フレームの開始のあるウィンドウ（つまり、UNBOUNDED PRECEDING以外のフレーム開始モード）として集約が使われる場合に計算の効率が向上します。
概念的には、前方遷移関数はウィンドウフレームに下から入るときに集約の状態に入力値を追加し、逆遷移関数はフレームを上から抜けるときにそれを取り除きます。
従って、値が取り除かれるときは、必ず追加された時と同じ順番で取り除かれます。
従って、逆遷移関数が実行される時は、いつでも最も早く追加されたけれども、まだ取り除かれていない引き数値を受け取ります。
逆遷移関数は、最も古い行を取り除いた後、現在の状態に少なくとも1行が残ることを前提とできます。
(そうならない場合は、ウィンドウ関数の仕組みは、逆遷移関数を使うのでなく、単純に新しい集約を開始します。)
   


移動集約モードの前方遷移関数は、新しい集約値としてNULLを返すことは許されません。
逆遷移関数がNULLを返した場合、それは、逆関数がその入力値について状態計算を元に戻すことができなかったと見なされるため、集約の計算は現在のフレームの開始位置からやり直しとなります。
こうすることで、実行中の状態値を元に戻すのが現実的でないということが稀に起こるような場合でも、移動集約モードを使うことができます。
   


移動集約が実装されていない場合でも、集約は移動フレームを使うことができますが、フレームの開始が移動した場合、PostgreSQL™は必ず集約全体を再計算します。
集約が移動集約モードをサポートするかどうかに関わらず、PostgreSQL™は移動フレームの終了を再計算なしに処理することができます。
これは、集約の状態に新しい値を追加し続けることで処理できます。
これがwindow関数として集約を利用するためには最終関数が読み出し専用でなければならない理由です。
最終関数は集約の状態値を破壊しないものとされるので、フレームの境界の集合に対して集約結果の値が得られた後でも、集約を続行することが可能です。
   


順序集合集約の構文では、VARIADICを最後の直接パラメータと、最後の集約(WITHIN GROUP)パラメータの両方について指定することができます。
しかし、現在の実装ではVARIADICの使用を2つの方法に制限しています。
1つ目は、順序集合集約では、VARIADIC "any"のみが利用でき、他のvariadicの配列型は利用できないことです。
2つ目は、最後の直接パラメータがVARIADIC "any"の場合、集約パラメータは1つだけしか使えず、かつそれもVARIADIC "any"でなければならない、ということです。
(システムカタログで使われる表現において、これらの2つのパラメータは、1つのVARIADIC "any"要素に統合されています。
なぜなら、pg_procは2つ以上のVARIADICパラメータがある関数を表現できないからです。)
仮想集合集約の場合、VARIADIC "any"パラメータに対応する直接引数は仮想的なパラメータで、それより前のパラメータは、集約引数に対応する制約のない、追加の直接引数となります。
   


現在は、順序集合集約は、ウィンドウ関数として使うことはできないので、移動集約モードをサポートする必要はありません。
   


部分集約（並列集約を含む）は現在のところ、順序集約ではサポートされません。
また、部分集約はDISTINCTあるいはORDER BY句を含む集約の呼び出しでは決して使われることはありません。
なぜなら、部分集約ではそれらを意味論的にサポートできないからです。
  

例


「ユーザ定義の集約」を参照してください。
  

互換性


CREATE AGGREGATEはPostgreSQL™の言語拡張です。
標準SQLには、ユーザ定義の集約関数を使用する機能はありません。
  

関連項目
ALTER AGGREGATE(7), DROP AGGREGATE(7)


名前
CREATE CAST — 新しいキャストを定義する

概要

CREATE CAST (source_type AS target_type)
    WITH FUNCTION function_name [ (argument_type [, ...]) ]
    [ AS ASSIGNMENT | AS IMPLICIT ]

CREATE CAST (source_type AS target_type)
    WITHOUT FUNCTION
    [ AS ASSIGNMENT | AS IMPLICIT ]

CREATE CAST (source_type AS target_type)
    WITH INOUT
    [ AS ASSIGNMENT | AS IMPLICIT ]


説明


CREATE CASTを使用すると、新しいキャストを定義できます。
キャストは、2つのデータ型間の変換処理方法を指定するものです。
以下に例を示します。


SELECT CAST(42 AS float8);



この文を実行すると、事前に指定された関数（この場合float8(int4)）が呼び出され、整数定数42がfloat8型に変換されます。
（適切なキャストが定義されていない場合、変換処理は失敗します。）
  


2つのデータ型をバイナリ強制互換とすることができます。
これは、関数をまったく呼び出さなくても、「自由に」変換を行うことができることを意味します。
これには、対応する値は、同じ内部表現を使用している必要があります。
例えば、データ型textとvarcharには、両方向でバイナリ互換性があります。
バイナリ強制互換性は必ずしも対称関係ではありません。
例えば、現在の実装ではxmlからtextへのキャストは自由に行うことができますが、逆方向では少なくとも構文検査を行う関数が必要です。
（2つの型が両方向でバイナリ強制互換であることは、バイナリ互換性と呼ばれます。）
  


WITH INOUT構文を使用してI/O変換キャストとしてキャスト定義を行うことができます。
I/O変換キャストは、元データ型の出力関数を呼び出し、その結果文字列を対象データ型の入力関数に渡すことで行われます。
多くの一般的な場合では、この機能により変換用に別個のキャスト関数を作成する必要性がなくなります。
I/O変換キャストは通常の関数を基にしたキャストと同様に動作します。ただ実装が異なるだけです。
  


デフォルトでは、キャストは明示的なキャスト要求があった場合のみ発生します。
明示的なキャスト要求の構文は、CAST(x AS typename)、もしくは、x::typename式です。
  


キャストにAS ASSIGNMENTオプションを付けると、対象データ型の列に代入する際、暗黙的にそのキャストを発生させることができます。
例えば、foo.f1がtext型の列であるとします。


INSERT INTO foo (f1) VALUES (42);



integer型をtext型に変換するキャストにAS ASSIGNMENTオプションが付けられていれば、上記のSQL文が実行できます。
しかし、AS ASSIGNMENTオプションが付いていなければ、実行できません。
（一般的に、この種のキャストを代入キャストと呼びます。）
  


キャストにAS IMPLICITオプションを付けると、代入の場合だけでなく、式の中にある場合でも、全てのコンテキストで暗黙的にそのキャストを呼び出すことができます。
（一般的に、この種のキャストを暗黙キャストと呼びます。）
例えば次のような問い合わせを考えてみます。


SELECT 2 + 4.0;



パーサはまず定数にそれぞれintegerとnumericであると印を付けます。
システムカタログには、integer + numericという演算子はありませんが、numeric + numericという演算子は存在します。
したがって、integerからnumericへのキャストが利用可能であり、そのキャストにAS IMPLICITが付いていればこの問い合わせは成功します（実際このようになっています）。
パーサは暗黙的なキャストを行い、問い合わせをあたかも次のように記載されたものとして解決します。


SELECT CAST ( 2 AS numeric ) + 4.0;


  


ここで、カタログはまたnumericからintegerへのキャストも提供しています。
もしこのキャストにAS IMPLICITが付いていたら（実際は付いていません）、パーサは上のように解釈するか、それとも、numeric定数をintegerにキャストし、integer + integerという演算子を適用するかを選択しなければなりません。
どちらがより良いかという知見がなければ、選択をあきらめ、問い合わせがあいまいであると宣告します。
2つのキャストの内1つのみが暗黙的であるという事実が、パーサに、numericとintegerが混在する式をnumericとして扱うという適切な解決方法を知らせる方法です。
これに関する組み込まれた知見は存在しません。
  


暗黙キャストは、多用しない方が賢明です。
暗黙的キャストを使用し過ぎると、PostgreSQL™がコマンドを思わぬ意味に解釈してしまう原因になります。
また、複数の解釈が可能なため、コマンドをまったく解読できなくなってしまう可能性もあります。
経験的には、2つのデータ型が同一の一般的なデータ型のカテゴリに属しており、変換によって情報が保持される場合のみ、暗黙キャストを呼び出し可能にするのが良い方法と思われます。
例えば、int2型からint4型へのキャストは、暗黙キャストにするのが妥当ですが、float8型からint4型へのキャストは、おそらく代入キャストのみにすべきでしょう。
text型からint4型への変換のような、カテゴリを越えるデータ型のキャストは、明示的にのみ使用するのが適切です。
  
注記


型の集合の中で複数の暗黙的なキャストを提供することが、有用性や標準との互換性上の理由により必要となることがあり、これにより、上で説明した通り防ぐことができないあいまいさが引き起こされます。
パーサは、こうした状況でも望ましい動作の提供を補助できる型カテゴリと優先される型に基づいた発見的手法を用意しています。
詳細はCREATE TYPE(7)を参照してください。
   



キャストを作成するためには、変換元または変換先（の内の一方）のデータ型を所有し、もう一方の型に対するUSAGE権限を持つ必要があります。
また、バイナリ強制互換性を持つキャストを作成できるのは、スーパーユーザでなければなりません。
（バイナリ強制互換性があるキャスト変換を誤って使用するとサーバがクラッシュしてしまう可能性が高いことから、この制限が付けられました）。
  

パラメータ
	source_type
	

キャストする変換元のデータ型の名前です。
      

	target_type
	

キャストする変換先のデータ型の名前です。
      

	function_name[(argument_type [, ...])]
	

キャストを実行するために使用される関数です。
関数名はスキーマ修飾することができます。
スキーマ修飾されていない場合、関数はスキーマ検索パスから検索されます。
関数の結果のデータ型は、キャストの変換先のデータ型と一致する必要があります。
引数については後で説明します。
引数リストが指定されない場合、関数名はスキーマ内で一意でなければなりません。
      

	WITHOUT FUNCTION
	

変換元データ型から変換先データ型への間に、バイナリ強制互換性があることを示します。
この場合、キャストを実行するのに関数は必要ありません。
      

	WITH INOUT
	

キャストが、変換元データ型の出力関数を呼び出し、その結果の文字列を変換先データ型の入力関数に渡すことで行われる、I/O変換キャストであることを示します。
      

	AS ASSIGNMENT
	

代入コンテキストで、暗黙的にキャストを呼び出せることを示します。
      

	AS IMPLICIT
	

任意のコンテキストで、暗黙的にキャストを呼び出せることを示します。
      





キャストを実装する関数は1〜3個の引数を取ることができます。
1番目の引数型はキャストの変換元データ型と同一、または、変換元データ型からのバイナリ強制互換を持つ型でなければなりません。
2番目の引数（もしあれば）は、integer型でなければなりません。変換先の型に関連付けられた型修飾子を指定します。
型修飾子がない場合は-1を指定します。
3番目の引数（もしあれば）は、boolean型でなければなりません。キャストが明示的なキャストであればtrueを、それ以外であればfalseを指定します。
（奇妙な話ですが、標準SQLでは、明示的キャストと暗黙的キャストとの間で異なる振舞いを要求する場合があります。
この引数はそのようなキャストを実装しなければならない関数用に提供されています。
独自のデータ型をこの流儀に従うように設計することは勧められません。）
  


キャスト関数の戻り値は、キャストの対象型と同一またはバイナリ強制互換性を持たなければなりません。
  


通常、キャストにおける変換元データ型と変換先データ型は異なる必要があります。
しかし、2つ以上の引数を持つ関数でキャストを実装した場合は、変換元と変換先とで同一のデータ型を持つキャストを宣言することができます。
これは、システムカタログにおいて型固有の長さ強制関数を表現するために使用されています。
指定された関数は、型の値を強制的に2番目の引数で与えられた型修飾子の値にするために使用されます。
  


キャストが変換元と変換先のデータ型が異なり、複数の引数を取る関数を持つ場合、あるデータ型から他のデータ型への変換と長さの強制を1つの操作にまとめたものをサポートします。
引数を1つしか取らない場合は、型修飾子を使用して型を強制するために、データ型間の変換と修飾子の適用という2つのキャスト操作が必要となります。
  


ドメイン型へのキャスト、ドメイン型からのキャストは現在は効果がありません。
ドメインへのキャスト、ドメインからのキャストは、基となる型と関連したキャストを使用します。
  

注釈


ユーザ定義のキャストを削除するにはDROP CASTを使用してください。
  


データ型を双方向に変更可能にするには、双方向のキャストを明示的に宣言する必要があることに注意してください。
  


ユーザ定義型と標準文字列型（text、varchar、char(n)）、および文字列カテゴリとして定義されたユーザ定義型との間のキャストを作成することは、通常必要ありません。
PostgreSQL™はこのために自動的なI/O変換キャストを提供します。
この文字列への自動キャストは代入キャストとして扱われますが、文字列型からの入出力変換キャストは明示的なキャストのみです。
この振舞いは独自のキャストを宣言して自動キャストを置き換えることで変更することができます。
しかし、通常このようにするのは、この変換を標準の代入のみまたは明示的のみの設定よりもより呼び出しやすくしたい場合に限られます。
他にも、型の入出力関数と異なる動作で変換したいという理由もあるかもしれません。
しかし、これは非常に驚かされるものであり、そうすべきかどうか熟考すべきです。
（組み込み型のごく一部は実際変換用に異なった振舞いをしますが、ほとんどは標準SQLの仕様のためのものです。）
  


必須ではありませんが、キャストを実装する関数には変換先のデータ型の名前を付けるという以前からの慣習に従っておくことを推奨します。
多くのユーザはtypename(x)という関数スタイルの記法でデータ型のキャストを行っています。
この記法は、キャストを実装している関数の呼び出しに他なりません。
キャストとして特別に扱われるわけではないのです。
ユーザが作成した変換関数の名前がこの慣習に従っていないと、他のユーザがとまどうことになります。
PostgreSQL™は引数として異なる型を取る同じ名前の関数をオーバーロードすることができるので、様々な型から特定の変換先型への変換関数の名前を全て変換先の型名にしても特に問題は発生しません。
  
注記


実際のところ、前の段落は単純化しすぎたものです。
関数呼び出し式が実際の関数と一致しない状態でキャスト要求として扱われる状況が2つ存在します。
関数呼び出しname(x)が実際の関数に正確に一致せず、nameがデータ型の名前であり、pg_castがxの型からその型へのバイナリ強制互換のキャストを提供する場合、この呼び出しはバイナリ強制互換キャストとして処理されます。
この例外は、実際の関数が存在しなくても、関数のような構文でバイナリ強制互換キャストを呼び出すことができるように作成されました。
同様に、pg_castに項目がないが、文字列型との間のキャストが存在する場合、この呼び出しは入出力変換キャストとして処理されます。
この例外により関数のような構文で入出力変換キャストができるようになります。
   

注記


この例外にも例外があります。
複合型から文字列型へのI/O変換キャストでは関数構文を使用して呼び出すことができず、明示的なキャスト構文（CAST記法または::記法のいずれか）で記述しなければなりません。
この例外は、自動提供I/O変換キャストを導入した後、関数または列参照を意図した時に非常に簡単に間違って呼び出されることが判明したため追加されました。
   


例


関数int4(bigint)を使用したbigint型からint4型への代入キャストを作成します。


CREATE CAST (bigint AS int4) WITH FUNCTION int4(bigint) AS ASSIGNMENT;



（このキャストは、システムに既に定義されています。）
  

互換性


SQLではバイナリ強制互換性があるデータ型や実装関数の追加の引数について規定されていません。さらに、AS IMPLICITは、PostgreSQL™の拡張です。
これらの点以外では、CREATE CASTは標準SQLに準拠しています。
  

関連項目

   CREATE FUNCTION(7),
   CREATE TYPE(7),
   DROP CAST(7)
  



名前
CREATE COLLATION — 新しい照合順序を定義する

概要

CREATE COLLATION [ IF NOT EXISTS ] name (
    [ LOCALE = locale, ]
    [ LC_COLLATE = lc_collate, ]
    [ LC_CTYPE = lc_ctype, ]
    [ PROVIDER = provider, ]
    [ DETERMINISTIC = boolean, ]
    [ RULES = rules, ]
    [ VERSION = version ]
)
CREATE COLLATION [ IF NOT EXISTS ] name FROM existing_collation


説明


CREATE COLLATIONは指定したオペレーティングシステムのロケール設定を使用、または既存の照合順序をコピーすることで新しい照合順序を定義します。
 


照合順序を新しく作成するためには、格納先のスキーマにおけるCREATE権限が必要です。
  

パラメータ
	IF NOT EXISTS
	

同じ名前の照合順序が既に存在する場合にエラーを発生させません。
この場合、注意メッセージが発行されます。
既存の照合順序が作られようとしていたものと類似したものかどうか、全く保証されないことに注意してください。
      

	name
	

照合順序の名前です。
照合順序の名前はスキーマ修飾することができます。
スキーマ修飾されていない場合、照合順序は現在のスキーマ内に定義されます。
照合順序の名前はそのスキーマ内で一意でなければなりません。
（システムカタログでは異なる符号化方式に対して同じ名前の照合順序を含めることができます。
しかしデータベース符号化方式が異なる場合には無視されます。）
      

	locale
	

この照合順序のロケール名です。
詳しくは「libc照合順序」と「ICU照合順序」を見てください。
      


providerがlibcなら、これは同時にLC_COLLATEおよびLC_CTYPEを設定する省略形です。
localeを指定した場合、これらのパラメータのどちらも指定できません。
      


providerがbuiltinの場合、localeを指定し、C、C.UTF-8またはPG_UNICODE_FASTのいずれかに設定することが必要です。
      

	lc_collate
	

providerがlibcなら、LC_COLLATEロケールカテゴリに対して指定したオペレーティングシステムのロケールを使用します。
      

	lc_ctype
	

providerがlibcなら、LC_CTYPEロケールカテゴリに対して指定したオペレーティングシステムのロケールを使用します。
      

	provider
	

この照合順序に関連するロケールサービスで使用するプロバイダを指定します。
取り得る値はbuiltin、icu（サーバがICUサポート付きで構築されている場合）とlibcです。
libcがデフォルトです。
詳しくは「ロケールプロバイダ」を参照してください。
      

	DETERMINISTIC
	

照合順序が決定論的な比較を使うかどうかを指定します。
デフォルトは真です。
決定論的な比較では、たとえ論理的に比較すれば等しいとみなされるものであっても、バイト単位で等しくない文字列は等しくないとみなします。
PostgreSQLはバイト単位の比較を使って分解します。
決定論的でない比較では、例えば、照合順序で大文字小文字を区別しない、またはアクセントを区別しないようにできます。
そのためには、適切なLOCALEの設定を選んだ上で、ここで照合順序を非決定論的なものに設定することが必要です。
      


非決定論的な照合順序はICUプロバイダでのみサポートされています。
      

	rules
	

照合順序の動作をカスタマイズするための追加の照合順序規則を指定します。
これはICUでのみサポートされています。
詳細は「ICU適合化規則」を参照してください。
      

	version
	

照合順序と一緒に保存するバージョン文字列を指定します。
通常は省略すべきで、省略するとオペレーティングシステムが提供する照合順序の実際のバージョンから計算されます。
このオプションはpg_upgradeが既存のインストレーションからバージョンをコピーする時に使われることを意図したものです。
      


照合順序のバージョン不適合を処理する方法については、ALTER COLLATION(7)も参照してください。
      

	existing_collation
	

コピーする既存の照合順序の名前です。
新しい照合順序は既存のものと同じ属性を持ちますが、独立したオブジェクトになります。
      




注釈


CREATE COLLATIONはSHARE ROW EXCLUSIVEロックを使い、そのロックはpg_collationシステムカタログで衝突します。ですので、CREATE COLLATIONは一度に1つしか実行できません。
  


ユーザ定義の照合順序を削除するためにはDROP COLLATIONを使用してください。
  


照合順序の作成についての更なる情報については「新しい照合順序オブジェクトの作成」を参照してください。
  


libc照合順序プロバイダを使う場合、ロケールは現在のデータベース符号化方式に適用可能でなければなりません。
正確な規則についてはCREATE DATABASE(7)を参照してください。
  

例


オペレーティングシステムのロケールfr_FR.utf8から照合順序を作成します
（現在のデータベース符号化方式がUTF8であるとします）。


CREATE COLLATION french (locale = 'fr_FR.utf8');


  


ICUプロバイダを使い、ドイツの電話帳のソート順を使った照合順序を作成します。


CREATE COLLATION german_phonebook (provider = icu, locale = 'de-u-co-phonebk');


  


ICUプロバイダを使い、ルートICUロケールに基づいて、カスタム規則を使って照合順序を作成するには、次のようにします。


CREATE COLLATION custom (provider = icu, locale = 'und', rules = '&V << w <<< W');



規則の構文の詳細と例については、「ICU適合化規則」を参照してください。
  


既存の照合順序から照合順序を作成します。


CREATE COLLATION german FROM "de_DE";



アプリケーションにおいてオペレーティングシステムに依存しない照合順序の名前を使用することができ、便利になるかもしれません。
  

互換性


標準SQLにはCREATE COLLATIONが存在しますが、既存の照合順序のコピーに限定されています。
新しい照合順序を作成するための構文はPostgreSQL™の拡張です。
  

関連項目
ALTER COLLATION(7), DROP COLLATION(7)


名前
CREATE CONVERSION — 新しい符号化方式変換を定義する

概要

CREATE [ DEFAULT ] CONVERSION name
    FOR source_encoding TO dest_encoding FROM function_name


説明


CREATE CONVERSIONを使用すると、2つの文字集合符号化方式間の新しい変換を定義できます。
  


DEFAULTとして指定された変換は、クライアントとサーバの間での自動的な符号化方式の変換に使用できます。
そのような使い方をサポートするためには、符号化方式Aから符号化方式Bへ、および、符号化方式Bから符号化方式Aへという2つの変換を定義する必要があります。
  


変換を作成するためには、その関数のEXECUTE権限、および、対象となるスキーマ上のCREATE権限を保持している必要があります。
  

パラメータ
	DEFAULT
	

DEFAULT句により、この変換が、指定された変換元から対象となる符号化方式への変換のデフォルトであることが示されます。
1つのスキーマ内でデフォルトとされる変換は、符号化方式の組み合わせ1組において1つだけです。
      

	name
	

変換の名前です。
変換名は、スキーマ修飾することができます。
スキーマ修飾されていない場合、変換は現在のスキーマに定義されます。
変換名は、スキーマ内で一意である必要があります。
      

	source_encoding
	

変換元の符号化方式名です。
      

	dest_encoding
	

変換先の符号化方式名です。
      

	function_name
	

この関数は、変換の実行に使用されます。
関数名は、スキーマ修飾することができます。
スキーマ修飾されていない場合、関数はパスから検索されます。
      


関数は、下記のような形式で記述する必要があります。



conv_proc(

    integer,  -- 変換元符号化方式ID
    integer,  -- 変換先符号化方式ID
    cstring,  -- 変換元文字列（NULLで終わるC言語文字列）
    internal, -- 変換先文字列（NULLで終わるC言語文字列）
    integer,  -- 変換元文字列長
    boolean   -- 真の場合、変換が失敗してもエラーにならない
) RETURNS integer;



戻り値は変換に成功した変換元のバイト数です。
最後の引数が偽であれば、関数は無効な入力をエラーにしなければならず、戻り値は常に変換元文字列長に等しいです。
      




注釈


SQL_ASCII「符号化方式」を含む場合のサーバの振る舞いは組み込まれたものですので、変換元の符号化方式も対象となる符号化方式もSQL_ASCIIとすることはできません。
  


ユーザ定義の変換を削除するには、DROP CONVERSIONを使用します。
  


変換の作成に必要な権限は、今後のリリースで変更される可能性があります。
  

例


myfunc関数を使用して、UTF8からLATIN1への符号化方式の変換を作成します。


CREATE CONVERSION myconv FOR 'UTF8' TO 'LATIN1' FROM myfunc;


互換性


CREATE CONVERSIONは、PostgreSQL™の拡張です。
標準SQLにはCREATE CONVERSION文はありませんが、CREATE TRANSLATION文の目的および構文は非常に似たものです。
  

関連項目
ALTER CONVERSION(7), CREATE FUNCTION(7), DROP CONVERSION(7)


名前
CREATE DATABASE — 新しいデータベースを作成する

概要

CREATE DATABASE name
    [ WITH ] [ OWNER [=] user_name ]
           [ TEMPLATE [=] template ]
           [ ENCODING [=] encoding ]
           [ STRATEGY [=] strategy ]
           [ LOCALE [=] locale ]
           [ LC_COLLATE [=] lc_collate ]
           [ LC_CTYPE [=] lc_ctype ]
           [ BUILTIN_LOCALE [=] builtin_locale ]
           [ ICU_LOCALE [=] icu_locale ]
           [ ICU_RULES [=] icu_rules ]
           [ LOCALE_PROVIDER [=] locale_provider ]
           [ COLLATION_VERSION = collation_version ]
           [ TABLESPACE [=] tablespace_name ]
           [ ALLOW_CONNECTIONS [=] allowconn ]
           [ CONNECTION LIMIT [=] connlimit ]
           [ IS_TEMPLATE [=] istemplate ]
           [ OID [=] oid ]


説明


CREATE DATABASEは新しいPostgreSQL™データベースを作成します。
  


データベースを作成するには、スーパーユーザ、もしくはCREATEDBという特別な権限を持つユーザである必要があります。
CREATE ROLE(7)を参照してください。
  


デフォルトでは、新しいデータベースは標準システムデータベースtemplate1を複製することによって作成されます。
他のテンプレートを指定するには、TEMPLATE nameと記述します。
特に、TEMPLATE template0と記述することで、そのバージョンのPostgreSQL™によって定義済みの標準オブジェクトのみを持つ、(そこではユーザ定義オブジェクトは存在せず、システムオブジェクトは変更されていない)初期状態のデータベースを作ることができます。
これは、template1に追加した独自オブジェクトをコピーしたくない場合に便利です。
  

パラメータ
	name
	

作成するデータベースの名前です。
       

	user_name
	

新しいデータベースを所有するユーザのロール名です。
デフォルト設定（つまり、コマンドを実行したユーザ）を使用する場合はDEFAULTと指定します。
他のロールによって所有されるデータベースを作成するためには、そのロールに対してSET ROLEができなければなりません。
       

	template
	

新しいデータベースの作成元となるテンプレートの名前です。
デフォルトテンプレート（template1）を使う場合は、DEFAULTと指定します。
       

	encoding
	

新しいデータベースで使われる文字集合符号化方式です。
文字列定数（例えば'SQL_ASCII'）、整数の符号化方式番号、DEFAULTのいずれかを指定します。
DEFAULTとすると、デフォルトの符号化方式（すなわちテンプレートデータベースの符号化方式）を使います。
PostgreSQL™サーバでサポートされる文字集合については「サポートされる文字集合」で説明します。
この他の制限については後述します。
       

	strategy
	

新規データベースの作成に用いられる手法。
WAL_LOG手法が用いられる場合、データベースはブロックごとにコピーされ、各ブロックは個別に先行書き込みログ（WAL）に書き込まれます。
これはテンプレートデータベースが小さい場合に最も効率的な手法であるため、デフォルトです。
古いFILE_COPY手法も利用可能です。
この手法は、ターゲットデータベースが使用する各テーブル空間のための小さなレコードを先行書き込みログ（WAL）に書き込みます。
各レコードは、ファイルシステムレベルでディレクトリ全体を新しい場所にコピーすることを表します。
これにより先行書き込みログ（WAL）の量が大幅に減少しますが、特にテンプレートデータベースが大きい場合は、新規データベースの作成前後にチェックポイントを実行するようにシステムに強制もします。
状況によっては、これはシステム全体のパフォーマンスに顕著な悪影響があるかもしれません。
FILE_COPY手法は、file_copy_methodの設定に影響を受けます。
       

	locale
	

新しいデータベースのデフォルト照合順序および文字分類を設定します。
照合順序は、たとえば、ORDER BYを使用した問い合わせ内の文字列に適用されるソート順に影響を与えます。また、テキスト列のインデックスで使用される順序にも影響を与えます。
文字分類は、文字の分類、たとえば、小文字、大文字および数字に影響を与えます。
また、オペレーティングシステム環境の関連する側面、LC_COLLATEおよびLC_CTYPEも設定します。
デフォルトはテンプレートデータベースと同じ設定です。
詳細は、「libc照合順序」および「ICU照合順序」を参照してください。
       


lc_collate、lc_ctype、builtin_localeまたはicu_localeを個別に設定することで上書きできます。
       


locale_providerがbuiltinの場合、localeまたはbuiltin_localeを指定し、C、C.UTF-8、またはPG_UNICODE_FASTに設定しなければなりません。
       
ヒント


その他のロケール設定lc_messages、lc_monetary、lc_numeric、lc_timeはデータベース毎には固定されず、このコマンドでは設定されません。
特定のデータベースのデフォルトにしたい場合には、ALTER DATABASE ... SETが使えます。
        


	lc_collate
	

データベースサーバのオペレーティングシステム環境でLC_COLLATEを設定します。
デフォルトは、指定されている場合はlocaleの設定、それ以外の場合はテンプレートデータベースと同じ設定です。
追加の制限については、次を参照してください。
       


locale_providerがlibcの場合、新しいデータベースで使用するデフォルト照合順序も設定され、localeの設定が上書きされます。
       

	lc_ctype
	

データベースサーバのオペレーティングシステム環境でLC_CTYPEを設定します。
デフォルトは、指定されている場合はlocaleの設定で、それ以外の場合はテンプレートデータベースと同じ設定です。
追加の制限については、次を参照してください。
       


locale_providerがlibcの場合は、新しいデータベースで使用するデフォルトの文字分類も設定し、localeの設定を上書きします。
       

	builtin_locale
	

データベースのデフォルトの照合順序と文字分類に対する組み込みプロバイダロケールを指定します。 localeの設定を上書きします。
ロケールプロバイダはbuiltinでなければなりません。
デフォルトは、指定されている場合はlocaleの設定、それ以外の場合はテンプレートデータベースと同じ設定です。
       


builtinプロバイダで利用可能なロケールはC、C.UTF-8、PG_UNICODE_FASTです。
       

	icu_locale
	

データベースのデフォルトの照合順序と文字分類に対するICUロケール（「ICU照合順序」 を参照）を指定します。 locale の設定をオーバーライドします。
ロケールプロバイダはICUでなければなりません。
デフォルトは、指定されている場合はlocaleの設定、それ以外の場合はテンプレートデータベースと同じ設定です。
       

	icu_rules
	

このデータベースのデフォルトの照合の動作をカスタマイズするための追加の照合規則を指定します。
これはICUのみでサポートされています。
詳細は「ICU適合化規則」を参照してください。
       

	locale_provider
	

このデータベースのデフォルトの照合順序に使用するプロバイダを指定します。
使用可能な値は、builtin、（サーバがICUをサポートするよう構築されている場合には）icuまたはlibcです。
デフォルトでは、プロバイダはtemplateのプロバイダと同じです。
詳細は「ロケールプロバイダ」を参照してください。
       

	collation_version
	

データベースに保存する照合順序のバージョン文字列を指定します。
通常、これは省略すべきで、その場合、オペレーティングシステムが提供するデータベースの照合順序の実際のバージョンからバージョンが計算されます。
このオプションは、pg_upgradeが既存のインストールからバージョンをコピーするのに使用することを意図しています。
       


データベースの照合順序のバージョンの不一致を処理する方法については、ALTER DATABASE(7)も参照してください。
       

	tablespace_name
	

新しいデータベースに関連付けされるデフォルトのテーブル空間名です。
テンプレートデータベースのテーブル空間を使用する場合は、DEFAULTと指定します。
このテーブル空間が、このデータベースで作成されるオブジェクトのデフォルトのテーブル空間となります。
詳細はCREATE TABLESPACE(7)を参照してください。
       

	allowconn
	

falseの場合、誰もこのデータベースに接続できません。
デフォルトはtrueで、接続が可能です（GRANT/REVOKE CONNECTなど他の仕掛けで制限されている場合を除きます）。
        

	connlimit
	

このデータベースで確立できる同時接続数です。
-1（デフォルト）は無制限を意味します。
       

	istemplate
	

trueの場合、CREATEDB権限があれば、どのユーザでもこのデータベースを複製できます。
false（デフォルト）の場合、スーパーユーザまたはデータベースの所有者だけが複製できます。
        

	oid
	

新しいデータベースに使用されるオブジェクト識別子です。
このパラメータが指定されない場合、PostgreSQL™は適切なOIDを自動的に選択します。
このパラメータは主にpg_upgradeが内部的に使用することを意図しており、pg_upgradeのみが16384より小さい値を指定できます。
        





オプションのパラメータは、任意の順番で記述できます。上記の順番で記述しなくても構いません。
  

注釈


CREATE DATABASEはトランザクションブロックの内側では実行できません。
   


ほとんどの場合、「could not initialize database directory」という行が含まれるエラーは、データディレクトリの権限不足、ディスク容量不足などファイルシステムについての問題に関連するものです。
   


データベースを削除するにはDROP DATABASEを使用してください。
   


createdb(1)プログラムは利便性のために提供される、このコマンドのラッパープログラムです。
   


データベースレベルの設定パラメータ(ALTER DATABASEによって設定されるもの)とデータベースレベルの権限(GRANTによって設定されるもの)はテンプレートデータベースからコピーされません。
   


template1以外のデータベースの名前をテンプレートに指定してデータベースをコピーすることは可能ですが、これは（まだ）一般的に使用する「COPY DATABASE」機能として意図されているわけではありません。
主な制限は、コピー中に他のセッションからテンプレートデータベースへの接続ができないことです。
CREATE DATABASEは、開始した時に他の接続があると失敗します。
テンプレートデータベースへの新規接続はCREATE DATABASEが完了するまでできません。
詳細は「テンプレートデータベース」を参照してください。
  


新しいデータベース用に指定される文字集合符号化方式は選択されたロケール設定（LC_COLLATEおよびLC_CTYPE）と互換性がなければなりません。
ロケールがC（や同等のPOSIX）であれば、すべての符号化方式が許されますが、他のロケール設定では適切に動作する符号化方式は1つしかありません。
（しかしWindowsではUTF-8符号化方式をすべてのロケールで使用できます。）
CREATE DATABASEでは、ロケール設定に関係なくスーパーユーザがSQL_ASCII符号化方式を指定することを許していますが、こうした選択は廃止予定であり、データベース内にロケールと互換性がない符号化方式でデータが格納された場合、文字列関数の誤動作を多く引き起こします。
  


符号化方式とロケール設定はテンプレートデータベースのこれらの設定と一致しなければなりません。
ただしtemplate0がテンプレートとして使用される場合は例外です。
他のデータベースには指定された符号化方式と一致しないデータを含む可能性やLC_COLLATEおよびLC_CTYPEがソート順序に影響するようなインデックスを含む可能性があることがこの理由です。
こうしたデータをコピーしたものは、新しい設定から見ると破損したデータベースとなります。
しかしtemplate0には影響を受けるデータやインデックスが含まれていないことが分かっています。
  


現時点では、非決定論的な比較でデータベースのロケールを使用するオプションはありません(CREATE COLLATIONを参照してください)。
これが必要な場合は、列単位の照合順序を使用する必要があります。
  


CONNECTION LIMITは厳密な制限ではありません。
データベース向けの接続「スロット」が1つ残っていた時に同時に2つの新しいセッション開始要求があった場合、両方とも失敗する可能性があります。
また、この制限はスーパーユーザおよびバックグラウンドのワーカープロセスには強制されません。
  

例


新しいデータベースを作成します。



CREATE DATABASE lusiadas;


  


ユーザsalesappを所有者、salesspaceをデフォルトのテーブル空間としてデータベースsalesを作成します。



CREATE DATABASE sales OWNER salesapp TABLESPACE salesspace;


  


別のロケールでデータベースmusicを作成します。


CREATE DATABASE music
    LOCALE 'sv_SE.utf8'
    TEMPLATE template0;



この例において、指定するロケールがtemplate1のロケールと異なる場合、TEMPLATE template0の句が必須となります。
（それらが同じ場合、ロケールを明示的に指定することは必要ありません。）
  


別のロケールおよび別の文字集合符号化方式でデータベースmusic2を作成します。


CREATE DATABASE music2
    LOCALE 'sv_SE.iso885915'
    ENCODING LATIN9
    TEMPLATE template0;



指定するロケールと符号化方式の設定は対応するものでなければならず、そうでなければエラーが報告されます。
  


ロケール名はOSに固有のものであるため、上記のコマンドはすべての環境で同じように動作するとは限らないことに注意してください。
  

互換性


標準SQLにはCREATE DATABASE文はありません。
データベースはカタログに相当するもので、その作成は実装依存です。
  

関連項目
ALTER DATABASE(7), DROP DATABASE(7)


名前
CREATE DOMAIN — 新しいドメインを定義する

概要

CREATE DOMAIN name [ AS ] data_type
    [ COLLATE collation ]
    [ DEFAULT expression ]
    [ domain_constraint [ ... ] ]


ここでdomain_constraintは、以下の通りです。

[ CONSTRAINT constraint_name ]
{ NOT NULL | NULL | CHECK (expression) }


説明


CREATE DOMAINは新しいドメインを作成します。
ドメインとは本質的には、特別な制約（使用可能な値集合に対する制限）を持ったデータ型です。
ドメインを定義したユーザが、その所有者となります。
  


スキーマ名が付けられている場合（例えば、CREATE DOMAIN myschema.mydomain ...）、ドメインは指定されたスキーマに作成されます。
スキーマ名が付けられていなければ、そのドメインは現在のスキーマに作成されます。
ドメイン名は、そのスキーマ内に存在するデータ型およびドメインの間で、一意である必要があります。
  


ドメインを使用すると、共通な制約を1箇所に抽象化でき、メンテナンスに便利です。
たとえば、E-mailアドレスを格納する列が複数のテーブルで使用されていて、アドレス構文の検証のためすべてが同一のCHECK制約を必要としているような場合です。
このような場合、各テーブルに個別に制約を設定するよりも、ドメインを定義してください。
  


ドメインを作成するためには、基となる型に対するUSAGE権限を持たなければなりません。
  

パラメータ
	name
	

作成するドメインの名前です（スキーマ修飾名でも可）。
       

	data_type
	

ドメインの基となるデータ型です。
配列指定子を含めることができます。
       

	collation
	

ドメインの照合順(省略可能)です。
照合順序の指定がなければ、ドメインは基となるデータ型と同じ照合順序が使用されます。
COLLATEが指定される場合、基となる型は照合順序が設定可能な型でなければなりません。
       

	DEFAULT expression
	

DEFAULT句は、ドメインデータ型の列のデフォルト値を指定します。
任意の無変数式を値とすることができます（ただし、副問い合わせは許可されません）。
デフォルト式のデータ型は、そのドメインのデータ型と一致する必要があります。
デフォルト値が指定されない場合、デフォルト値はNULL値となります。
       


デフォルト式は、挿入操作において該当する列に値が指定されなかった場合に使用されます。
特定の列に対してデフォルト値が定義されている場合、それはドメインに関連するデフォルト値より優先します。
反対に、基となるデータ型に関連するデフォルト値より、ドメインのデフォルト値が優先します。
       

	CONSTRAINT constraint_name
	

制約の名前（省略可能）です。
指定されなければ、システムが名前を生成します。
       

	NOT NULL
	

このドメインの値としてNULLの使用を禁止します（ただし、以下の注釈を参照してください）。
       

	NULL
	

ドメインの値としてNULLの使用を許可します。
こちらがデフォルトです。
       


この句は非標準的なSQLデータベースとの互換性を持つためだけに用意されています。
新しいアプリケーションでこの句を使用するのはお勧めできません。
       

	CHECK (expression)
	CHECK句は、ドメインの値が満たさなければならない整合性制約や検査を指定します。
各制約は、Boolean型の結果を生成する式である必要があります。
検査される値を参照するには、VALUEというキーワードを使用すべきです。
TRUEまたはUNKNOWNとして評価される式は成功します。
式の結果がFALSEになった場合、エラーが報告され、値はドメイン型に変換することができません。
     


現時点では、CHECK式に副問い合わせを含めたり、VALUE以外の変数を参照したりすることはできません。
     


ドメインに複数のCHECK制約がある場合、それらは名前のアルファベット順に評価されます。
（PostgreSQL™の9.5より前のバージョンでは、複数のCHECK制約がある場合について、特定の実行順序がありませんでした。）
     




注釈


ドメイン制約、特にNOT NULLは、値がドメイン型に変換されるときに検査されます。
名目上はドメイン型である列が、NOT NULLの制約にも関わらずNULLとして読み出される場合もあり得ます。
例えば、外部結合の問い合わせにおいて、ドメインの列が外部結合のNULLになる側にあるときに、これが起こり得ます。
より微妙な例は以下です。


INSERT INTO tab (domcol) VALUES ((SELECT domcol FROM tab WHERE false));



空でスカラの副SELECTにより、ドメイン型であると見なされるNULL値が生成されます。
そのため、制約についてこれ以上の検証は行われず、挿入は成功します。
  


SQLではNULL値はすべてのデータ型で有効な値であると想定されているため、このような問題を回避するのは非常に難しいことです。
したがって、最善の方法は、NOT NULL制約をドメイン型に直接適用するのではなく、NULL値が許されるようにドメインの制約を設計し、その上で、列のNOT NULL制約を、必要に応じて、ドメイン型の列に適用することです。
  


PostgreSQL™はCHECK制約の条件はimmutableである、すなわち同じ入力値に対しては必ず同じ結果を与えると仮定します。
この仮定は、値が初めてドメイン型に変換された時にのみCHECK制約を確認し、それ以外では確認しないことを正当化するものです。
(これは、「検査制約」で述べているテーブルのCHECK制約の扱いと本質的に同じです。)
  


この仮定を破るよくある例は、CHECK式内でユーザ定義関数を参照しており、後でその関数の振舞いを変更することです。
PostgreSQL™はそれを拒否しませんが、そのドメイン型の格納された値でCHECK制約に今や違反するものがあることには気付かないでしょう。
これは、その後のデータベースのダンプとリストアが失敗する原因になるかもしれません。
そのような変更を扱うお勧めの方法は、(ALTER DOMAINを使って)制約を削除し、関数の定義を調整し、その制約を再び追加することです。それにより格納されたデータに対して再確認が行われます。
  


ドメインCHECK式がエラーを発生しないのを確実にすることもお勧めです。
  

例


この例では、データ型us_postal_codeを作成し、その型をテーブル定義の中で使用します。
データが有効なUS郵便番号であるかどうかを検証するために正規表現検査が使用されます。



CREATE DOMAIN us_postal_code AS TEXT
CHECK(
   VALUE ~ '^\d{5}$'
OR VALUE ~ '^\d{5}-\d{4}$'
);

CREATE TABLE us_snail_addy (
  address_id SERIAL PRIMARY KEY,
  street1 TEXT NOT NULL,
  street2 TEXT,
  street3 TEXT,
  city TEXT NOT NULL,
  postal us_postal_code NOT NULL
);


互換性


CREATE DOMAINコマンドは標準SQLに準拠しています。
  


このコマンドのNOT NULLという構文はPostgreSQL™の拡張です。
（複合型でないデータ型に対して同じことを書くための標準に準拠した方法はCHECK (VALUE IS NOT NULL)です。
しかし「注釈」に従って、実際にはそのような制約は避けるのが最善です。）
NULLの「制約」はPostgreSQL™の拡張です（互換性も参照してください）。
  

関連項目
ALTER DOMAIN(7), DROP DOMAIN(7)


名前
CREATE EVENT TRIGGER — 新しいイベントトリガを定義する

概要

CREATE EVENT TRIGGER name
    ON event
    [ WHEN filter_variable IN (filter_value [, ... ]) [ AND ... ] ]
    EXECUTE { FUNCTION | PROCEDURE } function_name()


説明


CREATE EVENT TRIGGERは新しいイベントトリガを作成します。
指定されたイベントが発生し、トリガに関連するWHEN条件がもしあればそれを満たす場合、トリガ関数が実行されます。
イベントトリガの一般的な紹介については、38章イベントトリガを参照してください。
イベントトリガを作成したユーザがその所有者となります。
  

パラメータ
	name
	

新しいトリガに付ける名前です。
この名前はデータベース内で一意でなければなりません。
     

	event
	

指定関数を呼び出すきっかけとなるイベントの名前です。
イベント名の詳細については「イベントトリガ動作の概要」を参照してください。
     

	filter_variable
	

イベントをフィルタするために使用される変数の名前です。
これにより、サポートしている状況の一部に対してのみにトリガの発行を制限することができます。
現在filter_variableでサポートされているものはTAGのみです。
     

	filter_value
	

どこでトリガを発行すべきかについて、関連するfilter_variable用の値のリストです。
TAGの場合、これはコマンドタグ（例えば'DROP FUNCTION'）のリストを意味します。
     

	function_name
	

引数を取らずevent_trigger型を返すと宣言された、ユーザが提供する関数です。
     


CREATE EVENT TRIGGERの構文では、キーワードFUNCTIONとPROCEDUREは等価ですが、参照されている関数はどちらの場合でも関数でなければならず、プロシージャであってはなりません。
ここでキーワードPROCEDUREを使うことは、歴史的なものであり廃止予定です。
     




注釈


スーパーユーザのみがイベントトリガを作成することができます。
  


event_triggersがfalseに設定されている場合と同じように、シングルユーザモード（postgres(1)参照）ではイベントトリガは無効になります。
エラーのあるイベントトリガが原因でデータベースの動作がおかしくなり、トリガを削除することもできない状態になった場合は、一時的にイベントトリガを無効にするためにevent_triggersをfalseに設定して再起動するか、シングルユーザモードで再起動してください。そうすれば削除できるようになります。
  

例


すべてのDDLコマンドの実行を禁じます。



CREATE OR REPLACE FUNCTION abort_any_command()
  RETURNS event_trigger
 LANGUAGE plpgsql
  AS $$
BEGIN
  RAISE EXCEPTION 'command % is disabled', tg_tag;
END;
$$;

CREATE EVENT TRIGGER abort_ddl ON ddl_command_start
   EXECUTE FUNCTION abort_any_command();


互換性


標準SQLにはCREATE EVENT TRIGGER文はありません。
  

関連項目
ALTER EVENT TRIGGER(7), DROP EVENT TRIGGER(7), CREATE FUNCTION(7)


名前
CREATE EXTENSION — 拡張をインストールする

概要

CREATE EXTENSION [ IF NOT EXISTS ] extension_name
    [ WITH ] [ SCHEMA schema_name ]
             [ VERSION version ]
             [ CASCADE ]


説明


CREATE EXTENSIONは現在のデータベース内に新しい拡張を読み込みます。
読み込み済みの拡張と同じ名前の拡張を読み込むことはできません。
  


拡張の読み込みは基本的に拡張のスクリプトファイルを実行することと同じです。
スクリプトは通常、関数、データ型、演算子、インデックスサポートメソッドなどのSQLオブジェクトを新しく作成するものです。
CREATE EXTENSIONはさらに作成したすべてのオブジェクト識別子を記録して、DROP EXTENSIONが発行された時に削除できるようにします。
  


CREATE EXTENSIONを実行するユーザは、後で実施される権限検査のためにその拡張の所有者となります。また通常このユーザは拡張のスクリプトにより作成されたすべてのオブジェクトの所有者となります。
  


拡張の読み込みでは、通常その要素オブジェクトを作成するために必要となるいくつかの権限が必要です。
多くの拡張では、これはスーパーユーザの権限が必要であることを意味します。
しかしながら、制御ファイルでtrustedと印付けされた拡張は、現在のデータベースに対してCREATE権限を持つユーザであれば誰でもインストールできます。
この場合拡張オブジェクト自身は呼び出したユーザが所有しますが、そこに含まれるオブジェクトは(拡張スクリプトが明示的に呼び出したユーザに対して割り当てない限り)ブートストラップスーパーユーザが所有します。
この設定は呼び出したユーザに拡張を削除する権限を与えますが、その中の個々のオブジェクトを修正する権限は与えません。
  

パラメータ
	IF NOT EXISTS
	

同じ名前の拡張がすでに存在していてもエラーにしません。
この場合注意が発せられます。
既存の拡張が、現在利用可能なスクリプトファイルより作成されるものと何かしら似たものであることは保証されません。
       

	extension_name
	

インストールする拡張の名前です。
PostgreSQL™は、（extension_control_pathで設定される）サーバの拡張の制御パス経由で見つけたファイルextension_name.controlから詳細を読み取り、拡張を作成します。
       

	schema_name
	

拡張の内容を再配置させることができる場合に、拡張のオブジェクトをインストールするスキーマの名前です。
指定されたスキーマは事前に存在していなければなりません。
指定がなく、拡張の制御ファイルでもスキーマを指定していない場合、現在のデフォルトのオブジェクト生成用スキーマが使用されます。
       


拡張がその制御ファイルでschemaパラメータを指定している場合、そのスキーマをSCHEMA句で上書きすることはできません。
SCHEMA句が指定され、それが拡張のschemaパラメータと相容れない場合、通常はエラーが発生します。
しかし、CASCADE句も指定されている場合は、schema_nameが相容れなければ、それを無視します。
必要なすべての拡張のインストールにおいて、それぞれの制御ファイルでschemaが指定されていなければ、指定されたschema_nameが使用されます。
       


拡張自体が任意のスキーマの中にあるとみなされていないことを思い出してください。
拡張は修飾がない名前を持ちますので、データベース全体で一意でなければなりません。
しかし拡張に属するオブジェクトはスキーマの中に置くことができます。
       

	version
	

インストールする拡張のバージョンです。
これは識別子あるいは文字列リテラルのいずれかとして記述できます。
デフォルトのバージョンは拡張の制御ファイル内で規定したものになります。
       

	CASCADE
	

この拡張が依存し、まだインストールされていないすべての拡張を自動的にインストールします。
それらが依存するものも同様に再帰的にインストールされます。
SCHEMA句が指定されている場合は、これによってインストールされるすべての拡張に適用されます。
この文の他のオプションは自動的にインストールされる拡張には適用されません。
特に、そのデフォルトバージョンは常に選択されます。
       




注釈


拡張をデータベースにロードするためにCREATE EXTENSIONを使用できるようになる前に、拡張のサポートファイルがインストールされていなければなりません。
PostgreSQL™が提供する拡張のインストールに関する情報は、追加で提供されるモジュールで説明します。
  


現在ロード可能な拡張はpg_available_extensionsまたはpg_available_extension_versionsシステムビューで識別できます。
  
注意


スーパーユーザとして拡張をインストールするには、拡張の作者が安全な方法で拡張のインストールスクリプトを書いたと信用することが必要です。
悪意のあるユーザが、不注意に書かれた拡張スクリプトの以降の実行を危険に晒すトロイの木馬オブジェクトを作り、そのユーザがスーパーユーザの権限を得るようにするのは、それほど難しいことではありません。
しかしながら、トロイの木馬オブジェクトはスクリプト実行時にsearch_pathにある場合にのみ危険です。これは拡張のインストール対象スキーマや依存する拡張のスキーマにあるということを意味します。
そのため、スクリプトが注意深く検査されていない拡張を扱う優れた経験則は、信頼できないユーザにCREATE権限を許可していないし、今後も許可することのないスキーマにのみ、その拡張をインストールすることです。
その拡張が依存する拡張についても同様です。
   


PostgreSQL™が提供する拡張は、他の拡張に依存する少数のものを除いて、この種のインストール時の攻撃に対して安全であると信じられています。
各拡張の文書で述べているように、拡張は安全なスキーマにインストールするか、依存する拡張と同じスキーマにインストールするか、あるいはその両方であるスキーマにインストールすべきです。
   



新しい拡張の作成に関しては「関連するオブジェクトを拡張としてパッケージ化」を参照してください。
  

例


そのオブジェクトをaddonsスキーマに配置して、現在のデータベースにhstore拡張をインストールします。


CREATE EXTENSION hstore SCHEMA addons;



以下は同様のことを行なう別の方法です。


SET search_path = addons;
CREATE EXTENSION hstore;


互換性


CREATE EXTENSIONはPostgreSQL™の拡張です。
  

関連項目
ALTER EXTENSION(7), DROP EXTENSION(7)


名前
CREATE FOREIGN DATA WRAPPER — 新しい外部データラッパーを定義する

概要

CREATE FOREIGN DATA WRAPPER name
    [ HANDLER handler_function | NO HANDLER ]
    [ VALIDATOR validator_function | NO VALIDATOR ]
    [ OPTIONS ( option 'value' [, ... ] ) ]


説明


CREATE FOREIGN DATA WRAPPERは新しい外部データラッパーを作成します。
外部データラッパーを定義したユーザがその所有者となります。
  


外部データラッパーの名前はデータベース内で一意でなければなりません。
  


スーパーユーザのみが外部データラッパーを作成することができます。
  

パラメータ
	name
	

作成する外部データラッパーの名前です。
     

	HANDLER handler_function
	handler_functionは、事前に登録された、外部テーブル向けの関数実行を受け付けるために呼び出される関数の名前です。
ハンドラ関数は引数を取らず、fdw_handler型を返すものでなければなりません。
     


ハンドラ関数を持たない外部データラッパーを作成することもできますが、こうしたラッパーを使用する外部テーブルは宣言することができるだけでアクセスできません。
     

	VALIDATOR validator_function
	validator_functionは、外部データラッパーへ与える一般的なオプションと、その外部データラッパーを使用する外部サーバ、ユーザマップおよび外部テーブルへ与えるオプションを検査するために呼び出される、前もって登録された関数の名前です。
検証関数がない、またはNO VALIDATORが指定された場合、オプションは作成時に検査されません。
（実装に依存しますが、実行時外部データラッパーは無効なオプション指定を無視することも拒絶することもできます。）
検証関数は2つの引数を取らなければなりません。
1つはtext[]型で、システムカタログ内に格納されたオプションの配列を含みます。
もう1つはoid型で、オプションを含むシステムカタログのOIDです。
戻り値の型は無視されます。
関数はereport()関数を使用して無効なオプションを報告しなければなりません。
     

	OPTIONS ( option 'value' [, ... ] )
	

この句は新しい外部データラッパー用のオプションを指定します。
使用できるオプション名と値は外部データラッパーごとに固有であり、外部データラッパーの検証関数を使用して検証されます。
オプション名は一意でなければなりません。
     




注釈


PostgreSQL™の外部データ機能はまだ活発な開発がなされています。
問い合わせの最適化がまだ開発が進んでいません（そしてほとんどがラッパーに任せられています）。
したがって将来の性能向上の余地が大きくあります。
  

例


無意味な外部データラッパーdummyを作成します。


CREATE FOREIGN DATA WRAPPER dummy;


  


file_fdw_handlerハンドラ関数を持つ外部データラッパーfileを作成します。


CREATE FOREIGN DATA WRAPPER file HANDLER file_fdw_handler;


  


いくつかオプションを付けた外部データラッパーmywrapperを作成します。


CREATE FOREIGN DATA WRAPPER mywrapper
    OPTIONS (debug 'true');


互換性


CREATE FOREIGN DATA WRAPPERはISO/IEC 9075-9 (SQL/MED)に準拠しています。
ただし、HANDLER句とVALIDATOR句は拡張であり、PostgreSQL™では標準のLIBRARY句とLANGUAGE句は実装されていません。
  


しかし、SQL/MED機能は全体としてまだ従っていないことに注意してください。
  

関連項目
ALTER FOREIGN DATA WRAPPER(7), DROP FOREIGN DATA WRAPPER(7), CREATE SERVER(7), CREATE USER MAPPING(7), CREATE FOREIGN TABLE(7)


名前
CREATE FOREIGN TABLE — 新しい外部テーブルを定義する

概要

CREATE FOREIGN TABLE [ IF NOT EXISTS ] table_name ( [
  { column_name data_type [ OPTIONS ( option 'value' [, ... ] ) ] [ COLLATE collation ] [ column_constraint [ ... ] ]
    | table_constraint
    | LIKE source_table [ like_option ... ] }
    [, ... ]
] )
[ INHERITS ( parent_table [, ... ] ) ]
  SERVER server_name
[ OPTIONS ( option 'value' [, ... ] ) ]

CREATE FOREIGN TABLE [ IF NOT EXISTS ] table_name
  PARTITION OF parent_table [ (
  { column_name [ WITH OPTIONS ] [ column_constraint [ ... ] ]
    | table_constraint }
    [, ... ]
) ]
{ FOR VALUES partition_bound_spec | DEFAULT }
  SERVER server_name
[ OPTIONS ( option 'value' [, ... ] ) ]


ここでcolumn_constraintは以下の通りです。

[ CONSTRAINT constraint_name ]
{ NOT NULL [ NO INHERIT ] |
  NULL |
  CHECK ( expression ) [ NO INHERIT ] |
  DEFAULT default_expr |
  GENERATED ALWAYS AS ( generation_expr ) [ STORED | VIRTUAL ] }
[ ENFORCED | NOT ENFORCED ]


またtable_constraintは以下の通りです。

[ CONSTRAINT constraint_name ]
{  NOT NULL column_name [ NO INHERIT ] |
   CHECK ( expression ) [ NO INHERIT ] }
[ ENFORCED | NOT ENFORCED ]


またlike_optionは以下の通りです。

{ INCLUDING | EXCLUDING } { COMMENTS | CONSTRAINTS | DEFAULTS | GENERATED | STATISTICS | ALL }


またpartition_bound_specは以下の通りです。

IN ( partition_bound_expr [, ...] ) |
FROM ( { partition_bound_expr | MINVALUE | MAXVALUE } [, ...] )
  TO ( { partition_bound_expr | MINVALUE | MAXVALUE } [, ...] ) |
WITH ( MODULUS numeric_literal, REMAINDER numeric_literal )


説明


CREATE FOREIGN TABLEは現在のデータベース内に新しい外部テーブルを作成します。
このテーブルはコマンドを発行したユーザにより所有されます。
  


スキーマ名が指定された場合（例えばCREATE FOREIGN TABLE myschema.mytable ...）、テーブルは指定されたスキーマ内に作成されます。
そうでなければ現在のスキーマ内に作成されます。
外部テーブルの名前は同じスキーマ内にある他のリレーション（テーブル、シーケンス、インデックス、ビュー、マテリアライズドビュー、外部テーブル）と異なるものでなければなりません。
  


CREATE FOREIGN TABLEはまた自動的に外部テーブルの１行に対応する複合型を表すデータ型を作成します。
したがって外部テーブルは同じスキーマ内の既存のデータ型の名前と同じものを持つことができません。
  


PARTITION OF句が指定された場合、テーブルはparent_tableの指定された境界のパーティションとして作られます。
  


外部テーブルを作成するためには、外部サーバに対するUSAGE権限とテーブルで使用される列の型すべてに対するUSAGE権限を持たなければなりません。
  

パラメータ
	IF NOT EXISTS
	

同じ名前のリレーションがすでに存在していてもエラーとしません。
この場合注意が発せられます。
既存のリレーションが作成しようとしたものと何かしら似たものであることは保証されません。
     

	table_name
	

作成するテーブルの名前です（スキーマ修飾も可）。
     

	column_name
	

新しいテーブルで作成される列の名前です。
     

	data_type
	

列のデータ型です。
これには、配列指定子を含めることができます。
PostgreSQL™でサポートされるデータ型の情報に関する詳細は8章データ型を参照してください。
     

	COLLATE collation
	

COLLATE句は列（照合可能なデータ型でなければなりません）の照合順序を指定します。
指定されなければ、列のデータ型のデフォルトの照合順序が使用されます。
     

	INHERITS ( parent_table [, ... ] )
	

オプションでINHERITS句を使い、新しい外部テーブルが自動的にすべての列を継承するテーブルのリストを指定できます。
親テーブルには通常のテーブルまたは外部テーブルが指定できます。
詳しくはCREATE TABLEの類似の構文を参照してください。
     

	PARTITION OF parent_table { FOR VALUES partition_bound_spec | DEFAULT }
	

この形式は、与えられた親テーブルのパーティションとして指定されたパーティション境界値を持つ外部テーブルを作成するために使うことができます。
より詳細についてはCREATE TABLEの類似の形式を参照してください。
現在のところに親テーブルにUNIQUEインデックスがある場合、親テーブルのパーティションとして外部テーブルを作成することは認められていないことに注意してください。
(ALTER TABLE ATTACH PARTITIONも参照してください。)
     

	LIKE source_table [ like_option ... ]
	

LIKE句は、新しいテーブルがすべての列名、データ型、非NULL制約を自動的にコピーするテーブルを指定します。
     


INHERITSとは異なり、新しいテーブルと元のテーブルは作成完了後に完全に分離されます。
元のテーブルへの変更は新しいテーブルには適用されず、元のテーブルのスキャンに新しいテーブルのデータを含めることはできません。
     


また、INHERITSとは異なり、LIKEによってコピーされた列および制約は、同じ名前の列や制約とはマージされません。
同じ名前が明示的に指定された場合、または別のLIKE句で指定された場合、エラーが通知されます。
     


オプションのlike_option句は、元のテーブルのどの追加属性をコピーするか指定します。
INCLUDINGを指定すると属性がコピーされ、EXCLUDINGを指定すると属性が省略されます。
EXCLUDINGがデフォルトです。
同じ種類のオブジェクトに対して複数指定された場合は、最後の指定が使用されます。
使用可能なオプションは次のとおりです。

      
	INCLUDING COMMENTS
	

コピーした列と制約のコメントがコピーされます。
デフォルトの動作ではコメントが除外されるため、新しいテーブルにコピーした列と制約にはコメントがありません。
         

	INCLUDING CONSTRAINTS
	

CHECK制約がコピーされます。
列制約とテーブル制約は区別されません。
非NULL制約は常に新しいテーブルにコピーされます。
         

	INCLUDING DEFAULTS
	

コピーした列定義のデフォルト式がコピーされます。
それ以外の場合、デフォルト式はコピーされず、新しいテーブルにコピーされた列にはNULLのデフォルト値が設定されます。
nextvalのようなデータベース変更関数を呼び出すデフォルトをコピーすると、元と新しいテーブルの間に機能的なつながりが作成される可能性があることに注意してください。
         

	INCLUDING GENERATED
	

コピーした列定義の生成式がすべてコピーされます。
デフォルトでは新たな列は通常の基底列となります。
         

	INCLUDING STATISTICS
	

拡張統計情報が新しいテーブルにコピーされます。
         

	INCLUDING ALL
	

INCLUDING ALLは、利用可能な個々のオプションをすべて選択する簡略化された形です。
（特定のオプションを除くすべてを選択するには、INCLUDING ALLの後に個別のEXCLUDING句を記述すると便利でしょう。）
         




     

	CONSTRAINT constraint_name
	

列制約またはテーブル制約の名前（省略可）です。
制約に違反した時、エラーメッセージ内に制約名が表示されるので、col must be positiveのような制約名を使って、クライアントアプリケーションに役立つ制約情報を通知することができます。
（空白文字を含む制約名を指定するには二重引用符を使う必要があります。）
制約名が指定されなければ、システムが名前を生成します。
     

	NOT NULL [ NO INHERIT ]
	

その列がNULL値を持てないことを指定します。
     


NO INHERITと印を付けられた制約は、子テーブルに継承されません。
     

	NULL
	

その列がNULL値を持てることを指定します。
これがデフォルトです。
     


この句は非標準的なSQLデータベースとの互換性のためだけに提供されています。
新しいアプリケーションでこれを使用するのはお勧めしません。
     

	CHECK ( expression ) [ NO INHERIT ] 
	

CHECK句では、外部テーブルの各行が満たすと期待される論理値の結果を生成する式を指定します。
つまり、式は外部テーブルのすべての行に対して、TRUEまたはUNKNOWNを生成し、決してFALSEにはなりません。
列制約として指定したチェック制約はその列の値だけを参照しますが、テーブル制約として使われる式は複数の列を参照することができます。
     


現在のところ、CHECKの式は副問い合わせを含むことや、現在の行の列以外の変数を参照することはできません。
システム列tableoidを参照することはできますが、それ以外のシステム列を参照することはできません。
     


NO INHERITと印を付けられた制約は、子テーブルに継承されません。
     

	DEFAULT
    default_expr
	

DEFAULT句は、
列定義の中に現れる、列に対するデフォルトデータ値を割り当てます。
値は変数がない任意の式（副問い合わせおよび、現在のテーブル内の他の列へのクロス参照は許されません）です。
デフォルト式のデータ型は列のデータ型とマッチしなければなりません。
     


デフォルト式は、列に対する値指定がないすべての挿入操作で使用されます。
列に対するデフォルトがない場合、デフォルトはNULLです。
     

	GENERATED ALWAYS AS ( generation_expr ) [ STORED | VIRTUAL ]
	

この句は、列を生成列として作成します。
その列に書き込むことはできず、読み出された場合に指定された式の結果が返されます。
     


VIRTUALが指定された場合、列は読み込まれた時に計算されます。
（外部データラッパーはそれを新しい行のNULL値として見て、それをNULL値として格納するか全く無視するかを選択できます。）
STOREDが指定された場合、列は書き込み時に計算されます。
（計算された値はストレージの外部データラッパーに提示され、読み込んだ時に返されなければなりません。）
VIRTUALがデフォルトです。
     


生成式はテーブル内の他の列を参照できますが、他の生成列は参照できません。
使われている関数や演算子はimmutableでなければなりません。
他のテーブルへの参照はできません。
     

	server_name
	

外部テーブル用に使用される既存の外部サーバの名前です。
外部サーバの詳細についてはCREATE SERVER(7)を参照してください。
     

	OPTIONS ( option 'value' [, ...] )
	

新しい外部テーブルまたはその列の１つに関連するオプションです。
設定可能なオプションの名前と値は外部データラッパーそれぞれに固有なものであり、外部データラッパーの検証関数を用いて検証されます。
重複するオプション名は許されません（しかしテーブルオプションと列オプションでは同じ名前を持たせることはできます）。
     




注釈


外部テーブル上の制約（CHECK句やNOT NULL句など）はPostgreSQL™のコアシステムによって強制されませんし、ほとんどの外部データラッパーもそれを強制しようとはしません。
つまり、制約は単にそれが成り立つと仮定されるものです。
制約は外部テーブルの機能を使って行を挿入あるいは更新するときにのみ適用され、リモートサーバ上で直接更新するなど、他の手段による行の更新には適用されませんから、それを強制することにはあまり意味はありません。
その代わりに、外部テーブルに指定する制約は、リモートサーバによって強制される制約を表現するものであるべきです。
   


一部の特別な目的の外部データラッパーは、それがアクセス対象のデータにアクセスするための唯一の機構であり、またその場合、外部データラッパーそれ自体にとって、制約の強制を実行することが適切なことがあります。
ただし、ラッパーのドキュメントにそのように書いてあるのでなければ、それを仮定しない方が良いでしょう。
   


PostgreSQL™では外部テーブルの制約を強制しませんが、問い合わせの最適化という目的のため、制約が正しいということを仮定します。
外部テーブルで、宣言された制約を満たさない行が可視の状態で存在する場合、そのテーブルに対する問い合わせはエラーになったり誤った結果をもたらしたりするかもしれません。
制約の定義が現実に即したものであることを保証するのは、ユーザの責任です。
   
注意


外部テーブルがパーティション化テーブルのパーティションとして使われていれば、その内容はパーティショニングの規則を満たさねばならないという暗黙の制約があります。
ここでもまた、それが真であることを保証するのは、ユーザの責任です。これにはリモートサーバに一致する制約を設定するのが最善です。
    



外部テーブルパーティションを含むパーティション化テーブル内では、パーティションキー値を変更するUPDATEは、外部データラッパーがタプルルーティングをサポートしていれば、行をローカルパーティションから外部テーブルパーティションへと移動する原因となる可能性があります。
しかしながら、行を外部テーブルパーティションから別のパーティションに移動することは現在のところできません。
そのようなことを要求するUPDATEは、リモートサーバにより適切に強制されるのであれば、パーティショニングの制約のために失敗するでしょう。
   


似たような配慮は生成列に適用されます。
保存生成列は、ローカルのPostgreSQL™サーバ上で挿入されたり更新されたりした時に計算され、外部データ保存領域へ書き出すために外部データラッパーへと渡されますが、外部テーブルへの問い合わせが生成式と矛盾しない保存生成列の値を返すことは強制されていません。
ここでも、問い合わせの結果が正しくないということになる可能性があります。
   

例


サーバfilm_serverを通してアクセスされる、外部テーブルfilmsを作成します。



CREATE FOREIGN TABLE films (
    code        char(5) NOT NULL,
    title       varchar(40) NOT NULL,
    did         integer NOT NULL,
    date_prod   date,
    kind        varchar(10),
    len         interval hour to minute
)
SERVER film_server;



範囲パーティションテーブルmeasurementのパーティションとして、サーバserver_07を通してアクセスされる外部テーブルmeasurement_y2016m07を作成します。



CREATE FOREIGN TABLE measurement_y2016m07
    PARTITION OF measurement FOR VALUES FROM ('2016-07-01') TO ('2016-08-01')
    SERVER server_07;


互換性


CREATE FOREIGN TABLEはおおよそ標準SQLに準拠します。
しかしCREATE TABLEとほとんど同様、NULL制約とゼロ列の外部テーブルが許されます。
列のデフォルト値を指定する機能もPostgreSQL™の拡張です。
PostgreSQL™が定義する形式のテーブルの継承は標準とは異なります。
このコマンドでサポートされているLIKE句は標準とは異なります。
  

関連項目
ALTER FOREIGN TABLE(7), DROP FOREIGN TABLE(7), CREATE TABLE(7), CREATE SERVER(7), IMPORT FOREIGN SCHEMA(7)


名前
CREATE FUNCTION — 新しい関数を定義する

概要

CREATE [ OR REPLACE ] FUNCTION
    name ( [ [ argmode ] [ argname ] argtype [ { DEFAULT | = } default_expr ] [, ...] ] )
    [ RETURNS rettype
      | RETURNS TABLE ( column_name column_type [, ...] ) ]
  { LANGUAGE lang_name
    | TRANSFORM { FOR TYPE type_name } [, ... ]
    | WINDOW
    | { IMMUTABLE | STABLE | VOLATILE }
    | [ NOT ] LEAKPROOF
    | { CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT }
    | { [ EXTERNAL ] SECURITY INVOKER | [ EXTERNAL ] SECURITY DEFINER }
    | PARALLEL { UNSAFE | RESTRICTED | SAFE }
    | COST execution_cost
    | ROWS result_rows
    | SUPPORT support_function
    | SET configuration_parameter { TO value | = value | FROM CURRENT }
    | AS 'definition'
    | AS 'obj_file', 'link_symbol'
    | sql_body
  } ...


説明


CREATE FUNCTIONは新しい関数を定義します。
CREATE OR REPLACE FUNCTIONは、新しい関数の作成、または、既存定義の置換のどちらかを行います。
関数を定義するには、ユーザはその言語のUSAGE権限が必要です。
  


スキーマ名が含まれている場合、関数は指定されたスキーマに作成されます。
スキーマ名がなければ、関数は現在のスキーマに作成されます。
同じスキーマ内の同じ入力引数データ型を持つ既存の関数またはプロシージャの名前は、新しい関数の名前として使用できません。
しかし、異なる引数データ型を持つ関数やプロシージャであれば、名前が重複しても構いません
（これを、オーバーロードと言います）。
  


既存の関数定義を入れ替えるには、CREATE OR REPLACE FUNCTIONを使用してください。
この方法では関数の名前や引数の型を変更することはできません
（これを行った場合、新しく別の関数が作成されます）。
また、CREATE OR REPLACE FUNCTIONでは、既存の関数の戻り値の型を変更することはできません。
戻り値の型を変更したい場合は、その関数を削除し、再度作成してください。
（これは、OUTパラメータを使用している場合、関数を削除しない限りOUTパラメータの型を変更できないことを意味します。）
  


CREATE OR REPLACE FUNCTIONを使用して既存の関数を置き換える場合、関数の所有者と権限は変わりません。
他の関数に関するすべての属性には、そのコマンドで指定された値、または暗黙的な値が設定されます。
関数を置き換えるためにはその関数を所有していなければなりません。
（これには所有するロールのメンバであることが含まれています。）
  


関数を削除し再作成した場合、新しい関数は古いものと同じ実体にはなりません。
古い関数を参照する、既存のルール、ビュー、トリガなどを削除しなければならないでしょう。
関数を参照するオブジェクトを破壊せずに関数定義を変更するには、CREATE OR REPLACE FUNCTIONを使用してください。
また、ALTER FUNCTIONを使用して、既存の関数の補助属性のほとんどを変更することができます。
  


関数を作成したユーザが、その関数の所有者となります。
  


関数を作成するためには、引数の型および戻り値の型に対するUSAGE権限を持たなければなりません。
  


さらに詳しい関数の作成方法については「ユーザ定義関数」を参照してください。
  

パラメータ
	name
	

作成する関数の名前です（スキーマ修飾名も可）。
      

	argmode
	

引数のモードで、IN、OUT、INOUT、VARIADICのいずれかです。
省略時のデフォルトはINです。
OUT引数のみがVARIADICの後に続けることができます。
また、RETURNS TABLE記法では、OUTとINOUT引数の両方を使用することはできません。
      

	argname
	

引数の名前です。
（SQLおよびPL/pgSQLを含む）言語の中にはこの名前を関数本体で使用できるものもあります。
他の言語では、関数そのものに注目する限り、入力引数の名前は単なる追加ドキュメントとして扱われます。
しかし関数呼び出し時に入力引数の名前を使用することで可読性を高めることができます。
（「関数呼び出し」参照）
どのような場合であっても、出力引数の名前は、結果の行型の列名となりますので重要です。
（出力引数の名前を省略した場合、システムはデフォルトの列名を付与します。）
      

	argtype
	

関数の引数のデータ型です（スキーマ修飾名も可）。
基本データ型、複合データ型、ドメイン型、または、テーブル列の型の参照を使用することができます。
      


また、実装する言語に依存しますが、cstringといった「疑似型」を指定できる場合もあります。
疑似型は、実引数の型の指定が不完全である、もしくは、通常のSQLデータ型の集合を越えていることを示します。
      


列の型を参照するには、table_name.column_name%TYPEと記述します。
これを使用すると、テーブル定義が変更されても関数が影響を受けないようにするのに役に立つことがあります。
      

	default_expr
	

パラメータが指定されなかった場合のデフォルト値として使用される式です。
この式はパラメータの引数型と変換可能でなければなりません。
入力パラメータ（INOUTを含みます）のみがデフォルト値を持つことができます。
デフォルト値を持つパラメータの後ろにあるパラメータはすべて、同様にデフォルト値を持たなければなりません。
      

	rettype
	

関数が返すデータの型です（スキーマ修飾名も可）。
基本型、複合型、ドメイン型、または、テーブル列の型の参照を設定することができます。
また、実装している言語によりますが、cstringのような「疑似型」も指定することが可能です。
その関数が値を返すことを想定していない場合は、戻り値としてvoidを指定してください。
      


OUTもしくはINOUTパラメータが存在する場合、RETURNS句を省略することができます。
省略しない場合は、出力用パラメータが意味する結果型に従ったもの、つまり、複数の出力用パラメータがあればRECORD、単一の出力用パラメータであればそれと同じ型、でなければなりません。
      


SETOF修飾子は、その関数が、1つではなく複数のアイテムの集合を返すことを示します。
      


列の型は、table_name.column_name%TYPEと記述することで参照されます。
      

	column_name
	

RETURNS TABLE構文における出力列の名前です。
これは実際名前付けされたOUTパラメータを宣言する別の方法ですが、RETURNS TABLEがRETURNS SETOFをも意味する点が異なります。
      

	column_type
	

RETURNS TABLE構文における出力列のデータ型です。
      

	lang_name
	

関数を実装している言語の名前です。
このパラメータには、sql、c、internal、もしくはユーザ定義手続き言語(例：plpgsql)の名前を指定可能です。
sql_bodyが指定されていれば、デフォルトはsqlです。
名前を単一引用符で囲むのは廃止予定で、大文字小文字の一致が必要になります。
      

	TRANSFORM { FOR TYPE type_name } [, ... ] }
	

関数呼び出しにどの変換を適用すべきかのリストです。
変換はSQLの型と言語独自のデータ型の間の変換を行います（CREATE TRANSFORM(7)を参照）。
手続言語の実装では、通常、ビルトインの型についてハードコードされた知識があるので、それらをこのリストに含める必要はありません。
手続言語の実装が型の処理について定めておらず、変換が提供されない場合は、データ型変換のデフォルトの動作によることになりますが、これは実装に依存します。
      

	WINDOW
	WINDOWは、この関数が普通の関数ではなくウィンドウ関数であることを示します。
現在これはC言語で作成した関数のみに使用することができます。
既存の関数定義を置き換える場合、WINDOW属性を変更することはできません。
      

	IMMUTABLE, STABLE, VOLATILE
	

これらの属性は、関数の動作に関する情報を問い合わせオプティマイザに提供します。
いずれか1つのキーワードのみ指定できます。
指定がない場合は、デフォルトでVOLATILEと解釈されます。
      
IMMUTABLEは、関数がデータベースに対する変更を行わないこと、および、その関数に同じ引数値を与えた場合に常に同じ結果を返すことを示します。
つまり、データベースを検索したり、引数リスト中に直接存在しない情報を使用したりしないということです。
このオプションが指定された場合、引数が全て定数である関数呼び出しは、即座に関数値と置き換えることができます。
      
STABLEは、関数がデータベースに対する変更を行わないこと、および、1つのテーブルスキャン内でその関数に同じ引数値を与えた場合、常に同じ結果を返すが、SQL文が異なると結果が変わってしまう可能性があることを示します。
これは、データベース検索や（現在の時間帯のような）パラメータ変数などに結果が依存する関数に適します。
(これは現在のコマンドで変更された行を問い合わせたいAFTERトリガには不適切です。)
また、current_timestamp系の関数は、1つのトランザクション内では値が変化しないため、STABLEであることに注意してください。
      
VOLATILEは、1つのテーブルスキャン内でも関数の値が変化する可能性があるため、最適化できないことを示します。
このような意味で変動的（volatile）なデータベース関数は、比較的少数です。
例えば、random()、currval()、timeofday()などは変動的な関数です。
しかし、例えばsetval()などの副作用がある関数は、その結果を完全に予測できるとしても、呼び出しを最適化しないよう、VOLATILE（変動的）に分類する必要があることに注意してください。
      


詳細は「関数の変動性分類」を参照してください。
      

	LEAKPROOF
	

LEAKPROOFは、関数が副作用を持たないことを示します。
その引数に関する情報を戻り値以外で漏らしません。
例えば、一部の引数値に対してのみエラーメッセージを返す関数や何らかのエラーメッセージの中に引数の値を含める関数は漏洩防止(leakproof)とはいえません。
これはsecurity_barrierオプション付きで作成されたビュー、あるいは行単位セキュリティが有効にされたテーブルに対して、システムが問い合わせを実行する方法に影響します。
データが偶然に露見することを防ぐため、システムは、漏洩防止でない関数を含む問い合わせのユーザが提供した条件より前に、セキュリティポリシーおよびセキュリティバリアビューの条件を強制します。
漏洩防止であるとされた関数および演算子は信頼できると見なされ、セキュリティポリシーおよびセキュリティバリアビューによる条件より先に実行されることがあります。
なお、引数を取らない、あるいはセキュリティバリアビューやテーブルから引数を渡されない関数は、セキュリティ条件より前に実行するために漏洩防止とする必要はありません。
CREATE VIEW(7)および「ルールと権限」を参照してください。
このオプションはスーパーユーザによってのみ設定することができます。
      

	CALLED ON NULL INPUT, RETURNS NULL ON NULL INPUT, STRICT
	CALLED ON NULL INPUT（デフォルト）を指定すると、引数にNULLが含まれていても、関数が通常通り呼び出されます。
その場合は、必要に応じてNULL値を確認し、適切な対応をすることは関数作成者の責任です。
      
RETURNS NULL ON NULL INPUTもしくはSTRICTを指定すると、関数の引数に1つでもNULLがある場合、常にNULLを返します。
このパラメータが指定されると、NULL引数がある場合、関数は実行されません。
代わりに、NULLという結果が自動的に与えられます。
      

	[EXTERNAL] SECURITY INVOKER, [EXTERNAL] SECURITY DEFINER
	
SECURITY INVOKERを指定すると、関数を呼び出したユーザの権限で、その関数が実行されます。
これがデフォルトです。
SECURITY DEFINERを指定すると、関数を所有するユーザの権限で、その関数が実行されます。
SECURITY DEFINER関数を安全に書く方法については、以下を参照してください。
     


EXTERNALキーワードは、SQLとの互換性を保つために許されています。
しかし、SQLとは異なり、この機能は外部関数だけではなくすべての関数に適用されるため、このキーワードは省略可能です。
     

	PARALLEL
	

PARALLEL UNSAFEは、その関数が並列モードでは実行できないことを意味します。そのような関数がSQL文の中にある場合は順次の実行プランが強制されます。
これがデフォルトです。
PARALLEL RESTRICTEDは、その関数が並列モードで実行できますが、並列グループのリーダーのプロセス内のみであることを意味します。
PARALLEL SAFEは、その関数が並列ワーカープロセス内を含む並列モードで制限なく実行することについて安全であることを意味します。
     


関数がデータベースの状態に何らかの変更を行う、トランザクションの状態を変更する（エラー回復のためにサブトランザクションを使用する場合を除く）、シーケンスにアクセスする（例えばcurrvalを呼び出す）、または設定に恒久的な変更をするという場合はparallel unsafe（並列は安全でない）というラベルを付けるべきです。
一時テーブル、クライアントの接続状態、カーソル、プリペアド文、その他並列モードでシステムが同期できない様々なバックエンド独自の状態に関数がアクセスする場合、parallel restricted（並列は制限される）というラベルを付けるべきです（例えば、setseedはグループのリーダー以外では実行できません。なぜなら他のプロセスでなされた変更がリーダーに反映されないからです）。
一般的に、restrictedあるいはunsafeな関数がsafeとラベル付けされた場合、あるいはunsafeな関数がrestrictedとラベル付けされた場合、それがパラレルクエリ内で使用されると、エラーが発生したり、誤った結果が生成されたりします。
C言語の関数は、ラベルが間違っていると、理論的には全く予想できない動作をすることがあります。
これは任意のCプログラムに対してシステムが自分を保護する手段がないからですが、多くの場合、その結果は他の関数と同程度の悪さでしょう。
よくわからない場合は、デフォルトのUNSAFEで関数にラベル付けしてください。
     

	COST execution_cost
	

この関数の推定実行コストを表す正数で、単位はcpu_operator_costです。
関数が集合を返す場合、これは1行当たりのコストとなります。
このコストが指定されない場合、C言語および内部関数では1、他のすべての言語では100となります。
値をより大きくすると、プランナは必要以上に頻繁に関数を評価しないようになります。
      

	ROWS result_rows
	

プランナが想定する、この関数が返す行数の推定値を表す正数です。
これは、関数が集合を返すものと宣言された場合のみ使用可能です。
デフォルト推定値は1000行です。
      

	SUPPORT support_function
	

この関数のために使うプランナサポート関数の名前です(スキーマ修飾名も可)。
詳細は「関数最適化に関する情報」を参照してください。
このオプションを使うにはスーパーユーザでなければなりません。
      

	configuration_parameter, value
	

SET句により、関数が始まった時に指定した設定パラメータを指定した値に設定し、関数の終了時にそれを以前の値に戻すことができます。
SET FROM CURRENTは、CREATE FUNCTIONの実行時点でのパラメータ値を、関数に入る時に適用する値として保管します。
      


関数にSET句が付いている場合、関数内部で実行されるSET LOCALコマンドの同一変数に対する効果はその関数に制限されます。
つまり、設定パラメータの前の値は関数が終了する時に元に戻ります。
しかし、通常の（LOCALがない）SETコマンドはSET句を上書きします。
これは過去に行われたSET LOCALコマンドに対してもほぼ同じです。
つまり、このコマンドの効果は、現在のトランザクションがロールバックされない限り、関数が終了した後も永続化されます。
      


使用可能なパラメータと値については、SET(7)および19章サーバ設定を参照してください。
      

	definition
	

関数を定義する文字列定数です。
このパラメータの意味は言語に依存します。
内部的な関数名、オブジェクトファイルへのパス、SQLコマンド、手続き言語で記述されたテキストなどを指定できます。
      


関数を定義する文字列を記述する際に、通常の単一引用符ではなく、ドル引用符（「ドル記号で引用符付けされた文字列定数」参照）を使用すると便利なことが多くあります。
ドル引用符を使用しなければ、関数定義内の単一引用符やバックスラッシュは必ず二重にしてエスケープしなければなりません。
      

	obj_file, link_symbol
	

この構文のAS句は、動的にロードされるC言語関数において、C言語のソースコード中の関数名がSQL関数の名前と同じでない場合に使われます。
obj_fileという文字列はコンパイルされたC関数を含む共有ライブラリファイルの名前で、LOADコマンドの場合と同じように解釈されます。
文字列link_symbolはその関数のリンクシンボル、つまり、C言語ソースコード中の関数の名前です。
リンクシンボルが省略された場合、定義されるSQL関数の名前と同じものであるとみなされます。
全ての関数について、C言語における名前は、重複してはいけません。したがって、オーバーロードするC言語関数には、異なるC言語の名前を与える必要があります(例えば、C言語における名前の一部に引数の型を使用してください)。
      


同一オブジェクトファイルを参照する、CREATE FUNCTION呼び出しが繰り返された場合、そのファイルはセッション毎に一度だけロードされます。
（おそらく開発段階で）ファイルをアンロードし再ロードするには、新しいセッションを開始してください。
      

	sql_body
	

LANGUAGE SQL関数の本体です。
これは以下のような単一の文


RETURN expression



またはブロックです。


BEGIN ATOMIC
  statement;
  statement;
  ...
  statement;
END


      


これは文字列定数として関数本体を書くのと似ていますが(上記のdefinitionを参照してください)、いくつか違いがあります。
この形式はLANGUAGE SQLに対してのみ機能し、文字列定数の形式はすべての言語に対して機能します。
この形式はプロシージャ定義時に解析され、文字列定数の形式は実行時に解析されます。
そのため、この形式は多様引数型や関数定義時に解決できないその他の構文をサポートできません。
この形式は関数と関数本体の中で使われているオブジェクトの間の依存関係を追跡しますので、DROP ... CASCADEは正しく動作しますが、一方、文字列定数を使う形式は宙に浮いた関数を放置するかもしれません。
最後に、この形式は標準SQLや他のSQL実装とより互換性があります。
      




オーバーロード


PostgreSQL™では関数のオーバーロードが可能です。
つまり、入力引数の型が異なっていれば、複数の関数に同じ名前を使用することができます。
使うかどうかに関わりなく、この能力は、あるユーザが他のユーザを信用しないデータベースで関数を呼び出す時に、セキュリティの事前の対策を必要とします。「関数」を参照してください。
   


同じ名前、同じ入力用パラメータ型を持つ場合、2つの関数は同一であるとみなされます。
OUTパラメータは無視されます。
したがって、例えば以下の宣言は競合しています。


CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, out text) ...


   


異なる引数型のリストを持つ関数は、作成時に競合するとはみなされませんが、デフォルト値が指定された場合使用時に競合する可能性があります。
例えば以下を考えてみましょう。


CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, int default 42) ...



foo(10)という呼び出しは、どちらの関数を呼び出すべきかに関して曖昧さがあるために失敗します。
   

注釈


関数の引数と戻り値の宣言において、完全なSQL型の構文が使用できます。
しかし、括弧付けされた型修飾子（例えばnumeric型の精度フィールド）は、CREATE FUNCTIONにより破棄されます。
従って、CREATE FUNCTION foo (varchar(10)) ...はCREATE FUNCTION foo (varchar) ...とまったく同じになります。
   


既存の関数をCREATE OR REPLACE FUNCTIONを使って置き換える場合、パラメータ名の変更に関して制限があります。
すでに何らかの入力パラメータに割り当てられた名前を変更することはできません。
（しかし、これまで名前を持たなかったパラメータに名前を追加することは可能です。）
複数の出力パラメータが存在する場合、関数の結果を表わす無名複合型の列名を変更することになるため、出力パラメータの名前を変更することはできません。
既存の関数呼び出しが置き換わった時に動作しなくなることを確実に防ぐために、これらの制限がなされています。
   


関数がVARIADIC引数を持つSTRICTと宣言された場合、その厳密性検査では、variadic配列全体が非NULLかどうかを検査します。
配列がNULL要素を持っていたとしても関数は呼び出されます。
   

例


SQL関数を使って2つの整数を足す。


CREATE FUNCTION add(integer, integer) RETURNS integer
    AS 'select $1 + $2;'
    LANGUAGE SQL
    IMMUTABLE
    RETURNS NULL ON NULL INPUT;



引数名と引用されていない本体を使って、よりSQLに準拠した形で書かれた同じ関数。


CREATE FUNCTION add(a integer, b integer) RETURNS integer
    LANGUAGE SQL
    IMMUTABLE
    RETURNS NULL ON NULL INPUT
    RETURN a + b;


  


PL/pgSQLで、引数名を使用して、整数を1増やします。


CREATE OR REPLACE FUNCTION increment(i integer) RETURNS integer AS $$
        BEGIN
                RETURN i + 1;
        END;
$$ LANGUAGE plpgsql;


  


複数の出力用パラメータを持つレコードを返します。


CREATE FUNCTION dup(in int, out f1 int, out f2 text)
    AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
    LANGUAGE SQL;

SELECT * FROM dup(42);



上と同じことを、明示的な名前が付いた複合型を使用して、より冗長に行うことができます。


CREATE TYPE dup_result AS (f1 int, f2 text);

CREATE FUNCTION dup(int) RETURNS dup_result
    AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
    LANGUAGE SQL;

SELECT * FROM dup(42);



複数列を返す別の方法は、TABLE関数を使用することです。


CREATE FUNCTION dup(int) RETURNS TABLE(f1 int, f2 text)
    AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
    LANGUAGE SQL;

SELECT * FROM dup(42);



しかし、これは実際には、1つのレコードではなく、レコードの集合を返しますので、TABLE関数は上の例とは異なります。
  

SECURITY DEFINER関数の安全な作成


SECURITY DEFINER関数は関数を所有するユーザの権限で実行されますので、その関数を間違って使用できないことを確実にしなければなりません。
安全上、search_pathは、信頼できないユーザが書き込み可能なスキーマを除去した形で設定すべきです。
これは、悪意のあるユーザがその関数で使用されるオブジェクトを隠すようなオブジェクト（例えば、テーブル、関数、演算子など）を作成することを防ぎます。
ここで特に重要なことは、一時テーブルスキーマです。
このスキーマはデフォルトで最初に検索され、そして、通常誰でも書き込み可能です。
一時スキーマの検索を強制的に最後にすることで、セキュリティを調整できます。
このためには、pg_tempをsearch_pathの最後の項目として記載してください。

安全な使用方法を以下の関数で示します。



CREATE FUNCTION check_password(uname TEXT, pass TEXT)
RETURNS BOOLEAN AS $$
DECLARE passed BOOLEAN;
BEGIN
        SELECT  (pwd = $2) INTO passed
        FROM    pwds
        WHERE   username = $1;

        RETURN passed;
END;
$$  LANGUAGE plpgsql
    SECURITY DEFINER

    -- 信頼できるスキーマ、その後にpg_tempという順でsearch_pathを安全に設定します。
    SET search_path = admin, pg_temp;




この関数の意図は、テーブルadmin.pwdsにアクセスすることです。
しかしSET句がなければ、あるいはSET句がadminだけしか記述していなければ、pwdsという名前の一時テーブルを作成することで、この関数は無意味になってしまいます。
   


SECURITY DEFINER関数がロールを作成しようとしていて、それが非スーパーユーザとして実行されている場合、createrole_self_grantもSET句を使用して既知の値に設定することが必要です。
   


この他に注意すべき点として、新しく作成された関数ではデフォルトで実行権限がPUBLICに付与されていることがあります。
（詳細は「権限」を参照してください。）
SECURITY DEFINER関数の使用を一部のユーザのみに制限したいことはよくあります。
このためには、デフォルトのPUBLIC権限を取り消し、そして、実行権限の付与を選択して行ってください。
新しい関数がすべてのユーザに実行可能となる隙間が存在することを防ぐためには、単一トランザクション内で作成と権限設定を行ってください。
以下に例を示します。
   

BEGIN;
CREATE FUNCTION check_password(uname TEXT, pass TEXT) ... SECURITY DEFINER;
REVOKE ALL ON FUNCTION check_password(uname TEXT, pass TEXT) FROM PUBLIC;
GRANT EXECUTE ON FUNCTION check_password(uname TEXT, pass TEXT) TO admins;
COMMIT;


互換性


CREATE FUNCTIONコマンドは標準SQLで定義されています。
PostgreSQL™の実装は互換性のある方法で使うことはできますが、多くの拡張があります。
逆に、標準SQLにはPostgreSQL™では実装されていない多くの省略可能な機能が定義されています。
  


以下が重要な互換性の問題です。

   
	

OR REPLACEはPostgreSQLの拡張です。
     

	

他のデータベースシステムとの互換性のために、argmodeはargnameの前に書くことも後に書くこともできます。
しかし、1つ目の方法が標準に従っています。
     

	

パラメータのデフォルトに関しては、標準SQLではDEFAULTキーワードの構文のみを規定します。
=を持つ構文はT-SQLおよびFirebirdで使用されています。
     

	

SETOF修飾子はPostgreSQLの拡張です。
     

	

SQLのみが言語として標準化されています。
     

	

CALLED ON NULL INPUTとRETURNS NULL ON NULL INPUT以外の属性はすべて標準化されていません。
     

	

LANGUAGE SQL関数の本体に対して、標準SQLはsql_body形式のみを定義しています。
     




  


単純なLANGUAGE SQL関数は、標準に準拠して、なおかつ他の実装に移植性のある方法で書くことができます。
高度な機能、最適化属性、他の言語を使ったより複雑な関数は、必ず重要なところでPostgreSQLに固有のものになるでしょう。
  

関連項目
ALTER FUNCTION(7), DROP FUNCTION(7), GRANT(7), LOAD(7), REVOKE(7)


名前
CREATE GROUP — 新しいデータベースロールを定義する

概要

CREATE GROUP name [ [ WITH ] option [ ... ] ]


ここでoptionは以下の通りです。

      SUPERUSER | NOSUPERUSER
    | CREATEDB | NOCREATEDB
    | CREATEROLE | NOCREATEROLE
    | INHERIT | NOINHERIT
    | LOGIN | NOLOGIN
    | REPLICATION | NOREPLICATION
    | BYPASSRLS | NOBYPASSRLS
    | CONNECTION LIMIT connlimit
    | [ ENCRYPTED ] PASSWORD 'password' | PASSWORD NULL
    | VALID UNTIL 'timestamp'
    | IN ROLE role_name [, ...]
    | IN GROUP role_name [, ...]
    | ROLE role_name [, ...]
    | ADMIN role_name [, ...]
    | USER role_name [, ...]
    | SYSID uid


説明


CREATE GROUPはCREATE ROLE(7)の別名になりました。
  

互換性


標準SQLにはCREATE GROUPはありません。
  

関連項目
CREATE ROLE(7)


名前
CREATE INDEX — 
新しいインデックスを定義する
  

概要

CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ [ IF NOT EXISTS ] name ] ON [ ONLY ] table_name [ USING method ]
    ( { column_name | ( expression ) } [ COLLATE collation ] [ opclass [ ( opclass_parameter = value [, ... ] ) ] ] [ ASC | DESC ] [ NULLS { FIRST | LAST } ] [, ...] )
    [ INCLUDE ( column_name [, ...] ) ]
    [ NULLS [ NOT ] DISTINCT ]
    [ WITH ( storage_parameter [= value] [, ... ] ) ]
    [ TABLESPACE tablespace_name ]
    [ WHERE predicate ]


説明


CREATE INDEXは、指定したリレーションの指定した列(複数可)に対するインデックスを作ります。
リレーションとしてテーブルまたはマテリアライズドビューを取ることができます。
インデックスは主にデータベースの性能を向上するために使われます
（しかし、インデックスの不適切な使用は性能の低下につながる可能性があります）。
  


インデックスのキーフィールドは、列名、または括弧に囲まれた式として指定されます。
インデックスメソッドが複数列に対するインデックスをサポートする場合は、複数のフィールドを指定できます。
  


インデックスのフィールドとして、テーブル行の1つ以上の列の値から計算する式を指定できます。
この機能は、元のデータに何らかの変換を加えた値を基とするデータへの高速なアクセスを行う手段として使用することができます。
例えば、upper(col)という計算に基づくインデックスがあれば、WHERE upper(col) = 'JIM'という句ではインデックスを使用することができます。
  


PostgreSQL™はB-tree、ハッシュ、GiST、SP-GiST、GIN、BRINのインデックスメソッドを用意しています。
ユーザが独自にインデックスメソッドを定義することもできますが、これはかなり複雑です。
  


WHERE句が存在する場合、部分インデックスが作成されます。
部分インデックスは、テーブルの一部、通常は、テーブルの中でよりインデックスが有用な部分のみのエントリを持つインデックスです。
例えば、請求済みの注文と未請求の注文を情報として持つテーブルがあり、テーブル全体における未請求の注文の割合が小さく、かつ、頻繁に使用される場合、未請求の注文のみにインデックスを作成することで性能を向上できます。
部分インデックスのその他の利用方法として、UNIQUE付きのWHEREを使用して、テーブルの部分集合に一意性を強制する例が考えられます。
詳細は「部分インデックス」を参照してください。
  


WHERE句内の式では、元となるテーブルの列のみを参照できます。
しかし、インデックスを付加する列だけではなく、全ての列を使用することができます。
また、現在、副問い合わせと集約式については、WHEREで使用することができません。
同一の制限は、式で表されたインデックスのフィールドにも適用されます。
  


インデックスの定義で使用される全ての関数と演算子は、「不変」（immutable）でなければなりません。
つまり、結果は入力引数にのみに依存し、（他のテーブルの内容や現時刻などの）外部からの影響を受けてはなりません。
この制限によって、インデックスの動作が十分定義されていることが保証されます。
インデックス式やWHERE句にユーザ定義の関数を使用する場合、関数を作成する際、IMMUTABLE（不変）オプションを付けることを忘れないでください。
  

パラメータ
	UNIQUE
	

インデックスを（既にデータがある状態で）作成する時、およびテーブルにデータを追加する時に、テーブル内の値が重複していないかを検査します。
重複エントリを生じるデータの挿入または更新はエラーとなります。
       


一意性インデックスがパーティションテーブルに適用されるときには、追加的な制限が適用されます。CREATE TABLE(7)を参照してください。
       

	CONCURRENTLY
	

このオプションを使用すると、PostgreSQL™は、対象テーブルに対する同時挿入、更新、削除を防止するようなロックを獲得せずにインデックスを作成します。
通常のインデックス作成処理では、完了するまで対象テーブルへの書き込みはできません（読み取りは可能です）。
このオプションを使用する際に注意しなければならない点が複数あります。
下記のインデックスの同時作成を参照してください。
       


一時テーブルに対してはCREATE INDEXは常に同時作成ではありません。他のセッションはアクセスできませんし、同時でないインデックス作成の方がより安価だからです。
       

	IF NOT EXISTS
	

同じ名前のリレーションが既に存在している場合にエラーとしません。
この場合、注意が発行されます。
既存のインデックスが、作成されようとしていたものと類似のものである保証は全くないことに注意してください。
IF NOT EXISTSを指定する場合はインデックス名が必須です。
       

	INCLUDE
	

オプションのINCLUDE句は非キー列としてインデックスに含める列のリストを指定します。
非キー列をインデックススキャンの検索条件に使うことはできません。また、インデックスで何であれ一意性制約や排他制約を強制する目的に対しても無視されます。
しかしながら、インデックスオンリースキャンは、インデックスエントリから値を直接得ることができるので、インデックスのテーブルを見に行く必要なく、非キー列の内容を返すことができます。
このように非キー列の追加は、そうでないとできないインデックスオンリースキャンを利用可能にします。
       


インデックスに非キー列を加えることには、特に幅広の列については、保守的であるのが賢明です。
インデックス列がインデックス型で許される最大サイズを超えた場合、データ挿入は失敗してしまいます。
いかなる場合でも、非キー列はインデックスのテーブルからデータを複製して、インデックスのサイズを膨張させます。よって、潜在的に検索を遅くします。
さらに、非キー列を持つインデックスではB-tree重複排除は決して使われません。
       


INCLUDE句にある列リストは適合した演算子クラスを必要としません。ここには与えられたアクセスメソッドに対して定義された演算子クラスを持たないデータ型の列を含めることができます。
       


インデックスオンリースキャンで使うことができないため、INCLUDEする列に式は対応していません。
       


今のところ本機能はB-tree、GiST、SP-GiSTインデックスアクセスメソッドに対応しています。
これらのインデックスではINCLUDE句にリストされた列の値は、ヒープタプルに対応するリーフタプルに含まれますが、ツリーを辿るのに使われる上位レベルのインデックスエントリには含まれません。
       

	name
	

作成するインデックスの名前です。
この名前には、スキーマ名を含めることはできません。
インデックスは、常にその親テーブルと同じスキーマに作成されます。
この名前は、同じスキーマ内にある他のリレーション（テーブル、シーケンス、インデックス、ビュー、マテリアライズドビュー、外部テーブル）と異なるものでなければなりません。
この名前を省略すると、PostgreSQL™はその親テーブルの名前とインデックス付けされる列名に基づいた適切な名前を選びます。
       

	ONLY
	

テーブルがパーティションテーブルであっても、パーティションにインデックス作成を再帰的に実行しないことを示します。
デフォルトでは再帰実行します。
       

	table_name
	

インデックスを作成するテーブルの名前です（スキーマ修飾名の場合もあります）。
       

	method
	

使用するインデックスメソッドの名前です。
btree、hash、gist、spgist、gin、brin、またはbloomのようなユーザがインストールしたアクセスメソッドから選択します。
デフォルトのメソッドはbtreeです。
       

	column_name
	

テーブルの列の名前です。
       

	expression
	

テーブル上の1つ以上の列を使用した式です。
通常この式は、構文で示した通り括弧で囲む必要があります。
しかし、式が関数呼び出し形式になっている場合は括弧を省略することができます。
       

	collation
	

インデックスで使用する照合順序の名前です。
デフォルトではインデックスはインデックス付け対象の列で宣言された照合順序またはインデックス付け対象の式の結果の照合順序を使用します。
デフォルト以外の照合順序を使用する式を含む問い合わせで、デフォルト以外の照合順序を持つインデックスが有用になるかもしれません。
       

	opclass
	

演算子クラスの名前です。
詳細は下記を参照してください。
       

	opclass_parameter
	

演算子クラスパラメータの名前です。
詳細は下記を参照してください。
       

	ASC
	

正方向のソート順を指定します(これがデフォルトです)。
       

	DESC
	

逆方向のソート順を指定します。
       

	NULLS FIRST
	

NULLを非NULLより前にソートすることを指定します。
これはDESCが指定された場合のデフォルトです。
       

	NULLS LAST
	

NULLを非NULLより後にソートすることを指定します。
これはDESCが指定されない場合のデフォルトです。
       

	NULLS DISTINCT, NULLS NOT DISTINCT
	

一意性インデックスのNULL値を個別(等しくない)とみなすかどうかを指定します。
デフォルトでは、NULL値は個別であるため、一意性インデックスは1つの列に複数のNULL値を含むことができます。
       

	storage_parameter
	

インデックスメソッド固有の格納パラメータの名前です。
詳細は下記のインデックス格納パラメータを参照してください。
       

	tablespace_name
	

インデックスを生成するテーブル空間です。
指定されなかった場合、default_tablespace、もし一時テーブル上のインデックスであれば、temp_tablespacesが考慮されます。
       

	predicate
	

部分インデックス用の制約式です。
       



インデックス格納パラメータ


WITH句を使うと、インデックスの格納パラメータを指定できます。
インデックスメソッドはそれぞれ固有の設定可能な格納パラメータを持ちます。
   


B-tree、ハッシュ、GiSTおよびSP-GiSTといったインデックスはすべて次のパラメータを受け付けます。
   
	fillfactor (integer)
     
     
    
	

インデックスメソッドがインデックスページをまとめ上げる時にどの程度ページを使用するかを制御します。
B-treeでは、リーフページは初期インデックス構築時と右側（新しい最大キー値を追加する方向）にインデックスを拡張する時にこの割合分までページを使用します。
その後ページすべてが完全に使用されると分割され、ディスク上のインデックスの構造が断片化していきます。
B-treeのデフォルトのフィルファクタは90ですが、10から100までの任意の整数値を設定することができます。
     


多くの挿入や更新が予想されるテーブルのB-treeインデックスでは、(テーブルへの一括ロードに続く)CREATE INDEXの時にフィルファクタを低い値に設定することで恩恵に与れるかもしれません。
50から90の範囲の値は、B-treeインデックスの初期の段階でのページ分割の割合を「ならす」のに有用かもしれません。(このようにフィルファクタを下げることはページ分割の絶対数を下げるかもしれません。もっとも、この効果はデータベースの処理内容に大きく依存します。)
「ボトムアップインデックスの削除」に書かれたB-treeボトムアップインデックス削除技法は「余分な」タプルのバージョンを保存するのにページの「余分な」空きに依存しますので、(その効果は通常、重要なものではありませんが)フィルファクタの影響を受けるかもしれません。
     


その他の特別な場合には、空間利用効率を最大にする1つの方法としてCREATE INDEXの時にフィルファクタを100に増やすのが有用かもしれません。
テーブルが静的である(すなわち、挿入や更新により影響を受けない)と完全に確信できる場合にのみ、これを検討すべきです。
そうでなければ、フィルファクタを100に設定することは性能に悪影響を与える危険があります。更新や挿入がたとえ少数であっても、大量のページ分割が突然発生することになるでしょう。
     


他のインデックスメソッドでは、フィルファクタを異なる意味で使用しますが、おおよそは同じです。メソッドによってフィルファクタのデフォルト値は異なります。
     





B-treeインデックスはさらに以下のパラメータを受け付けます。
   
	deduplicate_items (boolean)
     
     
    
	

「重複排除」に書かれているB-tree重複排除技法の使用を制御します。
最適化を有効、無効にするにはON、OFFを設定します。
(「パラメータの設定」に書かれているように、ONやOFFの他の綴りも認められています。)
デフォルトはONです。
    
注記


ALTER INDEXでdeduplicate_itemsをオフにすると、その後の挿入で重複排除のトリガは発生しなくなりますが、それ自体は既存のポスティングリストタプルが標準のタプル表現を使うようにはしません。
     






GiSTインデックスではさらに以下のパラメータを受け付けます。
   
	buffering (enum)
     
     
    
	

「GiSTインデックス構築法」で説明するバッファ化構築技法をインデックスを構築する時に使用するかどうかを制御します。
バッファ処理はOFFで無効に、ONで有効になります。またAUTOと指定すると、最初は無効ですが、インデックスサイズがeffective_cache_sizeに達した後はその場で有効になります。
デフォルトはAUTOです。
ソートしての構築が可能であれば、buffering=ONが指定されていない限りバッファ化構築の代わりに使われることに注意してください。
    





GINインデックスでは以下のパラメータを受け付けます。
   
	fastupdate (boolean)
     
     
    
	

「GIN高速更新手法」で説明する高速更新技法を使用するかどうかを制御します。
ONは高速更新を有効に、OFFは無効にします。
デフォルトはONです。
    
注記


ALTER INDEXを使用してfastupdateを無効にすることにより、以後の挿入は待機中のインデックス項目リストに入らないようになります。
しかし、このコマンド自体はこれまでの項目を吐き出しません。
確実に待機中のリストを空にするためには、続いてテーブルをVACUUMするか、gin_clean_pending_list関数を呼び出すのが良いでしょう。
     




	gin_pending_list_limit (integer)
     
     
    
	

このインデックスに対するgin_pending_list_limitの全体設定を上書きします。
値はキロバイト単位で指定します。
    





BRINインデックスでは次のパラメータを受け付けます。
   
	pages_per_range (integer)
     
     
    
	

BRINインデックスの各エントリについて1つのブロックレンジを構成するテーブルブロックの数を定義します（詳しくは「はじめに」参照）。
デフォルトは128です。
    

	autosummarize (boolean)
     
     
    
	

次のページへの挿入が検知された時に、いつでも直前のページに対してサマリ処理をキューに入れるかどうかを定義します（詳細は「インデックスの保守」を参照してください）。
デフォルトはoffです。
    




インデックスの同時作成


インデックスの作成が、通常のデータベース操作に影響を与えることがあります。
通常PostgreSQL™は、対象テーブルに対する書き込みをロックしてから、対象テーブル全体のインデックス作成を一度のスキャンで行います。
他のトランザクションはテーブルを読み取ることはできますが、対象テーブル内の行を挿入、更新、削除しようとすると、インデックス作成が完了するまでブロックされます。
実行中の運用状態のデータベースシステムの場合、これは重大な影響を与える可能性があります。
非常に大規模なテーブルに対するインデックス作成は何時間もかかることがあり得ます。
また小規模なテーブルであっても、インデックス作成により、運用状態のシステムとしては受け入れられないほど長い時間、書き込みロックがかかる可能性があります。
   


PostgreSQL™は書き込みをロックしないインデックス作成もサポートしています。
CREATE INDEXにCONCURRENTLYオプションをつけることでこの方式が行われます。
このオプションを使うと、PostgreSQL™はテーブルを2回スキャンしなければなりません。
さらに、潜在的にそのインデックスを更新または使用する可能性がある、実行中のすべてのトランザクションが終わるまで待機しなければなりません。
したがって、この方式は通常の方式よりも総作業時間がかかり、また、完了するまでの時間が非常に長くなります。
しかし、インデックス作成中に通常の操作を行い続けることができますので、この方式は運用環境での新規インデックス作成に有用です。
もちろん、インデックス作成によりCPUや入出力に余分に負荷がかかりますので、他の操作が低速になる可能性があります。
   


同時実行インデックス構築では実際には、1つのトランザクションで「無効な」インデックスとしてシステムカタログに登録され、さらに2つのトランザクションで2つのテーブルスキャンが起こります。
各テーブルスキャンの前に、インデックス構築はテーブルを修正した実行中のトランザクションが終了するのを待たなければなりません。
2回目のスキャンの後、インデックス構築は2回目のスキャンより前のスナップショット（13章同時実行制御参照）を持つすべてのトランザクションが終了するのを待たなければなりません。関係するインデックスが部分インデックスであったり、単純な列参照でない列を持っているのなら、ここでのトランザクションは他のテーブルでの同時実行インデックス構築の任意の段階で使われているトランザクションを含みます。
その後でようやく、インデックスは「有効」であり利用可能であると印が付けられ、CREATE INDEXコマンドが終了します。
しかし、それでもインデックスは問い合わせに対して即座に利用可能であるとは限りません。
最悪の場合、インデックス構築開始前のトランザクションが存在する間は利用できません。
   


たとえばデッドロックや一意性インデックスにおける一意性違反など、テーブルスキャン中に問題が発生すると、CREATE INDEXは失敗しますが、「無効な」インデックスが残ってしまいます。
こうしたインデックスは完全ではない可能性がありますので、問い合わせの際には無視されます。
しかし、更新時にオーバーヘッドがかかります。
psqlの\dコマンドでは、こうしたインデックスをINVALIDとして報告します。



postgres=# \d tab
       Table "public.tab"
 Column |  Type   | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 col    | integer |           |          |
Indexes:
    "idx" btree (col) INVALID




こうした場合の推奨復旧方法は、インデックスを削除し、再度CREATE INDEX CONCURRENTLYを実行することです。
（他にもREINDEX INDEX CONCURRENTLYを使用したインデックスの再作成という方法もあります。）
   


この他に一意性インデックスを同時作成する場合の注意事項があります。
2回目のテーブルスキャンが始まる時点で、他のトランザクションに対する一意性制約が既に有効になっているという点です。
これは、インデックスが使用できるようになる前やインデックス作成が最終的に失敗したとしても、制約違反が他のトランザクションで報告されてしまうことを意味します。
また、2回目のスキャン中に失敗した後も、「無効な」インデックスによる一意性制約は強制され続けます。
   


式インデックスや部分インデックスの同時作成もサポートされています。
式の評価中にエラーが発生した場合も、上で説明した一意性制約違反と同様な状況が発生します。
   


同一テーブルに対する通常のインデックス作成処理は複数並行して行うことができます。
しかし、あるテーブルに対するインデックスの同時作成は一度に1つしか行うことができません。
また、どちらの場合でもインデックス作成中のテーブルのスキーマ変更はできません。
この他に、通常のCREATE INDEXコマンドはトランザクションブロック内で実行させることができますが、CREATE INDEX CONCURRENTLYは実行させることができないという相違点があります。
   


今の所パーティションテーブルのインデックスの同時作成はサポートされていません。
しかし、パーティションテーブルへの書き込みをロックしている時間を短くするために、各パーティション上のインデックスを個別に同時作成してから最後にパーティションインデックスを非同時的に作成することはできます。
この場合、パーティションインデックスの作成はメタデータのみの操作になります。
   


注釈


インデックスが、どのような時に使用され、どのような時に使用されないか、また、どのような場合に有用かといった情報については11章インデックスを参照してください。
  


現在は、B-tree、GiST、GIN、BRINインデックスメソッドのみが、複数キー列に対するインデックスをサポートしています。
複数キー列があるかどうかはインデックスにINCLUDE列を追加できるかどうかとは独立です。
インデックスはINCLUDE列を含めて32列まで持てます。
（この制限はPostgreSQL™のコンパイル時に変更できます。）
現在、B-treeのみが一意性インデックスをサポートしています。
  


オプションのパラメータのついた演算子クラスは、インデックスのそれぞれの列に指定することができます。
演算子クラスは、その列のインデックスが使う演算子を識別します。
例えば、4バイト整数に対するB-treeインデックスには、int4_opsクラスを使います。
この演算子クラスには、4バイト整数の比較関数が含まれています。
実際の使用では、通常、列のデータ型のデフォルト演算子クラスで十分です。
演算子クラスを保持する主な理由は、データ型の中には有意な順序を2つ以上持つものがあるかもしれないからです。
例えば、複素数のソートで絶対値または実数部のどちらかを使いたい場合がありえます。
これを実現するには、データ型として2つの演算子クラスを定義し、インデックスを作る時に適切なクラスを選択します。
演算子クラスについての詳細は、「演算子クラスと演算子族」と「インデックス拡張機能へのインタフェース」を参照してください。
  


CREATE INDEXがパーティションテーブルに実行されたときのデフォルトの振る舞いは、全パーティションが一致するインデックスを持つようにする全パーティションへの再帰的な実行です。
各パーティションは最初に同等のインデックスが既に存在するかの判断のために検査され、存在するなら作成するインデックスに対するパーティションインデックスとしてアタッチされます。新たに作成するインデックスが既存インデックスの親インデックスとなります。
一致するインデックスが存在しない場合、新たなインデックスが作られて、自動的にアタッチされます。各パーティションの新たなインデックス名は、コマンドでインデックスが指定されなかった場合と同様に決定されます。
ONLYオプションが指定された場合、再帰処理は行われず、そのインデックスは無効と印付けされます。
（ALTER INDEX ... ATTACH PARTITIONは、ひとたび全パーティションが一致するインデックスを得たなら、インデックスを有効に印付けします）
しかしながら、ONLYが指定されたとしても、将来にCREATE TABLE ... PARTITION OFを使って作成されるあらゆるパーティションは自動的に一致するインデックスを持つことに注意してください。
  


順序付きスキャンをサポートするインデックスメソッド（現時点ではB-Treeのみ）では、ASC、DESC、NULLS FIRST、NULLS LAST句(省略可能)をオプションで指定し、インデックスのソート順を変更することができます。
順序付きインデックスは正方向にも逆方向にもスキャンすることができますので、単一列に対するDESCインデックスは通常は有用ではありません。
このソート順序はすでに通常のインデックスを使用して実現できます。
これらのオプションの価値は、SELECT ... ORDER BY x ASC, y DESCなどの順序指定が混在する問い合わせによって要求されるソート順に一致する、複数列に対するインデックスを作成できる点です。
NULLSオプションは、インデックスに基づいた問い合わせにおいてソート処理を省略するために「NULLのソート順を低くする」動作をサポートする必要がある場合に有用です。
デフォルトの動作は「NULLのソート順を高くする」です。
  


システムは定期的にテーブルの列すべての統計情報を集めています。
新しく作られた、式でないインデックスは、インデックスの有用性を決定するのにその統計情報をすぐに使うことができます。
新しい式インデックスに対しては、そのインデックスのための統計情報を生成するために、ANALYZEを実行するか、autovacuumデーモンがそのテーブルを解析するのを待つことが必要です。
  


CREATE INDEXの実行中、search_pathは一時的にpg_catalog, pg_tempに変更されます。
  


ほとんどのインデックスメソッドにおいて、インデックス作成速度はmaintenance_work_memの設定に依存します。
より大きな値を設定すると、インデックス作成に必要となる時間が短縮されます。
ただし、実際に使用できるメモリ量を超えるほど大きくすると、マシンがスワップ状態になり、遅くなります。
  


PostgreSQL™はテーブルの行をより高速に処理するために複数CPUを効かせてインデックスを作成できます。
この機能はパラレルインデックス作成と呼ばれています。
パラレルでのインデックス作成をサポートしているインデックスメソッド（今のところB-tree、GINとBRIN）に対して、maintenance_work_memでは、いくつのワーカープロセスが実行されているかに拘らず、各インデックス作成操作で使うことができる全体のメモリの最大量を指定します。
一般にコストモデルは、もしあるなら、どれだけの数のワーカープロセスを要求すべきかを自動的に決定します。
  


パラレルインデックス作成ではmaintenance_work_memを増やすことで、同様の逐次インデックス作成ではほとんど恩恵がみられない場合でも恩恵があるかもしれません。
パラレルワーカーはmaintenance_work_mem全体の内、少なくとも32MBの割り当て分を持たなければならないため、maintenance_work_memは要求されるワーカープロセス数に影響を及ぼすかもしれないことに注意してください。
また、リーダープロセスに対しても32MBの割り当てを残さなければなりません。
max_parallel_maintenance_workersを増やすことで、より多くのワーカーが使用できるようになるかもしれません。これは、インデックス作成が既にI/Oバウンドであるのでない限り、インデックス作成の所要時間を減らすでしょう。
もちろん、休止している十分なCPU容量もある前提です。
  


ALTER TABLEを通してparallel_workersの値を設定することで、テーブルに対してCREATE INDEXでどれだけのワーカープロセス数が要求されるかを、直接に調整できます。
これはコストモデルを完全に無視して、maintenance_work_memがパラレルワーカーの要求数に影響を与えることを回避します。
ALTER TABLEを通してparallel_workersを0に設定することは、そのテーブルに対するパラレルインデックス作成を全ての場合に無効化します。
  
ヒント


インデックス作成のチューニング一部としてparallel_workersを設定した後、これをリセットしたいかもしれません。
parallel_workersは全てのパラレルテーブルスキャンに影響を与えるので、これは不注意な問い合わせプランの変更を回避します。
   



CONCURRENTLYオプションを伴うCREATE INDEXは特に制限なくパラレル作成をサポートしますが、実際には最初のテーブルスキャンだけがパラレルに実行されます。
  


インデックスを削除するには、DROP INDEXを使用してください。
  


他の時間のかかるトランザクションと同じく、あるテーブルに対するCREATE INDEXは、その他のテーブルに対する同時実行中のVACUUMによりどのタプルが削除できるかに影響します。
  


以前のPostgreSQL™にはR-treeインデックスメソッドがありました。
GiSTメソッドに比べて大きな利点がありませんでしたので、このメソッドは削除されました。
古いデータベースからGiSTへの変換を簡単にするため、USING rtreeが指定された場合、CREATE INDEXはUSING gistと解釈します。
  


CREATE INDEXを実行している各バックエンドはその進捗をpg_stat_progress_create_indexビューで報告します。
詳細は「CREATE INDEXの進捗状況のレポート」を参照してください。
  

例


テーブルfilmsの列titleに一意性のB-treeインデックスを作成します。


CREATE UNIQUE INDEX title_idx ON films (title);


  


テーブルfilmsの列titleに、列directorと列ratingを含めて、一意性のB-treeインデックスを作成します。


CREATE UNIQUE INDEX title_idx ON films (title) INCLUDE (director, rating);


  


重複排除を無効にしたB-Treeインデックスを作成します。


CREATE INDEX title_idx ON films (title) WITH (deduplicate_items = off);


  


大文字小文字を区別しない検索が効率的になるように、式lower(title)に対してインデックスを作成します。


CREATE INDEX ON films ((lower(title)));



(この例では、インデックス名を省略することを選びました。
このためシステムがfilms_lower_idxなどという名前を選ぶことになります。)
  


デフォルト以外の照合順序でインデックスを作成します。


CREATE INDEX title_idx_german ON films (title COLLATE "de_DE");


  


デフォルトと異なるNULLのソート順を指定したインデックスを作成します。


CREATE INDEX title_idx_nulls_low ON films (title NULLS FIRST);


  


デフォルトと異なるフィルファクタを持つインデックスを作成します。


CREATE UNIQUE INDEX title_idx ON films (title) WITH (fillfactor = 70);


  


高速更新を無効にしてGINインデックスを作成します。


CREATE INDEX gin_idx ON documents_table USING GIN (locations) WITH (fastupdate = off);


  


テーブルfilms上の列codeに対するインデックスを作成します。
また、このインデックスをテーブル空間indexspace内に生成します。


CREATE INDEX code_idx ON films (code) TABLESPACE indexspace;


  


変換関数の結果に対するbox操作を効率的に使用できるようにpoint属性にGiSTインデックスを作成します。


CREATE INDEX pointloc
    ON points USING gist (box(location,location));
SELECT * FROM points
    WHERE box(location,location) && '(0,0),(1,1)'::box;


  


対象テーブルへの書き込みをロックせずにインデックスを作成します。


CREATE INDEX CONCURRENTLY sales_quantity_index ON sales_table (quantity);


互換性


CREATE INDEXはPostgreSQL™の拡張です。
標準SQLにはインデックスについての規定はありません。
  

関連項目
ALTER INDEX(7), DROP INDEX(7), REINDEX(7), 「CREATE INDEXの進捗状況のレポート」


名前
CREATE LANGUAGE — 新しい手続き言語を定義する

概要

CREATE [ OR REPLACE ] [ TRUSTED ] [ PROCEDURAL ] LANGUAGE name
    HANDLER call_handler [ INLINE inline_handler ] [ VALIDATOR valfunction ]
CREATE [ OR REPLACE ] [ TRUSTED ] [ PROCEDURAL ] LANGUAGE name


説明


CREATE LANGUAGEは新しい手続き言語をPostgreSQL™データベースに登録します。
この後で、関数とプロシージャをその新しい言語で定義できるようになります。
  


CREATE LANGUAGEは、言語名とその言語で作成された関数の実行に責任を持つハンドラ関数を関連付けます。
言語ハンドラについての詳細は、57章手続き言語ハンドラの作成を参照してください。
  


CREATE OR REPLACE LANGUAGEは新しい言語を作成、または、既存の定義を置き換えます。
言語がすでに存在する場合、パラメータはコマンドに従って更新されますが、言語の所有権と権限に関する設定は変更されません。
また、その言語で作成された既存の関数も依然として有効であるものとみなされます。
  


新しい言語を登録する、または、既存の言語のパラメータを変更するには、ユーザはPostgreSQL™のスーパーユーザ権限を持たなければなりません。
しかし、言語が一度作成されれば、その所有権を非スーパーユーザに割り当てたり、そのユーザが削除したり、権限を変更したり、新しい所有者に割り当てたりすることは有効です。
(しかしながら、基本的なC関数の所有権を非スーパーユーザに割り当てないでください。それは、そのユーザに権限昇格パスを作ることになるでしょう。)
  


ハンドラ関数を指定しない形式のCREATE LANGUAGEは廃止されました。
古いダンプファイルとの後方互換性のため、CREATE EXTENSIONと解釈されます。
言語が同じ名前の拡張としてパッケージ化されていれば問題なく動作するでしょう、そしてそのようなパッケージ化は手続き言語を設定するのによく行なわれている方法です。
  

パラメータ
	TRUSTED
	TRUSTEDは、他の方法ではユーザがアクセスできないデータに対しては、その言語でのアクセスが許されないことを指定します。
言語の登録時にこのキーワードを省略すると、PostgreSQL™のスーパーユーザ権限を持つユーザのみが、この言語を使って新しい関数を作れるようになります。
      

	PROCEDURAL
	

これには意味はありません。
      

	name
	

新しい手続き言語の名前です。
この名前はデータベースの言語の中で一意でなければなりません。
      

	HANDLER call_handler
	call_handlerは手続き言語の関数を実行するために呼び出される関数の名前で、事前に登録しておく必要があります。
このハンドラは、Version-1呼び出し規約に則って、C言語のようなコンパイル言語で書かれている必要があります。また、引数を取らずlanguage_handler型を返す関数として、PostgreSQL™に登録されていなければなりません。
language_handler型は、単に関数を呼び出しハンドラとして識別するのに使用するプレースホルダ型です。
      

	INLINE inline_handler
	inline_handlerはこの言語で無名コードブロックを実行（DOコマンド）するために呼び出される、事前に登録された関数の名前です。
inline_handler関数が指定されない場合、その言語では無名コードブロックをサポートしません。
このハンドラ関数は、DOコマンドの内部表現となるinternal型の引数を1つ取らなければならず、また、通常voidを返します。
ハンドラの戻り値は無視されます。
      

	VALIDATOR valfunction
	valfunctionは、事前に登録された検証用関数の名前です。新しい関数が当該言語で作成された場合、その関数を検証するために呼び出されます。
検証用関数が指定されていない場合、新しい関数は作成時にチェックされません。
検証用関数は、oid型の引数を1つ取る必要があります。
この引数は作成される関数のOIDになります。
また、通常void型を返します。
      


検証用関数は、通常、関数本体が構文上正しいかどうかを検査するために使用されます。
しかし、それだけでなく、関数のプロパティも検査可能です。例えば、その言語が処理できない特定のデータ型が引数に含まれていないかなどがチェックできます。
エラーを通知するには、検証用関数でereport()関数を使用すべきです。
関数の戻り値は無視されます。
      




注釈


手続き言語を削除するにはDROP LANGUAGEを使用してください。
  


システムカタログpg_language（ 「pg_language」参照）には、現在インストールされている言語に関する情報が記録されています。
またpsqlのコマンド\dLはインストールされた言語を一覧表示します。
  


手続き言語で関数を作成するには、ユーザはその言語に対するUSAGE権限を持たなければなりません。
デフォルトでは、信頼された言語についてはPUBLICに（つまり全員に）USAGEが付与されています。
これは必要に応じて取り消すことができます。
  


手続き言語は各データベースに局所的です。
しかし、言語をtemplate1データベースにインストールすることができます。
この場合、その後に作成されたすべてのデータベースで自動的にその言語は使用できるようになります。
  

例


新しい手続き言語を作成する最小の手順は以下の通りです。


CREATE FUNCTION plsample_call_handler() RETURNS language_handler
    AS '$libdir/plsample'
    LANGUAGE C;
CREATE LANGUAGE plsample
    HANDLER plsample_call_handler;



通常、これは拡張の作成スクリプト内に書かれており、ユーザは拡張をインストールすることでこれをすることになるでしょう。


CREATE EXTENSION plsample;


互換性


CREATE LANGUAGEはPostgreSQL™の拡張です。
  

関連項目
ALTER LANGUAGE(7), CREATE FUNCTION(7), DROP LANGUAGE(7), GRANT(7), REVOKE(7)


名前
CREATE MATERIALIZED VIEW — 新しいマテリアライズドビューを定義する

概要

CREATE MATERIALIZED VIEW [ IF NOT EXISTS ] table_name
    [ (column_name [, ...] ) ]
    [ USING method ]
    [ WITH ( storage_parameter [= value] [, ... ] ) ]
    [ TABLESPACE tablespace_name ]
    AS query
    [ WITH [ NO ] DATA ]


説明


CREATE MATERIALIZED VIEWは問い合わせからマテリアライズドビューを定義します。
この問い合わせはコマンド発行時にビューにデータを投入する（WITH NO DATAが使用されていない場合）ために実行され、使用されます。
また将来のREFRESH MATERIALIZED VIEWの使用で更新されるかもしれません。
  


CREATE MATERIALIZED VIEWはCREATE TABLE ASと似ていますが、必要に応じて後で更新できるように、ビューの初期化時に使用された問い合わせを記憶する点が異なります。
マテリアライズドビューはテーブルと同じ属性を多く持ちますが、一時的なマテリアライズドビューをサポートしていません。
  


CREATE MATERIALIZED VIEWには、マテリアライズドビューのために使われるスキーマでのCREATE権限が必要です。
  

パラメータ
	IF NOT EXISTS
	

同じ名前のマテリアライズドビューが既に存在する場合にエラーとしません。
この場合、注意が発行されます。
既存のマテリアライズドビューが作成されようとしていたものと類似のものであることは全く保証されないことに注意してください。
     

	table_name
	

作成するマテリアライズドビューの名前です（スキーマ修飾も可）。
この名前は、同じスキーマ内にある他のリレーション（テーブル、シーケンス、インデックス、ビュー、マテリアライズドビュー、外部テーブル）と異なるものでなければなりません。
     

	column_name
	

新しいマテリアライズドビューの列の名前です。
列名が提供されていない場合の列名は、問い合わせの出力列名から取られます。
     

	USING method
	

この省略可能な句は、新しいマテリアライズドビューの内容を保存するのに使うテーブルアクセスメソッドを指定します。メソッドはTABLE型のアクセスメソッドであることが必要です。
より詳しい情報は62章テーブルアクセスメソッドのインタフェース定義を参照してください。
このオプションが指定されなければ、新しいマテリアライズドビューに対してはデフォルトのテーブルアクセスメソッドが選ばれます。
より詳しい情報はdefault_table_access_methodを参照してください。
     

	WITH ( storage_parameter [= value] [, ... ] )
	

この句は、新しいマテリアライズドビューの格納パラメータ(省略可能)を指定します。
詳細についてはCREATE TABLE(7)の文書の格納パラメータを参照してください。
CREATE TABLEでサポートされるすべてのパラメータはCREATE MATERIALIZED VIEWでもサポートされます。
詳細についてはCREATE TABLE(7)を参照してください。
     

	TABLESPACE tablespace_name
	

tablespace_nameはマテリアライズドビューが作成されるテーブル空間の名前です。
指定されていない場合はdefault_tablespaceを参照します。
     

	query
	

SELECT、TABLEまたはVALUESコマンドです。
この問い合わせはセキュリティ限定された操作の中で実行されます。
特に、一時テーブルを作成する関数の呼び出しは失敗します。
また、問い合わせの実行中、search_pathは一時的にpg_catalog, pg_tempに変更されます。
     

	WITH [ NO ] DATA
	

この句は作成時にマテリアライズドビューにデータを投入するかどうかを指定します。
投入しない場合、マテリアライズドビューはスキャン不可という印が付き、REFRESH MATERIALIZED VIEWが使用されるまで問い合わせることができません。
     




互換性


CREATE MATERIALIZED VIEWはPostgreSQL™の拡張です。
  

関連項目
ALTER MATERIALIZED VIEW(7), CREATE TABLE AS(7), CREATE VIEW(7), DROP MATERIALIZED VIEW(7), REFRESH MATERIALIZED VIEW(7)


名前
CREATE OPERATOR — 
新しい演算子を定義する
  

概要

CREATE OPERATOR name (
    {FUNCTION|PROCEDURE} = function_name
    [, LEFTARG = left_type ] [, RIGHTARG = right_type ]
    [, COMMUTATOR = com_op ] [, NEGATOR = neg_op ]
    [, RESTRICT = res_proc ] [, JOIN = join_proc ]
    [, HASHES ] [, MERGES ]
)


説明


CREATE OPERATORは、新しい演算子nameを定義します。
演算子を定義したユーザがその所有者となります。
スキーマ名が指定されていた場合、その演算子は指定したスキーマに作成されます。
スキーマ名が指定されなかった場合、現在のスキーマに作成されます。
  


演算子名として使用できるのは、以下に示す文字を使った、NAMEDATALEN-1（デフォルトでは63）文字までの文字列です。



+ - * / < > = ~ ! @ # % ^ & | ` ?






名前の選択には以下に示すいくつかの制約があります。
   
	

--と/*はコメントの開始とみなされてしまうため、演算子名の一部として使うことができません。
     

	

複数の文字からなる演算子名は、下記の文字のうちの1つ以上を含まない限り、+または-で終わることができません。



~ ! @ # % ^ & | ` ?





例えば、@-は演算子名として許されますが、*-は許されません。
この制約により、PostgreSQL™がSQLに準拠する問い合わせをトークン同士の間に空白を要求することなしに解析することが可能になります。
     

	

記号=>はSQL文法で予約されているため、演算子名として使用できません。
     




  


演算子!=は入力時に<>に変換されるので、これらの2つの名前は常に等価です。
  


二項演算子では、LEFTARGとRIGHTARGの両方を定義しなければなりません。
前置演算子ではRIGHTARGのみを定義しなければなりません。
function_name関数は、CREATE FUNCTIONを使って事前に定義されていなければなりません。また、指定された型の正しい数の引数（1つか2つ）を受け付けるよう定義する必要があります。
  


CREATE OPERATORの構文では、キーワードFUNCTIONとPROCEDUREは等価ですが、参照されている関数はどの場合も関数であって、プロシージャであってはなりません。
ここで、キーワードPROCEDUREを使用することは歴史的なものであり、廃止予定です。
  


他の句は演算子最適化用の属性（省略可能）です。
これらの意味は「演算子最適化に関する情報」で説明されています。
  


演算子を作成するためには、引数の型と戻り値の型に対するUSAGE権限と背後にある関数に対するEXECUTE権限を持たなければなりません。
交換子または否定子演算子を指定する場合は、それらの演算子を所有していなければなりません。
  

パラメータ
	name
	

定義される演算子の名前です。
使用できる文字は上を参照してください。
この名前は、例えばCREATE OPERATOR myschema.+ (...)のように、スキーマ修飾可能です。
修飾されていなければ、演算子は現在のスキーマに作成されます。
異なるデータ型について処理するものであれば、同じスキーマ内の2つの演算子は同じ名前を持つことができます。
これをオーバーロードと言います。
       

	function_name
	

演算子を実装するために使用する関数です。
       

	left_type
	

演算子の左オペランドのデータ型です（左オペランドが存在する場合のみ）。
このオプションは前置演算子では省略されます。
       

	right_type
	

演算子の右オペランドのデータ型です。
       

	com_op
	

この演算子の交換子です。
       

	neg_op
	

この演算子の否定子です。
       

	res_proc
	

この演算子の制約選択評価関数です。
       

	join_proc
	

この演算子の結合選択評価関数です。
       

	HASHES
	

この演算子がハッシュ結合をサポートできることを示します。
       

	MERGES
	

この演算子がマージ結合をサポートできることを示します。
       





スキーマ修飾された演算子名をcom_opまたは他のオプション引数に与えるには、以下の例のようにOPERATOR()構文を使用してください。


COMMUTATOR = OPERATOR(myschema.===) ,


注釈


詳細については「ユーザ定義の演算子」と「演算子最適化に関する情報」を参照してください。
  


自己交換演算子を定義するときは、単にそれを行います。
交換演算子の対を定義するときは、少し厄介です。
最初に定義されたものが、まだ定義されていないもう一方を参照できるようにするには、どうすればよいのでしょうか?
この問題には3つの解決策があります。

   
	

1つ目の方法は、最初の演算子を定義する際にCOMMUTATOR句を省略し、2番目の演算子の定義で、COMMUTATOR句に最初の演算子を与えるという方法です。
PostgreSQL™は交換演算子が対になっていることが分かっているので、2番目の定義を見た時に、自動的に最初の定義に戻ってその未定義になっているCOMMUTATOR句を設定します。
     

	

もう一つ、より単純な方法は、両方の定義にCOMMUTATOR句を含めることです。
PostgreSQL™が最初の定義を処理し、COMMUTATORが存在しない演算子を参照していることに気付いた場合、システムカタログ内にその演算子のダミーエントリを作成します。
このダミーエントリは、演算子名、左右のオペランド型、および所有者に対してのみ有効なデータを持ちます。
PostgreSQL™が現時点で推論できるのはこれだけです。
最初のオペレータのカタログエントリは、このダミーエントリにリンクします。
後で2番目の演算子を定義すると、システムは2番目の定義からの追加情報でダミーエントリを更新します。
追加情報が入力される前にダミー演算子を使用しようとすると、エラーメッセージが表示されます。
     

	

あるいは、両方の演算子をCOMMUTATOR句なしで定義し、その後でALTER OPERATORを使用して、それらの交換子リンクを設定できます。
対のどちらか一方をALTERすることで十分です。
     






3つの場合すべてにおいて、それらを交換子として印付けするために両方の演算子を所有していることが必要です。
  


否定子演算子の対は、交換子の対と同じ方法で定義できます。
  


CREATE OPERATORで演算子の語彙優先順位を指定することはできません。
パーサの優先順位に関する動作は固定であるためです。
詳細な優先順位については「演算子の優先順位」を参照してください。
  


廃止されたオプションSORT1、SORT2、LTCMP、およびGTCMPは、マージ結合可能演算子に関連したソート演算子の名前を指定するために使用されていました。
代わりにB-tree演算子族を検索することで関連する演算子の情報を見つけることができるようになりましたので、これは必要がなくなりました。
これらの内のいずれかのオプションが指定された場合、暗黙的にMERGESを真に設定するだけで、それ以外は無視します。
  


データベースからユーザ定義の演算子を削除するにはDROP OPERATORを使用してください。
データベース内の演算子を変更するにはALTER OPERATORを使用してください。
  

例


以下のコマンドは、データ型boxに対する領域等価性を判定する新しい演算子を定義します。


CREATE OPERATOR === (
    LEFTARG = box,
    RIGHTARG = box,
    FUNCTION = area_equal_function,
    COMMUTATOR = ===,
    NEGATOR = !==,
    RESTRICT = area_restriction_function,
    JOIN = area_join_function,
    HASHES, MERGES
);


互換性


CREATE OPERATORはPostgreSQL™の拡張です。
標準SQLには、ユーザ定義の演算子についての規定はありません。
  

関連項目
ALTER OPERATOR(7), CREATE OPERATOR CLASS(7), DROP OPERATOR(7)


名前
CREATE OPERATOR CLASS — 
   新しい演算子クラスを定義する
  

概要

CREATE OPERATOR CLASS name [ DEFAULT ] FOR TYPE data_type
  USING index_method [ FAMILY family_name ] AS
  {  OPERATOR strategy_number operator_name [ ( op_type, op_type ) ] [ FOR SEARCH | FOR ORDER BY sort_family_name ]
   | FUNCTION support_number [ ( op_type [ , op_type ] ) ] function_name ( argument_type [, ...] )
   | STORAGE storage_type
  } [, ... ]


説明


CREATE OPERATOR CLASSは新しい演算子クラスを作成します。
演算子クラスは、特定のデータ型がインデックスでどのように使用されるかを定義します。
演算子クラスにより、データ型およびインデックスメソッドの特定の役割もしくは「戦略」に、どの演算子を使用するかが指定されます。
また、インデックスの列に対して演算子クラスが選択される際、演算子クラスによってインデックスメソッドが使用するサポート関数が指定されます。
演算子クラスで使用される全ての演算子および関数は、演算子クラスを作成できるようになる前に定義しておく必要があります。
  


スキーマ名が与えられている場合、その演算子クラスは指定されたスキーマに作成されます。
スキーマ名がなければ、演算子クラスは現在のスキーマに作成されます。
異なるインデックスメソッドに使用する場合のみ、同じスキーマ内の2つの演算子クラスに同じ名前を付けることができます。
  


演算子クラスは、それを定義したユーザが所有者となります。
現在、演算子クラスを作成するには、スーパーユーザである必要があります。
（誤った演算子クラスを定義すると、サーバを混乱させ、サーバクラッシュの原因とさえなり得るため、この制限が付けられています）。
  


現在、CREATE OPERATOR CLASSでは、インデックスメソッドに必要な全ての演算子および関数が演算子クラス定義に含まれているかどうか、また、演算子や関数の形式がそれ自身で整合性を持っているかを検査しません。
ユーザの責任において、有効な演算子クラスを定義してください。
  


関連する演算子クラスを演算子族にまとめることができます。
既存の演算子族に新しい演算子クラスを追加するためには、CREATE OPERATOR CLASSでFAMILYオプションを指定してください。
このオプションを指定しないと、新しい演算子クラスはそのクラスと同じ名前の演算子族内に置かれます（この演算子族が存在しない場合は作成します）。
  


詳細については「インデックス拡張機能へのインタフェース」を参照してください。
  

パラメータ
	name
	

作成する演算子クラスの名前です。
演算子クラス名は、スキーマ修飾することができます。
     

	DEFAULT
	

DEFAULTを付けると、その演算子クラスが、そのデータ型のデフォルトの演算子クラスになります。
特定のデータ型およびインデックスメソッドのデフォルトにできる演算子クラスは最大1つまでです。
     

	data_type
	

この演算子クラスを使用する列のデータ型です。
     

	index_method
	

この演算子クラスを使用するインデックスメソッドの名前です。
     

	family_name
	

この演算子クラスの追加先となる既存の演算子族の名前です。
指定されない場合、演算子クラスと同じ名前の演算子族が使用されます（演算子族が存在しない場合は作成します）。
     

	strategy_number
	

演算子クラスに関連する演算子のインデックスメソッドの戦略番号です。
     

	operator_name
	

演算子クラスに関連する演算子の名前です（スキーマ修飾名でも可）。
     

	op_type
	

OPERATOR句では、演算子の入力データ型、もしくは、前置演算子を表すNONEを指定します。
演算子クラスのデータ型と同じである通常の場合、入力データ型は省略可能です。
     


FUNCTION句では、関数の入力データ型（B-Tree比較関数およびハッシュ関数用）またはクラスのデータ型（B-treeソートサポート関数、B-tree等価イメージ関数とGiST、SP-GiST、GIN、BRIN演算子クラスのすべての関数用）と異なる場合、関数がサポートする予定の演算対象データ型です。
これらのデフォルトは常に正確です。
このため、データ型を跨がる比較をサポートする予定のB-treeソートサポート関数は除き、FUNCTION句でop_typeを指定する必要はありません。
     

	sort_family_name
	

順序付け演算子に関連したソート順序を記述する、既存のbtree演算子族の名前（スキーマ修飾可）です。
     


FOR SEARCHもFOR ORDER BYも指定されていない場合、FOR SEARCHがデフォルトです。
     

	support_number
	

演算子クラスに関連する関数用のインデックスメソッドのサポート関数の番号です。
     

	function_name
	

演算子クラス用のインデックスメソッドのサポート関数となる関数の名前です（スキーマ修飾名でも可）。
     

	argument_type
	

関数のパラメータのデータ型です。
     

	storage_type
	

インデックスに実際に格納されるデータ型です。
通常、このデータ型は列のデータ型と同じです。
しかし、異なるデータ型を許可するインデックスメソッドも存在します（現時点ではGiST、GIN、SP-GiST、BRIN）。
インデックスメソッドが異なるデータ型の使用を許可していなければ、STORAGE句を指定してはいけません。
列data_typeがanyarrayとして指定された場合、storage_typeをanyelementとして宣言し、インデックスのエントリが各インデックスが作成される実際の配列型に属する要素型のメンバであることを示すことができます。
     





OPERATOR、FUNCTION、STORAGEは任意の順番で記述できます。
  

注釈


インデックス機構は、使用する前に関数に関するアクセス権限を検査しませんので、
関数や演算子を演算子クラスに含めることは、PUBLICに実行権限を与えることと同じです。
通常、演算子クラスで有用な種類の関数ではこれは問題になりません。
  


演算子はSQL関数で定義してはなりません。
SQL関数は呼び出し元の問い合わせにインライン化されることが多いので、オプティマイザでその問い合わせがインデックスに一致するかどうかを認識できなくなってしまうからです。
  

例


以下のコマンド例では、_int4データ型（int4の配列）のGiSTインデックス演算子クラスを定義しています。
この例の詳細については、intarrayモジュールを参照してください。
  

CREATE OPERATOR CLASS gist__int_ops
    DEFAULT FOR TYPE _int4 USING gist AS
        OPERATOR        3       &&,
        OPERATOR        6       = (anyarray, anyarray),
        OPERATOR        7       @>,
        OPERATOR        8       <@,
        OPERATOR        20      @@ (_int4, query_int),
        FUNCTION        1       g_int_consistent (internal, _int4, smallint, oid, internal),
        FUNCTION        2       g_int_union (internal, internal),
        FUNCTION        3       g_int_compress (internal),
        FUNCTION        4       g_int_decompress (internal),
        FUNCTION        5       g_int_penalty (internal, internal, internal),
        FUNCTION        6       g_int_picksplit (internal, internal),
        FUNCTION        7       g_int_same (_int4, _int4, internal);


互換性


CREATE OPERATOR CLASSはPostgreSQL™の拡張です。
標準SQLにはCREATE OPERATOR CLASS文はありません。
  

関連項目
ALTER OPERATOR CLASS(7), DROP OPERATOR CLASS(7), CREATE OPERATOR FAMILY(7), ALTER OPERATOR FAMILY(7)


名前
CREATE OPERATOR FAMILY — 新しい演算子族を定義する

概要

CREATE OPERATOR FAMILY name USING index_method


説明


CREATE OPERATOR FAMILYは演算子族を新規に作成します。
演算子族は、関連する演算子クラスと、場合によっては、これらの演算子クラスと互換性があるが個々のインデックスの機能にとっては重要ではない、追加の演算子と関数の集合を定義します。
（インデックスにとって重要な演算子と関数は、演算子族内で「自由」とするのではなく、対応する演算子クラスにまとめられなければなりません。
通常、単一のデータ型に対する演算子は演算子クラスにまとめ、データ型を跨る演算子を両方のデータ型に対する演算子族内で自由とします。）
  


新しい演算子族の初期状態は空です。
続いて、含むべき演算子クラスを追加するためにCREATE OPERATOR CLASSコマンドを発行してデータを投入します。
必要なら、「自由」な演算子と対応するサポート関数を追加するためにALTER OPERATOR FAMILYコマンドを発行します。
  


スキーマ名が指定されると、演算子族は指定したスキーマ内に作成されます。
さもなくば、現在のスキーマ内に作成されます。
対象とするインデックスメソッドが異なる場合に限り、同一スキーマ内に同じ名前の2つの演算子族を持たせることができます。
  


演算子族を定義したユーザがその所有者となります。
現時点では、作成者はスーパーユーザでなければなりません。
演算子族を間違って定義すると、サーバが混乱し、クラッシュすることさえありますので、この制限が存在します。
  


詳細は「インデックス拡張機能へのインタフェース」を参照してください。
  

パラメータ
	name
	

作成する演算子族の名前です。
この名前はスキーマ修飾可能です。
     

	index_method
	

演算子族が対象とするインデックスメソッドの名前です。
     




互換性


CREATE OPERATOR FAMILYはPostgreSQL™の拡張です。
標準SQLにはCREATE OPERATOR FAMILY文はありません。
  

関連項目
ALTER OPERATOR FAMILY(7), DROP OPERATOR FAMILY(7), CREATE OPERATOR CLASS(7), ALTER OPERATOR CLASS(7), DROP OPERATOR CLASS(7)


名前
CREATE POLICY — テーブルに新しい行単位のセキュリティポリシーを定義する

概要

CREATE POLICY name ON table_name
    [ AS { PERMISSIVE | RESTRICTIVE } ]
    [ FOR { ALL | SELECT | INSERT | UPDATE | DELETE } ]
    [ TO { role_name | PUBLIC | CURRENT_ROLE | CURRENT_USER | SESSION_USER } [, ...] ]
    [ USING ( using_expression ) ]
    [ WITH CHECK ( check_expression ) ]


説明


CREATE POLICYはテーブルに新しい行単位のセキュリティポリシーを定義します。
作成したポリシーを適用するには、（ALTER TABLE ... ENABLE ROW LEVEL SECURITYを使って）テーブルの行単位セキュリティを有効にしなければならないことに注意して下さい。
  


ポリシーは、それを定義する式にマッチした行をselect/insert/update/deleteする権限を与えます。
テーブルの既存の行はUSINGで指定した式によって検査されます。
INSERTまたはUPDATEによって作成される新しい行はWITH CHECKで指定した式によって検査されます。
ある行についてUSING式がtrueを返した場合、その行はユーザに可視となりますが、falseまたはnullを返した場合は不可視となります。
行に対してWITH CHECK式がtrueを返した場合、その行は挿入または更新されますが、falseまたはnullを返した場合はエラーが発生します。
  


INSERT文、UPDATE文およびMERGEでは、BEFOREトリガが実行された後で、かつ、実際のデータ更新が行われるより前にWITH CHECK式が実行されます。
従って、BEFORE ROWトリガは挿入されるデータを変更する場合があり、これはセキュリティポリシーの検査の結果に影響を与えます。
WITH CHECK式は他のいかなる制約よりも前に実行されます。
  


ポリシー名はテーブル毎につけられます。
従って、1つのポリシー名を多くの異なるテーブルに使うことができます。
また、その定義は各テーブル毎に異なった、適切な内容にできます。
  


ポリシーは特定のコマンドまたは特定のロールに対して適用することができます。
新しく作成するポリシーのデフォルトは、特に指定しなければ、すべてのコマンドとロールに適用、となっています。
複数のポリシーを単一のコマンドに適用できます。
更なる詳細は以下を参照ください。
表300「コマンドタイプにより適用されるポリシー」に、どのようにして、特定のコマンドに異なるタイプのポリシーが適用されるかがまとめられています。
  


USING式とWITH CHECK式の両方を持つことができるポリシー（ALLとUPDATE）についてWITH CHECK式が定義されていない場合、どの行が可視であるかの決定（通常のUSINGの対象）と新しい行のどれが追加可能であるかの決定（WITH CHECKの対象）の両方でUSING式が使用されます。
  


テーブルの行単位セキュリティが有効で、適用可能なポリシーが存在しない場合、「デフォルト拒否」のポリシーが適用され、すべての行が不可視で更新不能になります。
  

パラメータ
	name
	

作成するポリシーの名前です。
同じテーブルの他のポリシーとは異なる名前でなければなりません。
     

	table_name
	

ポリシーが適用されるテーブルの名前（スキーマ修飾可）です。
     

	PERMISSIVE
	

作成するポリシーが許容(permissive)ポリシーであることを指定します。
問い合わせに適用可能なすべての許容ポリシーは論理演算子「OR」を使って結合されます。
許容ポリシーを作成することで、管理者はアクセス可能なレコード集合を追加することができます。
デフォルトではポリシーは許容ポリシーです。
     

	RESTRICTIVE
	

作成するポリシーが制限(restrictive)ポリシーであることを指定します。
問い合わせに適用可能なすべての制限ポリシーは論理演算子「AND」と使って結合されます。
各行についてすべての制限ポリシーを満たさなければならなくなるため、制限ポリシーを作成することで、管理者はアクセス可能なレコード集合を減らすことができます。
     


制限ポリシーを有効に使ってアクセスを制限できるようにする前に、レコードへのアクセスを許可する許容ポリシーが少なくとも1つ必要であることに注意してください。
制限ポリシーだけしか存在しない場合、レコードにアクセスすることはできません。
許容ポリシーと制限ポリシーが混在している場合、少なくとも1つの許容ポリシーを満たし、さらに、すべての制限ポリシーを満たしている場合のみレコードにアクセスできます。
     

	command
	

ポリシーが適用されるコマンドです。
有効なオプションはALL、SELECT、INSERT、UPDATE、DELETEです。
デフォルトはALLです。
これらがどのように適用されるかの詳細は以下を参照して下さい。
     

	role_name
	

ポリシーが適用されるロールです。
デフォルトはPUBLICで、すべてのロールに対してポリシーが適用されます。
     

	using_expression
	

任意のSQL条件式（戻り値はboolean）です。
条件式に集約関数やウィンドウ関数を含めることはできません。
行単位セキュリティが有効なときは、テーブルへの問い合わせにこの式が追加されます。
この式がtrueを返す行が可視となります。
この式がfalseまたはnullを返す行は、ユーザには（SELECTにおいて）不可視となり、また（UPDATEあるいはDELETEでは）更新の対象ではなくなります。
そのような行は静かに無視され、エラーは報告されません。
     

	check_expression
	

任意のSQL条件式（戻り値はboolean）です。
条件式に集約関数やウィンドウ関数を含めることはできません。
この式は、行単位セキュリティが有効な場合に、そのテーブルに対するINSERTおよびUPDATEの問い合わせで使用されます。
この式の評価がtrueになる行のみが許されます。
挿入されるレコード、あるいは更新の結果のレコードでこの式の評価がfalseまたはnullになるものについては、エラーが発生します。
check_expressionは元の内容ではなく、予定される更新の後の新しい内容に対して評価されることに注意してください。
     



コマンド毎のポリシー
	ALL
	

ポリシーにALLを使うのは、そのポリシーはコマンドの種類に関係なく、すべてのコマンドに適用されるという意味になります。
ALLのポリシーと特定のコマンドに対するポリシーの両方が存在する場合、ALLのポリシーと特定のコマンドに対するポリシーの両方が適用されます。
さらにALLのポリシーは、問い合わせの選択側と更新側の両方で適用されます。
このとき、USING式だけが定義されていたら、両方の場合についてUSING式を使用します。
       


例えばUPDATEが実行されるとき、ALLのポリシーは、UPDATEが更新対象の行として選択できる行（USING式が適用されます）と、UPDATE文の結果としてできる行がテーブルに追加できるかどうかの検証（WITH CHECKが定義されていれば、それが適用され、なければUSING式が適用されます）の両方で適用可能です。
INSERTまたはUPDATEコマンドがALLのWITH CHECK式に反する行をテーブルに追加しようとした場合、コマンド全体が中止されます。
       

	SELECT
	

ポリシーにSELECTを使うのは、そのポリシーはSELECTの問い合わせの他に、そのポリシーが定義されているリレーションに対してSELECT権限が必要な時は常に適用されるという意味になります。
その結果、SELECT問い合わせでは、SELECTポリシーに適うレコードだけが返されます。
また、UPDATEなどSELECT権限が必要な問い合わせでも、SELECTポリシーによって許可されるレコードだけが見えます。
SELECTポリシーはリレーションからレコードを取り出す場合にしか適用されないので、WITH CHECK式を持つことはできません。
       

	INSERT
	

ポリシーにINSERTを使うことは、そのポリシーはINSERTコマンドとINSERTの動作を含むMERGEコマンドに適用するという意味になります。
このポリシーに反する行を挿入しようとすると、ポリシー違反エラーを起こし、INSERTコマンド全体が中止されます。
INSERTポリシーはリレーションにレコードを追加する場合にしか適用されないため、USING式を持つことはできません。
       


ON CONFLICT DO UPDATEのあるINSERTでは、INSERTポリシーのWITH CHECK式について、INSERTの部分でリレーションに追加されるすべての行についてのみ確認することに注意してください。
       

	UPDATE
	

ポリシーにUPDATEを使うことは、そのポリシーはUPDATEコマンド、SELECT FOR UPDATEコマンド、SELECT FOR SHAREコマンド、および補助的にINSERTコマンドのON CONFLICT DO UPDATE句で適用されるという意味になります。
UPDATE動作を含むMERGEコマンドも影響を受けます。
UPDATEは既存のレコードを取り出すことと、レコードを新しい修正されたレコードで置換することが含まれるので、UPDATEポリシーはUSING式とWITH CHECK式の両方を受け付けます。
USING式はUPDATEコマンドが操作の対象としてどのレコードを見ることができるかを決めるのに使われます。
一方でWITH CHECKはどの修正した行をリレーションに戻すことができるかを定義します。
       


更新後の値がWITH CHECK式に反する行があればエラーを起こし、コマンド全体が中止されます。
USING句だけが指定されていた場合は、それがUSINGとWITH CHECKの両方に対して使用されます。
       


通常は、UPDATEコマンドは更新対象のリレーションの列からデータを読む必要もあります（例えば、WHERE句の中、RETURNING句、あるいはSET句の右辺の式の中）。
この場合、更新対象のリレーションのSELECT権限も必要となり、UPDATEポリシーに加えて、適切なSELECTまたはALLポリシーも適用されます。
従って、ユーザはUPDATEまたはALLポリシーによって、行を更新する権限を付与されているのに加えて、SELECTまたはALLポリシーによって、更新対象の行にアクセスできなければなりません。
       


INSERTコマンドに補助的なON CONFLICT DO UPDATE句があり、UPDATEの部分が使われるとき、更新対象の行についてまず、すべてのUPDATEポリシーのUSING式が検査され、次いで、更新された新しい行がWITH CHECK式が検査されます。
しかし、単独のUPDATEコマンドとは異なり、既存の行がUSING式を満たさないときは、エラーが発生します（UPDATEの部分が警告なしに回避されることは決してありません）。
       

	DELETE
	

ポリシーにDELETEを使うのは、そのポリシーはDELETEコマンドに適用されるという意味になります。
ポリシーを満たす行だけがDELETEコマンドから見えます。
SELECTでは見えるけれど、削除の対象ではない、という行もあり得ます。
それらの行がDELETEポリシーのUSING式を満たさない場合です。
       


ほとんどの場合、DELETEコマンドは削除対象のリレーションの列からデータを読む必要もあります（例えば、WHERE句の中やRETURNING句）。
この場合、リレーション上のSELECT権限も必要となり、DELETEポリシーに加えて、適切なSELECTポリシーまたはALLポリシーも適用されます。
従って、ユーザはDELETEまたはALLポリシーによって、行を削除する権限を付与されているのに加えて、SELECTまたはALLポリシーによって、削除対象の行にアクセスできなければなりません。
       


DELETEポリシーはリレーションからレコードが削除される場合にしか適用されず、確認すべき新しい行はないので、WITH CHECK式を持つことはできません。
       



表300 コマンドタイプにより適用されるポリシー
	コマンド	SELECT/ALLポリシー	INSERT/ALLポリシー	UPDATE/ALLポリシー	DELETE/ALLポリシー
	USING式	WITH CHECK式	USING式	WITH CHECK式	USING式
	SELECT	既存の行	—	—	—	—
	SELECT FOR UPDATE/SHARE	既存の行	—	既存の行	—	—
	INSERT / MERGE ... THEN INSERT	—	新しい行	—	—	—
	INSERT ... RETURNING	

新しい行 [a]
       	新しい行	—	—	—
	UPDATE / MERGE ... THEN UPDATE	

既存の行と新しい行 [a]
       	—	既存の行	新しい行	—
	DELETE	

既存の行 [a]
       	—	—	—	既存の行
	ON CONFLICT DO UPDATE	既存の行と新しい行	—	既存の行	新しい行	—
	[a] 

読み出しアクセスが既存の、あるいは新しい行（たとえば、リレーションのカラムを参照するWHEREあるいはRETURNING句）に要求された場合
         






複数のポリシーの適用


同じコマンドに対して、異なるコマンド種別の複数のポリシーを適用する場合（例えば、UPDATEコマンドに対してはSELECTとUPDATEのポリシーが適用されます）、ユーザは両方の種別の権限（例えば、リレーションから行を検索する権限と、それを更新する権限）を持っている必要があります。
従って、ある種別のポリシーの式は、別の種別のポリシーの式とAND演算子を使って結合されます。
   


同じコマンドに対して同じコマンド種別の複数のポリシーが適用される場合、リレーションのアクセスを許可する少なくとも1つのPERMISSIVEポリシーがなければならず、さらにすべてのRESTRICTIVEポリシーを満たす必要があります。
従って、すべてのPERMISSIVEポリシー式がORを使って結合され、すべてのRESTRICTIVEポリシー式がANDを使って結合され、その結果がANDを使って結合されます。
PERMISSIVEポリシーがなければアクセスは拒絶されます。
   


複数のポリシーを結合するという目的において、ALLのポリシーは適用対象となっている他のすべてのポリシーと同じ種別であるとして扱われることに注意してください。
   


例えば、SELECTとUPDATEの両方の権限を必要とするUPDATEコマンドにおいて、それぞれの種別の適用可能な複数のポリシーがある場合、以下のように結合されます。



expression from RESTRICTIVE SELECT/ALL policy 1
AND
expression from RESTRICTIVE SELECT/ALL policy 2
AND
...
AND
(
  expression from PERMISSIVE SELECT/ALL policy 1
  OR
  expression from PERMISSIVE SELECT/ALL policy 2
  OR
  ...
)
AND
expression from RESTRICTIVE UPDATE/ALL policy 1
AND
expression from RESTRICTIVE UPDATE/ALL policy 2
AND
...
AND
(
  expression from PERMISSIVE UPDATE/ALL policy 1
  OR
  expression from PERMISSIVE UPDATE/ALL policy 2
  OR
  ...
)



注釈


ポリシーを作成あるいは変更するには、テーブルの所有者でなければなりません。
  


ポリシーは、データベース内のテーブルに対する明示的な問い合わせには適用されますが、システムが内部的な参照整合性のチェックや制約の検証をしている時には適用されません。
この意味するところは、ある値が存在するかどうかを判定する間接的な方法がある、ということです。
その例の1つは、主キーあるいは一意性制約のある列に重複する値を挿入しようとすることです。
挿入に失敗すれば、その値が既に存在すると推定することができます。
（この例では、ユーザが見ることができないレコードを挿入することがポリシーにより許されていると仮定しています。）
別の例は、あるテーブルへの挿入は許されているが、そのテーブルが別の隠されているテーブルを参照している、という場合です。
参照元のテーブルに値を挿入することで、値の存在が判断できます。
この場合、挿入の成功はその値が参照先のテーブルに存在することを示唆します。
これらの問題は、見ることができない値を示唆するかもしれないようなレコードの挿入、削除、更新が全くできないように注意深くポリシーを設計するか、あるいは外部的な意味を持つキーの代わりに生成された値（例：代理キー）を使うことで解決できます。
  


一般に、システムは問い合わせに記述される制限より前に、セキュリティポリシーを使ったフィルタ条件を実行します。
これは守られるべきデータが信頼できないかもしれないユーザ定義関数に偶然に意図せずに渡されることを防ぐためです。
しかし、システム（またはシステム管理者）によってLEAKPROOFであるとされた関数や演算子については、信頼できるとみなして良いので、ポリシー式より先に評価される場合があります。
  


ポリシーの式はユーザの問い合わせに直接追加されるため、式は問い合わせ全体を実行しているユーザの権限によって実行されます。
そのため、あるポリシーを使用するユーザは、その式が参照しているすべてのテーブルおよび関数にアクセスできる必要があります。
そうでなければ、行単位セキュリティが有効になっているテーブルに問い合わせをしようとしたときに、単に権限なしのエラーを受け取ります。
しかし、これによってビューの動作が変わることはありません。
通常の問い合わせおよびビューと同じく、ビューによって参照されるテーブルに対する権限の確認とポリシーは、ビューの所有者の権限およびビューの所有者に適用されるポリシーを利用します。ただし、ビューがsecurity_invokerオプション(CREATE VIEWを参照)を使って定義されている場合を除きます。
  


MERGEに個別のポリシーは存在しません。
その代わり、SELECT、INSERT、UPDATEおよびDELETEに定義されたポリシーが、実行される動作に応じてMERGEの実行時に適用されます。
  


更なる詳細と実践的な例については「行セキュリティポリシー」に記述されています。
  

互換性


CREATE POLICYはPostgreSQL™の拡張です。
  

関連項目
ALTER POLICY(7), DROP POLICY(7), ALTER TABLE(7)


名前
CREATE PROCEDURE — 新しいプロシージャを定義する

概要

CREATE [ OR REPLACE ] PROCEDURE
    name ( [ [ argmode ] [ argname ] argtype [ { DEFAULT | = } default_expr ] [, ...] ] )
  { LANGUAGE lang_name
    | TRANSFORM { FOR TYPE type_name } [, ... ]
    | [ EXTERNAL ] SECURITY INVOKER | [ EXTERNAL ] SECURITY DEFINER
    | SET configuration_parameter { TO value | = value | FROM CURRENT }
    | AS 'definition'
    | AS 'obj_file', 'link_symbol'
    | sql_body
  } ...


説明


CREATE PROCEDUREは新たなプロシージャを定義します。
CREATE OR REPLACE PROCEDUREは新たなプロシージャを作るか、既存の定義を置きかえます。
プロシージャを定義するにはユーザは言語にUSAGE権限が必要です。
  


スキーマ名が含まれている場合、プロシージャは指定されたスキーマに作られます。
そうでなければ現在のスキーマに作られます。
同スキーマ内で新たなプロシージャ名と入力引数型が既存のプロシージャや関数と一致してはなりません。
しかしながら、プロシージャや関数が異なる引数型であれば同じ名前を共有できます（これはオーバーロードと呼ばれます）。
  


既存プロシージャの現在の定義を置き換えるには、CREATE OR REPLACE PROCEDUREを使用してください。
この方法でプロシージャの名前や引数型を変更することはできません（試みれば、実際は新たな別プロシージャを作ることになるでしょう）。
  


既存プロシージャの置き換えにCREATE OR REPLACE PROCEDUREが使われたとき、プロシージャの所有者と権限設定は変更されません。
その他全てのプロシージャ属性は、コマンドで指定された値または暗黙の値に設定されます。
プロシージャを置き換えるには所有者（所有するロールのメンバであることも含みます）でなければなりません。
  


プロシージャを作ったユーザはプロシージャの所有者になります。
  


プロシージャを作るには、引数型に対してUSAGE権限を持っていなければなりません。
  


プロシージャを書くことに関する更なる情報は「ユーザ定義プロシージャ」を参照してください。
  

パラメータ
	name
	

作成するプロシージャ名（スキーマ修飾も可）。
      

	argmode
	

引数モードで、IN、OUT、INOUT、あるいは、VARIADICのいずれかです。
省略した場合のデフォルトはINです。
      

	argname
	

引数名。
      

	argtype
	

プロシージャ引数があるなら、そのデータ型（スキーマ修飾も可）です。
引数型には基本型、複合型、ドメイン型、あるいは、テーブル列の型の参照が使えます。
      


実装言語によっては、cstringなどの「擬似データ型」を指定することができます。
擬似データ型は実際の引数型が完全には特定されていないか、通常のSQLデータ型の枠外にあることを示しています。
      


列の型は以下のように参照されます。
       table_name.column_name%TYPE.

この機能を使うことは時にプロシージャをテーブル定義の変更から独立させる助けとなります。
      

	default_expr
	

パラメータが指定されなかった場合のデフォルト値として使用される式です。
この式はパラメータの引数型と変換可能でなければなりません。
デフォルト値を持つパラメータの後ろにあるパラメータはすべて、同様にデフォルト値を持たなければなりません。
      

	lang_name
	

プロシージャを実装している言語の名前です。
このパラメータには、sql、c、internal、もしくはユーザ定義手続き言語（例：plpgsql）の名前を指定可能です。
sql_bodyが指定されていれば、デフォルトはsqlです。
名前を単一引用符で囲むのは廃止予定で、大文字小文字の一致が必要になります。
      

	TRANSFORM { FOR TYPE type_name } [, ... ] }
	

プロシージャ呼び出しにどの変換を適用すべきかのリストです。
変換はSQLの型と言語独自のデータ型の間の変換を行います（CREATE TRANSFORM(7)を参照）。
手続言語の実装では、通常、ビルトインの型についてハードコードされた知識があるので、それらをこのリストに含める必要はありません。
手続言語の実装が型の処理について定めておらず、変換が提供されない場合は、データ型変換のデフォルトの動作によることになりますが、これは実装に依存します。
      

	[EXTERNAL] SECURITY INVOKER, [EXTERNAL] SECURITY DEFINER
	SECURITY INVOKERを指定すると、プロシージャを呼び出したユーザの権限で、そのプロシージャが実行されます。
これがデフォルトです。
SECURITY DEFINERを指定すると、プロシージャを所有するユーザの権限で、そのプロシージャが実行されます。
     


EXTERNALキーワードは、SQLとの互換性を保つために許されています。
しかし、SQLとは異なり、この機能は外部プロシージャだけではなくすべてのプロシージャに適用されるため、このキーワードは省略可能です。
     


SECURITY DEFINERプロシージャではトランザクション制御文（言語によりますが例えばCOMMITやROLLBACK）は実行できません。
     

	configuration_parameter, value
	

SET句により、プロシージャが始まった時に指定した設定パラメータを指定した値に設定し、プロシージャの終了時にそれを以前の値に戻すことができます。
SET FROM CURRENTは、CREATE PROCEDUREの実行時点でのパラメータ値を、プロシージャに入る時に適用する値として保管します。
      


プロシージャにSET句が付いている場合、プロシージャ内部で実行されるSET LOCALコマンドの同一変数に対する効果はそのプロシージャに制限されます。
つまり、設定パラメータの前の値はプロシージャが終了する時に元に戻ります。
しかし、通常の（LOCALがない）SETコマンドはSET句を上書きします。
これは過去に行われたSET LOCALコマンドに対してもほぼ同じです。
つまり、このコマンドの効果は、現在のトランザクションがロールバックされない限り、プロシージャが終了した後も永続化されます。
      


プロシージャにSET句が付いている場合、そのプロシージャではトランザクション制御文（言語によりますが例えばCOMMITとROLLBACK）を実行できません。
      


使用できるパラメータ名と値についての詳細はSET(7)と19章サーバ設定を参照してください。
      

	definition
	

プロシージャを定義する文字列定数です。
このパラメータの意味は言語に依存します。
内部的なプロシージャ名、オブジェクトファイルへのパス、SQLコマンド、あるいは、手続き言語で記述されたテキストを指定できます。
      


プロシージャを定義する文字列を記述する際に、通常の単一引用符ではなく、ドル引用符（「ドル記号で引用符付けされた文字列定数」参照）を使用すると便利なことが多くあります。
ドル引用符を使用しなければ、プロシージャ定義内の単一引用符やバックスラッシュは必ず二重にしてエスケープしなければなりません。
      

	obj_file, link_symbol
	

この構文のAS句は、動的にロードされるC言語プロシージャにおいて、C言語のソースコード中のプロシージャ名がSQLプロシージャの名前と同じでない場合に使われます。
obj_fileという文字列はコンパイルされたCプロシージャを含む共有ライブラリファイルの名前で、LOADコマンドの場合と同じように解釈されます。
文字列link_symbolはそのプロシージャのリンクシンボル、つまり、C言語ソースコード中のプロシージャの名前です。
リンクシンボルが省略された場合、定義されるSQLプロシージャの名前と同じものであるとみなされます。
      


同じオブジェクトファイルを参照するCREATE PROCEDURE呼び出しが繰り返される場合、ファイルがセッションにつき一度だけロードされます。
（おそらく開発中に）ファイルのアンロードと再ロードを行うには、新たなセッションを開始してください。
      

	sql_body
	

LANGUAGE SQLプロシージャの本体です。
これは以下のようなブロックでなければなりません。


BEGIN ATOMIC
  statement;
  statement;
  ...
  statement;
END


      


これは文字列定数としてプロシージャ本体を書くのと似ていますが(上記のdefinitionを参照してください)、いくつか違いがあります。
この形式はLANGUAGE SQLに対してのみ機能し、文字列定数の形式はすべての言語に対して機能します。
この形式はプロシージャ定義時に解析され、文字列定数の形式は実行時に解析されます。
そのため、この形式は多様引数型やプロシージャ定義時に解決できないその他の構文をサポートできません。
この形式はプロシージャとプロシージャ本体の中で使われているオブジェクトの間の依存関係を追跡しますので、DROP ... CASCADEは正しく動作しますが、一方、文字列定数を使う形式は宙に浮いたプロシージャを放置するかもしれません。
最後に、この形式は標準SQLや他のSQL実装とより互換性があります。
      




注釈


プロシージャにも該当する関数の作成についての詳細はCREATE FUNCTION(7)を参照してください。
  


プロシージャを実行するにはCALL(7)を使います。
  

例



CREATE PROCEDURE insert_data(a integer, b integer)
LANGUAGE SQL
AS $$
INSERT INTO tbl VALUES (a);
INSERT INTO tbl VALUES (b);
$$;



または


CREATE PROCEDURE insert_data(a integer, b integer)
LANGUAGE SQL
BEGIN ATOMIC
  INSERT INTO tbl VALUES (a);
  INSERT INTO tbl VALUES (b);
END;



そして、以下のように呼び出します。


CALL insert_data(1, 2);


互換性


CREATE PROCEDUREコマンドは標準SQLで定義されています。
PostgreSQL™の実装は互換性のある方法で使うことはできますが、多くの拡張があります。
詳しくはCREATE FUNCTION(7)も参照してください。
  

関連項目
ALTER PROCEDURE(7), DROP PROCEDURE(7), CALL(7), CREATE FUNCTION(7)


名前
CREATE PUBLICATION — 新しいパブリケーションを定義する

概要

CREATE PUBLICATION name
    [ FOR ALL TABLES
      | FOR publication_object [, ... ] ]
    [ WITH ( publication_parameter [= value] [, ... ] ) ]


ここでpublication_objectは以下のいずれかです。

    TABLE [ ONLY ] table_name [ * ] [ ( column_name [, ... ] ) ] [ WHERE ( expression ) ] [, ... ]
    TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ... ]


説明


CREATE PUBLICATIONは現在のデータベースに新しいパブリケーションを追加します。
パブリケーションの名前は現在のデータベースに存在するどのパブリケーションの名前とも異なるものでなければなりません。
  


パブリケーションは本質的にはテーブルの集合で、それらのテーブルのデータの変更が、論理レプリケーションを通じて複製されることが意図されているものです。
論理レプリケーションの設定で、パブリケーションがどのように位置づけられるかの詳細については、「パブリケーション」を参照してください。
   

パラメータ
	name
	

新しいパブリケーションの名前です。
     

	FOR TABLE
	

パブリケーションに追加するテーブルのリストを指定します。
テーブル名の前にONLYが指定されているときは、そのテーブルだけがパブリケーションに追加されます。
ONLYが指定されていないときは、そのテーブルと、そのすべての子テーブル（あれば）が追加されます。
オプションで、テーブル名の後に*を指定して、子テーブルが含まれることを明示的に示すことができます。
しかしながら、これはパーティションテーブルには適用されません。
パーティションテーブルのパーティションは、パブリケーションに含まれると常に暗黙的にみなされますので、パブリケーションに明示的に追加されることは決してありません。
     


オプションのWHERE句を指定すると、行フィルタ式が定義されます。
expressionが偽またはNULLと評価される行はパブリッシュされません。
式を括弧で囲む必要があることに注意してください。
TRUNCATEコマンドには影響しません。
     


列リストを指定すると、指定した列のみが複製されます。
列リストには格納生成列を含めることもできます。
列リストを省略すると、パブリケーションはデフォルトですべての生成されていない列（将来追加される列を含む）を複製します。
publish_generated_columnsがstoredに設定されている場合、格納生成列も複製できます。
列リストの指定はTRUNCATEコマンドには影響しません。
列リストの詳細は「列リスト」を参照してください。
     


パブリケーションに含めることができるのは、永続的なベーステーブルとパーティションテーブルだけです。
一時テーブル、ログを取らないテーブル、外部テーブル、マテリアライズドビュー、通常のビューはパブリケーションに含めることはできません。
     


パブリケーションがFOR TABLES IN SCHEMAもパブリッシュする場合に列リストを指定することはサポートされていません。
     


パーティションテーブルがパブリケーションに追加された場合、既存のパーティションと将来のものすべてがパブリケーションに含められたと暗黙的にみなされます。
ですので、パーティションに対して直接実行された操作であっても、その先祖を含むパブリケーション経由でパブリッシュされます。
     

	FOR ALL TABLES
	

そのパブリケーションでは、将来作成されるテーブルも含め、そのデータベース内の全テーブルについての変更を複製するものとして印をつけます。
     

	FOR TABLES IN SCHEMA
	

そのパブリケーションでは、将来作成されるテーブルも含め、指定されたスキーマのリスト内の全テーブルについての変更を複製するものとして印をつけます。
     


パブリケーションが列リストを持つテーブルもパブリッシュする場合のスキーマの指定はサポートされていません。
     


パブリケーションに含めることができるのは、スキーマ内に存在する永続的なベーステーブルとパーティションテーブルだけです。
一時テーブル、ログを取らないテーブル、外部テーブル、マテリアライズドビュー、通常のビューはパブリケーションに含めることはできません。
     


パーティションテーブルがスキーマレベルのパブリケーションでパブリッシュされた場合、パブリケーションスキーマからのものかどうかに関わらず、既存のパーティションと将来のものすべてがパブリケーションに含められたと暗黙的にみなされます。
ですので、パーティションに対して直接実行された操作であっても、その先祖を含むパブリケーション経由でパブリッシュされます。
     

	WITH ( publication_parameter [= value] [, ... ] )
	

この句ではパブリケーションのオプションパラメータを指定します。
以下のパラメータがサポートされています。

      
	publish (string)
	

このパラメータは、新しいパブリケーションがどのDML操作をサブスクライバーにパブリッシュするかを指定します。
値はカンマで区切られた操作のリストです。
使用できる操作はinsert、update、delete、truncateです。
デフォルトではすべての動作をパブリッシュするので、このオプションのデフォルト値は'insert, update, delete, truncate'です。
         


このパラメータはDML操作にのみ影響します。
特に、論理レプリケーションの初期データ同期化(「初期スナップショット」を参照)では、既存のテーブルデータをコピーするときにこのパラメータは考慮されません。
         

	publish_generated_columns (enum)
	

パブリケーションに関連付けられたテーブルの生成列を複製するかどうかを指定します。
可能な値はnoneおよびstoredです。
         


デフォルトはnoneです。つまり、パブリケーションに関連付けられたテーブル内に存在する生成列は複製されません。
         


storedに設定すると、パブリケーションに関連付けられたテーブル内に存在する格納生成列が複製されます。
         
注記


サブスクライバーが18よりも前のリリースの場合、パブリッシャーでパラメータpublish_generated_columnsがstoredに設定されていても、初期テーブル同期は生成列をコピーしません。
          



生成列の論理レプリケーションの詳細については「生成列のレプリケーション」を参照してください。
         

	publish_via_partition_root (boolean)
	

このパラメータは、パブリケーションに含まれるパーティションテーブル(またはそのパーティション)での変更を、実際に変更された個々のパーティションではなく、パーティションテーブルの識別とスキーマを使ってパブリッシュするかどうかを決めます。実際に変更された個々のパーティションのものでパブリッシュされるのがデフォルトです。
これを有効にすると、パーティション化されていないテーブルやパーティションの異なる集合からなるパーティションテーブルへ変更を複製できるようになります。
         


1つのサブスクリプションが複数のパブリケーションを組み合わせている場合があります。
publish_via_partition_root = trueを設定しサブスクライブされたパブリケーションがパーティションテーブルをパブリッシュする場合、このパーティションテーブル(またはそのパーティション)の変更は、個々のパーティションのものではなく、このパーティションテーブルのIDとスキーマを使用してパブリッシュされます。
         


このパラメータは、パーティション用の行フィルタと列リストの選択方法にも影響します。
詳細は以下を参照してください。
         


これが有効な場合、パーティションに対して直接実行されたTRUNCATE操作は複製されません。
         








boolean型のパラメータを指定する場合、= valueの部分を省略できます。これはTRUEを指定するのと同じです。
  

注釈


FOR TABLE、FOR ALL TABLES、FOR TABLES IN SCHEMAのいずれも指定されていない場合、パブリケーションは空のテーブルの集合で作られます。
これは後でテーブルやスキーマを追加したい場合に便利です。
  


パブリケーションを作るだけでは、レプリケーションは開始されません。
これは単に将来のサブスクライバーのためにグループとフィルタの論理を定義するだけです。
  


パブリケーションを作成するには、それを実行するユーザは現在のデータベースにCREATE権限を持っていなければなりません。
（もちろん、スーパーユーザにはこの検査は適用されません。）
  


パブリケーションにテーブルを追加するには、それを実行するユーザがそのテーブルの所有権を持っていなければなりません。
FOR ALL TABLES句やFOR TABLES IN SCHEMA句は、それを実行するユーザがスーパーユーザである必要があります。
  


UPDATEまたはDELETEをパブリッシュするパブリケーションに追加されるテーブルにはREPLICA IDENTITYが定義されていなければなりません。
そうでなければ、それらのテーブルに対して、それらの操作は禁止されることになります。
  


UPDATEまたはDELETE操作をパブリッシュするには、すべての列リストにREPLICA IDENTITY列が含まれている必要があります。
パブリケーションがINSERT操作のみをパブリッシュする場合は、列リストの制限はありません。
  


行フィルタ式(すなわち、WHERE句)には、UPDATEおよびDELETE操作をパブリッシュするために、REPLICA IDENTITYでカバーされる列のみを含めることが必要です。
INSERT操作のパブリッシュでは、WHERE式で任意の列を使用できます。
行フィルタでは、ユーザ定義関数、ユーザ定義演算子、ユーザ定義型、ユーザ定義照合順序、不変でない組み込み関数、またはシステム列への参照を持たない単純な式を使用できます。
  


REPLICA IDENTITYの一部になっている生成列は、UPDATEまたはDELETE操作をパブリッシュするために、列リストにリストするかpublish_generated_columnsを有効にすることで、明示的にパブリッシュされる必要があります。
  


FOR TABLES IN SCHEMAが指定され、そのテーブルが参照されたスキーマに属している場合、テーブルの行フィルタは冗長になります。
  


パブリッシュされたパーティションテーブルの場合、各パーティションの行フィルタは、パブリケーションパラメータpublish_via_partition_rootが真の場合にはパブリッシュされたパーティションテーブルから、偽の場合(デフォルト)にはパーティション自体から取得されます。
行フィルタの詳細は「行フィルタ」を参照してください。
同様に、パブリッシュされたパーティションテーブルの場合、各パーティションの列リストは、パブリケーションパラメータpublish_via_partition_rootが真の場合にはパブリッシュされたパーティションテーブルから、偽の場合にはパーティション自体から取得されます。
  


INSERT ... ON CONFLICTコマンドに対しては、パブリケーションはコマンドの結果として起こった操作をパブリッシュします。
その結果に応じてINSERTあるいはUPDATEのいずれかとしてパブリッシュするか、あるいは何もパブリッシュしないかもしれません。
  


MERGEコマンドに対しては、パブリケーションは挿入、更新、または削除された行ごとにINSERT、UPDATE、またはDELETEをパブリッシュします。
  


publish_via_partition_rootをtrueに設定したルートがパブリッシュされたパブリケーションを使用してパーティションツリーにテーブルをATTACHしても、テーブルの既存の内容は複製されません。
  


COPY ... FROMコマンドはINSERTの操作としてパブリッシュされます。
  


DDLの操作はパブリッシュされません。
  


WHERE句の式は、レプリケーション接続に使用されるロールで実行されます。
  

例


2つのテーブルのすべての変更をパブリッシュするパブリケーションを作成します。


CREATE PUBLICATION mypublication FOR TABLE users, departments;


  


活発な部署(active departments)からのすべての変更をパブリッシュするパブリケーションを作成します。


CREATE PUBLICATION active_departments FOR TABLE departments WHERE (active IS TRUE);


  


すべてのテーブルのすべての変更をパブリッシュするパブリケーションを作成します。


CREATE PUBLICATION alltables FOR ALL TABLES;


  


１つのテーブルのINSERTの操作のみをパブリッシュするパブリケーションを作成します。


CREATE PUBLICATION insert_only FOR TABLE mydata
    WITH (publish = 'insert');


  


テーブルusers、departmentsのすべての変更、およびスキーマproductionに存在するすべてのテーブルのすべての変更をパブリッシュするパブリケーションを作成します。


CREATE PUBLICATION production_publication FOR TABLE users, departments, TABLES IN SCHEMA production;


  


スキーマmarketingおよびsalesに存在するすべてのテーブルに対するすべての変更をパブリッシュするパブリケーションを作成します。


CREATE PUBLICATION sales_publication FOR TABLES IN SCHEMA marketing, sales;



テーブルusersのすべての変更をパブリッシュするものの、列user_idとfirstnameのみを複製するパブリケーションを作成します。


CREATE PUBLICATION users_filtered FOR TABLE users (user_id, firstname);


互換性


CREATE PUBLICATIONはPostgreSQL™の拡張です。
  

関連項目
ALTER PUBLICATION(7), DROP PUBLICATION(7), CREATE SUBSCRIPTION(7), ALTER SUBSCRIPTION(7)


名前
CREATE ROLE — 新しいデータベースロールを定義する

概要

CREATE ROLE name [ [ WITH ] option [ ... ] ]


ここでoptionは以下の通りです。

      SUPERUSER | NOSUPERUSER
    | CREATEDB | NOCREATEDB
    | CREATEROLE | NOCREATEROLE
    | INHERIT | NOINHERIT
    | LOGIN | NOLOGIN
    | REPLICATION | NOREPLICATION
    | BYPASSRLS | NOBYPASSRLS
    | CONNECTION LIMIT connlimit
    | [ ENCRYPTED ] PASSWORD 'password' | PASSWORD NULL
    | VALID UNTIL 'timestamp'
    | IN ROLE role_name [, ...]
    | ROLE role_name [, ...]
    | ADMIN role_name [, ...]
    | SYSID uid


説明


CREATE ROLEは、PostgreSQL™データベースクラスタに新しいロールを加えます。
ロールとは、データベースオブジェクトを所有することができ、データベース権限を持つことができる実体のことです。
ロールは、使用状況に応じて「ユーザ」、「グループ」、もしくは、その両方であるとみなすことができます。
ユーザの管理と認証に関する情報については、21章データベースロールと20章クライアント認証を参照してください。
このコマンドを使用するには、CREATEROLE権限を持つか、データベースのスーパーユーザでなければなりません。
  


ロールはデータベースクラスタのレベルで定義されるため、クラスタ内のすべてのデータベースで有効となることに注意してください。
  


ロールの作成時に、新しく作成されたロールを既存のロールのメンバに直ちに割り当てることができます。また、既存のロールを新しく作成されたロールのメンバに割り当てることもできます。
初期ロールメンバ資格オプションが有効になるルールは、以下のIN ROLE、ROLE、ADMIN句で説明します。
GRANT(7)コマンドは、メンバ資格の作成中に細かいオプション制御を行い、新しいロールが作成された後にこれらのオプションを変更する機能を持っています。
  

パラメータ
	name
	

新しいロールの名前です。
       

	SUPERUSER, NOSUPERUSER
	

これらの句によって、新しいロールが「スーパーユーザ」となるかどうかが決まります。
「スーパーユーザ」はデータベース内のすべてのアクセス制限より優先します。
スーパーユーザという状態は危険ですので、本当に必要な場合にのみ使用しなければなりません。
新しくスーパーユーザを作成するには、スーパーユーザでなければなりません。
指定されなかった場合のデフォルトはNOSUPERUSERです。
       

	CREATEDB, NOCREATEDB
	

これらの句はロールのデータベースの作成に関する権限を定義します。
CREATEDBが指定された場合、定義されたロールは新しくデータベースを作成することができます。
NOCREATEDBを使用した場合、そのロールにはデータベースを作成する権限が与えられません。
指定されなかった場合のデフォルトはNOCREATEDBです。
スーパーユーザロールもしくはCREATEDBを持つロールだけがCREATEDBを指定できます。
       

	CREATEROLE, NOCREATEROLE
	

これらの句は、他のロールの作成、変更、削除、コメント付与、およびセキュリティラベルの変更をロールに許可するかどうかを決定します。
この権限によって付与される機能の詳細は、ロールの作成を参照してください。
指定されなかった場合のデフォルトはNOCREATEROLEです。
       

	INHERIT, NOINHERIT
	

これは、このロールが別のロールのメンバとして追加された場合、このロールと将来のコマンドの両方でメンバ資格継承状態に影響します。
特に、このコマンドで追加されたメンバ資格の継承状態は、IN ROLE句を使用して制御され、後のコマンドではROLE句を使用して制御されます。
また、GRANTコマンドを使用してこのロールをメンバとして追加する際のデフォルトの継承状態としても使用されます。
指定しない場合、INHERITがデフォルトです。
       


16より前のPostgreSQL™バージョンでは、継承はそのロールのすべてのランタイムメンバ資格チェックを制御するロールレベルの属性でした。
       

	LOGIN, NOLOGIN
	

これらの句により、ロールがログイン可能かどうか、つまり、そのロールをクライアント接続時にセッションを認証するための名前として使用することができるかどうかが決まります。
LOGIN属性を持つロールはユーザとみなすことができます。
この属性を持たないロールは、データベース権限を管理する際に有用ですが、普通の意味ではユーザとはいえません。
指定されなかった場合のデフォルトはNOLOGINですが、CREATE ROLEがその別名であるCREATE USERで呼び出された場合は例外です。
       

	REPLICATION, NOREPLICATION
	

これらの句は、ロールがレプリケーションロールかどうかを決定します。
レプリケーションモード（物理または論理レプリケーション）のサーバに接続できるためには、またレプリケーションスロットを作成または削除できるためには、ロールはこの属性（またはスーパーユーザ）を持っている必要があります。
REPLICATION属性を持つロールは、非常に高度な権限を持つものです。
このため実際にレプリケーションで使用するロールでのみ使用しなければなりません。
指定されない場合のデフォルトはNOREPLICATIONです。
スーパーユーザロールまたはREPLICATIONを持つロールだけがREPLICATIONを指定できます。
       

	BYPASSRLS, NOBYPASSRLS
	

これらの構文は、ロールがすべての行単位セキュリティ(RLS)ポリシーを無視するかどうかを決定します。
NOBYPASSRLSがデフォルトです。
スーパーユーザロールまたはBYPASSRLSを持つロールだけがBYPASSRLSを指定できます。
       


pg_dumpはテーブルのすべての内容が確実にダンプされるようにするため、row_securityをデフォルトでOFFに設定することに注意してください。
pg_dumpを実行するユーザが適切な権限を持っていなければ、エラーが返されます。
しかしながら、スーパーユーザおよびダンプされるテーブルの所有者は、常にRLSを無視します。
       

	CONNECTION LIMIT connlimit
	

ロールがログイン可能である場合、これは、ロールが確立できる最大同時接続数を指定します。
-1（デフォルト）は無制限を意味します。
通常の接続のみがこの制限の対象として数えられることに注意してください。
準備されたトランザクションやバックグラウンドワーカーの接続はこの制限の対象にはなりません。
       

	[ ENCRYPTED ] PASSWORD 'password', PASSWORD NULL
	

ロールのパスワードを設定します。
（パスワードはLOGIN属性を持つロールでのみ使用されますが、この属性を持たないロールにも定義することができます。）
パスワード認証を行う予定がなければ、このオプションを省略することができます。
パスワードの指定がなければ、パスワードがNULLに設定され、そのアカウントでのパスワード認証は常に失敗します。
NULLというパスワードを明示的にPASSWORD NULLと記述することもできます。
       
注記


空の文字列を指定した場合もパスワードをNULLに設定しますが、PostgreSQL™のバージョン10より前はそのようになっていませんでした。
以前のバージョンでは、認証方式と細かいバージョンによって空の文字列が使えたり使えなかったりし、また、いずれにせよlibpqは空の文字列を拒絶していました。
この曖昧さを避けるためには、空の文字列の指定は避けるのが良いです。
         



パスワードは必ず暗号化されてシステムカタログに保存されます。
ENCRYPTEDキーワードには何の効果もありませんが、後方互換性のために受け付けられます。
暗号化の方法は設定パラメータpassword_encryptionによって決定されます。
指定されたパスワード文字列が既にMD5またはSCRAMの暗号化形式になっている場合は、password_encryptionと関係なく、そのまま保存されます（指定のパスワードを暗号化した文字列を復号できないので、パスワードを別の形式で暗号化することができないからです）。
これにより、ダンプ／リストア時に暗号化したパスワードを再ロードすることができます。
       
警告


MD5で暗号化されたパスワードのサポートは非推奨となり、将来のPostgreSQL™のリリースで削除されます。
他のパスワードタイプへの移行の詳細については、「パスワード認証」を参照してください。
        


	VALID UNTIL 'timestamp'
	

VALID UNTIL句は、ロールのパスワードが無効になる日時を設定します。
この句が省略された場合、パスワードは永遠に有効になります。
       

	IN ROLE role_name
	

IN ROLE句を指定すると、新しいロールが自動的に指定した既存のロールのメンバとして追加されます。
新しいメンバ資格はSETオプションが有効で、ADMINオプションは無効です。
NOINHERITオプションが指定されていない限り、INHERITオプションが有効になります。
       

	ROLE role_name
	

ROLE句を指定すると、指定された1つ以上の既存のロールがSETオプションを有効にしてメンバとして自動的に追加されます。
これは実質的に新しく作成したロールを「グループ」とします。
この句で指定されたロールで、ロールレベルのINHERIT属性を持つものは、新しいメンバ資格でINHERITオプションが有効になります。
新しいメンバ資格では、ADMINオプションは無効になります。
       

	ADMIN role_name
	

ADMIN句はROLEと同じ効果を持ちますが、指定されたロールはADMINが有効な新しいロールのメンバとして追加され、新しいロールで他のロールにメンバ資格を付与する権限が与えられます。
       

	SYSID uid
	

SYSID句は無視されますが、後方互換性を維持するために受け付けられます。
       




注釈


ロールの属性を変更するにはALTER ROLEを、ロールを削除するにはDROP ROLEを使用してください。
CREATE ROLEで指定したすべての属性は、後でALTER ROLEコマンドで変更可能です。
  


グループとして使用しているロールのメンバの追加、および、削除についての推奨方法は、GRANTとREVOKEを使用することです。
  


VALID UNTIL句は、パスワードの有効期限を定義するだけで、ロール自体の有効期限ではありません。
特に、パスワードを使わない認証方式でログインを行う場合には、この有効期限は強制されません。
  


ここで定義されるロール属性は継承不可です。すなわち、例えばCREATEDBを持つロールのメンバであることは、メンバ資格権限にINHERITオプションがあったとしても、新しいデータベースを作成することを許可しません。
もちろん、メンバ資格権限にSETオプションがある場合、メンバのロールはcreatedbロールにSET ROLEを行い、新しいデータベースを作成できます。
  


IN ROLE、ROLE、ADMIN句で作成されたメンバ資格の付与は、このコマンドを実行するロールを付与者として持ちます。
  


後方互換性を維持するため、INHERIT属性はデフォルトです。
以前のリリースのPostgreSQL™では、ユーザは常にメンバとなっているすべてのグループの権限でアクセスできました。
しかし、NOINHERITの方が標準SQLの規定の意味により合ったものを提供します。
  


PostgreSQL™には、CREATE ROLEと同じ機能を持つプログラム（実際にこのコマンドを呼び出しています）createuser(1)があり、コマンドシェルから実行することができます。
  


CONNECTION LIMITオプションが加える制限は厳密ではありません。
もしそのロールに1つだけ接続「スロット」が残っていた時に、ほぼ同時に2つのセッションが新しく始まった場合、両方とも失敗する可能性があります。
また、この制限はスーパーユーザには適用されません。
  


このコマンドで暗号化しないパスワードを指定するときには注意しなければなりません。
パスワードはサーバに平文で送信されます。
クライアントのコマンド履歴やサーバのログにこれが残ってしまうかもしれません。
しかし、createuser(1)コマンドはパスワードを暗号化して送信します。
また、psql(1)には\passwordコマンドがあり、これを使用して後でパスワードを安全に変更することができます。
  

例


ログイン可能なロールを作成します。ただし、パスワードはありません。


CREATE ROLE jonathan LOGIN;


  


パスワード付きのロールを作成します。


CREATE USER davide WITH PASSWORD 'jw8s0F4';



CREATE USERはLOGINを意味する点を除き、CREATE ROLEと同一です。
  


2004年まで有効なパスワードを持つロールを作成します。
2005年に1秒でも入った時点でパスワードは無効になります。



CREATE ROLE miriam WITH LOGIN PASSWORD 'jw8s0F4' VALID UNTIL '2005-01-01';


  


データベースを作成でき、かつ、ロールを管理できるロールを作成します。


CREATE ROLE admin WITH CREATEDB CREATEROLE;


互換性


CREATE ROLE文は標準SQLで規定されています。
しかしSQLでは以下の構文のみを要求しています。


CREATE ROLE name [ WITH ADMIN role_name ]



複数の初期管理者やそのほかのCREATE ROLEのオプションはPostgreSQL™の拡張です。
  


標準SQLでは、ユーザとロールという概念を定義し、それらを別の概念としてみなしています。
また、ユーザを定義するコマンドはすべて、各データベース実装で規定するものとしています。
PostgreSQL™では、ユーザとロールを単一の実体に統一することを選択しています。
したがって、ロールは標準よりも非常に多くのオプションの属性を持っています。
  


NOINHERITオプションを指定したPostgreSQL™ユーザとして標準SQLユーザを作成し、INHERITオプションを指定したPostgreSQL™ロールとして標準SQLロールを作成することで、標準SQLで規定された振舞いに最も近くなります。
  


USER句はROLEと同じ動作をしますが、廃止予定です。


USER role_name [, ...]


  


IN GROUP句はIN ROLEと同じ動作をしますが、廃止予定です。


IN GROUP role_name [, ...]


  

関連項目
SET ROLE(7), ALTER ROLE(7), DROP ROLE(7), GRANT(7), REVOKE(7), createuser(1), createrole_self_grant


名前
CREATE RULE — 
新しい書き換えルールを定義する
  

概要

CREATE [ OR REPLACE ] RULE name AS ON event
    TO table_name [ WHERE condition ]
    DO [ ALSO | INSTEAD ] { NOTHING | command | ( command ; command ... ) }


ここでeventは以下の一つです。

    SELECT | INSERT | UPDATE | DELETE


説明


CREATE RULEにより、指定したテーブルまたはビューに適用するルールを新しく定義できます。
CREATE OR REPLACE RULEを使用すると、新しいルールの作成、または、同じテーブルの同じ名前の既存ルールの置き換えのいずれかを実行します。
  


PostgreSQL™のルールシステムを使用すると、データベーステーブルに対する挿入、更新、削除時に本来の操作の代替として実行するアクションを定義できます。
簡単に言えば、指定されたテーブルに対して指定されたコマンドが実行された時、ルールによって追加のコマンドが実行されるということです。
その他にも、INSTEADルールによって指定されたコマンドを他のコマンドに置き換えたり、まったくコマンドを実行しないようにすることも可能です。
また、ルールはSQLビューを実装するためにも使われます。
重要なのは、ルールとは実際にコマンドを変換する仕組み、言い換えれば、コマンドのマクロであることです。
ルールによる変換はコマンドの実行前に発生します。
各物理行を個別に操作したい場合、ルールではなくトリガを使用する方が良いでしょう。
ルールシステムについての詳細は、39章ルールシステムに記載されています。
  


現時点では、ON SELECTルールはビューにのみ付けられます。
このようなルールは"_RETURN"という名前で、無条件のINSTEADルールでなければならず、単一のSELECTコマンドからなるアクションを持っていなければなりません。
このコマンドは、ビューの表示内容を定義します。
（ビュー自体は基本的に、ストレージを持たないダミーテーブルです。）
このようなルールは、実装の詳細と見なすのが最善です。
ビューはCREATE OR REPLACE RULE "_RETURN" AS ...を使って再定義できますが、CREATE OR REPLACE VIEWを使う方が良いです。
  


ON INSERT、ON UPDATE、ON DELETEルールを必要に応じて定義し、ビューに対する更新操作を他のテーブルに対する適切な更新操作に置換することで、更新可能なビューという実在しないオブジェクトを作成することができます。
INSERT RETURNINGなどをサポートしたければ、これらのルールに適切なRETURNING句を確実につけてください。
  


複雑なビューの更新に条件付きルールを使用しようとする場合、落とし穴があります。
そのビューに許可するそれぞれの操作に、条件を持たないINSTEADルールを用意する必要があることです。
ルールが条件付きであったり、INSTEADでない場合、システムは更新操作を拒否します。
その場合、システムが、場合によっては、ビューのダミーテーブルに対する操作になる可能性があるとみなすからです。
使用する全てのケースについて条件付きルールを作成する場合は、条件を持たないDO INSTEAD NOTHINGルールを追加し、ダミーテーブルに対する更新は呼び出されないことをシステムに明示します。さらに、条件付きルールには、INSTEADと指定しないようにします。
これらの条件が満たされた場合、デフォルトのINSTEAD NOTHINGアクションにルールに含まれるアクションが追加されます。
（しかし現在、この方法ではRETURNING問い合わせのサポートがうまく動作しません。）
  
注記


十分単純であり自動更新可能なビュー（CREATE VIEW(7)参照）は、更新可能とするためにユーザ作成のルールを必要としません。
とにかく明示的なルールを作成することもできますが、自動更新による変形は明示的なルールよりも通常高速です。
   


検討すべき別の方法は、ルールの代わりにINSTEAD OFトリガ(CREATE TRIGGER(7)参照)を使うことです。
   


パラメータ
	name
	

作成するルールの名前です。
この名前は、同じテーブルの他のルールとは異なる名前にする必要があります。
同一テーブルにイベントの種類が同じルールが複数あった場合、ルール名の順番（アルファベット順）に適用されます。
     

	event
	

イベントとは、SELECT、INSERT、UPDATE、DELETEのいずれかです。
ON CONFLICT句を含むINSERTは、INSERTルールまたはUPDATEルールのあるテーブルに対して使えないことに注意してください。
代わりに、更新可能ビューを利用することを検討してください。
     

	table_name
	

ルールを適用するテーブルまたはビューの名前です（スキーマ修飾名も可）。
     

	condition
	

任意のSQL条件式です（boolean型を返します）。
条件式では、NEWおよびOLD以外のテーブルは参照できません。
また、集約関数を含めることもできません。
     

	INSTEAD
	INSTEADは、元のコマンドの代わりにこのコマンドが実行されることを示します。
     

	ALSO
	ALSOは元のコマンドに加えてこのコマンドが実行されることを示します。
     


ALSOもINSTEADも指定されなかった場合、ALSOがデフォルトです。
     

	command
	

ルールのアクションを構成する単一または複数のコマンドです。
有効なコマンドは、SELECT、INSERT、UPDATE、DELETE、NOTIFYです。
     





conditionとcommandの内部では、対象とするテーブルの値を参照するために、特別なテーブル名NEWとOLDを使用できます。
NEWは、ON INSERTとON UPDATEルールで有効で、挿入または更新される新しい行を参照します。
OLDは、ON UPDATEとON DELETEルールで有効で、更新または削除される既存の行を参照します。
  

注釈


テーブルにルールを定義する、または、そのルールを変更するためには所有者でなければなりません。
  


ビュー上のINSERT、UPDATE、DELETEルールでは、RETURNING句を追加して、ビューの列を返すことができます。
ルールがINSERT RETURNING、UPDATE RETURNING、DELETE RETURNINGコマンドによって呼び出された場合、この句は出力を計算することに使用されます。
RETURNINGなしでルールが呼び出された場合、ルールのRETURNING句は無視されます。
現在の実装では、無条件のINSTEADルールのみがRETURNINGを含むことができます。
さらに、同一イベント用のすべてのルールの中で多くても1つのRETURNING句を持つことができます。
（これにより確実に、結果を計算するために使用されるRETURNING句の候補が1つのみになります。）
ビュー上のRETURNING問い合わせは、利用可能なルールのどれにもRETURNINGが存在しない場合に拒絶されます。
  


ルールの循環は絶対に避けるよう注意してください。
例えば、下記の2つのルール定義それぞれはPostgreSQL™に受け入れられますが、ルールが再帰的に展開されるため、SELECTコマンドが、PostgreSQL™にエラーを表示させます。



CREATE RULE "_RETURN" AS
    ON SELECT TO t1
    DO INSTEAD
        SELECT * FROM t2;

CREATE RULE "_RETURN" AS
    ON SELECT TO t2
    DO INSTEAD
        SELECT * FROM t1;

SELECT * FROM t1;


  


現在、ルールのアクションにNOTIFYコマンドが含まれる場合、NOTIFYコマンドは無条件に実行されます。
つまり、ルールを適用すべき行が存在しなかったとしても、NOTIFYが発行されます。
例えば、


CREATE RULE notify_me AS ON UPDATE TO mytable DO ALSO NOTIFY mytable;

UPDATE mytable SET name = 'foo' WHERE id = 42;



では、id = 42という条件に一致する行があってもなくても、UPDATEの際、1つのNOTIFYイベントが送信されます。
これは実装上の制限であり、将来のリリースでは修正されるかもしれません。
  

互換性


CREATE RULEはPostgreSQL™の言語拡張で、問い合わせ書き換えシステム全体が言語拡張です。
  

関連項目
ALTER RULE(7), DROP RULE(7)


名前
CREATE SCHEMA — 新しいスキーマを定義する

概要

CREATE SCHEMA schema_name [ AUTHORIZATION role_specification ] [ schema_element [ ... ] ]
CREATE SCHEMA AUTHORIZATION role_specification [ schema_element [ ... ] ]
CREATE SCHEMA IF NOT EXISTS schema_name [ AUTHORIZATION role_specification ]
CREATE SCHEMA IF NOT EXISTS AUTHORIZATION role_specification


ここでrole_specificationは以下の通りです。

    user_name
  | CURRENT_ROLE
  | CURRENT_USER
  | SESSION_USER


説明


CREATE SCHEMAを実行すると、現在のデータベースに新しいスキーマが登録されます。
スキーマ名は、現在のデータベースにある既存のスキーマとは異なる名前にする必要があります。
  


スキーマは、本質的には名前空間です。
スキーマには、名前付きオブジェクト（テーブル、データ型、関数、および演算子）が含まれます。
これらのオブジェクトの名前は、他のスキーマに存在する他のオブジェクトの名前と重複しても構いません。
名前付きオブジェクトには、スキーマ名を接頭辞としてオブジェクト名を「修飾」するか、必要なスキーマを含んだ検索パスを設定することによってアクセスできます。
修飾なしのオブジェクト名を指定したCREATEコマンドは、そのオブジェクトの現在のスキーマ（current_schema関数で決定される検索パスの先頭部分）で作成されます。
  


CREATE SCHEMAには、オプションとして、新しいスキーマ内でオブジェクトを作成するためのサブコマンドを付加することができます。
サブコマンドは、本質的にはスキーマ作成後に発行される別コマンドと同じように扱われます。
ただし、AUTHORIZATION句を使用した場合、作成された全てのオブジェクトの所有者が指定したユーザになるという点で異なっています。
  

パラメータ
	schema_name
	

作成するスキーマの名前です。
省略された場合、user_nameがスキーマ名として使用されます。
スキーマ名をpg_から始めることはできません。
このような名前はシステムスキーマ用に予約されているためです。
       

	user_name
	

新しいスキーマを所有するユーザのロール名です。
省略された場合、デフォルトでは、コマンドを実行したユーザになります。
他のロールを所有者とするスキーマを作成するためには、そのロールに対してSET ROLEができなければなりません。
       

	schema_element
	

そのスキーマ内で作成されるオブジェクトを定義するSQL文です。
現在、CREATE SCHEMA内では、CREATE TABLE、CREATE VIEW、CREATE INDEX、CREATE SEQUENCE、CREATE TRIGGER、およびGRANTのみが句として使用可能です。
他の種類のオブジェクトは、スキーマ作成後に個別のコマンドを使えば作成できます。
       

	IF NOT EXISTS
	

同じ名前のスキーマがすでに存在する場合に（注意を発生する以外）何も行いません。
このオプションを使用する場合にはschema_element副コマンドを含めることはできません。
       




注釈


スキーマを作成するには、実行するユーザが現在のデータベースにおけるCREATE権限を持っている必要があります。
（もちろん、スーパーユーザにはこの制限はありません。）
  

例


スキーマを作成します。


CREATE SCHEMA myschema;


  


joeユーザ用にスキーマを作成します。
このスキーマの名前はjoeになります。


CREATE SCHEMA AUTHORIZATION joe;


  


testという名前のスキーマがすでに存在していなければ、joeユーザによって所有されるtestという名前のスキーマを作成します。
（joeが既存のスキーマの所有者であるかどうかは関係ありません。）


CREATE SCHEMA IF NOT EXISTS test AUTHORIZATION joe;


  


スキーマを作成し、その中にテーブルとビューを作成します。


CREATE SCHEMA hollywood
    CREATE TABLE films (title text, release date, awards text[])
    CREATE VIEW winners AS
        SELECT title, release FROM films WHERE awards IS NOT NULL;



個々のサブコマンドがセミコロンで終わっていないことに注意してください。
  


以下は、上述のコマンドと等価であり、同じ結果をもたらします。


CREATE SCHEMA hollywood;
CREATE TABLE hollywood.films (title text, release date, awards text[]);
CREATE VIEW hollywood.winners AS
    SELECT title, release FROM hollywood.films WHERE awards IS NOT NULL;


互換性


標準SQLでは、CREATE SCHEMAでDEFAULT CHARACTER SET句を使用できます。
また、現在PostgreSQL™で使用できるよりも多くのサブコマンドを使用できます。
  


標準SQLでは、CREATE SCHEMAのサブコマンドを任意の順序で記述できます。
現在のPostgreSQL™の実装では、サブコマンドにおいて下方参照ができない場合があります。
そのため、下方参照を避ける目的で、サブコマンドの順序を並べ替える必要が生じる可能性もあります。
  


標準SQLでは、スキーマの所有者は、常にそのスキーマ内の全てのオブジェクトを所有します。
PostgreSQL™では、スキーマ所有者以外のユーザが所有するオブジェクトを、スキーマに含めることができます。
このような状態は、スキーマ所有者が、そのスキーマでのCREATE権限を他のユーザに与えた場合やスーパーユーザがその中にオブジェクトを作成した場合にのみ発生します。
  


IF NOT EXISTSオプションはPostgreSQL™の拡張です。
  

関連項目
ALTER SCHEMA(7), DROP SCHEMA(7)


名前
CREATE SEQUENCE — 新しいシーケンスジェネレータを定義する

概要

CREATE [ { TEMPORARY | TEMP } | UNLOGGED ] SEQUENCE [ IF NOT EXISTS ] name
    [ AS data_type ]
    [ INCREMENT [ BY ] increment ]
    [ MINVALUE minvalue | NO MINVALUE ] [ MAXVALUE maxvalue | NO MAXVALUE ]
    [ [ NO ] CYCLE ]
    [ START [ WITH ] start ]
    [ CACHE cache ]
    [ OWNED BY { table_name.column_name | NONE } ]


説明


CREATE SEQUENCEは、新しいシーケンス番号ジェネレータを作成します。
これには、新しくnameという名前を持つ、1行だけの特殊なテーブルの作成と初期化が含まれます。
シーケンスジェネレータは、このコマンドを実行したユーザによって所有されます。
  


スキーマ名が与えられている場合、そのシーケンスは指定されたスキーマに作成されます。
スキーマ名がなければ、シーケンスは現在のスキーマに作成されます。
また、一時シーケンスは特別なスキーマに存在するため、一時シーケンスの作成時にスキーマ名を与えることはできません。
シーケンス名は、同じスキーマ内の他のリレーション(テーブル、シーケンス、インデックス、ビュー、マテリアライズドビュー、外部テーブル)とは異なる名前にする必要があります。
  


シーケンスを作成した後、nextval、currval、setval関数を使用してシーケンスを操作します。
これらの関数については「シーケンス操作関数」を参照してください。
  


シーケンスを直接更新することはできませんが、以下のような問い合わせは可能です。



SELECT * FROM name;




これを使用すると、シーケンスのパラメータと現在の状態を確認することができます。
中でも、シーケンスのlast_valueフィールドは全てのセッションで割り当てられた最後の値を示します。
（もちろんこの値は、他のセッションのnextvalの実行により、表示された時点で既に最新ではない可能性があります。）
  

パラメータ
	TEMPORARYまたはTEMP
	

このパラメータが指定された場合、作成するシーケンスオブジェクトがそのセッション専用となり、セッション終了時に自動的に削除されます。
一時シーケンスが存在する場合、同じ名前を持つ既存の永続シーケンスは、スキーマ修飾された名前で参照されない限り、（そのセッションでは）不可視になります。
     

	UNLOGGED
	

指定された場合、シーケンスはログを取らないシーケンスとして作成されます。
ログを取らないシーケンスに対する変更は、先行書き込みログ（WAL）には書き込まれません。
これはクラッシュセーフではありません。
クラッシュまたはクリーンでないシャットダウンの後、ログを取らないシーケンスは自動的に初期状態にリセットされます。
また、ログを取らないシーケンスは、スタンバイサーバにコピーされません。
     


ログを取らないテーブルとは異なり、ログを取らないシーケンスは大きなパフォーマンス上の利点を提供しません。
このオプションは主に、ID列やシリアル列を介してログを取らないテーブルに関連付けられたシーケンスを対象としています。
そのような場合、シーケンスはWALのログに記録してコピーするのに関連付けられたテーブルはそうしないというのは、通常、意味がありません。
     

	IF NOT EXISTS
	

同じ名前のリレーションが既に存在する場合にエラーとしません。
この場合、注意が発行されます。
既存のリレーションが、作成されようとしていたシーケンスと類似のものであることは全く保証されないことに注意してください。
それはシーケンスでさえ、ないかもしれません。
     

	name
	

作成するシーケンスの名前です（スキーマ修飾名も可）。
     

	data_type
	

オプション句AS data_typeではシーケンスのデータ型を指定します。
有効な型はsmallint、integer、bigintです。
bigintがデフォルトです。
データ型によりシーケンスのデフォルトの最小値と最大値が決定されます。
     

	increment
	

INCREMENT BY increment句は、現在のシーケンスの値から新しいシーケンス値を作成する際の値の増加量を設定します。この句は省略可能です。
正の値が指定された時は昇順のシーケンス、負の値が指定された時は降順のシーケンスを作成します。
指定がない場合のデフォルト値は1です。
     

	minvalue, NO MINVALUE
	

MINVALUE minvalue句は、シーケンスとして作成する最小値を指定します。この句は省略可能です。
この句が指定されなかった場合、もしくは、NO MINVALUEが指定された場合、デフォルトが使用されます。
昇順のシーケンスでのデフォルト値は1です。
降順のシーケンスでのデフォルト値は、そのデータ型の最小値です。
     

	maxvalue, NO MAXVALUE
	

MAXVALUE maxvalue句は、シーケンスの最大値を決定します。この句は省略可能です。
この句が指定されなかった場合、もしくはNO MAXVALUEが指定された場合、デフォルトが使用されます。
昇順のシーケンスでのデフォルト値は、そのデータ型の最大値です。
降順のシーケンスでのデフォルト値は-1です。
     

	CYCLE, NO CYCLE
	

CYCLEオプションを使用すると、シーケンスが限界値（昇順の場合はmaxvalue、降順の場合はminvalue）に達した時、そのシーケンスを周回させることができます。
限界値まで達した時、次に生成される番号は、昇順の場合はminvalue、降順の場合はmaxvalueになります。
     


NO CYCLEが指定された場合、シーケンスの限界値に達した後のnextval呼び出しは全てエラーになります。
CYCLEもNO CYCLEも指定されていない場合は、NO CYCLEがデフォルトとなります。
     

	start
	

START WITH start句を使用すると、任意の数からシーケンス番号を開始することができます。この句は省略可能です。
デフォルトでは、シーケンス番号が始まる値は、昇順の場合minvalue、降順の場合maxvalueになります。
     

	cache
	

CACHE cache句は、あらかじめ番号を割り当て、メモリに格納しておくシーケンス番号の量を指定します。これによりアクセスを高速にすることができます。この句は省略可能です。
最小値は1です（一度に生成する値が1つだけなので、キャッシュがない状態になります）。これがデフォルトになっています。
     

	OWNED BY table_name.column_name, OWNED BY NONE
	

OWNED BYオプションにより、シーケンスは指定されたテーブル列に関連付けられ、その列（やテーブル全体）が削除されると、自動的にシーケンスも一緒に削除されるようになります。
指定するテーブルは、シーケンスと同一所有者でなければならず、また、同一のスキーマ内に存在しなければなりません。
デフォルトはOWNED BY NONEであり、こうした関連付けがないことを示します。
     




注釈


シーケンスを削除するにはDROP SEQUENCEを使用してください。
  


シーケンスはbigint演算に基づいています。
そのため、8バイト整数の範囲（-9223372036854775808から9223372036854775807まで）を越えることはできません。
  


nextvalとsetvalの呼び出しは決してロールバックされないので、シーケンスの番号について「欠番のない」割り当てが必要な場合には、シーケンスオブジェクトを使うことはできません。
カウンタを含むテーブルに対して排他ロックを使うことで、欠番のない割り当てを構築することは可能ですが、この解決策はシーケンスオブジェクトに比べてずっと高価で、特に多くのトランザクションが同時にシーケンスの番号を必要とする場合は高価になります。
  


シーケンスオブジェクトのcacheとして1より大きな値を設定した場合、そのシーケンスを複数のセッションで同時に使用すると、予想外の結果になる可能性があります。
各セッションは、シーケンスオブジェクトへの1回のアクセスの間に、連続するシーケンス値を取得し、キャッシュします。
そして、キャッシュした数に応じて、シーケンスオブジェクトのlast_valueを増加させます。
この場合、そのセッションは、その後のcache-1回に対しては、nextvalを使用してあらかじめ取得済みのシーケンス値を返し、シーケンスオブジェクトを変更しません。
セッションに割り当てられたが使用されなかったシーケンス番号は、セッションの終了時に全て失われるため、結果としてシーケンスに「穴」ができます。
  


さらに、複数のセッションには異なるシーケンス値が割り当てられることが保証されていますが、全てのセッションが尊重されると、シーケンス値が順番通りにならないことがあります。
例えば、cacheが10の場合を考えます。
セッションAでは1から10までを確保し、nextval=1を返します。
セッションBでは、セッションAがnextval=2を返す前に、11から20を確保し、nextval=11を返します。
したがって、cacheを1に設定した場合はnextvalが順番に生成される値であると考えても問題ありませんが、cacheを1より大きな値に設定した場合は、nextvalの値が全て異なることのみが保証され、順番に生成される値であることは保証されません。
また、last_valueは、値がnextvalによって返されたかどうかに関係なく、いずれかのセッションによって確保された最後の値となります。
  


この他、このようなシーケンスに対してsetvalが実行されても、他のセッションは、それぞれがキャッシュした取得済みの値を全て使い果たすまで、それがわからないことも考慮すべき問題です。
  

例


101から始まるserialという名前の昇順シーケンスを作成します。


CREATE SEQUENCE serial START 101;


  


このシーケンスから次の番号を選択します。


SELECT nextval('serial');

 nextval
---------
     101


  


このシーケンスから次の番号を選択します。


SELECT nextval('serial');

 nextval
---------
     102


  


このシーケンスをINSERTコマンドで使用します。


INSERT INTO distributors VALUES (nextval('serial'), 'nothing');


  


COPY FROMの後でシーケンス値を更新します。


BEGIN;
COPY distributors FROM 'input_file';
SELECT setval('serial', max(id)) FROM distributors;
END;


互換性


以下の例外を除き、CREATE SEQUENCEは標準SQLに準拠しています。
   
	

次の値を取り出すには、標準のNEXT VALUE FOR式ではなくnextval()関数を使用します。
     

	

OWNED BY句はPostgreSQL™の拡張です。
     




関連項目
ALTER SEQUENCE(7), DROP SEQUENCE(7)


名前
CREATE SERVER — 新しい外部サーバを定義する

概要

CREATE SERVER [ IF NOT EXISTS ] server_name [ TYPE 'server_type' ] [ VERSION 'server_version' ]
    FOREIGN DATA WRAPPER fdw_name
    [ OPTIONS ( option 'value' [, ... ] ) ]


説明


CREATE SERVERは新しい外部サーバを定義します。
サーバを定義したユーザがその所有者となります。
  


外部サーバは通常、外部データラッパーが外部データリソースにアクセスするために使用する接続情報をカプセル化します。
さらに、ユーザマップによりユーザ指定の接続情報が指定される可能性があります。
  


サーバ名はデータベース内で一意でなければなりません。
  


サーバを作成するには、使用する外部データラッパー上にUSAGE権限が必要です。
  

パラメータ
	IF NOT EXISTS
	

同じ名前のサーバが既に存在する時にエラーを発生させません。
この場合、注意メッセージが発行されます。
既存のサーバが、作成されようとしていたものと類似したものであるかどうか、全く保証されないことに注意してください。
     

	server_name
	

作成する外部サーバの名前です。
     

	server_type
	

サーバの種類(省略可能)です。
外部データラッパーで有用かもしれません。
     

	server_version
	

サーババージョン(省略可能)です。
外部データラッパーで有用かもしれません。
     

	fdw_name
	

このサーバを管理する外部データラッパーの名前です。
     

	OPTIONS ( option 'value' [, ... ] )
	

この句はサーバのオプションを指定します。
オプションは通常、サーバの接続の詳細を定義しますが、実際の名前とその値はサーバの外部データラッパーに依存します。
     




注釈


dblinkモジュールを使用している場合、接続パラメータを表すために、外部サーバ名をdblink_connect(3)関数の引数として使用することができます。
この方法で利用できるようにするためには外部サーバ上にUSAGE権限が必要です。
  


外部サーバがソートのプッシュダウンをサポートする場合、ローカルサーバと同じソート順序を持つことが必要です。
  

例


外部データラッパーpostgres_fdwを使用するmyserverサーバを作成します。


CREATE SERVER myserver FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host 'foo', dbname 'foodb', port '5432');



詳細についてはpostgres_fdwを参照してください。
  

互換性


CREATE SERVERはISO/IEC 9075-9 (SQL/MED)に準拠しています。
  

関連項目
ALTER SERVER(7), DROP SERVER(7), CREATE FOREIGN DATA WRAPPER(7), CREATE FOREIGN TABLE(7), CREATE USER MAPPING(7)


名前
CREATE STATISTICS — 拡張統計情報を定義する

概要

CREATE STATISTICS [ [ IF NOT EXISTS ] statistics_name ]
    ON ( expression )
    FROM table_name

CREATE STATISTICS [ [ IF NOT EXISTS ] statistics_name ]
    [ ( statistics_kind [, ... ] ) ]
    ON { column_name | ( expression ) }, { column_name | ( expression ) } [, ...]
    FROM table_name


説明


CREATE STATISTICSは指定したテーブル、外部テーブル、マテリアライズドビューのデータを追跡する新しい拡張統計オブジェクトを作成します。
統計オブジェクトは現在のデータベースに作成され、コマンドを実行したユーザに所有されます。
  


CREATE STATISTICSコマンドには2つの基本的な形式があります。
1つ目の形式では、1つの式に対して単変量統計を集めることができ、式インデックスと同様の利点をインデックスの保守のオーバーヘッドを伴わずに提供します。
様々な統計の種別は多変量統計だけに関連しますので、この形式では統計の種別を指定できません。
コマンドの2つ目の形式では、複数の列や式の多変量統計を集めることができ、含まれる統計の種別もオプションで指定できます。
この形式では、自動的にリストに含まれる式の単変量統計も集められます。
  


スキーマ名が指定された場合（例：CREATE STATISTICS myschema.mystat ...）、統計オブジェクトは指定したスキーマ内に作成されます。
スキーマ名を指定しなければ、現在のスキーマ内に作成されます。
統計オブジェクトの名前を指定する場合は、同じスキーマ内のどの統計オブジェクトとも異なるものでなければなりません。
  

パラメータ
	IF NOT EXISTS
	

同じ名前の統計オブジェクトが既に存在していてもエラーを発生させません。
この場合、注意メッセージが発行されます。
この場合、統計オブジェクトの名前だけが問題にされ、その定義の詳細は考慮されないことに注意してください。
IF NOT EXISTSが指定された場合、統計の名前が必要です。
     

	statistics_name
	

作成する統計オブジェクトの名前です（スキーマ修飾も可）。
名前が省略された場合、PostgreSQL™は、親テーブルの名前と定義された列名、式に基づいた適切な名前を選択します。
     

	statistics_kind
	

この統計オブジェクト内で計算する多変量統計の種別です。
現在サポートされる種別は、N個別値統計を有効にするndistinct、関数的依存統計を有効にするdependencies、最頻値の一覧を有効にするmcvです。
この句を省略すると、統計オブジェクトのすべてのサポート対象の統計種別が含まれます。
単変量式統計は、統計の定義に単なる列の参照ではなく複雑な式が含まれていれば、自動的に構築されます。
より詳細な情報は「拡張統計情報」および「多変量統計の例」を参照してください。
     

	column_name
	

統計計算の対象となるテーブル列の名前です。
これは多変量統計を構築するときにのみ可能です。
少なくとも2つの列名または式を指定しなければなりません。順序は重要ではありません。
     

	expression
	

統計計算の対象となる式です。
これは1つの式に対して単変量統計を構築する場合や、多変量統計を構築する複数の列名や式のリストの一部として使われます。
後者の場合、リスト内の各式に対して自動的にそれぞれの単変量統計が構築されます。
     

	table_name
	

統計情報が計算される列があるテーブルの名前（オプションでスキーマ修飾可）です。継承とパーティションの取り扱いについてはANALYZE(7)を参照してください。
     




注釈


テーブルを読み取る統計オブジェクトを作るには、そのテーブルの所有者でなければなりません。
しかし、統計オブジェクトが作成された後は、その所有者と対象となるテーブルは無関係になります。
  


式統計は式ごとのものであり、インデックスの保守のオーバーヘッドを避けられるということ以外は式にインデックスを作るのと似ています。
式統計は、統計オブジェクト定義内の各式に対して自動的に構築されます。
  


拡張統計処理は現在、プランナによってテーブル結合に対して行なわれる選択性の見積もりには使用されていません。
この制限は、PostgreSQL™の将来のバージョンで削除される可能性があります。
  

例


関数従属性のある2つの列を含むテーブルt1を作成します。
つまり、第1の列の値を知っていれば、それだけでもう一方の列の値がわかる、というものです。
その次に、これらの列の間に関数的依存統計を構築します。



CREATE TABLE t1 (
    a   int,
    b   int
);

INSERT INTO t1 SELECT i/100, i/500
                 FROM generate_series(1,1000000) s(i);

ANALYZE t1;


-- マッチする行の数は非常に低く見積もられる
EXPLAIN ANALYZE SELECT * FROM t1 WHERE (a = 1) AND (b = 0);

CREATE STATISTICS s1 (dependencies) ON a, b FROM t1;

ANALYZE t1;


-- 行数の見積もりがより正確になる
EXPLAIN ANALYZE SELECT * FROM t1 WHERE (a = 1) AND (b = 0);




関数的依存統計がなければ、プランナは2つのWHERE条件を独立なものとみなすため、それらの選択性を掛け算して、非常に小さな行数見積もりを導きます。
このような統計があれば、プランナはWHERE条件が冗長であることを認識し、行数を低く見積もりません。
  


(同一のデータの入った)完全に相関のある2つの列を持つテーブルt2を作成し、2つの列の最頻値(MCV)の一覧を作成します。



CREATE TABLE t2 (
    a   int,
    b   int
);

INSERT INTO t2 SELECT mod(i,100), mod(i,100)
                 FROM generate_series(1,1000000) s(i);

CREATE STATISTICS s2 (mcv) ON a, b FROM t2;

ANALYZE t2;


-- 有効な組み合わせ(MCV内で見つかる)
EXPLAIN ANALYZE SELECT * FROM t2 WHERE (a = 1) AND (b = 1);


-- 無効な組み合わせ(MCV内で見つからない)
EXPLAIN ANALYZE SELECT * FROM t2 WHERE (a = 1) AND (b = 2);




最頻値の一覧は、テーブルによく現れる特定の値に関するものだけでなく、テーブルに現れない値の組み合わせの選択の上限に関するより詳細な情報もプランナに与えますので、両方の場合に対してより良く見積もりができるようになります。
  


タイムスタンプの列1つのテーブルt3を作成し、その列の式を使う問い合わせを実行します。
拡張統計なしでは、プランナはその式に対するデータ分布についての情報がなく、デフォルトの評価を使います。
プランナは、月で切り捨てられた日付の値は日にちで切り捨てられた日付の値により完全に決められることにも気付きません。
それから、この2つの式に対して、式統計とN個別値統計を構築します。



CREATE TABLE t3 (
    a   timestamp
);

INSERT INTO t3 SELECT i FROM generate_series('2020-01-01'::timestamp,
                                             '2020-12-31'::timestamp,
                                             '1 minute'::interval) s(i);

ANALYZE t3;


-- マッチする行数は大幅に過小評価されます。
EXPLAIN ANALYZE SELECT * FROM t3
  WHERE date_trunc('month', a) = '2020-01-01'::timestamp;

EXPLAIN ANALYZE SELECT * FROM t3
  WHERE date_trunc('day', a) BETWEEN '2020-01-01'::timestamp
                                 AND '2020-06-30'::timestamp;

EXPLAIN ANALYZE SELECT date_trunc('month', a), date_trunc('day', a)
   FROM t3 GROUP BY 1, 2;


-- 式の組み合わせに対してN個別値統計を構築します
-- (式ごとの統計は自動的に構築されます)
CREATE STATISTICS s3 (ndistinct) ON date_trunc('month', a), date_trunc('day', a) FROM t3;

ANALYZE t3;


-- 行数の評価はより正確になります。
EXPLAIN ANALYZE SELECT * FROM t3
  WHERE date_trunc('month', a) = '2020-01-01'::timestamp;

EXPLAIN ANALYZE SELECT * FROM t3
  WHERE date_trunc('day', a) BETWEEN '2020-01-01'::timestamp
                                 AND '2020-06-30'::timestamp;

EXPLAIN ANALYZE SELECT date_trunc('month', a), date_trunc('day', a)
   FROM t3 GROUP BY 1, 2;




式統計とN個別値統計がなければ、プランナは式の異なる値の数についての情報がなく、デフォルトの評価に頼らなければなりません。
等価と範囲の条件は0.5%の選択性を持つと仮定され、式内の異なる値の数はその列の数と同じ(すなわち一意)と仮定されます。
これは、最初の2つの問い合わせでの行数の著しい過小評価という結果を招きます。
さらに、プランナは式の間の関係について情報がないので、2つのWHEREとGROUP BY条件が独立であると仮定し、その選択性を掛け合わせるので、集約問い合わせでグループの数のひどい過大評価をしてしまいます。
これは、式に対する正確な統計がないことによりさらに悪化し、その列のN個別値から導かれる式に対するデフォルトのN個別値評価を使うことをプランナに強制します。
そのような統計があれば、プランナは条件が相互に関係していることを認識し、ずっとより正確な評価をします。
  

互換性


標準SQLにCREATE STATISTICSコマンドはありません。
  

関連項目
ALTER STATISTICS(7), DROP STATISTICS(7)


名前
CREATE SUBSCRIPTION — 新しいサブスクリプションを定義する

概要

CREATE SUBSCRIPTION subscription_name
    CONNECTION 'conninfo'
    PUBLICATION publication_name [, ...]
    [ WITH ( subscription_parameter [= value] [, ... ] ) ]


説明


CREATE SUBSCRIPTIONは新しい論理レプリケーションのサブスクリプションを追加します。
サブスクリプションを作成するユーザは、サブスクリプションの所有者になります。
サブスクリプションの名前は現在のデータベースに存在するどのサブスクリプションの名前とも異なるものでなければなりません。
  


サブスクリプションはパブリッシャーへのレプリケーション接続を表します。
そのため、このコマンドはローカルのカタログに定義を追加するだけでなく、通常はパブリッシャーのレプリケーションスロットも作成します。
  


サブスクリプションが最初に無効にされていない限り、このコマンドが実行されるトランザクションがコミットされた時点で、新しいサブスクリプションに対してデータを複製する論理レプリケーションワーカーが開始されます。
  


サブスクリプションを作成するには、現在のデータベースに対するCREATE権限に加えて、pg_create_subscriptionロールの権限が必要です。
  


サブスクリプションおよび論理レプリケーションの全体像についての追加情報は「サブスクリプション」および29章論理レプリケーションに記述されています。
  

パラメータ
	subscription_name
	

新しいサブスクリプションの名前です。
     

	CONNECTION 'conninfo'
	

パブリッシャーデータベースへの接続を定義するlibpq接続文字列です。
詳細は「接続文字列」を参照してください。
     

	PUBLICATION publication_name [, ...]
	

パブリッシャー上のパブリケーションで、サブスクリプションの対象となるものの名前です。
     

	WITH ( subscription_parameter [= value] [, ... ] )
	

この句は、サブスクリプションのオプションのパラメータを指定します。
     


以下のパラメータは、サブスクリプションの作成時に何が行われるかを制御します。

      
	connect (boolean)
	

CREATE SUBSCRIPTIONコマンドがパブリッシャーに接続する必要があるかどうかを指定します。
デフォルトはtrueです。
これをfalseに設定すると、create_slot、enabled、およびcopy_dataの値が、falseに強制的に設定されます。
(connectをfalseに設定することは、create_slot、enabled、またはcopy_dataをtrueに設定することと組み合わせることはできません。)
         


このオプションがfalseに設定されると接続が行われないため、テーブルはサブスクライブされません。
レプリケーションを開始するには、レプリケーションスロットを手動で作成し、必要に応じてfailoverオプションを有効にしたうえで、サブスクリプションを有効にして、サブスクリプションをリフレッシュする必要があります。
例については「例: レプリケーションスロットの遅延作成」を参照してください。
         

	create_slot (boolean)
	

このコマンドがパブリッシャー上にレプリケーションスロットを作るかどうかを指定します。
デフォルトはtrueです。
         


falseに設定した場合、パブリッシャーのスロットを何か他の方法で作成するのは利用者の責任です。
例については「例: レプリケーションスロットの遅延作成」を参照してください。
         

	enabled (boolean)
	

サブスクリプションが複製の動作をすぐに行うか、あるいは単に設定をするだけでまだ開始しないかを指定します。
デフォルトはtrueです。
         

	slot_name (string)
	

使用するパブリッシャーのレプリケーションスロットの名前です。
デフォルトでは、サブスクリプションの名前をスロット名として使用します。
         


slot_nameをNONEに設定すると、サブスクリプションに紐付けられたレプリケーションスロットがなくなります。
そのようなサブスクリプションは、enabledとcreate_slotの両方をfalseに設定しなければなりません。
これはレプリケーションスロットを後で手作業で作成する場合に使用してください。
例については「例: レプリケーションスロットの遅延作成」を参照してください。
         


slot_nameに有効な名前を設定し、かつcreate_slotをfalseに設定した場合、指定されたスロットに設定されたfailoverの値はサブスクリプションで指定したfailoverパラメータの値と異なる場合があります。
スロットのfailoverがサブスクリプションのパラメータと一致すること、およびその逆も常に確認してください。
そうしないと、パブリッシャー上のスロットがこれらサブスクリプションオプションので指定されている内容とは異なる動作をする場合があります。
例えば、サブスクリプションオプションのfailoverが無効になっていても、パブリッシャー上のスロットがスタンバイと同期されたり、逆にサブスクリプションオプションのfailoverが有効になっている場合でも、同期が行われなかったりする可能性があります。
         




     


以下のパラメータは、作成された後のサブスクリプションのレプリケーション動作を制御します。

      
	binary (boolean)
	

（テキストではなく）バイナリ形式でデータを送信するようにサブスクリプションがパブリッシャーに要求するかどうかを指定します。
デフォルトはfalseです。
最初のテーブル同期コピー(copy_data参照)も同じ形式を使います。
バイナリ形式はテキスト形式よりも高速かもしれませんが、マシンアーキテクチャやPostgreSQL™のバージョンをまたがる移植性が落ちます。
バイナリ形式はデータ型に非常に依存します。
例えば、テキスト形式では問題なく動作するにも関わらず、smallintの列からintegerの列へのコピーを認めません。
このオプションが有効になっている場合でも、バイナリ送受信関数を持つデータ型のみがバイナリ形式で転送されます。
最初の同期ではデータ型すべてがバイナリ送受信関数を持つことが必要なことに注意してください。さもないと同期は失敗します(送受信関数についてはCREATE TYPE(7)を参照してください)。
         


バージョンをまたいでレプリケーションをしている場合は、パブリッシャーはあるデータ型に対してバイナリ送信関数を持っているものの、サブスクライバーはその型に対してバイナリ受信関数を持っていないという場合があり得ます。
その場合、データ転送は失敗し、binaryオプションは使えません。
         


パブリッシャーのバージョンがPostgreSQL™ 16より前の場合、最初のテーブル同期では、binary = trueであってもテキストフォーマットが使用されます。
         

	copy_data (boolean)
	

サブスクリプションの対象となるパブリケーションの既存データが、レプリケーションの開始時にコピーされるかどうかを指定します。
デフォルトはtrueです。
         


パブリケーションにWHERE句が含まれている場合、コピーされるデータに影響します。
詳細は注釈を参照してください。
         


copy_data = trueがoriginパラメータとどのように相互作用するかの詳細については、注釈を参照してください。
         

	streaming (enum)
	

進行中のトランザクションのストリーミングをこのサブスクリプションで有効にするかどうかを指定します。
デフォルトはparallelです。これは受信した変更は、可能であれば、パラレル適用ワーカーの1つを介して直接適用されることを意味します。
ストリーミングトランザクションを扱えるパラレル適用ワーカーがない場合、変更は一時ファイルに書き込まれ、トランザクションがコミットされた後に適用されます。
パラレル適用ワーカーでエラーが発生した場合、リモートトランザクションの終了LSNがサーバログで報告されない場合があることに注意してください。
         
注意


パブリッシャーとサブスクライバーのスキーマが異なる場合、デッドロックのリスクがありますが、そのようなケースはまれです。
適用ワーカーは、これらのトランザクションを自動的に再試行する機能を備えています。
          



onに設定すると、受信した変更は一時ファイルに書き込まれ、トランザクションがパブリッシャーでコミットされ、サブスクライバーで受信された後にのみ適用されます。
         


offに設定すると、すべてのトランザクションはパブリッシャーで完全にデコードされ、その後でのみ全体としてサブスクライバーに送られます。
         

	synchronous_commit (enum)
	

このパラメータの値は、このサブスクリプションの適用されるワーカープロセスのsynchronous_commitの設定をオーバーライドします。
デフォルト値はoffです。
         


論理レプリケーションではoffを使用するのが安全です。
そうすることで、同期の失敗によりサブスクライバーがトランザクションを失った場合でも、パブリッシャーからデータが再送されます。
         


同期論理レプリケーションを行う場合は別の設定が適切かもしれません。
論理レプリケーションのワーカーは書き込みおよび吐き出しの位置をパブリッシャーに報告しますが、同期レプリケーションを行っているときは、パブリッシャーは実際に吐き出しがされるのを待ちます。
これはつまり、サブスクリプションが同期レプリケーションで使われている時に、サブスクライバーのsynchronous_commitをoffに設定すると、パブリッシャーでのCOMMITの遅延が増大するかもしれない、ということを意味します。
この場合、synchronous_commitをlocalまたはそれ以上に設定することが有利になりえます。
         

	two_phase (boolean)
	

このサブスクリプションに対して2相コミットを有効にするかどうかを指定します。
デフォルトはfalseです。
         


2相コミットが使用可能な場合、プリペアドトランザクションはPREPARE TRANSACTION時にサブスクライバーに送信され、サブスクライバー上でも2相トランザクションとして処理されます。
それ以外の場合、プリペアドトランザクションはコミット時にのみサブスクライバーに送信され、サブスクライバーによってただちに処理されます。
         


2相コミットの実装では、レプリケーションが最初のテーブル同期フェーズを正常に完了している必要があります。
そのため、two_phaseがサブスクリプションに対して有効になっている場合でも、内部の2相状態は初期化フェーズが完了するまで一時的に「pending（保留）」のままです。
実際の2相状態を知るには、pg_subscriptionのsubtwophasestate列を参照してください。
         

	disable_on_error (boolean)
	

パブリッシャーからのデータレプリケーション中にサブスクリプションワーカーによってエラーが検出された場合に、サブスクリプションを自動的に無効にするかどうかを指定します。
デフォルトはfalseです。
         

	password_required (boolean)
	

trueに設定すると、このサブスクリプションの結果として行われるパブリッシャーへの接続はパスワード認証を使用しなければならず、パスワードは接続文字列の一部として指定されなければなりません。
サブスクリプションがスーパーユーザによって所有されている場合、この設定は無視されます。
デフォルトはtrueです。
スーパーユーザのみがこの値をfalseに設定できます。
         

	run_as_owner (boolean)
	

trueの場合、レプリケーションのアクションはすべてサブスクリプション所有者として行われます。
falseの場合、レプリケーションワーカーは各テーブルでそのテーブルの所有者としてアクションを行います。
後者の設定が一般的にはよりセキュアです。詳細は「セキュリティ」を参照してください。
デフォルトはfalseです。
         

	origin (string)
	

サブスクリプションがパブリッシャーに、オリジンのない変更のみを送信するよう要求するか、オリジンに関係なく変更を送信するよう要求するかを指定します。
originをnoneに設定すると、サブスクリプションはパブリッシャーにオリジンのない変更のみを送信するよう要求します。
originをanyに設定すると、パブリッシャーはオリジンに関係なく変更を送信します。
デフォルトはanyです。
         


copy_data = trueがoriginパラメータとどのように相互作用するかの詳細については、注釈を参照してください。
         

	failover (boolean)
	

フェイルオーバー後に新しいプライマリから論理レプリケーションを再開できるように、サブスクリプションに関連付けられたレプリケーションスロットがスタンバイと同期できるようにするかどうかを指定します。
デフォルトはfalseです。
         








boolean型のパラメータを指定する場合、= valueの部分を省略できます。これはTRUEを指定するのと同じです。
  

注釈


サブスクリプションとパブリケーションのインスタンスの間のアクセス制御をどのように設定するかの詳細については、「セキュリティ」を参照してください。
  


レプリケーションスロットを作成する（デフォルトの動作です）場合、CREATE SUBSCRIPTIONをトランザクションブロックの内側で実行することはできません。
  


同じデータベースクラスタに接続するサブスクリプション（例えば、同一のクラスタ内のデータベース間で複製を行う、あるいは同一のデータベース内で複製を行う）の作成は、同じコマンド内でレプリケーションスロットが作成されない場合にのみ成功します。
そうでない場合、CREATE SUBSCRIPTIONの呼び出しはハングアップします。
これを動作させるには、（関数pg_create_logical_replication_slotをプラグイン名pgoutputで使って）レプリケーションスロットを別に作り、パラメータcreate_slot = falseを使ってサブスクリプションを作成してください。
例については「例: レプリケーションスロットの遅延作成」を参照してください。
これは実装上の制限で、将来のリリースでは解決されるかもしれません。
  


パブリケーション内のテーブルにWHERE句がある場合、expressionがfalseまたはNULLと評価される行はパブリッシュされません。
サブスクリプションに、同じテーブルが異なるWHERE句でパブリッシュされた複数のパブリケーションがある場合、(パブリッシュ操作を参照する)式のいずれかが満たされると行がパブリッシュされます。
WHERE句が異なる場合、パブリケーションのいずれかにWHERE句がないか(パブリッシュ操作を参照する)パブリケーションがFOR ALL TABLESまたはFOR TABLES IN SCHEMAとして宣言されている場合、行は他の式の定義に関係なく常にパブリッシュされます。
サブスクライバーのバージョンがPostgreSQL™ 15より前の場合、最初のデータ同期フェーズでは行のフィルタリングは無視されます。
この場合、後続のフィルタリングと互換性のない最初にコピーされたデータの削除を検討したくなるでしょう。
最初のデータ同期では、既存のテーブルデータをコピーする際にパブリケーションpublishパラメータが考慮されないため、DMLを使用してレプリケートされない行がコピーされる場合があります。
例については「例: 論理レプリケーションの設定」を参照してください。
  


同じテーブルが異なる列リストでパブリッシュされた複数のパブリケーションを持つサブスクリプションはサポートされません。
  


後で追加できるように、存在しないパブリケーションを指定できます。
これはpg_subscriptionが存在しないパブリケーションを持つことができることを意味します。
  


サブスクリプションパラメータのcopy_data = trueとorigin = NONEの組合せを使用する場合、初期同期テーブルデータはパブリッシャーから直接コピーされます。これは、そのデータの真のオリジンを認識できないことを意味します。
そのパブリッシャーにもサブスクリプションがある場合、コピーされたテーブルデータはさらに上流から発生した可能性があります。
このシナリオは検出され、警告がユーザに向けて記録されますが、警告は潜在的な問題を示しているだけです。
コピーされたデータの発生元が本当に望んだものであること、またはそうでないことを保証する必要なチェックを行うのは、ユーザの責任です。
  


どのテーブルが(そのパブリッシャーで作成された他のサブスクリプションのために)ローカルでないオリジンを含む可能性があるのかを知るためには、次のSQL問い合わせを試してください。


# substitute <pub-names> below with your publication name(s) to be queried
# 以下の<pub-names>を問い合わせるパブリケーションの名前で置き換えてください
SELECT DISTINCT PT.schemaname, PT.tablename
FROM pg_publication_tables PT
     JOIN pg_class C ON (C.relname = PT.tablename)
     JOIN pg_namespace N ON (N.nspname = PT.schemaname),
     pg_subscription_rel PS
WHERE C.relnamespace = N.oid AND
      (PS.srrelid = C.oid OR
      C.oid IN (SELECT relid FROM pg_partition_ancestors(PS.srrelid) UNION
                SELECT relid FROM pg_partition_tree(PS.srrelid))) AND
      PT.pubname IN (<pub-names>);


例


パブリケーションmypublicationおよびinsert_onlyのテーブルを複製する、リモートサーバへのサブスクリプションを作成し、コミット後、すぐにレプリケーションを開始します。


CREATE SUBSCRIPTION mysub
         CONNECTION 'host=192.168.1.50 port=5432 user=foo dbname=foodb'
        PUBLICATION mypublication, insert_only;


  


パブリケーションinsert_onlyのテーブルを複製するリモートサーバへのサブスクリプションを作成しますが、後に有効化するまではレプリケーションを開始しません。


CREATE SUBSCRIPTION mysub
         CONNECTION 'host=192.168.1.50 port=5432 user=foo dbname=foodb'
        PUBLICATION insert_only
               WITH (enabled = false);


互換性


CREATE SUBSCRIPTIONはPostgreSQL™の拡張です。
  

関連項目
ALTER SUBSCRIPTION(7), DROP SUBSCRIPTION(7), CREATE PUBLICATION(7), ALTER PUBLICATION(7)


名前
CREATE TABLE — 新しいテーブルを定義する

概要

CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } | UNLOGGED ] TABLE [ IF NOT EXISTS ] table_name ( [
  { column_name data_type [ STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT } ] [ COMPRESSION compression_method ] [ COLLATE collation ] [ column_constraint [ ... ] ]
    | table_constraint
    | LIKE source_table [ like_option ... ] }
    [, ... ]
] )
[ INHERITS ( parent_table [, ... ] ) ]
[ PARTITION BY { RANGE | LIST | HASH } ( { column_name | ( expression ) } [ COLLATE collation ] [ opclass ] [, ... ] ) ]
[ USING method ]
[ WITH ( storage_parameter [= value] [, ... ] ) | WITHOUT OIDS ]
[ ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP } ]
[ TABLESPACE tablespace_name ]

CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } | UNLOGGED ] TABLE [ IF NOT EXISTS ] table_name
    OF type_name [ (
  { column_name [ WITH OPTIONS ] [ column_constraint [ ... ] ]
    | table_constraint }
    [, ... ]
) ]
[ PARTITION BY { RANGE | LIST | HASH } ( { column_name | ( expression ) } [ COLLATE collation ] [ opclass ] [, ... ] ) ]
[ USING method ]
[ WITH ( storage_parameter [= value] [, ... ] ) | WITHOUT OIDS ]
[ ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP } ]
[ TABLESPACE tablespace_name ]

CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } | UNLOGGED ] TABLE [ IF NOT EXISTS ] table_name
    PARTITION OF parent_table [ (
  { column_name [ WITH OPTIONS ] [ column_constraint [ ... ] ]
    | table_constraint }
    [, ... ]
) ] { FOR VALUES partition_bound_spec | DEFAULT }
[ PARTITION BY { RANGE | LIST | HASH } ( { column_name | ( expression ) } [ COLLATE collation ] [ opclass ] [, ... ] ) ]
[ USING method ]
[ WITH ( storage_parameter [= value] [, ... ] ) | WITHOUT OIDS ]
[ ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP } ]
[ TABLESPACE tablespace_name ]


ここでcolumn_constraintは以下の通りです。

[ CONSTRAINT constraint_name ]
{ NOT NULL [ NO INHERIT ]  |
  NULL |
  CHECK ( expression ) [ NO INHERIT ] |
  DEFAULT default_expr |
  GENERATED ALWAYS AS ( generation_expr ) [ STORED | VIRTUAL ] |
  GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [ ( sequence_options ) ] |
  UNIQUE [ NULLS [ NOT ] DISTINCT ] index_parameters |
  PRIMARY KEY index_parameters |
  REFERENCES reftable [ ( refcolumn ) ] [ MATCH FULL | MATCH PARTIAL | MATCH SIMPLE ]
    [ ON DELETE referential_action ] [ ON UPDATE referential_action ] }
[ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] [ ENFORCED | NOT ENFORCED ]


また、table_constraintは以下の通りです。

[ CONSTRAINT constraint_name ]
{ CHECK ( expression ) [ NO INHERIT ] |
  NOT NULL column_name [ NO INHERIT ] |
  UNIQUE [ NULLS [ NOT ] DISTINCT ] ( column_name [, ... ] [, column_name WITHOUT OVERLAPS ] ) index_parameters |
  PRIMARY KEY ( column_name [, ... ] [, column_name WITHOUT OVERLAPS ] ) index_parameters |
  EXCLUDE [ USING index_method ] ( exclude_element WITH operator [, ... ] ) index_parameters [ WHERE ( predicate ) ] |
  FOREIGN KEY ( column_name [, ... ] [, PERIOD column_name ] ) REFERENCES reftable [ ( refcolumn [, ... ] [, PERIOD refcolumn ] ) ]
    [ MATCH FULL | MATCH PARTIAL | MATCH SIMPLE ] [ ON DELETE referential_action ] [ ON UPDATE referential_action ] }
[ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] [ ENFORCED | NOT ENFORCED ]


またlike_optionは以下の通りです。

{ INCLUDING | EXCLUDING } { COMMENTS | COMPRESSION | CONSTRAINTS | DEFAULTS | GENERATED | IDENTITY | INDEXES | STATISTICS | STORAGE | ALL }


またpartition_bound_specは以下の通りです。

IN ( partition_bound_expr [, ...] ) |
FROM ( { partition_bound_expr | MINVALUE | MAXVALUE } [, ...] )
  TO ( { partition_bound_expr | MINVALUE | MAXVALUE } [, ...] ) |
WITH ( MODULUS numeric_literal, REMAINDER numeric_literal )


UNIQUE、PRIMARY KEYおよびEXCLUDE制約内のindex_parametersは以下の通りです。

[ INCLUDE ( column_name [, ... ] ) ]
[ WITH ( storage_parameter [= value] [, ... ] ) ]
[ USING INDEX TABLESPACE tablespace_name ]


EXCLUDE制約内のexclude_elementは以下の通りです。

{ column_name | ( expression ) } [ COLLATE collation ] [ opclass [ ( opclass_parameter = value [, ... ] ) ] ] [ ASC | DESC ] [ NULLS { FIRST | LAST } ]


FOREIGN KEY/REFERENCES制約内のreferential_actionは以下の通りです。

{ NO ACTION | RESTRICT | CASCADE | SET NULL [ ( column_name [, ... ] ) ] | SET DEFAULT [ ( column_name [, ... ] ) ] }


説明


CREATE TABLEは、現在のデータベースに新しい空のテーブルを作成します。
作成したテーブルはこのコマンドを実行したユーザが所有します。
  


スキーマ名が付けられている場合（例えば、CREATE TABLE myschema.mytable ...）、テーブルは指定されたスキーマに作成されます。
スキーマ名がなければ、テーブルは現在のスキーマに作成されます。
また、一時テーブルは特別なスキーマに存在するため、一時テーブルの作成時にスキーマ名を与えることはできません。
テーブル名は、同じスキーマ内の他のリレーション(テーブル、シーケンス、インデックス、ビュー、マテリアライズドビュー、外部テーブル)とは異なる名前にする必要があります。
  


さらに、CREATE TABLEは、作成するテーブルの1行に対応する複合型のデータ型を作成します。
したがって、テーブルは、同じスキーマ内の既存のデータ型と同じ名前を持つことができません。
  


制約句には、挿入、更新操作を行うときに、新しい行、または更新する行が満たさなければならない制約（検査項目）を指定します。制約句は省略可能です。
制約は、テーブル内で有効な値の集合を様々な方法で定義できるSQLオブジェクトです。
  


制約の定義にはテーブル制約と列制約という2種類があります。
列制約は列定義の一部として定義されます。
テーブル制約定義は、特定の列とは結びつけられておらず、複数の列を含有することができます。
また、全ての列制約はテーブル制約として記述することができます。
列制約は、1つの列にのみ影響する制約のための、簡便な記述方法に過ぎません。
  


テーブルを作成するためには、すべての列の型またはOF句中の型に対するUSAGE権限を持たなければなりません。
  

パラメータ
	TEMPORARYまたはTEMP
	

このパラメータが指定された場合、テーブルは一時テーブルとして作成されます。
一時テーブルは、そのセッションの終わり、場合によっては、現在のトランザクションの終わり（後述のON COMMITを参照）に自動的に削除されます。
デフォルトのsearch_pathは一時スキーマを最初に含んでいますので、同じ名前を持つ既存の永続テーブルは、スキーマ修飾名で参照されていない限り、一時テーブルが存在する間は非可視になります。
一時テーブルに作られるインデックスも、全て自動的に一時的なものとなります。
     


自動バキュームデーモンは一時テーブルにアクセスできないため、一時テーブルのバキュームや解析を行うことはできません。
このためセッションのSQLコマンドを用いて適切なバキュームと解析を実行しなければなりません。
例えば、一時テーブルが複雑な問い合わせで使用される場合、一時テーブルにデータを投入した後にそれに対しANALYZEを実行することを勧めます。
     


オプションで、GLOBALまたはLOCALをTEMPORARYやTEMPの前に記述することができます。
PostgreSQL™では、現在違いがなく、廃止予定です。
互換性を参照してください。
     

	UNLOGGED
	

指定された場合、テーブルはログを取らないテーブルとして作成されます。
ログを取らないテーブルに書き出されたデータは先行書き込みログ（WAL）（28章信頼性と先行書き込みログ（WAL）参照）には書き出されません。
このため通常のテーブルより相当高速になります。
しかしこれらはクラッシュ時に安全ではありません。
クラッシュまたは異常停止の後、ログを取らないテーブルは自動的に切り詰められます。
またログを取らないテーブルの内容はスタンバイサーバにコピーされません。
ログを取らないテーブル上に作成されたインデックスはすべて同様に、ログを取らないようになります。
     


これを指定すると、(ID列またはシリアル列用の)ログを取らないテーブルと一緒に作成されたシーケンスも、ログを取らないものとして作成されます。
     


この構文はパーティションテーブルではサポートされません。
     

	IF NOT EXISTS
	

同じ名前のリレーションがすでに存在していてもエラーとしません。
この場合注意が発せられます。
既存のリレーションが作成しようとしたものと何かしら似たものであることは保証されません。
     

	table_name
	

作成するテーブルの名前です（スキーマ修飾名でも可）。
     

	OF type_name
	

指定されたスタンドアローン複合型（つまり、CREATE TYPE(7)を使用して作成された型）から構造を取得する型付きテーブルを作成します。
ただし、新しい複合型も同様に作成されます。
テーブルは参照対象の型に依存するため、その型に対する変更操作と削除操作の連鎖がテーブルに伝搬します。
     


型付きテーブルは、派生元の型と常に同じ列名とデータ型を持つため、追加の列を指定することはできません。
ただし、CREATE TABLEコマンドでは、テーブルにデフォルト値と制約を追加することができ、同様に格納パラメータを指定することもできます。
     

	column_name
	

新しいテーブルで作成される列の名前です。
     

	data_type
	

列のデータ型です。
これには、配列指定子を含めることができます。
PostgreSQL™でサポートされるデータ型の情報に関する詳細は8章データ型を参照してください。
     

	COLLATE collation
	

COLLATE句は列（照合順の設定が可能なデータ型でなければなりません）に照合順を割り当てます。
指定がなければ、列のデータ型のデフォルトの照合順が使用されます。
     

	
     STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }
     
     
    
	

この構文は、列の格納モードを設定します。
これは、この列をインラインに保持するか、二次的なTOASTテーブルに保持するか、およびデータを圧縮する必要があるかどうかを制御します。
PLAINは、integerなどの固定長の値に使用することが必要で、インラインで、非圧縮です。
MAINはインラインで、圧縮可能なデータに対するものです。
EXTERNALは外部で、非圧縮データであり、EXTENDEDは外部で、圧縮されたデータに使用されます。
DEFAULTと書くと、列のデータ型に対して格納モードをデフォルトのモードに設定します。
EXTENDEDは、PLAIN以外の保管をサポートするほとんどのデータ型におけるデフォルトです。
EXTERNALを使用すると、非常に長いtextおよびbytea列に対する部分文字列操作の処理速度が向上しますが、必要な保管容量が増えるというデメリットがあります。
詳細は、「TOAST」を参照してください。
     

	COMPRESSION compression_method
	

COMPRESSION句は列の圧縮方式を設定します。圧縮は可変幅データ型に対してのみサポートされていて、列の格納モードがmainまたはextendedの場合にのみ使われます。
(列の格納モードについての情報はALTER TABLE(7)を参照してください。)
パーティションテーブルには自身のストレージがありませんので、パーティションテーブルに対してこの属性を設定しても直接の影響はありませんが、設定値は新しく作成されるパーティションに継承されます。
サポートされている圧縮方式はpglzとlz4です。
(lz4は、PostgreSQL™構築時に--with-lz4が使われた場合にのみ利用可能です。)
さらにcompression_methodは、明示的にデフォルトの動作を指定するためにdefaultとすることもできます。その場合、利用する圧縮方式を決定するためにデータ挿入時にdefault_toast_compression設定を調べます。
     

	INHERITS ( parent_table [, ... ] )
	

オプションのINHERITS句でテーブルの一覧を指定すると、新しいテーブルは指定されたテーブルの全ての列を自動的に継承します。
親テーブルには通常のテーブルまたは外部テーブルを指定できます。
     


INHERITSを使用すると、新しい子テーブルとその親テーブル（複数可）との間に永続的な関連が作成されます。
通常、親へのスキーマ変更は子にも伝播します。また、デフォルトでは、親テーブルのスキャン結果には子テーブルのデータが含まれます。
     


複数の親テーブルに同一名の列が存在する場合、それらのデータ型が一致していなければ、エラーとして報告されます。
競合がなければ、これらの重複した列は新しいテーブルで1つの列の形に融合されます。
新しいテーブルの列名の一覧に継承する列の名前が含まれる場合も、そのデータ型は継承する列のデータ型と一致していなければなりません。さらに、その列定義は1つに融合されます。
新しいテーブルで明示的に列のデフォルト値を指定した場合、継承した列宣言における全てのデフォルト値は上書きされます。
デフォルト値を指定しなかった場合、親側でデフォルト値が指定されている時は、それらのデフォルト値が全て同じ値でなければなりません。
値が違う場合はエラーになります。
     


CHECK制約は、基本的には列と同様の方法でマージされます。
複数の親テーブル、新しいテーブル、またはその両方の定義に同じ名前のCHECK制約が存在した場合、これらの制約はすべて同じ検査式を持たなければなりません。
さもなくば、エラーが報告されます。
同じ名前と式を持つ制約は１つのコピーにまとめられます。
親テーブルでNO INHERITと印が付いた制約は考慮されません。
新しいテーブル内の無名のCHECK制約は、一意な名前が必ず作られるため、マージされないことに注意してください。
     


列のSTORAGE設定もまた親テーブルからコピーされます。
     


親テーブルのある列が識別列の場合、その属性は継承されません。
望むなら子テーブルの列を識別列と宣言することができます。
     

	PARTITION BY { RANGE | LIST | HASH } ( { column_name | ( expression ) } [ opclass ] [, ...] ) 
	

オプションのPARTITION BY句により、テーブルのパーティショニングの戦略を指定できます。
このようにして作られたテーブルをパーティションテーブルと呼びます。
括弧に囲まれた列や式のリストはテーブルのパーティションキーを構成します。
範囲パーティションを使うときは、パーティションキーは複数の列または式にまたがることができます（最大で32ですが、この制限はPostgreSQL™をビルドする時に変更できます）が、リストパーティションでは、パーティションキーは1つだけの列または式で構成されなければなりません。
パーティションテーブルの作成時にBツリー演算子クラスを指定しない場合は、そのデータ型のデフォルトのBツリー演算子クラスが使用されます。
Bツリー演算子クラスがない場合はエラーが報告されます。
     


範囲とリストのパーティショニングはBツリー演算子クラスを必要とし、ハッシュパーティショニングはハッシュ演算子クラスを必要とします。
演算子クラスが明示的に指定されない場合、適当な型のデフォルトの演算子クラスが使われます。デフォルト演算子クラスがなければエラーが発生します。
ハッシュパーティショニングが使われているとき、使われる演算子クラスはサポート関数2を実装していなければなりません（詳しくは「インデックスメソッドのサポートルーチン」を参照）。
     


パーティションテーブルは（パーティションと呼ばれる）副テーブルに分割され、それらは別のCREATE TABLEコマンドにより作成されます。
パーティションテーブルそれ自体は空になります。
テーブルに挿入されるデータ行は、パーティションキーの列あるいは式の値に基づいて、1つのパーティションに回されます。
新しい行の値に適合するパーティションが存在しないときは、エラーが報告されます。
     


テーブルパーティショニングに関するより詳しい説明は「テーブルのパーティショニング」を参照してください。
     

	PARTITION OF parent_table { FOR VALUES partition_bound_spec | DEFAULT }
	

指定した親テーブルのパーティションとしてテーブルを作成します。
FOR VALUESを用いて特定の値のパーティションとして、あるいは、DEFAULTを用いてデフォルトパーティションとしてテーブルを作成できます。
親テーブルにあるインデックス、制約、ユーザ定義の行レベルのトリガは新しいパーティションに複製されます。
     


partition_bound_specは親テーブルのパーティショニング方法とパーティションキーに対応していなければならず、またそのテーブルのどの既存のパーティションとも重なり合ってはいけません。
INの構文はリストパーティショニングで、FROMとTOの構文は範囲パーティショニングで、WITHの構文はハッシュパーティショニングで、使用されます。
     


partition_bound_exprは任意の無変数式です（サブクエリ、ウィンドウ関数、集約関数、複数行を返す関数は許されません）。
式のデータ型は対応するパーティションキー列と一致しなければなりません。
式はテーブル作成時に一度だけ評価されるため、CURRENT_TIMESTAMPなどの揮発性の式を含むことも可能です。
     


リストパーティションを作るときは、NULLを指定することができて、それはそのパーティションではパーティションキーの列をNULLにすることができるということを意味します。
しかし、1つの親テーブルで2つ以上、そのようなリストパーティションを作ることはできません。
範囲パーティションではNULLを指定することはできません。
     


範囲パーティションを作るとき、FROMで指定する下限はそれを含む境界、TOで指定する上限はそれを含まない境界になります。
つまり、FROMリストで指定される値は、そのパーティションの対応するパーティションキー列において有効な値ですが、TOリストで指定される値はそうではない、ということです。
この文の意味は行単位の比較の規則（「行コンストラクタの比較」）に従って理解しなければならないことに注意してください。
例えば、PARTITION BY RANGE (x,y)について、パーティション境界FROM (1, 2) TO (3, 4)には、x=1でy>=2の任意の値のもの、x=2でNULLでない任意のyのもの、x=3でy<4の任意の値のものが入ります。
     


範囲パーティションを作るとき、MINVALUEおよびMAXVALUEという特別な値を使用することができて、これらはそれぞれ列の値に下限と上限がないことを示します。
例えば、FROM (MINVALUE) TO (10)で定義されたパーティションには10より小さいすべての値が入り、FROM (10) TO (MAXVALUE)で定義されたパーティションには10以上のすべての値が入ります。
     


2つ以上の列を含む範囲パーティションを作るとき、MAXVALUEを下限の一部として使うことや、MINVALUEを上限の一部として使うことも意味を持ちえます。
例えば、FROM (0, MAXVALUE) TO (10, MAXVALUE)で定義されたパーティションには、パーティションキーの第1列が0より大きく、かつ10以下であるものが入ります。
同様に、FROM ('a', MINVALUE) TO ('b', MINVALUE)で定義されたパーティションには、パーティションキーの第1列が"a"で始まるすべての行が入ります。
     


MINVALUEまたはMAXVALUEをパーティション境界の1つの列で使用する場合、それより後の列では同じ値を使用しなければならないことに注意してください。
例えば、(10, MINVALUE, 0)は有効な境界ではありません。
(10, MINVALUE, MINVALUE)とします。
     


timestampなど一部の要素型では、"infinity"（無限）の概念があり、それも保存できる値であることにも注意してください。
MINVALUEとMAXVALUEは保存できる真の値ではなく、値に境界がないということを表現するための方法に過ぎないため、これとは違います。
MAXVALUEは"infinity"も含め、他のすべての値より大きいものと考えることができ、またMINVALUEは"minus infinity"も含め、他のすべての値より小さいものと考えることができます。
従って、境界FROM ('infinity') TO (MAXVALUE)は空の範囲ではなく、たった1つの値、つまり"infinity"だけを保存します。
     


DEFAULTが指定された場合、テーブルは親テーブルのデフォルトパーティションとして作成されます。
本オプションはハッシュパーティションされたテーブルには使用できません。
親の他のどのパーティションにも当てはまらないパーティションキー値はデフォルトパーティションに送られます。
     


テーブルが既存のDEFAULTパーティションを持っていて、新たなパーティションが追加された場合、デフォルトパーティションは、新たなパーティションに属すのがふさわしい行が含まれていないことを確かめるために、検査されなければなりません。
デフォルトパーティションに多数の行が含まれている場合、これは時間を要すかもしれません。
デフォルトパーティションが、外部テーブルであるか、新パーティションに置くべき行を含むことができないことを証明する制約を持つ場合、この検査は省略されます。
     


ハッシュパーティションを作るときには法と残余を指定しなければなりません。
法は正の整数でなければならず、残余は法よりも小さい非負整数でなければなりません。
典型的にはハッシュパーティションテーブル初期設定をするとき、パーティションの数と等しい法を選び、全てのテーブルに同じ法と異なる残余を割り当てます（後述の例を参照）。
しかしながら、全てのパーティションが同じ法を持つ必要はなく、あるハッシュパーティションテーブルのパーティションに存在する全ての法が次に大きい法の因子であることだけ必要です。
このことは、全データを一度に移すことなくパーティション数を徐々に増やすことを可能にします。
例えば、各々の法が8である8パーティションのハッシュパーティションテーブルがあるとして、パーティション数を16に増やさなければならなくなったとします。
私たちは8を法とするパーティションの一つをデタッチして、新たに16を法とするキー空間の同じ部分（一つはデタッチしたパーティションと等しい残余を持ち、一つはその値に8を加えたのと等しい残余を持つ）を対象とする二つのパーティションを追加して、データを再配置することができます。
これを（おそらくはより後に）8を法とする各パーティションがなくなるまで、繰り返すことができます。
これは依然として各ステップで大きなデータ移動を伴いますが、全体の新テーブルを作って全データを一度に移さなければならないというよりは、まだ良いです。
     


パーティションは、それが属するパーティションテーブルと同じ列名および型を持っていなければなりません。
パーティションテーブルの列名や型の変更は自動的にすべてのパーティションに反映されます。
CHECK制約はすべてのパーティションで自動的に継承されますが、個々のパーティションで追加のCHECK制約を指定することができます。
親の制約と同じ名前と条件を持つ追加制約は親の制約と統合されます。
デフォルト制約は各パーティションで別々に指定できます。
ですが、パーティションのデフォルト値は、パーティションテーブルを通してタプルを挿入する場合には適用されないことに注意してください。
     


パーティションテーブルに挿入された行は、自動的に正しいパーティションに回されます。
適当なパーティションが存在しないときは、エラーが発生します。
     


TRUNCATEのように通常はテーブルとそれを継承するすべての子テーブルに影響を及ぼす操作は、すべてのパーティションに対しても適用されますが、個別のパーティションに対して操作することも可能です。
     


PARTITION OFを使用してパーティションを作成するには、親のパーティション化されたテーブルでACCESS EXCLUSIVEロックを取得する必要があることに注意してください。
同様に、DROP TABLEでパーティションを削除するには、親テーブルについてACCESS EXCLUSIVEロックを取得する必要があります。
パーティション化されたテーブルでの同時操作による干渉を減らし、より弱いロックでこれらの操作を実行するため、ALTER TABLE ATTACH/DETACH PARTITIONを使用できます。
     

	LIKE source_table [ like_option ... ]
	

LIKE句にテーブルを指定すると、自動的にそのテーブルの全ての列名、そのデータ型、非NULL制約が新しいテーブルにコピーされます。
     


INHERITSとは違い、作成した後、新しいテーブルと元のテーブルが完全に分離されます。
元のテーブルへの変更は新しいテーブルには適用されません。また、元のテーブルをスキャンしても新しいテーブルのデータは見つかりません。
     


INHERITSと異なり、LIKEによりコピーされた列や制約は類似の名前の列や制約にまとめられません。
同じ名前が明示的に、あるいは他のLIKE句で指定された場合、エラーが通知されます。
     


オプションのlike_option句は元テーブルのどの追加属性をコピーするかを指定します。
INCLUDING指定は属性をコピーし、EXCLUDING指定は属性を省きます。
EXCLUDINGがデフォルトです。
同種の対象に複数の指定がある場合には最後のものが使われます。
指定可能なオプションは以下です。

      
	INCLUDING COMMENTS
	

コピーされた列、制約、および、インデックスに対するコメントがコピーされます。
デフォルトの振る舞いではコメントは除外されて、新しいテーブルのコピーされた列と制約にはコメントがありません。
         

	INCLUDING COMPRESSION
	

列の圧縮方式をコピーします。
デフォルトの振る舞いでは圧縮方式は除外されて、列にはデフォルトの圧縮方式が設定されます。
         

	INCLUDING CONSTRAINTS
	

CHECK制約がコピーされます。
列制約とテーブル制約の区別はされません。
非NULL制約は常に新しいテーブルにコピーされます。
         

	INCLUDING DEFAULTS
	

コピーされた列定義に対するデフォルト式をコピーします。
この指定が無い場合、デフォルト式はコピーされず、新しいテーブルのコピーされた列はNULLのデフォルトとなります。
nextvalなどのデータベースを変更する関数を呼び出すデフォルトのコピーは、元のテーブルと新しいテーブルの間で関数の連鎖を引き起こすかもしれないことに注意してください。
         

	INCLUDING GENERATED
	

コピーされた列定義の生成式および格納/仮想の選択もコピーされます。
デフォルトでは新しい列は通常の基底列となります。
         

	INCLUDING IDENTITY
	

コピーされた列定義の全てのアイデンティティ指定がコピーされます。
新しいテーブルの各識別列に対して新たなシーケンスが作られ、旧テーブルに関連付けられたシーケンスとは分離されます。
         

	INCLUDING INDEXES
	

元テーブルのインデックス、および、PRIMARY KEY、UNIQUE、EXCLUDE制約が新しいテーブルに作成されます。
新しいインデックスと制約の名前はデフォルトの規則に従って決められ、元テーブルでのどう名前付けされているかは考慮されません。
（この振る舞いは新しいインデックスでの起こりうる名前重複エラーを回避します。）
         

	INCLUDING STATISTICS
	

拡張統計情報が新しいテーブルにコピーされます。
         

	INCLUDING STORAGE
	

コピーされた列定義に対するSTORAGE設定がコピーされます。
デフォルトの振る舞いではSTORAGE設定は除外され、そのため新しいテーブルのコピーされた列はデータ型ごとのデフォルト設定を持ちます。
STORAGE設定に関する詳細は「TOAST」を参照してください。
         

	INCLUDING ALL
	

INCLUDING ALLは全ての各オプションを選択することの短縮形式です。
（一部オプションを除き全てを選択するために、個別のEXCLUDING句をINCLUDING ALLの後に書く場合におそらく有益です。）
         




     


またLIKE句をビュー、外部テーブル、複合型から列の定義をコピーするために使用することができます。
適用できないオプション（ビューからのINCLUDING INDEXESなど）は無視されます。
     

	CONSTRAINT constraint_name
	

列制約、テーブル制約の名前(省略可能)です。
制約に違反すると、制約名がエラーメッセージに含まれます。
ですので、col must be positive(正数でなければならない)といった名前の制約名を付与することで、クライアントアプリケーションへ有用な制約情報を渡すことができます。
（空白を含む制約名を指定する場合、二重引用符が必要です。）
指定されなければ、システムが名前を生成します。
     

	NOT NULL [ NO INHERIT ] 
	

その列がNULL値を持てないことを指定します。
     


NO INHERITと印が付いた制約は子テーブルには伝搬しません。
     

	NULL
	

その列がNULL値を持てることを指定します。
これがデフォルトです。
     


この句は非標準的なSQLデータベースとの互換性のためだけに提供されています。
新しいアプリケーションでこれを使用するのはお勧めしません。
     

	CHECK ( expression ) [ NO INHERIT ] 
	

CHECK句は、論理型の結果を生成する、新しい行または更新される行が挿入または更新処理を成功させるために満足しなければならない式を指定します。
TRUEまたはUNKNOWNと評価される式は成功します。
挿入または更新処理の行がFALSEという結果をもたらす場合はエラー例外が発生し、その挿入または更新によるデータベースの変更は行われません。
列制約として指定された検査制約は列の値のみを参照しなければなりません。
テーブル制約内の式は複数の列を参照できます。
     


現時点では、CHECK式には副問い合わせも現在の行の列以外の変数も含めることはできません（「検査制約」を参照）。
システム列tableoidを参照することはできますが、他のシステム列は参照できません。
     


NO INHERITと印が付いた制約は子テーブルには伝搬しません。
     


テーブルに複数のCHECK制約がある場合、それらはNOT NULL制約について検証した後で、各行について名前のアルファベット順に検証されます。
（PostgreSQL™の9.5より前のバージョンでは、CHECK制約の実行について特定の順序はありませんでした。）
     

	DEFAULT
    default_expr
	

DEFAULT句を列定義に付けると、その列にデフォルトデータ値が割り当てられます。
値として指定するのは任意の無変数式です（特に現在のテーブル内の他の列へクロス参照はできません）。
副問い合わせも指定できません。
デフォルト式のデータ型はその列のデータ型と一致する必要があります。
     


デフォルト式は、全ての挿入操作において、その列に値が指定されていない場合に使用されます。
列にデフォルト値がない場合、デフォルト値はNULLになります。
     

	GENERATED ALWAYS AS ( generation_expr ) [ STORED | VIRTUAL ]
	

この句は列を生成列として作成します。
この列には書き込みできず、読むときには指定された式の結果が返されます。
     


VIRTUALを指定すると、列は読み取り時に計算され、ストレージが割り当てられません。
STOREDを指定すると、列は書き込み時に計算され、ディスクに保存されます。
デフォルトはVIRTUALです。
     


生成式はそのテーブルの他の列を参照できますが、他の生成列は参照できません。
使われる全ての関数と演算子はIMMUTABLEでなければなりません。
他テーブルを参照することはできません。
     


仮想生成列にはユーザ定義型を使用できず、また仮想生成列の生成式はユーザ定義の関数または型を参照してはなりません。
つまり、組み込みの関数または型のみ使用できます。
これは、演算子やキャストの基盤となる関数や型など、間接的な場合にも当てはまります。
（この制限は、格納生成列には存在しません。）
     

	GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [ ( sequence_options ) ]
	

この句は列を識別列として作成します。
それには暗黙のシーケンスが紐付けられ、新しく挿入された行では、その列には紐付けられたシーケンスから取られた値が自動的に入ります。
そのような列は暗黙的にNOT NULLです。
     


ALWAYSとBY DEFAULTの句は、INSERTやUPDATEコマンドで明示的にユーザが指定した値をどのように扱うかを決定します。
     


INSERTコマンドでは、ALWAYSが選択された場合、ユーザの指定した値はINSERT文がOVERRIDING SYSTEM VALUEを指定している場合にのみ受け付けられます。
BY DEFAULTが選択された場合、ユーザの指定した値が優先します。
詳細はINSERT(7)を参照してください。
(COPYコマンドでは、この設定に関係なく、ユーザの指定した値が常に使われます。)
     


UPDATEでは、ALWAYSが選択された場合、DEFAULT以外の値への列の更新は拒絶されます。
BY DEFAULTが選択された場合、列は普通に更新されます。
(UPDATEコマンドにOVERRIDING句はありません。)
     


オプションでsequence_options句を指定することにより、シーケンスのパラメータを上書きできます。
使用可能なオプションは、CREATE SEQUENCE(7)に示されているものと、SEQUENCE NAME name、LOGGED、UNLOGGEDであり、それぞれ、シーケンスの名前や永続性のレベルを選択できます。
SEQUENCE NAMEがなければ、システムはシーケンスに使われていない名前を選択します。
LOGGEDまたはUNLOGGEDがなければ、シーケンスはテーブルと同じ永続性のレベルになります。
     

	UNIQUE [ NULLS [ NOT ] DISTINCT ] (column constraint), UNIQUE [ NULLS [ NOT ] DISTINCT ] ( column_name [, ... ] [, column_name WITHOUT OVERLAPS ] )

    [ INCLUDE ( column_name [, ...]) ] (テーブル制約)
	

UNIQUE制約は、テーブルの1つまたは複数の列からなるグループが、一意な値のみを持つことができることを指定します。
一意性テーブル制約の動作は一意性列制約と同じですが、さらに複数列にまたがる機能を持ちます。
それゆえ、制約は2つの行はその列の少なくとも1つが異なることを強制します。
     


最後の列にWITHOUT OVERLAPSオプションが指定されている場合、その列は等価性の代わりに重複が確認されます。
この場合、WITHOUT OVERLAPS列で重複しない限り、その制約の他の列では重複が許可されます。
（列が日付またはタイムスタンプの範囲である場合、これは一時的なキーと呼ばれることもありますが、PostgreSQL™では任意の基本型にわたる範囲を使用できます。）
実際には、このような制約はUNIQUE制約ではなくEXCLUDE制約によって強制されます。
したがって、たとえばUNIQUE (id, valid_at WITHOUT OVERLAPS)は、EXCLUDE USING GIST (id WITH =, valid_at WITH &&)のように動作します。
WITHOUT OVERLAPS列には範囲型または多重範囲型が必要です。
空の範囲や多重範囲は許可されません。
制約のWITHOUT OVERLAPS以外の列は、GiSTインデックスで等価性を比較できる任意の型にできます。
デフォルトでは範囲型のみがサポートされていますが、btree_gist拡張を追加することで他の型も使用できます（この機能の通常の使用方法です）。
     


一意性制約では、NULLS NOT DISTINCTが指定されない限り、NULL値同士は等しいとはみなされなせん。
     


それぞれの一意性制約には、そのテーブルの他の一意性制約もしくは主キー制約によって指定された列の集合とは、異なる列の集合を指定しなければなりません。
（そうでなければ、余分な一意性制約は捨てられます。）
     


複数レベルのパーティション階層に一意性制約を設定するとき、対象パーティションテーブル、および全ての子孫のパーティションテーブルの、パーティションキー内の全ての列が制約定義に含まれなくてはなりません。
     


一意性制約を追加すると、制約で使用する列や列のグループに一意性btreeインデックスが自動的に作られます。
ただし、制約にWITHOUT OVERLAPS句が含まれている場合は、GiSTインデックスが使用されます。
作成されるインデックスは一意性制約と同じ名前になります。
     


省略可能なINCLUDE句はインデックスに単に「ペイロード」である列を1つまたは複数、追加します。一意性はその列には強要されず、その列に基づいてインデックスが検索されることはありません。
しかしながら、インデックスオンリースキャンでは取り出すことができます。
含めた（INCLUDEした）列に制約は強制されませんが、依存はしていることに注意してください。
このため、これらの列に対する一部の操作（例えばDROP COLUMN）は制約の連鎖とインデックスの削除をひき起こすことがあります。
     

	PRIMARY KEY (column constraint), PRIMARY KEY ( column_name [, ... ] [, column_name WITHOUT OVERLAPS ] )

    [ INCLUDE ( column_name [, ...]) ] (テーブル制約)
	

PRIMARY KEY制約はテーブルの一列または複数の列が一意（重複がない）で、非NULLの値のみを持つことを指定します。
列制約かテーブル制約かに関わらず、１つのテーブルには主キーを１つだけ指定できます。
     


主キー制約では、同じテーブルに一意性制約で指定した列の集合とは異なる列の集合を指定します。
（そうでなければ、一意性制約は冗長となり、捨てられます。）
     


PRIMARY KEYはUNIQUEとNOT NULLの組み合わせと同じデータ制約を課します。
ですが、列の集合を主キーと指定することは、スキーマの設計についてのメタデータを提供することにもなります。
なぜなら、主キーであることは、行を一意に特定するものとして、他のテーブルがその列の集合を当てにして良い、ということを意味するからです。
     


パーティションテーブルに設定すると、PRIMARY KEY制約は、以前述べた制限をUNIQUE制約と共有します。
     


PRIMARY KEY制約を追加すると、制約で使用する列や列のグループに一意性のbtreeインデックス、またはWITHOUT OVERLAPSが指定された場合はGiSTインデックスが自動的に作られます。
     


省略可能なINCLUDE句はインデックスに単に「ペイロード」である列を1つまたは複数、追加します。一意性はその列には強要されず、その列に基づいてインデックスが検索されることはありません。
しかしながら、インデックスオンリースキャンでは取り出すことができます。
含めた列に一意性は強制されませんが、制約はこれらに依存はしています。
このため、これらの列に対する一部の操作（例えばDROP COLUMN）は制約の連鎖とインデックスの削除をひき起こすことがあります。
     

	EXCLUDE [ USING index_method ] ( exclude_element WITH operator [, ... ] ) index_parameters [ WHERE ( predicate ) ]
	

EXCLUDE句は排他制約を定義し、任意の2行について指定した列(複数可)または式(複数可)を指定した演算子(複数可)を使用して比較した場合、比較結果のすべてがTRUEを返さないことを保証します。
指定した演算子のすべてが等価性を試験するものであれば、これはUNIQUE制約と同じですが、通常の一意性制約のほうが高速です。
しかし、排他制約では単純な等価性よりも一般的な制約を指定することができます。
例えば、テーブル内の2つの行が重複する円(「幾何データ型」参照)を持たないといった制約を&&演算子を使用して指定することができます。
演算子は可換であることが必要です。
     


排他制約は制約と同じ名前のインデックスを使用して実装されています。
このため指定した演算子はそれぞれ適切な演算子クラス(「演算子クラスと演算子族」参照)でindex_methodインデックスアクセスメソッドと関連付けされていなければなりません。
各exclude_elementはインデックスの列を定義しますので、オプションで、照合順序、演算子クラス、演算子クラスパラメータ、および/または順序付けオプションを指定できます。これらについてはCREATE INDEX(7)で説明します。
     


アクセスメソッドはamgettupleをサポートしなければなりません（63章インデックスアクセスメソッドのインタフェース定義参照）。
現時点では、これはGINを使用できないことを意味します。
B-treeやHashインデックスを排他制約で使用することは許容されますが、そうすることにあまり意味はありません。
これが通常の一意性制約より良いことは何もないからです。
このため現実的にはアクセスメソッドは常にGiSTもしくはSP-GiSTとなります。
     


predicateにより、排他制約をテーブルの部分集合に指定することができます。
内部的には、これは部分インデックスを作成します。
predicateの前後に括弧が必要であることに注意して下さい。
     


複数レベルのパーティション階層に対して排他制約を設定する場合は、対象パーティションテーブルのパーティションキーにあるすべての列が、そのすべての子孫テーブルパーティションの列と同様に、制約定義に含まれている必要があります。
さらに、これらの列は等価演算子を使用して比較する必要があります。
これらの制限により、競合する可能性のある行が同じパーティションに存在することが保証されます。
制約は、いずれのパーティションキーの一部ではない他の列を参照することもでき、適切な演算子を使用して比較できます。
     

	REFERENCES reftable [ ( refcolumn ) ] [ MATCH matchtype ] [ ON DELETE action ] [ ON UPDATE action ] （列制約）, FOREIGN KEY ( column_name [, ... ] [, PERIOD column_name ] )
    REFERENCES reftable [ ( refcolumn [, ... ] [, PERIOD refcolumn ] ) ]
    [ MATCH matchtype ]
    [ ON DELETE referential_action ]
    [ ON UPDATE referential_action ]

    （表制約）
	

これらの句は、外部キー制約を指定します。
外部キー制約は、新しいテーブルの1つまたは複数の列のグループが、被参照テーブルの一部の行の被参照列に一致する値を持たなければならないことを指定するものです。
refcolumnリストが省略された場合、reftableの主キーが使用されます。
それ以外の場合、refcolumnリストは遅延不可能な一意性制約または主キー制約の列を参照するか、部分インデックスではない一意性インデックスの列でなければなりません。
     


最後の列がPERIODとマークされている場合は、特別な方法で処理されます。
PERIOD以外の列は等価性を比較しますが（少なくとも1つは必要です）、PERIODの列はそうではありません。
代わりに、被参照テーブルに一致するレコードがあり（キーのPERIOD以外の部分に基づく）、それらのレコードとPERIODの値の組み合わせが参照レコードの値を完全にカバーしていれば、制約は満たされていると見なされます。
つまり、参照先にはその期間全体にわたって参照対象がいなければなりません。
この列は範囲型または多重範囲型でなければなりません。
さらに、被参照テーブルには、WITHOUT OVERLAPSで宣言された主キーまたは一意制約が必要です。
最後に、外部キーにPERIOD column_nameが指定されている場合、もし対応するrefcolumnが存在する場合はPERIODとマークされている必要があります。
refcolumn句が省略されてreftableの主キー制約が選択される場合、主キーの最後の列はWITHOUT OVERLAPSとマークされている必要があります。
     


参照列と被参照列の各ペアについて、照合順序の設定が可能なデータ型の場合、照合順序は両方とも決定論的であるか、両方が同じである必要があります。
これにより、両方の列に一貫した等価性の概念を持たせることができます。
     


ユーザは被参照テーブル（テーブル全体または特定の被参照列）についてREFERENCES権限を持っていなければなりません。
外部キー制約の追加は被参照テーブルにSHARE ROW EXCLUSIVEロックを必要とします。
一時テーブルと永続テーブルとの間で外部キー制約を定義できないことに注意してください。
     


参照列に挿入された値は、被参照テーブルと被参照列の値に対して、指定した照合型で照会されます。
照合型には3種類があります。
MATCH FULL、MATCH PARTIAL、MATCH SIMPLE（これがデフォルト）照合型です。
MATCH FULLは全ての外部キー列がNULLとなる場合を除き、複数列外部キーのある列がNULLとなることを許可しません。
それらがすべてNULLであれば、その行は被参照テーブル内で一致があることは要求されません。
MATCH SIMPLEは、外部キーの一部がNULLであることを許可します。
それらの一部がNULLであれば、その行は被参照テーブル内で一致があることは要求されません。
MATCH PARTIALはまだ実装されていません。
（当然ですが、NOT NULL制約を参照列に適用し、こうした状態が発生することを防止することができます。）
     


さらに、被参照列のデータが変更された場合、このテーブルの列のデータに何らかの動作が発生します。
ON DELETE句は、被参照テーブルの被参照行が削除されようとした場合の動作を指定します。
同様にON UPDATE句は、被参照テーブルの被参照列が新しい値に更新されようとした場合の動作を指定します。
行の更新があった場合でも、被参照列が実際に変更されない場合は、動作は実行されません。
制約が遅延される場合でも、参照動作はデータ変更コマンドの一部として実行されます。
各句について、以下の動作を指定可能です。

      
	NO ACTION
	

削除もしくは更新により外部キー制約違反が起こると、エラーが発生します。
制約が遅延可能な場合、何らかの参照行が存在する限り、このエラーは制約の検査時点で発生します。
これはデフォルトの動作です。
         

	RESTRICT
	

削除または更新される行が参照テーブルの行と一致すると、エラーが発生します。
これにより、動作後の状態が外部キー制約に違反しない場合でも、そのような動作が防止されます。
特に、被参照行を、異なる値ではあるが比較すると等しい値に更新することを防ぎます。
（ただし、列を同じ値に更新する「操作なし」の更新を防ぐことはできません。）
         


一時的な外部キーでは、このオプションはサポートされていません。
         

	CASCADE
	

削除された行を参照している行は全て削除します。また、参照している列の値を、被参照列の新しい値にします。
         


一時的な外部キーでは、このオプションはサポートされていません。
         

	SET NULL [ ( column_name [, ... ] ) ]
	

すべての参照列または参照列の指定したサブセットをNULLに設定します。
列のサブセットは、ON DELETEアクションに対してのみ指定できます。
         


一時的な外部キーでは、このオプションはサポートされていません。
         

	SET DEFAULT [ ( column_name [, ... ] ) ]
	

すべての参照列または参照列の指定したサブセットをそのデフォルト値に設定します。
列のサブセットは、ON DELETEアクションに対してのみ指定できます。
（デフォルト値がNULLでない場合は被参照テーブルの中にデフォルト値に一致する行が存在しなければなりません。さもないと操作が失敗します。）
         


一時的な外部キーでは、このオプションはサポートされていません。
         




     


被参照列が頻繁に更新される場合、参照列にインデックスを付け、その外部キー制約に関連する参照動作がより効率的に実行できるようにする方が良いでしょう。
     

	DEFERRABLE, NOT DEFERRABLE
	

制約を遅延させることが可能かどうかを制御します。
遅延不可の制約は各コマンドの後すぐに検査されます。
遅延可能な制約の検査は、（SET CONSTRAINTSコマンドを使用して）トランザクションの終了時まで遅延させることができます。
NOT DEFERRABLEがデフォルトです。
現在、UNIQUE、PRIMARY KEY、EXCLUDE、REFERENCES（外部キー）制約のみがこの句を受け付けることができます。
NOT NULLおよび CHECK制約は遅延させることができません。
遅延可能な制約はON CONFLICT DO UPDATE句を含むINSERT文において、競合解決のために使うことはできないことに注意してください。
     

	INITIALLY IMMEDIATE, INITIALLY DEFERRED
	

制約が遅延可能な場合、この句は制約検査を行うデフォルトの時期を指定します。
制約がINITIALLY IMMEDIATEの場合、各文の実行後に検査されます。
これがデフォルトです。
制約がINITIALLY DEFERREDの場合、トランザクションの終了時にのみ検査されます。
制約検査の時期はSET CONSTRAINTSコマンドを使用して変更することができます。
     

	ENFORCED, NOT ENFORCED
	

制約がENFORCEDである場合、データベースシステムは適切なタイミング（各文の後またはトランザクションの終了時）で制約を確認し、制約が満たされていることを確認します。
これがデフォルトです。
制約がNOT ENFORCEDである場合、データベースシステムは制約を確認しません。
その場合、制約が満たされていることを確認するのはアプリケーションコードの責任です。
データベースシステムは、最適化の判断のためにデータが実際に制約を満たしていると見なす場合がありますが、結果の正確性には影響を与えません。
     


NOT ENFORCED制約は、実行時に制約を確認するコストがかかりすぎる場合に、制約を文書として記録しておく点で有用です。
     


これは現在、外部キーとCHECK制約でのみサポートされています。
     

	USING method
	

このオプションの句は新しいテーブルの中身の格納に用いるテーブルアクセスメソッドを指定します。指定するものは、TABLEタイプのアクセスメソッドでなければなりません。
より詳しい情報は62章テーブルアクセスメソッドのインタフェース定義を参照してください。
このオプションが指定されない場合、新しいテーブルにはデフォルトテーブルアクセスメソッドが選択されます。
より詳しい情報はdefault_table_access_methodを参照してください。
     


パーティションを作成するときに、テーブルアクセスメソッドは、もし設定されていれば、そのパーティションテーブルのアクセスメソッドになります。
     

	WITH ( storage_parameter [= value] [, ... ] )
	

この句はテーブルまたはインデックスに対するオプションの格納パラメータを指定します。
詳しくは格納パラメータを参照してください。
後方互換性のため、テーブルに対するWITH句には新しいテーブルの行にOID（オブジェクト識別子）が含まれないことを示すためにOIDS=FALSEを含めることもできます。OIDS=TRUEはもはやサポートされません。
     

	WITHOUT OIDS
	

これはWITHOUT OIDSのテーブルと宣言する後方互換性の構文です。
WITH OIDSのテーブルを作ることはもはやサポートされません。
     

	ON COMMIT
	

ON COMMITを使用して、トランザクションブロックの終了時点での一時テーブルの動作を制御することができます。
以下の3つのオプションがあります。

      
	PRESERVE ROWS
	

トランザクションの終了時点で、特別な動作は行われません。
これがデフォルトの動作です。
         

	DELETE ROWS
	

一時テーブル内の全ての行は、各トランザクションブロックの終わりで削除されます。
実質的には、コミットの度に自動的にTRUNCATEが実行されます。
パーティションテーブルに使われた場合、そのパーティションに連鎖適用はされません。
         

	DROP
	

一時テーブルは現在のトランザクションブロックの終わりで削除されます。
この動作は、パーティションテーブルに使われたときにそのパーティションを削除し、継承の子テーブルを伴うテーブルに使われたときに従属する子テーブルを削除します。
         




	TABLESPACE tablespace_name
	

tablespace_nameは、新しいテーブルが作成されるテーブル空間名です。
指定されていない場合、default_tablespaceが、また一時テーブルの場合はtemp_tablespacesが考慮されます。
パーティションテーブルに対しては、そのテーブル自身ではストレージは必要としないため、他のテーブル空間が明示的に指定されていないときに新しく作成されたパーティションに使用するデフォルトのテーブル空間として、指定されたテーブル空間がdefault_tablespaceを上書きします。
     

	USING INDEX TABLESPACE tablespace_name
	

この句により、UNIQUE、PRIMARY KEY、またはEXCLUDE制約に関連したインデックスを作成するテーブル空間を選択することができます。
指定されていない場合、default_tablespaceが、また一時テーブルであればtemp_tablespacesが考慮されます。
     



格納パラメータ


WITH句により、テーブルおよびUNIQUE、PRIMARY KEY、またはEXCLUDE制約と関連づいたインデックスの格納パラメータを指定することができます。
インデックスの格納パラメータについてはCREATE INDEX(7)で説明します。
現在テーブルで設定可能な格納パラメータの一覧を以下に示します。
これらのパラメータの多くに対して、示した通り、さらにtoastという接頭辞のついた、同一の名前のパラメータがあります。
これはもしあれば、テーブルの補助TOASTテーブルの動作を制御します。
(TOASTに関する詳細については「TOAST」を参照してください。)
テーブルのパラメータ値が設定され、それと同等のtoast.パラメータが設定されていない場合、TOASTテーブルはテーブルのパラメータ値を利用します。
これらのパラメータをパーティションテーブルについて指定することはサポートされませんが、個々の末端のパーティションについて指定することはできます。
   
	fillfactor (integer)
    
    
    
	

テーブルのフィルファクタ(fillfactor)は10から100までの間の割合（パーセント）です。
100（すべて使用）がデフォルトです。
より小さな値を指定すると、INSERT操作は指定した割合までしかテーブルページを使用しません。
各ページの残りの部分は、そのページ内の行の更新用に予約されます。
これによりUPDATEは、元の行と同じページ上に更新済みの行を格納することができるようになります。
これは別のページに更新済みの行を格納することよりも効率的であり、おそらくより多くヒープ専用タプルの更新を行ないます。
項目の更新がまったくないテーブルでは、すべてを使用することが最善の選択ですが、更新が非常に多いテーブルではより小さめのフィルファクタが適切です。
TOASTテーブルではこのパラメータを設定できません。
     

	toast_tuple_target (integer)
    
    
    
	

toast_tuple_targetは、長い列値を圧縮したりTOASTテーブルに移動する前に必要とされる最小タプル長を指定します。また、これはTOAST化を開始したときに長さをそれ未満に減らそうとする目標にもなります。
これはEXTERNAL(移動に対して)、MAIN(圧縮に対して)、または、EXTENDED(両方に対して)と印付けされた列に影響があり、また、新たなタプルにのみ適用されます。
既存の行には影響ありません。
デフォルトでは、このパラメータは1ブロックあたり少なくとも4タプルが可能であるように設定されます。これはデフォルトブロックサイズであれば2040バイトになります。
有効な値は128バイトから、ブロックサイズ - ヘッダ（デフォルトでは8160バイト）の間です。
非常に短いあるいは長い行に対して、この値を変更することはおそらく有用ではありません。
時にはデフォルト設定が最適に近く、本パラメータを設定することで場合によっては悪影響があるかもしれないことに注意してください。
     

	parallel_workers (integer)
     
    
    
	

このテーブルの並列スキャンを支援するために使用されるワーカーの数を設定します。
設定されなければ、リレーションのサイズに基づいてシステムが値を決定します。
プランナやパラレルスキャンを使うユーティリティ文により選ばれるワーカーの数は、例えばmax_worker_processesの設定によって、より少なくなるかもしれません。
     

	autovacuum_enabled, toast.autovacuum_enabled (boolean)
    
    
    
	

特定のテーブルに対する自動バキュームデーモンを有効または無効にします。
trueの場合、自動バキュームデーモンは、「自動バキュームデーモン」に記述されたルールに従って、このテーブルに対して自動的にVACUUMあるいはANALYZEまたはその両方の操作を行います。
falseの場合、トランザクションIDの周回問題を回避するためを除き自動バキュームは行われません。
周回問題の回避については「トランザクションIDの周回エラーの防止」を参照してください。
autovacuumパラメータがfalseの場合、（トランザクションIDの周回問題を回避する場合を除き）自動バキュームデーモンはまったく実行されないことに注意して下さい。
個々のテーブルの格納パラメータを設定しても、それは優先されません。
従って、この格納パラメータを明示的にtrueに設定することにはほとんど意味はなく、falseに設定することのみが意味を持ちます。
     

	vacuum_index_cleanup, toast.vacuum_index_cleanup (enum)
    
    
    
	

このテーブルにVACUUMが実行されたときのインデックスのクリーンアップを強制または無効にします。
デフォルト値はAUTOです。
OFFでインデックスのクリーンアップは無効になり、ONで有効に、AUTOでその時々のVACUUM実行時に決定が動的に行なわれるようになります。
動的な動作により、ほとんどない無効タプル削除するために必要もないのにインデックスをスキャンしてしまうことをVACUUMが避けられるようになります。
インデックスのクリーンアップを強制的にすべて無効にすることで、VACUUMを大幅に高速化できますが、テーブルの変更が頻繁である場合には深刻なインデックスの肥大化も生じさせるかもしれません。
VACUUMのINDEX_CLEANUPパラメータは、指定されていたなら本オプションを上書きします。
     

	vacuum_truncate, toast.vacuum_truncate (boolean)
    
    
	

vacuum_truncateパラメータについて、テーブル毎に設定する値です。
VACUUMでTRUNCATEパラメータが指定されている場合、このオプションの値を上書きします。
     

	autovacuum_vacuum_threshold, toast.autovacuum_vacuum_threshold (integer)
    
    
    
	

autovacuum_vacuum_thresholdパラメータについて、テーブル毎に設定する値です。
     

	autovacuum_vacuum_max_threshold, toast.autovacuum_vacuum_max_threshold (integer)
    
    
	

autovacuum_vacuum_max_thresholdパラメータについて、テーブル毎に設定する値です。
    

	autovacuum_vacuum_scale_factor, toast.autovacuum_vacuum_scale_factor (floating point)
    
    
    
	

autovacuum_vacuum_scale_factorパラメータについて、テーブル毎に設定する値です。
     

	autovacuum_vacuum_insert_threshold, toast.autovacuum_vacuum_insert_threshold (integer)
    
    
    
	

autovacuum_vacuum_insert_thresholdパラメータについて、テーブル毎に設定する値です。
特別な値である-1は、テーブルでのインサートバキュームを無効にするのに使われます。
     

	autovacuum_vacuum_insert_scale_factor, toast.autovacuum_vacuum_insert_scale_factor (floating point)
    
    
    
	

autovacuum_vacuum_insert_scale_factorパラメータについて、テーブル毎に設定する値です。
     

	autovacuum_analyze_threshold (integer)
    
    
    
	

autovacuum_analyze_thresholdパラメータについて、テーブル毎に設定する値です。
     

	autovacuum_analyze_scale_factor (floating point)
    
    
    
	

autovacuum_analyze_scale_factorパラメータについて、テーブル毎に設定する値です。
     

	autovacuum_vacuum_cost_delay, toast.autovacuum_vacuum_cost_delay (floating point)
    
    
    
	

autovacuum_vacuum_cost_delayパラメータについて、テーブル毎に設定する値です。
     

	autovacuum_vacuum_cost_limit, toast.autovacuum_vacuum_cost_limit (integer)
    
    
    
	

autovacuum_vacuum_cost_limitパラメータについて、テーブル毎に設定する値です。
     

	autovacuum_freeze_min_age, toast.autovacuum_freeze_min_age (integer)
    
    
    
	

vacuum_freeze_min_ageパラメータについて、テーブル毎に設定する値です。
テーブル単位のautovacuum_freeze_min_ageパラメータをシステム全体のautovacuum_freeze_max_age設定の1/2より大きく設定しても、自動バキュームが無視することに注意してください。
     

	autovacuum_freeze_max_age, toast.autovacuum_freeze_max_age (integer)
    
    
    
	

autovacuum_freeze_max_ageパラメータについて、テーブル毎に設定する値です。
テーブル単位のautovacuum_freeze_max_ageパラメータをシステム全体に対する設定より大きく設定しても、自動バキュームが無視することに注意してください（より小さな値しか設定できません）。
     

	autovacuum_freeze_table_age, toast.autovacuum_freeze_table_age (integer)
    
    
    
	

vacuum_freeze_table_ageパラメータについて、テーブル毎に設定する値です。
     

	autovacuum_multixact_freeze_min_age, toast.autovacuum_multixact_freeze_min_age (integer)
    
    
    
	

vacuum_multixact_freeze_min_ageパラメータについて、テーブル毎に設定する値です。
テーブル単位のautovacuum_multixact_freeze_min_ageパラメータをシステム全体のautovacuum_multixact_freeze_max_ageの半分より大きく設定しても、自動バキュームが無視することに注意してください。
     

	autovacuum_multixact_freeze_max_age, toast.autovacuum_multixact_freeze_max_age (integer)
    
    
    
	

autovacuum_multixact_freeze_max_ageパラメータについて、テーブル毎に設定する値です。
テーブル単位のautovacuum_multixact_freeze_max_ageをシステム全体に対する設定より大きくしても、自動バキュームが無視することに注意してください（より小さな値しか設定できません）。
     

	autovacuum_multixact_freeze_table_age, toast.autovacuum_multixact_freeze_table_age (integer)
    
    
    
	

vacuum_multixact_freeze_table_ageパラメータについて、テーブル毎に設定する値です。
     

	log_autovacuum_min_duration, toast.log_autovacuum_min_duration (integer)
    
    
    
	

log_autovacuum_min_durationパラメータについて、テーブル毎に設定する値です。
     

	vacuum_max_eager_freeze_failure_rate, toast.vacuum_max_eager_freeze_failure_rate (floating point)
    
    
	

vacuum_max_eager_freeze_failure_rateパラメータについて、テーブル毎に設定する値です。
     

	user_catalog_table (boolean)
    
    
    
	

テーブルを論理レプリケーションのための追加のカタログテーブルとして宣言します。
詳しくは「機能」を参照してください。
このパラメータはTOASTテーブルには設定できません。
     





注釈


PostgreSQL™は自動的に各一意性制約と主キー制約に対してインデックスを作成し、その一意性を保証します。
したがって、主キーの列に明示的にインデックスを作成することは必要ありません。
（詳細についてはCREATE INDEX(7)を参照してください。）
    


現在の実装では、一意性制約と主キーは継承されません。
これは、継承と一意性制約を組み合わせると障害が発生するからです。
    


テーブルは1600列以上の列を持つことはできません。
（タプル長の制約により実際の制限はもっと小さくなります。）
    

例


filmsテーブルとdistributorsテーブルを作成します。



CREATE TABLE films (
    code        char(5) CONSTRAINT firstkey PRIMARY KEY,
    title       varchar(40) NOT NULL,
    did         integer NOT NULL,
    date_prod   date,
    kind        varchar(10),
    len         interval hour to minute
);

CREATE TABLE distributors (
     did    integer PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
     name   varchar(40) NOT NULL CHECK (name <> '')
);


  


2次元配列を持つテーブルを作成します。



CREATE TABLE array_int (
    vector  int[][]
);


  


filmsテーブルに 一意性テーブル制約を定義します。
一意性テーブル制約はテーブルの1つ以上の列に定義することができます。



CREATE TABLE films (
    code        char(5),
    title       varchar(40),
    did         integer,
    date_prod   date,
    kind        varchar(10),
    len         interval hour to minute,
    CONSTRAINT production UNIQUE(date_prod)
);


  


検査列制約を定義します。



CREATE TABLE distributors (
    did     integer CHECK (did > 100),
    name    varchar(40)
);


  


検査テーブル制約を定義します。



CREATE TABLE distributors (
    did     integer,
    name    varchar(40),
    CONSTRAINT con1 CHECK (did > 100 AND name <> '')
);


  


filmsテーブルに主キーテーブル制約を定義します。



CREATE TABLE films (
    code        char(5),
    title       varchar(40),
    did         integer,
    date_prod   date,
    kind        varchar(10),
    len         interval hour to minute,
    CONSTRAINT code_title PRIMARY KEY(code,title)
);


  


distributorsテーブルに主キー制約を定義します。
以下の2つの例は同等で、前者はテーブル制約構文を使用し、後者は列制約構文を使用します。



CREATE TABLE distributors (
    did     integer,
    name    varchar(40),
    PRIMARY KEY(did)
);

CREATE TABLE distributors (
    did     integer PRIMARY KEY,
    name    varchar(40)
);


  


以下では、name列のデフォルト値にリテラル定数を割り当てています。また、did列のデフォルト値として、シーケンスオブジェクトの次の値が生成されるように調整しています。
modtimeのデフォルト値は、その行が挿入された時刻となります。



CREATE TABLE distributors (
    name      varchar(40) DEFAULT 'Luso Films',
    did       integer DEFAULT nextval('distributors_serial'),
    modtime   timestamp DEFAULT current_timestamp
);


  


2つのNOT NULL列制約をdistributorsテーブルに定義します。
そのうち1つには明示的な名前を付けています。



CREATE TABLE distributors (
    did     integer CONSTRAINT no_null NOT NULL,
    name    varchar(40) NOT NULL
);


    


name列に対し、一意性制約を定義します。



CREATE TABLE distributors (
    did     integer,
    name    varchar(40) UNIQUE
);




上と同じですが、テーブル制約として指定します。



CREATE TABLE distributors (
    did     integer,
    name    varchar(40),
    UNIQUE(name)
);


  


テーブルとその一意性インデックスの両方に70%のフィルファクタを指定して、同じテーブルを作成します。



CREATE TABLE distributors (
    did     integer,
    name    varchar(40),
    UNIQUE(name) WITH (fillfactor=70)
)
WITH (fillfactor=70);


  


2つの円の重複を許さない排他制約を持つcirclesテーブルを作成します。



CREATE TABLE circles (
    c circle,
    EXCLUDE USING gist (c WITH &&)
);


  


diskvol1テーブル空間にcinemasテーブルを作成します。



CREATE TABLE cinemas (
        id serial,
        name text,
        location text
) TABLESPACE diskvol1;


  


複合型と型付きテーブルを作成します。


CREATE TYPE employee_type AS (name text, salary numeric);

CREATE TABLE employees OF employee_type (
    PRIMARY KEY (name),
    salary WITH OPTIONS DEFAULT 1000
);



範囲パーティションテーブルを作成します。


CREATE TABLE measurement (
    logdate         date not null,
    peaktemp        int,
    unitsales       int
) PARTITION BY RANGE (logdate);



パーティションキーに複数の列がある範囲パーティションテーブルを作成します。


CREATE TABLE measurement_year_month (
    logdate         date not null,
    peaktemp        int,
    unitsales       int
) PARTITION BY RANGE (EXTRACT(YEAR FROM logdate), EXTRACT(MONTH FROM logdate));



リストパーティションテーブルを作成します。


CREATE TABLE cities (
    city_id      bigserial not null,
    name         text not null,
    population   bigint
) PARTITION BY LIST (left(lower(name), 1));



ハッシュパーティションテーブルを作成します。


CREATE TABLE orders (
    order_id     bigint not null,
    cust_id      bigint not null,
    status       text
) PARTITION BY HASH (order_id);



範囲パーティションテーブルのパーティションを作成します。


CREATE TABLE measurement_y2016m07
    PARTITION OF measurement (
    unitsales DEFAULT 0
) FOR VALUES FROM ('2016-07-01') TO ('2016-08-01');



パーティションキーに複数の列がある範囲パーティションテーブルに、パーティションをいくつか作成します。


CREATE TABLE measurement_ym_older
    PARTITION OF measurement_year_month
    FOR VALUES FROM (MINVALUE, MINVALUE) TO (2016, 11);

CREATE TABLE measurement_ym_y2016m11
    PARTITION OF measurement_year_month
    FOR VALUES FROM (2016, 11) TO (2016, 12);

CREATE TABLE measurement_ym_y2016m12
    PARTITION OF measurement_year_month
    FOR VALUES FROM (2016, 12) TO (2017, 01);

CREATE TABLE measurement_ym_y2017m01
    PARTITION OF measurement_year_month
    FOR VALUES FROM (2017, 01) TO (2017, 02);



リストパーティションテーブルのパーティションを作成します。


CREATE TABLE cities_ab
    PARTITION OF cities (
    CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('a', 'b');



リストパーティションテーブルにパーティションを作成しますが、それ自体がさらにパーティションになり、それにパーティションを追加します。


CREATE TABLE cities_ab
    PARTITION OF cities (
    CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('a', 'b') PARTITION BY RANGE (population);

CREATE TABLE cities_ab_10000_to_100000
    PARTITION OF cities_ab FOR VALUES FROM (10000) TO (100000);



ハッシュパーティションテーブルのパーティションを作成します。


CREATE TABLE orders_p1 PARTITION OF orders
    FOR VALUES WITH (MODULUS 4, REMAINDER 0);
CREATE TABLE orders_p2 PARTITION OF orders
    FOR VALUES WITH (MODULUS 4, REMAINDER 1);
CREATE TABLE orders_p3 PARTITION OF orders
    FOR VALUES WITH (MODULUS 4, REMAINDER 2);
CREATE TABLE orders_p4 PARTITION OF orders
    FOR VALUES WITH (MODULUS 4, REMAINDER 3);



デフォルトのパーティションを作成します。


CREATE TABLE cities_partdef
    PARTITION OF cities DEFAULT;


互換性


CREATE TABLEは、以下に挙げるものを除いて、標準SQLに準拠しています。
  
一時テーブル


CREATE TEMPORARY TABLEは標準SQLに類似していますが、その効果は同じではありません。
標準では、一時テーブルは一度だけ定義され、それを必要とするセッションごとに自動的に（空の内容で始まる形で）出現します。
PostgreSQL™では、これと異なり、各セッションで独自に、使用する一時テーブル用のCREATE TEMPORARY TABLEコマンドを発行しなければなりません。
これにより、異なるセッションで同じ名前の一時テーブルを異なる目的で使用することができます。
一方、標準の方法では、ある一時テーブル名を持つインスタンスが、全て同一のテーブル構造を持つという制限があります。
   


標準における一時テーブルの動作定義の多くは無視されています。
この点でのPostgreSQL™の動作は、他の多くのSQLデータベースと似ています。
   


また標準SQLではグローバル一時テーブルとローカル一時テーブルを区別しています。
ローカル一時テーブルは各セッション内のSQLモジュールそれぞれ用に内容の集合を分離しますが、その定義はセッション全体で共有されます。
PostgreSQL™はSQLモジュールをサポートしませんので、PostgreSQL™ではこの区別は適切ではありません。
   


互換性を保持するため、PostgreSQL™は一時テーブルの宣言においてGLOBALとLOCALキーワードを受け付けますが、これらには現在、何の効果もありません。
PostgreSQL™の今後のバージョンでは、これらの意味についてより標準に近い実装を取り入れる可能性がありますので、これらのキーワードの使用は勧めません。
   


一時テーブル用のON COMMIT句もまた、標準SQLに類似していますが、いくつか違いがあります。
ON COMMIT句が省略された場合、SQLでは、デフォルトの動作はON COMMIT DELETE ROWSであると規定しています。
しかし、PostgreSQL™でのデフォルトの動作はON COMMIT PRESERVE ROWSです。
また、ON COMMIT DROPはSQLにはありません。
   

非遅延一意性制約


UNIQUEまたはPRIMARY KEY制約が非遅延の場合、PostgreSQL™は行が挿入または変更されると即座に一意性を検査します。
標準SQLでは一意性は文が完了した時にのみ強制されなければならないと記述しています。
これにより、たとえば、1つのコマンドが複数のキー値を更新する時に違いが現れます。
標準互換の動作をさせるためには、非遅延（つまりINITIALLY IMMEDIATE）ではなくDEFERRABLEとして制約を宣言してください。
これが即座に行われる一意性検査よりかなり低速になる可能性があることに注意してください。
   

列検査制約


標準SQLでは、CHECK列制約はそれを適用する列のみを参照でき、複数の列を参照できるのはCHECKテーブル制約のみであるとされています。
PostgreSQL™にはこの制限はありません。
列検査制約とテーブル検査制約を同様のものとして扱っています。
   

EXCLUDE制約


EXCLUDEという種類の制約はPostgreSQL™の拡張です。
   

外部キー制約


外部キーアクションSET DEFAULTとSET NULLで列のリストを指定する機能はPostgreSQL™の拡張です。
   


外部キー制約が、主キーまたは一意性制約の列ではなく、一意インデックスの列を参照できるのはPostgreSQL™の拡張です。
   

NULL 「制約」


NULL「制約」（実際には非制約）は、標準SQLに対するPostgreSQL™の拡張で、他のいくつかのデータベースシステムとの互換性（および NOT NULL制約との対称性）のために含まれています。
どんな列に対してもデフォルトとなるため、これには意味はありません。
   

制約の命名


標準SQLではテーブルとドメインの制約はテーブルやドメインを含むスキーマ中で一意な名前を持たなければなりません。
PostgreSQL™はより緩やかで、制約名は特定のテーブルやドメインに付加された制約の中で一意であることだけが求められます。
しかしながら、この追加的な自由はインデックスに基づく制約（UNIQUE、PRIMARY KEY、およびEXCLUDE制約）にはありません。なぜなら、関連付けられたインデックスは制約と同じに命名されて、インデックス名は同スキーマ内の全てのリレーションの中で一意でなければならないからです。
   

継承


INHERITS句による複数継承は、PostgreSQL™の言語拡張です。
SQL:1999以降では、異なる構文と意味体系による単一継承を定義しています。
今のところ、SQL:1999方式の継承はPostgreSQL™ではサポートされていません。
   

列を持たないテーブル


PostgreSQL™では、列を持たないテーブルを作成することができます
（例えば、CREATE TABLE foo();）。
これは標準SQLからの拡張です。
標準SQLでは列を持たないテーブルは許されません。
列を持たないテーブルそれ自体は役に立ちませんが、これを無効とすると、ALTER TABLE DROP COLUMNに対して奇妙な特例を生成することになります。
したがって、この仕様上の制限を無視する方が簡潔であると考えます。
   

複数の識別列


PostgreSQL™ではテーブルに2つ以上の識別列を持つことを許しています。
標準SQLでは、1つのテーブルは最大で1つの識別列を持つことができると規定しています。
主にスキーマの変更や移行でより柔軟性を持たせるために、この制約を緩和しています。
INSERTコマンドはOVERRIDING句を1つだけしかサポートせず、これが文全体に適用されるため、複数の識別列があり、これらの動作が異なる場合は正しくサポートされないことに注意してください。
   

生成列


オプションSTOREDとVIRTUALは標準ではありませんが、他のSQL実装でも使用されています。
標準SQLは生成列の格納を規定していません。
   

LIKE句


LIKE句は標準SQLにありますが、PostgreSQL™で利用可能な多くのオプションは標準にはなく、また標準のオプションの一部はPostgreSQL™では実装されていません。
   

WITH句


WITH句はPostgreSQL™の拡張です。
格納パラメータは標準にはありません。
   

テーブル空間


PostgreSQL™のテーブル空間の概念は標準にはありません。
したがって、TABLESPACEとUSING INDEX TABLESPACEは、PostgreSQL™における拡張です。
   

型付きテーブル


型付きテーブルは標準SQLのサブセットを実装します。
標準に従うと、型付きテーブルは背後の複合型に対応した列の他に「自己参照列」という列も持ちます。
PostgreSQL™は自己参照列を明示的にサポートしません。
   

PARTITION BY句


PARTITION BY句はPostgreSQL™の拡張です。
   

PARTITION OF句


PARTITION OF句はPostgreSQL™の拡張です。
   


関連項目
ALTER TABLE(7), DROP TABLE(7), CREATE TABLE AS(7), CREATE TABLESPACE(7), CREATE TYPE(7)


名前
CREATE TABLE AS — 問い合わせの結果によって新しいテーブルを定義する

概要

CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } | UNLOGGED ] TABLE [ IF NOT EXISTS ] table_name
    [ (column_name [, ...] ) ]
    [ USING method ]
    [ WITH ( storage_parameter [= value] [, ... ] ) | WITHOUT OIDS ]
    [ ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP } ]
    [ TABLESPACE tablespace_name ]
    AS query
    [ WITH [ NO ] DATA ]


説明


CREATE TABLE ASはテーブルを作成し、SELECT コマンドによって算出されたデータをそのテーブルに格納します。
テーブルの列は、SELECTの出力列に結び付いた名前とデータ型を持ちます（ただし、新しい列名を明示したリストを渡すと、この列名を上書きすることができます）。
  


CREATE TABLE ASはビューの作成と似ていますが、実際にはまったく異なります。
CREATE TABLE ASは新しいテーブルを作成し、新しいテーブルの内容を初期化するために一度だけ問い合わせを評価します。
それ以降に行われた、問い合わせの元テーブルに対する変更は、新しいテーブルには反映されません。
反対に、ビューは問い合わせの度に定義されたSELECT文を再評価します。
  


CREATE TABLE ASには、そのテーブルに使われているスキーマでのCREATE権限が必要です。
  

パラメータ
	GLOBALまたはLOCAL
	

互換性を保持するためのキーワードで、無視されます。
これらのキーワードの使用は廃止予定です。
詳細についてはCREATE TABLE(7)を参照してください。
     



	TEMPORARYまたはTEMP
	

指定された場合、テーブルは一時テーブルとして作成されます。
詳細についてはCREATE TABLE(7)を参照してください。
     

	UNLOGGED
	

指定された場合、テーブルはログを取らないテーブルとして作成されます。
詳細についてはCREATE TABLE(7)を参照してください。
     

	IF NOT EXISTS
	

同じ名前のリレーションが既に存在する場合にエラーとしません。
単に通知を発行するだけで、テーブルは変更しないままにします。
     

	table_name
	

作成するテーブルの名前です（スキーマ修飾名も可）。
     

	column_name
	

新しいテーブルにおける列の名前です。
列名を指定しない場合は、問い合わせの出力列名を利用します。
     

	USING method
	

この省略可能な句は、新しいテーブルの内容を保存するのに使うテーブルアクセスメソッドを指定します。メソッドはTABLE型のアクセスメソッドであることが必要です。
より詳しい情報は62章テーブルアクセスメソッドのインタフェース定義を参照してください。
このオプションが指定されなければ、新しいテーブルに対してはデフォルトのテーブルアクセスメソッドが選ばれます。
より詳しい情報はdefault_table_access_methodを参照してください。
     

	WITH ( storage_parameter [= value] [, ... ] )
	

この句は、新しいテーブル用の格納パラメータ(省略可能)を指定します。
詳細はCREATE TABLE(7)の文書の格納パラメータを参照してください。
後方互換のため、テーブルに対するWITH句には、OID（オブジェクト識別子）を持たないことを指定するOIDS=FALSEを含めることもできます。OIDS=TRUEは今はもうサポートされていません。
     

	WITHOUT OIDS
	

これは、テーブルがWITHOUT OIDSであることを宣言する後方互換のための構文で、WITH OIDSであるテーブルを作成することは今はもうサポートされていません。
     

	ON COMMIT
	

トランザクションブロックの終了時の一時テーブルの動作をON COMMITを使用して制御することができます。
以下の3つのオプションがあります。

      
	PRESERVE ROWS
	

トランザクションの終了時に特別な処理は何も行われません。
これがデフォルトの動作です。
         

	DELETE ROWS
	

各トランザクションブロックの終了時に、一時テーブルのすべての行が削除されます。
本質的には、コミット毎に自動的にTRUNCATEが行われます。
         

	DROP
	

現在のトランザクションブロックの終了時に一時テーブルは削除されます。
         




	TABLESPACE tablespace_name
	

tablespace_nameは、新しいテーブルの作成先となるテーブル空間名です。
指定がなければ、default_tablespace、一時テーブルの場合はtemp_tablespacesが考慮されます。
     

	query
	

SELECT、TABLE、VALUESコマンドまたは、あらかじめ準備されたSELECT、TABLEまたはVALUES問い合わせを実行するEXECUTEコマンドです。
     

	WITH [ NO ] DATA
	

この句は問い合わせで生成されるデータを新しいテーブルにコピーすべきかどうかを指定します。
コピーしない場合はテーブル構造のみがコピーされます。
デフォルトではデータをコピーします。
     




注釈


このコマンドは、SELECT INTO(7)と同等の機能を持ちますが、SELECT INTO構文の他の使用方法と混乱する可能性が少ないため、こちらを使用する方が良いでしょう。
さらに、CREATE TABLE ASは、SELECT INTOが提供する機能のスーパーセットを提供します。
  

例


filmsの最近の項目のみから構成される、新しいテーブルfilms_recentを作成します。



CREATE TABLE films_recent AS
  SELECT * FROM films WHERE date_prod >= '2002-01-01';


  


テーブルを完全に複製するために、TABLEコマンドを使った短縮形も使用することができます。



CREATE TABLE films2 AS
  TABLE films;


  


プリペアド文を使用して、films内の最近の項目のみから構成される一時テーブルfilms_recentを作成します。
この新しいテーブルはコミット時に削除されます。



PREPARE recentfilms(date) AS
  SELECT * FROM films WHERE date_prod > $1;
CREATE TEMP TABLE films_recent ON COMMIT DROP AS
  EXECUTE recentfilms('2002-01-01');


互換性


CREATE TABLE ASは標準SQLに準拠しています。
以下は非標準の拡張です。

   
	

標準では副問い合わせ句を括弧で囲む必要がありますが、PostgreSQL™ではこの括弧は省略可能です。
     

	

標準ではWITH [ NO ] DATA句は必須ですが、PostgreSQLでは省略可能です。
     

	PostgreSQL™の一時テーブルの扱いは標準とは異なります。
詳細はCREATE TABLE(7)を参照してください。
     

	

WITH句はPostgreSQL™の拡張です。
格納パラメータは標準にはありません。
     

	

PostgreSQL™のテーブル空間という概念は標準にはありません。
したがって、TABLESPACE句は拡張です。
     




関連項目
CREATE MATERIALIZED VIEW(7), CREATE TABLE(7), EXECUTE(7), SELECT(7), SELECT INTO(7), VALUES(7)


名前
CREATE TABLESPACE — 新しいテーブル空間を定義する

概要

CREATE TABLESPACE tablespace_name
    [ OWNER { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER } ]
    LOCATION 'directory'
    [ WITH ( tablespace_option = value [, ... ] ) ]


説明


CREATE TABLESPACEはクラスタ全体で使用できるテーブル空間を新規に登録します。
このテーブル空間名は、データベースクラスタ内の既存のテーブル空間名と異なるものでなければなりません。
  


スーパーユーザはテーブル空間を使用することで、データベースオブジェクト（テーブルやインデックスなど）が入ったデータファイルを格納できる、ファイルシステム上の別の場所を定義できます。
  


適切な権限を持つユーザは、CREATE DATABASEやCREATE TABLE、CREATE INDEX、ADD CONSTRAINTコマンドにtablespace_nameを渡すことで、これらのオブジェクトのデータファイルを指定されたテーブル空間に格納できます。
  
警告


テーブル空間は、それが定義されているクラスタと独立して使うことはできません。
「テーブル空間」を参照してください。
   


パラメータ
	tablespace_name
	

作成するテーブル空間の名前です。
pg_から始まる名前はシステムのテーブル空間用に予約されているので使用することはできません。
       

	user_name
	

テーブル空間を所有するユーザの名前です。
省略時はデフォルトでコマンドを実行したユーザとなります。
テーブル空間を作成できるのはスーパーユーザのみですが、テーブル空間の所有権を非スーパーユーザに割り当てることは可能です。
       

	directory
	

テーブル空間用に使用するディレクトリです。
このディレクトリは存在していなければなりませんし(CREATE TABLESPACE はディレクトリを作成しません)、空であるべきです。また、PostgreSQL™のシステムユーザが所有していなければなりません。
このディレクトリは絶対パス名で指定する必要があります。
       

	tablespace_option
	

値を設定あるいはリセットするテーブル空間のパラメータです。
現在、利用可能なパラメータはseq_page_cost、random_page_cost、effective_io_concurrency、maintenance_io_concurrencyのみです。
特定のテーブル空間について、この値を設定すると、プランナがそのテーブル空間内のテーブルからページを読み込むコストの通常の推定値や、発行される同時I/Oの数について、通常参照する同じ名前の設定パラメータ（seq_page_cost、random_page_cost、effective_io_concurrency、maintenance_io_concurrencyを参照）よりも優先します。
テーブル空間が、他のI/Oサブシステムより高速あるいは低速なディスク上にある時は、これが有用でしょう。
       




注釈


トランザクションブロック内でCREATE TABLESPACEを実行することはできません。
   

例


ファイルシステムの/data/dbsにテーブル空間dbspaceを作成するためには、まずオペレーティングシステムの機能を使ってディレクトリを作成し、正しい所有権を設定します。


mkdir /data/dbs
chown postgres:postgres /data/dbs



次にPostgreSQL™内でテーブル空間作成コマンドを発行します。


CREATE TABLESPACE dbspace LOCATION '/data/dbs';


  


他のデータベースユーザが所有するテーブル空間を作成するには、以下のようにコマンドを使います。


CREATE TABLESPACE indexspace OWNER genevieve LOCATION '/data/indexes';


互換性


CREATE TABLESPACEはPostgreSQL™の拡張です。
  

関連項目
CREATE DATABASE(7), CREATE TABLE(7), CREATE INDEX(7), DROP TABLESPACE(7), ALTER TABLESPACE(7)


名前
CREATE TEXT SEARCH CONFIGURATION — 新しいテキスト検索設定を定義する

概要

CREATE TEXT SEARCH CONFIGURATION name (
    PARSER = parser_name |
    COPY = source_config
)


説明


CREATE TEXT SEARCH CONFIGURATIONは新しいテキスト検索設定を作成します。
テキスト検索設定は、文字列をトークンに分割するためのテキスト検索パーサを指定すると共に、どのトークンを検索対象とするかを決定するために使用する辞書を特定します。
  


パーサのみが指定された場合、新しいテキスト検索設定の初期状態では、トークン型と辞書との対応付けが存在しません。
そのため、すべての単語が無視されます。
この設定を実用できるようにするためには、後でALTER TEXT SEARCH CONFIGURATIONコマンドを使用して、対応付けを作成しなければなりません。
この他に、既存のテキスト検索設定を複製することも可能です。
  


スキーマ名が指定された場合、テキスト検索設定は指定されたスキーマ内に作成されます。
そうでなければ、現在のスキーマ内に作成されます。
  


テキスト検索設定を定義したユーザが所有者になります。
  


詳細は12章全文検索を参照してください。
  

パラメータ
	name
	

作成するテキスト検索設定の名称です。
名前をスキーマ修飾することができます。
     

	parser_name
	

この設定で使用するテキスト検索パーサの名称です。
     

	source_config
	

複製するテキスト検索設定の名称です。
     




注釈


PARSERとCOPYオプションを同時に使用することはできません。
既存の設定が複製される場合は、パーサの設定も複製されるためです。
  

互換性


標準SQLにはCREATE TEXT SEARCH CONFIGURATION文はありません。
  

関連項目
ALTER TEXT SEARCH CONFIGURATION(7), DROP TEXT SEARCH CONFIGURATION(7)


名前
CREATE TEXT SEARCH DICTIONARY — 新しいテキスト検索辞書を定義する

概要

CREATE TEXT SEARCH DICTIONARY name (
    TEMPLATE = template
    [, option = value [, ... ]]
)


説明


CREATE TEXT SEARCH DICTIONARYは新しいテキスト検索辞書を作成します。
テキスト検索辞書は、検索の際に何を対象とし、何を対象としないのかについての方法を指定します。
実際に作業を行う関数を指定するテキスト検索テンプレートに、辞書は依存します。
通常辞書は、テンプレートの関数の動作の詳細を制御するいくつかのオプションを提供します。
  


スキーマ名が指定された場合、テキスト検索辞書は指定されたスキーマ内に作成されます。
そうでなければ、現在のスキーマ内に作成されます。
  


テキスト検索辞書を定義したユーザが所有者になります。
  


詳細は12章全文検索を参照してください。
  

パラメータ
	name
	

作成するテキスト検索辞書の名称です。
名前をスキーマ修飾することができます。
     

	template
	

この辞書の基本動作を定義するテキスト検索テンプレートの名称です。
     

	option
	

辞書に対して設定されるテンプレート固有のオプションの名称です。
     

	value
	

テンプレート固有のオプションで使用される値です。
値が単純な識別子または数値でない場合、引用符で括らなければなりません。
（常に引用符で括ることもできます。）
     





オプションは任意の順序で指定することができます。
  

例


次の例で示すコマンドは、非標準のストップワードのリストを持つ、雪だるま式に増加する辞書を作成します。
  

CREATE TEXT SEARCH DICTIONARY my_russian (
    template = snowball,
    language = russian,
    stopwords = myrussian
);


互換性


標準SQLにはCREATE TEXT SEARCH DICTIONARY文はありません。
  

関連項目
ALTER TEXT SEARCH DICTIONARY(7), DROP TEXT SEARCH DICTIONARY(7)


名前
CREATE TEXT SEARCH PARSER — 新しいテキスト検索パーサを定義する

概要

CREATE TEXT SEARCH PARSER name (
    START = start_function ,
    GETTOKEN = gettoken_function ,
    END = end_function ,
    LEXTYPES = lextypes_function
    [, HEADLINE = headline_function ]
)


説明


CREATE TEXT SEARCH PARSERは新しいテキスト検索パーサを作成します。
テキスト検索パーサは、テキスト文字列をトークンに分割し、トークンに型（カテゴリ）を割り当てる方法を定義します。
パーサ自体は特別有用なものではありませんが、検索するためには、数個のテキスト検索辞書と共にテキスト検索設定と関連付けされなければなりません。
  


スキーマ名が指定された場合、テキスト検索パーサは指定されたスキーマ内に作成されます。
そうでなければ、現在のスキーマに作成されます。
  


CREATE TEXT SEARCH PARSERを使用するには、スーパーユーザでなければなりません。
（おかしなテキスト検索パーサ定義はサーバを混乱させ、クラッシュさせる可能性があるため、この制限があります。）
  


詳細は12章全文検索を参照してください。
  

パラメータ
	name
	

作成するテキスト検索パーサの名称です。
この名前はスキーマ修飾することができます。
     

	start_function
	

パーサの開始関数の名称です。
     

	gettoken_function
	

次トークンを取り出すパーサの関数の名称です。
     

	end_function
	

パーサの終了関数の名称です。
     

	lextypes_function
	

パーサのLEXTYPE関数（生成するトークン型集合に関する情報を返す関数）の名称です。
     

	headline_function
	

パーサの見出し関数（トークン集合を要約する関数）の名称です。
     





関数名は必要に応じてスキーマ修飾可能です。
各種関数の引数リストは事前に決められているため、引数型の指定はありません。
見出し関数以外の関数はすべて必要です。
  


引数は、上で示した順序だけではなく、任意の順序で記述することができます。
  

互換性


標準SQLにはCREATE TEXT SEARCH PARSER文はありません。
  

関連項目
ALTER TEXT SEARCH PARSER(7), DROP TEXT SEARCH PARSER(7)


名前
CREATE TEXT SEARCH TEMPLATE — 新しいテキスト検索テンプレートを定義する

概要

CREATE TEXT SEARCH TEMPLATE name (
    [ INIT = init_function , ]
    LEXIZE = lexize_function
)


説明


CREATE TEXT SEARCH TEMPLATEは新しいテキスト検索テンプレートを作成します。
テキスト検索テンプレートは、テキスト検索辞書を実装する関数を定義します。
テンプレートはそれ自体では有用ではありませんが、使用される辞書として実体化されなければなりません。
通常この辞書はテンプレート関数に渡すパラメータを指定します。
  


スキーマ名が指定された場合、テキスト検索テンプレートは指定したスキーマに作成されます。
そうでなければ、現在のスキーマに作成されます。
  


CREATE TEXT SEARCH TEMPLATEを使用するには、スーパーユーザでなければなりません。
おかしなテキスト検索テンプレート定義はサーバを混乱させ、クラッシュさせる可能性があるため、この制限があります。
辞書とテンプレートを分離させた理由は、テンプレートにより辞書定義の「安全でない」側面を隠蔽化することです。
辞書を定義する時に設定できるパラメータは、非特権ユーザが設定しても安全なものです。
このため、辞書の作成では特権操作は必要ありません。
  


詳細は12章全文検索を参照してください。
  

パラメータ
	name
	

作成するテキスト検索テンプレートの名称です。
この名前はスキーマ修飾することができます。
     

	init_function
	

テンプレートの初期化関数の名称です。
     

	lexize_function
	

テンプレートの字句化関数の名称です。
     





関数名は必要に応じてスキーマ修飾可能です。
各種関数の引数リストは事前に定められているので、引数型の指定はありません。
字句化関数は必須ですが、初期化関数は省略可能です。
  


引数は、上で示した順序だけではなく、任意の順序で記述することができます。
  

互換性


標準SQLにはCREATE TEXT SEARCH TEMPLATE文はありません。
  

関連項目
ALTER TEXT SEARCH TEMPLATE(7), DROP TEXT SEARCH TEMPLATE(7)


名前
CREATE TRANSFORM — 新しい変換を定義する

概要

CREATE [ OR REPLACE ] TRANSFORM FOR type_name LANGUAGE lang_name (
    FROM SQL WITH FUNCTION from_sql_function_name [ (argument_type [, ...]) ],
    TO SQL WITH FUNCTION to_sql_function_name [ (argument_type [, ...]) ]
);


説明


CREATE TRANSFORMは新しい変換を定義します。
CREATE OR REPLACE TRANSFORMは新しい変換を作成するか、あるいは既存の変換を置換します。
  


変換はデータ型を手続き言語にどのように適合させるかを定義します。
例えばhstore型を使ってPL/Pythonの関数を書くとき、PL/Pythonはhstoreの値をPythonの環境でどのように表現するか、事前の知識がありません。
言語の実装は通常、デフォルトでテキスト表現を使いますが、これは例えば連想配列やリストの方がより適切な場合には不便です。
  


変換では次の2つの関数を指定します。
   
	

「from SQL」関数では、型をSQL環境から言語へと変換します。
この関数は、その言語で記述された関数の引数で呼び出されます。
     

	

「to SQL」関数では、型を言語からSQL環境へと変換します。
この関数は、その言語で記述された関数の戻り値で呼び出されます。
     





これらの関数を両方とも提供する必要はありません。
一方が指定されなければ、必要な時はその言語独自のデフォルトの動作が使われます。
（ある方向への変換がまったく起きないようにするためには、必ずエラーを発生させる変換関数を作成することもできます。）
  


変換を作成するには、その型を所有し、そのUSAGE権限があること、言語のUSAGE権限があること、from-SQL関数あるいはto-SQL関数を指定する場合は、それらを所有し、そのEXECUTE権限があることが必要です。
  

パラメータ
	type_name
	

変換の対象となるデータ型の名前です。
      

	lang_name
	

変換の対象となる言語の名前です。
      

	from_sql_function_name[(argument_type [, ...])]
	

型をSQL環境から言語に変換する関数の名前です。
internal型の引数を1つとり、internal型の値を戻します。
実引数は変換される型になり、関数はそうであるとしてコーディングされます。
（しかし、少なくとも1つのinternal型の引数がなければ、internalを戻すSQLレベルの関数を宣言することができません。）
実際の戻り値は、言語の実装に依存したものになります。
引数リストが指定されない場合、関数名はスキーマ内で一意でなければなりません。
      

	to_sql_function_name[(argument_type [, ...])]
	

型を言語からSQL環境に変換する関数の名前です。
internal型の引数を1つとり、変換の型であるデータ型を戻します。
実引数の値は言語の実装に依存したものになります。
引数リストが指定されない場合、関数名はスキーマ内で一意でなければなりません。
      




注釈


変換を削除するにはDROP TRANSFORMを使います。
  

例


hstore型で言語plpython3uの変換を作成するため、まず以下のように型と言語を設定します。


CREATE TYPE hstore ...;

CREATE EXTENSION plpython3u;



次に必要な関数を作成します。


CREATE FUNCTION hstore_to_plpython(val internal) RETURNS internal
LANGUAGE C STRICT IMMUTABLE
AS ...;

CREATE FUNCTION plpython_to_hstore(val internal) RETURNS hstore
LANGUAGE C STRICT IMMUTABLE
AS ...;



そして最後に、それらを互いに接続する変換を以下のように作成します。


CREATE TRANSFORM FOR hstore LANGUAGE plpython3u (
    FROM SQL WITH FUNCTION hstore_to_plpython(internal),
    TO SQL WITH FUNCTION plpython_to_hstore(internal)
);



現実には、これらのコマンドは拡張の中にまとめられているでしょう。
  


contribの下には変換を提供するいくつかの拡張が含まれており、それらは現実世界での例となります。
  

互換性


この構文のCREATE TRANSFORMはPostgreSQL™の拡張です。
標準SQLにはCREATE TRANSFORMコマンドがありますが、それはデータ型をクライアントの言語に適合させるためのものです。
その使用法はPostgreSQL™ではサポートされていません。
  

関連項目

   CREATE FUNCTION(7),
   CREATE LANGUAGE(7),
   CREATE TYPE(7),
   DROP TRANSFORM(7)
  



名前
CREATE TRIGGER — 新しいトリガを定義する

概要

CREATE [ OR REPLACE ] [ CONSTRAINT ] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event [ OR ... ] }
    ON table_name
    [ FROM referenced_table_name ]
    [ NOT DEFERRABLE | [ DEFERRABLE ] [ INITIALLY IMMEDIATE | INITIALLY DEFERRED ] ]
    [ REFERENCING { { OLD | NEW } TABLE [ AS ] transition_relation_name } [ ... ] ]
    [ FOR [ EACH ] { ROW | STATEMENT } ]
    [ WHEN ( condition ) ]
    EXECUTE { FUNCTION | PROCEDURE } function_name ( arguments )


ここでeventは以下の一つです。

    INSERT
    UPDATE [ OF column_name [, ... ] ]
    DELETE
    TRUNCATE


説明


CREATE TRIGGERは新しいトリガを作成します。
CREATE OR REPLACE TRIGGERは新しいトリガを作成、または、既存のトリガを置き換えます。
作成したトリガは指定したテーブル、ビューまたは外部テーブルと関連付けられ、そのテーブルに特定の操作が行われた時に指定した関数function_nameを実行します。
  


既存トリガの現在の定義を置き換えるには、既存のトリガ名と親テーブルを指定してCREATE OR REPLACE TRIGGERを使用してください。
その他の属性はすべて置き換えられます。
  


トリガでは、起動のタイミングとして、行への操作が開始される前（制約条件のチェックとINSERT、UPDATEまたはDELETEが行われる前）、操作が完了した後（制約条件がチェックされ、INSERT、UPDATEまたはDELETEが完了した後）、操作の代わり（ビューにおける挿入、更新、削除の場合）のいずれかを指定することができます。
イベントの前または代わりにトリガが起動する場合、そのトリガは対象行に対する操作を省略したり、（INSERTとUPDATEの操作時のみ）挿入する行を変更したりすることができます。
イベントの後にトリガが起動する場合、他のトリガの影響を含む全ての変更が、トリガに対して「可視」状態となります。
  


FOR EACH ROW付きのトリガは、その操作によって変更される行ごとに1回ずつ呼び出されます。
例えば、10行に影響を与えるDELETE操作は、対象リレーション上のすべてのON DELETEトリガを、削除される各行について1回ずつ、個別に10回呼び出すことになります。
反対に、FOR EACH STATEMENT付きのトリガは、その操作によって何行変更されたかにかかわらず、任意の操作ごとに1回のみ実行されます
（変更対象が0行となる操作でも、適用できるすべてのFOR EACH STATEMENTトリガが実行されます）。
  


トリガイベントのINSTEAD OFとして発行されるように指定されたトリガはFOR EACH ROW印を付けなければなりません。
またビュー上にのみ定義することができます。
ビューに対するBEFOREおよびAFTERトリガはFOR EACH STATEMENT印を付けなければなりません。
  


さらに、FOR EACH STATEMENTのみですが、トリガをTRUNCATEに対して発行するように定義することができます。
  


以下の表にどの種類のトリガがテーブル、ビュー、外部テーブルに対して使用できるかをまとめます。
  
	いつ	イベント	行レベル	文レベル
	BEFORE	INSERT/UPDATE/DELETE	テーブルおよび外部テーブル	テーブル、ビューおよび外部テーブル
	TRUNCATE	—	テーブルおよび外部テーブル
	AFTER	INSERT/UPDATE/DELETE	テーブルおよび外部テーブル	テーブル、ビューおよび外部テーブル
	TRUNCATE	—	テーブルおよび外部テーブル
	INSTEAD OF	INSERT/UPDATE/DELETE	ビュー	—
	TRUNCATE	—	—




またトリガ定義では、論理値のWHEN条件を指定することができ、これによってトリガを発行すべきかどうかが判定されます。
行レベルのトリガでは、WHEN条件は行の列の古い値、新しい値、またはその両方で検証することができます。
文レベルのトリガでもWHEN条件を持たせることができますが、条件としてテーブル内のどの値も参照することができませんので、この機能はあまり有用ではありません。
  


同一イベントに同じ種類の複数のトリガが定義された場合、名前のアルファベット順で実行されます。
  


CONSTRAINTオプションが指定された場合、このコマンドは制約トリガを作成します。


これは、SET CONSTRAINTSを使用してトリガを発行するタイミングを調整することができるという点を除き、通常のトリガと同じです。
制約トリガは（外部テーブルではない）普通のテーブルのAFTER ROWトリガでなければなりません。
トリガイベントを引き起こした文の最後、またはそれを含むトランザクションの最後のいずれかで発行することができます。
後者の場合、遅延と呼ばれます。
SET CONSTRAINTSを使用することで、強制的に待機中の遅延トリガの発行を即座に行わせることができます。
制約トリガは、実装する制約に違反した時に例外を発生するものと想定されています。
  


REFERENCINGオプションは遷移リレーションの収集を有効にします。
遷移リレーションとは現在のSQL文によって挿入、削除または修正されたすべての行を含む行集合です。
この機能により、トリガはSQL文によって行われたことを、一度に1行ずつだけではなく、全体のビューとして参照することができます。
このオプションは、AFTERトリガについては（外部テーブルではない）通常のテーブルに対してのみ使うことができます。
トリガは制約トリガであってはなりません。
また、トリガがUPDATEトリガの場合、このオプションを使う時にはcolumn_nameのリストを指定してはいけません。
OLD TABLEは一度だけ指定することができ、UPDATEまたはDELETEのときに実行されるトリガにのみ指定できます。
これは文によって更新または削除されるすべての行の更新前イメージを含む遷移リレーションを作成します。
同様に、NEW TABLEは一度だけ指定することができ、UPDATEまたはINSERTのときに実行されるトリガにのみ指定できます。
これは、文によって更新または挿入されるすべての行の更新後イメージを含む遷移リレーションを作成します。
  


SELECTはまったく行を変更しないため、SELECTトリガを作成することはできません。
SELECTトリガが必要に見える問題には、ルールやビューが現実的な解決策を提供できるでしょう。
  


トリガに関するより詳細については、37章トリガを参照してください。
  

パラメータ
	name
	

新しいトリガに付与する名前です。
同じテーブルの他のトリガと異なる名前にする必要があります。
名前をスキーマ修飾することはできません。
トリガはそのテーブルのスキーマを引き継ぎます。
制約トリガの場合、この名前がSET CONSTRAINTSを使用してトリガの動作を変更する時に使用されます。
     

	BEFORE, AFTER, INSTEAD OF
	

関数の呼び出しをイベントの前に行うか後に行うか、それとも代替として行うかを決定します。
制約トリガではAFTERとしてしか指定することができません。
     

	event
	

INSERT、UPDATE、DELETE、TRUNCATEのいずれかが入ります。
このパラメータは、トリガを起動するイベントを指定します。
遷移リレーションが要求される場合を除き、ORを使用して、複数のイベントを指定することができます。
     


UPDATEイベントでは、以下の構文を使用して列リストを指定することができます。


UPDATE OF column_name1 [, column_name2 ... ]



このトリガは、UPDATEコマンドの対象として列挙された列のいずれか少なくとも1つの列が指定された場合に、もしくは列挙された列の1つがUPDATEの対象の列に依存する生成列である場合に、発行されます。
     


INSTEAD OF UPDATEイベントでは列リストを使用できません。
遷移リレーションを要求する場合も列リストを指定することはできません。
     

	table_name
	

トリガを作成するテーブル、ビューまたは外部テーブルの名前です（スキーマ修飾名も可）。
     

	referenced_table_name
	

制約で参照される他のテーブルの名前（スキーマ修飾可）です。
このオプションは外部キー制約で使用されるものであり、一般利用を推奨しません。
これは制約トリガでのみ指定することができます。
     

	DEFERRABLE, NOT DEFERRABLE, INITIALLY IMMEDIATE, INITIALLY DEFERRED
	

トリガのデフォルトのタイミングです。
これらの制約オプションについてはCREATE TABLE(7)文書を参照してください。
これは制約トリガでのみ指定することができます。
     

	REFERENCING
	

このキーワードは、トリガの文の遷移リレーションへのアクセスを提供する1つまたは2つのリレーション名の宣言の直前に起きます。
     

	OLD TABLE, NEW TABLE
	

この句は、それに続くリレーション名が更新前イメージの遷移リレーションなのか、更新後イメージの遷移リレーションなのかを示します。
     

	transition_relation_name
	

この遷移リレーションについて、トリガ内で使用される（修飾されていない）名前です。
     

	FOR EACH ROW, FOR EACH STATEMENT
	

このパラメータは、トリガ関数を、トリガイベントによって影響を受ける行ごとに1回起動するか、SQL文ごとに1回のみ起動するかを指定します。
どちらも指定されない場合は、FOR EACH STATEMENTがデフォルトです。
制約トリガはFOR EACH ROWのみ指定することができます。
     

	condition
	

トリガ関数を実際に実行するか否かを決定する論理式です。
WHENが指定された場合、conditionがtrueを返す場合のみ関数が呼び出されます。
FOR EACH ROWトリガでは、WHEN条件で、それぞれOLD.column_name、NEW.column_nameと記述することで、古い行の値、新しい行の値、またはその両方の列を参照することができます。
当然ながらINSERTトリガではOLDを参照することはできませんし、DELETEトリガではNEWを参照することはできません。
     
INSTEAD OFトリガはWHEN条件をサポートしません。
     


現時点ではWHEN条件に副問い合わせを含めることはできません。
     


制約トリガでは、WHEN条件の評価は遅延されず、行の更新操作が行われた直後に発生することに注意してください。
この条件が真と評価されなかった場合、トリガは遅延実行用のキューに入りません。
     

	function_name
	

ユーザが提供する関数です。この関数は、引数を取らずtrigger型を返すよう定義されます。トリガが起動した時に実行されます。
     


CREATE TRIGGERの構文では、キーワードFUNCTIONとPROCEDUREは等価ですが、参照されている関数はどちらの場合でも関数でなければならず、プロシージャであってはなりません。
ここでキーワードPROCEDUREを使うことは、歴史的なものであり廃止予定です。
     

	arguments
	

トリガ実行時に関数に渡される引数をカンマで区切ったリストで、省略可能です。
引数として指定するのは、リテラル文字列定数です。
単純な名前および数値定数を記述できますが、全て文字列に変換されます。
関数内でこれらの引数にアクセスする方法について調べるためには、トリガ関数を実装した言語の説明を参照してください。
通常の関数引数とは異なる場合があります。
     




注釈


テーブルに対してトリガを作成もしくは変更するには、ユーザがそのテーブルに対しTRIGGER権限を持っている必要があります。
またユーザはトリガ関数に対しEXECUTE権限を持たなければなりません。
  


トリガを削除するためにはDROP TRIGGERを使用してください。
  


パーティションテーブルに行レベルのトリガを作ると、存在するパーティションすべてに同一の「クローン」トリガがつくられます。そして、後から作られたり追加されるパーティションも同一のトリガを含みます。
子パーティションに名前が衝突するトリガがすでにある場合には、CREATE OR REPLACE
 TRIGGERによってそのトリガをクローントリガで置き換えない限りエラーになります。
パーティションが親から切り離された場合、クローントリガは削除されます。
  


列指定のトリガ（UPDATE OF column_name構文で定義されたトリガ）は、列挙された列のいずれかがUPDATEコマンドのSETリスト内に対象として指定された場合に発行されます。
BEFORE UPDATEトリガにより行の内容になされた変更は考慮されないため、トリガが発行されない場合であっても、列の値が変更されることはあります。
反対に、UPDATE ... SET x = x ...のようなコマンドは、列の値が変更されませんが、x列に対するトリガが発行されます。
  


BEFOREトリガにおいてWHEN条件は関数が実行される、またはされそうな直前に評価されます。
このためWHENの使用はトリガ関数の先頭で同一の条件を試験することと実質的に違いはありません。
この条件で確認できるNEW行が現在の値であり、それまでのトリガで変更されている可能性があることに、特に注意して下さい。
またBEFOREトリガのWHEN条件では、NEW行のシステム列(ctidなど)はまだ設定されていないので、検査することができません。
  


AFTERトリガにおいて、WHEN条件は行の更新を行った直後に評価され、文の最後でトリガを発行するためにイベントを保持すべきかどうかを決定します。
このためAFTERトリガのWHEN条件は真を返さない場合、イベントを保持する必要もありませんし、文の最後の行を再度取り出す必要もありません。
これにより、トリガをわずかな行のみに対して発行する必要がある場合、多くの行を変更する文を非常に高速にすることができます。
  


場合によっては1つのSQLコマンドが2種類以上のトリガを発行することがあります。
例えば、ON CONFLICT DO UPDATE句のあるINSERTでは、挿入と更新の両方の操作が発生するかもしれないので、必要に応じて両方の種類のトリガを発行します。
トリガに提供される遷移リレーションはトリガのイベント種類毎に個別のものです。
従って、INSERTトリガには挿入された行だけが見え、一方でUPDATEトリガには更新された行だけが見えます。
  


ON UPDATE CASCADEやON DELETE SET NULLなど外部キーを強制する動作によって起こる行の更新や削除は、それを起こしたSQLコマンドの一部であるとみなされます（このような動作は決して遅延実行されないことに注意してください）。
影響を受けたテーブルの関連するトリガが発行されるため、これはSQLコマンドの種類と直接には一致しないトリガが発行される別のケースとなります。
単純な場合、遷移リレーションを要求するトリガは、元となる1つのSQLコマンドによって起こされたテーブルへのすべての変更を、一つの遷移リレーションとして見ることになります。
しかし、遷移リレーションを要求するAFTER ROWトリガの存在により、一つのSQLコマンドによって発生する外部キーを強制する動作が複数のステップに分割され、各ステップがそれぞれの遷移リレーションを持つという場合もあります。
そのような場合、すべての文レベルのトリガは1つの遷移リレーションの集合の作成に対して1度ずつ呼び出され、それによりトリガが遷移リレーション内の変更された行をちょうど一度だけ見ることを確実にしています。
  


ビューに付けられている文レベルのトリガは、ビューに対する操作が行レベルのINSTEAD OFトリガによって取り扱われた時にのみ発行されます。
ビューに対する操作がINSTEAD OFルールによって取り扱われる場合は、ビューを指定した元の文の代わりに、そのルールが出力した文が実行されます。
それにより、発行されるトリガは、置き換えられた文によって指定されたテーブルに付けられたトリガとなります。
同様に、ビューが自動更新可能ならば、操作は、ビューの基底テーブル上の操作に自動的に書き換えられる文によって取り扱われます。
その結果、発行されるのは基底テーブルの文レベルのトリガとなります。
  


パーティションテーブルや継承した子テーブルがあるテーブルを変更したとき、明示的に指定されたテーブルに付けられている文レベルのトリガが発行されますが、パーティションや子テーブルに付けられている文レベルのトリガは発行されません。
対照的に、問い合わせ中で明示的に指定されていなくても、行レベルのトリガはすべての変更されたパーティションや子テーブルに対して発行されます。
REFERENCING句で指定された遷移リレーションのある文レベルのトリガが定義されている場合、行の変更前イメージおよび変更後イメージは、変更されたすべてのパーティションおよび子テーブルから見ることができます。
継承された子テーブルの場合、行イメージはトリガが付けられたテーブルに存在する列だけしか含みません。
  


現在のところ、遷移リレーションのある行レベルトリガは、パーティションや継承した子テーブルには定義できません。
また、パーティションテーブルのトリガはINSTEAD OFとすることはできません。
  


現在のところ、OR REPLACEオプションは制約トリガに対してはサポートされていません。
  


トリガのテーブルに対してすでに更新動作を実行したトランザクション内で、既存のトリガを置き換えることはお勧めしません。
既に決定されたトリガ発行、もしくは発行の判断のうち既に決定された部分は再考されることはありませんので、結果は驚くべきものになるかもしれません。
  


自身でトリガのコードを書かなくても、よくある問題を解決するために使うことのできる組み込みのトリガ関数が多少あります。「トリガ関数」を参照してください。
  

例


テーブルaccountsの行が更新される直前に関数check_account_updateを実行します。



CREATE TRIGGER check_update
    BEFORE UPDATE ON accounts
    FOR EACH ROW
    EXECUTE FUNCTION check_account_update();




UPDATEコマンドでbalance列が対象として指定されている場合にのみ関数を実行するよう、そのトリガ定義を修正します。



CREATE OR REPLACE TRIGGER check_update
    BEFORE UPDATE OF balance ON accounts
    FOR EACH ROW
    EXECUTE FUNCTION check_account_update();




以下の構文では、列balanceが実際に変更された場合のみ関数が実行されます。



CREATE TRIGGER check_update
    BEFORE UPDATE ON accounts
    FOR EACH ROW
    WHEN (OLD.balance IS DISTINCT FROM NEW.balance)
    EXECUTE FUNCTION check_account_update();




何か変更された場合のみにaccountsの更新のログを取る関数を呼び出します。



CREATE TRIGGER log_update
    AFTER UPDATE ON accounts
    FOR EACH ROW
    WHEN (OLD.* IS DISTINCT FROM NEW.*)
    EXECUTE FUNCTION log_account_update();




ビューの背後にあるテーブルに行を挿入するために、各行に対して関数view_insert_rowを実行します。



CREATE TRIGGER view_insert
    INSTEAD OF INSERT ON my_view
    FOR EACH ROW
    EXECUTE FUNCTION view_insert_row();




各文に対して関数check_transfer_balances_to_zeroを実行して、transferの行が相殺してゼロになることを確認します。



CREATE TRIGGER transfer_insert
    AFTER INSERT ON transfer
    REFERENCING NEW TABLE AS inserted
    FOR EACH STATEMENT
    EXECUTE FUNCTION check_transfer_balances_to_zero();




各行に対して関数check_matching_pairsを実行して、対応する組み合わせに対して同じ時に（同じ文により）変更されていることを確認します。



CREATE TRIGGER paired_items_update
    AFTER UPDATE ON paired_items
    REFERENCING NEW TABLE AS newtab OLD TABLE AS oldtab
    FOR EACH ROW
    EXECUTE FUNCTION check_matching_pairs();


  


「完全なトリガの例」には、C言語で作成されたトリガ関数の完全な例があります。
  

互換性


PostgreSQL™におけるCREATE TRIGGER文は標準SQLのサブセットを実装したものです。
現在は、PostgreSQL™には、次の機能がありません。

   
	

AFTERトリガの遷移テーブル名はREFERENCING句を使って標準SQLの方法で指定できますが、FOR EACH ROWトリガで使用される行変数はREFERENCING句で指定することができません。
それはトリガ関数が書かれる言語に依存する方法で利用できますが、各言語によって決まった方法になります。
一部の言語は、REFERENCING句がOLD ROW AS OLD NEW ROW AS NEWとなっているかのように動作します。
     

	

標準SQLでは列を指定したUPDATEトリガでも遷移テーブルを使うことができますが、その場合遷移テーブルで見ることができる行の集合はトリガの列リストに依存します。
これは現在のところPostgreSQL™では実装されていません。
     

	

PostgreSQL™では、トリガ動作として、ユーザ定義関数の実行しか認めていません。
標準では、多数の他のSQLコマンドを実行させることができます。
例えば、トリガ動作としてCREATE TABLEを実行させることも可能です。
この制限を回避する方法は簡単です。必要なコマンドを実行するユーザ定義関数を作成すればよいのです。
     




  


SQLでは、複数のトリガは、作成時刻順に起動すべきであると規定しています。
PostgreSQL™では名前順です。この方が便利だと考えられるからです。
  


SQLでは、数珠繋ぎの削除に対するBEFORE DELETEは、数珠繋ぎのDELETEが完了した後に発行するものと規定しています。
PostgreSQL™では、BEFORE DELETEは常に削除操作よりも前に、それも起点となる削除よりも前に行われます。
この方がより一貫性があると考えられいます。
また、参照整合性に関する動作により引き起こされる更新を実行している間に、BEFOREトリガが行を更新し、更新を妨げるような場合の動作も標準に従わないものがあります。
これは、制約違反となるかもしれませんし、参照整合性制約に合わないデータを格納してしまうかもしれません。
  


ORを使用して単一トリガに複数の動作を指定する機能は、標準SQLに対するPostgreSQL™の拡張です。
  


TRUNCATEでのトリガ発行機能、および、ビューに対する文レベルのトリガの定義機能は標準SQLに対するPostgreSQL™の拡張です。
  


CREATE CONSTRAINT TRIGGERは標準SQLに対するPostgreSQL™の拡張です。
OR REPLACEオプションも同じです。
  

関連項目
ALTER TRIGGER(7), DROP TRIGGER(7), CREATE FUNCTION(7), SET CONSTRAINTS(7)


名前
CREATE TYPE — 新しいデータ型を定義する

概要

CREATE TYPE name AS
    ( [ attribute_name data_type [ COLLATE collation ] [, ... ] ] )

CREATE TYPE name AS ENUM
    ( [ 'label' [, ... ] ] )

CREATE TYPE name AS RANGE (
    SUBTYPE = subtype
    [ , SUBTYPE_OPCLASS = subtype_operator_class ]
    [ , COLLATION = collation ]
    [ , CANONICAL = canonical_function ]
    [ , SUBTYPE_DIFF = subtype_diff_function ]
    [ , MULTIRANGE_TYPE_NAME = multirange_type_name ]
)

CREATE TYPE name (
    INPUT = input_function,
    OUTPUT = output_function
    [ , RECEIVE = receive_function ]
    [ , SEND = send_function ]
    [ , TYPMOD_IN = type_modifier_input_function ]
    [ , TYPMOD_OUT = type_modifier_output_function ]
    [ , ANALYZE = analyze_function ]
    [ , SUBSCRIPT = subscript_function ]
    [ , INTERNALLENGTH = { internallength | VARIABLE } ]
    [ , PASSEDBYVALUE ]
    [ , ALIGNMENT = alignment ]
    [ , STORAGE = storage ]
    [ , LIKE = like_type ]
    [ , CATEGORY = category ]
    [ , PREFERRED = preferred ]
    [ , DEFAULT = default ]
    [ , ELEMENT = element ]
    [ , DELIMITER = delimiter ]
    [ , COLLATABLE = collatable ]
)

CREATE TYPE name


説明


CREATE TYPEは、現在のデータベースで使用できる新しいデータ型を登録します。
型を定義したユーザがその所有者となります。
  


スキーマ名が与えられている場合、型は指定されたスキーマに作成されます。
スキーマ名がなければ、その型は現在のスキーマに作成されます。
型名は、同じスキーマにある既存の型もしくはドメインとは、異なる名前にする必要があります。
（さらに、テーブルはデータ型と関連しているため、データ型名は同じスキーマのテーブル名とも競合しないようにしてください。）
  


上の構文概要に示すように、CREATE TYPEには５つの構文があります。
これらはそれぞれ、複合型, 列挙型、範囲型、基本型、シェル型を作成します。
これらの内最初の４個についてはここで順番に説明します。
シェル型は、後で定義される型用の単なるプレースホルダで、型名以外のパラメータをつけずにCREATE TYPEを実行することで作成されます。
シェル型は、範囲型と基本型を作成するときの前方参照として必要となるもので、それぞれの節で説明します。
  
複合型


CREATE TYPEの最初の構文を使用すると、複合型を作成できます。
複合型は、属性名およびデータ型のリストにより指定されます。
データ型の照合順序が設定可能である場合、属性の照合順序も指定することができます。
複合型は本質的にはテーブルの行型と同じです。
しかし、型を定義することだけが必要なのであれば、CREATE TYPEを使用することで、実際のテーブルを作成する必要がなくなります。
スタンドアローンの複合型は、例えば関数の引数や戻り値の型として有用です。
  


複合型を作成するためには、すべての属性型に対してUSAGE権限を持たなければなりません。
  

列挙型


CREATE TYPEの2つ目の構文を使用すると、「列挙型」で説明する列挙型（enum）を作成します。
列挙型は、引用符付きのラベルのリストを取ります。
ラベルはNAMEDATALEN（PostgreSQL™の標準のビルドでは64バイト）バイトよりも少ない長さでなければなりません。
(ラベルのない列挙型を作成できますが、ALTER TYPEを使ってラベルを少なくとも1つ追加するまでは、そのような型は値を保持するのに使えません。)
   

範囲型


CREATE TYPEの三番目の構文は、「範囲型」で説明する範囲型を新規に作成します。
   


範囲型のsubtypeは、関連する（範囲型の値を順序を決定するための）b-tree演算子クラスを持つ任意の型を取ることができます。
通常、派生元型のデフォルトのb-tree演算子クラスが順序を決定するために使用されます。
デフォルト以外の演算子クラスを使用するためには、subtype_opclassでその名前を指定してください。
派生元型が照合順序変更可能であり、範囲の順序付けでデフォルト以外の照合順序を使用したい場合は、collationオプションで使用したい照合順序を指定してください。
   


canonical関数(省略可能)は、定義する範囲型の引数を１つ取り、同じ型の値を返さなければなりません。
これは適切な時に範囲値を正規形式に変換するために使用されます。
詳細については「新しい範囲型の定義」を参照してください。
canonical関数を作成することは多少厄介です、というのは、範囲型を定義できるようになる前に定義されている必要があるからです。
このためには、まず、名前と所有者以外の属性を持たないプレースホルダであるシェル型を作成しなければなりません。
これは、他にパラメータをつけずにCREATE TYPE nameを実行することで行われます。
その後、このシェル型を引数と結果として使用する関数を宣言することができます。
最後に同じ名前を用いて範囲型を宣言することができます。
これは自動的にシェル型の項目を有効な範囲型に置き換えます。
   


subtype_diff関数(省略可能)は、subtype型の２つの値を引数として取り、与えられた２つの値の差異を表すdouble precision型を返さなければなりません。
これは省略することができますが、提供することでその範囲型の列に対するGiSTインデックスの効率を大きく向上させることができます。
詳細については「新しい範囲型の定義」を参照してください。
   


multirange_type_nameパラメータ(省略可能)は、対応する多重範囲型の名前を指定します。
指定されなければ、この名前は自動的に以下のように選ばれます。
範囲型の名前が部分文字列rangeを含んでいれば、多重範囲型の名前は、範囲型の名前における部分文字列rangeをmultirangeで置き換えることで作られます。
そうでなければ、多重範囲型の名前は範囲型の名前の末尾に_multirangeを追加することで作られます。
   

基本型


CREATE TYPEの４つ目の構文を使用すると、基本型（スカラ型）を新しく作成できます。
新しい基本型を作成するにはスーパーユーザでなければなりません。
（エラーがある型定義が混乱を招き、サーバがクラッシュすることすらあるため、この制限がなされました。）
  


パラメータは、上述の順番である必要はなく、任意の順番で指定することができ、多くは省略可能です。
型を定義する前に、（CREATE FUNCTIONを用いて）2つ以上の関数を登録しておく必要があります。
サポート関数であるinput_functionとoutput_functionは必須です。
receive_function関数、send_function関数、type_modifier_input_function関数、type_modifier_output_function関数、analyze_function関数、およびsubscript_functionは省略可能です。
通常、これらの関数は、C言語やその他の低レベル言語で作成されなければなりません。
  


input_functionは、型のテキストによる外部表現を内部表現形式に変換するものであり、その型用に定義される演算子や関数で使用されます。
output_functionはこの逆の変換を行うものです。
入力関数は、1つのcstring型の引数、あるいは、cstring型、oid型、integer型という3つの引数を取るように宣言されます。
最初の引数にはC言語文字列の入力テキスト、2番目には型自体のOID（配列型の場合は例外で要素の型のOIDとなります）、3番目は、判明していれば対象列のtypmodを渡します
（不明な場合は-1を渡します）。
この入力関数では、データ型自身の値を返さなければなりません。
通常入力関数はSTRICTとして宣言しなければなりません。
そうしないと、NULLという入力値を読み取った時、NULLという最初のパラメータを持って呼び出されます。
この場合でもエラーを発生させるのでなければ、関数はNULLを返さなければなりません。
（こうした状況はほとんどの場合、ドメイン入力関数をサポートすることを意図しています。ドメイン入力関数ではNULL入力を拒絶しなければならない可能性があります。）
出力関数は、新しいデータ型の引数を1つ取るように宣言しなければなりません。
出力関数は、cstring型を返さなければなりません。
出力関数はNULL値に対して呼び出されることはありません。
  


receive_functionでは、型のバイナリによる外部表現を内部表現に変換します。この関数は省略可能です。
この関数が与えられない場合、この型ではバイナリ入力を行うことができません。
バイナリ表現の方法は、適度な可搬性を保ちつつ、内部表現への変換コストが小さくなるよう選択すべきです
（例えば標準の整数データ型は、外部バイナリ表現としてはネットワークバイトオーダーを使用し、内部表現ではマシン固有のバイトオーダーを使用します）。
この受信関数では、値が有効かどうかを判定するための適切な検査を行わなければなりません。
受信関数は、internal型の引数1つ、または、internal型とoid、integer型の3つの引数を取るように宣言されます。
最初の引数は受信したバイト文字列を保持するStringInfoバッファへのポインタ、省略可能な引数は、テキスト入力関数の説明と同じです。
受信関数は、データ型自体の値を返す必要があります。
通常受信関数はSTRICTとして宣言しなければなりません。
そうしないと、NULLという入力値を読み取った時、NULLという最初のパラメータを持って呼び出されます。
この場合でも関数はエラーを発生させるのでなければNULLを返さなければなりません。
（こうした状況はほとんどの場合、ドメイン受信関数をサポートすることを意図しています。ドメイン受信関数ではNULL入力を拒絶しなければならない可能性があります。）
同様に、send_functionは、内部表現からバイナリによる外部表現に変換します。この関数も省略可能です。
この関数が与えられない場合、この型ではバイナリ出力を行うことができません。
この送信関数は、新しいデータ型の引数1つを取るように宣言しなければなりません。
送信関数はbytea型を返さなければなりません。
送信関数はNULL値に対して呼び出されません。
  


ここで、新しいデータ型を作成する前に入力関数と出力関数を作成する必要があるのに、どのようにしてそれらの関数で新しいデータ型を戻り値や入力として宣言できるのか、疑問に思うかもしれません。
その答えは、まず型が最初にシェル型として定義されます。
これは名称と所有者以外の属性を持たないプレースホルダ型です。
これは、コマンドCREATE TYPE nameを他にパラメータをつけずに発行することで行われます。
この後、Cの入出力関数をこのシェル型を参照するように定義することができます。
最後に完全な定義を持ったCREATE TYPEによって、シェル型の項目が完全かつ有効な型定義に置き換わり、新しい型を普通に使用することができるようになります。
  


type_modifier_input_functionとtype_modifier_output_functionは必須ではありませんが、型が修飾子をサポートする場合は必要です。
修飾子とは、char(5)やnumeric(30,2)などの型宣言に付与されるオプションの制約です。
PostgreSQL™では、ユーザ定義型が1つ以上の整数定数または識別子を修飾子として取ることができます。
しかし、この情報はシステムカタログに格納される時に0以上の整数1つにまとめられるものでなければなりません。
type_modifier_input_functionには、cstring型配列の形で宣言された修飾子が渡されます。
その値について妥当性を検査しなければなりません（不当な場合はエラーとします）。
そして、正しい場合は、「typmod」列として格納される、0以上のinteger値を1つ返さなければなりません。
型がtype_modifier_input_functionを持たない場合、型修飾子は拒否されます。
type_modifier_output_functionは内部的な整数typmod値をユーザ側の表示に合わせて変換します。
この関数は型名に付与する正確な文字列となるcstring値を返さなければなりません。
たとえばnumeric用の関数では(30,2)を返すかもしれません。
デフォルトの表示用書式が保管されたtypmod整数値を括弧で括ったものと一致している場合は、type_modifier_output_functionを省略することができます。
  


オプションのanalyze_functionは、このデータ型の列に対する、型固有の統計情報の収集を行います。
その型用のデフォルトのB-tree演算子クラスがあれば、ANALYZEはデフォルトでは型の「等価」演算子と「小なり」演算子を使用して統計情報を集めようと試みます。
非スカラ型には、この振舞いはあまり適していません。
そのため、独自の解析関数を指定することで、この振舞いを上書きすることができます。
この解析関数は、internal型の引数を1つ取り、戻り値としてbooleanを返すように宣言する必要があります。
解析関数用のAPIの詳細は、src/include/commands/vacuum.hにあります。
  


オプションのsubscript_functionは、SQLコマンド内で指定されたデータ型に添字をつけることを許可します。
この関数を指定することで、指定されたデータ型が「真の」配列型とみなされる訳ではありません。たとえば、ARRAY[]生成の結果型の候補にはなりません。
ですが、その型の値に添字をつけることが、そこからデータを取り出す自然な表記法であるなら、その意味を定義するのにsubscript_functionを書くことができます。
添字関数はinternal型の引数を1つ取り、添字を実装しているメソッド(関数)の構造体へのポインタであるinternalの結果を返すよう宣言しなければなりません。
添字関数の詳細なAPIはsrc/include/nodes/subscripting.hにあります。
src/backend/utils/adt/arraysubs.cにある配列の実装やcontrib/hstore/hstore_subs.cにあるより単純なコードを読むのも有用かもしれません。
追加の情報は以下の配列型にあります。
  


新しい型の内部表現の詳細を理解しなければならないのは、これらのI/O関数とその型に関連して動作するユーザ定義の関数のみですが、内部表現には、PostgreSQL™に対し宣言しなければならない複数の属性値があります。
属性の中で最も重要なものはinternallengthです。
基本データ型は、internallengthに正の整数を指定して固定長として作成するだけでなく、internallengthにVARIABLEと設定し可変長として作成することもできます。
（内部的には、これはtyplenを-1に設定することで表現されます。）
全ての可変長型の内部表現は、型の値の全長を示す4バイトの整数値から始まらなければなりません。
（長さフィールドは多くの場合「TOAST」に記述されているようにエンコードされており、それに直接アクセスすることは賢明ではないことに注意してください。）
  


オプションのPASSEDBYVALUEフラグは、このデータ型の値が参照ではなく値によって渡されることを示します。
値によって渡される型は固定長でなければならず、その内部表現はDatum型のサイズ（4バイトのマシンもあれば8バイトのマシンもあります）を超えてはいけません。
  


alignmentパラメータは、そのデータ型の格納の際に必要な整列を指定します。
設定可能な値は、1、2、4、8バイト境界での整列です。
可変長の型は最低でも4の整列を持たなければならないことに注意してください。
最初の要素としてint4を持たなければならないからです。
  


storageパラメータを使用することで、可変長データ型を格納する際の戦略を選択することができます。
（固定長の型にはplainのみが使用できます。）
plainを指定すると、その型のデータは常にインラインで格納され、圧縮されません。
extendedを指定すると、システムはまず長いデータ値を圧縮しようとし、それでもまだ長過ぎる場合は値をメインテーブルの行から削除して移動します。
externalはメインテーブルから値を削除して移動することを許しますが、システムはデータを圧縮しようとしません。
mainはデータの圧縮を許しますが、できるだけ値をメインテーブルから削除しないようにします。
（行を収めるために他に方法がない場合にはメインテーブルから削除されてしまう可能性がありますが、extendedやexternalが指定されたアイテムよりも優先してメインテーブルに残されます。）
  


plainを除くすべてのstorageの値は、そのデータ型の関数が、「TOAST」および「TOASTの考慮」に記述されているようにtoastされた値を処理できることを暗示します。
その他の特定の値を指定するのは、TOAST可能なデータ型の列について、単にデフォルトのTOAST戦略を決めるだけです。
ユーザは個々の列についてALTER TABLE SET STORAGEを使って他の戦略を選択できます。
  


like_typeパラメータは、何らかの既存のデータ型から複製するという、データ型の基本表現プロパティを指定する、別の方法を提供します。
internallength、passedbyvalue、alignment、storageの値が指定された型から複製されます。
（通常は望ましくありませんが、LIKE句と一緒にこれらの値を指定することで、値を上書きすることも可能です。）
新しい型の低レベル実装にある流儀に従った既存の型を「移す」時に、この方法で表現を指定することが特に有用です。
  


categoryとpreferredパラメータは、あいまいな状況でどの暗黙的なキャストが適用されるかについての制御を補助するために使用することができます。
各データ型は単一のASCII文字で命名されるカテゴリに属しており、各型はそのカテゴリ内で「優先される（preferred）」か否かです。
オーバーロードされた関数または演算子の解決に、この規則が有用な場合には、パーサは優先される型へのキャストを優先します（ただし、同一のカテゴリ内の他の型からだけです）。
より詳細は10章型変換を参照してください。
他の型への、または、ほかの型からの暗黙的なキャストを持たない型では、これらの設定をデフォルトのままにしておくことで十分です。
しかし、暗黙的なキャストを持つ関連する型のグループでは、それらすべてを1つのカテゴリに属すものとし、「最も汎用的な」型の1つまたは2つをカテゴリ内で優先されるものとして選択することが有用となる場合が多くあります。
ユーザ定義型を、数値型や文字列型などの既存の組み込みカテゴリに追加する場合に、categoryパラメータは特に有用です。
しかし、完全にユーザ定義の新しい型カテゴリを作成することもできます。
そのようなカテゴリの命名には大文字以外の任意のASCII文字を選択してください。
  


ユーザがそのデータ型の列のデフォルトをNULL以外にしたい場合は、デフォルト値を指定することができます。
デフォルト値はDEFAULTキーワードで指定してください。
（この方法で指定されたデフォルト値を、特定の列に付与された、明示的なDEFAULT句によって上書きすることができます。）
  


データ型が固定長の配列型であることを示すには、ELEMENTキーワードを使用して配列要素の型を指定してください。
例えば、4バイト整数（int4）の配列を定義するには、ELEMENT = int4と指定してください。
より詳細は以下の配列型を参照してください。
  


この型による配列の外部形式における値間の区切り文字を示すために、delimiterで特定の文字を設定することができます。
デフォルトの区切り文字はカンマ（','）です。
この区切り文字は、配列要素の型に関係するものであり、配列型自体に関係するものでないことに注意してください。
  


論理型のcollatableパラメータ(省略可能)が真の場合、COLLATE句を使用することによって、型の列定義と式は照合順序情報を持つことができます。
照合順序情報を実際に使用するかどうかは、型に対する操作を行う関数実装に任されています。
照合順序を設定可能な型を作成することにより、これが自動的に行われることはありません。
  

配列型


ユーザ定義型が作成されると、PostgreSQL™は、自動的に関連する配列型を作成します。
その要素型の名前の前にアンダースコアを付け、必要に応じてNAMEDATALEN長より短くなるように切り詰められた名前になります。
（こうして付けられた名前が既存の型名と競合する場合、競合する名称がなくなるまでこの処理が繰り返されます。）
この暗黙的に作成される配列型は可変長で、組み込み入出力関数array_inとarray_outを使用します。
さらに、この型は、ユーザ定義型に対してシステムがARRAY[]のように構成時に使うものです。
配列型はその要素となる型の所有者とスキーマのなんらかの変更に追従し、また、要素となる型が削除された場合に削除されます。
   


「システムが自動的に配列型を正しく作成するのであれば、ELEMENTオプションはどうして存在するのだろう」と疑問に思うのも道理です。
ELEMENTが意味を持つ、主な場合は次のような条件を満たす固定長の型を作成する時です。
その条件とは、内部的に複数の同一の要素からなる配列となっていること、その配列に対して添字を指定して直接アクセスできること、加えて、今後作成する型全体に対する操作がどのようなものであっても、それらから直接アクセスできることです。
例えば、point型は、2つの浮動小数点だけから構成され、それらはpoint[0]およびpoint[1]を用いてアクセスすることができます。
この機能は、その内部形式が同一の固定長フィールドの正確な並びである、固定長の型でのみ動作することに注意してください。
歴史的な理由（明らかに間違いなのですが、変更するには遅すぎたため）により、固定長配列型への要素番号指定は0から始まり、可変長配列の場合は1から始まります。
   


SUBSCRIPTオプションを指定すると、たとえシステムが配列型とみなさない場合でも、データ型に添字をつけることができるようになります。
固定長の配列について述べた振舞いは、実はSUBSCRIPTハンドラ関数raw_array_subscript_handlerにより実装されており、固定長型に対してSUBSCRIPTを書かずにELEMENTを指定した場合には自動的に、この関数が使われます。
   


カスタムのSUBSCRIPT関数を指定した場合には、SUBSCRIPTハンドラ関数が何を返すべきか見つけるためにtypelemを調べる必要がない限り、ELEMENTを指定することは必要ではありません。
ELEMENTを指定すると、新しい型が要素型を含んでいる、すなわち要素型に何らかの形で物理的に依存しているとシステムが仮定することに注意してください。このため、例えば、依存する型の列があれば要素型の属性を変更することはできません。
   


パラメータ
	name
	

作成するデータ型の名前です（スキーマ修飾名も可）。
     

	attribute_name
	

複合型用の属性（列）名です。
     

	data_type
	

複合型の列となる、既存のデータ型の名前です。
     

	collation
	

複合型の列または範囲型に関連付けされる、既存の照合順序の名前です。
     

	label
	

列挙型の1つの値に関連付けられるテキスト形式のラベルを表す、文字列リテラルです。
     

	subtype
	

範囲型がその範囲の対象として表現する、要素型の名前です。
     

	subtype_operator_class
	

派生元型のb-tree演算子クラスの名前です。
     

	canonical_function
	

範囲型の正規化関数の名前です。
     

	subtype_diff_function
	

派生元型の差異をとる関数の名前です。
     

	multirange_type_name
	

対応する多重範囲型の名前です。
     

	input_function
	

指定された型のテキストによる外部形式のデータを内部形式に変換する関数の名前です。
     

	output_function
	

指定された型の内部形式のデータをテキストによる外部形式に変換する関数の名前です。
     

	receive_function
	

指定された型のバイナリによる外部形式のデータを内部形式に変換する関数の名前です。
     

	send_function
	

指定された型の内部形式のデータをバイナリによる外部形式に変換する関数の名前です。
     

	type_modifier_input_function
	

型に関する修飾子の配列を内部形式に変換する関数の名前です。
     

	type_modifier_output_function
	

内部形式の型修飾子をテキストの外部形式に変換する関数の名前です。
     

	analyze_function
	

指定したデータ型の統計情報解析を行う関数の名前です。
     

	subscript_function
	

指定したデータ型の値に添字をつけることを定義する関数の名前です。
     

	internallength
	

新しいデータ型の内部表現のバイト長を表す数値定数です。
デフォルトでは、可変長であるとみなされます。
     

	alignment
	

データ型の格納整列条件です。
このオプションを指定する場合は、char、int2、int4、doubleのいずれかでなければなりません。
デフォルトはint4です。
     

	storage
	

データ型の格納戦略です。
このオプションを指定する場合は、plain、external、extended、mainのいずれかでなければなりません。
デフォルトはplainです。
     

	like_type
	

新しい型に同じ表現を持たせる既存のデータ型の名前です。
internallength、passedbyvalue、alignment、storageの値が、このCREATE TYPEコマンドのどこかで明示的な指定により上書きされない限り、型から複製されます。
     

	category
	

この型用のカテゴリコード（単一のASCII文字）です。
デフォルトは「ユーザ定義型」を表す'U'です。
他の標準カテゴリコードを表52.65「typcategoryのコード」に示します。
独自のカテゴリを作成するために他のASCII文字を選択することもできます。
     

	preferred
	

この型がカテゴリ内で優先される型である場合に真、さもなくば偽です。
デフォルトは偽です。
動作に予想外の変化を引き起こしますので既存の型カテゴリに新しく優先される型を作成することには十分注意してください。
     

	default
	

そのデータ型のデフォルト値です。
省略された場合、デフォルトはNULLです。
     

	element
	

配列型を作成する場合、その配列の要素の型を指定します。
     

	delimiter
	

このデータ型による配列で、値間の区切り文字として使われる文字です。
     

	collatable
	

この型を操作する時に照合順序情報を使用することができる場合に真を取ります。
デフォルトは偽です。
     




注釈


一度作成したデータ型の使用には制限はありませんので、基本型または範囲型の作成は型定義で言及した関数の実行権をPUBLICに対して付与することと同じです。
この種の型定義において有用な関数では、これは通常問題になりません。
しかし、外部形式から、または、外部形式への変換を行う時に、その関数が「秘密の」情報を必要とする場合、型を設計する前に熟考してください。
  


PostgreSQL™バージョン8.3より前のバージョンでは、生成される配列型の名前は常に要素型の名前の前に１つのアンダースコア文字（_）を付けたものになりました。
（このため型の名前は他の名前よりも1文字短く制限されていました。）
通常はこのように名付けられることは変わりありませんが、最大長の名前の場合やアンダースコアから始まるユーザ定義の型と競合する場合、配列型の名前はこの変換とは変わることがあります。
このため、この規則に依存したコードを書くことは避けてください。
代わりに、pg_type.typarrayを使用して、指定した型に関連した配列型を特定してください。
  


アンダースコアから始まる型やテーブル名の使用を避けることが賢明です。
サーバは生成された配列型名称をユーザ指定の名前と競合しないように変更しますが、混乱する危険があります。
特に古いクライアントソフトウェアを使用する場合、名前がアンダースコアから始まる型を常に配列を表すものと想定しているかもしれません。
  


PostgreSQL™バージョン8.2より前まででは、シェル型を作成するCREATE TYPE name構文は存在しません。
新規に基本型を作成する方法は、最初に入力関数を作成することでした。
この方法では、PostgreSQL™は新しいデータ型の名称を、入力関数の戻り値型で初めて見ます。
このときに、シェル型が暗黙的に作成され、残りの入出力関数の定義で参照することができます。
この方法もまだ使用できますが、廃止予定であり、将来のリリースで禁止される可能性があります。
また、関数定義における単純なタイプミスの結果作成されるシェル型によって起こるカタログの混乱を防止するため、入力関数がCで作成された場合にのみこの方法によってシェル型が作成されます。
  


PostgreSQL™バージョン16以降では、以前のバージョンのようにereport()例外を発生するのではなく、新しいerrsave()/ereturn()機構を使用して、基本型の入力関数が「ソフトな」エラーを返すことが望ましいです。
詳細については、src/backend/utils/fmgr/READMEを参照してください。
  

例


次の例では、複合型を作成し、それを関数定義で使用します。


CREATE TYPE compfoo AS (f1 int, f2 text);

CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS $$
    SELECT fooid, fooname FROM foo
$$ LANGUAGE SQL;


  


次の例では、列挙型を作成し、それをテーブル定義に使用します。


CREATE TYPE bug_status AS ENUM ('new', 'open', 'closed');

CREATE TABLE bug (
    id serial,
    description text,
    status bug_status
);


  


次の例では、範囲型を作成します。


CREATE TYPE float8_range AS RANGE (subtype = float8, subtype_diff = float8mi);


  


次の例では、基本データ型boxを作成し、その型をテーブル定義の中で使用しています。


CREATE TYPE box;

CREATE FUNCTION my_box_in_function(cstring) RETURNS box AS ... ;
CREATE FUNCTION my_box_out_function(box) RETURNS cstring AS ... ;

CREATE TYPE box (
    INTERNALLENGTH = 16,
    INPUT = my_box_in_function,
    OUTPUT = my_box_out_function
);

CREATE TABLE myboxes (
    id integer,
    description box
);


  


box型の内部構造がfloat4型が4つの配列の場合、このように書き換えることもできます。


CREATE TYPE box (
    INTERNALLENGTH = 16,
    INPUT = my_box_in_function,
    OUTPUT = my_box_out_function,
    ELEMENT = float4
);



このようにすると、box値の要素に要素番号でアクセスできます。
その他は、上の例と同様の動作をします。
  


次の例では、ラージオブジェクト型を作成し、テーブル定義にてそれを使用します。


CREATE TYPE bigobj (
    INPUT = lo_filein, OUTPUT = lo_fileout,
    INTERNALLENGTH = VARIABLE
);
CREATE TABLE big_objs (
    id integer,
    obj bigobj
);


  


その他の例は、「ユーザ定義の型」を参照してください。ここには、入力関数、出力関数などを使った例があります。
  

互換性


複合型を作成する、最初のCREATE TYPEコマンドの構文は標準SQLに準拠しています。
他の構文はPostgreSQL™の拡張です。
標準SQLではまた他のCREATE TYPE構文を定義していますが、PostgreSQL™では実装されていません。
  


ゼロ個の要素を持つ複合型を作成する機能は標準から派生したPostgreSQL™固有のもの（CREATE TABLEの場合と同様）です。
  

関連項目
ALTER TYPE(7), CREATE DOMAIN(7), CREATE FUNCTION(7), DROP TYPE(7)


名前
CREATE USER — 新しいデータベースロールを定義する

概要

CREATE USER name [ [ WITH ] option [ ... ] ]


ここでoptionは以下の通りです。

      SUPERUSER | NOSUPERUSER
    | CREATEDB | NOCREATEDB
    | CREATEROLE | NOCREATEROLE
    | INHERIT | NOINHERIT
    | LOGIN | NOLOGIN
    | REPLICATION | NOREPLICATION
    | BYPASSRLS | NOBYPASSRLS
    | CONNECTION LIMIT connlimit
    | [ ENCRYPTED ] PASSWORD 'password' | PASSWORD NULL
    | VALID UNTIL 'timestamp'
    | IN ROLE role_name [, ...]
    | IN GROUP role_name [, ...]
    | ROLE role_name [, ...]
    | ADMIN role_name [, ...]
    | USER role_name [, ...]
    | SYSID uid


説明


CREATE USERはCREATE ROLEの別名になりました。
唯一の違いは、CREATE USERという名前でコマンドが呼び出されると、デフォルトでLOGINになり、CREATE ROLEという名前でコマンドが呼び出されると、デフォルトでNOLOGINとなる点です。
  

互換性


CREATE USER文は、PostgreSQL™の拡張です。
標準SQLでは、ユーザの定義は実装に任されています。
  

関連項目
CREATE ROLE(7)


名前
CREATE USER MAPPING — 外部サーバのユーザマップを新しく定義する

概要

CREATE USER MAPPING [ IF NOT EXISTS ] FOR { user_name | USER | CURRENT_ROLE | CURRENT_USER | PUBLIC }
    SERVER server_name
    [ OPTIONS ( option 'value' [ , ... ] ) ]


説明


CREATE USER MAPPINGは外部サーバとユーザの対応付けを定義します。
ユーザマップは通常接続情報をカプセル化し、外部データラッパーは外部データリソースにアクセスするためにこの情報と外部サーバによりカプセル化した情報を使用します。
  


外部サーバの所有者は任意のユーザに対するそのサーバ向けのユーザマップを作成することができます。
また、サーバ上でUSAGE権限がユーザに付与されている場合、ユーザは自身の持つユーザ名に対応するユーザマップを作成することができます。
  

パラメータ
	IF NOT EXISTS
	

指定のユーザから指定の外部サーバへのマッピングが存在する場合にエラーを発生させません。
この場合、注意メッセージが発行されます。
既存のユーザマッピングが、作成しようとしていたものと類似するものかどうか、全く保証されないことに注意してください。
     

	user_name
	

外部サーバに対応付けされる既存のユーザ名です。
CURRENT_ROLE、CURRENT_USERとUSERは現在のユーザの名前に対応します。
PUBLICが指定された場合、ユーザ指定がないマップが適用されたときに使用される公開マップと呼ばれるものが作成されます。
     

	server_name
	

ユーザマップを作成する対象の既存のサーバの名前です。
     

	OPTIONS ( option 'value' [, ... ] )
	

この句はユーザマップのオプションを指定します。
通常オプションはマップにおける実際のユーザ名とパスワードを定義します。
オプション名は一意でなければなりません。
使用できるオプションの名前と値は、サーバの外部データラッパーにより異なります。
     




例


ユーザbobとサーバfooとのユーザマップを作成します。


CREATE USER MAPPING FOR bob SERVER foo OPTIONS (user 'bob', password 'secret');


互換性


CREATE USER MAPPINGはISO/IEC 9075-9 (SQL/MED)に準拠しています。
  

関連項目
ALTER USER MAPPING(7), DROP USER MAPPING(7), CREATE FOREIGN DATA WRAPPER(7), CREATE SERVER(7)


名前
CREATE VIEW — 新しいビューを定義する

概要

CREATE [ OR REPLACE ] [ TEMP | TEMPORARY ] [ RECURSIVE ] VIEW name [ ( column_name [, ...] ) ]
    [ WITH ( view_option_name [= view_option_value] [, ... ] ) ]
    AS query
    [ WITH [ CASCADED | LOCAL ] CHECK OPTION ]


説明


CREATE VIEWは問い合わせによるビューを定義します。
ビューは物理的な実体として存在するものではありません。
その代わり、問い合わせでビューが参照される度に、指定された問い合わせが実行されます。
  


CREATE OR REPLACE VIEWも同様の働きをしますが、
このコマンドでは、同じ名前のビューが既に存在している場合、そのビューを置き換えます。
新しい問い合わせは、既存のビュー問い合わせが生成する列と同じ列(つまり、同じ順序の同じデータ型の同じ列名)を生成しなければなりません。
しかし、そのリストの最後に列を追加しても構いません。
出力列を生成する計算をまったく異なるものにしても構いません。
  


スキーマ名が付けられている場合（例えば、CREATE VIEW myschema.myview ...）、ビューは指定されたスキーマに作成されます。
スキーマ名がなければ、そのビューは現在のスキーマに作成されます。
一時ビューは特別なスキーマに作成されます。
そのため、一時ビューを作成する時にはスキーマ名を付けることはできません。
ビュー名は、同じスキーマ内の他のリレーション(テーブル、シーケンス、インデックス、ビュー、マテリアライズドビュー、外部テーブル)とは異なる名前である必要があります。
  

パラメータ
	TEMPORARYまたはTEMP
	

これが指定された場合、ビューは一時ビューとして作成されます。
現在のセッションが終わった時、一時ビューは自動的に削除されます。
一時ビューが存在する間、現在のセッションでは、これと同じ名前の永続リレーションはスキーマ修飾した名前で参照していない限り不可視です。
     


ビューで参照されるテーブルの一部が一時テーブルであった場合、（TEMPORARYの指定があってもなくても）ビューは一時ビューとして作成されます。
     

	RECURSIVE
      
      
    
	

再帰的ビューを作成します。この構文は


CREATE RECURSIVE VIEW [ schema . ] view_name (column_names) AS SELECT ...;



以下と同等です。


CREATE VIEW [ schema . ] view_name AS WITH RECURSIVE view_name (column_names) AS (SELECT ...) SELECT column_names FROM view_name;


と同等です。

再帰的ビューではビューの列名リストを指定する必要があります。
     

	name
	

作成するビューの名前です（スキーマ修飾名も可）。
     

	column_name
	

ビューの列名として使用する名前のリストで、省略可能です。省略された場合、問い合わせに由来する名前が使用されます。
     

	WITH ( view_option_name [= view_option_value] [, ... ] )
	

この句はビュー用のオプションのパラメータを指定します。
以下のパラメータがサポートされています。

      
	check_option (enum)
	

このパラメータはlocalかcascadedのいずれかで、WITH [ CASCADED | LOCAL ] CHECK OPTIONを指定するのと同じです(以下を参照)。
         

	security_barrier (boolean)
	

行単位セキュリティを提供することを意図したビューでは、これを有効にしなければなりません。
詳細については「ルールと権限」を参照してください。
         

	security_invoker (boolean)
	

このオプションを選択すると、基となる基底リレーションが、ビューの所有者ではなくビューのユーザの権限に対してチェックされます。
詳細については、以下の注釈を参照してください。
         






上記のオプションはすべて、ALTER VIEWを使用して既存のビューで変更できます。
     

	query
	

ビューの列と行を生成するSELECTまたはVALUESコマンドです。
     

	WITH [ CASCADED | LOCAL ] CHECK OPTION
      
      
    
	

このオプションは、自動的に更新可能なビューの動作を制御します。
このオプションが指定された場合、ビューに対するINSERT、UPDATEおよびMERGEコマンドでは、新しい行がビュー定義の条件を満たすことが検査されます(つまり、新しい行がビューで見ることができるかどうか、検査されます)。
条件を満たさない場合、更新は拒絶されます。
CHECK OPTIONが指定されない場合、ビューに対するINSERT、UPDATEおよびMERGEコマンドは、ビューで見ることができない行を作ることができます。
以下のcheck optionがサポートされます。

      
	LOCAL
	

新しい行は、そのビュー自体に直接定義されている条件に対してのみ検査されます。
ビューが基にするビューについて定義されている条件は、(それらもCHECK OPTIONを指定しているのでなければ)検査されません。
         

	CASCADED
	

新しい行は、そのビュー、およびそれが基にするすべてのビューの条件に対して検査されます。
CHECK OPTIONが指定され、LOCALもCASCADEDも指定されていないときは、CASCADEDが指定されたとみなされます。
         




     


CHECK OPTIONはRECURSIVEなビューで使うことはできません。
     


CHECK OPTIONは、自動更新可能で、かつINSTEAD OFトリガもINSTEADルールもないビューについてのみサポートされていることに注意してください。
自動更新可能ビューがINSTEAD OFトリガのあるビューに基づいて定義されている場合、LOCAL CHECK OPTIONを使って自動更新可能ビューの条件を検査することはできますが、INSTEAD OFトリガを持つ基のビューの条件は検査されません(cascaded check optionはトリガで更新されるビューにまでは伝わらず、またトリガで更新可能なビューに直接定義されたcheck optionは無視されます)。
ビューあるいはその基となるリレーションにINSTEADルールがあり、INSERTあるいはUPDATEの書き換えが生じる場合、その書き換えられたクエリでは(INSTEADルールのあるリレーションに基づく自動更新可能ビューのものも含めて)すべてのcheck optionが無視されます。
ビューあるいはその基となるリレーションにルールがある場合、MERGEはサポートされません。
     




注釈


ビューを削除するには、DROP VIEW文を使用してください。
   


ビューの列の名前と型は指定通りに割り当てられることに注意してください。
例えば、次のコマンドを見てください。


CREATE VIEW vista AS SELECT 'Hello World';



この例は列の名前がデフォルトの?column?になるので好ましくありません。
また、列のデータ型もデフォルトのtextになりますが、これは求めるものと違うかもしれません。
ビューの結果として文字リテラルを返したい場合は、次のように指定するのがよりよい方法です。


CREATE VIEW vista AS SELECT text 'Hello World' AS hello;


   


デフォルトでは、ビューで参照される基となる基底リレーションへのアクセス権は、ビューの所有者の権限によって決定されます。
場合によっては、これを使用して基となるテーブルへの安全だが制限されたアクセスを提供できます。
しかしすべてのビューが不正な改変に対して安全というわけではありません。詳細は「ルールと権限」を参照してください。
   


ビューのsecurity_invoker属性がtrueに設定されている場合、基となる基底リレーションへのアクセス権は、ビューの所有者ではなく、問い合わせを実行するユーザの権限によって決定されます。
したがって、セキュリティ実行者ビューのユーザは、ビューおよび基となる基底リレーションに対する適切な権限を持っている必要があります。
   


基となる基底リレーションのいずれかがセキュリティ実行者ビューである場合、元の問い合わせから直接アクセスされたものとして処理されます。
したがって、セキュリティ実行者ビューは、security_invoker属性なしのビューからアクセスされた場合でも、常に現行ユーザの権限を使用して基となる基底リレーションをチェックします。
   


基となる基底リレーションのいずれかで行レベルセキュリティが有効になっている場合、デフォルトでは、ビューの所有者の行レベルセキュリティポリシーが適用され、これらのポリシーによって参照される追加のリレーションへのアクセスは、ビュー所有者の権限によって決定されます。
ただし、ビューのsecurity_invokerがtrueに設定されている場合は、基底リレーションがそのビューを使用した問い合わせから直接参照されているかのように、かわりに実行ユーザのポリシーと権限が使用されます。
   


ビューで呼び出された関数は、ビューを使用する問い合わせから直接呼び出された場合と同様に処理されます。
したがって、ビューのユーザは、ビューで使用されるすべての関数を呼び出す権限を持っている必要があります。
ビュー内の関数は、関数がSECURITY INVOKERまたはSECURITY DEFINERとして定義されているかどうかに応じて、問い合わせを実行するユーザまたは関数の所有者の権限で実行されます。
したがって、たとえば、ビューでCURRENT_USERを直接呼び出すと、ビューの所有者ではなく常に実行ユーザを返します。
これはビューのsecurity_invoker設定の影響を受けません。
したがって、security_invokerがfalseに設定されているビューはSECURITY DEFINER関数と同等ではなく、これらの概念を混同しないでください。
   


ビューを作成または置換するユーザは、スキーマ内の参照オブジェクトを検索するために、ビュー問い合わせで参照されるスキーマに対するUSAGE権限を持っている必要があります。
ただし、この参照は、ビューが作成または置換された場合にのみ行なわれることに注意してください。
したがって、ビューのユーザは、ビューを含むスキーマに対するUSAGE権限のみを必要とし、セキュリティ実行者ビューの場合でも、ビュー問い合わせで参照されるスキーマに対するUSAGE権限を必要としません。
   


CREATE OR REPLACE VIEWが既存のビューに対して使用されると、ビューを定義するSELECTルール、WITH ( ... )パラメータ、CHECK OPTIONのみが変更されます。
所有者、権限、SELECT以外のルールなど他のビューの属性はそのまま変更されません。
置き換えるためにはビューの所有者（所有ロールのメンバである場合も含む）でなければなりません。
   
更新可能ビュー


簡単なビューは自動更新可能になります。
システムは、ビューに対するINSERT、UPDATE、DELETE、MERGE文を通常のテーブルの場合と同じ方法で使用できるようにします。
以下の条件のすべてを満たす場合に、ビューは自動更新可能になります。

    
	

ビューのFROMリストには正確に１つだけの項目を持たなければならず、それはテーブルまたは他の更新可能ビューでなければなりません。
      

	

ビューの定義の最上位レベルにおいてWITH、DISTINCT、GROUP BY、HAVING、LIMIT、OFFSETを含めてはなりません。
      

	

ビューの定義の最上位レベルにおいて集合操作（UNION、INTERSECT、EXCEPT）を含めてはなりません。
      

	

ビューの選択リストに、集約関数、ウィンドウ関数、集合を返す関数を含めてはなりません。
      




   


自動更新可能ビューでは、更新可能な列と更新不可能な列を混在させることができます。
基になるリレーションの更新可能な列を単純に参照する列は更新可能です。
そうでなければ列は読み取り専用で、INSERT、UPDATEあるいはMERGE文でその列に値を設定しようとしたらエラーが発生します。
   


ビューが自動更新可能であれば、システムはビューに対するINSERT、UPDATE、DELETEまたはMERGE文を基となるベースリレーションへの対応する文に変換します。
ON CONFLICT UPDATE句を持つINSERT文は完全にサポートされます。
   


自動更新可能ビューがWHERE条件を持つ場合、ベースリレーションのどの行をビューに対するUPDATE、DELETE、MERGE文により変更可能かをその条件が制限します。
しかしUPDATEまたはMERGEによる行の変更の結果WHEREを満たさなくなり、その結果、ビューからは参照することができなくなることがあります。
同様にINSERTまたはMERGEコマンドはWHERE条件を満たさず、そのためビューを通して参照することができない行をベースリレーションに挿入する可能性があります（ON CONFLICT UPDATEはビューを通して見えない既存の行に同様に影響を及ぼすかもしれません）。
CHECK OPTIONはINSERTやUPDATE、MERGEコマンドがビューで見ることができない行を作るのを防ぐために使うことができます。
   


自動更新可能ビューがsecurity_barrier属性を持つ場合、ビューのすべてのWHERE条件(およびLEAKPROOFの演算子を使ったすべての条件)が、必ず、ビューのユーザが追加した条件より前に評価されます。
詳細は「ルールと権限」を参照してください。
このため、最終的には(ユーザのWHERE条件を満たさないために)戻されない行もロックされてしまう場合があることに注意してください。
EXPLAINを使って、リレーションのレベルでどの条件が使われ(その結果、行をロックしない)、どの条件が使われないかを調べることができます。
   


これらの条件をすべて満たさないより複雑なビューはデフォルトで読み取り専用です。
システムはビューに対するINSERT、UPDATE、DELETE、MERGEを許可しません。
ビューに対するINSTEAD OFトリガを作成することで、更新可能ビューの効果を得ることができます。このトリガはビューに対する挿入試行などを他のテーブルに対する適切な操作に変換するものでなければなりません。
詳細についてはCREATE TRIGGER(7)を参照してください。
他にもルールを作成する（CREATE RULE(7)参照）ことでも実現できますが、実際にはトリガの方が理解しやすく正しく使用するのが容易です。
また、MERGEはルールを持つリレーションではサポートされないことに注意してください。
   


ビューに対する挿入、更新、削除を行うユーザは、ビューに対して対応する挿入、更新、削除権限を持たなければならないことに注意してください。
さらに、デフォルトでは、ビューの所有者は基となる基底リレーションに対する適切な権限を持たなければならないのに対して、更新を行なうユーザは基となる基底リレーションに対する権限をまったく必要としません（「ルールと権限」参照）。
しかし、ビューのsecurity_invokerがtrueに設定されていれば、ビューの所有者ではなく更新を行なうユーザが基となる基底リレーションに対する適切な権限を持たなければなりません。
   


例


全てのコメディ映画（Comedy films）からなるビューを作成します。



CREATE VIEW comedies AS
    SELECT *
    FROM films
    WHERE kind = 'Comedy';



これはビューを作成した時点でfilmテーブル内にある列を持つビューを作成します。
ビューを作成するために*が使用されていますが、その後にテーブルに追加された列はビューには含まれません。
  


LOCAL CHECK OPTIONを使ってビューを作成します。



CREATE VIEW universal_comedies AS
    SELECT *
    FROM comedies
    WHERE classification = 'U'
    WITH LOCAL CHECK OPTION;



これはcomediesビューに基づくビューを作成し、kind = 'Comedy'かつclassification = 'U'である映画だけを表示します。
このビューでの行のINSERTやUPDATEは、classification = 'U'でなければ拒絶されますが、映画のkindは検査されません。
  


CASCADED CHECK OPTIONでビューを作成します。



CREATE VIEW pg_comedies AS
    SELECT *
    FROM comedies
    WHERE classification = 'PG'
    WITH CASCADED CHECK OPTION;



これは新しい行についてkindとclassificationの両方を検査するビューを作成します。
  


更新可能な列と更新不可能な列が混在するビューを作成します。



CREATE VIEW comedies AS
    SELECT f.*,
           country_code_to_name(f.country_code) AS country,
           (SELECT avg(r.rating)
            FROM user_ratings r
            WHERE r.film_id = f.id) AS avg_rating
    FROM films f
    WHERE f.kind = 'Comedy';



このビューはINSERT、UPDATE、DELETEをサポートします。
filmsテーブルからのすべての列は更新可能ですが、計算される列countryとavg_ratingは更新できません。
  


1から100までの数からなる再帰的ビューを作成します。


CREATE RECURSIVE VIEW public.nums_1_100 (n) AS
    VALUES (1)
UNION ALL
    SELECT n+1 FROM nums_1_100 WHERE n < 100;



上記のCREATEにおいて再帰的ビューの名前はスキーマ修飾されていますが、その内側の自己参照はスキーマ修飾されていないことに注意してください。
これは、暗黙的に作成されるCTEの名前はスキーマ修飾できないからです。
  

互換性


CREATE OR REPLACE VIEWはPostgreSQL™の言語拡張です。
一時ビューという概念も言語拡張です。
WITH ( ... )句も拡張ですし、セキュリティバリアビューとセキュリティ実行者ビューも同様です。
  

関連項目
ALTER VIEW(7), DROP VIEW(7), CREATE MATERIALIZED VIEW(7)


名前
DEALLOCATE — プリペアド文の割り当てを解除する

概要

DEALLOCATE [ PREPARE ] { name | ALL }


説明


DEALLOCATEを使用して、過去にプリペアドSQL文の割り当てを解除します。
プリペアド文を明示的に割り当て解除しなかった場合、セッションが終了した時に割り当てが解除されます。
  


プリペアド文に関する詳細についてはPREPARE(7)を参照してください。
  

パラメータ
	PREPARE
	

このキーワードは無視されます。
     

	name
	

割り当てを解除する、プリペアド文の名前です。
     

	ALL
	

プリペアド文の割り当てをすべて解除します
     




互換性


DEALLOCATE文は標準SQLにもありますが、埋め込みSQLでの使用のみに用途が限定されています。
  

関連項目
EXECUTE(7), PREPARE(7)


名前
DECLARE — カーソルを定義する

概要

DECLARE name [ BINARY ] [ ASENSITIVE | INSENSITIVE ] [ [ NO ] SCROLL ]
    CURSOR [ { WITH | WITHOUT } HOLD ] FOR query


説明


DECLAREを使うと、カーソルが使用できるようになります。
これは、巨大な問い合わせの結果から一度に少数の行を取り出す機能です。
カーソルを作成した後、FETCHを使用して行を取り出します。
  
注記


このマニュアルページではSQLコマンドレベルでのカーソルの使用方法について説明します。
PL/pgSQL内でカーソルを使用するつもりであれば、規則が異なりますので、「カーソル」を参照してください。
   


パラメータ
	name
	

作成されるカーソルの名前です。
これはセッションで実行中の他のカーソルの名前とは異なるものでなければなりません。
     

	BINARY
	

カーソルによるデータの取得が、テキスト形式ではなくバイナリ形式になります。
     

	ASENSITIVE, INSENSITIVE
	

カーソルの感度とは、カーソルの背後にあるデータが、カーソルが宣言された後に、同じトランザクション内で変更された場合、それがそのカーソル内で可視かどうかを決めるものです。
INSENSITIVEは可視ではないことを意味し、ASENSITIVEは、その振舞いが実装依存であることを意味します。
第3の振舞いであるSENSITIVEはそのような変更がカーソル内で可視であることを意味しますが、PostgreSQL™では利用できません。
PostgreSQL™では、カーソルはすべてinsensitiveですので、このキーワードを使用しても効果はなく、このキーワードは標準SQLとの互換性を保持するために存在しています。
     


INSENSITIVEをFOR UPDATEまたはFOR SHAREといっしょに指定するとエラーになります。
     

	SCROLL, NO SCROLL
	SCROLLは、そのカーソルから通常の順序通りでない方法で（例えば後方から）行を取り出し可能であることを指定します。
問い合わせの実行計画が複雑になると、SCROLLの指定によって問い合わせの実行時間が増大する可能性があります。
NO SCROLLは、そのカーソルから順序通りでない方法では行を取り出せないことを指定します。
デフォルトでは、いくつかの場合でスクロール可能です。
これはSCROLLの指定と同じではありません。
詳細は注釈を参照してください。
     

	WITH HOLD, WITHOUT HOLD
	WITH HOLDは、カーソルを生成したトランザクションが正常にコミット処理を行った後も、そのカーソルの使用を続けられることを指定します。
WITHOUT HOLDは、カーソルを生成したトランザクションの外部では、そのカーソルを使用できないことを指定します。
WITH HOLDもWITHOUT HOLDも指定されない場合、WITHOUT HOLDがデフォルトとなります。
     

	query
	

カーソルによって返される行を提供するSELECTまたはVALUESコマンドです。
     





ASENSITIVE、BINARY、INSENSITIVE、SCROLLキーワードは任意の順番で指定することができます。
  

注釈


通常のカーソルは、SELECTの出力と同じテキスト形式でデータを返します。
BINARYは、カーソルがバイナリ形式でデータを返すことを示します。
これによりサーバ、クライアントの両方で変換に関する作業を省くことができますが、プラットフォームに依存するバイナリデータ書式を扱うためのプログラマの作業が大きくなります。
例えば、問い合わせが整数の列から値として1を返す場合、デフォルトのカーソルからは1という文字列を取得することになりますが、バイナリ形式のカーソルからは、内部表現を使った4バイトの値を(ビッグエンディアンのバイト順で)取得することになります。
  


バイナリ形式のカーソルは注意して使わなければなりません。
psqlなどの多くのアプリケーションは、データはテキスト形式で返されることを期待しており、バイナリ形式のカーソルを扱うことができません。
  
注記


クライアントアプリケーションが「拡張問い合わせ」プロトコルを使用してFETCHコマンドを発行する場合、テキスト形式とバイナリ形式のどちらでデータを受け取るのかは、バインドプロトコルメッセージで指定します。
この選択は、カーソル定義での指定を上書きします。
全てのカーソルをテキスト形式/バイナリ形式のどちらでも扱うことができる拡張問い合わせプロトコルでは、バイナリカーソルという概念は旧式なものです。
   



WITH HOLDが指定されなければ、このコマンドで生成されるカーソルは現在のトランザクションの中でのみ使用することができます。
したがって、WITH HOLDのないDECLAREはトランザクションブロックの外側では意味がありません。
その場合、カーソルはこの文が完了するまでのみ有効です。
そのため、PostgreSQL™はトランザクションブロックの外部でこうしたコマンドが使用された場合エラーを報告します。
トランザクションブロックを定義するには、BEGINとCOMMIT（またはROLLBACK）を使用してください。
   


WITH HOLDが指定され、カーソルを作成したトランザクションのコミットに成功した場合、同一セッション内のその後のトランザクションからそのカーソルにアクセスすることができます。
（ただし、トランザクションがアボートされた場合、そのカーソルは削除されます。）
WITH HOLD付きで作成されたカーソルは、そのカーソルに対して明示的なCLOSEが発行された場合やセッションが終了した時に閉じられます。
現在の実装では、保持されたカーソルを使って表される行は、その後のトランザクションでも利用できるように、一時ファイルかメモリ領域にコピーされます。
   


問い合わせがFOR UPDATEまたはFOR SHAREを含む場合、WITH HOLDを指定することはできません。
   


カーソルから逆方向にデータを取り出す時には、SCROLLオプションを指定するべきです。
これは標準SQLでは必須となっています。
しかし、以前のバージョンとの互換性を保持するために、PostgreSQL™では、カーソルの問い合わせ計画が単純であり、そのサポートに余計なオーバーヘッドが必要ない場合、 SCROLLなしでも逆方向にデータを取り出すことができます。
しかし、SCROLLを付けなくても逆方向にデータが取り出せることを利用してアプリケーションを開発するのはお勧めしません。
NO SCROLLを指定した場合は、どのような場合でも逆方向に取り出すことはできません。
   


また、問い合わせがFOR UPDATEまたはFOR SHAREを含む場合は、逆方向の取り出しは許されません。
このためこの場合はSCROLLを指定することはできません。
   
注意


スクロール可能なカーソルが揮発関数（「関数の変動性分類」参照）を含む場合、想定しない結果をもたらす可能性があります。
これまで取り出した行を再度取り出した時、関数は再実行される可能性があり、この場合おそらく初回と異なる結果をもたらします。
揮発関数を含む問い合わせに対してはNO SCROLLを指定するのが最善です。
それが現実的でないのなら、回避方法の1つは、カーソルをWITH HOLDと宣言し、そこから何か行を読み取る前にトランザクションをコミットすることです。
これにより強制的にカーソルの出力全体が一時領域に具現化され、揮発関数は各行に対して厳密に1度だけ実行されます。
    



カーソルの問い合わせがFOR UPDATEまたはFOR SHAREを含む場合、このオプションを持つ通常のSELECTコマンドと同様、返される行は取り出した時点でロックされます。
さらに、返される行はもっとも最新のバージョンになります。
   
注意


カーソルをUPDATE ... WHERE CURRENT OFまたはDELETE ... WHERE CURRENT OFで使用するつもりならば、FOR UPDATEの使用を通常勧めます。
FOR UPDATEを使用することで、取り出してから更新されるまでの間に他のセッションが行を変更することを防止します。
FOR UPDATEがなければ、カーソル作成後に行が変更された場合に後に行うWHERE CURRENT OFコマンドは効果がなくなります。
    


FOR UPDATEを使用する他の理由は、「簡単に更新可能」にするためにカーソル問い合わせが標準SQLに合わない場合（具体的にはカーソルは1つのテーブルのみを参照しなければならず、また、グループ化やORDER BYを使用してはならない）、これがないと後に実行されるWHERE CURRENT OFが失敗するかもしれないことです。
計画選択の詳細によっては、簡単に更新可能でないカーソルは動作するかもしれませんし、動作しないかもしれません。
このため最悪の場合、アプリケーションは試験時に動作するが、運用時に失敗するかもしれません。
FOR UPDATEが指定されていれば、カーソルは更新可能であることが保証されています。
    


FOR UPDATEをWHERE CURRENT OFといっしょに使用しない大きな理由は、カーソルをスクロール可能にする必要がある、または同時並行の更新から隔離する（つまり古いデータを表示し続けるようにする）必要がある場合のためです。
これが必要ならば、上記の警告に十分注意してください。
    



標準SQLでは、組み込みSQLにおけるカーソルのみが規定されています。
PostgreSQL™サーバはカーソル用のOPEN文を実装していません。
カーソルは宣言された時に開いたものとみなされています。
しかし、PostgreSQL™用の埋め込みSQLプリプロセッサであるECPGでは、DECLAREとOPEN文などを含め、標準SQLのカーソル規定をサポートしています。
   


開いたカーソルの基礎となるサーバデータ構造はポータルと呼ばれます。
ポータル名はクライアントプロトコルで公開されます。クライアントは、ポータル名を知っていれば、開いたポータルから直接行を取り出すことができます。
DECLAREを使用してカーソルを作成する場合、ポータル名はカーソル名と同じです。
   


pg_cursorsシステムビューを問い合わせることで、利用可能なすべてのカーソルを確認することができます。
   

例


カーソルを宣言します。


DECLARE liahona CURSOR FOR SELECT * FROM films;



カーソル使用の他の例についてはFETCH(7)を参照してください。
  

互換性


標準SQLでは、カーソルを埋め込みSQL内とモジュール内でのみ使用できます。
PostgreSQL™では、対話式にカーソルを使うことができます。
  


標準SQLに従えば、UPDATE ... WHERE CURRENT OFとDELETE ... WHERE CURRENT OF文によりinsensitiveカーソルで行なわれた変更は、同じカーソルでは可視です。
PostgreSQL™は、これらの文をその他のデータを変更する文すべてと同様に扱い、insensitiveカーソルでは変更は可視ではありません。
  


バイナリカーソルはPostgreSQL™の拡張です。
  

関連項目
CLOSE(7), FETCH(7), MOVE(7)


名前
DELETE — テーブルから行を削除する

概要

[ WITH [ RECURSIVE ] with_query [, ...] ]
DELETE FROM [ ONLY ] table_name [ * ] [ [ AS ] alias ]
    [ USING from_item [, ...] ]
    [ WHERE condition | WHERE CURRENT OF cursor_name ]
    [ RETURNING [ WITH ( { OLD | NEW } AS output_alias [, ...] ) ]
                { * | output_expression [ [ AS ] output_name ] } [, ...] ]


説明


DELETEは、指定したテーブルからWHERE句を満たす行を削除します。
WHERE句がない場合、指定したテーブルの全ての行を削除することになります。
この結果、そのテーブルは存在するが中身が空のテーブルになります。
  
ヒント


TRUNCATEは、より高速に、テーブルから全ての行を削除する仕組みを提供します。
    



データベース内のほかのテーブルに含まれる情報を用いてテーブル内の行を削除する方法には、副SELECTとUSING句で追加テーブルを指定する方法の2つがあります。
どちらの技法が適切かはその状況によります。
  


RETURNING句を指定すると、DELETEは実際に削除された各行に基づいて計算された値を返すようになります。
そのテーブルの列、USINGで指定された他のテーブルの列、あるいは、その両方を使用した式を計算することができます。
RETURNINGリストの構文はSELECTの出力リストと同一です。
  


削除を実行するには、そのテーブルのDELETE権限が必要です。
また、USING句内のテーブルに対するSELECT権限、および、conditionで使用する値を読み取るために、その値が含まれるテーブルに対するSELECT権限も必要です。
  

パラメータ
	with_query
	

WITH句によりDELETE問い合わせ内で名前で参照可能な１つ以上の副問い合わせを指定することができます。
詳しくは「WITH問い合わせ（共通テーブル式）」とSELECT(7)を参照してください。
     

	table_name
	

行を削除するテーブルの名前です（スキーマ修飾名も可）。
テーブル名の前にONLYが指定された場合、そのテーブルでのみマッチする行が削除されます。
ONLYが指定されていない場合、そのテーブルおよび（もしあれば）そのテーブルを継承する全てのテーブルから一致する行が削除されます。
オプションで、テーブル名の後に*を指定することで、明示的に継承するテーブルも含まれることを示すことができます。
     

	alias
	

対象テーブルの別名です。
別名が与えられた場合、実際のテーブル名は完全に隠蔽されます。
たとえば、DELETE FROM foo AS fとあるとき、このDELETE文の残りの部分ではこのテーブルをfooではなくfとして参照しなければなりません。
     

	from_item
	

WHERE条件内に他のテーブルの列を記述できるようにするための、テーブル式です。
これは、SELECT文のFROM句と同じ文法を使います。例えば、テーブル名の別名が指定できます。
自己結合を行う場合を除き、from_itemに対象のテーブルを繰り返してはいけません（自己結合を行う場合は、from_item内で対象のテーブルとその別名を指定しておく必要があります）。
     

	condition
	

boolean型の値を戻す式です。
この式がtrueを戻す行のみが削除されます。
     

	cursor_name
	

WHERE CURRENT OF条件で使用されるカーソルの名前です。
削除対象の行は、そのカーソルからもっとも最近に取り出される行です。
カーソルは、DELETEの対象テーブルに対するグループ化のない問い合わせでなければなりません。
WHERE CURRENT OFを論理条件といっしょに指定することはできません。
WHERE CURRENT OF付きのカーソルの使用に関する情報についてはDECLARE(7)を参照してください。
     

	output_alias
	

RETURNINGリストのOLDまたはNEW行に付与できる任意の代替名です。
     


デフォルトでは、対象テーブルの古い値は、OLD.column_nameまたはOLD.*と戻され、新しい値はNEW.column_nameまたはNEW.*と戻されます。
別名が提供されている場合、これらの名前は隠され、古い、もしくは新しい行は別名を使用します。
例RETURNING WITH (OLD AS o, NEW AS n) o.*, n.*
     

	output_expression
	

各行を削除した後にDELETEによって計算され、戻される式です。
この式には、table_nameで指名したテーブルまたはUSINGで指定したテーブルの任意の列名を使用することができます。
すべての列を戻す場合は*と記載してください。
     


列名や* はOLDやNEWまたは対応するoutput_alias を使用して修飾すると、古い値または新しい値が戻されます。
非修飾の列名や*、または対象テーブル名前もしくは別名を使用して修飾された列名または*は、古い値が戻されます。
     


シンプルなDELETEでは、すべての新しい値はNULLになります。
しかしON DELETEルールによってINSERTまたはUPDATEが代わりに実行される場合、新しい値はNULLではない可能性があります。
     

	output_name
	

戻される列で使用される名前です。
     




出力


正常に終了した場合、DELETEコマンドは以下の形式のコマンドタグを戻します。


DELETE count



countは削除した行数です。
この数は、BEFORE DELETEトリガによって削除が抑止された場合、conditionに合致した行より少なくなる可能性があることに注意してください。
countが0の場合、問い合わせによって削除された行がなかったことを示します
（これはエラーとはみなされません）。
  


DELETEコマンドがRETURNING句を持つ場合、その結果は、RETURNINGリストで定義した列と値を持ち、そのコマンドで削除された行全体に対して計算を行うSELECT文の結果と似たものになるでしょう。
  

注釈


PostgreSQL™では、USING句で他のテーブルを指定することで、WHERE条件内で他のテーブルの列を参照できます。
例えば、指定したプロデューサが製作した全ての映画を削除する時は、次のようなコマンドを実行します。


DELETE FROM films USING producers
  WHERE producer_id = producers.id AND producers.name = 'foo';



ここでは、filmsとproducersとを結合して、films行に削除用の印を付けるという作業を行っています。
この構文は標準に従ったものではありません。
より標準的な方法は以下の通りです。


DELETE FROM films
  WHERE producer_id IN (SELECT id FROM producers WHERE name = 'foo');



副SELECT形式より結合形式の方が書き易い、あるいは、実行が速くなることがあります。
  

例


ミュージカル以外の全ての映画を削除します。


DELETE FROM films WHERE kind <> 'Musical';


  


filmsテーブルを空にします。


DELETE FROM films;


  


完了した作業（statusがDONE）を削除し、削除された行のすべての詳細を戻します。


DELETE FROM tasks WHERE status = 'DONE' RETURNING *;


  


tasksにおいてc_tasksカーソルが現在位置している行を削除します。


DELETE FROM tasks WHERE CURRENT OF c_tasks;


  


DELETEにはLIMIT句はありませんが、UPDATEの文書で説明したのと同じ方法で同様の効果を得ることができます。


WITH delete_batch AS (
  SELECT l.ctid FROM user_logs AS l
    WHERE l.status = 'archived'
    ORDER BY l.creation_date
    FOR UPDATE
    LIMIT 10000
)
DELETE FROM user_logs AS dl
  USING delete_batch AS del
  WHERE dl.ctid = del.ctid;


  

互換性


このコマンドは標準SQLに準拠しています。
ただし、USING句とRETURNING句はPostgreSQL™の拡張です。
DELETEでWITHが使用可能であることも同様に拡張です。
  

関連項目
TRUNCATE(7)


名前
DISCARD — セッションの状態を破棄する

概要

DISCARD { ALL | PLANS | SEQUENCES | TEMPORARY | TEMP }


説明


DISCARDはデータベースセッションに関連した内部リソースを解放します。
このコマンドはセッションの状態を部分的あるいは完全にリセットするのに役に立ちます。
様々な種類のリソースを解放するためにいくつかのサブコマンドがあります。
DISCARD ALLは他のすべてを包含し、さらにまた追加の状態もリセットします。
  

パラメータ
	PLANS
	

キャッシュされた問い合わせ計画をすべて解放します。
これにより、関連するプリペアド文が次に使われたとき、強制的に計画がやり直されます。
     

	SEQUENCES
	

キャッシュされたシーケンスに関連する状態をすべて破棄します。
これには、currval()/lastval()の情報、および事前に割り当てられたシーケンスの値で、まだnextval()によって返されていないものを含みます。
(事前に割り当てられたシーケンスの値についてはCREATE SEQUENCE(7)を参照してください。)
     

	TEMPORARYまたはTEMP
	

現在のセッションで作成された一時テーブルをすべて削除します。
     

	ALL
	

現在のセッションに関連付いた一時的なリソースを解放し、セッションを初期状態に戻します。
現時点でこれは、以下に示す一連の文を実行することと同じ効果があります。


CLOSE ALL;
SET SESSION AUTHORIZATION DEFAULT;
RESET ALL;
DEALLOCATE ALL;
UNLISTEN *;
SELECT pg_advisory_unlock_all();
DISCARD PLANS;
DISCARD TEMP;
DISCARD SEQUENCES;





注釈


DISCARD ALLをトランザクションブロック内で実行することはできません。
   

互換性


DISCARDはPostgreSQL™の拡張です。
  



名前
DO — 無名コードブロックを実行する

概要

DO [ LANGUAGE lang_name ] code


説明


DOは無名コードブロック、言い換えると、手続き言語内の一時的な無名関数を実行します。
  


コードブロックはあたかもパラメータを取らずにvoidを返す関数の本体かのように扱われます。
これは解析され、一回実行されます。
  


LANGUAGE句をコードブロックの前または後ろにつけることができます。
  

パラメータ
	code
	

実行される手続き言語のコードです。
これは、CREATE FUNCTIONの場合と同様、文字列リテラルとして指定しなければなりません。
ドル記号による引用符付けの使用を勧めます。
     

	lang_name
	

コードの作成に使用する手続き言語の名前です。
省略時のデフォルトはplpgsqlです。
     




注釈


使用される手続き言語は、CREATE EXTENSIONを使用して現在のデータベースにインストール済みでなければなりません。
plpgsqlはデフォルトでインストールされますが、他の言語はインストールされません。
  


ユーザは手続き言語に対するUSAGE権限を持たなければなりません。
また、言語が信用できない場合はスーパーユーザでなければなりません。
これは、その言語における関数作成に必要な権限と同じです。
  


DOがトランザクションブロック内で実行された場合、プロシージャコードはトランザクション制御文を実行できません。
DOが自身のトランザクション内で実行された場合にのみ、トランザクション制御文は認められます。
  

例


スキーマpublic内のすべてのビューに対するすべての権限をロールwebuserに付与します。


DO $$DECLARE r record;
BEGIN
    FOR r IN SELECT table_schema, table_name FROM information_schema.tables
             WHERE table_type = 'VIEW' AND table_schema = 'public'
    LOOP
        EXECUTE 'GRANT ALL ON ' || quote_ident(r.table_schema) || '.' || quote_ident(r.table_name) || ' TO webuser';
    END LOOP;
END$$;


互換性


標準SQLにはDO文はありません。
  

関連項目
CREATE LANGUAGE(7)


名前
DROP ACCESS METHOD — アクセスメソッドを削除する

概要

DROP ACCESS METHOD [ IF EXISTS ] name [ CASCADE | RESTRICT ]


説明


DROP ACCESS METHODは既存のアクセスメソッドを削除します。
スーパーユーザのみがアクセスメソッドを削除できます。
  

パラメータ
	IF EXISTS
	

アクセスメソッドが存在しない時にエラーを発生させません。
この場合、注意が発行されます。
     

	name
	

既存のアクセスメソッドの名前です。
     

	CASCADE
	

アクセスメソッドに依存するオブジェクト（演算子クラス、演算子族、インデックスなど）を自動的に削除し、さらに、それらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

アクセスメソッドに依存するオブジェクトが1つでもあれば、削除を拒絶します。
これがデフォルトです。
     




例


アクセスメソッドheptreeを削除するには次のようにします。


DROP ACCESS METHOD heptree;


互換性


DROP ACCESS METHODはPostgreSQL™の拡張です。
  

関連項目
CREATE ACCESS METHOD(7)


名前
DROP AGGREGATE — 集約関数を削除する

概要

DROP AGGREGATE [ IF EXISTS ] name ( aggregate_signature ) [, ...] [ CASCADE | RESTRICT ]


ここでaggregate_signatureは以下の通りです。

* |
[ argmode ] [ argname ] argtype [ , ... ] |
[ [ argmode ] [ argname ] argtype [ , ... ] ] ORDER BY [ argmode ] [ argname ] argtype [ , ... ]


説明


DROP AGGREGATEを実行すると、既存の集約関数定義を削除することができます。
このコマンドを実行するには、現在のユーザがその集約関数を所有している必要があります。
  

パラメータ
	IF EXISTS
	

集約が存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

      既存の集約関数の名前です（スキーマ修飾名も可）。
     

	argmode
	

引数のモードで、INまたはVARIADICです。
省略した場合のデフォルトはINです。
     

	argname
	

引数の名前です。
DROP AGGREGATEは実際には引数の名前を無視することに注意してください。
これは、集約関数の本体を特定するのに必要になるのは、引数のデータ型だけだからです。
     

	argtype
	

集約関数の操作対象となる入力データ型です。
引数を持たない関数を参照する場合は、引数指定の一覧の場所に*を記述してください。
順序集合集約関数を参照する場合は、直接引数と集約引数の指定の間にORDER BYを記述してください。
     

	CASCADE
	

その集約関数に依存しているオブジェクト（集約関数を利用しているビューなど）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存しているオブジェクトがある場合、その集約関数の削除要求を拒否します。
こちらがデフォルトです。
     




注釈


順序集合集約を参照するための代替となる構文については、ALTER AGGREGATE(7)に記述されています。
   

例


integer型のmyavg集約関数を削除します。


DROP AGGREGATE myavg(integer);


  


順序列の任意のリストと直接引数の適合するリストをとる、仮想集合集約関数myrankを削除します。


DROP AGGREGATE myrank(VARIADIC "any" ORDER BY VARIADIC "any");


  


複数の集約関数を1つのコマンドで削除します。


DROP AGGREGATE myavg(integer), myavg(bigint);


互換性


標準SQLには、DROP AGGREGATE文はありません。
  

関連項目
ALTER AGGREGATE(7), CREATE AGGREGATE(7)


名前
DROP CAST — キャストを削除する

概要

DROP CAST [ IF EXISTS ] (source_type AS target_type) [ CASCADE | RESTRICT ]


説明


DROP CASTは、以前に定義したキャストを削除します。
  


キャストを削除するには、変換元または変換先のデータ型を所有している必要があります。
これらは、キャストを作成するために必要な権限と同じです。
  

パラメータ
	IF EXISTS
	

キャストが存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	source_type
	

キャストする変換元のデータ型の名前です。
      

	target_type
	

キャストする変換先のデータ型の名前です。
      

	CASCADE, RESTRICT
	

キャストは依存関係を持たないため、これらのキーワードを指定しても効果はありません。
      




例


text型からint型へのキャストを削除します。


DROP CAST (text AS int);


互換性


DROP CASTコマンドは、標準SQLに準拠しています。
  

関連項目
CREATE CAST(7)


名前
DROP COLLATION — 照合順序を削除する

概要

DROP COLLATION [ IF EXISTS ] name [ CASCADE | RESTRICT ]


説明


DROP COLLATIONは事前に定義された照合順序を削除します。
照合順序を削除するためには、その照合順序を所有していなければなりません。
  

パラメータ
	IF EXISTS
	

照合順序が存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
      

	name
	

照合順序の名前です。照合順序名はスキーマ修飾可能です。
      

	CASCADE
	

照合順序に依存するオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
      

	RESTRICT
	

依存するオブジェクトが存在する場合、照合順序の削除を拒絶します。
これがデフォルトです。
      




例


germanという名前の照合順序を削除します。


DROP COLLATION german;


互換性


DROP COLLATIONコマンドは標準SQLに準拠していますが、PostgreSQL™の拡張であるIF EXISTSオプションを除きます。
  

関連項目
ALTER COLLATION(7), CREATE COLLATION(7)


名前
DROP CONVERSION — 符号化方式変換を削除する

概要

DROP CONVERSION [ IF EXISTS ] name [ CASCADE | RESTRICT ]


説明


DROP CONVERSIONを使用すると、以前に定義した符号化方式変換（以下、単に「変換」と記します）を削除できます。
変換を削除するには、その変換を所有していなければなりません。
  

パラメータ
	IF EXISTS
	

変換が存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
      

	name
	

変換の名前です。変換名はスキーマ修飾可能です。
      

	CASCADE, RESTRICT
	

変換は依存関係を持たないため、これらのキーワードを指定しても効果はありません。
      




例


mynameという名前の変換を削除します。


DROP CONVERSION myname;


互換性


標準SQLにはDROP CONVERSION文はありません。
しかし、PostgreSQLのCREATE CONVERSIONに似たCREATE TRANSLATION文があるように、DROP TRANSLATION文があります。
  

関連項目
ALTER CONVERSION(7), CREATE CONVERSION(7)


名前
DROP DATABASE — データベースを削除する

概要

DROP DATABASE [ IF EXISTS ] name [ [ WITH ] ( option [, ...] ) ]


ここでoptionは以下の通りです。

    FORCE


説明


DROP DATABASEは、データベースを削除します。
そのデータベースの項目をカタログから削除し、データを保存していたディレクトリを削除します。
データベースの所有者のみがこのコマンドを実行することができます。
対象とするデータベースに接続している時は実行できません。
（このコマンドを実行する時は、postgresや他のデータベースに接続してください。）
また、他のユーザが対象とするデータベースに接続している時は、以下に書かれたFORCEオプションを使わない限り、このコマンドは失敗します。
  


DROP DATABASEは元に戻すことができません。
十分注意して使用してください。
  

パラメータ
	IF EXISTS
	

データベースが存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

削除するデータベースの名前です。
     

	FORCE
	

対象とするデータベースへの既存の接続をすべて終了することを試みます。
対象とするデータベースにプリペアドトランザクション、実行中の論理レプリケーションスロット、サブスクリプションが存在する場合には終了しません。
     


これは、バックグラウンドワーカー接続と、現在のユーザがpg_terminate_backendで終了する権限を持つ接続を終了します。これについては「サーバシグナル送信関数」で説明しています。
接続が残る場合、このコマンドは失敗します。
     




注釈


DROP DATABASEはトランザクションブロックの内部では実行できません。
   


対象とするデータベースに接続している間は、このコマンドを実行することができません。
したがって、このコマンドのラッパーであるdropdb(1)プログラムを使用する方がより便利かもしれません。
  

互換性


標準SQLにはDROP DATABASE文はありません。
  

関連項目
CREATE DATABASE(7)


名前
DROP DOMAIN — ドメインを削除する

概要

DROP DOMAIN [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP DOMAINはドメインを削除します。
ドメインを削除できるのは、ドメインの所有者のみです。
  

パラメータ
	IF EXISTS
	

ドメインが存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

既存のドメインの名前です（スキーマ修飾名も可）。
     

	CASCADE
	

ドメインに依存するオブジェクト（テーブルの列など）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存しているオブジェクトがある場合、そのドメインの削除要求を拒否します。
これがデフォルトです。
     




例


ドメインboxを削除します。



DROP DOMAIN box;


互換性


このコマンドは標準SQLに準拠していますが、PostgreSQL™の拡張であるIF EXISTSオプションを除きます。
  

関連項目
CREATE DOMAIN(7), ALTER DOMAIN(7)


名前
DROP EVENT TRIGGER — イベントトリガを削除する

概要

DROP EVENT TRIGGER [ IF EXISTS ] name [ CASCADE | RESTRICT ]


説明


DROP EVENT TRIGGERは既存のイベントトリガを削除します。
このコマンドを実行するためには、現在のユーザがイベントトリガの所有者でなければなりません。
  

パラメータ
	IF EXISTS
	

イベントトリガが存在しない場合でもエラーを発生しません。
この場合は注意が発生します。
     

	name
	

削除対象のイベントトリガの名前です。
     

	CASCADE
	

トリガに依存するオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存するオブジェクトが存在する場合はトリガの削除を取りやめます。
これがデフォルトです。
     




例


トリガsnitchを破棄します。



DROP EVENT TRIGGER snitch;


互換性


DROP EVENT TRIGGER文は標準SQLにはありません。
  

関連項目
CREATE EVENT TRIGGER(7), ALTER EVENT TRIGGER(7)


名前
DROP EXTENSION — 拡張を削除する

概要

DROP EXTENSION [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP EXTENSIONはデータベースから拡張を削除します。
拡張を削除すると、そのメンバオブジェクトやその他明示的に依存するルーチン(ALTER ROUTINE(7)のDEPENDS ON EXTENSION extension_nameの動作を参照してください)も削除されます。
  


DROP EXTENSIONを使用するためにはその拡張を所有していなければなりません。
  

パラメータ
	IF EXISTS
	

拡張が存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

インストールされている拡張の名前です。
     

	CASCADE
	

削除する拡張に依存しているオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

このオプションは、以下のもの以外の他のオブジェクトが拡張に依存している場合に、指定された拡張を削除しないようにします。ここで、以下のものとは、これらの拡張、そのメンバ、および明示的に依存するルーチンです。
こちらがデフォルトです。
     




例


現在のデータベースからhstore拡張を削除します。


DROP EXTENSION hstore;



例えば何らかのテーブルがhstore型の列を持つなど、データベース内でhstoreのオブジェクトを使用している場合、このコマンドは失敗します。
こうした依存するオブジェクトも含めて強制的に削除するにはCASCADEを付けてください。
  

互換性


DROP EXTENSIONはPostgreSQL™の拡張です。
  

関連項目
CREATE EXTENSION(7), ALTER EXTENSION(7)


名前
DROP FOREIGN DATA WRAPPER — 外部データラッパーを削除する

概要

DROP FOREIGN DATA WRAPPER [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP FOREIGN DATA WRAPPERは既存の外部データラッパーを削除します。
このコマンドを実行するためには、現在のユーザは外部データラッパーの所有者でなければなりません。
  

パラメータ
	IF EXISTS
	

外部データラッパーが存在しない場合にエラーを発生しません。
この場合、注意が発行されます。
     

	name
	

既存の外部データラッパーの名前です。
     

	CASCADE
	

外部データラッパーに依存するオブジェクト（外部テーブルやサーバなど）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

外部データラッパーに依存するオブジェクトが存在する場合に削除を取りやめます。
これがデフォルトです。
     




例


外部データラッパーdbiを削除します。


DROP FOREIGN DATA WRAPPER dbi;


互換性


DROP FOREIGN DATA WRAPPERはISO/IEC 9075-9 (SQL/MED)に準拠しています。
IF EXISTS句はPostgreSQL™の拡張です。
  

関連項目
CREATE FOREIGN DATA WRAPPER(7), ALTER FOREIGN DATA WRAPPER(7)


名前
DROP FOREIGN TABLE — 外部テーブルを削除する

概要

DROP FOREIGN TABLE [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP FOREIGN TABLEは外部テーブルを削除します。
外部テーブルの所有者のみが削除することができます。
  

パラメータ
	IF EXISTS
	

外部テーブルが存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

削除する外部テーブルの名前です（スキーマ修飾名も可）。
     

	CASCADE
	

削除する外部テーブルに依存しているオブジェクト（ビューなど）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存しているオブジェクトがある場合に、外部テーブルの削除を拒否します。
こちらがデフォルトです。
     




例


filmsおよびdistributorsという２つの外部テーブルを破棄します。



DROP FOREIGN TABLE films, distributors;


互換性


このコマンドはISO/IEC 9075-9（SQL/MED）に準拠していますが、標準では1コマンドで1つの外部テーブルしか削除できないという点、および、PostgreSQL™の拡張であるIF EXISTSオプションを除きます。
  

関連項目
ALTER FOREIGN TABLE(7), CREATE FOREIGN TABLE(7)


名前
DROP FUNCTION — 関数を削除する

概要

DROP FUNCTION [ IF EXISTS ] name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ] [, ...]
    [ CASCADE | RESTRICT ]


説明


DROP FUNCTIONは既存の関数定義を削除します。
このコマンドを実行できるのは、その関数の所有者のみです。
関数の引数の型は必ず指定しなければなりません。
異なる引数を持つ同じ名前の関数が複数存在する可能性があるからです。
  

パラメータ
	IF EXISTS
	

関数が存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

既存の関数の名前です（スキーマ修飾名も可）。
引数リストを指定しない場合、名前はスキーマ内で一意でなければなりません。
     

	argmode
	

引数のモードで、IN、OUT、INOUT、VARIADICのいずれかです。
省略された場合のデフォルトはINです。
関数の識別を行うには入力引数のみが必要ですので、実際にはDROP FUNCTIONがOUT引数を無視することに注意してください。
ですので、IN、INOUT、およびVARIADIC引数を列挙することで十分です。
     

	argname
	

引数の名前です。
関数の識別を行うには引数のデータ型のみが必要ですので、実際にはDROP FUNCTIONは引数の名前を無視することに注意してください。
     

	argtype
	

もしあれば、その関数の引数のデータ型（スキーマ修飾可能）です。
     

	CASCADE
	

関数に依存するオブジェクト（演算子やトリガなど）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存しているオブジェクトがある場合、その関数の削除を拒否します。
これがデフォルトです。
     




例


次のコマンドは平方根関数を削除します。



DROP FUNCTION sqrt(integer);



複数の関数を1つのコマンドで削除します。


DROP FUNCTION sqrt(integer), sqrt(bigint);



関数名がスキーマ内で一意であれば、引数リストを付けなくても参照することができます。


DROP FUNCTION update_employee_salaries;



これは以下とは異なることに注意してください。


DROP FUNCTION update_employee_salaries();



後者は引数がゼロ個の関数を参照するのに対し、前者は引数の個数はゼロ個も含め、何個でも良く、ただし名前が一意である必要があります。
  

互換性


このコマンドは標準SQLに準拠していますが、以下のPostgreSQL™の拡張があります。
   
	標準では1コマンドで1つの関数しか削除できません。

	IF EXISTSオプション

	引数のモードと名前を指定できること




関連項目
CREATE FUNCTION(7), ALTER FUNCTION(7), DROP PROCEDURE(7), DROP ROUTINE(7)


名前
DROP GROUP — データベースロールを削除する

概要

DROP GROUP [ IF EXISTS ] name [, ...]


説明


DROP GROUPはDROP ROLEの別名になりました。
  

互換性


標準SQLにはDROP GROUP文はありません。
  

関連項目
DROP ROLE(7)


名前
DROP INDEX — インデックスを削除する

概要

DROP INDEX [ CONCURRENTLY ] [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP INDEXはデータベースシステムから既存のインデックスを削除します。
このコマンドを実行するには、そのインデックスを所有していなければなりません。
  

パラメータ
	CONCURRENTLY
	

インデックスのテーブルに対して同時に実行される選択、挿入、更新、削除をロックすることなくインデックスを削除します。
通常のDROP INDEXではテーブルに対するACCESS EXCLUSIVEロックを獲得し、インデックスの削除が完了するまで他のアクセスをブロックします。
このオプションを使うと、競合するトランザクションが完了するまでコマンドは待たされます。
     


このオプションを使用する時に注意すべき、複数の警告があります。
指定できるインデックス名は１つだけであり、また、CASCADEオプションはサポートされません。
（したがってUNIQUEまたはPRIMARY KEY制約をサポートするインデックスをこの方法で削除することはできません。）
また、通常のDROP INDEXはトランザクションブロックの中で行うことができますが、DROP INDEX CONCURRENTLYはできません。
最後に、パーティションテーブルのインデックスをこのオプションで削除することはできません。
     


一時テーブルに対してはDROP INDEXは常に同時削除ではありません。他のセッションはアクセスできませんし、同時でないインデックス削除の方がより安価だからです。
     

	IF EXISTS
	

インデックスが存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

削除するインデックスの名前です（スキーマ修飾名も可）。
     

	CASCADE
	

そのインデックスに依存しているオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存しているオブジェクトがある場合、そのインデックスの削除を拒否します。
こちらがデフォルトです。
     




例


次のコマンドはインデックスtitle_idxを削除します。



DROP INDEX title_idx;


互換性


DROP INDEXはPostgreSQL™の言語拡張です。
標準SQLにはインデックスに関する規定はありません。
  

関連項目
CREATE INDEX(7)


名前
DROP LANGUAGE — 手続き言語を削除する

概要

DROP [ PROCEDURAL ] LANGUAGE [ IF EXISTS ] name [ CASCADE | RESTRICT ]


説明


DROP LANGUAGEは過去に登録された手続き言語の定義を削除します。
DROP LANGUAGEを使用するにはスーパーユーザか言語の所有者でなければなりません。
  
注記


PostgreSQL™ 9.1からほとんどの手続き言語は「拡張」にまとめられましたので、DROP LANGUAGEではなくDROP EXTENSIONを使用して削除すべきです。
   


パラメータ
	IF EXISTS
	

言語が存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

既存の手続き言語の名前です。
     

	CASCADE
	

その言語に依存するオブジェクト（その言語で記述された関数など）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存しているオブジェクトがある場合、その言語の削除を拒否します。
こちらがデフォルトです。
     




例


次のコマンドはplsampleという手続き言語を削除します。



DROP LANGUAGE plsample;


互換性


標準SQLにはDROP LANGUAGE文はありません。
  

関連項目
ALTER LANGUAGE(7), CREATE LANGUAGE(7)


名前
DROP MATERIALIZED VIEW — マテリアライズドビューを削除する

概要

DROP MATERIALIZED VIEW [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP MATERIALIZED VIEWは既存のマテリアライズドビューを削除します。
このコマンドを実行するためにはマテリアライズドビューの所有者でなければなりません。
  

パラメータ
	IF EXISTS
	

マテリアライズドビューが存在しない場合でもエラーを発生しません。
この場合注意が発生します。
     

	name
	

削除対象のマテリアライズドビューの名前（スキーマ修飾可）です。
     

	CASCADE
	

マテリアライズドビューに依存するオブジェクト（他のマテリアライズドビューや通常のビューなど）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存するオブジェクトがある場合にマテリアライズドビューの削除を取りやめます。
これがデフォルトです。
     




例


以下のコマンドはorder_summaryという名前のマテリアライズドビューを削除します。


DROP MATERIALIZED VIEW order_summary;


互換性


DROP MATERIALIZED VIEWはPostgreSQL™の拡張です。
  

関連項目
CREATE MATERIALIZED VIEW(7), ALTER MATERIALIZED VIEW(7), REFRESH MATERIALIZED VIEW(7)


名前
DROP OPERATOR — 演算子を削除する

概要

DROP OPERATOR [ IF EXISTS ] name ( { left_type | NONE } , right_type ) [, ...] [ CASCADE | RESTRICT ]


説明


DROP OPERATORはデータベースシステムから既存の演算子を削除します。
このコマンドを実行するには、その演算子の所有者でなければなりません。
  

パラメータ
	IF EXISTS
	

演算子が存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

既存の演算子の名前です（スキーマ修飾名も可）。
     

	left_type
	

演算子の左オペランドのデータ型です。
演算子に左オペランドがない場合は、NONEと記述します。
     

	right_type
	

演算子の右オペランドのデータ型です。
     

	CASCADE
	

演算子に依存するオブジェクト（その演算子を使用するビューなど）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存するオブジェクトがある場合、演算子の削除を拒否します。
これがデフォルトです。
     




例


integer型の累乗を求める演算子a^nを削除します。


DROP OPERATOR ^ (integer, integer);


  


bit型のビット列の補数を求める前置演算子~bを削除します。


DROP OPERATOR ~ (none, bit);


  


複数の演算子を1つのコマンドで削除します。


DROP OPERATOR ~ (none, bit), ^ (integer, integer);


互換性


標準SQLにはDROP OPERATOR文はありません。
  

関連項目
CREATE OPERATOR(7), ALTER OPERATOR(7)


名前
DROP OPERATOR CLASS — 演算子クラスを削除する

概要

DROP OPERATOR CLASS [ IF EXISTS ] name USING index_method [ CASCADE | RESTRICT ]


説明


DROP OPERATOR CLASSは既存の演算子クラスを削除します。
このコマンドを実行するには、演算子クラスの所有者でなければなりません。
  


DROP OPERATOR CLASSはそのクラスで参照される演算子や関数をまったく削除しません。
演算子クラスに依存するインデックスがある場合、削除を成功させるためにはCASCADEを指定する必要があります。
  

パラメータ
	IF EXISTS
	

演算子クラスが存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

既存の演算子クラスの名前です（スキーマ修飾名も可）。
     

	index_method
	

この演算子クラスを使用するインデックスアクセスメソッドの名前です。
     

	CASCADE
	

この演算子クラスに依存しているオブジェクト（インデックスなど）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します
（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存しているオブジェクトがある場合に、その演算子クラスの削除を拒否します。
こちらがデフォルトです。
     




注釈


DROP OPERATOR CLASSは、そのクラスを含む演算子族を削除しません。
たとえその演算子族が空になったとしても（特にその演算子族がCREATE OPERATOR CLASSで暗黙的に作成された場合でも）です。
空の演算子族は存在しても害はありませんが、整理するためにDROP OPERATOR FAMILYを使用してこの演算子族を削除することができます。
あるいは最初にDROP OPERATOR FAMILYを使って下さい。
  

例


widget_opsという名前のB-tree演算子クラスを削除します。



DROP OPERATOR CLASS widget_ops USING btree;




演算子クラスを使用するインデックスが存在する場合、このコマンドは実行できません。
このようなインデックスを演算子クラスとともに削除するには、CASCADEを指定します。
  

互換性


標準SQLにはDROP OPERATOR CLASSは存在しません。
  

関連項目
ALTER OPERATOR CLASS(7), CREATE OPERATOR CLASS(7), DROP OPERATOR FAMILY(7)


名前
DROP OPERATOR FAMILY — 演算子族を削除する

概要

DROP OPERATOR FAMILY [ IF EXISTS ] name USING index_method [ CASCADE | RESTRICT ]


説明


DROP OPERATOR FAMILYは既存の演算子族を削除します。
このコマンドを実行するためには、その演算子族の所有者でなければなりません。
  


DROP OPERATOR FAMILYには、その演算子族に含まれるすべての演算子クラスの削除も含まれています。
しかし、演算子族から参照される演算子や関数はまったく削除されません。
この演算子族内の演算子クラスに依存するインデックスが存在する場合、削除を完了させるためにはCASCADEを指定しなければなりません。
  

パラメータ
	IF EXISTS
	

演算子族が存在しない場合にエラーとしません。
この場合注意メッセージが表示されます。
     

	name
	

既存の演算子族の名前（スキーマ修飾可）です。
     

	index_method
	

演算子族が対象とするインデックスアクセスメソッドの名前です。
     

	CASCADE
	

演算子族に依存するオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

何らかのオブジェクトが演算子族に依存している場合、削除を中止します。
これがデフォルトです。
     




例


B-tree演算子族float_opsを削除します。



DROP OPERATOR FAMILY float_ops USING btree;




この演算子族内の演算子クラスを使用するインデックスが存在する場合、このコマンドは失敗します。
演算子族に関連するこうしたインデックスも削除する場合はCASCADEを付けてください。
  

互換性


標準SQLにはDROP OPERATOR FAMILY文はありません。
  

関連項目
ALTER OPERATOR FAMILY(7), CREATE OPERATOR FAMILY(7), ALTER OPERATOR CLASS(7), CREATE OPERATOR CLASS(7), DROP OPERATOR CLASS(7)


名前
DROP OWNED — データベースロールにより所有されるデータベースオブジェクトを削除する

概要

DROP OWNED BY { name | CURRENT_ROLE | CURRENT_USER | SESSION_USER } [, ...] [ CASCADE | RESTRICT ]


説明


DROP OWNEDは、現在のデータベース内にある、指定したロールが所有するオブジェクトをすべて削除します。
また、現在のデータベース内にあるオブジェクトや共有オブジェクト（データベース、テーブル空間、構成パラメータ）に対して指定したロールに与えられた権限も取り消されます。
  

パラメータ
	name
	

所有するオブジェクトを削除し、その権限が取り消されるロールの名称です。
     

	CASCADE
	

関連するオブジェクトに依存するオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

他のデータベースオブジェクトが関連オブジェクトに依存する場合、ロールにより所有されるオブジェクトの削除を取りやめます。
これがデフォルトです。
     




注釈


DROP OWNEDはよく、複数ロールの削除の前処理として使用されます。
DROP OWNEDは現在のデータベース内のオブジェクトにのみ影響しますので、このコマンドを通常、削除予定のロールが所有するオブジェクトを持つデータベース毎に実行する必要があります。
  


CASCADEオプションを使用すると、このコマンドで再帰的に他のユーザが所有するオブジェクトを処理する可能性があります。
  


代わりにREASSIGN OWNEDコマンドを使い、1つまたは複数のロールが所有するすべてのデータベースオブジェクトの所有権を再割り当てすることもできます。
ただしREASSIGN OWNEDは他のオブジェクトの権限については処理しません。
  


ロールにより所有されるデータベースおよびテーブル空間は削除されません。
  


詳しくは「ロールの削除」を参照してください。
  

互換性


DROP OWNEDコマンドはPostgreSQL™の拡張です。
  

関連項目
REASSIGN OWNED(7), DROP ROLE(7)


名前
DROP POLICY — テーブルから行単位のセキュリティポリシーを削除する

概要

DROP POLICY [ IF EXISTS ] name ON table_name [ CASCADE | RESTRICT ]


説明


DROP POLICYはテーブルから指定したポリシーを削除します。
テーブルの最後のポリシーが削除され、そのテーブルではまだALTER TABLEによる行単位セキュリティが有効な場合は、デフォルト拒否のポリシーが使われることに注意して下さい。
テーブルのポリシーの存在の有無に関わらず、ALTER TABLE ... DISABLE ROW LEVEL SECURITYを使い、テーブルの行単位セキュリティを無効にすることができます。
  

パラメータ
	IF EXISTS
	

ポリシーが存在しない時にエラーを発生させません。
この場合、注意が発行されます。
     

	name
	

削除するポリシーの名前です。
     

	table_name
	

ポリシーが適用されているテーブルの名前（スキーマ修飾可）です。
     

	CASCADE, RESTRICT
	

これらのキーワードには何の効果もありません。
ポリシーには依存関係がないからです。
     




例


my_tableという名前のテーブル上のp1というポリシーを削除するには、次のようにします。



DROP POLICY p1 ON my_table;


互換性


DROP POLICYはPostgreSQL™の拡張です。
  

関連項目
CREATE POLICY(7), ALTER POLICY(7)


名前
DROP PROCEDURE — プロシージャを削除する

概要

DROP PROCEDURE [ IF EXISTS ] name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ] [, ...]
    [ CASCADE | RESTRICT ]


説明


DROP PROCEDUREは1つ以上の既存のプロシージャ定義を削除します。
このコマンドを実行できるのは、そのプロシージャの所有者のみです。
プロシージャの引数の型は通常必ず指定しなければなりません。
異なる引数を持つ同じ名前のプロシージャが複数存在する可能性があるからです。
  

パラメータ
	IF EXISTS
	

プロシージャが存在しない場合でもエラーになりません。
この場合注意(NOTICE)メッセージが発行されます。
     

	name
	

既存の関数の名前です（スキーマ修飾名も可）。
     

	argmode
	

引数モードで、INかOUTかINOUTかVARIADICのいずれかです。
省略した場合のデフォルトはINです（ただし、以下を参照）。
     

	argname
	

引数の名前です。
プロシージャの識別を行うには引数のデータ型のみが使用されますので、実際にはDROP PROCEDUREは引数の名前を無視することに注意してください。
     

	argtype
	

もしあれば、そのプロシージャの引数のデータ型（スキーマ修飾可能）です。
詳細は以下を参照してください。
     

	CASCADE
	

プロシージャに依存するオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存しているオブジェクトがある場合、そのプロシージャの削除を拒否します。
これがデフォルトです。
     




注釈


指定した名前のプロシージャが1つしかない場合は、引数リストを省略できます。
この場合は括弧も省略してください。
  


PostgreSQL™では、入力引数（INOUTを含む）を列挙すれば十分です。
これは同じ名前のルーチンが同じ入力引数リストを共有することは許可されていないためです。
さらにDROPコマンドはOUT引数の型を正しく書いたかどうかを実際にはチェックしません。
したがって、明示的にOUTと記された引数は単なるノイズにすぎません。
しかし、対応するCREATEコマンドとの一貫性を保つために、これらを書いておくことをお勧めします。
  


標準SQLとの互換性のため、argmode印を付けずに、すべての引数のデータ型（OUT引数のデータ型を含む）を書くこともできます。
これが行なわれると、プロシージャのOUT引数の型はコマンドに対して検証されるようになるでしょう。
この規定は、引数リストにargmode印が含まれていない場合、どの規則を意図しているのかが不明確であるという曖昧さを生じさせます。
DROPコマンドは両方の方法で検索を試み、2つの異なるプロシージャが見つかった場合エラーを生じます。
このような曖昧さのリスクを避けるために、IN印をデフォルトにするのではなく明示的に記述して、従来のPostgreSQL™解釈を強制的に使用することをお勧めします。
  


ここで説明した検索規則は、ALTER PROCEDUREやCOMMENT ON PROCEDUREなど、既存のプロシージャーに作用する他のコマンドでも使用されます。
  

例


do_db_maintenanceプロシージャが1つしかない場合、次のコマンドで削除できます。


DROP PROCEDURE do_db_maintenance;


  


下記のプロシージャ定義が与えられた時、


CREATE PROCEDURE do_db_maintenance(IN target_schema text, OUT results text) ...



下記のコマンドのいずれかを使用すれば、プロシージャを削除することができます。


DROP PROCEDURE do_db_maintenance(IN target_schema text, OUT results text);
DROP PROCEDURE do_db_maintenance(IN text, OUT text);
DROP PROCEDURE do_db_maintenance(IN text);
DROP PROCEDURE do_db_maintenance(text);
DROP PROCEDURE do_db_maintenance(text, text);  -- potentially ambiguous



しかし、最後の例は、例えば下記もあると曖昧になります。


CREATE PROCEDURE do_db_maintenance(IN target_schema text, IN options text) ...


互換性


このコマンドは標準SQLに準拠していますが、以下のPostgreSQL™の拡張があります。
   
	標準では1コマンドで1つのプロシージャしか削除できません。

	IF EXISTSオプションは拡張です。

	引数モードと引数名を指定できるのは拡張で、モードが指定されている場合は検索規則が異なります。




関連項目
CREATE PROCEDURE(7), ALTER PROCEDURE(7), DROP FUNCTION(7), DROP ROUTINE(7)


名前
DROP PUBLICATION — パブリケーションを削除する

概要

DROP PUBLICATION [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP PUBLICATIONは既存のパブリケーションをデータベースから削除します。
  


パブリケーションはその所有者またはスーパーユーザによってのみ削除することができます。
  

パラメータ
	IF EXISTS
	

パブリケーションが存在しない場合でもエラーになりません。
この場合、注意メッセージが発行されます。
     

	name
	

既存のパブリケーションの名前です。
     

	CASCADE, RESTRICT
	

パブリケーションに依存するものはないので、これらのキーワードは何も効果がありません。
     




例


パブリケーションを削除します。


DROP PUBLICATION mypublication;


互換性


DROP PUBLICATIONはPostgreSQL™の拡張です。
  

関連項目
CREATE PUBLICATION(7), ALTER PUBLICATION(7)


名前
DROP ROLE — データベースロールを削除する

概要

DROP ROLE [ IF EXISTS ] name [, ...]


説明


DROP ROLEは指定したロール（複数可）を削除します。
スーパーユーザロールを削除するには、自身もスーパーユーザでなければなりません。
スーパーユーザ以外のロールを削除するには、CREATEROLE権限を持ち、そのロールに対してADMIN OPTIONが付与されていなければなりません。
  


データベースクラスタのいずれかから参照されている場合、ロールを削除することができません。
削除しようとしてもエラーとなります。
ロールを削除する前に、そのロールが所有するオブジェクトすべてを削除（またはその所有権を変更）しなければなりません。
また、そのロールが他のオブジェクトについて付与された権限も取り消されなければなりません。
この目的のためにはREASSIGN OWNEDおよびDROP OWNEDコマンドが有用です。
詳しくは「ロールの削除」を参照して下さい。
  


しかし、ロール内のロールメンバ資格を削除する必要はありません。
DROP ROLEは自動的に他のロール内にある対象ロールのメンバ資格を取り消します。
他のロールは削除されることも何らかの影響を受けることもありません。
  

パラメータ
	IF EXISTS
	

ロールが存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

削除対象のロールの名前です。
     




注釈


PostgreSQL™には、このコマンドと同じ機能を持つプログラムdropuser(1)があります。
（実際には、このプログラムはこのコマンドを呼び出しています。）
こちらはコマンドシェルから実行することができます。
  

例


ロールを削除します。


DROP ROLE jonathan;


互換性


標準SQLではDROP ROLEを定義していますが、一度に1つのロールしか削除することができません。
また、PostgreSQL™とは異なる権限が必要であると規定しています。
  

関連項目
CREATE ROLE(7), ALTER ROLE(7), SET ROLE(7)


名前
DROP ROUTINE — ルーチンを削除する

概要

DROP ROUTINE [ IF EXISTS ] name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ] [, ...]
    [ CASCADE | RESTRICT ]


説明


DROP ROUTINEは1つ以上の既存のルーチンを削除します。
用語「ルーチン」は、集約関数や通常の関数、プロシージャを含みます。
パラメータや例、さらなる詳細の説明はDROP AGGREGATE(7)やDROP FUNCTION(7)、DROP PROCEDURE(7)を参照してください。
  

注釈


DROP ROUTINEにより使われている検索規則は基本的にはDROP PROCEDUREと同じです。特に、DROP ROUTINEは、argmodeの印のない引数リストを、OUT引数がそのリストに含まれているとする標準SQLの定義を使っているかもしれないと考慮するコマンドの振舞いを共有します。
(DROP AGGREGATEとDROP FUNCTIONはそのようなことをしません。)
  


種類の異なるルーチンで同じ名前が共有されている時には、より特定のコマンド(DROP FUNCTION等)では成功するものの、DROP ROUTINEでは曖昧なためのエラーで失敗する可能性があります。
引数の型のリストをより注意深く指定することでも、そのような問題を解決できるでしょう。
  


ALTER ROUTINEやCOMMENT ON ROUTINEのような既存のルーチンに対して作用する他のコマンドでも、この検索規則は使われています。
  

例


integer型に対するルーチンfooを削除します。


DROP ROUTINE foo(integer);



このコマンドはfooが集約、関数、プロシージャの何れであるかによらず動作します。
  

互換性


このコマンドは標準SQLに準拠していますが、以下のPostgreSQL™の拡張があります。
   
	標準では1コマンドで1つのルーチンしか削除できません。

	IF EXISTSオプションは拡張です。

	
引数のモードと名前を指定可能できるのは拡張であり、モードを指定した時の検索規則は異なります。
     

	ユーザ定義可能な集約関数は拡張です。




関連項目
DROP AGGREGATE(7), DROP FUNCTION(7), DROP PROCEDURE(7), ALTER ROUTINE(7)

CREATE ROUTINEコマンドは無いことに注意してください。
  



名前
DROP RULE — 書き換えルールを削除する

概要

DROP RULE [ IF EXISTS ] name ON table_name [ CASCADE | RESTRICT ]


説明


DROP RULEは書き換えルールを削除します。
  

パラメータ
	IF EXISTS
	

ルールが存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

削除するルールの名前です。
     

	table_name
	

そのルールが適用されたテーブルもしくはビューの名前です（スキーマ修飾名も可）。
     

	CASCADE
	

ルールに依存するオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存するオブジェクトがある場合、ルールの削除を拒否します。
こちらがデフォルトです。
     




例


newruleという書き換えルールを削除します。



DROP RULE newrule ON mytable;


互換性


DROP RULEはPostgreSQL™の言語拡張で、問い合わせ書き換えシステム全体も言語拡張です。
  

関連項目
CREATE RULE(7), ALTER RULE(7)


名前
DROP SCHEMA — スキーマを削除する

概要

DROP SCHEMA [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP SCHEMAはデータベースからスキーマを削除します。
  


スキーマを削除できるのは、所有者またはスーパーユーザのみです。
所有者は、スキーマ内に自分が所有していないオブジェクトが含まれていても、そのスキーマ（およびそこに含まれる全てのオブジェクト）を削除できます。
  

パラメータ
	IF EXISTS
	

スキーマが存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

スキーマの名前です。
     

	CASCADE
	

スキーマに含まれるオブジェクト（テーブル、関数など）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

スキーマにオブジェクトが含まれている場合は、スキーマの削除を拒否します。
こちらがデフォルトです。
     




注釈


CASCADEオプションを使用すると、指定されたスキーマ以外にあるオブジェクトを削除することになる可能性があります。
  

例


データベースからmystuffスキーマ、およびそこに含まれる全てのオブジェクトを削除します。



DROP SCHEMA mystuff CASCADE;


互換性


DROP SCHEMAは、標準SQLと完全な互換性を持ちますが、標準では1コマンドで1つのスキーマしか削除できないという点、および、PostgreSQL™の拡張であるIF EXISTSを除きます。
  

関連項目
ALTER SCHEMA(7), CREATE SCHEMA(7)


名前
DROP SEQUENCE — シーケンスを削除する

概要

DROP SEQUENCE [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP SEQUENCEはシーケンス番号ジェネレータを削除します。
シーケンスの削除はその所有者またはスーパーユーザのみが可能です。
  

パラメータ
	IF EXISTS
	

シーケンスが存在しない場合でもエラーになりません。
この場合、注意メッセージが発行されます。
     

	name
	

シーケンスの名前です（スキーマ修飾名も可）。
     

	CASCADE
	

このシーケンスに依存しているオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存オブジェクトがある場合に、シーケンスの削除を拒否します。
こちらがデフォルトです。
     




例


serialという名前のシーケンスを削除します。



DROP SEQUENCE serial;


互換性


DROP SEQUENCEは標準SQLに準拠していますが、標準では1コマンドで1つのシーケンスしか削除できないという点、および、PostgreSQL™の拡張である IF EXISTSオプションを除きます。
  

関連項目
CREATE SEQUENCE(7), ALTER SEQUENCE(7)


名前
DROP SERVER — 外部サーバの記述子を削除する

概要

DROP SERVER [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP SERVERは既存の外部サーバ記述子を削除します。
このコマンドを実行するためには、現在のユーザはサーバの所有者でなければなりません。
  

パラメータ
	IF EXISTS
	

サーバが存在しない場合にエラーを発生しません。
この場合、注意が発行されます。
     

	name
	

既存のサーバの名前です。
     

	CASCADE
	

サーバに依存するオブジェクト（ユーザマップなど）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存するオブジェクトが存在する場合サーバの削除を取りやめます。
これがデフォルトです。
     




例


サーバfooが存在すれば、を削除します。


DROP SERVER IF EXISTS foo;


互換性


DROP SERVERはISO/IEC 9075-9 (SQL/MED)に準拠しています。
IF EXISTS句はPostgreSQL™の拡張です。
  

関連項目
CREATE SERVER(7), ALTER SERVER(7)


名前
DROP STATISTICS — 拡張統計を削除する

概要

DROP STATISTICS [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP STATISTICSはデータベースから統計オブジェクトを削除します。
統計オブジェクトの所有者、スキーマの所有者、あるいはスーパーユーザのみが統計オブジェクトを削除できます。
  

パラメータ
	IF EXISTS
	

統計オブジェクトが存在しない場合でもエラーになりません。
この場合、注意メッセージが発行されます。
     

	name
	

削除する統計オブジェクトの名前（オプションでスキーマ修飾可）です。
     

	CASCADE, RESTRICT
	

統計には依存性がないので、これらのキーワードは何の効果もありません。
     




例


別のスキーマにある2つの統計オブジェクトを削除し、それが存在しなくてもエラーにならないようにします。



DROP STATISTICS IF EXISTS
    accounting.users_uid_creation,
    public.grants_user_role;


互換性


標準SQLにはDROP STATISTICSコマンドはありません。
  

関連項目
ALTER STATISTICS(7), CREATE STATISTICS(7)


名前
DROP SUBSCRIPTION — サブスクリプションを削除する

概要

DROP SUBSCRIPTION [ IF EXISTS ] name [ CASCADE | RESTRICT ]


説明


DROP SUBSCRIPTIONはデータベースクラスタからサブスクリプションを削除します。
  


このコマンドを実行するには、ユーザはサブスクリプションの所有者でなければなりません。
  


サブスクリプションがレプリケーションスロットに紐付けられている場合、DROP SUBSCRIPTIONをトランザクションブロックの内側で実行することはできません。
（スロットの設定を解除するにはALTER SUBSCRIPTIONを使うことができます。）
  

パラメータ
	name
	

削除対象のサブスクリプションの名前です。
     

	CASCADE, RESTRICT
	

サブスクリプションに依存するものはないので、これらのキーワードは何も効果がありません。
     




注釈


リモートホストのレプリケーションスロットに紐付けられているサブスクリプション（これが通常の状態です）を削除するとき、DROP SUBSCRIPTIONはその操作の一部として、リモートホストに接続し、レプリケーションスロット(と残りのテーブル同期スロット)を削除しようとします。
リモートホスト上でサブスクリプションに割り当てられたリソースを解放するために、これが必要となります。
リモートホストに到達できない、あるいはリモートのレプリケーションスロットが削除できない、存在しない、存在したことがない、という理由で削除に失敗した場合、DROP SUBSCRIPTIONコマンドは失敗します。
この状況において先へ進むためには、まずALTER SUBSCRIPTION ... DISABLEを実行してサブスクリプションを無効にし、それからALTER SUBSCRIPTION ... SET (slot_name = NONE)を実行してサブスクリプションとレプリケーションスロットの紐付けを解除してください。
その後ならDROP SUBSCRIPTIONはリモートホスト上で何のアクションも起こそうとしません。
リモートのレプリケーションスロットがそれでも存在する場合、それ (と関連するテーブル同期スロット) を手作業で削除すべきであることに注意してください。
そうしなければ、WALを保存し続け、最終的にはディスクを一杯にしてしまうかもしれません。
「レプリケーションスロットの管理」も参照してください。
  


サブスクリプションがレプリケーションスロットと紐付けられている場合、DROP SUBSCRIPTIONをトランザクションブロックの内側で実行することはできません。
  

例


サブスクリプションを削除します。


DROP SUBSCRIPTION mysub;


互換性


DROP SUBSCRIPTIONはPostgreSQL™の拡張です。
  

関連項目
CREATE SUBSCRIPTION(7), ALTER SUBSCRIPTION(7)


名前
DROP TABLE — テーブルを削除する

概要

DROP TABLE [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP TABLEはデータベースからテーブルを削除します。
テーブル所有者、スキーマ所有者、スーパーユーザのみがテーブルを削除することができます。
テーブルを削除するのではなく、テーブルの行を空にするには、DELETEまたはTRUNCATEを使用してください。
  


DROP TABLEは、削除対象のテーブルについて存在するインデックス、ルール、トリガ、制約を全て削除します。
しかし、ビューや他のテーブルの外部キー制約によって参照されているテーブルを削除するにはCASCADEを指定する必要があります。
（CASCADEを指定すると、テーブルに依存するビューは完全に削除されます。外部キー制約によって参照されている場合は、外部キー制約のみが削除され、その外部キーを持つテーブルそのものは削除されません。）
  

パラメータ
	IF EXISTS
	

テーブルが存在しない場合でもエラーになりません。
この場合、注意メッセージが発行されます。
     

	name
	

削除するテーブルの名前です（スキーマ修飾名も可）。
     

	CASCADE
	

削除するテーブルに依存しているオブジェクト（ビューなど）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存しているオブジェクトがある場合に、テーブルの削除を拒否します。
こちらがデフォルトです。
     




例


2つのテーブル、filmsとdistributorsを削除します。



DROP TABLE films, distributors;


互換性


このコマンドは標準SQLに準拠していますが、標準では1コマンドで1つのテーブルしか削除できないという点、および、PostgreSQL™の拡張であるIF EXISTSオプションを除きます。
  

関連項目
ALTER TABLE(7), CREATE TABLE(7)


名前
DROP TABLESPACE — テーブル空間を削除する

概要

DROP TABLESPACE [ IF EXISTS ] name


説明


DROP TABLESPACEはシステムからテーブル空間を削除します。
  


テーブル空間を削除できるのは、その所有者もしくはスーパーユーザのみです。
テーブル空間を削除する前に、全てのデータベースオブジェクトが空になっていなければなりません。
現在のデータベース内のオブジェクトが使用していなかったとしても、他のデータベース内のオブジェクトがそのテーブル空間上にあることがあります。
また、活動中のセッションのいずれかのtemp_tablespacesのリストにそのテーブル空間が含まれている場合、一時ファイルがそのテーブル空間に存在するためにDROPが失敗する可能性があります。
  

パラメータ
	IF EXISTS
	

テーブル空間が存在しない場合でもエラーになりません。
この場合注意メッセージが発行されます。
     

	name
	

テーブル空間の名前です。
     




注釈


トランザクションブロック内でDROP TABLESPACEを実行することはできません。
   

例


テーブル空間mystuffをシステムから削除します。


DROP TABLESPACE mystuff;


互換性


DROP TABLESPACEはPostgreSQL™の拡張です。
  

関連項目
CREATE TABLESPACE(7), ALTER TABLESPACE(7)


名前
DROP TEXT SEARCH CONFIGURATION — テキスト検索設定を削除する

概要

DROP TEXT SEARCH CONFIGURATION [ IF EXISTS ] name [ CASCADE | RESTRICT ]


説明


DROP TEXT SEARCH CONFIGURATIONは既存のテキスト検索設定を削除します。
このコマンドを実行するためには、その設定の所有者でなければなりません。
  

パラメータ
	IF EXISTS
	

テキスト検索設定が存在しない場合でもエラーとしません。
この場合は注意が発行されます。
     

	name
	

既存のテキスト検索設定の名称（スキーマ修飾可）です。
     

	CASCADE
	

テキスト検索設定に依存するオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存するオブジェクトが存在する場合、テキスト検索設定の削除を中止します。
これがデフォルトです。
     




例


テキスト検索設定my_englishを削除します。



DROP TEXT SEARCH CONFIGURATION my_english;




to_tsvector呼び出し内でこの設定を参照するインデックスが存在する場合、このコマンドは成功しません。
こうしたインデックスをテキスト検索設定と一緒に削除するためにはCASCADEを付けてください。
  

互換性


標準SQLにはDROP TEXT SEARCH CONFIGURATION文はありません。
  

関連項目
ALTER TEXT SEARCH CONFIGURATION(7), CREATE TEXT SEARCH CONFIGURATION(7)


名前
DROP TEXT SEARCH DICTIONARY — テキスト検索辞書を削除する

概要

DROP TEXT SEARCH DICTIONARY [ IF EXISTS ] name [ CASCADE | RESTRICT ]


説明


DROP TEXT SEARCH DICTIONARYは既存のテキスト検索辞書を削除します。
このコマンドを実行するためには、その辞書の所有者でなければなりません。
  

パラメータ
	IF EXISTS
	

テキスト検索辞書が存在しない場合でもエラーとしません。
この場合は注意が発行されます。
     

	name
	

既存のテキスト検索辞書の名称（スキーマ修飾可）です。
     

	CASCADE
	

テキスト検索辞書に依存するオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存するオブジェクトが存在する場合、テキスト検索辞書の削除を中止します。
これがデフォルトです。
     




例


テキスト検索辞書englishを削除します。



DROP TEXT SEARCH DICTIONARY english;




この辞書を使用するテキスト検索設定が存在する場合、このコマンドは成功しません。
こうした設定を辞書と一緒に削除するためにはCASCADEを付けてください。
  

互換性


標準SQLにはDROP TEXT SEARCH DICTIONARY文はありません。
  

関連項目
ALTER TEXT SEARCH DICTIONARY(7), CREATE TEXT SEARCH DICTIONARY(7)


名前
DROP TEXT SEARCH PARSER — テキスト検索パーサを削除する

概要

DROP TEXT SEARCH PARSER [ IF EXISTS ] name [ CASCADE | RESTRICT ]


説明


DROP TEXT SEARCH PARSERは既存のテキスト検索パーサを削除します。
このコマンドを実行するためには、スーパーユーザでなければなりません。
  

パラメータ
	IF EXISTS
	

テキスト検索パーサが存在しない場合でもエラーとしません。
この場合は注意が発行されます。
     

	name
	

既存のテキスト検索パーサの名称（スキーマ修飾可）です。
     

	CASCADE
	

テキスト検索パーサに依存するオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存するオブジェクトが存在する場合、テキスト検索パーサの削除を中止します。
これがデフォルトです。
     




例


テキスト検索パーサmy_parserを削除します。



DROP TEXT SEARCH PARSER my_parser;




このパーサを使用するテキスト検索設定が存在する場合、このコマンドは成功しません。
こうした設定をパーサと一緒に削除するためにはCASCADEを付けてください。
  

互換性


標準SQLにはDROP TEXT SEARCH PARSER文はありません。
  

関連項目
ALTER TEXT SEARCH PARSER(7), CREATE TEXT SEARCH PARSER(7)


名前
DROP TEXT SEARCH TEMPLATE — テキスト検索テンプレートを削除する

概要

DROP TEXT SEARCH TEMPLATE [ IF EXISTS ] name [ CASCADE | RESTRICT ]


説明


DROP TEXT SEARCH TEMPLATEは既存のテキスト検索テンプレートを削除します。
このコマンドを実行するためには、スーパーユーザでなければなりません。
  

パラメータ
	IF EXISTS
	

テキスト検索テンプレートが存在しない場合でもエラーとしません。
この場合は注意が発行されます。
     

	name
	

既存のテキスト検索テンプレートの名称（スキーマ修飾可）です。
     

	CASCADE
	

テキスト検索テンプレートに依存するオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存するオブジェクトが存在する場合、テキスト検索テンプレートの削除を中止します。
これがデフォルトです。
     




例


テキスト検索テンプレートthesaurusを削除します。



DROP TEXT SEARCH TEMPLATE thesaurus;




このテンプレートを使用するテキスト検索辞書が存在する場合、このコマンドは成功しません。
こうした辞書をテンプレートと一緒に削除するためにはCASCADEを付けてください。
  

互換性


標準SQLにはDROP TEXT SEARCH TEMPLATE文はありません。
  

関連項目
ALTER TEXT SEARCH TEMPLATE(7), CREATE TEXT SEARCH TEMPLATE(7)


名前
DROP TRANSFORM — 変換を削除する

概要

DROP TRANSFORM [ IF EXISTS ] FOR type_name LANGUAGE lang_name [ CASCADE | RESTRICT ]


説明


DROP TRANSFORMは以前に定義された変換を削除します。
  


変換を削除するには、型と言語を所有していなければなりません。
これらは変換を作成するのに必要とされるのと同じ権限です。
  

パラメータ
	IF EXISTS
	

変換が存在しない場合にエラーを発生させません。
この場合、注意が発行されます。
     

	type_name
	

変換のデータ型の名前です。
      

	lang_name
	

変換の言語の名前です。
      

	CASCADE
	

変換に依存するオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
      

	RESTRICT
	

変換に依存するオブジェクトがある場合は、変換を削除しません。
これがデフォルトです。
      




例


hstore型で言語plpython3uの変換を削除するには次のようにします。


DROP TRANSFORM FOR hstore LANGUAGE plpython3u;


互換性


この構文のDROP TRANSFORMはPostgreSQL™の拡張です。
詳しくはCREATE TRANSFORM(7)を参照してください。
  

関連項目
CREATE TRANSFORM(7)


名前
DROP TRIGGER — トリガを削除する

概要

DROP TRIGGER [ IF EXISTS ] name ON table_name [ CASCADE | RESTRICT ]


説明


DROP TRIGGERは既存のトリガ定義を削除します。
このコマンドを実行できるのは、トリガが定義されたテーブルの所有者のみです。
  

パラメータ
	IF EXISTS
	

トリガが存在しない場合でもエラーになりません。この場合注意メッセージが発行されます。
     

	name
	

削除するトリガの名前です。
     

	table_name
	

トリガが定義されたテーブルの名前です（スキーマ修飾名も可）。
     

	CASCADE
	

このトリガに依存しているオブジェクトを自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存しているオブジェクトがある場合に、トリガの削除を拒否します。
こちらがデフォルトです。
     




例


テーブルfilmsにあるトリガif_dist_existsを削除します。



DROP TRIGGER if_dist_exists ON films;


互換性


PostgreSQL™のDROP TRIGGER文には標準SQLとの互換性がありません。
標準SQLでは、トリガ名がテーブルに局所化されていないので、DROP TRIGGER nameというコマンドが使われています。
  

関連項目
CREATE TRIGGER(7)


名前
DROP TYPE — データ型を削除する

概要

DROP TYPE [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP TYPEはユーザ定義のデータ型を削除します。
データ型を削除できるのは、その所有者のみです。
  

パラメータ
	IF EXISTS
	

型が存在しない場合でもエラーになりません。
この場合、注意メッセージが発行されます。
     

	name
	

削除するデータ型の名前です（スキーマ修飾名も可）。
     

	CASCADE
	

削除するデータ型に依存するオブジェクト（テーブルの列、関数、演算子など）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存しているオブジェクトがある場合に、データ型の削除を拒否します。
こちらがデフォルトです。
     




例


boxデータ型を削除します。


DROP TYPE box;


互換性


このコマンドは、PostgreSQL™の拡張であるIF EXISTSオプションを除き、標準SQL内の対応するコマンドと似ています。
しかし、PostgreSQL™のCREATE TYPEコマンドの多くとデータ型拡張機構は標準SQLとは異なる点に注意してください。
  

関連項目
ALTER TYPE(7), CREATE TYPE(7)


名前
DROP USER — データベースロールを削除する

概要

DROP USER [ IF EXISTS ] name [, ...]


説明


DROP USERはDROP ROLEの単なる別の綴りです。
  

互換性


DROP USER文はPostgreSQL™の拡張です。
標準SQLでは、ユーザの定義は実装に任されています。
  

関連項目
DROP ROLE(7)


名前
DROP USER MAPPING — 外部サーバ用のユーザマップを削除する

概要

DROP USER MAPPING [ IF EXISTS ] FOR { user_name | USER | CURRENT_ROLE | CURRENT_USER | PUBLIC } SERVER server_name


説明


DROP USER MAPPINGは既存のユーザマップを外部サーバから削除します。
  


外部サーバの所有者は任意のユーザに対するそのサーバ向けのユーザマップを削除することができます。
また、サーバ上でUSAGE権限がユーザに付与されている場合、ユーザは自身の持つユーザ名に対応するユーザマップを削除することができます。
  

パラメータ
	IF EXISTS
	

ユーザマップが存在しない場合にエラーを発生しません。
この場合、注意が発行されます。
     

	user_name
	

対応付けされるユーザ名です。
CURRENT_ROLE、CURRENT_USERとUSERは現在のユーザの名前に対応します。
PUBLICは、システム上の現在および将来のユーザ名すべてに対応させるために使用します。
     

	server_name
	

ユーザマップのサーバ名です。
     




例


存在する場合、サーバfooからユーザマップbobを削除します。


DROP USER MAPPING IF EXISTS FOR bob SERVER foo;


互換性


DROP USER MAPPINGはISO/IEC 9075-9 (SQL/MED)に準拠しています。
IF EXISTS句はPostgreSQL™の拡張です。
  

関連項目
CREATE USER MAPPING(7), ALTER USER MAPPING(7)


名前
DROP VIEW — ビューを削除する

概要

DROP VIEW [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]


説明


DROP VIEWは既存のビューを削除します。
このコマンドを実行できるのは、ビューの所有者のみです。
  

パラメータ
	IF EXISTS
	

ビューが存在しない場合でもエラーとしません。
この場合には注意メッセージが発行されます。
     

	name
	

削除するビューの名前です（スキーマ修飾名も可）。
     

	CASCADE
	

削除するビューに依存しているオブジェクト（他のビューなど）を自動的に削除し、さらにそれらのオブジェクトに依存するすべてのオブジェクトも削除します（「依存関係の追跡」参照）。
     

	RESTRICT
	

依存するオブジェクトがある場合は、ビューの削除を拒否します。
こちらがデフォルトです。
     




例


次のコマンドはkindsという名前のビューを削除します。


DROP VIEW kinds;


互換性


このコマンドは標準SQLに準拠していますが、標準では1コマンドで1つのビューしか削除できないという点、および、PostgreSQL™の拡張であるIF EXISTSオプションを除きます。
  

関連項目
ALTER VIEW(7), CREATE VIEW(7)


名前
END — 現在のトランザクションをコミットする

概要

END [ WORK | TRANSACTION ] [ AND [ NO ] CHAIN ]


説明


ENDは現在のトランザクションをコミットします。
これにより、そのトランザクションでなされた全ての変更は、他に対して可視状態となります。また、クラッシュが発生したとしても永続性が保証されます。
このコマンドは、PostgreSQL™の拡張で、COMMITと同等です。
  

パラメータ
	WORK, TRANSACTION
	

省略可能なキーワードです。何も効果がありません。
     

	AND CHAIN
	

AND CHAINが指定されていれば、新しいトランザクションは、直前に終了したものと同じトランザクションの特性(SET TRANSACTION(7)を参照してください)で即時に開始されます。
そうでなければ、新しいトランザクションは開始されません。
     




注釈


トランザクションのアボートにはROLLBACKを使用してください。
  


トランザクションの外側でENDを発行しても問題はありませんが、警告メッセージが表示されます。
  

例


現在のトランザクションをコミットし、全ての変更を永続化します。


END;


互換性


ENDはPostgreSQL™の拡張です。このコマンドの機能は、標準SQLで規定されたCOMMITと同じです。
  

関連項目
BEGIN(7), COMMIT(7), ROLLBACK(7)


名前
EXECUTE — 
   プリペアド文を実行する
  

概要

EXECUTE name [ ( parameter [, ...] ) ]


説明


EXECUTEは、事前に作成されたプリペアド文を実行する際に使用します。
プリペアド文はセッション中にしか存在できないため、事前に同一セッション中のPREPARE文によって作成されたものでなければなりません。
  


文を作成したPREPARE文にパラメータが指定されている場合は、これに適合するパラメータの集合がEXECUTEに渡される必要があります。
そうしないと、エラーになります。
（関数とは異なり）プリペアド文は、パラメータのデータ型や個数によってオーバーロードされることはありません。
プリペアド文の名前は、1つのデータベースセッション内で一意でなければなりません。
  


プリペアド文の作成方法と使用方法についての詳細はPREPARE(7)を参照してください。
  

パラメータ
	name
	

実行するプリペアド文の名前を指定します。
     

	parameter
	

プリペアド文に対するパラメータの実際の値を指定します。
これは、プリペアド文が生成された時に決定される、そのパラメータのデータ型と互換性のある値を返す式である必要があります。
     




出力


EXECUTEで返されるコマンドタグは、EXECUTEではなく、プリペアド文のコマンドタグとなります。
  

例


例はPREPARE(7)の説明のExamplesにあります。
   

互換性


標準SQLにはEXECUTE文が含まれていますが、これは埋め込みSQLでのみ使用できます。
また、このバージョンのEXECUTE文では、多少異なる構文が使用されています。
  

関連項目
DEALLOCATE(7), PREPARE(7)


名前
EXPLAIN — 問い合わせ文の実行計画を表示する

概要

EXPLAIN [ ( option [, ...] ) ] statement


ここでoptionは以下の一つです。

    ANALYZE [ boolean ]
    VERBOSE [ boolean ]
    COSTS [ boolean ]
    SETTINGS [ boolean ]
    GENERIC_PLAN [ boolean ]
    BUFFERS [ boolean ]
    SERIALIZE [ { NONE | TEXT | BINARY } ]
    WAL [ boolean ]
    TIMING [ boolean ]
    SUMMARY [ boolean ]
    MEMORY [ boolean ]
    FORMAT { TEXT | XML | JSON | YAML }


説明


与えられた文に対して、PostgreSQL™プランナが生成する実行計画を表示します。
実行計画は、問い合わせ文が参照するテーブル（複数の場合もある）をスキャンする方法（単純なシーケンシャルスキャン、インデックススキャンなど）、複数のテーブルを参照する場合に、各テーブルから取り出した行を結合するために使用する結合アルゴリズムを示すものです。
  


表示内容の中でも、最も重要なのは、文の実行にかかるコストの見積もりです。
これは、プランナが文の実行にかかる時間（任意の、しかし慣習的にはディスクページ抽出を意味するコスト単位で計測）を推測したものです。
具体的には、2つの数が表示されます。
1つは最初の行が返されるまでのスタートアップコスト、もう1つはすべての行が返されるまでの合計コストです。
ほとんどの問い合わせにとって問題となるのは合計コストの方ですが、EXISTS副問い合わせなどのコンテキストでは、プランナは合計コストが最も短くなるプランよりも、スタートアップコストが最も短くなるプランを選びます（エグゼキュータは行を1つ取得した後に停止するからです）。
また、LIMIT句を使って問い合わせが返す行数を制限する場合、プランナは実際にはどの計画が一番低コストになるかを概算するため、全体を処理した場合のコストの間で適切な補間を行います。
  


ANALYZEオプションを付けると、計画を作るだけでなく、文が実際に実行されます。
この場合は、各計画ノードで費された総経過時間（ミリ秒単位）と実際に返された全行数など、実際の実行時の統計情報が追加表示されます。
プランナの推測と実際の値が近いかどうかを確認するために、このオプションは有用です。
  
重要


ANALYZEを使用した場合は、文が実際に実行されることを忘れないでください。
EXPLAINはSELECTが返す出力をまったく表示しませんが、文に伴う副作用は通常通り発生します。
INSERT、UPDATE、DELETE、MERGE、CREATE TABLE AS、EXECUTE文に対して、データに影響を与えないようにEXPLAIN ANALYZEを実行したい場合は、以下の方法を使用してください。


BEGIN;
EXPLAIN ANALYZE ...;
ROLLBACK;


   


パラメータ
	ANALYZE
	

コマンドを実行し、実際の実行時間やその他の統計情報を表示します。
このパラメータのデフォルトはFALSEです。
     

	VERBOSE
	

計画についての追加情報を出力します。
具体的には、計画ツリー、スキーマ修飾テーブル、関数名内の各ノードに対して出力列リストを含めます。
常に範囲テーブルの別名を付けて式内の変数を命名し、また常に統計情報が表示される各トリガの名前を出力します。
計算されていれば問い合わせ識別子も表示されます。詳細はcompute_query_idを参照してください。
このパラメータのデフォルトはFALSEです。
     

	COSTS
	

各計画ノードの推定起動コストと総コスト、さらに推定行数と各行の推定幅に関する情報を含めます。
このパラメータのデフォルトはTRUEです。
     

	SETTINGS
	

設定パラメータに関する情報を含めます。
特に、組み込みのデフォルト値と異なる値で問い合わせ計画に影響するオプションを含めます。
このパラメータのデフォルトはFALSEです。
     

	GENERIC_PLAN
	

文が$1のようなパラメータプレースホルダを含むことを許可し、これらのパラメータの値に依存しない汎用的な計画を生成します。
汎用的な計画およびパラメータをサポートする文のタイプの詳細は、PREPAREを参照してください。
このパラメータはANALYZEと併用できません。
デフォルトはFALSEです。
     

	BUFFERS
	

バッファの使用状況に関する情報を含めます。
具体的には、共有ブロックのヒット数、読み取り数、ダーティブロック数、書き出し数、ローカルブロックのヒット数、読み取り数、ダーティブロック数、書き出し数、一時ブロックの読み取り数、書き出し数、そして、track_io_timingが有効にされていればデータファイルブロック、ローカルブロック、一時ファイルブロックの読み取り、書き出しに掛かった時間(ミリ秒単位)が含められます。
ヒットとは、必要な時にキャッシュ内にそのブロックが見つかったため読み取りが避けられたことを意味します。
共有ブロックには、通常のテーブルとインデックスからのデータが含まれます。
ローカルブロックには、一時テーブルとそのインデックスからのデータが含まれます。
一時ブロックには、ソートやハッシュ、マテリアライズ計画ノードなどで使用される短期間有効なデータが含まれます。
ダーティブロック数は、これまでは変更がなかったがその問い合わせによって変更されたブロックの数を示します。
書き出しブロック数は、問い合わせ処理の間にバックエンドにより、ダーティ状態だったブロックの内キャッシュから追い出されたブロックの数を示します。
上位レベルのノードで表示されるブロック数には、その子ノードすべてで使用されるブロックが含まれます。
テキスト形式では、非ゼロの値のみが出力されます。
ANALYZEが使用される場合、バッファ情報は自動的に含まれます。
     

	SERIALIZE
	

問い合わせの出力データをシリアライズ、すなわち、クライアントに送信するためにテキスト形式またはバイナリ形式に変換する際のコストに関する情報を含めます。
データ型出力関数が高価である場合、またはTOAST化された値を行外の格納から取得しなければならない場合、これは問い合わせの通常の実行に必要な時間のかなりの部分を占める可能性があります。
EXPLAINのデフォルトの動作であるSERIALIZE NONEは、これらの変換を行いません。
SERIALIZE TEXTまたはSERIALIZE BINARYが指定された場合、適切な変換が実行され、その実行にかかった時間が測定されます（ただし、TIMING OFFが指定されていない場合）。
BUFFERSオプションも指定されている場合、変換に関連するバッファへのアクセスもカウントされます。
しかし、EXPLAINは決して結果のデータをクライアントに送信することはありません。したがって、この方法ではネットワークの送信コストを調査することはできません。
シリアライズはANALYZEも有効な場合にのみ有効になります。
引数を指定せずにSERIALIZEを書くと、TEXTが仮定されます。
     

	WAL
	

WALレコード生成に関する情報を含めます。
具体的には、レコード数、ページ全体のイメージ(fpi)の数、生成されたWALのバイト単位での量、WALバッファが一杯になった回数が含まれます。
テキスト形式では、非ゼロの値のみが出力されます。
このパラメータはANALYZEパラメータも有効である場合にのみ使用できます。
デフォルトはFALSEです。
     

	TIMING
	

実際のスタートアップ時間とノードで費やされた時間が追加表示されます。
一部のシステムでは、システムクロックを何度も読み取るオーバーヘッドのため問い合わせがかなり低速になる可能性があります。
このため、実際の時間ではなく実際の行数のみが必要であるのであれば、このパラメータはFALSEに設定する方が有益でしょう。
文全体の実行時間は、このオプションによってノードレベルの時間計測が無効であった場合であっても、常に計測されます。
このパラメータはANALYZEパラメータも有効である場合にのみ使用することができます。
デフォルトはTRUEです。
     

	SUMMARY
	

要約情報（例えば、時間の情報の合計）を問い合わせ計画の後に出力します。
要約情報はANALYZEが使われるときはデフォルトで含まれ、それ以外の場合はデフォルトでは含まれませんが、このオプションを使えば有効にできます。
EXPLAIN EXECUTEの計画時間には、計画をキャッシュから取得するのに要する時間、および必要なら再計画するのに要する時間も含まれます。
     

	MEMORY
	

問い合わせ計画フェーズによるメモリ消費量に関する情報を含めます。
具体的には、プランナのインメモリ構造体が使用する正確なメモリ量と、割り当てのオーバーヘッドを考慮した合計メモリを含めます。
このパラメータのデフォルトはFALSEです。
     

	FORMAT
	

出力形式を指定します。
TEXT、XML、JSON、YAMLを指定可能です。
TEXT以外の出力にはTEXT出力と同じ情報が含まれていますが、プログラムによる解析がより容易になります。
このパラメータのデフォルトはTEXTです。
     

	boolean
	

選択したオプションを有効にするか無効にするか指定します。
オプションを有効にする場合にはTRUE、ONまたは1と書くことができ、無効にする場合にはFALSE、OFFまたは0と書くことができます。
booleanの値は省略することもでき、その場合にはTRUEとみなされます。
     

	statement
	

実行計画の表示対象となる、SELECT、INSERT、UPDATE、DELETE、MERGE、VALUES、EXECUTE、DECLARE、CREATE TABLE AS、CREATE MATERIALIZED VIEW ASのいずれかの文です。
     




出力


コマンドの結果は、statementに対して選択された計画をテキストで説明します。
オプションで、実行時の統計情報で注釈が付けられます。
「EXPLAINの利用」では出力される情報について説明します。
   

注釈


PostgreSQL™問い合わせプランナが十分な情報を使って問い合わせを最適化できるようにするには、問い合わせ内で使用されるすべてのテーブルに関するpg_statisticのデータを最新状態にしなければなりません。
通常自動バキュームデーモンにより自動的に処理されます。
しかし最近その内容が大きく変更されたテーブルでは、自動バキュームがその変更に追いつくまで待つのではなく、手作業によるANALYZEを実行する必要があるかもしれません。
  


実行計画内の各ノードの実行時コストを測定するために、現在のEXPLAIN ANALYZE実装は、問い合わせ実行に対し、情報収集のためのオーバーヘッドを加えます。
この結果、ある問い合わせについてのEXPLAIN ANALYZE実行が、普通に問い合わせを実行した場合より非常に時間がかかることがあります。
このオーバーヘッドの量は問い合わせの性質と使用するプラットフォームに依存します。
実行の間非常に短い時間を必要とする計画ノードに関して、時刻を得るためのシステムコールの操作が相対的に低速なプラットフォーム上で最悪な場合が発生します。
  

例


integer列を1つ持ち、10000行が存在するテーブルに対して、単純な問い合わせを行った場合の問い合わせ計画を表示します。



EXPLAIN SELECT * FROM foo;

                       QUERY PLAN
---------------------------------------------------------
 Seq Scan on foo  (cost=0.00..155.00 rows=10000 width=4)
(1 row)


  


以下は同じ問い合わせをJSON出力形式で出力したものです。


EXPLAIN (FORMAT JSON) SELECT * FROM foo;
           QUERY PLAN
--------------------------------
 [                             +
   {                           +
     "Plan": {                 +
       "Node Type": "Seq Scan",+
       "Relation Name": "foo", +
       "Alias": "foo",         +
       "Startup Cost": 0.00,   +
       "Total Cost": 155.00,   +
       "Plan Rows": 10000,     +
       "Plan Width": 4         +
     }                         +
   }                           +
 ]
(1 row)


  


インデックスが存在し、問い合わせのWHERE条件でインデックスを利用できる場合、EXPLAINは異なる計画を表示する可能性があります。



EXPLAIN SELECT * FROM foo WHERE i = 4;

                         QUERY PLAN
--------------------------------------------------------------
 Index Scan using fi on foo  (cost=0.00..5.98 rows=1 width=4)
   Index Cond: (i = 4)
(2 rows)


  


以下は同じ問い合わせをYAML形式で表したものです。


EXPLAIN (FORMAT YAML) SELECT * FROM foo WHERE i='4';
          QUERY PLAN
-------------------------------
 - Plan:                      +
     Node Type: "Index Scan"  +
     Scan Direction: "Forward"+
     Index Name: "fi"         +
     Relation Name: "foo"     +
     Alias: "foo"             +
     Startup Cost: 0.00       +
     Total Cost: 5.98         +
     Plan Rows: 1             +
     Plan Width: 4            +
     Index Cond: "(i = 4)"
(1 row)




読者への演習としてXML形式については記載しません。
  


以下は同じ計画ですが、コスト推定値を出力しません。



EXPLAIN (COSTS FALSE) SELECT * FROM foo WHERE i = 4;

        QUERY PLAN
----------------------------
 Index Scan using fi on foo
   Index Cond: (i = 4)
(2 rows)


  


次に、集約関数を使用した問い合わせに対する問い合わせ計画の例を示します。



EXPLAIN SELECT sum(i) FROM foo WHERE i < 10;

                             QUERY PLAN
-------------------------------------------------------------------​--
 Aggregate  (cost=23.93..23.93 rows=1 width=4)
   ->  Index Scan using fi on foo  (cost=0.00..23.92 rows=6 width=4)
         Index Cond: (i < 10)
(3 rows)


  


以下は、EXPLAIN EXECUTEによってプリペアド文に対する実行計画を表示する例です。



PREPARE query(int, int) AS SELECT sum(bar) FROM test
    WHERE id > $1 AND id < $2
    GROUP BY foo;

EXPLAIN ANALYZE EXECUTE query(100, 200);

                                                       QUERY PLAN
-------------------------------------------------------------------​------------------------------------------------------
 HashAggregate  (cost=10.77..10.87 rows=10 width=12) (actual time=0.043..0.044 rows=10.00 loops=1)
   Group Key: foo
   Batches: 1  Memory Usage: 24kB
   Buffers: shared hit=4
   ->  Index Scan using test_pkey on test  (cost=0.29..10.27 rows=99 width=8) (actual time=0.009..0.025 rows=99.00 loops=1)
         Index Cond: ((id > 100) AND (id < 200))
         Index Searches: 1
         Buffers: shared hit=4
 Planning Time: 0.244 ms
 Execution Time: 0.073 ms
(10 rows)


  


もちろん、ここで示した具体的な数値は対象とするテーブルの実際の中身によって変わります。
また、この数値や選択された問い合わせ戦略は、プランナの改良のため、PostgreSQL™のリリース間で異なる可能性がありますので注意してください。
さらに、ANALYZEコマンドは、データの統計情報を推定する際にランダムなサンプリングを行うため、実際のテーブル内の分布が変わっていなくても、新たにANALYZEを実行すると推定コストが変わることがあります。
  


前の例では、EXECUTEで与えられた特定のパラメータに対する「独自の」計画が表示されていたことに注意してください。
パラメータ化された問い合わせに対する汎用的な計画を確認することもできます。それはGENERIC_PLANで可能です。



EXPLAIN (GENERIC_PLAN)
  SELECT sum(bar) FROM test
    WHERE id > $1 AND id < $2
    GROUP BY foo;

                                  QUERY PLAN
-------------------------------------------------------------------​------------
 HashAggregate  (cost=26.79..26.89 rows=10 width=12)
   Group Key: foo
   ->  Index Scan using test_pkey on test  (cost=0.29..24.29 rows=500 width=8)
         Index Cond: ((id > $1) AND (id < $2))
(4 rows)




この場合では、パーサは$1と$2がidと同じデータ型を持つべきだと正しく推測していたので、PREPAREからのパラメータ型情報の欠如は問題ではありませんでした。
他の場合には、パラメータ記号の型を明示的に指定することが必要かもしれません。これは、例えば以下のように、それらをキャストすることによって可能です。



EXPLAIN (GENERIC_PLAN)
  SELECT sum(bar) FROM test
    WHERE id > $1::integer AND id < $2::integer
    GROUP BY foo;


  

互換性


標準SQLではEXPLAIN文は定義されていません。
  


PostgreSQL™バージョン9.0より前では次の構文が使われていましたが、今でもサポートされています。


EXPLAIN [ ANALYZE ] [ VERBOSE ] statement



この構文では、オプションは、示した通りの順序で正確に指定しなければならないことに注意してください。
  

関連項目
ANALYZE(7)


名前
FETCH — カーソルを使用して問い合わせから行を取り出す

概要

FETCH [ direction ] [ FROM | IN ] cursor_name


ここでdirectionは以下の一つです。

    NEXT
    PRIOR
    FIRST
    LAST
    ABSOLUTE count
    RELATIVE count
    count
    ALL
    FORWARD
    FORWARD count
    FORWARD ALL
    BACKWARD
    BACKWARD count
    BACKWARD ALL


説明


FETCHは事前に作成されたカーソルを使用して行を取り出します。
  


カーソルはそれぞれ位置情報を持っており、FETCHはこれを使用します。
カーソルの位置は、問い合わせの結果の先頭行の前、結果内の任意の特定の行、結果の最終行の後のいずれにもなります。
カーソルの生成時は、カーソル位置は先頭行の前にあります。
行を取り出した後は、カーソル位置は最後に取り出した行にあります。
FETCHが利用可能な行の終わりを過ぎると、カーソル位置は最終行の後にあります（後方抽出の場合は先頭行の前になります）。
FETCH ALLもしくはFETCH BACKWARD ALLでは、カーソルの位置は常に最終行の後か、先頭行の前になります。
  


NEXT、PRIOR、FIRST、LAST、ABSOLUTE、RELATIVE構文では、カーソルを適切に移動した後、行を1つ取り出します。
行が存在しない場合、空の結果が返され、カーソルは先頭行の前か最終行の後に適切に位置づけられます。
  


FORWARDおよびBACKWARDを使用した構文では、指定数の行を前方もしくは後方方向に取り出します。この時、最後に取り出した行がカーソル位置となります
（countが利用可能な行数を超えた場合は、全行の後/前になります）。
  


RELATIVE 0、FORWARD 0、およびBACKWARD 0は全て、カーソルを移動することなく現在の行を取り出します。
つまり、一番最後に取り出した行を再度取り出すことになります。
カーソルが先頭行の前や最終行の後になければ、これらのコマンドは成功します。
先頭行の前や最終行の後にあれば、行は返されません。
  
注記


このマニュアルページではSQLコマンドレベルでのカーソルの使用方法について説明しています。
PL/pgSQL内でカーソルを使用する場合は、規則が異なりますので、「カーソルの使用」を参照してください。
   


パラメータ
	direction
	directionは、取り出す方向と取り出す行数を定義します。
以下のいずれかを指定できます。

      
	NEXT
	

次の行を取り出します。
これは、directionが省略された時のデフォルトです。
         

	PRIOR
	

1つ前の行を取り出します。
         

	FIRST
	

問い合わせの先頭行を取り出します
（ABSOLUTE 1と同じです）。
         

	LAST
	

問い合わせの最終行を取り出します
（ABSOLUTE -1と同じです）。
         

	ABSOLUTE count
	

問い合わせのcount番目の行を取り出します。
countが負ならば、終わりからabs(count)番目の行を取り出します。
countが範囲外の場合、カーソル位置は先頭行の前か最終行の後になります。
特に、ABSOLUTE 0と指定すると、先頭行の前になります。
         

	RELATIVE count
	

カーソルの現在位置からcount番目の行を取り出します。
countが負の場合、現在位置よりabs(count)行分前の行を取り出します。
RELATIVE 0と指定すると、現在の行があれば、その行を再度取り出します。
         

	count
	

次のcount行を取り出します
（FORWARD countと同じです）。
         

	ALL
	

残っている行を全て取り出します
（FORWARD ALLと同じです）。
         

	FORWARD
	

1つ次の行を取り出します
（NEXTと同じです）。
         

	FORWARD count
	

次のcount行分の行を取り出します。
FORWARD 0と指定すると、現在の行を再度取り出します。
         

	FORWARD ALL
	

残っている行を全て取り出します。
         

	BACKWARD
	

1つ前の行を取り出します
（PRIORと同じです）。
         

	BACKWARD count
	

前のcount行分の行を（逆方向にスキャンして）取り出します。
BACKWARD 0と指定すると、現在の行を再度取り出します。
         

	BACKWARD ALL
	

現在位置より前の行を（逆方向にスキャンして）全て取り出します。
         




	count
	countは、整数定数で、符号を付けることができ、取り出す位置や行数を決定します。
FORWARDとBACKWARDにおいて、countに負の値を指定するのは、FORWARDとBACKWARDの意味を入れ替えるのと同等です。
     

	cursor_name
	

開いているカーソルの名前を指定します。
     




出力


正常に終了すると、FETCHコマンドは以下の形式のコマンドタグを返します。


FETCH count



countは取り出した行数です（0の可能性もあります）。
psqlでは、このコマンドタグは実際には表示されないことに注意してください。
psqlが、取り出した行を代わりに表示するためです。
  

注釈


FETCHコマンドとして、FETCH NEXTもしくは正のcountのFETCH FORWARD以外を使用する場合、カーソルをSCROLLオプション付きで宣言しなければなりません。
単純な問い合わせでは、PostgreSQL™では、カーソルがSCROLL付きで宣言されていなくても後方向の取り出しを行うことができることがありますが、この動作に依存すべきではありません。
カーソルがNO SCROLL付きで宣言された場合は、後方向の取り出しを行うことができません。
  


ABSOLUTEによる取り出しは、相対的な指定による指定行への移動に比べて高速ではありません。
内部的な実装では、必ず中間の行を全て経由しているからです。
絶対指定で負の値を指定した場合、速度はさらに悪化します。
まず、最終行を見つけるために最後まで問い合わせを読み取って、その後に最終行から後方に移動するためです。
ただし、（FETCH ABSOLUTE 0を使用して）問い合わせの先頭へ戻るのは高速です。
  


DECLAREを使用してカーソルを定義します。
データを取り出さずにカーソル位置を変更する場合はMOVEを使用してください。
  

例


次の例では、カーソルを使用してテーブル内をスキャンしています。



BEGIN WORK;


-- カーソルを設定します。
DECLARE liahona SCROLL CURSOR FOR SELECT * FROM films;


-- カーソルliahonaから最初の5行を取り出します。
FETCH FORWARD 5 FROM liahona;

 code  |          title          | did | date_prod  |   kind   |  len
-------+-------------------------+-----+------------+----------+-------
 BL101 | The Third Man           | 101 | 1949-12-23 | Drama    | 01:44
 BL102 | The African Queen       | 101 | 1951-08-11 | Romantic | 01:43
 JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25
 P_301 | Vertigo                 | 103 | 1958-11-14 | Action   | 02:08
 P_302 | Becket                  | 103 | 1964-02-03 | Drama    | 02:28


-- 1つ前の行を取り出します。
FETCH PRIOR FROM liahona;

 code  |  title  | did | date_prod  |  kind  |  len
-------+---------+-----+------------+--------+-------
 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08


-- カーソルを閉じ、トランザクションを終了します。
CLOSE liahona;
COMMIT WORK;


互換性


標準SQLでは、埋め込みSQLにおけるFETCHのみが定義されています。
上記で説明した各種のFETCHは、ホスト変数への代入ではなく、SELECTの結果であるかのようにデータを返します。
この点を除き、FETCHは完全に標準SQLと上位互換性を持ちます。
  


FORWARDとBACKWARDを持つFETCHの形式や、暗黙的なFORWARDを持つFETCH countとFETCH ALLはPostgreSQL™の拡張です。
  


標準SQLでは、カーソル名の前に付けられるのはFROMのみです。
INを使用するオプション、または、どちらも省略することはPostgreSQL™の拡張です。
  

関連項目
CLOSE(7), DECLARE(7), MOVE(7)


名前
GRANT — アクセス権限を定義する

概要

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER | MAINTAIN }
    [, ...] | ALL [ PRIVILEGES ] }
    ON { [ TABLE ] table_name [, ...]
         | ALL TABLES IN SCHEMA schema_name [, ...] }
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { { SELECT | INSERT | UPDATE | REFERENCES } ( column_name [, ...] )
    [, ...] | ALL [ PRIVILEGES ] ( column_name [, ...] ) }
    ON [ TABLE ] table_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { { USAGE | SELECT | UPDATE }
    [, ...] | ALL [ PRIVILEGES ] }
    ON { SEQUENCE sequence_name [, ...]
         | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [ PRIVILEGES ] }
    ON DATABASE database_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON DOMAIN domain_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON FOREIGN DATA WRAPPER fdw_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON FOREIGN SERVER server_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { EXECUTE | ALL [ PRIVILEGES ] }
    ON { { FUNCTION | PROCEDURE | ROUTINE } routine_name [ ( [ [ argmode ] [ arg_name ] arg_type [, ...] ] ) ] [, ...]
         | ALL { FUNCTIONS | PROCEDURES | ROUTINES } IN SCHEMA schema_name [, ...] }
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON LANGUAGE lang_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { { SELECT | UPDATE } [, ...] | ALL [ PRIVILEGES ] }
    ON LARGE OBJECT loid [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { { SET | ALTER SYSTEM } [, ... ] | ALL [ PRIVILEGES ] }
    ON PARAMETER configuration_parameter [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { { CREATE | USAGE } [, ...] | ALL [ PRIVILEGES ] }
    ON SCHEMA schema_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { CREATE | ALL [ PRIVILEGES ] }
    ON TABLESPACE tablespace_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON TYPE type_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]

GRANT role_name [, ...] TO role_specification [, ...]
    [ WITH { ADMIN | INHERIT | SET } { OPTION | TRUE | FALSE } ]
    [ GRANTED BY role_specification ]


ここでrole_specificationは以下の通りです。

    [ GROUP ] role_name
  | PUBLIC
  | CURRENT_ROLE
  | CURRENT_USER
  | SESSION_USER


説明


GRANTには基本的に2つの種類があります。
1つはデータベースオブジェクト（テーブル、列、ビュー、外部テーブル、シーケンス、データベース、外部データラッパー、外部サーバ、関数、プロシージャ、手続き言語、ラージオブジェクト、設定パラメータ、スキーマ、テーブル空間、型）に対する権限の付与、もう1つはロール内のメンバ資格の付与です。
これらの種類は多くの点で似ていますが、説明は別々に行わなければならない程違いがあります。
  
データベースオブジェクトに対するGRANT


この種類のGRANTコマンドはデータベースオブジェクトの特定の権限を1つ以上のロールに付与します。
既に権限が他のロールに付与されている場合でも、追加として付与されます。
  


PUBLICキーワードは、今後作成されるロールを含む、全てのロールへの許可を示します。
PUBLICは、全てのロールを常に含む、暗黙的に定義されたグループと考えることができます。
個々のロールは全て、ロールに直接許可された権限、ロールが現在属しているロールに許可された権限、そして、PUBLICに許可された権限を合わせた権限を持っています。
  


WITH GRANT OPTIONが指定されると、権限の受領者は、その後、他にその権限を与えることができます。
グラントオプションがない場合、受領者はこれを行うことができません。
グラントオプションはPUBLICには与えることができません。
  


GRANTED BYが指定されると、指定された付与する者は現在のユーザでなければなりません。
この句はSQLとの互換性のためにのみ現在この形で存在しています。
  


所有者（通常はオブジェクトを作成したユーザ）はデフォルトで全ての権限を保持しているため、オブジェクトの所有者に権限を許可する必要はありません。
（ただし、オブジェクトの作成者が、安全性のために自らの権限を取り消すことは可能です。）
  


オブジェクトを削除する権限や何らかの方法でオブジェクトの定義を変更する権限は、付与可能な権限として扱われません。
これらの権限は、所有者固有のものであり、許可したり取り消したりすることはできません。
（しかし、オブジェクトを所有するロール内のメンバ関係を付与したり取り消すことで、同等な効果を得ることができます。
後で説明します。）
所有者は、オブジェクトに対する全てのグラントオプションも暗黙的に保持しています。
  


設定可能な権限は以下のものです。

   
	SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, USAGE, SET, ALTER SYSTEM, MAINTAIN
	

権限の特定の種類です。「権限」で定義されています。
      

	TEMP
	

TEMPORARYの別の綴り方です。
      

	ALL PRIVILEGES
	

対象の型に対して利用可能な全ての権限を一度に付与します。
PRIVILEGESキーワードはPostgreSQL™では省略可能ですが、厳密なSQLでは必須です。
      




  


FUNCTION構文は通常の関数、集約関数、ウィンドウ関数に対して有効ですが、プロシージャには有効ではありません。プロシージャにはPROCEDUREを使ってください。
あるいは、関数、集約関数、プロシージャを参照するのに、その正確な種類に関係なくROUTINEを使ってください。
  


1つまたは複数のスキーマ内で同じ型のオブジェクトすべてに対する権限を付与するオプションもあります。
この機能は現在、テーブル、シーケンス、関数、プロシージャだけをサポートしています。
ALL TABLESは、特定の対象のGRANTコマンドと同様に、ビューや外部テーブルにも影響します。
ALL FUNCTIONSは、集約関数やウィンドウ関数にも影響しますが、プロシージャには影響しません。ここでも、特定の対象のGRANTコマンドと同様です。
プロシージャを含めるにはALL ROUTINESを使ってください。
  

ロールに対するGRANT


この種類のGRANTコマンドは、ロール内のメンバ資格を1つ以上の他のロールに付与し、メンバ資格のオプションSET、INHERIT、ADMINを変更します。詳しくは「ロールのメンバ資格」を参照してください。
これにより各メンバがロールに付与された権限にアクセスできるようになる可能性があり、またロール自身を変更する能力が与えられる可能性があるので、ロール内のメンバ資格は重要です。
ただし、付与される実際の権限は、付与に関連付けられたオプションによって異なります。
既存のメンバ資格のオプションを変更するには、更新するオプションの値を付けてメンバ資格を指定するだけです。
  


以下の各オプションは、TRUEまたはFALSEのいずれかに設定できます。
キーワードOPTIONはTRUEの同義語として受け入れられますので、WITH ADMIN OPTIONはWITH ADMIN TRUEの同義語です。
既存のメンバ資格を変更するとき、オプションを省略すると現在の値が保持されます。
  


ADMINオプションを使用すると、メンバはロールのメンバ資格を他のメンバに付与したり、ロールのメンバ資格を取り消したりすることができます。
アドミンオプションがないと、一般ユーザは他への権限の付与や取り消しを行うことができません。
ロールは自分自身に対してWITH ADMIN OPTIONを保持しているとはみなされません。
データベーススーパーユーザはすべてのロール内のメンバ資格を誰にでも付与したり、取り消したりすることができます。
このオプションのデフォルトはFALSEです。
  


INHERITオプションは新しいメンバ資格の継承状態を制御します。継承の詳細については「ロールのメンバ資格」を参照してください。
TRUEに設定すると、新しいメンバは付与されたロールから継承します。
FALSEに設定すると、新しいメンバは継承しません。
新しいロールメンバ資格の作成時に指定しない場合、これが新しいメンバの継承属性のデフォルトです。
  


SETオプションがTRUEに設定されている場合、SET ROLEコマンドを使用して、メンバを付与されたロールに変更できます。
あるロールが別のロールの間接メンバである場合、それぞれSET TRUEを持つ権限付与のチェーンがある場合にのみ、SET ROLEを使用してそのロールに変更できます。
このオプションのデフォルトはTRUEです。
  


別のロールが所有するオブジェクトを作成する場合、または既存のオブジェクトの所有権を別のロールに付与する場合は、そのロールに対してSET ROLEを実行できることが必要です。
そうでない場合、ALTER ... OWNER TOやCREATE DATABASE ... OWNERなどのコマンドは失敗します。
ただし、ロールの権限を継承しているものの、そのロールに対してSET ROLEを実行できないユーザは、そのロールが所有する既存のオブジェクトを操作することで、そのロールに対して完全なアクセスを取得できるかもしれません（たとえば、既存の関数を再定義してトロイの木馬として機能させることができます）。
したがって、ロールの権限を継承するものの、SET ROLEを介してアクセスできないようにする場合は、いかなるSQLオブジェクトも所有すべきではありません。
  


GRANTED BYが指定された場合、付与は指定されたロールにより行なわれたと記録されます。
ユーザが別のロールに権限を付与できるのは、そのロールの権限を所有している場合のみです。
付与者として記録されるロールは、対象のロールに対してADMIN OPTIONを持っていることが必要です。ただし、ブートストラップスーパーユーザの場合は除きます。
ブートストラップスーパーユーザ以外の付与者を持っていると記録されている付与は、そのロールに対してADMIN OPTIONを引き続き所有している付与者に依存します。したがって、ADMIN OPTIONが取り消された場合、依存する付与も取り消さなければなりません。
  


権限の場合と異なり、ロール内のメンバ資格をPUBLICに付与することはできません。
また、このコマンド構文では、role_specificationで無意味なGROUPという単語を受け付けないことに注意してください。
  


注釈


アクセス権限を取り消すには、REVOKEコマンドが使用されます。
   


PostgreSQL™ 8.1から、ユーザとグループという概念は、ロールと呼ばれる１種類の実体に統合されました。
そのため、付与される者がユーザかグループかどうかを識別するためにGROUPキーワードを使用する必要はなくなりました。
このコマンドではまだGROUPを使うことはできますが、何の意味もありません。
   


ユーザは特定の列あるいはテーブル全体に対する権限を持つ場合にSELECT、INSERTなどを実行することができます。
テーブルレベルの権限を付与してからある列に対する権限を取り消しても、望むことは実現できません。
テーブルレベルの権限は列レベルの操作による影響を受けないからです。
   


オブジェクトの所有者でもなく、そのオブジェクトに何の権限も持たないユーザが、そのオブジェクトの権限をGRANTしようとしても、コマンドの実行は直ちに失敗します。
何らかの権限を持っている限り、コマンドの実行は進行しますが、与えることのできる権限は、そのユーザがグラントオプションを持つ権限のみです。
グラントオプションを持っていない場合、GRANT ALL PRIVILEGES構文は警告メッセージを発します。
一方、その他の構文では、コマンドで名前を指定した権限に関するグラントオプションを持っていない場合に警告メッセージを発します。
（原理上、ここまでの説明はオブジェクトの所有者に対しても当てはまりますが、所有者は常に全てのグラントオプションを保持しているものとして扱われるため、こうした状態は決して起こりません。）
   


データベーススーパーユーザは、オブジェクトに関する権限設定に関係なく、全てのオブジェクトにアクセスできることには注意しなければなりません。
スーパーユーザが持つ権限は、Unixシステムにおけるroot権限に似ています。
rootと同様、どうしても必要という場合以外は、スーパーユーザとして操作を行わないのが賢明です。
   


スーパーユーザがGRANTやREVOKEコマンドの発行を選択した場合、それらのコマンドは対象とするオブジェクトの所有者が発行したかのように実行されます。
特に、こうしたコマンドで与えられる権限は、オブジェクトの所有者によって与えられたものとして表されます。
（ロールのメンバ資格では、メンバ資格はブートストラップスーパーユーザが与えたものとして表されます。）
   


GRANTおよびREVOKEは、対象のオブジェクトの所有者以外のロールによって実行することもできますが、
オブジェクトを所有するロールのメンバであるか、そのオブジェクトに対しWITH GRANT OPTION権限を持つロールのメンバでなければなりません。
この場合、その権限は、そのオブジェクトの実際の所有者ロールまたはWITH GRANT OPTION権限を持つロールによって付与されたものとして記録されます。
例えば、テーブルt1がロールg1によって所有され、ロールu1がロールg1のメンバであるとします。
この場合、u1はt1に関する権限をu2に付与できます。
しかし、これらの権限はg1によって直接付与されたものとして現れます。
後でロールg1の他のメンバがこの権限を取り消すことができます。
   


GRANTを実行したロールが、ロールの持つ複数メンバ資格の経路を通して間接的に必要な権限を持つ場合、
どのロールが権限を付与したロールとして記録されるかについては指定されません。
こうした場合、SET ROLEを使用して、GRANTを行わせたい特定のロールになることを推奨します。
   


テーブルへの権限付与によって、SERIAL列によって関連付けされたシーケンスを含め、そのテーブルで使用されるシーケンスへの権限の拡張は自動的に行われません。
シーケンスへの権限は別途設定しなければなりません。
   


特定の権限の種類に関するより詳しい情報や、対象の権限を調査する方法は「権限」を参照してください。
   

例


テーブルfilmsにデータを追加する権限を全てのユーザに与えます。



GRANT INSERT ON films TO PUBLIC;


  


ビューkindsにおける利用可能な全ての権限を、ユーザmanuelに与えます。



GRANT ALL PRIVILEGES ON kinds TO manuel;




上のコマンドをスーパーユーザやkindsの所有者が実行した場合は、全ての権限が付与されますが、他のユーザが実行した場合は、そのユーザがグラントオプションを持つ権限のみが付与されることに注意してください。
  


ロールadmins内のメンバ資格をユーザjoeに与えます。



GRANT admins TO joe;


互換性


標準SQLでは、ALL PRIVILEGES内のPRIVILEGESキーワードは必須です。
標準SQLでは、1つのコマンドで複数のオブジェクトに権限を設定することはサポートしていません。
   


PostgreSQL™では、オブジェクトの所有者は、自身が持つ権限を取り消すことができます。
例えば、テーブル所有者は自身のINSERT、UPDATE、DELETE、TRUNCATE権限を取り消すことで、自分にとってそのテーブルが読み取り専用になるよう変更することができます。
これは、標準SQLでは不可能です。
PostgreSQL™では、所有者の権限を、所有者自身により与えられたものとして扱っているため、同様に所有者自身で権限を取り消すことができるようになっています。
標準SQLでは、所有者の権限は仮想的なエンティティ「_SYSTEM」によって与えられたものとして扱っています。
所有者は「_SYSTEM」ではないため、その権限を取り消すことができません。
   


標準SQLにしたがうと、グラントオプションはPUBLICに対して与えることができます。
PostgreSQLではグラントオプションはロールに対して与えることのみをサポートしています。
   


標準SQLでは、GRANTED BYオプションに指定できるのはCURRENT_USERとCURRENT_ROLEだけです。
その他のものはPostgreSQLの拡張です。
   


標準SQLでは、文字集合、照合順序、翻訳といったその他の種類のオブジェクトに対して、USAGE権限を付与することができます。
   


標準SQLでは、シーケンスはUSAGE権限のみを持ちます。
これはPostgreSQLにおけるnextval関数と等価なNEXT VALUE FOR式の使用を制御するものです。
シーケンスに関するSELECT権限とUPDATE権限はPostgreSQLの拡張です。
シーケンスに関するUSAGE権限がcurrval関数にも適用される点もPostgreSQLの拡張です（この関数自体が拡張です）。
   


データベース、テーブル空間、スキーマ、言語、設定パラメータについての権限はPostgreSQL™の拡張です。
   

関連項目
REVOKE(7), ALTER DEFAULT PRIVILEGES(7)


名前
IMPORT FOREIGN SCHEMA — 外部サーバからテーブル定義をインポートする

概要

IMPORT FOREIGN SCHEMA remote_schema
    [ { LIMIT TO | EXCEPT } ( table_name [, ...] ) ]
    FROM SERVER server_name
    INTO local_schema
    [ OPTIONS ( option 'value' [, ... ] ) ]


説明


IMPORT FOREIGN SCHEMAは外部サーバ上に存在するテーブルを表す外部テーブルを作成します。
新しい外部テーブルは、コマンドを実行するユーザに所有され、リモートのテーブルにマッチする正しい列定義とオプションで作成されます。
  


デフォルトでは、外部サーバ上の特定のスキーマ内に存在するすべてのテーブルとビューがインポートされます。
オプションで、インポートするテーブルを指定した部分集合に制限したり、特定のテーブルを除外することができます。
新しい外部テーブルは、すべてターゲットとなるスキーマ内に作成され、そのスキーマは既存である必要があります。
  


IMPORT FOREIGN SCHEMAを使用するには、外部サーバのUSAGE権限、およびターゲットとなるスキーマのCREATE権限が必要です。
  

パラメータ
	remote_schema
	

インポート元となるリモートのスキーマです。
リモートのスキーマの具体的な意味は、使用する外部データラッパーに依存します。
     

	LIMIT TO ( table_name [, ...] )
	

指定したテーブル名の1つにマッチする外部テーブルだけをインポートします。
外部スキーマ内に存在する他のテーブルは無視されます。
     

	EXCEPT ( table_name [, ...] )
	

指定した外部テーブルをインポートから除外します。
ここに列挙したものを除き、外部スキーマ内に存在するすべてのテーブルがインポートされます。
     

	server_name
	

インポート元となる外部サーバです。
     

	local_schema
	

インポートされた外部テーブルが作成されるスキーマです。
     

	OPTIONS ( option 'value' [, ...] )
	

インポート時に使用されるオプションです。
使用できるオプションの名前と値は、各外部データラッパーに依存します。
     




例


サーバfilm_server上のリモートのスキーマforeign_filmsからテーブルの定義をインポートし、ローカルのスキーマfilms内に外部テーブルを作成します。



IMPORT FOREIGN SCHEMA foreign_films
    FROM SERVER film_server INTO films;


   


上と同様ですが、2つのテーブルactorsとdirectorsだけを（それらが存在するなら）インポートします。



IMPORT FOREIGN SCHEMA foreign_films LIMIT TO (actors, directors)
    FROM SERVER film_server INTO films;


互換性


IMPORT FOREIGN SCHEMAコマンドは、標準SQLに準拠していますが、OPTIONS句はPostgreSQL™の拡張です。
  

関連項目
CREATE FOREIGN TABLE(7), CREATE SERVER(7)


名前
INSERT — テーブルに新しい行を作成する

概要

[ WITH [ RECURSIVE ] with_query [, ...] ]
INSERT INTO table_name [ AS alias ] [ ( column_name [, ...] ) ]
    [ OVERRIDING { SYSTEM | USER } VALUE ]
    { DEFAULT VALUES | VALUES ( { expression | DEFAULT } [, ...] ) [, ...] | query }
    [ ON CONFLICT [ conflict_target ] conflict_action ]
    [ RETURNING [ WITH ( { OLD | NEW } AS output_alias [, ...] ) ]
                { * | output_expression [ [ AS ] output_name ] } [, ...] ]


ここでconflict_targetは以下の一つです。

    ( { index_column_name | ( index_expression ) } [ COLLATE collation ] [ opclass ] [, ...] ) [ WHERE index_predicate ]
    ON CONSTRAINT constraint_name


またconflict_actionは以下のいずれかです。

    DO NOTHING
    DO UPDATE SET { column_name = { expression | DEFAULT } |
                    ( column_name [, ...] ) = [ ROW ] ( { expression | DEFAULT } [, ...] ) |
                    ( column_name [, ...] ) = ( sub-SELECT )
                  } [, ...]
              [ WHERE condition ]


説明


INSERTはテーブルに新しい行を挿入します。
値式を使用して行（複数可）を挿入すること、および、問い合わせの結果を使って0行以上の行を挿入することができます。
  


対象の列名はどのような順番でも指定できます。
列名リストが指定されなかった場合は、テーブル内の全ての列を宣言時の順番に並べたものがデフォルトとして使われます。
また、VALUES句やqueryでN列のみが与えられた場合は、先頭のN列の名前が指定されたものとみなされます。
VALUES句やqueryで提供される値は、明示的または暗黙的な列リストと左から右への順で関連付けられます。
  


明示的または暗黙的な列リストにない各列にはデフォルト値（デフォルト値が宣言されていればその値、未宣言ならばNULL）が挿入されます。
  


各列の式が正しいデータ型でない場合は、自動的に型の変換が行われます。
  


一意インデックスのないテーブルへのINSERTは同時実行中の処理によりブロックされることはありません。
挿入される一意インデックスの値と一致する行をロックまたは修正する動作を同時実行中のセッションがしている場合には、一意インデックスのあるテーブルはブロックします。詳細は「インデックス一意性検査」で扱っています。
ON CONFLICTは一意性制約または排他制約について、違反のエラーを発生させるのに代わる動作を指定するのに使うことができます。
（以下のON CONFLICT句を参照してください。）
  


RETURNING句を指定すると、INSERTは実際に挿入された（あるいはON CONFLICT DO UPDATE句によって更新された）各行に基づいて計算された値を返すようになります。
これは、通番のシーケンス番号など、デフォルトで与えられた値を取り出す時に主に便利です。
しかし、そのテーブルの列を使用した任意の式を指定することができます。
RETURNINGリストの構文はSELECTの出力リストと同一です。
挿入または更新に成功した行だけが返されます。
例えば、行がロックされていて、ON CONFLICT DO UPDATE ... WHERE句の conditionが満たされなかったために更新されなかった行は返されません。
  


テーブルに行を追加するには、そのテーブルに対してINSERT権限を持っている必要があります。
ON CONFLICT DO UPDATEがある場合は、テーブルのUPDATE権限も必要です。
  


列リストを指定する場合は、列挙された列に対するINSERT権限のみが必要です。
同様に、ON CONFLICT DO UPDATEが指定されている場合、更新対象として列挙されている列についてのみ、UPDATE権限が必要です。
しかし、ON CONFLICT DO UPDATEは、値がON CONFLICT DO UPDATE式あるいはconditionで読み取られるすべての列についてSELECT権限も必要です。
  


RETURNING句を使用するには、RETURNINGで使用するすべての列に対するSELECT権限が必要です。
queryを使用して問い合わせ結果を元に行を挿入する場合は当然ながら、その問い合わせ内で使われる全てのテーブルまたは列に対してSELECT権限を持っている必要があります。
  

パラメータ
挿入


この節では新しい行を挿入するときにのみ使われるパラメータについて説明します。
ON CONFLICT句においてのみ使われるパラメータについては、別に説明します。
   
	with_query
	

WITH句により、INSERT問い合わせ内で名前により参照することができる１つ以上の副問い合わせを指定することができます。
詳しくは「WITH問い合わせ（共通テーブル式）」とSELECT(7)を参照してください。
       


query（SELECT文）でもまた、WITH句を含めることができます。
こうした場合、with_queryの集合との両方をquery内で参照することができます。
しかし、第二の問い合わせがより近くにネストされているため優先します。
       

	table_name
	

既存のテーブルの名前です（スキーマ修飾名も可）。
       

	alias
	

table_nameの代替名です。
aliasを指定すると、テーブルの実際の名前が完全に隠されます。
これは、excludedという名前のテーブルをON CONFLICT DO UPDATEが対象にしている場合、これを指定しなければ、それが挿入で処理される行を表現する特別なテーブルの名前とみなされるため、特に有用となります。
       

	column_name
	

table_nameで指名されたテーブル内の列名です。
必要なら列名を副フィールドの名前や配列の添え字で修飾することができます。
（複合型の列の一部のフィールドのみを挿入すると他のフィールドはNULLになります。）
ON CONFLICT DO UPDATEで列を参照する場合、対象列の指定にテーブル名を含めてはいけません。
例えば、INSERT INTO table_name ... ON CONFLICT DO UPDATE SET table_name.col = 1は無効です（これはUPDATEの一般的な動作に従います）。
       

	OVERRIDING SYSTEM VALUE
	

この句が指定されると、識別列について指定された値がシーケンスが生成したデフォルト値に優先します。
       


GENERATED ALWAYSと定義されている識別列に対しては、OVERRIDING SYSTEM VALUEやOVERRIDING USER VALUEを指定せずに(DEFAULT以外の)明示的な値を挿入するのはエラーです。
(GENERATED BY DEFAULTと定義されている識別列に対しては、OVERRIDING SYSTEM VALUEが通常の振る舞いであり、指定したとしても何もしませんが、PostgreSQL™は拡張として許容します。)
       

	OVERRIDING USER VALUE
	

この句が指定されると、識別列について指定された値はすべて無視されて、シーケンスが生成したデフォルト値が適用されます。
       


この句は例えばテーブル間で値をコピーする時に有用です。
INSERT INTO tbl2 OVERRIDING USER VALUE SELECT * FROM tbl1とすると、tbl1の列でtbl2の識別列でないものがすべてコピーされる一方、tbl2の識別列の値は、tbl2に紐付けられたシーケンスによって生成されます。
       

	DEFAULT VALUES
	

各列に対してDEFAULTが明示的に指定されたかのように、すべての列にそれぞれのデフォルト値が設定されます。
（OVERRIDING句はこの構文では使用できません。）
       

	expression
	

対応する列に代入する式または値を指定します。
       

	DEFAULT
	

対応する列にデフォルト値を設定します。
識別列には関連付けられたシーケンスにより新しく生成された値が書き込まれます。
生成列に対して、これを指定することは許されていますが、単に生成式から列を計算するという普通の振る舞いを指定するだけです。
       

	query
	

挿入する行を提供する問い合わせ（SELECT文）を指定します。
構文の説明についてはSELECT(7)文を参照してください。
       

	output_alias
	

RETURNINGリスト内のOLDまたはNEW行のオプションの代替名です。
       


デフォルトでは、対象テーブルの古い値はOLD.column_nameまたはOLD.*と書くことで、新しい値はNEW.column_nameまたはNEW.*と書くことで返せます。
別名が提供されている場合、これらの名前は隠され、新旧の行は別名を使用して参照しなければなりません。
例えばRETURNING WITH (OLD AS o, NEW AS n) o.*, n.*です。
       

	output_expression
	

各行が挿入または更新された後、INSERTにより計算され、返される式です。
この式にはtable_nameで指名されたテーブルの任意の列名を使用することができます。
挿入または更新された行のすべての列を返す場合は*と記載してください。
       


列名または*は、OLDもしくはNEW、またはOLDもしくはNEWに対応するoutput_aliasを使って修飾することで、古い値または新しい値を返します。
非修飾の列名、*、対象テーブル名または別名を使用して修飾された列名または*は、新しい値を返します。
       


単純なINSERTの場合、すべての古い値はNULLになります。
ただし、ON CONFLICT DO UPDATE句のあるINSERTの場合、古い値は非NULLになることがあります。
       

	output_name
	

返される列で使用される名前です。
       




ON CONFLICT句


オプションのON CONFLICT句では、一意性制約や排他制約の違反について、エラーを発生させる代替となる動作を指定します。
挿入しようとされた各行について、挿入の処理が進められるか、あるいは、conflict_targetにより指定された競合制約またはインデックスに違反した場合の代替のconflict_actionが実行されるか、のいずれかです。
ON CONFLICT DO NOTHINGは代替の動作として、単に行の挿入をしなくなるだけです。
ON CONFLICT DO UPDATEは代替の動作として、挿入されようとしていた行と競合する既存の行を更新します。
   


conflict_targetは一意インデックスの推定を実行することができます。
推定を実行するとき、それは1つ以上のindex_column_name列、またはindex_expression式、あるいはその両方、およびオプションでindex_predicateから構成されます。
table_nameの一意インデックスでconflict_targetで指定された列と式を（順序は関係なく）正確に含むものは、すべて競合解決インデックスとして推定されます（選ばれます）。
index_predicateが指定されている場合は、推定のさらなる条件として、それは競合解決インデックスを満たさなければなりません。
これは、部分インデックスでない一意インデックス（述語のない一意インデックス）は、それが他のすべての条件を満たすのであれば推定される（従ってON CONFLICTで使用される）ことを意味することに注意して下さい。
推定に失敗した時は、エラーが発生します。
   


ON CONFLICT DO UPDATEはINSERTまたはUPDATEの原子的な結果を保証します。
無関係のエラーが発生しなければ、多数の同時実行がある状況においてさえも、それら2つの結果のうちの1つになります。
これはUPSERT、つまり「UPDATE or INSERT」としても知られています。
   
	conflict_target
	

ON CONFLICTが競合解決インデックスを選ぶことで代替の動作をするときの競合を指定します。
一意インデックスの推定を実行するか、あるいは制約を明示的に指定するかのいずれかです。
ON CONFLICT DO NOTHINGではconflict_targetを指定するのはオプションです。
省略すると、利用可能なすべての制約（および一意インデックス）との競合が処理されます。
ON CONFLICT DO UPDATEではconflict_targetを指定しなければなりません。
       

	conflict_action
	

conflict_actionではON CONFLICTの代替の動作を指定します。
これはDO NOTHINGあるいはDO UPDATE句のいずれかをとることができ、後者では競合が発生した場合に実行されるUPDATEの動作の正確な詳細を記述します。
ON CONFLICT DO UPDATEのSET句とWHEREは既存の行にテーブルの名前（または別名）を使ってアクセスでき、また挿入されようとしていた行には、特別なexcludedテーブルを使ってアクセスできます。
excludedの列を読み取るときには、対象テーブルの対応する列のSELECT権限が必要です。
       


すべての行レベルのBEFORE INSERTトリガの結果がexcludedの値に反映されることに注意して下さい。
これらの結果として、行が挿入から除外されることになったかもしれないからです。
       

	index_column_name
	

table_nameの列の名前です。
競合解決インデックスを推定するのに使われます。
CREATE INDEXの形式に従います。
index_column_nameのSELECT権限が必要です。
       

	index_expression
	

index_column_nameと似ていますが、インデックスの定義に現れるtable_nameの列の式（単純な列ではない）の推定に使われます。
CREATE INDEXの形式に従います。
index_expressionに現れるすべての列のSELECT権限が必要です。
       

	collation
	

これを指定すると、推定時に、対応するindex_column_nameあるいはindex_expressionをマッチさせるときに、特定の照合順序を指定することになります。
普通は照合順序は制約違反が発生するかどうかに関係しないので、通常は省略されます。
CREATE INDEXの形式に従います。
       

	opclass
	

これを指定すると、推定時に、対応するindex_column_nameあるいはindex_expressionをマッチさせるときに、特定の演算子クラスを指定することになります。
等価の意味は、いずれにせよ、型の演算子クラスをまたがって同等であることが多いですし、また定義された一意インデックスは等価を適切に定義していると信頼すれば十分なので、通常はこれは省略されます。
CREATE INDEXの形式に従います。
       

	index_predicate
	

部分一意インデックスの推定を可能にします。
述語を満たすすべてのインデックス（実際に部分インデックスである必要はありません）は推定可能になります。
CREATE INDEXの形式に従います。
index_predicateに現れるすべての列についてSELECT権限が必要です。
       

	constraint_name
	

競合解決の制約を制約やインデックスの推定によるのではなく、明示的に名前で指定します。
       

	condition
	

boolean型の値を返す式です。
この式がtrueを返す行のみが更新されます。
ただし、ON CONFLICT DO UPDATEの動作が行われるときは、すべての行がロックされます。
conditionは最後に評価される、競合が更新対象候補として特定された後であることに注意して下さい。
       





排他制約はON CONFLICT DO UPDATEの競合解決としてはサポートされないことに注意して下さい。
すべての場合について、NOT DEFERRABLEである制約と一意インデックスのみが競合解決としてサポートされます。
   


ON CONFLICT DO UPDATE句のあるINSERTは「決定論的な」文です。
これは、そのコマンドが既存のどの行に対しても、2回以上影響を与えることが許されない、ということを意味します。
これに反する状況が発生した時は、カーディナリティ違反のエラーが発生します。
挿入されようとする行は、競合解決インデックスあるいは制約により制限される属性の観点で、複製されてはなりません。
   


パーティションテーブルに適用されたINSERTのON CONFLICT DO UPDATE句に対しては、その行を新しいパーティションに移動する必要のあるような競合する行のパーティションキーを更新することは現在サポートされていないことに注意してください。
   
ヒント


ON CONFLICT ON CONSTRAINT  constraint_nameを使って制約を直接指定するより、一意インデックスの推定を使う方が望ましいことが多いです。
背景にあるインデックスが、他のほぼ同等のインデックスと重なり合う形で置換されるとき、推定は正しく動作し続けます。
例えば、置換されるインデックスを削除する前にCREATE UNIQUE INDEX ...  CONCURRENTLYを使う場合です。
    



出力


正常に終了すると、INSERTは以下のようなコマンドタグを返します。


INSERT oid count



countは挿入または更新された行数です。
oidは常に0です(countが正確に1であり、対象のテーブルがWITH OIDSと宣言されていた場合、挿入された行にOIDが、そうでなければ0が割り当てられていましたが、WITH OIDSでテーブルを作成することは今はもうサポートされていません)。
  


INSERTコマンドがRETURNING句を持つ場合、その結果は、RETURNINGリストで定義した列と値を持ち、そのコマンドで挿入または更新された行全体に対して計算を行うSELECT文の結果と似たものになるでしょう。
  

注釈


指定したテーブルがパーティションテーブルの場合、各行は適切なパーティションに回され、そちらに挿入されます。
指定したテーブルがパーティションの場合、挿入行にパーティションの制約に違反するものがあれば、エラーが発生します。
  


MERGEを使用すると、単一の文内でINSERT、UPDATE、DELETEを混在させることができます。
MERGE(7)を参照してください。
  

例


filmsテーブルに1行を挿入します。



INSERT INTO films VALUES
    ('UA502', 'Bananas', 105, '1971-07-13', 'Comedy', '82 minutes');


  


次の例では、len列を省略しています。
したがって、ここにはデフォルト値が入ります。



INSERT INTO films (code, title, did, date_prod, kind)
    VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');


  


次の例では、日付列に対して値を指定する代わりにDEFAULT句を使用します。



INSERT INTO films VALUES
    ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82 minutes');
INSERT INTO films (code, title, did, date_prod, kind)
    VALUES ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama');


  


全てデフォルト値からなる行を挿入します。



INSERT INTO films DEFAULT VALUES;


  


複数行のVALUES構文を使用して複数行を挿入します。



INSERT INTO films (code, title, did, date_prod, kind) VALUES
    ('B6717', 'Tampopo', 110, '1985-02-10', 'Comedy'),
    ('HG120', 'The Dinner Game', 140, DEFAULT, 'Comedy');


  


次の例では、filmsテーブルと同じ列レイアウトを持つtmp_filmsテーブルからfilmsテーブルへいくつか行を挿入します。



INSERT INTO films SELECT * FROM tmp_films WHERE date_prod < '2004-05-07';


  


次の例では、配列型の列に挿入します。




-- 三目並べ用の3×3マスのゲーム盤を作成します。
INSERT INTO tictactoe (game, board[1:3][1:3])
    VALUES (1, '{{" "," "," "},{" "," "," "},{" "," "," "}}');

--上の例の添え字は本当は必要ありません。
INSERT INTO tictactoe (game, board)
    VALUES (2, '{{X," "," "},{" ",O," "},{" ",X," "}}');


  


distributorsテーブルに一行を挿入し、そのDEFAULT句により生成されたシーケンス番号を返します。



INSERT INTO distributors (did, dname) VALUES (DEFAULT, 'XYZ Widgets')
   RETURNING did;


  


Acme社の顧客を担当する営業担当者の売り上げ数を増やし、ログテーブルに更新行全体と更新時刻を記録します。


WITH upd AS (
  UPDATE employees SET sales_count = sales_count + 1 WHERE id =
    (SELECT sales_person FROM accounts WHERE name = 'Acme Corporation')
    RETURNING *
)
INSERT INTO employees_log SELECT *, current_timestamp FROM upd;


  


新しい販売店(distributors)を適切に挿入または更新します。
did列に現れる値を制限する一意インデックスが定義されているものとします。
元々挿入されようとしていた値を参照するために、特別なexcludedテーブルが使用されていることに注意して下さい。


INSERT INTO distributors (did, dname)
    VALUES (5, 'Gizmo Transglobal'), (6, 'Associated Computing, Inc')
    ON CONFLICT (did) DO UPDATE SET dname = EXCLUDED.dname;


  


新しい販売店を上記のように挿入または更新すると、更新された既存の値に関する情報が、挿入された新しいデータとともに返されます。
old_didおよびold_dnameの戻り値が、競合しない行の場合にはNULLになることに注意してください。


INSERT INTO distributors (did, dname)
    VALUES (5, 'Gizmo Transglobal'), (6, 'Associated Computing, Inc')
    ON CONFLICT (did) DO UPDATE SET dname = EXCLUDED.dname
    RETURNING old.did AS old_did, old.dname AS old_dname,
              new.did AS new_did, new.dname AS new_dname;


  


販売店を挿入するか、あるいは挿入しようとした行について既存の除外行（before insertの行トリガを実行した後で制約列にマッチした行）がある場合は何もしません。
例ではdid列に現れる値を制限する一意インデックスがあるものとしています。


INSERT INTO distributors (did, dname) VALUES (7, 'Redline GmbH')
    ON CONFLICT (did) DO NOTHING;


  


新しい販売店を適切に挿入または更新します。
例ではdid列に現れる値を制限する一意インデックスがあるものとしています。
実際に更新される行を制限するためにWHERE句が使われています（ただし、更新されない既存の行もすべてロックされます）。



-- 特定の郵便番号については既存の販売店を更新しません
INSERT INTO distributors AS d (did, dname) VALUES (8, 'Anvil Distribution')
    ON CONFLICT (did) DO UPDATE
    SET dname = EXCLUDED.dname || ' (formerly ' || d.dname || ')'
    WHERE d.zipcode <> '21201';


-- 文中で制約を直接指定します（DO NOTHINGの動作をする競合解決のため
-- 関連するインデックスを指定します）
INSERT INTO distributors (did, dname) VALUES (9, 'Antwerp Design')
    ON CONFLICT ON CONSTRAINT distributors_pkey DO NOTHING;


  


可能であれば新しい販売店を挿入しますが、できないときはDO NOTHINGとします。
この例では、is_activeという論理値の列がtrueである行という条件で、did列に一意インデックスが定義されているものとしています。



-- この文は"WHERE is_active"という述語を使って、部分インデックスを
-- 推定できますが、単に"did"上の通常の一意性制約を使うこともできます
INSERT INTO distributors (did, dname) VALUES (10, 'Conrad International')
    ON CONFLICT (did) WHERE is_active DO NOTHING;


互換性


INSERTは標準SQLに準拠しています。
ただし、RETURNING句、INSERTでWITHが可能であること、ON CONFLICTで代替の動作を指定できることはPostgreSQL™の拡張です。
また、標準SQLでは、列名リストが省略された時に、VALUES句またはqueryで一部の列のみを指定することはできません。
ON CONFLICTよりも標準SQLにより準拠した文がお望みであれば、MERGE(7)を参照してください。
  


標準SQLでは、必ず値を生成する識別列が存在する場合にのみOVERRIDING SYSTEM VALUEを指定できるとしています。
PostgreSQLではこの句はどのような場合でも指定でき、それが適用できないときには無視します。
  


query句の制限については、SELECT(7)にて記述されています。
  



名前
LISTEN — 通知を監視する

概要

LISTEN channel


説明


LISTENは現在のセッションを、通知チャネルchannelのリスナとして登録します。
現在のセッションが既に指定した通知チャネルのリスナとして登録されている場合は、何も起こりません。
  


このセッションまたは同一データベースに接続している別のセッションによってNOTIFY channelが実行されると、現在その通知チャネルを監視している全てのセッションに対して通知されます。
次に、各セッションは接続中のクライアントアプリケーションにこれを通知します。
  


UNLISTENコマンドを使って、セッションに登録された指定通知チャネルを解除できます。
また、セッションの監視登録はそのセッションが終了した時点で自動的に削除されます。
  


クライアントアプリケーションが通知イベントを検出する方法は、使用しているPostgreSQL™アプリケーションプログラミングインタフェースに依存します。
libpqライブラリを使用するアプリケーションでは、LISTENを通常のSQLコマンドとして発行し、その後、PQnotifiesルーチンを定期的に呼び出して通知イベントが受信されたかどうかを調べる必要があります。
libpgtcl等の他のインタフェースには、通知イベントを扱うより高レベルな方法が用意されています。
実際、libpgtclを使ったアプリケーションの場合、プログラマがLISTENやUNLISTENを直接発行する必要すらありません。
詳細については、使用中のインタフェースのドキュメントを参照してください。
  

パラメータ
	channel
	

通知チャネルの名前です（任意の識別子）。
     




注釈


LISTENはトランザクションのコミット時に有効になります。
LISTENまたはUNLISTENがトランザクション内で実行され、それがロールバックされた場合、監視している通知チャネルの集合は変更されません。
  


LISTENを実行したトランザクションでは二相コミットの準備を行うことはできません。
  


監視するセッションを最初に設定する時に、競合状態があります。
同時にコミット中の複数のトランザクションが通知イベントを送った場合、新しく監視を始めたセッションはそのうちのどれをまさに受信するでしょうか。
答は、トランザクションのコミット段階のある瞬間の後にコミットされたすべてのイベントを受信する、です。
しかし、これは問い合わせにおいてトランザクションが気づくデータベースの状態よりもわずかに後です。
ここからLISTENを使う場合の以下のような規則が導かれます。
まずそのコマンドを実行する(そしてコミットする！)、それから新しいトランザクションでアプリケーションのロジックの必要に応じてデータベースの状態を検査する、それから通知に基づいてデータベースの状態に対するその後の変更を確認する。
最初に受信した通知のいくつかはデータベースの最初の検査ですでに確認した更新を参照しているかもしれませんが、これは普通は無害です。
  


NOTIFY(7)には、LISTENおよびNOTIFYについてのより広範な説明があります。
  

例


psqlから、監視/通知処理の設定と実行を行います。



LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.


互換性


標準SQLにLISTENはありません。
  

関連項目
NOTIFY(7), UNLISTEN(7), max_notify_queue_pages


名前
LOAD — 共有ライブラリファイルの読み込みを行う

概要

LOAD 'filename'


説明


LOADコマンドは、共有ライブラリファイルをPostgreSQL™サーバのアドレス空間にロードします。
そのファイルが既にロード済みなら、このコマンドは何も行いません。
C関数を含む共有ライブラリファイルは、その中の1つの関数が呼び出された時に常に、自動的にロードされます。
このため通常、明示的なLOADは、関数群を提供するのではなく「フック」を通してサーバの動作を変更するライブラリをロードするためだけに必要となります。
  


ライブラリファイルの名前は通常は単なるファイル名だけで指定され、それが（dynamic_library_pathで設定される）サーバのライブラリサーチパス内で検索されます。
あるいは、フルパス名で指定することもできます。
いずれの場合も、プラットフォームでの共有ライブラリファイル名の標準的な拡張子は省略できます。
この点についての詳細な情報は「動的ロード」を参照してください。
  


非特権ユーザは$libdir/plugins/にあるライブラリファイルのみをLOADさせることができます。
つまり、指定したfilenameはこの文字列から始まらなければなりません。
（このディレクトリ以下に確実に「安全な」ライブラリのみをインストールすることはデータベース管理者の責任です。）
  

互換性


LOADはPostgreSQL™の拡張です。
  

関連項目

   CREATE FUNCTION(7)
  



名前
LOCK — テーブルをロックする

概要

LOCK [ TABLE ] [ ONLY ] name [ * ] [, ...] [ IN lockmode MODE ] [ NOWAIT ]


ここでlockmodeは以下のいずれかです。

    ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
    | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE


説明


LOCK TABLEはテーブルレベルのロックを取得します。必要であれば競合するロックが解除されるまで待機します。
NOWAITが指定された場合は、LOCK TABLEは対象のロックを取得できるまで待機せず、すぐにロックが取得できなければ、このコマンドを中止し、エラーを出力します。
ロックは、一度取得されると現行のトランザクションが完了するまで保持されます。
（UNLOCK TABLEといったコマンドはありません。
ロックが解除されるのは常にトランザクションの終了時です。）
  


ビューがロックされると、ビューを定義する問い合わせに現れるテーブルもすべて同じロックモードで再帰的にロックされます。
  


テーブルを参照するコマンドのために自動的にロックを取得する場合、PostgreSQL™は使用可能な一番弱いロックモードを常に使用します。
LOCK TABLEはより制限の強いロックが必要な場合のために用意されています。
例えば、分離レベルREAD COMMITTEDでトランザクションを実行するアプリケーションで、トランザクションの間中、テーブルのデータを確実に安定させる必要がある場合を考えます。
この場合、問い合わせ実行前にテーブル全体にSHAREロックモードを使用します。
これにより、データが同時に変更されるのを防ぎ、それ以降のテーブルの読み取りは、コミット済みの安定したデータが見えるようになります。
なぜならSHAREロックモードは書き込み側が取得するROW EXCLUSIVEロックと競合するので、LOCK TABLE name IN SHARE MODE文は、ROW EXCLUSIVEを保持しているトランザクションがコミットまたはロールバックされるのを待つからです。
したがって、一度ロックを取得してしまえば、コミットされていない状態の書き込みは存在しないことになります。さらに、ロックを解除するまで他のアプリケーションは書き込みを開始することができません。
  


REPEATABLE READまたはSERIALIZABLE分離レベルで実行しているトランザクションで同様の効果を得るには、全てのSELECT文とデータを更新する文を実行する前にLOCK TABLE文を実行する必要があります。
REPEATABLE READまたはSERIALIZABLEトランザクション側から参照するデータの状態は、最初にSELECT文またはデータ更新用文が開始された時点で固定されます。
後からトランザクション内でLOCK TABLEを実行した場合も同時書き込みを防ぐことはできますが、トランザクションの読み込み対象データの値がコミットされた最新の値であることは保証されません。
  


このようなトランザクションでテーブルのデータを変更する場合は、SHAREモードではなくSHARE ROW EXCLUSIVEロックモードを使用する必要があります。
これによって、この種のトランザクションが同時に複数実行されることがなくなります。
SHARE ROW EXCLUSIVEを使用しないと、デッドロックが発生する可能性があります。
2つのトランザクションの両方が、SHAREモードを取得していながら、実際の更新に必要なROW EXCLUSIVEモードを取得できない状態になる可能性があるためです。
（トランザクション自身が所有しているロック間は競合しないので、トランザクションはSHAREモードを保持している間もROW EXCLUSIVEを獲得することができます。
しかし、他のトランザクションがSHAREモードを保持している時にはROW EXCLUSIVEを獲得することはできません。）
デッドロックを回避するには、全てのトランザクションが、必ず同一オブジェクトに対して同一の順番でロックを取得するようにしてください。
また、1つのオブジェクトに対して複数のロックモードを呼び出す場合、トランザクションは常に最も制限の強いモードを最初に取得するべきです。
  


ロックモードとロック取得方針についてのより詳細については「明示的ロック」を参照してください。
  

パラメータ
	name
	

ロックする既存のテーブルの名前です（スキーマ修飾名も可）。
テーブル名の前にONLYが指定された場合、そのテーブルのみをロックします。
ONLYが指定されない場合、そのテーブルとすべての子テーブル（もしあれば）をロックします。
オプションで、テーブル名の後に*を指定することで、明示的に継承するテーブルも含まれることを示すことができます。
     


LOCK a, b;というコマンドはLOCK TABLE a; LOCK TABLE b;と同じです。
テーブルは1つひとつLOCKで指定された順番でロックされます。
     

	lockmode
	

ロックモードには、取得するロックと競合するロックを指定します。
ロックモードについては、「明示的ロック」で説明します。
     


ロックモードを指定しない場合、最も制限が強いACCESS EXCLUSIVEが使用されます。
     

	NOWAIT
	

LOCK TABLEが競合するロックの解放まで待機しないことを指定します。
指定したロックがすぐに取得できない場合、トランザクションはアボートされます。
     




注釈


テーブルをロックするには、ユーザが指定したlockmodeに対して適切な権限を持っていることが必要です。
ユーザがテーブルに対してMAINTAIN、UPDATE、DELETEまたはTRUNCATE権限を持っている場合、任意のlockmodeが許可されます。
ユーザがテーブルに対してINSERT権限を持っている場合、ROW EXCLUSIVE MODE(または「明示的ロック」で説明されている競合のより少ないモード)が許可されます。
ユーザがテーブルに対してSELECT権限を持っている場合、ACCESS SHARE MODEが許可されます。
   


ビューに対してロックを実行するユーザはビューに対して対応する権限を持っていなければなりません。
さらに、デフォルトでは、ビューの所有者は元になる基底リレーションに対する関連する権限を持っていなければなりませんが、ロックを実行するユーザは元になる基底リレーションに対する権限を必要としません。
ただし、ビューのsecurity_invokerがtrueに設定されている場合(CREATE VIEWを参照してください)、ビュー所有者ではなくロックを実行するユーザは元になる基底リレーションに対する関連する権限を持っていなければなりません。
   


LOCK TABLEはトランザクションブロックの外側では意味がありません。
文が完了するまでしかロックは保持されません。
したがってPostgreSQL™はLOCKがトランザクションブロックの外側で使用された場合にエラーを報告します。
トランザクションブロックを定義するためにはBEGINおよびCOMMIT（またはROLLBACK）を使用してください。
   


LOCKが扱うのはテーブルレベルのロックのみです。
そのため、モード名にROWが含まれるのは適切ではありません。
これらのモード名は、普通は、ロックされたテーブル内で行レベルのロックを取得する意図と解釈されるでしょう。
また、ROW EXCLUSIVEモードは共有可能なテーブルロックです。
LOCK TABLEに関しては、全てのロックモードが同じ意味を持っており、違うのは、どのモードがどのモードと競合するかという規則だけであることに注意して下さい。
実際の行レベルでのロックを獲得する方法については、SELECT(7)の文書の「行レベルロック」とロック処理句を参照してください。
  

例


外部キーテーブルへの挿入を行う際に、主キーテーブルへのSHAREロックを獲得します。



BEGIN WORK;
LOCK TABLE films IN SHARE MODE;
SELECT id FROM films
    WHERE name = 'Star Wars: Episode I - The Phantom Menace';

-- レコードがなければROLLBACKしてください。
INSERT INTO films_user_comments VALUES
    (_id_, 'GREAT! I was waiting for it for so long!');
COMMIT WORK;


  


削除操作を行う際に主キーテーブルのSHARE ROW EXCLUSIVEロックを取得します。



BEGIN WORK;
LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;
DELETE FROM films_user_comments WHERE id IN
    (SELECT id FROM films WHERE rating < 5);
DELETE FROM films WHERE rating < 5;
COMMIT WORK;


互換性


標準SQLにはLOCK TABLEはありません。
その代わりにトランザクションの同時性レベルを指定するSET TRANSACTIONが使用されます。
PostgreSQL™はこのコマンドもサポートしています。詳細はSET TRANSACTION(7)を参照してください。
  


ACCESS SHARE、ACCESS EXCLUSIVE、SHARE UPDATE EXCLUSIVEロックモードを除き、PostgreSQL™のロックモードとLOCK TABLE構文はOracle™のものと互換性があります。
  



名前
MERGE — テーブルの行を条件付きでINSERT、UPDATE、DELETEする

概要

[ WITH with_query [, ...] ]
MERGE INTO [ ONLY ] target_table_name [ * ] [ [ AS ] target_alias ]
    USING data_source ON join_condition
    when_clause [...]
    [ RETURNING [ WITH ( { OLD | NEW } AS output_alias [, ...] ) ]
                { * | output_expression [ [ AS ] output_name ] } [, ...] ]


ここでdata_sourceは以下の通りです。

    { [ ONLY ] source_table_name [ * ] | ( source_query ) } [ [ AS ] source_alias ]


またwhen_clauseは以下の通りです。

    { WHEN MATCHED [ AND condition ] THEN { merge_update | merge_delete | DO NOTHING } |
      WHEN NOT MATCHED BY SOURCE [ AND condition ] THEN { merge_update | merge_delete | DO NOTHING } |
      WHEN NOT MATCHED [ BY TARGET ] [ AND condition ] THEN { merge_insert | DO NOTHING } }


またmerge_insertは以下の通りです。

    INSERT [( column_name [, ...] )]
        [ OVERRIDING { SYSTEM | USER } VALUE ]
        { VALUES ( { expression | DEFAULT } [, ...] ) | DEFAULT VALUES }


またmerge_updateは以下の通りです。

    UPDATE SET { column_name = { expression | DEFAULT } |
                 ( column_name [, ...] ) = [ ROW ] ( { expression | DEFAULT } [, ...] ) |
                 ( column_name [, ...] ) = ( sub-SELECT )
               } [, ...]


またmerge_deleteは以下の通りです。

    DELETE


説明


MERGEは、data_sourceを使用して、target_table_nameで指定された対象テーブルの行を変更するアクションを実行します。
MERGEは、条件付きで行のINSERT、UPDATEまたはDELETEを実行できる単一のSQL文を提供します。
これがないと、複数の手続き言語文が必要になります。
  


最初に、MERGEコマンドはdata_sourceから対象テーブルへの結合を実行し、0以上の変更候補行を生成します。
各変更候補行に対して、MATCHED、NOT MATCHED BY SOURCEまたはNOT MATCHED [BY TARGET]の状態が一度だけ設定され、その後WHEN句が指定された順序で評価されます。
各変更候補行に対して、真と評価される最初の句が実行されます。
どの変更候補行に対しても、1つのWHEN句しか実行されません。
  


MERGEアクションは、同じ名前の通常のUPDATE、INSERTまたはDELETEコマンドと同じ効果を持ちます。
これらのコマンドの構文は異なり、WHERE句がなく、テーブル名が指定されていません。
すべてのアクションは対象テーブルを参照しますが、他のテーブルへの変更はトリガを使用して行うことができます。
  


DO NOTHINGが指定されている場合、元となる行はスキップされます。
アクションは指定された順序で評価されるため、DO NOTHINGは、より詳細な処理の前に、関心のない元となる行をスキップする場合に便利です。
  


オプションのRETURNING句は、挿入、更新、削除された各行に基づいて値を計算し、返すようにMERGEを設定します。
元となるテーブルまたは対象テーブルの列、あるいはmerge_action()関数を使用する式が計算可能です。
デフォルトでは、INSERTまたはUPDATEアクションが実行されると、対象テーブルの列の新しい値が使用され、DELETEが実行されると、対象テーブルの列の古い値が使用されますが、古い値や新しい値を明示的に要求することもできます。
RETURNINGリストの構文は、SELECTの出力リストと同じです。
  


別個のMERGE権限はありません。
更新アクションを指定する場合、SET句で参照される対象テーブルの列に対するUPDATE権限が必要です。
挿入アクションを指定する場合、対象テーブルに対するINSERT権限が必要です。
削除アクションを指定する場合、対象テーブルに対するDELETE権限が必要です。
DO NOTHINGアクションを指定する場合、対象テーブルの少なくとも1つの列に対するSELECT権限が必要です。
また、data_sourceの任意の列とcondition（join_conditionを含む）またはexpressionで参照される対象テーブルの任意の列に対するSELECT権限も必要です。
権限は文の開始時に一度テストされ、特定のWHEN句が実行されるかどうかがチェックされます。
  


対象テーブルがマテリアライズドビュー、外部テーブルである場合、またはテーブルにルールが定義されている場合、MERGEはサポートされません。
  

パラメータ
	with_query
	

WITH句を使用すると、MERGE問い合わせで名前で参照できる1つ以上の副問い合わせを指定できます。
詳細は「WITH問い合わせ（共通テーブル式）」とSELECT(7)を参照してください。
WITH RECURSIVEはMERGEではサポートされていないことに注意してください。
     

	target_table_name
	

マージ先の対象テーブルもしくはビューの名前です(スキーマ修飾名も可)。
テーブル名の前にONLYを指定すると、指定したテーブルでのみ一致する行が更新または削除されます。
ONLYを指定しないと、指定したテーブルを継承するテーブルでも一致する行が更新または削除されます。
オプションで、テーブル名の後に*を指定して、子孫のテーブルが含まれることを明示的に示すことができます。
ONLYキーワードおよび*オプションは、挿入操作には影響しません。挿入操作では、常に指定したテーブルにのみ挿入します。
     


target_table_nameがビューの場合、INSTEAD OFトリガを使用せずに自動的に更新可能であるか、WHEN句で指定されたすべてのアクション（INSERT、UPDATE、DELETE）に対してINSTEAD OFトリガを持つ必要があります。
ルール付きビューはサポートされていません。
     

	target_alias
	

対象テーブルの代替名です。
別名を指定すると、テーブルの実際の名前が完全に非表示になります。
たとえば、MERGE INTO foo AS fを指定した場合、MERGE文の残りの部分は、このテーブルをfooではなくfとして参照する必要があります。
     

	source_table_name
	

元となるテーブル、ビュー、または遷移テーブルの名前(スキーマ修飾名も可)。
テーブル名の前にONLYを指定すると、指定したテーブルのみからの一致する行が含まれます。
ONLYを指定しないと、指定したテーブルを継承するすべてのテーブルからも一致する行が含まれます。
オプションで、テーブル名の後に*を指定して、子孫のテーブルが含まれることを明示的に示すことができます。
     

	source_query
	

対象テーブルにマージされる行を提供する問い合わせ（SELECT文またはVALUES文）です。
構文の説明は、SELECT(7)文またはVALUES(7)文を参照してください。
     

	source_alias
	

データソースの代替名です。
別名を指定すると、テーブルの実際の名前や問い合わせが発行された事実が完全に隠されます。
     

	join_condition
	

join_conditionはboolean型の値を返す式です（WHERE句に似ています）。この式は、data_sourceのどの行が対象テーブルの行と一致するかを指定します。
     
警告


join_conditionには、data_source行に一致しようとする対象テーブルの列のみが表示されます。
対象テーブルの列のみを参照するjoin_condition副式は、実行されるアクションに影響を与える可能性があり、多くの場合驚くべき方法で影響を与えます。
      


WHEN NOT MATCHED BY SOURCEとWHEN NOT MATCHED [BY TARGET]の両方の句が指定された場合、MERGEコマンドはdata_sourceと対象テーブルの間でFULL結合を実行します。
 これを機能させるには、少なくとも1つのjoin_condition副式がハッシュ結合をサポートできる演算子を使用するか、すべての副式がマージ結合をサポートできる演算子を使用する必要があります。
      


	when_clause
	

少なくとも1つのWHEN句が必要です。
     


WHEN句は、WHEN MATCHED、WHEN NOT MATCHED BY SOURCEまたはWHEN NOT MATCHED [BY TARGET]を指定できます。
標準SQLでは、WHEN MATCHEDとWHEN NOT MATCHED（一致する対象行がないことを意味するものとして定義されている）のみを定義していることに注意してください。
WHEN NOT MATCHED BY SOURCEは標準SQLの拡張です。その意味をより明確にする、WHEN NOT MATCHEDにBY TARGETを付加するオプションも同様に拡張です。
     


WHEN句でWHEN MATCHEDが指定され、変更候補行がdata_sourceの行と対象テーブルの行と一致する場合、conditionが存在しないかtrueと評価されるとWHEN句が実行されます。
     


WHEN句でWHEN NOT MATCHED BY SOURCEが指定され、候補変更行がdata_sourceの行と一致しない対象テーブルの行を表す場合、conditionが存在しないかtrueと評価された場合にWHEN句が実行されます。
     


WHEN句でWHEN NOT MATCHED [BY TARGET]が指定され、候補変更行がdata_sourceの行を表し、その行が対象テーブルの行と一致しない場合、conditionが存在しないかtrueと評価された場合にWHEN句が実行されます。
     

	condition
	

boolean型の値を返す式。
WHEN句のこの式がtrueを返す場合、その句のアクションがその行に対して実行されます。
     


WHEN MATCHED句の条件は、元となるリレーションと対象リレーションの両方の列を参照できます。
WHEN NOT MATCHED BY SOURCE句の条件は、対象リレーションの列のみを参照できます。これは、定義上、一致する元となる行がないためです。
WHEN NOT MATCHED [BY TARGET]句の条件は、元となるリレーションの列のみを参照できます。これは、定義上、一致する対象行がないためです。
対象テーブルのシステム属性のみにアクセスできます。
     

	merge_insert
	

対象テーブルに1つの行を挿入するINSERTアクションの指定。
対象列名は任意の順序でリストできます。
列名のリストがまったく指定されていない場合、デフォルトではテーブルのすべての列が宣言された順序になります。
     


明示的または暗黙的な列リストにない各列にはデフォルト値（デフォルト値が宣言されていればその値、未宣言ならばNULL）が挿入されます。
     


対象テーブルがパーティションテーブルの場合、各行は適切なパーティションにルーティングされ、パーティションに挿入されます。
対象テーブルがパーティションの場合、入力行がパーティション制約に違反するとエラーが発生します。
     


列名を複数回指定することはできません。
INSERTアクションに副SELECTを含めることはできません。
     


VALUES句は1つしか指定できません。
VALUES句は元となるリレーションの列のみを参照できます。
これは、定義上、一致する対象行がないためです。
     

	merge_update
	

対象テーブルの現在の行を更新するUPDATEアクションの指定。
列名は2回以上指定できません。
     


テーブル名もWHERE句も使用できません。
     

	merge_delete
	

対象テーブルの現在の行を削除するDELETEアクションを指定します。
DELETE(7)コマンドで通常行うように、テーブル名やその他の句は含めないでください。
     

	column_name
	

対象テーブルの列名。
列名は、必要に応じてサブフィールド名または配列の添字で修飾できます。
（複合列の一部のフィールドにのみ挿入すると、他のフィールドはNULLになります。）
対象列の指定には、テーブルの名前を含めないでください。
     

	OVERRIDING SYSTEM VALUE
	

この句を使用しない場合、GENERATED ALWAYSとして定義されたID列に対して明示的な値(DEFAULT以外)を指定するとエラーになります。
この句は、この制限を上書きします。
     

	OVERRIDING USER VALUE
	

この句を指定した場合、GENERATED BY DEFAULTとして定義されたID列に提供された値は無視され、シーケンスで生成されたデフォルト値が適用されます。
     

	DEFAULT VALUES
	

すべての列にデフォルト値が設定されます。
（このフォームではOVERRIDING句は使用できません。）
     

	expression
	

列に割り当てる式。
WHEN MATCHED句で使用する場合、式は対象テーブルの元の行からの値とdata_source行からの値を使用できます。
WHEN NOT MATCHED BY SOURCE句で使用する場合、式は対象テーブルの元の行からの値のみを使用できます。
WHEN NOT MATCHED [BY TARGET]句で使用する場合、式はdata_source行からの値のみを使用できます。
     

	DEFAULT
	

列をデフォルト値に設定します（特定のデフォルト式が割り当てられていない場合はNULLになります）。
     

	sub-SELECT
	

それに先行する括弧付きの列リストに列挙されている出力列と同じ数の出力列を生成するSELECT副問い合わせ。
副問い合わせは、実行時に2行以上生成してはいけません。
行が1つ返されると、その列の値が対象列に割り当てられます。
行が返されない場合は、NULL値が対象列に割り当てられます。
WHEN MATCHED句で使用する場合、副問い合わせは、対象テーブルの元の行からの値とdata_source行からの値を参照できます。
WHEN NOT MATCHED BY SOURCE句で使用する場合、副問い合わせは、対象テーブルの元の行からの値のみを参照できます。
     

	output_alias
	

RETURNINGリスト内のOLDまたはNEW行のオプションの代替名です。
     


デフォルトでは、対象テーブルの古い値は、OLD.column_nameまたはOLD.*と書くことで、新しい値はNEW.column_nameまたはNEW.*と書くことで返せます。
別名が提供されている場合、これらの名前は隠され、新旧の行は別名を使用して参照しなければなりません。
例えばRETURNING WITH (OLD AS o, NEW AS n) o.*, n.*です。
     

	output_expression
	

各行が変更（挿入、更新、削除）された後にMERGEコマンドによって計算され、返される式です。
式には、元となるテーブルまたは対象テーブルの任意の列、あるいは実行されたアクションに関する追加情報を返すmerge_action()関数を使用できます。
     


*を指定すると、元となるテーブルのすべての列が返され、その後に対象テーブルのすべての列が返されます。
多くの場合、元となるテーブルと対象テーブルは同じ列を多く持つため、この方法では重複が多くなります。
この問題を回避するには、元となるテーブルまたは対象テーブルの名前または別名で*を修飾します。
     


列名または*は、OLDもしくはNEW、またはOLDもしくはNEWに対応するoutput_aliasを使って修飾することで、対象テーブルから古い値または新しい値を返すこともできます。
対象テーブルの修飾されていない列名、または対象テーブル名または別名を使用して修飾された列名または*は、INSERTおよびUPDATEアクションに対しては新しい値を、DELETEアクションに対しては古い値を返します。
     

	output_name
	

返される列で使用される名前です。
     




出力


正常に完了すると、MERGEコマンドは以下の形式のコマンドタグを返します。


MERGE total_count



total_countは変更された行の合計数です(挿入、更新、または削除のいずれか)。
total_countが0の場合、行はまったく変更されていません。
  


MERGEコマンドがRETURNING句を含む場合、結果はRETURNINGリストに定義された列と値を含むSELECT文と同様になります。この場合、コマンドにより挿入、更新、削除された行に対して計算されます。
  

注釈


次のステップは、MERGEの実行中に行われます。
    
	

WHEN句が一致するかどうかに関係なく、指定されたすべてのアクションに対してBEFORE STATEMENTトリガを実行します。
      

	

元となるテーブルから対象テーブルへの結合を実行します。
結果の問い合わせは通常どおり最適化され、一連の変更候補行が生成されます。
各変更候補行について、
       
	

各行がMATCHED、NOT MATCHED BY SOURCE、またはNOT MATCHED [BY TARGET]のいずれであるかを評価します。
         

	

真が返されるまで、各WHEN条件を指定された順序でテストします。
         

	

条件が真を返す場合は、次のアクションを実行します。
          
	

アクションのイベントタイプに対して起動するBEFORE ROWトリガを実行します。
            

	

指定されたアクションを実行し、対象テーブルの検査制約を呼び出します。
            

	

アクションのイベントタイプに対して起動するAFTER ROWトリガを実行します。
            





対象リレーションがアクションのイベントタイプに対してINSTEAD OF ROWトリガを持つビューである場合、それらは代わりにアクションを実行するために使われます。
         




	

アクションが実際に発生するかどうかに関係なく、指定されたアクションに対してAFTER STATEMENTトリガを実行します。
これは、行を変更しないUPDATE文の動作に似ています。
      





要約するとイベントタイプの文トリガ（たとえば、INSERTなど）は、その種類のアクションを指定 するたびに起動されます。
対照的に、行レベルトリガは、実行される特定のイベントタイプに対してのみ起動されます。
したがって、MERGEコマンドでは、UPDATE行トリガのみが起動された場合でも、UPDATEとINSERTの両方に対して文トリガを起動する可能性があります。
  


結合では、各対象行に対して最大1つの変更候補行が生成されるようにする必要があります。
つまり、対象行は複数のデータソース行に結合できません。
結合する場合、変更候補行の1つだけが対象行の変更に使用されます。
後で行を変更しようとするとエラーが発生します。
これは、行トリガが対象テーブルを変更し、変更された行が後でMERGEによっても変更される場合にも発生する可能性があります。
繰り返されるアクションがINSERTの場合、一意性違反が発生しますが、UPDATEまたはDELETEを繰り返すとカーディナリティ違反が発生します。
後者の動作は標準SQLで要求されています。
これは、PostgreSQL™のUPDATEおよびDELETE文における結合の歴史的な動作とは異なります。
この動作では、2回目以降の同じ行の変更は単純に無視されます。
  


WHEN句でAND副句が省略された場合、その句はその種類の最終到達可能句(MATCHED、NOT MATCHED BY SOURCEまたはNOT MATCHED [BY TARGET])になります。
その種類の後のWHEN句が指定された場合、到達不能である可能性があり、エラーが発生します。
いずれの種類の最終到達可能句も指定されていない場合、候補変更行に対してアクションが実行されない可能性があります。
  


デフォルトでは、データソースから行が生成される順序は不定です。
source_queryを使用して、必要に応じて一貫した順序を指定できます。これは、並行しているトランザクション間のデッドロックを回避するために必要になる場合があります。
  


MERGEを対象テーブルを変更する他のコマンドと同時に実行すると、通常のトランザクション分離規則が適用されます。
各分離レベルでの動作の説明は「トランザクションの分離」を参照してください。
また、INSERT ... ON CONFLICTを代替文として使用することも検討できます。
この文は、同時INSERTが発生した場合にUPDATEを実行する機能を提供します。
2つの文タイプの間には様々な違いや制限があり、相互に交換することはできません。
  

例


新規recent_transactionsに基づいて、customer_accountsのメンテナンスを実行します。



MERGE INTO customer_account ca
USING recent_transactions t
ON t.customer_id = ca.customer_id
WHEN MATCHED THEN
  UPDATE SET balance = balance + transaction_value
WHEN NOT MATCHED THEN
  INSERT (customer_id, balance)
  VALUES (t.customer_id, t.transaction_value);


  


在庫数量とともに新規在庫品目を挿入しようとします。
品目がすでに存在する場合は、既存品目の在庫数を更新します。
在庫数が0のエントリは許可しません。
実行されたすべての変更の詳細を返します。


MERGE INTO wines w
USING wine_stock_changes s
ON s.winename = w.winename
WHEN NOT MATCHED AND s.stock_delta > 0 THEN
  INSERT VALUES(s.winename, s.stock_delta)
WHEN MATCHED AND w.stock + s.stock_delta > 0 THEN
  UPDATE SET stock = w.stock + s.stock_delta
WHEN MATCHED THEN
  DELETE
RETURNING merge_action(), w.winename, old.stock AS old_stock, new.stock AS new_stock;




wine_stock_changesテーブルは、たとえば、最近データベースにロードされた一時テーブルです。
  


置換ワインリストに基づいてwinesを更新し、新しい在庫の行を挿入し、変更された在庫エントリを更新し、新しいリストにないワインを削除します。


MERGE INTO wines w
USING new_wine_list s
ON s.winename = w.winename
WHEN NOT MATCHED BY TARGET THEN
  INSERT VALUES(s.winename, s.stock)
WHEN MATCHED AND w.stock != s.stock THEN
  UPDATE SET stock = s.stock
WHEN NOT MATCHED BY SOURCE THEN
  DELETE;


  

互換性


このコマンドは標準SQLに準拠しています。
  


WITH句、WHEN NOT MATCHEDのBY SOURCEおよびBY TARGET修飾子、DO NOTHINGアクションおよびRETURNING句は、標準SQLの拡張です。
  



名前
MOVE — カーソルの位置を決める

概要

MOVE [ direction ] [ FROM | IN ] cursor_name


ここでdirectionは以下の一つです。

    NEXT
    PRIOR
    FIRST
    LAST
    ABSOLUTE count
    RELATIVE count
    count
    ALL
    FORWARD
    FORWARD count
    FORWARD ALL
    BACKWARD
    BACKWARD count
    BACKWARD ALL


説明


MOVEはデータを取り出すことなくカーソルの位置を変更します。
MOVEはFETCHコマンドとまったく同じように動作しますが、カーソルの位置を変えるだけで行を返しません。
  


MOVEコマンドのパラメータはFETCHコマンドと同一です。
構文と使用方法についての詳細はFETCH(7)を参照してください。
  

出力


正常に終了すると、MOVEは以下の形式のコマンドタグを返します。


MOVE count



countは同じパラメータを与えたFETCHコマンドが返すはずの行数です
（この値は0の場合もあります）。
  

例

BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;


-- 最初の5行をスキップします。
MOVE FORWARD 5 IN liahona;
MOVE 5


-- liahonaカーソル内の6行目を抽出します。
FETCH 1 FROM liahona;
 code  | title  | did | date_prod  |  kind  |  len
-------+--------+-----+------------+--------+-------
 P_303 | 48 Hrs | 103 | 1982-10-22 | Action | 01:37
(1 row)


-- カーソルliahonaを閉じ、トランザクションを終了します。
CLOSE liahona;
COMMIT WORK;


互換性


標準SQLにはMOVE文はありません。
  

関連項目
CLOSE(7), DECLARE(7), FETCH(7)


名前
NOTIFY — 通知を生成する

概要

NOTIFY channel [ , payload ]


説明


NOTIFYコマンドは、現在のデータベース内で事前に指定チャネル名についてLISTEN channelコマンドを実行したクライアントアプリケーションに「ペイロード」文字列(省略可能)を持つ通知イベントを送ります。
通知はすべてのユーザから可視です。
  


NOTIFYは同一のPostgreSQL™データベースにアクセスするプロセスの集合に対する単純なプロセス間通信の仕組みを提供します。
通知の際にペイロード文字列を送信することができます。
また、データベース内のテーブルを使用して通知者から（1つまたは複数の）リスナに追加的なデータを渡すことにより、構造化されたデータを渡す高度な仕組みを構築することができます。
  


通知イベントとしてクライアントに渡される情報には、通知チャネル名と通知を行うセッションのサーバプロセスのPID、ペイロード文字列(指定されていなければ空文字列)が含まれます。
  


各データベースにおいて使用される通知チャネル名とその意味についての定義は、データベース設計者に任されています。
通知チャネル名には、データベース内のテーブル名と同じものを使用するのが一般的です。
通知イベントは本質的に「このテーブルを変更しました。変更された箇所を確認してください」ということを意味するものです。
しかし、NOTIFYコマンドとLISTENコマンドでは、そのような関連付けは強制されていません。
例えば、データベース設計者は、1つのテーブルに対する異なる種類の変更を通知するために、複数の異なる通知チャネル名を使用することができます。
他の方法としてペイロード文字列を使用して各種様々な状況に対応させることもできます。
  


特定のテーブルが変更されたことを通知するためにNOTIFYを使用する場合、NOTIFYをテーブル更新時に発行される文トリガ内に配置すると便利です。
こうすると、通知はテーブルが変更された時に自動的に行われるので、アプリケーションプログラマが通知の実行を忘れるといった事故を防ぐことができます。
  


NOTIFYとSQLトランザクションの間には、いくつかの重要な相互作用があります。
まず、NOTIFYがトランザクション内部で実行された場合、通知イベントはトランザクションがコミットされない限り配送されません。
トランザクションがアボートされた場合、NOTIFYだけでなく、そのトランザクション内で行われたコマンドが全て無効化されるので、これは妥当といえます。
しかし、通知イベントが即座に配送されることを期待していた場合、当惑するかもしれません。
次に、監視中のセッションがトランザクション処理中に通知シグナルを受け取った場合、そのトランザクションが（コミットもしくはアボートされて）完了するまで、通知イベントは接続しているクライアントに配送されません。
この理由も同じです。トランザクションに通知が配送された後にそのトランザクションがアボートされた場合、何とかして通知を取り消したくなりますが、サーバはいったんクライアントに送信した通知を「取り戻す」ことはできません。
したがって、通知イベントはトランザクションとトランザクションの合間にのみ配送されます。
結論として、NOTIFYを使用してシグナルの実時間処理をするアプリケーションではトランザクションを短くしておかなければなりません。
  


同じチャネル名が、同一トランザクションから同じペイロード文字列で複数回通知される場合、1つの通知インスタンスのみをリスナに伝えます。
一方、異なるペイロード文字列を持つ通知は常に別の通知として伝えられます。
同様に別のトランザクションからの通知が1つの通知にまとめられることは決してありません。
重複する通知インスタンスを後で削除する場合は例外ですが、NOTIFYは同一トランザクションからの通知は送信された順番に配送されることを保証します。
また異なるトランザクションからのメッセージがトランザクションのコミット順で配送されることも保証します。
  


NOTIFYを実行するクライアント自身が、その通知の通知チャネルを監視していることはよくあります。
この場合、同じ通知名を監視する他のセッションに対するのと同じように通知イベントが戻ってきます。
アプリケーションのロジックにもよりますが、これは無駄な作業になることがあります。
例えば、そのセッションが書き出したばかりのデータベースに対する更新を調べるためにテーブルの再読み込みを行う場合などが考えられます。
通知元セッションのサーバプロセスのPID(通知イベントメッセージ内にあります)と、自分自身のPID(libpqで得られます)が同じかどうか調べることで、こういった余計な作業を回避できます。
PIDが同じであれば、その通知イベントは自分自身から跳ね返ってきたものであり、無視することができます。
  

パラメータ
	channel
	

シグナルとして送られる通知チャネル名です（任意の識別子）。
     

	payload
	

通知と一緒に通信される「ペイロード」文字列です。
これは単純な文字列リテラルとして指定されなければなりません。
デフォルトの設定では、8000バイト未満でなければなりません。
(バイナリデータまたは大規模な情報を渡さなければならないのであれば、データベーステーブル内に格納しレコードのキーを送信することが最善です。)
     




注釈


送信済みだがすべての監視セッションでは処理されていない通知を保持するためのキューが存在します。
このキューがいっぱいになると、NOTIFYを呼び出すトランザクションのコミットに失敗します。
キューはかなり大きなもの(標準のインストレーションで8ギガバイト)であり、ほとんどすべての環境で十分な大きさであるはずです。
しかしセッションがNOTIFYを実行した後に長期間のトランザクションに入った場合、キューからクリーンアップできなくなります。
キューの半分までたまると、ログファイル内にクリーンアップを妨げているセッションを指し示す警告が現れるようになります。
この場合、クリーンアップ処理が進むように、確実にそのセッションでその現在のトランザクションを完了させるようにしなければなりません。
  


関数pg_notification_queue_usageは現在、保留中の通知によって占められているキューの割合を返します。
詳細な情報については「システム情報関数と演算子」を参照してください。
  


NOTIFYを実行したトランザクションでは二相コミットを準備することはできません。
  
pg_notify


通知を送信するために関数pg_notify(text,text)を使用することもできます。
この関数は第1引数としてチャネル名、第2引数としてペイロードを取ります。
不定のチャネル名、ペイロードで作業しなければならない場合は、NOTIFYコマンドよりこの関数を使用する方がかなり簡単です。
   


例


psqlから監視/通知処理の設定と実行を行います。



LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.
NOTIFY virtual, 'This is the payload';
Asynchronous notification "virtual" with payload "This is the payload" received from server process with PID 8448.

LISTEN foo;
SELECT pg_notify('fo' || 'o', 'pay' || 'load');
Asynchronous notification "foo" with payload "payload" received from server process with PID 14728.


互換性


標準SQLにはNOTIFYはありません。
  

関連項目
LISTEN(7), UNLISTEN(7), max_notify_queue_pages


名前
PREPARE — 実行する文を準備する

概要

PREPARE name [ ( data_type [, ...] ) ] AS statement


説明


PREPAREはプリペアド文を作成します。
プリペアド文は、性能を最適化するために利用可能なサーバ側オブジェクトです。
PREPARE文を実行すると、指定された問い合わせの構文解析、書き換えが行われます。
その後、EXECUTE文が発行された際に、プリペアド文は実行計画が作成され、実行されます。
この作業の分割により構文解析作業が繰り返されることを防止でき、さらに、特定のパラメータ値に合わせた実行計画を提供することができます。
  


プリペアド文はパラメータ、すなわち文が実行される時に代入される値を取ることができます。
プリペアド文を作成する時には$1や$2などを使用して、位置によりパラメータを参照してください。
対応するパラメータのデータ型のリストをオプションで指定することもできます。
パラメータのデータ型の指定がない、または、unknownと宣言されている場合、型はパラメータが最初に参照される文脈より（可能ならば）推測されます。
文の実行時には、EXECUTE文内にこれらのパラメータの実際の値を指定します。
詳細はEXECUTE(7)を参照してください。
  


プリペアド文は現在のデータベースセッションの期間中にのみ保持されます。
セッションが終了すると、プリペアド文は破棄されます。
そのため、再び利用する場合は、再作成する必要があります。
また、これは、1つのプリペアド文を同時実行中の複数のデータベースクライアントから使用することはできないことを意味します。
ただし、各クライアントが個別にプリペアド文を作成することはできます。
プリペアド文を手作業で削除するには、DEALLOCATEコマンドを使用します。
  


プリペアド文は潜在的には、単一のセッションで同類の問い合わせを多数実行する場合に、パフォーマンスにおける最大の利益がえられます。
パフォーマンスの違いは、文の書き換えや実行計画が複雑なほど顕著になるでしょう。
例えば、問い合わせに多数のテーブルの結合が含まれている場合や、いくつものルールを適用しなければならない場合などが考えられます。
書き換えおよび実行計画が比較的単純で、実行コストが高い文の場合は、プリペアド文の効果はそれほど現れないでしょう。
  

パラメータ
	name
	

個々のプリペアド文に与えられる任意の名前です。
この名前は、1つのセッション内で一意でなければいけません。プリペアド文の実行および削除の時に、この名前が使用されます。
     

	data_type
	

プリペアド文に対するパラメータのデータ型です。
特定のパラメータのデータ型の指定がない、または、unknownと指定された場合、パラメータが最初に参照される文脈から推測されます。
プリペアド文自体の中でこのパラメータを参照する時は、$1、$2などを使用します。
     

	statement
	

任意のSELECT、INSERT、UPDATE、DELETE、MERGE、VALUES文です。
     




注釈


プリペアド文は、汎用的な計画または独自の計画のいずれかで実行することができます。
汎用的な計画は全実行に渡って同じであるのに対して、独自の計画はその呼出しで与えられたパラメータ値を使った特別な実行のために生成されます。
汎用的な計画の使用は計画のオーバーヘッドを回避しますが、プランナがパラメータ値の知識を使えるので、独自の計画の方がずっと効率よく実行される場合があります。
(もちろん、プリペアド文にパラメータがなければ、これは無意味で、汎用的な計画が常に使われます。)
  


デフォルト(すなわち、plan_cache_modeがautoに設定されている場合)では、パラメータのあるプリペアド文に対して、汎用的な計画を使うか独自の計画を使うかを、サーバは自動的に選択します。
これに対する現在の規則は、最初の5回が独自の計画で実行され、その計画の推定コストの平均が計算される、というものです。
それから汎用的な計画が作成され、その推定コストが独自の計画のコストの平均と比較されます。
再計画を繰り返すことが望ましいと思えるほどにはそのコストが独自の計画の平均コストよりも高くなければ、その後の実行は汎用的な計画を使います。
  


plan_cache_modeをforce_generic_planまたはforce_custom_planに設定して、サーバにそれぞれ汎用的な計画または独自の計画を使うように強制することで、この発見的手法を置き換えることができます。
汎用的な計画の実際のコストが独自の計画のものよりもずっと多い場合でも、汎用的な計画を選べるようになりますので、汎用的な計画のコスト推定が何らかの理由でひどく外れる場合に、この設定は主として有用です。
  


プリペアド文に対してPostgreSQL™が使用する問い合わせ計画を検証するためには、EXPLAIN、例えば


EXPLAIN EXECUTE name(parameter_values);



を使用してください。
汎用的な計画が使用される場合には、$nというパラメータ記号が含まれ、独自の計画が使用される場合は提供されたパラメータの値で置換されます。
  


問い合わせの実行計画や問い合わせの最適化のためにPostgreSQL™が収集する統計に関する詳細は、ANALYZE(7)のドキュメントを参照してください。
  


プリペアド文の主要な利点は、文の解析処理と計画作成処理の繰り返しを防止することですが、PostgreSQL™では、以前にそのプリペアド文を使用してから、文の中で使用されているデータベースオブジェクトが定義（DDL）の変更を受けたり、プランナの統計が更新されたりした時は常に再解析処理と計画再作成処理を強制します。
また、一度使用してからsearch_pathの値が変わった場合も、文は新しいsearch_pathを使用して再解析されます。
（後者の振る舞いはPostgreSQL™ 9.3の時に追加されました。）
これらの規則により、プリペアド文の使用は意味的に同じ問い合わせを繰り返し再投入することとほぼ同じになりますが、特に最善の計画が使用している間に変わらずに残る場合、オブジェクトの変更がない場合の性能という利点があります。
意味的な等価性が完全ではない場合の例は、
文が未修飾名によってテーブルを参照し、その後同じ名前のテーブルが新たにsearch_path内で前に現れるスキーマ内に作成された場合、文の中で使用されるオブジェクトには変更がありませんので、自動再解析は行われません。
しかし他の何らかの変更により強制的に再解析された場合、その後の使用では新しいテーブルが参照されるようになります。
  


pg_prepared_statementsシステムビューを問い合わせることによりセッションで利用可能なプリペアド文をすべて確認することができます。
  

例


INSERT文に対してプリペアド文を作成し、実行します。


PREPARE fooplan (int, text, bool, numeric) AS
    INSERT INTO foo VALUES($1, $2, $3, $4);
EXECUTE fooplan(1, 'Hunter Valley', 't', 200.00);


  


SELECT文に対してプリペアド文を作成し、実行します。


PREPARE usrrptplan (int) AS
    SELECT * FROM users u, logs l WHERE u.usrid=$1 AND u.usrid=l.usrid
    AND l.date = $2;
EXECUTE usrrptplan(1, current_date);




この例では第2パラメータのデータ型が指定されていません。
このため$2が使用される文脈からデータ型が推測されます。
  

互換性


標準SQLにはPREPARE文が含まれていますが、埋め込みSQLでの使用に限られています。
また、標準SQLのPREPARE文では多少異なる構文が使用されます。
  

関連項目
DEALLOCATE(7), EXECUTE(7)


名前
PREPARE TRANSACTION — 二相コミット用に現在のトランザクションを準備する

概要

PREPARE TRANSACTION transaction_id


説明


PREPARE TRANSACTIONは、二相コミット用に現在のトランザクションを準備します。
このコマンドの後、トランザクションは現在のセッションと関連しなくなります。
トランザクションの状態は完全にディスク上に保存され、コミット要求前にデータベースがクラッシュしてしまったとしても、ほぼ確実に正常にコミットできるようになります。
  


準備された後、そのトランザクションをCOMMIT PREPAREDによりコミット、あるいはROLLBACK PREPAREDによりロールバックすることができます。
元のトランザクションを実行したセッションだけではなく、任意のトランザクションからこれらのコマンドを発行することができます。
  


コマンドを発行したセッションから見ると、PREPARE TRANSACTIONはROLLBACKコマンドと似たような動作をします。
実行した後、実行中の現在のトランザクションはなくなり、準備したトランザクションの効果は不可視になります。
（そのトランザクションがコミットされた場合に効果が可視になります。）
  


何らかの原因でPREPARE TRANSACTIONコマンドが失敗した場合、ROLLBACKが行われます。
つまり、現在のトランザクションが取り消されます。
  

パラメータ
	transaction_id
	

後でCOMMIT PREPAREDやROLLBACK PREPAREDでトランザクションを識別するための任意の識別子です。
この識別子は文字列リテラルでなければなりません。また、200バイト未満でなければなりません。
また、その時点で準備されたトランザクションとして使用されている他の識別子と同じものは使用できません。
     




注釈


PREPARE TRANSACTIONはアプリケーションや対話式のセッションでの使用を目的としていません。
この目的は、外部トランザクションマネージャにより、複数のデータベースやその他のトランザクションを持つリソースを跨るグローバルなトランザクションを原子的に実現できるようにすることです。
トランザクションマネージャを作成しているのでなければ、おそらくPREPARE TRANSACTIONを使用するべきではありません。
  


このコマンドはトランザクションブロック内で使用しなければなりません。
トランザクションブロックを始めるには、BEGINを使用してください。
  


現時点では、一時テーブルもしくはセッションの一時的な名前空間を含む操作を行ったトランザクション、カーソルをWITH HOLDで作成したトランザクション、LISTEN、UNLISTENまたはNOTIFYを実行したトランザクションをPREPAREさせることはできません。
準備したトランザクションで便利に使用するには、これらの機能は現在のセッションにあまりに強く結びついているためです。
  


トランザクションで何らかの実行時パラメータが（LOCALオプションなしの）SETで設定されている場合、その影響はPREPARE TRANSACTIONの後も残ります。
また、その後のCOMMIT PREPAREDやROLLBACK PREPAREDの影響を受けません。
したがって、この意味では、PREPARE TRANSACTION はROLLBACKよりCOMMITと似た動きであるといえます。
  


その時点で利用できるすべての準備されたトランザクションはpg_prepared_xactsシステムビューで列挙されます。
  
注意


トランザクションを長期間準備された状態のままとすることは勧められません。
これは格納領域を回収するVACUUM機能を妨害し、極端な場合では、トランザクションの周回（「トランザクションIDの周回エラーの防止」参照）を回避するためにデータベースを停止させてしまいます。
またトランザクションが保持しているすべてのロックを保持し続けていることにも注意してください。
この機能の想定している使用方法は、外部トランザクションマネージャが他のデータベースがコミットの準備をしたと検証した後すぐに、準備されたトランザクションは通常コミットまたはロールバックされることです。
   


準備されたトランザクションを追跡し、それを即座に終了できるように外部トランザクションマネージャを設定していない場合、max_prepared_transactionsをゼロに設定して準備されたトランザクション機能を無効にしておくことが最善です。
こうすれば事故により準備されたトランザクションが作成され、それが忘れられて問題を引き起こすことを防止できます。
   


例


二相コミット用に現在のトランザクションを準備します。
トランザクション識別子としてfoobarを使用します。



PREPARE TRANSACTION 'foobar';


互換性


PREPARE TRANSACTIONはPostgreSQL™の拡張です。
これは外部のトランザクション管理システムによる利用を意図したものです。
トランザクション管理システムの一部（X/Open XAなど）は標準化されていますが、こうしたシステムのSQL側は標準化されていません。
  

関連項目
COMMIT PREPARED(7), ROLLBACK PREPARED(7)


名前
REASSIGN OWNED — あるデータベースロールにより所有されたデータベースオブジェクトの所有権を変更する

概要

REASSIGN OWNED BY { old_role | CURRENT_ROLE | CURRENT_USER | SESSION_USER } [, ...]
               TO { new_role | CURRENT_ROLE | CURRENT_USER | SESSION_USER }


説明


REASSIGN OWNEDは、old_rolesのいずれかが所有するデータベースオブジェクトの所有権をnew_roleに変更するようシステムに指示します。
  

パラメータ
	old_role
	

ロール名です。
このロールが所有する、現在のデータベースのすべてのオブジェクトの所有権、および共有オブジェクトの中のすべて（データベースやテーブル空間）をnew_roleに割り当てます。
     

	new_role
	

対象とするオブジェクトの新しい所有者となるロール名です。
     




注釈


REASSIGN OWNEDは、1つ以上のロールの削除準備によく使用されます。
REASSIGN OWNEDは他のデータベース内のオブジェクトには影響を与えませんので、通常は、削除対象のロールにより所有されるオブジェクトを有するデータベース毎にこのコマンドを実行する必要があります。
  


REASSIGN OWNEDは元のロールと対象のロール上にメンバ資格が必要です。
  


代わりにDROP OWNEDコマンドを使用して、1つ以上のロールにより所有されるデータベースオブジェクトすべてを単に削除することができます。
  


REASSIGN OWNEDコマンドは、old_rolesにより所有されていないオブジェクトにおいてold_rolesに与えられた権限には影響しません。
同様に、ALTER DEFAULT PRIVILEGESで作成されたデフォルトの権限には影響しません。
こうした権限を取り消すには、DROP OWNEDを使用してください。
  


詳しくは「ロールの削除」を参照してください。
  

互換性


REASSIGN OWNEDコマンドはPostgreSQL™の拡張です。
  

関連項目
DROP OWNED(7), DROP ROLE(7), ALTER DATABASE(7)


名前
REFRESH MATERIALIZED VIEW — マテリアライズドビューの内容を置換する

概要

REFRESH MATERIALIZED VIEW [ CONCURRENTLY ] name
    [ WITH [ NO ] DATA ]


説明


REFRESH MATERIALIZED VIEWはマテリアライズドビューの内容を完全に置き換えます。
このコマンドを実行するには、マテリアライズドビューに対してMAINTAIN権限を持っていなければなりません。
古い内容は破棄されます。
WITH DATAが指定されている場合(またはデフォルトでは)、新しいデータを提供するために裏付け問い合わせが実行され、マテリアライズドビューはスキャン可能状態になります。
WITH NO DATAが指定されている場合、新しいデータは生成されず、マテリアライズドビューはスキャン不可状態になります。
  


CONCURRENTLYとWITH NO DATAを同時に指定することはできません。
  

パラメータ
	CONCURRENTLY
	

そのマテリアライズドビューに対して同時に実行されるSELECTをロックすることなく、マテリアライズドビューをREFRESHします。
このオプションを使わない場合、多くの行に影響を与えるREFRESHはリソースをあまり使わず、早く終わる代わりに、そのマテリアライズドビューから読み込もうとしている他の接続をブロックするかもしれません。
影響を与える行が少ない場合は、このオプションは速いかもしれません。
     


このオプションは、マテリアライズドビューに、列名だけを使い、すべての行を含むUNIQUEインデックスが少なくとも1つある場合にのみ使えます。
つまり、それは式のインデックスであったり、WHERE句を含んでいてはいけません。
     


このオプションは、マテリアライズドビューに既にデータを投入してある場合にのみ使えます。
     


このオプションを使う場合でも、1つのマテリアライズドビューに対して同時に実行できるREFRESHは一つだけです。
     

	name
	

更新するマテリアライズドビューの名前（スキーマ修飾可）です。
     




注釈


マテリアライズドビューを定義する問い合わせにORDER BY句があれば、マテリアライズドビューの元の内容はその順序で並べられます。ですが、REFRESH MATERIALIZED VIEWは、その順序が保たれることを保証しません。
  


REFRESH MATERIALIZED VIEWの実行中、search_pathは一時的にpg_catalog, pg_tempに変更されます。
  

例


以下のコマンドは、マテリアライズドビューの定義からの問い合わせを用いてorder_summaryというマテリアライズドビューの内容を置き換え、スキャン可能状態とします。


REFRESH MATERIALIZED VIEW order_summary;


  


以下のコマンドはマテリアライズドビューannual_statistics_basisに関連する格納領域を解放し、スキャン不可状態とします。


REFRESH MATERIALIZED VIEW annual_statistics_basis WITH NO DATA;


互換性


   REFRESH MATERIALIZED VIEWはPostgreSQL™の拡張です。
  

関連項目
CREATE MATERIALIZED VIEW(7), ALTER MATERIALIZED VIEW(7), DROP MATERIALIZED VIEW(7)


名前
REINDEX — インデックスを再構築する

概要

REINDEX [ ( option [, ...] ) ] { INDEX | TABLE | SCHEMA } [ CONCURRENTLY ] name
REINDEX [ ( option [, ...] ) ] { DATABASE | SYSTEM } [ CONCURRENTLY ] [ name ]


ここでoptionは以下の一つです。

    CONCURRENTLY [ boolean ]
    TABLESPACE new_tablespace
    VERBOSE [ boolean ]


説明


REINDEXは、インデックスのテーブルに保存されたデータを使用してインデックスを再構築し、古いインデックスのコピーと置き換えます。
以下にREINDEXが使用される状況を示します。

   
	

インデックスが破損してしまい、有効なデータがなくなった場合です。
理論的には決して起こらないはずですが、実際には、ソフトウェアのバグやハードウェアの障害によりインデックスが破損することがあります。
REINDEXはこの修復手段を提供します。
     

	

インデックスが「膨張状態」、つまり、多くの空、もしくは、ほとんど空のページを持つ状態になっている場合です。
この状況は、PostgreSQL™のB-treeインデックスが特定の普通でないパターンでアクセスされた場合に起こり得ます。
REINDEXを使って、使用されないページを取り除いた新しいインデックス作成すると、インデックスの領域消費量を減少することができます。
詳細は「定常的なインデックスの再作成」を参照してください。
     

	

インデックスの格納パラメータ（フィルファクタなど）を変更し、この変更を確実に有効にしたい場合です。
     

	

CONCURRENTLYオプションをつけたインデックス作成が失敗すると、このインデックスは「無効」として残されます。
こうしたインデックスは使用されませんが、REINDEXを使用して再作成するのが便利かもしれません。
REINDEX INDEXだけが無効なインデックスでの同時構築を実行できることに注意してください。
     




パラメータ
	INDEX
	

指定したインデックスを再作成します。
この構文のREINDEXは、パーティションインデックスと使われる場合にはトランザクションブロック内で実行できません。
     

	TABLE
	

指定したテーブルの全インデックスを再作成します。
テーブルに2次的な「TOAST」テーブルがある場合、それについてもインデックスを再作成します。
この構文のREINDEXは、パーティションテーブルと使われる場合にはトランザクションブロック内で実行できません。
     

	SCHEMA
	

指定したスキーマのすべてのインデックスを再作成します。
このスキーマのテーブルが二次的な「TOAST」テーブルを持っている場合は、そのインデックスも再作成されます。
共有システムカタログのインデックスも処理されます。
この構文のREINDEXはトランザクションブロック内で実行できません。
     

	DATABASE
	

システムカタログを除く、現在のデータベースのすべてのインデックスを再作成します。
システムカタログのインデックスは処理されません。
この構文のREINDEXをトランザクションブロック内で実行できません。
     

	SYSTEM
	

現在のデータベースのシステムカタログに対するすべてのインデックスを再作成します。
共有システムカタログのインデックスも含みます。
ユーザテーブルのインデックスは処理されません。
この構文のREINDEXをトランザクションブロック内で実行できません。
     

	name
	

インデックスを再作成するインデックス、テーブル、データベースの名前です。
インデックスとテーブルの名前はスキーマ修飾可能です。
現状では、REINDEX DATABASEとREINDEX SYSTEMは現在のデータベースのインデックスのみを再作成することができます。
このパラメータは省略可能で、現在のデータベース名と一致する必要があります。
     

	CONCURRENTLY
	

このオプションが使われると、PostgreSQL™は、そのテーブルで同時実行される挿入、更新、削除を妨げるようなロックを取得せずにインデックスを再構築します。一方、標準のインデックス再構築は終了するまでテーブルの書き込みをロックします（読み込みはロックしません）。
このオプションを使用する場合に注意すべき点がいくつかあります—下記のインデックスを同時に再構築を参照してください。
     


一時テーブルに対してはREINDEXは常に同時再作成ではありません。他のセッションはアクセスできませんし、同時でないインデックス再作成の方がより安価だからです。
     

	TABLESPACE
	

新しいテーブル空間でインデックスを再構築することを指定します。
     

	VERBOSE
	

各インデックスが再作成されるときに、INFOレベルで進捗レポートを表示します。
     

	boolean
	

選択したオプションを有効にするか無効にするか指定します。
オプションを有効にする場合にはTRUE、ONまたは1と書くことができ、無効にする場合にはFALSE、OFFまたは0と書くことができます。
booleanの値は省略することもでき、その場合にはTRUEとみなされます。
     

	new_tablespace
	

インデックスが再構築されるテーブル空間です。
     




注釈


ユーザテーブル上の特定のインデックスに破損の疑いがある場合、REINDEX INDEXを使ってそのインデックスを再構築することもできますし、REINDEX TABLEを使ってそのテーブルのすべてのインデックスを再構築することもできます。
  


システムテーブルのインデックスの破損を復旧する場合の手順はより複雑になります。
この場合、システムによって破損の可能性があるインデックス自体が使用されないようにすることが重要です。
（実際は、このようなケースでは、破損したインデックスに依存していたため、サーバプロセスが起動時に強制終了してしまう可能性があります。）
安全に復旧させるには、システムカタログ検索時のインデックスの使用を禁止する-Pオプションを使用してサーバを起動しなければなりません。
  


考えられる方法の1つは次の方法です。まず、サーバを停止して、コマンドラインから-Pオプションを指定してシングルユーザ状態のPostgreSQL™サーバを起動します。
そして、再構成する範囲に応じて、REINDEX DATABASE、REINDEX SYSTEM、REINDEX TABLE、または、REINDEX INDEXコマンドを発行します。
範囲が不明な場合は、REINDEX SYSTEMを使用して、そのデータベースの全てのシステムインデックスを再構成してください。
その後、シングルユーザ状態のサーバセッションを停止して、通常のサーバを再起動します。
シングルユーザ状態のサーバインタフェースの操作方法についての詳細は、postgres(1)リファレンスページを参照してください。
  


その他、コマンドラインで-Pを指定して通常のサーバセッションを起動することもできます。
具体的な方法は、クライアントによって異なります。
しかし、libpqベースのクライアントであれば、クライアントを起動する前に環境変数PGOPTIONSを-Pに設定すれば実現できます。
この方法では他のクライアントを締め出す必要はありませんが、修復が終わるまで破損したデータベースへの他のユーザの接続を防止する方が良いことに注意してください。
  


REINDEXは、インデックスの中身を1から作り直すという点では、インデックスを削除してから再作成する処理と似ています。
しかし、ロックに関しては異なります。
REINDEXはインデックスの元となるテーブルの書き込みをロックしますが、読み込みはロックしません。
また、処理中のインデックスに対するACCESS EXCLUSIVEロックを取得するので、そのインデックスを使用する読み込みはブロックされます。
特に、問い合わせプランナは、問い合わせに関わらずテーブルの各インデックスでACCESS SHAREロックを取得しようとしますので、REINDEXは、プランがキャッシュされていて、まさにこのインデックスを使わないプリペアド問い合わせを除く問い合わせをすべて実質的にブロックします。
一方、DROP INDEXは瞬間的に元となるテーブルのACCESS EXCLUSIVEロックを取得するので、書き込みも読み込みもブロックされます。
その後に行うCREATE INDEXでは書き込みのみをロックし、読み込みはロックしません。
インデックスは存在しないので、インデックスを使用する読み込みは発生しません。
したがって、読み込みがブロックされることはありませんが、コストが高いシーケンシャルスキャンの使用を強制されることになるかもしれません。
  


REINDEXの実行中、search_pathは一時的にpg_catalog, pg_tempに変更されます。
  


単一のインデックスまたはテーブルを再インデックスするには、テーブルに対するMAINTAIN権限が必要です。
パーティション化されたインデックスまたはテーブルに対するREINDEXには、パーティション化されたテーブルに対するMAINTAIN権限が必要であることに注意してください。しかし、このようなコマンドで個々のパーティションを処理する際には権限チェックをスキップします。
スキーマまたはデータベースの再インデックスを実行するには、そのスキーマまたはデータベースの所有者であるか、pg_maintainロールの権限が必要です。
したがって、スーパーユーザ以外のユーザが、他のユーザが所有するテーブルのインデックスを再構築できることに注意してください。
ただし、特別な例外として、ユーザがカタログに対してMAINTAIN権限を持っていない場合、REINDEX DATABASE、REINDEX SCHEMA、およびREINDEX SYSTEMは共有カタログ上のインデックスをスキップします。
  


パーティションインデックスやパーティションテーブルのインデックス再作成は、それぞれREINDEX INDEX、REINDEX TABLEでサポートされています。
指定されたパーティションリレーションの個々のパーティションが、別々のトランザクションでインデックスを再作成されます。
パーティションテーブルやパーティションインデックスに対して操作する場合、このコマンドをトランザクションブロック内では使えません。
  


パーティションインデックスやパーティションテーブルでTABLESPACE句を使ってREINDEXを行なう場合、リーフパーティションのテーブル空間参照のみが更新されます。
パーティションインデックスは更新されませんので、アタッチされた新しいパーティションが新しいテーブル空間を継承するように、それぞれALTER TABLE ONLYを使うことをお勧めします。
失敗した場合、インデックスはすべて新しいテーブル空間へと移動したわけではないかもしれません。
コマンドを再実行すればリーフパーティションはすべて再構築され、先ほどは処理されなかったインデックスが新しいテーブル空間へと移動します。
  


SCHEMA、DATABASE、SYSTEMがTABLESPACEと一緒に使われた場合、システムリレーションは飛ばされ、WARNINGが1度出ます。
TOASTテーブルのインデックスは再構築されますが、新しいテーブル空間には移動しません。
  
インデックスを同時に再構築


インデックスの再構築は、通常のデータベース操作を妨げることがあります。
通常、PostgreSQL™はインデックスが再構築されるテーブルへの書き込みをロックし、一度のテーブルスキャンで全インデックスの構築を実行します。
他のトランザクションはテーブルを読み込めますが、そのテーブルで行を挿入、更新、削除しようとするとインデックスの再構築が終わるまでブロックされます。
実行中の運用状態のデータベースシステムの場合、これは重大な影響を与えるかもしれません。
非常に大規模なテーブルに対するインデックス作成は何時間もかかることがあり得ます。また小規模なテーブルであっても、インデックス再構築により、運用状態のシステムとしては受け入れられないほど長い時間、書き込みロックがかかる可能性があります。
   


PostgreSQL™は最小限の書き込みロックでのインデックス再構築をサポートしています。
REINDEXにCONCURRENTLYオプションをつけることでこの方式が行われます。
このオプションを使うと、PostgreSQL™は再構築が必要な各インデックスに関してテーブルを2回スキャンしなければなりません。さらに、潜在的にそのインデックスを使用する可能性がある、実行中のすべてのトランザクションが終わるまで待機しなければなりません。
したがって、この方式は通常のインデックス再構築よりも総作業時間がかかり、また、インデックスを修正する可能性のある終了していないトランザクションが待つ必要がありますので、完了するまでの時間が非常に長くなります。
しかし、インデックス再構築中に通常の操作を続けることができますので、この方式は運用環境でのインデックス再構築に有用です。
もちろん、インデックス再構築によりCPUやメモリ、入出力に余分に負荷がかかりますので、他の操作が低速になる可能性があります。
   


同時実行再インデックスは以下のような段階で行なわれます。
各段階は分離したトランザクション内で実行されます。
複数のインデックスを再構築する場合、次の段階に移る前にすべてのインデックスに対して各段階が繰り返されます。

    
	

カタログpg_indexに新しく一時的なインデックス定義が追加されます。
この定義は古いインデックスを置き換えるのに使われます。
処理中は、再インデックスされるインデックスと関連するテーブルに対して、セッションレベルでのSHARE UPDATE EXCLUSIVEロックを取得します。スキーマが修正されないようにするためです。
      

	

インデックス構築の第1段階は新しいインデックスそれぞれに対して行なわれます。
インデックスが一度構築されれば、挿入の準備ができたということで、そのフラグpg_index.indisreadyは「true」に切り替わります。構築を実行したトランザクションが終わった後で、他のセッションから見えるようになります。
この過程は各インデックスに対して分離したトランザクションで行なわれます。
      

	

次に、第1段階実行中に追加されたタプルを追加する第2段階が行なわれます。
この過程は各インデックスに対して分離したトランザクションで行なわれます。
      

	

インデックスを参照する制約は、すべて新しいインデックス定義を参照するよう変更され、インデックスの名前が変更されます。
この時点で、pg_index.indisvalidは新しいインデックスに対しては「true」に切り替えられ、古いものに対しては「false」に切り替えられます。そして、古いインデックスを参照するセッションをすべて無効にするためキャッシュの無効化が行なわれます。
      

	

古いインデックスを参照している可能性のある実行中の問い合わせが完了するのをまってから、新しいタプルが挿入されないように古いインデックスはpg_index.indisreadyが「false」に切り替えられます。
      

	

古いインデックスが削除されます。
インデックスやテーブルに対するSHARE UPDATE EXCLUSIVEセッションロックは解放されます。
      




   


インデックスの再構築中に、一意性インデックスでの一意性違反などの問題が発生したら、REINDEXコマンドは失敗しますが、既に存在しているものに加えて「無効な」新しいインデックスを残します。
このインデックスは不完全な可能性がありますので、問い合わせの目的では無視されます。しかし、更新のオーバーヘッドは消費し続けるでしょう。
psql \dコマンドはそのようなインデックスをINVALIDと報告します。



postgres=# \d tab
       Table "public.tab"
 Column |  Type   | Modifiers
--------+---------+-----------
 col    | integer |
Indexes:
    "idx" btree (col)
    "idx_ccnew" btree (col) INVALID




INVALIDと印づけられたインデックスに接尾辞_ccnewがついている場合、それは同時実行操作中に作られた一時的なインデックスに対応します。お勧めの回復法はDROP INDEXを使ってそれを削除して、再度REINDEX CONCURRENTLYを試みることです。
無効なインデックスにその代わりに接尾辞_ccoldがついている場合、それは削除できなかった元のインデックスに対応します。
正式な再構築は成功していますので、お勧めの回復法は単に前記のインデックスを削除することです。
一意性を保つため、_ccnew1、_ccold2などのように、無効なインデックス名の接尾辞に非ゼロの番号が追加されることがあります。
   


通常のインデックス構築は、同じテーブルでの他の通常のインデックス構築を許しますが、同時実行インデックス構築は1つだけが一度に1つのテーブルでできます。
どちらの場合でも、その間のそのテーブルでの他の種類のスキーマ修正は認められていません。
もう一つの違いは、通常のREINDEX TABLEやREINDEX INDEXコマンドはトランザクションブロックの内側で実行できますが、REINDEX CONCURRENTLYはできないことです。
   


他の時間のかかるトランザクションと同じく、あるテーブルに対するREINDEXは、その他のテーブルに対する同時実行中のVACUUMによりどのタプルが削除できるかに影響します。
   


システムカタログは同時実行で再インデックスできませんので、REINDEX SYSTEMはCONCURRENTLYをサポートしません。
   


さらに、排他制約に対するインデックスは同時実行で再インデックスできません。
このコマンドでそのようなインデックスの名前が直接指定されたら、エラーが起きます。
排他制約インデックスのあるテーブルやデータベースが同時実行で再インデックスされる場合、そのインデックスはスキップされます。
（そのようなインデックスをCONCURRENTLYオプションなしで再インデックスすることは可能です。）
   


REINDEXを実行している各バックエンドはその進捗をpg_stat_progress_create_indexビューで報告します。
詳細は「CREATE INDEXの進捗状況のレポート」を参照してください。
  


例


単一のインデックスを再構築します。



REINDEX INDEX my_index;


  


テーブルmy_table上のすべてのインデックスを再構築します。



REINDEX TABLE my_table;


  


システムインデックスが有効かどうかを確認することなく、あるデータベース内の全てのインデックスを再構築します。



$ export PGOPTIONS="-P"
$ psql broken_db
...
broken_db=> REINDEX DATABASE broken_db;
broken_db=> \q



再インデックスの進行中に、関連するリレーションの読み書きをブロックすることなく、テーブルに対するインデックスを再構築します。



REINDEX TABLE CONCURRENTLY my_broken_table;


互換性


標準SQLにはREINDEXはありません。
  

関連項目
CREATE INDEX(7), DROP INDEX(7), reindexdb(1), 「CREATE INDEXの進捗状況のレポート」


名前
RELEASE SAVEPOINT — 設定済みのセーブポイントを解放する

概要

RELEASE [ SAVEPOINT ] savepoint_name


説明


RELEASE SAVEPOINTは指定されたセーブポイントと、指定されたセーブポイントの後に作成されたすべての有効なセーブポイントを解放し、そのリソースを解放します。
セーブポイントの作成後に行われたすべての変更で、まだロールバックされていないものは、指定されたセーブポイントが作成されたときに実行中のトランザクションまたは有効なセーブポイントにマージされます。
RELEASE SAVEPOINTの後に行われた変更も、この実行中のトランザクションまたは有効なセーブポイントの一部になります。
  

パラメータ
	savepoint_name
	

解放するセーブポイントの名前です。
     




注釈


設定されていないセーブポイント名を指定するとエラーになります。
  


トランザクションがアボート状態の時には、セーブポイントを解放することはできません。
そのためには、ROLLBACK TO SAVEPOINT(7)を使用してください。
  


同じ名前のセーブポイントが複数存在する場合、最後に設定されたセーブポイントのみが解放されます。
コマンドを繰り返すと、より以前のセーブポイントが順次解放されます。
  

例


セーブポイントを設定し、その後、解放します。


BEGIN;
    INSERT INTO table1 VALUES (3);
    SAVEPOINT my_savepoint;
    INSERT INTO table1 VALUES (4);
    RELEASE SAVEPOINT my_savepoint;
COMMIT;



上記のトランザクションでは、3と4の両方が挿入されます。
  


複数の入れ子になったサブトランザクションを持つ、より複雑な例。


BEGIN;
    INSERT INTO table1 VALUES (1);
    SAVEPOINT sp1;
    INSERT INTO table1 VALUES (2);
    SAVEPOINT sp2;
    INSERT INTO table1 VALUES (3);
    RELEASE SAVEPOINT sp2;

    INSERT INTO table1 VALUES (4))); -- エラーになる



この例では、アプリケーションがセーブポイントsp2の解放を要求し、そこでは3が挿入されています。
これにより、挿入のトランザクションコンテキストがsp1に変更されます。
値4を挿入しようとする文がエラーになると、同じロールバックされたセーブポイントにあるため、2と4の挿入は失われます。値3は同じトランザクションコンテキストにあります。
他のコマンドはすべて無視されるため、アプリケーションは今や以下の2つのコマンドのうち1つのみを選択できます。


ROLLBACK;
ROLLBACK TO SAVEPOINT sp1;



ROLLBACKを選択すると、値1を含むすべてのコマンドがアボートされますが、ROLLBACK TO SAVEPOINT sp1を選択すると、値1が保持され、トランザクションの続行が可能になります。
  

互換性


このコマンドは標準SQLに準拠しています。
SQL:2003標準では、SAVEPOINTは必須であると規定されています。
PostgreSQL™ではSAVEPOINTキーワードを省略することができます。
  

関連項目
BEGIN(7), COMMIT(7), ROLLBACK(7), ROLLBACK TO SAVEPOINT(7), SAVEPOINT(7)


名前
RESET — 実行時パラメータの値をデフォルト値に戻す

概要

RESET configuration_parameter
RESET ALL


説明


RESETは実行時パラメータをデフォルト値に戻します。
RESETは下記に対する代替の記述方法です。


SET configuration_parameter TO DEFAULT



詳細はSET(7)を参照してください。
  


デフォルト値とは、現行セッション内でSETコマンドが発行されなかった場合に変数が保持していた値として定義されます。
デフォルト値は、コンパイル時に指定したデフォルト、設定ファイル、コマンドラインオプション、データベースごと、ユーザごとのデフォルト設定などが元になります。
これは「セッション起動時にそのパラメータが取る値」という定義と若干異なります。
なぜなら、例えば設定ファイルを元にした値である場合、現在の設定ファイルによって指定される値に再設定されるからです。
詳細は19章サーバ設定を参照してください。
  


RESETのトランザクションでの振舞いはSETと同じです。
この効果は、トランザクションのロールバックによって取り消されます。
  

パラメータ
	configuration_parameter
	

設定可能な実行時パラメータの名前です。
利用できるパラメータについては19章サーバ設定およびSET(7)のリファレンスページを参照してください。
     

	ALL
	

設定可能な全ての実行時パラメータをデフォルト値に戻します。
     




例


timezone設定変数をデフォルト値に設定します。


RESET timezone;


互換性


RESETはPostgreSQL™の拡張です。
  

関連項目
SET(7), SHOW(7)


名前
REVOKE — アクセス権限を取り消す

概要

REVOKE [ GRANT OPTION FOR ]
    { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER | MAINTAIN }
    [, ...] | ALL [ PRIVILEGES ] }
    ON { [ TABLE ] table_name [, ...]
         | ALL TABLES IN SCHEMA schema_name [, ...] }
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { SELECT | INSERT | UPDATE | REFERENCES } ( column_name [, ...] )
    [, ...] | ALL [ PRIVILEGES ] ( column_name [, ...] ) }
    ON [ TABLE ] table_name [, ...]
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { USAGE | SELECT | UPDATE }
    [, ...] | ALL [ PRIVILEGES ] }
    ON { SEQUENCE sequence_name [, ...]
         | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [ PRIVILEGES ] }
    ON DATABASE database_name [, ...]
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { USAGE | ALL [ PRIVILEGES ] }
    ON DOMAIN domain_name [, ...]
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { USAGE | ALL [ PRIVILEGES ] }
    ON FOREIGN DATA WRAPPER fdw_name [, ...]
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { USAGE | ALL [ PRIVILEGES ] }
    ON FOREIGN SERVER server_name [, ...]
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { EXECUTE | ALL [ PRIVILEGES ] }
    ON { { FUNCTION | PROCEDURE | ROUTINE } function_name [ ( [ [ argmode ] [ arg_name ] arg_type [, ...] ] ) ] [, ...]
         | ALL { FUNCTIONS | PROCEDURES | ROUTINES } IN SCHEMA schema_name [, ...] }
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { USAGE | ALL [ PRIVILEGES ] }
    ON LANGUAGE lang_name [, ...]
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { SELECT | UPDATE } [, ...] | ALL [ PRIVILEGES ] }
    ON LARGE OBJECT loid [, ...]
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { SET | ALTER SYSTEM } [, ...] | ALL [ PRIVILEGES ] }
    ON PARAMETER configuration_parameter [, ...]
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { CREATE | USAGE } [, ...] | ALL [ PRIVILEGES ] }
    ON SCHEMA schema_name [, ...]
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { CREATE | ALL [ PRIVILEGES ] }
    ON TABLESPACE tablespace_name [, ...]
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { USAGE | ALL [ PRIVILEGES ] }
    ON TYPE type_name [, ...]
    FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]

REVOKE [ { ADMIN | INHERIT | SET } OPTION FOR ]
    role_name [, ...] FROM role_specification [, ...]
    [ GRANTED BY role_specification ]
    [ CASCADE | RESTRICT ]


ここでrole_specificationは以下の通りです。

    [ GROUP ] role_name
  | PUBLIC
  | CURRENT_ROLE
  | CURRENT_USER
  | SESSION_USER


説明


REVOKEコマンドは、1つ以上のロールに対して、以前に与えた権限を取り消します。
PUBLICキーワードは暗黙的に定義された全ロールからなるグループです。
  


権限の種類の意味についてはGRANTコマンドの説明を参照してください。
  


全てのロールは、そのロールに直接許可された権限、現在属しているロールに許可された権限、PUBLICに許可された権限という3つの権限を合わせた権限を持っていることに注意してください。
したがって、例えば、PUBLICからSELECT権限を取り消すことは、必ずしも全てのロールがそのオブジェクトに対するSELECT権限を失うことを意味しません。
権限が直接許可されているロール、あるいは、別ロール経由で許可されているロールは、SELECT権限を持ち続けます。
同様にユーザからSELECTを取り消しても、PUBLICまたはメンバとして属する他のロールがSELECT権限を持つ場合、SELECTの使用を拒否できません。
  


GRANT OPTION FORが指定された場合、権限自体ではなく、その権限のグラントオプションのみが取り消されます。
指定されていなければ、権限とグラントオプションの両方が取り消されます。
  


グラントオプション付きの権限を保持しているユーザが、その権限を他ユーザに与えていた場合、与えられたユーザが保持する権限は依存権限と呼ばれます。
権限を与えたユーザ自身の権限やグラントオプションが取り消され、その権限に依存権限が存在する場合、CASCADEが指定されていると依存権限も取り消されます。指定されていなければ、権限の取り消しが失敗します。
この再帰的な権限の取り消しは、ユーザ権限の連鎖を通じて与えられた権限の中でも、REVOKEを実行されたユーザから追跡可能な範囲にのみ影響します。
したがって、依存権限を持つユーザが他のユーザからも同じ権限を与えられている場合は、REVOKEが実行された後もその権限を保持している可能性があります。
  


テーブルの権限を取り消す場合、対応する列の権限（もしあれば）も自動的に、そのテーブルの各列から取り消されます。
一方、ロールがテーブルに対する権限を持つ場合、個々の列から同じ権限を取り消しても影響ありません。
  


ロールのメンバ資格を取り消す場合、同様に振舞いますが、GRANT OPTIONはADMIN OPTIONと呼ばれます。
PostgreSQL™ 16より前のリリースでは、ロールメンバ資格の付与に対して依存権限が追跡されなかったため、CASCADEはロールメンバ資格に影響を与えなかったことに注意してください。
これはもはや当てはまりません。
このコマンド構文では、role_specificationで無意味なGROUPという単語を受け付けないことにも注意してください。
  


ADMIN OPTIONが既存のロール付与から削除できるのと同様に、INHERIT OPTIONまたはSET OPTIONを取り消すこともできます。
これは、対応するオプションの値をFALSEに設定することと同じです。
  

注釈


取り消すことができるのは、ユーザが直接付与した権限のみです。
例えば、もし、ユーザAがグラントオプションを付けてユーザBに権限を与え、その後、ユーザBがユーザCにその権限を与えたとすると、ユーザAはユーザCの権限を直接取り消すことはできません。
その代わり、ユーザAがユーザBのグラントオプションをCASCADEオプション付きで取り消すことで、ユーザCに与えられた権限を取り消すことができます。
別の状況を考えてみます。AとBの両方が同じ権限をCに与えた場合、AはAの与えた権限を取り消すことはできますが、Bの与えた権限を取り消すことはできません。
したがって、Cは実質的にその権限を持ち続けることになります。
  


オブジェクトの所有者以外がそのオブジェクト上の権限に対してREVOKEを実行した場合、ユーザがオブジェクトに対して何の権限も持っていなければ、即座にコマンドが失敗します。
何らかの権限があればコマンド処理が続行されますが、取り消すことができるのはそのユーザがグラントオプションを持つ権限のみです。
REVOKE ALL PRIVILEGES構文をまったく権限を持たない状態で実行すると、警告が出力されます。
他の構文の場合は、そのコマンドで指定した権限に対するグラントオプションを持たない状態で実行すると、警告が出力されます。
（原理上、上記の説明はオブジェクト所有者にも適用されますが、所有者は常に全てのグラントオプションを保持しているので、こうした問題が発生することはありません。）
   


スーパーユーザがGRANTやREVOKEコマンドを発行した場合、そのコマンドは、対象のオブジェクトの所有者によって発行されたかのように実行されます。
（ロールには所有者がいないため、ロールメンバ資格のGRANTの場合には、コマンドはブートストラップスーパーユーザによって発行されたかのように実行されます。）
根本的には全ての権限はオブジェクトの所有者から渡されるものなので（ただし、グラントオプションの連鎖により間接的に渡される場合もありますが）、スーパーユーザは、全ての権限を取り消すことができます。
ただし、この場合は上述のCASCADEを使用する必要があるかもしれません。
   


REVOKEは、対象のオブジェクトの所有者以外のロールによって実行することもできますが、
オブジェクトを所有するロールのメンバであるか、そのオブジェクトに対しWITH GRANT OPTION権限を持つロールのメンバでなければなりません。
この場合、
そのオブジェクトの実際の所有者ロールまたはWITH GRANT OPTION権限を持つロールによって発行されたかのように、このコマンドは実行されます。
例えば、t1テーブルがg1ロールによって所有され、u1がg1ロールのメンバであるとします。
この場合、u1はg1で付与されたものと記録されている権限を取り消すことができます。
これには、u1が付与した権限とg1ロールの他のメンバによって付与された権限が含まれます。
   


REVOKEを実行したロールが、ロールの持つ複数メンバ資格の経路を通して間接的に必要な権限を持つ場合、このコマンドがどのロールで実行されたかについては指定されません。
こうした場合、SET ROLEを使用して、REVOKEを行わせたい特定のロールになることを推奨します。
こうしないと、意図しない権限を取り消すことになったり、取り消し自体が失敗することになったりします。
   


特定の権限のより詳細な情報やオブジェクトの権限を調べる方法については「権限」を参照してください。
   

例


テーブルfilmsに対するpublicに与えた挿入権限を取り消します。



REVOKE INSERT ON films FROM PUBLIC;


  


ビューkindsから、ユーザmanuelに与えた全ての権限を取り消します。



REVOKE ALL PRIVILEGES ON kinds FROM manuel;




これは実際には「自分が与えた全ての権限を取り消す」ことを意味します。
  


ユーザjoeからロールadmins内のメンバ資格を取り消します。



REVOKE admins FROM joe;


互換性


GRANTコマンドの互換性についての注釈はREVOKEにも同様に当てはまります。
標準では、キーワードRESTRICTかCASCADEのどちらかが必須です。
しかし、PostgreSQL™ではデフォルトでRESTRICTとみなされます。
   

関連項目
GRANT(7), ALTER DEFAULT PRIVILEGES(7)


名前
ROLLBACK — 現在のトランザクションをアボートする

概要

ROLLBACK [ WORK | TRANSACTION ] [ AND [ NO ] CHAIN ]


説明


ROLLBACKは現在のトランザクションをロールバックし、そのトランザクションで行われた全ての更新を廃棄させます。
  

パラメータ
	WORK, TRANSACTION
	

省略可能なキーワードです。何も効果がありません。
     

	AND CHAIN
	

AND CHAINが指定されていれば、新しい(アボートされていない)トランザクションは、直前に終了したものと同じトランザクションの特性(SET TRANSACTION(7)を参照してください)で即時に開始されます。
そうでなければ、新しいトランザクションは開始されません。
     




注釈


トランザクションを正常に終了させるにはCOMMITを使用してください。
  


トランザクションブロックの外部でROLLBACKを発行すると警告が発生しますが、それ以外は何の効果もありません。
トランザクションブロックの外部でROLLBACK AND CHAINを発行するとエラーになります。
  

例


全ての変更をアボートします。


ROLLBACK;


互換性


コマンドROLLBACKは標準SQLに準拠しています。
ROLLBACK TRANSACTIONの構文はPostgreSQLでの拡張です。
  

関連項目
BEGIN(7), COMMIT(7), ROLLBACK TO SAVEPOINT(7)


名前
ROLLBACK PREPARED — 二相コミット用に事前に準備されたトランザクションを取り消す

概要

ROLLBACK PREPARED transaction_id


説明


ROLLBACK PREPAREDは、準備された状態のトランザクションをロールバックします。
  

パラメータ
	transaction_id
	

ロールバックさせるトランザクションのトランザクション識別子です。
     




注釈


準備されたトランザクションをロールバックするには、トランザクションを元々実行したユーザかスーパーユーザでなければなりません。
しかし、トランザクションを実行したのと同じセッション内で実行する必要はありません。
  


このコマンドはトランザクションブロック内では実行できません。
準備されたトランザクションは即座にロールバックされます。
  


現在利用できるすべての準備されたトランザクションはpg_prepared_xactsシステムビュー内に列挙されています。
  

例


トランザクション識別子foobarで識別されるトランザクションをロールバックします。



ROLLBACK PREPARED 'foobar';


互換性


ROLLBACK PREPAREDはPostgreSQL™の拡張です。
これは外部のトランザクション管理システムによる利用を意図したものです。
ただし外部のトランザクション管理システムの中には標準化されたもの(X/Open XAなど)もありますが、こうしたシステムでもSQL側は標準化されていません。
  

関連項目
PREPARE TRANSACTION(7), COMMIT PREPARED(7)


名前
ROLLBACK TO SAVEPOINT — セーブポイントまでロールバックする

概要

ROLLBACK [ WORK | TRANSACTION ] TO [ SAVEPOINT ] savepoint_name


説明


セーブポイントの設定後に実行されたコマンドをすべてロールバックして、同じトランザクションレベルで新しいサブトランザクションを開始します。
セーブポイントは有効なまま残るので、必要に応じて、その後再度ロールバックすることができます。
  


ROLLBACK TO SAVEPOINTは、指定したセーブポイントより後に設定した全てのセーブポイントを暗黙的に破棄します。
  

パラメータ
	savepoint_name
	

ロールバック先のセーブポイントです。
     




注釈


セーブポイントの設定後に実行されたコマンドの結果を維持したままセーブポイントを破棄するには、RELEASE SAVEPOINTを使用してください。
  


設定されていないセーブポイントの名前を指定するとエラーになります。
  


カーソルはセーブポイントという観点から見るとトランザクションの外にあるかのように振舞います。
セーブポイントの内部で開かれたカーソルは全て、そのセーブポイントがロールバックした時に閉ざされます。
セーブポイントの前に開かれたカーソルに対しセーブポイント内でFETCHまたはMOVEコマンドを実行した場合、その後、ロールバックされたとしても、カーソルの位置はFETCHの結果、移動した位置から変わりません
（つまりFETCHによる位置の移動はロールバックされません）。
また、カーソルのクローズはロールバックしても取り消すことはできません。
しかしカーソルの問い合わせにより発生するその他の副作用（問い合わせにより呼出される揮発性関数の影響など）は、セーブポイント内で実行され、それがロールバックされた場合に、ロールバックされます。
カーソルの実行によってトランザクションのアボートが引き起こされた場合、そのカーソルは実行不可能状態に遷移します。
この場合、トランザクションはROLLBACK TO SAVEPOINTを使用して戻すことができますが、そのカーソルは使用することができません。
  

例


my_savepointの設定後に実行されたコマンドの効果を取り消します。


ROLLBACK TO SAVEPOINT my_savepoint;


  


セーブポイントへのロールバックは、カーソル位置に影響を与えません。


BEGIN;

DECLARE foo CURSOR FOR SELECT 1 UNION SELECT 2;

SAVEPOINT foo;

FETCH 1 FROM foo;
 ?column?
----------
        1

ROLLBACK TO SAVEPOINT foo;

FETCH 1 FROM foo;
 ?column?
----------
        2

COMMIT;


互換性


標準SQLでは、SAVEPOINTキーワードは必須です。
しかし、PostgreSQL™とOracle™では省略することができます。
SQLで使用できるのは、WORKのみです。
TRANSACTIONは使用できず、ROLLBACKの後の意味のない言葉として扱われます。
また、SQLではAND [ NO ] CHAIN句(省略可能)がありますが、これはPostgreSQL™では現在サポートされていません。
その他については、このコマンドは標準SQLに準拠しています。
  

関連項目
BEGIN(7), COMMIT(7), RELEASE SAVEPOINT(7), ROLLBACK(7), SAVEPOINT(7)


名前
SAVEPOINT — 現在のトランザクション内に新規にセーブポイントを定義する

概要

SAVEPOINT savepoint_name


説明


SAVEPOINTは、現在のトランザクション内に新しいセーブポイントを設定します。
  


セーブポイントとはトランザクション内に付ける特別な印です。セーブポイントを設定しておくと、それ以降に実行されたコマンドを全てロールバックし、トランザクションを設定時の状態に戻すことができます。
  

パラメータ
	savepoint_name
	

新しいセーブポイントに付与する名前。
同じ名前のセーブポイントが既に存在する場合には、より新しい同一の名前のセーブポイントが解放されるまで使用できなくなります。
     




注釈


セーブポイントまでロールバックするにはROLLBACK TOを使用してください。
セーブポイント後に行われたコマンドの効果を保持したままセーブポイントを破棄するには、RELEASE SAVEPOINTを使用してください。
  


セーブポイントはトランザクションブロックの内側のみに設定することができます。
1つのトランザクションの中には、複数のセーブポイントを設定することができます。
  

例


セーブポイントを設定し、その後に実行した全てのコマンドの効果を取り消します。


BEGIN;
    INSERT INTO table1 VALUES (1);
    SAVEPOINT my_savepoint;
    INSERT INTO table1 VALUES (2);
    ROLLBACK TO SAVEPOINT my_savepoint;
    INSERT INTO table1 VALUES (3);
COMMIT;



上記のトランザクションでは、1と3は挿入されますが、2は挿入されません。
  


セーブポイントを設定し、その後に破棄します。


BEGIN;
    INSERT INTO table1 VALUES (3);
    SAVEPOINT my_savepoint;
    INSERT INTO table1 VALUES (4);
    RELEASE SAVEPOINT my_savepoint;
COMMIT;



上記のトランザクションでは、3と4の両方が挿入されます。
  


単一のセーブポイント名を使用します。


BEGIN;
    INSERT INTO table1 VALUES (1);
    SAVEPOINT my_savepoint;
    INSERT INTO table1 VALUES (2);
    SAVEPOINT my_savepoint;
    INSERT INTO table1 VALUES (3);


    -- 2番目のセーブポイントまでロールバック
    ROLLBACK TO SAVEPOINT my_savepoint;

    SELECT * FROM table1;               -- 行 1 と 2 を表示


    -- 2番目のセーブポイントを解放
    RELEASE SAVEPOINT my_savepoint;


    -- 1番目のセーブポイントまでロールバック
    ROLLBACK TO SAVEPOINT my_savepoint;

    SELECT * FROM table1;               -- 行 1 のみを表示
COMMIT;



上記のトランザクションでは、まず行 3 がロールバックされ、次に行 2 がロールバックされます。
  

互換性


SQLでは、同じ名前のセーブポイントが設定された時は、自動的に古い方のセーブポイントを破棄することになっています。
PostgreSQL™では、古いセーブポイントも保持されますが、ロールバックや解放時には新しい方のセーブポイントが使用されます。
（RELEASE SAVEPOINTを用いて新しいセーブポイントが解放されると、再びROLLBACK TO SAVEPOINTやRELEASE SAVEPOINTから古いセーブポイントが使用できるようになります。）
この点以外は、SAVEPOINTは完全にSQLに準拠しています。
  

関連項目
BEGIN(7), COMMIT(7), RELEASE SAVEPOINT(7), ROLLBACK(7), ROLLBACK TO SAVEPOINT(7)


名前
SECURITY LABEL — オブジェクトに適用するセキュリティラベルを定義または変更する

概要

SECURITY LABEL [ FOR provider ] ON
{
  TABLE object_name |
  COLUMN table_name.column_name |
  AGGREGATE aggregate_name ( aggregate_signature ) |
  DATABASE object_name |
  DOMAIN object_name |
  EVENT TRIGGER object_name |
  FOREIGN TABLE object_name |
  FUNCTION function_name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ] |
  LARGE OBJECT large_object_oid |
  MATERIALIZED VIEW object_name |
  [ PROCEDURAL ] LANGUAGE object_name |
  PROCEDURE procedure_name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ] |
  PUBLICATION object_name |
  ROLE object_name |
  ROUTINE routine_name [ ( [ [ argmode ] [ argname ] argtype [, ...] ] ) ] |
  SCHEMA object_name |
  SEQUENCE object_name |
  SUBSCRIPTION object_name |
  TABLESPACE object_name |
  TYPE object_name |
  VIEW object_name
} IS { string_literal | NULL }


ここでaggregate_signatureは以下の通りです。

* |
[ argmode ] [ argname ] argtype [ , ... ] |
[ [ argmode ] [ argname ] argtype [ , ... ] ] ORDER BY [ argmode ] [ argname ] argtype [ , ... ]


説明


SECURITY LABELはセキュリティラベルをデータベースオブジェクトに適用します。
ラベルプロバイダごとに１つの、任意の数のセキュリティラベルを指定したデータベースオブジェクトに関連付けることができます。
ラベルプロバイダは、register_label_provider関数を使用して自身を登録する、ロード可能なモジュールです。
  
注記


register_label_providerはSQL関数ではありません。
バックエンドにロードされたCコードからのみ呼び出すことができます。
    



ラベルプロバイダは、指定されたラベルが有効かどうか、および指定されたオブジェクトにラベルを割り当てることが許されているかどうかを決定します。
また、ラベルプロバイダは指定されたラベルの意味の決定権を持ちます。
PostgreSQL™は、ラベルプロバイダがセキュリティラベルを解釈するかしないか、どのように解釈するかに関して制限を持ちません。
単にこれらを格納するための機構を提供するだけです。
実際には、この機能はSELinux™などのラベルベースの強制アクセス制御（MAC）システムと統合できるようにすることを意図したものです。
こうしたシステムでは、すべてのアクセス制御の決定は、ユーザとグループなどの伝統的な任意アクセス制御（DAC）という考えではなく、オブジェクトラベルに基づいて行われます。
  


SECURITY LABELを使用するには、データベースオブジェクトを所有していなければなりません。
  

パラメータ
	object_name, table_name.column_name, aggregate_name, function_name, procedure_name, routine_name
	

ラベル付けされるオブジェクトの名前です。
スキーマの中にあるオブジェクト(テーブル、関数など)の名前はスキーマ修飾可能です。
     

	provider
	

このラベルが関連するプロバイダの名前です。
指定されたプロバイダはロードされていなければならず、かつ、提供されるラベル付け操作と一致しなければなりません。
プロバイダが１つだけロードされていた場合、プロバイダの名前を省略して簡略化することができます。
     

	argmode
	

関数、プロシージャ、または集約の引数のモードです。
IN、OUT、INOUT、VARIADICのいずれかです。
省略された場合のデフォルトはINです。
関数の識別を決定するためには入力引数のみが必要ですので、実際にはSECURITY LABELはOUTをまったく考慮しないことに注意してください。
このためIN、INOUT、VARIADICのリストで十分です。
     

	argname
	

関数、プロシージャ、または集約の引数の名前です。
関数の識別を決定するためには引数のデータ型のみが必要ですので、実際にはSECURITY LABEL ON FUNCTIONは引数名をまったく考慮しないことに注意してください。
     

	argtype
	

関数、プロシージャ、または集約の引数のデータ型です。
     

	large_object_oid
	

ラージオブジェクトのOIDです。
     

	PROCEDURAL
	

これは意味がない単語です。
      

	string_literal
	

文字列リテラルで記述されたセキュリティラベルの新しい設定です。
     

	NULL
	

セキュリティラベルを削除するためにはNULLと記述します。
     




例


以下の例はテーブルのセキュリティラベルを設定または変更する方法を示しています。



SECURITY LABEL FOR selinux ON TABLE mytable IS 'system_u:object_r:sepgsql_table_t:s0';




ラベルを削除するには以下のようにします。



SECURITY LABEL FOR selinux ON TABLE mytable IS NULL;


  

互換性


標準SQLにはSECURITY LABELコマンドはありません。
  

関連項目
sepgsql, src/test/modules/dummy_seclabel


名前
SELECT, TABLE, WITH — テーブルもしくはビューから行を検索する

概要

[ WITH [ RECURSIVE ] with_query [, ...] ]
SELECT [ ALL | DISTINCT [ ON ( expression [, ...] ) ] ]
    [ { * | expression [ [ AS ] output_name ] } [, ...] ]
    [ FROM from_item [, ...] ]
    [ WHERE condition ]
    [ GROUP BY [ ALL | DISTINCT ] grouping_element [, ...] ]
    [ HAVING condition ]
    [ WINDOW window_name AS ( window_definition ) [, ...] ]
    [ { UNION | INTERSECT | EXCEPT } [ ALL | DISTINCT ] select ]
    [ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } ] [, ...] ]
    [ LIMIT { count | ALL } ]
    [ OFFSET start [ ROW | ROWS ] ]
    [ FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } { ONLY | WITH TIES } ]
    [ FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } [ OF from_reference [, ...] ] [ NOWAIT | SKIP LOCKED ] [...] ]


ここでfrom_itemは以下の一つです。

    [ ONLY ] table_name [ * ] [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
                [ TABLESAMPLE sampling_method ( argument [, ...] ) [ REPEATABLE ( seed ) ] ]
    [ LATERAL ] ( select ) [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
    with_query_name [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
    [ LATERAL ] function_name ( [ argument [, ...] ] )
                [ WITH ORDINALITY ] [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
    [ LATERAL ] function_name ( [ argument [, ...] ] ) [ AS ] alias ( column_definition [, ...] )
    [ LATERAL ] function_name ( [ argument [, ...] ] ) AS ( column_definition [, ...] )
    [ LATERAL ] ROWS FROM( function_name ( [ argument [, ...] ] ) [ AS ( column_definition [, ...] ) ] [, ...] )
                [ WITH ORDINALITY ] [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
    from_item join_type from_item { ON join_condition | USING ( join_column [, ...] ) [ AS join_using_alias ] }
    from_item NATURAL join_type from_item
    from_item CROSS JOIN from_item


またgrouping_elementは以下の一つです。

    ( )
    expression
    ( expression [, ...] )
    ROLLUP ( { expression | ( expression [, ...] ) } [, ...] )
    CUBE ( { expression | ( expression [, ...] ) } [, ...] )
    GROUPING SETS ( grouping_element [, ...] )


またwith_queryは以下の通りです。

    with_query_name [ ( column_name [, ...] ) ] AS [ [ NOT ] MATERIALIZED ] ( select | values | insert | update | delete | merge )
        [ SEARCH { BREADTH | DEPTH } FIRST BY column_name [, ...] SET search_seq_col_name ]
        [ CYCLE column_name [, ...] SET cycle_mark_col_name [ TO cycle_mark_value DEFAULT cycle_mark_default ] USING cycle_path_col_name ]

TABLE [ ONLY ] table_name [ * ]


説明


SELECTは0個以上のテーブルから行を返します。
SELECTの一般的な処理は以下の通りです。

   
	

WITHリスト内のすべての問い合わせが計算されます。
これらは実質的には、FROMリスト内から参照可能な一時テーブルとして提供されます。
NOT MATERIALIZEDが指定された場合を除き、FROM内で2回以上参照されるWITH問い合わせは一度のみ計算されます。
（後述のWITH句を参照してください。）
     

	

FROMリストにある全要素が計算されます。
（FROMリストの要素は実テーブルか仮想テーブルのいずれかです。）
FROMリストに複数の要素が指定された場合、それらはクロス結合されます。
（後述のFROM句を参照してください。）
     

	

WHERE句が指定された場合、条件を満たさない行は全て出力から取り除かれます。
（後述のWHERE句を参照してください。）
     

	

GROUP BY句が指定された場合、および集約関数の呼び出しがある場合は、1つまたは複数の値が条件に合う行ごとにグループに組み合わせて出力され、また集約関数の結果が計算されます。
HAVING句が指定された場合、指定した条件を満たさないグループは取り除かれます。
（後述のGROUP BY句とHAVING句を参照してください。）
問い合わせ出力列は、名目上は次のステップで計算されますが、GROUP BY句で（名前または序数によって）参照することもできます。
     

	

実際には、選択された各行または行グループに対して、SELECTの出力式を使用して計算した結果の行が出力されます。
（後述のSELECTリストを参照してください。）
     

	SELECT DISTINCTは結果から重複行を取り除きます。
SELECT DISTINCT ONは指定した全ての式に一致する行を取り除きます。
SELECT ALL（これがデフォルトです）では、重複行も含め、全ての候補行を返します。
（詳しくは、後述のDISTINCT句を参照してください。）
     

	

UNION、INTERSECT、EXCEPT演算子を使用すると、複数のSELECT文の出力を1つの結果集合にまとめることができます。
UNION演算子は、両方の結果集合に存在する行と、片方の結果集合に存在する行を全て返します。
INTERSECT演算子は、両方の結果集合に存在する行を返します。
EXCEPT演算子は、最初の結果集合にあり、2番目の結果集合にない行を返します。
ALLが指定されない限り、いずれの場合も、重複する行は取り除かれます。
無意味なDISTINCTという単語を付けて、明示的に重複行を除去することを指定することができます。
SELECT自体はALLがデフォルトですが、この場合はDISTINCTがデフォルトの動作であることに注意してください。
（後述のUNION句、INTERSECT句、EXCEPT句を参照してください。）
     

	

ORDER BY句が指定された場合、返される行は指定した順番でソートされます。
ORDER BYが指定されない場合は、システムが計算過程で見つけた順番で行が返されます。
（後述のORDER BY句を参照してください。）
     

	

LIMIT（またはFETCH FIRST）あるいはOFFSET句が指定された場合、SELECT文は結果行の一部分のみを返します。
（詳しくは、後述のLIMIT句を参照してください。）
     

	

FOR UPDATE、FOR NO KEY UPDATE、FOR SHAREまたはFOR KEY SHARE句を指定すると、SELECT文は引き続き行われる更新に備えて選択行をロックします。
（詳しくは、後述のロック処理句を参照してください。）
     




  


SELECTコマンド内で使われる列それぞれに対するSELECT権限が必要です。
FOR NO KEY UPDATE、FOR UPDATE、FOR SHAREまたはFOR KEY SHAREを使用するためには、さらに、（選択された各テーブルで少なくとも1列に対する）UPDATE権限が必要です。
  

パラメータ
WITH句


WITH句により主問い合わせ内で名前により参照可能な、1つ以上の副問い合わせを指定することができます。
副問い合わせは実質的に主問い合わせの間の一時的なテーブルかビューのように動作します。
各副問い合わせはSELECT、TABLE、VALUES、INSERT、UPDATE、DELETE、MERGE文にできます。
WITH内でデータ変更文（INSERT、UPDATE、DELETE、MERGE）を記述する場合は、RETURNING句を含めるのが普通です。
主問い合わせで読み取られる一時テーブルを形成するのは、RETURNINGの出力であり、文が変更する背後のテーブルではありません。
RETURNINGを省いても文は実行されますが、出力を生成しませんので、主問い合わせでテーブルとして参照することができません。
   


（スキーマ修飾がない）名前を各WITH問い合わせで指定しなければなりません。
列名のリストをオプションで指定することもできます。
これを省略すると、列名は副問い合わせから推定されます。
   


RECURSIVEが指定されると、SELECT副問い合わせは自身で名前により参照することができます。
こうした副問い合わせは以下のような形式でなければなりません。


non_recursive_term UNION [ ALL | DISTINCT ] recursive_term



ここで再帰的な自己参照はUNIONの右辺に現れなければなりません。
問い合わせ当たり1つの再帰的な自己参照のみが許されます。
再帰的なデータ変更文はサポートされていませんが、データ変更文で再帰的なSELECTの結果を使用することができます。
例は「WITH問い合わせ（共通テーブル式）」を参照してください。
   


RECURSIVEには他にも、WITH問い合わせが順序通りでなくても構わないという効果があります。
つまり、問い合わせはリストの後にある別のものを参照することができます。
（しかし巡回する参照や相互的な参照は実装されていません。）
RECURSIVEがないと、WITH問い合わせは主問い合わせが共通するWITH問い合わせのうち、WITHリストの前方にあるもののみを参照することができます。
   


WITH句に複数の問い合わせがある場合、RECURSIVEはWITHの直後に一度だけ書くべきです。
再帰や前方参照を使わない問い合わせには効果はないですが、WITH句内の問い合わせすべてに適用されます。
   


省略可能なSEARCH句では、再帰問い合わせの結果を幅優先順か深さ優先順で並べるのに使える検索シーケンス列を計算します。
与えられた列名のリストは、訪れた行を追跡するのに使う行キーを指定します。
search_seq_col_nameという名前の列が、WITH問い合わせの結果列のリストに追加されます。
この列により、外側の問い合わせでそれぞれの順序を導入できます。
例は「検索順」を参照してください。
   


省略可能なCYCLE句は、再帰問い合わせで循環を検出するのに使われます。
与えられた列名のリストは、訪れた行を追跡するのに使う行キーを指定します。
cycle_mark_col_nameという名前の列が、WITH問い合わせの結果列のリストに追加されます。
この列は、循環が検出された場合にはcycle_mark_valueに、そうでない場合にはcycle_mark_defaultに設定されます。
さらに、循環が検出された場合、再帰的な和の処理は停止します。
cycle_mark_valueとcycle_mark_defaultは定数でなければならず、強制的に共通のデータ型でなければならず、そのデータ型には不等価演算子がなければなりません。
(標準SQLは、論理定数か文字列であることを要求しますが、PostgreSQLは要求しません。)
デフォルトでは(boolean型の)TRUEとFALSEが使われます。
さらに、cycle_path_col_nameという名前の列が、WITH問い合わせの結果列のリストに追加されます。
この列は訪れた行を追跡するために内部的に使われます。
例は「サイクル検出」を参照してください。
   


SEARCH句、CYCLE句とも再帰的なWITH問い合わせに対してのみ有効です。
with_queryは、(入れ子になったUNIONのない)2つのSELECT(またはそれに相当する)コマンドのUNION(またはUNION ALL)でなければなりません。
両方の句が使われた場合、SEARCH句で追加された列はCYCLE句で追加された列の前に現れます。
   


主問い合わせとWITH問い合わせは（理論的には）同時に実行されます。
このことは、WITH中のデータ更新文の効果は、RETURNING出力の読み込みを行ったことによるものを除き、問い合わせ中の他の部分から見えないことを意味します。
2つのそうしたデータ更新文が同じ行を更新しようとした時の結果は不定です。
   


WITH問い合わせの重要な特性は、これらを主問い合わせが複数回参照していたとしても、主問い合わせの実行当たり通常一度のみ評価される点です。
特にデータ変更文は、主問い合わせがその出力のすべてまたは一部を読み取るかに関係なく、本当に一度のみ実行されることが保証されています。
   


しかし、WITH問い合わせにNOT MATERIALIZEDと印を付けることにより、この保証を取り除くことができます。
その場合、WITH問い合わせは、主問い合わせのFROM句中の単純な副SELECTであるかのように可能な限り主問い合わせ中に畳み込むことができます。
この結果、主問い合わせがWITH問い合わせを複数回参照している場合には複数回の計算が行われます。
しかし、そこで使用される問い合わせがWITH問い合わせ全体の出力のうちの数行しか必要としないなら、NOT MATERIALIZEDは問い合わせを連携して最適化することができるので、全体のコストの節約ができます。
再帰的であるか、あるいは副作用のある（すなわち揮発性の関数を含まない単純SELECTではない）WITH問い合わせにNOT MATERIALIZEDを適用しても無視されます。
   


デフォルトでは、主問い合わせ中のFROM句で正確に一度だけ使われているなら、副作用のないWITH問い合わせは主問い合わせに畳み込まれます。
これにより意味論的に不可視の二つの問い合わせレベルが共同して最適化されることを可能にします。
しかし、WITH問い合わせにMATERIALIZEDと印を付けることにより、そうした畳込みを防ぐことができます。
たとえば、プランナが悪いプランを選択するのを防ぐために最適化障壁としてWITH問い合わせを使っている場合にこれは有用です。
PostgreSQL™バージョン12よりも前ではそうした畳込みは決して行われていなかったので、古いバージョン用に書かれた問い合わせはWITHが最適化障壁として働くことに依存しているかもしれません。
   


追加情報については「WITH問い合わせ（共通テーブル式）」を参照してください。
   

FROM句


FROM句にはSELECTの対象となるソーステーブルを1つ以上指定します。
複数のソースが指定された場合、結果は全てのソースのデカルト積（クロス結合）となります。
しかし、通常は（WHEREを介して）制約条件を付けて、デカルト積のごく一部を返すように結果行を限定します。
   


FROM句には以下の要素を指定できます。

    
	table_name
	

既存のテーブルもしくはビューの名前です（スキーマ修飾名も可）。
テーブル名の前にONLYが指定された場合、そのテーブルのみがスキャンされます。
ONLYが指定されない場合、テーブルと（もしあれば）それを継承する全てのテーブルがスキャンされます。
省略することもできますが、テーブル名の後に*を指定することで、明示的に継承するテーブルも含まれることを示すことができます。
       

	alias
	

別名を含むFROM項目の代替名です。
別名は、指定を簡潔にするため、もしくは、自己結合（同じテーブルを複数回スキャンする結合）の曖昧さをなくすために使われます。
別名が指定されている場合は、その別名によって実際のテーブル名または関数名が完全に隠されます。
例えば、FROM foo AS fと指定されている場合、SELECT文の以降の部分ではこのFROM項目をfooではなくfとして参照する必要があります。
テーブルの別名があれば、そのテーブルの複数の列の名前を置き換える列の別名リストを記述することができます。
       

	TABLESAMPLE sampling_method ( argument [, ...] ) [ REPEATABLE ( seed ) ]
	

table_nameの後のTABLESAMPLE句は、そのテーブルの行の部分集合を取り出すときに、指定したsampling_methodを使うべきであることを示唆します。
このサンプリングはWHEREなど他のすべてのフィルタの適用に先立って行われます。
PostgreSQL™の標準ディストリビューションには、BERNOULLIとSYSTEMの2つのサンプリングメソッドが含まれています。
他のサンプリングメソッドも拡張(extension)によりデータベースにインストールすることができます。
       


サンプリングメソッドBERNOULLIとSYSTEMはいずれも1つだけargumentを取り、これはテーブルからサンプリングする割合で0から100までのパーセントで表現されます。
この引数はreal型の値を取る任意の式にできます。
（他のサンプリングメソッドは、複数の、あるいは異なる引数を受け取るかもしれません。）
これら2つの方法はいずれも、テーブルのうち指定された割合に近い行数を含む、ランダムに選択されたサンプルテーブルを返します。
BERNOULLIでは、テーブル全体をスキャンし、個々の行を別々に、指定された確率に従って、選択あるいは無視します。
SYSTEMではブロックレベルのサンプリングを行います。
各ブロックは指定された確率で選択され、選択されたブロック内のすべての行が返されます。
サンプリングに小さな割合が指定された場合、SYSTEMはBERNOULLIよりもかなり高速ですが、クラスタリング効果により、BERNOULLIに比べてランダムでないサンプルを返すかもしれません。
       


省略可能なREPEATABLE句では、サンプリングメソッドで乱数を生成するためのseedの数あるいは式を指定します。
シード値はNULL以外の任意の浮動点小数値とすることができます。
シードとargumentの値が同じ2つの問い合わせは、その間にテーブルに変更がなければ、同じサンプルテーブルを返します。
しかし、シードの値が異なれば、通常は異なるサンプルが生成されます。
REPEATABLEが指定されていなければ、システムが生成したシードに基づいて、問い合わせ毎に新しくランダムなサンプルが生成されます。
一部のアドオンのサンプリングメソッドではREPEATABLEが利用できず、使用の度に常に新しいサンプルを生成することに注意してください。
       

	select
	

FROM句では、副SELECTを使うことができます。
SELECTコマンドの実行中、副SELECTの出力は一時テーブルであるかのように動作します。
副SELECTは括弧で囲まれなければなりません。また、テーブルと同じようにして別名を与えることができます。
VALUESコマンドをここで使用することもできます。
       

	with_query_name
	

WITH問い合わせは、問い合わせの名前があたかもテーブル名であるかのように、名前を記述することで参照されます。
（実際にはWITH問い合わせは主問い合わせの対象とするテーブルと同じ名前の実テーブルを隠蔽します。
必要ならばテーブル名をスキーマ修飾することで同じ名前の実テーブルを参照することができます。）
テーブルと同様の方法で別名を提供することができます。
       

	function_name
	

FROM句では、関数呼び出しを使用できます。
（これは特に関数が結果セットを返す場合に有用ですが、任意の関数を使用できます。）
SELECTコマンドの実行中は、この関数の出力は一時テーブルであるかのように動作します。
関数の結果型が(複数のOUTパラメータを持つ関数の場合を含む)複合型なら、各属性はその暗黙のテーブルの別々の列になります。
       


関数呼び出しに省略可能なWITH ORDINALITY句を追加した時は、bigint型の追加の列が関数の結果列に追加されます。
この列は関数の結果セットの行に1から始まる番号を付けます。
デフォルトでは、この列はordinalityという名前です。
       


テーブルに対するのと同じように、別名を使用することができます。
別名が記述されていれば、列の別名リストを記述して、関数の複合型の戻り値の１つ以上の、存在する場合にはordinality列を含め、属性に対する代替名を提供することもできます。
       


複数の関数呼び出しをROWS FROM( ... )で括ることにより、1つのFROM句の項目にまとめることができます。
このような項目の出力は各関数の最初の行を結合した項目、次いで各関数の2番目の行、といった具合になります。
一部の関数が他の関数より少ない行数を出力した場合は、存在しないデータについてNULL値が代用され、戻される行数はいつでも最大の行数を返した関数と同じになります。
       


関数がrecordデータ型を返すと定義されている場合は、別名すなわちASキーワードと、それに続く（column_name data_type [, ... ]）という形式の列定義リストが必要です。
列定義リストは、関数によって返される実際の列の数およびデータ型に一致していなければなりません。
       


ROWS FROM( ... )の構文を使う時、関数の1つが列定義のリストを必要としている場合は、ROWS FROM( ... )内の関数呼び出しの後に列定義のリストを置くのが望ましいです。
関数が1つだけで、WITH ORDINALITY句がない場合に限り、列定義のリストをROWS FROM( ... )の後に置くことができます。
       


ORDINALITYを列定義のリストと一緒に使うには、ROWS FROM( ... )構文を使い、列定義のリストをROWS FROM( ... )の内側に置かなければなりません。
       

	join_type
	

        以下のいずれかです。
        
	[ INNER ] JOIN

	LEFT [ OUTER ] JOIN

	RIGHT [ OUTER ] JOIN

	FULL [ OUTER ] JOIN






INNERおよびOUTER結合型では、結合条件、すなわち、ON join_condition、USING (join_column [, ...])、NATURALのいずれか1つのみを指定する必要があります。
それぞれの意味は後述します。
       


JOIN句は、2つのFROM項目を結び付けます。
便宜上「テーブル」と呼びますが、実際には任意の種類のFROM項目とすることができます。
入れ子の順番を決めるために、必要ならば括弧を使用してください。
括弧がないと、JOINは左から右へ入れ子にします。
どのような場合でもJOINは、カンマで分けられたFROM項目よりも強い結び付きを持ちます。
JOINオプションは記述上の便宜のためだけに用意されています。
なぜなら、通常のFROMとWHEREでできないことは何もしないからです。
       
LEFT OUTER JOINは、条件に合うデカルト積の全ての行（つまり、その結合条件を満たす全ての組み合わせ）に加え、左側テーブルの中で、右側テーブルには結合条件を満たす行が存在しなかった行のコピーも返します。
この左側テーブルの行を結合結果のテーブルの幅に拡張するために、右側テーブルが入る列にはNULL値が挿入されます。
マッチする行を決める時は、JOIN句自身の条件のみが考慮されることに注意してください。
外部結合条件は後で適用されます。
       


逆に、RIGHT OUTER JOINは、全ての結合行と、左側テーブルに当てはまるものがなかった右側の行（左側はNULLで拡張されています）の1行ずつを返します。
左右のテーブルを入れ替えればLEFT OUTER JOINに変換できるので、RIGHT OUTER JOINは記述上の便宜を図るため用意されているに過ぎません。
       
FULL OUTER JOINは、全ての結合行に加え、一致しなかった左側の行（右側はNULLで拡張）、一致しなかった右側の行（左側はNULLで拡張）を全て返します。
       

	ON join_condition
	join_conditionは、結合においてどの行が一致するかを指定する、boolean型の値を返す式です（WHERE句に類似しています）。
       

	USING ( join_column [, ...] ) [ AS join_using_alias ]
	

USING ( a, b, ... )という形式の句はON left_table.a = right_table.a AND left_table.b = right_table.b ...の省略形です。
またUSINGは等価な列の両方ではなく片方のみが結合の出力に含まれることを意味します。
       


join_using_alias名が指定されれば、結合列に対するテーブルの別名を提供します。
USING句に列挙されている結合列だけが、この名前で指定できます。
普通のaliasとは異なり、これは問い合わせの残りから結合されたテーブルの名前を隠しません。
また、普通のaliasとは異なり、列の別名リストを書くことはできません — 結合列の出力名はUSINGリストに現れるのと同じです。
       

	NATURAL
	

NATURALは、2つのテーブル内の同じ名前を持つ列を全て指定したUSINGリストの省略形です。
共通の列名がない場合、NATURALはON TRUEと同等になります。
       

	CROSS JOIN
	

CROSS JOINはINNER JOIN ON(TRUE)と同じです。
つまり、条件によって削除される行はありません。
これらは単純なデカルト積を生成します。
これは、FROMの最上位レベルにある2つのテーブルをリストした場合と同じ結果ですが、(存在すれば)結合条件によって制限されます。
       

	LATERAL
	

LATERALキーワードを副SELECTのFROM項目の前に付けることができます。
これにより、副SELECTがFROMリストの中で前に現れるFROM項目の列を参照することができます。
（LATERALがないと、副SELECTそれぞれが個別に評価され、他のFROM項目とのクロス参照を行うことができません。）
       

LATERALを関数を呼び出すFROMの前に付けることもできます。
しかしこの場合、無意味な単語になります。
関数式はどのような場合でもより前のFROM項目を参照することができるからです。
       


LATERAL項目はFROMの最上位レベルやJOINツリー内に記述することができます。
後者の場合、JOINの右辺にあれば、左辺にある任意の項目を参照することができます。
       


FROM項目がLATERALクロス参照を含む場合、評価は次のように行われます。
クロス参照される列を提供するFROM項目の各行、または、その列を提供する複数のFROM項目の行集合に対して、
LATERAL項目は列の行または行集合を使用して評価されます。
結果となる行は、計算された行と通常通り結合されます。
これが各行または列ソーステーブルからの行集合に対して繰り返されます。
       


列ソーステーブルはLATERAL項目とINNERまたはLEFT結合されていなければなりません。
さもないと、
LATERAL項目において各行集合を計算するための行集合が完全に定義することができません。
したがってX RIGHT JOIN LATERAL Yという式は構文としては有効ですが、実際にはYではXを参照することができません。
       




   

WHERE句


WHERE句の一般的な構文は以下の通りです（この句は省略可能です）。


WHERE condition



conditionは、評価の結果としてboolean型を返す任意の式です。
この条件を満たさない行は全て出力から取り除かれます。
全ての変数に実際の行の値を代入して、式が真を返す場合、その行は条件を満たすとみなされます。
   

GROUP BY句


GROUP BY句の一般的な構文は以下の通りです（この句は省略可能です）。


GROUP BY [ ALL | DISTINCT ] grouping_element [, ...]


   


GROUP BYは、グループ化のために与えられた式を評価し、結果が同じ値になった行を1つの行にまとめる機能を持ちます。
grouping_elementの内側で使われるexpressionには、入力列の名前、出力列（SELECTリスト項目）の名前/序数、あるいは入力列の値から計算される任意の式を取ることができます。
判断がつかない時は、GROUP BYの名前は出力列名ではなく入力列名として解釈されます。
   


グループ化の要素としてGROUPING SETS、ROLLUP、CUBEのいずれかが指定されている場合、GROUP BY句は全体でいくつかの独立したグループ化セットを定義します。
この効果は、個々のグループ化セットをGROUP BY句で定義する副問い合わせをUNION ALLするのと同等です。
省略可能なDISTINCT句では処理の前に重複するセットを削除します。UNION ALLをUNION DISTINCTに変換はしません。
グループ化セットの処理の詳細については、「GROUPING SETS、CUBE、ROLLUP」を参照してください。
   


集約関数が使用された場合、各グループ内の全ての行を対象に計算が行われ、グループごとに別々の値が生成されます。
（集約関数が使われていてGROUP BYがない場合、その問い合わせは選択された全ての行からなる1つのグループを持つものとして扱われます。）
集約関数の入力となる行の集合は、集約関数の呼び出しにFILTER句を付けることで、さらに絞り込むことができます。
詳しくは「集約式」を参照してください。
FILTER句があると、その条件に適合する行だけが集約関数の入力行に取り込まれます。
   


GROUP BYが存在する場合、あるいは集約関数が存在する場合、集約関数内部以外で、グループ化されていない列を参照する、あるいはグループ化されていない列がグループ化された列に関数依存するSELECTリストの式は無効になります。
こうしないとグループ化されていない列について返される値は複数の値になってしまう可能性があるからです。
グループ化された列(またはその部分集合)がグループ化されていない列を含むテーブルの主キーである場合、関数従属性が存在します。
   


すべての集約関数は、HAVING句やSELECTリストのどの「スカラ」式よりも先に評価されることに注意してください。
これは例えば、CASE式を集約関数の評価をスキップするために使うことはできない、ということを意味します。
「式の評価規則」を参照してください。
   


現在は、FOR NO KEY UPDATE、FOR UPDATE、FOR SHARE、FOR KEY SHAREをGROUP BYと合わせて使うことはできません。
   

HAVING句


HAVING句の一般的な構文は以下の通りです（この句は省略可能です）。


HAVING condition



conditionはWHERE句で指定するものと同じです。
   


HAVINGは、グループ化された行の中で、条件を満たさない行を取り除く機能を持ちます。
HAVINGとWHEREは次の点が異なります。
WHEREが、GROUP BYの適用前に個々の行に対してフィルタを掛けるのに対し、HAVINGは、GROUP BYの適用後に生成されたグループ化された行に対してフィルタをかけます。
condition内で使用する列は、集約関数内で使用される場合とグループ化されない列がグループ化される列に関数依存する場合を除き、グループ化された列を一意に参照するものでなければなりません。
   


HAVING句があると、GROUP BY句がなかったとしても問い合わせはグループ化された問い合わせになります。
GROUP BY句を持たない問い合わせが集約関数を含む場合と同様です。
選択された行はすべて、1つのグループを形成するものとみなされます。また、SELECTリストとHAVING句では、集約関数が出力するテーブル列しか参照することができません。
こうした問い合わせでは、HAVINGが真の場合には単一の行を、真以外の場合は0行を出力します。
   


現在は、FOR NO KEY UPDATE、FOR UPDATE、FOR SHARE、FOR KEY SHAREをHAVINGと合わせて使うことはできません。
   

WINDOW句


WINDOW句の一般的な構文は以下の通りです（この句は省略可能です）。


WINDOW window_name AS ( window_definition ) [, ...]



ここでwindow_nameは、OVER句やこの後のウィンドウ定義で参照することができる名前です。
また、window_definitionは以下の通りです。


[ existing_window_name ]
[ PARTITION BY expression [, ...] ]
[ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } ] [, ...] ]
[ frame_clause ]


   


existing_window_nameを指定する場合、それはWINDOWリスト内のそれより前にある項目を参照しなければなりません。
新しいウィンドウはそのPARTITION BY句をその項目からコピーします。
ORDER BY句があった場合も同様です。
この場合、新しいウィンドウでは独自のPARTITION BY句を指定することはできません。
また、コピーされたウィンドウがORDER BYを持たない場合のみORDER BYを指定することができます。
新しいウィンドウは常に独自のフレーム句を使用します。
コピーされたウィンドウはフレーム句を指定してはなりません。
   


PARTITION BYリストの要素はGROUP BY句の要素とほとんど同じように解釈されます。
ただし、こちらは常に単純な式であり、出力列の名前や番号ではないことが異なります。
他にも違いがあり、これらの式は、通常のGROUP BY句では許されない、集約関数を含めることができるという点です。
グループ化および集約処理の後にウィンドウ処理が動作するため、これらでは許されています。
   


同様に、ORDER BYリストの要素は文レベルのORDER BY句の要素とほとんど同じように解釈されます。
ただし、この式は常に単純な式であり、出力列の名前や番号ではないことが異なります。
   


frame_clauseを指定すると、（すべてではありませんが）フレームに依存するウィンドウ関数用のウィンドウフレームを定義できます。
ウィンドウフレームは、問い合わせの各行(現在の行と呼ばれます)に関連する行の集合です。
frame_clauseは以下のいずれかを取ることができます。



{ RANGE | ROWS | GROUPS } frame_start [ frame_exclusion ]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [ frame_exclusion ]




ここでframe_startとframe_endは以下のいずれかを取ることができます。



UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW
offset FOLLOWING
UNBOUNDED FOLLOWING




また、frame_exclusionには以下のいずれかを取ることができます。



EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS




frame_endが省略された場合、デフォルトでCURRENT ROWとなります。
frame_startはUNBOUNDED FOLLOWINGとすることができない、frame_endはUNBOUNDED PRECEDINGとすることができない、また、frame_startとframe_endのオプションの上記リストでframe_endの選択をframe_startの選択よりも手前に現れるものにはできない、という制限があります。
例えばRANGE BETWEEN CURRENT ROW AND offset PRECEDINGは許されません。
   


デフォルトのフレーム化オプションはRANGE UNBOUNDED PRECEDINGです。
これはRANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROWと同じで、
パーティションの先頭から現在の行の最後のピア（ウィンドウのORDER BY句が現在行と同等とみなす行、ORDER BYが無ければ全ての行がピア）までのすべての行をフレームとします。
一般的に、RANGEやROWS、GROUPSのモードにかかわらず、UNBOUNDED PRECEDINGはフレームがパーティションの先頭行から開始することを意味し、同様にUNBOUNDED FOLLOWINGはフレームがパーティションの最終行で終了することを意味します。
ROWSモードではCURRENT ROWはフレームが現在の行で開始または終了することを意味しますが、RANGEあるいはGROUPSモードではフレームがORDER BY順序における現在行の最初または最後のピアで開始または終了することを意味します。
offset PRECEDINGおよびoffset FOLLOWINGオプションの意味はフレームのモードによって異なります。
ROWSモードでは、offsetはフレームが現在行の何行前または何行後に開始または終了するかを示す整数です。
GROUPSモードでは、offsetはフレームが現在行のピアグループからピアグループ何個、前または後で開始または終了するかを示す整数です。
ここでピアグループとはウィンドウのORDER BY句において等価の行のグループです。
RANGEモードでは、offsetオプションを使うには、ウィンドウ定義に一つだけORDER BY列があることが必要です。
それで、整列する列の値がoffsetを超えないだけ、現在行の整列する列の値より小さい（PRECEDINGに対して）、あるいは、より大きい（FOLLOWINGに対して）行がフレームに含まれます。
この場合、offset式のデータ型は整列する列のデータ型によって決まります。
数値の整列する列に対するoffsetは一般的に整列する列と同じ型ですが、日付時刻の整列する列に対してはintervalになります。
これら全ての場合で、offsetの値は非NULLかつ非負でなければなりません。
また、offsetが単純な定数である必要はありませんが、変数や集約関数、ウィンドウ関数を含めることはできません。
   


frame_exclusionオプションは現在行の周辺の行を、フレーム開始とフレーム終了のオプションにより含まれるものであっても、フレームから除外することができます。
EXCLUDE CURRENT ROWはフレームから現在行を除外します。
EXCLUDE GROUPはフレームから現在行とその整列ピアを除外します。
EXCLUDE TIESは現在行自身を除いた現在行のピアをフレームから除外します。
EXCLUDE NO OTHERSは単に、現在行もそのピアも除外しないというデフォルトの振る舞いを明示的に指定します。
   


ORDER BY順序によりその行を一意に順序付けできない場合、ROWSモードが予期できない結果をもたらす可能性があることに注意して下さい。
RANGEおよびGROUPSモードは、ORDER BY順序におけるピアとなる行が同等に扱われる、すなわち、与えられたピアグループの全行がフレームに入るか除外されるように設計されています。
   


WINDOW句の目的は、問い合わせのSELECTリストまたはORDER BY句に記載されるウィンドウ関数の動作を規定することです。
これらの関数はそのOVER句において名前でWINDOW句の項目を参照することができます。
しかしWINDOW句の項目は他で参照される必要はありません。
問い合わせ内で使用されなかったものは、単に無視されます。
ウィンドウ関数呼び出しはOVER句でウィンドウ定義を直接規定することができますので、WINDOW句を全く使わずにウィンドウ関数を使用することができます。
しかしWINDOW句は、同じウィンドウ定義が複数のウィンドウ関数で必要とされる場合に入力量を省くことができます。
   


現在は、FOR NO KEY UPDATE、FOR UPDATE、FOR SHARE、FOR KEY SHAREをWINDOWと合わせて使うことはできません。
   


ウィンドウ関数に関する詳細については「ウィンドウ関数」、「ウィンドウ関数呼び出し」、「ウィンドウ関数処理」を参照してください。
   

SELECTリスト


SELECTリスト（SELECTキーワードとFROMキーワードの間にあるもの）は、SELECT文の出力行を形成する式を指定するものです。
この式では、FROM句で処理後の列を参照することができます（通常は実際に参照します）。
   


テーブルの場合と同様に、SELECTの出力列はすべて名前を持ちます。
簡単なSELECTでは、この名前は列に表示用のラベルを付けるために使用されるだけです。
しかしSELECTが大規模な問い合わせの副問い合わせである場合、大規模な問い合わせ側で副問い合わせで生成された仮想のテーブルの列名としてこの名前が参照されます。
出力列として使用するための名前を指定するためには、列式の後にAS output_nameと記述してください。
（希望する列名がPostgreSQL™のキーワード（付録C SQLキーワードを参照）に一致しない場合にのみASを省略することができます。
将来あり得るキーワードの追加に備えるために、常にASを記述する、あるいは、出力名を二重引用符で括ることを推奨します。）
列名を指定しない場合、名前はPostgreSQL™により自動的に付けられます。
列式が単純な列参照であれば、つけられる名前はその列の名前と同じものです。
より複雑な場合では、関数名または型名が使用されるかもしれません。さもなければ?column?のように生成される名前になるかもしれません。
   


ORDER BY句とGROUP BY句内で列の値を参照する時も、出力列名を使用できます。
しかし、WHEREやHAVING句では使用できません。これらでは式を書かなければなりません。
   


リストには、選択された行の全ての列を表す省略形として、式ではなく*と書くことができます。
また、そのテーブルに由来する列のみを表す省略形として、table_name.*と書くこともできます。
このような場合、ASにより新しい名前を指定することはできません。
出力列名はテーブルの列名と同一になります。
   


標準SQLによれば、出力リスト内の式は、DISTINCT、ORDER BY、LIMITを適用する前に計算することになっています。
DISTINCTを使う場合は、これは明らかに必要です。
なぜなら、そうしなければどの値がDISTINCTであるかわからないからです。
しかし、多くの場合、ORDER BYやLIMITの後で出力式を計算する方が便利です。
特に出力式が揮発性(volatile)あるいは高価な式を含んでいる場合はそうです。
この動作により、関数の評価順序はより直感的になり、出力に現れない行については評価されなくなります。
PostgreSQL™では、式がDISTINCT、ORDER BY、GROUP BYの中で参照されていない限り、ソートと制限(limit)の後にそれらの式を実際に評価します。
（この反例として、SELECT f(x) FROM tab ORDER BY 1 では明らかにf(x)をソートの前に評価しなければなりません。）
集合を返す関数を含む出力式は、ソートの後、制限の前に実際の評価が行われ、これによりLIMITが集合を返す関数の出力を制限することになります。
   
注記


PostgreSQL™のバージョン9.6より前では、出力式がソートや制限に対して評価されるタイミングについて何の保証もしていませんでした。
それは選択された問い合わせの計画の形式に依存します。
    


DISTINCT句


SELECT DISTINCTが指定されると、重複する行は全て結果セットから削除されます
（重複するグループの中で1行が保持されます）。
SELECT ALLはこの反対で、全ての行が保持されます。
デフォルトはこちらです。
   


SELECT DISTINCT ON ( expression [, ...] )は指定した式が等しいと評価した各行集合の中で、最初の行のみを保持します。
DISTINCT ON式は、ORDER BY（上述）と同じ規則で扱われます。
各集合の「最初の行」は、ORDER BYを使用して目的の行が確実に最初に現れるようにしない限り予測することはできないことに注意してください。
例えば。


SELECT DISTINCT ON (location) location, time, report
    FROM weather_reports
    ORDER BY location, time DESC;



これは各地点の最新の気象情報を取り出します。
しかしORDER BYを使用して各地点を時間によって降順にソートしなければ、各地点について得られる情報がいつのものかはわかりません。
   


DISTINCT ONに指定する式はORDER BYの最も左側の式と一致しなければなりません。
ORDER BY句は、通常、各DISTINCT ONグループの中での行の優先順位を決定する追加的な式を含みます。
   


現在は、FOR NO KEY UPDATE、FOR UPDATE、FOR SHARE、FOR KEY SHAREをDISTINCTと合わせて使うことはできません。
   

UNION句


UNION句の一般的な構文は以下の通りです。


select_statement UNION [ ALL | DISTINCT ] select_statement


select_statementには、ORDER BY、LIMIT、FOR NO KEY UPDATE、FOR UPDATE、FOR SHARE、FOR KEY SHARE句を持たない任意のSELECT文が入ります。
（ORDER BYとLIMITは、括弧で囲めば副式として付与することができます。
括弧がない場合、これらの句は右側に置かれた入力式ではなく、UNIONの結果に対して適用されてしまいます。）
   


UNION演算子は、2つのSELECT文が返す行の和集合を作成します。
この和集合には、2つのSELECT文の結果集合のいずれか（または両方）に存在する行が全て含まれています。
UNIONの直接のオペランドとなる2つのSELECT文が返す列数は、同じでなければなりません。また、対応する列のデータ型には互換性が存在する必要があります。
   


ALLオプションが指定されていない限り、UNIONの結果には重複行は含まれません。
ALLを指定するとこのような重複除去が行われません。
（したがって、通常UNION ALLはUNIONよりかなり高速です。
できればALLを使用してください。）
重複行を除去するデフォルトの動作を明示的に指定するためにDISTINCTを記述することができます。
   


1つのSELECT文に複数のUNION演算子がある場合、括弧がない限り、それらは左から右に評価されます。
   


現時点では、UNIONの結果やUNIONに対する入力に、FOR NO KEY UPDATE、FOR UPDATE、FOR SHARE、FOR KEY SHAREを指定することはできません。
   

INTERSECT句


INTERSECT句の一般的な構文は以下の通りです。


select_statement INTERSECT [ ALL | DISTINCT ] select_statement


select_statementには、ORDER BY、LIMIT、FOR NO KEY UPDATE、FOR UPDATE、FOR SHARE、FOR KEY SHARE句を持たない、任意のSELECT文が入ります。
   


INTERSECTは、2つのSELECT文が返す行の積集合を計算します。
この積集合に含まれるのは、2つのSELECT文の結果集合の両方に存在する行です。
   


ALLオプションを指定しない限り、INTERSECTの結果に重複行は含まれません。
ALLが指定された場合、左側テーブルにm個、右側テーブルにn個の重複がある行は、結果集合ではmin(m,n)個出現します。
重複行を除去するデフォルトの動作を明示的に指定するためにDISTINCTを記述することができます。
   


1つのSELECT文に複数のINTERSECT演算子がある場合、括弧がない限り、それらは左から右に評価されます。
INTERSECTはUNIONよりも強い結び付きを持ちます。
つまり、A UNION B INTERSECT C はA UNION (B INTERSECT C)と解釈されます。
   


現時点では、INTERSECTの結果やINTERSECTに対する入力に、FOR NO KEY UPDATE、FOR UPDATE、FOR SHAREまたはFOR KEY SHAREを指定することはできません。
   

EXCEPT句


EXCEPT句の一般的な構文は以下の通りです。


select_statement EXCEPT [ ALL | DISTINCT ] select_statement


select_statementには、ORDER BY、LIMIT、FOR NO KEY UPDATE、FOR UPDATE、FOR SHARE、FOR KEY SHARE句を持たない、任意のSELECT文が入ります。
   


EXCEPTは、左側のSELECT文の結果には存在し、右側のSELECT文の結果には存在しない行の集合を生成します。
   


ALLオプションが指定されていない限り、EXCEPTの結果には重複行は含まれません。
ALLがある場合、左側テーブルにm個、右側テーブルにn個の重複がある行は、結果集合ではmax(m-n,0)個出現します。
重複行を除去するデフォルトの動作を明示的に指定するためにDISTINCTを記述することができます。
   


1つのSELECT文に複数のEXCEPT演算子がある場合、括弧がない限り、それらは左から右に評価されます。
EXCEPTの結び付きの強さはUNIONと同じです。
   


現時点では、EXCEPTの結果やEXCEPTに対する入力に、FOR NO KEY UPDATE、FOR UPDATE、FOR SHAREまたはFOR KEY SHAREを指定することはできません。
   

ORDER BY句


ORDER BY句の一般的な構文は以下の通りです（この句は省略可能です）。


ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } ] [, ...]



ORDER BY句を使うと、結果行を指定した式（複数可）に従ってソートすることができます。
最も左側の式を使って比較した結果、2つの行が等しいと判断された場合は、1つ右側の式を使って比較します。その結果も等しければ、さらに次の式に進みます。
指定した全ての式で等しいと判断された場合は、実装に依存した順番で返されます。
   


expressionには、出力列（SELECTリスト項目）の名前または序数、あるいは入力列値から形成される任意の式を取ることができます。
   


序数は、出力列の位置（左から右に割り当てられます）を示します。
これを使うと、一意な名前を持たない列の順序を定義することができます。
AS句を使用すれば出力列に名前を割り当てることができるので、これはどうしても必要な機能というわけではありません。
   


また、ORDER BY句には、SELECT出力リストに出現しない列を含む、任意の式を使用できます。
したがって、以下の文は有効です。


SELECT name FROM distributors ORDER BY code;



ただし、UNION、INTERSECT、EXCEPT句の結果にORDER BYを適用する場合は、式は使用できず、出力列の名前か序数のみを指定できるという制限があります。
   


ORDER BYの式として出力列名と入力列名の両方に一致する単なる名前が与えられた場合、ORDER BYはそれを出力列名として扱います。
これは、同じ状況におけるGROUP BYの選択とは反対です。
この不整合は、標準SQLとの互換性を保持するために発生しています。
   


ORDER BY中の任意の式の後に、キーワードASC（昇順）、DESC（降順）を付加することができます（省略可能）。
指定がなければ、デフォルトでASCがあるものとして扱われます。
その他、順序を指定する演算子名をUSING句に指定する方法もあります。
順序指定演算子は何らかのB-Tree演算子族の小なりまたは大なり演算子でなければなりません。
通常、ASCはUSING <と、DESCはUSING >と同じです。
（ただし、ユーザ定義データ型の作成時には、デフォルトのソート順を定義することができます。また、異なる名前の演算子と対応付けすることもできます。）
   


NULLS LASTが指定されると、NULL値はすべての非NULL値の後にソートされます。
NULLS FIRSTが指定されると、NULL値はすべての非NULL値の前にソートされます。
どちらも指定されない場合のデフォルト動作は、明示的あるいは暗黙的なASCの場合はNULLS LAST、DESCが指定された場合はNULLS FIRSTです。
（したがって、デフォルトでは、NULLが非NULLよりも大きい値であるかのように動作します。）
USINGが指定されると、デフォルトのNULLの順序は、演算子が小なり演算子か大なり演算子によって変わります。
   


順序付けオプションは直前の演算子にのみ適用されます。
たとえば、ORDER BY x, y DESCはORDER BY x DESC, y DESCと同一の意味ではありません。
   


文字型データでは、格納する列に適用された照合順序に従ってソートされます。
これは必要に応じてexpression内にCOLLATE句を含めることで上書きできます。
例えばORDER BY mycolumn COLLATE "en_US"です。
より詳細については「照合順序式」および「照合順序サポート」を参照してください。
   

LIMIT句


LIMIT句は2つの独立した副句から構成されます。


LIMIT { count | ALL }
OFFSET start



パラメータcountには返される行の最大数を、一方、startには行を返し始める前に飛ばす行数を指定します。
両方とも指定された場合、start行分が飛ばされ、そこから数えてcount行が返されます。
   


count式がNULLと評価された場合、LIMIT ALLとして、つまり制限無しとして扱われます。
startがNULLと評価された場合、OFFSET 0と同様に扱われます。
   


SQL:2008では同じ結果を実現する異なる構文が導入されました。
PostgreSQL™でもサポートしています。
以下の構文です。


OFFSET start { ROW | ROWS }
FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } { ONLY | WITH TIES }



この構文において、startまたはcountの値は標準SQLでは、リテラル定数、パラメータもしくは変数名を要求します。
PostgreSQL™の拡張では他の表現が許容されていますが、曖昧さを防ぐために通常は括弧で囲まれる必要があるでしょう。
countをFETCH句で省略した場合、そのデフォルトは１です。
WITH TIESオプションは、結果の集合でORDER BY句に従って最後の場所で同点になる追加の行を返すのに使われます。この場合ORDER BYは必須で、SKIP LOCKEDは利用できません。
ROWおよびROWS、そしてFIRSTおよびNEXTは意味がない単語で、この句に影響を与えることはありません。
標準SQLではOFFSET句は、FETCH句と同時に使用する場合、これより前に存在しなければなりません。
しかしPostgreSQL™は厳密ではなく、どちらが先でも許されます。
   


LIMITを使う時は、結果行を一意な順番に強制するORDER BY句を使うとよいでしょう。
そうしないと、問い合わせ結果のどの部分が返されるのかがわかりません。
10〜20行目までを出力するとしても、どの順番で並べた時の10〜20行目なのでしょうか。
ORDER BYを指定しない限り、行が返される順番は不明です。
   


問い合わせプランナは問い合わせ計画を作成する時にLIMITを考慮するので、LIMITとOFFSETの指定によって異なった計画を得ることになるでしょう。計画が異なれば、異なる順番で行が返ります。
したがって、LIMIT/OFFSET値の変更によって異なる結果行を選択しようとすると、ORDER BYで順序を並べ替えない限り、矛盾した結果を返すことになります。
これはバグではありません。
「SQLは、ORDER BYで順序を制御されない限り、問い合わせ結果が返す順序を約束しない」という事実の当然の帰結なのです。
   


厳密的に部分集合の選択を強制するORDER BYがなければ、同じLIMIT問い合わせを繰り返し実行してもテーブル行から異なる部分集合が取り出される可能性すらあります。
これも不具合ではありません。
こうした場合に確定した結果は単に保証されていないのです。
   

ロック処理句


FOR UPDATE、FOR NO KEY UPDATE、FOR SHAREおよびFOR KEY SHAREはロック処理句です。
これらはテーブルから行を入手する時にどのようにSELECTがその行をロックするかに影響します。
   


ロック処理句の一般的な構文は以下の通りです。



FOR lock_strength [ OF from_reference [, ...] ] [ NOWAIT | SKIP LOCKED ]




ここでlock_strengthは以下のいずれかを取ることができます。



UPDATE
NO KEY UPDATE
SHARE
KEY SHARE


   


from_referenceは、FROM句で参照されるテーブルのaliasまたは隠されていないtable_nameでなければなりません。
それぞれの行レベルロックモードについての詳しい説明は「行レベルロック」を参照してください。
   


他のトランザクションのコミットを待機することなく操作を進めるには、NOWAITあるいはSKIP LOCKEDオプションを使用してください。
NOWAITでは、選択行のロックを即座に獲得できない時、文は待機せずに、エラーを報告します。
SKIP LOCKEDでは、即座にロックできない行はすべてスキップされます。
行のロックをスキップすると、一貫性のないデータが見えることになるので、一般的な目的の作業のためには適しませんが、複数の消費者がキューのようなテーブルにアクセスするときのロック競合の回避などに利用できます。
NOWAITおよびSKIP LOCKEDは行レベルロックにのみに適用される点に注意してください。
つまり、必要なROW SHAREテーブルレベルロックは通常通りの方法（ 13章同時実行制御を参照）で獲得されます。
もし、テーブルレベルのロックを待機せずに獲得しなければならないのであれば、最初にLOCKのNOWAITオプションを使用してください。
   


ロック処理句内に特定のテーブルが指定されている場合は、そのテーブルの行のみがロックされます。
SELECT内の他のテーブルは通常通りに読み込まれます。
テーブルリストを持たないロック処理句は、その文で使用されるすべてのテーブルに影響を与えます。
ロック処理句がビューまたは副問い合わせで使用された場合、そのビューや副問い合わせで使用されるすべてのテーブルに影響を与えます。
しかしこれらの句は主問い合わせで参照されるWITH問い合わせには適用されません。
WITH問い合わせ内での行ロックを行いたい場合は、WITH問い合わせ内でロック処理句を指定してください。
   


異なるロック方式を異なるテーブルに指定する必要があれば、複数のロック処理句を記述することができます。
複数のロック処理句で同一のテーブルを記述した（または暗黙的に影響が与えられた）場合、最も強いものだけが指定されたかのように処理されます。
同様に、あるテーブルに影響を与える句のいずれかでNOWAITが指定された場合、そのテーブルはNOWAITとして処理されます。
それ以外の場合、あるテーブルに影響を与える句のいずれかでSKIP LOCKEDが指定されていれば、そのテーブルはSKIP LOCKEDとして処理されます。
   


ロック処理句は、返される行がテーブルのどの行に対応するのかが明確に識別できない場合には使用することができません。
例えば、集約には使用できません。
   


ロック処理句がSELECT問い合わせの最上位レベルに存在する場合、ロック対象行は問い合わせが返す行に正確に一致します。
結合問い合わせ内の場合、ロック対象行は返される結合行に関連する行となります。
さらに、スナップショットを更新した後に問い合わせ条件を満たさなくなった場合は返されなくなりますが、問い合わせのスナップショット時点で問い合わせ条件を満たす行もロックされます。
LIMITが使用された場合、制限を満たす行が返されるとロック処理は止まります。
（しかし、OFFSETにより飛ばされた行はロックされることに注意してください。）
同様に、ロック処理句がカーソル問い合わせで使用された場合、カーソルにより実際に取り込んだ行または通り過ぎた行のみがロックされます。
   


ロック処理句が副SELECTに存在する場合、ロック対象行は副問い合わせの外側の問い合わせに返される行となります。
外側の問い合わせからの条件が副問い合わせ実行の最適化に使用される可能性がありますので、これには副問い合わせ自体の検査が提示する行より少なくなるかもしれません。
例えば、


SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss WHERE col1 = 5;



は、副問い合わせ内では文字として条件が記載されていなくても、col1 = 5を持つ行のみがロックされます。
   


以前のリリースでは、セーブポイント以降に更新されるロックの保持は失敗しました。
例えば以下のコードです。


BEGIN;
SELECT * FROM mytable WHERE key = 1 FOR UPDATE;
SAVEPOINT s;
UPDATE mytable SET ... WHERE key = 1;
ROLLBACK TO s;



ROLLBACK TO後のFOR UPDATEロックの保持に失敗します。
これはリリース9.3で修正されました。
  
注意


ORDER BY句とロック処理句を使用した、READ COMMITTEDトランザクション分離レベルで実行するSELECTコマンドでは、順序通りにならない行を返す可能性があります。
ORDER BYが最初に適用されるためです。
このコマンドは結果をソートしますが、その後、1行または複数の行のロック獲得がブロックされる可能性があります。
このSELECTのブロックが解除された時点で、順序付け対象の列値の一部が変更されているかもしれません。
これによりこうした行が（元の列値という観点では順序通りではありますが、）順序通りに現れません。
必要に応じて、これは以下のように副問い合わせ内にFOR UPDATE/SHARE句を記述することで、回避することができます。


SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss ORDER BY column1;



最上位レベルにおけるFOR UPDATEは実際に返される行のみをロックするのに対して、これは結果としてmytableのすべての行をロックすることに注意してください。
これは、特にORDER BYがLIMITやその他の制限と組み合わせている場合、性能上大きな違いを生み出す可能性があります。
このため、この技法は、順序付け対象の列に対する同時実行の更新が想定され、かつ、厳密にソートされた結果が要求される場合にのみ推奨されます。
   


REPEATABLE READまたはSERIALIZABLEトランザクション分離レベルでは、（'40001'というSQLSTATEを持つ）シリアライゼーション失敗が発生します。
このためこれらの分離レベルでは順序通りでない行を受け取る可能性はありません。
   


TABLEコマンド


コマンド


TABLE name



は以下と同じです。


SELECT * FROM name



これは、最上位のコマンドとして、あるいは複雑な問い合わせの一部として、入力を省略する構文の一種としても使用することができます。
WITH、UNION、INTERSECT、EXCEPT、ORDER BY、LIMIT、OFFSET、FETCH、FORのロック句だけをTABLEと一緒に使うことができます。
WHERE句およびいかなる形式の集約も使うことはできません。
   


例


filmsテーブルをdistributorsテーブルと結合します。



SELECT f.title, f.did, d.name, f.date_prod, f.kind
    FROM distributors d JOIN films f USING (did);

       title       | did |     name     | date_prod  |   kind
-------------------+-----+--------------+------------+----------
 The Third Man     | 101 | British Lion | 1949-12-23 | Drama
 The African Queen | 101 | British Lion | 1951-08-11 | Romantic
 ...


  


全ての映画のlen列を合計しkind列によって結果をグループ化します。



SELECT kind, sum(len) AS total FROM films GROUP BY kind;

   kind   | total
----------+-------
 Action   | 07:34
 Comedy   | 02:58
 Drama    | 14:28
 Musical  | 06:42
 Romantic | 04:38


  


全ての映画のlen列を合計しkind列によって結果をグループ化し、合計が5時間より少ないグループの合計を表示します。



SELECT kind, sum(len) AS total
    FROM films
    GROUP BY kind
    HAVING sum(len) < interval '5 hours';

   kind   | total
----------+-------
 Comedy   | 02:58
 Romantic | 04:38


  


次に、結果を2番目の列（name）の内容に基づいてソートする方法を2つ例示します。



SELECT * FROM distributors ORDER BY name;
SELECT * FROM distributors ORDER BY 2;

 did |       name
-----+------------------
 109 | 20th Century Fox
 110 | Bavaria Atelier
 101 | British Lion
 107 | Columbia
 102 | Jean Luc Godard
 113 | Luso films
 104 | Mosfilm
 103 | Paramount
 106 | Toho
 105 | United Artists
 111 | Walt Disney
 112 | Warner Bros.
 108 | Westward


  


次の例は、distributorsテーブルとactorsテーブルの和集合を取得する方法を示しています。さらに、両方のテーブルで結果をWという文字で始まる行のみに限定しています。
重複しない行のみが必要なので、ALLキーワードは省略されています。



distributors:               actors:
 did |     name              id |     name
-----+--------------        ----+----------------
 108 | Westward               1 | Woody Allen
 111 | Walt Disney            2 | Warren Beatty
 112 | Warner Bros.           3 | Walter Matthau
 ...                         ...

SELECT distributors.name
    FROM distributors
    WHERE distributors.name LIKE 'W%'
UNION
SELECT actors.name
    FROM actors
    WHERE actors.name LIKE 'W%';

      name
----------------
 Walt Disney
 Walter Matthau
 Warner Bros.
 Warren Beatty
 Westward
 Woody Allen


  


次に、FROM句内での関数の使用方法について、列定義リストがある場合とない場合の両方の例を示します。



CREATE FUNCTION distributors(int) RETURNS SETOF distributors AS $$
    SELECT * FROM distributors WHERE did = $1;
$$ LANGUAGE SQL;

SELECT * FROM distributors(111);
 did |    name
-----+-------------
 111 | Walt Disney

CREATE FUNCTION distributors_2(int) RETURNS SETOF record AS $$
    SELECT * FROM distributors WHERE did = $1;
$$ LANGUAGE SQL;

SELECT * FROM distributors_2(111) AS (f1 int, f2 text);
 f1  |     f2
-----+-------------
 111 | Walt Disney


  


以下は序数列が追加された関数の例です。



SELECT * FROM unnest(ARRAY['a','b','c','d','e','f']) WITH ORDINALITY;
 unnest | ordinality
--------+----------
 a      |        1
 b      |        2
 c      |        3
 d      |        4
 e      |        5
 f      |        6
(6 rows)


  


以下の例では簡単なWITH句の使用方法を示します。



WITH t AS (
    SELECT random() as x FROM generate_series(1, 3)
  )
SELECT * FROM t
UNION ALL
SELECT * FROM t;
         x
--------------------
  0.534150459803641
  0.520092216785997
 0.0735620250925422
  0.534150459803641
  0.520092216785997
 0.0735620250925422




WITH問い合わせが一度だけ評価されることに注意してください。
このため3つのランダムな値の同じ集合2組を得ることになります。
  


以下の例ではWITH RECURSIVEを使用して、直接の部下しか表示しないテーブルから、従業員Maryの（直接または間接的な）部下とその間接度を見つけ出します。



WITH RECURSIVE employee_recursive(distance, employee_name, manager_name) AS (
    SELECT 1, employee_name, manager_name
    FROM employee
    WHERE manager_name = 'Mary'
  UNION ALL
    SELECT er.distance + 1, e.employee_name, e.manager_name
    FROM employee_recursive er, employee e
    WHERE er.employee_name = e.manager_name
  )
SELECT distance, employee_name FROM employee_recursive;




初期条件、続いてUNION、さらに問い合わせの再帰部分という再帰問い合わせの典型的な構文に注意してください。
問い合わせの再帰部分は最終的にはタプルを返さないことを確実にしてください。
さもないと問い合わせは無限にループします。
（より多くの例については「WITH問い合わせ（共通テーブル式）」を参照してください。）
  


以下の例では、manufacturersテーブルの各行に対して集合を返すget_product_names()関数を適用するためにLATERALを使用します。



SELECT m.name AS mname, pname
FROM manufacturers m, LATERAL get_product_names(m.id) pname;




これは内部結合ですので、現時点で製品をまったく持たないメーカーは結果に現れません。
こうしたメーカーの名前も結果に含めたければ以下のようにします。



SELECT m.name AS mname, pname
FROM manufacturers m LEFT JOIN LATERAL get_product_names(m.id) pname ON true;


互換性


当然ながら、SELECT文は標準SQLと互換性があります。
しかし、拡張機能や実現されていない機能もいくつかあります。
  
FROM句の省略


PostgreSQL™では、FROM句を省略することができます。
これによって、以下のように単純な式を計算させることができます。


SELECT 2+2;

 ?column?
----------
        4



他のSQLデータベースでは、このようなSELECTを行うためにはダミーの1行テーブルを使わなければならないものもあります。
   

空のSELECTリスト


SELECTの後の出力式のリストは空でも良く、このとき列数がゼロの結果テーブルが生成されます。
これは標準SQLでは有効な構文ではありません。
PostgreSQL™は列数がゼロのテーブルを許すので、それと整合性を保つために許しています。
しかし、DISTINCTを使う時は、空のリストを使うことはできません。
   

ASキーワードの省略


標準SQLでは、キーワードAS（省略可能）は、新しい列名が有効な列名（つまり予約済みのどのキーワードとも異なるもの）である場合は常に、出力列名の前から省くことができます。
PostgreSQL™には多少より強い制限があります。
新しい列名が予約済みか否かに関わらず何らかのキーワードに一致する場合はASが必要です。
推奨する実践方法は、今後のキーワードの追加と競合する可能性に備え、ASを使用する、または出力列名を二重引用符で括ることです。
   


FROM項目において標準およびPostgreSQL™では、未予約のキーワードである別名の前のASを省略することができます。
しかし、構文があいまいになるため、出力列名では実践的ではありません。
   

FROMでの副SELECTの別名の省略


標準SQLでは、FROMリスト内の副SELECTには別名が必要です。
PostgreSQL™では、この別名を省略できます。
   

ONLYと継承関係


標準SQLでは、SELECT * FROM ONLY (tab1), ONLY (tab2) WHERE ...のように、ONLYを記述する時にテーブル名の前後を括弧でくくることを要求します。
PostgreSQL™ではこの括弧を省略可能であるとみなしています。
   


PostgreSQL™では最後に*を付けることで
明示的に子テーブルを含めるというONLYではない動作を指定することができます。
標準ではこれを許していません。
   


（これらの点はONLYオプションをサポートするすべてのSQLコマンドで同様に適用されます。）
   

TABLESAMPLE句の制限


現在のところ、TABLESAMPLE句は通常のテーブルとマテリアライズドビューでのみ受け付けられます。
標準SQLでは、FROM句の任意の要素について適用可能であるべきとされています。
   

FROM内の関数呼び出し


PostgreSQL™では、FROMリストのメンバとして直接関数呼び出しを記述することができます。
標準SQLではこうした関数呼び出しを副SELECT内に囲む必要があります。
つまりFROM func(...) aliasはおおよそFROM LATERAL (SELECT func(...)) aliasと同じです。
暗黙的にLATERALであるとみなされることに注意してください。
標準ではFROM内のUNNEST()項目にはLATERAL構文を必要とするためです。
PostgreSQL™ではUNNEST()を他の集合を返す関数と同じものとして扱います。
   

GROUP BYとORDER BYにおける利用可能な名前空間


標準SQL-92では、ORDER BY句で使用できるのは、出力列名か序数のみであり、GROUP BY句で使用できるのは、入力列名からなる式のみです。
PostgreSQL™は、これらの句で両方が指定できるように拡張されています
（ただし、不明瞭さがある場合は標準の解釈が使用されます）。
さらに、PostgreSQL™ではどちらの句にも任意の式を指定できます。
式で使われる名前は、常に出力列名ではなく入力列の名前とみなされることに注意してください。
   


SQL:1999以降では、SQL-92と完全には上位互換でない、多少異なる定義が採用されています。
しかし、ほとんどの場合、PostgreSQL™はSQL:1999と同じ方法でORDER BYやGROUP BYを解釈します。
   

関数従属性


テーブルの主キーがGROUP BYリストに含まれる場合に限り、PostgreSQL™は（GROUP BYで列を省くことができる）関数従属性を認識します。
標準SQLでは、認識しなければならない追加の条件を規定しています。
   

LIMITおよびOFFSET


LIMITおよびOFFSET句はPostgreSQL™独自の構文ですが、MySQL™でも使用されています。
LIMIT句で説明したように、標準SQL:2008にて同じ機能のOFFSET ... FETCH {FIRST|NEXT} ...が導入されました。
この構文はIBM DB2™でも使用されています。
（Oracle™用に開発されたアプリケーションでは、これらの句の機能を実装するために自動生成されるrownum列を含めるという回避策を使用することが多いですが、PostgreSQLでは利用できません。）
   

FOR NO KEY UPDATE、FOR UPDATE、FOR SHARE、FOR KEY SHARE


FOR UPDATEは標準SQLに存在しますが、標準では、DECLARE CURSORのオプションとしてしか許されていません。
PostgreSQL™では、副SELECTなど任意のSELECTで許されます。
これは拡張です。
FOR NO KEY UPDATE、FOR SHARE、FOR KEY SHAREの亜種、およびNOWAITとSKIP LOCKEDオプションは標準にはありません。
   

WITH内のデータ変更文


PostgreSQL™ではWITH問い合わせとしてINSERT、UPDATE、DELETEおよびMERGEを使用できます。
これは標準SQLにはありません。
   

非標準句


DISTINCT ON ( ... )は標準SQLの拡張です。
   


ROWS FROM( ... )は標準SQLの拡張です。
   


WITHのMATERIALIZEDとNOT MATERIALIZEDオプションは標準SQLの拡張です。
   




名前
SELECT INTO — 問い合わせの結果からの新しいテーブルを定義する

概要

[ WITH [ RECURSIVE ] with_query [, ...] ]
SELECT [ ALL | DISTINCT [ ON ( expression [, ...] ) ] ]
    [ { * | expression [ [ AS ] output_name ] } [, ...] ]
    INTO [ TEMPORARY | TEMP | UNLOGGED ] [ TABLE ] new_table
    [ FROM from_item [, ...] ]
    [ WHERE condition ]
    [ GROUP BY expression [, ...] ]
    [ HAVING condition ]
    [ WINDOW window_name AS ( window_definition ) [, ...] ]
    [ { UNION | INTERSECT | EXCEPT } [ ALL | DISTINCT ] select ]
    [ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } ] [, ...] ]
    [ LIMIT { count | ALL } ]
    [ OFFSET start [ ROW | ROWS ] ]
    [ FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY ]
    [ FOR { UPDATE | SHARE } [ OF table_name [, ...] ] [ NOWAIT ] [...] ]


説明


SELECT INTOは新しいテーブルを作成し、そこに問い合わせによって計算したデータを格納します。
このデータは通常のSELECTのようにはクライアントに返されません。
新しいテーブルの列はSELECTの出力列に関連するデータ型と名前を持ちます。
  

パラメータ
	TEMPORARYまたはTEMP
	

このオプションが指定された場合、テーブルは一時テーブルとして作成されます。
詳細はCREATE TABLE(7)を参照してください。
    

	UNLOGGED
	

指定された場合、テーブルはログをとらないテーブルとして作成されます。
詳細はCREATE TABLE(7)を参照してください。
    

	new_table
	

作成するテーブルの名前です（スキーマ修飾名も可）。
     





その他のパラメータについては、SELECT(7)で詳細に説明されています。
  

注釈


CREATE TABLE ASは機能的にはSELECT INTOと同等です。
ECPGやPL/pgSQLではINTO句の解釈が異なるため、SELECT INTOという形式は使用できません。
そのため、CREATE TABLE AS構文を使用することをお勧めします。
さらに、CREATE TABLE ASは、SELECT INTOの機能に加え、さらに多くの機能を提供します。
  


CREATE TABLE ASとは対照的に、SELECT INTOではUSING methodでのテーブルアクセスメソッドやTABLESPACE tablespace_nameでのテーブルのテーブル空間のような属性を指定できません。
必要ならCREATE TABLE ASを使ってください。
そのため、新しいテーブルにはデフォルトテーブルアクセスメソッドが選ばれます。
より詳細な情報はdefault_table_access_methodを参照してください。
  

例


テーブルfilmsの最近の項目のみから構成される、新しいテーブルfilms_recentを作成します。



SELECT * INTO films_recent FROM films WHERE date_prod >= '2002-01-01';


互換性


標準SQLでは、SELECT INTOは新しいテーブルの作成ではなく、選択した値をホストプログラムのスカラ変数とするために使われます。
これは実際、ECPG（34章ECPG — C言語による埋め込みSQLを参照）やPL/pgSQL（41章PL/pgSQL — SQL手続き言語を参照）で見られる使用方法です。
PostgreSQL™において、テーブルを作成するSELECT INTOの用法は歴史的なものです。
他のSQL実装でもSELECT INTOをこのように使っているものがあります(が、ほとんどのSQL実装は、その代わりにCREATE TABLE ASをサポートしています)。
そのような互換性の考慮を除けば、新しいコードでは、この目的のためにはCREATE TABLE ASを使うのが最善です。
  

関連項目
CREATE TABLE AS(7)


名前
SET — 実行時パラメータを変更する

概要

SET [ SESSION | LOCAL ] configuration_parameter { TO | = } { value | 'value' | DEFAULT }
SET [ SESSION | LOCAL ] TIME ZONE { value | 'value' | LOCAL | DEFAULT }


説明


SETコマンドは実行時設定パラメータを変更します。
19章サーバ設定に列挙されている実行時パラメータの多くは稼働中にSETコマンドで変更できます。
（パラメータの中には、スーパーユーザとそのパラメータのSET権限を付与されたユーザだけが変更できるものもあります。
また、サーバあるいはセッションの始動後は変更できないパラメータもあります。）
SETは現行セッションで使用される値にのみ影響することに注意してください。
  


SET(またはSET SESSIONも同じ)が発行された後にトランザクションがアボートされると、トランザクションがロールバックした時点でSETコマンドの効力は失われます。
一度トランザクションがコミットされると、別のSETコマンドで上書きされない限り、セッションが終了するまでその効果が持続します。
  


SET LOCALの効果は、コミットのされたかどうかにかかわらず現在のトランザクションが終了するまでしか持続しません。
1つのトランザクション内でSETの後にSET LOCALが続く特殊な例を考えてみましょう。
この場合、トランザクションが終了するまではSET LOCAL値が有効ですが、その後（トランザクションがコミットされたとして）SET値が有効になります。
  


SETもしくはSET LOCALの効果は、このコマンドより以前のセーブポイントまでロールバックした場合は取り消されます。
  


SET LOCALを同じ変数に対するSETオプション（CREATE FUNCTION(7)を参照）を持つ関数内で使用する場合、SET LOCALコマンドの効果は関数終了時に消滅します。
つまり、関数が呼び出された時に有効だった値にとにかく戻されます。
これによりSET LOCALは、呼び出し元の値を保管し元に戻すというSETオプションを使用する利点を持ちつつ、関数内で動的または繰り返し変更されるパラメータ用に使用できます。
しかし、通常のSETコマンドでは上位の関数のSETオプションを上書きしてしまい、その効果はロールバックしない限り永続します。
  
注記


PostgreSQL™バージョン8.0から8.2まででは、SET LOCALの効果は、より以前のセーブポイントを解放すること、または、PL/pgSQL例外ブロックから正常終了することで取り消されました。
直観的ではないようですので、この動作は変更されました。
   


パラメータ
	SESSION
	

コマンドの有効範囲が現行セッションであることを指定します。
（SESSIONもLOCALも指定されていない場合は、これがデフォルトです。）
     

	LOCAL
	

コマンドの有効範囲が現行のトランザクションのみであることを指定します。
COMMITまたはROLLBACKの後は、再びセッションレベルの設定が有効になります。
これをトランザクションブロックの外側で実行すると、警告が発生しますが、それ以外には何の効果もありません。
     

	configuration_parameter
	

設定可能な実行時パラメータ名です。
利用可能なパラメータは、19章サーバ設定と以下に示します。
     

	value
	

パラメータの新しい値です。
値として、文字列定数、識別子、数字、あるいはこれらをカンマで区切ったリストを対象のパラメータで適切となるように、指定することができます。
DEFAULTと記述することで、パラメータをデフォルト値（つまり、現在のセッションでSETが実行されなかった時に設定される値）に再設定することができます。
     





19章サーバ設定に記載された設定パラメータの他に、SETコマンドを使用してのみ調整できるパラメータや特殊な構文を持つパラメータがいくつかあります。

   
	SCHEMA
	SET SCHEMA 'value'はSET search_path TO valueの別名です。
この構文を使用する場合は1つのスキーマのみを指定することができます。
      

	NAMES
	SET NAMES 'value'は、SET client_encoding TO valueの別名です。
      

	SEED
	

乱数ジェネレータ（random関数）用の内部シードを設定します。
（-1と1も含めて）-1から1までの浮動小数点数を値として設定できます。
      


シードはsetseed関数を呼び出すことでも設定可能です。


SELECT setseed(value);


	TIME ZONE
	
SET TIME ZONE 'value'はSET timezone TO 'value'の別名です。
SET TIME ZONE構文では、時間帯の指定に特殊な構文を使用できます。
有効な値の例を以下に示します。

       
	'America/Los_Angeles'
	

カリフォルニア州バークレイ用の時間帯です。
          

	'Europe/Rome'
	

イタリア用の時間帯です。
          

	-7
	

UTCから西に7時間分ずらした時間帯です（PDTと同じです）。
正の値はUTCから東方向です。
          

	INTERVAL '-08:00' HOUR TO MINUTE
	

UTCから西に8時間分ずらした時間帯です（PSTと同じです）。
          

	LOCAL, DEFAULT
	

時間帯をユーザのローカルな時間帯（サーバのデフォルトのtimezone値）に設定します。
          




      


時間帯を数字あるいは時間で指定した時は、内部的にPOSIXの時間帯構文として解釈されます。
例えば、SET TIME ZONE -7とした後、SHOW TIME ZONEを実行すると、その結果は<-07>+07となります。
      


時間帯の省略形はSETではサポートされていません。時間帯に関する詳細は「時間帯」を参照してください。
      




  

注釈


set_config関数は等価な機能を提供します。
「構成設定関数」を参照してください。
また、pg_settingsシステムビューを更新することで、SETと同じことを実行することができます。
  

例


   スキーマの検索パスを設定します。


SET search_path TO my_schema, public;


  


日付のスタイルを、伝統的なPOSTGRES™入力方式に設定し、さらに「day before month(月の前に日)」を使います。


SET datestyle TO postgres, dmy;


  


   時間帯をカリフォルニア州バークレイに設定します。


SET TIME ZONE 'America/Los_Angeles';


  


時間帯をイタリアに設定します。


SET TIME ZONE 'Europe/Rome';


互換性


SET TIME ZONEは標準SQLで定義された構文を拡張したものです。
標準では数値による時間帯オフセットしか使用できないのに対し、PostgreSQL™では、より柔軟に時間帯を指定することができます。
SETが持つその他の機能は、全てPostgreSQL™の拡張です。
  

関連項目
RESET(7), SHOW(7)


名前
SET CONSTRAINTS — 現在のトランザクションの制約検査のタイミングを設定する

概要

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }


説明


SET CONSTRAINTSは、現在のトランザクションにおける制約検査の動作を設定します。
IMMEDIATE制約は、1つの文の実行が終わるごとに検査されます。
DEFERRED制約は、トランザクションがコミットされるまで検査されません。
全ての制約は、IMMEDIATEかDEFERREDのどちらかのモードを持ちます。
  


制約にはその生成時点で、DEFERRABLE INITIALLY DEFERRED、DEFERRABLE INITIALLY IMMEDIATE、NOT DEFERRABLEの3つのうちのいずれかの性質が与えられます。
3番目のNOT DEFERRABLE制約は、常にIMMEDIATEモードであり、SET CONSTRAINTSコマンドの影響を受けません。
DEFERRABLE INITIALLY DEFERRED制約とDEFERRABLE INITIALLY IMMEDIATE制約の2つは、トランザクションを指定されたモードで開始しますが、トランザクション内でSET CONSTRAINTSを使用するとその振舞いを変更することができます。
  


SET CONSTRAINTSに制約名のリストをつけて実行すると、指定された制約（これらは全て遅延可能でなければなりません）のみのモードが変更されます。
制約名はそれぞれスキーマ修飾可能です。
スキーマ名が指定されていない場合、現在のスキーマ検索パスを使用して、最初に一致する名前を見つけます。
SET CONSTRAINTS ALLは遅延可能な全ての制約のモードを変更します。
  


SET CONSTRAINTSが制約のモードをDEFERREDからIMMEDIATEに変更した場合は、新しい制約モードが遡及的に有効になります。
つまり、トランザクションの終了時に検査される予定だった未検査のデータ変更が、SET CONSTRAINTSコマンドの実行中に検査されます。
もし、この時に何らかの制約違反があった場合、SET CONSTRAINTSは失敗します
（そして、制約モードは変更されません）。
したがって、SET CONSTRAINTSを利用すれば、トランザクションの特定の時点で強制的に制約の検査を実行することができます。
  


現在UNIQUE、PRIMARY KEY、REFERENCES（外部キー）、EXCLUDE制約のみがこの設定の影響を受けます。
NOT NULLおよびCHECK制約は、行が挿入または変更された時に（文の終了時ではありません）、常に即座に検査されます。
DEFERRABLE宣言されていない一意性制約および排除制約も即座に検査されます。
  


また、「制約トリガ」として宣言されたトリガの発行もこの設定により制御されます。
これらは関連する制約が検査されるはずの時に同時に発行されます。
  

注釈


PostgreSQL™では、スキーマ内で制約名が一意となることを要求していません（テーブル単位での一意性のみ要求します）ので、指定した制約名に複数が一致する可能性があります。
この場合SET CONSTRAINTSは一致するすべてに対して動作します。
スキーマ修飾がない名前では、検索パス上のあるスキーマに1つまたは複数の一致があると、パス上のそれより後にあるスキーマは検索されません。
  


このコマンドが変更するのは、現在のトランザクション内の制約の動作のみです。
トランザクションブロックの外部でこのコマンドが実行されても、警告を発するだけで、他には何の効果もありません。
  

互換性


このコマンドは、標準SQLで定義された動作に準拠しています。
ただし、PostgreSQL™ではNOT NULLおよびCHECK制約に適用できないという制限があります。
またPostgreSQL™は非遅延一意性制約を、標準が提案する文の終わりにではなく、即座に検査します。
  



名前
SET ROLE — 現在のセッションにおける現在のユーザ識別子を設定する

概要

SET [ SESSION | LOCAL ] ROLE role_name
SET [ SESSION | LOCAL ] ROLE NONE
RESET ROLE


説明


このコマンドは現在のSQLセッションにおける現在のユーザ識別子をrole_nameに設定します。
ロール名は識別子あるいは文字列リテラルのどちらを使用しても記述することができます。
SET ROLEの後、SQLコマンドに対する権限検査は、指定されたロールで普通にログインした場合と同様に行われます。
SET ROLEとSET SESSION AUTHORIZATIONは例外であることに注意してください。これらに対する権限検査は、それぞれ現在のセッションユーザと初期セッションユーザ(認証されたユーザ)を使い続けます。
  


現在のセッションユーザは、直接的にまたはSETオプションを使用したメンバシップの連鎖を介して間接的に、指定するrole_nameに対してSETオプションを持つことが必要です。
（セッションユーザがスーパーユーザであった場合、任意のロールを選択することができます。）
  


SESSIONおよびLOCAL修飾子は通常のSETコマンドと同様に動作します。
  


SET ROLE NONEは現在のユーザ識別子をsession_userにより返される現在のセッションユーザ識別子に設定します。
RESET ROLEは現在のユーザ識別子を、設定が存在するのならコマンドラインオプション、ALTER ROLEやALTER DATABASEで指定される接続時の設定にします。
そうでなければ、RESET ROLEは現在のユーザ識別子を現在のセッションユーザ識別子に設定します。
この構文はすべてのユーザが実行できます。
  

注釈


このコマンドを使用して、権限を追加することも制限することもできます。
セッションユーザのロールにWITH INHERIT TRUEメンバ資格が付与されている場合、そのロールのすべての権限が自動的に付与されます。
この場合、SET ROLEによって、対象のロールが直接所有している権限と継承している権限を除くすべての権限が事実上削除されます。
一方、セッションユーザのロールにWITH INHERIT FALSEメンバ資格が付与されている場合、デフォルトでは付与されたロールの権限にアクセスできません。
ただし、ロールにWITH SET TRUEが付与されている場合、セッションユーザはSET ROLEを使用して、セッションユーザに直接権限を付与する権限を削除し、代わりに指定されたロールに対して使用可能な権限を取得できます。
ロールにWITH INHERIT FALSE, SET FALSEが付与されている場合、SET ROLEの有無にかかわらず、その権限を行使できません。
  


SET ROLEの影響はSET SESSION AUTHORIZATIONと似ていますが、行われる権限検査はかなり異なります。
また、SET SESSION AUTHORIZATIONは、それ以降に実行するSET ROLEコマンドでどのロールに変更できるかを決定しますが、SET ROLEを使用してロールを変更した場合、それ以降に実行するSET ROLEコマンドで変更可能なロール群は変更されません。
  


SET ROLEはロールのALTER ROLE設定で指定されたセッション変数を処理しません。
これはログイン時のみ適用されます。
  


SET ROLEをSECURITY DEFINER関数内で使用することはできません。
  

例

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter        | peter

SET ROLE 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter        | paul


互換性


PostgreSQL™では、識別子構文（"rolename"）を使用できます。
しかし、標準SQLではロール名を文字列リテラルとして記述しなければなりません。
SQLでは、トランザクション内でこのコマンドを実行することを許可していません。
PostgreSQL™では、このように制限する理由がありませんので、この制限はありません。
SESSION、LOCAL修飾子、および、RESET構文はPostgreSQL™の拡張です。
  

関連項目
SET SESSION AUTHORIZATION(7)


名前
SET SESSION AUTHORIZATION — セッションのユーザ識別子、現在のセッションの現在のユーザ識別子を設定する

概要

SET [ SESSION | LOCAL ] SESSION AUTHORIZATION user_name
SET [ SESSION | LOCAL ] SESSION AUTHORIZATION DEFAULT
RESET SESSION AUTHORIZATION


説明


このコマンドはセッションのユーザ識別子、ならびに、現在のSQLセッションにおける現在のユーザ識別子をuser_nameに設定します。
ユーザ名は、識別子、あるいは文字列リテラルとして記述することもできます。
このコマンドを使用すると、例えば、一時的に非特権ユーザとなり、その後に特権ユーザに戻るといったことが可能です。
  


セッションのユーザ識別子はクライアントから渡される（おそらく認証済みの）ユーザ名で初期化されます。
現在のユーザ識別子は通常セッションのユーザ識別子と同一ですが、SECURITY DEFINER関数や類似の機能によって一時的に変更される可能性があります。
SET ROLEでこれを変更することもできます。
現在のユーザ識別子は権限の検査に影響を与えます。
  


セッションのユーザ識別子は、最初のセッションユーザ（認証されたユーザ）がスーパーユーザ権限を持っている場合にのみ変更できます。
スーパーユーザ権限を持っていない場合、認証されたユーザ名を指定した場合のみ、このコマンドは受け入れられます。
  


SESSION修飾子およびLOCAL修飾子は、通常のSETコマンドの場合と同じように機能します。
  


DEFAULT構文およびRESET構文は、セッションと現在のユーザ識別子を元の認証ユーザに戻します。
これらの構文は全てのユーザが実行できます。
  

注釈


SET SESSION AUTHORIZATIONをSECURITY DEFINER関数内で使用することはできません。
  

例

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter        | peter

SET SESSION AUTHORIZATION 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 paul         | paul


互換性


標準SQLでは、user_nameリテラルの指定方法としてその他の表現を使用できます。
しかし、この違いは実用上は重要ではありません。
PostgreSQL™では識別子構文（"username"）を使用できますが、SQLでは使用できません。
SQLではこのコマンドをトランザクション中に実行することができませんが、PostgreSQL™では、禁止する理由が見当たらないため、この制限を付けていません。
SESSION修飾子およびLOCAL修飾子とRESET構文は、PostgreSQL™の拡張です。
  


標準SQLでは、このコマンドを実行するために必要な権限は、実装に依存するとされています。
  

関連項目
SET ROLE(7)


名前
SET TRANSACTION — 現在のトランザクションの特性を設定する

概要

SET TRANSACTION transaction_mode [, ...]
SET TRANSACTION SNAPSHOT snapshot_id
SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]


ここでtransaction_modeは以下のいずれかです。

    ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
    READ WRITE | READ ONLY
    [ NOT ] DEFERRABLE


説明


SET TRANSACTIONは現在のトランザクションの特性を設定します。
これはそれより後のトランザクションには影響を及ぼしません。
SET SESSION CHARACTERISTICSは、セッションにおけるそれ以後のトランザクションのデフォルトのトランザクション特性を設定します。
個々のトランザクションについてSET TRANSACTIONによりデフォルト特性を上書きすることができます。
  


利用可能なトランザクション特性はトランザクションの分離レベル、トランザクションのアクセスモード（読み書きモードもしくは読み取り専用モード）、遅延モードです。
さらに、セッションのデフォルトとしてではなく、現在のトランザクションのみに対してスナップショットを選択することができます。
  


トランザクションの分離レベルは、並行して実行中の他のトランザクションが存在する場合、そのトランザクションが見ることができるデータを決定するものです。

   
	READ COMMITTED
	

1つひとつの文から見ることができるのは、その文が開始される前にコミットされた行のみです。
これがデフォルトです。
      

	REPEATABLE READ
	

現在のトランザクションにおける全ての文は、トランザクションで最初の問い合わせ文またはデータを変更する文が実行される前にコミットされた行だけを見ることができます。
      

	SERIALIZABLE
	

現在のトランザクションにおける全ての文は、トランザクションで最初の問い合わせ文またはデータを変更する文が実行される前にコミットされた行だけを見ることができます。
同時実行のシリアライザブルトランザクションの中で読み取りと書き込みのパターンによって、これらのトランザクションの実行を直列に(同時に一度)行うことができない状況になる場合、その内１つのトランザクションはserialization_failureというエラーでロールバックされます。
      






標準SQLでは、READ UNCOMMITTEDというもう1つのレベルを定義しています。
PostgreSQL™ではREAD UNCOMMITTEDはREAD COMMITTEDとして扱われます。
  


トランザクション分離レベルは、そのトランザクションにおける最初の問い合わせ文やデータ更新文（SELECT、INSERT、DELETE、UPDATE、MERGE、FETCH、COPY）が実行された後では変更できません。
トランザクションの分離や同時実行制御についての詳細情報は13章同時実行制御を参照してください。
  


トランザクションのアクセスモードは、そのトランザクションが読み書き可能か読み取り専用かを決定します。
デフォルトは読み書き可能です。
読み取り専用のトランザクションでは、以下のSQLコマンドの実行が制限されます。
書き込み対象のテーブルが一時テーブルでない場合、INSERT、UPDATE、DELETE、MERGE、COPY FROMなどのSQLコマンドを実行できません。
すべてのCREATE、ALTER、DROP系のSQLコマンド、COMMENT、GRANT、REVOKE、TRUNCATEは、実行できません。
さらに、上述のコマンドが含まれるEXPLAIN ANALYZEとEXECUTEコマンドも実行できません。
これは読み取り専用の高レベルの概念であり、ディスクへの書き込みをすべて防ぐわけではありません。
  


DEFERRABLEトランザクション属性は、トランザクションがSERIALIZABLEかつREAD ONLYである場合のみ効果があります。
あるトランザクションでこれら３つの属性がすべて選択されている場合、最初にスナップショットを獲得する時にブロックされる可能性があります。
その後、そのトランザクションをSERIALIZABLEトランザクションの通常のオーバーヘッドを伴わず、またシリアライズ処理の失敗を引き起こす恐れやシリアライズ処理の失敗によりキャンセルされる恐れもなく実行することができます。
これは時間がかかるレポート処理やバックアップによく適しています。
  


SET TRANSACTION SNAPSHOTコマンドにより、既存のトランザクションと同じスナップショットを持つ新しいトランザクションを実行することができます。
既存のトランザクションはpg_export_snapshot関数(「スナップショット同期関数」参照)を使用してそのスナップショットを公開していなければなりません。
この関数はスナップショット識別子を返します。
どのスナップショットを取り込むかを指定するために、この識別子をSET TRANSACTION SNAPSHOTに渡さなければなりません。
このコマンドでは、この識別子を例えば'00000003-0000001B-1'のようにリテラル文字列として記述しなければなりません。
SET TRANSACTION SNAPSHOTはトランザクションの開始時、つまり、トランザクションの最初の問い合わせまたはデータ変更文(SELECT、INSERT、DELETE、UPDATE、MERGE、FETCH、COPY)の前でのみ実行できます。
さらに、そのトランザクションを前もってSERIALIZABLEまたはREPEATABLE READ分離レベルに設定していなければなりません。
(さもないと、READ COMMITTEDではコマンドそれぞれに対して新しいスナップショットを取りますので、このスナップショットは即座に破棄されます。)
取り込むトランザクションがSERIALIZABLE分離レベルを使用している場合、スナップショットを公開したトランザクションもこの分離レベルを使用しなければなりません。
また、読み取り専用ではないシリアライザブルトランザクションは、読み取り専用トランザクションから公開されたスナップショットを取り込むことができません。
  

注釈


SET TRANSACTIONを、その前にSTART TRANSACTIONやBEGINを発行することなく実行した場合、警告が発生しますが、それ以外は何の効果もありません。
  


BEGINあるいはSTART TRANSACTIONで目的のtransaction_modesを指定すれば、SET TRANSACTIONを使わずに済ませることができます。
しかしSET TRANSACTION SNAPSHOTに対応するオプションはありません。
  


セッションのデフォルトのトランザクションモードは、設定パラメータdefault_transaction_isolation、default_transaction_read_only、default_transaction_deferrableで設定したり確認したりすることができます。
（実際、SET SESSION CHARACTERISTICSはこれらの変数をSETで設定することと同等の冗長な記述に過ぎません。）
したがって、トランザクションモードのデフォルトは設定ファイルやALTER DATABASEなどで設定可能です。
詳細は19章サーバ設定を参照してください。
  


現在のトランザクションモードは、同様に設定パラメータtransaction_isolation、transaction_read_only、transaction_deferrableで設定したり確認したりすることができます。
このパラメータの1つを設定することは、可能ならば同じ制限の下で対応するSET TRANSACTIONオプションと同じように動作します。
しかしながら、設定ファイル内や動作中のSQL以外のところからは、これらのパラメータを設定できません。
  

例


既存のトランザクションと同じスナップショットを持つトランザクションを新しく開始するためには、まず既存のトランザクションからスナップショットを公開します。
以下の例に示すように、これはスナップショット識別子を返します。



BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SELECT pg_export_snapshot();
 pg_export_snapshot
---------------------
 00000003-0000001B-1
(1 row)




そして、新規に開始したトランザクションの先頭のSET TRANSACTION SNAPSHOTでこのスナップショット識別子を渡します。



BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION SNAPSHOT '00000003-0000001B-1';


互換性


このコマンドは標準SQLで定義されています。
DEFERRABLEトランザクションモードとSET TRANSACTION SNAPSHOT構文は例外であり、PostgreSQL™の拡張です。
  


標準SQLではデフォルトのトランザクション分離レベルはSERIALIZABLEです。
PostgreSQL™では、通常、READ COMMITTEDがデフォルトですが、これは上述の通り変更可能です。
  


標準SQLでは、もう1つ、診断領域の大きさというトランザクション特性があり、このコマンドで設定可能です。
この概念は組み込みSQL固有のものなので、PostgreSQL™サーバには実装されていません。
  


標準SQLでは、連続するtransaction_modesの間にはカンマが必要です。
歴史的な理由よりPostgreSQL™ではカンマを省略することができます。
  



名前
SHOW — 実行時パラメータの値を表示する

概要

SHOW name
SHOW ALL


説明


SHOWは、実行時パラメータの現在の設定を表示します。
これらの変数は、SET文、postgresql.conf設定ファイルの編集、環境変数PGOPTIONS（libpqの使用時、あるいはlibpqを使用したアプリケーションの使用時）、または、postgresサーバの始動時のコマンドラインフラグで設定することができます。
詳細は19章サーバ設定を参照してください。
  

パラメータ
	name
	

実行時パラメータの名前です。
利用可能なパラメータは19章サーバ設定とSET(7)リファレンスページに記載されています。
さらに、表示のみ可能で、変更できない次のようなパラメータがあります。

      
	SERVER_VERSION
	

          サーバのバージョン番号を示します。
         

	SERVER_ENCODING
	

          サーバ側の文字集合符号化方式を表示します。
          現時点では、符号化方式はデータベース作成時に決定されるため、このパラメータは表示のみ可能で、変更することができません。
         

	IS_SUPERUSER
	

          現在のロールがスーパーユーザ権限を持つ場合は真になります。
         




	ALL
	

      全ての設定パラメータの値とその説明を表示します。
     




注釈


関数current_settingは同等の出力を生成します。
「構成設定関数」を参照してください。
また、pg_settingsシステムビューは同じ情報を生成します。

  

例


パラメータDateStyleの現在の設定を表示します。



SHOW DateStyle;
 DateStyle
-----------
 ISO, MDY
(1 row)


  


パラメータgeqoの現在の設定を表示します。


SHOW geqo;
 geqo
------
 on
(1 row)


  


   全設定を表示します。


SHOW ALL;
            name         | setting |                description
-------------------------+---------+-------------------------------------------------
 allow_system_table_mods | off     | Allows modifications of the structure of ...
    .
    .
    .
 xmloption               | content | Sets whether XML data in implicit parsing ...
 zero_damaged_pages      | off     | Continues processing past damaged page headers.
(196 rows)


互換性


   SHOWコマンドはPostgreSQL™の拡張です。
  

関連項目
SET(7), RESET(7)


名前
START TRANSACTION — トランザクションブロックを開始する

概要

START TRANSACTION [ transaction_mode [, ...] ]


ここでtransaction_modeは以下のいずれかです。

    ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
    READ WRITE | READ ONLY
    [ NOT ] DEFERRABLE


説明


このコマンドは新しいトランザクションブロックを開始します。
分離レベルや読み取り/書き込みモード、遅延モードを指定すると、SET TRANSACTIONが実行された時のように、新しいトランザクションはそれらの特性を持ちます。
このコマンドの機能は、BEGINコマンドと同じです。
  

パラメータ


この文のパラメータの意味についてはSET TRANSACTION(7)を参照してください。
  

互換性


標準SQLでは、トランザクションブロック開始時のSTART TRANSACTIONコマンドの発行は必須ではありません。
任意のSQLコマンドが暗黙的にブロックを開始するからです。
PostgreSQL™では、START TRANSACTION（もしくはBEGIN）が実行されていない状態で発行されたコマンドは、その直後に、暗黙的なCOMMITが発行されたかのように動作します。
これは「自動コミット」と呼ばれます。
他のリレーショナルデータベースシステムの中にも、簡便性のために自動コミット機能を提供しているものもあります。
  


DEFERRABLE transaction_modeはPostgreSQL™の言語拡張です。
  


標準SQLでは、連続するtransaction_modesの間にはカンマが必須です。
しかし、PostgreSQL™では歴史的な理由によりカンマを省略することができます。
  


SET TRANSACTION(7)の互換性の節も参照してください。
  

関連項目
BEGIN(7), COMMIT(7), ROLLBACK(7), SAVEPOINT(7), SET TRANSACTION(7)


名前
TRUNCATE — 1テーブルまたはテーブル群を空にする

概要

TRUNCATE [ TABLE ] [ ONLY ] name [ * ] [, ... ]
    [ RESTART IDENTITY | CONTINUE IDENTITY ] [ CASCADE | RESTRICT ]


説明


TRUNCATEはテーブル群から全ての行を素早く削除します。
各テーブルに対して条件指定のないDELETEコマンドの実行と同じ効果を持ちますが、実際にテーブルをスキャンしない分、このコマンドの方が高速です。
さらに、その後にVACUUM操作を行うことなく、このコマンドはディスク領域を即座に回収します。
このコマンドは、大きなテーブルを対象とする場合に最も有用です。
  

パラメータ
	name
	

空にするテーブルの名前です（スキーマ修飾名も可）。
テーブル名の前にONLYが指定されている場合、そのテーブルのみを空にします。
ONLYが指定されていない場合、そのテーブルとそのすべての子テーブル（もしあれば）を空にします。
オプションで、テーブル名の後に*を指定することで、明示的に継承するテーブルも含まれることを示すことができます。
     

	RESTART IDENTITY
	

消去されるテーブルの列により所有されるシーケンスを自動的に再開始させます。
     

	CONTINUE IDENTITY
	

シーケンスの値を変更しません。これがデフォルトです。
     

	CASCADE
	

指定されたテーブル、または、CASCADEにより削除対象テーブルとされたテーブルを参照する外部キーを持つテーブルすべてを自動的に空にします。
     

	RESTRICT
	

外部キーにより対象のテーブルを参照するテーブルのいずれかがこのコマンドで指定されていない場合、操作を拒否します。
これがデフォルトです。
     




注釈


テーブルを空にするためにはそのテーブルにTRUNCATE権限を持たなければなりません。
  


TRUNCATEは操作対象の各テーブルに対するACCESS EXCLUSIVEロックを獲得します。
これは、この他のそのテーブルに対する同時操作をすべてブロックします。
RESTART IDENTITYが指定された場合、初期化対象のシーケンスがあると、それは同様に排他ロックされます。
テーブルへの同時アクセスが必要ならば、代わりに DELETEコマンドを使用しなければなりません。
  


そのテーブルが他のテーブルから外部キーで参照されている場合、その同じコマンドでそれらのテーブルをすべて空にするように指定していない限り、TRUNCATEを使用することはできません。
このような場合に有効性を検査するならばテーブルスキャンが必要になりますが、テーブルスキャンを行うのであれば、このコマンドの利点がなくなるからです。
CASCADEオプションを使用して、自動的にすべての依存テーブルを含めることができます。
しかし、意図しないデータ損失の可能性がありますので、このオプションを使用する時には十分に注意してください。
空にするテーブルがパーティションの場合、兄弟のパーティションには手をつけませんが、参照しているテーブルすべてとそのパーティションすべてに対しては、区別することなくカスケードが起こります。
  


TRUNCATEは、テーブルにON DELETEトリガがあっても、それを発行しません。
しかし、ON TRUNCATEトリガを発行します。
テーブルのいずれかにON TRUNCATEトリガが定義されている場合、何らかの消去が行われる前にすべてのBEFORE TRUNCATEトリガが発行されます。
また、最後の消去がなされ、シーケンスが初期化された後すべてのAFTER TRUNCATEトリガが発行されます。
トリガは処理されるテーブルの順番（コマンドに列挙されたものが先、その後にカスケードのために追加されたもの）に発行されます。
  


TRUNCATEはMVCC的に安全ではありません。
同時実行中のトランザクションが、削除の前に取得したスナップショットを使っている場合、削除の後、テーブルはそのトランザクションからは空に見えます。
（詳しくは「警告」を参照してください。）
  


テーブル内のデータという観点では、TRUNCATEはトランザクション的に安全です。
前後のトランザクションがコミットされなければ消去は安全にロールバックされます。
  


RESTART IDENTITYが指定された場合、暗黙的にALTER SEQUENCE RESTART操作がトランザクション的に行われます。
つまりそれを囲むトランザクションがコミットされなければ、ロールバックされます。
トランザクションがロールバックされる前に、初期化したシーケンスに対してさらにシーケンス操作を行う場合には注意してください。
シーケンスに対するこれらの操作の影響はロールバックされますが、currval()への影響はロールバックされません。
つまりトランザクションの後、currval()は、シーケンス自体と値とが一貫性のない状態になっていたとしても、失敗したトランザクションの内側で得た最後のシーケンス値を継続して反映します。
これは、失敗したトランザクションの後のcurrval()の通常の動作と同じです。
  


TRUNCATEは、外部データラッパーによりサポートされていれば、外部テーブルに対して使えます。例えば、postgres_fdwを参照してください。
  

例


bigtableテーブルおよびfattableテーブルを空にします。



TRUNCATE bigtable, fattable;


  


以下も同じですが、ここでは関連するシーケンスジェネレータをすべてリセットします。



TRUNCATE bigtable, fattable RESTART IDENTITY;


  


othertableテーブル、および、外部キー制約によりothertableを参照するすべてのテーブルを空にします。



TRUNCATE othertable CASCADE;


互換性


標準SQL:2008には、TRUNCATE TABLE tablenameという構文のTRUNCATEコマンドが含まれます。
CONTINUE IDENTITY/RESTART IDENTITY句も標準に記載され、関連してはいるのですが、若干異なります。
標準では、このコマンドの同時実行に関する動作の一部は実装に依存するものとされています。
このため、上記注釈を検討し、必要に応じて他の実装と比べなければなりません。
  

関連項目
DELETE(7)


名前
UNLISTEN — 通知の監視を停止する

概要

UNLISTEN { channel | * }


説明


UNLISTENを使うと、既存のNOTIFYイベントの登録を削除することができます。
UNLISTENは、現在のPostgreSQL™セッションにある、nameという名前の通知チャネルのリスナ登録を取り消します。
ワイルドカード*を指定すると、現在のセッションにある全てのリスナ登録が取り消されます。
  


NOTIFY(7)には、LISTENとNOTIFYについてのより広範な説明があります。
  

パラメータ
	channel
	

通知チャネルの名称です（任意の識別子）。
     

	*
	

このセッションにおける、全ての監視登録をクリアします。
     




注釈


監視を行っていない通知チャネルに対してもこのコマンドは実行できます。
警告やエラーは表示されません。
  


   セッション終了時に、自動的にUNLISTEN *が実行されます。
  


UNLISTENを実行したトランザクションは二相コミット用を準備することはできません。
  

例


   登録を行います。



LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.


  


UNLISTENが実行されると、その後のNOTIFYメッセージは無視されます。



UNLISTEN virtual;
NOTIFY virtual;

-- NOTIFYイベントを受け取りません。


互換性


   標準SQLにはUNLISTENコマンドはありません。
  

関連項目
LISTEN(7), NOTIFY(7)


名前
UPDATE — テーブルの行を更新する

概要

[ WITH [ RECURSIVE ] with_query [, ...] ]
UPDATE [ ONLY ] table_name [ * ] [ [ AS ] alias ]
    SET { column_name = { expression | DEFAULT } |
          ( column_name [, ...] ) = [ ROW ] ( { expression | DEFAULT } [, ...] ) |
          ( column_name [, ...] ) = ( sub-SELECT )
        } [, ...]
    [ FROM from_item [, ...] ]
    [ WHERE condition | WHERE CURRENT OF cursor_name ]
    [ RETURNING [ WITH ( { OLD | NEW } AS output_alias [, ...] ) ]
                { * | output_expression [ [ AS ] output_name ] } [, ...] ]


説明


UPDATEは、条件を満たす全ての行の指定した列の値を変更します。
SET句には、変更する列のみを指定する必要があります。
SET句にて明示的に指定されなかった列の値は変更されません。
  


データベース内の他のテーブルの情報を使用してテーブルを変更するには、2つの方法があります。
1つは副SELECTを使用する方法、もう1つはFROM句で追加のテーブルを指定する方法です。
どちらの方法が適切であるかは状況次第です。
  


RETURNING句を指定すると、UPDATEは実際に更新された各行に基づいて計算された値を返すようになります。
そのテーブルの列およびFROMで指定された他のテーブルの列を使用した式を計算できます。
デフォルトではテーブル列の新しい（更新された後の）値が使用されますが、古い（更新される前の）値を要求することも可能です。
RETURNINGリストの構文はSELECTの出力リストと同一です。
  


更新を行うためには、そのテーブルまたは少なくとも更新対象の列についてUPDATE権限を持たなければなりません。
またexpressionsやconditionで値を読み込む列に対するSELECT権限も必要になります。
  

パラメータ
	with_query
	

WITH句によりUPDATE問い合わせ内で名前で参照可能な１つ以上の副問い合わせを指定することができます。
「WITH問い合わせ（共通テーブル式）」とSELECT(7)を参照してください。
     

	table_name
	

更新対象のテーブルの名前です（スキーマ修飾名でも可）。
テーブルの前にONLYを指定すると、指名されたテーブルでのみマッチする行が更新されます。
ONLYを指定しないと、指名したテーブルから継承されたすべてのテーブルでもマッチする行が同時に更新されます。
オプションで、テーブル名の後に*を指定して、明示的に子テーブルが含まれることを示すこともできます。
     

	alias
	

対象テーブルの代替名です。
別名が指定されると、テーブルの実際の名前は完全に隠蔽されます。
たとえば、UPDATE foo AS fでは、UPDATE文の残りの部分ではfooではなくfとしてこのテーブルを参照しなければなりません。
     

	column_name
	

table_nameで指名されたテーブル内の列名です。
必要に応じて、列名を副フィールド名や配列の指示子で修飾することも可能です。
対象列の指定にはテーブル名を含めないでください。
たとえば、UPDATE table_name SET table_name.col = 1は無効です。
     

	expression
	

列に代入する式です。
この式では、テーブル内の対象列やその他の列の変更前の値を使用することができます。
     

	DEFAULT
	

列にデフォルト値を設定します（デフォルト式が割り当てられていない場合はNULLになります）。
識別列には関連するシーケンスにより生成された新しい値が設定されます。
生成列に対して、これを指定することは許されていますが、単に生成式から列を計算するという普通の振る舞いを指定するだけです。
     

	sub-SELECT
	

その前の括弧内の列リストに列挙されているのと同じ数の出力列を生成するSELECT副問い合わせです。
副問い合わせは実行時に最大でも1行しか生成してはいけません。
1行だけ生成されたときは、各列の値が対象の列に代入されます。
1行も生成されなかったときは、対象の列にNULL値が代入されます。
副問い合わせは、更新対象のテーブルの現在行の古い値を参照することができます。
     

	from_item
	

WHERE条件や更新用の式において、他のテーブルの列を指定するために使用するテーブル式です。
これはSELECT文のFROM句と同じ文法を使います。例えば、テーブル名の別名が指定できます。
自己結合を行う場合を除き、from_itemに更新対象のテーブルを繰り返してはいけません（自己結合を行う場合は、from_item内で更新対象のテーブルとその別名を指定しておく必要があります）。
     

	condition
	

      boolean型の値を返す式です。
      この式がtrueを返す行のみが更新されます。
     

	cursor_name
	

WHERE CURRENT OF条件で使用されるカーソルの名前です。
更新対象の行は、そのカーソルからもっとも最近に取り出された行です。
カーソルはUPDATEの対象テーブルに対するグループ化のない問い合わせでなければなりません。
WHERE CURRENT OFを論理条件といっしょに指定することはできません。
WHERE CURRENT OF付きのカーソル使用に関する情報についてはDECLARE(7)を参照してください。
     

	output_alias
	

RETURNINGリスト内のOLDまたはNEW行のオプションの代替名です。
     


デフォルトでは、対象テーブルの古い値はOLD.column_nameまたはOLD.*と書くことで、新しい値はNEW.column_nameまたはNEW.*と書くことで返せます。
別名が提供されている場合、これらの名前は隠され、新旧の行は別名を使用して参照しなければなりません。
例えばRETURNING WITH (OLD AS o, NEW AS n) o.*, n.*です。
     

	output_expression
	

各行を更新した後に計算され、UPDATEによって返される式です。
この式には、table_nameまたはFROMで指定したテーブル（複数可）の任意の列名を使用することができます。
すべての列を返す場合は*と記載してください。
     


列名または*は、OLDもしくはNEW、またはOLDもしくはNEWに対応するoutput_aliasを使って修飾することで、古い値または新しい値を返します。
非修飾の列名、*、対象テーブル名または別名を使用して修飾された列名または*は、新しい値を返します。
     

	output_name
	

返される列で使用される名前です。
     




出力


正常に処理が終わると、UPDATEコマンドは以下の形式のコマンドタグを返します。


UPDATE count



countは、合致したが変更されなかった行を含む、更新された行数です。
この数は、BEFORE UPDATEトリガにより更新が抑止された場合、conditionに合致した行より少なくなる可能性があることに注意してください。
countが0の場合、問い合わせによって更新された行がなかったことを示します
（これはエラーとはみなされません）。
  


UPDATEコマンドがRETURNING句を持つ場合、その結果は、RETURNINGリストで定義した列と値を持ち、そのコマンドで更新された行全体に対して計算を行うSELECT文の結果と似たものになるでしょう。
  

注釈


FROM句が存在する場合、基本的に、対象テーブルとfrom_itemリストで指定されたテーブルが結合され、この結合の出力行が対象テーブルの更新操作の結果となります。
FROM句を使用する場合、更新対象テーブルの1行に対して、結合結果が複数行にならないように注意してください。
言い換えると、対象テーブルの個々の行は、他テーブルの複数の行と結合すべきではありません。
結合結果が複数行になった場合、対象行の更新には結合結果のいずれか1行のみが使用されますが、どの行が使用されるかは簡単には予測できません。
  


このような不定性の問題があるため、他テーブルの参照は副SELECT内のみに留めておいた方がより安全です（ただし、結合よりも可読性や実行速度は低下します）。
  


パーティションテーブルの場合、行を更新することによって含んでいるパーティションのパーティション制約を満たさなくなることがありえます。
その場合、この行がそのパーティション制約を満たす他のパーティションがパーティションツリー内にあれば、行はそのパーティションに移されます。
もし、そのようなパーティションがなければ、エラーが発生します。
舞台裏では、行の移動は実際はDELETEとINSERT操作です。
  


移される行に対して同時に実行されるUPDATEやDELETEのために直列化の失敗エラーになる可能性があります。
セッション1がパーティションキーに対してUPDATEを実行中であるとしましょう。一方、同時に実行しているセッション2に対してこの行は可視であり、セッション2はこの行に対してUPDATEまたはDELETE操作をするとしましょう。
その場合、セッション2のUPDATEまたはDELETEは、行の移動を検出し、直列化の失敗エラー(常にSQLSTATE値が'40001'で返る)を発生させます。
これが起きた場合には、アプリケーションはトランザクションを再試行すると良いでしょう。
テーブルがパーティション化されていない、または、行の移動がない通常の場合には、セッション2は新しく更新された行を特定し、この新しい行のバージョンに対してUPDATE/DELETEを実行します。
  


(外部データラッパーがタプルルーティングをサポートしていれば)行をローカルパーティションから外部テーブルパーティションへ移動できますが、外部テーブルパーティションから別のパーティションに移動できないことに注意してください。
  


あるパーティションから別のパーティションへ行を移動しようとしても、UPDATE問い合わせで指定された祖先とは異なる移動元のパーティションの祖先を外部キーが直接参照していることが判明した場合、失敗します。
  

例


filmsテーブルのkind列にあるDramaという単語をDramaticに変更します。



UPDATE films SET kind = 'Dramatic' WHERE kind = 'Drama';


  


weatherテーブルの特定の行に対し、気温に関する項目を調整し、降水量をデフォルト値に戻します。



UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp = DEFAULT
  WHERE city = 'San Francisco' AND date = '2003-07-03';


  


同じ操作を行い、更新された項目と古い降水量の値を返します。



UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp = DEFAULT
  WHERE city = 'San Francisco' AND date = '2003-07-03'
  RETURNING temp_lo, temp_hi, prcp, old.prcp AS old_prcp;


  


もう一つの方法である列リスト構文を使用して同じ更新を行います。


UPDATE weather SET (temp_lo, temp_hi, prcp) = (temp_lo+1, temp_lo+15, DEFAULT)
  WHERE city = 'San Francisco' AND date = '2003-07-03';


  


FROM句の構文を使用して、Acme Corporationを顧客とするセールスパーソンのセールスカウントを1増加させます。


UPDATE employees SET sales_count = sales_count + 1 FROM accounts
  WHERE accounts.name = 'Acme Corporation'
  AND employees.id = accounts.sales_person;


  


WHERE句で副SELECTを使用して、同じ操作を行います。


UPDATE employees SET sales_count = sales_count + 1 WHERE id =
  (SELECT sales_person FROM accounts WHERE name = 'Acme Corporation');


  


accountsテーブルのコンタクト先の氏名を、現在アサインされているセールスパーソンと一致するよう更新します。


UPDATE accounts SET (contact_first_name, contact_last_name) =
    (SELECT first_name, last_name FROM employees
     WHERE employees.id = accounts.sales_person);



同じような結果は結合を使っても得ることができます。


UPDATE accounts SET contact_first_name = first_name,
                    contact_last_name = last_name
  FROM employees WHERE employees.id = accounts.sales_person;



ただし、employees.idが一意キーでない場合、2番目の問い合わせは予期しない結果をもたらすかもしれません。
一方で、最初の問い合わせは、複数のidがマッチしたときはエラーを発生することが保証されます。
また、あるaccounts.sales_personエントリにマッチするレコードがない場合、最初の問い合わせは対応する名前フィールドをNULLに設定しますが、2番目の問い合わせは、その行を全く更新しません。
  


summaryテーブルの統計情報を現在のデータに合うように更新します。


UPDATE summary s SET (sum_x, sum_y, avg_x, avg_y) =
    (SELECT sum(x), sum(y), avg(x), avg(y) FROM data d
     WHERE d.group_id = s.group_id);


  


新しい商品とその在庫数を挿入します。
既にその商品が存在している場合は、代わりに既存商品の在庫数を更新します。
トランザクション全体が失敗することがないようにこの操作を行うには、セーブポイントを使用してください。


BEGIN;

-- 何かしらの他の操作を行います。
SAVEPOINT sp1;
INSERT INTO wines VALUES('Chateau Lafite 2003', '24');

-- 上記のコマンドが一意キー違反により失敗したとします。
-- この場合、次のコマンドを実行します。
ROLLBACK TO sp1;
UPDATE wines SET stock = stock + 24 WHERE winename = 'Chateau Lafite 2003';

-- 他の操作を続けた後、最後に次を実行します。
COMMIT;


  


filmsテーブルにおいて、c_filmsカーソルが現在位置している行のkind列を変更します。


UPDATE films SET kind = 'Dramatic' WHERE CURRENT OF c_films;


  


多数の行に影響する更新は、テーブルの肥大化、レプリカの遅延の増加、ロック競合の増加など、システムパフォーマンスに悪影響を及ぼす可能性があります。
このような状況では、より小さなバッチで操作を実行し、場合によってはバッチ間でテーブルに対してVACUUM操作をすることが理にかなっています。
UPDATEにはLIMIT句はありませんが、共通テーブル式と自己結合を使用して同様の効果を得ることができます。
標準のPostgreSQL™テーブルアクセスメソッドでは、システム列ctidに対する自己結合は非常に効率的です。


WITH exceeded_max_retries AS (
  SELECT w.ctid FROM work_item AS w
    WHERE w.status = 'active' AND w.num_retries > 10
    ORDER BY w.retry_timestamp
    FOR UPDATE
    LIMIT 5000
)
UPDATE work_item SET status = 'failed'
  FROM exceeded_max_retries AS emr
  WHERE work_item.ctid = emr.ctid;



更新する行がなくなるまで、このコマンドを繰り返すことが必要です。
ORDER BY句を使用すると、コマンドは更新する行を優先順位付けできます。
また、他の更新操作が同じ順序を使用する場合、それらによるデッドロックを防ぐことができます。
ロック競合が懸念される場合、CTEにSKIP LOCKEDを追加して、複数のコマンドが同じ行を更新するのを防ぐことができます。
しかし、一致する行を見落とさないようにするためには、SKIP LOCKEDまたはLIMITを指定しない最後のUPDATEが必要です。
  

互換性


このコマンドは標準SQLに準拠しています。
ただしFROM句およびRETURNING句はPostgreSQL™の拡張です。
UPDATEでWITHが使用可能であることも同様に拡張です。
  


他のデータベースシステムには、FROMオプション内で、対象テーブルがFROM内に再度指定されることを前提として動作するものもあります。
これはPostgreSQL™におけるFROMの解釈方法とは異なります。
この拡張機能を使用するアプリケーションを移植する時は注意してください。
  


標準に従うと、括弧内の対象列名の部分リストに対する入力値は、正しい数の列を生成する任意の行値による式です。
PostgreSQL™では入力値として、行コンストラクタあるいはsub-SELECTしか許していません。
行コンストラクタを使う場合、個々の列の更新値をDEFAULTとして指定することができますが、sub-SELECTの内部ではできません。
  



名前
VACUUM — 
データベースの不要領域の回収とデータベースの解析（オプション）を行う


概要

VACUUM [ ( option [, ...] ) ] [ table_and_columns [, ...] ]


ここでoptionは以下の一つです。

    FULL [ boolean ]
    FREEZE [ boolean ]
    VERBOSE [ boolean ]
    ANALYZE [ boolean ]
    DISABLE_PAGE_SKIPPING [ boolean ]
    SKIP_LOCKED [ boolean ]
    INDEX_CLEANUP { AUTO | ON | OFF }
    PROCESS_MAIN [ boolean ]
    PROCESS_TOAST [ boolean ]
    TRUNCATE [ boolean ]
    PARALLEL integer
    SKIP_DATABASE_STATS [ boolean ]
    ONLY_DATABASE_STATS [ boolean ]
    BUFFER_USAGE_LIMIT size


またtable_and_columnsは以下の通りです。

    [ ONLY ] table_name [ * ] [ ( column_name [, ...] ) ]


説明


VACUUM は、無効タプルが使用する領域を回収します。
PostgreSQL™の通常動作では、削除されたタプルや更新によって不要となったタプルは、テーブルから物理的には削除されません。
これらのタプルはVACUUMが完了するまで存在し続けます。
そのため、特に更新頻度が多いテーブルでは、VACUUMを定期的に実行する必要があります。
  


table_and_columnsリストを指定しない場合、VACUUMは現在のユーザがバキュームできる権限を持つ、現在のデータベース内の全てのテーブルとマテリアライズドビューを処理します。
リストを指定した場合、VACUUMは指定したテーブルのみを処理します。
  


VACUUM ANALYZEは、指定したテーブルの1つひとつに対し、VACUUMを行った後、ANALYZEを行います。
このコマンドの組合わせは、日常的な管理スクリプトで使うと便利です。
処理の詳細に関しては、ANALYZE(7)を参照してください。
  


（FULLが指定されていない）通常のVACUUMは、単に領域を回収し、そこを再利用可能な状態に変更します。
この形式のコマンドでは排他的ロックを取得しないため、テーブルへの通常の読み書き操作と並行して実行することができます。
しかし余った領域はオペレーティングシステムには(ほとんどの場合)返されません。
同じテーブル内で再利用できるように保持されるだけです。
また、インデックスを処理するために複数のCPUを活用することもできます。
この機能は、並列バキュームとして知られています。
この機能を無効にするには、PARALLELオプションでパラレルワーカーの数をゼロに指定します。
VACUUM FULLでは、テーブルの内容全体を新しいディスクファイルに領域を余すことなく書き換えるため、オペレーティングシステムに未使用の領域を返すことができます。
この形式では、実行速度がかなり低速になります。また、処理中のテーブルに対するACCESS EXCLUSIVEロックが必要になります。
  

パラメータ
	FULL
	

より多くの領域の回収することができる「完全な」バキュームを選択します。
ただし、通常よりも処理に時間がかかります。
また、テーブルに対する排他ロックが必要です。
またこの方式では、テーブルのコピーを新しく書き出し、操作が終わるまで古いコピーが解放されませんので、余分にディスク領域が必要です。
通常、大きな容量がテーブルから回収されなければならない場合にのみこれが使用されるべきです。
     

	FREEZE
	

積極的なタプルの「凍結」を選択します。
FREEZE指定は、vacuum_freeze_min_ageおよびvacuum_freeze_table_ageパラメータをゼロとしてVACUUMを実行することと同じです。
テーブルが書き換えられる時は、必ず積極的な凍結が行われるので、FULLが指定されているときは、このオプションは冗長です。
     

	VERBOSE
	

各テーブルについてINFOレベルでバキューム処理の詳細な報告を出力します。
     

	ANALYZE
	

プランナが使用する統計情報を更新し、問い合わせを実行する最も効率的な方法を決定できるようにします。
     

	DISABLE_PAGE_SKIPPING
	

通常、VACUUMは可視性マップに基いてページをスキップします。
すべてのタプルが凍結されていることがわかっているページは、常にスキップできます。
また、すべてのタプルがすべてのトランザクションに対して可視であることがわかっているページは、積極的なバキュームを実行している場合を除き、スキップできます。
さらに、積極的なバキュームを実行している場合を除き、一部のページは、他のセッションがその使用を終了するのを待つのを避けるため、スキップされます。
このオプションは、ページをスキップする動作をすべて無効にします。
これは可視性マップの内容が怪しいときにのみ使用されることを意図したもので、それはデータベースの破損を引き起こすようなハードウェアあるいはソフトウェアの障害がある場合にのみ発生します。
     

	SKIP_LOCKED
	

VACUUMに、リレーションでの作業開始時、衝突するロックが解放されるのを待たないよう指定します。リレーションが待たずにすぐにロックできない場合、そのリレーションは飛ばされます。
このオプションを指定しても、リレーションのインデックスを開く時にVACUUMはブロックするかもしれないことに注意してください。
さらに加えて、VACUUM ANALYZEは、パーティションやテーブル継承の子、ある種類の外部テーブルからサンプル行を取得する時にブロックするかもしれません。
また、VACUUMは通常、指定されたパーティションテーブルの全パーティションを処理しますが、このオプションが指定されると、パーティションテーブルに衝突するロックがある場合VACUUMは全パーティションを飛ばすようになります。
     

	INDEX_CLEANUP
	

通常、VACUUMは、テーブル内に無効なタプルがほとんどない場合インデックスのバキュームをスキップします。
テーブルのインデックスをすべて処理するコストは、無効なインデックスタプルを削除した場合にそれにより得られる利益を大きく上回ると考えられます。
このオプションは、無効なタプルが1つ以上ある場合にVACUUMにインデックスを強制的に処理させるのに使えます。
デフォルトはAUTOで、適切な場合VACUUMはインデックスのバキュームをスキップします。
INDEX_CLEANUPがONに設定されていれば、VACUUMは保守的にインデックスから無効なタプルをすべて削除します。
この動作が標準だったPostgreSQL™の以前のリリースとの後方互換性のためには、これは有用かもしれません。
     


INDEX_CLEANUPをOFFに設定して、VACUUMに必ずインデックスのバキュームをスキップするよう強制することもできます。テーブルに多くの無効なタプルがある場合でさえも同様です。
切迫したトランザクションIDの周回を避けるためVACUUMをできる限り速く実行することが必要な場合には、これは有用かもしれません(「トランザクションIDの周回エラーの防止」を参照してください)。
しかしながら、たいていはvacuum_failsafe_ageにより制御される周回安全機構がトランザクションIDの周回の失敗を避けるために自動的に発動しますし、そちらの方が好ましいです。
インデックスクリーンアップが定期的に実行されていなければ、テーブルが修正されるに従い、インデックスは無効なタプルを蓄積し、テーブル自身もインデックスクリーンアップが完了するまで削除できない無効な行ポインタを蓄積していきますので、性能は悪化するでしょう。
     


このオプションはテーブルにインデックスがない場合には効果がありませんし、FULLオプションが使われている場合には無視されます。
トランザクションID周回安全機構にも影響はありません。
発動した場合には、INDEX_CLEANUPがONに設定されていたとしても、インデックスのバキュームをスキップします。
     

	PROCESS_MAIN
	

VACUUMが主リレーションの処理を試みるよう指定します。
これは普通は望まれる振舞いであり、デフォルトです。
このオプションを偽に設定するのは、リレーションの対応するTOASTテーブルのバキュームのみが必要な場合には有用かもしれません。
     

	PROCESS_TOAST
	

各リレーションに対応するTOASTテーブルが存在するのなら、VACUUMがその処理を試みるよう指定します。
これは普通は望まれる振舞いであり、デフォルトです。
このオプションを偽に設定するのは、主リレーションをバキュームすることだけが必要な場合には有用かもしれません。
FULLオプションを使うときにはこのオプションが必要です。
     

	TRUNCATE
	

VACUUMに、テーブルの最後にある空のページを切り詰め、切り詰めたページのディスクスペースをオペレーティングシステムに返すよう指定します。
これは普通は望まれる振舞いであり、vacuum_truncateが偽に設定されていない限り、または、バキュームされるテーブルに対してvacuum_truncateオプションが偽に設定されていない限りデフォルトです。
このオプションを偽に設定するのは、切り詰めが要求されているテーブルのACCESS EXCLUSIVEロックを回避するのに有用かもしれません。
このオプションはFULLオプションが使われていれば無視されます。
     

	PARALLEL
	

integer個のバックグラウンドワーカーを使用して、VACUUMのインデックスバキュームフェーズとインデックスクリーンアップフェーズを並列に実行します（各バキュームフェーズの詳細については、表27.46「VACUUMのフェーズ」を参照してください）。
操作の実行に使用されるワーカーの数は、並列バキュームをサポートするリレーションのインデックスの数と同じです。この数はPARALLELオプションで指定されたワーカーの数によって制限され、max_parallel_maintenance_workersパラメータによってさらに制限されます。
インデックスは、インデックスのサイズがmin_parallel_index_scan_sizeパラメータよりも大きい場合にのみ、並列バキュームに参加できます。
integerで指定されたパラレルワーカー数が実行中に使用されることは保証されないことに注意してください。
指定されたワーカー数より少ないワーカーでバキュームが実行されたり、ワーカーがまったくない状態で実行される可能性があります。
1つのインデックスに使用出来るワーカーは1つだけです。よって、パラレルワーカーはテーブルに少なくとも2つのインデックスがある場合にのみ起動されます。
バキュームのワーカーは、各フェーズの開始前に起動され、フェーズの終了時に終了します。
これらの動作は将来のリリースで変更される可能性があります。このオプションはFULLオプションと一緒に使用することはできません。
     

	SKIP_DATABASE_STATS
	

VACUUMが、最も古い凍結されていないXIDに関するデータベース全体の統計情報の更新をスキップするように指定します。
通常、VACUUMはこれらの統計情報をコマンドの終わりに一度更新します。
ただし、非常に数多くのテーブルを持つデータベースでは、これには時間がかかる可能性があり、最も古い凍結されていないXIDを含むテーブルがバキュームされたテーブルの中にない限り、何も達成されません。
さらに、複数のVACUUMコマンドが並列に発行された場合、一度にデータベース全体の統計処理を更新できるのはそのうちの1つだけです。
したがって、アプリケーションが多くのVACUUMコマンドを連続して発行しようとする場合、このオプションを最後のコマンドを除くすべてのコマンドに設定するか、すべてのコマンドに設定して後で個別にVACUUM (ONLY_DATABASE_STATS)を発行すると便利でしょう。
     

	ONLY_DATABASE_STATS
	

VACUUMが、最も古い凍結されていないXIDについて、データベース全体の統計情報を更新する以外に何もしないことを指定します。
このオプションを指定する場合、table_and_columnsリストは空である必要があり、VERBOSE以外の他のオプションは有効にできません。
     

	BUFFER_USAGE_LIMIT
	

VACUUMのバッファアクセスストラテジリングバッファサイズを指定します。
このサイズは、このストラテジの一部として再利用される共有バッファの数を計算するために使用されます。
0は、バッファアクセスストラテジの使用を無効にします。
ANALYZEも指定されている場合、BUFFER_USAGE_LIMIT値がバキュームと解析の両方のステージに使用されます。
ANALYZEも指定されている場合を除き、このオプションはFULLオプションとともに使用できません。
このオプションが指定されていない場合、VACUUMはvacuum_buffer_usage_limitの値を使用します。
設定を高くするとVACUUMの実行速度がより速くなりますが、設定が大き過ぎると、とても多くの他の有用なページが共有バッファから追い出されてしまう可能性があります。
最小値は 128 kB、最大値は 16 GBです。
     

	boolean
	

選択したオプションを有効にするか無効にするか指定します。
オプションを有効にする場合にはTRUE、ONまたは1と書くことができ、無効にする場合にはFALSE、OFFまたは0と書くことができます。
booleanの値は省略することもでき、その場合にはTRUEとみなされます。
     

	integer
	

選択したオプションに渡される負でない整数値を指定します。
     

	size
	

メモリの量をキロバイト単位で指定します。
サイズは、数値のサイズに続いて、B(バイト)、kB(キロバイト)、MB(メガバイト)、GB(ギガバイト)またはTB(テラバイト)のいずれか1つのメモリ単位を含む文字列として指定することもできます。
     

	table_name
	

バキューム対象のテーブルまたはマテリアライズドビューの名前です（スキーマ修飾名も可）。
テーブル名の前にONLYが指定されていれば、そのテーブルのみがバキュームされます。
ONLYが指定されていなければ、テーブルとその継承の子テーブルや（もしあれば）パーティションもすべてバキュームされます。
オプションで*をテーブル名の後ろに指定して、継承の子テーブル（またはパーティション）がバキュームされることを明示的に示すこともできます。
     

	column_name
	

解析の対象とする列名です。
デフォルトは全列です。
列リストが指定された場合はANALYZEも指定しなければいけません。
     




出力


VERBOSEが指定された場合、VACUUMは、現在処理中のテーブルを示す進行状況メッセージを表示します。
同様に、テーブルについての各種の統計情報も表示されます。
   

注釈


テーブルをバキュームするためには、通常はテーブルに対してMAINTAIN権限を持っていなければなりません。
しかしデータベースの所有者は共有カタログを除くデータベース内の全テーブルをバキュームすることができます。
VACUUMは、呼び出したユーザがバキュームするための権限を持たないテーブルはすべてスキップします。
   


VACUUMの実行中、search_pathは一時的にpg_catalog, pg_tempに変更されます。
   


トランザクションブロック内でVACUUMを実行することはできません。
   


GINインデックスを持つテーブルでは、VACUUM（全構文）は待ち状態のインデックス挿入を主GINインデックス構造内の適切なところに移動させることにより、待ち状態のインデックス挿入をすべて完了させます。
「GIN高速更新手法」を参照してください。
   


無効な行を削除するために、データベースすべてを定期的にバキュームすることをお勧めします。
PostgreSQL™には、バキューム保守作業を自動化する「autovacuum」機能があります。
自動バキューム処理および手作業によるバキューム処理に関する詳細については、「定常的なバキューム作業」を参照してください。
   


FULLオプションを日常的に使用することは推奨しませんが、特殊なケースでは有用となる場合もあります。
例えば、テーブル内のほとんど全ての行を削除または更新し、そのテーブルによるディスクの使用量を物理的に縮小させて高速なテーブルスキャンを行いたい場合です。
VACUUM FULLはたいていの場合、通常のVACUUMよりもテーブルを縮小します。
   


PARALLELオプションはバキュームの用途でのみ使用されます。
このオプションをANALYZEオプションで指定した場合、ANALYZEには影響しません。
   


VACUUMによりI/Oトラフィックがかなり増大しますので、実行中の他のセッションの性能が悪化する可能性があります。
このため、コストベースのバキューム遅延機能の使用が推奨される場合があります。
並列バキュームの場合、各ワーカーはそのワーカーが行った作業に比例してスリープします。
詳細は「コストに基づくVacuum遅延」を参照してください。
   


VACUUMをFULLオプションなしで実行している各バックエンドはその進捗をpg_stat_progress_vacuumビューで報告します。
VACUUM FULLを実行しているバックエンドはその代わりにその進捗をpg_stat_progress_clusterビューで報告します。
詳細は「VACUUMの進捗状況のレポート」と「CLUSTERの進捗状況のレポート」を参照してください。
   

例


onek というテーブル1つだけを掃除し、オプティマイザ用に解析し、バキューム処理の詳細な報告を出力するには、次のようにします。



VACUUM (VERBOSE, ANALYZE) onek;


互換性


標準SQLにはVACUUM文はありません。
  


PostgreSQL™バージョン9.0より前では次の構文が使われていましたが、今でもサポートされています。


VACUUM [ FULL ] [ FREEZE ] [ VERBOSE ] [ ANALYZE ] [ table_and_columns [, ...] ]



この構文では、オプションは、示した通りの順番で正確に指定しなければならないことに注意してください。
  

関連項目
vacuumdb(1), 「コストに基づくVacuum遅延」, 「自動バキュームデーモン」, 「VACUUMの進捗状況のレポート」, 「CLUSTERの進捗状況のレポート」


名前
VALUES — 行セットを計算する

概要

VALUES ( expression [, ...] ) [, ...]
    [ ORDER BY sort_expression [ ASC | DESC | USING operator ] [, ...] ]
    [ LIMIT { count | ALL } ]
    [ OFFSET start [ ROW | ROWS ] ]
    [ FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY ]


説明


VALUESは、値の式で指定された行あるいは行の集合を計算します。
大きなコマンドの中で「定数テーブル」を作成するために使用することが多いですが、それ単独で使用することも可能です。
  


複数行を指定した場合は、すべての行の要素数が同じでなければなりません。
できあがるテーブル列のデータ型を決定するには、明示的に指定されている型やその列に登場する式から推測できる型を組み合わせて使用します。
これはUNIONと同じ方式です（「UNION、CASEおよび関連する構文」を参照してください）。
  


大きなコマンドの中において、SELECTが文法上使える場所ならどこでもVALUESを使用することができます。
文法上はSELECTと同じ扱いであるため、ORDER BY、LIMIT（これと等価なFETCH FIRST）、そしてOFFSET句をVALUESコマンドで使用することができます。
  

パラメータ
	expression
	

定数あるいは式です。これを計算した結果が、テーブル（行セット）の中の指定した場所に挿入されます。
VALUESリストをINSERTの最上位レベルで使用する場合は、expressionをDEFAULTで置き換えることができます。
これは、その列のデフォルト値を挿入することを表します。
他の場所でVALUESを使用する場合には、DEFAULTは使用できません。
     

	sort_expression
	

式あるいは整数の定数で、結果の行をソートする方法を表します。
この式は、VALUESの結果の列をcolumn1、column2などのように参照することができます。
詳細はSELECT(7)文書のORDER BY句を参照してください。
     

	operator
	

ソート用の演算子です。
詳細はSELECT(7)文書のORDER BY句を参照してください。
     

	count
	

返す行の最大数です。
詳細はSELECT(7)文書のLIMIT句を参照してください。
     

	start
	

結果を返す際に読み飛ばす行数です。
詳細はSELECT(7)文書のLIMIT句を参照してください。
     




注釈


VALUESで大量の行を扱うことは避けるべきです。
メモリ不足や性能の劣化を生じさせる可能性があります。
VALUESをINSERTの中で使用する場合は特別です。
（列の型はINSERT先のテーブルからわかるので、VALUESのリストを調べて型を推測する必要がないからです）そのため、他の場面に比べて大きなリストを扱っても実用に耐えます。
  

例


必要最小限のVALUESコマンドはこのようになります。



VALUES (1, 'one'), (2, 'two'), (3, 'three');




これは、列が二つで行が三つのテーブルを返します。事実上、これは次と同じことです。



SELECT 1 AS column1, 'one' AS column2
UNION ALL
SELECT 2, 'two'
UNION ALL
SELECT 3, 'three';



  


通常は、VALUESは大きなSQLコマンドの内部で使用します。
最もよくあるのは、INSERTでの使用です。



INSERT INTO films (code, title, did, date_prod, kind)
    VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');


  


INSERT内で使用する場合には、VALUESのリストにDEFAULTを指定することができます。
これは、値を具体的に指定するのではなくその列のデフォルトを使用することを表します。



INSERT INTO films VALUES
    ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82 minutes'),
    ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama', DEFAULT);


  


VALUESは、副SELECTが書ける場所に使用することができます。
例えばFROM句の中などでも使えます。



SELECT f.*
  FROM films f, (VALUES('MGM', 'Horror'), ('UA', 'Sci-Fi')) AS t (studio, kind)
  WHERE f.studio = t.studio AND f.kind = t.kind;

UPDATE employees SET salary = salary * v.increase
  FROM (VALUES(1, 200000, 1.2), (2, 400000, 1.4)) AS v (depno, target, increase)
  WHERE employees.depno = v.depno AND employees.sales >= v.target;




VALUESをFROM句の中で使用する場合には、AS句が必須となることに注意しましょう。
これはSELECTの場合と同様です。
AS句ですべての列の名前を指定する必要はありませんが、指定しておくことをお勧めします。
（VALUESのデフォルトの列名は、PostgreSQL™においてはcolumn1、column2のようになります。
しかし、他のデータベースシステムでは異なるかもしれません。）
  


VALUESをINSERTの中で使用する場合は、値の型が挿入先列のデータ型に自動変換されます。
それ以外の場面で使用する際には、正しいデータ型を指定する必要があるかもしれません。
値がすべて引用符付きのリテラル定数である場合は、最初の値にだけ型を指定しておけば十分です。



SELECT * FROM machines
WHERE ip_address IN (VALUES('192.168.0.1'::inet), ('192.168.0.10'), ('192.168.1.43'));

ヒント


単にINを試したいのなら、上のようなVALUESクエリを使用するよりもINのスカラリスト形式を使用するほうがよいでしょう。
スカラリストの方法の方が記述量が減りますし、たいていはより効率的になります。
   


互換性

VALUESは標準SQLに準拠しています。
LIMITおよびOFFSETはPostgreSQL™の拡張です。
SELECT(7)も参照してください。
  

関連項目
INSERT(7), SELECT(7)

PostgreSQLクライアントアプリケーション







ここには、PostgreSQL™クライアントアプリケーションとユーティリティについてのリファレンス情報があります。
これらのコマンドがすべて汎用的なユーティリティであるという訳ではありません。
一部は特定の権限を必要とします。
これらアプリケーションの共通機能は、データベースサーバが稼働しているかどうかに依存しない、どのホストでも実行できるという点です。
   


コマンドラインから指定された場合、ユーザ名とデータベース名の大文字小文字は保持されます。
空白文字や特殊文字がある場合は引用符付けが必要かもしれません。
テーブル名やその他の識別子では文書化されていない限り大文字小文字は保持されませんので、引用符付けが必要かもしれません。
   



名前
clusterdb — PostgreSQL™データベースをクラスタ化する

概要
clusterdb  [connection-option...] [option...]  
     [
         --table  |   -t  
       table
     ]
   ...  [
      dbname  |   -a  |   --all  
   ]


説明


clusterdbは、PostgreSQL™データベース内のテーブルを再クラスタ化するユーティリティです。
既にクラスタ化されているテーブルを検索し、前回と同じインデックスを使用して再度クラスタ化します。
一度もクラスタ化されていないテーブルは処理されません。
  


clusterdbは、SQLコマンドCLUSTER(7)のラッパーです。
クラスタ化を行うのに、このユーティリティを使用しても、これ以外のサーバへのアクセス方法を使用しても、特別な違いはありません。
  

オプション


clusterdbでは、下記のコマンドライン引数を指定できます。

    
	-a, --all
	

全てのデータベースをクラスタ化します。
       

	[-d] dbname, [--dbname=]dbname
	

-a/--allが使用されていない場合、クラスタ化するデータベースの名前を指定します。
これが指定されていない場合、データベース名は環境変数PGDATABASEから読み取られます。
この変数も設定されていない場合は、接続のために指定されたユーザ名が使用されます。
dbnameは接続文字列でも構いません。
その場合、接続文字列パラメータは衝突するコマンドラインオプションよりも優先します。
       

	-e, --echo
	

clusterdbが生成し、サーバに送るコマンドをエコー表示します。
       

	-q, --quiet
	

進行メッセージを表示しません。
       

	-t table, --table=table
	

tableのみをクラスタ化します。
複数の-tスイッチを記述することで複数のテーブルをクラスタ化することができます。
       

	-v, --verbose
	

処理の間、詳細な情報を出力します。
       

	-V, --version
	

clusterdbのバージョンを表示し、終了します。
      

	-?, --help
	

clusterdbのコマンドライン引数の使用方法を表示し、終了します。
      




   


clusterdbは、さらに、下記のコマンドライン引数を接続パラメータとして受け付けます。

    
	-h host, --host=host
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
       

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはUnixドメインソケットファイルの拡張子を指定します。
       

	-U username, --username=username
	

接続するためのユーザ名です。
       

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
       

	-W, --password
	

データベースに接続する前に、clusterdbは強制的にパスワード入力を促します。
       


サーバがパスワード認証を要求する場合clusterdbは自動的にパスワード入力を促しますので、これが重要になることはありません。
しかし、clusterdbは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
       

	--maintenance-db=dbname
	

-a/--allが使われている場合に、クラスタ化するデータベースの一覧を集めるため、このデータベースに接続します。
指定されなければpostgresデータベースが使用され、もし存在しなければtemplate1が使用されます。
これは接続文字列でも構いません。
その場合、接続文字列パラメータは衝突するコマンドラインオプションよりも優先します。
また、データベース名自身以外の接続文字列パラメータは、他のデータベースに接続する時に再利用されます。
       




   

環境
	PGDATABASE, PGHOST, PGPORT, PGUSER
	

デフォルトの接続パラメータです。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     





このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数(「環境変数」参照)も使います。
  

診断


問題が発生した場合、考えられる原因とエラーメッセージについてはCLUSTER(7)とpsql(1)を参照してください。
データベースサーバは対象ホスト上で稼働していなければなりません。
また、libpqフロントエンドライブラリの、あらゆるデフォルトの設定や環境変数が適用されます。
  

例


データベースtestをクラスタ化します。


$ clusterdb test


   


xyzzyというデータベース内のテーブルの1つfooをクラスタ化します。


$ clusterdb --table=foo xyzzy


関連項目
CLUSTER(7)


名前
createdb — 新しいPostgreSQL™データベースを作成する

概要
createdb  [connection-option...] [option...] [dbname
    [description]]


説明


createdbは、新しいPostgreSQL™データベースを作成します。
  


通常、このコマンドを実行したデータベースユーザが、新しいデータベースの所有者になります。
ただし、コマンドを実行するユーザが適切な権限を持っている場合、-Oオプションを使用して別のユーザを所有者に指定できます。
  


createdbはCREATE DATABASEというSQLコマンドのラッパーです。
したがって、このユーティリティでデータベースを作成しても、これ以外の方法でサーバにアクセスしてデータベースを作成しても何も違いはありません。
  

オプション


createdbでは、下記のコマンドライン引数を指定できます。

    
	dbname
	

作成するデータベースの名前を指定します。
この名前はクラスタ内の全てのPostgreSQL™データベースの中で一意でなければなりません。
デフォルトでは、現在のシステムユーザと同じ名前でデータベースを作成します。
       

	description
	

新しく作成されるデータベースに関連付けるコメントを指定します。
       

	-D tablespace, --tablespace=tablespace
	

データベース用のデフォルトのテーブル空間を指定します。
（この名前は二重引用符で囲まれた識別子として処理されます。）
       

	-e, --echo
	

createdbが生成し、サーバに送信するコマンドをエコー表示します。
       

	-E encoding, --encoding=encoding
	

このデータベース内で使用する文字符号化方式を指定します。
PostgreSQL™サーバでサポートされる文字集合については「サポートされる文字集合」で説明します。
       

	-l locale, --locale=locale
	

このデータベースで使用されるロケールを指定します。
これは、--lc-collate、--lc-ctype、および--icu-localeを同じ値に指定することと等価です。
一部のロケールはICUに対してのみ有効であり、--icu-localeで設定することが必要です。
       

	--lc-collate=locale
	

このデータベースで使用されるLC_COLLATE設定を指定します。
       

	--lc-ctype=locale
	

このデータベースで使用されるLC_CTYPE設定を指定します。
       

	--builtin-locale=locale
	

組み込みプロバイダを使用する場合にロケール名を指定します。
ロケールのサポートについては「ロケールのサポート」で説明します。
       

	--icu-locale=locale
	

ICUロケールプロバイダを選択した場合に、このデータベースで使用されるICUロケールIDを指定します。
       

	--icu-rules=rules
	

このデータベースのデフォルトの照合の動作をカスタマイズするための追加の照合規則を指定します。
これはICUのみでサポートされています。
       

	--locale-provider={builtin|libc|icu}
	

データベースのデフォルトの照合順序のロケールプロバイダを指定します。
       

	-O owner, --owner=owner
	

新しいデータベースの所有者となるデータベースユーザを指定します。
（この名前は二重引用符で囲まれた識別子として処理されます。）
       

	-S strategy, --strategy=strategy
	

データベース作成手法を指定します。
詳細はCREATE DATABASE STRATEGYを参照してください。
       

	-T template, --template=template
	

このデータベースの構築に使用するテンプレートデータベースを指定します。
（この名前は二重引用符で囲まれた識別子として処理されます。）
       

	-V, --version
	

createdbのバージョンを表示し、終了します。
       

	-?, --help
	

createdbのコマンドライン引数の使用方法を表示し、終了します。
      




   


オプション-D、-l、-E、-O、および-Tは、基盤となるCREATE DATABASEというSQLコマンドのオプションにそれぞれ対応しています。
詳細はそちらを参照してください。
   


またcreatedbは、以下のコマンドライン引数を接続パラメータとして受け付けます。

    
	-h host, --host=host
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
       

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはUnixドメインソケットのファイル拡張子を指定します。
       

	-U username, --username=username
	

接続に使用するユーザ名を指定します。
       

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
       

	-W, --password
	

データベースに接続する前に、createdbは強制的にパスワード入力を促します。
       


サーバがパスワード認証を要求する場合createdbは自動的にパスワード入力を促しますので、これが重要になることはありません。
しかし、createdbは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
       

	--maintenance-db=dbname
	

新しいデータベースを作成する時の接続先となるデータベースの名前を指定します。
指定がなければ、postgresデータベースが使用されます。
もし存在しなければ（またはこれが作成しようとしているデータベースの名前であれば）template1が使用されます。
これは接続文字列でも構いません。
その場合、接続文字列パラメータは衝突するコマンドラインオプションよりも優先します。
       




   

環境
	PGDATABASE
	

この値が設定されている場合、コマンドラインで上書きされなければ、設定された値が作成するデータベースの名前になります。
     

	PGHOST, PGPORT, PGUSER
	

デフォルトの接続パラメータです。
コマンドラインでもPGDATABASEでも名前が指定されていない場合は、PGUSERが作成するデータベースの名前にもなります。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     





このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数(「環境変数」参照)も使います。
  

診断


問題が発生した場合、考えられる原因とエラーメッセージの説明についてCREATE DATABASE(7)とpsql(1)を参照してください。
データベースサーバは対象ホストで稼働していなければなりません。
また、libpqフロントエンドライブラリで使用される、全てのデフォルトの接続設定と環境変数が適用されることも覚えておいてください。
  

例


デフォルトのデータベースサーバを使用してdemoデータベースを作成します。


$ createdb demo


   


edenホスト上のポート番号5000のサーバを使用し、template0テンプレートデータベースを使用してdemoデータベースを作成する場合の、コマンドラインから入力するコマンドと背後で実行されるSQLコマンドを示します。


$ createdb -p 5000 -h eden -T template0 -e demo
CREATE DATABASE demo TEMPLATE template0;


関連項目
dropdb(1), CREATE DATABASE(7)


名前
createuser — 新しいPostgreSQL™のユーザアカウントを定義する

概要
createuser  [connection-option...] [option...] [username]


説明


createuserは新しいPostgreSQL™のユーザ（より正確にいえばロール）を作成します。
新しいユーザを作成できるのは、スーパーユーザとCREATEROLE権限を持つユーザのみです。
したがって、createuserは、スーパーユーザもしくはCREATEROLE権限を持つユーザとして接続可能なユーザによって実行されなければなりません。
  


SUPERUSER、REPLICATION、またはBYPASSRLS権限を持つロールを作成したいのであれば、スーパーユーザとして接続しなければなりません。CREATEROLE権限だけではいけません。
スーパーユーザであるということは、そのデータベースにおけるアクセス権限の検査を素通りできることを意味しています。したがって、スーパーユーザのアクセス権を簡単に与えてはなりません。
CREATEROLEも非常に広範な権限を付与します。
  


createuserはSQLコマンドCREATE ROLEのラッパーです。
このユーティリティによってユーザを作成しても、これ以外の方法でサーバにアクセスしてユーザを作成しても特に違いはありません。
  

オプション


createuserでは、下記のコマンドライン引数を指定できます。

    
	username
	

作成するPostgreSQL™ユーザの名前を指定します。
この名前は、そのPostgreSQL™インストレーションに存在するすべてのロールと異なるものでなければなりません。
       

	-a role, --with-admin=role
	

アドミンオプションを持つ新しいロールのメンバとして自動的に追加される既存のロールを指定します。
これにより、新しいロールのメンバ資格を他の人に付与する権利が与えられます。
-aスイッチを複数記述することで、複数の既存のロールを指定できます。
       

	-c number, --connection-limit=number
	

新しいユーザの最大接続数を設定します。
デフォルトでは無制限です。
       

	-d, --createdb
	

新しいユーザに対してデータベースの作成を許可します。
       

	-D, --no-createdb
	

新しいユーザに対してデータベースの作成を禁止します。
これはデフォルトです。
       

	-e, --echo
	

createuserが生成しサーバに送信するコマンドを出力します。
       

	-E, --encrypted
	

このオプションは廃止されましたが、後方互換性のためにまだ受け付けられます。
       

	-g role, --member-of=role, --role=role (deprecated)
	

新しいロールが、指定された既存のロールのメンバとして自動的に追加されるように指定します。
-gスイッチを複数記述することで、複数の既存のロールを指定できます。
       

	-i, --inherit
	

新しいロールは自動的にメンバとして属するロールの権限を継承します。
これがデフォルトです。
       

	-I, --no-inherit
	

新しいロールは自動的にメンバとして属するロールの権限を継承しません。
       

	--interactive
	

ユーザ名がコマンドラインで指定されない場合、ユーザ名の入力を促し、更に
-d/-D、-r/-R、-s/-Sオプションがコマンドラインで指定されない場合にはどちらにするか入力を促します。
（これはPostgreSQL 9.1までのデフォルトの動作でした。）
       

	-l, --login
	

新しいユーザに対してログインを許可します。
（つまり、このユーザ名をセッション起動時のユーザ識別子として使用することができます。）
これがデフォルトです。
       

	-L, --no-login
	

新しいユーザに対してログインを禁止します。
（ログイン権限を持たないロールはデータベース権限管理という面で有意です。）
       

	-m role, --with-member=role
	

新しいロールのメンバとして自動的に追加される既存のロールを指定します。
-mスイッチを複数記述することで、複数の既存のロールを指定できます。
       

	-P, --pwprompt
	

このオプションが指定されると、createuserは新しいユーザのパスワードのプロンプトを表示します。
もしパスワード認証を使う予定がなければ、これは必要ありません。
       

	-r, --createrole
	

他のロールの作成、変更、削除、コメント付与、およびセキュリティラベルの変更を新しいユーザに対して許可します。つまり、このユーザはCREATEROLE権限を持つことになります。
この権限によって付与される機能の詳細については、ロールの作成を参照してください。
       

	-R, --no-createrole
	

新しいユーザに対して新しいロールの作成を禁止します。
これはデフォルトです。
       

	-s, --superuser
	

新しいユーザはスーパーユーザになります。
       

	-S, --no-superuser
	

新しいユーザはスーパーユーザにはなりません。
これはデフォルトです。
       

	-v timestamp, --valid-until=timestamp
	

ロールのパスワードが有効でなくなる日時を設定します。
デフォルトはパスワードの有効期限を設定しません。
       

	-V, --version
	

createuserのバージョンを表示し、終了します。
       

	--bypassrls
	

新しいユーザは、すべての行レベルセキュリティ(RLS)ポリシーをバイパスします。
       

	--no-bypassrls
	

新しいユーザは、行レベルセキュリティ(RLS)ポリシーをバイパスしません。
これがデフォルトです。
       

	--replication
	

新しいユーザはREPLICATION権限を持ちます。
この権限についてはCREATE ROLE(7)の文書で詳しく説明します。
       

	--no-replication
	

新しいユーザはREPLICATION権限を持ちません。
この権限についてはCREATE ROLE(7)の文書で詳しく説明します。
これがデフォルトです。
       

	-?, --help
	

createuserのコマンドライン引数の使用方法を表示し、終了します。
       




  


createuserは、以下のコマンドライン引数も接続パラメータとして受け付けます。

   
	-h host, --host=host
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
       

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはUnixドメインソケットファイルの拡張子を指定します。
       

	-U username, --username=username
	

接続に使用するユーザ名です（作成するユーザの名前ではありません）。
       

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
       

	-W, --password
	

createuserは強制的にパスワード入力を促します。
（新しいユーザのパスワードではなく、サーバに接続するためのパスワードです）。
       


サーバがパスワード認証を要求する場合createuserは自動的にパスワード入力を促しますので、これが重要になることはありません。
しかし、createuserは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
       




  

環境
	PGHOST, PGPORT, PGUSER
	

デフォルトの接続パラメータです。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     





このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数(「環境変数」参照)も使います。
  

診断


問題が発生した場合、考えられる原因とエラーメッセージの説明については、CREATE ROLE(7)とpsql(1)を参照してください。
データベースサーバは対象ホストで稼働していなければなりません。
また、libpqフロントエンドライブラリで使用される、デフォルトの接続設定と環境変数が適用されることを覚えておいてください。
  

例


デフォルトデータベースサーバ上にjoeというユーザを作成します。


$ createuser joe


   


デフォルトデータベースサーバ上にjoeというユーザを一部の属性入力が促されるように作成します。


$ createuser --interactive joe
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n


   


ホストedenのポート番号5000上のサーバを使って上記と同じjoeというユーザを属性を明示的に指定して作成し、背後で実行される問い合わせを表示します。


$ createuser -h eden -p 5000 -S -D -R -e joe
CREATE ROLE joe NOSUPERUSER NOCREATEDB NOCREATEROLE INHERIT LOGIN;


   


joeというユーザをスーパーユーザとして作成します。作成時にパスワードを割り当てます。


$ createuser -P -s -e joe
Enter password for new role: xyzzy
Enter it again: xyzzy
CREATE ROLE joe PASSWORD 'md5b5f5ba1a423792b526f799ae4eb3d59e' SUPERUSER CREATEDB CREATEROLE INHERIT LOGIN;



上の例で、実際には入力した新しいパスワードは画面上に表示されませんが、分かりやすくするために記載しています。
上記の通りこのパスワードはクライアントに送信される前に暗号化されます。
   

関連項目
dropuser(1), CREATE ROLE(7), createrole_self_grant


名前
dropdb — PostgreSQL™データベースを削除する

概要
dropdb  [connection-option...] [option...]  dbname 


説明


dropdbは既存のPostgreSQL™データベースを削除します。
このコマンドを実行できるのは、データベースのスーパーユーザまたはデータベースの所有者のみです。
  


dropdbは、SQLコマンドDROP DATABASEのラッパーです。
このユーティリティを使用しても、これ以外の方法でサーバにアクセスして削除しても、特に違いはありません。
  

オプション


   dropdbは、下記のコマンドライン引数を受け付けます。

    
	dbname
	

削除するデータベース名を指定します。
       

	-e, --echo
	

dropdbが生成し、サーバに送信するコマンドをエコー表示します。
       

	-f, --force
	

削除の前に対象データベースへの既存の接続をすべて終了することを試みます。
このオプションに関する詳細な情報はDROP DATABASE(7)を参照してください。
       

	-i, --interactive
	

削除を行う前に、確認のためのプロンプトを表示します。
       

	-V, --version
	

dropdbのバージョンを表示し、終了します。
       

	--if-exists
	

指定したデータベースが存在しない場合でもエラーとしません。
この場合には注意が発生します。
       

	-?, --help
	

dropdbのコマンドライン引数の使用方法を表示し、終了します。
       





  


またdropdbは、以下のコマンドライン引数を接続パラメータとして受け付けます。

   
	-h host, --host=host
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
       

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはUnixドメインソケットファイルの拡張子を指定します。
       

	-U username, --username=username
	

接続するユーザ名を指定します。
       

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
       

	-W, --password
	

データベースに接続する前に、dropdbは強制的にパスワード入力を促します。
       


サーバがパスワード認証を要求する場合dropdbは自動的にパスワード入力を促しますので、これが重要になることはありません。
しかし、dropdbは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
       

	--maintenance-db=dbname
	

対象データベースを削除するために接続するデータベースの名前を指定します。
指定されない場合は、postgresデータベースが使用されます。
このデータベースが存在しない場合（またはこのデータベースが削除中である場合）template1が使用されます。
これは接続文字列でも構いません。
その場合、接続文字列パラメータは衝突するコマンドラインオプションよりも優先します。
       




  

環境
	PGHOST, PGPORT, PGUSER
	

デフォルトの接続パラメータです。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     





このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数(「環境変数」参照)も使います。
  

診断


問題が発生した場合、考えられる原因とエラーメッセージについてはDROP DATABASE(7)とpsql(1)を参照してください。
対象ホストでデータベースサーバが稼働していなければなりません。
また、libpqのフロントエンドライブラリの、あらゆるデフォルトの設定や環境変数が適用されます。
  

例


次のコマンドは、デフォルトのデータベースサーバ上のdemoデータベースを削除します。


$ dropdb demo


   


次のコマンドはホストedenのポート番号5000で動作しているサーバからデータベースdemoを削除します。
その際、削除を確認し、またバックエンドに送られるコマンドを表示します。


$ dropdb -p 5000 -h eden -i -e demo
Database "demo" will be permanently deleted.
Are you sure? (y/n) y
DROP DATABASE demo;


関連項目
createdb(1), DROP DATABASE(7)


名前
dropuser — PostgreSQL™のユーザアカウントを削除する

概要
dropuser  [connection-option...] [option...] [username]


説明


dropuserは、既存のPostgreSQL™のユーザを削除します。
スーパーユーザはこのコマンドを使ってあらゆるロールを削除できます。それ以外の場合は、スーパーユーザ以外のロールのみが、CREATEROLE権限を持ち、対象のロールに対してADMIN OPTIONを付与されているユーザによってのみ削除されます。
  


dropuserはSQLコマンドDROP ROLEのラッパーです。
このユーティリティを使用してユーザを削除しても、この方法以外の方法でサーバでアクセスしてユーザを削除しても特に違いはありません。
  

オプション


dropuserは、下記のコマンドライン引数を受け付けます。

    
	username
	

削除するPostgreSQL™のユーザ名を指定します。
コマンドラインで指定されず、かつ-i/--interactiveオプションが使用されている場合は、入力を促すプロンプトが表示されます。
       

	-e, --echo
	

dropuserが生成し、サーバに送信するコマンドを表示します。
       

	-i, --interactive
	

実際にユーザを削除する前に確認のプロンプトを表示します。
コマンドラインにてユーザ名が指定されなかった場合にユーザ名の入力を促します。
       

	-V, --version
	

dropuserのバージョンを表示し、終了します。
       

	--if-exists
	

ユーザが存在しない場合にエラーを発生しません。
この場合は注意が発生します。
       

	-?, --help
	

dropuserのコマンドライン引数の使用方法を表示し、終了します。
       




  


dropuserは以下のコマンドライン引数も接続パラメータとして受け付けます。

   
	-h host, --host=host
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
       

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはUnixドメインソケットのファイル拡張子を指定します。
       

	-U username, --username=username
	

接続に使用するユーザ名です
（削除するユーザ名ではありません）。
       

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
       

	-W, --password
	

データベースに接続する前に、dropuserは強制的にパスワード入力を促します。
       


サーバがパスワード認証を要求する場合dropuserは自動的にパスワード入力を促しますので、これが重要になることはありません。
しかし、dropuserは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
       




  

環境
	PGHOST, PGPORT, PGUSER
	

      デフォルトの接続パラメータです。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     





このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数(「環境変数」参照)も使います。
  

診断


問題が発生した場合、考えられる原因とエラーメッセージについてはDROP ROLE(7)とpsql(1)を参照してください。
データベースサーバは対象ホスト上で稼働していなければなりません。
また、libpqフロントエンドライブラリで使用される、あらゆるデフォルトの設定や環境変数が適用されます。
  

例


デフォルトのデータベースサーバから、ユーザjoeを削除します。


$ dropuser joe


   


ホストedenでポート5000を使用しているサーバから、ユーザjoeを削除します。
このとき、背後で実行されるコマンドの表示と、削除前の確認をします。


$ dropuser -p 5000 -h eden -i -e joe
Role "joe" will be permanently removed.
Are you sure? (y/n) y
DROP ROLE joe;


関連項目
createuser(1), DROP ROLE(7)


名前
ecpg — 埋め込みSQL用Cプリプロセッサ

概要
ecpg  [option...]  file... 


説明


ecpgは、Cプログラム用の埋め込みSQLプリプロセッサです。
SQL呼び出しを特別な関数呼び出しに置き換えることによって、埋め込みSQL文を含むCプログラムを、通常のCコードに変換します。
これにより、出力ファイルは、任意のCコンパイラツールを使用して処理することができます。
  


ecpgは、コマンドラインで指定される各入力ファイルを対応するCの出力ファイルに変換します。
入力ファイル名に拡張子がなければ、.pgcを仮定します。
出力ファイル名を構成するために、拡張子が.cに置き換えられます。
しかし、出力ファイル名は-oオプションによって指定でき、こちらが優先します。
  


入力ファイルが-だけであれば、ecpgはプログラムを標準入力から読み込み(-oで上書きされていなければ、標準出力へ書き出し)ます。
  


このリファレンスページでは埋め込みSQL言語については説明しません。
34章ECPG — C言語による埋め込みSQLを参照してください。
  

オプション


   ecpgは、以下のコマンドライン引数を受け付けます。

   
	-c
	

SQLコードから有効なCコードを自動的に生成します。
現在、このオプションはEXEC SQL TYPEに対して使用できます。
      

	-C mode
	

互換モードを設定します。
modeはINFORMIX、INFORMIX_SE、ORACLEのどれかを取ることができます。
      

	-D symbol[=value]
	

プリプロセッサシンボルを定義します。これはEXEC SQL DEFINE指示子と同じです。
valueが指定されない場合、シンボルは値1で定義されます。
      

	-h
	

ヘッダファイルを処理します。
このオプションが指定されると、出力ファイルの拡張子は.cではなく.hになり、デフォルトの入力ファイルの拡張子は.pgcではなく.pghになります。
また、-cオプションが強制的に有効になります。
      

	-i
	

同様にシステムインクルードファイルも解析します。
      

	-I directory
	

追加のインクルード用パスを指定します。
これは、EXEC SQL INCLUDEを使用してインクルードされるファイルを検索する際に使用されます。
デフォルトでは順に、.（カレントディレクトリ）、/usr/local/include、コンパイル時に定義されるPostgreSQL™のインクルードディレクトリ（デフォルトでは/usr/local/pgsql/include）、/usr/includeです。
      

	-o filename
	

ecpgが全ての出力をfilenameに書き込むことを指定します。
出力をすべて標準出力に送るには-o -と書いてください。
      

	-r option
	

実行時の動作を選択します。
以下のいずれかをoptionとして取ることができます。
       
	no_indicator
	

指示子を使用せずにNULL値を表す特殊な値を使用します。
歴史的にこの方式を使用したデータベースが存在します。
         

	prepare
	

すべての文を使用する前に準備(プリペア)します。
libecpgはプリペアド文のキャッシュを保持し、再実行される場合に文を再利用します。
キャッシュが満杯になった場合、libecpgは最も使用されていない文を解放します。
         

	questionmarks
	

互換性のために疑問符をプレースホルダとして許します。
これは大昔にデフォルトでした。
         




	-t
	

トランザクションの自動コミットを有効にします。
このモードでは、各SQLコマンドは明示的なトランザクションブロックの内部にない限り、自動的にコミットされます。
デフォルトのモードでは、EXEC SQL COMMITが発行された時にのみコマンドがコミットされます。
      

	-v
	

バージョンやインクルード用パスなどの補足情報を表示します。
      

	--version
	

ecpgのバージョンを表示し、終了します。
      

	-?, --help
	

ecpgのコマンドライン引数の使用方法を表示し、終了します。
      




  

注釈


前処理されたCコードファイルをコンパイルする際、コンパイラがPostgreSQL™のインクルードディレクトリ内にあるECPGヘッダファイルを検索できるようにしなければなりません。
そのため、コンパイラの呼び出し時に、-Iオプションを使用しなければならない可能性があります（例：-I/usr/local/pgsql/include）。
  


SQLが埋め込まれたCプログラムには、リンカオプション-L/usr/local/pgsql/lib -lecpgを使用するなどして、libecpgライブラリをリンクする必要があります。
  


使用するシステムにおいて上記の2つに対応するディレクトリを調べるには、pg_config(1)を使用します。
  

例


埋め込みSQLを使用したprog1.pgcというCソースファイルがある場合、次のコマンドを順番に実行すれば、実行可能プログラムを作成することができます。


ecpg prog1.pgc
cc -I/usr/local/pgsql/include -c prog1.c
cc -o prog1 prog1.o -L/usr/local/pgsql/lib -lecpg




名前
pg_amcheck — 一つ以上のPostgreSQL™データベースに破損がないかどうかを検査する

概要
pg_amcheck  [option...] [dbname]


説明


pg_amcheckは、一つ以上のデータベースに対して、どのスキーマ、テーブル、インデックスを検査すべきか、どの種類の検査を実行するか、検査を並列に行うかどうか、並列に行うなら並列接続をいくつ確立するかを指定してamcheckの破損検査関数を実行します。
  


通常のテーブルリレーションとTOASTテーブルリレーション、マテリアライズドビュー、シーケンスとBツリーインデックスのみが今のところサポートされています。
他のリレーションタイプは暗黙のうちにスキップされます。
  


dbnameを指定するときは、検査すべき単一のデータベース名であるべきで、他のデータベースを選択するオプションは指定すべきではありません。
そうではなくてデータベースの選択オプションが指定されていると、一致するデータベースがすべて検査されます。
オプションを指定しない場合は、デフォルトのデータベースが検査されます。
データベース選択オプションには次のものが含まれます。
--all、--database、--exclude-database。
また、次のオプションも含まれます。
--relation、--exclude-relation、--table、--exclude-table、--index、--exclude-index。
しかし、これらのオプションは、3つの部分からなるパターン（つまりmydb*.myschema*.myrel*）を指定したときにのみ使用できます。
最後に、2つの部分からなるパターン（つまりmydb*.myschema*）を指定した時に使用できる--schemaと--exclude-schemaがあります。
  


dbnameは、接続文字列でも構いません。
  

オプション


以下のコマンドラインオプションは、何を検査するかを制御します。

   
	-a, --all
	

--exclude-databaseで除外したものを除くすべてのデータベースを検査します。
      

	-d pattern, --database=pattern
	

--exclude-databaseで除外したものを除き、指定したパターンにマッチするデータベースを検査します。
このオプションは2回以上指定できます。
      

	-D pattern, --exclude-database=pattern
	

与えられたパターンにマッチするデータベースを除外します。
このオプションは2回以上指定できます。
      

	-i pattern, --index=pattern
	

除外されていない限り、指定したパターンにマッチするインデックスを検査します。
このオプションは2回以上指定できます。
      


これは、インデックスにのみ適用され、他のリレーションタイプには適用されないことを除いて--relationオプションに類似しています。
      

	-I pattern, --exclude-index=pattern
	

与えられたパターンにマッチするインデックスを除外します。
このオプションは2回以上指定できます。
      


これは、インデックスにのみ適用され、他のリレーションタイプには適用されないことを除いて--exclude-relationオプションに類似しています。
      

	-r pattern, --relation=pattern
	

除外されていない限り、パターンにマッチするリレーションを検査します。
このオプションは2回以上指定できます。
      


パターンはたとえばmyrel*のように修飾されていなくても、myschema*.myrel*のようにスキーマ修飾されていても、mydb*.myschema*.myrel*のようにデータベース及びスキーマ修飾されていても構いません。
データベース修飾パターンは、マッチするデータベースを検査対象のデータベースのリストに追加します。
      

	-R pattern, --exclude-relation=pattern
	

指定されたパターンにマッチするリレーションを除外します。
このオプションは2回以上指定できます。
      


--relationにおけるのと同様、パターンは修飾なし、スキーマ修飾、スキーマとデータベース修飾のどれでも構いません。
      

	-s pattern, --schema=pattern
	

除外されていない限り、指定したパターンにマッチするスキーマ内のテーブルとインデックスを検査します。
このオプションは2回以上指定できます。
      


特定のパターンにマッチするスキーマ内のテーブルだけを選択するには、--table=SCHEMAPAT.* --no-dependent-indexesのような使い方を考慮してください。
インデックスのみを選択するには、--index=SCHEMAPAT.*のような使い方を考慮してください。
      


スキーマパターンはデータベース修飾でも構いません。
たとえば、mydb*にマッチするデータベース内のmyschema*にマッチするスキーマを選択するには、--schema=mydb*.myschema*のように書くことができます。
      

	-S pattern, --exclude-schema=pattern
	

指定したパターンにマッチするスキーマ内のテーブルとインデックスを除外します。
このオプションは2回以上指定できます。
      


--schemaと同様、パターンはデータベース修飾でも構いません。
      

	-t pattern, --table=pattern
	

除外されていない限り、指定したパターンにマッチするスキーマ内のテーブルを検査します。
このオプションは2回以上指定できます。
      


これは、テーブル、マテリアライズドビュー、シーケンスにのみ適用され、インデックスには適用されないことを除いて--relationオプションに類似しています。
      

	-T pattern, --exclude-table=pattern
	

指定したパターンにマッチするテーブルを除外します。
このオプションは2回以上指定できます。
      


これは、テーブル、マテリアライズドビュー、シーケンスにのみ適用され、インデックスには適用されないことを除いて--exclude-relationオプションに類似しています。
      

	--no-dependent-indexes
	

デフォルトでは、--indexや--relationオプションで明示的に選択されていなくても、テーブルが検査される際にそのテーブルのBツリーインデックスも検査されます。
このオプションはこの振る舞いを抑止します。
      

	--no-dependent-toast
	

デフォルトでは、--tableや--relationオプションで明示的に選択されていなくても、テーブルが検査される際にそのテーブルのTOASTテーブルも検査されます。
このオプションはこの振る舞いを抑止します。
      

	--no-strict-names
	

デフォルトでは、--database、--table、--index、--relationへの引数がどのオブジェクトにもマッチしなければ、フェイタルエラーが起こります。
このオプションはそのエラーをワーニングへと格下げします。
      




  


次のコマンドラインオプションはテーブルの検査を制御します。

   
	--exclude-toast-pointers
	

デフォルトでは、テーブル中のTOASTポインタに遭遇すると必ずTOASTテーブル中の明らかに有効なエントリを参照していることを確認するために検索が行われます。
このチェックは非常に遅くなることがあり、このオプションはこれを省略するために使うことができます。
      

	--on-error-stop
	

破損が見つかった最初のテーブルのページに関してすべての破損の報告を行った後そのテーブルリレーションの処理を中断し、次のテーブルあるいはインデックスに進みます。
      


インデックスの検査は、最初の破損したページの後で常に停止することに留意してください。
このオプションは、テーブルリレーションに関してのみ意味があります。
      

	--skip=option
	

all-frozenが与えられると、テーブル破損検査は、すべて凍結されていると印が付いたすべてのテーブルの中のページをスキップします。
      


all-visibleが与えられると、テーブル破損検査は、すべて可視と印が付いたすべてのテーブルの中のページをスキップします。
      


デフォルトではページをスキップすることはありません。
noneと指定することもできますが、これがデフォルトなのでそのように指定する必要はありません。
      

	--startblock=block
	

指定したブロック番号から検査を開始します。
検査しているテーブルリレーションのブロック数がこのブロック数よりも小さければエラーが生じます。
このオプションはインデックスには適用されず、おそらく単一のテーブルリレーションを検査するときにのみ意味があるでしょう。
それ以外の警告については--endblockを参照してください。
      

	--endblock=block
	

指定したブロック番号で検査を終了します。
検査しているテーブルリレーションのブロック数がこのブロック数よりも小さければエラーが生じます。
このオプションはインデックスには適用されず、おそらく単一のテーブルリレーションを検査するときにのみ意味があるでしょう。
通常のテーブルとTOASTテーブルの両方が検査される際にはこのオプションはその両方に適用されますが、--exclude-toast-pointersを使って抑止していない限りTOASTポインタを検証中により大きな番号のTOASTブロックがアクセスされるかも知れません。
      




  


以下のコマンドラインオプションはBツリーインデックスの検査を制御します。

   
	--checkunique
	

一意性制約を検査するインデックスごとに、amcheckのcheckuniqueオプションを使って重複エントリのうちインデックスで可視であるのは1つだけであることを検証します。
      

	--heapallindexed
	

検査しているインデックスごとに、amcheckのheapallindexedオプションを使ってすべてのヒープタプルがインデックス中のインデックスタプルとして存在していることを検証します。
      

	--parent-check
	

検査しているBツリーインデックスごとに、インデックス検査中に親／子関係の追加の検査を行うamcheckのbt_index_parent_check関数を使います。
      


デフォルトではamcheckのbt_index_check関数を使いますが、--rootdescendオプションを使うと暗黙的にbt_index_parent_checkを選択することに注意してください。
      

	--rootdescend
	

検査しているインデックスごとに、amcheckのrootdescendオプションを使い、各タプルに関してルートページから新たに検索を実施してリーフレベルのタプルを再発見します。
      


このオプションを使うと--parent-checkオプションも暗黙的に選択します。
      


この形式の検証は、元々はBツリーインデックスの機能の開発を支援するために作られました。
実際に発生する類の破損を検出するための支援としては限定的、あるいはまったく無用かも知れません。
また、これは破損検査に要する時間がかなり長くなったり、サーバでかなり多くのリソースを消費する原因になるかも知れません。
      




  
警告


--parent-checkオプション、あるいは--rootdescendオプションが指定された時にBツリーインデックスに対して行われる追加の検査では、比較的強いリレーションレベルのロックが必要です。
この検査だけが、INSERT、UPDATE、DELETEコマンドによる並行するデータ変更をブロックする検査です。
   



以下のコマンドラインオプションは、サーバへの接続を制御します。

   
	-h hostname, --host=hostname
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
      

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはローカルUnixドメインソケットファイルの拡張子を指定します。
      

	-U, --username=username
	

接続するユーザ名です。
      

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
      

	-W, --password
	

pg_amcheckがデータベースに接続する前にパスワードのプロンプトを表示することを強制します。
      


サーバがパスワード認証を必要とするときにはpg_amcheckはパスワードを自動的に要求するので、このオプションは絶対に必要というものではありません。
しかし、pg_amcheckはサーバがパスワードを必要としているかどうかを確認するために無駄な接続の試みをします。
ある種の状況では余分な接続の試みを避けるために-Wをタイプする価値があります。
      

	--maintenance-db=dbname
	

データベースあるいは検査対象データベースのリストを発見するために使われる接続文字列を指定します。
--allあるいはデータベースパターンを含むオプションが使われていなければ、そうした接続は必要ではなく、このオプションは何もしません。
そうでなければ、このオプションの値に含まれるデータベース名が、検査対象のデータベースに接続する際にも使われます。
このオプションが省略されるとデフォルトはpostgres、あるいはそれが失敗すればtemplate1となります。
      




  


他のオプションも利用可能です。

   
	-e, --echo
	

サーバに送られたすべてのSQLを標準出力にそのまま表示します。
      

	-j num, --jobs=num
	

サーバへのnum並列接続か、検査対象オブジェクト1つにつき1本の接続のどちらか少ない方を使います。
      


デフォルトでは単一の接続を使います。
      

	-P, --progress
	

進捗状況の情報を表示します。
進捗状況情報には、検査が完了したリレーションの数と（検査が完了した）リレーションの合計サイズが含まれます。
最終的に検査されるリレーションの全数と（これら（最終的に検査される）の）リレーションのサイズの見積もりも含まれます。
      

	-v, --verbose
	

より多くのメッセージを表示します。
とりわけ、これは検査している個々のリレーションを表示し、サーバエラーに関しては詳細度のレベルを上げます。
      

	-V, --version
	

pg_amcheckのバージョンを表示して終了します。
      

	--install-missing, --install-missing=schema
	

データベースを検査するのに必要な拡張で漏れているものをインストールします。
もしまだインストールされていなければ、各拡張のオブジェクトは与えられたschema、あるいは指定されていなければpg_catalogスキーマにインストールされます。
      


今の所唯一必要な拡張はamcheckです。
      

	-?, --help
	

pg_amcheckコマンドライン引数に関するヘルプを表示して終了します。
      




  

環境


pg_amcheckは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数（「環境変数」参照）も使います。
  


環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  

注釈


pg_amcheck はPostgreSQL™ 14.0以降で動作するように設計されています。
  

関連項目
amcheck


名前
pg_basebackup — PostgreSQL™クラスタのベースバックアップを取得する

概要
pg_basebackup  [option...]


説明


pg_basebackupは、稼働中のPostgreSQL™のデータベースクラスタのベースバックアップを取るために使用されます。
データベースへの他のクライアントに影響することなく、バックアップが取られます。
また、このバックアップはポイントインタイムリカバリ（「継続的アーカイブとポイントインタイムリカバリ（PITR）」参照）とログシッピングやストリーミングレプリケーションスタンバイサーバ用の開始点（「ログシッピングスタンバイサーバ」参照）としても使用できます。
  


pg_basebackupは、データベースのフルまたは増分のベースバックアップを取ることができます。
フルバックアップを取得するために使用すると、データベースクラスタのファイルの正確なコピーが作成されます。
増分バックアップを取得するために使用すると、フルバックアップの一部であったいくつかのファイルが、同じファイルの増分版に置き換えられることがあり、参照バックアップ以降に変更されたブロックだけが含まれます。
増分バックアップはそのままでは使用できません。
その代わりに、pg_combinebackup(1)を使用して、それが依存する以前のバックアップと組み合わせる必要があります。
増分バックアップの詳細については「増分バックアップを作成する」を、バックアップからの復旧手順については「継続的アーカイブによるバックアップを使用した復旧」を参照してください。
  


どのモードでも、pg_basebackupは、サーバをバックアップモードに入れ、また戻すことを自動的に確実に行ないます。
バックアップは常にデータベースクラスタ全体のバックアップを取ります。
個々のデータベースや個々のデータベースオブジェクトをバックアップすることはできません。
特定のものを対象としたバックアップに関してはpg_dump(1)などの他のツールを使用しなければなりません。
  


バックアップは、レプリケーションプロトコルを用いる通常のPostgreSQL™接続を経由して作成されます。
この接続はREPLICATION権限（「ロールの属性」参照）を持つ、または、スーパーユーザであるユーザIDが確立しなければなりません。
さらにpg_hba.confでレプリケーション用の接続が許可されていなければなりません。
またサーバでmax_wal_sendersを、バックアップ用に少なくとも1つのwalsenderとWALストリーミング用にもう1つ（使用する場合）を残すように十分大きく設定する必要があります。
  


同時にpg_basebackupを複数実行できます。
しかし性能の観点からは、1つのバックアップのみを取り結果をコピーする方が通常は優れています。
  


pg_basebackupは、プライマリサーバからだけではなくスタンバイからもベースバックアップを作成できます。
スタンバイからバックアップを取得するためには、レプリケーション接続を受け付けられるようにスタンバイを設定してください（つまりmax_wal_sendersとhot_standbyを設定し、pg_hba.confを適切に設定してください）。
またプライマリでfull_page_writesを有効にする必要があります。
  


スタンバイからバックアップを取る場合にはいくつかの制限があることに注意してください。

   
	

バックアップ履歴ファイルはバックアップされるデータベースクラスタ内に作成されません。
     

	

pg_basebackupはバックアップの終了時に
スタンバイに新しいWALファイルへの切り替えを強制することはできません。
-X noneの使用時にプライマリでの書き込みアクティビティが低い場合、
pg_basebackupはバックアップに必要な最後のWALファイルが
切り替わってアーカイブされるまで長時間待つ必要があるかもしれません。
このような場合、即時のWALファイル切り替えをトリガするためにプライマリで
pg_switch_walを実行するのがおそらく有用です。
     

	

バックアップ中にスタンバイがプライマリに昇格した場合、バックアップは失敗します。
     

	

バックアップに必要なすべてのWALレコードは、必要なだけの完全ページ書き出しを含んでいなければなりません。
つまりこれは、プライマリでfull_page_writesを有効にすることが要求されます。
     




  


pg_basebackupがベースバックアップを取るときには必ず、サーバのpg_stat_progress_basebackupはバックアップの進行状況を報告します。
詳細は「ベースバックアップの進捗状況のレポート」を参照してください。
  

オプション


以下のコマンドラインオプションは出力の場所と書式を制御します。

    
	-D directory, --pgdata=directory
	

出力を書き出す対象のディレクトリを設定します。
pg_basebackupは、存在していなければこのディレクトリ(とその親ディレクトリのうち存在していないものすべて)を作成します。
ディレクトリはすでに存在してもかまいませんが、空でなければなりません。
       


バックアップがtar形式であり、かつ、対象のディレクトリが-（ダッシュ）の場合、tarファイルをstdoutに書き出します。
       


このオプションは必須です。
       

	-F format, --format=format
	

出力形式を選択します。
formatには以下のいずれかを取ることができます。

        
	p, plain
	

普通のファイルとして、ソースサーバのデータディレクトリとテーブル空間と同じレイアウトで、出力を書き出します。
クラスタがテーブル空間を追加で持たない場合、データベース全体が指定したディレクトリに格納されます。
クラスタが追加のテーブル空間を持つ場合は、主データディレクトリは指定したディレクトリ内に格納されますが、他のテーブル空間はすべて、ソースサーバ上と同じ絶対パスに格納されます。
(これを変更するには--tablespace-mappingを参照してください。)
           


これがデフォルトの書式です。
           

	t, tar
	

指定したディレクトリ内にtarファイルとして出力を書き出します。
主データディレクトリの内容はbase.tarという名前のファイルに書き出され、他のテーブル空間はすべてテーブル空間のOIDに因んだ名前の別のtarファイルに書き出されます。
           


対象ディレクトリとして-（ダッシュ）という値が指定された場合、tarの内容は標準出力に書き出されます。
これは(例えば)gzip™へのパイプ処理に適しています。
これはクラスタが追加テーブル空間を持たず、WALストリーミングを使用していない場合のみ行うことができます。
           




	-i old_manifest_file, --incremental=old_manifest_file
	

増分バックアップを実行します。
参照バックアップのバックアップマニフェストを用意する必要があります。また、そのバックアップマニフェストはサーバにアップロードされ、サーバは要求された増分バックアップを送信することで応答します。
       

	-R, --write-recovery-conf
	

standby.signal

を作成し、対象のディレクトリ（tar形式の場合はベースアーカイブファイルの中）にあるpostgresql.auto.confに接続設定を追加します。
これにより、バックアップの結果を利用するスタンバイサーバの設定が容易になります。
       


postgresql.auto.confファイルは、接続設定と、指定されている場合はpg_basebackupが使用しているレプリケーションスロットを記録します。
これにより、ストリーミングレプリケーションと論理レプリケーションスロットの同期が後で同じ設定を使用するようになります。
dbnameは、dbnameが接続文字列または環境変数で明示的に指定された場合にのみ記録されます。
       

	-t target, --target=target
	

ベースバックアップを格納する場所をサーバに指示します。
デフォルトターゲットはclientです。これはpg_basebackupが実行されているマシンにバックアップが送信されるように指定します。
ターゲットがserver:/some/pathに設定されている場合、バックアップはサーバが実行されているマシンの/some/pathディレクトリに格納されます。
サーバにバックアップを格納するには、スーパーユーザ権限またはpg_write_server_filesロールの権限が必要です。
ターゲットがblackholeに設定されている場合、内容は破棄され、どこにも格納されません。
実際のバックアップは作成されないので、これはテスト目的でのみ使用してください。
       


WALストリーミングはサーバではなくpg_basebackupによって実装されているため、このオプションは-Xstreamと一緒に使用することはできません。
それがデフォルトであるため、このオプションを指定する場合は-Xfetchか-Xnoneも指定する必要があります。
       

	-T olddir=newdir, --tablespace-mapping=olddir=newdir
	

ディレクトリolddirにあるテーブル空間を、バックアップ中にnewdirに再配置します。
これが有効であるためには、olddirが、ソースサーバでのテーブル空間のパス定義と完全に一致している必要があります。
(ただし、ソースサーバのolddir内にテーブル空間がなくてもエラーにはなりません。)
一方、newdirは受け取るホストのファイルシステム内のディレクトリです。
主対象ディレクトリと同様に、newdirは既に存在している必要はありませんが、存在している場合には空でなければなりません。
olddirとnewdirはいずれも絶対パスでなければなりません。
パス名に等号(=)を含む必要がある場合には、バックスラッシュをその前に付けてください。
このオプションは、複数のテーブル空間に対して複数回指定することができます。
       


この方法でテーブル空間を再配置すると、メインのデータディレクトリ内のシンボリックリンクは、新しい場所を指すように更新されます。
このため、新しいデータディレクトリは、すべてのテーブル空間が更新された場所にあり、新しいサーバインスタンスがすぐに使える状態になっています。
       


現在、このオプションはplain出力形式でのみ機能します。tar形式が選択されている場合は無視されます。
       

	--waldir=waldir
	

WAL（先行書き込みログ）ファイルを書き込むディレクトリを設定します。
デフォルトでは、WALファイルは対象のpg_walサブディレクトリに置かれますが、どこか他の場所に置くためにこのオプションが使えます。
waldirは絶対パスでなければなりません。
主対象ディレクトリと同様に、waldirは既に存在している必要はありませんが、存在している場合には空でなければなりません。
このオプションは、バックアップがplain形式の場合にのみ指定できます。
       

	-X method, --wal-method=method
	

必要なWAL（先行書き込みログ）ファイルをバックアップに含めます。
これはバックアップ中に生成された先行書き込みログ（WAL）をすべて含みます。
方法noneを指定しない場合、WALアーカイブを考慮することなく展開した対象ディレクトリ内でpostmasterを起動することができます。
つまり出力は完全なスタンドアローンバックアップを作成します。
       


以下の先行書き込みログ（WAL）を収集するためのmethodがサポートされます。

        
	n, none
	

先行書き込みログ（WAL）をバックアップに含めません。
           

	f, fetch
	

先行書き込みログ（WAL）ファイルはバックアップの最後に収集されます。
したがって、ソースサーバのwal_keep_sizeパラメータを、バックアップの最後までログが削除されない程度に十分大きくする必要があります。
要求されるログデータが転送時点で再利用されていた場合、バックアップは失敗し、使用することができません。
           


tar形式が使われれば、先行書き込みログ（WAL）ファイルはbase.tarファイルに含まれます。
           

	s, stream
	

バックアップを取る時に先行書き込みログ（WAL）データをストリームします。
この方法は第2のサーバ接続を開き、バックアップを実行している間、並行して先行書き込みログ（WAL）のストリーミングを始めます。
したがって、レプリケーション接続を、1つではなく2つ使用します。
クライアントが先行書き込みログ（WAL）データに追従している限り、このモードを使用すれば、ソースサーバ上に余分に保管される先行書き込みログ（WAL）は必要ありません。
           


tar形式が使われれば、先行書き込みログ（WAL）ファイルはpg_wal.tarという名の別のファイルに書き込まれます（サーバが10より前のバージョンの場合、pg_xlog.tarというファイル名になります）。
           


この値がデフォルトです。
           




	-z, --gzip
	

tarファイル出力のデフォルトの圧縮レベルによるgzip圧縮を有効にします。
tarファイルを生成する場合のみ圧縮を利用することができ、すべてのtarファイルの名前に拡張子.gzが自動的に付加されます。
       

	-Z level, -Z [{client|server}-]method[:detail], --compress=level, --compress=[{client|server}-]method[:detail]
	

バックアップの圧縮を要求します。
clientまたはserverが含まれている場合、それは圧縮を実行する場所を指定します。
サーバで圧縮すると、転送帯域幅が減少しますが、サーバのCPU消費が増加します。
デフォルトはclientですが、--targetを使用している場合は例外です。
その場合、バックアップはクライアントに送信されないため、サーバ圧縮のみが有効です。
デフォルトの-Xstreamが使用されている場合、サーバ側の圧縮はWALに適用されません。
WALを圧縮するには、クライアント側の圧縮を使用するか、-Xfetchを指定します。
       


圧縮方式は、gzip、lz4、zstdで、圧縮しない場合はnoneに設定できます。あるいは整数でも設定できます（0なら圧縮しない、0より大きければgzip）。
オプションで圧縮の詳細文字列を指定できます。
詳細文字列が整数の場合は、圧縮レベルを指定します。
それ以外の場合は、keywordまたはkeyword=value形式のカンマ区切りの項目のリストにする必要があります。
現在サポートされているキーワードは、level、longおよびworkersです。
圧縮方式が単純な整数として指定されている場合、詳細文字列は使用できません。
       


圧縮レベルが指定されていない場合、デフォルトの圧縮レベルが使用されます。
アルゴリズムを指定せずにレベルのみが指定されている場合、レベルが0より大きい場合はgzip圧縮が使用され、レベルが0の場合は圧縮が使用されません。
       


tar形式をgzip、lz4、zstdとともに使用すると、接尾辞.gz、.lz4、.zstがそれぞれすべてのtarファイルに自動的に追加されます。
plain形式を使用する場合、クライアント側の圧縮は指定されない可能性がありますが、サーバ側の圧縮を要求することは可能です。
この場合、サーバは転送用にバックアップを圧縮し、クライアントは展開して抽出します。
       


このオプションを-Xstreamと組み合わせて使用すると、クライアント側のgzip圧縮が選択されている場合、pg_wal.tarはgzipを使って圧縮されますが、他の圧縮アルゴリズムが選択されている場合やサーバ側の圧縮が選択されている場合は圧縮されません。
       




   


以下のコマンドラインオプションはバックアップの生成とこのプログラムの起動を制御します。

    
	-c {fast|spread}, --checkpoint={fast|spread}
	

チェックポイントモードをfast(即座に発行)またはspread(デフォルト)に設定します(「低レベルAPIを使用したベースバックアップの作成」を参照してください)。
       

	-C, --create-slot
	

バックアップ開始前に--slotオプションで名づけられたレプリケーションスロットを作成することを指定します。
スロットが既に存在する場合、エラーが生じます。
       

	-l label, --label=label
	

バックアップのラベルを設定します。
何も指定がない場合、「pg_basebackup base backup」というデフォルト値が使用されます。
       

	-n, --no-clean
	

デフォルトでは、pg_basebackupがエラーでアボートするとき、ジョブを完了できないことがわかるより前に作成したすべてのディレクトリ（例えば、対象のディレクトリと先行書き込みログ（WAL）のディレクトリ）を削除します。
このオプションはきれいに片付けることを禁止するので、デバッグのために有用です。
       


テーブル空間のディレクトリはいずれにせよ削除されないことに注意してください。
       

	-N, --no-sync
	

デフォルトではpg_basebackupは全てのファイルがディスクに安全に書き出されるのを待ちます。
このオプションでpg_basebackupは待つことなく返ります。これは高速ですが、その後のオペレーションシステムのクラッシュでベースバックアップの破損が残るかもしれないことを意味します。
一般にこのオプションはテスト用に有用なのであって、本番導入の際に使うべきではありません。
       

	-P, --progress
	

進行状況報告を有効にします。
これを有効にすると、バックアップ中におおよその進行状況が報告されます。
データベースはバックアップ中に変更があるかもしれませんので、これはおおよそでしかなくちょうど100%では終わらないかもしれません。
特に、WALログがバックアップに含まれる場合、データ総量は前もって予測することはできません。
このためこの場合、推定対象容量はWALなしの総推定量を過ぎた後増加します。
       

	-r rate, --max-rate=rate
	

ソースサーバから収集されるデータの最大転送速度です。
これは、サーバでのpg_basebackupの影響を制限するのに有用です。
値は秒あたりのキロバイト数です。
添字Mを使うと秒あたりのメガバイト数を指定できます。
添字kを使うこともできますが、効果はありません。
有効な値は秒あたり32キロバイトから秒あたり1024メガバイトまでです。
       


このオプションはデータディレクトリの転送に対しては、常に影響があります。
WALファイルの転送については、収集方法がfetchの場合にのみ影響があります。
       

	-S slotname, --slot=slotname
	

このオプションは-X streamと一緒でのみ使用できます。
これはWALストリーミングに指定したレプリケーションスロットを使用させます。
レプリケーションスロットを使うストリーミングレプリケーションのスタンバイとしてベースバックアップを使用するつもりであるなら、スタンバイはprimary_slot_nameと同じレプリケーションスロット名を使うべきです。
これにより、ベースバックアップ終了と新しいスタンバイでのストリーミングレプリケーション開始の間の時間にプライマリサーバが必要なWALデータを削除しないことが確実になります。
       


指定されたレプリケーションスロットは、オプション-Cも使われている場合を除き、存在していなければなりません。
       


このオプションが指定されておらず、サーバが一時レプリケーションスロットに対応している（バージョン10以降）場合、WALストリーミングに対して一時レプリケーションスロットが自動的に使われます。
       

	--sync-method=method
	

デフォルトのfsyncに設定すると、pg_basebackupはバックアップディレクトリ内の全てのファイルを再帰的にオープンし同期します。
plain形式を使用する場合、ファイルの検索はWALディレクトリと設定された各テーブル空間のシンボリックリンクをたどります。
       


Linuxでは、syncfsを代わりに使用して、バックアップディレクトリを含むファイルシステム全体を同期化するようにオペレーティングシステムに要求できます。
plain形式を使用する場合、pg_basebackupはWALファイルと各テーブル空間を含むファイルシステムも同期化します。
syncfsを使用する際に注意すべき点については、recovery_init_sync_methodを参照してください。
       


このオプションは--no-syncが使われている場合は効果がありません。
       

	-v, --verbose
	

冗長モードを有効にします。
開始時および終了段階でいくつか追加の段階が出力されます。
また進行状況報告も有効な場合、現在処理中のファイル名も正しく出力されます。
       

	--manifest-checksums=algorithm
	

バックアップマニフェストに含まれる各ファイル適用されるチェックサムアルゴリズムを指定します。
現在利用できるアルゴリズムはNONE、CRC32C、SHA224、SHA256、SHA384、SHA512です。
デフォルトはCRC32Cです。
       


NONEが選択されれば、バックアップマニフェストはチェックサムを含みません。
それ以外の場合、バックアップ内の各ファイルの指定したアルゴリズムを使ったチェックサムを含みます。
さらに、マニフェストは自身の内容のSHA256チェックサムを常に含みます。
SHAアルゴリズムはCRC32CよりもかなりCPU集約的なため、そのどれかを1つを選択するとバックアップの完了に掛かる時間が増えるでしょう。
       


SHAハッシュ関数を使うと、バックアップが変更されていないことを検証したい利用者にとっては暗号学的に安全な各ファイルのダイジェストが提供されますが、一方、CRC-32Cアルゴリズムでは計算がずっと速いチェックサムが提供されます。偶発的な変更によるエラーを捕捉するのには良いですが、悪意のある修正に対して抵抗力はありません。
バックアップにアクセスした敵に対抗するのに有用なように、バックアップマニフェストは、どこか他のところに安全に保管するか、バックアップが取られて以来変更されたことがないのを検証する必要があることに注意してください。
       


pg_verifybackup(1)を使ってバックアップマニフェストに対するバックアップの完全性を検査できます。
       

	--manifest-force-encode
	

バックアップマニフェスト内のファイル名をすべて強制的に16進数でエンコードします。
このオプションが指定されなければ、UTF8でないファイル名だけが16進数でエンコードされます。
このオプションは主に、バックアップマニフェストファイルを読むツールが、この場合を正しく扱うか試験することを意図しています。
       

	--no-estimate-size
	

ストリームされるバックアップデータの総量をサーバが評価しないようにします。その結果、pg_stat_progress_basebackupビューのbackup_total列は常にNULLになります。
       


このオプションがなければ、バックアップはまずデータベース全体容量を計算し、その後バックアップに戻り、実際の内容を送信します。
これにより、バックアップに要する時間は少し長くなるかもしれません。特に最初のデータが送られるようになるまでの時間がより長くなります。
このオプションは、評価時間が長過ぎる場合にそれを避けるのに有用です。
       


--progressを使う場合には、このオプションは認められません。
       

	--no-manifest
	

バックアップマニフェストを生成しないようにします。
このオプションが指定されなければ、サーバはpg_verifybackup(1)を使って検証できるバックアップマニフェストを生成し送信します。
マニフェストは、含まれるかもしれないWALファイルを除いて、バックアップの中にある各ファイルの一覧です。
各ファイルの大きさや最終修正時刻、省略可能なチェックサムも保存されます。
       

	--no-slot
	

バックアップ時に一時レプリケーションスロットを作成しないようにします。
       


デフォルトでは、ログストリーミングが選択されたものの-Sオプションでスロット名が与えられなかった場合、(ソースサーバがサポートしていれば)一時レプリケーションスロットが作成されます。
       


このオプションの主な目的は、サーバにレプリケーションスロットの空きが無いときにベースバックアップを取得できるようにすることです。
レプリケーションスロットを使うことは、必要とされるWALがバックアップ中のサーバにより削除されることを防止するため、ほとんどの場合に好ましいです。
       

	--no-verify-checksums
	

ベースバックアップ取得元のサーバでチェックサムの検証が有効になっている場合に、チェックサムの検証を無効化します。
       


デフォルトでは、チェックサムは検証され、チェックサムエラーは非ゼロの終了ステータスをもたらします。
とはいえ、このような場合には、--no-cleanオプションが使われていたかのように、ベースバックアップは削除されません。
チェックサム検証の失敗はpg_stat_databaseビューでも報告されます。
       




   


以下のオプションはソースサーバへの接続パラメータを制御します。

    
	-d connstr, --dbname=connstr
	

サーバとの接続のために使用するパラメータを、接続文字列として指定します。
衝突するコマンドラインオプションよりも優先します。
       


他のクライアントアプリケーションとの整合性を保つために、このオプションは--dbnameと呼ばれますが、pg_basebackupはクラスタ内の特定のデータベースに接続しないため、接続文字列に含まれるデータベース名はサーバによって無視されます。
しかし、そのようにして提供されたデータベース名は、レプリケーション接続のパスワードを~/.pgpassで検索するためのデフォルトのデータベース名（replication）を上書きします。
同様に、PostgreSQL™への接続に使用されるミドルウェアやプロキシは、接続ルーティングなどのために、この名前を利用する可能性があります。
データベース名は論理レプリケーションスロットの同期でも使用できます。
       

	-h host, --host=host
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
デフォルトは、設定されていれば環境変数PGHOSTから取得されます。
設定されていなければ、Unixドメインソケット接続とみなされます。
       

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはローカルUnixドメインソケットファイルの拡張子を指定します。
デフォルトは、設定されている場合、環境変数PGPORTの値となります。設定されていなければ、コンパイル時のデフォルト値となります。
       

	-s interval, --status-interval=interval
	

状態パケットがソースサーバに返送される間隔を秒単位で指定します。
より小さな値を指定することで、より正確にサーバからバックアップの進行状況を監視できます。
ゼロという値は定期的な状態更新を完全に無効にします。
しかし、タイムアウトによる切断を防止するために、サーバにより要求された場合には更新が送信されます。
デフォルト値は10秒です。
       

	-U username, --username=username
	

接続ユーザ名を指定します。
       

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
       

	-W, --password
	

ソースサーバに接続する前に、pg_basebackupは強制的にパスワード入力を促します。
       


サーバがパスワード認証を要求する場合pg_basebackupは自動的にパスワード入力を促しますので、これが重要になることはありません。
しかし、pg_basebackupは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
       




   


以下のその他のオプションも使用することができます。

    
	-V, --version
	

pg_basebackupのバージョンを表示し終了します。
       

	-?, --help
	

pg_basebackupコマンドライン引数の使用方法を表示し、終了します。
       




   

環境


このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqでサポートされる環境変数（「環境変数」参照）を使います。
  


環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  

注釈


バックアップの開始時に、ソースサーバ上でチェックポイントを実行する必要があります。
(特にオプション --checkpoint=fast を使用していない場合)これには少し時間を要する場合があり、その間 pg_basebackup はアイドル状態であるように見えます。
  


このバックアップには、設定ファイルやサードパーティによりディレクトリに格納された追加ファイルを含め、データディレクトリとテーブル空間内のすべてのファイルが含まれますが、PostgreSQLによって管理される一部の一時ファイルとオペレーティングシステムのファイルは含まれません。
ただし、テーブル空間に使われるシンボリックリンクが保存されることを除くと、通常のファイルとディレクトリのみがコピーされます。
PostgreSQLが認識している一部のディレクトリを指すシンボリックリンクは空のディレクトリとしてコピーされます。
その他のシンボリックリンクおよび特殊デバイスファイルはスキップされます。
(正確な詳細については「ストリーミングレプリケーションプロトコル」を参照してください。)
  


plain形式では、オプション--tablespace-mappingが使われなければ、テーブル空間はソースサーバ上のと同じパスでバックアップされます。
このオプションがないと、サーバと同じホスト上でのplain形式のベースバックアップの実行は動作しません、というのは、バックアップを元のテーブル空間と同じディレクトリに書き込まなければならないからです。
  


tar形式を使う場合、そのデータを使うPostgreSQLサーバを起動する前に各tarファイルを解凍するのはユーザの責任です。
追加のテーブル空間がある場合、それについてのtarファイルは、正しい場所に解凍される必要があります。
この場合、テーブル空間へのシンボリックリンクは、base.tarファイルに含まれるtablespace_mapファイルの内容に基づいて、サーバが作成します。
  


pg_basebackupは同じまたは9.1以降のより古いメジャーバージョンのサーバで動作します。
しかしWALストリーミングモード（-X stream）はバージョン9.3およびそれ以降のサーバでのみ動作します。
また、tar形式（--format=tar）はバージョン9.5およびそれ以降のサーバでのみ動作し、増分バックアップ（--incremental）はバージョン17およびそれ以降のサーバでのみ動作します。
  


pg_basebackupは、ソースのクラスタでグループパーミッションが有効になっている場合、データファイルに対するグループパーミッションを維持します。
  

例


mydbserverで稼働するサーバのベースバックアップを作成し、ローカルディレクトリ/usr/local/pgsql/dataに保管します。


$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data


  


各テーブル空間につき圧縮したtarファイルを1つ作成するようにローカルサーバをバックアップし、backupディレクトリに保管します。
同時に実行時に進行状況を表示します。


$ pg_basebackup -D backup -Ft -z -P


  


単一のテーブル空間を持つローカルデータベースのバックアップを作成し、それをbzip2™で圧縮します。


$ pg_basebackup -D - -Ft -X fetch | bzip2 > backup.tar.bz2



（データベース内に複数のテーブル空間が存在する場合このコマンドは失敗します。）
  


/opt/tsにあるテーブル空間を./backup/tsに再配置してローカルデータベースのバックアップを作成します。


$ pg_basebackup -D backup/data -T /opt/ts=$(pwd)/backup/ts



レベル9でgzipで圧縮された、テーブル空間ごとに1つのtarファイルでローカルサーバのバックアップを作成し、ディレクトリbackupに保存します。


$ pg_basebackup -D backup -Ft --compress=gzip:9


関連項目
pg_dump(1), 「ベースバックアップの進捗状況のレポート」


名前
pgbench — PostgreSQL™に対してベンチマーク試験を行う

概要
pgbench   -i  [option...] [dbname]

pgbench  [option...] [dbname]


説明


pgbenchはPostgreSQL™上でベンチマーク試験を行う単純なプログラムです。
これは同一のSQLコマンドの並びを何度も実行します。複数の同時実行データベースセッションで実行することもできます。
そして、トランザクションの速度（1秒当たりのトランザクション数）の平均を計算します。
デフォルトでpgbenchは、1トランザクション当たり5つのSELECT、UPDATE、INSERTコマンドを含むおおよそTPC-Bに基いたシナリオを試験します。
しかし、独自のトランザクションスクリプトファイルを作成することで他の試験ケースを簡単に実行することができます。
 


pgbenchの典型的な出力を以下に示します。



transaction type: <builtin: TPC-B (sort of)>
scaling factor: 10
query mode: simple
number of clients: 10
number of threads: 1
maximum number of tries: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
number of failed transactions: 0 (0.000%)
latency average = 11.013 ms
latency stddev = 7.351 ms
initial connection time = 45.758 ms
tps = 896.967014 (without initial connection time)




最初の7行はいくつかの最重要パラメータの設定を表示しています。
6行目では、直列化エラーまたはデッドロックエラーのあるトランザクションの最大試行回数がレポートされます（詳細は直列化の失敗／デッドロック再試行を参照してください）。
8行目では、完了トランザクション数と予定したトランザクション数がレポートされます（後者は単なるクライアント数とクライアント毎のトランザクション数の積算結果です。）
これらは、完了前に実行が失敗した場合や一部のSQLコマンドが失敗した場合を除いて等しくなります（-Tモードでは、実際のトランザクション数のみが出力されます）。
次の行では、直列化エラーまたはデッドロックエラーが原因で失敗したトランザクション数がレポートされます(直列化の失敗／デッドロック再試行を参照してください)。
最後の行は1秒当たりのトランザクション数を示します。
 


デフォルトのTPC-Bと似たトランザクション試験では、あらかじめ設定する特定のテーブルが必要です。
これらのテーブルを作成し、データを投入するためには、-i（初期化）オプションを付けてpgbenchを呼び出さなければなりません。
（独自スクリプトを試験する場合、この手順は必要ありません。
しかし代わりに試験に必要な何らかの設定を行わなければならないでしょう。）
初期化は以下のようになります。



pgbench -i [ other-options ] dbname




ここでdbnameは試験用に前もって作成されたデータベースの名前です。
（またデータベースサーバの接続方法を指定するために、-h、-p、-Uが必要になるかもしれません。）
  
注意


pgbench -iは4つのテーブルpgbench_accounts、pgbench_branches、pgbench_history、pgbench_tellersを作成します。
もしあればこうした名前のテーブルは破壊されます。
もし同じ名前のテーブルが存在する場合にはよく注意してください。
   



デフォルトの「倍率」の1では、テーブルは初期状態で以下の行数を含みます。


table                   # of rows
---------------------------------
pgbench_branches        1
pgbench_tellers         10
pgbench_accounts        100000
pgbench_history         0



-s（倍率）オプションを使用して行数を増加させることができます（また、ほとんどの目的ではおそらく増加させるべきです）。
また、-F (fillfactor)オプションをここで使用しても構いません。
  


一度この必要な設定を行った後、以下のように-iを持たないコマンドでベンチマークを行うことができます。



pgbench [ options ] dbname




ほとんどすべての場合、有用な試験とするためにいくつかのオプションが必要になります。
最重要オプションは-c（クライアント数）、-t（トランザクション数）、-T (制限時間)、-f（独自スクリプトファイルの指定）です。
以下の全一覧を参照してください。
  

オプション


以下は3つの副節に分かれています。
データベース初期化時に使用されるオプションとベンチマーク実行時に使用されるオプションで異なるオプションが使用されますが、一部のオプションは両方の場合に有用です。
  
初期化用のオプション


pgbenchは以下の初期化用のコマンドライン引数を受け付けます。

    
	[-d] dbname, [--dbname=]dbname
	

試験するデータベースの名前を指定します。
これが指定されていない場合、環境変数PGDATABASEが使用されます。
この変数も設定されていない場合は、接続のために指定されたユーザ名が使用されます。
       

	-i, --initialize
	

初期化モードを呼び出すために必要です。
       

	-I init_steps, --init-steps=init_steps
	

標準の初期化ステップの内、選択したものだけを実行します。
init_stepsでは、各ステップ毎に1文字を使って、実行する初期化ステップを指定します。
各ステップは指定した順で実行されます。
デフォルトはdtgvpです。
有効なステップは以下の通りです。

        
	d (Drop)
	

既存のpgbenchのテーブルを全て削除します。
           

	t (create Tables)
	

標準のpgbenchシナリオで使われるテーブル、すなわちpgbench_accounts、pgbench_branches、pgbench_historyおよびpgbench_tellersを作成します。
           

	gまたはG (Generate data, クライアント側、またはサーバ側)
	

データを生成し、既存データを置き換えて、標準の各テーブルに読み込みます。
           


g(クライアント側データ生成)は、データはpgbenchクライアントで生成されてからサーバに送られます。
これはCOPYでクライアント/サーバの帯域を大きく使います。
pgbenchは、バージョン14またはそれ以降のPostgreSQL™では、通常の（パーティションでない）テーブルにデータを読み込むのにFREEZEオプションを使用して、その後のVACUUMを高速化します。
gを使うと、すべてのテーブルのためにデータを生成する間、100,000行毎にメッセージを1つログ出力するようになります。
           


G(サーバ側データ生成)では、小さな問い合わせだけがpgbenchクライアントから送られ、データは実際にはサーバで生成されます。
こちらは帯域を著しく要求することはありませんが、サーバが、より多くの作業をすることになります。
Gを使うと、データを生成する間は進捗メッセージをログ出力しなくなります。
           


デフォルトの初期化動作は、クライアント側のデータ生成(gと同じ)を使います。
           

	v (Vacuum)
	

標準の各テーブルに対してVACUUMを実行します。
           

	p (create Primary keys)
	

標準の各テーブルにプライマリキーインデックスを作成します。
           

	f (create Foreign keys)
	

標準のテーブル間に外部キー制約を作成します。
（このステップはデフォルトでは実行されないことに注意してください）
           




	-F fillfactor, --fillfactor=fillfactor
	

指定したfillfactorでpgbench_accounts、pgbench_tellers、pgbench_branchesテーブルを作成します。
デフォルトは100です。
       

	-n, --no-vacuum
	

初期化でバキュームを実行しません。
（このオプションは-Iで指定されていたとしても初期化ステップvを抑止します。）
       

	-q, --quiet
	

ログ処理を、5秒に１つの進行メッセージのみを生成する静寂モードに切り替えます。
デフォルトのログ処理では、100,000行毎にメッセージを１つ出力し、（特に優れたハードウェアでは）1秒当たりに多くのメッセージを出力します。
       


-Iの中でGが指定されていれば、この設定は影響しません。
       

	-s scale_factor, --scale=scale_factor
	

この倍率で生成される行数を積算します。
例えば、-s 100は pgbench_accountsテーブルに10,000,000行を生成することを意味します。
デフォルトは1です。
この倍率が20000以上になると、アカウント識別子の範囲を保持できる程度に大きくなるように、アカウント識別子を保持するために使用される列（aid列）はより大きな整数（bigint）を使用するように切り替わります。
       

	--foreign-keys
	

標準テーブル間で外部キー制約を作成します。
（このオプションは初期化ステップの並びに、もし無かったならfステップを追加します。）
       

	--index-tablespace=index_tablespace
	

デフォルトのテーブル空間ではなく、指定したテーブル空間の中にインデックスを作成します。
       

	--partition-method=NAME
	

NAMEメソッドでパーティション化されたpgbench_accountsテーブルを作成します。
期待される値はrangeまたはhashです。
このオプションは--partitionsが0でない値に設定されていることを要求します。
指定されなければ、デフォルトはrangeです。
       

	--partitions=NUM
	

アカウントの数に比例したほぼ等しい大きさのNUM個のパーティションにパーティション化されたpgbench_accountsテーブルを作成します。
デフォルトは0で、パーティション化しないことを意味します。
       

	--tablespace=tablespace
	

デフォルトのテーブル空間ではなく、指定したテーブル空間の中にテーブルを作成します。
       

	--unlogged-tables
	

永続テーブルではなくログを取らないテーブルとしてテーブルを作成します。
       




   

ベンチマーク用オプション


pgbenchは以下のベンチマーク用コマンドライン引数を受け付けます。

    
	-b scriptname[@weight], --builtin=scriptname[@weight]
	

指定の組み込みスクリプトを実行するスクリプトのリストに追加します。
利用可能な組み込みのスクリプトは、tpcb-like、simple-update、select-onlyです。
組み込みの名前の曖昧な接頭辞も受け付けられます。
特別な名前listを使うと、組み込みスクリプトのリストを表示して、即座に終了します。
       


オプションで、@の後に整数のweight（重み）を書くことで、他のスクリプトと比較してそのスクリプトが選ばれる確率を調整することができます。
デフォルトの重みは1です。
詳細は以下を参照してください。
       

	-c clients, --client=clients
	

模擬するクライアント数、つまり、同時に実行されるデータベースセッション数です。
デフォルトは1です。
       

	-C, --connect
	

各クライアントセッションが一度だけ接続を確立するのではなく、各トランザクションが新しい接続を確立します。
これは接続オーバーヘッドを測定する場合に有用です。
       

	-D varname=value, --define=varname=value
	

独自スクリプト（後述）で使用される変数を定義します。
複数の-Dオプションを使用することができます。
       

	-f filename[@weight], --file=filename[@weight]
	

filenameから読み取ったトランザクションスクリプトを実行されるスクリプトのリストに追加します。
       


オプションで、@の後に整数のweight（重み）をつけることで、他のスクリプトと比較してそのスクリプトが選ばれる確率を調整することができます。
デフォルトの重みは1です。
（@文字を含むスクリプトファイル名を使用するには、 filen@me@1 のように曖昧さがないように重みを付けます。）
詳細は以下を参照してください。
       

	-j threads, --jobs=threads
	

pgbench内のワーカースレッド数です。
複数のスレッドを使用することはマルチCPUマシンで有用になります。
クライアントは利用可能なスレッドの間でできる限り均等に分散されます。
デフォルトは1です。
       

	-l, --log
	

各トランザクションに関する情報をログファイルに書き出します。
詳細は以下を参照してください。
       

	-L limit, --latency-limit=limit
	

limitミリ秒以上続くトランザクションが計数され、別途遅いトランザクションとして報告されます。
       


制限が使用されると(--rate=...)、limitミリ秒以上遅延がスケジュールされたトランザクションは遅延制限を満たす可能性がないため、サーバに送信されることは決してありません。
これらのトランザクションは計数され、別途スキップされたとして報告されます。
       


--max-triesオプションが使用されている場合、直列化異常またはデッドロックのために失敗したトランザクションは、すべての試行の合計時間がlimitより大きい場合、再試行されません。
試行回数ではなく試行時間のみを制限するには、--max-tries=0を使用します。
デフォルトでは、--max-triesオプションは1に設定されており、直列化エラー／デッドロックエラーのあるトランザクションは再試行されません。
このようなトランザクションの再試行の詳細は直列化の失敗／デッドロック再試行を参照してください。
       

	-M querymode, --protocol=querymode
	

サーバへ問い合わせを送信するために使用するプロトコルです。
          
	simple: 簡易問い合わせプロトコルを使用します。

	extended: 拡張問い合わせプロトコルを使用します。

	prepared: プリペアドステートメントを伴う拡張問い合わせプロトコルを使用します。






preparedモードでは、pgbenchは問い合わせの2回目の繰り返しからは構文解析結果を再利用しますので、pgbenchは他のモードよりも速く動作します。
       


デフォルトは簡易問い合わせプロトコルです。
（詳しい情報は54章フロントエンド/バックエンドプロトコルを参照してください）
       

	-n, --no-vacuum
	

試験を実行する前にバキュームを行いません。
pgbench_accounts、pgbench_branches、pgbench_history、
pgbench_tellers標準テーブルを含まない独自試験シナリオを実行する場合、このオプションは必要です。
       

	-N, --skip-some-updates
	

組み込みのsimple-update（単純な更新）のスクリプトを実行します。
-b simple-updateの短縮形です。
       

	-P sec, --progress=sec
	

sec秒毎の進捗レポートを表示します。
レポートには起動からの経過時間、前回レポート時からのTPS、前回レポート時からのトランザクションの平均待ち時間、標準偏差、最後のレポートからの失敗したトランザクションの数を含んでいます。
(-R)オプションによる制限下では、待ち時間はトランザクションの実開始時間ではなく、予定開始時間で算出されていますので、平均予定遅延時間が含まれています。
--max-triesを使用して直列化エラー／デッドロックエラー後のトランザクション再試行を有効にする場合、レポートには再試行されたトランザクションの数とすべての再試行の回数が含まれます。
       

	-r, --report-per-command
	

ベンチマークの終了後、各コマンドについて、文ごとの平均待機時間(クライアントから見た実行時間)、失敗回数、およびこのコマンドの直列化エラーまたはデッドロックエラー後の再試行回数の統計をレポートします。
レポートに再試行統計が表示されるのは、--max-triesオプションが1以外の場合のみです。
       

	-R rate, --rate=rate
	

トランザクションを可能な限り高速（デフォルト）で実行するのではなく、指定された目標レートで実行します。
レートは1秒あたりのトランザクション数で与えられます。目標レートが実施可能な最大レートを越えている場合、レート制限は結果に影響を与えません。
       


レートはトランザクションの開始予定タイムラインがポアソン分布に沿う事を目標としています。
期待される開始時刻の予定は、前トランザクションの終了時ではなくクライアントの初期起動時に基づいて動かします。
このアプローチはトランザクションがオリジナルの終了予定時刻を過ぎた場合でも、後でまた追い付けることを意味します。
       


制限がアクティブになると、実行終了時に報告されるトランザクション待ち時間は、予定開始時刻から計算されるので、
各トランザクションが前トランザクションの終了を待たねばならなかった時間を含んでいます。
この待ち時間はスケジュールラグタイムと呼ばれ、平均と最大値も別々に報告されます。
実トランザクション開始時刻についてのトランザクション待ち時間、つまりデータベース内でトランザクションの実行に要した時間は、報告された待ち時間からスケジュールラグタイムを減算することで算出することができます。
       


--latency-limitが--rateと一緒に指定された場合、トランザクションは、先行するトランザクションが終了した際にすでに遅延制限を超えていて、非常に遅れてしまうことがあり得ます。
そのようなトランザクションはサーバに送信さることなくスキップされ、別途カウントされます。
       


スケジュールラグタイムの高い値は、システムが選択されたクライアント数とスレッド数で、指定されたレートでトランザクションを処理できなかったことを示しています。
トランザクションの平均実行時間が各トランザクション間で予定されていた間隔より長い場合、各逐次トランザクションは更に遅くなり、
スケジュールラグタイムはテスト実行がより長く増加し続けます。
これが起こる場合、指定トランザクションレートを減らす必要があります。
       

	-s scale_factor, --scale=scale_factor
	

pgbenchの出力で指定した倍率をレポートします。
これは組み込みの試験では必要ありません。
正確な倍率がpgbench_branchesテーブルの行数を数えることで検出されます。
しかし、独自ベンチマーク（-fオプション）のみを試験している場合、このオプションを使用しない限り、倍率は1として報告されます。
       

	-S, --select-only
	

組み込みのselect-only（SELECTのみ）のスクリプトを実行します。
-b select-onlyの短縮形です。
       

	-t transactions, --transactions=transactions
	

各クライアントが実行するトランザクション数です。
デフォルトは10です。
       

	-T seconds, --time=seconds
	

クライアントあたりのトランザクション数を固定で指定するよりも長くテストを実行したい場合、ここに指定した秒数でテストを実行します。
-tと-Tは互いに排他的です。
       

	-v, --vacuum-all
	

試験前に4つの標準テーブルすべてをバキュームします。
-nも-vもなければ、pgbenchはpgbench_tellersとpgbench_branchesテーブルをバキュームし、pgbench_history内のデータをすべて消去します。
       

	--aggregate-interval=seconds
	

集約間隔の長さ（秒単位）です。
これは-lと一緒でのみ使用できます。
このオプションを付けると、ログには以下で説明するような指定間隔単位の要約が含まれます。
       

	--exit-on-abort
	

何らかのエラーでクライアントが中断された場合は、直ちに終了します。
このオプションを指定しない場合、クライアントが中断された場合でも、その他のクライアントは-tまたは-Tオプションで指定された通りに実行を継続しますので、pgbenchは、この場合には不完全な結果を出力します。
       


シリアライズの失敗またはデッドロックの失敗はクライアントを中断しないため、このオプションの影響を受けないことに注意してください。
詳細は、直列化の失敗／デッドロック再試行を参照してください。
       

	--failures-detailed
	

トランザクションごとおよび集約ログ、メインレポートおよびスクリプトごとのレポートで、次のタイプにグループ化された失敗をレポートします。
        
	直列化失敗

	デッドロック障害





詳細については、直列化の失敗／デッドロック再試行を参照してください。
       

	--log-prefix=prefix
	

--logにより作成されるログファイルのファイル名の先頭につける文字列を設定します。
デフォルトはpgbench_logです。
       

	--max-tries=number_of_tries
	

直列化エラー／デッドロックエラーのあるトランザクションの再試行を有効にし、これらの試行の最大数を設定します。
このオプションは、すべてのトランザクション試行の合計時間を制限する--latency-limitオプションと組み合せることができます。
また、--latency-limitまたは--timeを指定せずに試行回数を無制限に使用することはできません(--max-tries=0)。
デフォルト値は1で、直列化エラー／デッドロックエラーのあるトランザクションは再試行されません。
このようなトランザクションの再試行の詳細は、直列化の失敗／デッドロック再試行を参照してください。
       

	--progress-timestamp
	

進捗を表示（-Pオプション）しているとき、実行開始以後の経過秒数の代わりにタイムスタンプ（Unixエポック時刻）を使用します。
単位は秒で、ドットの後にミリ秒の精度が付きます。
これは様々なツールで生成されたログを比較するのに役立つでしょう。
       

	--random-seed=seed
	

ランダムジェネレータのシードを設定します。
各スレッド毎の初期ジェネレータ状態から一連の値を生成する、システム乱数ジェネレータの種となります。
seedの値は以下が可能です。
time（デフォルト、現在時刻に基づくシード）、rand（強いランダムソースを使用、使用できなければ失敗します）、あるいは符号無し整数値です。
ランダムジェネレータはpgbenchスクリプト（random...関数）から明示的に、あるいは暗黙に（例えばオプション--rateがトランザクションのスケジュールに使用します）、実行されます。
明示的に設定した場合、シードに使われる値はターミナルにあらわれます。
seedに与えることのできる値は何であれ、環境変数PGBENCH_RANDOM_SEEDを通して付与しても良いです。
設定したシードがありうる全ての実行に影響を及ぼすようにするためには、本オプションを最初に置くか、環境変数を使ってください。
      


明示的にシードを設定することは、乱数に関しては、正確にpgbench実行を再現することを可能にします。
ランダム状態はスレッド毎に制御されているので、スレッド毎に一つのクライアントであり、外的な依存やデータ依存が無い場合、同一の起動に対して正確に同じpgbench実行することを意味します。
統計的観点からは、性能のばらつきを隠したり、例えば前回実行と同じページにヒットすることで不当に性能改善するので、正確な再現実行は悪い考えです。
しかしながら、例えばエラーを起こすトリッキーなケースを再実行するなど、デバッグには大きな助けとなるでしょう。
賢く使ってください。
       

	--sampling-rate=rate
	

データをログに書き出す際に使用される、生成されるログの量を減少するためのサンプリング割合です。
このオプションが指定された場合、指定された割合のトランザクションがログに残ります。
1.0はすべてのトランザクションが、0.05はトランザクションの5%のみがログに残ることを意味します。
       


ログファイルを処理する際にはこのサンプリング割合を考慮することを忘れないでください。
例えば、TPS値を計算する際には、比例した数を掛け合わせなければなりません（例：サンプリング割合が0.01の場合実際のTPSの1/100を得るだけです。）
       

	--show-script=scriptname
	

組み込みスクリプトscriptnameの実際のコードを標準エラーに出力し、即座に終了します。
       

	--verbose-errors
	

すべてのエラーと失敗（再試行しないエラー）に関するメッセージを表示します。
これには、どの再試行制限を超えたか、および直列化／デッドロックの失敗でどの程度超えたかが含まれます（この場合、出力が大幅に増加することに注意してください。）
詳細は直列化の失敗／デッドロック再試行を参照してください。
       




   

共通オプション


pgbenchは、接続パラメータやその他の一般的な設定として以下の共通コマンドライン引数も受け付けます。

    
	--debug
	

デバッグ用出力を表示します。
       

	-h hostname, --host=hostname
	

      データベースサーバのホスト名
       

	-p port, --port=port
	

データベースサーバのポート番号
       

	-U login, --username=login
	

接続ユーザ名
       

	-V, --version
	

pgbenchのバージョンを表示し、終了します。
       

	-?, --help
	

pgbenchのコマンドライン引数の説明を表示し、終了します。
       




   


終了ステータス


実行に成功すればステータス0で終了します。
終了ステータス1は、無効なコマンドラインオプションや発生しないと思われる内部エラーなどの静的の問題を示します。
最初の接続の失敗など、ベンチマークの起動時に発生する初期エラーも、終了ステータス1になります。
データベースエラーやスクリプトでの問題などの実行中のエラーは終了ステータス2になります。
後者の場合、pgbenchは--exit-on-abortオプションが指定されていない場合、部分的な結果を表示します。
  

環境
	PGDATABASE, PGHOST, PGPORT, PGUSER
	

デフォルトの接続パラメータです。
     





このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqでサポートされる環境変数（「環境変数」参照）を使います。
  


環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  

注釈
pgbenchで実際に実行される「トランザクション」は何か?


pgbenchは指定したリストからランダムに選択したテストスクリプトを実行します。
これには-bの組み込みスクリプトと-fのユーザ定義カスタムスクリプトが含まれることがあります。
各スクリプトには@の後に指定される相対的な重みを与えることができ、それが選ばれる確率を変更することができます。
デフォルトの重みは1です。
重みが0のスクリプトは無視されます。
 


デフォルトの組み込みトランザクションスクリプト（-b tpcb-likeとすることでも実行されます）は、ランダムに選択されたaid、tid、bid、deltaに基づいて、トランザクション毎に7つのコマンドを発行します。
このシナリオはTPC-Bベンチマークに示唆を受けたものですが、実際にはTPC-Bではないので、この名前になっています。
  
	BEGIN;

	UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;

	SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

	UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;

	UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;

	INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);

	END;





simple-updateの組み込みを選択した（あるいは-Nを指定した）場合、第4ステップと第5ステップはトランザクションに含まれません。
これにより、これらのテーブルに対する更新の競合を避けられますが、テストケースはさらにTPC-Bらしくなくなります。
  


select-onlyの組み込みを選択した（あるいは-Sを指定した）場合、SELECTのみが発行されます。
  

独自スクリプト


pgbenchは、ファイルから読み込んだトランザクションスクリプト（-fオプション）でデフォルトのトランザクションスクリプト（上述）を置き換えて独自のベンチマークシナリオを実行する機能をサポートします。
この場合、「トランザクション」はスクリプトファイルの1回の実行として数えられます。
  


スクリプトファイルにはセミコロンで終了するSQLコマンドが1つ以上含まれます。
空行および--から始まる行は無視されます。
スクリプトファイルの行には、pgbench自身が解釈する「メタコマンド」（後述）も記述することができます。
  
注記


PostgreSQL™の9.6より前では、スクリプトファイル内のSQLコマンドは改行で終了しており、そのため行をまたがって継続することができませんでした。
これからは連続するSQLコマンドを区切るためにセミコロンが必要です（ただし、SQLコマンドの後にメタコマンドが続く場合は、セミコロンは必要ありません）。
pgbenchの古いバージョンと新しいバージョンの両方で動作するスクリプトを作る必要があるなら、各SQLコマンドを1行で書き、終わりにセミコロンを付けるようにしてください。
   


pgbenchスクリプトにはSQLトランザクションの不完全なブロックが含まれていないと想定されています。
実行時にクライアントが最後のトランザクションブロックを完了せずにスクリプトの最後に到達した場合、クライアントは中断されます。
   



スクリプトファイル向けの簡単な変数置換機能があります。
変数名は最初の文字が数字以外で文字（非ラテン文字を含む）、数字およびアンダースコアで構成されていなければなりません。
上で説明したように変数を-Dコマンドラインオプションで設定することができます。
また、後で説明するようにメタコマンドで設定することもできます。
-Dコマンドラインオプションで設定された変数の他に、表301「pgbench Automatic Variables」に記載されているように、自動的に設定される変数がいくつかあります。
-D を使ってこれらの変数に設定された値は、自動設定の値より優先されます。
一度設定すると、変数の値は、:variablenameと書かれてSQLコマンドに挿入されます。
1つ以上のクライアントセッションが実行される場合、セッション毎に独自の変数群を持ちます。
pgbenchは1つの文内で255個までの変数の利用をサポートします。
  
表301 pgbench Automatic Variables
	変数	説明
	 client_id 	クライアントセッションを識別する一意の数値（ゼロから始まる）
	 default_seed 	デフォルトでハッシュ関数や疑似ランダム置換関数で使われるシード
	 random_seed 	ランダムジェネレータのシード（-Dで上書きされていないなら）
	 scale 	現在の倍率





スクリプトファイルのメタコマンドはバックスラッシュ（\）から始まり、通常は行末まで続きますが、バックスラッシュと改行を書くことで、追加の行に続けることができます。
メタコマンドへの引数は空白文字で区切られます。
以下のメタコマンドがサポートされています。
  
	
     \gset [prefix]
     \aset [prefix]
    
	

このコマンドは、終了を意味するセミコロン(;)の置き換えで、SQL問い合わせを終えるために使われます。
     


\gsetコマンドが使われると、それまでのSQL問い合わせは1行を返すものと期待され、その行の列は列名にちなんだ名前の変数に格納されます。prefixが指定されていれば、変数名の前に付きます。
     


\asetコマンドが使われると、(\;で分けられた)すべての結合したSQL問い合わせは、その列が列名にちなんだ名前の変数に格納されます。prefixが指定されていれば、変数名の前に付きます。
問い合わせが行を返さなければ、割り当ては行なわれませんので、これを検出するために変数の存在をテストできます。
問い合わせが2行以上返した場合、最後の値が保持されます。
     


\gsetと\asetはパイプラインモードでは使用できません。
これは、コマンドで必要になるまでに問い合わせの結果がまだ利用できないためです。
     


以下の例は、最初の問い合わせからの最終的な口座残高を変数abalanceに入れ、変数p_twoとp_threeを3番目の問い合わせからの整数で埋めます。
2番目の問い合わせの結果は捨てられます。
最後の2つの結合した問い合わせの結果は、変数fourとfiveに格納されます。


UPDATE pgbench_accounts
  SET abalance = abalance + :delta
  WHERE aid = :aid
  RETURNING abalance \gset

-- 2つの問い合わせの組み合わせ
SELECT 1 \;
SELECT 2 AS two, 3 AS three \gset p_
SELECT 4 AS four \; SELECT 5 AS five \aset


	\if expression, \elif expression, \else, \endif
	

このコマンド群はpsqlの\if expressionと似た、入れ子にできる条件ブロックを実現します。
条件式は\setと同じで、非ゼロ値は真と解釈されます。
     

	
     \set varname expression
    
	

varname変数をexpressionから計算された値に設定します。
式（expression）には、NULL定数、真理値定数のTRUEとFALSE、5432のような整数の定数、3.14159のような倍精度実数の定数、変数を参照する :variablename、通常のSQLの優先度と結合規則での演算子、関数呼び出し、SQLのCASE一般条件式および括弧を含むことができます。
     


関数と大部分の演算子はNULL入力にNULLを返します。
     


条件の用途では非ゼロの数値はTRUE、ゼロ数値とNULLはFALSEです。
     


大きすぎるもしくは小さすぎる整数や倍精度実数の定数は、整数算術演算子(+、-、*、/)と同様にオーバーフローエラーになります。
     


CASEに最後のELSE句が与えられないとき、デフォルト値はNULLです。
     


例


\set ntellers 10 * :scale
\set aid (1021 * random(1, 100000 * :scale)) % \
           (100000 * :scale) + 1
\set divx CASE WHEN :x <> 0 THEN :y/:x ELSE NULL END


	
     \sleep number [ us | ms | s ]
    
	

スクリプトの実行をマイクロ秒（us）、ミリ秒（ms）、秒（s）単位で指定した間待機させます。
単位を省略した場合、デフォルトは秒です。
numberは整数定数か整数値を持つ変数への:variablename参照のいずれかです。
     


例


\sleep 10 ms


	
     \setshell varname command [ argument ... ]
    
	

commandシェルコマンドを指定のargumentで実行した結果をvarname変数に設定します。
このコマンドは標準出力を通して整数値を返さなければなりません。
     


commandおよび各argumentは、テキスト定数または変数を参照する:variablenameとすることができます。
コロンから始まるargumentを使用したい場合、argumentの先頭にさらにコロンを付けなければなりません。
     


例:


\setshell variable_to_be_assigned command literal_argument :variable ::literal_starting_with_colon


	
     \shell command [ argument ... ]
    
	

\setshellと同じですが、コマンドの結果は廃棄されます。
     


例:


\shell command literal_argument :variable ::literal_starting_with_colon


	\startpipeline, \syncpipeline, \endpipeline
	

このコマンド群は、SQL文のパイプライン化を実装します。
パイプラインは\startpipelineで始まり、\endpipelineで終わらなければなりません。
その間に、\syncpipelineコマンドをいくつも使用できます。これは、進行中のパイプラインを終了させず、送信バッファをフラッシュしないSyncメッセージを送信します。
パイプラインモードでは、前の文の結果を待たずに文がサーバに送信されます。
詳細は「パイプラインモード」を参照してください。
パイプラインモードでは、拡張問い合わせプロトコルを使用することが必要です。
     




組み込み演算子


表302「pgbenchの演算子」に載っている算術、ビットごと、比較、論理の演算子はpgbenchに組み込まれていて、\setの式で使用できます。
演算子は優先度の低い順に載っています。
注意書きがある場合を除いて、2つの数値を取る演算子は、入力の片方が倍精度実数であれば倍精度実数の値を結果とし、そうでなければ整数の結果になります。
  
表302 pgbenchの演算子
	

        演算子
       

       

        説明
       

       

        例
       

	
        boolean OR boolean
        boolean
       

       

論理OR
       

       
        5 or 0
        TRUE
       

	
        boolean AND boolean
        boolean
       

       

論理AND
       

       
        3 and 0
        FALSE
       

	
        NOT boolean
        boolean
       

       

論理NOT
       

       
        not false
        TRUE
       

	
        boolean IS [NOT] (NULL|TRUE|FALSE)
        boolean
       

       

ブール値のテスト
       

       
        1 is null
        FALSE
       

	
        value ISNULL|NOTNULL
        boolean
       

       

NULLであるかのテスト
       

       
        1 notnull
        TRUE
       

	
        number = number
        boolean
       

       

等価
       

       
        5 = 4
        FALSE
       

	
        number <> number
        boolean
       

       

不等
       

       
        5 <> 4
        TRUE
       

	
        number != number
        boolean
       

       

不等
       

       
        5 != 5
        FALSE
       

	
        number < number
        boolean
       

       

より小さい
       

       
        5 < 4
        FALSE
       

	
        number <= number
        boolean
       

       

以下
       

       
        5 <= 4
        FALSE
       

	
        number > number
        boolean
       

       

より大きい
       

       
        5 > 4
        TRUE
       

	
        number >= number
        boolean
       

       

以上
       

       
        5 >= 4
        TRUE
       

	
        integer | integer
        integer
       

       

ビット毎のOR
       

       
        1 | 2
        3
       

	
        integer # integer
        integer
       

       

ビット毎のXOR
       

       
        1 # 3
        2
       

	
        integer & integer
        integer
       

       

ビット毎のAND
       

       
        1 & 3
        1
       

	
        ~ integer
        integer
       

       

ビット毎のNOT
       

       
        ~ 1
        -2
       

	
        integer << integer
        integer
       

       

ビット毎の左シフト
       

       
        1 << 2
        4
       

	
        integer >> integer
        integer
       

       

ビット毎の右シフト
       

       
        8 >> 2
        2
       

	
        number + number
        number
       

       

加算
       

       
        5 + 4
        9
       

	
        number - number
        number
       

       

減算
       

       
        3 - 2.0
        1.0
       

	
        number * number
        number
       

       

乗算
       

       
        5 * 4
        20
       

	
        number / number
        number
       

       

除算(入力が両方とも整数であれば、結果は0に向けて丸められる)
       

       
        5 / 3
        1
       

	
        integer % integer
        integer
       

       

剰余(余り)
       

       
        3 % 2
        1
       

	
        - number
        number
       

       

符号反転
       

       
        - 2.0
        -2.0
       





組み込み関数


表303「pgbenchの関数」に示す関数はpgbenchに組み込まれており、\setに現れる式の中で使うことができます。
  
表303 pgbenchの関数
	

        関数
       

       

        説明
       

       

        例
       

	
        abs ( number )

        入力と同じ型
       

       

絶対値
       

       
        abs(-17)
        17
       

	
        debug ( number )

        入力と同じ型
       

       

引数をstderrに出力し、引数を返す。
       

       
        debug(5432.1)
        5432.1
       

	
        double ( number )
        double
       

       

倍精度実数にキャストする。
       

       
        double(5432)
        5432.0
       

	
        exp ( number )
        double
       

       

指数(eの指定した冪)
       

       
        exp(1.0)
        2.718281828459045
       

	
        greatest ( number [, ... ] )
         double if any argument is double, else integer
       

       

引数の中で最大の値を選択する。
       

       
        greatest(5, 4, 3, 2)
        5
       

	
        hash ( value [, seed ] )
        integer
       

       

これはhash_murmur2の別名です。
       

       
        hash(10, 5432)
        -5817877081768721676
       

	
        hash_fnv1a ( value [, seed ] )
        integer
       

       

FNV-1aハッシュを計算する。
       

       
        hash_fnv1a(10, 5432)
        -7793829335365542153
       

	
        hash_murmur2 ( value [, seed ] )
        integer
       

       

MurmurHash2ハッシュを計算する。
       

       
        hash_murmur2(10, 5432)
        -5817877081768721676
       

	
        int ( number )
        integer
       

       

整数にキャストする。
       

       
        int(5.4 + 3.8)
        9
       

	
        least ( number [, ... ] )
         double if any argument is double, else integer
       

       

引数の中で最小の値を選択する。
       

       
        least(5, 4, 3, 2.1)
        2.1
       

	
        ln ( number )
        double
       

       

自然対数
       

       
        ln(2.718281828459045)
        1.0
       

	
mod ( integer, integer )
        integer
       

       

剰余(余り)
       

       
        mod(54, 32)
        22
       

	
        permute ( i, size [, seed ] )
        integer
       

       

[0, size)の範囲のiの順列値。
これは、seedによってパラメータ化された整数0...size-1の疑似ランダム置換におけるi（modulo size）の新しい位置です。
以下を参照してください。
       

       
        permute(0, 4)

        0と3の間の整数
       

	
        pi ()
        double
       

       

πの近似値
       

       
        pi()
        3.14159265358979323846
       

	
        pow ( x, y )
        double
       

       
        power ( x, y )
        double
       

       

xのy乗
       

       
        pow(2.0, 10)
        1024.0
       

	
        random ( lb, ub )
        integer
       

       

[lb, ub]内の一様分布の整数の乱数を計算する。
       

       
        random(1, 10)

        1と10の間の整数
       

	
        random_exponential ( lb, ub, parameter )
        integer
       

       

[lb, ub]内の指数分布の整数の乱数を計算する、後述。
       

       
        random_exponential(1, 10, 3.0)

        1と10の間の整数
       

	
        random_gaussian ( lb, ub, parameter )
        integer
       

       

[lb, ub]内のガウス分布の整数の乱数を計算する、後述。
       

       
        random_gaussian(1, 10, 2.5)

        1と10の間の整数
       

	
        random_zipfian ( lb, ub, parameter )
        integer
       

       

[lb, ub]内のジップ分布の整数の乱数を計算する、後述。
       

       
        random_zipfian(1, 10, 1.5)

        1と10の間の整数
       

	
        sqrt ( number )
        double
       

       

平方根
       

       
        sqrt(2.0)
        1.414213562
       






random関数は一様分布を使って値を生成します。
つまり、すべての値は指定された範囲内で同じ確率で発生します。
random_exponential、random_gaussian、および、random_zipfian関数は追加の倍精度実数のパラメータを必要とし、それによって分布の正確な形が決まります。
   
	

指数分布では、parameterが分布を制御します。
急速に減少する指数分布をparameterで切り捨て、境界範囲内の整数に射影します。
正確には、以下の式に従います。



f(x) = exp(-parameter * (x - min) / (max - min + 1)) / (1 - exp(-parameter))





これにより、minとmaxの間（両端を含む）の間の値iがf(i) - f(i + 1)の確率で生成されます。
     


直感的には、parameterが大きければ、minに近い値が発生する確率が高くなり、maxに近い値が発生する確率が低くなります。
parameterが0に近ければ、発生の分布はより平ら（より一様）になります。
大雑把に分布を近似すると、minに近い最頻の1%の範囲の値は、parameter%の割合で発生します。
parameterの値は厳密に正でなければなりません。
     

	

ガウス分布では、標準的な正規分布（古典的なベルの形をしたガウス曲線）で、左に-parameter、右に+parameterのところで切り捨てられたものに間隔が射影されます。
間隔の中間の値が発生する確率が最も高くなります。
正確に言うと、PHI(x)は標準正規分布の累積分布関数、平均値muを(max + min) / 2.0と定義し、さらに



f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /

       (2.0 * PHI(parameter) - 1)





とすると、minとmaxの間（両端を含む）の値iが発生する確率はf(i + 0.5) - f(i - 0.5)になります。
直感的には、parameterが大きくなれば、間隔の中間に近い値になる確率が高く、また、minとmaxの境界に近い値になる確率は低くなります。
約67%の値は、中間の1.0 / parameterの範囲、つまり平均値から0.5 / parameterの範囲から、また95%は中間の2.0 / parameterの範囲、つまり平均値から1.0 / parameterの範囲に発生します。
例えばparameterが4.0なら、67%の値は間隔の中間の4分の1(1.0/4.0)から（つまり3.0 / 8.0から5.0 / 8.0まで）、95%は間隔の中間の半分（2.0 / 4.0）から（2番目と3番目の四分位）から発生します。
許される最小のparameter値は2.0です。
     

	

random_zipfianは制限付きのジップ分布を生成します。
parameterはどれほど歪んだ分布かを定義します。
より大きいparameterほど、より高頻度に区間の始点に近い値が描かれます。
範囲が1から始まるとして、kを描く確率とk+1を描く確率の比が((k+1)/k)**parameterという分布になります。
例えば、random_zipfian(1, ..., 2.5)は、値1を2の約(2/1)**2.5 = 5.66倍高い頻度で生成し、値2を3の約(3/2)**2.5 = 2.76倍高い頻度で生成し、以下同様に続きます。
     


pgbenchの実装は「Non-Uniform Random Variate Generation」Luc Devroye(Springer 1986, p. 550-551)に基づいており、parameter値は[1.001, 1000]の範囲に限定されています。
     



注記


行を不均一に選択するベンチマークを設計する場合、選択された行はシーケンスからのIDや物理的な行の順序など他のデータと相関している可能性があり、性能測定に影響を与える可能性があることに留意してください。
    


これを避けるには、permute関数、または同様の効果を持つ他の追加手順を使用して、選択した行をシャッフルし、そのような相関関係を削除することをお勧めします。
    



ハッシュ関数hash、hash_murmur2およびhash_fnv1aは入力値とオプションシードパラメータを受け付けます。
シードが与えられなかった場合、:default_seedの値が使われます。これは、コマンドライン-Dオプションで設定されない限りランダムに初期化されたものです。
  


permuteは、入力値とサイズとオプションシードパラメータを受け付けます。
[0, size)の範囲の整数の疑似ランダム置換を生成し、並べ替えられた値の入力値のインデックスを返します。
選択される並べ替えはシードによってパラメータ化され、指定されていない場合:default_seedがデフォルトになります。
ハッシュ関数とは異なり、permuteは出力値に衝突や穴がないことを保証します。
区間外の入力値は、サイズを法として解釈されます。サイズが正でない場合、関数はエラーを発生させます。
permuteはrandom_zipfianやrandom_exponentialのような不均一なランダム関数の分布を分散させて、より頻繁に導出される値が自明に相関しないようにすることができます。
たとえば、以下のpgbenchスクリプトは、僅かなアカウントが過大な負荷を生成するソーシャルメディアやブログのプラットフォームで起こりえる現実世界のワークロードをシミュレートします。



\set size 1000000
\set r random_zipfian(1, :size, 1.07)
\set k 1 + permute(:r, :size)




一部のケースでは、互いに無関係ないくつかの異なる分布が必要で、これはオプションのシードパラメータが役立ちます。



\set k1 1 + permute(:r, :size, :default_seed + 123)
\set k2 1 + permute(:r, :size, :default_seed + 321)




同様の動作は、hashでも近似的に行うことができます。



\set size 1000000
\set r random_zipfian(1, 100 * :size, 1.07)
\set k 1 + abs(hash(:r)) % :size




しかし、hashは衝突を発生させるため、到達できない値もあれば、元の分布から予想されるよりも頻度が高い値もあります。
  


例えば、組み込みのTPC-Bのようなトランザクションの完全な定義を示します。



\set aid random(1, 100000 * :scale)
\set bid random(1, 1 * :scale)
\set tid random(1, 10 * :scale)
\set delta random(-5000, 5000)
BEGIN;
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
END;




 このスクリプトにより、トランザクションを繰り返す度に異なる、ランダムに選ばれた行を参照することができます。
 （この例はまた、各クライアントセッションがなぜ独自の変数を持つことが重要なのかも表しています。
 これがないと、異なる行を独立して参照することができないのです。）
  

トランザクション毎のログ処理


（--aggregate-intervalオプションなしで）-lオプションを使用すると、pgbenchは各トランザクションに関する情報をログファイルに書き出します。
ログファイルの名前はprefix.nnnで、prefixのデフォルトはpgbench_log、nnnはpgbenchプロセスのPIDです。
ファイル名の先頭の文字列は--log-prefixオプションを使って変更することができます。
-jオプションが2以上で複数のワーカースレッドがある場合、それぞれが独自のログファイルを持つことになります。
最初のワーカーは標準的な単一ワーカーの場合と同じ名前を持つログファイルを使用します。
他のワーカー用の追加のログファイルはprefix.nnn.mmmと命名され、ここでmmmは1から始まる各ワーカーの連番です。
  


ログファイルの各行には1つのトランザクションが記述されています。
このログファイルには、スペースで区切られた次のフィールドが含まれています:

   
	client_id
	

トランザクションを実行したクライアントセッションを示します
      

	transaction_no
	

そのセッションで実行されたトランザクションの数をカウントします
      

	time
	

トランザクションの経過時間（マイクロ秒）
      

	script_no
	

トランザクションに使用されたスクリプトファイルを示します（複数のスクリプトが-fまたは-bで指定されている場合に便利です）
      

	time_epoch
	

トランザクションの完了時刻（Unixエポックタイムスタンプ）
      

	time_us
	

トランザクションの完了時間の分数秒部分（マイクロ秒）
      

	schedule_lag
	

トランザクション開始遅延、つまりトランザクションのスケジュールされた開始時刻と実際に開始された時刻の差をマイクロ秒単位で表したものです（--rateが指定されている場合にのみ存在します）
      

	retries
	

直列化エラーまたはトランザクション中のデッドロックエラー後の再試行のカウントします
（--max-triesが1でない場合にのみ存在する）
      




  


--rateと--latency-limitの両方を使用すると、スキップされたトランザクションのtimeはskippedとして報告されます。
トランザクションが失敗で終了した場合、timeはfailedとして報告されます。
--failures-detailedオプションを使用すると、失敗したトランザクションのtimeは、障害のタイプに応じて直列化またはデッドロックとして報告されます（詳細は直列化の失敗／デッドロック再試行を参照してください）。
  


単一クライアントでの実行で生成されたログファイルの一部を示します。


0 199 2241 0 1175850568 995598
0 200 2465 0 1175850568 998079
0 201 2513 0 1175850569 608
0 202 2038 0 1175850569 2663




--rate=100と--latency-limit=5を指定した例を示します。(schedule_lag列が追加されていることに注意)


0 81 4621 0 1412881037 912698 3005
0 82 6173 0 1412881037 914578 4304
0 83 skipped 0 1412881037 914578 5217
0 83 skipped 0 1412881037 914578 5099
0 83 4722 0 1412881037 916203 3108
0 84 4142 0 1412881037 918023 2333
0 85 2465 0 1412881037 919759 740



この例では、トランザクション82は遅延(6.173ミリ秒)が5ミリ秒を越えており、遅れています。
次の2つのトランザクションは、開始する前にすでに遅れてしまっているため、スキップされています。
  


次の例は、最大試行回数を10に設定した失敗と再試行のログファイルの一部を示しています（追加再試行列に注意）。


3 0 47423 0 1499414498 34501 3
3 1 8333 0 1499414498 42848 0
3 2 8358 0 1499414498 51219 0
4 0 72345 0 1499414498 59433 6
1 3 41718 0 1499414498 67879 4
1 4 8416 0 1499414498 76311 0
3 3 33235 0 1499414498 84469 3
0 0 failed 0 1499414498 84905 9
2 0 failed 0 1499414498 86248 9
3 4 8307 0 1499414498 92788 0


  


--failures-detailedオプションを使用すると、障害のタイプは次のように時間で報告されます。


3 0 47423 0 1499414498 34501 3
3 1 8333 0 1499414498 42848 0
3 2 8358 0 1499414498 51219 0
4 0 72345 0 1499414498 59433 6
1 3 41718 0 1499414498 67879 4
1 4 8416 0 1499414498 76311 0
3 3 33235 0 1499414498 84469 3
0 0 serialization 0 1499414498 84905 9
2 0 serialization 0 1499414498 86248 9
3 4 8307 0 1499414498 92788 0


  


大量のトランザクションを処理することができるハードウェアで長時間試験を実行する場合、ログファイルは非常に大きくなる可能性があります。
--sampling-rateオプションを使用して、トランザクションのランダムなサンプルだけをログに記録することができます。
  

ログ処理の集約


--aggregate-intervalオプションを使用すると、ログファイルに異なるフォーマットが使用されます。
各ログ行は1つの集約間隔を記述します。
このログ行には、スペースで区切られた次のフィールドが含まれます:

   
	interval_start
	

間隔の開始時刻（Unixエポックタイムスタンプ）
      

	num_transactions
	

間隔内のトランザクション数
      

	sum_latency
	

トランザクション待ち時間の合計
      

	sum_latency_2
	

トランザクション待ち時間の平方和
      

	min_latency
	

最小トランザクション待ち時間
      

	max_latency
	

最大トランザクション待ち時間
      

	sum_lag
	

トランザクション開始遅延の合計（--rateが指定されていない場合は0）
      

	sum_lag_2
	

トランザクション開始遅延の平方和（--rateが指定されていない場合は0）
      

	min_lag
	

最小トランザクション開始遅延（--rateが指定されていない場合は0）
      

	max_lag
	

最大トランザクション開始遅延（--rateが指定されていない場合は0）
      

	skipped
	

開始が遅すぎたためにスキップされたトランザクションの数（--rateと--latency-limitが指定されていない場合は0）
      

	retried
	

再試行されたトランザクションの数（--max-triesが1でない場合は0）
      

	retries
	

直列化エラーまたはデッドロックエラー後の再試行回数
（--max-triesが1でない場合は0）
      

	serialization_failures
	

直列化エラーが発生し、その後再試行されなかったトランザクションの数（--failures-detailedが指定されていない場合は0）
      

	deadlock_failures
	

デッドロックエラーが発生し、その後再試行されなかったトランザクションの数（--failures-detailedが指定されていない場合は0）
      




  


以下に、このオプションで生成された出力例を示します。


pgbench --aggregate-interval=10 --time=20 --client=10 --log --rate=1000 --latency-limit=10 --failures-detailed --max-tries=10 test

1650260552 5178 26171317 177284491527 1136 44462 2647617 7321113867 0 9866 64 7564 28340 4148 0
1650260562 4808 25573984 220121792172 1171 62083 3037380 9666800914 0 9998 598 7392 26621 4527 0


  


通常の（集約されていない）ログフォーマットは、各トランザクションについてどのスクリプトファイルが使用されたかを示しますが、集約されたログにはそれがないことに注意してください。
このためスクリプト単位のデータが必要な場合は、自身でデータを集約する必要があります。
  

文ごとの報告


-rオプションを使用すると、pgbenchは文ごとに次の統計情報を収集します。
   
	

latency—各文の経過トランザクション時間。
pgbenchは文のすべての成功した実行の平均値を報告します。
       

	

この文の失敗数。
詳細は直列化の失敗／デッドロック再試行を参照してください。
       

	

この文の直列化エラーまたはデッドロックエラー後の再試行回数。
詳細は直列化の失敗／デッドロック再試行を参照してください。
       




  


レポートに再試行統計情報が表示されるのは、--max-triesオプションが1に等しくない場合だけです。
  


すべての値は、各クライアントによって実行される文ごとに計算され、ベンチマークが終了した後に報告されます。
  


デフォルトのスクリプトの場合、出力は次のようになります。


starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 10
number of threads: 1
maximum number of tries: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
number of failed transactions: 0 (0.000%)
number of transactions above the 50.0 ms latency limit: 1311/10000 (13.110 %)
latency average = 28.488 ms
latency stddev = 21.009 ms
initial connection time = 69.068 ms
tps = 346.224794 (without initial connection time)
statement latencies in milliseconds and failures:
   0.012  0  \set aid random(1, 100000 * :scale)
   0.002  0  \set bid random(1, 1 * :scale)
   0.002  0  \set tid random(1, 10 * :scale)
   0.002  0  \set delta random(-5000, 5000)
   0.319  0  BEGIN;
   0.834  0  UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
   0.641  0  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
  11.126  0  UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
  12.961  0  UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
   0.634  0  INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
   1.957  0  END;




デフォルトトランザクション分離レベルにシリアライザブルを使用したデフォルトスクリプトの別の出力例(PGOPTIONS='-c default_transaction_isolation=serializable'pgbench.):


starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 10
number of threads: 1
maximum number of tries: 10
number of transactions per client: 1000
number of transactions actually processed: 6317/10000
number of failed transactions: 3683 (36.830%)
number of transactions retried: 7667 (76.670%)
total number of retries: 45339
number of transactions above the 50.0 ms latency limit: 106/6317 (1.678 %)
latency average = 17.016 ms
latency stddev = 13.283 ms
initial connection time = 45.017 ms
tps = 186.792667 (without initial connection time)
statement latencies in milliseconds, failures and retries:
  0.006     0      0  \set aid random(1, 100000 * :scale)
  0.001     0      0  \set bid random(1, 1 * :scale)
  0.001     0      0  \set tid random(1, 10 * :scale)
  0.001     0      0  \set delta random(-5000, 5000)
  0.385     0      0  BEGIN;
  0.773     0      1  UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
  0.624     0      0  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
  1.098   320   3762  UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
  0.582  3363  41576  UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
  0.465     0      0  INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
  1.933     0      0  END;



複数のスクリプトファイルが定義された場合、すべての統計処理はそれぞれのスクリプトファイル毎に分けて報告されます。
  


文ごとのレイテンシを計算するために必要となる、追加のタイミング情報を収集することは、オーバーヘッドが加わることに注意してください。
これは平均実行速度を遅くし、計測TPSを小さくするでしょう。
低下量はプラットフォームとハードウェアに依存して著しく変わります。
レイテンシの報告を有効にする、有効にしないで平均TPS値を比較することは、タイミング・オーバーヘッドが顕著かどうかを測定するには良い方法です。
  

直列化の失敗／デッドロック再試行


pgbenchの実行時に発生する主なエラーには以下の3種類があります。
   
	

メインプログラムのエラーです。
これらは最も深刻で、常にpgbenchを即座に終了し、対応するエラーメッセージが表示されます。
これらのエラーには以下のようなものがあります:
         
	

pgbenchの先頭のエラー（例えば無効なオプション値）。
             

	

初期化モードでエラーが発生する（例えば、組み込みスクリプト用のテーブルを作成するクエリが失敗する）。
             

	

スレッドを開始する前のエラー（データベースサーバに接続できない、メタコマンドの構文エラー、スレッド作成の失敗など）。
             

	

内部pgbenchエラーです（決して発生しないはずです…）。
             




	

スレッドがクライアントを管理するときのエラー（クライアントがデータベースサーバへの接続を開始できなかった/クライアントをデータベースサーバに接続するためのソケットが無効になったなど）。
このような場合、このスレッドのすべてのクライアントは停止し、他のスレッドは作業を継続します。
しかしながら、--exit-on-abortが指定されていれば、この場合すべてのスレッドが即座に停止します。
       

	

直接的なクライアントエラーです。
内部pgbenchエラーの場合（これは決して発生しないはずです…）または--exit-on-abortが指定された場合にpgbenchを即座に終了し、対応するエラーメッセージを表示します。
そうでなければ、最悪の場合には、他のクライアントが実行を継続している間に、失敗したクライアントが中断されるだけです（ただし、クライアントエラーの中には、クライアントの中断なしに処理され、別途報告されるものもあります。以下を参照してください）。
この節の後半では、説明されているエラーは直接的なクライアントエラーだけであり、内部pgbenchエラーではないと仮定します。
       




  


重大なエラーが発生した場合、クライアントの実行は中断されます。
たとえば、データベースサーバとの接続が失われた場合や、最後のトランザクションを完了せずにスクリプトの終了に達した場合などです。
また、SQLまたはメタコマンドの実行が直列化エラーまたはデッドロックエラー以外の理由で失敗した場合、クライアントは中断されます。
そうでない場合、SQLコマンドが直列化エラーまたはデッドロックエラーで失敗した場合、クライアントは中断されません。
このような場合、現在のトランザクションがロールバックされます。
これには、クライアント変数がこのトランザクションの実行前の状態に設定されます（1つのトランザクションスクリプトには1つのトランザクションのみが含まれていると仮定されます。詳細はpgbenchで実際に実行される"トランザクション"は何か?を参照してください）。
直列化エラーまたはデッドロックエラーのあるトランザクションは、正常に完了するか、最大試行回数（--max-triesオプションで指定／最大再試行時間（--latency-limitオプションで指定）／ベンチマークの終了（--timeオプションで指定）に達するまで、ロールバック後に繰り返されます。
最後の試運転が失敗した場合、このトランザクションは失敗として報告されますが、クライアントは中断されずに処理を続行します。
  
注記


--max-triesオプションを指定しない場合、デフォルト値が1であるため、シリアライゼーションエラーまたはデッドロックエラーの後にトランザクションが再試行されることはありません。
試行回数を無制限にし(--max-tries=0)、--latency-limitオプションを使用して、試行の最大時間のみを制限します。
また、--timeオプションを使用して、試行回数を無制限にしてベンチマーク期間を制限することもできます。
   


複数のトランザクションを含むスクリプトを繰り返す場合は注意が必要です。
スクリプトは常に完全に再試行されるため、成功したトランザクションが複数回実行される可能性があります。
   


シェルコマンドでトランザクションを繰り返す場合は注意してください。
SQLコマンドの結果とは異なり、\setshellコマンドの変数値を除いて、シェルコマンドの結果はロールバックされません。
   



成功したトランザクションの待機時間には、ロールバックおよび再試行によるトランザクションの実行時間全体が含まれます。
待機時間は、成功したトランザクションおよびコマンドについてのみ測定され、失敗したトランザクションまたはコマンドについては測定されません。
  


メインレポートには、失敗したトランザクションの数が含まれます。
--max-triesオプションが1以外の場合、メインレポートには再試行に関する統計（再試行されたトランザクションの合計数と再試行の合計数）も含まれます。
スクリプト単位のレポートは、メインレポートからこれらのフィールドをすべて継承します。
文単位のレポートには、--max-triesオプションが1以外の場合にのみ再試行の統計が表示されます。
  


トランザクションごとおよび集約ログ、メインレポートおよびスクリプトごとのレポートで障害を基本タイプ別にグループ化する場合は、--failures-detailedオプションを使用します。
また、すべてのエラーおよび障害(再試行しない場合のエラー)をタイプ別に区別する場合は、--verbose-errorsオプションを使用します。
これには、直列化エラー／デッドロック障害でどの再試行制限を超えたか、どの程度超えたかなどが含まれます。
  

テーブルアクセスメソッド


pgbenchテーブルにはテーブルアクセスメソッドを指定できます。
環境変数PGOPTIONSは、コマンドライン経由でPostgreSQLに渡されるデータベース設定オプションを指定します(「シェルによるパラメータ操作」を参照してください)。
例えば、pgbenchが作成するテーブル用のwuzzaと呼ばれる架空のデフォルトテーブルアクセスメソッドは、次のように指定できます。


PGOPTIONS='-c default_table_access_method=wuzza'


  

優れた実践


まったく無意味な数値を生み出すようにpgbenchを使用することは非常に簡単です。
以下に有意な結果を生み出す手助けとなるガイドラインをいくつか示します。
  


まず第一に、数秒で終わる試験を決して信用しないでください。
-tまたは-Tオプションを使って、雑音を取り除くために、少なくとも数分試験にかかるようにしてください。
再現可能な数値を得るために数時間必要になる場合もあります。
数回試験を繰り返し、数値が再現できるかどうか確認することを勧めます。
  


デフォルトのTPC-Bのような試験シナリオでは、初期倍率（-s）を試験予定のクライアント数（-c）の最大値と同程度にしなければなりません。
pgbench_branchesテーブルには-s行しかありません。
また、全トランザクションはその内の1つを更新しようとします。
ですので、-c値を-sより大きくすると、他のトランザクションを待機するためにブロックされるトランザクションが多くなることは間違いありません。
  


デフォルトの試験シナリオはまた、テーブルを初期化してからの経過時間に非常に敏感です。
テーブル内の不要行や不要空間の累積により結果が変わります。
結果を理解するためには、更新された行数とバキューム時期を把握する必要があります。
自動バキュームが有効な場合、性能を測定する上で結果は予測できないほど変わる可能性があります。
  


pgbenchの制限は、多くのクライアントセッションを試験しようとする際にpgbench自身がボトルネックになる可能性があることです。
これは、データベースサーバとは別のマシンでpgbenchを実行することで緩和させることが可能です。
しかし、多少のネットワーク遅延が重要です。
同一データベースサーバに対し複数のクライアントマシンから複数のpgbenchインスタンスを同時に実行することが有用かもしれません。
  

セキュリティ


安全なスキーマの利用パターンを適用していないデータベースに信頼できないユーザがアクセス可能な場合、そのデータベースでpgbenchを実行しないでください。
pgbenchは修飾していない名前を使っており、またサーチパスを操作していません。
  




名前
pg_combinebackup — 増分バックアップと依存するバックアップ群からフルバックアップを再構築する

概要
pg_combinebackup  [option...] [backup_directory...]


説明


pg_combinebackupは、増分バックアップとそれが依存する以前のバックアップから、合成フルバックアップを再構築するために使用されます。
  


コマンドラインで、古いバックアップから最新のバックアップまで、必要なすべてのバックアップを指定します。
つまり、最初のバックアップディレクトリはフルバックアップへのパスでなければならず、最後のバックアップはリストアしたい最後の増分バックアップへのパスでなければなりません。
再構築されたバックアップは、-oオプションで指定された出力ディレクトリに書き込まれます。
  


pg_combinebackupは、指定したバックアップが正しいフルバックアップを再構築できる正当なバックアップチェーンを形成しているかどうかを検証します。
ただし、どのバックアップがどのバックアップに依存しているかを追跡するための機能は備えていません。
増分バックアップが依存する以前のバックアップを1つでも削除すると、その増分バックアップはリストアできなくなります。
さらに、pg_combinebackupは、バックアップが互いに正しい関係を持っているかどうかを検証するだけで、個々のバックアップが損なわれていないかどうかは検証しません。そのためにはpg_verifybackup(1)を使用してください。
  


pg_combinebackupの出力は合成フルバックアップであるため、将来のpg_combinebackupの呼び出しの入力として使用できます。
再構築に使われたバックアップチェーンの代わりに合成フルバックアップをコマンドラインで指定します。
  

オプション

    
	-d, --debug
	

stderrに大量のデバッグログを出力します。
       

	-k, --link
	

合成バックアップにファイルをコピーする代わりにハードリンクを使います。
合成バックアップの再構築はより高速（ファイルコピーなし）であり、使用するディスクスペースは少なくなりますが、出力ディレクトリを使用する場合は注意が必要です。そのディレクトリへの変更（例えば、サーバの開始）がすべて入力ディレクトリにも影響する可能性があるためです。
同様に、入力ディレクトリへの変更（例えば、フルバックアップでサーバを開始）は、出力ディレクトリに影響する可能性があります。
したがって、このオプションは、入力ディレクトリがpg_combinebackupが完了した後に削除されるコピーのみである場合に使用するのが最善です。
       


入力のバックアップと出力のディレクトリが同じファイルシステムにあることが必要です。
       


バックアップマニフェストが使用できない場合、または正しいタイプのチェックサムが含まれていない場合、ハードリンクは作成されますが、ファイルはチェックサム計算のためにブロックごとに読み取られます。
       

	-n, --dry-run
	

-n/--dry-runオプションは、ターゲットディレクトリや出力ファイルを実際には作成せずに、pg_combinebackupが何を行うかを報告します。
これは--debugと組み合わせて使用すると特に便利です。
       

	-N, --no-sync
	

デフォルトでは、pg_combinebackupはすべてのファイルがディスクに安全に書き込まれるまで待機します。
このオプションを指定すると、pg_combinebackupは待機せずに返ります。
これは高速ですが、後続のオペレーティングシステムのクラッシュによって出力バックアップが破損する可能性があります。
通常、このオプションは試験用では有用ですが、実用のインストレーションを作成する際に使用すべきではありません。
       

	-o outputdir, --output=outputdir
	

合成フルバックアップを書き込む出力ディレクトリを指定します。
現在、この引数は必須です。
       

	-T olddir=newdir, --tablespace-mapping=olddir=newdir
	

バックアップ時にディレクトリolddir内のテーブル空間をnewdirに再配置します。
olddirはコマンドラインで指定された最終バックアップに存在するテーブル空間の絶対パスで、newdirは再構築されたバックアップでテーブル空間に使用される絶対パスです。
どちらかのパスに等号(=)が含まれる場合、その前にバックスラッシュを置きます。
このオプションは、複数のテーブル空間に対して複数回指定できます。
       

	--clone
	

新しいデータディレクトリにファイルをコピーする代わりに、効率的なファイルクローニング（一部のシステムでは「reflinks」とも呼ばれます）を使用します。これによりデータファイルをほぼ瞬時にコピーすることができます。
       


バックアップマニフェストが使用できない場合、または正しいタイプのチェックサムが含まれていない場合、ファイルコピーのためにクローニングが使われますが、ファイルはチェックサム計算のためにブロックごとに読み取られます。
       


ファイルのクローニングは、一部のオペレーティングシステムおよびファイルシステムでのみサポートされています。
選択されているけれどもサポートされていない場合、pg_combinebackupの実行はエラーになります。
現在、Linux（カーネル4.5以上）のBtrfsと、XFS（reflinkを有効にして作成されたファイルシステム）、および、macOSのAPFSでサポートされています。
       

	--copy
	

通常のファイルコピーを行います。
これがデフォルトです。
（--copy-file-range、--cloneおよび-k/--linkも参照してください。）
       

	--copy-file-range
	

システムコールcopy_file_rangeを使用して、効率的なコピーを行います。
ファイルシステムによって、物理ディスクブロックを共有して--cloneと似た効果を得られるものもあれば、依然としてブロックをコピーするものの最適化されたパスを介して動作するものもあります。
現在、LinuxとFreeBSDでサポートされています。
       


バックアップマニフェストが利用できないか、正しいタイプのチェックサムを含んでいない場合、copy_file_rangeはファイルをコピーするために使用されますが、ファイルはチェックサム計算のためにブロックごとに読み取られます。
       

	--manifest-checksums=algorithm
	

pg_basebackup(1)と同様に、pg_combinebackupはバックアップマニフェストを出力ディレクトリに書き込みます。
このオプションは、バックアップマニフェストに含まれる各ファイルに適用されるチェックサムアルゴリズムを指定します。
現在利用可能なアルゴリズムは、NONE、CRC32C、SHA224、SHA256、SHA384、SHA512です。
デフォルトはCRC32Cです。
       

	--no-manifest
	

バックアップマニフェストの生成を無効にします。
このオプションを指定しない場合、再構築されたバックアップのバックアップマニフェストが出力ディレクトリに書き込まれます。
       

	--sync-method=method
	

デフォルトのfsyncに設定すると、pg_combinebackupはバックアップディレクトリ内の全てのファイルを再帰的にオープンして同期します。
plain形式を使用する場合、ファイルの検索はWALディレクトリと設定された各テーブル空間のシンボリックリンクをたどります。
       


Linuxでは、syncfsを代わりに使用して、バックアップディレクトリを含むファイルシステム全体を同期するようにオペレーティングシステムに要求できます。
plain形式を使用する場合、pg_combinebackupはWALファイルと各テーブル空間を含むファイルシステムも同期させます。
syncfsを使用する際に注意すべき注意事項については、recovery_init_sync_methodを参照してください。
       


このオプションは--no-syncが使われている場合は効果がありません。
       

	-V, --version
	

pg_combinebackupのバージョンを出力して終了します。
       

	-?, --help
	

pg_combinebackupコマンドライン引数についてのヘルプを表示して終了します。
       




   

制限事項


pg_combinebackupは出力ディレクトリを書き込む際にページチェックサムを再計算しません。
したがって、再構築に使用されたバックアップのいずれかがチェックサム無効で取得され、最終バックアップがチェックサム有効で取得された場合、結果のディレクトリは無効なチェックサムを持つページを含む可能性があります。
  


この問題を回避するには、pg_checksums(1)を使用してクラスタのチェックサム状態を変更した後に新しいフルバックアップを取ることをお勧めします。
別な方法としては、問題を修正するためにpg_combinebackupによって生成されたディレクトリのチェックサムを無効にした後、必要に応じて再度有効にすることができます。
  

環境


このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqでサポートされる環境変数を使用します（「環境変数」を参照してください）。
  


環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  

関連項目
pg_basebackup(1)


名前
pg_config — インストールしたバージョンのPostgreSQL™に関する情報を提供する

概要
pg_config  [option...]


説明


pg_configユーティリティは、現在インストールしているバージョンのPostgreSQL™の設定パラメータを表示します。
これは、例えばPostgreSQL™とのインタフェースを持つソフトウェアパッケージが必要なヘッダファイルやライブラリを容易に検出できるように用意されたものです。
  

オプション


pg_configを使用するためには、以下のオプションを1つ以上指定します。
   
	--bindir
	

ユーザコマンドの場所を表示します。
例えば、psqlプログラムを検索するために使用します。
これは通常、pg_configプログラムが存在するディレクトリでもあります。
      

	--docdir
	

文書ファイルの場所を表示します
      

	--htmldir
	

HTML文書ファイルの場所を表示します。
      

	--includedir
	

クライアントインタフェースのCヘッダファイルの場所を表示します。
      

	--pkgincludedir
	

その他のCヘッダファイルの場所を表示します。
      

	--includedir-server
	

サーバプログラム作成用のCヘッダファイルの場所を表示します。
      

	--libdir
	

オブジェクトコードライブラリのディレクトリを表示します。
      

	--pkglibdir
	

動的ロード可能なモジュールの場所、またはそれをサーバが検索する場所を表示します。
(このディレクトリには、アーキテクチャに依存する他のデータファイルも存在する可能性があります。)
      

	--localedir
	

ロケールサポートファイルの場所を表示します。
（PostgreSQL™をロケールサポートなしで構築した場合は空文字列となります。）
      

	--mandir
	

マニュアルページの場所を表示します。
      

	--sharedir
	

アーキテクチャ非依存のサポートファイルの場所を表示します。
      

	--sysconfdir
	

システム全体の設定ファイルの場所を表示します。
      

	--pgxs
	

拡張用Makefileの場所を表示します。
     

	--configure
	

PostgreSQL™を構築する時にconfigureスクリプトに与えたオプションを表示します。
まったく同じ構築条件でPostgreSQL™を再作成する時、あるいは、バイナリパッケージの構築時のオプションを知りたい時に有益です。
（バイナリパッケージには、ベンダ固有のカスタムパッチが含まれていることが多いので注意してください。）
後述の例も参照してください。
      

	--cc
	

PostgreSQL™の構築時に使用されたCC変数の値を表示します。
使用したCコンパイラが表示されます。
      

	--cppflags
	

PostgreSQL™の構築時に使用されたCPPFLAGS変数の値を表示します。
事前処理時に必要としたCコンパイラのスイッチが表示されます。
（通常は-Iスイッチです。）
      

	--cflags
	

PostgreSQL™の構築時に使用されたCFLAGS変数の値を表示します。
Cコンパイラスイッチが表示されます。
      

	--cflags_sl
	

PostgreSQL™の構築時に使用されたCFLAGS_SL変数の値を表示します。
共有ライブラリの構築に使用された追加のCコンパイラスイッチが表示されます。
      

	--ldflags
	

PostgreSQL™の構築時に使用されたLDFLAGS変数の値を表示します。
リンカスイッチが表示されます。
      

	--ldflags_ex
	

PostgreSQL™の構築時に使用されたLDFLAGS_EX変数の値を表示します。
実行ファイルの構築のみに使用されたリンカスイッチが表示されます。
      

	--ldflags_sl
	

PostgreSQL™の構築時に使用されたLDFLAGS_SL変数の値を表示します。
共有ライブラリの構築のみに使用されたリンカスイッチが表示されます。
      

	--libs
	

PostgreSQL™の構築時に使用されたLIBS変数の値を表示します。
これには通常、PostgreSQL™にリンクする外部ライブラリ用の-lスイッチが含まれます。
      

	--version
	

PostgreSQL™のバージョンを表示します。
      

	-?, --help
	

pg_configコマンドライン引数に関する説明を表示し、終了します。
       






1つ以上のオプションが与えられた場合、指定したオプションの順番に従って1行に1つずつ情報を表示します。
オプションがない場合、すべての利用可能な情報をラベル付きで表示します。
  

注釈


オプション--docdir、--pkgincludedir、--localedir、--mandir、--sharedir、--sysconfdir、--cc、--cppflags、--cflags、--cflags_sl、--ldflags、--ldflags_sl、--libs はPostgreSQL™ 8.1から追加されました。
オプション--htmldirはPostgreSQL™ 8.4で追加されました。
オプション--ldflags_exはPostgreSQL™ 9.0で追加されました。
  

例


使用中のPostgreSQLインストレーションの構築時の設定を再生成するには、以下のコマンドを実行します。


eval ./configure `pg_config --configure`



pg_config --configureの出力にはシェルの引用符が含まれますので、空白を含む引数も正しく表現することができます。
したがって、正しく動作させるためにはevalが必要です。
  



名前
pg_dump — 

PostgreSQL™データベースをSQLスクリプトまたは他の形式にエクスポートする
  

概要
pg_dump  [connection-option...] [option...] [dbname]


説明


pg_dumpはPostgreSQL™データベースをエクスポートするユーティリティです。
データベースを使用中であっても、一貫性のあるエクスポートを行うことができます。
pg_dumpは他のユーザによるデータベースへのアクセス（読み書き）をブロックしません。
ただし、単純な場合を除いて、pg_dumpは一般的に本番データベースの定期的なバックアップには適していないことに注意してください。
詳細な説明については25章バックアップとリストアを参照してください。
  


pg_dumpは単一のデータベースしかダンプしません。
クラスタ全体、あるいは、クラスタ内の全データベースに共通のグローバルオブジェクト（ロールやテーブル空間など）をエクスポートするにはpg_dumpall(1)を使用してください。
  


ダンプはスクリプト形式、または、アーカイブファイル形式で出力することができます。
スクリプトダンプは、保存した時点の状態のデータベースを再構成するために必要なSQLコマンドが書き込まれた平文ファイルです。
このスクリプトを使ってリストアを行うには、それをpsql(1)に読み込ませます。
スクリプトファイルを使えば、ダンプを行ったのとは別のマシンや別のアーキテクチャ上でも、データベースを再構築することができます。
また、多少編集すれば他のSQLデータベース製品上でもデータベースの再構築が可能です。
  


もう1つの形式であるアーカイブファイル形式を使ってデータベースを再構築するには、pg_restore(1)を使用しなければなりません。
このファイルを使用すると、pg_restoreがリストア対象を選択したり、リストアするアイテムを並べ替えたりできます。
アーカイブファイルもまた、アーキテクチャを越えて移植できるように設計されています。
  


いずれかのアーカイブファイル形式をpg_restoreと組み合わせて使用する場合は、pg_dumpの柔軟なアーカイブ/転送機構が利用できます。
具体的には、pg_dumpを使用してデータベース全体をエクスポートし、pg_restoreを使用して、アーカイブの内容を検査したり、データベースの一部を選択してリストアしたりすることができます。
最も柔軟な出力ファイル形式は「カスタム」形式（-Fc）と「ディレクトリ」形式（-Fd）です。
これらはすべての保存された項目の選択や並べ替えを行うことができ、並行リストアをサポートし、デフォルトで圧縮されます。
「ディレクトリ」形式は、並行ダンプをサポートする唯一の形式です。
  


pg_dumpの実行中は、標準エラーに出力される警告（特に後述の制限に関する警告）が出力されていないか確認してください。
  
警告


ダンプをリストアすると、リストア先ではダンプ側のスーパーユーザが選択した任意のコードが実行されることになります。
部分的なダンプや部分的なリストアであってもそれは制限されません。
ダンプ側のスーパーユーザが信頼できない場合は、リストアする前にダンプされたSQL文を検査する必要があります。
非平文ダンプは、pg_restoreの--fileオプションを使って検査できます。
ダンプやリストアを実行するクライアントは、ダンプやリストア先のスーパーユーザを信頼する必要はありません。
   


オプション


以下のコマンドラインオプションは出力内容とその形式を制御します。

    
	dbname
	

ダンプするデータベースの名前を指定します。
指定されていない場合は環境変数PGDATABASEが使われます。
この変数も設定されていない場合は、接続のために指定されたユーザ名が使用されます。
       

	-a, --data-only
	

データのみをダンプし、スキーマ（データ定義）と統計情報はダンプしません。
テーブルデータ、ラージオブジェクト、そしてシーケンス値がダンプされます。
       


このオプションは--section=dataを指定することと似ていますが、歴史的な理由で同一ではありません。
       

	-b, --large-objects, --blobs (deprecated)
	

ラージオブジェクトをダンプに含めます。
--schema、--table、--schema-only、--statistics-only、または--no-dataが指定された場合を除き、これがデフォルトの動作です。
したがって、-bオプションは特定のスキーマやテーブルのダンプにラージオブジェクトを追加する場合にのみ有用です。
ラージオブジェクトはデータとみなされるため、--data-onlyが使われるときは含まれますが、--schema-onlyや--statistics-onlyが使われるときには含まれないことに注意してください。
       

	-B, --no-large-objects, --no-blobs (deprecated)
	

ラージオブジェクトをダンプに含めません。
       


-bと-Bの両方が指定された場合は、データのダンプ時にラージオブジェクトを出力します。
-bの説明を参照してください。
       

	-c, --clean
	

ダンプされたデータベースオブジェクトを作成するコマンドを出力する前に、それらをすべてDROPするコマンドを出力します。
このオプションは、リストアが既存のデータベースを上書きする場合に便利です。
もし、対象のデータベースにオブジェクトが存在しない場合は、--if-existsも指定しない限り、リストア中に無視できるエラーメッセージが報告されます。
       


このオプションはアーカイブ（テキストでない）出力ファイルを出力する場合には無視されます。
アーカイブ形式では、pg_restoreを呼び出す時にこのオプションを指定できます。
       

	-C, --create
	

初めにデータベース自体を作成するコマンドを出力し、その後、作成したデータベースに接続するコマンドを出力します。
（このようなスクリプトを使用すると、スクリプトを実行する前に対象のインストレーションの中のどのデータベースに接続すればよいかという問題を考える必要がなくなります。）
--cleanも同時に指定されている場合、このスクリプトは接続する前に対象データベースを削除し再作成します。
       


--createでは出力に、もしあるならデータベースのコメントも含まれます。また、あらゆる設定変数の設定、すなわち、このデータベースを対象としているALTER DATABASE ... SET ...とALTER ROLE ... IN DATABASE ... SET ...コマンドも含まれます。
--no-aclが指定されていない限り、データベースに対するアクセス権限自体もダンプされます。
       


このオプションはアーカイブ（テキストでない）出力ファイルを出力する場合には無視されます。
アーカイブ形式では、pg_restoreを呼び出す時にこのオプションを指定できます。
       

	-e pattern, --extension=pattern
	

patternにマッチする拡張のみをダンプします。
このオプションが指定されなければ、対象データベース内にあるシステム以外の拡張すべてがダンプされます。
複数の-eオプションを記述することで、複数の拡張を選択できます。
patternパラメータはpsqlの\dコマンドと同じ規則に従うパターン（パターン参照）として解釈されます。ですので、ワイルドカード文字をパターン内に記述することで、複数の拡張を選択することもできます。
ワイルドカードを使用する時は、シェルがそのワイルドカードを展開しないように、必要であればパターンを引用符で括ってください。
       


pg_extension_config_dumpにより登録された設定リレーションは、その拡張が--extensionで指定されていればダンプに含まれます。
       
注記


-eが指定されると、pg_dumpは選択した拡張が依存する可能性のある、その他のデータベースオブジェクトのダンプを行ないません。
したがって、拡張指定のダンプ結果を初期状態のデータベースに正常にリストアできるという保証はありません。
        


	-E encoding, --encoding=encoding
	

指定した文字集合符号化方式でダンプを作成します。
デフォルトではダンプはデータベースの符号化方式で作成されます。
（環境変数PGCLIENTENCODINGを好みのダンプ時の符号化方式に設定することで、同じ結果を得ることができます。）
サポートする符号化方式は「サポートされる文字集合」に記載されています。
       

	-f file, --file=file
	

出力を指定のファイルに送ります。
ファイルを基にする出力形式ではこのパラメータは省くことができます。
省略時は標準出力が使用されます。
しかしディレクトリ出力形式の場合は、省略することはできず、ファイルではなく対象ディレクトリを指定します。
この場合、ディレクトリはpg_dumpが生成しますので、事前に存在してはなりません。
       

	-F format, --format=format
	

出力形式を選択します。
formatには以下のいずれかを取ることができます。

       
	p, plain
	

平文のSQLスクリプトファイルを出力します（デフォルト）。
          

	c, custom
	

pg_restoreへの入力に適したカスタム形式アーカイブを出力します。
ディレクトリ出力形式と一緒に使用する場合、リストア時に手作業で保管された項目の選択、再順序付けできますので、これはもっとも柔軟な出力形式です。
また、この形式はデフォルトで圧縮されます。
          

	d, directory
	

pg_restoreへの入力に適したディレクトリ形式のアーカイブを出力します。
これは、ダンプされる各テーブルおよびラージオブジェクトごとに1つのファイル、さらに、pg_restoreから読み取り可能な、機械的に読み取り易い書式でダンプしたオブジェクトを記述する目次ファイルと呼ばれるファイルを持つディレクトリを作成します。
ディレクトリ形式アーカイブは標準Unixツールで操作することができます。
例えば、未圧縮アーカイブ内のファイルをツールgzip、lz4、zstdを使用して圧縮することができます。
この形式はデフォルトではgzipを使って圧縮されます。
また並行ダンプをサポートします。
          

	t, tar
	

pg_restoreへの入力に適したtar形式のアーカイブを出力します。
このtar形式はディレクトリ形式と互換性があります。
tar形式アーカイブを展開すると、有効なディレクトリ形式のアーカイブを生成します。
しかしtar形式は圧縮をサポートしません。
またtar形式を使う場合、リストア時にテーブルデータ項目の相対的な順序を変更することはできません。
          




	-j njobs, --jobs=njobs
	

njobs個のテーブルを同時にダンプすることによって、並行してダンプを実行します。
このオプションはダンプを実行するのに必要な時間を減らすかもしれませんが、データベースサーバの負荷を増やします。
このオプションはディレクトリ出力形式でのみ使用することができます。
複数のプロセスが同時にそのデータを書き出すことができるのはディレクトリ形式だけだからです。
       

pg_dumpはnjobs+1個のデータベース接続を開きます。
このため、すべての接続を収容できる程度にmax_connectionsが高いことを確認してください。
       


並行ダンプを実行している時にデータベースオブジェクトに対して排他ロックを要求すると、ダンプが失敗する可能性があります。
ダンプ実行中に誰かがダンプ予定のオブジェクトを削除してそれがなくなってしまうことがないように、ワーカープロセスがダンプする予定のオブジェクトに対してpg_dumpのリーダープロセスが共有ロック(ACCESS SHARE)を要求するのがその理由です。
その後他のクライアントがテーブルに対する排他ロックを要求すると、
そのロックは許可されませんが、リーダープロセスが共有ロックを解放することを待機するキューに保管されます。
その結果、テーブルへのその他のアクセスは許可されず、排他ロック要求の後のキューに保管されます。
これには、そのテーブルをダンプしようとする作業用プロセスも含まれます。
何らかの注意をしないと、古典的なデッドロック状態になります。
この競合を検知するためにpg_dumpの作業用プロセスはNOWAITオプションを使用する別の共有ロックを要求します。
作業用プロセスによる共有ロックが許可されない場合、だれかがその時に排他ロックを要求していることになり、ダンプを継続することができません。
pg_dumpには、ダンプを中断するしか選択肢がありません。
       


並行ダンプを実行するために、データベースサーバは同期スナップショットをサポートする必要があります。
これはプライマリサーバについてはPostgreSQL™ 9.2で、スタンバイについてはバージョン10で導入された機能です。
この機能を用いれば、データベースクライアントは異なる接続を使用していたとしても、確実に同じデータセットを参照することができます。
pg_dump -jは複数のデータベース接続を使用します。
リーダープロセスで一度、また、作業用ジョブそれぞれでも一度、データベースと接続します。
同期スナップショット機能がないと、異なる作業用ジョブがそれぞれの接続で同じデータを参照していることが保証されず、一貫性がないバックアップになってしまいます。
       

	-n pattern, --schema=pattern
	

patternにマッチするスキーマのみをダンプします。
これはスキーマ自体とそこに含まれるオブジェクトすべてを選択します。
このオプションが指定されなければ、対象データベース内にあるシステム以外のスキーマすべてがダンプされます。
複数の-nオプションを記述することで、複数のスキーマを選択することができます。
patternパラメータはpsqlの\dコマンドと同じ規則に従うパターン（パターン参照）として解釈されます。
ですので、ワイルドカード文字をパターン内に記述することで、複数のスキーマを選択することもできます。
ワイルドカードを使用する時は、シェルがそのワイルドカードを展開しないように、必要であればパターンを引用符で括ってください。
下記の例を参照してください。
       
注記


-nが指定されると、pg_dumpは選択したスキーマ内のオブジェクトが依存する可能性がある、その他のデータベースオブジェクトのダンプを行いません。
したがって、スキーマ指定のダンプ結果を初期状態のデータベースに正常にリストアできるという保証はありません。
        

注記


-nが指定されると、ラージオブジェクトなどの非スキーマオブジェクトはダンプされません。
--large-objectsオプションをつけてダンプを行うことでラージオブジェクトも追加されます。
        


	-N pattern, --exclude-schema=pattern
	

patternにマッチするスキーマをダンプしません。
このパターンは-nと同様の規則に従って解釈されます。
-Nを複数指定して、複数のパターンのいずれかにマッチするスキーマを除外することができます。
       


-nと-Nの両方が指定された場合、少なくとも1つの-nにマッチし-Nオプションにマッチしないスキーマだけがダンプされます。
-nなしで-Nが指定された場合、-Nにマッチするスキーマが通常のダンプから除外されます。
       

	-O, --no-owner
	

オブジェクトの所有権を元のデータベースにマッチさせるためのコマンドを出力しません。
デフォルトでは、pg_dumpは、ALTER OWNER文またはSET SESSION AUTHORIZATION文を発行して、作成したデータベースオブジェクトの所有権を設定します。
スーパーユーザ（もしくは、そのスクリプト内の全てのオブジェクトを所有するユーザ）以外のユーザがスクリプトを実行した場合、これらの文は失敗します。
任意のユーザがリストアできるスクリプトを作成するには、-Oを指定してください。
ただし、この場合は、全てのオブジェクトの所有者がリストアしたユーザとなってしまいます。
       


このオプションはアーカイブ（テキストでない）出力ファイルを出力する場合には無視されます。
アーカイブ形式では、pg_restoreを呼び出す時にこのオプションを指定できます。
       

	-R, --no-reconnect
	

このオプションは廃止されましたが、後方互換性を保持するため受け入れられます。
       

	-s, --schema-only
	

データ定義（スキーマ）のみをダンプし、データと統計情報はダンプしません。
       


このオプションは、--data-onlyや--statistics-onlyと一緒に使用することはできません。
これは--section=pre-data --section=post-dataを指定することと似ていますが、歴史的な理由のため同一ではありません。
       


（これと--schemaオプションと混乱しないでください。「schema」という単語を異なる意味で使用しています。）
       


データベース内の一部のみのテーブルのテーブルデータを除外するためには--exclude-table-dataを参照してください。
       

	-S username, --superuser=username
	

トリガを無効にする場合に使用する、スーパーユーザのユーザ名を指定します。
これは--disable-triggersを使う場合にのみ使用されます。
（通常は、このオプションを使うよりも、出力されたスクリプトをスーパーユーザ権限で実行する方が良いでしょう。）
       

	-t pattern, --table=pattern
	

patternにマッチする名前のテーブルのみをダンプします。
複数の-tオプションを記述することで複数のテーブルを選択することができます。
patternパラメータはpsqlの \dコマンドで使用される規則(パターン参照)と同じ規則に従うパターンとして解釈されます。
ですので、ワイルドカード文字をパターン内に記述することで、複数のテーブルを選択することもできます。
ワイルドカードを使用する時は、シェルによりそのワイルドカードを展開させないように、パターンを引用符で括ってください。
下記の例を参照してください。
       


このオプションは、テーブルだけでなく、ビュー、マテリアライズドビュー、外部テーブル、シーケンスの定義をダンプするのにも使えます。
ビューやマテリアライズドビューの内容はダンプしませんし、対応する外部サーバに--include-foreign-dataが指定されている場合にのみ、外部テーブルの内容がダンプされます。
       


-tが使用されると、-nおよび-Nオプションの効果はなくなります。
-tで選択したテーブルが、これらのオプションとは関係なくダンプされ、また、非テーブルオブジェクトはダンプされないためです。
       
注記


-tが指定されると、pg_dumpは選択したテーブル内のオブジェクトが依存する可能性がある他のデータベースオブジェクトのダンプを行いません。
したがって、テーブル指定のダンプ結果を初期化されたデータベースに正常にリストアできるという保証はありません。
        


	-T pattern, --exclude-table=pattern
	

patternにマッチするテーブルをダンプしません。
このパターンは-tと同じ規則に従って解釈されます。
-Tを複数指定することで、複数のパターンのいずれかにマッチするテーブルをすべて除外させることができます。
       


-tと-Tの両方が指定された場合、少なくとも1つの-tオプションにマッチし、-Tオプションにマッチしないテーブルのみがダンプされます。
-tなしで-Tが指定された場合、通常のダンプから-Tにマッチするテーブルが除外されます。
       

	-v, --verbose
	

冗長モードを指定します。
これを指定すると、pg_dumpは、詳細なオブジェクトコメント、開始時刻、終了時刻をダンプファイルに、進行状況メッセージを標準エラーに出力します。
オプションを繰り返すと、追加のデバッグレベルメッセージが標準エラーに現れます。
       

	-V, --version
	

pg_dumpのバージョンを表示し、終了します。
       

	-x, --no-privileges, --no-acl
	

アクセス権限（grant/revokeコマンド）のダンプを抑制します。
       

	-Z level, -Z method[:detail], --compress=level, --compress=method[:detail]
	

使用する圧縮方式または圧縮レベル、あるいはその両方を指定します。
圧縮方式は、gzip、lz4、zstdに設定できます。非圧縮の場合はnoneです。
圧縮の詳細文字列は、オプションで指定できます。
詳細文字列が整数の場合は、圧縮レベルを指定します。
それ以外の場合は、keywordまたはkeyword=valueの形式のカンマで区切られた項目リストにします。
現在サポートされているキーワードは、levelとlongです。
       


圧縮レベルが指定されていない場合、デフォルトの圧縮レベルが使用されます。
アルゴリズムを指定せずにレベルのみを指定した場合、レベルが0より大きい場合はgzip圧縮が使用され、レベルが0の場合は圧縮が使用されません。
       


カスタムおよびディレクトリアーカイブ形式では、これは個々のテーブルデータセグメントの圧縮を指定するもので、デフォルトではgzipを使って中間レベルで圧縮されます。
平文出力では、非ゼロの圧縮レベルの指定によりあたかもgzip、lz4、zstdに渡されたかのように出力ファイル全体が圧縮されます。
しかしデフォルトは圧縮無しです。
zstd圧縮では、longモードは、メモリ使用の増加という犠牲を払いますが、圧縮率を改善するかもしれません。
       


tarアーカイブ形式では現在圧縮を全くサポートしていません。
       

	--binary-upgrade
	

このオプションは現位置でのアップグレード用のユーティリティにより使用されるものです。
他の目的での使用は推奨されませんし、サポートもされません。
このオプションの動作は、将来通知することなく変更される可能性があります。
       

	--column-inserts, --attribute-inserts
	

明示的に列名を付けたINSERTコマンド（INSERT INTO table (column, ...)VALUES...）としてデータをダンプします。
これによりリストアは非常に遅くなります。
主にPostgreSQL™以外のデータベースへロード可能なダンプを作成する時に有用です。
リストア中のエラーでは、テーブルの内容がまるごと失われることはなく、問題のあるINSERTの一部の行が失われるだけです。
       

	--disable-dollar-quoting
	

このオプションは、関数本体用のドル引用符の使用を無効にし、強制的に標準SQLの文字列構文を使用した引用符付けを行います。
       

	--disable-triggers
	

このオプションは、データは含むがスキーマは含まないダンプを作成する場合にのみ有用です。
データのリストア中に、対象テーブル上のトリガを一時的に無効にするコマンドを出力するようpg_dumpに指示します。
このオプションは、データのリストア中には呼び出したくない参照整合性検査やその他のトリガがテーブル上にある場合に使用します。
       


現在のところ、--disable-triggersに対応するコマンドを実行するのは、スーパーユーザでなければなりません。
そのため、-Sでスーパーユーザの名前を指定するか、あるいは、可能であれば、スーパーユーザ権限でスクリプトを開始するよう注意する必要があります。
       


このオプションはアーカイブ（テキストでない）出力ファイルを出力する場合には無視されます。
アーカイブ形式では、pg_restoreを呼び出す時にこのオプションを指定できます。
       

	--enable-row-security
	

このオプションは、行セキュリティのあるテーブルの内容をダンプするときにのみ意味を持ちます。
デフォルトでは、pg_dumpはrow_securityをoffに設定し、テーブルからすべてのデータがダンプされるようにします。
ユーザが行セキュリティを無視できるだけの十分な権限を持っていない場合、エラーが発生します。
このパラメータはpg_dumpがrow_securityをonに設定するようにすることで、テーブルの内容のうち、ユーザがアクセスできる部分をダンプすることを可能にします。
       


リストア時のCOPY FROMが行セキュリティをサポートしていないので、今、このオプションを使う場合は、ダンプをINSERT形式にするのがおそらく望ましいでしょう。
       

	--exclude-extension=pattern
	

patternにマッチする拡張をダンプしません。
このパターンは-eと同じ規則に従って解釈されます。
--exclude-extensionは複数回指定でき、いくつかのパターンにマッチする拡張を除外できます。
       


-eと--exclude-extensionの両方が指定された場合、少なくとも1つの-eにマッチし--exclude-extensionオプションにマッチしない拡張だけがダンプされます。
--exclude-extensionが-eなしで現れた場合、--exclude-extensionにマッチする拡張は通常のダンプから除外されます。
       

	--exclude-table-and-children=pattern
	

これは-T/--exclude-tableオプションと同じですが、patternにマッチするパーティションや継承の子テーブルもすべて除外する点が異なります。
       

	--exclude-table-data=pattern
	

patternにマッチするすべてのテーブルのデータをダンプしません。
パターンは-t用の規則と同じ規則にしたがって解釈されます。
複数のパターンのいずれかにマッチするテーブルを除外することができるように、--exclude-table-dataを複数回与えることができます。
このオプションは、特定のテーブルに関してデータを格納する必要はないがテーブル定義は必要である場合に有用です。
       


データベース内のすべてのテーブルに関してデータを除外するためには、--schema-onlyまたは--statistics-onlyを参照してください。
       

	--exclude-table-data-and-children=pattern
	

これは--exclude-table-dataオプションと同じですが、patternにマッチするパーティションや継承の子テーブルのデータも除外する点が異なります。
       

	--extra-float-digits=ndigits
	

浮動小数点データをダンプする時に、利用できる最大の精度の代わりに、extra_float_digitsで指定された値を使います。
バックアップ目的で作られたダンプルーチンは、このオプションを使うべきではありません。
       

	--filter=filename
	

ダンプに含めるまたは除外するオブジェクトのパターンを読み込むファイル名を指定します。
これらのパターンは、対応するオプションと同じ規則に従って解釈されます。
テーブルの場合は-t/--table、--table-and-children、-T/--exclude-table、--exclude-table-and-children、スキーマの場合は-n/--schema、-N/--exclude-schema、外部サーバのデータの場合は--include-foreign-data、テーブルデータの場合は--exclude-table-dataと--exclude-table-data-and-children、拡張の場合は-e/--extensionと--exclude-extensionです。
STDINから読み取るには、ファイル名として-を使用します。
--filterオプションは、オブジェクトを含めるまたは除外するために、上記のオプションとともに指定でき、更に複数のファイルをフィルタするために複数回指定することもできます。
       


ファイルには、オブジェクトパターンが1行に1つずつリストされ、次の形式になります。


{ include | exclude } { extension | foreign_data | table | table_and_children | table_data | table_data_and_children | schema } PATTERN


       


最初のキーワードは、パターンに一致するオブジェクトを含めるか除外するかを指定します。
2番目のキーワードは、パターンを使用してフィルタリングするオブジェクトのタイプを指定します。
        
	

extension:拡張。
これは-e/--extensionまたは--exclude-extensionオプションと同様に機能します。
          

	

foreign_data:外部サーバ上のデータ。
これは--include-foreign-dataオプションと同様に機能します。
このキーワードはincludeキーワードと一緒にのみ使用できます。
          

	

table:テーブル。
これは-t/--tableまたは-T/--exclude-tableオプションと同様に機能します。
          

	

table_and_children:任意のパーティションまたは継承の子テーブルを含むテーブル。
これは--table-and-childrenまたは--exclude-table-and-childrenオプションと同様に機能します。
          

	

table_data:patternにマッチする任意のテーブルのテーブルデータ。
これは--exclude-table-dataオプションと同様に機能します。
このキーワードはexcludeキーワードと一緒にのみ使用できます。
          

	

table_data_and_children:patternにマッチする任意のテーブルのテーブルデータおよびテーブルのすべてのパーティションまたは継承する子テーブルのデータ。
これは--exclude-table-data-and-childrenオプションと同様に機能します。
このキーワードはexcludeキーワードと一緒にのみ使用できます。
          

	

schema:スキーマ。
これは-n/--schemaまたは-N/--exclude-schemaオプションと同様に機能します。
          




       


#で始まる行はコメントと見なされ、無視されます。
コメントはオブジェクトパターン行の後にも置くことができます。
空行も無視されます。
パターン内の引用符の実行方法についてはパターンを参照してください。
       


例は例の節に示します。
       

	--if-exists
	

DROP ... IF EXISTSコマンドを使用して、--cleanモードでオブジェクトを削除します。
これは、そうでなければ報告される「does not exist」エラーを抑制します。
このオプションは、--cleanも指定されていない場合には無効です。
       

	--include-foreign-data=foreignserver
	

foreignserverパターンとマッチする外部サーバの外部テーブルのデータをダンプします。
複数の--include-foreign-dataスイッチを書くことで、複数の外部サーバを選択できます。
また、foreignserverパラメータはpsqlの\dコマンドで使われているのと同じ規則に従うパターンとして解釈されます(パターンを参照してください)ので、パターンにワイルドカード文字を書くことで複数の外部サーバを選択することもできます。
ワイルドカードを使う時は、シェルがワイルドカードを展開しないよう必要ならパターンを引用符で囲むことに注意してください。下記の例を参照してください。
唯一の例外は空のパターンが許されていないことです。
       
注記


--include-foreign-dataでワイルドカードを使用すると、予期しない外部サーバへのアクセスが発生する可能性があります。
また、このオプションを安全に使用するために、指定した名前のサーバの所有者が信頼できることを確認してください。
        

注記


--include-foreign-dataが指定された場合、pg_dumpは外部テーブルが書き込み可能かどうか確認しません。
そのため、外部テーブルのダンプの結果をリストアするのに成功する保証はありません。
        


	--inserts
	

データを（COPYではなく）INSERTコマンドの形式でダンプします。
これを行うとリストアに非常に時間がかかります。
主にPostgreSQL™以外のデータベースへロード可能なダンプを作成する時に有用です。
リストア中のエラーでは、テーブルの内容がまるごと失われることはなく、問題のあるINSERTの一部の行が失われるだけです。
列の順序を変更した場合はリストアが失敗する可能性があることに注意してください。
--column-insertsはさらに処理が遅くなりますが、列の順序変更に対して安全です。
       

	--load-via-partition-root
	

テーブルパーティションのデータをダンプするときには、COPYあるいはINSERT文の対象を、そのパーティションではなく、それを含むパーティション階層のルートにします。
これにより、データが読み込まれるときに各行に対して適切なパーティションが再判断されます。
これは行が元のサーバ上と同じパーティションに必ずしも落ちないようなサーバ上にデータを再読み込みするときに有用でしょう。
例えば、パーティション列がtext型で二つのシステムがパーティション列のソートで使われる照合順序の異なる定義を持っている場合に、これはあり得ます。
       

	--lock-wait-timeout=timeout
	

ダンプの開始時に共有テーブルのロックを永遠に待ちません。
代わりに指定したtimeout内にテーブルロックを獲得できなければ失敗します。
タイムアウトはSET statement_timeoutで受け付けられる任意の書式で指定できます。
（使用可能な形式はダンプの元となるサーバのバージョンに依存して異なりますが、すべてのバージョンにおいてミリ秒単位の整数値は受け付けられます。）
       

	--no-comments
	

COMMENTコマンドをダンプしません。
       

	--no-data
	

データをダンプしません。
       

	--no-policies
	

行セキュリティポリシーをダンプしません。
       

	--no-publications
	

パブリケーションをダンプしません。
       

	--no-schema
	

スキーマ（データ定義）をダンプしません。
       

	--no-security-labels
	

セキュリティラベルをダンプしません。
       

	--no-statistics
	

統計情報をダンプしません。
これがデフォルトです。
       

	--no-subscriptions
	

サブスクリプションをダンプしません。
       

	--no-sync
	

デフォルトでは、pg_dumpはすべてのファイルが確実にディスクに書き出されるまで待機します。
このオプションを使うとpg_dumpは待機せずに戻るため、より高速になりますが、これは、その後にオペレーティングシステムがクラッシュすると、ダンプが破損する可能性があることを意味します。
一般的に言って、このオプションはテスト用には有用ですが、実運用の環境からデータをダンプするときには使用しない方が良いでしょう。
       

	--no-table-access-method
	

セレクトテーブルアクセスメソッドにコマンドを出力しません。
このオプションを使用すると、リストア中にどのテーブルアクセスメソッドがデフォルトであっても、すべてのオブジェクトが作成されます。
       


このオプションはアーカイブ（テキストでない）出力ファイルを出力する場合には無視されます。
アーカイブ形式では、pg_restoreを呼び出す時にこのオプションを指定できます。
       

	--no-tablespaces
	

テーブル空間を選択するコマンドを出力しません。
このオプションを使用すると、すべてのオブジェクトはリストア時のデフォルトのテーブル空間の中に作成されます。
       


このオプションはアーカイブ（テキストでない）出力ファイルを出力する場合には無視されます。
アーカイブ形式では、pg_restoreを呼び出す時にこのオプションを指定できます。
       

	--no-toast-compression
	

TOAST圧縮方式を設定するコマンドを出力しません。
このオプションにより、列はすべてデフォルトの圧縮の設定でリストアされます。
       

	--no-unlogged-table-data
	

ログを取らないテーブルとシーケンスの内容をダンプしません。
このオプションはテーブルとシーケンスの定義（スキーマ）をダンプするかどうかには影響しません。
そのテーブルとシーケンスのデータのダンプを抑制するだけです。
スタンバイサーバからダンプを行う場合、ログを取らないテーブルとシーケンス内のデータは常に除外されます。
       

	--on-conflict-do-nothing
	

INSERTコマンドにON CONFLICT DO NOTHINGを追加します。
このオプションは、--inserts、--column-insertsまたは--rows-per-insertが同時に指定されていなければ、有効ではありません。
       

	--quote-all-identifiers
	

強制的にすべての識別子に引用符を付与します。
このオプションは、pg_dumpのメジャーバージョンとは異なるメジャーバージョンのPostgreSQL™のサーバからデータベースをダンプするとき、あるいは出力を異なるメジャーバージョンのサーバにロードする予定であるときに推奨されます。
デフォルトでは、pg_dumpは、それ自身のメジャーバージョンにおける予約語である識別子に対してのみ引用符を付与します。
これは、他のバージョンのサーバを処理するときに互換性の問題を引き起こす場合があります。
他のバージョンのサーバでは予約語の集合が多少、異なる場合があるからです。
--quote-all-identifiersを使用することで、ダンプのスクリプトが読みにくくなりますが、このような問題を防ぐことができます。
       

	--restrict-key=restrict_key
	

指定した文字列をダンプ出力のpsqlの\restrictキーとして使用します。
これは平文ダンプ、すなわち--formatがplainに設定されているか、--formatオプションが省略されている場合にのみ指定できます。
制限キーが指定されていない場合、pg_dumpは必要に応じてランダムなキーを生成します。
キーには英数字のみを使用できます。
       


このオプションは主にテスト目的や、出力の再現性が必要な場合（例えば、ダンプファイルの比較）を想定しています。
悪意のあるサーバがキーを事前に知っている場合、ダンプ出力を使ってpsqlを実行するマシンで任意のコードを実行できる可能性があるため、一般的な使用には推奨されません。
       

	--rows-per-insert=nrows
	

(COPYではなく)INSERTコマンドでデータをダンプします。
INSERTコマンド1つあたりの最大行数を制御します。
指定する値は0より大きくなければなりません。
リストア中のエラーでは、テーブルの内容がまるごと失われることはなく、問題のあるINSERTの一部の行が失われるだけです。
       

	--section=sectionname
	

指定した部分のみをダンプします。
部分名はpre-data、data、post-dataのいずれかを取ることができます。
複数の部分を選択するために、このオプションは複数回指定することができます。
デフォルトではすべての部分をダンプします。
         


data部分には、実際のテーブルデータとラージオブジェクトの中身、シーケンスの値、テーブルの統計情報、マテリアライズドビュー、そして外部テーブルが含まれます。
post-data項目は、インデックス定義、トリガ定義、ルール定義、インデックスの統計情報、そして有効化された検査制約と非NULL制約以外の制約定義が含まれます。
pre-data項目は、他のすべてのデータ定義項目が含まれます。
         

	--sequence-data
	

シーケンスデータをダンプに含めます。
これは、--no-data、--schema-only、または--statistics-onlyが指定されている場合を除き、デフォルトの動作です。
       

	--serializable-deferrable
	

使用されるスナップショットがその後のデータベース状態と一貫性を持つことを保証するために、ダンプ時にserializableトランザクションを使用します。
ダンプが失敗したり、serialization_failureにより他のトランザクションがロールバックしたりする危険がないように、トランザクションストリーム内で異常が発生することがない時点まで待つことでこれを行います。
トランザクション分離および同時実行性の制御については13章同時実行制御を参照してください。
       


このオプションは障害対策のリカバリのみを目的とするダンプでは利点はありません。
元のデータベースを継続して更新しながら、レポート処理や他の読み取りのみの負荷分散のためにデータベースのコピーをロードするために使用されるダンプとして有用になります。
こうしないと、ダンプには
何らかのトランザクションの直列実行が最終的にコミットされた状態と一貫性がない状態が反映される可能性があります。
例えば、バッチ処理技術が使用される場合、
バッチは、バッチ内で存在するすべての項目を持たないダンプ内でクローズしたものと表示される可能性があります。
       


pg_dumpを始めた時に読み書きを行う実行中のトランザクションが存在しない場合、このオプションは何の差異ももたらしません。
読み書きを行うトランザクションが実行中の場合、確定できない期間、ダンプの起動が遅延される可能性があります。
動き出してからの性能は、このスイッチがある場合とない場合とで違いはありません。
       

	--snapshot=snapshotname
	

データベースのダンプを作成する時に、指定した同期スナップショットを使用します
（詳しくは表9.100「スナップショット同期関数」を参照して下さい）。
         


このオプションは、ダンプを論理レプリケーションスロット（47章ロジカルデコーディング参照）あるいは同時実行セッションと同期させる必要がある時に役に立ちます。
         


並行ダンプの場合、新しいスナップショットを作る代わりに、このオプションで指定されたスナップショット名が使われます。
         

	--statistics
	

統計情報をダンプします。
       

	--statistics-only
	

統計情報のみをダンプし、スキーマ（データ定義）とデータはダンプしません。
テーブル、マテリアライズドビュー、外部テーブル、およびインデックスの統計情報がダンプされます。
       

	--strict-names
	

各拡張(-e/--extension)、各スキーマ(-n/--schema)および各テーブル(-t/--table)が、パターンがダンプされるデータベース内の少なくとも1つの拡張、スキーマおよびテーブルにマッチすることを必要とします。
これは--filterで使用されるフィルタにも当てはまります。
拡張、スキーマおよびテーブルのパターンのどれもがマッチするものを見つけられなかった場合は、--strict-namesがなくてもpg_dumpはエラーを発生させることに注意して下さい。
       


このオプションは--exclude-extension、-N/--exclude-schema、-T/--exclude-table、-T/--exclude-table-dataには影響を与えません。
除外パターンがオブジェクトとマッチしなくてもエラーとみなされません。
       

	--sync-method=method
	

デフォルトのfsyncに設定すると、pg_dump --format=directoryはアーカイブディレクトリ内の全てのファイルを再帰的に開いて同期します。
       


Linuxでは、syncfsを代わりに使用して、アーカイブディレクトリを含むファイルシステム全体を同期するようにオペレーティングシステムに要求できます。
syncfsを使用する際に注意すべき点については、recovery_init_sync_methodを参照してください。
       


このオプションは、--no-syncが使用された場合、または--formatがdirectoryに設定されていない場合は効果がありません。
       

	--table-and-children=pattern
	

これは-t/--tableオプションと同じですが、patternにマッチするテーブルのパーティションや継承の子テーブルもすべて含まれる点が異なります。
       

	--use-set-session-authorization
	

オブジェクトの所有権を決定するために、ALTER OWNERコマンドの代わりに標準SQLのSET SESSION AUTHORIZATIONコマンドを出力します。
これにより、ダンプの標準への互換性が高まりますが、ダンプ内のオブジェクトの履歴によっては正しくリストアされない可能性が生じます。
また、SET SESSION AUTHORIZATIONを使用したダンプを正しくリストアするためには、確実にスーパーユーザ権限が必要となります。
ALTER OWNERで必要な権限はこれよりも少なくなります。
       

	-?, --help
	

pg_dumpのコマンドライン引数の使用方法を表示し、終了します。
       




   


以下のコマンドラインオプションは、データベース接続パラメータを制御します。

    
	-d dbname, --dbname=dbname
	

接続するデータベースの名前を指定します。
コマンドラインでオプション以外の最初の引数としてdbnameを指定することと同じです。
dbnameは接続文字列でも構いません。
その場合、接続文字列パラメータは衝突するコマンドラインオプションに優先します。
      

	-h host, --host=host
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
デフォルトは、設定されていれば環境変数PGHOSTから取得されます。
設定されていなければ、Unixドメインソケット接続とみなされます。
       

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはローカルUnixドメインソケットファイルの拡張子を指定します。
デフォルトは、設定されている場合、環境変数PGPORTの値となります。設定されていなければ、コンパイル時のデフォルト値となります。
       

	-U username, --username=username
	

接続ユーザ名です。
       

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
       

	-W, --password
	

データベースに接続する前に、pg_dumpは強制的にパスワード入力を促します。
       


サーバがパスワード認証を要求する場合pg_dumpは自動的にパスワード入力を促しますので、これが重要になることはありません。
しかし、pg_dumpは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
       

	--role=rolename
	

ダンプを作成する際に使用するロール名を指定します。
このオプションによりpg_dumpはデータベースに接続した後にSET ROLE rolenameコマンドを発行するようになります。
認証に使用したユーザ（-Uで指定されたユーザ）がpg_dumpで必要とされる権限を持たないが、必要な権限を持つロールに切り替えることができる場合に有用です。
一部のインストレーションではスーパーユーザとして直接ログインさせないポリシーを取ることがありますが、このオプションを使用することでポリシーに反することなくダンプを作成することができます。
       




   

環境
	PGDATABASE, PGHOST, PGOPTIONS, PGPORT, PGUSER
	

      デフォルトの接続パラメータです。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     





このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数(「環境変数」参照)も使います。
  

診断


pg_dumpは内部でSELECT文を実行します。
pg_dumpの実行時に問題が発生する場合は、psql(1)などを使用して、そのデータベースから情報をselectできることを確認してください。
また、libpqフロントエンドライブラリで使用されるデフォルトの接続設定や環境変数も適用されます。
  


通常pg_dumpのデータベースに対する活動は累積された統計情報システムにより収集されます。
これを望まない場合、PGOPTIONSまたはALTER USERコマンドを使用してtrack_countsパラメータを偽に設定してください。
  

注釈


データベースクラスタにおいてtemplate1データベースに対し独自の変更を行っている場合、pg_dumpの出力は、確実に空のデータベースにリストアするように注意してください。
そうしないと、おそらく追加されたオブジェクトの重複定義によってエラーが発生します。
独自の追加が反映されていない空のデータベースを作成するには、template1ではなくtemplate0をコピーしてください。
以下に例を示します。


CREATE DATABASE foo WITH TEMPLATE template0;


  


スキーマ以外のダンプを選択し、--disable-triggersオプションを使用する場合、pg_dumpはデータを挿入する前にユーザテーブルにトリガを無効にするコマンドを発行し、データの挿入が完了した後で、それらを再び有効にする問い合わせを発行します。
リストアが途中で停止した場合、システムカタログが不適切な状態のままになっている可能性があります。
  


--statisticsが指定されている場合、pg_dumpは出力されるダンプファイルにほとんどのオプティマイザの統計情報を含めます。
しかし、CREATE STATISTICS(7)で明示的に作成された統計情報や、拡張により追加された独自統計情報など、一部の統計情報は含まれない場合があります。
そのため、最適な性能を発揮するためには、ダンプファイルからリストアした後でANALYZEを実行すると効果的な場合があります。
詳細は「プランナ用の統計情報の更新」および「自動バキュームデーモン」を参照してください。
  


pg_dumpは新しいバージョンのPostgreSQL™へのデータ移行に使用されますので、pg_dumpの出力はpg_dumpのバージョンより新しいバージョンのPostgreSQL™データベースへロード可能と想定できるようになっています。
また、pg_dumpは自身より古いバージョンのPostgreSQL™データベースを読み取ることもできます。
（現在はバージョン9.2までのサーバをサポートします。）
しかし、pg_dumpはそれ自身のメジャーバージョンより新しいPostgreSQL™サーバのダンプを取ることはできません。
無効なダンプを作成するリスクは取らず、ダンプしようとさえしません。
また、pg_dumpの出力がメジャーバージョンが古いサーバにロードできるとは、たとえ同じバージョンのサーバから取得したダンプであっても、保証されていません。
より古いサーバへのダンプファイルのロードには、古いサーバでは理解できない構文を削除するために、ダンプファイルの手作業による修正が必要になることがあります。
バージョンをまたがる場合は--quote-all-identifiersオプションの使用が推奨されます。
これにより、PostgreSQL™の異なるバージョンで、予約語のリストが変わることによって発生する問題を防ぐことができるからです。
  


論理レプリケーションのサブスクリプションをダンプするとき、pg_dumpはconnect = falseオプションを使用するCREATE SUBSCRIPTIONコマンドを生成するため、サブスクリプションのリストア時には、レプリケーションスロットの作成や初回のテーブルコピーのためのリモート接続が行われません。
このため、リモートサーバへのネットワーク接続を必要とせずにダンプをリストアできます。
その後でサブスクリプションを適切な方法で再有効化するのはユーザの責任です。
関連するホストが変更されたときは、接続情報も変更しなければならないかもしれません。
新しく完全なテーブルコピーを開始する前に、コピー先のテーブルを空にするのが適切なこともあります。
ユーザがリフレッシュ中に最初のデータをコピーする場合は、two_phase = falseを使用してスロットを作成する必要があります。
最初の同期後、サブスクリプションがtwo_phase = trueオプションを使用して最初に作成された場合は、two_phaseオプションがサブスクライバーによって自動的に有効になります。
  


一般的に、データベースを平文のpg_dumpスクリプトからリストアする場合、クリーンなリストアプロセスを保証し、デフォルト以外のpsql設定との潜在的な競合を防ぐために、-X(--no-psqlrc)オプションの使用を推奨します。
  

例


mydbという名前のデータベースをSQLスクリプトファイルにダンプします。


$ pg_dump mydb > db.sql


  


newdbという名前の（新規に作成した）データベースにスクリプトを再ロードします。



$ psql -X -d newdb -f db.sql


  


カスタム形式のアーカイブファイルにデータベースをダンプします。



$ pg_dump -Fc mydb > db.dump


  


ディレクトリ形式アーカイブにデータベースをダンプします。



$ pg_dump -Fd mydb -f dumpdir


  


5個の作業用ジョブを使用してデータベースをdirectory形式のアーカイブにダンプします。



$ pg_dump -Fd mydb -j 5 -f dumpdir


  


newdbという名前の（新規に作成した）データベースにアーカイブファイルを再ロードします。



$ pg_restore -d newdb db.dump


  


アーカイブファイルをダンプ元と同じデータベースに再ロードし、そのデータベースの現在の内容を捨てます。



$ pg_restore -d postgres --clean --create db.dump


  


mytabという名前の単一のテーブルをダンプします。



$ pg_dump -t mytab mydb > db.sql


  


detroitスキーマ内の名前がempで始まるすべてのテーブルをダンプします。
ただし、employee_logという名前のテーブルは除きます。



$ pg_dump -t 'detroit.emp*' -T detroit.employee_log mydb > db.sql


  


eastまたはwestで始まりgsmで終わるスキーマをすべてダンプします。
ただし、testという単語を含む場合は除きます。



$ pg_dump -n 'east*gsm' -n 'west*gsm' -N '*test*' mydb > db.sql


  


正規表現記法を使用してオプションをまとめた形で同じことを行います。



$ pg_dump -n '(east|west)*gsm' -N '*test*' mydb > db.sql


  


ts_から始まる名前のテーブルを除き、すべてのデータベースオブジェクトをダンプします。



$ pg_dump -T 'ts_*' mydb > db.sql


  


大文字または大文字小文字混在の名前を-tなどのスイッチに指定するには、名前を二重引用符で括らなければなりません。
さもないと小文字に変換されます（パターンを参照してください）。
しかし、二重引用符はシェルでも特別に扱われますので、これも引用符で括らなければなりません。
したがって、大文字小文字混在の名前を持つテーブルを1つダンプするには、以下のようにしなければなりません。



$ pg_dump -t "\"MixedCaseName\"" mydb > mytab.sql



mytable2を除く、名前がmytableで始まる全てのテーブルをダンプするには、以下のようなフィルタファイルfilter.txtを指定します。


include table mytable*
exclude table mytable2





$ pg_dump --filter=filter.txt mydb > db.sql


関連項目
pg_dumpall(1), pg_restore(1), psql(1)


名前
pg_dumpall — PostgreSQL™のデータベースクラスタをスクリプトファイルへ抽出する

概要
pg_dumpall  [connection-option...] [option...]


説明


pg_dumpallはクラスタの全てのPostgreSQL™データベースを、1つのスクリプトファイルに書き出す（「ダンプする」）ためのユーティリティです。
スクリプトファイルには、データベースのリストアのためにpsql(1)への入力として使うことのできるSQLコマンドが含まれています。
これはクラスタ内の各データベースに対してpg_dump(1)を呼び出すことで行われます。
さらに、pg_dumpallは、全てのデータベースに共通するグローバルオブジェクト、すなわちデータベースロール、テーブル空間、および権限パラメータに対する設定許可をダンプします。
（pg_dumpはこれらのオブジェクトを保存しません。）
  


pg_dumpallは全てのデータベースからテーブルを読み込むため、完全なダンプを作成するには、おそらくデータベーススーパーユーザとして接続する必要がある可能性が高いでしょう。
さらに、保存されたスクリプトを実行する時には、ロールを追加したり、データベースを作成したりするので、スーパーユーザ権限が必要になるでしょう。
  


SQLスクリプトは標準出力に書き込まれます。
それをファイルにリダイレクトするためには、-f/--fileオプションまたはシェルの演算子を使用して下さい。
  


pg_dumpallは、PostgreSQL™サーバに何度か接続しなければなりません（データベースごとに接続することになります）。
パスワード認証を使用している場合、その度にパスワード入力が促されます。
そのような場合は~/.pgpassファイルを用意しておくと便利です。
詳細は「パスワードファイル」を参照してください。
  
警告


ダンプをリストアすると、リストア先ではダンプ側のスーパーユーザが選択した任意のコードが実行されることになります。
部分的なダンプや部分的なリストアであってもそれは制限されません。
ダンプ側のスーパーユーザが信頼できない場合は、リストアする前にダンプされたSQL文を検査する必要があります。
ダンプやリストアを実行するクライアントは、ダンプやリストア先のスーパーユーザを信頼する必要はありません。
   


オプション


以下のコマンドラインオプションは出力内容や形式を制御します。

    
	-a, --data-only
	

データのみをダンプし、スキーマ（データ定義）と統計情報をダンプしません。
       

	-c, --clean
	

ダンプされたデータベース、ロール、テーブル空間を再作成する前に、それらをすべてDROPするSQLコマンドを発行します。
このオプションは、リストアが既存のクラスタを上書きする場合に便利です。
オブジェクトが対象とするクラスタに存在しない場合、--if-existsも指定されていない限り、リストア中に無視可能なエラーメッセージが報告されます。
       

	-E encoding, --encoding=encoding
	

指定された文字集合エンコーディングでダンプを作ります。
デフォルトでは、ダンプはデータベースエンコーディングで作られます。
（同じ結果を得る他の方法はPGCLIENTENCODING環境変数を望みのダンプエンコーディングに設定することです。）
       

	-f filename, --file=filename
	

出力を指定したファイルに送ります。
これが省略されると標準出力が使用されます。
       

	-g, --globals-only
	

グローバルオブジェクト（ロールとテーブル空間）のみをダンプし、データベースのダンプを行いません。
       

	-O, --no-owner
	

オブジェクトの所有権を元のデータベースに一致させるためのコマンドを出力しません。
デフォルトでは、pg_dumpallはALTER OWNER文またはSET SESSION AUTHORIZATION文を発行して作成したスキーマ要素の所有権を設定します。
スーパーユーザ（もしくは、スクリプト内の全てのオブジェクトを所有するユーザ）以外のユーザがスクリプトを実行した場合、これらの文は失敗します。
任意のユーザがリストアできるスクリプトを作成するには、-Oを指定してください。ただし、この場合は、全てのオブジェクトの所有者がリストアしたユーザとなってしまいます。
       

	-r, --roles-only
	

ロールのみをダンプし、データベースやテーブル空間のダンプを行いません。
       

	-s, --schema-only
	

オブジェクト定義（スキーマ）のみをダンプし、データをダンプしません。
       

	-S username, --superuser=username
	

トリガを無効にする際に使用するスーパーユーザのユーザ名を指定します。
これは--disable-triggersを使用する場合にのみ使用されます。
（通常はこのオプションを使うよりも、出力されたスクリプトをスーパーユーザ権限で実行する方が良いでしょう。）
       

	-t, --tablespaces-only
	

テーブル空間のみをダンプし、データベースやロールのダンプを行いません。
       

	-v, --verbose
	

冗長モードを指定します。
これを指定すると、pg_dumpallは開始時刻と終了時刻をダンプファイルに、進行メッセージを標準エラーに出力するようになります。
オプションを繰り返すと、追加のデバッグレベルメッセージが標準エラーに現れます。
このオプションはpg_dumpにも渡されます。
       

	-V, --version
	

pg_dumpallのバージョンを表示し、終了します。
       

	-x, --no-privileges, --no-acl
	

アクセス権限のダンプ（grant/revokeコマンド）を行いません。
       

	--binary-upgrade
	

このオプションは現位置でのアップグレード用のユーティリティにより使用されるものです。
他の目的での使用は推奨されませんし、サポートもされません。
このオプションの動作は、将来通知することなく変更される可能性があります。
       

	--column-inserts, --attribute-inserts
	

明示的に列名を付けたINSERTコマンド（INSERT INTO table (column, ...) VALUES...）としてダンプします。
これによりリストアは非常に遅くなります。
主に、PostgreSQL™以外のデータベースにロード可能なダンプを作成する時に有用です。
       

	--disable-dollar-quoting
	

このオプションは、関数本体用のドル引用符の使用を無効にし、強制的に標準SQLの文字列構文を使用した引用符付けを行います。
       

	--disable-triggers
	

このオプションは、データは含むがスキーマは含まないダンプを作成する場合だけに使用します。
データのリストア中に、対象とするテーブル上のトリガを一時的に使用不可にするためのコマンドを出力するようpg_dumpallに指示します。
このオプションは、データのリストア中には呼び出したくない参照整合性検査やその他のトリガがテーブル上にある場合に使用します。
       


現在のところ、--disable-triggersを指定してコマンドを実行するのは、スーパーユーザでなければなりません。
そのため、-Sでスーパーユーザの名前を指定するか、あるいは、可能であれば、スーパーユーザ権限でスクリプトを開始するよう注意する必要があります。
       

	--exclude-database=pattern
	

名前がpatternにマッチするデータベースをダンプしません。
複数の--exclude-databaseオプションを記述することで複数のパターンを除外できます。
patternパラメータはpsqlの\dコマンドで使用される規則(パターン参照)と同じ規則に従うパターンとして解釈されます。ですので、ワイルドカード文字をパターン内に記述することで、複数のデータベースを除外することもできます。
ワイルドカードを使用する時は、シェルによりそのワイルドカードを展開させないように、パターンを引用符で括ってください。
       

	--extra-float-digits=ndigits
	

浮動小数点データをダンプする時に、利用できる最大の精度の代わりに、extra_float_digitsで指定された値を使います。
バックアップ目的で作られたダンプルーチンは、このオプションを使うべきではありません。
       

	--filter=filename
	

ダンプから除外するデータベースのパターンを読み込むファイル名を指定します。
パターンは--exclude-databaseと同じ規則に従って解釈されます。
STDINから読み込むには、ファイル名として-を使用します。
--filterオプションは、データベースを除外するために--exclude-databaseと一緒に指定でき、複数のフィルタファイルに対して複数回指定することもできます。
       


ファイルには、1行に1つのデータベースパターンがリストされ、次の形式になります。


exclude database PATTERN


       


#で始まる行はコメントと見なされ、無視されます。
コメントはオブジェクトパターン行の後にも置くことができます。
空行も無視されます。
パターン内の引用方法についてはパターンを参照してください。
       

	--if-exists
	

DROP ... IF EXISTSコマンドを使用して、--cleanモードでオブジェクトを削除します。
これは、「does not exist」エラーを抑制します。
このオプションは、--cleanも指定されていない場合には無効です。
       

	--inserts
	

データを（COPYではなく）INSERTコマンドとしてダンプします。
これを行うとリストアが非常に遅くなります。
主にPostgreSQL™以外のデータベースにロード可能なダンプを作成する時に有用です。
列の順序を変更した場合はリストアが失敗する可能性があることに注意してください。
さらに低速になりますが、--column-insertsオプションの方が安全です。
       

	--load-via-partition-root
	

テーブルパーティションに対するデータをダンプするとき、COPYやINSERT文をパーティション自体ではなく、それを含むパーティション階層のルートに向けさせます。
これにより、データが読み込まれるときに各行に対して適切なパーティションが再判断されるようになります。
これは、行が必ずしも元のサーバと同じパーティションに落ちないようなサーバにデータをリストアするときに有用でしょう。
例えば、パーティション列がtext型で二つのシステムがパーティション列をソートするのに使われる照合順序の異なった定義を持っている場合に、これは起こりえることです。
       

	--lock-wait-timeout=timeout
	

ダンプ開始時に共有テーブルロックの獲得のために永遠に待機しません。
指定したtimeoutの間にテーブルをロックすることができない場合は失敗します。
タイムアウトはSET statement_timeoutで受け付けられる任意の書式で指定できます。
       

	--no-comments
	

COMMENTコマンドをダンプしません。
       

	--no-data
	

データをダンプしません。
       

	--no-policies
	

行セキュリティポリシーをダンプしません。
       

	--no-publications
	

パブリケーションをダンプしません。
       

	--no-role-passwords
	

ロールのパスワードをダンプしません。
リストア時にロールのパスワードはNULLになるため、パスワードが設定されるまでは、パスワード認証は常に失敗します。
このオプションが指定された場合、パスワードの値が不要となるので、ロール情報はpg_authidではなく、カタログビューのpg_rolesから読み取られます。
従って、pg_authidへのアクセスが何らかのセキュリティポリシーによって制限されている場合にも、このオプションは役立ちます。
       

	--no-schema
	

スキーマ（データ定義）をダンプしません。
       

	--no-security-labels
	

セキュリティラベルをダンプしません。
       

	--no-statistics
	

統計情報をダンプしません。
これがデフォルトです。
       

	--no-subscriptions
	

サブスクリプションをダンプしません。
       

	--no-sync
	

デフォルトでは、pg_dumpallはすべてのファイルが確実にディスクに書き込まれるまで待機します。
このオプションを使うとpg_dumpallは待機せずに戻るため、より高速になりますが、これは、その後にオペレーティングシステムがクラッシュすると、ダンプが破損する可能性があることを意味します。
一般的に言って、このオプションはテスト用には有用ですが、実運用の環境からデータをダンプするときには使用しないほうが良いでしょう。
       

	--no-table-access-method
	

セレクトテーブルアクセスメソッドにコマンドを出力しません。
このオプションを使用すると、リストア中にどのテーブルアクセスメソッドがデフォルトであっても、すべてのオブジェクトが作成されます。
       

	--no-tablespaces
	

オブジェクト用にテーブル空間を作成または選択するコマンドを出力しません。
このオプションを付けると、すべてのオブジェクトはリストア時のデフォルトのテーブル空間内に作成されます。
       

	--no-toast-compression
	

TOAST圧縮方式を設定するコマンドを出力しません。
このオプションにより、列はすべてデフォルトの圧縮の設定でリストアされます。
       

	--no-unlogged-table-data
	

ログを取らないテーブルの内容をダンプしません。
このオプションはテーブル定義（スキーマ）をダンプするかどうかには影響しません。
そのテーブルデータのダンプを抑制するだけです。
       

	--on-conflict-do-nothing
	

INSERTコマンドにON CONFLICT DO NOTHINGを追加します。
このオプションは、--insertsまたは--column-insertsが同時に指定されていなければ、有効ではありません。
       

	--quote-all-identifiers
	

強制的にすべての識別子に引用符を付与します。
このオプションは、pg_dumpallのメジャーバージョンとは異なるメジャーバージョンのPostgreSQL™のサーバからデータベースをダンプするとき、あるいは出力を異なるメジャーバージョンのサーバにロードする予定であるときに推奨されます。
デフォルトでは、pg_dumpallは、それ自身のメジャーバージョンにおける予約語である識別子に対してのみ引用符を付与します。
これは、他のバージョンのサーバを処理するときに互換性の問題を引き起こす場合があります。
他のバージョンのサーバでは予約語の集合が多少、異なる場合があるからです。
--quote-all-identifiersを使用することで、ダンプのスクリプトが読みにくくなりますが、このような問題を防ぐことができます。
       

	--restrict-key=restrict_key
	

指定した文字列をダンプ出力のpsqlの\restrictキーとして使用します。
制限キーが指定されていない場合、pg_dumpallは必要に応じてランダムなキーを生成します。
キーには英数字のみを使用できます。
       


このオプションは主にテスト目的や、出力の再現性が必要な場合（例えば、ダンプファイルの比較）を想定しています。
悪意のあるサーバがキーを事前に知っている場合、ダンプ出力を使ってpsqlを実行するマシンで任意のコードを実行できる可能性があるため、一般的な使用には推奨されません。
       

	--rows-per-insert=nrows
	

(COPYではなく)INSERTコマンドでデータをダンプします。
INSERTコマンド1つあたりの最大行数を制御します。
指定する値は0より大きくなければなりません。
リストア中のエラーでは、テーブルの内容がまるごと失われることはなく、問題のあるINSERTの一部の行が失われるだけです。
       

	--statistics
	

統計情報をダンプします。
       

	--statistics-only
	

統計情報のみをダンプし、スキーマ（データ定義）とデータはダンプしません。
テーブル、マテリアライズドビュー、外部テーブル、およびインデックスの統計情報がダンプされます。
       

	--sequence-data
	

シーケンスデータをダンプに含めます。
これは、--no-data、--schema-only、または--statistics-onlyが指定されている場合を除き、デフォルトの動作です。
       

	--use-set-session-authorization
	

ALTER OWNERコマンドの代わりに標準SQLのSET SESSION AUTHORIZATIONコマンドを出力します。
これにより、ダンプの標準への互換性が高まりますが、ダンプ内のオブジェクトの履歴によっては正しくリストアされない可能性があります。
       

	-?, --help
	

pg_dumpallコマンドライン引数の使用方法を表示し、終了します。
       




   


以下のコマンドラインオプションは、データベース接続パラメータを制御します。

   
	-d connstr, --dbname=connstr
	

サーバに接続するために使用されるパラメータを接続文字列として指定します。これは衝突するコマンドラインオプションよりも優先します。
       


このオプションは、他のクライアントアプリケーションとの一貫性のために--dbnameと呼ばれます。
しかしpg_dumpallは多くのデータベースに接続しなければなりませんので、接続文字列内のデータベース名は無視されます。
グローバルオブジェクトをダンプするために使用されるデータベースの名前を指定するため、または他のどのデータベースをダンプしなければならないかを見つけるためには-lを使用してください。
       

	-h host, --host=host
	

データベースサーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
デフォルトは、設定されていれば環境変数PGHOSTから取得されます。
設定されていなければ、Unixドメインソケット接続とみなされます。
       

	-l dbname, --database=dbname
	

グローバルオブジェクトをダンプし、他のどのデータベースをダンプすべきかを見つけるために接続するデータベースの名前を指定します。
指定されなかった場合、postgresが使用されます。
もしこれも存在しない場合はtemplate1が使用されます。
       

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはローカルUnixドメインソケットファイルの拡張子を指定します。
デフォルトは、設定されている場合、環境変数PGPORTの値となります。設定されていなければ、コンパイル時のデフォルト値となります。
       

	-U username, --username=username
	

接続ユーザ名です。
       

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
       

	-W, --password
	

データベースに接続する前に、pg_dumpallは強制的にパスワード入力を促します。
       


サーバがパスワード認証を要求する場合pg_dumpallは自動的にパスワード入力を促しますので、これが重要になることはありません。
しかし、pg_dumpallは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
       


パスワードの入力はダンプするデータベース毎に繰り返し促されます。
通常は、手作業のパスワード入力に依存するよりも~/.pgpassを設定する方が良いでしょう。
       

	--role=rolename
	

ダンプを作成する際に使用するロール名を指定します。
このオプションによりpg_dumpallはデータベースに接続した後にSET ROLE rolenameコマンドを発行するようになります。
認証に使用したユーザ（-Uで指定されたユーザ）がpg_dumpallで必要とされる権限を持たないが、必要な権限を持つロールに切り替えることができる場合に有用です。
一部のインストレーションではスーパーユーザとして直接ログインさせないポリシーを取ることがありますが、このオプションを使用することでポリシーに反することなくダンプを作成することができます。
       




  

環境
	PGHOST, PGOPTIONS, PGPORT, PGUSER
	

      デフォルトの接続パラメータです。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     





このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数(「環境変数」参照)も使います。
  

注釈


pg_dumpallは、内部でpg_dumpを呼び出すので、診断メッセージの一部ではpg_dumpを参照しています。
  


--cleanオプションは、ダンプスクリプトを新しいクラスタにリストアする意図のときであっても、有用なことがあります。
--cleanの使用は、スクリプトに組み込みのpostgresおよびtemplate1データベースを削除して再作成する権限を与え、これらのデータベースが元のクラスタに持っていたものと同じ属性（例えばロケールやエンコーディング）を保つことを保証します。
このオプションが無いと、これらのデータベースは既存のデータベースレベルの属性を維持します。
  


--statisticsが指定されている場合、pg_dumpallは出力されるダンプファイルにほとんどのオプティマイザの統計情報を含めます。
しかし、CREATE STATISTICS(7)で明示的に作成された統計情報や、拡張により追加された独自統計情報など、一部の統計情報は含まれない場合があります。
そのため、最適な性能を発揮するためには、ダンプファイルからリストアした後に各データベースでANALYZEを実行すると効果的な場合があります。
また、vacuumdb -a -zを実行して、全てのデータベースを解析することができます。
  


ダンプスクリプトはエラー無しに完全に実行すると期待すべきではありません。
特にスクリプトは存在する全てのロールに対してCREATE ROLEを発行するので、宛先のクラスタが異なるブートストラップスーパーユーザ名で初期化されていない限り、ブートストラップスーパーユーザについて「role already exists」エラーを受け取ることは確実です。
このエラーは無害であり、無視してください。
--cleanオプションの使用は、追加で無害な存在しないオブジェクトについてのエラーメッセージを発生させますが、--if-existsを加えることでエラー発生を最小化できます。
  


pg_dumpallでは、必要なテーブル空間用のディレクトリがリストア前に存在していることを要求します。
存在しないと、デフォルト以外の場所にあるデータベースに関して、そのデータベース生成が失敗します。
  


一般的に、データベースをpg_dumpallスクリプトからリストアする場合、クリーンなリストアプロセスを保証し、デフォルト以外のpsql設定との潜在的な競合を防ぐために、-X(--no-psqlrc)オプションの使用を推奨します。
さらに、pg_dumpallスクリプトはpsqlメタコマンドを含む場合があるため、psql以外のクライアントとは互換性がない可能性があります。
  

例


全てのデータベースを書き出す場合、以下のようにします。



$ pg_dumpall > db.out


  


上記のファイルからデータベースをリストアする場合、以下のようにします。


$ psql -X -f db.out -d postgres



ここではどのデータベースに接続するかということは重要ではありません。なぜならpg_dumpallが作成するスクリプトファイルには、保存されたデータベースの作成および接続のための適切なコマンドが含まれているからです。
例外は--cleanを指定した場合で、最初にpostgresデータベースに接続しなければなりません。
このときのスクリプトは即座に他のデータベースを削除しようとし、接続中のデータベースに対しては失敗するでしょう。
  

関連項目


発生し得るエラーの原因については、pg_dump(1)を参照してください。
  



名前
pg_isready — PostgreSQL™サーバの接続状態を検査する

概要
pg_isready  [connection-option...] [option...]


説明


pg_isreadyはPostgreSQL™データベースサーバの接続状態を検査するためのユーティリティです。
終了ステータスが接続検査の結果を示します。
  

オプション
	-d dbname, --dbname=dbname
	

接続するデータベースの名前を指定します。
dbnameは接続文字列でも構いません。
その場合、接続文字列パラメータは衝突するコマンドラインオプションよりも優先します。
      

	-h hostname, --host=hostname
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
       

	-p port, --port=port
	

サーバが接続を監視しているTCPポートまたはUnixドメインソケットファイルの拡張子を指定します。
デフォルトは環境変数PGPORTの値、もし設定されていなければ、コンパイル時に指定したポート、通常は5432です。
       

	-q, --quiet
	

状態メッセージを表示しません。
これはスクリプト処理の際に有用です。
       

	-t seconds, --timeout=seconds
	

サーバが応答しないことを返す前に、接続試行時に待機する最大秒数です。
ゼロに設定すると無効になります。
デフォルトは3秒です。
       

	-U username, --username=username
	

デフォルトではなくusernameユーザとしてデータベースに接続します。
       

	-V, --version
	

pg_isreadyのバージョンを表示し終了します。
        

	-?, --help
	

pg_isreadyのコマンドライン引数に関する説明を表示し終了します。
       




終了ステータス


pg_isreadyは、サーバが通常通り接続を受け付けている場合は0を、サーバが接続を拒絶している（例えば起動時）場合は1を、接続試行に対する応答がない場合は2を、試行が行われなかった（例えば無効なパラメータが原因）場合は3をシェルに返します。
  

環境


他のほとんどのPostgreSQL™ユーティリティと同様、pg_isreadyはlibpqによってサポートされる環境変数（「環境変数」参照）を使用します。
  


環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  

注釈


サーバの状態を取得するのに、正しいユーザ名、パスワード、データベース名の値を使う必要はありません。
しかし、正しくない値が使われた場合、サーバは接続試行に失敗したことをログに記録します。
  

例


標準的な使用方法を示します。


$ pg_isready
/tmp:5432 - accepting connections
$ echo $?
0


  


起動中のPostgreSQL™クラスタに対して接続パラメータを付けて実行します。


$ pg_isready -h localhost -p 5433
localhost:5433 - rejecting connections
$ echo $?
1


  


応答しないPostgreSQL™クラスタに対して接続パラメータを付けて実行します。


$ pg_isready -h someremotehost
someremotehost:5432 - no response
$ echo $?
2


  



名前
pg_receivewal — PostgreSQL™サーバから先行書き込みログ（WAL）をストリームする

概要
pg_receivewal  [option...]


説明


pg_receivewalは実行中のPostgreSQL™クラスタから先行書き込みログ（WAL）をストリームするために使用されます。
先行書き込みログ（WAL）はストリーミングレプリケーションプロトコルを使用してストリームされ、ローカルディレクトリのファイルとして書き出されます。
このディレクトリはポイントインタイムリカバリ（「継続的アーカイブとポイントインタイムリカバリ（PITR）」参照）を用いてリストアする際のアーカイブ場所として使用することができます。
  


pg_receivewalは、先行書き込みログ（WAL）をサーバでの生成に合わせてリアルタイムでストリームし、archive_commandやarchive_libraryとは異なり、セグメントが完了するまで待機することはありません。
このため、pg_receivewalを使用する場合にはarchive_timeoutを設定する必要はありません。
  


PostgreSQLのスタンバイサーバのWALレシーバと異なり、pg_receivewalはデフォルトでは、WALファイルがクローズされた時にのみ、WALデータをフラッシュします。
WALデータをリアルタイムでフラッシュするには--synchronousオプションを指定する必要があります。
pg_receivewalはWALを適用しないので、synchronous_commitがremote_applyのときにこれを同期スタンバイにすることはできません。
そのようにした場合、決してキャッチアップすることのないスタンバイになり、トランザクションコミットのブロックをひき起こします。
これを避けるには、synchronous_standby_namesに適切な値を設定するか、pg_receivewalに対して一致しないapplication_nameを指定する、あるいは、synchronous_commitの値をremote_apply以外の値に変更してください。
  


先行書き込みログ（WAL）は通常のPostgreSQL™接続を経由して、そしてレプリケーションプロトコルを使用して、ストリームされます。
この接続はREPLICATION権限（「ロールの属性」参照）を持つユーザまたはスーパーユーザによって確立されなければなりません。
そしてpg_hba.confでレプリケーション用の接続を許可しなければなりません。
またサーバではストリーム用に利用できるセッションが少なくとも１つ存在できるためにmax_wal_sendersを十分大きく設定しなければなりません。
  


先行書き込みログ（WAL）のストリーミングの開始点はpg_receivewalの開始時に以下のように計算されます。
   
	

まず、WALセグメントファイルが書き込まれるディレクトリをスキャンして、最新の完了したセグメントファイルを見つけ、次のWALセグメントファイルの始まりを開始点として使います。
     

	

前の方法で開始点を計算できず、レプリケーションスロットが使用されている場合、追加のREAD_REPLICATION_SLOTコマンドを発行してスロットのrestart_lsnを取得し、開始点として使用します。
このオプションは、PostgreSQL™ 15以降から先行書き込みログ（WAL）をストリーミングする場合にのみ使用できます。
     

	

開始点が前の方法で計算できなければ、サーバのIDENTIFY_SYSTEMコマンドで報告された最新のWALのフラッシュ位置が使われます。
     




  


接続が失われた場合、または、致命的ではないエラーで初期確立ができなかった場合、pg_receivewalは無期限に接続を再試行しできるだけ早くストリーミングを再確立します。
この動作を止めるためには-nパラメータを使用してください。
  


致命的なエラーが無い場合、pg_receivewalはSIGINT（Control+C）またはSIGTERMシグナルで停止されるまで実行を続けます。
  

オプション
	-D directory, --directory=directory
	

出力を書き出すディレクトリです。
       


このパラメータは必須です。
       

	-E lsn, --endpos=lsn
	

受信が指定したLSNに達したなら、自動的にレプリケーションを停止して、通常の終了ステータス0で終了します。
       


lsnとちょうど等しいLSNのレコードがある場合、そのレコードは処理されます。
       

	--if-not-exists
	

--create-slotが指定され、指定された名前のスロットが既に存在していた場合に、エラーを発生させません。
       

	-n, --no-loop
	

接続エラー時に繰り返しません。
代わりにエラーですぐに終了します。
       

	--no-sync
	

このオプションはpg_receivewalがWALデータをディスクに強制的にフラッシュさせないようにします。
これはより高速ですが、オペレーションシステムのクラッシュ後にWALセグメントが破損している可能性があります。
一般に、このオプションはテストには有益ですが、本番配備でWALのアーカイビングを行うときに使うべきではありません。
       


このオプションは--synchronousと両立しません。
       

	-s interval, --status-interval=interval
	

サーバに状態パケットを返答する間隔を秒単位で指定します。
これによりサーバからより簡単に進行状況を監視することができます。
ゼロという値は状態の定期的な更新を完全に無効にします。
しかしタイムアウトによる切断を防ぐために、サーバから要求された時には更新を送信します。
デフォルト値は１０秒です。
       

	-S slotname, --slot=slotname
	

pg_receivewalが既存のレプリケーションスロットを使うようにします(「レプリケーションスロット」を参照してください)。
このオプションが使われると、pg_receivewalはフラッシュ位置をサーバに報告します。
これは、各セグメントがいつディスクに同期されたかを示し、それによりサーバが必要のなくなったセグメントを削除できるようになります。
        


pg_receivewalのレプリケーションクライアントが同期スタンバイとしてサーバ上で構成されている場合、レプリケーションスロットを利用するとフラッシュ位置がサーバに報告されますが、それはWALファイルがクローズされる時のみです。
したがって、その構成ではプライマリ上のトランザクションが長時間待たされることになり、結果的に満足する動作を得られません。
これを正しく動作させるには、追加で--synchronousオプション（以下を参照）を指定する必要があります。
        

	--synchronous
	

WALデータを受け取ると即座にディスクにフラッシュします。
またフラッシュした直後に、--status-intervalの値が何であれ、ステータスパケットをサーバに送り返します。
       


pg_receivewalのレプリケーションクライアントが同期スタンバイとしてサーバ上で構成されている場合、フィードバックが遅延なくサーバに送り返されることを確実にするため、このオプションを指定すべきです。
       

	-v, --verbose
	

冗長モードを有効にします。
       

	-Z level, -Z method[:detail], --compress=level, --compress=method[:detail]
	

先行書き込みログ（WAL）の圧縮を有効にします。
       


圧縮方式はgzip、(PostgreSQL™が--with-lz4でコンパイルされた場合)lz4に設定できます。非圧縮の場合はnoneです。
圧縮の詳細文字列はオプションで指定できます。
詳細文字列が整数の場合は、圧縮レベルを指定します。
それ以外の場合は、keywordまたはkeyword=valueの形式のカンマで区切られた項目リストにします。
現在サポートされているキーワードはlevelのみです。
       


圧縮レベルが指定されていない場合、デフォルトの圧縮レベルが使用されます。
アルゴリズムを指定せずにレベルのみが指定されている場合、レベルが0より大きい場合はgzip圧縮が使用され、レベルが0の場合は圧縮が使用されません。
       


gzipを使用している場合は、すべてのファイル名に自動的に接尾辞.gzが追加されます。lz4を使用している場合は、接尾辞.lz4が追加されます。
       





以下のコマンドラインオプションはデータベース接続パラメータを制御します。

    
	-d connstr, --dbname=connstr
	

サーバに接続するために使用するパラメータを、接続文字列として指定します。
これは衝突するコマンドラインオプションよりも優先します。
       


このオプションは他のクライアントアプリケーションとの整合性のために--dbnameと呼ばれます。しかし、pg_receivewalはクラスタ内のどの特定のデータベースにも接続しませんので、接続文字列に含まれるデータベース名はサーバにより無視されます。
しかし、そのようにして提供されたデータベース名は、レプリケーション接続のパスワードを~/.pgpassで検索するためのデフォルトのデータベース名（replication）を上書きします。
同様に、PostgreSQL™への接続に使用されるミドルウェアやプロキシは、接続ルーティングなどのために、この名前を利用する可能性があります。
       

	-h host, --host=host
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
デフォルトは、設定されていれば環境変数PGHOSTから取得されます。
設定されていなければ、Unixドメインソケット接続とみなされます。
       

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはローカルUnixドメインソケットファイルの拡張子を指定します。
デフォルトは、設定されている場合、環境変数PGPORTの値となります。設定されていなければ、コンパイル時のデフォルト値となります。
       

	-U username, --username=username
	

接続するユーザ名です。
       

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
       

	-W, --password
	

pg_receivewalはデータベースに接続する前にパスワード入力を強制的に促します。
       


このオプションは重要ではありません。
pg_receivewalは、サーバがパスワード認証を要求した場合に自動的にパスワードを促すためです。
しかしpg_receivewalは、サーバがパスワードを要求するかどうかを確認するために接続試行を浪費します。
-Wと入力して無駄な接続試行を防止することが有意である場合があります。
       




   


pg_receivewalは物理レプリケーションスロットを制御するため、以下の2つの動作のうちの1つを実行できます。

    
	--create-slot
	

--slotで指定された名前の新しい物理レプリケーションスロットを作成して終了します。
       

	--drop-slot
	

--slotで指定された名前のレプリケーションスロットを削除して終了します。
       




   


この他に以下のオプションも使用することができます。

    
	-V, --version
	

pg_receivewalのバージョンを表示し、終了します。
       

	-?, --help
	

pg_receivewalコマンドライン引数についてのヘルプを表示し、終了します。
       




   

終了ステータス


pg_receivewalはSIGINTまたはSIGTERMシグナルで終了されたとき、ステータス0で終了します。
（これは止めるための通常の方法です。
そのためエラーではありません。）
致命的エラーや他のシグナルに対しては、終了ステータスは非ゼロになります。
  

環境


このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqでサポートされる環境変数（「環境変数」参照）を使います。
  


環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  

注釈


WALのバックアップのメインの方法として、archive_commandやarchive_libraryの代わりにpg_receivewalを使用する場合、レプリケーションスロットを使用することを強く推奨します。
そうしなければ、サーバはarchive_commandやarchive_library、レプリケーションスロットのいずれからもWALのストリームがどこまでアーカイブされているかの情報を得られないため、先行書き込みログ（WAL）ファイルがバックアップされる前にそれを再利用または削除するかもしれないのです。
しかし、WALデータを受け取る側がそのフェッチに追いつけない場合、レプリケーションスロットがサーバのディスクスペースを一杯にしてしまうかもしれないことに注意してください。
  


pg_receivewalは、ソースクラスタでグループパーミッションが有効である場合、受け取ったWALファイルのグループパーミッションを維持します。
  

例


先行書き込みログ（WAL）をmydbserverにあるサーバからストリームし、それをローカルディレクトリ/usr/local/pgsql/archiveに格納します。


$ pg_receivewal -h mydbserver -D /usr/local/pgsql/archive


関連項目
pg_basebackup(1)


名前
pg_recvlogical — PostgreSQL™のストリームのロジカルデコーディングを制御する

概要
pg_recvlogical  [option...]


説明


pg_recvlogicalはレプリケーションスロットのロジカルデコーディングを制御し、またレプリケーションスロットからデータを流します。
  


これはレプリケーションモードの接続をするため、pg_receivewal(1)と同じ制約に加えて、論理レプリケーション(47章ロジカルデコーディングを参照)と同じ制約も受けます。
  


pg_recvlogicalには、ロジカルデコーディングのSQLインタフェースのpeekとgetのモードに対応するものがありません。
データを受信する度、および終了時にダラダラとその再生確認を送信します。
スロット上の未処理のデータを処理せずに検査するには、pg_logical_slot_peek_changesを使用してください。
  


致命的なエラーが無い場合、pg_recvlogicalはSIGINT（Control+C）またはSIGTERMシグナルで停止されるまで実行を続けます。
  


pg_recvlogicalはSIGHUPシグナルを受け取ると、現在の出力ファイルを閉じ、--fileオプションで指定されたファイル名を使用して新しいファイルを開きます。
これにより、まず現在の出力ファイルの名前を変更し、その後pg_recvlogicalにSIGHUPシグナルを送信することで、出力ファイルをローテーションすることができます。
  

オプション


動作を選択するため、以下のオプションのうち少なくとも1つを指定しなければなりません。

    
	--create-slot
	

新しい論理レプリケーションスロットを--slotで指定した名前で、--pluginの出力プラグインを使い、--dbnameで指定したデータベースに対して作成します。
       


このアクションには、--slotと--dbnameが必要です。
       


--enable-two-phaseおよび--enable-failoverオプションは、--create-slotで指定できます。
       

	--drop-slot
	

--slotで指定された名前のレプリケーションスロットを削除して、終了します。
       


このアクションには--slotが必要です。
       

	--start
	

--slotで指定した論理レプリケーションスロットからストリームの変更を開始し、シグナルを受けて終了するまで継続します。
サーバ側の変更ストリームがサーバのシャットダウンまたは接続断によって終了した場合は、--no-loopが指定されていなければ、ループ内でリトライします。
       


このアクションには、--slotと--dbname、--fileが必要です。
       


ストリームのフォーマットは、スロットが作成された時に指定された出力プラグインによって決定されます。
       


接続はスロットの作成時に使用したのと同じデータベースに対してでなければなりません。
       




   


--create-slotと--startは同時に指定することができます。
--drop-slotは他の動作と組み合わせることができません。
   


以下のコマンドラインオプションは出力の場所とフォーマット、およびその他のレプリケーションの動作を制御します。

    
	-E lsn, --endpos=lsn
	

--startモードでは、自動的にレプリケーションを停止し、受信が指定のLSNに到達したら正常な終了ステータス0で終了します。
--start以外のモードの時に指定された場合は、エラーが発生します。
       


LSNがlsnと正確に一致するレコードがある場合、そのレコードは出力されます。
       


--endposオプションはトランザクションの境界を意識しないため、トランザクションの途中で出力を切り捨てるかもしれません。
部分的に出力されたトランザクションはいずれも処理されず、スロットが次回、読み込まれた時に再び再生されます。
個々のメッセージが切り捨てられることはありません。
       

	--enable-failover
	

スロットをスタンバイと同期できるようにします。
このオプションは--create-slotでのみ指定できます。
       

	-f filename, --file=filename
	

受け取り、デコードしたトランザクションデータをこのファイルに書き込みます。
stdoutに出力するには-を使います。
       


このパラメータは--startに必要です。
       

	-F interval_seconds, --fsync-interval=interval_seconds
	

出力ファイルがディスクに安全にフラッシュされることを確実にするため、pg_recvlogicalがfsync()の呼び出しを実行する頻度を指定します。
       


サーバはクライアントに対して、フラッシュを実行し、またフラッシュ位置をサーバに報告するように、ときどき要求します。
この設定はそれに加えて、フラッシュをより高頻度で実行するものです。
       


0という間隔を指定すると、fsync()の呼び出しをまったく実行しなくなりますが、それでも状況をサーバに報告はします。
この場合、クラッシュするとデータが失われるかもしれません。
       

	-I lsn, --startpos=lsn
	

--startモードでは、レプリケーションを指定のLSNから開始します。
この効果の詳細については47章ロジカルデコーディングおよび「ストリーミングレプリケーションプロトコル」を参照してください。
その他のモードでは無視されます。
       

	--if-not-exists
	

--create-slotが指定され、指定された名前のスロットが既に存在している場合に、エラーを発生させません。
       

	-n, --no-loop
	

サーバへの接続が失われたとき、ループ内でリトライせず、単に終了します。
       

	-o name[=value], --option=name[=value]
	

オプションnameと(指定されていれば)オプション値valueを出力プラグインに渡します。
存在するオプションとその効果は、利用する出力プラグインに依存します。
       

	-P plugin, --plugin=plugin
	

スロットを作成するとき、指定されたロジカルデコーディングの出力プラグインを使います。
47章ロジカルデコーディングを参照してください。
このオプションは、スロットが既に存在する時は、何の効果もありません。
       

	-s interval_seconds, --status-interval=interval_seconds
	

このオプションはpg_receivewal(1)の同じ名前のオプションと同じ効果があります。
そちらの説明を参照してください。
       

	-S slot_name, --slot=slot_name
	

--startモードでは、slot_nameという名前の既存の論理レプリケーションスロットを使います。
--create-slotでは、この名前のスロットを作成します。
--drop-slotモードでは、この名前のスロットを削除します。
       


どのアクションにもこのパラメータが必要です。
       

	-t, --enable-two-phase, --two-phase (deprecated)
	

プリペアドトランザクションのデコードを有効にします。
このオプションは--create-slotでのみ指定できます。
       

	-v, --verbose
	

冗長モードを有効にします。
       




   


以下のコマンドラインオプションはデータベース接続パラメータを制御します。

    
	-d dbname, --dbname=dbname
	

接続するデータベースです。
この意味の詳細は動作の説明を参照してください。
dbnameは接続文字列でも構いません。
その場合、接続文字列パラメータは衝突するコマンドラインオプションよりも優先します。
        


このパラメータは--create-slotおよび--startに必要です。
        

	-h hostname-or-ip, --host=hostname-or-ip
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
デフォルトは、設定されていれば環境変数PGHOSTから取得されます。
設定されていなければ、Unixドメインソケット接続とみなされます。
        

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはローカルUnixドメインソケットファイルの拡張子を指定します。
デフォルトは、設定されている場合、環境変数PGPORTの値となります。設定されていなければ、コンパイル時のデフォルト値となります。
        

	-U user, --username=user
	

接続で使用するユーザ名です。
デフォルトは現在のOSのユーザ名です。
        

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
        

	-W, --password
	

pg_recvlogicalがデータベースに接続する前に、強制的にパスワード入力を促します。
        


サーバがパスワード認証を要求する場合、pg_recvlogicalは自動的にパスワード入力を促しますから、このオプションは本質的ではありません。
しかし、サーバがパスワードを必要とすることを確認するためにpg_recvlogicalが無駄な接続試行を行うことになります。
無駄な接続試行を避けるために-Wを指定するのが有効になる場合もあるでしょう。
        




   


この他に、以下のオプションが利用できます。

    
	-V, --version
	

pg_recvlogicalのバージョンを出力して、終了します。
       

	-?, --help
	

pg_recvlogicalのコマンドライン引数に関するヘルプを表示して、終了します。
        




   

終了ステータス


pg_recvlogicalはSIGINTまたはSIGTERMシグナルで停止されたとき、ステータス0で終了します。
（これは止めるための通常の方法です。
そのためエラーではありません。）
致命的エラーや他のシグナルに対しては、終了ステータスは非ゼロになります。
  

環境


このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqでサポートされる環境変数（「環境変数」参照）を使います。
  


環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  

注釈


pg_recvlogicalは、ソースクラスタでグループパーミッションが有効である場合、受け取ったWALファイルのグループパーミッションを維持します。
  

例


例については「ロジカルデコーディングの例」を参照してください。
  

関連項目
pg_receivewal(1)


名前
pg_restore — 

pg_dumpによって作成されたアーカイブファイルからPostgreSQL™データベースをリストアする
  

概要
pg_restore  [connection-option...] [option...] [filename]


説明


pg_restoreは、pg_dump(1)によって作成された平文形式以外のアーカイブファイルを使って、PostgreSQL™データベースをリストアするためのユーティリティです。
このコマンドは、データベースを再構成して保存された時点の状態にするために必要なコマンドを発行します。
また、pg_restoreは、アーカイブファイルから、リストアする内容を選択したり、リストアする前にアイテムの並べ替えを行うこともできます。
アーカイブファイルはアーキテクチャに依存しない移植性を持つように設計されています。
  


pg_restoreの操作には2つのモードがあります。
データベース名が指定された場合、pg_restoreはそのデータベースに接続し、アーカイブを直接そのデータベースにリストアします。
データベース名が指定されなかった場合は、データベースを再構築するために必要となるSQLコマンドが含まれたスクリプトが作成されます（ファイルもしくは標準出力に書き出されます）。
このスクリプトの出力はpg_dumpの平文形式の出力と同じです。
従って、出力を制御するオプションの中には、pg_dumpのオプションに類似したものがあります。
  


当然ながら、pg_restoreによって、アーカイブファイルに存在しない情報をリストアすることはできません。
例えば、アーカイブが「INSERTコマンドの形式でデータダンプ」を行うオプションを使用して作成されたものであった場合、pg_restoreはCOPY文を使用してデータを読み込むことはできません。
  
警告


ダンプをリストアすると、リストア先ではダンプ側のスーパーユーザが選択した任意のコードが実行されることになります。
部分的なダンプや部分的なリストアであってもそれは制限されません。
ダンプ側のスーパーユーザが信頼できない場合は、リストアする前にダンプされたSQL文を検査する必要があります。
非平文ダンプは、pg_restoreの--fileオプションを使って検査できます。
ダンプやリストアを実行するクライアントは、ダンプやリストア先のスーパーユーザを信頼する必要はありません。
   


オプション


pg_restoreは以下のコマンドライン引数を受け付けます。

    
	filename
	

リストアするアーカイブファイル（ディレクトリ書式アーカイブの場合はディレクトリ）の場所を指定します。
指定がない場合は、標準入力が使用されます。
       

	-a, --data-only
	

データのみをリストアし、スキーマ（データ定義）と統計情報はリストアしません。
アーカイブ内にある、テーブルデータ、ラージオブジェクト、およびシーケンス値がリストアされます。
       


このオプションは--section=dataを指定することと似ていますが、歴史的な理由により同一ではありません。
       

	-c, --clean
	

データベースオブジェクトをリストアする前に、リストアされるすべてのオブジェクトをDROPするコマンドを発行します。
このオプションは既存のデータベースを上書きする場合に便利です。
もし、対象のデータベースにオブジェクトが存在しない場合は、--if-existsも指定しない限り、無視できるエラーメッセージが報告されます。
       

	-C, --create
	

リストア前にデータベースを作成します。
--cleanも同時に指定されている場合、接続する前に対象データベースを削除し再作成します。
       


--createでは、pg_restoreは、もしあるならデータベースのコメントもリストアします。また、あらゆる設定変数の当データベースに対する設定、すなわち、このデータベースを対象にしたALTER DATABASE ... SET ...とALTER ROLE ... IN DATABASE ... SET ...コマンドもリストアします。
--no-aclが指定されていない限り、データベース自体に対するアクセス権限もリストアされます。
       


このオプションがある場合、-dで指定したデータベースは最初のDROP DATABASEとCREATE DATABASEコマンドの発行時にのみ使用されます。
そして、すべてのデータはアーカイブ内に記述された名前のデータベースにリストアされます。
       

	-d dbname, --dbname=dbname
	

dbnameデータベースに接続し、このデータベースに直接リストアします。
dbnameは接続文字列でも構いません。
その場合、接続文字列パラメータは衝突するコマンドラインオプションよりも優先します。
       

	-e, --exit-on-error
	

データベースにSQLコマンドを送信中にエラーが発生した場合、処理を終了します。
デフォルトでは、処理を続行し、リストア処理の最後に発生したエラーの数を表示します。
       

	-f filename, --file=filename
	

作成するスクリプト（-lを使用した場合はアーカイブの一覧）の出力ファイルを指定します。
stdout(標準出力)に出力するには-を使ってください。
       

	-F format, --format=format
	

アーカイブの形式を指定します。
pg_restoreは形式を自動認識するので、このオプションは必須ではありません。
指定する値は以下のいずれかになります。

       
	c, custom
	

アーカイブがpg_dumpのカスタム形式であることを表します。
          

	d, directory
	

アーカイブがディレクトリアーカイブであることを表します。
          

	t, tar
	

アーカイブがtarアーカイブであることを表します。
          




	-I index, --index=index
	

指定したインデックスの定義のみをリストアします。
複数の-Iスイッチをつけることで複数のインデックスを指定できます。
       

	-j number-of-jobs, --jobs=number-of-jobs
	

pg_restoreのもっとも時間がかかる部分、つまり、データのロード、インデックスの作成、制約の作成部分を最大number-of-jobsの並行セッションを使用して実行します。
このオプションは、複数プロセッサマシンで稼働するサーバに大規模なデータベースをリストアする時間を劇的に減らすことができます。
データベースサーバに直接接続するのではなくスクリプトを生成する場合には、このオプションは無視されます。
       


各ジョブは1プロセスまたは1スレッド(オペレーティングシステムに依存)です。
各ジョブはサーバへの別々の接続を使用します。
       


このオプションの最適値はサーバ、クライアント、ネットワークのハードウェア構成に依存します。
要素にはCPUコア数やディスク構成も含まれます。
試行する最初の値としてサーバのCPUコア数を勧めます。
しかし、多くの場合これより大きな値でもリストア時間を高速化することができます。
当然ながらあまりに大きな値を使用すると、スラッシングのために性能が劣化することになります。
       


カスタムアーカイブ書式およびディレクトリアーカイブ書式のみがこのオプションをサポートします。
入力ファイルは通常のファイルまたはディレクトリでなければなりません（例えばパイプや標準入力はいけません）。
また、複数ジョブは--single-transactionオプションといっしょに使用することはできません。
       

	-l, --list
	

アーカイブの内容を一覧表として出力します。
このコマンドが出力する一覧は、-Lオプションに対する入力として使用することができます。
-nや-tなどのフィルタオプションを-lといっしょに使用すると、一覧出力する項目が制限されます。
       

	-L list-file, --use-list=list-file
	

list-file内で指定したアーカイブ要素のみをリストアします。
また、それらはそのファイルの出現順にリストアされます。
-nや-tなどのフィルタオプションを-Lといっしょに使用すると、リストアする項目がさらに制限されます。
       
list-fileは通常、事前に行った-l操作の出力を編集して作成されます。
行の移動や削除、または、行の先頭にセミコロン(;)を付けてコメントアウトすることが可能です。
後述の例を参照してください。
       

	-n schema, --schema=schema
	

指定されたスキーマ内のオブジェクトのみをリストアします。
複数の-nスイッチをつけることで複数のスキーマを指定できます。
これは特定のテーブルのみをリストアするために-tオプションと組み合わせることができます。
       

	-N schema, --exclude-schema=schema
	

指定したスキーマ内にあるオブジェクトをリストアしません。
-Nオプションを複数回指定することで、複数のスキーマを除外することができます。
       


同じスキーマ名が-nと-Nの両方で指定された場合は、-Nオプションが優先し、そのスキーマは除外されます。
       

	-O, --no-owner
	

オブジェクトの所有者を元のデータベースに合わせるためのコマンドを出力しません。
デフォルトでは、pg_restoreは、ALTER OWNERまたはSET SESSION AUTHORIZATIONを発行して、作成したスキーマ要素の所有者を設定します。
データベースに最初に接続したのがスーパーユーザ（もしくは、そのスクリプト内の全てのオブジェクトを所有するユーザ）でない場合、これらの文は失敗します。
-Oを付与すると、初期接続に任意のユーザ名を使用できるようになります。ただし、この場合は、全てのオブジェクトの所有者がリストアしたユーザになります。
       

	-P function-name(argtype [, ...]), --function=function-name(argtype [, ...])
	

指定した関数のみをリストアします。
関数や引数の名前は、ダンプファイルの一覧で出力される通りのスペルで正確に入力するよう注意してください。
複数の-Pスイッチをつけることで複数の関数を指定できます。
       

	-R, --no-reconnect
	

このオプションは廃止されました。後方互換性を保持するために受け入れられています。
       

	-s, --schema-only
	

アーカイブ内にあるスキーマ項目の範囲でスキーマ（データ定義）のみをリストアし、データ（テーブルの内容）をリストアしません。
       


このオプションは、--data-onlyや--statistics-onlyと一緒に使用することはできません。
これは--section=pre-data --section=post-data --no-statisticsを指定することと似ていますが、歴史的な理由のため同一ではありません。
       


（これと--schemaオプションと混同しないでください。「schema」という単語を異なる意味で使用しています。）
       

	-S username, --superuser=username
	

トリガを無効にする場合に使用する、スーパーユーザのユーザ名を指定します。
これは--disable-triggersを使う場合にのみ使用されます。
       

	-t table, --table=table
	

指定されたテーブルのみについて、定義、データまたはその両方をリストアします。
この目的において、「テーブル」にはビュー、マテリアライズドビュー、シーケンス、外部テーブルが含まれます。
複数の-tスイッチを指定することで複数のテーブルを指定することができます。
-nオプションと組み合わせることでスキーマを指定することができます。
       
注記


-tが指定された場合、pg_restoreは選択されたテーブルが依存するその他のデータベースオブジェクトについてリストアしようとはしません。
そのため、初期化されたデータベースに特定のテーブルをリストアすることが成功する保証はありません。
        

注記


このフラグはpg_dumpの-tフラグと同じ動作をするわけではありません。
現在のところ、pg_restoreでワイルドカードマッチを提供する予定はありませんし、-tでスキーマ名を含めることもできません。
加えて、pg_dumpの-tフラグは選択されたテーブルの（インデックスなどの）従属オブジェクトもダンプしますが、pg_restoreの-tフラグではそのような従属オブジェクトを含めません。
        

注記


PostgreSQL™の9.6より前のバージョンでは、このフラグはテーブルにのみマッチし、その他の種類のリレーションとはマッチしませんでした。
        


	-T trigger, --trigger=trigger
	

指定されたトリガだけをリストアします。
複数の-Tスイッチをつけることで、複数のトリガを指定できます。
       

	-v, --verbose
	

冗長モードを指定します。
これを指定すると、pg_restoreは詳細なオブジェクトコメント、開始時刻と終了時刻を出力ファイルに、進行メッセージを標準エラーに出力するようになります。
オプションを繰り返すと、追加のデバッグレベルメッセージが標準エラーに現れます。
       

	-V, --version
	

pg_restoreのバージョンを表示し、終了します。
       

	-x, --no-privileges, --no-acl
	

アクセス権限（grant/revokeコマンド）のリストアを行いません。
       

	-1, --single-transaction
	

リストアを単一トランザクションとして実行します（つまり発行するコマンドをBEGIN/COMMITで囲みます）。
これにより確実に、すべてのコマンドが完全に成功するか、まったく変更がなされないかのどちらかになります。
このオプションは--exit-on-errorを意味します。
       

	--disable-triggers
	

このオプションは、スキーマを含まないダンプからリストアする際にしか適用されません。
データのリストア中、pg_restoreに対し、対象テーブル上のトリガを一時的に無効にするコマンドを実行するよう指示します。
このオプションは、データのリストア中には呼び出したくない参照整合性検査やその他のトリガがある場合に使用します。
       


現在のところ、--disable-triggersが生成するコマンドを実行するのは、スーパーユーザでなければなりません。
そのため、-Sでスーパーユーザの名前を指定するか、あるいは、可能であれば、PostgreSQL™のスーパーユーザ権限でpg_restoreを実行する必要があります。
       

	--enable-row-security
	

このオプションは、行セキュリティのあるテーブルの内容をリストアするときにのみ意味を持ちます。
デフォルトではpg_restoreはrow_securityをoffに設定し、すべてのデータが確実にテーブルにリストアされるようにします。
ユーザが行セキュリティを回避できるだけの十分な権限がないときはエラーが発生します。
このパラメータはpg_restoreがrow_securityをonに設定するようにし、ユーザが行セキュリティが有効なテーブルの内容をリストアできるようにします。
それでも、ユーザがダンプからテーブルに行を挿入する権限を持っていなければ、これは失敗します。
       


COPY FROMは行セキュリティをサポートしないので、このオプションは今のところ、ダンプがINSERT形式である必要があることに注意してください。
       

	--filter=filename
	

リストアに含めるまたは除外するオブジェクトのパターンを読み取るファイル名を指定します。
これらのパターンは対応するオプションと同じ規則に従って解釈されます。
スキーマ内のオブジェクトを含める場合は-n/--schema、
スキーマ内のオブジェクトを除外する場合は-N/--exclude-schema、
関数をリストアする場合は-P/--function、
インデックスをリストアする場合は-I/--index、
テーブルをリストアする場合は-t/--table、
トリガをリストアする場合は-T/--trigger。
STDINから読み込むには、ファイル名として-を使用します。
--filterオプションは、オブジェクトを含めるまたは除外するために、上記のオプションとともに指定でき、更に複数のファイルをフィルタするために複数回指定することもできます。
       


ファイルには、オブジェクトパターンが1行に1つずつリストされ、次の形式になります。


{ include | exclude } { function | index | schema | table | trigger } PATTERN


       


最初のキーワードは、パターンに一致するオブジェクトを含めるか除外するかを指定します。
2番目のキーワードは、パターンを使用してフィルタリングするオブジェクトのタイプを指定します。
        
	

function: 関数。
これは-P/--functionオプションと同様に機能します。
このキーワードはincludeキーワードでのみ使用できます。
          

	

index: インデックス。
これは-I/--indexesオプションと同様に機能します。
このキーワードはincludeキーワードでのみ使用できます。
          

	

schema: スキーマ。
これは-n/--schemaや-N/--exclude-schemaオプションと同様に機能します。
          

	

table: テーブル。
-t/--tableオプションと同様に機能します。
このキーワードはincludeキーワードと併用する場合のみ使用できます。
          

	

trigger: トリガ。
これは-T/--triggerオプションと同様に機能します。
このキーワードはincludeキーワードでのみ使用できます。
          




       


#で始まる行はコメントと見なされ、無視されます。
コメントはオブジェクトパターン行の後にも置くことができます。
空行も無視されます。
パターン内の引用符の実行方法についてはパターンを参照してください。
       

	--if-exists
	

DROP ... IF EXISTSコマンドを使用して、--cleanモードでオブジェクトを削除します。
これは、そうでなければ報告される「does not exist」エラーを抑制します。
このオプションは、--cleanも指定されていない場合は無効です。
       

	--no-comments
	

たとえアーカイブにコメントが含まれていても、コメントをリストアするコマンドを出力しません。
       

	--no-data
	

アーカイブにデータが含まれていたとしても、それをリストアするコマンドを出力しません。
       

	--no-data-for-failed-tables
	

デフォルトでは、関連するテーブルの作成に失敗した（たとえば、既に存在するなどの理由により）としてもテーブルデータオブジェクトはリストアされます。
このオプションにより、こうしたテーブルデータは単に無視されるようになります。
これは対象のデータベースに目的のテーブルの中身が含まれている時に便利です。
たとえばPostGIS™などのPostgreSQL™拡張用の補助テーブルが既に対象のデータベース内に存在する可能性があります。
このオプションを指定すれば、二重ロードや古いデータのロードを防ぐことができます。
       


このオプションは直接データベースにリストアする時にのみ有効で、SQLスクリプト出力を生成する時は無効です。
       

	--no-policies
	

アーカイブに行セキュリティポリシーが含まれていたとしても、それをリストアするコマンドを出力しません。
       

	--no-publications
	

アーカイブにパブリケーションが含まれていたとしても、それをリストアするコマンドを出力しません。
       

	--no-schema
	

アーカイブにスキーマ（データ定義）が含まれていたとしても、それをリストアするコマンドを出力しません。
       

	--no-security-labels
	

アーカイブにセキュリティラベルが含まれている場合であっても、セキュリティラベルを戻すコマンドを出力しません。
       

	--no-statistics
	

アーカイブに統計情報が含まれていたとしても、それをリストアするコマンドを出力しません。
       

	--no-subscriptions
	

アーカイブにサブスクリプションが含まれていたとしても、それをリストアするコマンドを出力しません。
       

	--no-table-access-method
	

テーブルアクセスメソッドを選択するコマンドを出力しません。
このオプションを付けると、すべてのオブジェクトはリストア時にデフォルトとなっているテーブルアクセスメソッドで作成されます。
       

	--no-tablespaces
	

テーブル空間を選択するコマンドを出力しません。
このオプションを付けると、すべてのオブジェクトはリストア時にデフォルトとなっているテーブル空間内に作成されます。
       

	--restrict-key=restrict_key
	

指定した文字列をダンプ出力のpsqlの\restrictキーとして使用します。
これはSQLスクリプト出力、すなわち--fileオプションが使用される場合にのみ指定できます。
制限キーが指定されていない場合、pg_restoreは必要に応じてランダムなキーを生成します。
キーには英数字のみを使用できます。
       


このオプションは主にテスト目的や、出力の再現性が必要な場合（例えば、ダンプファイルの比較）を想定しています。
悪意のあるサーバがキーを事前に知っている場合、ダンプ出力を使ってpsqlを実行するマシンで任意のコードを実行できる可能性があるため、一般的な使用には推奨されません。
       

	--section=sectionname
	

指定された部分のみをリストアします。
部分名はpre-data、data、post-dataのいずれかを取ることができます。
複数の部分を選択するために、このオプションを複数指定することができます。
デフォルトではすべての部分をリストアします。
         


data部分には、実際のテーブルデータやラージオブジェクト定義が含まれます。
post-data項目は、インデックス定義、トリガ定義、ルール定義、有効化された検査制約以外の制約定義から構成されます。
pre-data項目は、他のすべてのデータ定義項目から構成されます。
         

	--statistics
	

アーカイブに統計情報が含まれている場合、それをリストアするコマンドを出力します。
これがデフォルトです。
       

	--statistics-only
	

統計情報のみをリストアし、スキーマ（データ定義）とデータをリストアしません。
       

	--strict-names
	

各スキーマ指定（-n/--schema）およびテーブル指定（-t/--table）が、リストア対象のファイルに含まれるスキーマおよびテーブルと少なくとも1つマッチすることを必要とします。
       

	--transaction-size=N
	

一連のトランザクションとしてリストアを実行します。
各トランザクションは最大N個のデータベースオブジェクトを処理します。
このオプションは--exit-on-errorを意味します。
       


--transaction-sizeは、デフォルトの動作（SQLコマンドごとに1トランザクション）と-1/--single-transaction（リストアされたすべてのオブジェクトに対して1トランザクション）の中間的な選択肢を提供します。
--single-transactionは最もオーバーヘッドが少ないですが、大きなデータベースでは、リストアされたオブジェクトごとにトランザクションがロックを取得し、サーバのロックテーブル空間を使い果たす可能性があるため、実用的ではないかもしれません。
数千のオブジェクトを対象とする--transaction-sizeを使用すると、必要なロックテーブル領域の量を制限しながら、ほぼ同じパフォーマンス上の利点が得られます。
       

	--use-set-session-authorization
	

ALTER OWNERコマンドの代わりに、標準SQLのSET SESSION AUTHORIZATIONコマンドを出力して、オブジェクトの所有権を決定します。
これにより、ダンプの標準への互換性が高まりますが、ダンプ内のオブジェクトの履歴によっては正しくリストアされない可能性が生じます。
       

	-?, --help
	

pg_restoreコマンドライン引数の使用方法を表示し、終了します。
       




   


pg_restoreはさらに以下のコマンドライン引数を接続パラメータとして受け付けます。

    
	-h host, --host=host
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
デフォルトは、設定されていれば環境変数PGHOSTから取得されます。
設定されていなければ、Unixドメインソケット接続とみなされます。
       

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはローカルUnixドメインソケットファイルの拡張子を指定します。
デフォルトは、設定されている場合、環境変数PGPORTの値となります。設定されていなければ、コンパイル時のデフォルト値となります。
        

	-U username, --username=username
	

接続ユーザ名です。
       

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
       

	-W, --password
	

データベースに接続する前に、pg_restoreは強制的にパスワード入力を促します。
       


サーバがパスワード認証を要求する場合pg_restoreは自動的にパスワード入力を促しますので、これが重要になることはありません。
しかし、pg_restoreは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
       

	--role=rolename
	

リストアを実行する際に使用するロール名を指定します。
このオプションによりpg_restoreはデータベースに接続した後にSET ROLE rolenameコマンドを発行するようになります。
認証に使用したユーザ（-Uで指定されたユーザ）がpg_restoreで必要とされる権限を持たないが、必要な権限を持つロールに切り替えることができる場合に有用です。
一部のインストレーションではスーパーユーザとして直接ログインさせないポリシーを取ることがありますが、このオプションを使用することでポリシーに反することなくリストアを行うことができます。
       




   

環境
	PGHOST, PGOPTIONS, PGPORT, PGUSER
	

      デフォルトの接続パラメータです。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     





また、このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqでサポートされる環境変数を使用します（「環境変数」を参照してください）。
しかしデータベース名が指定されていない場合はPGDATABASEは読み取られません。
  

診断


-dオプションによってデータベースに直接接続するよう指定されている場合、pg_restoreは内部でSQL文を実行します。
pg_restoreの実行時に問題が発生する場合は、psql(1)などを使用して、そのデータベースから情報を選択できることを確認してください。
また、libpqフロントエンドライブラリで使用されるデフォルト接続設定や環境変数もすべて適用されます。
  

注釈


template1データベースに対し独自の変更を行っている場合、pg_restoreの出力は、確実に空のデータベースにロードするよう注意してください。
そうしないと、おそらく追加されたオブジェクトの重複定義によってエラーが発生します。
独自の追加が反映されていない空のデータベースを作成するには、template1ではなくtemplate0をコピーしてください。
以下に例を示します。


CREATE DATABASE foo WITH TEMPLATE template0;


  


pg_restoreの制限を以下に示します。

   
	

既存のテーブルにデータをリストアする際に--disable-triggersオプションを使用すると、pg_restoreは、データを挿入する前に、ユーザテーブル上のトリガを無効にするコマンドを発行し、データの挿入が完了した後で、それらを再び有効にする問い合わせを発行します。
リストアが途中で停止した場合、システムカタログが不適切な状態のままになっている可能性があります。
     

	pg_restoreは特定のテーブルのみのラージオブジェクトなどといった、ラージオブジェクトを選択してリストアすることはできません。
アーカイブにラージオブジェクトが含まれる場合、すべてのラージオブジェクトをリストアします。
もし-L、-tなどのオプションで除外が指定されていた場合は、全くリストアしません。
     




  


pg_dumpの制限についての詳細は、pg_dump(1)の文書も参照してください。
  


デフォルトでは、ダンプファイルにオプティマイザの統計情報が含まれる場合、pg_restoreはそれをリストアします。
もしすべての統計情報がリストアされなかった場合、オプティマイザが有用な統計情報を持つように、リストアしたテーブルそれぞれに対してANALYZEを実行することをお勧めします。
詳細については、「プランナ用の統計情報の更新」と「自動バキュームデーモン」を参照してください。
  

例


mydbという名前のデータベースをカスタム形式のダンプファイルにダンプしているものと仮定します。



$ pg_dump -Fc mydb > db.dump


  


データベースを削除し、ダンプファイルから再作成します。



$ dropdb mydb
$ pg_restore -C -d postgres db.dump




-dオプションのデータベース名は、クラスタに存在する任意のデータベースで良いです。
pg_restoreは、mydbに対するCREATE DATABASEコマンドを発行するためだけに、このデータベース名を使用します。
-Cを付けると、データは常にダンプファイル内に記載された名前のデータベースにリストアされます。
  


newdbという新しいデータベースにダンプファイルをリストアします。



$ createdb -T template0 newdb
$ pg_restore -d newdb db.dump




-Cを使用していないことに注意してください。
代わりにリストアするデータベースに直接接続しています。
また、新しいデータベースをtemplate1ではなくtemplate0からコピーして作成している点にも注意してください。
確実に初期状態を空にするためです。
  


データベースのアイテムを並べ替えるには、まずこのアーカイブの内容の一覧をダンプしなければなりません。


$ pg_restore -l db.dump > db.list



一覧ファイルは、ヘッダと各アイテムを1行で表したものから構成されます。


;
; Archive created at Mon Sep 14 13:55:39 2009
;     dbname: DBDEMOS
;     TOC Entries: 81
;     Compression: 9
;     Dump Version: 1.10-0
;     Format: CUSTOM
;     Integer: 4 bytes
;     Offset: 8 bytes
;     Dumped from database version: 8.3.5
;     Dumped by pg_dump version: 8.3.8
;
;
; Selected TOC Entries:
;
3; 2615 2200 SCHEMA - public pasha
1861; 0 0 COMMENT - SCHEMA public pasha
1862; 0 0 ACL - public pasha
317; 1247 17715 TYPE public composite pasha
319; 1247 25899 DOMAIN public domain0 pasha



セミコロンで始まる行はコメントです。
行の先頭の番号は、各アイテムに割り当てられた内部アーカイブIDを示します。
  


このファイルの各行に対して、コメントアウト、削除、並べ替えを行うことができます。
以下に例を示します。


10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres
;4; 145359 TABLE nt_header postgres
6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres



このファイルをpg_restoreの入力として利用すれば、アイテム10と6だけを、この順番でリストアすることができます。


$ pg_restore -L db.list db.dump


関連項目
pg_dump(1), pg_dumpall(1), psql(1)


名前
pg_verifybackup — PostgreSQL™クラスタのベースバックアップの完全性を確認する

概要
pg_verifybackup  [option...]


説明


pg_verifybackupは、pg_basebackupを使って取られたデータベースクラスタバックアップの完全性を、バックアップ時にサーバで生成されたbackup_manifestと比較して確認するために使われます。
バックアップは"plain"形式または"tar"形式で保管されているでしょう。これにはpg_basebackupでサポートされるアルゴリズムで圧縮されたtar形式バックアップが含まれます。
しかし、現時点では、WAL検証はplain形式バックアップに対してのみサポートされます。
したがって、バックアップがtar形式で保管されている場合は-n, --no-parse-walオプションを使用することが必要です。
  


pg_verifybackupにより実行される検証は、バックアップを利用しようとしている動作中のサーバにより実行される検査をすべて含む訳ではありませんし、含むことができる訳でもないことに注意するのは重要です。
このツールを使ったとしても、テストリストアを実行したり、結果のデータベースが期待した通りに動作し、正しいデータを含んでいるように見えることを検証したりすべきです。
しかしながら、pg_verifybackupは、ストレージの問題や利用者のエラーによる多くの問題を検出できます。
  


バックアップの検証は4つの段階で進みます。
第1に、pg_verifybackupがbackup_manifestファイルを読みます。
そのファイルが存在しない、読むことができない、不正である、バックアップディレクトリのpg_controlとシステム識別子が一致しない、または、自身の内部チェックサムの検証に失敗した場合には、pg_verifybackupは致命的なエラーで終了します。
  


第2に、pg_verifybackupは、以下に記すようないくつかの例外を除いて、ディスクに保管されているデータファイルがサーバの送ろうと意図したデータファイルと完全に同一かを検証します。
2、3の例外では、余分な、もしくは、失われたファイルが検出されます。
この段階ではpostgresql.auto.conf、standby.signal、recovery.signalの存在、欠如、修正は無視されます。なぜなら、バックアップを取る過程の一部として、このファイルは作成されていたり、修正されていたりすることが予想されるからです。
また、たとえそのファイルがバックアップマニフェストの一覧に載っていたとしても、対象ディレクトリ内のbackup_manifestファイルやpg_wal内のものについて問題視しません。
ファイルだけが検査されます。ディレクトリの存在や欠如は、ディレクトリがなければ、そこに含まれるはずのファイルも必ずないという間接的なものを除き検証されません。
  


次に、pg_verifybackupは、すべてのファイルのチェックサムを取り、そのチェックサムをマニフェスト内の値と比較し、計算されたチェックサムがマニフェストに保管されたチェックサムと一致しないファイルに対してエラーを出力します。
この段階は、前の段階でエラーとなったファイルに対しては実行されません。既に問題があると分かっているからです。
前の段階で無視されたファイルは、この段階でも無視されます。
  


最後にpg_verifybackupは、マニフェストを使って、バックアップを回復するのに必要な先行書き込みログ（WAL）レコードが存在し、それが読み込めて解析できるかを検証します。
backup_manifestは、必要となる先行書き込みログ（WAL）レコードに関する情報を含んでおり、pg_verifybackupは、その情報を使って、先行書き込みログ（WAL）レコードを解析するようpg_waldumpを呼び出します。
pg_waldumpがエラーだけを報告し、それ以外の出力をしないよう--quietフラグが使われます。
この水準の検証は、存在しないファイルや内部チェックサムが一致しないなどの明らかな問題を検出するには十分ですが、回復しようとする時に起こりうる問題をすべて検出するほど広範囲に十分なものではありません。
例えば、正しいチェックサムを持つものの馬鹿げた動作を指定する先行書き込みログ（WAL）レコードを生成するサーバのバグは、この方法では検出できません。
  


バックアップからの回復に必要でない余分なWALが存在すると、それはこのツールでは検査されないことに注意してください。その目的のためにpg_waldumpを別に呼び出して使うことはできます。
また、WALの検証はバージョン固有のものだということにも注意してください。検査するバックアップに付属したバージョンのpg_verifybackupと、それゆえ、pg_waldumpも使わないとなりません。
対照的に、データファイルの完全性の検査は、backup_manifestファイルを生成したサーバのバージョンが何であれ動作します。
  

オプション


pg_verifybackupは以下のコマンドライン引数を受け付けます。

    
	-e, --exit-on-error
	

バックアップで問題が検出され次第、終了します。
このオプションが指定されていなければ、pg_verifybackupは問題が検出された後もバックアップの検査を続け、検出した問題をすべてエラーとして報告します。
       

	-F format, --format=format
	

バックアップの形式を指定します。
formatには次のいずれかを指定できます。

        
	p, plain
	

バックアップは、ソースサーバのデータディレクトリとテーブル空間とレイアウトが同じ単純なファイルで構成されています。
           

	t, tar
	

バックアップはtarファイルで構成されていて、tarファイルは圧縮されているかもしれません。
有効なバックアップでは、メインデータディレクトリを格納したbase.tarという名前のファイル、WALファイルを格納したpg_wal.tar、各テーブル空間ごとにそのテーブル空間のOIDを名前にした個別のtarファイルが含まれます。
バックアップが圧縮されている場合は、関連する圧縮の拡張子が各ファイル名の最後に追加されます。
           




	-i path, --ignore=path
	

バックアップ内に実際に存在するデータファイルの一覧とbackup_manifestファイル内の一覧を比較する時に、指定されたファイルやディレクトリを無視します。相対パス名で指定してください。
ディレクトリが指定された場合、このオプションは、その位置をルートとするサブツリー全体に影響します。
相対パス名が指定されたパス名に一致する場合、余分なファイル、足りないファイル、ファイルサイズの違い、チェックサムの不一致の報告は抑制されます。
このオプションは複数回指定できます。
       

	-m path, --manifest-path=path
	

バックアップディレクトリのルートにあるものではなく、指定されたパスのマニフェストファイルを使用します。
       

	-n, --no-parse-wal
	

このバックアップからの回復に必要な先行書き込みログ（WAL）データを解析しません。
       

	-P, --progress
	

進行状況のレポートを有効にします。
このオプションを有効にすると、チェックサムの検証中に進行状況をレポートします。
       


このオプションは、オプション--quietと一緒には使用できません。
       

	-q, --quiet
	

バックアップの検証に成功した場合、何も表示しません。
       

	-s, --skip-checksums
	

データファイルのチェックサムを検証しません。
ファイルの存在、欠如とファイルのサイズは検査されます。
ファイル自身を読み込む必要がありませんので、これはずっと速いです。
       

	-w path, --wal-directory=path
	

pg_walではなく、指定されたディレクトリのWALファイルを解析しようとします。
バックアップがWALアーカイブとは別の場所に保管されている場合、これは有用でしょう。
       




   


他のオプションも使用可能です。

    
	-V, --version
	

pg_verifybackupのバージョンを表示し、終了します。
       

	-?, --help
	

pg_verifybackupのコマンドライン引数に関するヘルプを表示し、終了します。
       




   

例


mydbserverでサーバのバックアップを作成し、バックアップの完全性を検証します。


$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data
$ pg_verifybackup /usr/local/pgsql/data


  


mydbserverでサーバのバックアップを作成し、マニフェストをバックアップディレクトリの外のどこかに移動し、バックアップを検証します。


$ pg_basebackup -h mydbserver -D /usr/local/pgsql/backup1234
$ mv /usr/local/pgsql/backup1234/backup_manifest /my/secure/location/backup_manifest.1234
$ pg_verifybackup -m /my/secure/location/backup_manifest.1234 /usr/local/pgsql/backup1234


  


バックアップディレクトリに手で追加されたファイルを無視し、チェックサムの検証も省略してバックアップを検証します。


$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data
$ edit /usr/local/pgsql/data/note.to.self
$ pg_verifybackup --ignore=note.to.self --skip-checksums /usr/local/pgsql/data


関連項目
pg_basebackup(1)


名前
psql — 

      PostgreSQL™の対話的ターミナル
    

概要
psql  [option...] [dbname
    [username]]


説明


psqlとはPostgreSQL™のターミナル型フロントエンドです。
対話的に問い合わせを入力し、それをPostgreSQL™に対して発行して、結果を確認することができます。
また、ファイルまたはコマンドライン引数から入力を読み込むことも可能です。
さらに、psqlは、スクリプトの記述を簡便化したり、様々なタスクを自動化したりする、いくつものメタコマンドとシェルに似た各種の機能を備えています。
    

オプション
	-a, --echo-all
	

読み込んだ全ての空でない入力行を標準出力に表示します。
（これは対話式に読み込まれる行には適用されません。）
これはECHO変数をallに設定するのと同じ意味を持ちます。
      

	-A, --no-align
	

位置揃えなしの出力モードに切り替えます。
（デフォルトの出力モードはaligned(位置揃えあり)です。）
これは\pset format unalignedと同等です。
      

	-b, --echo-errors
	

失敗したSQLコマンドを標準エラー出力に出力します。
これはECHO変数をerrorsに設定するのと同等です。
      

	-c command, --command=command
	

psqlに対し、指定のコマンド文字列commandを実行するよう指示します。
このオプションは繰り返すことができ、また-fオプションと任意の順序で組み合わせることができます。
-cまたは-fが指定されると、psqlは標準入力からコマンドを読み取りません。
その代わりに、すべての-cオプションおよび-fオプションを順に処理した後、終了します。
      


commandは、サーバで完全に解析可能な（つまり、psql特有の機能は含まない）コマンド文字列、もしくは、バックスラッシュコマンド1つである必要があります。
このため、-cオプション内ではSQLとpsqlメタコマンドを混在させることはできません。
これらを同時に使用するには、-cオプションを繰り返し利用するか、あるいはパイプを使って文字列をpsqlに渡します。
例えば、


psql -c '\x' -c 'SELECT * FROM foo;'



あるいは


echo '\x \\ SELECT * FROM foo;' | psql



のようにします（\\はメタコマンドの区切り文字です。）
      


-cに渡される各SQLのコマンド文字列は、単一の要求としてサーバに送信されます。
このため、トランザクションを複数に分けるBEGIN/COMMITコマンドが明示的に文字列内に含まれない限り、文字列内に複数のSQLコマンドが含まれていたとしても、サーバはそれを1つのトランザクションとして実行します。
（複数問い合わせの文字列をどのようにサーバが処理するかについて、詳しくは「簡易問い合わせでの複文」を参照してください。）
      


1つのトランザクションで複数のコマンドを実行することが望ましくない場合は、繰り返し-cコマンドを使用するか、あるいは、上記のようにechoを使用するか、以下の例のようにシェルのヒアドキュメントを介してpsqlの標準入力に複数のコマンドを送ります。


psql <<EOF
\x
SELECT * FROM foo;
EOF


	--csv
	

CSV(カンマ区切り値)出力モードに切り替えます。
これは\pset format csvと同等です。
      

	-d dbname, --dbname=dbname
	

接続するデータベースの名前を指定します。
コマンドラインでオプション以外の最初の引数としてdbnameを指定するのと同じ効力を持ちます。
dbnameは接続文字列でも構いません。
その場合、接続文字列パラメータは衝突するコマンドラインオプションに優先します。
      

	-e, --echo-queries
	

サーバに送られるすべてのSQLコマンドを標準出力にも送ります。
ECHO変数をqueriesに設定するのと同じ効力を持ちます。
      

	-E, --echo-hidden
	

\dやその他のバックスラッシュコマンドによって生成される実際の問い合わせを表示します。
これを使って、psqlの内部動作を調べることができます。
これは変数ECHO_HIDDENをonに設定するのと同じ効力を持ちます。
      

	-f filename, --file=filename
	

標準入力ではなく、ファイルfilenameからコマンドを読み取ります。
このオプションは繰り返すことができ、また-cオプションと任意の順序で組み合わせることができます。
-cまたは-fが指定されると、psqlは標準入力からコマンドを読み取りません。
その代わりに、すべての-cオプションおよび-fオプションを順に処理した後、終了します。
その点を除けば、このオプションは\iメタコマンドとほぼ同等です。
      


filenameに-（ハイフン）を指定すると、標準入力からEOFを示すもの、または\qメタコマンドまで読み取られます。
これは対話的入力をファイルからの入力と混在させるために使うことができます。
ただし、この場合、Readlineは使われないことに注意してください（-nが指定された場合と同様です）。
      


このオプションを指定するのと、psql < filenameと入力するのでは、微妙に動作が異なります。
一般的には、両者とも期待通りの動作を行いますが、-fを使用した場合は、エラーメッセージに行番号を付けるなどいくつか便利な機能が有効になります。
また、このオプションを使用した場合、起動時のオーバーヘッドが減少する可能性が若干あります。
一方、シェルの入力リダイレクションを使用する方法では、（理論的には）全て手作業で入力した場合の出力とまったく同一な出力になることが保証されます。
      

	-F separator, --field-separator=separator
	

separatorを位置揃えを行わない出力におけるフィールド区切り文字として使用します。
\pset fieldsepもしくは\fと同じ効力を持ちます。
      

	-h hostname, --host=hostname
	

サーバが稼働しているマシンのホスト名を指定します。
この値がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
      

	-H, --html
	

HTML出力モードに切り替えます。
これは、\pset format htmlもしくは\Hコマンドと同等です。
      

	-l, --list
	

利用可能な全てのデータベースを一覧表示し、終了します。
この他の接続に関連しないオプションは無視されます。
\listメタコマンドと似た効力を持ちます。
      


このオプションが使用されるときは、別のデータベース名がコマンドラインで指定されない限り（オプション-dまたは、環境変数ではない非オプション引数、おそらくサービスエントリを通じて）、psqlは、postgresデータベースに接続します。
      

	-L filename, --log-file=filename
	

すべての問い合わせの出力を通常の出力先に出力し、さらにファイルfilenameに書き出します。
      

	-n, --no-readline
	

行編集とコマンド履歴にReadlineを使用しません(下記の「コマンドライン編集」を参照)。
      

	-o filename, --output=filename
	

全ての問い合わせの出力をfilenameファイルに書き込みます。
これは\oコマンドと同じ効力を持ちます。
      

	-p port, --port=port
	

サーバが接続監視を行っているTCPポートもしくはローカルUnixドメインソケットファイルの拡張子を指定します。
環境変数PGPORTの値、環境変数が設定されていない場合はコンパイル時に指定した値（通常は5432）がデフォルト値となります。
      

	-P assignment, --pset=assignment
	

\pset形式により表示オプションを指定します。
ここでは空白ではなく等号を使って名前と値を区切っていることに注意してください。
たとえば、出力形式をLaTeXにする場合、-P format=latexと入力します。
      

	-q, --quiet
	

psqlがメッセージ出力なしで処理を行うように指示します。
デフォルトでは、ウェルカム（welcome）メッセージや各種の情報が表示されます。
このオプションを使用すると、これらのメッセージが表示されません。
-cオプションと併用すると便利です。
これは変数QUIETをonに設定するのと同じ効力を持ちます。
      

	-R separator, --record-separator=separator
	

separatorを位置揃えを行わない出力におけるレコード区切り文字として使用します。
これは\pset recordsepと同じです。
      

	-s, --single-step
	

シングルステップモードで実行します。
これは各コマンドがサーバに送信される前に、ユーザに対して実行するかキャンセルするかについて確認を求めることを意味します。
スクリプトのデバッグを行う時に使用してください。
      

	-S, --single-line
	

シングル行モードで実行します。このモードでは、セミコロンと同じように改行もSQLコマンドの終端として扱われます。
      
注記


このモードはどうしてもこのような方式を使用したいユーザ向けに用意されたもので、必ずしも使用が推奨されるわけではありません。
特に、1行にSQLとメタコマンドを混在させる場合、経験の浅いユーザにとってその実行順番は必ずしもわかりやすいものではありません。
      


	-t, --tuples-only
	

列名と結果の行数フッタなどの表示を無効にします。
これは、\tおよび\pset tuples_onlyと同等です。
      

	-T table_options, --table-attr=table_options
	

HTMLのtableタグで使用されるオプションを指定します。
詳細は\pset tableattrを参照してください。
      

	-U username, --username=username
	

デフォルトのユーザではなくusernameユーザとしてデータベースに接続します。
（当然、そうする権限を持っていなければなりません。）
      

	-v assignment, --set=assignment, --variable=assignment
	

\setメタコマンドのように、変数の代入を行います。
値がある場合、コマンドライン上では、名前と値を等号（=）で区切る必要があることに注意してください。
変数を未設定の状態にするには、等号を指定しないでください。
値が空の変数を設定するには、値を指定しないで等号のみ使用してください。
これらの代入はコマンドライン処理の段階で行われます。
そのため、接続状態を表す変数は後で上書きされる可能性があります。
      

	-V, --version
	

psqlのバージョンを表示し、終了します。
      

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の情報源からパスワードが入手可能でない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
      


このオプションはセッション全体にわたって設定されたままであることに注意してください。
このため\connectメタコマンドの使用に関しても初期接続試行と同様に影響します。
      

	-W, --password
	

パスワードが使われない場合であっても、データベースに接続する前にpsqlは強制的にパスワード入力を促します。
      


サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の情報源からパスワードが入手可能でない場合、psqlは常にパスワード入力を促します。
しかし、psqlは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
      


このオプションはセッション全体に対して設定されたままであることに注意してください。
このため初期接続試行と同様に\connectメタコマンドの使用にも影響を与えます。
      

	-x, --expanded
	

拡張テーブル形式モードを有効にします。
これは\xおよび\pset expandedと同じです。
      

	-X, --no-psqlrc
	

起動用ファイル（psqlrcファイルおよびユーザ用の~/.psqlrcファイルのどちらも）を読み込みません。
      

	-z, --field-separator-zero
	

位置揃えを行わない出力用のフィールド区切り文字をゼロバイトに設定します。
これは\pset fieldsep_zeroと同じです。
      

	-0, --record-separator-zero
	

位置揃えを行わない出力用のレコード区切り文字をゼロバイトに設定します。
これは例えばxargs -0と連携する時に有用です。
これは\pset recordsep_zeroと同じです。
      

	-1, --single-transaction
	

このオプションは、1つ以上の-cオプションや-fオプションと組み合わせてのみ使うことができます。
これによりpsqlは、最初のそのようなオプションの前にBEGINコマンドを発行し、最後のオプションの後にCOMMITコマンドを発行するようになります。
そうすることで、すべてのコマンドが単一のトランザクションに囲まれます。
コマンドのいずれかが失敗して、変数ON_ERROR_STOPが設定されていれば、ROLLBACKが代わりに送られます。
これによりすべてのコマンドが成功して完了するか、変更がまったく行われないかのいずれかになります。
       


コマンド自体がBEGIN、COMMIT、ROLLBACKを含んでいる場合、このオプションは期待した効果を得ることができません。
また、個別のコマンドがトランザクションブロック内部で実行できない場合、このオプションを指定することで、そのトランザクション全体が失敗します。
       

	-?, --help[=topic]
	

psqlに関するヘルプを表示し、終了します。
オプションのtopicパラメータ（デフォルトはoptions）はpsqlのどの部分を説明するかを選択します。
commandsはpsqlのバックスラッシュコマンドについて、optionsはpsqlに渡すことができるコマンドラインオプションについて、variablesはpsqlの設定変数についてのヘルプを表示します。
      




終了ステータス


psqlは、正常に終了した時には0を、psqlにとって致命的なエラー（メモリ不足やファイルが見つからないなど）が発生した時には1を、セッションが対話式でない状態でサーバとの接続が不完全になった時には2を、ON_ERROR_STOP変数が設定されている状態でスクリプトでエラーが発生した時には3をシェルに返します。
  

使用方法
データベースへの接続


psqlはPostgreSQL™の正式なクライアントアプリケーションです。
データベースに接続するには、接続するデータベース名、ホスト名、サーバのポート番号、接続する際に使用するデータベースユーザ名がわかっていなければなりません。
psqlでは、それらをコマンドラインオプションで指定することができます。接続するデータベース名は-d、ホスト名は-h、サーバのポート番号は-p、接続するユーザ名は-Uを使用してそれぞれ指定します。
オプションでない引数がある場合、それはデータベース名（データベース名が与えられている場合にはデータベースユーザ名）とみなされます。
これらのオプションは全て指定されている必要はありません。便利なデフォルト値があります。
ホスト名を省略した場合、psqlはUnixドメインソケット経由でローカルホスト上のサーバに、WindowsではlocalhostにTCP/IP経由で接続します。
デフォルトのポート番号はコンパイル時に設定されます。
データベースサーバは同じデフォルト値を使用するので、多くの場合、ポートは指定する必要はありません。
デフォルトのデータベースユーザ名はOSのユーザ名です。
データベースユーザ名が決まれば、デフォルトのデータベース名として使われます。
任意のデータベースユーザ名で全てのデータベースに接続できるわけではないことに注意してください。
データベース管理者は、接続権限をユーザに知らせておかなければなりません。
    


デフォルトが完全には適用できない時は、入力の手間を省くために、環境変数PGDATABASE、PGHOST、PGPORT、PGUSERに適当な値を設定することもできます。
（この他の環境変数については、「環境変数」を参照してください。）
また、~/.pgpassファイルを使用すれば、定常的なパスワードの入力を省略でき、便利です。
詳細は「パスワードファイル」を参照してください。
    


他の接続パラメータの指定方法としてconninfo文字列またはURIがあります。
これは、データベース名の代わりに使用されます。
この機構により、接続全体に関する非常に幅広い制御を行うことができます。
以下に例を示します。


$ psql "service=myservice sslmode=require"
$ psql postgresql://dbmaster:5433/mydb?sslmode=require



この方法では接続パラメータの検索に、「接続パラメータのLDAP検索」で説明するLDAPを使用することもできます。
利用できる接続オプションのすべてについての詳細は、「パラメータキーワード」を参照してください。
    


何らかの原因（権限がない、指定したホストでサーバが稼働していないなど）で接続ができなかった場合は、psqlはエラーメッセージを表示し、終了します。
    


標準入力および標準出力の両方が端末である場合、psqlはクライアントの符号化方式を「auto」に設定します。
これはロケール設定（Unixシステムでは環境変数LC_CTYPE）から適切なクライアント符号化方式を決定します。
想定した通りに動作しない場合、環境変数PGCLIENTENCODINGを使用してクライアント符号化方式を上書きすることができます。
    

SQLコマンドの入力


通常の操作において、psqlは、psqlが現在接続しているデータベース名の後に=>の文字列が付いたプロンプトを表示します。
以下に例を示します。


$ psql testdb
psql (18.0)
Type "help" for help.

testdb=>


    


プロンプトに対しユーザはSQLコマンドを入力することができます。
通常、入力された行はコマンド終了を意味するセミコロンに達した時点でサーバへと送信されます。
改行はコマンドの終了とはみなされません。
したがって、わかりやすくするために、コマンドは複数の行にわたって記述することができます。
コマンドが送信され問題なく実行されると、画面にコマンドの結果が表示されます。
    


安全なスキーマの利用パターンを適用していないデータベースに信頼できないユーザがアクセス可能な場合は、セッションの開始時にsearch_pathから、誰でも書き込みができるスキーマを削除してください。
options=-csearch_path=を接続文字列に追加するか、SELECT pg_catalog.set_config('search_path', '', false)を他のSQLの前に発行することができます。
この配慮はpsqlに固有のものではありません。
任意のSQLを実行するすべてのインタフェースに適用されるものです。
    


また、コマンドが実行される度に、psqlはLISTENとNOTIFYによって生成された非同期通知イベントを検査します。
    


Cの形式のブロックコメントは、サーバに送信され、サーバによって取り除かれますが、標準SQLのコメントはpsqlによって取り除かれます。
    

メタコマンド


psql内で入力されたコマンドのうち、引用符で囲まれていないバックスラッシュで始まるものは、psql自身が実行するpsqlのメタコマンドとして扱われます。
これらのコマンドを使うと、データベースを管理したりスクリプトを作成するにあたって、psqlがより便利になります。
メタコマンドはよくスラッシュコマンド、またはバックスラッシュコマンドとも呼ばれます。
    


psqlコマンドは、バックスラッシュ、コマンド本体、引数の順につなげた形式になっています。
引数とコマンド本体の間および引数と引数の間は、空白文字によって分割されています。
    


引数に空白を含める場合は単一引用符で囲みます。
単一引用符を引数に含める場合には、単一引用符で括られた文字列の中で、その単一引用符を2つ続けてください。
単一引用符で囲われた文字は、C言語と同じような置換の対象となります。
このような文字には、\n（改行）、\t（タブ）、\b (後退)、\r(復帰)、\f (改頁)、\digits（8進数で表された文字）、\xdigits（16進数で表された文字）があります。
単一引用符で括られたテキスト内でその他の任意の文字の前にバックスラッシュを付けた場合は、その文字が何であろうとその一文字だけとして扱われます。
    


SQL差し替えで説明されているとおり、引数の中に引用符で囲まれていないコロン（:）とそれに続くpsql変数がある場合、その部分は変数の値で置換されます。
そこで説明されている:'variable_name'および:"variable_name"という形式も同様に機能します。
:{?variable_name}構文は、変数が定義済みかどうかをテストできます。
これはTRUEかFALSEに置き換えられます。
コロンをバックスラッシュでエスケープすると置換が防止されます。
    


引数の中で逆引用符（`）に囲まれた文字列は、シェルに渡されるコマンドラインとして解釈されます。
逆引用符に囲まれた文字列は、コマンドの出力（行末の改行はすべて削除されます）で置換されます。
逆引用符に囲まれた文字列内では、:variable_nameという形式でvariable_nameがpsqlの変数名であるものが、その変数の値で置換されることを除いて、特別な引用やその他の処理は起きません。
また:'variable_name'という形式なら、それが変数値で置換された上で、それがシェルコマンドの単一の引数となるよう適切に引用符が付けられます。
（変数に何が入っているのか正確に理解しているのでなければ、ほとんどすべての場合で後者の形式の方が望ましいでしょう。）
復帰文字、改行文字をすべてのプラットフォームで安全に引用することはできないので、そのような文字が変数値に含まれていた場合は、:'variable_name'はエラーメッセージを表示し、変数値による置換を行いません。
    


コマンドには、引数として（テーブル名などの）SQLの識別子を取るものがあります。
これらの引数は次のようなSQLの構文規則に従います。
引用符を伴わない文字は強制的に小文字になります。しかし、二重引用符（"）で囲まれると、大文字小文字変換が行われず、空白文字を識別子内に含めることができます。
さらに、二重引用符内では、連続する2つの二重引用符は1つの二重引用符とみなされます。
例えば、FOO"BAR"BAZはfooBARbazと解釈され、"A weird"" name"はA weird" nameになります。
    


引数の解析は行末または引用符で囲まれていないもう1つのバックスラッシュが見つかると終了します。
引用符がないバックスラッシュは新しいメタコマンドの始まりと解釈されます。
\\（バックスラッシュ2つ）という特別な文字の並びは引数の終わりを意味するので、SQLコマンドが残されている場合は、その解析を続けます。
このように、SQLコマンドとpsqlコマンドは1つの行に自由に混合して記述することができます。
しかし、あらゆる場合において、メタコマンドの引数は行をまたぐことはできません。
    


メタコマンドの多くは問い合わせバッファの上で動作します。
これは入力されたSQLコマンド文字列で、まだ実行のためにサーバに送信されていないものをすべて保持するだけのバッファです。
これには以前の入力行や、同じ行のメタコマンドより前に入力されたすべての文字列も含まれます。
    


多くのメタコマンドでは、オプションとしてxを付与することもできます。
これにより、\xや\pset expandedが使用されたかのように、拡張モードで結果が表示されます。
    


以下のメタコマンドが定義されています。

    
	\a
	

現在のテーブルの出力形式が「揃えない」になっていれば「揃える」に切り替えます。
「揃える」になっていれば「揃えない」に設定します。
このコマンドは後方互換性を保持するためにあります。
より一般的な解決策は\psetを参照してください。
        

	\bind [ parameter ] ... 
	

次の問い合わせ実行の問い合わせパラメータを設定します。指定されたパラメータはすべてのパラメータプレースホルダ（$1など）に渡されます。
        


例:


INSERT INTO tbl1 VALUES ($1, $2) \bind 'first value' 'second value' \g


        


これは、\gxや\gsetのような、\g以外の問い合わせ実行コマンドにも有効です。
        


このコマンドは、通常のpsql操作とは異なり、拡張問い合わせプロトコル（「拡張問い合わせの概要」を参照）を使用します。
通常は、簡易問い合わせプロトコルを使用します。
したがって、このコマンドは、psqlから拡張問い合わせプロトコルをテストするのに有用でしょう。
（拡張問い合わせプロトコルは、問い合わせにパラメータがなく、このコマンドがパラメータを指定していない場合でも使用されます。）
このコマンドは、次に実行される問い合わせにのみ影響します。
後続のすべての問い合わせは、デフォルトで簡易問い合わせプロトコルを使用します。
        

	\bind_named statement_name [ parameter ] ... 
	

\bind_namedは\bindと同等ですが、既存のプリペアド文の名前を最初のパラメータとして使用する点が異なります。
空の文字列は、名前のないプリペアド文を示します。
        


例:


INSERT INTO tbls1 VALUES ($1, $2) \parse stmt1
\bind_named stmt1 'first value' 'second value' \g


        


このコマンドは、通常のpsql操作とは異なり、拡張問い合わせプロトコル（「拡張問い合わせの概要」を参照）を使用します。
通常は、簡易問い合わせプロトコルを使用します。
したがって、このコマンドは、psqlから拡張問い合わせプロトコルをテストするのに有用でしょう。
        

	\c または \connect [ -reuse-previous=on|off ] [ dbname [ username ] [ host ] [ port ] | conninfo ]
	

PostgreSQL™サーバへの新規の接続を確立します。
接続のパラメータは、位置の構文(1つ以上のデータベース名、ユーザ、ホスト、ポート)、あるいはconninfo接続文字列で指定できます。後者の詳細は「接続文字列」で説明します。
引数が与えられなければ、新しい接続は以前と同じパラメータを使って作られます。
        


dbname、username、host、portのいずれについても-を指定するのは、パラメータを省略するのと同じになります。
        


新しい接続では以前の接続での接続パラメータを再利用できます。データベース名、ユーザ、ホスト、ポートだけでなく、sslmodeのようなその他の設定もです。
デフォルトでは、パラメータは位置の構文では再利用されますが、conninfo文字列が与えられた場合はそうではありません。
第一引数で-reuse-previous=onあるいは-reuse-previous=offを渡すことで、このデフォルトと異なる動作をさせることができます。
パラメータが再利用される場合、位置パラメータとして明示的に指定されなかったパラメータやconninfo文字列で指定されていないパラメータは、既存の接続のパラメータから取得されます。
例外は、host設定が位置の構文を使った以前の値から変更された場合に、既存の接続のパラメータにあるhostaddr設定が削除されることです。
また、既存の接続で使われたパスワードは、ユーザ、ホスト、ポート設定が変更されていない場合にのみ再利用されます。
コマンドで特定のパラメータを指定せず、かつ再利用もしない場合は、libpqのデフォルトが使用されます。
        


新規接続に成功した場合、以前の接続は閉じられます。
接続の試行が（ユーザ名の間違いやアクセス拒否などの理由で）失敗した場合、psqlが対話式モードである場合、それまでの接続が保持されます。
非対話式スクリプトを実行している場合は、古い接続は閉じられエラーが報告されます。
これはスクリプトを終了させるかもしれませんし、させないかもしれません。終了させない場合、別の\connectコマンドが実行に成功するまで、データベースにアクセスするコマンドはすべて失敗します。
この実装の違いは、対話モードでは入力ミスに対するユーザの利便性を考慮し、非対話モードではスクリプトによって間違ったデータベースを操作することを防ぐための安全策を考慮した結果決められました。
\connectコマンドがパラメータの再利用を試す場合には、再利用する値は必ず最後に接続に成功したものであり、その後で試して失敗したものではないことに注意してください。
しかしながら、非対話モードで\connectが失敗した場合には、スクリプトは失敗した\connectから再利用する値を得ようとしますので、パラメータを後で再利用できません。
        


例：
        

=> \c mydb myuser host.dom 6432
=> \c service=foo
=> \c "host=localhost port=5432 dbname=mydb connect_timeout=10 sslmode=disable"

=> \c -reuse-previous=on sslmode=require    -- sslmodeのみ変更
=> \c postgresql://tom@localhost/mydb?application_name=myapp


	\C [ title ]
	

問い合わせ結果として表示されるテーブルのタイトルの設定、または、タイトルの設定解除を行います。
このコマンドは、\pset title titleと同じ効力を持ちます。
（このコマンド名は「標題(caption)」に由来します。
以前はHTMLのテーブルの標題を設定するためだけに使われていたためです。）
        

	\cd [ directory ]
	

現在の作業ディレクトリをdirectoryへ変更します。
引数がない場合は、現在のユーザのホームディレクトリに変更します。
ホームディレクトリの検索方法の詳細については、「パスワードファイル」を参照してください。
        
ヒント


現在の作業ディレクトリを表示するには、\! pwdを使用してください。
         


	\close_prepared prepared_statement_name
	

指定されたプリペアド文を閉じます。
空の文字列は名前のないプリペアド文を示します。
この名前のプリペアド文が存在しない場合、何の操作も行われません。
        


例:


SELECT $1 \parse stmt1
\close_prepared stmt1


        


このコマンドは、通常のpsql操作とは異なり、拡張問い合わせプロトコルを使用します。
通常は、簡易問い合わせプロトコルを使用します。
したがって、このコマンドは、psqlから拡張問い合わせプロトコルをテストするのに有用でしょう。
        

	\conninfo
	

現在のデータベース接続に関する情報を出力します。
SSLが使用されている場合は、SSL関連の情報を含みます。
         


Client Userフィールドには接続時のユーザが表示され、Superuserフィールドには（現在の実行コンテキスト内の）現在のユーザがスーパーユーザ権限を持っているかどうかが示されることに注意してください。
これらのユーザは通常同じですが、たとえば現在のユーザがSET ROLEコマンドで変更された場合などには、異なる場合があります。
         

	\copy { table [ ( column_list ) ] }
        from
        { 'filename' | program 'command' | stdin | pstdin }
        [ [ with ] ( option [, ...] ) ]
        [ where condition ], \copy { table [ ( column_list ) ] | ( query ) }
        to
        { 'filename' | program 'command' | stdout | pstdout }
        [ [ with ] ( option [, ...] ) ]
	

フロントエンド（クライアント）コピーを行います。
これはSQLのCOPYコマンドを実行する操作ですが、サーバで指定ファイルに対する読み込みまたは書き込みを行うのではなく、psqlがファイルの読み書きや、サーバとローカルファイルシステム間のデータ送信を行います。
この場合、ファイルへのアクセス権限はサーバではなくローカルユーザのものを使用するので、SQLのスーパーユーザ権限は必要ありません。
        


programが指定された場合、commandがpsqlにより実行され、commandから、または、commandへのデータはサーバとクライアント間を行き来します。
ここでも、実行権限はローカル側のユーザであり、サーバ側ではなく、SQLスーパーユーザ権限は必要とされません。
        


\copy ... from stdinでは、データ行は、コマンドの発行源と同じところから、\.のみを含む行を読み取るまで、あるいは、ストリームがEOFに達するまで読み続けます。
このオプションは、SQLスクリプトファイルの内部でテーブルにデータを投入する場合に便利です。
\copy ... to stdoutでは、出力はpsqlコマンドの出力と同じところに送られますが、COPY countコマンドのステータスは表示されません（これはデータ行と混同してしまうかもしれないからです）。
コマンドの入力元や\oオプションに関わらず、psqlの標準入力や標準出力を読み書きするには、from pstdinあるいはto pstdoutと書いてください。
        


このコマンドの構文はSQLのCOPYコマンドに似ています。
データの入力元と出力先以外のすべてのオプションはCOPYと同じです。
このため\copyメタコマンドには特別な解析規則が適用されていることに注意してください。
他のほとんどのメタコマンドとは異なり、行の残り部分の全体は常に\copyの引数として解釈され、引数内の変数の置換や逆引用符の展開は行われません。
        
ヒント


\copy ... toと同じ結果を得る他の方法はSQLのCOPY ... TO STDOUTコマンドを使って、\g filenameか\g |programで終了することです。
\copyと違い、この方法はコマンドが複数行にわたっても良いですし、変数の置換や逆引用符の展開式も使用できます。
        

ヒント


これらの操作は、すべてのデータがクライアント/サーバ接続を通過する必要があるため、ファイルまたはプログラムデータの入力元や出力先でのSQLのCOPYコマンドほど効率的ではありません。
大量のデータでは、SQLコマンドが適している場合があります。
        


	\copyright
	

PostgreSQL™の著作権および配布条項を表示します。
        

	\crosstabview [
            colV
            [ colH
            [ colD
            [ sortcolH
            ] ] ] ] 
	

問い合わせのバッファを実行し（\gと同様）、その結果をクロス表形式で表示します。
問い合わせは少なくとも3つの列を返す必要があります。
colVで特定される出力列が縦方向のヘッダになり、colHで特定される出力列が横方向のヘッダになります。
colDは表内に表示される出力列を特定します。
オプションのsortcolHで水平方向のヘッダをソートする列を指定できます。
        


それぞれの列の指定は、列番号（1から始まります）でも列名でも可能です。
列名については、通常のSQLの大文字小文字変換および引用の規則が適用されます。
省略した場合、colVは列1、colHは列2となります。
colHはcolVとは異なるものでなければなりません。
colDを指定しない場合、問い合わせの結果にはちょうど3つの列がなければならず、colVでもcolHでもない列がcolDとなります。
        


縦方向のヘッダは一番左の列に表示され、colVの列にある値が問い合わせ結果と同じ順序で現れますが、重複するものは除かれます。
        


横方向のヘッダは1行目に表示され、colHの列にある値が現れますが、重複するものは除かれます。
デフォルトでは、これらは問い合わせの結果と同じ順序で表示されます。
しかしオプションのsortcolH引数が指定された場合は、colHの値は対応するsortcolHの値に従ってソートされて横方向のヘッダに現れますが、sortcolHの列の値は整数値でなければなりません。
        


クロス表の内側では、colHのそれぞれの個別値xとcolVのそれぞれの個別値yに対して、その交点(x,y)に位置するセルに、問い合わせの結果のcolHの値がxでcolVの値がyである行のcolD列の値が現れます。
そのような行がなければ、セルは空欄になります。
そのような行が複数あると、エラーが報告されます。
        

	\d[Sx+] [ pattern ]
	

patternにマッチする各リレーション（テーブル、ビュー、マテリアライズドビュー、インデックス、シーケンス、外部テーブル）または複合型について、全ての列、列の型、テーブル空間（デフォルト以外を使用している場合）、NOT NULLやデフォルトなどの特別な属性を表示します。
関連付けられているインデックス、制約、ルールおよびトリガも表示されます。
外部テーブルでは関連する外部サーバも表示されます。
（「パターンのマッチング」については後述のパターンで定義されています。）
        


一部の種類のリレーションでは、\dは各列について追加の情報を表示します。
例えば、シーケンスでは列の値、インデックスではインデックス式、外部テーブルでは外部データラッパーのオプションです。
        


\d+というコマンド形式も同一ですが、より多くの情報を表示します。
こちらでは、テーブルの列に関連付けられたコメントやテーブルにOIDが存在するかどうか、リレーションがビューの場合はビューの定義、デフォルトと異なるreplica identityの設定、リレーションにアクセスメソッドがあるならアクセスメソッド名も表示されます。
        


デフォルトではユーザが作成したオブジェクトのみが表示されます。
システムオブジェクトを含めるためには、パターンまたはS修飾子を付与してください。
        
注記


\dがpattern引数なしで使用された場合は、\dtvmsEと同じ意味となり、可視である全てのテーブル、ビュー、マテリアライズドビュー、シーケンス、外部テーブルの一覧が表示されます。
これは純粋に利便性のためです。
        


他の多くのコマンドと同様に、コマンド名にxが付与された場合は、その結果が拡張モードで表示されますが、これはpattern引数なしで\dを使用する場合にのみ適用され、x修飾子は\dの直後には現れないことに注意してください（\dxは別のコマンドであるためです）。
x修飾子はSまたは+修飾子の後にのみ現れます。
たとえば、\d+xは\dtvmsE+xと同等で、拡張モードですべてのリレーションの一覧を表示します。
        


	\da[Sx] [ pattern ]
	

集約関数と、その戻り値のデータ型、演算対象となるデータ型の一覧を表示します。
patternが指定された場合、そのパターンに名前がマッチする集約のみが表示されます。
デフォルトではユーザが作成したオブジェクトのみが表示されます。
システムオブジェクトを含めるためには、パターンまたはS修飾子を付与してください。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
        

	\dA[x+] [ pattern ]
	

アクセスメソッドの一覧を表示します。
patternが指定された場合は、そのパターンにマッチする名前のアクセスメソッドのみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各アクセスメソッドと関連付けられたハンドラ関数および説明も表示されます。
        

	
          \dAc[x+]
            [access-method-pattern
              [input-type-pattern]]
          
        
	

演算子クラスの一覧を表示します（「インデックスメソッドと演算子クラス」を参照してください）。
access-method-patternが指定されていれば、そのパターンにマッチする名前のアクセスメソッドと関係する演算子クラスのみが表示されます。
input-type-patternが指定されていれば、そのパターンにマッチする名前の入力型と関係する演算子クラスのみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各演算子クラスと関連付けられた演算子族および所有者も表示されます。
        

	
          \dAf[x+]
            [access-method-pattern
              [input-type-pattern]]
          
        
	

演算子族の一覧を表示します（「演算子クラスと演算子族」を参照してください）。
access-method-patternが指定されていれば、そのパターンにマッチする名前のアクセスメソッドと関係する演算子族のみが表示されます。
input-type-patternが指定されていれば、そのパターンにマッチする名前の入力型と関係する演算子族のみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各演算子族とその所有者も表示されます。
        

	
          \dAo[x+]
            [access-method-pattern
              [operator-family-pattern]]
          
        
	

演算子族に関連する演算子の一覧を表示します（「インデックスメソッドのストラテジ」を参照してください）。
access-method-patternが指定されていれば、そのパターンにマッチする名前のアクセスメソッドと関係する演算子族のメンバのみが表示されます。
operator-family-patternが指定されていれば、そのパターンにマッチする名前の演算子族のメンバのみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、（順序付け演算子であれば）ソート演算子族、そしてその基礎となる関数が漏洩防止（leakproof）かどうかも表示されます。
        

	
          \dAp[x+]
            [access-method-pattern
              [operator-family-pattern]]
          
        
	

演算子族に関連するサポート関数の一覧を表示します（「インデックスメソッドのサポートルーチン」を参照してください）。
access-method-patternが指定されていれば、そのパターンにマッチする名前のアクセスメソッドと関係する演算子族の関数のみが表示されます。
operator-family-patternが指定されていれば、そのパターンにマッチする名前の演算子族の関数のみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、実際のパラメータの一覧を伴って、冗長に表示されます。
        

	\db[x+] [ pattern ]
	

テーブル空間を一覧表示します。
patternが指定された場合、そのパターンに名前がマッチするテーブル空間のみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各テーブル空間と関連付けされたオプション、ディスク上のサイズ、権限、および説明についても表示します。
        

	\dc[Sx+] [ pattern ]
	

文字集合符号化方式間の変換の一覧を表示します。
patternが指定された場合、そのパターンに名前がマッチする変換のみが表示されます。
デフォルトではユーザが作成したオブジェクトのみが表示されます。
システムオブジェクトを含めるためには、パターンまたはS修飾子を付与してください。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各オブジェクトに関連する説明を付けて表示します。
        

	\dconfig[x+] [ pattern ]
	

サーバ構成パラメータとその値の一覧を表示します。
patternが指定されている場合は、そのパターンに名前がマッチするパラメータのみが一覧表示されます。
patternが指定されていない場合は、デフォルト以外の値に設定されているパラメータのみが一覧表示されます。
（すべてのパラメータを表示するには\dconfig *を使用してください。）
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各パラメータが、そのデータ型、パラメータを設定できるコンテキスト、および（デフォルト以外のアクセス権限が付与されている場合）アクセス権限とともに一覧表示されます。
        

	\dC[x+] [ pattern ]
	

型キャストの一覧を表示します。
patternが指定された場合、そのパターンに元データ型または変換先データ型がマッチするキャストのみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、基礎となる関数が漏洩防止（leakproof）かどうかやキャストの説明なども含めて、各キャストに関する追加情報が表示されます。
        

	\dd[Sx] [ pattern ]
	

constraint、operator class、operator family、rule、triggerという種類のオブジェクトについての説明を表示します。
他のコメントはすべて、これらのオブジェクト種類用の対応するバックスラッシュコマンドによって表示されます。
        

\ddはpatternにマッチするオブジェクトの説明を表示します。
引数が指定されていない場合は、適切な種類の可視なオブジェクトの説明を表示します。
どちらの場合でも、一覧に表示されるのは説明を持つオブジェクトのみです。
デフォルトではユーザが作成したオブジェクトのみが表示されます。
システムオブジェクトを含めるためには、パターンまたはS修飾子を付与してください。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
        


オブジェクトの説明はCOMMENT SQLコマンドを使用して作成することができます。
       

	\dD[Sx+] [ pattern ]
	

ドメインの一覧を表示します。
patternが指定された場合、ドメイン名がそのパターンにマッチするもののみが表示されます。
デフォルトではユーザが作成したオブジェクトのみが表示されます。
システムオブジェクトを含めるには、パターンを指定するか、あるいはS修飾子を付けてください。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各オブジェクトと関連する権限と説明も表示されます。
        

	\ddp[x] [ pattern ]
	

デフォルトのアクセス権限設定を一覧表示します。
組み込みのデフォルトから権限設定が変更されたロール（および適切ならばスキーマも）ごとに1項目示されます。
patternが指定された場合、パターンにマッチするロール名またはスキーマ名の項目のみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
        


ALTER DEFAULT PRIVILEGESコマンドを使用して、デフォルトのアクセス権限を設定します。
権限表示の意味は「権限」で説明します。
        

	\dE[Sx+] [ pattern ], \di[Sx+] [ pattern ], \dm[Sx+] [ pattern ], \ds[Sx+] [ pattern ], \dt[Sx+] [ pattern ], \dv[Sx+] [ pattern ]
	

このコマンド群において、E、i、m、s、t、およびvという文字はそれぞれ、外部テーブル、インデックス、マテリアライズドビュー、シーケンス、テーブル、およびビューを表します。
これらの種類のオブジェクトの一覧を表示するために、これらの文字の中の任意の文字またはすべてを任意の順番で指定することができます。
例えば、\dtiはテーブルとインデックスを列挙します。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各オブジェクトは、もしあれば永続性の状態（permanent、temporary、またはunlogged）、ディスク上の物理容量、関連する説明をつけて表示されます。
patternが指定されている場合は、パターンに名称がマッチする項目のみが表示されます。
デフォルトでは、ユーザが作成したオブジェクトのみが表示されます。
システムオブジェクトを含めるためにはパターンまたはS修飾子を付与してください。
        

	\des[x+] [ pattern ]
	

外部サーバ（つまり「external servers」）を一覧表示します。
patternが指定されている場合は、名前がパターンにマッチするサーバのみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、サーバのアクセス権限、型、バージョン、オプション、および説明を含む各サーバの完全な説明が表示されます。
        

	\det[x+] [ pattern ]
	

外部テーブル（つまり「external tables」）を一覧表示します。
patternが指定された場合、パターンにテーブル名またはスキーマ名がマッチするもののみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、汎用オプションおよび外部テーブルの説明も表示されます。
        

	\deu[x+] [ pattern ]
	

ユーザマッピング（つまり「external users」）を一覧表示します。
patternが指定されている場合は、名前がパターンにマッチするユーザのみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各マッピングについての追加情報が表示されます。
        
注意


\deu+ではリモートユーザのユーザ名とパスワードも表示される可能性があります。
これらを外部に曝さないように注意しなければなりません。
        


	\dew[x+] [ pattern ]
	

外部データラッパー（つまり「external wrappers」）を一覧表示します。
patternが指定されている場合、名前がパターンにマッチする外部データラッパーのみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、外部データラッパーのアクセス権限、オプションおよび説明も表示されます。
        

	\df[anptwSx+] [ pattern [ arg_pattern ... ] ]
	

関数とその結果のデータ型、引数のデータ型、および、「agg」（集約）、「normal」、「procedure」、「trigger」、または「window」で分類される関数の種類の一覧を表示します。
特定種類の関数のみを表示させるには、対応する文字a、n、p、t、またはwをコマンドに付けて下さい。
patternが指定されている場合は、そのパターンに名前がマッチする関数のみが表示されます。
追加の引数は、型名のパターンで、関数の第1、第2などの引数の型名にマッチします。
（マッチする関数は指定したものよりも多くの引数を取るかもしれません。
それを防ぐには、arg_patternの最後にダッシュ-を書いてください。）
デフォルトではユーザが作成したオブジェクトのみが表示されます。
システムオブジェクトを含めるためには、パターンまたはS修飾子を付与してください。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各関数の、揮発性、並列処理での安全性、所有者、セキュリティ分類、漏洩防止（leakproof）かどうか、アクセス権限、言語、内部名（Cと内部関数に対してのみ）、および説明を含む追加の情報も表示されます。
特定の関数のソースコードは\sfを使って見ることができます。
        

	\dF[x+] [ pattern ]
	

全文検索設定を一覧表示します。
patternが指定された場合、このパターンにマッチする名前の設定のみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、使用される全文検索パーサや各パーサトークン型についての辞書リストなど各設定の完全な説明が表示されます。
        

	\dFd[x+] [ pattern ]
	

全文検索辞書を一覧表示します。
patternが指定された場合、このパターンにマッチする名前の辞書のみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、選択された辞書それぞれについて使用される全文検索テンプレートやオプションの値など更なる情報が表示されます。
        

	\dFp[x+] [ pattern ]
	

全文検索パーサを一覧表示します。
patternが指定された場合、このパターンにマッチする名前のパーサのみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、使用される関数や認知されるトークン型のリストなど各パーサの完全な説明が表示されます。
        

	\dFt[x+] [ pattern ]
	

テキスト検索テンプレートを一覧表示します。
patternが指定された場合、このパターンにマッチする名前のテンプレートのみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、テンプレートそれぞれについて使用される関数名など更なる情報が表示されます。
        

	\dg[Sx+] [ pattern ]
	

データベースロールを一覧表示します。
（「ユーザ」と「グループ」という概念は「ロール」に統合されましたので、このコマンドは\duと同じものになりました。）
デフォルトでは、ユーザによって作成されたロールのみが表示されます。
システムロールを含めるにはS修飾子を付与してください。
patternが指定されている場合は、そのパターンに名前がマッチするロールのみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、ロールそれぞれについて更なる情報が表示されます。
現時点では各ロールのコメントが追加されます。
        

	\dl[x+]
	

これは\lo_listの別名で、ラージオブジェクトの一覧を表示します。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各ラージオブジェクトが、もしあれば関連する権限とともに一覧表示されます。
        

	\dL[Sx+] [ pattern ]
	

手続き言語を一覧表示します。
patternを指定すると、パターンに名前がマッチする言語のみが表示されます。
デフォルトではユーザが作成した言語のみが表示されます。
システムオブジェクトを含めるためには、パターンまたはS修飾子を付与してください。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、呼び出しハンドラ、有効性検証関数、アクセス権限、およびシステムオブジェクトか否かという情報を付けて各言語が表示されます。
        

	\dn[Sx+] [ pattern ]
	

スキーマ（名前空間）の一覧を表示します。
patternを指定すると、パターンに名前がマッチするスキーマのみが表示されます。
デフォルトではユーザが作成したオブジェクトのみが表示されます。
パターンまたはS修飾子を追加すると、システムオブジェクトが表示に追加されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各オブジェクトに関連付けられている権限と説明が（存在すれば）表示されます。
        

	\do[Sx+] [ pattern [ arg_pattern [ arg_pattern ] ] ]
	

演算子と、その演算項目と結果の型を一覧表示します。
patternを指定すると、パターンに名前がマッチする演算子のみが表示されます。
arg_patternを1つ指定すると、パターンに右辺の引数の型名がマッチする前置演算子のみが表示されます。
arg_patternを2つ指定すると、パターンに引数の型名がマッチする二項演算子のみが表示されます。
（あるいは、単項演算子の使われない引数に対して-と書いてください。）
デフォルトではユーザが作成したオブジェクトのみが表示されます。
システムオブジェクトを含めるためには、パターンまたはS修飾子を付与してください。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、基礎となっている関数とその関数が漏洩防止（leakproof）かどうかについての追加情報が表示されます。
        

	\dO[Sx+] [ pattern ]
	

照合順序を一覧表示します。
patternを指定すると、パターンに名前がマッチする照合順序のみが表示されます。
デフォルトではユーザが作成したオブジェクトのみが表示されます。
システムオブジェクトを含めるためには、パターンまたはS修飾子を付与してください。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各照合順序に関連付けられている説明が（存在すれば）表示されます。
現在のデータベースの符号化方式で使用できる照合順序のみが表示されることに注意してください。
このため同じインストレーションであってもデータベースによって結果が異なる可能性があります。
        

	\dp[Sx] [ pattern ]
	

集約関数と、その戻り値のデータ型、演算対象となるデータ型の一覧を表示します。
patternが指定された場合、そのパターンに名前がマッチする集約のみが表示されます。
デフォルトではユーザが作成したオブジェクトのみが表示されます。
システムオブジェクトを含めるためには、パターンまたはS修飾子を付与してください。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
        


アクセス権限の設定にはGRANTコマンドとREVOKEコマンドが使われます。
権限の表示に関する意味は「権限」で説明します。
        

	\dP[itnx+] [ pattern ]
	

パーティション化されたリレーションの一覧を表示します。
patternが指定されている場合は、名前がパターンにマッチするエントリのみが表示されます。
修飾子t(テーブル)とi(インデックス)をコマンドに付けて、表示されるリレーションの種類を限定できます。
デフォルトでは、パーティション化されたテーブルとインデックスの一覧が表示されます。
        


修飾子n (「nested」)が使われた、もしくはパターンが指定された場合、ルートでないパーティション化されたリレーションが含められ、各パーティション化されたリレーションの親を表示しながら列が表示されます。
        


コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、リレーションの説明とともに、各リレーションのパーティションのサイズの合計も表示されます。
nが+と組み合わされた場合、2つのサイズが表示されます。
1つは直接アタッチされたリーフパーティションの合計サイズで、もう1つは間接的にアタッチされたサブパーティションを含む全パーティションの合計サイズです。
        

	\drds[x] [ role-pattern [ database-pattern ] ]
	

定義済み設定に関する設定を一覧表示します。
これらの設定はロール固有、データベース固有、またはその両方です。
role-patternおよびdatabase-patternはそれぞれ特定のロールやデータベースを選択するために使用します。
パターンが省略された場合、または*が指定された場合、ロール固有ではない、または、データベース固有ではない設定を含め、すべての設定を表示します。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
        


ロール単位およびデータベース単位の設定を定義するにはALTER ROLEおよびALTER DATABASEコマンドを使用します。
        

	\drg[Sx] [ pattern ]
	

割り当てられたオプション(ADMIN、INHERIT、SET)および権限付与者を含む、付与されたロールのメンバ資格に関する情報を一覧表示します。
ロールのメンバ資格の詳細は、GRANTコマンドを参照してください。
        


デフォルトではユーザが作成したロールへの権限付与のみが表示されます。システムロールを含めるにはS修飾子を付与してください。
パターンが指定されている場合は、パターンにマッチする名前のロールへの権限付与のみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
        

	\dRp[x+] [ pattern ]
	

レプリケーションのパブリケーションを一覧表示します。
patternが指定された場合、名前がそのパターンにマッチするパブリケーションのみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各パブリケーションに関連付けられているテーブルやスキーマも表示されます。
        

	\dRs[x+] [ pattern ]
	

レプリケーションのサブスクリプションを一覧を表示します。
patternが指定された場合、名前がそのパターンにマッチするサブスクリプションのみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、サブスクリプションの追加属性も表示されます。
        

	\dT[Sx+] [ pattern ]
	

データ型を一覧表示します。
patternを指定すると、パターンにマッチする名前を持つ型のみを表示します。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
+をコマンド名に付けると、型ごとに、型の内部名、サイズ、enum型では許される値、関連する権限も表示されます。
デフォルトではユーザが作成したオブジェクトのみが表示されます。
システムオブジェクトを含めるためには、パターンまたはS修飾子を付与してください。
        

	\du[Sx+] [ pattern ]
	

データベースロールを一覧表示します。
（「ユーザ」と「グループ」という概念は「ロール」に統合されましたので、このコマンドは\dgと同じものになりました。）
patternが指定されている場合は、そのパターンに名前がマッチするロールのみが表示されます。
デフォルトでは、ユーザによって作成されたロールのみが表示されます。
システムロールを含めるにはS修飾子を付与してください。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、ロールそれぞれについて更なる情報が表示されます。
現時点では各ロールのコメントが追加されます。
        

	\dx[x+] [ pattern ]
	

インストールされた拡張を一覧表示します。
patternを指定すると、パターンにマッチする名前の拡張のみを表示します。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、マッチする拡張それぞれについて拡張に属するすべてのオブジェクトが表示されます。
        

	\dX[x] [ pattern ]
	

拡張統計情報を一覧表示します。
patternが指定されている場合は、そのパターンに名前がマッチする拡張統計情報のみが表示されます。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
        


拡張統計情報の各種の状態は、その統計値の種類(例えば、Ndistinct)にちなんだ名前の列に表示されます。
definedはその統計情報の作成が要求されたことを意味し、NULLは要求されていないことを意味します。
ANALYZEが実行され、統計情報がプランナで利用可能であるかどうかを知るには、pg_stats_extが使えます。
        

	\dy[x+] [ pattern ]
	

イベントトリガを一覧表示します。
patternを指定すると、パターンにマッチする名前のイベントトリガのみを表示します。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、関連する説明を付けて各オブジェクトを表示します。
        

	\eまたは\edit  [ filename ] [ line_number ] 
	

filenameが指定された場合、このファイルが編集されます。
エディタを終了した後、ファイルの内容は問い合わせバッファにコピーされます。
filenameが指定されない場合、現在の問い合わせバッファが一時ファイルにコピーされ、同様に編集されます。
現在の問い合わせバッファが空の場合、最も最近に実行された問い合わせが一時ファイルにコピーされ、同様に編集されます。
        


ファイルや以前の問い合わせを編集していて、ファイルを変更せずにエディタを終了した場合には、問い合わせバッファはクリアされます。
そうでなければ、問い合わせバッファの新しい内容が、psqlの通常の規則に従い、全体を1行として再解析されます。
完全な問い合わせはすべて即座に実行されます。
つまり、問い合わせバッファにセミコロンが含まれるか、セミコロンで終わっている場合、そこまでの部分すべてが実行され、問い合わせバッファから削除されます。
問い合わせバッファ内に残ったものはすべて再表示されます。
送信するにはセミコロンまたは\gを、問い合わせバッファをクリアしてキャンセルするには\rを入力してください。
        


バッファ全体を1行として扱うので、特にメタコマンドに影響があります。
バッファ内でメタコマンドより後にある部分はすべて、それが複数行にまたがっていたとしても、メタコマンドの引数として解釈されます。
（従って、この方法ではメタコマンドを使用するスクリプトを作成できません。
その目的の場合は、\iを使ってください。）
        


行番号(line_number)が指定された場合、psqlはファイルまたは問い合わせバッファ内の指定行にカーソルを位置づけます。
すべてが数字の引数が1つだけ指定された場合、psqlはそれをファイル名ではなく行番号であるとみなすことに注意してください。
        
ヒント


使用するエディタを設定、カスタマイズする方法については、下記の環境を参照してください。
        


	\echo text [ ... ]
	

評価された引数を空白で区切り、標準出力に出力し、改行します。
スクリプトが出力するところどころに情報を記載する場合に有用です。
使用例を次に示します。


=> \echo `date`
Tue Oct 26 21:40:57 CEST 1999



最初の引数が引用符で囲まれていない-nである場合、最後の改行は出力されません(し、最初の引数も出力されません)。
        
ヒント


\oコマンドを使用して問い合わせの出力先を変更した場合、このコマンドではなく、\qechoを使用した方が良いかもしれません。
\warnコマンドも参照してください。
        


	\ef [ function_description [  line_number ] ] 
	

このコマンドは指定された関数やプロシージャの定義をCREATE OR REPLACE FUNCTIONやCREATE OR REPLACE PROCEDUREコマンド構文で取り出し、編集します。
編集は\editと同様の方法で行われます。
保存しないでエディタを終了すると、その文は捨てられます。
保存してエディタを終了すると、更新されたコマンドはセミコロンを付けていれば即座に実行されます。
そうでなければ再表示されます。送信するにはセミコロンあるいは\gを、キャンセルするには\rを入力してください。
        


対象の関数は名前だけ、または、たとえばfoo(integer, text)のように名前と引数で指定することができます。
同じ名前の関数が複数存在する場合、引数の型を指定しなければなりません。
        


関数が指定されなかった場合、空のCREATE FUNCTIONのテンプレートが編集用に表示されます。
        


行番号が指定された場合、psqlは関数本体における指定行にカーソルを移動します。
（関数本体は通常、ファイルの先頭から始まらないことに注意してください。）
        


他のほとんどのメタコマンドと異なり、行の残り部分はすべて\efの引数であると常に解釈され、引数内の変数の置換も逆引用符の展開も行われません。
        
ヒント


使用するエディタを設定、カスタマイズする方法については下記の環境を参照してください。
        


	\encoding [ encoding ]
	

クライアント側の文字集合符号化方式を設定します。
引数を指定しない場合、このコマンドは現在の符号化方式を表示します。
        

	\errverbose
	

最も最近のサーバのエラーメッセージを最大の冗長さ、つまりVERBOSITYがverboseに、そしてSHOW_CONTEXTがalwaysに設定されているかのようにして、繰り返します。
        

	\ev [ view_name [  line_number ] ] 
	

このコマンドは、指定したビューの定義をCREATE OR REPLACE VIEWコマンドの形式で取得して、編集します。
編集は\editの場合と同じ方法で行われます。
保存しないでエディタを終了すると、その文は捨てられます。
保存してエディタを終了すると、更新されたコマンドはセミコロンを付けていれば即座に実行されます。
そうでなければ再表示されます。送信するにはセミコロンあるいは\gを、キャンセルするには\rを入力してください。
        


ビューを指定しなかった場合は、空のCREATE VIEWテンプレートが編集用に提供されます。
        


行番号を指定した場合、psqlはカーソルをビュー定義の指定した行に位置づけます。
        


他のほとんどのメタコマンドと異なり、行の残り部分はすべて\evの引数であると常に解釈され、引数内の変数の置換も逆引用符の展開も行われません。
        

	\f [ string ]
	

位置揃えされていない問い合わせの出力用の、フィールドの区切り文字を設定します。
デフォルトは、縦棒（|）です。
これは\pset fieldsepと同じです。
        

	\g [ (option=value [...]) ] [ filename ], \g [ (option=value [...]) ] [ |command ]
	

現在の問い合わせ入力バッファをサーバに送って実行します。
        


\gの後に括弧が現れる場合は、括弧はoption=value書式オプション句の空白で区切られた一覧を囲んでいます。書式オプション句は\pset option valueコマンドと同じように解釈されますが、この問い合わせの間でのみ有効です。
この一覧の中では、空白は=の周りでは許されていませんが、オプション句の間には必要です。
=valueが省略された場合、指名されたoptionは、明示されたvalueがない\pset optionと同じように変更されます。
        


filenameや|command引数を指定すると、問い合わせ出力を通常通りに表示する代わりに、指定したファイルに書き込んだり、指定のシェルコマンドにパイプで渡します。
問い合わせが成功しゼロ以上のタプルが返る場合にのみファイルまたはコマンドに書き出されます。
問い合わせが失敗する場合やデータを返さないSQLコマンドでは書き出されません。
        


現在の問い合わせバッファが空の場合、最も最近に送信された問い合わせが再実行されます。
その点を除けば、\gだけを指定した場合は、セミコロンと実質的に同じです。
\gに引数を指定した場合は、\oコマンドの「一度限りの」代替手段として使用でき、さらに通常は\psetで設定される出力書式のオプションの一度限りの調整もできます。
        


最後の引数が|で始まっている場合、行の残りの部分はすべて実行するcommandであると解釈され、その中では変数の置換も逆引用符の展開も行なわれません。
行の残り部分は、単にあるがままにシェルに渡されます。
        

	\gdesc
	

現在の問い合わせバッファの結果の説明（列名とデータ型）を表示します。
問い合わせは実際には実行されませんが、ある種の構文エラーが含まれている場合、そのエラーは通常の方法で報告されます。
        


現在の問い合わせバッファが空の場合、直近に送った問い合わせの説明が代わりに出力されます。
        

	\getenv psql_var env_var
	

環境変数env_varの値を取得し、psql変数psql_varに割り当てます。
psqlのプロセスの環境でenv_varが定義されていない場合、psql_varは変更されません。
例:


=> \getenv home HOME
=> \echo :home
/home/postgres


	\gexec
	

現在の問い合わせバッファをサーバに送信し、問い合わせの出力（あれば）の各行の各列をSQL文として実行します。
例えば、my_tableの各列にインデックスを作成するには次のようにします。


=> SELECT format('create index on my_table(%I)', attname)
-> FROM pg_attribute
-> WHERE attrelid = 'my_table'::regclass AND attnum > 0
-> ORDER BY attnum
-> \gexec
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX


        


生成された問い合わせは行が返された順番で実行され、また2つ以上の列が返された場合は、各行の中で左から右に実行されます。
NULLのフィールドは無視されます。
生成された問い合わせは、そのままサーバに送信されて処理されるため、psqlのメタコマンドとすることはできず、またpsqlの変数の参照を含むこともできません。
個別の問い合わせで失敗した場合、残りの問い合わせの実行はON_ERROR_STOPが設定されているのでなければ継続します。
個々の問い合わせの実行はECHOの処理に従います。
（\gexecを使う場合、ECHOをallあるいはqueriesに設定することが推奨されることが多いでしょう。）
問い合わせのログ出力、シングルステップモード、時間表示(timing)、およびその他の問い合わせ実行に関する機能は、生成された各問い合わせにも適用されます。
        


現在の問い合わせバッファが空の場合、最も最近に送信された問い合わせが再実行されます。
        

	\gset [ prefix ]
	

現在の問い合わせバッファをサーバに送信し、問い合わせの出力をpsql変数（下記の変数参照）に格納します。
実行される問い合わせは正確に１行を返さなければなりません。
行の各列は、列と同じ名前を持つ別々の変数に格納されます。
例えば、以下のようになります。


=> SELECT 'hello' AS var1, 10 AS var2
-> \gset
=> \echo :var1 :var2
hello 10


        


prefixを指定した場合、使用する変数の名前を作成する時にその文字列が問い合わせの列名の前に付けられ、次のようになります。


=> SELECT 'hello' AS var1, 10 AS var2
-> \gset result_
=> \echo :result_var1 :result_var2
hello 10


        


列の結果がNULLである場合、対応する変数は設定されず未設定状態となります。
        


問い合わせが失敗、または１行を返さない場合、変数は変更されません。
        


現在の問い合わせバッファが空の場合、最も最近に送信された問い合わせが再実行されます。
        

	\gx [ (option=value [...]) ] [ filename ], \gx [ (option=value [...]) ] [ |command ]
	

\gxは、\psetオプションの一覧にexpanded=onが含まれているかのように、この問い合わせに対して拡張出力モードを使用することを除いて\gと同じです。
\xも参照してください。
        

	\hまたは\help [ command ]
	

指定したSQLコマンドの構文に関するヘルプを表示します。
commandが指定されていない場合は、psqlは構文ヘルプが存在する全てのコマンドの一覧を表示します。
commandをアスタリスク（*）にすると、全てのSQLコマンドの構文ヘルプが表示されます。
        


他のほとんどのメタコマンドと異なり、行の残り部分はすべて\helpの引数であると常に解釈され、引数内の変数の置換も逆引用符の展開も行われません。
        
注記


入力を簡単にするため、複数の単語からなるコマンドを引用符で囲む必要はありません。
\help alter tableと入力するだけで十分です。
        


	\Hまたは\html
	

HTML問い合わせ出力形式を有効にします。
HTML形式が有効になっている場合は、デフォルトの位置揃えされたテキスト形式に戻します。
このコマンドは互換性と簡便性のために存在します。
他の出力オプションについては、\psetを参照してください。
        

	\iまたは\include filename
	

filenameファイルから入力を読み取り、キーボードから入力された場合と同じように実行します。
        


filenameが-（ハイフン）の場合、EOFを示すもの、または\qメタコマンドが読まれるまで標準入力から読み込みます。
これは対話的な入力とファイルからの入力を混在させるために使うことができます。
Readlineと同じ挙動は、それが最も外部のレベルで動作している場合にのみ利用されることに注意してください。
        
注記


読み取られた行を画面に表示させる場合は、ECHO変数をallに設定する必要があります。
        


	\if expression, \elif expression, \else, \endif
	

このコマンド群は入れ子にすることができる条件ブロックを実現します。
条件ブロックは\ifで始まり、\endifで終わらなければなりません。
その間には\elif句をいくつでも置くことができ、さらにその後に\else句を１つだけ置くことができます。
条件ブロックを構成するコマンドの間には、通常の問い合わせや他の種類のバックスラッシュコマンドを置くことができます（通常は置きます）。
        


\ifコマンドおよび\elifコマンドはその引数を読み取り、それを論理式であるとして評価します。
式の結果がtrueであれば、通常通りに処理が続きますが、そうでないときは、対応する\elif、\elseまたは\endifに到達するまで行をスキップします。
ひとたび\ifまたは\elifの評価が真になったら、同じブロック内のそれより後にある\elifコマンドの引数は評価されず、偽であるとして扱われます。
\elseより後にある行は、それより前の対応する\ifと\elifが一つも真にならなかった時にのみ実行されます。
        


\ifコマンドおよび\elifコマンドのexpression引数は、他のバックスラッシュコマンドの引数と同様、変数置換と逆引用符展開の対象となります。
その後で、on/offのオプション変数の値のように評価されます。
従って有効な値は、true、false、1、0、on、off、yes、noのいずれかに曖昧性なしに、大文字小文字を区別せずにマッチするものです。
例えば、t、T、tRはすべてtrueであるとみなされます。
        


真にも偽にも適切に評価できない式には警告を発行し、偽として扱います。
        


スキップされる行も、問い合わせとバックスラッシュコマンドを特定するため、通常通り解析されますが、問い合わせはサーバには送信されず、条件コマンド（\if、\elif、\else、\endif）以外のバックスラッシュコマンドは無視されます。
条件コマンドは入れ子の有効性の確認のためだけに検査されます。
スキップされる行の変数参照は展開されず、逆引用符の展開も実行されません。
        


条件ブロック内のすべてのバックスラッシュコマンドは同じファイル内になければなりません。
ファイル内のすべての\ifブロックが閉じられるより前に、メインの入力ファイルまたは\includeされたファイルの終端に到達した場合、psqlはエラーを発生させます。
        


例を示します。
        


-- データベース内に2つのレコードが存在するかどうかを検査し、
-- その結果を2つのpsql変数に格納する。
SELECT
    EXISTS(SELECT 1 FROM customer WHERE customer_id = 123) as is_customer,
    EXISTS(SELECT 1 FROM employee WHERE employee_id = 456) as is_employee
\gset
\if :is_customer
    SELECT * FROM customer WHERE customer_id = 123;
\elif :is_employee
    \echo 'is not a customer but is an employee'
    SELECT * FROM employee WHERE employee_id = 456;
\else
    \if yes
        \echo 'not a customer or employee'
    \else
        \echo 'this will never print'
    \endif
\endif


	\irまたは\include_relative filename
	

\irコマンドは\iと似ていますが、相対ファイル名の解決方法が異なります。
対話モードで実行している場合は２つのコマンドの動作は同一です。
しかし、スクリプトから呼び出す場合、\irは、現在の作業ディレクトリではなく、そのスクリプトの格納ディレクトリから見た相対ファイル名として解釈します。
        

	\l[x+]または\list[x+] [ pattern ]
	

サーバ内のデータベースについて、その名前、所有者、文字集合符号化方式、およびアクセス権限を一覧表示します。
patternを指定すると、パターンにマッチする名前を持つデータベースのみを表示します。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、データベースのサイズ、デフォルトのテーブル空間、および説明も表示します。
（サイズ情報は現在のユーザが接続可能なデータベースでのみ表示されます。）
        

	\lo_export loid filename
	

データベースからOIDがloidであるラージオブジェクトを読み取り、filenameに書き出します。
これはlo_exportサーバ関数とは微妙に異なります。
lo_export関数は、データベースサーバを実行しているユーザ権限で、サーバ上のファイルシステムに対して動作します。
        
ヒント


ラージオブジェクトのOIDを確認するには、\lo_listを使用してください。
        


	\lo_import filename [ comment ]
	

ファイルをPostgreSQL™のラージオブジェクトに保存します。
オプションで、そのオブジェクトに指定したコメントを関連付けることができます。
下記に例を示します。


foo=> \lo_import '/home/peter/pictures/photo.xcf' 'a picture of me'
lo_import 152801



上の応答は、指定したラージオブジェクトがオブジェクトID 152801として受け付けられたことを示します。
今後この新規作成されたラージオブジェクトにアクセスする場合に、この番号が使用できます。
可読性を高めるために、常に全てのオブジェクトに人間がわかるようなコメントを関連付けることが推奨されます。
\lo_listコマンドではOIDとコメントの両方が表示されます。
        


このコマンドは、ローカルなユーザによってローカルなファイルシステムに対して動作します。一方、サーバ側のlo_importは、サーバのユーザによってサーバ上のファイルシステムに対して動作します。
このコマンドとサーバ側のlo_importは、この点で微妙に異なっています。
        

	\lo_list[x+]
	

現在データベースに保存されているすべてのPostgreSQL™ラージオブジェクトの一覧を、そのオブジェクトに付けられたコメントと一緒に表示します。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
コマンド名に+が付与された場合は、各ラージオブジェクトが、もしあれば関連する権限とともに一覧表示されます。
        

	\lo_unlink loid
	

OIDがloidであるラージオブジェクトをデータベースから削除します。
        
ヒント


ラージオブジェクトのOIDを確認するには、\lo_listを使用してください。
        


	\oまたは\out [ filename ], \oまたは\out [ |command ]
	

以降の問い合わせの結果を、filenameで指定されたファイルに保存するか、またはシェルコマンドcommandにパイプで渡すようにします。
引数がない場合、問い合わせの出力はリセットされて標準出力になります。
        


引数が|で始まっている場合、行の残りの部分はすべて実行するcommandであると解釈され、その中では変数の置換も逆引用符の展開も行われません。
行の残り部分は、単にあるがままにシェルに渡されます。
        


「問い合わせの結果」には、全てのテーブル、コマンドの応答、データベースサーバからの注意メッセージだけでなく、データベースに問い合わせを行う（\dのような）各種バックスラッシュコマンドの出力が含まれます。ただし、エラーメッセージは含まれません。
        
ヒント


問い合わせの結果の間にテキストを挿入するには、\qechoを使用してください。
        


	\pまたは\print
	

現在の問い合わせバッファを標準出力に書き出します。
現在の問い合わせバッファが空の場合、最も最近に実行された問い合わせが書き出されます。
        

	\parse statement_name
	

プリペアド文のオブジェクトの宛先名に基づいて、現在の問い合わせバッファからプリペアド文を作成します。
空の文字列は、名前のないプリペアド文を示します。
        


例:


SELECT $1 \parse stmt1


        


このコマンドでは、簡易問い合わせプロトコルを使用する通常のpsql操作とは異なり、拡張問い合わせプロトコルが使用されます
このコマンドによってParse (F)メッセージが発行されるので、psqlからの拡張問い合わせプロトコルをテストするのに役立ちます。
このコマンドは、次に実行される問い合わせにのみ影響します。
以降のすべての問い合わせは、デフォルトで簡易問い合わせプロトコルを使用します。
        

	\password [ username ]
	

指定したユーザ（デフォルトは現在のユーザ）のパスワードを変更します。
このコマンドは、新しいパスワードを促し、暗号化して、それをALTER ROLEコマンドとしてサーバに送信します。
これによりコマンド履歴やサーバログなどどこにも新しいパスワードが平文では残りません。
        

	\prompt [ text ] name
	

変数nameに代入するテキストを入力するようにユーザを促します。
プロンプトtextをオプションで指定することができます。
（複数の単語をプロンプトで使用する場合はそのテキストを単一引用符でくくってください。）
        


デフォルトでは\promptは入出力に端末を使用します。
しかし、-fコマンドラインスイッチが使用されている場合、\promptは標準入力、標準出力を使用します。
        

	\pset [ option [ value ] ]
	

このコマンドは問い合わせ結果のテーブル出力に影響するオプションを設定します。
optionには、どのオプションを設定するのかを記述します。
valueの意味は選択したオプションにより変わります。
以下のオプション別の説明の通り、オプションの中にはvalueを省略することでトグルや設定解除を行うものがあります。
こうした動作の記載がなければ、valueを省略すると、単に現在の設定値が表示されることになります。
        


何も引数をつけずに\psetを実行すると、すべての表示オプションの現在の状態を表示します。
        


以下は、表示の調整に関するオプションです。
        
	border
	

valueは数値でなければなりません。
基本的には、この数字が大きくなればなるほど、表示するテーブルが持つ境界線は増えますが、詳細はそれぞれの出力形式に依存しています。
HTML書式では、この値は直接border=...属性に反映されます。
他のほとんどの書式の場合は、0（境界線なし）、1（内側の境界線）、2（テーブル枠）という3つの数値のみ意味を持ち、2より大きな値はborder = 2と同じとして扱われます。
latexおよびlatex-longtable書式では、さらにデータ行の間に境界線を付ける、3という値をとることができます。
          

	columns
	

wrapped書式の対象幅を設定し、そして、ページャを必要とする、拡張自動モードにおける縦表示への切替えに十分な幅で出力するかどうかを決定する幅制限を設定します。
ゼロ（デフォルト）では、環境変数COLUMNS、もしCOLUMNSが設定されていなければ、検出したスクリーンの幅、により対象幅が制御されます。
さらにcolumnsがゼロの場合、wrapped書式はスクリーン出力にのみ影響を与えることになります。
columnsが非ゼロの場合は、ファイルやパイプへの出力も同様に折り返されます。
          

	csv_fieldsep
	

CSV出力形式で使われるフィールド区切り文字を指定します。
区切り文字がフィールドの値中に現れる場合には、標準のCSV規則に従ってそのフィールドは二重引用符内に出力されます。
デフォルトはカンマです。
          

	expanded (またはx)
	

valueを指定する場合は、拡張(expanded)モードを有効または無効にするonまたはoff、あるいはautoのいずれかでなければなりません。
valueを省略した場合、このコマンドは通常モードと拡張モードの設定をトグルします。
拡張モードを有効にした場合、問い合わせ結果は左に列名、右にデータという2つの列で出力されます。
このモードは、データが通常の「水平(horizontal)」モードによる画面表示に適していない場合に有用です。
自動(auto)設定の場合、問い合わせの出力が2列以上でかつ画面幅より広ければ拡張モードが使用され、そうでなければ通常モードが使用されます。
自動設定は位置揃え書式または折り返し書式でのみ有効です。
この他の書式では、常に拡張モードが無効の場合と同様に動作します。
          

	fieldsep
	

位置揃えなしの出力書式で使用されるフィールド区切り文字を指定します。
これにより、例えばタブ区切りといった他プログラムに要求される形式を作成することができます。
タブをフィールド区切り文字として使用するには、\pset fieldsep '\t'と入力します。
デフォルトのフィールド区切り文字は'|'（縦棒）です。
          

	fieldsep_zero
	

位置揃えなしの出力書式で使用されるフィールド区切り文字をゼロバイトに指定します。
          

	footer
	

valueを指定する場合、それぞれテーブルフッタの表示((n rows)数)を有効にするonまたは無効にするoffのいずれかでなければなりません。
valueを省略した場合、このコマンドはフッタの表示、非表示をトグルします。
          

	format
	

出力形式をaligned、asciidoc、csv、html、latex、latex-longtable、troff-ms、unaligned、wrappedのいずれかに設定します。
一意に判別できる範囲で省略が可能です。
          

aligned書式は、標準的で人間が読みやすいように、美しく整形されたテキスト出力です。
これがデフォルトです。
          

unaligned書式は、表示行の1行に1つの行の全列を、現在有効なフィールド区切り文字で区切って書き出します。
これは他のプログラムに読み込ませることを目的とした出力、例えばタブ区切りやカンマ区切り書式を生成する場合に有用です。
しかし、列の値にフィールド区切り文字が現れても、特別扱いはしません。ですので、そのような目的には、CSV書式の方がより相応しいでしょう。
          

csv書式は
          
          

RFC 4180で記述された引用規則を適用して、列の値をカンマで区切って書きます。
この出力はサーバのCOPYコマンドのCSV書式と互換性があります。
列名が書かれたヘッダ行は、tuples_onlyがonでなければ生成されます。
タイトルとフッタは出力されません。
各行はシステム依存の改行文字で終わります。改行文字は、Unix系のシステムでは典型的には単独の改行(\n)であり、Microsoft Windowsでは復帰と改行の並び(\r\n)です。
カンマ以外のフィールド区切り文字は\pset csv_fieldsepで選べます。
          
wrapped書式はalignedと似ていますが、幅の広いデータ値を複数行に折り返して対象の列幅に合うように出力します。
対象の幅はcolumnsオプションの項に記述されているように決定されます。
psqlは列ヘッダタイトルを折り返さないことに注意して下さい。
このためwrapped書式は列ヘッダに必要とする幅全体が対象より長い場合、alignedと動作が同じになります。
          


asciidoc、html、latex、latex-longtableおよびtroff-ms書式は対応するマークアップ言語を使用する文書内に含めることを目的とした表を出力します。
出力自体は完全な文書ではありません。
HTMLでは必要性がないかもしれませんが、LaTeXでは完全な文書ラッパーを持たせなければなりません。
latex書式はLaTeXのtabular環境を使います。
latex-longtable書式ではLaTeXのlongtableおよびbooktabsパッケージも必要です。
          

	linestyle
	

境界線の表示形式をascii、old-asciiまたはunicodeのいずれかに設定します。
一意になれば省略形が許されます。（つまり一文字で十分であることを意味します。）
デフォルトの設定はasciiです。
このオプションはalignedおよびwrapped出力書式のみで有効です。
          
ascii形式は通常のASCIIを使用します。
データ内の改行は右側余白に+を使用して表します。
wrapped書式で、改行文字のない行が2行にまたがるときは、先頭行の右側余白にドット(.)を表示し、次の行の左側余白にもドットを表示します。
          
old-ascii形式は通常のASCII文字を使用して、PostgreSQL™ 8.4以前で使用されていた方法で整形します。
データ内の改行は列区切りの左側に:記号を使用して表します。
データを改行文字なしに折り返す際には、列区切りの左側に;記号を使用して表します。
          
unicode形式はUnicode矩形描画文字を使用します。
データ内の改行は右側の余白に復帰記号を使用して表します。
データを改行文字なしに折り返す際には、省略記号を先頭行の右側余白に表示し、次の行の左側余白にも表示します。
          


border設定がゼロより大きい場合、linestyleオプションはまた、境界線を描画する文字も決定します。
通常のASCII文字はどのような場合でも動作しますが、Unicode文字が表示できる環境では、その方が見た目が良くなります。
          

	null
	

null値の代わりに表示する文字列を設定します。
デフォルトでは何も表示しません。
そのため、よく空の文字列と間違うことがあります。
例えば\pset null '(null)'とする人もいます。
          

	numericlocale
	

valueを指定する場合、それぞれ10進数マーカーの左に桁のくくりを分離するロケール固有の文字を表示するonまたは表示しないoffのいずれかでなければなりません。
valueを省略した場合、このコマンドは通常出力かロケール固有の数値出力かをトグルします。
          

	pager
	

問い合わせおよびpsqlのヘルプを出力する際の、ページャプログラムの使用を制御します。
pagerオプションがoffの場合、ページャプログラムは使用されません。
pagerオプションがonの場合、ページャは適切な場合、つまり出力先が端末であり、その画面に収まらない場合に使用されます。
またpagerオプションはalwaysに設定することもできます。
こうすると画面に収まるかどうかに関わらずすべての端末出力でページャが使用されます。
valueを指定しない\pset pagerはページャの使用をトグルします。
          


環境変数PSQL_PAGERまたはPAGERが設定されている場合、出力は指定したプログラムにパイプで渡されます。
設定されていない場合は、プラットフォーム依存のデフォルト（moreなど）が使用されます。
          


\watchコマンドを使用して問い合わせを繰り返し実行する場合、Unixシステムでは環境変数PSQL_WATCH_PAGERがページャプログラムを検索するために代わりに使用されます。
これは従来のページャを混乱させる可能性があるため別に設定されていますが、psqlの出力フォーマットを理解するツール(pspg --streamなど)に出力を送るために使用できます。
          

	pager_min_lines
	

pager_min_linesがページ高より大きな数に設定されている場合、少なくともこれに設定されている行数の出力がなければ、ページャプログラムを呼び出しません。
デフォルトの設定は0です。
          

	recordsep
	

位置揃えなしの出力書式で使用されるレコード（行）の区切り文字を指定します。
デフォルトは改行文字です。
          

	recordsep_zero
	

位置揃えなしの出力書式で使用されるレコードの区切り文字をゼロバイトに指定します。
          

	tableattr (または T)
	

HTML出力書式では、これはtableタグ内に記述する属性を指定します。
これを使用して、例えば、cellpaddingやbgcolorを指定することができます。
border属性は既に\pset borderによって処理されているので、このコマンドでborderを指定する必要はないでしょう。
valueの指定がない場合、テーブル属性の設定は解除されます。
          


latex-longtable書式では、これは
左揃えされたデータ型を含む各列の幅の比率を制御します。
空白文字で区切られた値のリスト、例えば'0.2 0.2 0.6'として指定します。
指定がない出力列は最後に指定された値を使用します。
          

	title (または C)
	

今後表示される全てのテーブル用にテーブルタイトルを設定します。
これは出力に説明のためのタグを付けたい場合に有用です。
valueがない場合、タイトルの設定が解除されます。
          

	tuples_only (または t)
	

valueを指定する場合、それぞれタプルのみの表示を有効にする、onまたは無効にするoffのいずれかでなければなりません。
valueを省略した場合、このコマンドはタプルのみの表示と通常表示をトグルします。
通常表示では列のヘッダ、タイトル、各種フッタなどのその他の情報が追加されます。
タプルのみのモードでは、テーブルの実データのみが表示されます。
          

	unicode_border_linestyle
	

unicodeの線の形式の境界の形式をsingleまたはdoubleのどちらかに設定します。
          

	unicode_column_linestyle
	

unicodeの線の形式の列の形式をsingleまたはdoubleのどちらかに設定します。
          

	unicode_header_linestyle
	

unicodeの線の形式のヘッダの形式をsingleまたはdoubleのどちらかに設定します。
          

	xheader_width
	

拡張出力のヘッダの最大幅を、full（デフォルト値）、column、page、または整数値のいずれかに設定します。
          


full: 拡張ヘッダは切り詰められることなく、最も広い出力行と同じ幅になります。
          


column: ヘッダ行を最初の列の横幅に切り詰めます。
          


page: ヘッダ行を端末の幅に切り詰めます。
          


整数値: ヘッダ行の正確な最大幅を指定します。
          




        


これらの異なる書式がどのように見えるかを示した実例が、下記の例にあります。
        
ヒント


\psetには各種のショートカットコマンドがあります。
\a、\C、\f、\H、\t、\T、\xを参照してください。
        


	\qまたは\quit
	

psqlプログラムを終了します。
スクリプトファイルでは、そのスクリプトの実行のみが終了します。
        

	\qecho text [ ... ] 
	

このコマンドは、\echoと同じです。
ただし、出力が\oにより設定された問い合わせ出力チャネルに書き出される点が異なります。
        

	\rまたは\reset
	

問い合わせバッファをリセット（クリア）します。
        

	\restrict restrict_key
	

指定されたキーで「制限付き」モードに入ります。
このモードで許可されているメタコマンドは\unrestrictのみで、制限付きモードから出るためのものです。
キーには英数字のみを含めることができます。
        


このコマンドは、主にpg_dump、pg_dumpall、およびpg_restoreで生成されるプレーンテキストダンプでの使用を目的としていますが、他の場所でも役に立つかもしれません。
        

	\s [ filename ]
	

psqlのコマンドラインの履歴をfilenameに出力します。
filenameが省略された場合、履歴は標準出力に書き出されます(適切であればページャを使います)。
このコマンドは、psqlがReadlineサポートなしの状態でビルドされた場合は利用できません。
        

	\set [ name [ value [ ... ] ] ]
	

psqlの変数nameをvalue、または複数のvalueが与えられた場合はそれらを連結したものに設定します。
第一引数しか指定されない場合は、変数に空文字列の値が設定されます。
変数を未設定とするには、\unsetコマンドを使用してください。
        

引数をまったく取らない\setは、現在設定されているpsql変数すべての名前と値を表示します。
        


変数名には、文字、数字、アンダースコアを使用することができます。
詳細は、後述の変数を参照してください。
変数名は大文字小文字を区別します。
        


psqlの動作を制御する、あるいは接続状態を表す値に自動的に設定される、という点で特別な変数がいくつかあります。
これらの変数については、以下の変数に記載されています。
        
注記


このコマンドはSQLのSETコマンドとは関係ありません。
        


	\setenv name [ value ]
	

環境変数nameをvalueに設定します。
valueが与えられない場合は、その環境変数を未設定状態にします。
以下に例を示します。


testdb=> \setenv PAGER less
testdb=> \setenv LESS -imx4F


	\sf[+] function_description 
	

このコマンドは、CREATE OR REPLACE FUNCTIONコマンドやCREATE OR REPLACE PROCEDUREコマンドの形式で、指定された関数やプロシージャの定義を抽出し表示します。
この定義は、\oで設定された現在の問い合わせ出力チャネルに出力されます。
        


対象の関数は、名前だけまたは、例えばfoo(integer, text)のように名前と引数で指定することができます。
同じ名前の関数が複数存在する場合は、引数の型を指定しなければなりません。
        


コマンド名に+を付けると、出力行に関数本体の先頭行を1行目と数える行番号が付けられます。
        


他のほとんどのメタコマンドと異なり、行の残り部分はすべて\sfの引数であると常に解釈され、引数内の変数の置換も逆引用符の展開も行われません。
        

	\sv[+] view_name 
	

このコマンドは、指定したビューの定義をCREATE OR REPLACE VIEWコマンドの形式で取得して表示します。
定義は現在の問い合わせの出力チャネルに表示されます。
これは\oで設定できます。
         


コマンド名に+が付与された場合は、出力行に1から番号が付けられます。
         


他のほとんどのメタコマンドと異なり、行の残り部分はすべて\svの引数であると常に解釈され、引数内の変数の置換も逆引用符の展開も行われません。
        

	\startpipeline, \sendpipeline, \syncpipeline, \endpipeline, \flushrequest, \flush, \getresults [ number_results ]
	

このコマンド群は、SQL文のパイプライン化を実装します。
パイプラインは\startpipelineで始まり、\endpipelineで終わらなければなりません。
その間に、\syncpipelineコマンドをいくつも使用できます。
これは、進行中のパイプラインを終了させず、送信バッファをフラッシュしないSyncメッセージを送信します。
パイプラインモードでは、前の文の結果を待たずに文がサーバに送信されます。
詳細は「パイプラインモード」を参照してください。
       


パイプラインの進行中に実行されるすべての問い合わせは、拡張問い合わせプロトコルを使用します。
問い合わせは、セミコロンで終わるとパイプラインに追加されます。
メタコマンド\bind、\bind_named、\close_prepared、または\parseは、進行中のパイプラインで使用できます。
パイプラインが進行している間、\sendpipelineは現在の問い合わせバッファをパイプラインに追加します。
\g、\gx、または\gdescなどの他のメタコマンドは、パイプラインモードでは使用できません。
       


\flushrequestはパイプラインにフラッシュコマンドを追加します。
これにより、同期を実行したりパイプラインを終了したりしなくても、\getresultsを使用して結果を読み取ることができます。
\getresultsは、未送信のデータを自動的にサーバにプッシュします。
\flushを使用して、未送信データを手動でプッシュできます。
       


\getresultsはオプションのnumber_resultsパラメータを受け入れます。
指定した場合、保留中の最初のnumber_resultsの結果のみが読み取られます。
指定しないまたは0の場合、保留中のすべての結果が読み込まれます。
       


パイプラインモードで実行している場合、パイプラインの状態を報告するための専用のプロンプト変数を使用できます。
詳細は%Pを参照してください。
       


COPYはパイプラインモードではサポートされていません。
       


例:


\startpipeline
SELECT * FROM pg_class;
SELECT 1 \bind \sendpipeline
\flushrequest
\getresults
\endpipeline


       

	\t
	

出力列名ヘッダと行数フッタの表示を切り替えます。
このコマンドは\pset tuples_onlyと同じで、簡便性のために用意されています。
        

	\T table_options
	

HTML出力書式におけるtableタグ内部に記述する属性を指定します。
このコマンドは\pset tableattr table_optionsと同じ効力を持ちます。
        

	\timing [ on | off ]
	

パラメータがある場合、各SQL文にかかる時間の表示の有無をonまたはoffに設定します。
パラメータがない場合、表示をonとoffの間で切り替えます。
表示はミリセカンド単位です。
1秒より長い時間は 分:秒 の形式で表示され、必要なら時間と日のフィールドが追加されます。
        

	\unrestrict restrict_key
	

「制限付き」モード（つまり、他のすべてのメタコマンドがブロックされている状態）から出ます。ただし、指定されたキーが制限付きモードに入った時に\restrictに与えられたものと一致した場合です。
        


このコマンドは、主にpg_dump、pg_dumpall、およびpg_restoreで生成されるプレーンテキストダンプでの使用を目的としていますが、他の場所でも役に立つかもしれません。
        

	\unset name
	

psql変数nameを未設定状態にします（削除します）。
        


psqlの動作を制御するほとんどの変数は未設定にすることができず、\unsetはそれをデフォルト値に設定するものとして解釈されます。
以下の変数を参照してください。
        

	\wまたは\write filename, \wまたは\write |command
	

現在の問い合わせバッファを、filenameファイルに書き出すか、もしくは、シェルコマンドcommandにパイプで渡します。
現在の問い合わせバッファが空の場合、最も最近に実行された問い合わせを書き出します。
        


引数が|で始まっている場合、行の残りの部分はすべて実行するcommandであると解釈され、その中では変数の置換も逆引用符の展開も行われません。
行の残り部分は、単にあるがままにシェルに渡されます。
        

	\warn text [ ... ]
	

このコマンドは、出力が標準出力ではなくpsqlの標準エラーチャネルに書かれることを除いて\echoと同一です。
        

	\watch [ i[nterval]=seconds ] [ c[ount]=times ] [ m[in_rows]=rows ] [ seconds ]
	

現在の問い合わせバッファを（\gと同じように）繰り返し実行します。
中断するか、問い合わせが失敗するか、（指定されていれば）実行回数の上限に達するか、問い合わせが最小行数を返さなくなるかで終了します。
実行の間に指定秒数（デフォルトは2）の休止が入ります。
デフォルトの待機時間は変数WATCH_INTERVALで変更できます。
後方互換性のため、secondsは前にinterval=を付けても付けなくても指定できます。
各問い合わせの結果は、\pset titleの文字列（もしあれば）、問い合わせ開始時の時刻、および遅延間隔を含むヘッダとともに表示されます。
        


現在の問い合わせバッファが空の場合、最も最近に送信された問い合わせが再実行されます。
        

	\x [ on | off | auto ]
	

拡張テーブル形式モードを設定またはトグルします。
従って、このコマンドは\pset expandedと同じ効力を持ちます。
       

	\z[Sx] [ pattern ]
	

patternを指定すると、パターンに名前がマッチするテーブル、ビュー、およびシーケンスのみが表示されます。
デフォルトではユーザが作成したオブジェクトのみが表示されます。
システムオブジェクトを含めるためには、パターンまたはS修飾子を付与してください。
コマンド名にxが付与された場合は、拡張モードで結果が表示されます。
        


これは\dp（「権限の表示（display privileges）」）の別名です。
        

	\! [ command ]
	

引数がないときはサブシェルに制御を渡し、サブシェルが終了したらpsqlが再開されます。
引数があるときは、シェルコマンドcommandを実行します。
        


他のほとんどのメタコマンドと異なり、行の残り部分はすべて\!の引数であると常に解釈され、引数内の変数の置換も逆引用符の展開も行われません。
行の残りの部分は単にあるがままにシェルに渡されます。
        

	\? [ topic ]
	

ヘルプ情報を表示します。
オプションのtopicパラメータ（デフォルトはcommands）はpsqlのどの部分を説明するかを選択します。
commandsはpsqlのバックスラッシュコマンドについて、optionsはpsqlに渡すことができるコマンドラインオプションについて、variablesはpsqlの設定変数についてのヘルプを表示します。
        

	\;
	

バックスラッシュ-セミコロンは前述のコマンドと同じ位置づけのメタコマンドではありません。そうではなく単にセミコロンを追加処理無しで問い合わせバッファに加えます。
        


通常、psqlは、コマンド終了のセミコロンに到達したら、更なる入力が現在行に残っていても、SQLコマンドをすぐにサーバに送ります。
よって、例えば、


select 1; select 2; select 3;



上記は3つのSQLコマンドが個々にサーバに送られることになり、各々の結果は続く次コマンドの前に表示されます。
しかしながら、\;として挿入されたセミコロンはコマンド処理を誘発せず、その後、そのさらに後のコマンドは事実上結合されて、サーバに一つのリクエストとして送られます。
したがって、例えば、


select 1\; select 2\; select 3;



上記は、バックスラッシュの無いセミコロンに達したときに、3つのSQLコマンドがサーバに単一リクエストでサーバに送られます。
文字列にそれを複数トランザクションに分けるための明示的なBEGIN/COMMITが含まれているのでない限り、サーバはこのようなリクエストを単一トランザクションとして実行します。
（複数問い合わせの文字列をどのようにサーバが処理するかについて、詳しくは「簡易問い合わせでの複文」を参照してください。）
        




  
パターン


各種\dコマンドでは、patternパラメータを渡して、表示するオブジェクト名を指定することができます。
最も単純な場合では、パターンが正確にオブジェクト名に一致します。
パターン内の文字は、SQLの名前と同様、通常小文字に変換されます。
例えば\dt FOOはfooという名前のテーブルを表示します。
SQLの名前と同様、パターンを二重引用符で括ることで小文字への変換が取り止められます。
二重引用符自体をパターン内に含めなければならない場合、二重引用符で括った文字列の中で二重引用符を二重に記載してください。
これもSQLの引用符付き識別子の規則に従ったものです。
例えば、\dt "FOO""BAR"はFOO"BARという名前のテーブルを表示します（foo"barではありません）。
SQLの名前と異なり、パターンの一部を二重引用符で括ることができます。
例えば、\dt FOO"FOO"BARはfooFOObarという名前のテーブルを表示します。
  


patternパラメータが完全に省略されている場合、\dコマンドは現在のスキーマ検索パス内で可視のオブジェクトを全て表示します。
これは*というパターンを使用することと同じです。
（オブジェクトを含むスキーマが検索パス上にあり、同じ種類かつ同じ名前のオブジェクトが検索パス上それより前に存在しない場合、そのオブジェクトは可視であるといいます。
これは明示的なスキーマ修飾がない名前でオブジェクトを参照できるということと同じです。）
可視か否かに関わらずデータベース内の全てのオブジェクトを表示するには、*.*というパターンを使用します。
  


パターン内部では、*は（0文字を含む）任意の文字の並びにマッチし、?は任意の1文字にマッチします。
（この記法はUnixシェルのファイル名パターンと似ています。）
例えば、\dt int*は、intから始まる名前を持つテーブルを表示します。
しかし、二重引用符の中では、*と?はその特別な意味を失い、文字そのものにマッチします。
  


ドット(.)を含むリレーションパターンは、スキーマ名にオブジェクト名が続くパターンとして解釈されます。
例えば、\dt foo*.*bar*は、スキーマ名がfooで始まるスキーマ内のテーブル名がbarを含むテーブルを全て表示します。
ドットがない場合、パターンは現行のスキーマ検索パス内で可視的なオブジェクトのみにマッチします。
ここでも、二重引用符で括られた文字列内のドットは特別な意味を失い、文字そのものにマッチすることになります。
ドット(.)を2つ含むリレーションパターンは、データベース名にスキーマ名が続き、オブジェクト名が続くパターンとして解釈されます。
データベース名の部分はパターンとしては扱われず、現在接続しているデータベースの名前に一致しなければなりません。さもないとエラーが発生します。
  


ドット(.)を含むスキーマパターンは、データベース名にスキーマ名が続くパターンとして解釈されます。
例えば、\dn mydb.*foo*は、スキーマ名がfooを含むスキーマを全て表示します。
データベース名の部分はパターンとしては扱われず、現在接続しているデータベースの名前に一致しなければなりません。さもないとエラーが発生します。
  


上級者は文字クラス(例えば任意の数にマッチする[0-9])などの正規表現を使用することができます。
ほぼすべての正規表現の特殊文字は「POSIX正規表現」の規定通りに動作しますが、上述のように.が区切り文字となる点、*は正規表現の.*になる点、?が.になる点、$がそのまま扱われる点は例外です。
.の代わりに?と、R*の代わりに(R+|)と、R?の代わりに(R|)と記述することで、これらのパターン文字を模擬することができます。
通常の正規表現の解釈と異なり、パターンは常に名前全体にマッチするため、$を正規表現文字として扱う必要はありません。
（言い替えると、$は自動的にパターンに追加されます。）
パターンの適用位置を決められない場合は、*を先頭や末尾に記載してください。
二重引用符の内側では、正規表現の特殊文字はその意味を失い、文字そのものにマッチすることになる点に注意してください。
また、正規表現の特殊文字は、演算子名のパターン（つまり\doの引数）では文字そのものにマッチします。
  


高度な機能
変数


psqlは一般的なUnixコマンドシェルに似た変数の置換機能を提供します。
変数とは名前と値の組み合わせです。
値として任意の長さの任意の文字列を使用できます。
名前は文字(非ラテン文字を含む)、数字、アンダースコアから構成されなければなりません。
    


変数を設定するには、psqlの\setメタコマンドを使用します。
以下に例を示します。


testdb=> \set foo bar



この例では、変数fooをbarという値に設定しています。
変数の内容を取り出すには、以下のように変数名の前にコロンを付けます。


testdb=> \echo :foo
bar



これは通常のSQLコマンド内とメタコマンド内の両方で動作します。
後述のSQL差し替えで詳しく説明します。
    


第二引数なしで\setを呼び出すと、その変数には空文字列の値が設定されます。
変数を未設定状態にする(つまり削除する)ためには、\unsetコマンドを使用してください。
すべての変数の値を表示するためには、引数なしで\setを呼び出してください。
    
注記


\setの引数は他のコマンドと同じ置換規則に従います。
このため、\set :foo 'something'のような参照を作成して、Perl™における「ソフトリンク」やPHP™における「可変変数」に当たるものを得られます。
しかし、残念ながら（あるいは幸運にも）、このような構成をうまく使用する方法はありません。
一方、\set bar :fooのようにして変数をコピーするのは、完全に有効な方法です。
    



これらの変数の多くは、psqlに特別扱いされています。
これらは、変数の値を変更することにより、実行時に変更可能なオプションの設定を表現します。
またpsqlの変更可能な状態を表現しているものもあります。
慣習上、特別視される変数の名前はすべてASCII大文字（と数字とアンダースコア）からなります。
将来的な互換性を最大限考慮するために、自分で作成した変数にはこのような変数名を使用しないでください。
   


psqlの動作を制御する変数は、一般に未設定にしたり、無効な値に設定したりすることができません。
\unsetコマンドの実行は許されますが、変数をデフォルト値に設定するものとして解釈されます。
第2引数なしの\setコマンドは、onの値を受け付ける制御変数では変数をonに設定するものとして解釈され、それ以外の場合は拒絶されます。
また、 onとoffの値を受け付ける制御変数では、trueやfalseなどそれ以外の論理値の共通で使われる綴りも受け付けます。
   


特別に扱われる変数を以下に示します。
   
	
       AUTOCOMMIT
       
      
	

この変数の値がonの場合（これがデフォルトです）、各SQLコマンドの実行が成功すると、自動的にコミットされます。
コミットを延期するには、BEGINもしくはSQLのSTART TRANSACTIONコマンドを入力する必要があります。
値がoffもしくは未設定の場合、明示的にCOMMITもしくはENDを発行するまで、SQLコマンドはコミットされません。
自動コミット無効モードでは、トランザクションブロック以外でコマンドが発行されると、そのコマンドを実行する前に、自動的にBEGINコマンドが発行されます（ただし、そのコマンド自体がBEGINコマンドやその他のトランザクション制御コマンドである場合、トランザクションブロック内で実行することができないコマンド（VACUUMなど）である場合は除きます）
        
注記


自動コミット無効モードでは、ABORTやROLLBACKを発行して、明示的に失敗したトランザクションを放棄しなければなりません。
また、コミットせずにセッションを終了した場合は、作業が失われてしまうので注意してください。
        

注記


PostgreSQL™は、伝統的に自動コミット有効モードで動作していましたが、自動コミット無効モードの方がよりSQLの仕様に近いものです。
自動コミット無効モードは、システム全体に対するpsqlrcファイル、もしくは、個人用の~/.psqlrcファイルで設定すれば実現できます。
        


	COMP_KEYWORD_CASE
	

SQLキーワードを補完する時に大文字小文字のどちらを使用するかを決定します。
lowerまたはupperが設定された場合、補完された単語はそれぞれ小文字または大文字になります。
preserve-lowerまたはpreserve-upper（デフォルト）が設定された場合、
補完された単語は入力済みの文字の大文字小文字を引き継ぎますが、何も入力されていない場合はそれぞれ小文字または大文字に補完されます。
        

	DBNAME
	

現在接続しているデータベース名です。
この変数は（プログラム起動時も含め）データベースに接続する度に設定されますが、変更したり、未設定にすることもできます。
        

	ECHO
	

allに設定された場合、空でない全ての入力行は、標準出力に書き出されます。
（これは対話式に読み込まれる行には適用されません。）
この動作をプログラム起動時に設定するには、-aスイッチを使用してください。
queriesに設定された場合、psqlは各問い合わせがサーバに送信されるときに表示します。
この動作を選択するオプションは-eです。
errorsに設定された場合、失敗した問い合わせのみが標準エラー出力に出力されます。
この動作に対応するオプションは-bです。
none（デフォルトです）に設定された場合、どの問い合わせも表示されません。
        

	ECHO_HIDDEN
	

この変数がonに設定されている場合、バックスラッシュコマンドがデータベースに問い合わせを行う時、最初にその問い合わせが表示されます。
この機能は、PostgreSQL™内部動作について調べたり、自作プログラム内で同様の関数機能を用意したりするのに役立つでしょう。
（この動作をプログラム起動時に選択するには-Eスイッチを使用してください。）
この変数をnoexecという値に設定した場合、問い合わせは実際にサーバに送信、実行されずに、単に表示されるだけになります。
デフォルト値はoffです。
        

	ENCODING
	

現在のクライアント側の文字集合符号化方式です。
これは（プログラムの起動時を含め）データベースに接続する度に、また符号化方式を\encodingで変更した時に設定されますが、変更したり、未設定にすることができます。
        

	ERROR
	

最後のSQL問い合わせが失敗したならtrue、成功したならfalse。
SQLSTATEも参照してください。
        

	FETCH_COUNT
	

この変数が0より大きな整数値に設定されている場合、SELECT問い合わせの結果は、指定した行数の集合として取り出され、表示されます。
デフォルトの動作では、表示する前にすべての結果が取り出されます。
したがって、結果セットの大きさに関係なくメモリの使用量が限定されます。
この機能を有効とする場合に100から1000までの値がよく使用されます。
この機能を使用する際には、既に一部の行が表示されている場合、問い合わせが失敗する可能性があることに注意してください。
        
ヒント


任意の出力書式でこの機能を使用することができますが、デフォルトのaligned書式は適していません。
FETCH_COUNT行のグループそれぞれが別々に整形されてしまい、行のグループによって列幅が異なることになるためです。
他の出力書式は適切に動作します。
        


	HIDE_TABLEAM
	

この変数がtrueに設定されていれば、テーブルのアクセスメソッドの詳細は表示されません。
これは主にリグレッションテストで有用です。
        

	HIDE_TOAST_COMPRESSION
	

この変数がtrueに設定されていれば、列の圧縮方式の詳細は表示されません。
これは主にリグレッションテストで有用です。
        

	HISTCONTROL
	

この変数をignorespaceに設定した場合、空白文字から始まる行は履歴リストには入りません。
ignoredupsに設定した場合、直前の履歴と同じ行は履歴リストに入りません。
ignorebothに設定した場合は、上記の2つを組み合わせたものになります。
none（デフォルトです）に設定した場合は、対話モードで読まれる全ての行が履歴リストに保存されます。
        
注記


この機能はBashの機能を真似たものです。
        


	HISTFILE
	

履歴を格納するために使用されるファイルの名前です。
未設定にすると、ファイル名は環境変数PSQL_HISTORYから取得されます。
それも設定されていない場合、デフォルトは~/.psql_history、またはWindowsでは%APPDATA%\postgresql\psql_historyです。
例えば、以下を


\set HISTFILE ~/.psql_history-:DBNAME



~/.psqlrc内に指定すると、psqlはデータベースごとに別々の履歴を保持します。
        
注記


この機能はBashの機能を真似たものです。
        


	HISTSIZE
	

コマンド履歴に保存するコマンドの最大数（デフォルトは500）です。
負の値に設定すると、制限がなくなります。
        
注記


この機能はBashの機能を真似たものです。
        


	HOST
	

接続中のデータベースサーバホストです。
この変数は（プログラム起動時も含め）データベースに接続する度に設定されますが、変更したり、未設定にすることもできます。
        

	IGNOREEOF
	

この変数を1以下に設定すると、対話式セッションにEOF文字（通常Control+D）が送信された時、psqlが終了します。
1より大きな数値を設定すると、対話的セッションを終了するには、指定された数だけ、続けてEOF文字を送信しなければなりません。
数値以外を設定した場合は、10と解釈されます。
デフォルトは0です。
        
注記


この機能はBashの機能を真似たものです。
        


	LASTOID
	

INSERTや\lo_importコマンドによって返された、最後に影響を受けたOIDの値です。
この変数は、次のSQLコマンドの結果が表示されるまでの間のみ保証されています。
バージョン12からPostgreSQL™サーバはOIDシステム列をサポートしませんので、そのようなサーバを対象とした場合INSERTの後は、LASTOIDは常に0です。
        

	LAST_ERROR_MESSAGE, LAST_ERROR_SQLSTATE
	

現在のpsqlセッションの直近の失敗した問い合わせに対する主エラーメッセージと関連するSQLSTATEコード。あるいは、現在セッションでエラーが無い場合、空文字列と00000。
        

	
       ON_ERROR_ROLLBACK
       
       
      
	

onに設定されている場合、トランザクションブロック内である文がエラーとなった時に、そのエラーは無視され、トランザクションは継続します。
interactiveに設定されている場合、対話式セッション内の場合にのみエラーは無視されます。スクリプトファイルを読み込んでいる場合は無視されません。
off（デフォルトです）に設定されている場合、トランザクションブロック内の文がエラーになると、トランザクション全体をアボートします。
エラーロールバックのモードは、トランザクションブロック内で各コマンドの実行直前に暗黙的なSAVEPOINTを行い、コマンドが失敗した時にこのセーブポイントにロールバックすることで実現されています。
        

	ON_ERROR_STOP
	

デフォルトではエラーの後もコマンド処理は続行されます。
この変数がonに設定されていると、代わりに即座に停止します。
対話モードではpsqlはコマンドプロンプトに戻ります。
これ以外ではpsqlは終了し、エラーコード1を返す致命的エラー条件と区別できるように、エラーコード3を返します。
どちらの場合でも、現在実行中のスクリプト（トップレベルのスクリプト、もしあれば関連性を持つ他のスクリプトすべて）は即座に終了します。
トップレベルのコマンド文字列が複数のSQLコマンドを含む場合、その時点のコマンドで処理は終了します。
        

	PIPELINE_COMMAND_COUNT
	

進行中のパイプラインでキューに入れられているコマンドの数。
        

	PIPELINE_RESULT_COUNT
	

実行中のパイプラインで、\flushrequestまたは\syncpipelineが実行され、サーバに結果の送信を強制したコマンドの数。
これらの結果は\getresultsを使用して取得できます。
        

	PIPELINE_SYNC_COUNT
	

進行中のパイプラインでキューに入れられた同期メッセージの数。
        

	PORT
	

接続中のデータベースサーバのポートです。
この変数は（プログラム起動時も含め）データベースに接続する度に設定されますが、変更することも未設定にすることもできます。
        

	PROMPT1, PROMPT2, PROMPT3
	

これらの変数は、psqlが発行するプロンプトの見た目を指定します。
後述のプロンプトを参照してください。
        

	QUIET
	

この変数をonに設定することはコマンドラインオプション-qと同じ効力を持ちます。
対話式モードではあまり役立ちません。
        

	ROW_COUNT
	

最後のSQL問い合わせにより、返された、あるいは、影響をうけた行数。あるいは、問い合わせが失敗したか行数が報告されていない場合、0。
        

	SERVER_VERSION_NAME, SERVER_VERSION_NUM
	

文字列としてのサーバのバージョン番号、例えば9.6.2、10.1、11beta1など、および数値形式でのバージョン番号、例えば90602、100001などです。
これらは（プログラムの起動時を含め）データベースに接続する度に設定されますが、変更することも未設定にすることもできます。
        

	SERVICE
	

サービス名（該当する場合）。
        

	SHELL_ERROR
	

最後のシェルコマンドが失敗した場合はtrue、成功した場合はfalse。
これは、\!、\g、\o、\w、および\copyメタコマンドを介して呼び出されたシェルコマンドと、逆引用符(`)展開に適用されます。
\oの場合、次の\oコマンドによって出力パイプが閉じられた時に、この変数が更新されることに注意してください。
SHELL_EXIT_CODEも参照してください。
        

	SHELL_EXIT_CODE
	

最後のシェルコマンドによって返された終了ステータス。
0–127はプログラム終了コードを表し、128–255はシグナルによる終了を示し、-1はプログラムの起動またはその終了ステータスの収集に失敗したことを示します。
これは、\!、\g、\o、\w、および\copyメタコマンドを介して呼び出されたシェルコマンドと、逆引用符(`)展開に適用されます。
\oの場合、この変数は、次の\oコマンドによって出力パイプが閉じられた時に、更新されます。
SHELL_ERRORも参照してください。
        

	SHOW_ALL_RESULTS
	

この変数がoffに設定されている場合、結合された問い合わせ（\;）の最後の結果だけが表示されます。
すべての結果は表示されません。
デフォルトはonです。
offの動作は古いバージョンのpsqlとの互換性のためです。
        

	SHOW_CONTEXT
	

この変数は値never、errors、あるいはalwaysに設定することができ、CONTEXTフィールドがサーバからのメッセージに表示されるかどうかを制御します。
デフォルトはerrorsです（CONTEXTはエラーメッセージ内では表示されますが、注意や警告メッセージでは表示されません）。
この設定はVERBOSITYがterseまたはsqlstateに設定されている場合は効果がありません。
（\errverboseも参照してください。こちらは受け取ったばかりのエラーについて、冗長なメッセージが必要なときに使えます。）
        

	SINGLELINE
	

この変数をonに設定することはコマンドラインオプション-Sと同じ効力を持ちます。
        

	SINGLESTEP
	

この変数をonに設定することはコマンドラインオプション-sと同じ効力を持ちます。
        

	SQLSTATE
	

最後のSQL問い合わせの失敗に関するエラーコード（付録A PostgreSQL™エラーコードを参照）、あるいは、SQLが成功した場合には00000。
        

	USER
	

接続中のデータベースユーザです。
この変数は（プログラム起動時も含め）データベースに接続する度に設定されますが、変更することも未設定にすることもできます。
        

	VERBOSITY
	

この変数をdefault、verbose、terse、sqlstateのいずれかに設定することで、エラー報告の冗長性を制御できます。
（\errverboseも参照してください。こちらは受け取ったばかりのエラーについて、冗長なメッセージが必要なときに使えます。）
        

	VERSION, VERSION_NAME, VERSION_NUM
	

これらの変数はプログラムの起動時にpsqlのバージョンを表すために設定され、それぞれ冗長な文字列、短い文字列（例：9.6.2、10.1、11beta1）、数字（例：90602、100001）です。
これらは変更することも未設定にすることもできます。
        

	WATCH_INTERVAL
	

この変数は、\watchが問い合わせを実行するまでのデフォルトの待機間隔を秒単位で設定します。
デフォルトは2秒です。
コマンドで間隔を指定すると、この変数は上書きされます。
        




SQL差し替え


psqlの変数には、通常のSQL文やメタコマンドの引数の中で使用（「差し替え：interpolate」）できるという重要な機能があります。
さらにpsqlは、
SQLリテラルと識別子として使用される変数の値が適切に引用符付けされていることを保証する機能を提供します。
引用符付けをまったく行わずに差し替えるための構文は、変数名の前にコロン(:)を付けることです。
以下に例を示します。


testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :foo;



この例では、問い合わせはmy_tableテーブルに対して行われます。
これが安全ではない場合があることに注意して下さい。
変数の値はそのままコピーされるので、対応のとれていない引用符やバックスラッシュコマンドさえも含めることができます。
挿入した場所で変数が展開された時に、確実に正しい意味になるようにしなければなりません。
    


値がSQLリテラルや識別子内で使用される場合、それが引用符付けされるように調整することがもっとも安全です。
SQLリテラルとして変数値を引用符付けするためには、コロンの後に変数名を単一引用符で括って記述してください。
SQL識別子として値を引用符付けするためには、コロン後に変数名を二重引用符で括って記述してください。
これらの式は正しく引用符と変数値内に埋め込まれた特殊文字を扱います。
前の例は以下のように記述することでより安全になります。


testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :"foo";


    


変数差し替えは、引用符付けされたSQLリテラルと識別子の中では行われません。
したがって':foo'などの式は、変数の値から引用符付けしたリテラルを生成するようには動作しません
（値の中に埋め込まれた引用符を正しく取り扱えませんので、もし動作したとしたら安全ではありません）。
    


この機能の有効な利用方法の例は、ファイルの内容をテーブル列にコピーする場合も利用することができます。
その際は、ファイルをまず変数に読み込み、引用符付けした文字列として変数名を差し替えます。


testdb=> \set content `cat my_file.txt`
testdb=> INSERT INTO my_table VALUES (:'content');



（my_file.txtにNULバイトが含まれている場合、これはうまく動作しないことに注意してください。
psqlは変数値内に埋め込まれたNULバイトをサポートしません。）
    


コロン（:）もSQLコマンド内で正規に使用できますので、
指定した変数が現在設定されていない場合、差し替え時の見かけの置換(:name、:'name'、:"name")は行われません。
コロンをバックスラッシュでエスケープすれば、常に差し替えから保護することができます。
    


:{?name}特別構文は、その変数が存在しているかどうかに応じてTRUEかFALSEを返します。従って、コロンがバックスラッシュでエスケープされていない限り、常に置き換えられます。
    


変数用のコロン構文は、ECPGのような組み込みの問い合わせ言語用の標準SQLとして規定されています。
配列の一部の切り出し、および型キャスト用のコロン構文はPostgreSQL™の拡張であり、標準での使用方法と競合することがあります。
SQLリテラルまたは識別子として変数の値をエスケープさせる引用符付きコロン構文はpsqlの拡張です。
    

プロンプト


psqlが発行するプロンプトは好みに応じてカスタマイズできます。
PROMPT1、PROMPT2、PROMPT3という3つの変数はプロンプトの表示内容を示す文字列や特別なエスケープシーケンスを持ちます。
プロンプト1はpsqlが新しいコマンドを受け付ける際に発行される通常のプロンプトです。
プロンプト2は、例えばコマンドがセミコロンで終わっていない、または、引用符が閉じていないなど、コマンドの入力中にさらなる入力が期待される際に発行されます。
プロンプト3はSQLのCOPY FROM STDINコマンドを実行中で、端末上で行の値の入力が必要な際に発行されます。
    


選択されたプロンプト変数の値はそのまま文字として表示されます。
ただし、パーセント（%）が含まれる場合は例外です。
この場合は、次の文字に従って、特定のテキストに置換されます。
置換対象として定義されているのは次のものです。

    
	%M
	

データベースサーバの（ドメイン名付きの）完全なホスト名です。その接続がUnixドメインソケットの場合は[local]となります。
ただし、Unixドメインソケットがコンパイル時に設定したデフォルトの場所に存在しない場合は、[local:/dir/name]となります。
        

	%m
	

最初のドット以降を省略したデータベースサーバのホスト名です。その接続がUnixドメインソケットの場合は[local]となります。
         

	%>
	データベースサーバが監視するポート番号です。

	%n
	

データベースセッションユーザの名前です。
（この値の展開結果は、SET SESSION AUTHORIZATIONコマンドの実行によってデータベースセッション中に変わることがあります。）
         

	%s
	サービス名です。

	%/
	接続中のデータベース名です。

	%~
	デフォルトデータベースの場合に~（チルダ）が出力される点を除いて、%/と同じです。

	%#
	

セッションユーザがデータベーススーパーユーザである場合は#、それ以外の場合は>となります。
（この値の展開結果は、SET SESSION AUTHORIZATIONコマンドの実行によってデータベースセッション中に変わることがあります。）
         

	%p
	現在接続しているバックエンドのプロセスIDです。

	%P
	

パイプラインの状態です。
パイプラインではない場合はoff、進行中のパイプラインではon、中止されたパイプラインではabortです。
        

	%R
	

プロンプト1の場合、通常は=ですが、条件ブロックの使われない部分では@、シングル行モードでは^、また、データベースとの接続が切れたセッションでは!になります（\connectが失敗した場合に発生します）。
プロンプト2の場合、%Rは、なぜpsqlがさらなる入力を要求しているかによって決まる文字に置き換えられます。
これは、単にコマンドがまだ終了していない場合は-ですが、/* ... */のコメントがまだ終了していない場合は*、引用符付きの文字列が終了していない場合は単一引用符、引用符付きの識別子が終了していない場合は二重引用符、ドル引用文字列が終了していない場合はドル記号、そして閉じられていない左括弧がある場合は(となります。
プロンプト3の場合、%Rに対しては何も表示されません。
        

	%x
	

トランザクションの状態です。
トランザクションブロックの外にいる場合は空文字列に、トランザクションブロックの中にいる場合は*に、失敗したトランザクションブロックの中にいる場合は!に、（接続されていないなど）トランザクションの状態が不定の場合は?になります。
        

	%l
	

現在の文の内部での行番号で、1から始まります。
         

	%digits
	

指定された8進の数値コードの文字に置換されます。
        

	%:name:
	

psqlの変数nameの値です。
詳細は上記の変数を参照してください。
        

	%`command`
	

通常の「逆引用符」による置き換えと同様で、commandの出力です。
        

	%[ ... %]
	

プロンプトには端末制御文字を含めることができます。
具体的には、色、背景、プロンプトテキストの様式の変更、端末ウィンドウのタイトルの変更などが指定できます。
Readlineの行編集機能を適切に動作させるためには、印字されない制御文字を%[と%]で囲んで、不可視であることを明示しなければなりません。
この記号の組み合わせはプロンプト内に複数記述することができます。
以下に例を示します。


testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%[%033[0m%]%# '



これにより、VT100互換のカラー端末では、太字フォントで（1;）、黒地に黄色の（33;40）プロンプトが表示されます。
        

	%w
	

PROMPT1の直近の出力と同じ幅の空白です。
これは、複数行の文が最初の行とそろっているが第2のプロンプトが見えないようにするためにPROMPT2の設定として使えます。
        






プロンプトにパーセント記号を入れる場合は、%%と記述してください。
デフォルトのプロンプトは、プロンプト1と2が'%/%R%x%# '、プロンプト3が'>> 'です。
    
注記


この機能はtcshの機能を真似たものです。
    


コマンドライン編集


psqlはReadlineまたはlibeditライブラリがあれば、それを使って行の編集と検索を行ないます。
コマンド履歴はpsqlの終了時に自動的に保存され、psqlの起動時に再読み込みされます。
前の行を取得するには、上矢印またはcontrol-Pと入力します。
    


タブ補完を使用して、多くの(すべてではない)コンテキストで部分的に入力されたキーワードやSQLオブジェクト名を入力することもできます。
たとえば、コマンドの開始時にinsと入力してTABキーを押すとinsert into が入力されます。
次に、テーブル名またはスキーマ名の数文字を入力してTABキーを押すと、入力されていない名前が入力されたり、複数の補完候補がある場合に補完候補のメニューが表示されます。
（使用しているライブラリによっては、メニューを表示するにはTABキーを複数回押す必要があります。）
    


SQLオブジェクト名のタブ補完は、マッチする可能性のあるものを見つけるためサーバへの問い合わせの送信が必要です。
コンテキストによっては、これが他の操作と干渉することもあります。
たとえば、BEGINの後、タブ補完の問い合わせがその間に発行されれば、SET TRANSACTION ISOLATION LEVELを発行するには遅いでしょう。
タブ補完を何らかの事情により使用したくなければ、ホームディレクトリ内の.inputrcというファイルに以下のように書き込むことで無効にできます。


$if psql
set disable-completion on
$endif



（これはpsqlの機能ではなく、Readlineの機能です。
詳細についてはReadlineのドキュメントを参照してください。）
    


-n(--no-readline)コマンドラインオプションは、Readlineの使用を、psqlのその回の実行に限って無効にする場合にも便利です。
これにより、タブ補完、コマンドライン履歴の使用または記録、複数行コマンドの編集が防止されます。
TAB文字を含むテキストをコピーして貼り付ける必要がある場合に特に便利です。
    



環境
	COLUMNS
	

\pset columnsがゼロの場合、wrapped書式の幅、および、幅の広い出力がページャを必要とするかどうかを決める幅を制御します。
また自動拡張モードでは縦書式に切り替えるべきかどうかを制御します。
     

	PGDATABASE, PGHOST, PGPORT, PGUSER
	

デフォルトの接続パラメータです（「環境変数」を参照）。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     

	PSQL_EDITOR, EDITOR, VISUAL
	

\eコマンド、\efコマンド、\evコマンドで使用されるエディタです。
変数はこの順に検索され、設定された最初のものが使用されます。
いずれも設定されていない場合、デフォルトでUnixシステムではviを、Windowsシステムではnotepad.exeを使用します。
     

	PSQL_EDITOR_LINENUMBER_ARG
	

\e、\efまたは\evが行番号引数を付けて使用された場合、この変数は、ユーザのエディタに開始行番号を渡すために使用されるコマンドライン引数を指定します。
Emacs™またはvi™のようなエディタでは、これはプラス(+)記号です。
オプション名と行番号の間に空白文字が必要な場合は、変数の値の最後に空白文字を含めてください。
以下に例を示します。


PSQL_EDITOR_LINENUMBER_ARG='+'
PSQL_EDITOR_LINENUMBER_ARG='--line '


     


Unixシステム上のデフォルトは+です。
（デフォルトのエディタviに対応するものですが、他のよく使われる多くのエディタでも役に立ちます。）
一方Windowsシステムではデフォルトはありません。
     

	PSQL_HISTORY
	

コマンド履歴ファイルの場所を指定します。
チルダ（~）展開が行われます。
     

	PSQL_PAGER, PAGER
	

問い合わせ結果が画面に入り切らない場合、このコマンドによって結果をパイプします。
一般的に指定される値は、more、またはlessです。
ページャの使用を無効にするにはPSQL_PAGERやPAGERを空文字列にするか、\psetコマンドのページャ関連のオプションを調整します。
これらの変数は列挙した順で検査され、最初の設定されているものが使われます。
いずれも設定されていない場合、デフォルトで大部分のプラットフォームではmoreが使われ、しかし、Cygwinではlessが使われます。
     

	PSQL_WATCH_PAGER
	

\watchコマンドを使用して問い合わせを繰り返し実行する場合、デフォルトではページャは使用されません。
この動作は、UnixシステムではPSQL_WATCH_PAGERをページャコマンドに設定することで変更できます。
pspgページャ(PostgreSQL™の一部ではありませんが、多くのオープンソースソフトウェアディストリビューションで利用可能です)は、オプション--streamで起動すると、\watchの出力を表示できます。
     

	PSQLRC
	

ユーザの.psqlrcファイルの場所を指定します。
チルダ（~）展開が行われます。
     

	SHELL
	

\!コマンドが実行するコマンドです。
     

	TMPDIR
	

一時ファイルを格納するディレクトリです。
デフォルトは/tmpです。
     





このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数(「環境変数」参照)も使います。
  

ファイル
	psqlrcと~/.psqlrc
	

-Xオプションが渡されない場合、psqlは、データベースに接続した後、通常のコマンドを受け付け始める前に、システム全体用の開始ファイル(psqlrc)のコマンドを、続いてユーザ用の開始ファイル(~/.psqlrc)のコマンドを読み込み、実行しようとします。
これらのファイルは、\setやSETコマンドを使用して、好みに応じたクライアントやサーバを設定するために使用することができます。
    


システム全体の開始ファイルはpsqlrcという名前です。
デフォルトでは、インストレーションの「システム設定」ディレクトリの中で探されます。このディレクトリを特定するにはpg_config --sysconfdirを実行するのが最も確実です。
通常は、PostgreSQL™の実行ファイルを含むディレクトリからの相対パスで../etc/になります。
調べるディレクトリは、環境変数PGSYSCONFDIRを使って明示的に設定できます。
    


ユーザの個人用の開始ファイルは.psqlrcという名前で、実行しているユーザのホームディレクトリの中で探されます。
Windowsでは、個人用の開始ファイルは、その代わりに%APPDATA%\postgresql\psqlrc.confという名前になります。
どちらの場合でも、デフォルトのファイルパスは環境変数PSQLRCを設定することで上書きできます。
    


システム全体用の開始ファイルとユーザの個人用の開始ファイルに、たとえば~/.psqlrc-18や~/.psqlrc-18.0のように、ダッシュ記号とPostgreSQL™のメジャーリリース番号またはマイナーリリース番号をファイル名に付加することで、特定バージョンのpsql向けのファイルとすることができます。
マッチするバージョンのファイルはバージョン指定のないファイルよりも優先して読み込まれます。
このバージョンの接尾辞は上で説明したファイルパスの決定の後に追加されます。
    

	.psql_history
	

コマンドライン履歴はファイル~/.psql_history、Windowsの場合は%APPDATA%\postgresql\psql_historyに格納されます。
    


履歴ファイルの場所はpsql変数のHISTFILEまたは環境変数PSQL_HISTORYを介して明示的に設定することができます。
    




注釈
	
psqlは、同じまたはより古いメジャーバージョンのサーバと稼働させることが最善です。
特にバックスラッシュコマンドは、サーバがpsql自身のバージョンより新しいと失敗しやすくなります。
\d系列のバックスラッシュコマンドは9.2までさかのぼるバージョンのサーバで動作するはずですが、psql自身よりもサーバが新しい場合は、必ずしもそうではありません。
SQLコマンドの実行ならびに問い合わせ結果の表示といった一般的な機能はより新しいメジャーバージョンのサーバとでも動作するはずですが、すべての場合において保証することはできません。
      


メジャーバージョンが異なる複数のサーバとの接続のためにpsqlを使用したいのであれば、psqlの最新版を使用することを勧めます。
他の方法として、各メジャーバージョンのpsqlのコピーを保持し、確実にそれぞれのサーバに対応するバージョンを使用することができます。
しかし実際には、この複雑さを追加することは必要ではないはずです。
      

	

PostgreSQL™の9.6より前では、-cオプションが-X (--no-psqlrc)を暗示しましたが、現在ではそうなっていません。
      

	

PostgreSQL™の8.4より前では、psqlで1文字のバックスラッシュコマンドの最初の引数をコマンドの直後に空白文字を挟むことなく記述できました。
現在では何らかの空白が必要になっています。
      




Windowsユーザ向けの注意


psqlは「コンソールアプリケーション」としてコンパイルされます。
Windowsのコンソールウィンドウは、システムの他の部分とは異なる符号化方式を使用しているので、psqlで8ビット文字を使用する時には特別な配慮が必要です。
psqlは、コンソール用コードページとして問題があることを検出すると、起動時に警告を発します。
コンソール用コードページを変更するためには、以下の2つが必要です。

   
	

cmd.exe /c chcp 1252と入力して、コードページを設定します。
（1252はドイツ圏における適切なコードページです。システムに合わせて変更してください。）
Cygwinを使用しているのであれば、このコマンドを/etc/profileに追加してください。
     

	

コンソール用フォントをLucida Consoleに設定してください。
ラスタフォントは、ANSIコードページでは正しく動作しないためです。
     




例


最初に、複数行にわたるコマンドの入力例を示します。
プロンプトの変化に注意してください。


testdb=> CREATE TABLE my_table (
testdb(>  first integer not null default 0,
testdb(>  second text)
testdb-> ;
CREATE TABLE



さて、ここでテーブル定義を再度確認してみます。


testdb=> \d my_table
              Table "public.my_table"
 Column |  Type   | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 first  | integer |           | not null | 0
 second | text    |           |          |



次に、プロンプトをもっと面白いものに変更してみます。


testdb=> \set PROMPT1 '%n@%m %~%R%# '
peter@localhost testdb=>



テーブルにデータを入力したものと考えてください。データを見る場合は次のようにします。


peter@localhost testdb=> SELECT * FROM my_table;
 first | second
-------+--------
     1 | one
     2 | two
     3 | three
     4 | four
(4 rows)



\psetコマンドを使って、このテーブルの表示を違うタイプに変更することができます。


peter@localhost testdb=> \pset border 2
Border style is 2.
peter@localhost testdb=> SELECT * FROM my_table;
+-------+--------+
| first | second |
+-------+--------+
|     1 | one    |
|     2 | two    |
|     3 | three  |
|     4 | four   |
+-------+--------+
(4 rows)

peter@localhost testdb=> \pset border 0
Border style is 0.
peter@localhost testdb=> SELECT * FROM my_table;
first second
----- ------
    1 one
    2 two
    3 three
    4 four
(4 rows)

peter@localhost testdb=> \pset border 1
Border style is 1.
peter@localhost testdb=> \pset format csv
Output format is csv.
peter@localhost testdb=> \pset tuples_only
Tuples only is on.
peter@localhost testdb=> SELECT second, first FROM my_table;
one,1
two,2
three,3
four,4
peter@localhost testdb=> \pset format unaligned
Output format is unaligned.
peter@localhost testdb=> \pset fieldsep '\t'
Field separator is "    ".
peter@localhost testdb=> SELECT second, first FROM my_table;
one     1
two     2
three   3
four    4



その他の方法として、短縮されたコマンドを使用してみます。


peter@localhost testdb=> \a \t \x
Output format is aligned.
Tuples only is off.
Expanded display is on.
peter@localhost testdb=> SELECT * FROM my_table;
-[ RECORD 1 ]-
first  | 1
second | one
-[ RECORD 2 ]-
first  | 2
second | two
-[ RECORD 3 ]-
first  | 3
second | three
-[ RECORD 4 ]-
first  | 4
second | four


  


また、この出力書式オプションは\gを使って1つの問い合わせにだけ設定できます。


peter@localhost testdb=> SELECT * FROM my_table
peter@localhost testdb-> \g (format=aligned tuples_only=off expanded=on)
-[ RECORD 1 ]-
first  | 1
second | one
-[ RECORD 2 ]-
first  | 2
second | two
-[ RECORD 3 ]-
first  | 3
second | three
-[ RECORD 4 ]-
first  | 4
second | four


  


これは、\dfコマンドを使って、名前がint*plにマッチし、2番目の引数の型がbigintである関数のみを見つける例です。


testdb=> \df int*pl * bigint
                          List of functions
   Schema   |  Name   | Result data type | Argument data types | Type
------------+---------+------------------+---------------------+------
 pg_catalog | int28pl | bigint           | smallint, bigint    | func
 pg_catalog | int48pl | bigint           | integer, bigint     | func
 pg_catalog | int8pl  | bigint           | bigint, bigint      | func
(3 rows)


  


ここで、+オプションを使用してこれらの関数の一つに関する追加情報を表示し、xを使用して結果を拡張モードで表示します。


testdb=> \df+x int*pl integer bigint
List of functions
-[ RECORD 1 ]-------+-----------------------------
Schema              | pg_catalog
Name                | int48pl
Result data type    | bigint
Argument data types | integer, bigint
Type                | func
Volatility          | immutable
Parallel            | safe
Owner               | postgres
Security            | invoker
Leakproof?          | no
Access privileges   |
Language            | internal
Internal name       | int48pl
Description         | implementation of + operator


  


問い合わせの結果が適していれば、以下のように\crosstabviewコマンドを使用してクロス表形式で表示することができます。


testdb=> SELECT first, second, first > 2 AS gt2 FROM my_table;
 first | second | gt2
-------+--------+-----
     1 | one    | f
     2 | two    | f
     3 | three  | t
     4 | four   | t
(4 rows)

testdb=> \crosstabview first second
 first | one | two | three | four
-------+-----+-----+-------+------
     1 | f   |     |       |
     2 |     | f   |       |
     3 |     |     | t     |
     4 |     |     |       | t
(4 rows)




この2つ目の例では、掛け算の表を、行は逆順にソートし、列はそれとは別に昇順に示しています。


testdb=> SELECT t1.first as "A", t2.first+100 AS "B", t1.first*(t2.first+100) as "AxB",
testdb-> row_number() over(order by t2.first) AS ord
testdb-> FROM my_table t1 CROSS JOIN my_table t2 ORDER BY 1 DESC
testdb-> \crosstabview "A" "B" "AxB" ord
 A | 101 | 102 | 103 | 104
---+-----+-----+-----+-----
 4 | 404 | 408 | 412 | 416
 3 | 303 | 306 | 309 | 312
 2 | 202 | 204 | 206 | 208
 1 | 101 | 102 | 103 | 104
(4 rows)




名前
reindexdb — PostgreSQL™データベースのインデックスを再作成する

概要
reindexdb  [connection-option...] [option...]  
    [
       -S  |   --schema  
     schema
    ]
   ...   
    [
       -t  |   --table  
     table
    ]
   ...   
    [
       -i  |   --index  
     index
    ]
   ...   
    [
       -s  |   --system  
    ]
     [
      dbname  |   -a  |   --all  
   ]


説明


reindexdbは、PostgreSQL™データベース内のインデックスを再作成するユーティリティです。
  


reindexdbは、SQLコマンドREINDEXのラッパーです。
このユーティリティを使用しても他の方法でサーバにアクセスしても、データベースインデックスの再作成には実質的な違いはありません。
  

オプション


reindexdbは以下のコマンドライン引数を受け付けます。

    
	-a, --all
	

すべてのデータベースのインデックスを再作成します。
       

	--concurrently
	

CONCURRENTLYオプションを使います。
REINDEX(7)を参照してください。このオプションの注意がすべて詳しく説明されています。
       

	[-d] dbname, [--dbname=]dbname
	

-a/--allが使用されていない場合に、インデックス再作成を行なうデータベースの名前を指定します。
これが指定されていなければ、環境変数PGDATABASEからデータベース名が決まります。
これも設定されていない場合は、接続時に指定したユーザ名が使用されます。
dbnameは接続文字列でも構いません。
その場合、接続文字列パラメータは衝突するコマンドラインオプションに優先します。
       

	-e, --echo
	

reindexdbが生成しサーバに送信するコマンドを表示します。
       

	-i index, --index=index
	

indexのみを再作成します。
複数の-iスイッチを記述することで、複数のインデックスを再作成することができます。
       

	-j njobs, --jobs=njobs
	

njobs個のコマンドを同時に実行することで、reindexコマンドを並列で実行します。
このオプションは処理時間を短縮することもありますが、データベースサーバの負荷も増加します。
       


reindexdbはデータベースに対するnjobs個の接続を開くので、max_connectionsの設定は、これらの接続を許容するだけ十分に大きくしてください。
       


このオプションは--systemオプションと両立しません。
       

	-q, --quiet
	

進行メッセージを表示しません。
       

	-s, --system
	

データベースのシステムカタログのみ、インデックスを再作成します。
       

	-S schema, --schema=schema
	

schemaのみのインデックスを再作成します。
複数の-Sスイッチを指定することで、複数のスキーマのインデックスを再作成できます。
       

	-t table, --table=table
	

tableのインデックスのみを再作成します。
複数の-tを記述することで、複数のテーブルのインデックスを再作成することができます。
       

	--tablespace=tablespace
	

インデックスを再作成するテーブル空間を指定します。
(この名前は二重引用符で囲まれた識別子として処理されます。)
       

	-v, --verbose
	

処理中に詳細な情報を表示します。
      

	-V, --version
	

reindexdbのバージョンを表示し、終了します。
       

	-?, --help
	

reindexdbコマンドライン引数の使用方法を表示し、終了します。
      





   


また、reindexdbは、接続パラメータとして以下のコマンドライン引数を受け付けます。

    
	-h host, --host=host
	

サーバが稼働しているマシンのホスト名を指定します。
ホスト名がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
       

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはUnixドメインソケットファイルの拡張子を指定します。
       

	-U username, --username=username
	

接続するユーザ名を指定します。
       

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
       

	-W, --password
	

データベースに接続する前に、reindexdbは強制的にパスワード入力を促します。
       


サーバがパスワード認証を要求する場合reindexdbは自動的にパスワード入力を促しますので、これが重要になることはありません。
しかし、reindexdbは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
       

	--maintenance-db=dbname
	

-a/--allが使われている場合に、再インデックス付けするデータベースの一覧を集めるため、このデータベースに接続します。
指定されなければpostgresデータベースが使用され、もし存在しなければtemplate1が使用されます。
これは接続文字列でも構いません。
その場合、接続文字列パラメータは衝突するコマンドラインオプションに優先します。
また、データベース名自身以外の接続文字列パラメータは他のデータベースに接続する際に再利用されます。
       




   

環境
	PGDATABASE, PGHOST, PGPORT, PGUSER
	

デフォルトの接続パラメータです。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     





このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数(「環境変数」参照)も使います。
  

診断


問題が発生した場合、考えられる原因とエラーメッセージについての説明はREINDEX(7)とpsql(1)を参照してください。
データベースサーバは、指定したホストで稼働している必要があります。
また、libpqフロントエンドライブラリのデフォルトの設定や環境変数が適用されることに注意してください。
  

例


データベースtestのインデックスを再作成します。


$ reindexdb test


   


abcdというデータベース内のテーブルfooのインデックスとインデックスbarを再作成します。


$ reindexdb --table=foo --index=bar abcd


関連項目
REINDEX(7)


名前
vacuumdb — PostgreSQL™データベースの不要領域の回収と解析を行う

概要
vacuumdb  [connection-option...] [option...]  
    [
       -t  |   --table  
     table
      [( column [,...] )]
    ]
   ...  [
      dbname  |   -a  |   --all  
   ]

vacuumdb  [connection-option...] [option...]  
    [
       -n  |   --schema  
     schema
    ]
   ...  [
      dbname  |   -a  |   --all  
   ]

vacuumdb  [connection-option...] [option...]  
    [
       -N  |   --exclude-schema  
     schema
    ]
   ...  [
      dbname  |   -a  |   --all  
   ]


説明


vacuumdbは、PostgreSQL™データベースの不要領域のクリーンアップを行うユーティリティです。
また、vacuumdbはPostgreSQL™の問い合わせオプティマイザが使用する内部的な統計情報も生成します。
  


vacuumdbは、SQLコマンドVACUUMのラッパーです。
このユーティリティを使っても、これ以外の方法でサーバにアクセスしてバキュームや解析を行っても特に違いは生じません。
  

オプション


    vacuumdbでは、下記のコマンドライン引数を指定できます。
    
	-a, --all
	

        全てのデータベースに対してバキュームを行います。
       

	--buffer-usage-limit size
	

vacuumdbの指定された呼び出しに対してバッファアクセスストラテジリングバッファサイズを指定します。
このサイズは、このストラテジのパートとして再利用される共有バッファの数を計算するために使用されます。
VACUUM(7)を参照してください。
       

	[-d] dbname, [--dbname=]dbname
	

-a（または--all）も指定されていない場合、不要領域のクリーンアップ、または、解析を行うデータベース名を指定します。
データベース名が指定されていない場合は、データベース名は環境変数PGDATABASEから読み取られます。
この変数も設定されていない場合は、接続時に指定したユーザ名が使用されます。
dbnameは接続文字列に出来ます。その場合、接続文字列パラメータは競合するコマンドラインオプションを上書きします。
       

	--disable-page-skipping
	

可視性マップの内容に基づいてページを飛ばすことのないようにします。
       

	-e, --echo
	

vacuumdbが生成し、サーバに送るコマンドをエコー表示します。
       

	-f, --full
	

「完全な（full）」クリーンアップを行います。
       

	-F, --freeze
	

積極的にタプルを「凍結」します。
       

	--force-index-cleanup
	

無効なタプルを指しているインデックスエントリを常に削除します。
       

	-j njobs, --jobs=njobs
	

njobs個のコマンドを同時に実行することで、vacuumまたはanalyzeコマンドを並列で実行します。このオプションは処理時間を短縮することもありますがデータベースサーバの負荷も増加します。
       


vacuumdbはデータベースに対するnjobs個の接続を開くので、max_connectionsの設定が、これらの接続を許容するだけ十分に大きくしてください。
       


このモードを-f（FULL）オプションと一緒に使うと、一部のシステムカタログが並列処理されてデッドロックのエラーを起こす場合があることに注意してください。
       

	--min-mxid-age mxid_age
	

マルチトランザクションIDの年代が少なくともmxid_ageであるテーブルに対してのみ、バキュームもしくは解析コマンドを実行します。
この設定は、マルチトランザクションIDの周回を防ぐためテーブルに優先順位を付けて処理するのに有用です(「マルチトランザクションと周回」を参照してください)。
       


このオプションの目的のため、リレーションのマルチトランザクションIDの年代は、主であるリレーションの年代と、存在するなら、関連するTOASTテーブルの年代のうち最大のものです。
vacuumdbにより発行されたコマンドも、必要であればリレーションのTOASTテーブルを処理しますので、別々に分けて考える必要はないです。
       

	--min-xid-age xid_age
	

トランザクションIDの年代が少なくともxid_ageであるテーブルに対してのみ、バキュームもしくは解析コマンドを実行します。
この設定は、トランザクションIDの周回を防ぐためテーブルに優先順位を付けて処理するのに有用です(「トランザクションIDの周回エラーの防止」を参照してください)。
       


このオプションの目的のため、リレーションのトランザクションIDの年代は、主であるリレーションの年代と、存在するなら、関連するTOASTテーブルの年代のうち最大のものです。
vacuumdbにより発行されたコマンドも、必要であればリレーションのTOASTテーブルを処理しますので、別々に分けて考える必要はないです。
       

	--missing-stats-only
	

列、インデックス式または拡張統計オブジェクトの統計情報がないリレーションだけを解析します。
--analyze-in-stagesとともに使用すると、このオプションはvacuumdbが既存の統計情報をより低い統計情報目標で生成されたもので一時的に置換するのを防ぎ、問い合わせオプティマイザが一時的により不適切な選択をするのを回避できます。
       


このオプションは、--analyze-onlyまたは--analyze-in-stagesと組み合わせてのみ使用できます。
       


--missing-stats-onlyはpg_statisticとpg_statistic_ext_dataのSELECT権限を必要とし、これらはデフォルトでスーパーユーザに制限されていることに注意してください。
       

	-n schema, --schema=schema
	

schema内のすべてのテーブルのみをクリーンアップまたは解析します。
-nスイッチを複数記述することで複数のスキーマをバキュームできます。
       

	-N schema, --exclude-schema=schema
	

schema内のテーブルをクリーンアップまたは解析しません。
-Nスイッチを複数記述することで複数のスキーマを除外できます。
       

	--no-index-cleanup
	

無効なタプルを指しているインデックスエントリを削除しません。
       

	--no-process-main
	

主リレーションをスキップします。
       

	--no-process-toast
	

もし存在するなら、バキュームするテーブルに関連するTOASTテーブルをスキップします。
       

	--no-truncate
	

テーブルの終わりにある空のページを切り詰めません。
       

	-P parallel_workers, --parallel=parallel_workers
	

並列バキュームのためのパラレルワーカーの数を指定します。
これによりバキュームが複数CPUを活用してインデックスを処理できます。
VACUUM(7)を参照してください。
       

	-q, --quiet
	

進行メッセージを表示しません。
       

	--skip-locked
	

処理のためにすぐにロックできないリレーションをスキップします。
       

	-t table [ (column [,...]) ], --table=table [ (column [,...]) ]
	

tableのみをクリーンアップ/解析します。
列名は--analyzeや--analyze-onlyオプションがある場合にのみ設定できます。
複数の-tスイッチを記述することで複数のテーブルをバキュームすることができます。
       
ヒント


列を指定する場合は、シェルから括弧をエスケープする必要があるでしょう。
（後述の例を参照してください。）
        


	-v, --verbose
	

処理中に詳細な情報を表示します。
       

	-V, --version
	

vacuumdbのバージョンを表示し、終了します。
       

	-z, --analyze
	

オプティマイザが使用する、データベースの統計情報も算出します。
       

	-Z, --analyze-only
	

オプティマイザにより使用される統計情報の計算のみを行います（バキュームを行いません）。
       

	--analyze-in-stages
	

--analyze-onlyと同様、オプティマイザにより使用される統計情報の計算のみを行います（バキュームを行いません）。
分析の3つの段階を実行します。
最初の段階では、使用可能な統計情報をより迅速に生成するために最小の統計情報目標(default_statistics_targetを参照)を使い、後続のステージでは完全な統計情報を構築します。
       


このオプションは、統計情報を現在持たないデータベースや、完全に誤った統計情報を持つデータベースを解析する場合にのみ有用です。
例えば、リストアされたダンプやpg_upgradeによって新たにデータが生成された場合などです。
統計情報が既にあるデータベースに対してこのオプションで実行すると、初期段階の統計情報目標が低いため、問い合わせオプティマイザの選択が一時的に悪化する可能性があることに注意してください。
       

	-?, --help
	

vacuumdbのコマンドライン引数の使用方法を表示し、終了します。
       




   


vacuumdbには、以下に記す接続パラメータ用のコマンドライン引数も指定することもできます。
    
	-h host, --host=host
	

サーバが稼働しているマシンのホスト名を指定します。
ホスト名がスラッシュから始まる場合、Unixドメインソケット用のディレクトリとして使用されます。
       

	-p port, --port=port
	

サーバが接続を監視するTCPポートもしくはUnixドメインソケットファイルの拡張子を指定します。
       

	-U username, --username=username
	

接続するユーザ名を指定します。
       

	-w, --no-password
	

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
       

	-W, --password
	

データベースに接続する前に、vacuumdbは強制的にパスワード入力を促します。
       


サーバがパスワード認証を要求する場合vacuumdbは自動的にパスワード入力を促しますので、これが重要になることはありません。
しかし、vacuumdbは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
       

	--maintenance-db=dbname
	

-a/--allが使われている場合に、バキュームするデータベースの一覧を集めるため、このデータベースに接続します。
データベース名が指定されていなければpostgresデータベースが使用され、もし存在しなければtemplate1が使用されます。
これは接続文字列に出来ます。
その場合、接続文字列パラメータは競合するコマンドラインオプションを上書きします。
また、データベース名以外の接続文字列パラメータは他のデータベースに接続する時に再利用されます。
       




   

環境
	PGDATABASE, PGHOST, PGPORT, PGUSER
	

デフォルトの接続パラメータです。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     





このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数(「環境変数」参照)も使います。
  

診断


問題が発生した場合、考えられる原因とエラーメッセージについての説明はVACUUM(7)とpsql(1)を参照してください。
データベースサーバは、指定したホストで稼働している必要があります。
また、libpqフロントエンドライブラリのデフォルトの設定や環境変数が適用されることに注意してください。
  

例


testというデータベースをクリーンアップするには、下記のコマンドを実行します。


$ vacuumdb test


   


bigdbという名前のデータベースのクリーンアップとオプティマイザ用の解析を行う場合には、下記のコマンドを実行します。


$ vacuumdb --analyze bigdb


   


xyzzyという名前のデータベースのfooという1つのテーブルだけのクリーンアップと、そのテーブルのbarという1つの列にだけ対してオプティマイザ用の解析を行う場合には、下記のコマンドを実行します。


$ vacuumdb --analyze --verbose --table='foo(bar)' xyzzy



xyzzyという名前のデータベースのfooスキーマとbarスキーマのすべてのテーブルをクリーンアップする場合には、下記のコマンドを実行します。


$ vacuumdb --schema='foo' --schema='bar' xyzzy


関連項目
VACUUM(7)

PostgreSQLサーバアプリケーション







ここには、PostgreSQL™サーバアプリケーションとサポートユーティリティに関するリファレンス情報があります。
これらのコマンドは通常データベースサーバが稼働しているホスト上でのみ実行されます。
他のユーティリティプログラムの一覧はPostgreSQLクライアントアプリケーションにあります。
   



名前
initdb — PostgreSQL™のデータベースクラスタを新しく作成する

概要
initdb  [option...]  [ --pgdata  |   -D ] directory 


説明


initdbはPostgreSQL™のデータベースクラスタを新しく作成します。
  


データベースクラスタの作成には、クラスタのデータを保存するディレクトリの作成、共有カタログテーブル(特定のデータベースではなく、クラスタ全体に所属するテーブル)の生成、そしてpostgresデータベース、template1データベース、template0データベースの作成といった作業が含まれます。
postgresデータベースは、ユーザ、ユーティリティ、サードパーティ製アプリケーションのデフォルトデータベースとしての使用を意図したものです。
template1とtemplate0は、後のCREATE DATABASEコマンドでコピーされる元のデータベースを意図しています。
新しいデータベースを作成する際は、template1データベースの全ての内容がコピーされます。
template0を修正してはいけませんが、template1にはオブジェクトを追加でき、そのオブジェクトは後に生成した各データベースにデフォルトでコピーされます。
より詳細については「テンプレートデータベース」を参照してください。
  


initdbは指定されたデータディレクトリを作成しようと試みますが、そのデータディレクトリの親ディレクトリの所有者がrootであるなど、権限がないことがあります。
このような場合、まず、空のデータディレクトリをrootで作成し、chownを使ってそのディレクトリの所有権限をデータベースのユーザに変えてください。
次にsuを使ってデータベースユーザとなり、initdbを実行します。
  


initdbは、サーバプロセスの所有者となるユーザによって実行されなければなりません。
initdbによって作成されるファイルやディレクトリにサーバがアクセスできる必要があるからです。
サーバをrootとして実行することはできませんので、rootでinitdbを実行してはいけません。
（実際には、実行しようとしても拒否されます。）
  


セキュリティ上の理由から、デフォルトではinitdbにより作られた新しいクラスタはクラスタの所有者だけがアクセスできます。
--allow-group-accessにより、クラスタの所有者と同じグループのユーザがクラスタ内のファイルを読めるようになります。
これは非特権ユーザとしてバックアップを実行するのに有用です。
  


initdbは、データベースクラスタのデフォルトのロケールと文字集合符号化方式を初期化します。
これらは、データベースの作成時にデータベースごとに個別に設定することもできます。
initdbはテンプレートデータベースのこれらの設定を決定します。この設定が他のすべてのデータベースのデフォルトとして提供されます。
  


デフォルトでは、initdbはロケールプロバイダlibcを使用します(「ロケールプロバイダ」を参照してください)。
libcロケールプロバイダは環境からロケール設定を取得し、ロケール設定からエンコーディングを決定します。
  


クラスタに別のロケールを選択するには、--localeオプションを使用します。
また、個々のロケールカテゴリに値を設定するための個々のオプション--lc-*と--icu-localeもあります(下記参照)。
異なるロケールカテゴリの設定に一貫性がないと、無意味な結果になることがあるので、注意して使用してください。
  


また、--locale-provider=icuと指定することで、initdbはICUライブラリを使用してロケールサービスを提供することもできます。
サーバがICUをサポートするよう構築されていることが必要です。
適用する特定のICUロケールIDを選択するには、--icu-localeオプションを使用します。
実装上の理由とレガシーコードをサポートするために、initdbはICUロケールプロバイダが使用されている場合でもlibcロケール設定を選択し初期化することに注意してください。
  


initdbを実行すると、選択したロケール設定を出力します。
複雑な要件がある場合や、複数のオプションを指定した場合は、結果が意図したものと一致するのを確認することをお勧めします。
  


ロケール設定の詳細については「ロケールのサポート」を参照してください。
  


デフォルトの符号化方式を変更するには、--encodingオプションを使用します。
詳細は「文字集合サポート」に記載しています。
  

オプション

    
	-A authmethod, --auth=authmethod
	

このオプションは、pg_hba.confで使用されるローカルユーザのデフォルトの認証方法（hostおよびlocal行）を指定します。
有効な値の概要については「pg_hba.confファイル」を参照してください。
       


initdbは、非レプリケーションおよびレプリケーションの接続について、指定の認証方式を使うエントリをpg_hba.confに事前に作成します。
       


システムのすべてのローカルユーザが信頼できるわけではない場合は、trustを使用しないでください。
インストールを簡単にするためにtrustがデフォルトになっています。
       

	--auth-host=authmethod
	

このオプションはpg_hba.confにてTCP/IP接続経由のローカルユーザ用に使用される認証方法（host行）を指定します。
       

	--auth-local=authmethod
	

このオプションはpg_hba.confにてUnixドメインソケット接続経由のローカルユーザ用に使用される認証方法（local行）を指定します。
       

	-D directory, --pgdata=directory
	

このオプションは、データベースクラスタを格納すべきディレクトリを指定します。
initdbが必要とする情報はこれだけですが、環境変数PGDATAを設定しておけば、このオプションの指定を省略できます。
この方法は、後に同じ変数を使用してデータベースサーバ（postgres）がデータディレクトリを参照できるので、便利です。
       

	-E encoding, --encoding=encoding
	

テンプレートデータベースの符号化方式を選択します。
これが今後作成されるすべてのデータベースについてのデフォルト符号化方式となりますが、作成時に上書きすることもできます。
PostgreSQL™サーバでサポートされる文字集合については、「サポートされる文字集合」を参照してください。
       


デフォルトでは、テンプレートデータベースの符号化方式はロケールに由来します。
--no-localeが指定されている場合(または同等に、ロケールがCまたはPOSIXの場合)、デフォルトはICUプロバイダではUTF8、libcプロバイダではSQL_ASCIIになります。
       

	-g, --allow-group-access
	

クラスタの所有者と同じグループのユーザが、initdbにより作られたクラスタファイルすべてを読むことを許可します。
Windows™ではPOSIX形式のグループパーミッションをサポートしませんので、このオプションは無視されます。
       

	--icu-locale=locale
	

ICUロケールプロバイダを使用する場合に、ICUロケールを指定します。
ロケールサポートは「ロケールのサポート」に記載されています。
       

	--icu-rules=rules
	

デフォルトの照合順序の動作をカスタマイズするための追加の照合順序のルールを指定します。
これはICUでのみサポートされています。
       

	-k, --data-checksums
	

データページにおいてチェックサムを使用します。
これにより、他の方法では検出されないI/Oシステムによる破損を検知できるようになります。
これはデフォルトで有効です。
チェックサムを無効にするには--no-data-checksumsを使用します。
       


チェックサムを有効にすると、わずかに性能が低下するかもしれません。
設定した場合、すべてのデータベースにおいて、すべてのオブジェクトに対してチェックサムが計算されます。
チェックサムの失敗はすべてpg_stat_databaseビューで報告されます。
詳細については「データチェックサム」を参照してください。
       

	--locale=locale
	

データベースクラスタ用のデフォルトのロケールを設定します。
このオプションを指定しない場合は、initdbを実行している環境のロケールが継承されます。
ロケールサポートについては「ロケールのサポート」で説明します。
       


--locale-providerがbuiltinの場合、--localeまたは--builtin-localeを指定し、C、C.UTF-8、またはPG_UNICODE_FASTに設定する必要があります。
       

	--lc-collate=locale, --lc-ctype=locale, --lc-messages=locale, --lc-monetary=locale, --lc-numeric=locale, --lc-time=locale
	

--localeと似ていますが、指定したカテゴリのロケールのみを設定します。
       

	--no-locale
	

        --locale=Cと同じです。
       

	--builtin-locale=locale
	

組み込みプロバイダを使用する場合にロケール名を指定します。
ロケールサポートは「ロケールのサポート」に記載されています。
       

	--locale-provider={builtin|libc|icu}
	

このオプションは、新しいクラスタで作成されたデータベースのロケールプロバイダを設定します。
新しいデータベースが後で作成されるときに、CREATE DATABASEコマンドで上書きできます。
デフォルトはlibcです(「ロケールプロバイダ」を参照してください)。
       

	--no-data-checksums
	

データチェックサムを有効にしません。
       

	--pwfile=filename
	

initdbはブートストラップスーパーユーザのパスワードをこのファイルから読み取ります。
このファイルの最初の行がパスワードとして解釈されます。
       

	-T config, --text-search-config=config
	

デフォルトの全文検索設定を設定します。
詳細についてはdefault_text_search_configを参照してください。
       

	-U username, --username=username
	

ブートストラップスーパーユーザのユーザ名を設定します。
デフォルトは、initdbを実行するオペレーティングシステムユーザの名前です。
       

	-W, --pwprompt
	

initdbにブートストラップスーパーユーザ権限を与えるためのパスワード入力のプロンプトを表示させます。
パスワード認証を行うつもりがない場合は必要ありません。
このオプションを指定しても、パスワードの設定を行わない限りパスワード認証は行われません。
       

	-X directory, --waldir=directory
	

このオプションは先行書き込みログ（WAL）の格納ディレクトリを指定します。
       

	--wal-segsize=size
	

WALセグメントサイズをメガバイト単位で設定します。
これはWALログの個々のファイルの大きさです。
デフォルトの大きさは16メガバイトです。
値は1から1024の間の2の冪でなければなりません。
このオプションは初期化の際にのみ設定することができ、後で変更することはできません。
       


WALログのシッピングやアーカイブの粒度を制御するために、この大きさを調整することは有用でしょう。
また、大量のWALのあるデータベースでは、ディレクトリ当たりのWALファイルの数だけでパフォーマンスや管理の問題となり得ます。
WALファイルの大きさを増やせば、WALファイルの数は減るでしょう。
       




   


この他にも、使用頻度は下がりますが、下記のオプションが使用可能です。

    
	-c name=value, --set name=value
	

initdbの間、サーバのパラメータnameを強制的にvalueに設定し、将来のサーバ実行の間も適用されるよう、その設定を生成されたpostgresql.confファイルにも書き込みます。
このオプションは複数のパラメータを設定するために2回以上指定できます。
デフォルトのパラメータを利用するとサーバ全く起動しないような環境で、とりわけ有用でしょう。
       

	-d, --debug
	

ブートストラップバックエンドからのデバッグ情報と、一般の利用者にはおそらく不要なその他の情報を出力します。
ブートストラップバックエンドとはinitdbがカタログテーブルを作成する際に使用するプログラムです。
このオプションはうんざりするようなログを大量に出力します。
       

	--discard-caches
	

debug_discard_caches=1オプションをつけてブートストラップバックエンドを実行します。
これは非常に長い時間がかかるため、難解なデバッグでのみ使用されます。
       

	-L directory
	

データベースクラスタを初期化する際に、initdbが参照すべき入力ファイルを指定します。
これは通常必要ありません。
明示的に指定する必要がある場合は、その時に指定するよう要求されます。
       

	-n, --no-clean
	

デフォルトでは、initdbを実行中にエラーが発生し、データベースクラスタを完成できなかった場合に、そのエラーが発生する前に作成された全てのファイルを削除します。
このオプションを指定すると、これらのファイルが削除しないで残されるので、デバッグの際にはとても便利です。
       

	-N, --no-sync
	

デフォルトではinitdbはすべてのファイルが安全にディスクに書き出されるまで待機します。
このオプションを使うとinitdbは待機せずに返るようになり、より高速になりますが、後でオペレーティングシステムがクラッシュした場合にデータディレクトリが破損状態になってしまう可能性があります。
通常、このオプションは試験用では有用ですが、実用のインストレーションを作成する際に使用すべきではありません。
       

	--no-sync-data-files
	

デフォルトでは、initdbはすべてのデータベースファイルを安全にディスクに書き出します。
このオプションは、個々のデータベースディレクトリ内のすべてのファイル、データベースディレクトリ自体、およびテーブル空間ディレクトリ、つまりbaseサブディレクトリと他のテーブル空間ディレクトリ内のすべての同期をスキップするようにinitdbに指示します。
--no-syncオプションも指定しない限り、pg_walやpg_xactなどに存在する他のファイルは引き続き同期されます。
       


--no-sync-data-filesを--sync-method=syncfsと組み合わせて使用する場合、syncfsはファイルシステム全体を処理するため、前述のファイルとディレクトリの一部またはすべてが同期されることに注意してください。
       


このオプションは主に、スキップされたファイルがディスクに同期されることを別途保証するツールで内部的に使用することを意図しています。
       

	--no-instructions
	

デフォルトではinitdbは出力の最後にクラスタを起動する手順を表示します。
このオプションを使うと、これらの手順が省略されます。
これは主にinitdbをプラットフォーム固有の動作でラップするツールで、これらの手順が間違っている可能性がある場合に使用することを目的としています。
       

	-s, --show
	

内部設定を表示して終了します。それ以外には何もしません。
これはinitdbインストールをデバッグするために使用できます。
       

	--sync-method=method
	

デフォルトのfsyncに設定すると、initdbはデータディレクトリ内のファイルをすべて再帰的に開いて同期します。
ファイルの検索はWALディレクトリと設定された各テーブル空間のシンボリックリンクをたどります。
       


Linuxでは、syncfsを代わりに使用して、データディレクトリ、WALファイル、各テーブル空間を含むファイルシステム全体を同期させるようにオペレーティングシステムに要求できます。
syncfsを使用する際に注意すべき点については、recovery_init_sync_methodを参照してください。
       


このオプションは--no-syncが使われている場合は効果がありません。
       

	-S, --sync-only
	

すべてのデータベースファイルを安全にディスクに書き出し、終了します。
これは通常のinitdbの操作をまったく行いません。
通常、このオプションは、fsyncをoffからonに変更した後の信頼できるリカバリを確実にするのに有用です。
       




   


その他のオプションを以下に示します。

    
	-V, --version
	

initdbのバージョンを表示し、終了します。
       

	-?, --help
	

initdbのコマンドライン引数の使用方法を表示し、終了します。
       




   

環境
	PGDATA
	

データベースクラスタを保存するディレクトリを指定します。
-Dオプションを使用して上書きすることができます。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     

	TZ
	

作成されるデータベースクラスタのデフォルトの時間帯を指定します。
値は完全な時間帯の名前で指定することが望ましいです(「時間帯」参照)。
     




注釈


initdbはpg_ctl initdb経由でも呼び出すことができます。
  

関連項目
pg_ctl(1), postgres(1), 「pg_hba.confファイル」


名前
pg_archivecleanup — PostgreSQL™ WALアーカイブファイルを消去する

概要
pg_archivecleanup  [option...]  archivelocation   oldestkeptwalfile 


説明


pg_archivecleanupは、スタンバイサーバとして動作している際のWALファイルのアーカイブを消去するためのarchive_cleanup_commandとして使用されるように設計されています（「ログシッピングスタンバイサーバ」参照）。
同時に、pg_archivecleanupはWALファイルのアーカイブを消去するためのスタンドアローンのプログラムとしても利用することができます。
 


pg_archivecleanupを使うためにスタンバイサーバを設定するには、以下をpostgresql.conf設定ファイルに記述します。


archive_cleanup_command = 'pg_archivecleanup archivelocation %r'



archivelocationは、WALセグメントファイルを削除するディレクトリです。
  


archive_cleanup_commandで使用される場合、論理的に%rより前のすべてのWALファイルはarchivelocationから削除されます。
これによって、クラッシュ—リスタートの機能を維持するための、保持しなければならないファイル数を最小限にします。
このパラメータの使用は、archivelocationがスタンバイサーバにおいて短期的な保存場所となっている場合には適切ですが、archivelocationを長期的なWALアーカイブ領域として使っている場合、または複数のスタンバイサーバが同一のアーカイブログの場所からリカバリしている場合には適切ではありません。
  


スタンドアローンプログラムとして使用される場合、oldestkeptwalfileより論理的に前のWALファイルは、すべてarchivelocationから削除されます。
このモードでは、.partialまたは.backupのファイル名が指定されると、そのプレフィックス部だけがoldestkeptwalfileとして使用されます。
この.backupのファイル名の処置により、エラーを起こすことなく特定のベースバックアップより前のすべてのWALファイルを削除することを可能にします。
以下の例は、000000010000003700000010より古いすべてのファイルを削除する実例です。


pg_archivecleanup -d archive 000000010000003700000010.00000020.backup

pg_archivecleanup:  keep WAL file "archive/000000010000003700000010" and later
pg_archivecleanup:  removing file "archive/00000001000000370000000F"
pg_archivecleanup:  removing file "archive/00000001000000370000000E"


  


pg_archivecleanupは、archivelocationがサーバを実行しているユーザによって読み書き可能なディレクトリであるものと仮定しています。
  

オプション


pg_archivecleanupは、以下のコマンドライン引数を受け付けます。

    
	-b, --clean-backup-history
	

バックアップ履歴ファイルも削除します。
バックアップ履歴ファイルの詳細については「ベースバックアップの作成」を参照してください。
       

	-d, --debug
	

stderrに大量のデバッグログを出力します。
       

	-n, --dry-run
	

削除されるファイルの名前をstdoutに出力します(実際には削除しません).
       

	-V, --version
	

pg_archivecleanupのバージョンを表示して終了します。
       

	-x extension, --strip-extension=extension
	

削除するファイルを決定する前にファイル名から取り除かれる拡張子を指定します。
保存時に圧縮され、そのため圧縮プログラムにより拡張子を付けられたアーカイブを消去するのに特に役に立ちます。
例: -x.gz
       

	-?, --help
	

pg_archivecleanupのコマンドライン引数に関するヘルプを表示して終了します。
       




   

環境


環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  

注釈


pg_archivecleanupは、PostgreSQL™ 8.0 とそれ以降において、スタンドアローンユーティリティとして動作するように設計されています。
また、PostgreSQL™ 9.0 とそれ以降においてはアーカイブのクリーンナップコマンドとして動作するように設計されています。
  


pg_archivecleanupはC言語で書かれており、必要に応じて修正すべき部分が明確に示されているので、修正の容易なソースコードとなっています。
  

例
LinuxやUnixのシステムでは、以下のように使います。


archive_cleanup_command = 'pg_archivecleanup -d /mnt/standby/archive %r 2>>cleanup.log'



アーカイブディレクトリは物理的にはスタンバイサーバ上に配置されていますので、archive_commandはNFSを経由してアーカイブディレクトリにアクセスしますが、それらのファイルはスタンバイサーバにとってはローカルファイルです。
この設定では、
  
	

デバッグ出力をcleanup.logに生成します。
    

	

アーカイブディレクトリの中から、不要になったファイルを削除します。
    






名前
pg_checksums — PostgreSQL™データベースクラスタのデータチェックサムを有効化、無効化、あるいは検査する

概要
pg_checksums  [option...] [[ -D  |   --pgdata ]datadir]


説明


pg_checksumsはPostgreSQL™クラスタのデータチェックサムの検査と有効化、無効化を行います。
pg_checksumsを実行する前にサーバは正常停止されていなければなりません。
チェックサムを検査する場合、終了ステータスはチェックサム誤りが無ければゼロで、チェックサム誤りが一つでも在ったなら非ゼロです。
チェックサムの有効化、無効化をする場合、終了ステータスは操作に失敗したときに非ゼロになります。
  


チェックサムを検査する場合、クラスタ内の各ファイルがスキャンされます。
チェックサムの有効化では、チェックサムが変更されたすべてのリレーションファイルブロックがその場で書き換えられます。
チェックサムの無効化では、ファイルpg_controlだけ更新されます。
  

オプション


以下のコマンドラインオプションが使用できます。

    
	-D directory, --pgdata=directory
	

データベースクラスタが格納されているディレクトリを指定します。
       

	-c, --check
	

チェックサムを検査します。
これは何も指定しなかった場合のデフォルトのモードです。
       

	-d, --disable
	

チェックサムを無効化します。
       

	-e, --enable
	

チェックサムを有効化します。
       

	-f filenode, --filenode=filenode
	

指定したファイルノードfilenodeのリレーション内のチェックサムだけを検査します。
       

	-N, --no-sync
	

pg_checksumsはデフォルトでは全てのファイルが安全にディスクに書かれるまで待ちます。
このオプションは、pg_checksumsがこれを待たずに応答するようにします。より早いですが、直後のオペレーティングシステムのクラッシュで更新されたデータディレクトリの破損が残る可能性があることを意味します。
一般に、このオプションはテストには有用ですが、本番導入むけには使うべきではありません。
--checkを使う場合には、このオプションは効果がありません。
       

	-P, --progress
	

進行報告を有効にします。
これを有効にするとチェックサムの検査あるいは有効化で、進行報告が出力されます。
       

	--sync-method=method
	

デフォルトのfsyncに設定すると、pg_checksumsはデータディレクトリ内のすべてのファイルを再帰的に開いて同期します。
ファイルの検索はWALディレクトリと設定された各テーブル空間のシンボリックリンクをたどります。
       


Linuxでは、syncfsを代わりに使用して、データディレクトリ、WALファイル、各テーブル空間を含むファイルシステム全体を同期させるようにオペレーティングシステムに要求することもできます。
syncfsを使用する際に注意すべき点については、recovery_init_sync_methodを参照してください。
       


このオプションは--no-syncが使われている場合には効果がありません。
       

	-v, --verbose
	

冗長な出力を有効にします。
チェックした全ファイルの一覧を出力します。
       

	-V, --version
	

pg_checksumsのバージョンを出力して終了します。
       

	-?, --help
	

pg_checksumsのコマンドライン引数のヘルプを表示して終了します。
        




   

環境
	PGDATA
	

データベースクラスタが格納されたディレクトリを指定します。
これに対して-Dオプションで上書き指定できます。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     




注釈


大きいクラスタでチェックサムを有効にするには、場合によっては長時間を要する可能性があります。
この操作中にデータディレクトリに書き込みをするクラスタや他のプログラムを開始してはいけません。さもないとデータ損失が起きるかもしれません。
  


リレーションファイルブロックの直接コピーを行うツール（例えばpg_rewind(1)）でレプリケーションのセットアップを使う時のチェックサムの有効化や無効化は、操作が全ノードを通して一貫して行われない場合、不正なチェックサムという形でページ破損を引き起こすおそれがあります。
したがって、レプリケーションのセットアップでチェックサムの有効化や無効化をするときには、一貫して切り替える前にすべてのクラスタを停止することを推奨します。
全てのスタンバイを廃棄して、プライマリ上で操作を行い、最後にスタンバイを新たに再作成するのも安全です。
  


チェックサムの有効化や無効化をしている最中にpg_checksumsが中断されたり、killされたりした場合、クラスタのデータチェックサム設定は変更されないままとなり、pg_checksumsを再実行して同じ操作をおこなえます。
  



名前
pg_controldata — PostgreSQL™データベースクラスタの制御情報を表示する

概要
pg_controldata  [option] [[ -D  |   --pgdata ]datadir]


説明


pg_controldataはカタログのバージョンなどinitdbの際に初期化された情報を表示します。
また、先行書き込みログ（WAL）およびチェックポイント処理に関する情報も表示します。
この情報はクラスタ全体に関するものであり、特定のデータベースに関するものではありません。
  


このユーティリティの実行にはデータディレクトリへの読み取りアクセス権限が必要となるため、クラスタを初期化したユーザのみが実行できます。
データディレクトリは、コマンドラインや環境変数PGDATAを使用して指定することができます。
このユーティリティは、pg_controldataのバージョンを表示し終了する-Vおよび--versionオプションをサポートします。
またサポートされる引数を出力する-?および--helpオプションもサポートします。
  

環境
	PGDATA
	

デフォルトのデータディレクトリの場所です。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     






名前
pg_createsubscriber — 物理レプリカを新しい論理レプリカに変換する

概要
pg_createsubscriber  [option...]  { -d  |   --database }dbname { -D   |   --pgdata }datadir { -P  |   --publisher-server }connstr 


説明


pg_createsubscriberは、物理スタンバイサーバから新しい論理レプリカを作成します。
指定されたデータベース内のすべてのテーブルが論理レプリケーション設定に含まれます。
各データベースに対して、パブリケーションとサブスクリプションのオブジェクトのペアが作成されます。
ターゲットサーバで実行する必要があります。
  


実行が成功した後のターゲットサーバの状態は、新しい論理レプリケーションセットアップに似ています。
論理レプリケーションセットアップとpg_createsubscriberの間の主な差は、データ同期化が行われる方法です。
pg_createsubscriberは初期テーブルデータをコピーしません。
各テーブルが同期化された状態になることを保証する同期化フェーズのみを行います。
  


pg_createsubscriberは大きなデータベースシステムを対象としています。
これは、論理レプリケーションセットアップではほとんどの時間が最初のデータコピーに費やされるためです。
さらに、データの同期に費やされるこの長い時間の副作用は、通常、適用される変更が大きな量になること（最初のデータコピー中に生成されたもの）であり、これは、ロジカルレプリカが利用可能になるまでの時間をさらに増加させます。
小規模なデータベースの場合は、最初のデータ同期付きで論理レプリケーションを設定することをお勧めします。
詳細については、CREATE SUBSCRIPTIONcopy_dataオプションを参照してください。
  

オプション


pg_createsubscriberは、以下のコマンドライン引数を受け付けます。

   
	-a, --all
	

ターゲットサーバのデータベースごとに1つのサブスクリプションを作成します。
例外はテンプレートデータベースと、接続を許可していないデータベースです。
すべてのデータベースの一覧を得る際には、--publisher-server接続文字列で指定されたデータベース名を用いてソースサーバに接続します。指定されていない場合はpostgresデータベースが使用されます。これが存在しない場合は、template1が使用されます。
このオプションが指定された場合、サブスクリプション、パブリケーション、そしてレプリケーションスロットに対して、自動的に生成された名前が使用されます。
このオプションは--database、--publication、--replication-slot、または--subscriptionとは併用できません。
      

	-d dbname, --database=dbname
	

サブスクリプションを作成するデータベースの名前。
複数の-dを記述することによって、複数のデータベースを選択できます。
このオプションと-aは併用できません。
-dが指定されていない場合、データベース名は-Pオプションから取得されます。
データベース名が-dオプションと-Pのどちらにも指定されず、-aオプションも指定されていない場合は、エラーが報告されます。
      

	-D directory, --pgdata=directory
	

物理レプリカのクラスタディレクトリを含むターゲットディレクトリ。
      

	-n, --dry-run
	

ターゲットディレクトリを実際に更新する以外はすべてのことを行います。
      

	-p port, --subscriber-port=port
	

ターゲットサーバが接続をリスニングするポート番号。
デフォルトでは、ターゲットサーバはポート50432で実行され、意図しないクライアント接続を回避します。
      

	-P connstr, --publisher-server=connstr
	

パブリッシャーへの接続文字列。
詳細は「接続文字列」を参照してください。
      

	-s dir, --socketdir=dir
	

ターゲットサーバ上のpostmasterソケットに使用するディレクトリ。
デフォルトは現在のディレクトリです。
      

	-t seconds, --recovery-timeout=seconds
	

リカバリーが終了するまでの最大待ち時間（秒）。
0に設定すると無効になります。
デフォルトは0です。
      

	-T, --enable-two-phase
	

サブスクリプションのtwo_phaseコミットを有効にします。
複数のデータベースが指定された場合、このオプションはこれらのデータベース上に作成されたすべてのサブスクリプションに対して一律に適用されます。
デフォルトはfalseです。
      

	-U username, --subscriber-username=username
	

ターゲットサーバに接続するためのユーザ名。
デフォルトは、現在のオペレーティングシステムユーザ名です。
      

	-v, --verbose
	

冗長モードを有効にします。
これによりpg_createsubscriberは進捗メッセージと各ステップの詳細情報を標準エラーに出力します。
オプションを繰り返すと、追加のデバッグレベルメッセージが標準エラーに出力されます。
      

	--clean=objtype
	

ターゲットサーバ上の指定されたデータベースから、指定されたタイプのオブジェクトをすべて削除します。
      

       
	

publications：
このサブスクライバーに作成されたFOR ALL TABLESパブリケーションは常に削除されます。このオブジェクトタイプを指定すると、ソースサーバから複製されたほかのすべてのパブリケーションも削除されます。
         




      


削除対象として選択されたオブジェクトは、--dry-run中も含めて個別に記録されます。
選択されたオブジェクトの削除に影響を与えたり、停止したりすることはできません。
そのためpg_dumpを用いてそれらのバックアップを取得することを検討してください。
      

	--config-file=filename
	

ターゲットデータディレクトリ用に指定されたメインサーバの設定ファイルを使用します。
pg_createsubscriberは、内部的にpg_ctlコマンドをスタートに使用し、ターゲットサーバを起動、停止します。
データディレクトリ外に保存されている場合は、実際のpostgresql.conf設定ファイルを指定できます。
      

	--publication=name
	

論理レプリケーションを設定するパブリケーション名。
複数の--publicationスイッチを指定することで、複数のパブリケーションを指定できます。
パブリケーション名の数は、指定されたデータベースの数と一致する必要があります。
一致しない場合、エラーが報告されます。
パブリケーション名のスイッチの順序は、データベースのスイッチの順序と一致する必要があります。
このオプションを指定しない場合、生成された名前がパブリケーション名に割り当てられます。
このオプションと--allは併用できません。
      

	--replication-slot=name
	

論理レプリケーションを設定するレプリケーションスロット名。
複数の--replication-slotスイッチを書くことで、複数のレプリケーションスロットを指定できます。
レプリケーションスロット名の数は、指定されたデータベースの数と一致する必要があります。
一致しない場合、エラーが報告されます。
複数のレプリケーションスロット名スイッチの順序は、データベーススイッチの順序と一致する必要があります。
このオプションを指定しない場合、サブスクリプション名がレプリケーションスロット名に割り当てられます。
このオプションと--allは併用できません。
      

	--subscription=name
	

論理レプリケーションを設定するサブスクリプション名。
複数の--subscriptionスイッチを指定することで、複数のサブスクリプションを指定できます。
サブスクリプション名の数は、指定されたデータベースの数と一致する必要があります。
一致しない場合、エラーが報告されます。
複数のサブスクリプション名スイッチの順序は、データベーススイッチの順序と一致する必要があります。
このオプションを指定しない場合、生成された名前がサブスクリプション名に割り当てられます。
このオプションと--allは併用できません。
      

	-V, --version
	

pg_createsubscriberのバージョンを表示し、終了します。
      

	-?, --help
	

pg_createsubscriberコマンドライン引数についてのヘルプを表示し、終了します。
      




   

注釈
前提条件


pg_createsubscriberがターゲットサーバを論理レプリカに変換するためには、いくつかの前提条件があります。
これらの条件が満たされない場合、エラーが報告されます。
ソースサーバとターゲットサーバはpg_createsubscriberと同じメジャーバージョンでなければなりません。
指定されたターゲットデータディレクトリは、ソースデータディレクトリと同じシステム識別子を持つ必要があります。
指定されたターゲットデータディレクトリのデータベースユーザは、サブスクリプションの作成とpg_replication_origin_advance()を使用するための権限を持たなければなりません。
   


ターゲットサーバは、物理スタンバイとして使用する必要があります。
ターゲットサーバのmax_active_replication_originsとmax_logical_replication_workersは、指定されたデータベースの数以上の値に設定されている必要があります。
ターゲットサーバのmax_worker_processesは、指定されたデータベースの数以上の値に設定されている必要があります。
ターゲットサーバは、ローカル接続を受け入れる必要があります。
--enable-two-phaseスイッチと併用することを検討している場合は、同様にmax_prepared_transactionsも適切に設定する必要があります。
   


ソースサーバはターゲットサーバからの接続を受け入れなければなりません。
ソースサーバはリカバリ状態であってはなりません。
ソースサーバはwal_levelをlogicalにする必要があります。
ソースサーバは、指定されたデータベースの数に既存のレプリケーションスロットを加えた値以上にmax_replication_slotsを設定する必要があります。
ソースサーバは、指定されたデータベースの数と既存のWAL送信プロセス以上の値にmax_wal_sendersを設定する必要があります。
   

警告


ターゲットサーバの昇格後にpg_createsubscriberが失敗した場合、データディレクトリはリカバリ可能な状態ではない可能性が高いです。
このような場合は、新しいスタンバイサーバを作成することをお勧めします。
   


pg_createsubscriberは通常、変換中に異なる接続設定でターゲットサーバを起動します。
したがって、ターゲットサーバへの接続は失敗するはずです。
   


DDLコマンドは論理レプリケーションではレプリケートされないため、pg_createsubscriberの実行中にデータベーススキーマを変更するDDLコマンドは実行しないでください。
ターゲットサーバがすでに論理レプリカに変換されている場合、DDLコマンドはレプリケートされない可能性があり、エラーが発生する可能性があります。
   


処理中にpg_createsubscriberが失敗した場合、ソースサーバ上に作成されたオブジェクト（パブリケーション、レプリケーションスロット）は削除されます。
ターゲットサーバがソースサーバに接続できない場合、削除は失敗する可能性があります。
このような場合、警告メッセージが残されたオブジェクトを通知します。
ターゲットサーバが実行中の場合は、停止されます。
   


レプリケーションがprimary_slot_nameを使用している場合、論理レプリケーション設定後にソースサーバから削除されます。
   


ターゲットサーバが同期レプリカの場合、pg_createsubscriberの実行中にプライマリでのトランザクションコミットがレプリケーションを待つことがあります。
   


--enable-two-phaseスイッチを指定しない限り、pg_createsubscriberは二相コミットを無効にして論理レプリケーションを設定します。
これは、準備されたトランザクションが事前の準備なしにCOMMIT PREPAREDの時点で複製されることを意味します。
セットアップが完了したら、two_phaseオプションを有効にしてサブスクリプションを手動で削除し、再作成することができます。
   


pg_createsubscriberはpg_resetwalを使用してシステム識別子を変更します。
これは、ターゲットサーバがソースサーバからのWALファイルを使用する可能性がある状況を回避します。
ターゲットサーバにスタンバイがある場合、レプリケーションが中断され、新しいスタンバイを作成する必要があります。
   


必要なWALファイルが存在しない場合、レプリケーションが失敗することがあります。
これを防ぐためには、ソースサーバでmax_slot_wal_keep_sizeを-1に指定し、必要なWALファイルが早期に削除されないようにする必要があります。
   

どうやって動くのか


基本的な考え方は、ソースサーバからレプリケーションの開始ポイントを設定し、このポイントから開始する論理レプリケーションをセットアップすることです。
   
	

指定したコマンドラインオプションでターゲットサーバを起動します。
ターゲットサーバがすでに実行中の場合、pg_createsubscriberはエラーで終了します。
     

	

ターゲットサーバを変換できるかどうかをチェックします。
ソースサーバに対してもいくつかのチェックが行われます。
前提条件のいずれかが満たされていない場合、pg_createsubscriberはエラーで終了します。
     

	

ソースサーバ上の指定されたデータベースごとに、パブリケーションとレプリケーションスロットを作成します。
各パブリケーションはFOR ALL TABLESを使用して作成されます。
--publicationオプションが指定されていない場合、パブリケーションは次のような名前のパターンになります。
「pg_createsubscriber_%u_%x」（パラメータ: データベースoid、ランダムint）。
--replication-slotが指定されない場合、レプリケーションスロットは次のような名前のパターンになります。
「pg_createsubscriber_%u_%x」（パラメータ: データベースoid、ランダムint）。
これらのレプリケーションスロットは、今後の手順でサブスクリプションによって使用されます。
最後のレプリケーションスロットLSNは、recovery_target_lsnパラメータの停止点として、また、サブスクリプションによってレプリケーション開始点として使用されます。
これにより、トランザクションが失われることがなくなります。
     

	

ターゲットデータディレクトリにリカバリパラメータを書き込み、ターゲットサーバを再起動します。
リカバリが進行するまでの先行書き込みログの場所のLSN(recovery_target_lsn)を指定します。
また、リカバリ対象に到達した時点でサーバが取るべきアクションとしてpromoteを指定します。
整合性のある状態に到達したらすぐにリカバリを終了する（WALはレプリケーション開始位置まで適用されるべきです）、複数のリカバリターゲットが障害を引き起こす可能性があるなど、リカバリプロセス中の予期しない動作を回避するために、リカバリパラメータが追加されます。
このステップは、サーバがスタンバイモードを終了し、読み取り/書き込みトランザクションを受け入れると完了します。
--recovery-timeoutオプションが設定されている場合、指定された秒数が経過するまでリカバリが終了しない場合、pg_createsubscriberは終了します。
     

	

ターゲットサーバ上の指定した各データベースに対してサブスクリプションを作成します。
--subscriptionが指定されない場合、サブスクリプションは次のような名前のパターンになります。
「pg_createsubscriber_%u_%x」（パラメータ: データベースoid、ランダムint）。
ソースサーバから既存のデータをコピーしません。
レプリケーションスロットは作成されません。
代わりに、前の手順で作成したレプリケーションスロットを使用します。
サブスクリプションは作成されましたが、まだ有効ではありません。
これは、レプリケーションを開始する前に、レプリケーションの進行状況をレプリケーション開始点に設定する必要があるためです。
     

	

レプリケーション開始位置より前に作成されていたために複製された、ターゲットサーバ上のパブリケーション削除します。
これはサブスクライバー側では使用されません。
     

	

各サブスクリプションのレプリケーション開始点にレプリケーションの進行状況を設定します。
ターゲットサーバがリカバリプロセスを開始すると、レプリケーションの開始時点まで追いつきます。
これは、各サブスクリプションの初期レプリケーションの場所として使用される正確なLSNです。
サブスクリプションが作成されたため、レプリケーションオリジン名が取得されます。
レプリケーションオリジン名とレプリケーション開始点は、pg_replication_origin_advance()で初期レプリケーション場所を設定するために使用されます。
     

	

ターゲットサーバ上の指定した各データベースのサブスクリプションを使用可能にします。
サブスクリプションは、レプリケーション開始ポイントからトランザクションを適用し始めます。
     

	

スタンバイサーバがprimary_slot_nameを使用していた場合、それは今後は使用されないので削除します。
     

	

スタンバイサーバにフェイルオーバーレプリケーションスロットがある場合、もはや同期できないので削除します。
     

	

ターゲットサーバのシステム識別子を更新します。
pg_resetwal(1)が実行され、システム識別子が変更されます。
pg_resetwalの必要条件なので、ターゲットサーバは停止されます。
     





例


fooでの物理レプリカからデータベースhrとfinanceの論理レプリカを作成するには、次のようにします。


$ pg_createsubscriber -D /usr/local/pgsql/data -P "host=foo" -d hr -d finance


  

関連項目
pg_basebackup(1)


名前
pg_ctl — PostgreSQL™サーバを初期化、起動、停止、制御する

概要
pg_ctl   init[db]  [-D datadir] [-s] [-o initdb-options]

pg_ctl   start  [-D datadir] [-l filename] [-W] [-t seconds] [-s] [-o options] [-p path] [-c]

pg_ctl   stop  [-D datadir] [-m
        s[mart]  |   f[ast]  |   i[mmediate]  
   ] [-W] [-t seconds] [-s]

pg_ctl   restart  [-D datadir] [-m
        s[mart]  |   f[ast]  |   i[mmediate]  
   ] [-W] [-t seconds] [-s] [-o options] [-c]

pg_ctl   reload  [-D datadir] [-s]

pg_ctl   status  [-D datadir]

pg_ctl   promote  [-D datadir] [-W] [-t seconds] [-s]

pg_ctl   logrotate  [-D datadir] [-s]

pg_ctl   kill   signal_name   process_id 

Microsoft Windows上ではさらに
pg_ctl   register  [-D datadir] [-N servicename] [-U username] [-P password] [-S
        a[uto]  |   d[emand]  
   ] [-e source] [-W] [-t seconds] [-s] [-o options]

pg_ctl   unregister  [-N servicename]


説明


pg_ctlはPostgreSQL™データベースクラスタの初期化、PostgreSQL™のデータベースサーバ（postgres(1)）を起動、停止、再起動する、あるいは稼働中のサーバの状態を表示するためのユーティリティです。
サーバは手動で起動することも可能ですが、pg_ctlは、ログ出力のリダイレクトや、端末とプロセスグループの適切な分離などの作業を隠蔽してくれます。
さらにシャットダウン制御のための便利なオプションも提供します。
  


initまたはinitdbモードはPostgreSQL™の新しいデータベースクラスタ、つまり、単一のサーバインスタンスで管理されるデータベースの集合を作成します。
このモードはinitdbコマンドを呼び出します。
詳しくはinitdb(1)を参照して下さい。
  


startモードは、新しいサーバを起動します。
サーバはバックグラウンドで起動され、その標準入力は/dev/null（Windowsの場合はnul）に接続されます。
Unix系のシステムではデフォルトで、サーバの標準出力と標準エラーはpg_ctlの標準出力に転送されます(標準エラー出力には転送されません)。
pg_ctlの標準出力はファイルにリダイレクトするか、例えばrotatelogsなどのログローテーションプログラムのような別プロセスにパイプで渡すべきです。
こうしないと、postgresはその出力を（バックグラウンドから）制御端末に書き出しますので、シェルのプロセスグループから切り離すことができません。
Windowsではデフォルトで、サーバの標準出力と標準エラーは端末に送信されます。
こうしたデフォルトの動作は-lを用いてサーバの出力をログファイルに追加するように変更することができます。
-lまたは出力のリダイレクトのどちらかを使用することを勧めます。
  


stopモードは、指定されたデータディレクトリで稼働しているサーバを停止（シャットダウン）します。
-mオプションでは、3つの異なる停止方式を選択できます。
「smart」モードは、新しい接続を禁止してから、全ての接続しているクライアントが切断するまで待ちます。
サーバがホットスタンバイ状態の場合、すべてのクライアント接続が切断された後にリカバリとストリーミングレプリケーションは終了します。
「fast」モード（デフォルト）はクライアントが切断するまで待ちません。
全ての実行中のトランザクションをロールバックし、クライアントとの接続を強制的に切断した後、サーバを停止します。
「immediate」モードは、クリーンアップ処理なしで、全てのサーバプロセスを即座に中断します。
これを選択すると、次回のサーバ起動時にクラッシュリカバリサイクルが始まります。
  


restartモードは、実質的にはstopを実行して、その後、startを実行します。
この時、postgresのコマンドラインオプションを変更、またはサーバの再起動なしには変更できない設定ファイルオプションを変更することができます。
サーバ起動時に相対パスがコマンドラインから使用されていた場合、サーバ起動時と同じカレントディレクトリでpg_ctlを実行しなければ、restartが失敗する可能性があります。
  


reloadモードは、単にpostgresサーバプロセスにSIGHUPシグナルを送り、（postgresql.conf、pg_hba.confなどの）設定ファイルの再読み込みを実行させます。
これにより、設定ファイルのオプションで完全なサーバ再起動を必要としないものについて、変更を反映させることができます。
  


statusモードは指定したデータディレクトリでサーバが稼働しているかどうかを確認します。
稼働している場合はサーバのPIDと、サーバを起動する時に使われたコマンドラインオプションを表示します。
サーバが稼働していない場合、pg_ctlは終了ステータス3を返します。
アクセス可能なデータディレクトリが指定されていない場合、pg_ctlは終了ステータス4を返します。
  


promoteモードは、指定したデータディレクトリで実行中のスタンバイサーバに、スタンバイモードを終了し、読み書きの操作を開始するように指示します。
  


logrotateモードはサーバログファイルをローテーションします。
外部のログローテーションツールでこのモードを使う方法の詳細については、「ログファイルの保守」を参照してください。
  


killモードは指定したプロセスにシグナルを送信します。
これは主に、組み込みのkillコマンドがないMicrosoft Windows™で有用です。
サポートされているシグナル名の一覧を見るには--helpを使ってください。
  


registerモードはPostgreSQL™サーバをMicrosoft Windows™上のシステムサービスとして登録します。
-Sオプションにより、「auto」（システムの起動時に自動的にサービスを開始する）と「demand」（要求に応じてサービスを開始する）のいずれかのサービス開始種別を選択できます。
  


unregisterモードによりMicrosoft Windows™上のシステムサービスを登録解除することができます。
これは過去にregisterコマンドによりなされた変更を元に戻します。
  

オプション
	-c, --core-files
	

実現可能なプラットフォームにおいて、サーバクラッシュ時にcoreファイルを生成できるように関連するソフトリソース制限を上げます。
障害が起きたサーバプロセスからスタックトレースを取得できますので、問題のデバッグや診断の際に有用です。
       

	-D datadir, --pgdata=datadir
	

データベース設定ファイルのファイルシステム上の場所を指定します。
このオプションが省略された場合、環境変数PGDATAが使われます。
       

	-l filename, --log=filename
	

サーバログ出力をfilenameに追記します。
そのファイルが存在しない場合は作成されます。
umaskは077に設定されますので、他のユーザからのログファイルへのアクセスはデフォルトでは許可されません。
       

	-m mode, --mode=mode
	

停止（シャットダウン）モードを指定します。
modeはsmart、fast、immediate、もしくはこの3つのモード名の最初の1文字をとることができます。
このオプションが省略された時はfastがデフォルトとなります。
       

	-o options, --options=options
	

postgresコマンドに直接渡されるオプションを指定します。
-oは複数回指定することができ、そこで指定されたすべてのオプションが渡されます。
       


optionsはそれが一つのグループとして渡されるようにするため、通常は単一引用符または二重引用符で括るべきです。
       

	-o initdb-options, --options=initdb-options
	

initdbコマンドに直接渡されるオプションを指定します。
-oは複数回指定することができ、そこで指定されたすべてのオプションが渡されます。
       


initdb-optionsはそれが一つのグループとして渡されるようにするため、通常は単一引用符または二重引用符で括るべきです。
       

	-p path
	

postgresの実行プログラムの位置を指定します。
デフォルトではpostgresの実行プログラムはpg_ctlと同じディレクトリにあるものとみなされます。また、このディレクトリに存在しなければ、構築時に指定したインストールディレクトリが使われます。
このオプションは、何か異例なことをしていてpostgresが見つからないというようなエラーが出ない限り、使う必要はありません。
       


initモードでは、このオプションは同様にinitdb実行プログラムの場所を指定します。
       

	-s, --silent
	

エラーメッセージのみを表示し、その他の情報を表示しません。
       

	-t seconds, --timeout=seconds
	

操作が完了するまで待機する最大の秒数を指定します（オプション-wを参照）。
デフォルトは環境変数PGCTLTIMEOUTの値で、それが設定されていなければ60秒です。
       

	-V, --version
	

pg_ctlのバージョンを表示し、終了します。
        

	-w, --wait
	

操作が完了するのを待ちます。
これはstart、stop、restart、promote、registerのモードについてサポートされており、これらのモードについてのデフォルトです。
       


待機している場合、pg_ctlは繰り返しサーバのPIDファイルを確認し、確認と確認の間は少しの時間スリープします。
起動は、サーバが接続を受け付ける準備ができたことをPIDファイルが示した時に、完了したとみなされます。
停止は、サーバがPIDファイルを削除した時に、完了したとみなされます。
pg_ctlは、起動もしくは停止が成功したかどうかに基づいて終了コードを返します。
       


操作がタイムアウト（オプション-t参照）までに完了しなかった場合、pg_ctlは非ゼロの終了コードで終了します。
しかし、その操作はバックグラウンドで実行し続け、最終的に成功するかもしれないことに注意してください。
       

	-W, --no-wait
	

操作が完了するのを待ちません。
オプション-wの反対です。
       


待機が無効化されていると、要求された操作は実行されますが、それが成功したかどうかのフィードバックがなくなります。
その場合、サーバのログファイルや外部のモニタリングシステムを使って操作の進行状況や成功したかどうかを確認する必要があるでしょう。
       


PostgreSQLの以前のリリースでは、stopモードを除き、これがデフォルトでした。
       

	-?, --help
	

pg_ctlコマンドライン引数の説明を表示し、終了します。
       





指定されたオプションが有効ではあるが、指定の操作モードと関係ないものである場合、pg_ctlはそれを無視します。
  
Windows用オプション
	-e source
	

Windowsのサービスとして実行する際に、イベントログへの出力用にpg_ctlが使用するイベントソースの名前です。
デフォルトはPostgreSQLです。
これはpg_ctl自体からのメッセージのみを制御することに注意してください。
サーバが起動した後は、event_sourceで指定したイベントソースが使用されます。
サーバが起動の非常に早い段階のパラメータが設定されるより前に障害を起こした場合は、デフォルトのイベントソース名のPostgreSQLを使用するかもしれません。
      

	-N servicename
	

登録するシステムサービスの名前です。
この名前は、システム名としても表示名としても使用されます。
デフォルトはPostgreSQLです。
      

	-P password
	

サービスを開始するユーザ用のパスワードです。
      

	-S start-type
	

システムサービスの起動種類です。
start-typeはauto、demand、またはこれら2単語の先頭の文字のいずれかです。
このオプションを省略した時はautoがデフォルトとなります。
      

	-U username
	

サービスを起動するユーザのユーザ名です。
ドメインユーザの場合はDOMAIN\username書式を使用してください。
      





環境
	PGCTLTIMEOUT
	

起動または終了が完了するまでに待機する秒数のデフォルトの最大値です。
設定されていない場合のデフォルトは60秒です。
     

	PGDATA
	

デフォルトのデータディレクトリの場所です。
     





ほとんどのpg_ctlのモードはデータディレクトリの位置を知っている必要があるため、PGDATAが設定されていないときは-Dオプションが必須です。
  


サーバに影響を与える他の変数についてはpostgres(1)を参照してください。
  

ファイル
	postmaster.pid
	

pg_ctlは、データディレクトリのこのファイルを検査して、サーバが現在稼働中かどうかを決定します。
     

	postmaster.opts
	
このファイルがデータディレクトリにあれば、pg_ctl（のrestartモード）は、-oで上書きされるものを除き、このファイルの内容をオプションとしてpostgresに渡します。
また、このファイルの内容がstatusモードで表示されます。
     




例
サーバの起動


以下はサーバが接続を植え付けられるようになるまで待機する起動例です。


$ pg_ctl start


   


ポート5433を使いfsyncなしでサーバを起動します。


$ pg_ctl -o "-F -p 5433" start


サーバの停止


サーバを停止するためには以下を使用します。


$ pg_ctl stop



-mオプションによりどのようにバックエンドを停止させるかを制御できます。


$ pg_ctl stop -m smart


サーバの再起動


サーバの再起動は、サーバを停止してもう一度起動するのとほぼ同じですが、違うのは、pg_ctlがデフォルトでは以前起動していたインスタンスに渡されていたコマンドラインオプションを保存し再利用することです。
下記はサーバを以前と同じオプションを使って再起動する方法です。


$ pg_ctl restart


   


しかし、-oを指定すれば、それによって以前のオプションが置換されます。
以下はポート5433を使って再起動し、再起動後にfsyncを無効にする方法です。


$ pg_ctl -o "-F -p 5433" restart


サーバの状態表示


下記はpg_ctlからの状態の出力の例です。


$ pg_ctl status

pg_ctl: server is running (PID: 13718)
/usr/local/pgsql/bin/postgres "-D" "/usr/local/pgsql/data" "-p" "5433" "-B" "128"



2行目は再起動（restart）モードで呼び出されるコマンドラインです。
   


関連項目
initdb(1), postgres(1)


名前
pg_resetwal — PostgreSQL™データベースクラスタの先行書き込みログ（WAL）やその他の制御情報を初期化する

概要
pg_resetwal  [ -f  |   --force ] [ -n  |   --dry-run ] [option...]  [ -D  |   --pgdata ]datadir 


説明


pg_resetwalは、先行書き込みログ（WAL）を消去し、さらにオプションでpg_controlファイル内に保存された制御情報の一部を初期化します。
この機能は、これらのファイルが破損した場合に必要になることがあります。
このような破損などが原因でサーバを起動できない場合の最後の手段としてのみ、この機能を使用してください。
  


--wal-segsize（後述）のようないくつかのオプションは、initdbを再実行せずに、データベースクラスタの特定のグローバル設定を変更するために使用することもできます。
これは、後述する危険なモードが使用されていないか、正常なデータベースクラスタ上であれば安全に使用できます。
  


サーバが正常にシャットダウンされ、かつ制御ファイルが正常な状態で、pg_resetwalがデータディレクトリに対して使用された場合、使用されなくなったWALファイルが削除される以外に、データベースシステムの内容に影響を与えることはありません。
その他の状態での使用は危険をともなう可能性があり、細心の注意をはらって使用しなければなりません。
pg_resetwalは、正常にシャットダウンされていない状態のデータディレクトリや、破損した制御ファイルが存在する場合、実行時に-f (force,強制) オプションを指定する必要があります。
  


破損したWALファイルや、破損した制御ファイルが存在するデータディレクトリに対してこのコマンドを実行すると、サーバが開始できるようになるはずです。
ただし、不完全にコミットされたトランザクションが原因でデータベースのデータに矛盾が起こる可能性があることに注意してください。
コマンドの実行後は、ただちにデータをダンプし、initdbを実行し、リストアすべきです。
リストア後、矛盾がないか検査し、必要に応じて修復を行ってください。
  


pg_resetwalがpg_controlに対する有効なデータを判別できない場合、-f（force,強制）オプションを指定すれば強制的に処理を進めることができます。
その場合、欠落したデータは無難な値で代用されます。
ほとんどのフィールドでは適切な値が使用されますが、次のOID、次のトランザクションIDとエポック時間、マルチトランザクションIDとそのオフセット、WAL開始位置の値については、手動の操作が必要な場合があります。
これらの値は下記で説明するオプションを使用して設定することができます。
すべてに対して正しい値を決定できない場合でも-fを使用することができますが、この場合は回復したデータベースを通常よりさらに注意深く検査する必要があります。
必ず、ただちにダンプおよびリストアを行ってください。
決して、ダンプを行う前にデータ変更などの操作を行ってはなりません。
そのような操作は、破損状態をさらに悪化させます。
  


このユーティリティは、データディレクトリへの読み取り/書き込みアクセスが必要なため、サーバをインストールしたユーザのみ実行できます。
  

オプション
	datadir, -D datadir, --pgdata=datadir
	

データベースディレクトリの場所を指定します。
安全上の理由から、コマンドラインでデータディレクトリを指定しなければなりません。
pg_resetwalは環境変数PGDATAを使用しません。
     

	-f, --force
	

前述のように、危険な状況でも強制的にpg_resetwalを実行します。
具体的には、サーバが正常にシャットダウンされていない場合や、pg_resetwalがpg_controlの有効なデータを確認できない場合に、このオプションは必要です。
     

	-n, --dry-run
	

-n/--dry-runオプションを指定すると、pg_resetwalはpg_controlから再構築した値、および変更される値を出力して、何も変更せずに終了します。
これは主にデバッグと目的としたツールですが、pg_resetwalを実際に進める前の検査としても有用な場合があります。
     

	-V, --version
	バージョン情報を表示して終了します。

	-?, --help
	ヘルプを表示して終了します。





以下のオプションはpg_resetwalがpg_controlを読んでも適切な値を決定できない場合にのみ必要になります。
安全な値は以下で説明するようにして決定できます。
数値を引数として取る値については、0xの接頭辞をつけることで16進数の値を指定できます。
これらの手順は標準的な8kBブロックサイズでのみ適用されることに注意してください。
  
	-c xid,xid, --commit-timestamp-ids=xid,xid
	

コミットの時刻が取り出せる最古のトランザクションIDと最新のトランザクションIDを手作業で設定します。
     


コミット時刻が取り出せる最古のトランザクションIDとして安全な値（1番目の部分）はデータディレクトリの下のpg_commit_tsディレクトリの中で、数値的に最小のファイル名を探すことで決定できます。
逆に、コミット時刻が取り出せる最新のトランザクションIDとして安全な値（2番目の部分）は同じディレクトリの中で、数値的に最大のファイル名を探すことで決定できます。
ファイル名は16進数になっています。
     

	-e xid_epoch, --epoch=xid_epoch
	

次のトランザクションIDのエポック時間を手作業で設定します。
     


pg_resetwalで設定されるフィールドを除き、トランザクションIDのエポック時間は実際にはデータベース内のどこにも格納されません。
そのため、データベース自体だけを考えるのであれば、任意の値で動作するでしょう。
Slony-IやSkytoolsなどのレプリケーションシステムが確実に正しく動作するように、この値を調整しなければならない可能性があります。
その場合、適切な値は下流で複製されたデータベースの状態から得られるはずです。
     

	-l walfile, --next-wal-file=walfile
	

次のWALセグメントファイル名を指定することでWAL開始位置を手動で設定します。
     


次のWALセグメントファイル名は、データディレクトリ以下のpg_walに現在存在するどのWALセグメントファイル名よりも大きくならなければなりません。
この名前も16進数で、3つの部分に分かれています。
最初の部分は「時系列ID」で、通常、この値は変更すべきではありません。
例えば、pg_wal内で最大のエントリが00000001000000320000004Aである場合は、-l 00000001000000320000004B以上を使用してください。
     


デフォルト以外のWALセグメントサイズを使用しているときには、WALファイル名の番号はシステム関数やシステムビューで報告されるLSNとは異なるということに注意してください。
このオプションはLSNではなくWALファイル名を引数に取ります。
     
注記


pg_resetwal自体はpg_wal内のファイルを参照し、最後の既存のファイル名より大きな値をデフォルトの-l設定として選択します。
したがって、手作業による-lの調整は、オフラインアーカイブ内の項目などpg_walに現存しないWALセグメントファイルがあることに気づいた場合、または、pg_walの内容が完全に失われている場合にのみ必要とされます。
      


	-m mxid,mxid, --multixact-ids=mxid,mxid
	

次のマルチトランザクションIDと最古のマルチトランザクションIDを手作業で設定します。
     


次のマルチトランザクションIDとして安全な値（1番目の部分）は、データディレクトリの下のpg_multixact/offsetsディレクトリの中で数値的に最大のファイル名を探し、1を加えてから65536(0x10000)を掛けることで決定できます。
逆に、最古のマルチトランザクションIDとして安全な値（-mの2番目の部分）は、同じディレクトリの中で数値的に最小のファイル名を探し、65536を掛けることで決定できます。
ファイル名は16進ですので、このための最も簡単なやり方は、オプション値を16進で指定し、ゼロを4つ追加することです。
     

	-o oid, --next-oid=oid
	

次のOIDを手作業で設定します。
     


データベース内のOIDの最大値よりも大きな次のOIDを決定するには、上記のような簡単な方法はありません。
しかし、幸いにも、次のOIDの設定を正しく取得することは、それほど重要ではありません。
     

	-O mxoff, --multixact-offset=mxoff
	

次のマルチトランザクションオフセットを手作業で設定します。
     


安全な値は、データディレクトリの下のpg_multixact/membersディレクトリの中で数値的に最も大きなファイル名を探し、1を加えてから、52352(0xCC80)を掛けることで決定できます。
ファイル名は16進数です。
他のオプションのような0をつけるだけの簡単な計算方法はありません。
     

	-u xid, --oldest-transaction-id=xid
	

最も古い凍結されていないトランザクションIDを手作業で設定します。
     


安全な値は、データディレクトリの下のpg_xactディレクトリの中で数値的に最も小さなファイル名を探し、1048576(0x100000)を掛けることで決定できます。
ファイル名は16進数であることに注意してください。
通常は、オプションの値も16進数で指定するのが最も簡単でしょう。
例えば、0007がpg_xactで最も小さなエントリであれば、-u 0x700000とすれば良いです（後ろにゼロを5つ付けると、正しく掛け算をしたことになります）。
     

	-x xid, --next-transaction-id=xid
	

次のトランザクションIDを手作業で設定します。
     


安全な値は、データディレクトリの下のpg_xactディレクトリの中で数値的に最も大きなファイル名を探し、1を加えてから、1048576(0x100000)を掛けることで決定できます。
ファイル名は16進数であることに注意して下さい。
通常は、オプションの値も16進数で指定するのが最も簡単でしょう。
例えば、0011がpg_xactで最も大きなエントリであれば、-x 0x1200000とすれば良いです（後ろにゼロを5つ付けると、正しく掛け算をしたことになります）。
     

	--char-signedness=option
	

デフォルトのcharの符号を手動で設定します。
有効な値はsignedとunsignedです。
     


18以前のバージョンのPostgreSQL™からpg_upgradeでアップグレードされたデータベースクラスタでは、安全な値はアップグレード前にクラスタを実行していたプラットフォームのデフォルトのcharの符号です。
その他のすべてのクラスタの場合、signedが安全な値でしょう。
ただし、このオプションはpg_upgrade専用であり、通常は手動で使用すべきではありません。
     

	--wal-segsize=wal_segment_size
	

新たなWALセグメントサイズをメガバイトで設定します。
値には1から1024（メガバイト）の2の冪乗を設定しなければなりません。
詳しくはinitdb(1)の同じオプションを参照してください。
     


このオプションは、既存のデータベースクラスタのWALセグメントサイズを変更するためにも使用でき、initdbを再実行する必要がなくなります。
     
注記


pg_resetwalが存在する最も新しいWALセグメントファイルを超えたWAL開始位置を設定するとき、一部のセグメントサイズ変更は前のWALファイル名の再使用をひき起こす可能性があります。
あなたのアーカイブ戦略でWALファイル名のオーバーラップが問題を起こす場合には、このオプションと共にWAL開始位置を手動で設定する-lも使うことを推奨します。
      





環境
	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     




注釈


このコマンドは、サーバの稼働中に使用してはいけません。
pg_resetwalは、データディレクトリにサーバのロックファイルがあると、実行されません。
サーバがクラッシュした場合、ロックファイルがそのまま残される場合があります。
その場合は、ロックファイルを削除すればpg_resetwalを実行することができます。
しかし、そのようなことをする前に、まだ稼働中のサーバプロセスが一切ないことを慎重に確認してください。
  


pg_resetwalは同一のメジャーバージョンのサーバに対してのみ動作します。
  

関連項目
pg_controldata(1)


名前
pg_rewind — PostgreSQL™のデータディレクトリを、そこから派生した他のデータディレクトリと同期する

概要
pg_rewind  [option...]  { -D  |   --target-pgdata } directory { --source-pgdata=directory  |   --source-server=connstr } 


説明


pg_rewindは、PostgreSQLのクラスタのタイムラインが分岐した後、クラスタをその複製のクラスタに同期するためのツールです。
典型的なシナリオとしては、フェイルオーバー後、新しいプライマリに追従するスタンバイとして、古いプライマリサーバをオンラインに戻す、というのがあります。
  


巻き戻し(rewind)が成功すれば、ターゲットデータディレクトリの状態はソースデータディレクトリのベースバックアップと類似したものになります。
新しいベースバックアップを取ったり、rsyncのようなツールを使うのとは異なり、pg_rewindはクラスタ内の変更されていないリレーションブロックの比較やコピーを必要としません。
既存のリレーションファイルのうちの変化のあったブロックだけがコピーされます。それ以外のすべてのファイルは、新しいリレーションファイルや設定ファイル、WALセグメントを含め、すべてのファイルがコピーされます。
そのため、データベースが大きく、クラスタ間で変更されているブロックの割合が小さい場合には、巻き戻し操作は他の方法に比べて極めて高速になります。
  


pg_rewindはソースとターゲットクラスタ内のタイムラインヒストリーを調べ、それらがどの時点で異なるものになったのかを調べます。
差異が発生した分岐点までずっと遡ることにより、ターゲットクラスタ内のpg_walディレクトリ内の分岐点に到達するWALを見つけようとします。
変化の分岐点は、ターゲット側のタイムライン中、ソース側のタイムライン中、あるいはそれら共通の祖先の中に見つかる可能性が高いです。
分岐点のあと間をおかずシャットダウンされたような典型的なフェイルオーバーのシナリオにおいては、これは特に問題になりません。
しかし、分岐点の後にターゲットクラスタが長時間運用されていた場合には、古いWALファイルはもう存在しないかもしれません。
この場合は、WALアーカイブから手動でpg_walディレクトリにコピーできます。
あるいは、-cオプションを付けてpg_rewindを実行し、WALアーカイブから自動的に取り出すこともできます。
pg_rewindの利用は、フェイルオーバーに留まりません。
たとえば、スタンバイサーバが昇格してから書き込みトランザクションを実行し、再びスタンバイになるために巻き戻すこともできます。
  


pg_rewindを実行した後、データディレクトリが整合のとれた状態になるためにはWALリプレイの完了が必要です。
ターゲットサーバは再起動すると、アーカイブリカバリに入り、分岐点の前の最後のチェックポイント以降にソースサーバで生成されたWALをすべてリプレイします。
pg_rewindが実行された時にWALの中にソースサーバにないものがあり、pg_rewindのセッションではコピーできなかった場合は、ターゲットサーバが起動した時にWALを読む込めるようになっていなければなりません。
recovery.signalファイルをターゲットデータディレクトリに置き、postgresql.confに適切なrestore_commandを設定することで、これを達成できます。
  


pg_rewindを使用するには、ターゲットサーバ上でpostgresql.confのwal_log_hintsオプションが有効になっているか、initdbでクラスタを初期化した時にデータチェックサムが有効になっていなければなりません。
どちらもデフォルトではonではありません（無効です）。
full_page_writesもon（有効）でなければなりませんが、これはデフォルトで有効です。
  
警告: 巻き戻し中の失敗


処理中にpg_rewindが失敗した場合、ターゲットのデータフォルダーはリカバリ可能な状態でない可能性があります。
このような場合は、最新のバックアップを取ることをお勧めします。
   


pg_rewindはソースから設定ファイルをそのままコピーするので、特にターゲットをソースのスタンバイとして再導入する場合には、ターゲットサーバを再起動する前にリカバリのために使われる設定を修正することが必要かもしれません。
巻き戻し操作は終わったもののリカバリの設定をせずにサーバを再起動すると、ターゲットは再びプライマリから分岐するでしょう。
   


pg_rewindは直接書き込めないファイルが見つかるとすぐに失敗します。
たとえば、ソースサーバとターゲットサーバが読み取り専用のSSLキーと証明書に同じファイルマッピングを使用する場合に発生します。
そのようなファイルがターゲットサーバ上に存在する場合、それらを削除してからpg_rewindを実行することをお勧めします。
巻き戻しを行った後、それらのファイルの一部がソースからコピーされている可能性があります。
その場合は、コピーされたデータを削除して、巻き戻し前に使用していたリンクのセットを元に戻す必要があります。
   


オプション


    pg_rewindは以下のコマンドラインオプションを受け付けます。

    
	-D directory, --target-pgdata=directory
	

このオプションは、同期するターゲットデータディレクトリを指定します。
ターゲットサーバは、pg_rewindを実行する前に、正常にシャットダウンされていなければなりません。
       

	--source-pgdata=directory
	

同期するソースサーバのデータディレクトリへのファイルシステム上のパスを指定します。
このオプションを使用する場合は、ソースサーバは正常にシャットダウンされていなければなりません。
       

	--source-server=connstr
	

ターゲットサーバに同期するソースPostgreSQL™サーバに接続するlibpq接続文字列を指定します。
接続は、ソースサーバ（詳しくは注釈を参照）でpg_rewindで使われる関数を実行する権限を持つロールまたはスーパーユーザロールでの通常の（レプリケーションでない）接続でなければなりません。
このオプションはソースサーバが実行中であることと接続を受け付けることを必要とします。
       

	-R, --write-recovery-conf
	

出力ディレクトリでstandby.signalを作成し、postgresql.auto.confに接続設定を追加します。
dbnameは、接続文字列または環境変数でdbnameが明示的に指定された場合にのみ記録されます。
このオプションでは--source-serverは必須です。
       

	-n, --dry-run
	

ターゲットディレクトリを実際に更新する以外はすべてのことを行います。
       

	-N, --no-sync
	

デフォルトでは、pg_rewindはファイルがすべて安全にディスクに書き込まれるのを待ちます。
このオプションにより、pg_rewindは待つことなく戻るようになります。これは速いのですが、直後にオペレーティングシステムがクラッシュした場合、データディレクトリの破損が残るかもしれません。
一般に、このオプションはテストするためには有用ですが、稼働用のインストレーションでは使うべきではありません。
       

	-P, --progress
	

進行状況のレポートを有効にします。このオプションを有効にすると、データをソースクラスタからコピーする際のおおよその進行状況をレポートします。
       

	-c, --restore-target-wal
	

WALファイルがpg_walディレクトリにもはや存在しない場合、ターゲットクラスタ設定内で定義されているrestore_commandを使ってWALファイルをWALアーカイブから取り出します。
       

	--config-file=filename
	

ターゲットクラスタ用に指定されたメインサーバ設定ファイルを使用します。
これは、pg_rewindがこのクラスタ上での巻き戻し操作のためにpostgresコマンドを内部的に使用している場合(-c/--restore-target-walオプションを指定してrestore_commandを取得している場合や、クラッシュリカバリの完了を強制する場合)に影響します。
       

	--debug
	

主に開発者がpg_rewindをデバッグするのに役立つ冗長なデバッグ出力を印字します。
       

	--no-ensure-shutdown
	

pg_rewindは、巻き戻す前にターゲットサーバが正常にシャットダウンされていることを要求します。
デフォルトでは、ターゲットサーバが正常にシャットダウンされていなければ、pg_rewindはターゲットサーバをシングルユーザモードで起動し、まずクラッシュリカバリを完了して停止します。
このオプションを渡すことで、pg_rewindはこれを飛ばして、サーバが正常にシャットダウンされていない場合にはすぐにエラーを発生します。
その場合、ユーザが自身で状況を扱うことが期待されます。
       

	--sync-method=method
	

デフォルトのfsyncに設定すると、pg_rewindはデータディレクトリ内のすべてのファイルを再帰的に開いて同期します。
ファイルの検索はWALディレクトリと設定された各テーブル空間のシンボリックリンクをたどります。
       


Linuxでは、syncfsを代わりに使用して、データディレクトリ、WALファイル、各テーブル空間を含むファイルシステム全体を同期させるようにオペレーティングシステムに要求することもできます。
syncfsを使用する際に注意すべき点については、recovery_init_sync_methodを参照してください。
       


このオプションは--no-syncが使われている場合は効果がありません。
       

	-V, --version
	バージョン情報を表示して終了します。

	-?, --help
	ヘルプを表示して終了します。




   

環境


--source-serverオプションを使用する場合、pg_rewindは
libpqで利用できる環境変数を使用します(「環境変数」を参照)。
  


環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  

注釈


オンラインのクラスタをソースとして使用してpg_rewindを実行するとき、スーパーユーザの代わりにソースのクラスタ上でpg_rewindで使われる関数を実行できる権限を持ったロールを使うことができます。
rewind_userという名前のこのようなロールの作り方を以下に示します。


CREATE USER rewind_user LOGIN;
GRANT EXECUTE ON function pg_catalog.pg_ls_dir(text, boolean, boolean) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_stat_file(text, boolean) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text, bigint, bigint, boolean) TO rewind_user;


  
どうやって動くのか


基本的なアイデアは、ファイルシステムレベルの変更を、すべてをソースクラスタからターゲットクラスタにコピーする、というものです。
   
	

ソースクラスタのタイムライン履歴がターゲットクラスタから分岐した時点より前の最後のチェックポイントから始めて、ターゲットクラスタのWALログをスキャンします。
各々のWALレコードについて、変更されたデータブロックを記録します。
これにより、ソースクラスタが分岐した以降に、ターゲットクラスタで変更されたすべてのデータブロックのリストが作成されます。
WALファイルの中にもう存在しないものがある場合は、失われたファイルをWALアーカイブで探すよう-cオプションを付けてpg_rewindを再実行してみます。
     

	

ファイルシステムへの直接アクセス（--source-pgdata）かSQL （--source-server）を使って、変更のあったすべてのブロックを、ソースクラスタからターゲットクラスタにコピーします。
これでリレーションファイルは、ソースとターゲットのWALタイムラインが分岐した時点より前で最後に完了したチェックポイントの時点に加えて、分岐後にターゲットで変更されたブロックを含んだソースでの現在の状態に相当する状態になります。
     

	

新しいリレーションファイルやWALセグメント、pg_xactや設定ファイルなどを含めて、それ以外のファイルをすべてソースクラスタからターゲットクラスタにコピーします。
ベースバックアップと同様に、ディレクトリpg_dynshmem/、pg_notify/、pg_replslot/、pg_serial/、pg_snapshots/、pg_stat_tmp/、および、pg_subtrans/の内容は、ソースクラスタからコピーされるデータから省かれます。
pgsql_tmpで始まるすべてのファイルやディレクトリは省かれます。
ファイルbackup_label、tablespace_map、pg_internal.init、postmaster.opts、postmaster.pidおよび.DS_Storeも同様です。
     

	

フェイルオーバーで作成されたチェックポイントでWALリプレイを開始するためにbackup_labelファイルを作成し、動作中のソースから巻き戻す場合にはpg_current_wal_insert_lsn()の結果として定義される最小の整合のとれたLSNを、停止したソースから巻き戻す場合には最後のチェックポイントLSNをpg_controlファイルに設定します。
     

	

ターゲットが起動すると、PostgreSQL™は必要なWALをすべてリプレイします。それにより、データディレクトリが整合のとれた状態になります。
     







名前
pg_test_fsync — PostgreSQL™の最も高速なwal_sync_methodを決定する

概要
pg_test_fsync  [option...]


説明


pg_test_fsyncは使用するシステムにおいて最速なwal_sync_methodは何かについて、合理的な見解を提供することを意図したものです。
同時に識別されたI/O問題のイベントに診断情報を提供します。
しかしpg_test_fsyncで示される差異が、実際のデータベーススループットにおいて差異として現れないことがあります。
特に、多くのデータベースサーバは先行書き込みログ（WAL）により速度制限されていないからです。
pg_test_fsyncは各wal_sync_methodに対する平均ファイル同期処理時間をマイクロ秒単位で報告します。
これはcommit_delayの値を最適化する時の情報としても使うことができます。
 

オプション


pg_test_fsyncは以下のコマンドラインオプションを受け付けます。

    
	-f, --filename
	

テストデータを書き込むためのファイルの名前を指定します。
このファイルはpg_walディレクトリがある、または格納する予定のファイルシステムと同じファイルシステムになければなりません。
（pg_walにはWALファイルが含まれます。）
デフォルトは現在のディレクトリ内のpg_test_fsync.outです。
       

	-s, --secs-per-test
	

１テストあたりの秒数を指定します。
テストあたりの時間を多くするほど、テストの精度が向上しますが、実行により時間がかかるようになります。
デフォルトは、本プログラムがおよそ2分で完了することができる、5秒です。
       

	-V, --version
	

pg_test_fsyncのバージョンを表示し、終了します。
       

	-?, --help
	

pg_test_fsyncのコマンドライン引数の説明を表示し、終了します。
       




   

環境


環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  

関連項目
postgres(1)


名前
pg_test_timing — 時間計測のオーバーヘッドを測定する

概要
pg_test_timing  [option...]


説明


pg_test_timingはシステム上の時間計測のオーバーヘッドを測定し、またシステム時計が逆向きに進まないことを確認するためのツールです。
時間のデータの収集に時間のかかるシステムでは、EXPLAIN ANALYZEの結果が不正確になることがあります。
 

オプション


pg_test_timingでは、以下のコマンドラインオプションを指定できます。

    
	-d duration, --duration=duration
	

テストの時間を秒単位で指定します。
時間を長くすると、少しだけ結果が正確になり、またシステム時計が逆方向に進む問題を検出できる可能性が高くなります。
デフォルトのテスト時間は3秒です。
       

	-V, --version
	

pg_test_timingのバージョンを表示して終了します。
       

	-?, --help
	

pg_test_timingのコマンドライン引数についてのヘルプを表示して終了します。
       




   

使用方法
結果の解釈


良い結果では、個々の時間計測のほとんど(90%以上)が1マイクロ秒未満になります。
ループあたりの平均オーバーヘッド(per loop time)の値はさらに小さく、100ナノ秒未満になります。
以下の例はIntel i7-860システムでTSC時計を使ったもので、非常に良い性能を示しています。



Testing timing overhead for 3 seconds.
Per loop time including overhead: 35.96 ns
Histogram of timing durations:
  < us   % of total      count
     1     96.40465   80435604
     2      3.59518    2999652
     4      0.00015        126
     8      0.00002         13
    16      0.00000          2


  


ループあたりの時間(per loop time)とヒストグラム(histogram)で時間の単位が異なることに注意して下さい。
ループは数ナノ秒(ns)以内の精度を持つことができますが、個々の時間計測の呼び出しは1マイクロ秒(us)までの精度にしかできません。
  

エグゼキュータの時間計測オーバーヘッドの測定


問い合わせエグゼキュータがEXPLAIN ANALYZEを使って文を実行するとき、要約を表示する他に、個々のオペレーションについての時間計測もされます。
次のpsqlプログラムで行を数えれば、システムのオーバーヘッドを調べることができます。



CREATE TABLE t AS SELECT * FROM generate_series(1,100000);
\timing
SELECT COUNT(*) FROM t;
EXPLAIN ANALYZE SELECT COUNT(*) FROM t;


  


測定に使ったi7-860システムでは、countの問い合わせを9.8ミリ秒で実行しましたが、EXPLAIN ANALYZEをつけたときは16.6ミリ秒かかりました。どちらの問い合わせもちょうど10万行を処理しています。
この6.8ミリ秒の差は、行あたりの時間計測のオーバーヘッドが68ナノ秒であることを示しており、これはpg_test_timingによる推定値の約2倍です。
この比較的小さな量のオーバーヘッドでも、countの文の完全な時間計測をすると70%長くかかりました。
もっと本質的な問い合わせでは、時間計測のオーバーヘッドはあまり問題にならないでしょう。
  

時間の測定源の変更


一部の新しいLinuxシステムでは、時間データの収集に使う時計をいつでも変更することができます。
2番目の例は、時間の測定源を、より遅いacpi_pmに変更することで、上の速い結果で使われたのと同じシステムでも、遅い結果が出るかもしれないことを示しています。



# cat /sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm
# echo acpi_pm > /sys/devices/system/clocksource/clocksource0/current_clocksource
# pg_test_timing
Per loop time including overhead: 722.92 ns
Histogram of timing durations:
  < us   % of total      count
     1     27.84870    1155682
     2     72.05956    2990371
     4      0.07810       3241
     8      0.01357        563
    16      0.00007          3


  


この構成では、上のEXPLAIN ANALYZEの例の実行に115.9ミリ秒かかりました。
つまり、時間計測に1061ナノ秒のオーバーヘッドとなりますが、やはりこのユーティリティによって直接測定したものに小さな数を掛けた程度の値です。
この大きな時間計測のオーバーヘッドは、実際の問い合わせ自体は問い合わせに要した時間の本の一部を占めるだけで、大半はオーバーヘッドによって使われている、ということを示しています。
この構成では、多くの時間計測オペレーションを含むEXPLAIN ANALYZEの合計は、時間計測のオーバーヘッドにより非常に大きな値になるでしょう。
  


FreeBSDでも時間の測定源を実行時に変更することができ、起動時に、選択されたタイマーに関する情報をログ出力します。



# dmesg | grep "Timecounter"
Timecounter "ACPI-fast" frequency 3579545 Hz quality 900
Timecounter "i8254" frequency 1193182 Hz quality 0
Timecounters tick every 10.000 msec
Timecounter "TSC" frequency 2531787134 Hz quality 800
# sysctl kern.timecounter.hardware=TSC
kern.timecounter.hardware: ACPI-fast -> TSC


  


他のシステムでは、起動時にのみ時間の測定源を設定することができます。
古いLinuxシステムでは"clock"のカーネル設定が、この種の変更をする唯一の方法でした。
比較的新しいLinuxでも、時計についての唯一のオプションが"jiffies"であるということもあります。
jiffiesはLinuxの古いソフトウェア時計の実装で、十分に速い時間測定のハードウェアがあれば、以下の例のように良い精度を出すことができます。



$ cat /sys/devices/system/clocksource/clocksource0/available_clocksource
jiffies
$ dmesg | grep time.c
time.c: Using 3.579545 MHz WALL PM GTOD PIT/TSC timer.
time.c: Detected 2400.153 MHz processor.
$ pg_test_timing
Testing timing overhead for 3 seconds.
Per timing duration including loop overhead: 97.75 ns
Histogram of timing durations:
  < us   % of total      count
     1     90.23734   27694571
     2      9.75277    2993204
     4      0.00981       3010
     8      0.00007         22
    16      0.00000          1
    32      0.00000          1


時計のハードウェアと時間測定の正確さ


コンピュータでの正確な時間情報の収集は通常はハードウェアクロックを用いて行われ、その正確さのレベルは様々です。
一部のハードウェアでは、オペレーティングシステムはシステムクロックの時間をほぼ直接にプログラムに渡すことができます。
システムクロックは、ある一定の時間ごとの単純な時間の割り込みを起こすチップによって提供されることもあります。
いずれの場合でも、オペレーティングシステムのカーネルは、これらの詳細を隠して時間の測定源を提供します。
しかし時間の測定源の正確さ、および結果を返す速さは、その基となっているハードウェアに依存して変わります。
  


時間を正確に保つことができないと、システムが不安定になることがあります。
時間の測定源へのすべての変更について、非常に注意深く検査してください。
オペレーティングシステムのデフォルトは、正確であることよりも信頼できることを重視して設定されているかも知れません。
仮想マシンを使っている場合は、それと互換性があるとして推奨されている時間の測定源を調べてください。
仮想マシンではタイマーをエミュレートするのに通常以上の困難があり、ベンダによって推奨されるオペレーティングシステムごとの設定があることもあります。
  


タイムスタンプカウンタ(TSC)は、現行世代のCPU上で利用可能な最も正確な時間の測定源です。
オペレーティングシステムがTSCクロックをサポートしていて、それが信頼出来るなら、システム時間をTSCで測ることが望ましいです。
TSCが正確な時間測定源とならず、信頼できなくなる場合がいくつかあります。
古いシステムでは、TSCの時計がCPUの温度に依存して変化するため、時間測定には利用できません。
一部の古いマルチコアCPUでTSCを使うと、複数のコアの間で一貫しない時間が得られることがあります。
この場合、時計が逆戻りすることがありますが、それがこのプログラムが検査対象としている問題の1つです。
また最新のシステムでも、非常に積極的に電力節減を実施する設定の場合には、TSCの時間計測が不正確になることがあります。
  


新しいオペレーティングシステムには、既知のTSCの問題について検査し、問題が検出されると、遅いが、より安定した時間測定源を使うようにするものもあります。
システムがTSC時計をサポートしているけれど、それがデフォルトになっていないとしたら、何らかの正しい理由によって無効にされたのかもしれません。
一部のオペレーティングシステムでは、発生しうるすべての問題について正しく検知できないかも知れませんし、またTSCが正確でないとわかっている状況でもTSCを利用可能にするかも知れません。
  


高精度イベントタイマー(HPET)は、それが利用可能で、TSCが不正確なシステムにおいて、望ましいタイマーです。
タイマーのチップ自体は、100ナノ秒単位の精度までプログラム可能ですが、システムクロックによっては、そこまでの正確さはないこともあります。
  


ACPI(Advanced Configuration and Power Interface)は電源制御（ＰＭ）タイマーを提供し、Linuxはこれをacpi_pmとして参照します。
acpi_pmを利用した時計は、最高で300ナノ秒までの精度を提供します。
  


古いPCハードウェアで使われていたタイマーには、8254プログラマブルインターバルタイマー(PIT)、リアルタイムクロック(RTC)、APIC(Advanced Programmable Interrupt Controller)タイマー、サイクロン(Cyclone)などがあります。
これらのタイマーは、ミリ秒の精度を目指したものです。
  


関連項目
EXPLAIN(7)


名前
pg_upgrade — PostgreSQL™サーバインスタンスをアップグレードする

概要
pg_upgrade   -b   oldbindir  [-B newbindir]  -d   oldconfigdir   -D   newconfigdir  [option...]


説明


pg_upgrade(これまではpg_migratorと呼ばれていました)を使用することで、メジャーバージョンのアップグレード、例えば、12.14から13.10へ、14.9から15.5へのアップグレードで通常必要とされるデータのダンプ/リストアを行うことなく、PostgreSQL™データファイル内に格納されたデータをより最新のPostgreSQL™メジャーバージョンに移行できます。
これは、例えば12.7から12.8、14.1から14.5などマイナーバージョンのアップグレードでは必要ありません。
 


PostgreSQLのメジャーリリースでは通常、システムテーブルのレイアウトをよく変更する、多くの機能が追加されます。
しかし内部データの格納書式はまれにしか変更されません。
pg_upgradeはこの事実を使用して、システムテーブルを新しく作成し、古いユーザデータファイルを単に再利用することで、高速なアップグレードを実施します。
将来のメジャーリリースでついに古いデータ書式を読み取ることができなくなるようにデータ格納書式を変更した場合、pg_upgradeではこうしたアップグレードを扱うことができません。
（コミュニティはこうした状況を防ごうと考えています。）
 


pg_upgradeは古いクラスタと新しいクラスタとの間で、例えばコンパイル時の設定に互換性があるかどうか、32ビットバイナリか64ビットバイナリかなど、バイナリ互換性があることを確実にするために最善を尽くします。
任意の外部モジュールがバイナリ互換であることも重要ですが、これはpg_upgradeでは検査することができません。
 


pg_upgradeは9.2.X以降から現時点のPostgreSQL™のメジャーリリース(スナップショット版やβリリースを含む)へのアップグレードをサポートします。
  
警告


クラスタをアップグレードすると、アップグレード元のスーパーユーザが選択した任意のコードをアップグレード先で実行することになります。
アップグレードする前に、アップグレード元のスーパーユーザが信頼できることを確認してください。
   


オプション


    pg_upgradeは以下のコマンドライン引数を受け付けます。

    
	-b bindir, --old-bindir=bindir
	古いPostgreSQLの実行ファイル格納ディレクトリ。PGBINOLD環境変数

	-B bindir, --new-bindir=bindir
	新しいPostgreSQLの実行ファイル格納ディレクトリ。デフォルトはpg_upgradeのあるディレクトリ。PGBINNEW環境変数

	-c, --check
	クラスタの検査のみを行い、データの変更を行いません。

	-d configdir, --old-datadir=configdir
	古いクラスタの設定データディレクトリ。PGDATAOLD環境変数

	-D configdir, --new-datadir=configdir
	新しいクラスタの設定データディレクトリ。PGDATANEW環境変数

	-j njobs, --jobs=njobs
	使用する同時接続数とプロセス/スレッドの数。

	-k, --link
	新しいクラスタにファイルをコピーするのではなく、ハードリンクを使用します。

	-N, --no-sync
	

デフォルトでは、pg_upgradeはアップグレードされたクラスタのすべてのファイルが安全にディスクに書き込まれるのを待ちます。
このオプションでpg_upgradeは待たずに戻るようになります。これはより高速ですが、その後のオペレーティングシステムのクラッシュによってデータディレクトリが壊れたままになる可能性があることを意味します。
一般的に、このオプションは試験するには有用ですが、実稼働環境では使用すべきではありません。
       

	-o options, --old-options options
	古いpostgresコマンドに直接渡すオプションです。複数の起動オプションが追加されます。

	-O options, --new-options options
	新しいpostgresコマンドに直接渡すオプションです。複数の起動オプションが追加されます。

	-p port, --old-port=port
	古いクラスタのポート番号。PGPORTOLD環境変数

	-P port, --new-port=port
	新しいクラスタのポート番号。PGPORTNEW環境変数

	-r, --retain
	正常に完了した場合であってもSQLファイルとログファイルを保持します。

	-s dir, --socketdir=dir
	アップグレード中にpostmasterソケット用に利用するディレクトリ。デフォルトは現在の作業ディレクトリです。環境変数PGSOCKETDIR

	-U username, --username=username
	クラスタのインストールユーザの名称。PGUSER環境変数

	-v, --verbose
	冗長な内部ログを有効にします。

	-V, --version
	バージョン情報を表示し、終了します。

	--clone
	

新しいクラスタにファイルをコピーする代わりに、効率的なファイルの複製(システムのいくつかでは「reflink」としても知られています)を使います。
これは、データファイルをほぼ瞬間的にコピーし、古いクラスタに手をつけずに-k/--linkの速度の利点を与えることになるでしょう、
       


ファイルの複製はいくつかのオペレーティングシステムとファイルシステムでのみサポートされています。
選択されたもののサポートされていなければ、pg_upgradeの実行はエラーになります。
現在のところ、BtrfsとXFS(のreflinkサポート付きで作られたファイルシステム)のLinux(カーネル4.5以降)と、APFSのmacOSでサポートされています。
       

	--copy
	

新しいクラスタにファイルをコピーします。
これがデフォルトです。
（--link、--clone、--copy-file-range、および--swapも参照してください。）
       

	--copy-file-range
	

効率的なコピーを行うには、システムコールcopy_file_rangeを使用します。
ファイルシステムによっては、物理ディスクブロックを共有する--cloneと同様の結果を得られるものもあれば、ブロックをコピーするものの、最適化されたパスを介してコピーするものもあります。
現在、LinuxとFreeBSDでサポートされています。
       

	--no-statistics
	

古いクラスタから新しいクラスタに統計情報をリストアしません。
       

	--set-char-signedness=option
	

新しいクラスタにおけるデフォルトのchar符号属性（signedness）を手動で設定します。
取り得る値はsignedとunsignedです。
       


C言語では、char型のデフォルトの符号属性は（明示的に指定されていない場合）プラットフォームによって異なります。
例えば、x86 CPUではcharのデフォルトはsigned charですが、ARM CPUではunsigned charです。
       


PostgreSQL™18以降、データベースクラスタは自身のデフォルトのchar符号属性についての設定を保存しており、これを使用して、デフォルトのchar符号属性が異なるプラットフォーム間でも一貫した動作を保証できます。
デフォルトでは、pg_upgradeは既存のクラスタからアップグレードするときにchar符号属性の設定を保存します。
ただし、PostgreSQL™17以前からアップグレードする場合、pg_upgradeはビルドされたプラットフォームのchar符号属性を採用します。
       


このオプションを使用すると、新しいクラスタのデフォルトのchar符号属性を明示的に設定し、継承された値を上書きできます。
このオプションが関連する2つの具体的なシナリオがあります。
        
	

アップグレード後に別のプラットフォームに移行する予定がある場合は、このオプションを使用しないことを推奨します。
この場合は、デフォルトの動作が正しいです。
代わりに、このフラグを使用せずに元のプラットフォームでアップグレードしてから、クラスタを移行してください。
これが推奨される最も安全な方法です。
          

	

すでにchar符号属性の異なるプラットフォームにクラスタを移行している場合（たとえば、x86ベースのシステムからARMベースのシステムへ）、このオプションを使用して、元のプラットフォームにおけるデフォルトのchar符号属性と一致する符号属性を指定する必要があります。
さらに、データファイルの移行とpg_upgradeの実行の間は、データファイルを変更しないことが重要です。
新しいプラットフォームでクラスタを起動する最初の操作がpg_upgradeでなければなりません。
          




       

	--swap
	

データディレクトリを古いクラスタから新しいクラスタに移動します。
次に、カタログファイルを新しいクラスタ用に生成されたものと置き換えます。
このモードは、--link、--clone、--copy、および--copy-file-rangeよりも高速になる場合があり、多くのリレーションを持つクラスタでは特に顕著に現れます。
       


ただし、このモードでは古いクラスタに多くの不要なファイルが作成されるため、--sync-method=syncfsが使用されている場合はファイル同期ステップが長くなる可能性があります。
したがって、--sync-method=fsyncと--swapを併用することを推奨します。
       


さらに、ファイル転送ステップが開始されると、古いクラスタは破壊的に変更されるため、もう安全に起動することができません。
詳細については、ステップ 17を参照してください。
       

	--sync-method=method
	

デフォルトのfsyncに設定すると、pg_upgradeはアップグレードされたクラスタのデータディレクトリ内のすべてのファイルを再帰的に開いて同期します。
ファイルの検索はWALディレクトリと設定された各テーブル空間のシンボリックリンクをたどります。
       


Linuxでは、syncfsを代わりに使用して、アップグレードされたクラスタのデータディレクトリ、WALファイル、および各テーブル空間を含むファイルシステム全体を同期するようにオペレーティングシステムに要求できます。
syncfsを使用する際に注意すべき点については、recovery_init_sync_methodを参照してください。
       


このオプションは--no-syncが使われている場合は効果がありません。
       

	-?, --help
	使用方法を表示し、終了します。




   

使用方法


pg_upgradeを用いたアップグレードを行う手順を示します。
  
注記


論理レプリケーションクラスタのアップグレード手順はここでは取り上げません。
「アップグレード」を参照してください。
    

	古いクラスタの移動（省略可能）


バージョンに関連したインストレーションディレクトリ(例えば/opt/PostgreSQL/18)を使用しているのであれば、古いクラスタを移動する必要はありません。
グラフィカルインストーラはすべて、バージョンに関連したインストレーションディレクトリを使用します。
    


インストレーションディレクトリがバージョンに関連していない（例えば/usr/local/pgsql）のであれば、新しいPostgreSQL™のインストレーションに干渉しないように、現在のPostgreSQLインストレーションディレクトリを移動しなければなりません。
一度現在のPostgreSQL™サーバを停止させていれば、PostgreSQLのインストレーションの名前を変更しても安全です。
古いディレクトリが/usr/local/pgsqlであれば、以下のようにディレクトリ名を変更します。



mv /usr/local/pgsql /usr/local/pgsql.old



    

	ソースからのインストールの場合の新しいバージョンの構築


古いクラスタと互換性を持つようなconfigureオプションを付けて新しいPostgreSQLソースを構築してください。
pg_upgradeはアップグレードを始める前にすべての設定が互換性を持っていることを確認するためにpg_controldataを検査します。
    

	新しいPostgreSQLのバイナリのインストール


新しいサーバのバイナリとサポートファイルをインストールしてください。
pg_upgradeはデフォルトのインストレーションに含まれています。
    


ソースからインストールする場合、独自の場所に新しいサーバをインストールしたければ、以下のようにprefixを使用してください。



make prefix=/usr/local/pgsql.new install


	新しいPostgreSQLクラスタを初期化


initdbを使用して新しいクラスタを初期化してください。
ここでも、古いクラスタに合うように互換性があるinitdbのオプションを使用してください。
あらかじめ組み込まれたインストーラの多くは、この手順を自動的に実施します。
新しいクラスタを起動する必要はありません。
    

	拡張共有オブジェクトファイルをインストール


contribからのものであろうとその他のソースからのものであろうと、多くの拡張や独自のモジュールは、例えばpgcrypto.soなどの独自の共有オブジェクトファイル(またはDLL)を使います。
古いクラスタがこれらを使用していたのであれば、新しいサーバのバイナリに合った共有オブジェクトファイルを、たいていはオペレーティングシステムのコマンドで、新しいクラスタにインストールしなければなりません。
例えばCREATE EXTENSION pgcryptoなどのスキーマ定義はロードしないでください。これらは古いクラスタから複製されるためです。
拡張アップデートが利用可能であれば、pg_upgradeはこれを報告し、アップデートのために後で実行できるスクリプトを作成します。
    

	独自の全文検索ファイルをコピー


独自の全文検索ファイル(辞書、同義語、類語辞書、ストップワード)を古いクラスタから新しいクラスタにコピーしてください。
    

	認証の調整


pg_upgradeは古いサーバと新しいサーバに複数回接続します。
このため、pg_hba.conf内でpeer認証に設定、あるいは、~/.pgpassファイル(「パスワードファイル」参照)を使用するようにした方が良いかもしれません。
    

	両サーバの停止


両サーバが停止していることを確実にしてください。
例えばUnixでは以下を使用します。



pg_ctl -D /opt/PostgreSQL/12 stop
pg_ctl -D /opt/PostgreSQL/18 stop




Windowsでは以下



NET STOP postgresql-12
NET STOP postgresql-18


    


すべての変更を受信するよう、ストリーミングレプリケーションおよびログシッピングのスタンバイサーバは、このシャットダウン中は実行していなければなりません。
    

	スタンバイサーバのアップグレードの準備


スタンバイサーバをステップ 11の節で示した手順でアップグレードする場合は、pg_controldataを実行して、古いスタンバイサーバが、古いプライマリ及びスタンバイのクラスタに同期していることを確認してください。
すべてのクラスタで「Latest checkpoint location」（最終チェックポイント位置）の値が一致することを確認してください。
また、新しいプライマリのクラスタのpostgresql.confファイルでwal_levelをminimalに絶対に設定しないようにしてください。
    

	pg_upgradeの実行


古いサーバのものではなく、常に新しいサーバのpg_upgradeバイナリを実行してください。
pg_upgradeは古いクラスタおよび新しいクラスタのデータと実行形式ファイルの格納ディレクトリ（bin）の指定を要求します。
また、ユーザやポート番号の指定や、デフォルト動作のコピーではなくデータファイルのリンクや複製、交換を使用するかどうかを指定することができます。
    


リンクモードを使用する場合、アップグレードは非常に高速になり（ファイルのコピーがありません）、ディスク容量が少なくなりますが、アップグレード後に新しいクラスタを一度でも実行してしまうと、古いクラスタにアクセスすることができなくなります。
リンクモードはまた、古いクラスタと新しいクラスタのデータディレクトリが同じファイルシステムにあることが必要です。
（テーブル空間およびpg_walは異なるファイルシステムに置くことができます。）
複製モードは同じ速度とディスク容量の利点を提供しますが、新しいクラスタを一度実行しても、古いクラスタが使えなくなる訳ではありません。
複製モードはまた、新旧のデータディレクトリが同じファイルシステム内にあることを要求します。
このモードは特定のオペレーティングシステムのファイルシステム上でのみ利用可能です。
リレーションが多い場合は交換モードが一番速いかもしれませんが、ファイル転送ステップが始まると、古いクラスタにアクセスできなくなります。
また、交換モードは古いクラスタと新しいクラスタのデータディレクトリが同じファイルシステムにあることが必要です。
    


--jobsを2以上に設定すると、pg_upgradeは複数のデータベースとテーブル空間に対して並列に処理できます。
まずはマシンのCPUコア数から始めるとよいでしょう。
このオプションを使用すると、複数のデータベースや複数のテーブル空間をもつサーバのアップグレード時間を大幅に削減できます。
    


Windowsユーザの場合、管理アカウントでログインし、引用符でくくったディレクトリを付けてpg_upgradeを実行してください。



pg_upgrade.exe
        --old-datadir "C:/Program Files/PostgreSQL/12/data"
        --new-datadir "C:/Program Files/PostgreSQL/18/data"
        --old-bindir "C:/Program Files/PostgreSQL/12/bin"
        --new-bindir "C:/Program Files/PostgreSQL/18/bin"




起動後、pg_upgradeは2つのクラスタに互換性があるかどうか検証し、その後、アップグレードを行います。
検査のみを行うpg_upgrade --checkを使用することができます。
この場合は古いサーバは稼働中であっても構いません。
またpg_upgrade --checkは、アップグレード後に手作業で行わなければならない調整作業があればその概要を示します。
リンク、複製、ファイル範囲コピー、または交換モードを使用する予定であれば、モード固有の検査を有効にするために--checkを付けて--link、--clone、--copy-file-range、または--swapオプションを使用すべきです。
pg_upgradeは現在のディレクトリに対する書き込み権限を必要とします。
    


言うまでもありませんが、アップグレード中はクラスタにアクセスしてはいけません。
意図しないクライアント接続を防ぐために、デフォルトではpg_upgradeは50432ポートでサーバを稼働します。
古いクラスタと新しいクラスタが同時に稼働することはありませんので、両クラスタで同じポート番号を使用することができます。
しかし実行中の古いクラスタを検査する時には、新旧で異なるポート番号でなければなりません。
    


データベーススキーマのリストア中にエラーが発生した場合、pg_upgradeは終了しますので、後述のステップ 17で示すように古いクラスタに戻さなければなりません。
再びpg_upgradeを試すためには、pg_upgradeによるスキーマのリストアが成功するように古いクラスタを変更しなければなりません。
問題がcontribモジュールであれば、そのモジュールがユーザデータを格納するために使用されていないことが前提ですが、古いクラスタからそのcontribモジュールをアンインストールし、アップグレードした後に新しいクラスタにそれをインストールする必要があるかもしれません。
    

	ストリーミングレプリケーションおよびログシッピングのスタンバイサーバのアップグレード


リンクモードを使用した場合で、ストリーミングレプリケーション（「ストリーミングレプリケーション」参照）またはログシッピング（「ログシッピングスタンバイサーバ」参照）のスタンバイサーバがある場合、以下の手順に従って、素早くアップグレードすることができます。
スタンバイサーバでpg_upgradeは実行せず、代わりにプライマリでrsyncを実行することになります。
どのサーバもまだ起動しないでください。
    


リンクモードを使用しなかった場合、rsyncの機能が使えない場合や使いたくない場合、あるいはもっと容易な方法を望む場合は、この節の手順を読み飛ばし、pg_upgradeが完了して新しいプライマリが起動したら、単純にスタンバイサーバを再作成してください。
    
	PostgreSQLの新しいバイナリをスタンバイサーバにインストール


すべてのスタンバイサーバで新しいバイナリとサポートファイルがインストールされていることを確実にしてください。
      

	新しいスタンバイのデータディレクトリが存在しないことの確認


新しいスタンバイのデータディレクトリが存在しないか空であることを確実にしてください。
initdbが実行されている場合は、スタンバイサーバの新しいデータディレクトリを削除してください。
      

	拡張共有オブジェクトファイルのインストール


新しいプライマリのクラスタにインストールしたのと同じ拡張共有オブジェクトファイルを新しいスタンバイにインストールしてください。
      

	スタンバイサーバの停止


スタンバイサーバがまだ実行中なら、上記の手順に従って停止してください。
      

	設定ファイルの保存


スタンバイの設定ディレクトリの設定ファイルで保持する必要のあるもの、例えばpostgresql.conf(とそれがインクルードしているファイル)やpostgresql.auto.conf、pg_hba.confを保存してください。
これらは次のステップで上書きあるいは削除されるからです。
      

	rsyncの実行


リンクモードを使用する場合、rsyncを使用してスタンバイサーバを素早くアップグレードすることができます。
これを実行するには、古いデータベースクラスタのディレクトリおよび新しいデータベースクラスタのディレクトリより上位にあるプライマリサーバ上のディレクトリで、プライマリ上で各スタンバイサーバに対して以下を実行します。



rsync --archive --delete --hard-links --size-only --no-inc-recursive old_cluster new_cluster remote_dir




ここでold_clusterおよびnew_clusterはプライマリのカレントディレクトリからの相対パス、remote_dirはスタンバイサーバ上の古いクラスタと新しいクラスタのディレクトリの上位のディレクトリです。
プライマリとスタンバイの指定したディレクトリより下のディレクトリ構造は一致しなければなりません。
リモートディレクトリの指定の詳細についてはrsyncのマニュアルを参照してください。
例を示します。



rsync --archive --delete --hard-links --size-only --no-inc-recursive /opt/PostgreSQL/12 \
      /opt/PostgreSQL/18 standby.example.com:/opt/PostgreSQL




rsyncの--dry-runオプションを使うことで、そのコマンドが何をするか確認することができます。
rsyncは少なくとも1つのスタンバイに対して、プライマリ上で実行しなければなりませんが、アップグレード済みのスタンバイがまだ起動していなければ、そのスタンバイ上でrsyncを実行して、他のスタンバイをアップグレードすることができます。
      


これが実行するのはpg_upgradeのリンクモードが作成したプライマリサーバ上の古いクラスタのファイルと新しいクラスタのファイルを接続するリンクについて記録することです。
次にスタンバイの古いクラスタ内の一致するファイルを探し、スタンバイの新しいクラスタ内に対応するリンクを作成します。
プライマリ上でリンクされなかったファイルは、プライマリからスタンバイにコピーされます。
（それらは通常は小さいです。）
これにより高速なアップグレードが可能になります。
残念ながらrsyncは一時テーブルやログを取らないテーブルに関連したファイルを不要であるにも関わらずコピーします。
これらのファイルが通常はスタンバイサーバに存在しないからです。
      


テーブル空間を使用している場合は、各テーブル空間のディレクトリについて、同様のrsyncコマンドを実行する必要があります。
例を示します。



rsync --archive --delete --hard-links --size-only --no-inc-recursive /vol1/pg_tblsp/PG_12_201909212 \
      /vol1/pg_tblsp/PG_18_202307071 standby.example.com:/vol1/pg_tblsp




pg_walをデータディレクトリの外側に移動している場合は、そのディレクトリについてもrsyncを実行しなければなりません。
      

	ストリーミングレプリケーションおよびログシッピングのスタンバイサーバの設定


ログシッピングのためにサーバを設定します。
（スタンバイはまだプライマリと同期されているので、pg_backup_start()とpg_backup_stop()を実行したり、ファイルシステムのバックアップを取得したりする必要はありません。）
古いプライマリがバージョン 17.0 より前の場合、プライマリのスロットは新しいスタンバイにコピーされないため、古いスタンバイのすべてのスロットを手動で再作成する必要があります。
古いプライマリがバージョン 17.0 以降の場合、プライマリの論理スロットだけが新しいスタンバイにコピーされますが、古いスタンバイの他のスロットはコピーされないため、手動で再作成する必要があります。
      




	pg_hba.confの復旧


pg_hba.confを変更している場合は、元の認証設定に戻してください。
また新しいクラスタにおけるこの他の設定ファイル、例えばpostgresql.conf（とそれがインクルードしているファイル）、postgresql.auto.confも古いクラスタに合わせるように調整する必要があります。
    

	新しいサーバの起動


ここで新しいサーバが安全に起動できます。
それからrsyncしたすべてのスタンバイサーバを起動できます。
    

	移行後の処理


アップグレード後の処理が必要な場合、pg_upgradeはその終了時に警告を発します。
また、管理者として実行しなければならないスクリプトファイルを生成します。
このスクリプトファイルは、アップグレード後の処理を必要とするデータベースそれぞれに接続します。
各スクリプトは以下を使用して実行しなければなりません。



psql --username=postgres --file=script.sql postgres




スクリプトは任意の順番で実行することができ、また、実行が終わったら削除することができます。
    
注意


一般的には、再構築用のスクリプトの実行が完了するより前に、再構築用のスクリプトで参照されるテーブルにアクセスすることは安全ではありません。
これを行うと間違った結果が生じたり、性能が劣化することがあり得ます。
再構築用のスクリプトで参照されないテーブルにはすぐにアクセスすることができます。
    


	統計情報


--no-statisticsオプションが指定されていなければ、pg_upgradeはほとんどのオプティマイザ統計情報を古いクラスタから新しいクラスタに転送します。
ただし、CREATE STATISTICS(7)を使用して明示的に作成された統計情報や、拡張により追加された独自統計情報など、一部の統計情報は転送されません。
    


すべての統計情報がpg_upgradeにより転送されるわけではないため、アップグレード後に統計情報を再生成するコマンドを実行するように指示されます。
新しいクラスタに合わせた接続パラメータを設定する必要があるかもしれません。
    


まず、vacuumdb --all --analyze-in-stages --missing-stats-onlyを使用して、オプティマイザ用の統計情報がないリレーションに対して最小限の統計情報を高速に生成します。
次に、vacuumdb --all --analyze-onlyを使用して、バキュームと解析を起動するための累積統計をすべてのリレーションで更新します。
どちらのコマンドも、--jobsを使用すると処理を高速化できます。
vacuum_cost_delayが0以外の値に設定されている場合、PGOPTIONSを使用して、例えばPGOPTIONS='-c vacuum_cost_delay=0' vacuumdb ...のように、これを上書きして統計情報の生成を高速化できます。
    

	古いクラスタの削除


アップグレード処理が満足いくものであれば、pg_upgradeの終了時に示されたスクリプトを使用して、古いクラスタのデータディレクトリを削除することができます。
（古いデータディレクトリ内にユーザ定義のテーブル空間がある場合には、自動削除は不可能です。）
（bin、shareなど）古いインストレーションディレクトリも削除できます。
    

	古いクラスタへの戻し


pg_upgradeを実行した後に古いクラスタに戻したい場合、いくつかの選択肢があります。

     
	

--checkオプションが使われた場合、古いクラスタは変更されません。再起動できます。
       

	

--linkも--swapも使われなかった場合、古いクラスタは変更されません。再起動できます。
       

	

--linkオプションが使われた場合、データファイルは古いクラスタと新しいクラスタは共有されるかもしれません。

        
	

リンク処理が始まる前にpg_upgradeが中断すれば、古いクラスタは変更されません。古いクラスタを再起動できます。
          

	

新しいクラスタを開始しなかった場合、リンク処理が始まる時に$PGDATA/global/pg_controlに.old接尾辞が追加される点を除き、古いクラスタは変更されません。
古いクラスタを再度使用するためには、$PGDATA/global/pg_controlから.old接尾辞を取り除きます。その後で古いクラスタを再起動できます。
          

	

新しいクラスタを開始した場合、共有ファイルに書き込んでいますので古いクラスタを使うことは安全ではありません。
この場合、古いクラスタをバックアップからリストアすることが必要でしょう。
          




	

--swapオプションが使われた場合、古いクラスタは破壊的に変更されているかもしれません。
        
	

古いクラスタは安全に起動できないと報告する前にpg_upgradeが中断した場合、古いクラスタは変更されていません。再起動できます。
          

	

もう古いクラスタは安全に起動できないとpg_upgradeが報告した場合、古いクラスタは破壊的に変更されたことを意味します。
この場合、古いクラスタをバックアップからリストアすることが必要でしょう。
          




       







環境


環境変数の中には、コマンドラインオプションのデフォルト値を提供するものがあります。

   
	PGBINOLD
	

古いPostgreSQLの実行ファイル格納ディレクトリ。
オプション-b/--old-bindir。
      

	PGBINNEW
	

新しいPostgreSQLの実行ファイル格納ディレクトリ。
オプション-B/--new-bindir。
      

	PGDATAOLD
	

古いデータベースクラスタの設定ディレクトリ。
オプション-d/--old-datadir。
      

	PGDATANEW
	

新しいデータベースクラスタの設定ディレクトリ。
オプション-D/--new-datadir。
      

	PGPORTOLD
	

古いクラスタのポート番号。
オプション-p/--old-port。
      

	PGPORTNEW
	

新しいクラスタのポート番号。
オプション-P/--new-port。
      

	PGSOCKETDIR
	

アップグレード中にpostmasterソケット用に利用するディレクトリ。
オプション-s/--socketdir。
      

	PGUSER
	

クラスタのインストールユーザ名。
オプション-U/--username。
      




  

注釈


pg_upgradeはスキーマのダンプなど様々な作業ファイルを作成し、新しいクラスタのディレクトリのpg_upgrade_output.d内に保存します。
実行するたびに、ISO 8601に従ってフォーマットされたタイムスタンプ(%Y%m%dT%H%M%S)の付いた名前の新しいサブディレクトリが作成されます。このサブディレクトリには、生成されたファイルがすべて保存されます。
pg_upgradeが正常に完了した場合、pg_upgrade_output.dとそれに含まれるファイルは自動的に削除されます。
しかし、問題が発生した場合、そこにあるファイルは有用なデバッグ情報を提供する可能性があります。
  


pg_upgradeは新旧のデータディレクトリで短命なpostmasterを起動します。
このpostmasterの通信用の一時的なUnixのソケットファイルが、デフォルトでは現在の作業ディレクトリに作られます。
状況に依っては、カレントディレクトリのパス名が有効なソケット名には長過ぎる場合もあるでしょう。
その場合、-sオプションを使ってソケットファイルをより短いパス名のディレクトリに置くことができます。
セキュリティのため、他のユーザがそのディレクトリを読んだり書いたりできないことを確実にしてください。
(これはWindowsではサポートされていません。)
  


インストレーションに影響する場合、失敗、再構築、インデックス再作成はすべてpg_upgradeにより報告されます。
テーブルおよびインデックスを再構築するアップグレード後処理スクリプトは自動的に生成されます。
多くのクラスタのアップグレードを自動化することを考えているのであれば、
すべてのクラスタのアップグレードにおいて同一のデータベーススキーマを持つクラスタが同じアップグレード後処理を必要とすることが分かるはずです。
これはアップグレード後処理がデータ自体ではなくデータベーススキーマに基づいているためです。
  


展開試験を行うのであれば、古いクラスタのスキーマのみをコピーしたものを作成し、ダミーデータを挿入してから、アップグレードを行ってください。
  


pg_upgradeは次のOIDを参照するreg*システムデータ型を使うテーブル列を含むデータベースのアップグレードをサポートしません。
   
	regcollation
	regconfig
	regdictionary
	regnamespace
	regoper
	regoperator
	regproc
	regprocedure



(regclass、regrole、regtypeはアップグレード可能です。)
  


リンクモードを使用したいが、新しいクラスタを起動した時に古いクラスタを変更させたくない場合は、複製モードの使用を検討してください。
もしそれが利用可能でないなら、古いクラスタのコピーを取得してからリンクモードでアップグレードを行ってください。
有効な古いクラスタのコピーを取得するためには、サーバ稼働中にrsyncを使用して古いクラスタの変動があるかもしれないコピーを作成し、古いサーバを停止させた後に、rsync --checksumを再度実行して一貫性を保つために何らかの変更をコピーに反映させます。
（rsyncはファイル更新時刻の粒度が1秒しかないので--checksumが必要です。）
例えば「低レベルAPIを使用したベースバックアップの作成」で説明したpostmaster.pidなど、一部のファイルを除外したいと考えるかもしれません。
スナップショットやコピーは同時、もしくはデータベースサーバが停止しているときに作らなければなりませんが、ファイルシステムがファイルシステムのスナップショットやコピーオンライトファイルコピーをサポートしているのなら、それを古いクラスタとテーブル空間のバックアップをするのに使うことができます。
  

関連項目
initdb(1), pg_ctl(1), pg_dump(1), postgres(1)


名前
pg_waldump — PostgreSQL™データベースクラスタの先行書き込みログ（WAL）を可読性が高い表現で表示する

概要
pg_waldump  [option...] [startseg [endseg]]


説明


pg_waldumpは先行書き込みログ（WAL）を表示します。
主にデバッグや学習目的に有用です。
  


データディレクトリへの読み取り専用のアクセスが必要ですので、このユーティリティはサーバをインストールしたユーザによってのみ実行することができます。
  

オプション


以下のコマンドラインオプションは場所や出力書式を制御します。

    
	startseg
	

指定したWALセグメントファイルから読み取りを開始します。
これは暗黙的に検索されるファイルのパスや使用するタイムラインを決定します。
       

	endseg
	

指定したWALセグメントファイルを読み取り後終了します。
       

	-b, --bkp-details
	

バックアップブロックに関する詳細情報を出力します。
       

	-B block, --block=block
	

指定されたブロックを修正するレコードのみを表示します。
リレーションも、--relationまたは-Rで指定しなければなりません。
       

	-e end, --end=end
	

ログストリームの終了点まで読み取る代わりに、指定したWAL位置で読み取りを終了します。
       

	-f, --follow
	

有効なWALの終わりに到達した後、新しいWALが現れるのを1秒間に1回ポーリングし続けます。
       

	-F fork, --fork=fork
	

指定されたフォーク内のブロックを変更するレコードのみを表示します。
有効な値は、メインフォークのmain、空き領域マップのfsm、可視性マップのvm、initフォークのinitです。
       

	-n limit, --limit=limit
	

指定レコード数を表示し、終了します。
       

	-p path, --path=path
	

WALセグメントファイルを見つけ出すディレクトリ、あるいはWALセグメントファイルが含まれるpg_walサブディレクトリが含まれるディレクトリを指定します。
デフォルトではカレントディレクトリ、カレントディレクトリ内のpg_walサブディレクトリ、PGDATAのpg_walサブディレクトリから検索されます。
       

	-q, --quiet
	

エラーを除いて、出力を表示しません。
このオプションは、WALレコードの範囲の解析に成功したかを知りたいがレコードの内容を気にしない場合には有用でしょう。
       

	-r rmgr, --rmgr=rmgr
	

指定されたリソースマネージャによって生成されたレコードのみを表示します。
リソースマネージャを複数選択するために、このオプションを複数回指定できます。
listが名称として渡された場合は、有効なリソースマネージャの一覧を表示し、終了します。
       


拡張はカスタムリソースマネージャを定義するかもしれませんが、pg_waldumpは拡張モジュールをロードせず、したがってカスタムリソースマネージャを名前で認識しません。
その代わり、カスタムリソースマネージャをcustom###として指定できます。
ここで###は3桁のリソースマネージャIDです。
この形式の名前は常に有効とみなされます。
       

	-R tblspc/db/rel, --relation=tblspc/db/rel
	

指定されたリレーションのブロックを変更するレコードのみを表示します。
リレーションは、1234/12345/12345のように、スラッシュで区切られたテーブル空間OID、データベースOIDおよびrelfilenodeで指定されます。
これは、プログラムの出力でリレーションに使われる形式と同じです。
       

	-s start, --start=start
	

読み取りを始めるWAL位置です。
デフォルトでは、最初に見つかったファイルの中で最初に見つかったWALレコードから読み取りを始めます。
       

	-t timeline, --timeline=timeline
	

WALレコードの読み取り先のタイムラインです。
デフォルトでは、startsegが指定されている場合はstartseg内の値が使用されます。
指定がない場合のデフォルトは1です。
値は10進数または16進数で指定できます。例えば17や0x11です。
       

	-V, --version
	

pg_waldumpのバージョンを表示し終了します。
       

	-w, --fullpage
	

ページ全体のイメージを含むレコードのみを表示します。
       

	-x xid, --xid=xid
	

指定されたトランザクションIDで印付けられたレコードのみを表示します。
       

	-z, --stats[=record]
	

個々のレコードの代わりに要約統計（レコードおよびページ全体のイメージの数とサイズ）を表示します。
オプションでrmgr毎の代わりにレコード毎の統計を生成します。
       


pg_waldumpがシグナルSIGINT(Control+C)で終了した場合、計算された統計情報の要約が終了点まで表示されます。
この操作はWindows™ではサポートされていません。
       

	--save-fullpage=save_path
	

WALレコードで見つかったページ全体のイメージをsave_pathディレクトリに保存します。
保存されたイメージは、表示されたレコードと同じフィルタおよび制限条件に従います。
       


ページ全体のイメージは、次のファイル名形式で保存されます。
TIMELINE-LSN.RELTABLESPACE.DATOID.RELNODE.BLKNO_FORK


ファイル名は、次の部分で構成されます。
        
	構成要素	説明
	TIMELINE	
8文字の16進数1つ%08Xで表された、そのレコードがあるWALセグメントファイルのタイムライン
            
	LSN	
8文字の16進数2つ%08X-%08Xで表された、このイメージのレコードのLSN
            
	RELTABLESPACE	ブロックのテーブル空間OID
	DATOID	ブロックのデータベースOID
	RELNODE	ブロックのファイルノード
	BLKNO	ブロックのブロック番号
	FORK	

main、fsm、vm、initのような、ページ全体のイメージの由来するフォークの名前
            



       

	-?, --help
	

pg_waldumpのコマンドライン引数に関する説明を表示し、終了します。
        




   

環境
	PGDATA
	

データディレクトリ。-pオプションも参照してください。
     

	PG_COLOR
	

診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
     




注釈


サーバが実行中の場合は間違った結果になることがあります。
  


指定されたタイムラインのみが表示されます（指定がなければデフォルトのみが表示）。
他のタイムラインのレコードは無視されます。
  


pg_waldumpは拡張子.partialのWALファイルを読むことはできません。
読む必要がある場合は、ファイル名から拡張子.partialを削除してください。
  

関連項目
「WALの内部」


名前
pg_walsummary — WAL要約ファイルの内容を表示する

概要
pg_walsummary  [option...] [file...]


説明


pg_walsummaryは、WAL要約ファイルの内容を出力するために使用します。
これらのバイナリファイルは、データディレクトリのpg_wal/summariesサブディレクトリにあり、このツールを使用してテキストに変換できます。
これは通常は必要ありません。
WAL要約ファイルは主に増分バックアップをサポートするために存在しますが、デバッグ目的で有用な場合があります。
  


WAL要約ファイルは、テーブル空間OID、リレーションOID、およびリレーションフォークによってインデックス付けされます。
各リレーションフォークに対して、WALによって変更されたブロックのリストをファイル内で要約された範囲で保存します。
また、"limit block"を保存することもできます。
これは、リレーションフォークが関連するWAL範囲内で作成または切り捨てられた場合は0、それ以外の場合はリレーションフォークが切り捨てられた最短の長さを保持します。
リレーションフォークが関連するWAL範囲内で作成、削除、または切り捨てられていない場合、limitブロックは未定義または無限であり、このツールでは出力されません。
  

オプション

    
	-i, --individual
	

デフォルトでは、pg_walsummaryは、連続する1つ以上の変更されたブロックの範囲ごとに1行の出力を出力します。
これにより、0から999までのすべてのブロックが変更されたリレーションは、1000の別々の行ではなく、1行の出力しか生成しないため、出力を非常に簡潔にすることができます。
このオプションは、変更されたブロックごとに別々の行を出力するように要求します。
       

	-q, --quiet
	

エラー以外の出力を表示しません。
これは、WAL要約ファイルが正常に解析できたかどうかを知りたいがレコードの内容を気にしない場合には有用でしょう。
       

	-V, --version
	

バージョン情報を表示して終了します。
       

	-?, --help
	

pg_walsummaryコマンドライン引数の使用方法を表示し、終了します。
       




   

環境


環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  

関連項目
pg_basebackup(1), pg_combinebackup(1)


名前
postgres — 
PostgreSQL™データベースサーバ


概要
postgres  [option...]


説明


postgresは、PostgreSQL™のデータベースサーバです。
クライアントアプリケーションがデータベースに接続するためには、稼働中のpostgresインスタンスに（ネットワークを介して、またはローカルで）接続する必要があります。
その後、postgresは接続を取り扱うために別のサーバプロセスを開始します。
  


1つのpostgresインスタンスは常に1つのデータベースクラスタのデータを管理します。
データベースクラスタとは、共通のファイルシステム領域（「データ領域」）に格納されているデータベースの集まりのことです。
1つのシステム上で、同時に複数のpostgresインスタンスを実行することは可能ですが、それらは異なるデータ領域と、異なる接続ポート（下記参照）を使用する必要があります。
postgresは、その起動時にデータ領域の場所を知らなければなりません。
その場所を-Dオプションまたは環境変数PGDATAによって指定しなければなりません。デフォルト値はありません。
通常、-DまたはPGDATAは、initdb(1)で作成されたデータ領域ディレクトリを直接指し示します。
他のファイルレイアウトを取ることもできます。「ファイルの場所」を参照してください。
  


デフォルトでは、postgresはフォアグラウンドで起動し、ログメッセージを標準エラー出力に出力します。
実運用では、postgresアプリケーションはおそらくマシン起動時にバックグラウンドで起動されるはずです。
  


またpostgresはシングルユーザモードで呼び出すこともできます。
このモードは、主にinitdb(1)による初期化処理の中で使用されます。
これを、デバッグのためや障害からの復旧時に使用することもできます。
実際には発生するはずのプロセス間通信やロック処理が発生しませんので、シングルユーザモードがサーバのデバッグに必ずしも適したものではないことに注意してください。
シェルからシングルユーザモードで起動された場合、ユーザは問い合わせを入力できます。
結果は画面上に表示されますが、その形式はエンドユーザ向けではなく開発者向けのものです。
シングルユーザモードでは、セッションユーザはIDが1のユーザと設定され、暗黙的にスーパーユーザの権限がこのユーザに与えられます。
このユーザは実際に存在していなくても構いません。
このため、シングルユーザモードはシステムカタログの偶発的な損傷などから手動で復旧するために使用することができます。
  

オプション


postgresには、下記のコマンドライン引数を指定できます。
オプションに関する詳細は19章サーバ設定を参照してください。
また、設定ファイルを使用することによって、これらのほとんどのオプションについて入力する手間を省くことができます。
一部の（安全な）オプションは接続中のクライアントから設定することもできます。
その設定方法はアプリケーションに依存し、また、そのセッションでのみ適用されます。
たとえば、環境変数PGOPTIONSを設定すると、libpqに基づくクライアントはその文字列をサーバに渡します。
渡された文字列はpostgresコマンドラインオプションとして解釈されます。
   
一般的な目的
	-B nbuffers
	

サーバプロセスが使用する共有バッファの数を設定します。
このパラメータのデフォルト値はinitdbにより自動的に決まります。
このオプションを指定することは設定パラメータshared_buffersを設定することと同等です。
       

	-c name=value
	

指定の実行時パラメータを設定します。
PostgreSQL™でサポートされる設定パラメータは19章サーバ設定で説明します。
実際には、他の多くのコマンドラインオプションはこのようなパラメータへの代入を簡略化したものです。
-cは複数のパラメータを設定するために複数個使用することができます。
       

	-C name
	

指定された名前の実行時パラメータの値を表示し、終了します。
（詳細については上の-cを参照してください。）
これはpostgresql.confからの値やその起動時に与えられたパラメータにより変更された値を返します。
クラスタが起動した時に与えられたパラメータは反映されません。
       


これは、ほとんどのパラメータに対して実行中のサーバで使用できます。
ただし、実行時に計算された一部のパラメータ(例えばshared_memory_size、shared_memory_size_in_huge_pages、wal_segment_sizeなど)については、サーバをシャットダウンする必要があります。
       


このオプションは、pg_ctl(1)など、サーバインスタンスと連携する他のプログラムが設定パラメータ値を問い合わせることを意図しています。
ユーザ向けのアプリケーションでは代わりにSHOWやpg_settingsビューなどを使用すべきです。
       

	-d debug-level
	

デバッグレベルを設定します。
大きな値が設定されているほど、より多くのデバッグ情報がサーバのログに出力されます。
値として設定できる範囲は、1から5までです。
特定のセッションで-d 0を渡すこともできます。
この設定により、親のpostgresプロセスのサーバログレベルがこのセッションに伝播されません。
       

	-D datadir
	

ファイルシステム上のデータベース設定ファイルの場所を指定します。
詳細は「ファイルの場所」を参照してください。
       

	-e
	

デフォルトの日付データ形式を「ヨーロッパ式」、つまりDMYの順番にします。
これにより、いくつかの日付出力形式でも、月の前に日が表示されるようになります。
詳細は「日付/時刻データ型」を参照してください。
       

	-F
	

性能向上のためにfsync呼び出しを無効とします。
ただしこの場合、システムクラッシュ時にデータが損傷する危険性があります。
このオプションの指定は設定パラメータfsyncを無効にすることと同一です。
このオプションを使用する時は、事前に詳細な文書を一読してください。
       

	-h hostname
	

postgresがクライアントアプリケーションとの接続を監視するホスト名、または、IPアドレスを指定します。
この値には、カンマで区切ったアドレスの一覧、あるいは、全ての利用可能なインタフェースを監視することを意味する*を指定することができます。
空の値を指定すると、IPアドレスをまったく監視しないことを意味します。
この場合、サーバへの接続には、Unixドメインソケットのみが使用されます。
デフォルトではlocalhostのみを監視します。
このオプションを指定することは設定パラメータlisten_addressesを設定することと同等です。
       

	-i
	

リモートクライアントからのTCP/IP（インターネットドメイン）経由の接続を可能とします。
このオプションを設定しない場合には、ローカルからの接続のみが使用可能となります。
このオプションは、postgresql.conf内のlisten_addressesを、あるいは-hを*に設定することと同じ意味を持ちます。
       


このオプションはlisten_addressesの全ての機能を実現することができないため廃止が予定されています。
通常は、直接listen_addressesを設定する方法をお勧めします。
       

	-k directory
	

postgresがクライアントアプリケーションからの接続を監視するUnixドメインソケットのディレクトリを指定します。
ディレクトリをカンマで区切ったリストを値とすることもできます。
空の値を指定すると、Unixドメインソケットをまったく監視しません。この場合サーバに接続するためにはTCP/IPのみを使用することができます。
デフォルトでは、通常/tmpとなっていますが、これはコンパイルに変更できます。
このオプションを指定することは設定パラメータunix_socket_directoriesを設定することと同等です。
       

	-l
	

SSLを使用して、安全な接続を行います。
このオプションを使用するためには、PostgreSQL™のコンパイル時にSSLを有効にする必要があります。
SSLの使用に関する詳細は「SSLによる安全なTCP/IP接続」を参照してください。
       

	-N max-connections
	

このサーバが受け付けるクライアント接続数の最大値を設定します。
このパラメータのデフォルト値はinitdbにより自動的に選択されます。
このオプションを指定することは設定パラメータmax_connectionsを設定することと同じ意味を持ちます。
       

	-p port
	

クライアントアプリケーションからの接続をpostgresが監視するTCP/IPポート、またはローカルUnixドメインソケットファイルの拡張子を指定します。
デフォルトでは、環境変数PGPORT、PGPORTが設定されていない場合はコンパイル時に設定された値（通常5432）が使用されます。
デフォルトのポート以外を指定した場合には、コマンドラインオプション、またはPGPORTを使用して、全てのクライアントアプリケーションが同じポートを指定するようにしなければなりません。
       

	-s
	

各コマンドの終了時に時間情報や他の統計情報を表示します。
これはベンチマークやバッファ数の調整時の使用に適しています。
       

	-S work-mem
	

ソート処理やハッシュテーブル処理で一時ディスクファイルに頼る前に使用する基本的なメモリ量を指定します。
設定パラメータ「メモリ」のwork_memの説明を参照してください。
       

	-V, --version
	

postgresのバージョンを表示し、終了します。
       

	--name=value
	

指定した実行時パラメータを設定します。
-cの省略形式です。
       

	--describe-config
	

このオプションは、サーバの内部設定変数、その説明、および、デフォルト値をタブ区切りのCOPY書式でダンプ出力します。
これは、管理用ツールでの使用を主目的として設計されました。
       

	-?, --help
	

postgresのコマンドライン引数に関する説明を表示し、終了します。
       




開発者向けオプション


ここで説明するオプションは、主にデバッグ用に、場合によっては深刻な障害を受けたデータベースの復旧を補助するために使われます。
これらを運用状態のデータベースの設定として使用する理由はないはずです。
これらのオプションを説明しておくのは、PostgreSQL™システム開発者が利用するためです。
さらに、これらのオプションは、いずれも将来のリリースで予告なしに変更・廃止される可能性があります。
    
	-f { s | i | o | b | t | n | m | h }
	

特定のスキャンと結合方式の使用を禁止します。
sはシーケンシャルスキャン、iはインデックススキャンを無効にします。
o、b、tはそれぞれ、インデックスオンリースキャン、ビットマップインデックススキャン、TIDスキャンを無効にします。
nはネステッドループ結合、mはマージ結合、hはハッシュ結合を無効にします。
       


シーケンシャルスキャンとネステッドループ結合は、完全に無効にすることはできません。
-fsオプションと-fnオプションは、単に「他の選択肢があるならば、これらの種類の計画を使わないようにする」ということをオプティマイザに指示するだけです。
       

	-O
	

システムテーブルの構造の変更を可能にします。
これはinitdbによって使われます。
       

	-P
	

システムテーブルの読み込みの際にシステムインデックスを無視します。
しかし、システムテーブルの更新の際にはインデックスを更新します。
破損したシステムインデックスから復旧する場合に有用です。
       

	-t pa[rser] | pl[anner] | e[xecutor]
	

それぞれの主要なシステムモジュールに関連する問い合わせに対し、時間に関する統計情報を表示します。
このオプションは-sオプションと一緒に使うことはできません。
       

	-T
	

これはサーバプロセスが異常終了する問題をデバッグするためのオプションです。
このような状態では、他のすべてのサーバプロセスに対し、SIGQUITシグナルを送信して、終了することが必要と通知するのが、通常の戦略です。
このオプションは、代わりにSIGABRTを送信し、その結果コアダンプファイルが生成されます。
       

	-v protocol
	

特定のセッションで使われるフロントエンド/バックエンドプロトコルのバージョン番号を指定します。
このオプションは内部使用のみを目的としたものです。
       

	-W seconds
	

新規サーバプロセスが起動するとき、認証手続きが行われた後、指定した秒数の遅延が発生します。
サーバプロセスにデバッガを接続する時間を提供することが目的です。
       




シングルユーザモード用のオプション


以下のオプションはシングルユーザモードに対してのみ適用されます（以下のシングルユーザモード参照）。
    
	--single
	

シングルユーザモードを選択します。
これはコマンドラインで最初の引数でなければなりません。
       

	database
	

アクセスするデータベースの名前を指定します。
これはコマンドラインの最後の引数でなければなりません。
省略時は、デフォルトでユーザ名になります。
       

	-E
	

すべてのコマンドをその実行前に標準出力にエコー表示します。
       

	-j
	

コマンド入力の終端文字として、単なる改行ではなく、セミコロンとそれに続く2つの改行を使用します。
       

	-r filename
	

全てのサーバログ出力をfilenameに送ります。
このオプションは、コマンドラインオプションとして指定された場合のみ、受け付けられます。
       





環境
	PGCLIENTENCODING
	

クライアントで使用される文字符号化方式のデフォルトです。
（クライアントは個別に変更することができます。）
また、この値は設定ファイルでも設定可能です。
     

	PGDATA
	

デフォルトのデータディレクトリの場所です。
     

	PGDATESTYLE
	

実行時パラメータDateStyleのデフォルト値です。
（この環境変数の使用は廃止予定です。）
     

	PGPORT
	

デフォルトのポート番号です。
（設定ファイル内で設定するほうが好まれています。）
     




診断


semgetやshmgetについて言及するエラーメッセージは、おそらく、十分な共有メモリやセマフォを提供できるようにカーネルを再構築する必要があることを示します。
詳細は「カーネルリソースの管理」を参照してください。
ただし、shared_buffersの値を小さくしてPostgreSQL™の共有メモリ消費量を低減する、max_connectionsの値を小さくしてセマフォ消費量を低減するといった対策を行うことで、カーネルの再構築を先延ばしすることができるかもしれません。
   


他のサーバが既に実行中であることを示すエラーメッセージに対しては、例えば以下のコマンドを使用して、注意深く検査しなければなりません。


$ ps ax | grep postgres



もしくは


$ ps -ef | grep postgres



どちらを使用するかは、システムによって異なります。
競合するサーバが稼働していないことが確実であれば、メッセージ内で示されたロックファイルを削除して、再度試してください。
   


ポートをバインドできなかったことを示すエラーメッセージの場合は、PostgreSQL™以外のプロセスが既にそのポートを使用している可能性が考えられます。
また、postgresを停止して、すぐに同じポートを使う設定で再起動した場合、このエラーが出ることがあります。
この場合、オペレーティングシステムがポートを閉鎖するまで数秒待ってから再挑戦してください。
最後に、オペレーティングシステムが予約しているポート番号を指定した場合も、このエラーが発生することがあります。
例えば、Unixの多くのバージョンでは1024より小さいポート番号は「信頼できる（trusted）」とみなされており、Unixのスーパーユーザ以外アクセスできません。
   

注釈


ユーティリティコマンドpg_ctl(1)を使って、postgresサーバを安全かつ簡便に起動とシャットダウンすることができます。
  


postgresを終了させるためにSIGKILLを使用するのは可能な限り避けてください。
SIGKILLで終了させると、postgresが終了前に保持しているシステムリソース（共有メモリやセマフォ）を解放しなくなることがあります。
システムリソースが解放されていないと、新しくpostgresを起動する時に問題が起こる可能性があります。
  


postgresサーバを正常に終了させるために、SIGTERM、SIGINT、SIGQUITを使用することができます。
SIGTERMは全てのクライアントが終了するのを待ってから終了させます。
SIGINTは強制的に全てのクライアントとの接続を切断します。
SIGQUITは適切なシャットダウンを行わないで、即時に終了させ、次回の起動時に復旧処理が行われます。
  


SIGHUPシグナルによりサーバの設定ファイルを再読み込みします。
また、SIGHUPを個々のサーバプロセスに送信することも可能ですが、通常は意味がありません。
  


実行中の問い合わせを中止するには、そのコマンドを実行しているプロセスにSIGINTシグナルを送信してください。
きれいにバックエンドプロセスを終了させるためには、対象プロセスにSIGTERMを送信してください。
また、これらの２つと同じ操作を行うSQLから呼び出すことができるものについては「サーバシグナル送信関数」内のpg_cancel_backendおよびpg_terminate_backendを参照してください。
  


postgresサーバでは、通常のクリーンアップを行わずに下位のサーバプロセスを終了させるためにはSIGQUITを使用します。
これはユーザが使用すべきではありません。
また、サーバにSIGKILLシグナルを送信するのは好ましくありません。
メインのpostgresはこれをクラッシュとして解釈するので、クラッシュからの標準的な復旧手続きの一環として、強制的に共通の親プロセスを持つpostgresプロセスを全て終了させます。
  

不具合


--オプションはFreeBSDやOpenBSDではうまく動きません。
代わりに-cを使用してください。
これは対象のオペレーティングシステムの不具合です。
もし修正されなければ、将来のPostgreSQL™リリースで回避策を提供する予定です。
  

シングルユーザモード


シングルユーザモードのサーバを起動するには、以下のようなコマンドを使用してください。


postgres --single -D /usr/local/pgsql/data other-options my_database



データベースディレクトリの正確なパスを-Dで指定します。パスを指定しない時は、必ず環境変数PGDATAを設定しておいてください。
また、作業対象とするデータベースの名前も指定してください。
   


通常、シングルユーザモードのサーバでは、改行をコマンド入力の終わりとみなします。
セミコロンについて、psqlにおけるような高度な機能はありません。
コマンドが複数行にわたる場合は、改行を入力する前にバックスラッシュを入力しなければなりません（最終行を除く）。
バックスラッシュとそれに続く改行は、いずれも入力コマンドから削除されます。
これは文字列リテラルやコメントの中においても当てはまることに注意して下さい。
   


ただし、コマンドラインスイッチ-jを使用した場合は、1つの改行ではコマンド入力の終わりとはみなされず、セミコロン、改行、改行というシーケンスがコマンド入力の終わりとなります。
つまり、セミコロンを入力し、そのすぐ後に続けて完全な空行を入力して下さい。
このモードでは、バックスラッシュと改行の組み合わせは特別扱いされません。
この場合も、文字列リテラルやコメント内に現れるこのようなシーケンスに対する高度な扱いはありません。
   


どちらの入力モードでも、コマンド入力終端の直前や一部でないセミコロンを入力した場合、それはコマンドを分割するものとしてみなされます。
コマンド入力終端を入力すると、それまでに入力した複数の文が、1つのトランザクションとして実行されます。
   


セッションを終了するには、EOF（通常Control+D）を入力します。
最後にコマンド入力終端を入力した後、何らかのテキストを入力している場合、EOFはコマンド入力の終端として扱われ、終了するにはもう一度EOFを入力する必要があります。
   


シングルユーザモードのサーバには、高度な行編集機能が用意されていないことに注意してください（例えばコマンド履歴機能はありません）。
またシングルユーザモードは、自動チェックポイントやレプリケーションなどのバックグラウンド処理をまったく行いません。
   

例


デフォルト値を使用してpostgresをバックグラウンドで起動するには、以下を入力してください。



$ nohup postgres >logfile 2>&1 </dev/null &


  


例えば1234というポートを指定してpostgresを起動するには、以下を入力してください。


$ postgres -p 1234



psqlを使用して上のサーバに接続するには、以下のように-pオプションでこのポートを指定してください。


$ psql -p 1234



または環境変数PGPORTを設定してください。


$ export PGPORT=1234
$ psql


  


指定の実行時パラメータを以下のいずれかで設定することができます。


$ postgres -c work_mem=1234
$ postgres --work-mem=1234



どちらの形式でも、postgresql.conf内に設定されているwork_memの値を上書きします。
コマンドラインでは、パラメータ内のアンダースコア（_）をアンダースコアとしてもダッシュ記号（-）としても記載できることに注意してください。
おそらく短期間の実験という場合を除き、コマンドラインスイッチに依存するよりもpostgresql.conf内の設定を変更してパラメータを設定する方が実用的です。
  

関連項目

   initdb(1),
   pg_ctl(1)
  


パート VII. 内部情報






ここでは、PostgreSQL™開発者が使用できる情報を分類して説明します。
   


第51章 PostgreSQL内部の概要



作者


本章は[sim98]として、 ウィーン工科大学にてO.Univ.Prof.Dr. Georg GottlobとUniv.Ass.Mag. Katrin Seyr.の指導の下にStefan Simkovicsが書いた修士論文の一部が基になっています。
   



本章ではPostgreSQL™のバックエンドの内部構造の概要を説明します。
次からの節を読んだ後には、問い合わせがどのように処理されるかの概念がつかめているはずです。
バックエンドが問い合わせを受け取った時点からクライアントに結果を返す時点の間に引き起こる操作の一般的な流れを理解してもらうのが、この章の目的です。
  
問い合わせの経路





ここでは、問い合わせが結果を得るためにたどる過程を簡単に説明します。
   
	

アプリケーションプログラムからPostgreSQL™サーバに接続が確立されなくてはなりません。
アプリケーションプログラムはサーバに問い合わせを送り、そしてサーバから送り返される結果を待ちます。
     

	

構文解析過程で、アプリケーションプログラムから送られた問い合わせの構文が正しいかをチェックし、問い合わせツリーを作成します。
     

	

書き換えシステムは構文解析過程で作られた問い合わせツリーを受け取り、問い合わせツリーに適用するための（システムカタログに格納されている）ルールを探します。
そしてルール本体で与えられた変換を実行します。
     


書き換えシステムの適用例の1つとしてビューの具現化が挙げられます。
ビュー（すなわち仮想テーブル）に対して問い合わせがあると、書き換えシステムが代わってユーザの問い合わせを、ビュー定義で与えられた実テーブルにアクセスする問い合わせに書き換えます。
     

	

プランナ/オプティマイザは、（書き換えられた）問い合わせツリーを見て、エグゼキュータに渡すための問い合わせ計画を作ります。
     


そのためにまず同じ結果をもたらす全ての可能な限りの経路を作ります。
例えば、スキャンの対象となるリレーション上にインデックスがあるとすると2つの経路があります。
1つは単純なシーケンシャルスキャンで、もう1つはインデックスを使ったスキャンです。
次にそれぞれの経路を実行するためのコストが見積もられ、一番コストの小さい経路が選ばれます。
一番コストの小さな経路は、エグゼキュータが実行できるように完全な計画に拡張されます。
     

	

エグゼキュータは再帰的に計画ツリー上を進み、計画で示されている方法で行を抽出します。
エグゼキュータはリレーションをスキャンする間保存システムを利用してソートと結合を実行し、検索条件の評価を行い、最後に得られた行を返します。
     





これからの節では、PostgreSQL™の内部制御とデータ構造をより良く理解するために、上に記載した事柄をさらに詳しく説明します。
   


接続の確立





PostgreSQL™は「1プロセスに1ユーザ」のクライアント/サーバモデルを実装しています。
このモデルでは、各クライアントプロセスは厳密に1つのバックエンドプロセスに接続します。
いくつの接続が行われるか事前にわからないので、接続要求の度に新しいバックエンドプロセスを作る「スーパーバイザプロセス」を使わなければなりません。
このスーパーバイザプロセスはpostmasterと呼ばれ、指定されたTCP/IPポートで入ってくる接続要求を監視します。
接続要求を検出すると、新しいバックエンドプロセスを生み出します。
このバックエンドプロセスはセマフォと共有メモリを活用してお互いに連絡を取り合い、instanceの他のプロセスと通信し、同時にデータにアクセスしても整合性が保たれるようにします。
   


クライアントプロセスは54章フロントエンド/バックエンドプロトコルに記載されたPostgreSQL™プロトコルを理解できるどんなプログラムでも構いません。
多くのクライアントはlibpq C言語ライブラリに基づいていますが、Java JDBCドライバのようにいくつかの独立したプロトコル実装も存在します。
   


いったん接続が確立されると、クライアントプロセスは接続されたバックエンドプロセスに問い合わせを送ることができます。
問い合わせは平文で送信されます。
つまり、クライアントでは構文解析を行いません。
バックエンドプロセスは問い合わせの構文解析を行い、実行計画を作り、そして計画を実行し、抽出した行を確立された接続を通じてクライアントに返します。
   

構文解析過程





構文解析過程は2つの部分から構成されています。

    
	

gram.yとscan.lで定義されているパーサは、Unixのツールbisonとflexを使って構築されます。
      

	

変換プロセスは、パーサから返されたデータ構造の変更や追加を行います。
      




   
パーサ





パーサは、（平文のテキストとして渡される）問い合わせ文字列が正しい構文になっているかチェックしなければいけません。
もし構文が正しい場合は構文解析ツリーが作られて返されます。
正しくない場合はエラーが返されます。
パーサと字句解析はUnixでよく知られたツールのbisonとflexを使用して実装されています。
    


字句解析はファイルscan.lで定義され、識別子やSQLキーワードなどの確認を担当します。
検出された全てのキーワードや識別子に対しトークンが生成されパーサに渡されます。
    


パーサはファイルgram.yの中で定義され、文法ルールとルールが実行された時に実行されるアクションの組から構成されています。
アクションのコード（実際はC言語コードです）は構文解析ツリーを作るのに使われます。
    


ファイルscan.lはプログラムflexを使ってCのソースファイルscan.cに変換されます。
そしてgram.yはbisonを使ってgram.cに書き換えられます。
これらの書き換えが終わると、パーサを作るために通常のCコンパイラが使えるようになります。
生成されたCのファイルには絶対に変更を加えないでください。
と言うのは次にflexもしくはbison が呼ばれた時に上書きされるからです。

     
注記


ここで言及した書き換えやコンパイルは通常PostgreSQL™のソースと一緒に配布されるmakefileを使って自動的に行われます。
      


    


bisonまたはgram.yで定義される文法ルールの詳細は本稿では説明しきれません。
flexやbisonについては本や資料がたくさん出ています。
gram.yの文法の勉強を始める前にbisonの知識が必須となります。
その知識なしではそこで何が起こっているのかを理解することは難しいでしょう。
    

書き換えプロセス





構文解析過程ではSQLの構文構造に関する固定ルールのみを使って構文解析ツリーを作成します。
システムカタログの参照を行わないので、要求されている操作の詳細な語義は理解しません。
構文解析が終わった後に入力としてパーサから戻されたツリーを書き換えプロセスが引き受け、どのテーブル、関数、そして演算子が問い合わせによって参照されているのかの判断に必要な語義翻訳を行います。
この情報を表すために作成されるデータ構造を問い合わせツリーと呼びます。
    


語義解釈と入力の構文解釈を切り分ける理由は、システムカタログの参照はトランザクション内でのみ行うことができますが、問い合わせ文字列を受け取ってすぐにトランザクションを開始することは好ましくないと考えられるからです。
入力に対する構文解析過程ではトランザクション管理コマンド（BEGIN、ROLLBACKなど）を特定するだけで十分であるとともに、それ以上の分析を行わなくても正しい処理が実行されます。
実際の問い合わせ（例えばSELECTもしくはUPDATE）に関わっていると言うことがわかっていて既にあるトランザクション内にいなければ新規トランザクションを開始することは問題ありません。
これ以降に限り書き換えプロセスを起動することができます。
    


書き換えプロセスで作成された問い合わせツリーはほとんどの箇所で加工されていない構文解析ツリーに構造的には似ていますが、細部では数多くの相違が存在します。
例えば、構文解析ツリーのFuncCallノードは構文的には関数呼び出しのように見える何かを表わしています。
これは参照された名前が通常の関数になるか集約関数となるかによってFuncExprもしくはAggrefに書き換えられることがあります。
さらに、列の実際のデータ型と式の結果についての情報が問い合わせツリーに書き加えられます。
    


PostgreSQL™ルールシステム





PostgreSQL™には、ビューと理解の仕方でどうとも取れるビューの更新の仕様に対応する強力なルールシステムがあります。
元々PostgreSQL™のルールシステムは2つの実装で構成されていました。

    
	

初めの1つは行レベルの処理を使って動き、エグゼキュータの内部に深く実装されていました。
個別の行がアクセスされる度にルールシステムが呼ばれていました。
この実装は1995年、最後のBerkeley Postgres™プロジェクトの公式リリースがPostgres95™へ移行する時に削除されました。
      

	

ルールシステムの2つ目の実装は問い合わせ書き換えと呼ばれる手法です。
書き換えシステムは構文解析過程とプランナ/オプティマイザの間にあるモジュールです。
この手法は現在でも実装されています。
      




   


問い合わせの書き換えについては39章ルールシステムにて詳しく説明されますので、ここでは取り扱いません。
書き換えの入出力はともに問い合わせツリーである、つまり、ツリー内の表現の仕方や語義をどの程度詳しく判断するかには変更はない、ということを指摘するのに留めます。
書き換えはマクロの拡張と捉えることもできます。
   

プランナ/オプティマイザ





プランナ/オプティマイザの役割は最適な実行計画を作ることです。
ある与えられたSQL問い合わせは（それがある問い合わせツリーになるのですが）、同じ結果をもたらす、多くの異なった方法で実際には実行できます。
もしもコンピュータの演算として可能であれば、問い合わせオプティマイザは可能な実行計画をすべて検証し、実行するとした場合に一番早く結果をもたらすと想定される実行計画を選択します。
   
注記


場合によっては、問い合わせがどう実行されるか、可能性のある全ての手段を検証するため、膨大な時間とメモリを消費する可能性があります。
特に数多くの結合操作に問い合わせが関わった時です。
相応な（必ずしも最適ではありませんが）問い合わせ計画を、相応な時間内で決定するためPostgreSQL™は結合の数が閾値を越えた場合、遺伝的問い合わせオプティマイザ（61章遺伝的問い合わせオプティマイザ参照）を使用します（geqo_thresholdを参照ください）。
    



このプランナの検索手順は、実際には経路という名前のデータ構造を使用します。
経路とは、プランナが決定を行うために必要な情報のみに切り詰めた単なる計画の表現です。
最も安価である経路が決定された後、全てが揃った計画ツリーが作成されてエグゼキュータに渡されます。
これはつまり、要求されている実行計画はエグゼキュータがそれを実行するために十分な詳しい内容を所有していることを表しています。
本節の残りでは、経路と計画の違いについて無視します。
   
実行可能な計画の生成





プランナ/オプティマイザは、問い合わせの中で使用される個々のリレーション（テーブル）をスキャンするための計画を生成することから始めます。
各リレーション上で利用できるインデックスにより実行可能な計画が決まります。
リレーションをシーケンシャルスキャンする可能性は常にありますので、シーケンシャルスキャンを使用する計画は常に作成されます。
リレーション上にインデックス（例えばB-treeインデックス）が定義され、問い合わせにはrelation.attribute OPR constantという条件があるとしましょう。
もしrelation.attributeがB-treeインデックスのキーと一致し、OPRがインデックスの演算子クラスに列挙されている演算子の1つであれば、リレーションをスキャンするためにB-treeインデックスを使用する別の計画が作られます。
さらに他のインデックスが存在し、問い合わせの中で条件がインデックスのキーに一致した場合、なおその上に計画が検討されます。インデックススキャン計画は、問い合わせの （もし存在すれば）ORDER BY句に一致するソート順、もしくはマージ結合に便利なソート順を所有するインデックスに対して生成されます（以下を参照してください）。
    


問い合わせが２つ以上のリレーションの結合を必要とすると、リレーションを結合する計画は、単一のリレーションをスキャンするために全ての実行可能な計画が探し出された後に検討されます。３つの実行可能な結合戦略を示します。

     
	

ネステッドループ結合：
左側のリレーションの中で見つけられた行ごとに右側のリレーションが1回スキャンされます。
この戦略は実装が簡単ですが、時間がかかる場合があります。
（とは言っても右側のリレーションがインデックススキャンによってスキャン可能であればよい戦略になります。
右側のインデックススキャンのキーとして左側のリレーションの現在の行の値を使用することができます。）
       

	

マージ結合：
結合を開始する前に、それぞれのリレーションを結合属性でソートします。
そして、2つのリレーションを並行してスキャンし、一致する行を結合行の形にまとめます。
それぞれのリレーションがたった1回しかスキャンされなくて済むのでこの結合は魅力的です。
要求されるソートは、明示的なソート段階、または、結合キー上のインデックスを使用して適切な順序でリレーションをスキャンすることにより行われます。
       

	

ハッシュ結合：
右側のリレーションがハッシュキーとして結合属性を用いて初めにスキャンされ、ハッシュテーブルに読み込まれます。
次に左側のリレーションがスキャンされ、見つかったそれぞれの行に相応しい値が、右側のリレーションの行を探し出すためのハッシュキーとして使われます。
       




    


問い合わせが3つ以上のリレーションを含む場合、それぞれ2つの入力を持つ結合段階のツリーによって最終結果を構築しなければなりません。
プランナは最も低コストな計画を見つけ出すために、あり得る異なった結合順序を検証します。
    


問い合わせがgeqo_thresholdより少ないリレーションを使用する場合、最適な結合シーケンスを見つけ出すため、完璧に近い検索が行われます。
プランナはWHERE条件での対応する結合句が存在する（すなわち、where rel1.attr1=rel2.attr2のような制約に対して）、あらゆる２つのリレーション間の結合を優先的に考慮します。
結合句のない結合ペアは他に選択のない場合に考慮されます。つまり、ある特定のリレーションが他のどんなリレーションに対しても有効な結合句を持たない場合です。
すべての有効な計画はプランナが考慮したすべての結合ペアに対し生成され、最も安価な（と評価された）ものが選択されます。
    


geqo_thresholdを上回ると、考慮された結合シーケンスは61章遺伝的問い合わせオプティマイザに記載されているように経験則で決定されます。
そうでない時、処理は変わりません。
    


最終的な計画ツリーは基になっているリレーションのシーケンシャルもしくはインデックススキャン、そして必要に応じてネステッドループ、マージ、またはハッシュ結合のノード、さらにはソートまたは集約関数計算ノードのような必要とされる補助の手順から構成されます。
これらほとんどの計画ノード型は選択（特定の論理演算条件に合致しない行を破棄すること）および射影（与えられた列の値に基づき派生した列の集合を計算すること、つまり必要なところでスカラ式の評価をすること）を行う追加的能力を持っています。
プランナの1つの責任は、WHERE句から選択条件を付加して計画ツリーの最も適切なノードに対し必要とされる出力式を計算することです。
    


エグゼキュータ





エグゼキュータは、プランナ/オプティマイザで作成された計画を受け取り、必要な行の集合を抽出するために再帰的に処理します。
これは本質的に要求引き寄せ型（demand-pull）パイプライン機能です。
計画ノードが呼ばれる度にもう1つの行を引き渡すか、行を引き渡したことの報告を行わなければなりません。
   


具体的な例を提供する目的で頂点のノードがMergeJoinノードである場合を想定しましょう。
いかなるマージも実行される前に（それぞれの副計画から1つずつ）2つの行を取ってこなくてはいけません。
ですからエグゼキュータは副計画を処理するために自分自身を再帰的に呼び出します（lefttreeに付随する副計画から開始します）。
新しい頂点のノード（左の副計画の頂点のノード）はSortノードであるとしましょう。ここでもノード自体が処理される前に入力行を取ってこなくてはいけません。
Sortの子ノードは実際のテーブルの読み取りを表現しているSeqScanノードのこともあり得ます。
このノードの処理はエグゼキュータにテーブルから行を抽出させ、呼び出しているノードに渡し戻させます。
Sortノードはソート対象の全てのノードを取得するために子ノードを繰り返し呼び出します。
入力がなくなった時（子ノードが行ではなくNULLを返してきた時）Sortコードがソートを実行して最終的に最初の出力行を返すことができるようになります。
つまりソート順における最初の結果です。
後での要求に答えるためソート順に引き渡すことができるように残っている行は保存されます。
   


MergeJoinノードは同じようにしてその右副計画から最初の行を要求します。
そこで2つの行が結合できるかどうか比較されます。もし結合できる場合には呼び出し側に結合された行が返されます。
次の呼び出しの時に、もしくは入力された現在の組み合わせが結合できない場合はすぐに、あるテーブルあるいはそれ以外のテーブル（比較の結果に依存して）の次の行に進んで、さらに一致があるかどうか検証されます。
最終的にはある副計画もしくは他の計画が使いきられ、MergeJoinノードがこれ以上の結合行を生成できないという意味のNULLを返すことになります。
   


複雑な問い合わせは多くの階層となった計画ノードに関わるかもしれませんが、概略的な取り扱い方は同じです。
それぞれのノードは呼び出される度に次の出力行を計算して返します。
それぞれのノードは同時にプランナによって割り当てられたいかなる選択式や射影式でも適用する責任があります。
   


エグゼキュータ機構は5つの基本的なSQL問い合わせの種類すべてを検証するために用いられます。
5つのSQL問い合わせの種類とはSELECT、INSERT、UPDATE、DELETE、そしてMERGEです。
SELECTでは、最上位階層のエグゼキュータコードは問い合わせ計画ツリーによって返されるそれぞれの行をクライアントへ送り返すだけでよいことになっています。
INSERT ... SELECT、UPDATE、DELETE、MERGEは、実質的にはModifyTableと呼ばれる特別な最上位階層の計画ノードの下のSELECTです。
   


INSERT ... SELECTは挿入のためにModifyTableに行を入力します。
UPDATEでは、プランナはすべての更新された列の値を含んだ行の演算結果と元の対象行のTID（タプルID、または行ID）を準備します。
このデータはModifyTableノードに入力され、ノードでは新しく更新された行の作成と古い行に削除の印を付けるためにこの情報を利用します。
DELETEでは、計画から実際に返されるただ1つの列はTIDで、ModifyTableノードは単に各対象行を尋ね当てて削除の印を付けるためにこのTIDを使用します。
MERGEでは、プランナは元のリレーションと対象のリレーションを結合し、WHEN句のいずれかで必要とされるすべての列の値と対象行のTIDを含みます。
このデータはModifyTableノードに入力され、実行までのWHEN句を判断し、必要に応じて対象行を挿入、更新、または削除するためにこの情報を利用します。
   


単純なINSERT ... VALUESコマンドは、1つのResultノードからなる単純な計画ツリーを生成し、そのノードは結果としての行を1つだけ計算し、挿入を実行するためにその行がModifyTableに入力されます。
   

第52章 システムカタログ





システムカタログとは、リレーショナルデータベース管理システムがテーブルや列の情報などのスキーマメタデータと内部的な情報を格納する場所です。
PostgreSQL™のシステムカタログは通常のテーブルです。
テーブルを削除したり再作成したり、列の追加および値の挿入や更新をすることは可能ですが、これらの操作でデータベースシステムを台なしにしてしまう可能性もあります。
通常手作業でシステムカタログを変更してはいけません。
その代わりとしてSQLコマンドを使用します（例えばCREATE DATABASEによりpg_databaseカタログに1行挿入し、ディスク上にデータベースを実際に作成します）。
しかし特に難易度の高い操作の時などの例外がありますが、それらの多くは時間と共にSQLコマンドとして利用可能となっており、それゆえシステムカタログを直接操作する必要は無くなってきています。
  
概要





表52.1「システムカタログ」にシステムカタログを列挙します。
以降システムカタログについてより詳細を説明します。
  


ほとんどのシステムカタログはデータベースを作成する時にテンプレートデータベースからコピーされ、以降はデータベースに固有のものになります。
ごく一部のカタログがデータベースクラスタ内の全てのデータベースにわたって物理的に共有されます。
これらについては、それぞれのカタログで説明します。
  
表52.1 システムカタログ
	カタログ名	用途
	pg_aggregate	集約関数
	pg_am	リレーションアクセスメソッド
	pg_amop	アクセスメソッド演算子
	pg_amproc	アクセスメソッドサポート関数
	pg_attrdef	列デフォルト値
	pg_attribute	テーブル列（「属性」）
	pg_authid	認証識別子（ロール）
	pg_auth_members	認証識別子メンバシップ関係
	pg_cast	キャスト（データ型変換）
	pg_class	テーブル、インデックス、シーケンス、ビュー（「リレーション」）
	pg_collation	照合順序（ロケール情報）
	pg_constraint	検査制約、一意性制約、主キー制約、外部キー制約
	pg_conversion	エンコード方式変換情報
	pg_database	データベースクラスタにあるデータベース
	pg_db_role_setting	ロール毎およびデータベース毎の設定
	pg_default_acl	オブジェクト種類のデフォルト権限
	pg_depend	データベースオブジェクト間の依存関係
	pg_description	データベースオブジェクトの説明やコメント
	pg_enum	列挙型のラベルや値の定義
	pg_event_trigger	イベントトリガ
	pg_extension	インストールされた拡張
	pg_foreign_data_wrapper	外部データラッパーの定義
	pg_foreign_server	外部サーバの定義
	pg_foreign_table	追加の外部テーブル情報
	pg_index	追加インデックス情報
	pg_inherits	テーブル継承階層
	pg_init_privs	オブジェクトの初期権限
	pg_language	関数記述言語
	pg_largeobject	ラージオブジェクト用のデータページ
	pg_largeobject_metadata	ラージオブジェクトのメタデータ
	pg_namespace	スキーマ
	pg_opclass	アクセスメソッド演算子クラス
	pg_operator	演算子
	pg_opfamily	アクセスメソッド演算子族
	pg_parameter_acl	権限が付与された設定パラメータ
	pg_partitioned_table	テーブルのパーティションキーについての情報
	pg_policy	行単位セキュリティポリシー
	pg_proc	関数とプロシージャ
	pg_publication	論理レプリケーションのパブリケーション
	pg_publication_namespace	スキーマからパブリケーションの対応
	pg_publication_rel	リレーションとパブリケーションの対応
	pg_range	範囲型の情報
	pg_replication_origin	登録されたレプリケーション起点
	pg_rewrite	問い合わせ書き換えルール
	pg_seclabel	データベースオブジェクト上のセキュリティラベル
	pg_sequence	シーケンスについての情報
	pg_shdepend	共有オブジェクトの依存関係
	pg_shdescription	共有オブジェクトに対するコメント
	pg_shseclabel	共有データベースオブジェクトのセキュリティラベル
	pg_statistic	プランナ統計情報
	pg_statistic_ext	プランナ拡張統計情報（定義）
	pg_statistic_ext_data	プランナ拡張統計情報（構築統計情報）
	pg_subscription	論理レプリケーションのサブスクリプション
	pg_subscription_rel	サブスクリプションについてのリレーションの状態
	pg_tablespace	データベースクラスタ内のテーブル空間
	pg_transform	変換（データ型を手続き言語に変換）
	pg_trigger	トリガ
	pg_ts_config	全文検索設定
	pg_ts_config_map	全文検索設定のトークン写像
	pg_ts_dict	全文検索辞書
	pg_ts_parser	全文検索パーサ
	pg_ts_template	全文検索テンプレート
	pg_type	データ型
	pg_user_mapping	外部サーバへのユーザのマッピング





pg_aggregate





pg_aggregateカタログには集約関数の情報が格納されています。
集約関数とは、値の集合（多くの場合は問い合わせ条件に該当する各行の1つの列）にある操作を行い、それらすべての値の演算の結果得られる単一の値を返します。
集約関数の代表的なものはsum、countそしてmaxです。
pg_aggregate内の各項目は、pg_proc内の項目の拡張です。
pg_procの項目には、集約の名前、入出力データ型および通常の関数と類似したその他の情報が含まれます。
  
表52.2 pg_aggregateの列
	

列 型
      

      

説明
      

	
       aggfnoid regproc

（参照先 pg_proc.oid）
      

      

pg_proc集約関数のOID
      

	
       aggkind char
      

      

集約関数の種類：
n = 「通常の」集約関数、
o = 「順序集合の」集約関数、
h = 「仮想集合の」集約関数
      

	
       aggnumdirectargs int2
      

      

順序集合や仮想集合の集約関数では、（集約されていない）複数の引数は、可変長配列として1個の引数と見なします。
引数の数がpronargsと同じ場合、最終的な直接引数同様、集約された引数として、集約関数の引数は、可変または可変長配列で記述しなければなりません。
通常の集約関数は引数を取りません。
      

	
       aggtransfn regproc

（参照先 pg_proc.oid）
      

      

遷移関数
      

	
       aggfinalfn regproc

（参照先 pg_proc.oid）
      

      

最終関数（ない時はゼロ）
      

	
       aggcombinefn regproc

（参照先 pg_proc.oid）
      

      

結合関数（ない時はゼロ）
      

	
       aggserialfn regproc

（参照先 pg_proc.oid）
      

      

直列化関数（ない時はゼロ）
      

	
       aggdeserialfn regproc

（参照先 pg_proc.oid）
      

      

逆直列化関数（ない時はゼロ）
      

	
       aggmtransfn regproc

（参照先 pg_proc.oid）
      

      

移動集約モードの順方向遷移関数（ない時はゼロ）
      

	
       aggminvtransfn regproc

（参照先 pg_proc.oid）
      

      

移動集約モードの逆遷移関数（ない時はゼロ）
      

	
       aggmfinalfn regproc

（参照先 pg_proc.oid）
      

      

移動集約モードの最終関数（ない時はゼロ）
      

	
       aggfinalextra bool
      

      

aggfinalfnに追加の仮引数を渡す場合はtrue
      

	
       aggmfinalextra bool
      

      

aggmfinalfnに追加の仮引数を渡す場合はtrue
      

	
       aggfinalmodify char
      

      

aggfinalfnが遷移状態値を変更するかどうか：
r = 読み出し専用の場合、
s = aggfinalfnの後でaggtransfnを適用できない場合、
w = その値に書き込む場合
      

	
       aggmfinalmodify char
      

      

aggmfinalfn用であることを除き、aggfinalmodifyと同様
      

	
       aggsortop oid

（参照先 pg_operator.oid）
      

      

関連するソート演算子（ない時はゼロ）
      

	
       aggtranstype oid

（参照先 pg_type.oid）
      

      

集約関数の内部遷移（状態）データのデータ型
      

	
       aggtransspace int4
      

      

遷移状態データの推定平均サイズ（バイト）、またはデフォルトの推定値であるゼロ
      

	
       aggmtranstype oid

（参照先 pg_type.oid）
      

      

移動集約モードの、集約関数の内部遷移（状態）データのデータ型（ない時はゼロ）
      

	
       aggmtransspace int4
      

      

移動集約モードの、遷移状態データの推定平均サイズ（バイト）、またはデフォルトの推定値であるゼロ
      

	
       agginitval text
      

      

遷移状態の初期値。
外部文字列表現での初期値を含んだテキストフィールド。
フィールドがNULL値の場合、推移状態はNULL値で始まります。
      

	
       aggminitval text
      

      

移動集約モードの、遷移状態の初期値。外部に文字列表記された初期値を含むテキストフィールド。
このフィールドがNULLの場合、遷移状態の値はNULLから始まります。
      






新しい集約関数はCREATE AGGREGATEコマンドで登録されます。
集約関数の書き方や遷移関数の説明などの詳細は「ユーザ定義の集約」を参照してください。
  

pg_am





pg_amカタログにはリレーションアクセスメソッドの情報が格納されます。
システムがサポートするアクセスメソッド毎に1つの行が存在します。
今の所、テーブルとインデックスのみがアクセスメソッドを持ちます。
テーブルとインデックスアクセスメソッドの要件は62章テーブルアクセスメソッドのインタフェース定義と63章インデックスアクセスメソッドのインタフェース定義で詳しく説明されています。
  
表52.3 pg_amの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       amname name
      

      

アクセスメソッド名
      

	
       amhandler regproc

（参照先 pg_proc.oid）
      

      

アクセスメソッドについての情報の提供に責任を持つハンドラ関数のOID
      

	
       amtype char
      

      

t = テーブル（マテリアライズドビューを含む）、
i = インデックス
      




注記


PostgreSQL™ 9.6以前では、pg_amにはインデックスアクセスメソッドのプロパティを表す多くの追加列が含まれていました。
そのデータは今ではCコードレベルで直接参照できるのみです。
しかし、pg_index_column_has_property()関数と関連する関数群が、インデックスアクセスメソッドのプロパティを検査するためのSQLクエリを許容するために追加されました。
表9.76「システムカタログ情報関数」を参照してください。
   


pg_amop





pg_amopカタログにはアクセスメソッド演算子の集合に関連付けられた演算子の情報が格納されています。
演算子族のメンバである演算子毎に１つの行が存在します。
演算子族のメンバは検索演算子または順序付け演算子のいずれかになることができます。
演算子は1つ以上の演算子族に現れますが、演算子族の中では検索でも順序付けでも複数現れることはありません。
（ほとんどありませんが、ある演算子が検索目的と順序付け目的の両方で使用されることが許されます。）
  
表52.4 pg_amopの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       amopfamily oid

（参照先 pg_opfamily.oid）
      

      

この項目用の演算子族
      

	
       amoplefttype oid

（参照先 pg_type.oid）
      

      

演算子の左辺側のデータ型
      

	
       amoprighttype oid

（参照先 pg_type.oid）
      

      

演算子の右辺側のデータ型
      

	
       amopstrategy int2
      

      

演算子の戦略番号
      

	
       amoppurpose char
      

      

演算子の目的。 s = 検索用、 o = 順序付け用
      

	
       amopopr oid

（参照先 pg_operator.oid）
      

      

演算子のOID
      

	
       amopmethod oid

（参照先 pg_am.oid）
      

      

演算子族用のインデックスアクセスメソッド
      

	
       amopsortfamily oid

（参照先 pg_opfamily.oid）
      

      

順序付け用の演算子の場合、この項目のソートが従うB-tree演算子族。検索用演算子であればゼロ
      






「検索」用演算子の項目は、この演算子族のインデックスをWHERE indexed_column operator constantを満たすすべての行を見つけるための検索に使用できることを示します。
いうまでもありませんが、こうした演算子は論理型を返さなければならず、また左辺の入力型はインデックス列のデータ型に一致しなければなりません。
  


「順序付け」用演算子の項目は、この演算子族のインデックスをORDER BY indexed_column operator constantで表される順序で行を返すためのスキャンに使用できることを示します。
こうした演算子の左辺の入力型はインデックス列のデータ型に一致しなければならないことは同じですが、任意のソート可能なデータ型を返すことができます。
ORDER BYの正確な意味は、この演算子の結果型用のB-tree演算子族を参照する必要があるamopsortfamily列により指定されます。
  
注記


現在、順序付け演算子のソート順は参照される演算子族のデフォルト、つまりASC NULLS LASTであると仮定されています。
これは将来、ソートオプションを明示的に指定する追加列を加えることで緩和されるかもしれません。
   



項目のamopmethodは、項目を含む演算子族のopfmethodに一致しなくてはいけません（ここでのamopmethodは、性能上の理由からカタログ構造を意図的に非正規化したものも含みます）。
また、amoplefttypeとamoprighttypeは、参照されているpg_operator項目のoprleftとoprrightに一致しなくてはいけません。
  

pg_amproc





pg_amprocカタログには、アクセスメソッド演算子族に関連付けられたサポート関数の情報が格納されます。
演算子族に含まれるサポート関数毎に１つの行が存在します。
  
表52.5 pg_amprocの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       amprocfamily oid

（参照先 pg_opfamily.oid）
      

      

この項目用の演算子族
      

	
       amproclefttype oid

（参照先 pg_type.oid）
      

      

関連付けられた演算子の左辺のデータ型
      

	
       amprocrighttype oid

（参照先 pg_type.oid）
      

      

関連付けられた演算子の右辺データ型
      

	
       amprocnum int2
      

      

サポート関数番号
      

	
       amproc regproc

（参照先 pg_proc.oid）
      

      

関数のOID
      






amproclefttypeとamprocrighttype属性の通常の解釈は、それらが、特定のサポート関数がサポートする演算子の左と右の入力型を識別することです。
いくつかのアクセスメソッドに対して、これらはサポート関数自身の入力データ型に一致することもあります。
また、そうでないものもあります。
インデックスに対して「デフォルト」サポート関数の概念があります。
これはamproclefttypeとamprocrighttypeの両方が、インデックス演算クラスのopcintypeに等しい、という概念です。
  

pg_attrdef





pg_attrdefシステムカタログは列のデフォルト式と生成式を格納します。
列の主要な情報はpg_attributeに格納されています。
デフォルト式や生成式が明示的に設定された列のみここに項目を持ちます。
  
表52.6 pg_attrdefの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       adrelid oid

（参照先 pg_class.oid）
      

      

この列が属するテーブル
      

	
       adnum int2

（参照先 pg_attribute.attnum）
      

      

列番号
      

	
       adbin pg_node_tree
      

      

nodeToString()表現の列のデフォルト式や生成式。
pg_get_expr(adbin, adrelid)を使ってSQL式に変換します。
      





pg_attribute





pg_attributeカタログにはテーブルの列情報が格納されます。
データベース内のすべてのテーブルの各列に対し必ず１つのpg_attribute行があります。
（また、インデックスとpg_classに項目を持つすべてのオブジェクトに対しての属性記述があります。）
  


属性という表現は列と同等の意味で、歴史的背景からそのように呼ばれています。
  
表52.7 pg_attributeの列
	

列 型
      

      

説明
      

	
       attrelid oid

（参照先 pg_class.oid）
      

      

この列が属するテーブル
      

	
       attname name
      

      

列名
      

	
       atttypid oid

（参照先 pg_type.oid）
      

      

この列のデータ型（ゼロなら削除された列）
      

	
       attlen int2
      

      

この列の型のpg_type.typlenのコピー
      

	
       attnum int2
      

      

列番号。
通常の列には1から始まる番号付けがなされます。
ctidのようなシステムによる列には（任意の）負の番号が付きます。
      

	
       atttypmod int4
      

      

atttypmodは、テーブル作成時に与えられた型固有のデータ（たとえばvarchar列の最大長）を記録します。
これは型固有の入力関数や長さ強制関数に渡されます。
atttypmodを必要としない型では、通常、この値は-1です。
      

	
       attndims int2
      

      

列が配列型の場合は次元数を表現し、そうでない時はゼロです。
（現在配列の次元数は強制されていませんのでゼロ以外のどのような値であっても「これは配列である」ということを意味します。）
      

	
       attbyval bool
      

      

この列の型のpg_type.typbyvalのコピー
      

	
       attalign char
      

      

この列の型のpg_type.typalignのコピー
      

	
       attstorage char
      

      

通常、この列の型のpg_type.typstorageのコピー。
TOAST可能なデータ型では、格納ポリシーを制御するために列の作成後に変更できます。
      

	
       attcompression char
      

      

この列の現在の圧縮方式。
典型的には現在のデフォルト設定（default_toast_compression参照）を指定する'\0'です。
そうでなければ、'p'はpglz圧縮を選択し、'l'はLZ4™圧縮を選択します。
ただし、attstorageが圧縮を許可しなければ、このフィールドは無視されます。
      

	
       attnotnull bool
      

      

この列には非NULL制約（無効なこともあります）があります。
      

	
       atthasdef bool
      

      

この列にはデフォルト値あるいは生成式があります。
その場合、実際に値を定義するpg_attrdefカタログ内に対応する項目があります。
（これがデフォルトなのか生成式なのかはattgeneratedをチェックします。）
      

	
       atthasmissing bool
      

      

この列は、行から列の値が完全に失われている場合に使われる値を持ちます。
これは、行が作られた後で非不安定(non-volatile)なDEFAULT値を持つ列が追加される際に起こります。
実際に使われる値はattmissingval列に格納されています。
      

	
       attidentity char
      

      

ゼロバイト（''）ならこれは識別列ではありません。
識別列では、 a = GENERATED ALWAYS、 d = GENERATED BY DEFAULTになります。
      

	
       attgenerated char
      

      

ゼロバイト（''）ならこれは生成列ではありません。
生成列では、s = 格納生成列、v = 仮想生成列になります。
格納生成列は、通常の列と同様に物理的に格納されます。
仮想生成列は、物理的にはNULL値として格納され、実際の値は実行時に計算されます。
      

	
       attisdropped bool
      

      

この列は既に削除されていて有効ではありません。
削除された列は物理的にはまだテーブル上に存在していますが、パーサによって無視されるためSQLでアクセスできません。
      

	
       attislocal bool
      

      

この列はリレーション内でローカルに定義されます。
列がローカルに定義されると同時に継承される場合もあることに注意してください。
      

	
       attinhcount int2
      

      

この列が持つ直接の祖先の数です。
祖先を持っている列の削除や名前は変更はできません。
      

	
       attcollation oid

（参照先 pg_collation.oid）
      

      

列で定義された照合順序。列が照合順序の設定ができないデータ型の場合はゼロ
      

	
       attstattarget int2
      

      

attstattargetはANALYZEによるこの列に対する蓄積された統計情報をどの程度詳しく管理するかを規定します。
値がゼロの場合は統計情報を収集しません。
NULL値の場合は、システムのデフォルトの統計目標を使用すべきであるということです。
正の値が厳密に意味するところはデータ型に依存します。
スカラデータ型に対してattstattargetは収集する「最頻値」の目標となる数であり、また作成するヒストグラムビンの目標数でもあります。
      

	
       attacl aclitem[]
      

      

この列に特定して付与された場合における、列レベルのアクセス権限
      

	
       attoptions text[]
      

      

「keyword=value」文字列のような、属性レベルのオプション
      

	
       attfdwoptions text[]
      

      

「keyword=value」文字列のような、外部データラッパーオプションの属性レベル
      

	
       attmissingval anyarray
      

      

この列は、行から列の値が完全に失われている場合に使われる値を持つ一要素配列を持ちます。
これは、行が作られた後で非不安定(non-volatile)なDEFAULT値を持つ列が追加される際に起こります。
この値はatthasmissingがtrueのときだけ使用されます。
値がなければその列はNULLになります。
      






削除された列のpg_attribute項目では、atttypidはゼロにリセットされます。
しかしattlenとpg_typeからコピーされた他のフィールドは、有効なままです。
この動作は、削除された列のデータ型が後になって削除されて、pg_type行が存在しないような状況の場合に必要です。
attlenと他のフィールドは、テーブル内の行の内容を解釈するために使用されます。
  

pg_authid





pg_authidカタログはデータベース認証識別子（ロール）の情報を保持します。
ロールは「ユーザ」と「グループ」の概念を包括しています。
ユーザは本質的にrolcanloginフラグセットを持ったロールです。
どのようなロール（rolcanloginを持っている、持っていないに関わらず）も他のロールをメンバとして持っていても構いません。
pg_auth_membersを参照してください。
  


このカタログはパスワードを含んでいるため、第三者が内容を読むことができないようにしなければいけません。
pg_rolesは、pg_authidのビューで、パスワードのフィールドは空白となっていますので内容を読み取ることができます。
  


21章データベースロールでユーザと権限管理に関するより詳細について説明します。
  


ユーザの本人確認はクラスタ全体にわたる情報ですので、pg_authidはクラスタのすべてのデータベースで共有されます。
データベース毎ではなく、クラスタ毎にたった1つだけpg_authidが存在します。
  
表52.8 pg_authidの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       rolname name
      

      

ロール名
      

	
       rolsuper bool
      

      

ロールはスーパーユーザの権限を持っている
      

	
       rolinherit bool
      

      

ロールは自動的にメンバとして属するロールの権限を継承
      

	
       rolcreaterole bool
      

      

ロールはロールを作成できる
      

	
       rolcreatedb bool
      

      

ロールはデータベースを作成できる
      

	
       rolcanlogin bool
      

      

ロールはログインできる。つまりロールはセッションを始める認証の識別子となることができます。
      

	
       rolreplication bool
      

      

ロールはレプリケーションのロールである。
レプリケーションロールは、レプリケーション接続を開始すること、およびレプリケーションスロットを作成および削除できます。
      

	
       rolbypassrls bool
      

      

すべての行単位セキュリティポリシーを無視するロール。詳しくは「行セキュリティポリシー」を参照してください。
      

	
       rolconnlimit int4
      

      

ログイン可能なロールでは、これはロールが確立できる同時実行接続数を設定します。
-1は制限無しを意味します。
      

	
       rolpassword text
      

      

暗号化されたパスワード。無い場合はNULLです。
書式は使用される暗号化の形式に依存します。
      

	
       rolvaliduntil timestamptz
      

      

パスワード有効期限（パスワード認証でのみ使用）。
NULLの場合には満了時間はありません。
      






MD5で暗号化されたパスワードでは、rolpassword列は文字列md5で始まり、それに32文字の16進MD5ハッシュ値が続きます。
MD5ハッシュは、ユーザのパスワードとユーザ名を繋げたものに対して生成されます。
例えばjoeのパスワードがxyzzyなら、PostgreSQL™はxyzzyjoeのMD5ハッシュを格納します。
  
警告


MD5で暗号化されたパスワードのサポートは非推奨となり、将来のPostgreSQL™のリリースで削除されます。
他のパスワードタイプへの移行の詳細については、「パスワード認証」を参照してください。
   



パスワードがSCRAM-SHA-256で暗号化される場合、次の書式になります。


SCRAM-SHA-256$<iteration count>:<salt>$<StoredKey>:<ServerKey>



ここで、salt、StoredKey、ServerKeyはBase64の符号化書式に従います。
この書式はRFC 5803で指定されているものと同じです。
  

pg_auth_members





pg_auth_membersカタログはロール間のメンバシップ関係を示しています。
循環していなければ、どのような関係でも許可されています。
  


ユーザの同一性はクラスタ間で保たれる必要があるため、pg_auth_membersはクラスタ間のすべてのデータベースで共有されています。
pg_auth_membersのコピーはデータベースごとではなく、各クラスタにひとつだけ持っています。
  
表52.9 pg_auth_membersの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       roleid oid

（参照先 pg_authid.oid）
      

      

メンバを持っているロールのID
      

	
       member oid

（参照先 pg_authid.oid）
      

      

roleidのメンバであるロールのID
      

	
       grantor oid

（参照先 pg_authid.oid）
      

      

このメンバシップを与えたロールのID
      

	
       admin_option bool
      

      

memberはroleidのメンバシップを他に与えることができる場合はtrue
      

	
       inherit_option bool
      

      

メンバが付与されたロールの権限を自動的に継承する場合はtrue
      

	
       set_option bool
      

      

メンバがSET ROLEで付与されたロールに設定できる場合はtrue
      





pg_cast





pg_castカタログにはデータ型変換パスが格納されます。
ここには、組み込みのパスとユーザ定義のパスが存在します。
  


pg_castは、システムがどのように動作するかわかっているような、あらゆる型変換を表しているわけではないということに注意してください。
いくつかの一般的な規則から推測できないような型変換についてのみ表しています。
例えば、ドメインとその基本の型は明示的にpg_cast内で表されていません。
他の重要な例外は「自動I/O変換キャスト」です。
これらのキャストは、text型やほかの文字列型から変換したりされたりするのにデータ型自身のI/O関数を用いていますが、これらのキャストは明示的にpg_cast内において表されていません。
  
表52.10 pg_castの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       castsource oid

（参照先 pg_type.oid）
      

      

変換元データ型のOID
      

	
       casttarget oid

（参照先 pg_type.oid）
      

      

対象データ型のOID
      

	
       castfunc oid

（参照先 pg_proc.oid）
      

      

このキャストを実行するために使用する関数のOID。
キャストメソッドが関数を必要としない場合はゼロが格納されます。
      

	
       castcontext char
      

      

キャストがどの文脈で呼び出し可能かを示します。
e = 明示のキャストとしてのみ起動されることを意味します（CASTまたは::構文を使用します）。
a = 対象となる列を明示的に特定するだけでなく暗黙的にも特定することを意味します。
i = 他の場合と同様に演算式内で暗黙的であることを意味します。
      

	
       castmethod char
      

      

どのようにキャストが実行されるかを示します。
f = castfuncフィールド内で示される関数が使用されていることを意味します。
i = 入出力関数が使用されていることを示します。
b = 型がバイナリを強制しているため、変換が必要ないことを意味します。
      






pg_cast内に挙げられているキャスト関数は、第1番目の引数の型として、キャスト元の型をいつも取らなければいけません。
また、キャスト関数は、結果の型としてキャスト先の型を返します。
キャスト関数は3つまで引数を持つことができます。
もし存在するなら、2番目の引数はinteger型でなくてはなりません。
この引数はキャスト先の型に関連付けられた型修飾子を受け取ります。
2番目の引数がない場合は、-1です。
3番目の引数は、もし存在する場合は、boolean型でなくてはなりません。
この引数は、もしキャストが明示的なキャストであればtrueを受け取り、そうでない場合はfalseを受け取ります。
  


もし関連のある関数が複数の引数を持つ場合、キャストの元と先で型が同じであるpg_cast項目を作成することが妥当です。
このような項目は、「length coercion functions」を表現します。
「length coercion functions」は型の値を特定の型の修飾子の値に適するように修正します。
  


pg_cast項目が異なるキャスト元とキャスト先の型を持っていて、かつ関数が複数の引数を持つ時は、1つの型から別の型への変換し、かつ、1つの手順で長さの修正を適用することを意味します。
このような項目が利用できない時は、型修飾子を使用した型の修正は2つの手順が必要です。
1つはデータ型の間での変換で、2つ目は修飾子を適用することです。
  

pg_class





pg_classカタログは、テーブルとその他に列を持つもの、あるいはテーブルに類似したオブジェクトを記述します。
その中にはインデックス（pg_indexも参照）、シーケンス（pg_sequenceも参照）、ビュー、マテリアライズドビュー、複合型およびTOASTテーブルが含まれます。
relkindを参照してください。
これより以降、「リレーション」と記されている場合はこれらすべてのオブジェクトを意味しています。
pg_classのすべての列がすべてのリレーション種別にとって意味を持つわけではありません。
  
表52.11 pg_classの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       relname name
      

      

テーブル、インデックス、ビューなどの名前
      

	
       relnamespace oid

（参照先 pg_namespace.oid）
      

      

このリレーションを持つ名前空間のOID
      

	
       reltype oid

（参照先 pg_type.oid）
      

      

このテーブルの行の型に対応するデータ型のOID。ゼロならば、pg_typeエントリを持たないインデックス、シーケンス、TOASTテーブル。
      

	
       reloftype oid

（参照先 pg_type.oid）
      

      

型付けされたテーブルでは背後にある複合型のOID。
その他のリレーションではゼロ
      

	
       relowner oid

（参照先 pg_authid.oid）
      

      

リレーションの所有者
      

	
       relam oid

（参照先 pg_am.oid）
      

      

このテーブルまたはインデックスをアクセスするために使用されるアクセスメソッド。
リレーションがシーケンスの場合やディスク上のファイルがない場合は意味がありません。
パーティションテーブルの場合、設定されている場合は、作成コマンドで指定されていないパーティションのアクセスメソッドを決定する際に、default_table_access_methodより優先されます。
      

	
       relfilenode oid
      

      

このリレーションのディスク上のファイルの名前です。
ゼロはディスク上のファイル名が低レベルな状態で決定される「マップ付けされた」リレーションであることを意味します。
      

	
       reltablespace oid

（参照先 pg_tablespace.oid）
      

      

このリレーションが格納されるテーブル空間。
ゼロの場合、データベースのデフォルトのテーブル空間が暗黙的に使用されます。
ディスク上にファイルがないリレーションの場合は、パーティションテーブルの場合を除き、意味がありません。
パーティションテーブルの場合、作成コマンドでテーブル空間が指定されていない場合にパーティションが作成されるテーブル空間です。
      

	
       relpages int4
      

      

このテーブルのディスク上表現のページ単位（BLCKSZ）のサイズ。
これはプランナで使用される単なる推測値です。
VACUUM、ANALYZEおよびCREATE INDEXコマンドなどの一部のDDLコマンドで更新されます。
      

	
       reltuples float4
      

      

テーブル内の生きている行数。
これはプランナで使用される単なる推測値です。
VACUUM、ANALYZE、CREATE INDEXなどの一部のDDLコマンドで更新されます。
テーブルにまだVACUUMやANALYZEが行われていなければ、reltuplesには行数が未知であることを示す-1が入ります。
      

	
       relallvisible int4
      

      

テーブル内の可視マップ内で全て可視とマークされているページ数。
これはプランナで使用される単なる見積です。
VACUUM、ANALYZE、CREATE INDEXなどの一部のDDLコマンドで更新されます。
      

	
       relallfrozen int4
      

      

テーブルの可視性マップ内で全て凍結とマークされているページ数。
これは自動バキュームの起動タイミングを決定するために使用される単なる見積です。
また、relallvisibleと一緒に使用して、手動でのバキュームのスケジューリングやバキュームの凍結動作のチューニングを行うこともできます。
VACUUM、ANALYZEおよびCREATE INDEXコマンドなどの一部のDDLコマンドで更新されます。
      

	
       reltoastrelid oid

（参照先 pg_class.oid）
      

      

このテーブルに関連しているTOASTテーブルのOID。
何もない場合はゼロ。
TOASTテーブルは「行に収まらない」大きい属性を副テーブルに格納します。
      

	
       relhasindex bool
      

      

テーブルであり、かつ、インデックスを持つ（あるいはつい最近まで持っていた）場合はtrue
      

	
       relisshared bool
      

      

クラスタ内の全てのデータベースにわたってこのテーブルが共有されている場合はtrue。
（pg_databaseのような）ある特定のシステムカタログのみ共有されます。
      

	
       relpersistence char
      

      

p = 永続テーブル/シーケンス、
u = ログを取らないテーブル/シーケンス、
t = 一時テーブル/シーケンス
      

	
       relkind char
      

      

r = 通常のテーブル、
i = インデックス、
S = シーケンス、
t = TOASTテーブル、
v = ビュー、
m = マテリアライズドビュー、
c = 複合型、
f = 外部テーブル、
p = パーティションテーブル、
I = パーティションインデックス
      

	
       relnatts int2
      

      

リレーションにあるユーザ列数（システム列は含みません）。
pg_attributeにこれに対応する数多くの項目があるはずです。
pg_attribute.attnumも参照してください。
      

	
       relchecks int2
      

      

テーブル上のCHECK制約の数。
pg_constraintカタログを参照してください
      

	
       relhasrules bool
      

      

テーブルにルールがある（あるいは以前あった）場合はtrue。
pg_rewriteカタログを参照してください
      

	
       relhastriggers bool
      

      

テーブルにトリガがある（あるいは以前あった）場合はtrue。
pg_triggerカタログを参照してください
      

	
       relhassubclass bool
      

      

テーブルあるいはインデックスが子テーブルあるいはパーティションに継承されている（または以前に継承されていた）場合はtrue
      

	
       relrowsecurity bool
      

      

行単位セキュリティが有効なテーブルの場合はtrue。
pg_policyカタログを参照してください
      

	
       relforcerowsecurity bool
      

      

行単位セキュリティが（有効にされているとして）テーブルの所有者にも適用される場合はtrue。
pg_policyカタログを参照してください
      

	
       relispopulated bool
      

      

リレーションにデータが投入されている場合はtrue（マテリアライズドビュー以外のすべてのリレーションではtrueです）
      

	
       relreplident char
      

      

行に「replica identity」フォームを使った列：
d = デフォルト（もしあれば主キー）、
n = 無し、
f = 全ての列、
i = インデックスと indisreplidentのセット（使用されていたインデックスが削除されていた場合は、無し、と同様）
      

	
       relispartition bool
      

      

テーブルあるいはインデックスがパーティションである場合はtrue
      

	
       relrewrite oid

（参照先 pg_class.oid）
      

      

テーブルの書き換えが必要なDDL操作中に書き込みが行われる新しいリレーションでは、これは元のリレーションのOIDを持ちます。
そうでなければゼロです。
この状態は内部的にのみ可視です。
このフィールドはユーザから見えるリレーションではゼロ以外を持つべきではありません。
      

	
       relfrozenxid xid
      

      

この値より以前のトランザクションIDはすべて、このテーブルで永続的な（「凍結された」）トランザクションIDに置き換えられています。
これは、このテーブルに対して、トランザクションID周回を防ぎ、かつ、pg_xactを縮小させることを目的としたバキュームを行うかどうかを追跡するために使用されます。
リレーションがテーブルではない場合はゼロ（InvalidTransactionId）です。
      

	
       relminmxid xid
      

      

この値より以前のマルチトランザクションIDはすべて、このテーブルのトランザクションIDで置き換えられています。
これは、マルチトランザクションIDのID周回を防ぐ、またはpg_multixactを縮小させるために、テーブルをバキュームする必要があるかどうかを追跡するために使用されます。
リレーションがテーブルではない場合はゼロ（InvalidMultiXactId）です。
      

	
       relacl aclitem[]
      

      

アクセス権限。
詳細は「権限」を参照してください
      

	
       reloptions text[]
      

      

「keyword=value」文字列のような、アクセスメソッド特有のオプション
      

	
       relpartbound pg_node_tree
      

      

テーブルがパーティションの場合（relispartition参照）のパーティション境界の内部表現
      






pg_class内の複数の論理型フラグは、ゆっくりと保守されます。
正しい状態にあるときにtrueであることが保証されていますが、その条件がtrueでなくなった時即座にfalseに再設定されないかもしれません。
例えばrelhasindexはCREATE INDEXで設定されますが、DROP INDEXでは決して初期化されません。
代わりにVACUUMがそのテーブルにインデックスがないことを判定した場合にrelhasindexを初期化します。
この調整により競合状態を防止し、同時実行性が向上します。
  

pg_collation





pg_collationカタログは利用可能、SQL名とオペレーティングシステムのロケールカテゴリとの基本的な対応付けを行う照合順序を記述します。
詳細は 「照合順序サポート」を参照してください。
  
表52.12 pg_collationの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       collname name
      

      

照合順序の名前（名前空間およびエンコード方式で一意）
      

	
       collnamespace oid

（参照先 pg_namespace.oid）
      

      

この照合順序を含む名前空間のOID
      

	
       collowner oid

（参照先 pg_authid.oid）
      

      

照合順序の所有者
      

	
       collprovider char
      

      

照合順序のプロバイダ： d = データベースのデフォルト、 b = builtin、 c = libc、 i = icu
      

	
       collisdeterministic bool
      

      

照合順序は決定論的か？
      

	
       collencoding int4
      

      

この照合順序を適用できるエンコード方式。任意のエンコード方式で動作する場合は-1
      

	
       collcollate text
      

      

この照合順序オブジェクト用のLC_COLLATE。
プロバイダがlibcでない場合、collcollateはNULLになり、代わりにcolllocaleが使用されます。
      

	
       collctype text
      

      

この照合順序オブジェクト用のLC_CTYPE。
プロバイダがlibcでない場合、collctypeはNULLになり、代わりにcolllocaleが使用されます。
      

	
       colllocale text
      

      

この照合順序オブジェクト用の照合順序プロバイダのロケール名。
プロバイダがlibcの場合、colllocaleはNULLです。
代わりにcollcollateとcollctypeが使用されます。
      

	
       collicurules text
      

      

この照合オブジェクトのICU照合規則
      

	
       collversion text
      

      

この照合順序に対する提供者固有のバージョンです。
これは照合順序が作成された時に記録され、データの破壊につながりかねない照合順序定義の変更を検知するために使用時に検査されます。
      






このカタログの一意キーは(collname, collnamespace)だけではなく(collname,collencoding, collnamespace)です。
PostgreSQL™は通常、collencodingが現在のデータベースのエンコード方式または-1と一致しない照合順序をすべて無視します。
また、collencoding = -1を持つ項目と名前が一致する新しい項目の作成は許されません。
したがって照合順序を識別するためには、カタログの定義に従った一意ではない場合であっても、限定されたSQL名称(schema.name)を使用することで十分です。
このようにカタログを定義した理由は、クラスタの初期化時にinitdb がシステムで利用可能なすべてのロケール用の項目でこのカタログにデータを投入するためです。
その為、今後そのクラスタで使用される可能性があるすべてのエンコード方式のエントリを保持できるようにしなければなりません。
  


後でtemplate0から複製されるデータベースのエンコード方式と一致するかもしれないので、template0データベースのエンコード方式と一致しないものの照合順を作成することが有用になるかもしれません。
現在これは手作業で行う必要があります。
  

pg_constraint





pg_constraintカタログは、テーブル上の検査制約、非NULL制約、主キー制約、一意性制約、外部キー制約、および排他制約を格納します。
（列制約は特別扱いされていません。全ての列制約は何らかのテーブル制約と同等です。）
  


（CREATE CONSTRAINT TRIGGERで作成される）ユーザ定義の制約トリガもこのテーブルの項目の元になります。
  


   ドメイン上の検査制約もここに格納されます。
  
表52.13 pg_constraintの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       conname name
      

      

制約名（一意である必要はありません！）
      

	
       connamespace oid

（参照先 pg_namespace.oid）
      

      

この制約を含む名前空間のOID
      

	
       contype char
      

      

c = 検査制約、
f = 外部キー制約、
n = 非NULL制約、
p = 主キー制約、
u = 一意性制約、
t = 制約トリガ、
x = 排他制約
      

	
       condeferrable bool
      

      

制約は遅延可能かどうか？
      

	
       condeferred bool
      

      

制約はデフォルトで遅延可能かどうか？
      

	
       conenforced bool
      

      

制約は強制されているか？
      

	
       convalidated bool
      

      

制約は検証されたか？
      

	
       conrelid oid

（参照先 pg_class.oid）
      

      

この制約が存在しているテーブル。
テーブル制約でなければゼロ
      

	
       contypid oid

（参照先 pg_type.oid）
      

      

この制約が存在しているドメイン。
ドメイン制約でなければゼロ
      

	
       conindid oid

（参照先 pg_class.oid）
      

      

一意性制約、主キー制約、外部キー制約、排他制約の場合、この制約をサポートするインデックス。
そうでなければゼロ
      

	
       conparentid oid

（参照先 pg_constraint.oid）
      

      

パーティション内の制約なら、親パーティションテーブルの該当制約。
そうでなければゼロ
      

	
       confrelid oid

（参照先 pg_class.oid）
      

      

外部キーであれば、参照されるテーブル。
そうでなければゼロ
      

	
       confupdtype char
      

      

外部キー更新アクションコード：
a = no action,
r = restrict,
c = cascade,
n = set null,
d = set default
      

	
       confdeltype char
      

      

外部キー削除アクションコード：
a = no action,
r = restrict,
c = cascade,
n = set null,
d = set default
      

	
       confmatchtype char
      

      

外部キーの一致型：
f = full,
p = partial,
s = simple
      

	
       conislocal bool
      

      

この制約はリレーションでローカルに定義されています。制約はローカルに定義されていて同時に継承されます。
      

	
       coninhcount int2
      

      

この制約がもつ直系の先祖の数。
先祖の数がゼロではない制約は削除や改名はできません。
      

	
       connoinherit bool
      

      

この制約はリレーションのためにローカルで定義されます。これは非継承制約です。
      

	
       conperiod bool
      

      

この制約はWITHOUT OVERLAPS（主キーと一意性制約の場合）またはPERIOD（外部キーの場合）で定義されています。
      

	
       conkey int2[]

（参照先 pg_attribute.attnum）
      

      

テーブル制約（外部キーを含みますが制約トリガは含みません）であれば、その制約によって制約される列のリスト
      

	
       confkey int2[]

（参照先 pg_attribute.attnum）
      

      

外部キーであれば、参照される列のリスト
      

	
       conpfeqop oid[]

（参照先 pg_operator.oid）
      

      

外部キーであれば、PK = FKの比較のための同値演算子のリスト
      

	
       conppeqop oid[]

（参照先 pg_operator.oid）
      

      

外部キーであれば、PK = PKの比較のための同値演算子のリスト
      

	
       conffeqop oid[]

（参照先 pg_operator.oid）
      

      

外部キーであれば、FK = FKの比較のための同値演算子のリスト
      

	
       confdelsetcols int2[]

（参照先 pg_attribute.attnum）
      

      

外部キーにSET NULLまたはSET DEFAULT削除アクションがある場合、更新される列。
NULLの場合、参照しているすべての列が更新されます。
      

	
       conexclop oid[]

（参照先 pg_operator.oid）
      

      

排他制約またはWITHOUT OVERLAPSの主キー/一意制約であれば、列ごとの排他演算子のリスト。
      

	
       conbin pg_node_tree
      

      

チェック制約なら式の内部表現。（pg_get_constraintdef()を使ってチェック制約の定義を取り出すことをお勧めします。）
      






排他制約の場合、単純な列参照である制約要素でのみconkeyが有用です。
その他の場合、conkeyはゼロであり、関連するインデックスは制約される式を調査して見つけなければなりません。
（したがってインデックスではconkeyはpg_index.indkeyの内容と同じものを持ちます。）
  
注記


pg_class.relchecksはそれぞれのリレーションに対してこのテーブルで検出された検査制約の項目数と一致しなければなりません。
   


pg_conversion





pg_conversionカタログはエンコード方式変換関数を記述します。
詳細はCREATE CONVERSION(7)を参照してください。
  
表52.14 pg_conversionの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       conname name
      

      

変換名（名前空間内で一意）
      

	
       connamespace oid

（参照先 pg_namespace.oid）
      

      

この変換を含む名前空間のOID
      

	
       conowner oid

（参照先 pg_authid.oid）
      

      

変換の所有者
      

	
       conforencoding int4
      

      

ソースエンコーディングID（pg_encoding_to_char()で、この番号からエンコード方式名称に変換できます）
      

	
       contoencoding int4
      

      

ディスティネーションエンコーディングID（pg_encoding_to_char()で、この番号からエンコード方式名称に変換できます）
      

	
       conproc regproc

（参照先 pg_proc.oid）
      

      

変換関数
      

	
       condefault bool
      

      

これがデフォルト変換である場合はtrue
      





pg_database





pg_databaseカタログには使用可能なデータベースの情報が格納されます。
データベースはCREATE DATABASEコマンドで作成されます。
いくつかのパラメータの詳細については22章データベース管理を参照してください。
  


ほとんどのシステムカタログとは異なり、pg_databaseはクラスタにおける全てのデータベースにわたって共有されます。
データベース毎に1つではなく、クラスタ毎にたった1つだけpg_databaseのコピーが存在します。
  
表52.15 pg_databaseの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       datname name
      

      

データベース名
      

	
       datdba oid

（参照先 pg_authid.oid）
      

      

データベースの所有者。通常はそのデータベースの作成者
      

	
       encoding int4
      

      

このデータベースの文字エンコード（pg_encoding_to_char()で、この番号からエンコード方式名称に変換できます）
      

	
       datlocprovider char
      

      

このデータベースのロケールプロバイダ： b = builtin、 c = libc、 i = icu
      

	
       datistemplate bool
      

      

trueの場合、このデータベースはどのユーザでもCREATEDB権限を使って複製できます。
falseの場合、スーパーユーザまたはデータベースの所有者だけが複製できます。
      

	
       datallowconn bool
      

      

falseの場合、このデータベースには誰も接続できません。
これはtemplate0データベースが変更されることを防ぐために使用されます。
      

	
       dathasloginevt bool
      

      

このデータベースに対してログインイベントトリガが定義されていることを示します。
このフラグは、各バックエンドトリガでpg_event_triggerテーブルに対する余分な検索を避けるために使用されます。
このフラグはPostgreSQL™によって内部的に使用されますが、監視の目的のために手動で変更したり読み取ったりしないでください。
      

	
       datconnlimit int4
      

      

このデータベースに対する同時のコネクションの最大数を設定します。
-1は無制限を意味し、-2はデータベースが無効であることを示します。
      

	
       datfrozenxid xid
      

      

このデータベースの中で、この値よりも前のトランザクションIDは、永続的な（「凍結された」）トランザクションIDを持つように変更されています。
これは、このデータベースに対して、トランザクションID周回を防ぎ、かつ、pg_xactを縮小させることを目的としたバキュームを行うかどうかを追跡するために使用されます。
これはテーブル毎のpg_class.relfrozenxid値の最小値になります。
      

	
       datminmxid xid
      

      

このデータベース内のトランザクションIDで置換される前のすべてのマルチトランザクションID。
これは、トランザクションIDの周回問題を防ぐ、またはpg_multixactを縮小させるためにデータベースをバキュームする必要があるかどうかを追跡するために使用されます。
これはテーブル毎のpg_class.relminmxidの最小値です。
      

	
       dattablespace oid

（参照先 pg_tablespace.oid）
      

      

データベース用のデフォルトテーブル空間。
このデータベース内でpg_class.reltablespaceがゼロであるすべてのテーブルは、このテーブル空間に格納されます。
特に、共有されていないすべてのシステムカタログはこのテーブル空間にあります。
      

	
       datcollate text
      

      

このデータベースのLC_COLLATE
      

	
       datctype text
      

      

このデータベースのLC_CTYPE
      

	
       datlocale text
      

      

このデータベースの照合順序プロバイダのロケール名。
プロバイダがlibcの場合、datlocaleはNULLです。
代わりにdatcollateとdatctypeが使用されます。
      

	
       daticurules text
      

      

このデータベースのICU照合規則
      

	
       datcollversion text
      

      

この照合順序に対する提供者固有のバージョンです。
これはデータベースが作成された時に記録され、データの破壊につながりかねない照合順序定義の変更を検知するために使用時に検査されます。
      

	
       datacl aclitem[]
      

      

アクセス権限。
詳細は「権限」を参照してください
      





pg_db_role_setting





pg_db_role_settingカタログはロールとデータベースの組み合わせ毎に、実行時設定変数に設定されるデフォルト値を記録します。
  


ほとんどのカタログとは異なり、pg_db_role_settingはクラスタのすべてのデータベースにまたがって共有されます。
つまりクラスタにはpg_db_role_settingのコピーは1つしかありません。
データベース毎に1つではありません。
  
表52.16 pg_db_role_settingの列
	

列 型
      

      

説明
      

	
       setdatabase oid

（参照先 pg_database.oid）
      

      

この設定が適用されるデータベースのOID。データベース固有でなければゼロ
      

	
       setrole oid

（参照先 pg_authid.oid）
      

      

この設定が適用されるロールのOID。ロール固有でなければゼロ
      

	
       setconfig text[]
      

      

実行時設定パラメータのデフォルト。
      





pg_default_acl





pg_default_aclカタログには、新規に作成されたオブジェクトに割り当てられた初期権限が格納されます。
  
表52.17 pg_default_aclの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       defaclrole oid

（参照先 pg_authid.oid）
      

      

この項目に関連するロールのOID
      

	
       defaclnamespace oid

（参照先 pg_namespace.oid）
      

      

この項目に関連する名前空間のOID。何もない場合はゼロ
      

	
       defaclobjtype char
      

      

この項目のオブジェクト種類：
r = リレーション（テーブル、ビュー）、
S = シーケンス、
f = 関数、
T = 型、
n = スキーマ、
L = ラージオブジェクト
      

	
       defaclacl aclitem[]
      

      

この種類のオブジェクトが作成時に保持しなければならないアクセス権限
      






pg_default_aclの項目は、指示されたユーザに属するオブジェクトに割り当てられる初期権限を示します。
現在2種類の項目があります。
defaclnamespace = ゼロを持つ「大域的」な項目と特定のスキーマを参照する「スキーマ単位」の項目です。
大域的な項目が存在する場合、その種類のオブジェクトの通常の組み込まれたデフォルト権限を上書きします。
もしスキーマ単位の項目があれば、それは大域的な権限または組み込まれたデフォルト権限に追加される権限を表します。
  


他のカタログ内のACL項目がNULLの場合、その時のpg_default_acl内のものではではなくそのオブジェクトの組み込まれたデフォルト権限を表すものが取られます。
pg_default_aclはオブジェクトの生成時のみに考慮されます。
  

pg_depend





pg_dependカタログは、データベースオブジェクト間の依存関係を記録します。
この情報によってDROPコマンドが、他のどのオブジェクトをDROP CASCADEで削除する必要があるか、また、DROP RESTRICTで削除を防止するかの場合を判断します。
  


pg_shdependも参照してください。
これはデータベースクラスタ間で共有されるオブジェクトの依存関係に対する似たような機能を持っています。
  
表52.18 pg_dependの列
	

列 型
      

      

説明
      

	
       classid oid

（参照先 pg_class.oid）
      

      

依存するオブジェクトが存在するシステムカタログのOID
      

	
       objid oid

（いずれかのOID列）
      

      

依存する特定のオブジェクトのOID
      

	
       objsubid int4
      

      

テーブル列の場合、これは列番号です（objidとclassidはテーブル自身を参照します）。
他のすべての種類のオブジェクトでは、この列はゼロです。
      

	
       refclassid oid

（参照先 pg_class.oid）
      

      

参照されるオブジェクトが存在するシステムカタログのOID
      

	
       refobjid oid

（いずれかのOID列）
      

      

特定の参照されるオブジェクトのOID
      

	
       refobjsubid int4
      

      

テーブル列の場合、これは列番号です（refobjidとrefclassidはテーブル自身を参照します）。
他のすべての種類のオブジェクトでは、この列はゼロです。
      

	
       deptype char
      

      

この依存関係の特定のセマンティクスを定義するコード（後述）
      






すべての場合において、pg_dependエントリは依存するオブジェクトも削除しない限り、参照されるオブジェクトを削除できないことを示します。
もっとも、deptypeによって指定される以下のようないくつかのオプションもあります。

   
	DEPENDENCY_NORMAL (n)
	

個別に作成されたオブジェクト間の通常の関係です。
依存するオブジェクトは参照されるオブジェクトに影響を与えずに削除できます。
参照されるオブジェクトはCASCADEを指定することによってのみ削除できます。
この場合は依存するオブジェクトも削除されます。
例：テーブルの列はそのデータ型に対して通常の依存関係を持ちます。
      

	DEPENDENCY_AUTO (a)
	

依存するオブジェクトは参照されるオブジェクトから独立して削除できます。
そして、参照されるオブジェクトが削除される時は（RESTRICTもしくはCASCADEモードに関わりなく）依存するオブジェクトも自動的に削除されなければなりません。
例：テーブル上の名前付き制約はテーブル上に自動設定されているため、テーブルが削除されるとなくなります。
      

	DEPENDENCY_INTERNAL (i)
	

依存するオブジェクトは参照されるオブジェクトの作成時に作成されたもので、実際には内部実装の一部に過ぎません。
依存するオブジェクトに対してDROPコマンドを直接的に実行できません
（その代わりに、参照されるオブジェクトに対してDROPを実行するように指示されます）。
参照されるオブジェクトにDROPを実行すると、CASCADEが指定されているかどうかに関わらず、依存するオブジェクトも削除されます。
削除されるオブジェクトへの依存関係で依存しているオブジェクトを削除しなければらない場合、その削除は参照されるオブジェクトの削除に変換されます。
ですから依存しているオブジェクトのNORMALとAUTO依存関係は、参照されるオブジェクトの依存関係に非常に似通った振る舞いをします。
例：ビューのON SELECTルールがビューに依存して内部的に作られ、ビューが存在する限り削除されることを防ぎます。
ルールの依存関係（たとえばそれが参照するテーブル）はビューの依存関係であるかのように振る舞います。
      

	DEPENDENCY_PARTITION_PRI (P), DEPENDENCY_PARTITION_SEC (S)
	

依存するオブジェクトは参照されるオブジェクトの生成の一環で作成され、実際にはこれは内部的な実装の一部に過ぎません。
しかし、INTERNALとは違って複数の参照されるオブジェクトが存在します。
参照されているオブジェクトの少なくとも１つが削除されない限り、依存するオブジェクトは削除されてはいけません。
もし参照されているオブジェクトの一つが削除されたら、CASCADEが指定されているかどうかに関わらず、依存しているオブジェクトは削除されるべきです。
また、INTERNALとは違って、依存オブジェクトが依存しているオブジェクトを削除してもパーティション参照オブジェクトを自動的に削除することにはなりません。
ですからその削除処理によって他の経路でこれらのオブジェクトの少なくとも１つに連鎖波及しない限り、削除は拒否されます。
（たいていの場合、依存するオブジェクトはすべての非パーティション依存関係を、少なくとも１つのパーティション参照オブジェクトと共有するので、この制限によって連鎖削除をブロックすることにはなりません。）
エラーメッセージで優先的に主パーティションが使われることを除くと、主および二次パーティション依存関係は同じように振る舞います。
よって、パーティション依存オブジェクトは一つの主パーティション依存関係と1つ以上の二次パーティション依存関係を持つはずです。
パーティション依存関係は、オブジェクトが通常持っている依存関係に加えて作成されるのであり、それを置き換えるものではないことに注意してください。
これによってATTACH/DETACH PARTITION操作が簡単になります。
パーティション依存関係は追加されるか削除されるかのどちらかになります。
例：子パーティションインデックスは、それが作成されているパーティションテーブルと親パーティションインデックスの両方にパーティション依存します。
ですから、このどちらかが削除されると削除されますが、それ以外の場合には削除されません。
親インデックスへの依存関係は主なので、ユーザが子パーティションインデックスを削除しようとすると、エラーメッセージは（テーブルではなく）親インデックスを削除するように示唆します。
      

	DEPENDENCY_EXTENSION (e)
	

依存するオブジェクトは参照されるオブジェクトの拡張のメンバです（pg_extension参照）。
依存するオブジェクトは参照されるオブジェクトに対するDROP EXTENSION経由でのみ削除できます。
機能的にはこの種類の依存関係はINTERNAL依存関係と同様に動作しますが、明確さとpg_dumpを単純化するために別々に保持されます。
      

	DEPENDENCY_AUTO_EXTENSION (x)
	

依存するオブジェクトは参照されるオブジェクトの拡張のメンバではありません（そしてそれゆえpg_dumpによって無視されません）が、拡張なしに機能することが出来ず、拡張自体が削除される時に自動的に削除されるでしょう。
依存するオブジェクトは、同様にそれ自身で削除されるかもしれません。
機能的にはこの種類の依存関係はAUTO依存関係と同様に動作しますが、明確さとpg_dumpを単純化するために別々に保持されます。
      






将来的に、他の依存関係のオプションが必要になる可能性があります。
  


2つのオブジェクトが複数のpg_dependエントリでリンクされていることは十分ありえます。
たとえば子パーティションインデックスは、パーティションテーブルに対してパーティション型依存関係を持ち、更にインデックスが貼ってあるテーブルの列に自動依存関係を持ちます。
この種の状況は、複数の依存関係セマンティクスの和で表現されます。
自動削除の条件をこの依存関係の一つが満たすならば依存するオブジェクトはCASCADEなしに削除できます。
逆に、どのオブジェクトが一緒に削除されなければならないかに関するすべての依存関係の制限は満足されなければなりません。
  


initdb中に作成されたほとんどのオブジェクトは「固定(pinned)」とみなされます。
これは、システム自体がオブジェクトに依存していることを意味します。
したがって、オブジェクトを削除することは決してできません。
また、固定されたオブジェクトが削除されないことを知っているため、依存メカニズムはオブジェクトへの依存関係を示すpg_dependエントリをわざわざ作成する必要がありません。
ですから、例えば、numeric型のテーブル列は理論上numericデータ型にNORMAL依存しますが、そのようなエントリは実際にはpg_dependにはありません。
  

pg_description





各データベースオブジェクトに対して付けられたオプションの補足説明（コメント）はpg_descriptionカタログに格納されます。
補足説明はCOMMENTコマンドで編集でき、psqlの\dコマンドで表示できます。
多くの組み込み型のシステムオブジェクトの説明は、pg_descriptionの最初の部分で提供されています。
  


pg_shdescriptionも参照してください。
こちらは、データベースクラスタに渡って共有されるオブジェクトに関する説明について、同様の機能を行います。
  
表52.19 pg_descriptionの列
	

列 型
      

      

説明
      

	
       objoid oid

（いずれかのOID列）
      

      

この補足説明が属するオブジェクトのOID
      

	
       classoid oid

（参照先 pg_class.oid）
      

      

このオブジェクトが現れるシステムカタログのOID
      

	
       objsubid int4
      

      

テーブル列についてのコメントの場合、これは列の（objoidもしくはclassoidはテーブル自身を参照します）列番号です。
他のすべての種類のオブジェクトでは、この列はゼロです。
      

	
       description text
      

      

このオブジェクトの説明となる任意のテキスト
      





pg_enum





pg_enumカタログは、各列挙型についてその値とラベルを示す項目を含みます。
ある与えられた列挙値の内部表現は、実際にはpg_enum内の関連付けられた行のOIDです。
  
表52.20 pg_enumの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       enumtypid oid

（参照先 pg_type.oid）
      

      

この列挙値を所有しているpg_type項目のOID
      

	
       enumsortorder float4
      

      

列挙型におけるこの列挙値のソート位置
      

	
       enumlabel name
      

      

この列挙値のテキストラベル
      






pg_enum行のOIDは次のような特別な規則に従います。
列挙型のソート順序と同じ順序で並んだ偶数のOIDが保証されています。
つまり、２つの偶数のOIDが同じ列挙型に属する場合、OIDの小さい方がより小さいenumsortorder値を持たなければなりません。
奇数のOID値はソート順序に関連を持ってはなりません。
この規則により列挙の比較処理は多くの一般的な場合でカタログの検索を防ぐことができます。
列挙型の作成および変更を行う処理は、可能であれば偶数のOIDを列挙値に割り当てようとします。
  


列挙型を作成する時、そのメンバには1..nのソート順位置が割り当てられます。
しかし後で追加されたメンバには負もしくはenumsortorderの小数値が与えられる可能性があります。
これらの値の要件は、各列挙型の中で正しく順序付けされ、かつ一意であることだけです。
  

pg_event_trigger





pg_event_triggerカタログはイベントトリガを格納します。
詳細は38章イベントトリガを参照してください。
  
表52.21 pg_event_triggerの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       evtname name
      

      

トリガ名（一意でなければなりません）
      

	
       evtevent name
      

      

このトリガが発行する対象のイベントを識別します
      

	
       evtowner oid

（参照先 pg_authid.oid）
      

      

イベントトリガの所有者
      

	
       evtfoid oid

（参照先 pg_proc.oid）
      

      

呼び出される関数
      

	
       evtenabled char
      

      

どのsession_replication_role モードでこのイベントトリガを発行するかを制御します。
O = トリガは「origin」および「local」モードで発行、
D = トリガは無効、
R = トリガは「replica」モードで発行、
A = トリガは常に発行。
      

	
       evttags text[]
      

      

このトリガを発行するコマンドタグです。 NULLの場合、このトリガの発行はコマンドタグに基づいて制限されていません。
      





pg_extension





pg_extensionカタログにはインストールされた拡張に関する情報が格納されます。
拡張の詳細については「関連するオブジェクトを拡張としてパッケージ化」を参照してください。
  
表52.22 pg_extensionの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       extname name
      

      

拡張の名前
      

	
       extowner oid

（参照先 pg_authid.oid）
      

      

拡張の所有者
      

	
       extnamespace oid

（参照先 pg_namespace.oid）
      

      

拡張が提供するオブジェクトを含むスキーマ
      

	
       extrelocatable bool
      

      

拡張が他のスキーマに再配置可能である場合はtrue
      

	
       extversion text
      

      

拡張のバージョン名
      

	
       extconfig oid[]

（参照先 pg_class.oid）
      

      

拡張の設定テーブルregclassのOIDの配列。なければNULL
      

	
       extcondition text[]
      

      

拡張の設定テーブル用のWHERE句フィルタ条件の配列。なければNULL
      






ほとんどの「名前空間」に関する列を持つカタログと異なり、extnamespaceは、拡張がそのスキーマに属することを意図したものではありません。
拡張の名前は決してスキーマで修飾されません。
extnamespaceは、拡張のオブジェクトのすべて、あるいは、ほとんどを含むスキーマを示します。
extrelocatableがtrueの場合、このスキーマは拡張に属するすべてのスキーマ修飾可能なオブジェクトを含まなければなりません。
  

pg_foreign_data_wrapper





pg_foreign_data_wrapperカタログは外部データラッパーの定義を保存します。
外部データラッパーは外部サーバにあるデータにアクセスするための機構です。
  
表52.23 pg_foreign_data_wrapperの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       fdwname name
      

      

外部データラッパーの名前
      

	
       fdwowner oid

（参照先 pg_authid.oid）
      

      

外部データラッパーの所有者
      

	
       fdwhandler oid

（参照先 pg_proc.oid）
      

      

外部データラッパーに対する実行関数の提供に責任を持つハンドラ関数への参照。
ハンドラ関数がない場合はゼロになります。
      

	
       fdwvalidator oid

（参照先 pg_proc.oid）
      

      

外部サーバや外部データラッパーを使用するユーザマップと同様に外部データラッパーに対して与えられたオプションの正当性を検査する有効性検証関数。
有効性検証関数がない場合はゼロになります。
      

	
       fdwacl aclitem[]
      

      

アクセス権限。
詳細は「権限」を参照してください
      

	
       fdwoptions text[]
      

      

外部データラッパーの「keyword=value」のような特定のオプション
      





pg_foreign_server





pg_foreign_serverカタログは外部サーバの定義を保存します。
外部サーバはリモートサーバなど外部データの源を記述します。
外部サーバは外部データラッパーを介してアクセスされます。
  
表52.24 pg_foreign_serverの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       srvname name
      

      

外部サーバの名前
      

	
       srvowner oid

（参照先 pg_authid.oid）
      

      

外部サーバの所有者
      

	
       srvfdw oid

（参照先 pg_foreign_data_wrapper.oid）
      

      

外部サーバの外部データラッパーのOID
      

	
       srvtype text
      

      

サーバの型（オプション）
      

	
       srvversion text
      

      

サーバのバージョン（オプション）
      

	
       srvacl aclitem[]
      

      

アクセス権限。
詳細は「権限」を参照してください
      

	
       srvoptions text[]
      

      

外部サーバの「keyword=value」のような特定のオプション
      





pg_foreign_table





pg_foreign_tableカタログには、外部テーブルに関する補助情報が含まれます。
外部テーブルは主にpg_classの項目により表されます。
pg_foreign_tableの項目には、外部テーブルに属する情報のみに関する情報が含まれ、他の種類のリレーションは含まれません。
  
表52.25 pg_foreign_tableの列
	

列 型
      

      

説明
      

	
       ftrelid oid

（参照先 pg_class.oid）
      

      

この外部テーブルに対するpg_class項目のOID
      

	
       ftserver oid

（参照先 pg_foreign_server.oid）
      

      

この外部テーブルに対する外部サーバOID
      

	
       ftoptions text[]
      

      

「keyword=value」文字列のような、外部テーブルのオプション
      





pg_index





pg_indexカタログはインデックス情報の一部を保持します。
その他のほとんどの情報はpg_classにあります。
  
表52.26 pg_indexの列
	

列 型
      

      

説明
      

	
       indexrelid oid

（参照先 pg_class.oid）
      

      

このインデックスに対するpg_class項目のOID
      

	
       indrelid oid

（参照先 pg_class.oid）
      

      

このインデックスが使われるテーブルに対するpg_class項目のOID
      

	
       indnatts int2
      

      

インデックス内の列数（pg_class.relnattsの複製）
      

	
       indnkeyatts int2
      

      

格納されているだけで、インデックスのセマンティクスに寄与していないincluded columnsを含まないインデックス内のkey columnsの数。
      

	
       indisunique bool
      

      

trueの場合、一意性インデックス
      

	
       indnullsnotdistinct bool
      

      

この値はユニークインデックスに対してのみ使用されます。
falseの場合は、このユニークインデックスはNULL値を区別するものとみなします（PostgreSQLのデフォルト動作では、インデックスはカラムに複数のNULL値を含むことができます）。
trueの場合は、NULL値は等しいものとみなします（インデックスはカラムに1つのNULL値しか含むことができません）。
      

	
       indisprimary bool
      

      

trueの場合、このインデックスはテーブルの主キーを表します
（この値がtrueの場合、indisuniqueは常にtrueでなければなりません）
      

	
       indisexclusion bool
      

      

trueの場合、このインデックスは排他制約をサポートします
      

	
       indimmediate bool
      

      

trueの場合、一意性検査が挿入時即座に強制されます
（indisuniqueがtrueでなければ無関係です）
      

	
       indisclustered bool
      

      

trueの場合、前回このインデックスを元にテーブルはクラスタ化されました
      

	
       indisvalid bool
      

      

trueの場合、現在このインデックスは問い合わせに対して有効です。
falseの場合は、インデックスが不完全かもしれないことを意味します。
INSERT/UPDATE操作による変更が行われているはずで、問い合わせに使用するには安全ではありません。
一意性インデックスであれば、一意性も保証されません。
      

	
       indcheckxmin bool
      

      

trueの場合、pg_index行のxminがTransactionXminイベント境界値を下回るまで、問い合わせはインデックスを使用してはいけません。
なぜなら、テーブルは互換性の無い行と共に破壊されたHOTチェインを含み、それらが可視であるかもしれないからです。
      

	
       indisready bool
      

      

trueの場合、インデックスは挿入に対する準備ができています。
falseの場合、インデックスはINSERT/UPDATE操作により無視されなければならないことを意味します。
      

	
       indislive bool
      

      

falseの場合は、インデックスの削除処理が進行中であり、このためすべての目的において（HOT安全性の決定を含む）無視しなければなりません
      

	
       indisreplident bool
      

      

trueの場合、このインデックスはALTER TABLE ...
REPLICA IDENTITY USING INDEX ...を用いて「replica identity」が選択されます
      

	
       indkey int2vector

（参照先 pg_attribute.attnum）
      

      

このインデックスがどのテーブル列をインデックスとしているかを示すindnatts配列の値です。
例えば、1 3は1番目と3番目のテーブル列がインデックス項目となっていることを示します。
キー列は、（INCLUDE句で指定した）非キー列の前に来ます。
この配列でゼロとなっているのは対応するインデックスの属性が単純な列参照ではなくテーブル列に渡った演算式であることを示します。
      

	
       indcollation oidvector

（参照先 pg_collation.oid）
      

      

インデックスキー（indnkeyattsの値）内の各列に関してここにはインデックスで使用される照合順序のOIDが含まれます。
照合できないデータ型の列ではゼロが入ります。
      

	
       indclass oidvector

（参照先 pg_opclass.oid）
      

      

インデックスキー（indnkeyattsの値）内のそれぞれの列に対して、使用する演算子クラスのOIDを保持します。
pg_opclassを参照してください。
      

	
       indoption int2vector
      

      

列毎のフラグビットを格納するindnkeyatts値の配列です。
ビットの意味はインデックスのアクセスメソッドによって定義されています。
      

	
       indexprs pg_node_tree
      

      

単純な列参照でないインデックス属性の（nodeToString()表現による）演算式ツリー。
indkeyがゼロの各エントリについて1つの要素があるリストになっています。
すべてのインデックス属性が単純な参照ならNULLとなります。
      

	
       indpred pg_node_tree
      

      

部分インデックス属性の（nodeToString()表現による）演算式ツリー。
部分インデックスでなければNULL。
      





pg_inherits





pg_inheritsカタログはテーブルとインデックスの継承階層の情報を記録します。
データベース内の、それぞれの直接の親子テーブルあるいはインデックス関係に対して1つの記述があります。
（直接ではない継承は、記述の連鎖から決定されます。）
  
表52.27 pg_inheritsの列
	

列 型
      

      

説明
      

	
       inhrelid oid

（参照先 pg_class.oid）
      

      

子テーブルあるいはインデックスのOID
      

	
       inhparent oid

（参照先 pg_class.oid）
      

      

親テーブルあるいはインデックスのOID
      

	
       inhseqno int4
      

      

子テーブルの直接の親が複数あるとき（多重継承）、この数は継承列を整える順序を導きます。
1から数えます。
      

      

インデックスは多重継承できません。宣言的パーティショニングを使用する際にしか継承できないからです。
      

	
       inhdetachpending bool
      

      

パーティションが取り外し処理中の場合はtrue。そうでなければfalse。
      





pg_init_privs





pg_init_privsカタログは、システム内のオブジェクトの初期権限についての情報を記録します。
データベース内の初期権限のセットがデフォルトでない（NULLでない）オブジェクトごとに1つの記述があります。
  


オブジェクトは、システムが（initdbによって）初期化された時、またはオブジェクトがCREATE EXTENSIONの実行中に作成され、拡張スクリプトがGRANTコマンドを使用して初期権限をシステムにセットする時に初期権限を持つことができます。
システムは、拡張スクリプトの実行中に権限の記録を自動的に処理することや、拡張作成者が権限を記録させるためにスクリプトの中でGRANTとREVOKEステートメントの使用のみを必要とすることに注意してください。
privtype列は、初期権限がinitdbによって設定されたか、もしくはCREATE EXTENSIONコマンド実行中に設定されたかを表示します。
  


initdbによって設定された初期権限を持つオブジェクトは、privtypeが'i'で、CREATE EXTENSIONによって設定された初期権限を持つオブジェクトは、privtypeが'e'になります。
  
表52.28 pg_init_privsの列
	

列 型
      

      

説明
      

	
       objoid oid

（いずれかのOID列）
      

      

特定のオブジェクトのOID
      

	
       classoid oid

（参照先 pg_class.oid）
      

      

オブジェクトが存在するシステムカタログのOID
      

	
       objsubid int4
      

      

テーブル列においては、列番号です（objoidとclassoidはテーブル自身を参照します）。
その他すべてのオブジェクト型においては、この列はゼロです。
      

	
       privtype char
      

      

オブジェクトの初期権限の型を設定しているコード。
テキストを参照してください
      

	
       initprivs aclitem[]
      

      

初期アクセス権限。
詳細は「権限」を参照してください
      





pg_language





pg_languageカタログはユーザ定義関数やストアドプロシージャを作成できる言語を登録します。
言語ハンドラの詳細はCREATE LANGUAGE(7)と40章手続き言語を参照してください。
  
表52.29 pg_languageの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       lanname name
      

      

言語名称
      

	
       lanowner oid

（参照先 pg_authid.oid）
      

      

言語の所有者
      

	
       lanispl bool
      

      

（SQLのような）内部言語ではfalseで、ユーザ定義言語ではtrueです。
現在、pg_dumpではどの言語がダンプされる必要があるかを特定するためにこれを利用していますが、近い将来に異なるメカニズムによって置き換わる可能性があります。
      

	
       lanpltrusted bool
      

      

信頼できる言語の場合はtrue。
信頼できる言語とは、通常のSQL実行環境の外側にある、いかなる言語へのアクセス許可も付与されていないと信用できる言語です。
スーパーユーザのみが信頼されない言語で関数を作成できます。
      

	
       lanplcallfoid oid

（参照先 pg_proc.oid）
      

      

非内部言語用の、言語ハンドラを参照します。
これは、この言語で記述されたすべての関数を実行するための責任を持つ特別な関数です。
内部言語の場合はゼロ。
      

	
       laninline oid

（参照先 pg_proc.oid）
      

      

これは「インライン」匿名コードブロック（DO(7)ブロック）の実行に責任を持つ関数を参照します。
インラインブロックをサポートしない場合はゼロ。
      

	
       lanvalidator oid

（参照先 pg_proc.oid）
      

      

これは、新しい関数が作成された時に構文や有効性の検査を引き受ける言語有効性検査関数を参照します。
有効性検査関数がない場合はゼロになります。
      

	
       lanacl aclitem[]
      

      

アクセス権限。
詳細は「権限」を参照してください
      





pg_largeobject





pg_largeobjectカタログは「ラージオブジェクト」を構築するデータを保持します。
ラージオブジェクトは作成された時に割り当てられたOIDで識別されます。
それぞれのラージオブジェクトはpg_largeobjectの行に都合良く格納されるのに十分に足る小さなセグメント、もしくは「ページ」に分割されます。
ページごとのデータ量は（現在BLCKSZ/4あるいは典型的に2キロバイトの）LOBLKSIZEとして定義されます。
  


PostgreSQL™ 9.0より前までは、ラージオブジェクトに関連した権限構造はありませんでした。
その結果pg_largeobjectは可読性が高いもので、システム内のすべてのラージオブジェクトのOIDを入手するために使用できました。
これはもはや当てはまりません。
ラージオブジェクトのOIDのリストを入手するためにはpg_largeobject_metadataを使用してください。
  
表52.30 pg_largeobjectの列
	

列 型
      

      

説明
      

	
       loid oid

（参照先 pg_largeobject_metadata.oid）
      

      

このページを含んだラージオブジェクトの識別子
      

	
       pageno int4
      

      

ラージオブジェクト内の（ゼロから数えた）このページのページ番号
      

	
       data bytea
      

      

ラージオブジェクト内に保存された実データ。
LOBLKSIZEバイトを絶対上回りません。
たぶんそれより小さいでしょう。
      






pg_largeobjectのそれぞれの行はオブジェクト内のバイトオフセット（pageno * LOBLKSIZE）から始まるラージオブジェクトの1ページ分のデータを保持します。
ページが見つからなかったり、たとえオブジェクトの最後のページでない場合でもLOBLKSIZEより小さくてもよいといった、あちこちに散らばって保存されてもよいような実装になっています。
ラージオブジェクトの中で見つからない部分はゼロとして読み込まれます。
  

pg_largeobject_metadata





pg_largeobject_metadataはラージオブジェクトに関連したメタデータを保持します。
実際のラージオブジェクトデータはpg_largeobjectに格納されます。
  
表52.31 pg_largeobject_metadataの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       lomowner oid

（参照先 pg_authid.oid）
      

      

ラージオブジェクトの所有者
      

	
       lomacl aclitem[]
      

      

アクセス権限。
詳細は「権限」を参照してください
      





pg_namespace





pg_namespaceカタログは名前空間を保存します。
名前空間はSQLスキーマの裏にある構造です。
それぞれの名前空間は、リレーション、型などの集合を、名前が競合することなく、個別に持ちます。
  
表52.32 pg_namespaceの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       nspname name
      

      

名前空間の名前
      

	
       nspowner oid

（参照先 pg_authid.oid）
      

      

名前空間の所有者
      

	
       nspacl aclitem[]
      

      

アクセス権限。
詳細は「権限」を参照してください
      





pg_opclass





pg_opclassカタログはインデックスアクセスメソッド演算子クラスを定義します。
それぞれの演算子クラスは特定のデータ型のインデックス列のセマンティクスと特定のインデックスアクセスメソッドを定義します。
演算子クラスは、ある特定の演算子族は特定のインデックス可能な列データの型に対して適用できる、ということを本質的に特定します。
インデックス付けされた列を実際に使用可能な演算子族の演算子群は、その列のデータ型を左辺の入力として受け付けます。
  


   演算子クラスについては「インデックス拡張機能へのインタフェース」に詳細に説明されています。
  
表52.33 pg_opclassの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       opcmethod oid

（参照先 pg_am.oid）
      

      

対象のインデックスアクセスメソッド演算子クラス
      

	
       opcname name
      

      

この演算子クラスの名前
      

	
       opcnamespace oid

（参照先 pg_namespace.oid）
      

      

この演算子クラスの名前空間
      

	
       opcowner oid

（参照先 pg_authid.oid）
      

      

演算子クラスの所有者
      

	
       opcfamily oid

（参照先 pg_opfamily.oid）
      

      

演算子クラスを含んでいる演算子族
      

	
       opcintype oid

（参照先 pg_type.oid）
      

      

演算子クラスがインデックスを作成するデータ型
      

	
       opcdefault bool
      

      

演算子クラスがopcintypeのデフォルトである場合はtrue
      

	
       opckeytype oid

（参照先 pg_type.oid）
      

      

インデックス内に格納されているデータ型。opcintypeと同じ場合はゼロ
      






演算子クラスのopcmethodは、演算子クラスが含んでいる演算子族のopfmethodに一致しなければいけません。
また、任意のopcmethodとopcintypeの組み合わせに対してopcdefaultがtrueとなるようなpg_opclass行が複数存在してはいけません。
  

pg_operator





pg_operatorカタログは演算子の情報を保存します。
CREATE OPERATOR(7)と「ユーザ定義の演算子」を参照してください。
  
表52.34 pg_operatorの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       oprname name
      

      

演算子名
      

	
       oprnamespace oid

（参照先 pg_namespace.oid）
      

      

この演算子を含む名前空間のOID
      

	
       oprowner oid

（参照先 pg_authid.oid）
      

      

演算子の所有者
      

	
       oprkind char
      

      

b = 挿入辞演算子（「両側」）、
l = 接頭辞演算子 (「左側」)
      

	
       oprcanmerge bool
      

      

この演算子はマージ結合をサポートします
      

	
       oprcanhash bool
      

      

この演算子はハッシュ結合をサポートします
      

	
       oprleft oid

（参照先 pg_type.oid）
      

      

左辺オペランドの型（前置演算子に対してはゼロ）
      

	
       oprright oid

（参照先 pg_type.oid）
      

      

右辺オペランドの型
      

	
       oprresult oid

（参照先 pg_type.oid）
      

      

結果の型（まだ定義されていない「shell」演算子に対してはゼロ）
      

	
       oprcom oid

（参照先 pg_operator.oid）
      

      

もし存在すればこの演算子の交代演算子（ない時はゼロ）
      

	
       oprnegate oid

（参照先 pg_operator.oid）
      

      

もし存在すればこの演算子の否定子（ない時はゼロ）
      

	
       oprcode regproc

（参照先 pg_proc.oid）
      

      

この演算子を実装する関数（まだ定義されていない「shell」演算子に対してはゼロ）
      

	
       oprrest regproc

（参照先 pg_proc.oid）
      

      

この演算子の制約選択評価関数（ない時はゼロ）
      

	
       oprjoin regproc

（参照先 pg_proc.oid）
      

      

この演算子の結合選択評価関数（ない時はゼロ）
      





pg_opfamily





pg_opfamilyカタログは演算子族を定義します。
それぞれの演算子族は、演算子とサポートルーチン（特定のインデックスアクセスメソッドのために特化されたセマンティクスを実装するような関連付けられたもの）を集めたものです。
さらに、演算子族内の演算子はすべて、アクセスメソッドにより特定される方法において「互換性」があります。
演算子族の概念は、データ型を跨る演算子がインデックスで使用されることを許可し、さらにアクセスメソッドのセマンティクスの知識を使用することについて理由付けすることも許可します。
  


演算子族については「インデックス拡張機能へのインタフェース」で詳しく説明します。
  
表52.35 pg_opfamilyの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       opfmethod oid

（参照先 pg_am.oid）
      

      

演算子族用のインデックスアクセスメソッド
      

	
       opfname name
      

      

演算子族の名称
      

	
       opfnamespace oid

（参照先 pg_namespace.oid）
      

      

演算子族の名前空間
      

	
       opfowner oid

（参照先 pg_authid.oid）
      

      

演算子族の所有者
      






演算子族を定義している情報の大部分が、pg_opfamily行にあるわけではなく、pg_amopやpg_amprocやpg_opclass行にあります。
  

pg_parameter_acl





カタログpg_parameter_aclには、権限が1つ以上のロールに付与された設定パラメータが記録されます。
デフォルト権限を持つパラメータに対しては何も記録されません。
  


大部分のシステムカタログとは異なり、pg_parameter_aclは、クラスタのすべてのデータベース間で共有されます。
データベース毎ではなく、クラスタ毎にpg_parameter_aclのコピーが1つだけ存在します。
  
表52.36 pg_parameter_acl Columns
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       parname text
      

      

権限が付与される設定パラメータの名前
      

	
       paracl aclitem[]
      

      

アクセス権限。
詳細は「権限」を参照してください
      





pg_partitioned_table





カタログpg_partitioned_tableはテーブルがどのようにパーティションに分けられているかに関する情報を格納します。
  
表52.37 pg_partitioned_tableの列
	

列 型
      

      

説明
      

	
       partrelid oid

（参照先 pg_class.oid）
      

      

このパーティションテーブルのpg_classのエントリのOID
      

	
       partstrat char
      

      

パーティショニング戦略。
h = ハッシュパーティションテーブル、 l = リストパーティションテーブル、 r = 範囲パーティションテーブル
      

	
       partnatts int2
      

      

パーティションキーの列の数
      

	
       partdefid oid

（参照先 pg_class.oid）
      

      

このパーティションのデフォルトパーティションのpg_classエントリのOID。
このパーティションテーブルにデフォルトパーティションがなければゼロ。
      

	
       partattrs int2vector

（参照先 pg_attribute.attnum）
      

      

これはpartnatts値の配列で、どのテーブル列がパーティションキーの一部となっているかを示します。
例えば、値が1 3であれば、テーブルの1番目と3番目の列がパーティションキーを構成することを意味します。
この配列がゼロの場合は、対応するパーティションキー列が式であって、単なる列参照ではないことを示します。
      

	
       partclass oidvector

（参照先 pg_opclass.oid）
      

      

これは、パーティションキーの各列について、使用する演算子クラスのOIDが入ります。
詳細についてはpg_opclassを参照してください。
      

	
       partcollation oidvector

（参照先 pg_collation.oid）
      

      

これは、パーティションキーの各列について、パーティショニングで使用する照合のOIDが入ります。
列が照合できないデータ型の場合はゼロが入ります。
      

	
       partexprs pg_node_tree
      

      

単純な列参照ではないパーティションキー列についての（nodeToString()形式での）式ツリーです。
partattrsがゼロの各エントリについて1つの要素があるリストになっています。
すべてのパーティションキー列が単純な参照ならNULLとなります。
      





pg_policy





カタログpg_policyはテーブルの行単位セキュリティのポリシーを格納します。
ポリシーには、それが適用されるコマンドの種類（すべてのコマンドのこともあります）、それが適用されるロール、セキュリティバリアの制約として、そのテーブルを含む問い合わせに追加される式、そしてテーブルに新しいレコードを追加しようとする問い合わせのためにWITH CHECKオプションとして追加される式が含まれます。
  
表52.38 pg_policyの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       polname name
      

      

ポリシーの名前
      

	
       polrelid oid

（参照先 pg_class.oid）
      

      

ポリシーが適用されるテーブル
      

	
       polcmd char
      

      

ポリシーが適用されるコマンドの種類：
r = SELECT(7)、
a = INSERT(7)、
w = UPDATE(7)、
d = DELETE(7)、
* = すべて
      

	
       polpermissive bool
      

      

許容(permissive)ポリシーか、制限(restrictive)ポリシーか？
      

	
       polroles oid[]

（参照先 pg_authid.oid）
      

      

ポリシーが適用されるロール。ゼロならPUBLIC（通常配列中に単独で現れます）
      

	
       polqual pg_node_tree
      

      

テーブルを使用する問い合わせにセキュリティバリアの制約として追加される式のツリー
      

	
       polwithcheck pg_node_tree
      

      

テーブルに行を追加する問い合わせにWITH CHECKの制約として追加される式のツリー
      




注記


pg_policyに格納されるポリシーは、そのテーブルにpg_class.relrowsecurityが設定されている場合にのみ適用されます。
   


pg_proc





pg_procカタログは関数、プロシージャ、集約関数あるいはWINDOW関数（これらをまとめてルーチンとも言います）に関する情報を格納します。
CREATE FUNCTION(7)、CREATE PROCEDURE(7)と「ユーザ定義関数」を参照してください。
  


prokindがそのエントリが集約関数であることを示しているなら、pg_aggregateに一致する行があるはずです。
  
表52.39 pg_procの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       proname name
      

      

関数名
      

	
       pronamespace oid

（参照先 pg_namespace.oid）
      

      

この関数を含む名前空間のOID
      

	
       proowner oid

（参照先 pg_authid.oid）
      

      

関数の所有者
      

	
       prolang oid

（参照先 pg_language.oid）
      

      

この関数の実装言語または呼び出しインタフェース
      

	
       procost float4
      

      

推定実行コスト（cpu_operator_cost単位です）。
proretsetの場合は、返される行毎のコストになります
      

	
       prorows float4
      

      

結果の推定行数（proretsetでなければゼロになります）
      

	
       provariadic oid

（参照先 pg_type.oid）
      

      

可変配列パラメータの要素のデータ型。関数が可変パラメータを持っていない場合はゼロになります
      

	
       prosupport regproc

（参照先 pg_proc.oid）
      

      

この関数に対する任意のプランナサポート関数。なければゼロ。
（「関数最適化に関する情報」参照）
      

	
       prokind char
      

      

f = 通常の関数、 p = プロシージャ、 a = 集約関数、 w = WINDOW関数
      

	
       prosecdef bool
      

      

セキュリティ定義の関数（すなわち「setuid」関数）
      

	
       proleakproof bool
      

      

この関数には副作用がありません。
引数に関する情報が戻り値以外から伝わることがありません。
引数の値に依存するエラーを発生する可能性がある関数はすべて漏洩防止（leakproof）関数ではありません。
      

	
       proisstrict bool
      

      

関数は呼び出し引数がNULLの場合にはNULLを返します。
その場合、関数は実際にはまったく呼び出されません。
「厳密」ではない関数はNULL値入力を取り扱えるようにしなければいけません。
      

	
       proretset bool
      

      

集合（すなわち指定されたデータ型の複数の値）を返す関数
      

	
       provolatile char
      

      

provolatileは、関数の結果が入力引数のみで決定されるか、または外部要素に影響されるかを示します。
i = 「immutable（不変）」関数を表し、同じ入力に対し常に同じ結果をもたらします。
s = 「stable（安定）」関数を表し、（固定入力に対する）結果はスキャン内で変わりません。
v = 「volatile（不安定）」関数を表し、どのような場合にも結果は異なる可能性があります。
（また、副作用を持つ関数に v を使用することで、その関数に対する呼び出しが最適化で消されないようにできます。）
      

	
       proparallel char
      

      

proparallelは関数が並列モードにて安全に実行できるかを示します。
s = 制限なしに並列モードにて実行することが安全である関数を表します。
r = 並列モードにて実行可能な関数を表しますが、実行は並列グループリーダーに制限されます。
並列ワーカープロセスはこれらの関数を呼び出すことができません。
u = 並列モードにて安全ではない関数を表します。
このような関数が存在すると、直列的な実行プランが強制されます。
      

	
       pronargs int2
      

      

入力の引数の数
      

	
       pronargdefaults int2
      

      

デフォルト値を持つ引数の数
      

	
       prorettype oid

（参照先 pg_type.oid）
      

      

戻り値のデータ型
      

	
       proargtypes oidvector

（参照先 pg_type.oid）
      

      

関数の引数のデータ型を格納した配列。
これは入力引数（INOUTとVARIADICも含みます）のみを含んでいて、関数の呼び出しシグネチャを表現します。
      

	
       proallargtypes oid[]

（参照先 pg_type.oid）
      

      

関数の引数のデータ型を格納した配列。
これは（OUTとINOUT引数を含んだ）全ての引数を含みます。
しかし、すべての引数がINであった場合は、この列はNULLになります。
歴史的な理由からproargtypesは0から番号が振られていますが、添字は1から始まっていることに注意してください。
      

	
       proargmodes char[]
      

      

関数の引数のモードを格納した配列。
以下のようにエンコードされています。
i = IN引数に対して、
o = OUT引数に対して、
b = INOUT引数に対して 、
v = VARIADIC引数に対して、
t = TABLE引数に対して。
もしすべての引数がIN引数であった場合は、この列はNULLです。
添字はproargtypesではなくproallargtypesの位置に対応していることに注意してください。
      

	
       proargnames text[]
      

      

関数の引数名を格納する配列。
名前のない引数は、配列内では空文字列で設定されます。
もしすべての引数に名前がない場合は、この列はNULLです。
添字はproargtypesではなくproallargtypesの位置に対応していることに注意してください。
      

	
       proargdefaults pg_node_tree
      

      

デフォルト値のための（nodeToString()表現の）演算式ツリー。
これはpronargdefaultsの要素のリストで、最後のN個の入力引数と対応しています（つまり最後のN proargtypesの位置ということです）。
もし引数にデフォルト値がない場合は、この列はNULLになります。
      

	
       protrftypes oid[]

（参照先 pg_type.oid）
      

      

（関数のTRANSFORM句による）変換を適用するための引数／結果データ型の配列。
なければNULL。
      

	
       prosrc text
      

      

関数の起動方法を関数ハンドラに伝えます。
実装言語や呼び出し規約に依存して、使用する言語用の関数の実際のソースコード、リンクシンボル、ファイル名などになります。
      

	
       probin text
      

      

関数の起動方法についての追加情報。
同じように解釈は言語に依存します。
      

	
       prosqlbody pg_node_tree
      

      

前もってパースしたSQL関数の本体。
文字列リテラルではなく、標準SQL表記で本体が与えられた時にSQL言語関数に使用されます。
その他の場合はNULLです。
       

	
       proconfig text[]
      

      

実行時の設定変数に対する関数のローカル設定
      

	
       proacl aclitem[]
      

      

アクセス権限。
詳細は「権限」を参照してください
      






コンパイル言語で作成された、組み込みおよび動的にロードされる関数では、prosrcは関数のC言語名（リンクシンボル）を持ちます。
SQL言語関数に対しては、関数が文字列リテラルで与えられた場合にprosrcは関数のソーステキストを持ちます。
しかし関数本体が標準SQL形式で指定された場合には、prosrcは使われず（典型的には空文字列となります）、prosqlbodyに前もってパースされた定義が格納されます。
それ以外の現在知られているすべての言語形式では、prosrcには関数のソーステキストが含まれます。
probinは動的にロードされるC関数に対してはその関数を保有する共有ライブラリファイルの名前を与えますが、それ以外ではNULLです。
  

pg_publication





カタログpg_publicationには、データベース内に作成されたすべてのパブリケーションが含まれます。
パブリケーションについての詳細は「パブリケーション」を参照してください。
  
表52.40 pg_publicationの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       pubname name
      

      

パブリケーションの名前
      

	
       pubowner oid

（参照先 pg_authid.oid）
      

      

パブリケーションの所有者
      

	
       puballtables bool
      

      

trueの場合、このパブリケーションは、将来作成されるテーブルを含め、データベース内の全テーブルを自動的に含みます。
      

	
       pubinsert bool
      

      

trueの場合、パブリケーション内のテーブルに対するINSERT(7)操作は複製されます。
      

	
       pubupdate bool
      

      

trueの場合、パブリケーション内のテーブルに対するUPDATE(7)操作は複製されます。
      

	
       pubdelete bool
      

      

trueの場合、パブリケーション内のテーブルに対するDELETE(7)操作は複製されます。
      

	
       pubtruncate bool
      

      

trueの場合、パブリケーション内のテーブルに対するTRUNCATE(7)操作は複製されます。
      

	
       pubviaroot bool
      

      

trueの場合、自分自身ではなく、パブリケーションが言及しているパーティションの最上位の祖先の識別子とスキーマを使って、リーフパーティションに対する操作が複製されます。
      

	
       pubgencols char
      

      

パブリケーションの列リストがない場合の、生成列の複製方法を制御します：
n = パブリケーションに関連付けられたテーブル内の生成列は複製されません、
s = パブリケーションに関連付けられたテーブル内の格納生成列は複製されます。
      





pg_publication_namespace





カタログpg_publication_namespaceにはデータベース内のスキーマとパブリケーションの間のマッピングが含まれます。
これは多対多のマッピングです。
  
表52.41 pg_publication_namespace Columns
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       pnpubid oid

（参照先 pg_publication.oid）
      

      

パブリケーションへの参照
      

	
       pnnspid oid

（参照先 pg_namespace.oid）
      

      

スキーマへの参照
      





pg_publication_rel





カタログpg_publication_relにはデータベース内のリレーションとパブリケーションのマッピングが含まれます。
これは多対多のマッピングです。
この情報のよりユーザフレンドリなビューについては「pg_publication_tables」も参照してください。
  
表52.42 pg_publication_relの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       prpubid oid

（参照先 pg_publication.oid）
      

      

パブリケーションへの参照
      

	
       prrelid oid

（参照先 pg_class.oid）
      

      

リレーションへの参照
      

	
      prqual pg_node_tree
      


      リレーションのパブリケーション修飾条件の（nodeToString()形式の）式ツリー。
       パブリケーション修飾条件がない場合はNULLです。

	
       prattrs int2vector

（参照先 pg_attribute.attnum）
      

      

これは、どのテーブル列がパブリケーションの一部であるかを示す値の配列です。
たとえば、1 3という値は、テーブルの最初と3番目の列がパブリッシュされることを意味します。
NULL値は、すべての列がパブリッシュされることを示します。
      





pg_range





pg_rangeカタログは、範囲型についての情報を保存します。
これはpg_type内の型のエントリに追加されます。
  
表52.43 pg_rangeの列
	

列 型
      

      

説明
      

	
       rngtypid oid

（参照先 pg_type.oid）
      

      

範囲型のOID
      

	
       rngsubtype oid

（参照先 pg_type.oid）
      

      

この範囲型の要素型（派生元型）のOID
      

	
       rngmultitypid oid

（参照先 pg_type.oid）
      

      

この範囲型のための多重範囲型のOID
      

	
       rngcollation oid

（参照先 pg_collation.oid）
      

      

範囲比較のために使用される照合のOID。何もない場合はゼロ
      

	
       rngsubopc oid

（参照先 pg_opclass.oid）
      

      

範囲比較のために使用される派生元型の演算子クラスのOID
      

	
       rngcanonical regproc

（参照先 pg_proc.oid）
      

      

範囲型を標準型に変換する関数のOID。何もない場合はゼロ
      

	
       rngsubdiff regproc

（参照先 pg_proc.oid）
      

      

２つの要素値の間の違いをdouble precisionとして返す関数のOID、なければゼロ
      






rngsubopc（および、要素型が照合可能である場合はrngcollation）は範囲型で使用されるソートの順番を決定します。rngcanonicalは要素型が離散的である場合に使用されます。
rngsubdiffは省略可能ですが、範囲型に対するGiSTインデックスの性能を向上するためには提供しなければなりません。
  

pg_replication_origin





pg_replication_originカタログは、作成されたすべてのレプリケーション起点を含んでいます。
レプリケーション起点についての詳細は48章レプリケーション進捗の追跡を参照してください。
  


ほとんどのシステムカタログとは異なり、pg_replication_originはクラスタ内の全データベースで共有されます。
つまりクラスタごとにpg_replication_originの実体は1つだけ存在し、データベースごとに1つではありません。
  
表52.44 pg_replication_originの列
	

列 型
      

      

説明
      

	
       roident oid
      

      

クラスタ全体で一意なレプリケーション起点の識別子。
システムから除かれてはいけません。
      

	
       roname text
      

      

レプリケーション起点のユーザ定義の外部名
      





pg_rewrite





   pg_rewriteカタログはテーブルとビューに対する書き換えルールを保存します。
  
表52.45 pg_rewriteの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       rulename name
      

      

ルール名
      

	
       ev_class oid

（参照先 pg_class.oid）
      

      

ルールを適用するテーブル
      

	
       ev_type char
      

      

ルールを適用するイベントの型：
1 = SELECT(7)、
2 = UPDATE(7)、
3 = INSERT(7)、
4 = DELETE(7)
      

	
       ev_enabled char
      

      

ルールがどのsession_replication_roleモードで発行されるかを制御します。
O = ルールは「origin」および「local」モードで発行、
D = ルールは無効、
R = ルールは「replica」モードで発行、
A = ルールは常に発行。
      

	
       is_instead bool
      

      

ルールがINSTEADルールである場合はtrue
      

	
       ev_qual pg_node_tree
      

      

ルールの制約条件に対する（nodeToString()表現による）演算式ツリー
      

	
       ev_action pg_node_tree
      

      

ルールのアクションに対する（nodeToString()表現による）問い合わせツリー
      




注記


テーブルがこのカタログ内のルールを持つ場合、pg_class.relhasrulesはtrueでなければなりません。
   


pg_seclabel





pg_seclabelカタログにはデータベースオブジェクト上のセキュリティラベルが格納されます。
セキュリティラベルはSECURITY LABELコマンドを用いて操作できます。
セキュリティラベルを閲覧するより簡単な方法については「pg_seclabels」を参照してください。
  


pg_shseclabelも参照してください。
これは、データベースクラスタ間で共有されたデータベースオブジェクトにおけるセキュリティラベルのための類似した機能を提供します。
  
表52.46 pg_seclabelの列
	

列 型
      

      

説明
      

	
       objoid oid

（いずれかのOID列）
      

      

このセキュリティラベルが関係するオブジェクトのOID
      

	
       classoid oid

（参照先 pg_class.oid）
      

      

このオブジェクトが現れるシステムカタログのOID
      

	
       objsubid int4
      

      

テーブル列上のセキュリティラベルでは、これは列番号です（objoidおよびclassoidはテーブル自身を参照します）。
他のすべての種類のオブジェクトでは、この列はゼロです。
      

	
       provider text
      

      

このラベルに関連付いたラベルプロバイダです。
      

	
       label text
      

      

このオブジェクトに適用されるセキュリティラベルです。
      





pg_sequence





カタログpg_sequenceにはシーケンスに関する情報が含まれます。
名前やスキーマなどシーケンスに関する情報の一部はpg_classにあります。
  
表52.47 pg_sequenceの列
	

列 型
      

      

説明
      

	
       seqrelid oid

（参照先 pg_class.oid）
      

      

このシーケンスのpg_classのエントリのOID
      

	
       seqtypid oid

（参照先 pg_type.oid）
      

      

シーケンスのデータ型
      

	
       seqstart int8
      

      

シーケンスの開始値
      

	
       seqincrement int8
      

      

シーケンスの増分値
      

	
       seqmax int8
      

      

シーケンスの最大値
      

	
       seqmin int8
      

      

シーケンスの最小値
      

	
       seqcache int8
      

      

シーケンスのキャッシュサイズ
      

	
       seqcycle bool
      

      

シーケンスが周回するかどうか
      





pg_shdepend





pg_shdependカタログは、データベースオブジェクトとロールのような共有オブジェクト間のリレーション依存関係を保持します。
この情報はPostgreSQL™が依存関係を削除しようとする前に、これらのオブジェクトを参照されないようにすることを保証することを許可します。
  


pg_dependも参照してください。
pg_dependは単一のデータベース内のオブジェクトに関する依存関係について同じような機能を実行します。
  


多くのシステムカタログと異なりpg_shdependはクラスタの全てのデータベースに共有されています。
データベース毎ではなく、クラスタ毎にただ1つのpg_shdependのコピーがあります。
  
表52.48 pg_shdependの列
	

列 型
      

      

説明
      

	
       dbid oid

（参照先 pg_database.oid）
      

      

依存オブジェクトが属するデータベースのOID。
共有オブジェクトの場合はゼロ
      

	
       classid oid

（参照先 pg_class.oid）
      

      

依存するオブジェクトが存在するシステムカタログのOID
      

	
       objid oid

（いずれかのOID列）
      

      

特定の依存するオブジェクトのOID
      

	
       objsubid int4
      

      

テーブル列の場合、これは列番号です（objidとclassidはテーブル自身を参照します）。
他のすべての種類のオブジェクトでは、この列はゼロになります。
      

	
       refclassid oid

（参照先 pg_class.oid）
      

      

参照されるオブジェクトが入っているシステムカタログのOID（共有カタログである必要があります）
      

	
       refobjid oid

（いずれかのOID列）
      

      

特定の参照されるオブジェクトのOID
      

	
       deptype char
      

      

この依存関係の特定のセマンティクスを定義するコード（後述）
      






すべての場合において、pg_shdepend項目は依存するオブジェクトも削除しない限り、参照されるオブジェクトを削除できないことを示します。
もっとも、deptypeによって指定される以下のようないくつかのオプションもあります。

   
	SHARED_DEPENDENCY_OWNER (o)
	

       参照されるオブジェクト（ロールである必要があります）が依存するオブジェクトの所有者です。
      

	SHARED_DEPENDENCY_ACL (a)
	

参照されたオブジェクト（ロールである必要があります）が、依存するオブジェクトのACL内で述べられています。
（所有者はSHARED_DEPENDENCY_OWNER項目を持つため、SHARED_DEPENDENCY_ACL項目は、オブジェクトの所有者に対して作成されません。）
      

	SHARED_DEPENDENCY_INITACL (i)
	

参照されたオブジェクト（ロールである必要があります）は、依存オブジェクトのpg_init_privsエントリで述べられています。
      

	SHARED_DEPENDENCY_POLICY (r)
	

参照されたオブジェクト（ロールである必要があります）が、依存するポリシーオブジェクトのターゲットとして述べられています。
      

	SHARED_DEPENDENCY_TABLESPACE (t)
	

参照されているオブジェクト（テーブル空間でなければなりません）は格納を持たないリレーションのためのテーブル空間として言及されています。
      






他の依存関係のオプションが将来必要になる可能性があります。
現状の定義は、参照されるオブジェクトとしてロールとテーブル空間のみをサポートしていることに特に注意してください。
  


pg_dependカタログと同様に、initdb時に作成されるほとんどのオブジェクトは「固定(pinned)」と見なされます。
pg_shdependには、参照オブジェクトまたは依存オブジェクトとして固定されたオブジェクトを持つエントリは作成されません。
  

pg_shdescription





pg_shdescriptionには共有データベースオブジェクトに対する補足説明（コメント）を格納します。
補足説明はCOMMENTコマンドを使用して編集でき、psqlの\dコマンドを使用して閲覧できます。
  


pg_descriptionも参照してください。
こちらは、単一データベース内のオブジェクトに関する説明について、同様の機能を行います。
  


他のシステムカタログと異なり、pg_shdescriptionはクラスタ内のすべてのデータベースに渡って共有されます。
データベース毎に存在するのではなく、1つのクラスタにpg_shdescriptionが1つのみ存在します。
  
表52.49 pg_shdescriptionの列
	

列 型
      

      

説明
      

	
       objoid oid

（いずれかのOID列）
      

      

この補足説明が属するオブジェクトのOID
      

	
       classoid oid

（参照先 pg_class.oid）
      

      

このオブジェクトが現れるシステムカタログのOID
      

	
       description text
      

      

このオブジェクトの説明となる任意のテキスト
      





pg_shseclabel





pg_shseclabelカタログは、共有データベースオブジェクト上のセキュリティラベルを保存します。
セキュリティラベルはSECURITY LABELコマンドで操作されます。
セキュリティラベルを見る簡単な方法は、「pg_seclabels」を参照してください。
  


pg_seclabelも参照してください。
これは、単一データベース内のオブジェクトを含むセキュリティラベルのための類似した機能を提供します。
  


多くのシステムカタログと違い、pg_shseclabelはクラスタ内の全てのデータベース間で共有されます。
pg_shseclabelは、データベースごとではなく、クラスタごとに1つのみ存在します。
  
表52.50 pg_shseclabelの列
	

列 型
      

      

説明
      

	
       objoid oid

（いずれかのOID列）
      

      

このセキュリティラベルが関係するオブジェクトのOID
      

	
       classoid oid

（参照先 pg_class.oid）
      

      

このオブジェクトが現れるシステムカタログのOID
      

	
       provider text
      

      

このラベルに関連付いたラベルプロバイダです。
      

	
       label text
      

      

このオブジェクトに適用されるセキュリティラベルです。
      





pg_statistic





pg_statisticカタログはデータベースの内容に関する統計データを保存します。
項目はANALYZEで作成され、後に問い合わせプランナで使用されます。
最新のものと思ってもすべての統計データは本質的に大雑把なものであることに注意してください。
  


通常は、解析されるテーブル列毎に、stainherit = falseを持つ1つの項目が存在します。
テーブルが継承された子あるいはパーティションを持つ場合、stainherit = trueを持つ2つ目の項目が作成されます。
この行は継承ツリー全体に渡る列の統計情報、つまり、SELECT column FROM table*で確認できるデータに対する統計情報を表します。
一方でstainherit = falseの行はSELECT column FROM ONLY tableの結果を表します。
  


pg_statisticはインデックス式の値についての統計データも格納します。
これらはあたかも値が実際のデータ列であるかのように表現されます。
特にstarelidはインデックスを参照します。
これは元のテーブル列の項目に対して冗長となるので、普通の式を持たないインデックス列では項目は作成されません。
現在インデックス式用の項目は常にstainherit = falseを持ちます。
  


異なる種類のデータに対しては違った種類の統計が相応しいことからpg_statisticはどのような情報を保存するか深く推定しないように設計されています。
（例えばNULLであるような）極端に一般的な統計のみpg_statisticの特定の列に入ります。
その他すべてはスロット列の内の1つのコード番号でその内容が識別される相関している列のグループである「スロット」に保存されます。
src/include/catalog/pg_statistic.hを参照してください。
  


pg_statisticはテーブル内容に関する統計情報と言えども秘密の情報とみなされますので、一般のユーザが読み取り可能であってはいけません。
（給与列の最高額と最低額などは誰もが興味をそそられる良い例ですよね。）
pg_statsは一般のユーザが読み取り可能なpg_statisticに対するビューで、既存のユーザが読んでも差し支えないテーブルの情報のみを開示しています。
  
表52.51 pg_statisticの列
	

列 型
      

      

説明
      

	
       starelid oid

（参照先 pg_class.oid）
      

      

記述された列が属するテーブルもしくはインデックス
      

	
       staattnum int2

（参照先 pg_attribute.attnum）
      

      

記述された列数
      

	
       stainherit bool
      

      

trueの場合、統計情報には指定されたリレーションの値だけではなく、子テーブルの値も含まれます
      

	
       stanullfrac float4
      

      

NULL値である列項目の割合
      

	
       stawidth int4
      

      

非NULL項目の平均保存幅（バイト単位）
      

	
       stadistinct float4
      

      

列内で非NULL個別値を持つデータ数。
ゼロより大きい値は実際の個別値の数です。
ゼロより小さい値はテーブル内の行数に対する乗数を負にしたものです。
例えば、約80%の値が非NULLで、それぞれの非NULL値が平均して2回ほど出現する列はstadistinct = -0.4であると表現されます。
ゼロは個別値の数を特定できない場合です。
      

	
       stakindN int2
      

      

pg_statistic行のN番目の「スロット」に保存されている統計情報の種類を示すコード番号。
      

	
       staopN oid

（参照先 pg_operator.oid）
      

      

N番目の「スロット」に保存されている統計情報を引き出すために使われる演算子。
例えば、ヒストグラムスロットはデータの並べ替えの順序を定義する<演算子を示します。
統計情報が演算子を要求しない種類であればゼロです。
      

	
       stacollN oid

（参照先 pg_collation.oid）
      

      

N番目の「スロット」に格納された統計情報を派生させるために使われる照合順序。
たとえば、照合可能な列のヒストグラムスロットはそのデータをソート順を定義する照合順を表示します。
ゼロなら照合可能ではないデータです。
      

	
       stanumbersN float4[]
      

      

N番目の「スロット」に対する適切な種類の数値統計情報、もしくはスロットの種類に数値が含まれない時はNULLです。
      

	
       stavaluesN anyarray
      

      

N番目の「スロット」に対する適切な種類の列データの値、もしくはスロットの種類にデータ値が何も保存されていない場合はNULL。
それぞれの配列要素の値は実際には特定された列のデータ型、もしくは配列要素の型といったような関連のある型になります。ですからanyarrayとする以外に列型を定義することはできません。
      





pg_statistic_ext





カタログpg_statistic_extはプランナの拡張統計情報の定義を保持します。
このカタログの各行はCREATE STATISTICSで作成された統計オブジェクトに対応します。
  
表52.52 pg_statistic_extの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       stxrelid oid

（参照先 pg_class.oid）
      

      

このオブジェクトが記述する列を含むテーブル
      

	
       stxname name
      

      

統計オブジェクトの名前
      

	
       stxnamespace oid

（参照先 pg_namespace.oid）
      

      

この統計オブジェクトを含む名前空間のOID
      

	
       stxowner oid

（参照先 pg_authid.oid）
      

      

統計オブジェクトの所有者
      

	
       stxkeys int2vector

（参照先 pg_attribute.attnum）
      

      

属性番号の配列で、どのテーブル列が統計オブジェクトに含まれるかを示します。
例えば、値が1 3なら、テーブルの1番目と3番目の列が含まれるということになります。
      

	
       stxstattarget int2
      

      

stxstattargetはANALYZEによるこの列に対する蓄積された統計情報をどの程度詳しく管理するかを規定します。
値がゼロの場合は統計情報を収集しません。
NULL値の場合は、参照する列の統計情報の収集目標の最大値があればそれを使い、なければシステムのデフォルトの統計目標を使用すべきであるということです。
正の値のstxstattargetは、収集する「最頻値」の目標となる数を決定します。
      

	
       stxkind char[]
      

      

有効にされた統計種別のコードが入る配列です。
有効な値は：
d = N個別統計を表す、
f = 関数従属統計を表す、
m = 最頻値(MCV)リスト統計を表す、
e = 演算式統計を表す。
      

	
       stxexprs pg_node_tree
      

      

単純な列参照ではないオブジェクト属性の統計情報に対する（nodeToString()表現による）演算式ツリー。
これは一つの演算式に対して一つの項目であるリストです。
すべての統計情報オブジェクト属性が単純な参照ならばNULLです。
      






CREATE STATISTICSの実行中にpg_statistic_extエントリはすべて満たされますが、実際の統計データ値は計算されません。
あとで実行されるANALYZEコマンドが必要な値を計算し、pg_statistic_ext_dataカタログのエントリに投入します。
  

pg_statistic_ext_data





カタログpg_statistic_ext_dataは、pg_statistic_extで定義されたプランナの拡張統計情報のデータを保持します。
このカタログの個々の行はCREATE STATISTICSで作成された統計情報オブジェクトに関連します。
  


通常は、解析される統計情報オブジェクト毎に、stxdinherit = falseを持つ1つの項目が存在します。
テーブルが継承された子あるいはパーティションを持つ場合、stxdinherit = trueを持つ2つ目の項目が作成されます。
この行は継承ツリー全体に渡る列の統計情報、つまり、SELECT * FROM table*で確認できるデータに対する統計情報を表します。
一方でstxdinherit = falseの行はSELECT * FROM ONLY tableの結果を表します。
  


pg_statistic同様、pg_statistic_ext_dataはテーブル内容が秘密の情報とみなされますので、一般のユーザが読み取り可能であってはいけません。
（列の値の最頻出の組み合わせは誰もが興味をそそられる良い例ですよね。）
pg_stats_extは一般のユーザが読み取り可能な（pg_statistic_extと結合後の）pg_statistic_ext_dataに対するビューで、現在のユーザが所有するテーブルに関する情報のみを公開します。
  
表52.53 pg_statistic_ext_dataの列
	

列 型
      

      

説明
      

	
       stxoid oid

（参照先 pg_statistic_ext.oid）
      

      

このデータの定義を含む拡張統計情報オブジェクト
      

	
       stxdinherit bool
      

      

trueの場合、統計情報には指定されたリレーションの値だけではなく、子テーブルからの値も含まれます
      

	
       stxdndistinct pg_ndistinct
      

      

pg_ndistinct型にシリアライズされたN個別値の数
      

	
       stxddependencies pg_dependencies
      

      

pg_dependencies型にシリアライズされた関数従属統計
      

	
       stxdmcv pg_mcv_list
      

      

pg_mcv_list型にシリアライズされたMCV（最頻値）リスト統計情報
      

	
       stxdexpr pg_statistic[]
      

      

pg_statistic型の配列にシリアライズされた演算式ごとの統計情報
      





pg_subscription





カタログpg_subscriptionには、存在するすべての論理レプリケーションのサブスクリプションが入ります。
論理レプリケーションについての詳細な情報は29章論理レプリケーションを参照してください。
  


ほとんどのシステムカタログとは異なり、pg_subscriptionはクラスタ内の全データベースで共有されます。
つまりクラスタごとにpg_subscriptionの実体は1つだけ存在し、データベースごとに1つではありません。
  


列subconninfoには平文のパスワードが含まれる可能性があるため、一般ユーザによるアクセス権は取り消されています。
  
表52.54 pg_subscriptionの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       subdbid oid

（参照先 pg_database.oid）
      

      

サブスクリプションが存在するデータベースのOID
      

	
       subskiplsn pg_lsn
      

      

有効なLSNの場合は、変更がスキップされるトランザクションの終了LSN。
有効でない場合は0/0。
      

	
       subname name
      

      

サブスクリプションの名前
      

	
       subowner oid

（参照先 pg_authid.oid）
      

      

サブスクリプションの所有者
      

	
       subenabled bool
      

      

trueの場合、サブスクリプションは有効でレプリケーションが行われています
      

	
       subbinary bool
      

      

trueの場合、サブスクリプションはパブリッシャーに対してバイナリ形式でデータを送るように要求します
      

	
       substream char
      

      

進行中のトランザクションのストリーミングの取り扱い方法を制御します：
f = 進行中のトランザクションのストリーミングを禁止、
t = 進行中のトランザクションの変更をディスクに書き出し、トランザクションがパブリッシャーでコミットされ、サブスクライバーに受け取られた後に一度に適用、
p = 使用可能な場合は、パラレル適用ワーカーを使用して変更を直接適用（使用可能なワーカーがない場合はtと同じ）
      

	
       subtwophasestate char
      

      

2相モードの状態コード：
d = 無効、
p = 有効化待ち
e = 有効
      

	
       subdisableonerr bool
      

      

trueの場合、ワーカーのいずれかがエラーを検出するとサブスクリプションが無効になります。
      

	
       subpasswordrequired bool
      

      

trueの場合、サブスクリプションは認証のパスワードを指定する必要があります。
      

	
       subrunasowner bool
      

      

trueの場合、サブスクリプションはサブスクリプション所有者の許可を得て運行されます。
      

	
       subfailover bool
      

      

trueの場合、上流データベース内の関連するレプリケーションスロット（すなわち、メインスロットおよびテーブル同期スロット）は、スタンバイに同期されるように有効になります。
      

	
       subconninfo text
      

      

上流のデータベースへの接続文字列
      

	
       subslotname name
      

      

上流のデータベースのレプリケーションスロットの名前（ローカルレプリケーションのオリジン名としても使われます）。
NULLはNONEを表します
      

	
       subsynccommit text
      

      

サブスクリプションワーカーが使用するsynchronous_commitの設定値
      

	
       subpublications text[]
      

      

サブスクライブされるパブリケーション名の配列です。
上流データベースで定義されたパブリケーションを参照します。
パブリケーションについての詳細は「パブリケーション」を参照してください。
      

	
       suborigin text
      

      

オリジンの値は、noneまたはanyのいずれかにする必要があります。
デフォルトはanyです。
noneの場合、サブスクリプションはパブリッシャーに対して、オリジンがない変更のみを送信するように要求します。
anyの場合、パブリッシャーはオリジンに関係なく変更を送信します。
      





pg_subscription_rel





カタログpg_subscription_relには各サブスクリプションで複製される各リレーションの状態が入ります。
これは多対多のマッピングです。
  


このカタログにはCREATE SUBSCRIPTIONあるいはALTER SUBSCRIPTION ... REFRESH PUBLICATIONを実行した後でサブスクリプションに知られることになったテーブルのみが含まれます。
  
表52.55 pg_subscription_relの列
	

列 型
      

      

説明
      

	
       srsubid oid

（参照先 pg_subscription.oid）
      

      

サブスクリプションへの参照
      

	
       srrelid oid

（参照先 pg_class.oid）
      

      

リレーションへの参照
      

	
       srsubstate char
      

      

状態コード：
i = 初期化、
d = データのコピー中、
f = テーブルコピーの完了、
s = 同期済み、
r = 準備完了（通常のレプリケーション）
      

	
       srsublsn pg_lsn
      

      

s あるいは r の状態なら、同期の調停で使われる状態変更のリモートLSN。
それ以外の場合はNULL
      





pg_tablespace





pg_tablespaceカタログは利用できるテーブル空間についての情報を格納します。
テーブルは、ディスクの配置を管理できるようにするために特定のテーブル空間に格納できます。
  


システムカタログの大部分とは違って、pg_tablespaceは、すべてのクラスタのデータベース間で共有されます。
（データベース毎ではなく）クラスタ毎に、pg_tablespaceのコピーが1つだけ存在します。
  
表52.56 pg_tablespaceの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       spcname name
      

      

テーブル空間名
      

	
       spcowner oid

（参照先 pg_authid.oid）
      

      

テーブル空間の所有者。たいていはテーブル空間を作成したユーザ
      

	
       spcacl aclitem[]
      

      

アクセス権限。
詳細は「権限」を参照してください
      

	
       spcoptions text[]
      

      

「keyword=value」文字列のようなテーブル空間レベルのオプション
      





pg_transform





カタログpg_transformは変換についての情報を格納します。
変換はデータ型を手続き言語に適合させるための機構です。
詳しくはCREATE TRANSFORM(7)を参照してください。
  
表52.57 pg_transformの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       trftype oid

（参照先 pg_type.oid）
      

      

この変換の対象のデータ型のOID
      

	
       trflang oid

（参照先 pg_language.oid）
      

      

この変換の対象の言語のOID
      

	
       trffromsql regproc

（参照先 pg_proc.oid）
      

      

データ型を手続き言語への入力（例えば関数のパラメータ）に変換する時に使う関数のOID。
デフォルトの振る舞いが使われる場合はゼロが格納されます。
      

	
       trftosql regproc

（参照先 pg_proc.oid）
      

      

手続き言語からの出力（例えば戻り値）をデータ型に変換する時に使う関数のOID。
デフォルトの振る舞いが使われる場合はゼロが格納されます。
      





pg_trigger





pg_triggerカタログはテーブルおよびビュー上のトリガを保存します。
CREATE TRIGGER(7)を参照してください。
  
表52.58 pg_triggerの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       tgrelid oid

（参照先 pg_class.oid）
      

      

トリガのかかっているテーブル
      

	
       tgparentid oid

（参照先 pg_trigger.oid）
      

      

このトリガが複製された親のトリガ（パーティションが作成されたか、あるいはパーティションテーブルにアタッチされたときに起こります）。
複製されていなければゼロ
      

	
       tgname name
      

      

トリガ名（同一テーブル内で一意である必要があります）
      

	
       tgfoid oid

（参照先 pg_proc.oid）
      

      

呼び出される関数
      

	
       tgtype int2
      

      

トリガ発行条件を指定するビットマスク
      

	
       tgenabled char
      

      

どのsession_replication_roleモードでトリガが発行されるかを制御します。
O = 「起点」モードと「ローカル」モードでトリガを発行します、
D = トリガは無効です、
R = 「replica」モードでトリガを発行します、
A = 常にトリガを発行します。
      

	
       tgisinternal bool
      

      

トリガが（通常tgconstraintにより識別される制約を強制するために）内部的に生成される場合はtrue
      

	
       tgconstrrelid oid

（参照先 pg_class.oid）
      

      

参照整合性制約で参照されるテーブル。
（トリガが参照整合性制約用でなければゼロ）
      

	
       tgconstrindid oid

（参照先 pg_class.oid）
      

      

一意性、主キー、参照整合性制約や排他制約をサポートするインデックス
（トリガがこれらの制約型用でなければゼロ）
      

	
       tgconstraint oid

（参照先 pg_constraint.oid）
      

      

トリガに関連するpg_constraintの項目。
（トリガが制約用でなければゼロ）
      

	
       tgdeferrable bool
      

      

制約トリガが遅延可能である場合はtrue
      

	
       tginitdeferred bool
      

      

制約トリガの初期状態が遅延可能と宣言されている場合はtrue
      

	
       tgnargs int2
      

      

トリガ関数に渡される引数の数
      

	
       tgattr int2vector

（参照先 pg_attribute.attnum）
      

      

トリガが列固有であれば列番号。そうでなければ空の配列
      

	
       tgargs bytea
      

      

トリガに渡される引数文字列で、それぞれヌル文字で終結
      

	
       tgqual pg_node_tree
      

      

トリガのWHEN条件に関する（nodeToString()表現による）式ツリー、なければNULL
      

	
       tgoldtable name
      

      

OLD TABLEに対するREFERENCING句の名前、なければNULL
      

	
       tgnewtable name
      

      

NEW TABLEに対するREFERENCING句の名前、なければNULL
      






現在、列固有のトリガ処理はUPDATEイベントのみでサポートされていますので、tgattrはこの種類のイベントにのみ関連します。
tgtypeにはこの他のイベント用のビットが含まれているかもしれませんが、これらはtgattrの値とは関係ないテーブル全体のものであると仮定されます。
  
注記


tgconstraintがゼロではないとき、tgconstrrelid、tgconstrindid、tgdeferrable、tginitdeferredは参照されるpg_constraint項目と共に冗長となっています。
しかし遅延不可能なトリガを遅延可能な制約に関連付けさせることが可能です。
外部キー制約では一部を遅延可能、一部を遅延不可能なトリガを持つことができます。
   

注記


pg_class.relhastriggersは、リレーションがこのカタログ内にトリガを持っている場合はtrueでなければなりません。
   


pg_ts_config





pg_ts_configカタログは、テキスト検索の設定を表す項目を含みます。
設定は、特定のテキスト検索パーサと、それぞれのパーサの出力トークン型のために使用される辞書の一覧を指定します。
パーサはpg_ts_config項目内に示されていますが、トークンと辞書の対応付けは、pg_ts_config_map内の補助項目内に定義されています。
  


   PostgreSQL™のテキスト検索機能については12章全文検索で詳しく説明します。
  
表52.59 pg_ts_configの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       cfgname name
      

      

テキスト検索設定の名称
      

	
       cfgnamespace oid

（参照先 pg_namespace.oid）
      

      

この設定を含む名前空間のOID
      

	
       cfgowner oid

（参照先 pg_authid.oid）
      

      

この設定の所有者
      

	
       cfgparser oid

（参照先 pg_ts_parser.oid）
      

      

この設定のためのテキスト検索パーサのOID
      





pg_ts_config_map





pg_ts_config_mapカタログは、どのテキスト検索辞書を参照するべきかを示す項目を含みます。
さらに、それぞれのテキスト検索設定のパーサの出力トークンをどの順番で参照すべきかを示す項目を含みます。
  


   PostgreSQL™のテキスト検索機能については12章全文検索で詳しく説明します。
  
表52.60 pg_ts_config_mapの列
	

列 型
      

      

説明
      

	
       mapcfg oid

（参照先 pg_ts_config.oid）
      

      

このマップ項目を所有するpg_ts_config項目のOID
      

	
       maptokentype int4
      

      

設定のパーサにより発行されるトークンの種類
      

	
       mapseqno int4
      

      

この項目を参照する順番（小さいmapseqnoが先です）
      

	
       mapdict oid

（参照先 pg_ts_dict.oid）
      

      

参照するテキスト検索辞書のOID
      





pg_ts_dict





pg_ts_dictカタログは、テキスト検索辞書を定義する項目を含みます。
辞書は、必要な実装関数すべてを指定するテキスト検索のテンプレートに依存します。
辞書自身は、テンプレートによりサポートされている、ユーザが設定可能なパラメータ値を提供します。
ここでは、辞書が特権のないユーザにより作成されることを許可します。
パラメータは、dictinitoptionテキスト文字列で指定されます。
その書式と意味はテンプレートにより変化します。
  


   PostgreSQL™のテキスト検索機能については12章全文検索で詳しく説明します。
  
表52.61 pg_ts_dictの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       dictname name
      

      

テキスト検索辞書の名称
      

	
       dictnamespace oid

（参照先 pg_namespace.oid）
      

      

この辞書を含む名前空間のOID
      

	
       dictowner oid

（参照先 pg_authid.oid）
      

      

辞書の所有者
      

	
       dicttemplate oid

（参照先 pg_ts_template.oid）
      

      

辞書のためのテキスト検索テンプレートのOID
      

	
       dictinitoption text
      

      

テンプレートのための初期化オプション文字列
      





pg_ts_parser





pg_ts_parserカタログはテキスト検索パーサを定義する項目を含みます。
パーサは、入力テキストを語彙素に分割することとトークン型を語彙素に割り当てることに責任を持ちます。
パーサはC言語レベルの関数で実装されていなくてはいけないため、新規のパーサの作成はデータベースのスーパーユーザに制限されています。
  


   PostgreSQL™のテキスト検索機能については12章全文検索で詳しく説明します。
  
表52.62 pg_ts_parserの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       prsname name
      

      

テキスト検索パーサの名称
      

	
       prsnamespace oid

（参照先 pg_namespace.oid）
      

      

このパーサを含む名前空間のOID
      

	
       prsstart regproc

（参照先 pg_proc.oid）
      

      

パーサ起動関数のOID
      

	
       prstoken regproc

（参照先 pg_proc.oid）
      

      

パーサの次のトークン関数のOID
      

	
       prsend regproc

（参照先 pg_proc.oid）
      

      

パーサの終了関数のOID
      

	
       prsheadline regproc

（参照先 pg_proc.oid）
      

      

パーサの見出し関数のOID（ない時はゼロ）
      

	
       prslextype regproc

（参照先 pg_proc.oid）
      

      

パーサの字句型関数のOID
      





pg_ts_template





pg_ts_templateカタログはテキスト検索テンプレートを定義する項目を含みます。
テンプレートはテキスト検索辞書クラスの骨格を実装したものです。
テンプレートはC言語レベルの関数で実装されなくてはいけないため、新規のテンプレートの作成はデータベースのスーパーユーザに制限されています。
  


   PostgreSQL™のテキスト検索機能については12章全文検索で詳しく説明します。
  
表52.63 pg_ts_templateの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       tmplname name
      

      

テキスト検索テンプレートの名称
      

	
       tmplnamespace oid

（参照先 pg_namespace.oid）
      

      

このテンプレートを含む名前空間のOID
      

	
       tmplinit regproc

（参照先 pg_proc.oid）
      

      

テンプレートの初期化関数のOID（ない時はゼロ）
      

	
       tmpllexize regproc

（参照先 pg_proc.oid）
      

      

テンプレートの字句関数のOID
      





pg_type





pg_typeカタログはデータ型の情報を保存します。
基本型と列挙型（スカラ型）はCREATE TYPEで作成され、ドメインはCREATE DOMAINで作成されます。
複合型がテーブルの行構成を表すためデータベースの個々のテーブルに対して自動的に作成されます。
複合型をCREATE TYPE ASで作成することもできます。
  
表52.64 pg_typeの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       typname name
      

      

データ型名
      

	
       typnamespace oid

（参照先 pg_namespace.oid）
      

      

この型を含む名前空間のOID
      

	
       typowner oid

（参照先 pg_authid.oid）
      

      

型の所有者
      

	
       typlen int2
      

      

固定長型では、typlenは型の内部表現内でのバイト数です。
しかし、可変長型ではtyplenは負です。
-1は「varlena」型（最初の4バイトにデータ長を含むもの）を意味し、-2はヌル終端のC言語の文字列を示します。
      

	
       typbyval bool
      

      

typbyvalは内部関数がこの型の値を値渡しか、参照渡しかを決定します。
typlenが1、2、4バイト長（もしくはDatumが8バイトのマシン上では8バイト長）以外であれば、typbyvalをfalseにする必要があります。
可変長型は必ず参照渡しになります。
typbyvalは長さが値渡し可能でもfalseになり得ることに注意してください。
      

	
       typtype char
      

      

typtypeでは、
b = 基本型、
c = 複合型（例えばテーブルの行の型）、
d = 派生型（ドメインなど）、
e = 列挙型、
p = 疑似型、
r = 範囲型、
m = 多重範囲型です。
typrelidおよびtypbasetypeも参照してください。
      

	
       typcategory char
      

      

typcategoryは、パーサがどの暗黙のキャストが「選択」されるべきか決定するのに使用されるデータ型の任意の分類です。
表52.65「typcategoryのコード」を参照してください。
      

	
       typispreferred bool
      

      

型がtypcategory内で選択されたキャスト対象である場合はtrue
      

	
       typisdefined bool
      

      

型が定義されている場合はtrue。
ここが未定義型に対する予備の場所である場合はfalse。
typisdefinedがfalseの場合、型名と名前空間とOID以外は信頼すべきでありません。
      

	
       typdelim char
      

      

配列入力の構文解析をする際にこの型の2つの値を分離する文字。
区切り文字は配列データ型ではなく配列要素データ型に関連付けられることに注意してください。
      

	
       typrelid oid

（参照先 pg_class.oid）
      

      

もしこれが複合型（typtypeを参照）であれば、この列は関連するテーブルを定義するpg_class項目を指します。
（独立の複合型の場合、pg_class項目は実際にはテーブルを表しませんが、いずれにしても型のpg_attribute項目をリンクするために必要です。）
複合型でない場合はゼロです。
      

	
       typsubscript regproc

（参照先 pg_proc.oid）
      

      

添字ハンドラ関数のOID、あるいはこの型が添え字付けをサポートしていなければゼロ。
「本当の」配列型では、typsubscript = array_subscript_handlerとなります。
しかし、他の型では特別な添え字付けの振る舞いを実装するハンドラ関数を持つかもしれません。
      

	
       typelem oid

（参照先 pg_type.oid）
      

      

typelemがゼロでない場合、これは添字付けによって生成された型を定義するpg_typeの別の列を特定します。
typsubscriptがゼロなら、これはゼロとなるはずです。
しかし、添字付けの結果型を決定するためにハンドラがtypelemを必要としてなければ、typsubscriptがゼロでなくても、ゼロとなることがあります。
typelem依存性は、この型の要素型を物理的に含むことを暗示すると考えられることに注意してください。
ですからこの要素型に対するDDL変更は、この型に存在に制限されるかもしれません。
      

	
       typarray oid

（参照先 pg_type.oid）
      

      

typarrayがゼロでない場合、typarrayはpg_type内のもうひとつの行を特定します。
もうひとつの行は、この型を要素として持っている「本当」の配列型です。
      

	
       typinput regproc

（参照先 pg_proc.oid）
      

      

入力変換関数（テキスト形式）
      

	
       typoutput regproc

（参照先 pg_proc.oid）
      

      

出力変換関数（テキスト形式）
      

	
       typreceive regproc

（参照先 pg_proc.oid）
      

      

入力変換関数（バイナリ形式）、なければゼロ
      

	
       typsend regproc

（参照先 pg_proc.oid）
      

      

出力変換関数（バイナリ形式）、なければゼロ
      

	
       typmodin regproc

（参照先 pg_proc.oid）
      

      

型修飾子の入力関数。型が修飾子をサポートしていない場合はゼロ
      

	
       typmodout regproc

（参照先 pg_proc.oid）
      

      

型修飾子の出力関数。標準書式を使用する場合はゼロ
      

	
       typanalyze regproc

（参照先 pg_proc.oid）
      

      

独自のANALYZE(7)関数。標準関数を使用する場合はゼロ
      

	
       typalign char
      

      

typalignはこの型の値を格納する際に必要な整列です。
ディスク上での格納だけでなく、PostgreSQL™内部の値の表現にも適用されます。
ディスク上の完全な行の表現のように、複数の値が隣接して格納される際には、指定された境界で始まるように、この型のデータの前にパディングが挿入されます。
アライメントの参照先は、連続しているデータ中の先頭のデータの開始位置です。
使用可能な値は以下の通りです。
       
	c = char整列（すなわち、整列は必要ありません）。

	s = short整列（多くのマシンでは2バイトになります）。

	i = int整列（多くのマシンでは4バイトになります）。

	d = double整列（多くのマシンでは8バイトになりますが、必ずしもすべてがそうであるとは限りません）。




      

	
       typstorage char
      

      

typstorageは、varlena型（typlen = -1であるもの）において、その型がトーストされる予定であるか、この型においてアトリビュートに対するデフォルトの戦略が何であるかを示します。
可能な値は以下です。
       
	

p (plain)：値は常にplainで格納されなければなりません（非varlena型は常にこの値を使います）。
         

	

e (external)：値は「従属的」リレーションに格納できます（リレーションがあるとき。リレーションに関してはpg_class.reltoastrelidを参照してください）。
         

	

m (main)：値は圧縮してインラインで格納できます。
         

	

x (extended)：値は圧縮することもできますし、圧縮した上で更に従属的リレーションに移動することもできます。
         





トースト可能な型に対しては x が通常の選択です。
m 値も、どうしても必要なら従属的格納に移動できることに注意してください（e と x 値は、まず最初に移動します）。
      

	
       typnotnull bool
      

      

typnotnullは型に対し非NULL制約を表します。
ドメインでのみ使用されます。
      

	
       typbasetype oid

（参照先 pg_type.oid）
      

      

もしこれがドメイン（typtypeを参照）であれば、typbasetypeはこれが基づいている型を指定します。
ドメインでない場合はゼロです。
      

	
       typtypmod int4
      

      

ドメインはtyptypmodを使用して、基本型に適用されるtypmodを記録します
（基本型がtypmodを使用しない場合は-1）。
この型がドメインでない場合は-1です。
      

	
       typndims int4
      

      

typndimsは配列であるドメインの配列の次元数です
（つまり、typbasetypeは配列型です）。
配列型のドメインでない場合はゼロです。
      

	
       typcollation oid

（参照先 pg_collation.oid）
      

      

typcollationは型の照合順序を指定します。
型が照合順序をサポートしない場合、ゼロになります。
照合順序をサポートする基本型はここでゼロ以外の値を持ちます。典型的にはDEFAULT_COLLATION_OIDです。
照合順序の設定可能な型全体のドメインは、そのドメインで照合順序が指定されていれば、基本型とは異なる照合順序OIDを持つことができます。
      

	
       typdefaultbin pg_node_tree
      

      

typdefaultbinがNULLでない場合、これは型のデフォルト式のnodeToString()表現です。
ドメインでのみ使用されます。
      

	
       typdefault text
      

      

関連するデフォルト値を持たない型であればtypdefaultはNULLです。
typdefaultbinがNULLでない場合、typdefaultは、typdefaultbinによって表される人間が見てわかる形式のデフォルト式を含む必要があります。
typdefaultbinがNULLでtypdefaultがNULLでない場合、typdefaultは型のデフォルト値の外部表現です。
これは、定数を生成するために型の入力変換処理に渡されることがあります。
      

	
       typacl aclitem[]
      

      

アクセス権限。
詳細は「権限」を参照してください
      




注記


固定長型のシステムテーブルでは、pg_typeで定義されているサイズとアライメントと、コンパイラがテーブル行を表現する構造体の中で列を格納する方法とで合意が取れていることが重要です。
   



表52.65「typcategoryのコード」はシステムで定義されたtypcategoryの値の一覧です。
今後この一覧に追加されるものは同様に大文字のASCII文字になります。
他のすべてのASCII文字はユーザ定義のカテゴリのために予約されています。
  
表52.65 typcategoryのコード
	コード	カテゴリ
	A	配列型
	B	論理値型
	C	複合型
	D	日付時刻型
	E	列挙型
	G	幾何学型
	I	ネットワークアドレス型
	N	数値型
	P	仮想型
	R	範囲型
	S	文字列型
	T	時間間隔型
	U	ユーザ定義型
	V	ビット列型
	X	unknown型
	Z	内部利用の型




pg_user_mapping





pg_user_mappingカタログはローカルのユーザから遠隔のユーザへのマッピングを保持します。
一般ユーザからのこのカタログへのアクセスは制限されています。
代わりにpg_user_mappingsを使用してください。
  
表52.66 pg_user_mappingの列
	

列 型
      

      

説明
      

	
       oid oid
      

      

行識別子
      

	
       umuser oid

（参照先 pg_authid.oid）
      

      

マッピングされているローカルのロールのOID。
ユーザマッピングが公開されている場合はゼロ
      

	
       umserver oid

（参照先 pg_foreign_server.oid）
      

      

マッピングを保持する外部サーバのOID
      

	
       umoptions text[]
      

      

「keyword=value」文字列のようなユーザマッピングの特定のオプション
      





第53章 システムビュー





システムカタログに加えPostgreSQL™は数多くの組み込みビューを提供しています。
システムビューはいくつかの一般的に使用されるシステムカタログに対する問い合わせに手近にアクセスできるようにします。
他のビューはサーバ状態内部へのアクセスを提供します。
  


情報スキーマ（35章情報スキーマ）はシステムビューと重複する、もう一方のビューの集合を提供しています。
ここで説明しているビューはPostgreSQL™特有のものであるのに対し、情報スキーマは標準SQLであることから、もし情報スキーマが必要とする情報をすべて提供してくれるのであれば情報スキーマを使用する方が良いでしょう。
  


表53.1「システムビュー」は、ここで説明しているシステムビューの一覧です。
それぞれのビューのさらに詳細な説明は、これより後に述べられています。
蓄積された統計情報の結果にアクセスするためのいくつかの追加のビューがあります。
それらは表27.2「収集済み統計情報ビュー」で説明されています。
  
概要





表53.1「システムビュー」はシステムビューの一覧です。
それぞれのカタログのさらに詳細な説明は、これより後に述べられています。
注意書きがない限り、ここでのすべてのビューは読み取り専用です。
  
表53.1 システムビュー
	ビュー名	目的
	pg_aios	使用中の非同期IOハンドル
	pg_available_extensions	利用可能な拡張
	pg_available_extension_versions	利用可能な拡張のバージョン
	pg_backend_memory_contexts	バックエンドメモリコンテキスト
	pg_config	コンパイル時の設定パラメータ
	pg_cursors	開いているカーソル
	pg_file_settings	設定ファイルの内容の要約
	pg_group	データベースのユーザのグループ
	pg_hba_file_rules	クライアント認証の設定ファイルの内容の要約
	pg_ident_file_mappings	クライアントユーザ名マッピング設定ファイルの内容の要約
	pg_indexes	インデックス
	pg_locks	現在保持されている、または待っているロック
	pg_matviews	マテリアライズドビュー
	pg_policies	ポリシー
	pg_prepared_statements	準備済みの文
	pg_prepared_xacts	準備済みのトランザクション
	pg_publication_tables	パブリケーションとその関連テーブルの情報
	pg_replication_origin_status	レプリケーションの進捗を含めたレプリケーション起点に関する情報
	pg_replication_slots	レプリケーションスロットの情報
	pg_roles	データベースロール
	pg_rules	ルール
	pg_seclabels	セキュリティラベル
	pg_sequences	シーケンス
	pg_settings	パラメータ設定
	pg_shadow	データベースのユーザ
	pg_shmem_allocations	獲得共有メモリ
	pg_shmem_allocations_numa	獲得共有メモリのためのNUMAノードマッピング
	pg_stats	プランナ統計情報
	pg_stats_ext	プランナの拡張統計情報
	pg_stats_ext_exprs	演算式のプランナの拡張統計情報
	pg_tables	テーブル
	pg_timezone_abbrevs	時間帯省略形
	pg_timezone_names	時間帯名
	pg_user	データベースのユーザ
	pg_user_mappings	ユーザマッピング
	pg_views	ビュー
	pg_wait_events	待機イベント





pg_aios





pg_aiosビューは、現在使用中のすべてのAsynchronous I/O【非同期I/O】ハンドルを列挙します。
I/Oハンドルは、準備中、実行中、または完了処理中のI/O操作を参照するために使用されます。
pg_aiosには、各I/Oハンドルごとに1つの行が含まれます。
  


このビューは、主にPostgreSQL™の開発者にとって有用ですが、PostgreSQL™をチューニングするときにも役立つ場合があります。
  
表53.2 pg_aiosの列
	

列 型
      

      

説明
      

	
       pid int4
      

      

このI/Oを発行しているサーバプロセスのプロセスID。
      

	
       io_id int4
      

      

I/Oハンドルの識別子。
ハンドルはI/Oが完了すると（またはI/Oが開始される前にハンドルが解放された場合に）再利用されます。
再利用されると、pg_aios.io_generationが増加します。
      

	
       io_generation int8
      

      

I/Oハンドルの世代。
      

	
       state text
      

      

I/Oハンドルの状態は以下です。
       
	

HANDED_OUT、コードから参照されていますが、まだ使用されていません
         

	

DEFINED、実行に必要な情報がわかっています
         

	

STAGED、実行の準備が完了しています
         

	

SUBMITTED、実行するように送信しました
         

	

COMPLETED_IO、終了しましたが、結果はまだ処理されていません
         

	

COMPLETED_SHARED、共有完了処理が完了しました
         

	

COMPLETED_LOCAL、バックエンドのローカル完了処理が完了しました
         




      

	
       operation text
      

      

I/Oハンドルを使用して行われる操作は以下です。
       
	

invalid、まだ不明です
         

	

readv、ベクトル化された読み取りです
         

	

writev、ベクトル化された書き込みです
         




      

	
       off int8
      

      

I/O操作のオフセット。
      

	
       length int8
      

      

I/O操作の長さ。
      

	
       target text
      

      

I/O対象のオブジェクト種別は以下です。
       
	

smgr、リレーションに対するI/Oです
         




      

	
       handle_data_len int2
      

      

I/O操作に関連するデータの長さ。
shared_buffersとtemp_buffersに対するI/Oの場合、I/Oが行われているバッファの数を示します。
      

	
       raw_result int4
      

      

I/O操作の低レベルの結果。
操作がまだ完了していない場合はNULLになります。
      

	
       result text
      

      

I/O操作の高レベルの結果は以下になります。
       
	

UNKNOWNは、操作の結果がまだ不明であることを意味します。
         

	

OKは、I/Oが正常に完了したことを意味します。
         

	

PARTIALは、I/Oがエラーなしで完了したが、すべてのデータが処理されなかったことを意味します。
通常、呼び出し側は再試行して残りの作業を別のI/Oで実行する必要があります。
         

	

WARNINGは、I/Oはエラーなく完了したが、IOの実行により警告が発生したことを意味します。
たとえば、zero_damaged_pagesを有効化した状態で破損したバッファに遭遇した場合などです。
         

	

ERRORは、I/Oがエラーで失敗したことを意味します。
         




      

	
       target_desc text
      

      

I/O操作の対象になるものの説明。
      

	
       f_sync bool
      

      

I/Oが同期的に実行されるかどうかを示すフラグ。
      

	
       f_localmem bool
      

      

I/Oがプロセスのローカルメモリを参照しているかどうかを示すフラグ。
      

	
       f_buffered bool
      

      

I/Oがバッファ付きI/Oかどうかを示すフラグ。
      






pg_aiosビューは読み取り専用です。
  


デフォルトではpg_aiosビューはスーパーユーザか、pg_read_all_statsロールの権限を持つロールだけが読み取りできます。
  

pg_available_extensions





pg_available_extensionsビューはインストレーションで利用可能な拡張を列挙します。
現在インストールされている拡張を表すpg_extensionカタログも参照してください。
  
表53.3 pg_available_extensionsの列
	

列 型
      

      

説明
      

	
       name name
      

      

拡張名
      

	
       default_version text
      

      

デフォルトのバージョン名称。何も指定がなければNULL
      

	
       installed_version text
      

      

現在インストールされている拡張のバージョン。インストールされていない場合はNULL
      

	
       comment text
      

      

拡張の制御ファイルからのコメント文字列
      






pg_available_extensionsビューは読み取り専用です。
  

pg_available_extension_versions





pg_available_extension_versionsビューはインストレーションで利用可能な特定の拡張のバージョンを列挙します。
現在インストールされている拡張を表すpg_extensionカタログも参照してください。
  
表53.4 pg_available_extension_versionsの列
	

列 型
      

      

説明
      

	
       name name
      

      

拡張名
      

	
       version text
      

      

バージョン名称
      

	
       installed bool
      

      

trueの場合は、現在このバージョンの拡張がインストールされている
      

	
       superuser bool
      

      

trueの場合は、スーパーユーザがこの拡張をインストールできる（ただし、trustedを見てください）
      

	
       trusted bool
      

      

trueの場合は、適切な権限を持つ非スーパーユーザがこの拡張をインストールできる
      

	
       relocatable bool
      

      

trueの場合は、拡張が他のスキーマに再配置可能である
      

	
       schema name
      

      

拡張がインストールされなければならないスキーマの名前。
一部の再配置またはすべての再配置を行うことができる場合はNULL
      

	
       requires name[]
      

      

前もって必要な拡張の名前。なければNULL
      

	
       comment text
      

      

拡張の制御ファイルからのコメント文字列
      






pg_available_extension_versionsビューは読み取り専用です。
  

pg_backend_memory_contexts





pg_backend_memory_contextsビューは、現在のセッションにアタッチされているサーバプロセスのすべてのメモリコンテキストを表示します。
  


pg_backend_memory_contextsの各1行が各々のメモリコンテキストを格納します。
  
表53.5 pg_backend_memory_contexts列
	

列 型
      

      

説明
      

	
       name text
      

      

メモリコンテキストの名前
      

	
       ident text
      

      

メモリコンテキストの識別情報。このフィールドは1024バイトで切り捨てられる
      

	
       type text
      

      

メモリコンテキストの種別
      

	
       level int4
      

      

メモリコンテキスト階層内の、1から始まるコンテキストのレベル。
コンテキストのレベルは、path列内のそのコンテキストの位置も示します。
      

	
       path int4[]
      

      

メモリコンテキスト階層を説明する一時的な数値識別子の配列。
最初の要素はTopMemoryContext用で、後続の要素には中間の親が含まれ、最後の要素には現在のコンテキストの識別子が含まれます。
      

	
       total_bytes int8
      

      

このメモリコンテキストで確保した合計バイト数
      

	
       total_nblocks int8
      

      

このメモリコンテキストで確保した合計ブロック数
      

	
       free_bytes int8
      

      

バイト単位の空き領域
      

	
       free_chunks int8
      

      

空きチャンクの数
      

	
       used_bytes int8
      

      

バイト単位の使用領域
      






デフォルトではpg_backend_memory_contextsビューはスーパーユーザか、pg_read_all_statsロールの権限を持つユーザのみが読み取り専用でアクセスできます。
  


メモリコンテキストは問い合わせの実行中に作成および破棄されるため、path列に格納されている識別子は、同じ問い合わせでビューを複数回呼び出しても一定にならない可能性があります。
以下の例は、この列の効果的な使用方法を示し、CacheMemoryContextとそのすべての子が使用する合計バイト数を計算しています。



WITH memory_contexts AS (
    SELECT * FROM pg_backend_memory_contexts
)
SELECT sum(c1.total_bytes)
FROM memory_contexts c1, memory_contexts c2
WHERE c2.name = 'CacheMemoryContext'
AND c1.path[c2.level] = c2.path[c2.level];




共通テーブル式を使用して、path列のコンテキストIDがビューの両方の評価で一致するようにします。
  

pg_config





pg_configビューは、現在インストールされているPostgreSQL™のバージョンのコンパイル時設定パラメータを表示します。
例えば、PostgreSQL™とインタフェースしたいソフトウェアパッケージによって、要求されるヘッダファイルとライブラリを探す手助けとなるために使用されることが意図されます。
PostgreSQL™クライアントアプリケーションであるpg_config(1)と同様な基本的な情報を提供します。
  


デフォルトではpg_configビューはスーパーユーザだけが読み取りできます。
  
表53.6 pg_configの列
	

列 型
      

      

説明
      

	
       name text
      

      

パラメータ名
      

	
       setting text
      

      

パラメータ値
      





pg_cursors





pg_cursorsビューは現在利用可能なカーソルを列挙します。
以下のようにカーソルは複数の方法で定義可能です。
   
	

SQLからDECLARE文経由。
     

	

「拡張問い合わせ」で説明する、フロントエンド/バックエンドプロトコルからBindメッセージ経由。
     

	

「インタフェース関数」で説明する、サーバプログラミングインタフェース（SPI）経由。
     






pg_cursorsビューは、上のいずれかの方法で作成されたカーソルを表示します。
カーソルは、WITH HOLDと宣言されていない限り、それを定義したトランザクション期間しか存在しません。
したがって、保持不可能なカーソルは、作成元トランザクションが終わるまでの間のみ、このビューに現れます。

   
注記


手続き言語など、一部のPostgreSQL™の要素を実装するために内部的にカーソルが使用されています。
したがって、pg_cursorsにはユーザが明示的に作成していないカーソルも含まれる可能性があります。
    


  
表53.7 pg_cursorsの列
	

列 型
      

      

説明
      

	
       name text
      

      

カーソルの名前
      

	
       statement text
      

      

カーソル宣言の際に投稿された逐語的問い合わせ文字列
      

	
       is_holdable bool
      

      

trueの場合は、保持可能カーソル（つまりカーソルを宣言したトランザクションがコミットされた後でもアクセス可能なカーソル）。
それ以外はfalse
      

	
       is_binary bool
      

      

trueの場合は、カーソルがBINARYで宣言されている。
それ以外はfalse
      

	
       is_scrollable bool
      

      

trueの場合は、カーソルがスクロール可能（順序通り以外の方法に行を取り出すことが可能）。
それ以外はfalse
      

	
       creation_time timestamptz
      

      

カーソルが宣言された時間。
      






pg_cursorsビューは読み取り専用です。
  

pg_file_settings





pg_file_settingsビューはサーバの設定ファイルの内容の要約を提供します。
ファイル内にある各「name = value」のエントリについて、このビューの1行が存在し、その値が正しく適用可能かどうかの注釈が含まれます。
ファイル内の構文エラーなど「name = value」のエントリと関係のない問題についての行がさらに存在することもあります。
  


設定ファイルについて予定している変更が動作するかどうかの確認や、以前のエラーの調査分析をする際にこのビューは役立ちます。
このビューはファイルの現在の内容についてレポートするのであって、サーバが最後に適用した内容ではないことに注意してください。
（後者を知るには、通常はpg_settingsビューで十分でしょう。）
  


デフォルトで、pg_file_settingsビューはスーパーユーザのみが参照可能です。
  
表53.8 pg_file_settingsの列
	

列 型
      

      

説明
      

	
       sourcefile text
      

      

設定ファイルの完全なパス名
      

	
       sourceline int4
      

      

設定ファイル内のエントリの行番号
      

	
       seqno int4
      

      

エントリが処理される順序（1..n）
      

	
       name text
      

      

設定パラメータ名
      

	
       setting text
      

      

パラメータに代入される値
      

	
       applied bool
      

      

trueの場合は、値が正しく適用可能
      

	
       error text
      

      

NULLでないときは、このエントリが適用できない理由についてのエラーメッセージ
      






設定ファイルに構文エラーや不正なパラメータ名がある場合、サーバはファイル内の設定をまったく適用せず、すべてのappliedフィールドはfalseになります。
このような場合は、errorフィールドが非NULLで問題を示唆する行が1行以上あるでしょう。
それ以外の場合は、個々の設定は可能であれば適用されます。
個々の設定が適用できない場合（例えば、不正な値、サーバの起動後は設定が変更できないなど）はerrorフィールドに適切なメッセージがあります。
エントリのapplied = falseになる別の理由は、同じパラメータがそれより後のエントリで上書きされている場合です。
この場合はエラーとはみなされませんので、errorフィールドには何も表示されません。
  


実行時パラメータを変更する様々な方法について、詳しくは「パラメータの設定」を参照してください。
  

pg_group





pg_groupビューは下位互換のために存在しています。
バージョン8.1以前のPostgreSQL™のカタログを模擬しています。
このビューは、rolcanloginとしてマークされていない、すべてのロールの名前とメンバを保持しています。
これはグループとして使用されているロールの集合と似ています。
  
表53.9 pg_groupの列
	

列 型
      

      

説明
      

	
       groname name

（参照先 pg_authid.rolname）
      

      

グループの名前
      

	
       grosysid oid

（参照先 pg_authid.oid）
      

      

グループのID
      

	
       grolist oid[]

（参照先 pg_authid.oid）
      

      

このグループのロールIDを含む配列
      





pg_hba_file_rules





pg_hba_file_rulesビューはクライアント認証の設定ファイルpg_hba.confの内容の要約を提供します。
設定ファイル内の空でない、コメントでもない各行について、このビュー内に行が1つあり、ルールが正しく適用できたかどうかを示す注記が入ります。
  


このビューは、認証の設定ファイルについて計画している変更が動作するかどうかを確認する、あるいは以前の失敗について分析するのに役立つでしょう。
このビューはサーバが最後に読み込んだものではなく、ファイルの現在の内容について報告することに注意してください。
  


デフォルトでは、スーパーユーザのみがpg_hba_file_rulesビューを読み取ることができます。
  
表53.10 pg_hba_file_rulesの列
	

列 型
      

      

説明
      

	
       rule_number int4
      

      

有効な場合はこのルールの番号。そうでない場合はNULL。
これは、認証中に一致が見つかるまで各ルールが検討される順序を示します。
      

	
       file_name text
      

      

このルールを含むファイルの名前
      

	
       line_number int4
      

      

file_name内のこのルールの行番号
      

	
       type text
      

      

接続の種別
      

	
       database text[]
      

      

このルールが適用されるデータベース名のリスト
      

	
       user_name text[]
      

      

このルールが適用されるユーザ名とグループ名のリスト
      

	
       address text
      

      

ホスト名、IPアドレス、あるいはall、samehost、samenetのいずれか。ローカル接続の場合はNULL。
      

	
       netmask text
      

      

IPアドレスマスク。当てはまらない場合はNULL
      

	
       auth_method text
      

      

認証方法
      

	
       options text[]
      

      

認証方法について指定されたオプション（あれば）
      

	
       error text
      

      

NULLでないなら、この行がなぜ処理できなかったかを示すエラーメッセージ
      






不正なエントリに対応する行は、通常はline_numberフィールドとerrorフィールドにのみ値が入ります。
  


クライアント認証設定の詳細については20章クライアント認証を参照してください。
  

pg_ident_file_mappings





pg_ident_file_mappingsビューはクライアントユーザ名マッピング設定ファイルpg_ident.confの内容の要約を提供します。
ファイル内の空でない、コメントでもない各行について、このビュー内に行が1つあり、マップが正しく適用できたかどうかを示す注記が入ります。
  


このビューは、認証の設定ファイルについて計画している変更が動作するかどうかを確認する、あるいは以前の失敗について分析するのに役立つでしょう。
このビューはサーバが最後に読み込んだものではなく、ファイルの現在の内容について報告することに注意してください。
  


デフォルトで、pg_ident_file_mappingsビューはスーパーユーザのみが参照可能です。
  
表53.11 pg_ident_file_mappings Columns
	

列 型
      

      

説明
      

	
       map_number int4
      

      

有効な場合は、優先順位の中でこのマップの番号。そうでない場合はNULL
      

	
       file_name text
      

      

このマップを含むファイルの名前
      

	
       line_number int4
      

      

file_name内のこのマップの行番号
      

	
       map_name text
      

      

マップの名前
      

	
       sys_name text
      

      

検出されたクライアントのユーザ名
      

	
       pg_username text
      

      

要求されたPostgreSQLユーザ名
      

	
       error text
      

      

NULLでないなら、この行がなぜ処理できなかったかを示すエラーメッセージ
      






不正なエントリに対応する行は、通常はline_numberフィールドとerrorフィールドにのみ値が入ります。
  


クライアント認証設定の詳細については20章クライアント認証を参照してください。
  

pg_indexes





pg_indexesビューはデータベース内のそれぞれのインデックスについて有用な情報を提供します。
  
表53.12 pg_indexesの列
	

列 型
      

      

説明
      

	
       schemaname name

（参照先 pg_namespace.nspname）
      

      

テーブルとインデックスを含むスキーマの名前
      

	
       tablename name

（参照先 pg_class.relname）
      

      

インデックスのついているテーブルの名前
      

	
       indexname name

（参照先 pg_class.relname）
      

      

インデックスの名前
      

	
       tablespace name

（参照先 pg_tablespace.spcname）
      

      

インデックスを含むテーブル空間の名前（データベースのデフォルトはNULL）
      

	
       indexdef text
      

      

インデックス定義（再作成用CREATE INDEX(7)コマンド）
      





pg_locks





pg_locksビューはデータベースサーバ内でアクティブなプロセスによって保持されたロックに関する情報へのアクセスを提供します。
ロックに関するより詳細な説明は13章同時実行制御を参照してください。
  


pg_locksにはロック対象となる進行中のオブジェクト、要求されたロックモード、および関連するプロセス毎に1つの行を持ちます。
ですから、もし複数のプロセスが同じロック対象オブジェクトに対してロックを保持していたりロックを待機している場合には、同じロック対象オブジェクトが何度も出現することがあります。
しかし現在ロックされていないオブジェクトはまったく現れません。
  


ロック対象オブジェクトには異なる型がいくつか存在します。
リレーション全体（例：テーブル）、リレーションの個別のページ、リレーションの個別のタプル、トランザクションID（仮想と永続の両方のID）、一般的なデータベースオブジェクト（これはpg_descriptionやpg_dependと同様にクラスOIDとオブジェクトOIDで識別されます）。
さらに、リレーションを拡張する権利は、pg_database.datfrozenxidを更新する権利と同様に、別のロック対象オブジェクトとして表現されます。
また「勧告的」ロックはユーザ定義の意味を持つ複数から形成されるかもしれません。
  
表53.13 pg_locksの列
	

列 型
      

      

説明
      

	
       locktype text
      

      

ロックオブジェクトのタイプ：
relation、
extend、
frozenid、
page、
tuple、
transactionid、
virtualxid、
spectoken、
object、
userlock、
advisory、
applytransactionのどれかです。
（表27.11「Lock型の待機イベント」も参照してください。）
      

	
       database oid

（参照先 pg_database.oid）
      

      

ロック対象が存在しているデータベースのOID。対象が共有オブジェクトの場合はゼロ。対象がトランザクションIDである場合はNULL
      

	
       relation oid

（参照先 pg_class.oid）
      

      

ロックの対象となるリレーションのOID。対象がリレーションではない場合かリレーションの一部である場合はNULL
      

	
       page int4
      

      

ロックの対象となるリレーション内のページ番号。対象がタプルもしくはリレーションページではない場合はNULL
      

	
       tuple int2
      

      

ページ内のロックの対象となっているタプル番号。対象がタプルではない場合はNULL
      

	
       virtualxid text
      

      

ロックの対象となるトランザクションの仮想ID。対象が仮想トランザクションIDではない場合はNULL。
67章トランザクション処理を参照してください。
      

	
       transactionid xid
      

      

ロックの対象となるトランザクションのID。対象がトランザクションIDではない場合はNULL。
67章トランザクション処理を参照してください。
      

	
       classid oid

（参照先 pg_class.oid）
      

      

ロックの対象を含むシステムカタログのOID。対象が一般的なデータベースオブジェクトではない場合はNULL
      

	
       objid oid

（いずれかのOID列）
      

      

システムカタログ内のロックの対象のOID。
対象が一般的なデータベースオブジェクトでない場合はNULL
      

	
       objsubid int2
      

      

ロック対象の列番号（classidとobjidはテーブル自身を参照します）、その他の一般的なデータベースオブジェクトではゼロ、一般的ではないデータベースオブジェクトではNULL
      

	
       virtualtransaction text
      

      

ロックを保持、もしくは待っている仮想トランザクションID
      

	
       pid int4
      

      

ロックを保持、もしくは待っているサーバプロセスのプロセスID。
ただしプリペアドトランザクションによりロックが保持されている場合はNULL
      

	
       mode text
      

      

このプロセスで保持または要求するロックモードの名称。
（「テーブルレベルロック」および「シリアライザブル分離レベル」参照）
      

	
       granted bool
      

      

trueの場合は、ロックが保持されている。
falseの場合は、ロックが待ち状態
      

	
       fastpath bool
      

      

trueの場合は、ファストパス経由でロックが獲得されている。
falseの場合は、メインロックテーブル経由で獲得されている
      

	
       waitstart timestamptz
      

      

サーバプロセスがこのロックを待ち始めた時刻。ロックを獲得していればNULL。
grantedがfalseであっても、待ちを開始してから非常に短い時間の間、これはNULLになることがあることに注意してください。
      






指定されたプロセスにより保持されているロックを表す行内ではgrantedはtrueです。
falseの場合は、このロックを獲得するため現在プロセスが待機中であることを示しています。
つまり、同じロック対象のオブジェクトに対して何らかの他のプロセスが競合するロックを保持、もしくは待機していることを意味します。
待機中のプロセスはその別のプロセスがロックを解放するまで活動を控えます（もしくはデッドロック状態が検出されることになります）。
単一プロセスでは一度に多くても1つのロックを獲得するために待機します。
  


トランザクションの実行中は常に、サーバプロセスはその仮想トランザクションID上に排他的ロックをかけます。
もしある永続IDがトランザクションに割り当てられる（普通はトランザクションがデータベースの状態を変化させるときのみに発生します）と、トランザクションは終了するまで永続トランザクションIDに対して排他ロックを保持します。
あるトランザクションが他のトランザクションを特定して終了まで待機しなければならないと判断した場合、他とみなしたトランザクションのIDに対し共有ロックを獲得するように試み、目的を達します（仮想IDであるか永続IDであるかは、その状況によります）。
これは、他とみなしたトランザクションが完了し、そしてロックを解放した場合のみ成功します。
  


タプルはロック対象のオブジェクト種類ですが、行レベルロックについての情報はメモリではなく、ディスクに保存されます。
よって行レベルロックは通常、このビューには現れません。
もしプロセスが行レベルロックの待ち状態である場合は、その行ロックを保持している永続トランザクションIDを待つ状態で、そのトランザクションはビューに現れます。
  


投機的挿入ロックは、トランザクションIDと投機的な挿入トークンから構成されます。
投機的な挿入トークンはobjid列に表示されます。
  


勧告的ロックは、単一のbigint値、または、2つの整数値をキーとして獲得できます。
bigintの場合は、その上位半分がclassid列内に表示され、残りの下位半分はobjid列内に表示されます。
また、objsubidは1です。
元のbigint値を(classid::bigint << 32) | objid::bigintという式で再構成できます。
整数値キーでは、最初のキーがclassid列に、2番目のキーがobjid列に表示され、objsubidは2です。
キーの実際の意味はユーザに任されています。
勧告的ロックはデータベースに対して局所的ですので、勧告的ロックではdatabase列が意味を持ちます。
  


適用トランザクションロックは、論理レプリケーションでトランザクションを適用するために並列モードで使用されます。
リモートトランザクションIDはtransactionid列に表示されます。
objsubidは、ロックのサブタイプを表示します。
これは、変更のセットを同期するために使用されるロックの場合は0で、トランザクションを終了してコミット順序を保証するために使用されるロックの場合は1です。
  


pg_locksは現行のデータベースに関連するロックのみならず、データベースクラスタ内のすべてのロックに関する全体的なビューを提供します。
relation列はロックされたリレーションを識別するためにpg_class.oidと結合できますが、これは現行のデータベース内のリレーション（database列が現行のデータベースのOIDまたはゼロとなっているもの）に対してのみ正常に動作します。
  


それぞれのロックを保持もしくは待機しているセッションのさらなる情報を入手するためpg_stat_activityビューのpid列とpid列を結合できます。
例えば、このような感じです。


SELECT * FROM pg_locks pl LEFT JOIN pg_stat_activity psa
    ON pl.pid = psa.pid;



また、プリペアドトランザクションを使用している場合には、ロックを保持しているプリペアドトランザクションに関してより多くの情報を得るため、virtualtransaction列は、pg_prepared_xactsビューのtransaction列と結合できます。
（プリペアドトランザクションはロックを待つことはありませんが、実行時に獲得したロックを保持し続けます。）
例えば、このような感じです。


SELECT * FROM pg_locks pl LEFT JOIN pg_prepared_xacts ppx
    ON pl.virtualtransaction = '-1/' || ppx.transaction;


  


pg_locksビューとそれ自身の結合によって、どのプロセスが他のどのプロセスをブロックしているかの情報を入手することが可能ですが、同時に詳細な正しい情報を得ることは非常に困難です。
このようなクエリはどのロックモードが他のものと衝突しているかについての知見を書き出すべきです。
さらに悪いことに、pg_locksビューは、ロック待ちキューにてどのプロセスが他のどのプロセスに先行しているかの情報を提供しない、またはどのプロセスが他のクライアントセッションのために動作している並列ワーカープロセスかの情報を提供しません。
待機しているプロセスが、どのプロセスにブロックされているかを識別するためにより良い方法は、pg_blocking_pids()関数（表9.71「セッション情報関数」を参照してください）を使用することです。
  


pg_locksビューは、異なるシステムにおける、通常のロックマネージャと述語ロックマネージャの両方からのデータを表示します。
さらに通常のロックマネージャではロックを通常ロックと近道ロックに細分化します。
このデータが完全に一貫性があることは保証されません。
ビューが問い合わせられると、近道ロック（fastpath = trueが真）は、ロックマネージャ全体の状態を凍結することなく、各バックエンドからひとつひとつ収集されます。
このため情報収集期間中にロックが獲得されたり解放されたりされる可能性があります。
しかし、これらのロックはその時点で存在する他のロックと競合することがないことが分かっていることに注意してください。
近道ロックについてすべてのバックエンドを問い合わせた後、通常のロックマネージャの残りは１つの単位としてロックされ、残りすべてのロックの一貫性があるスナップショットを原子的な処理で収集します。
ロックマネージャのロックを解除した後、述語ロックマネージャは同様にロックされ、すべての述語ロックを原子的な処理で収集します。
このように、近道ロックという例外がありますが、各ロックマネージャは一貫性をもった結果セットを生成します。
しかし、両方のロックマネージャを同時にロックしませんので、通常のロックマネージャを問い合わせた後と述語ロックマネージャを問い合わせる前の間にロックが獲得されたり解放されたりされる可能性があります。
  


このビューが頻繁にアクセスされている場合は、通常もしくは述語ロックマネージャをロックするとデータベースのパフォーマンスに影響があります。
ロックマネージャからデータを取得するために、ロックは必要最低限の時間だけ保持されますが、パフォーマンスに影響がある可能性が全くないわけではありません。
  

pg_matviews





pg_matviewsビューは、データベース内のマテリアライズドビューそれぞれに関する有用な情報へのアクセスを提供します。
  
表53.14 pg_matviewsの列
	

列 型
      

      

説明
      

	
       schemaname name

（参照先 pg_namespace.nspname）
      

      

マテリアライズドビューを含むスキーマの名前
      

	
       matviewname name

（参照先 pg_class.relname）
      

      

マテリアライズドビューの名前
      

	
       matviewowner name

（参照先 pg_authid.rolname）
      

      

マテリアライズドビューの所有者の名前
      

	
       tablespace name

（参照先 pg_tablespace.spcname）
      

      

マテリアライズドビューを含むテーブル空間の名前（データベースのデフォルトであればNULL）
      

	
       hasindexes bool
      

      

trueの場合は、マテリアライズドビューがインデックスを持つ（または最近まで持っていた）
      

	
       ispopulated bool
      

      

trueの場合は、マテリアライズドビューが現在データ投入されている
      

	
       definition text
      

      

マテリアライズドビューの定義（再構成されたSELECT(7)問い合わせ）
      





pg_policies





pg_policiesビューはデータベース内の行単位セキュリティのポリシーについて便利な情報へのアクセスを提供します。
  
表53.15 pg_policiesの列
	

列 型
      

      

説明
      

	
       schemaname name

（参照先 pg_namespace.nspname）
      

      

ポリシーが適用されているテーブルがあるスキーマの名前
      

	
       tablename name

（参照先 pg_class.relname）
      

      

ポリシーが適用されているテーブルの名前
      

	
       policyname name

（参照先 pg_policy.polname）
      

      

ポリシーの名前
      

	
       permissive text
      

      

許容(permissive)ポリシーか、制限(restrictive)ポリシーか
      

	
       roles name[]
      

      

このポリシーが適用されるロール
      

	
       cmd text
      

      

ポリシーが適用されるコマンドの種類
      

	
       qual text
      

      

このポリシーが適用される問い合わせにセキュリティバリアの制約として追加される式
      

	
       with_check text
      

      

このテーブルに行を追加する問い合わせにWITH CHECKの制約として追加される式
      





pg_prepared_statements





pg_prepared_statementsビューは現在のセッションで利用可能な準備済み文をすべて表示します。
準備済み文についての詳細はPREPARE(7)を参照してください。
  


pg_prepared_statementsには、1つの準備済み文に対して一行が存在します。
新しい準備済み文が作成されると行が追加され、準備済み文が解放される（例えばDEALLOCATEを使用）と行が削除されます。
  
表53.16 pg_prepared_statementsの列
	

列 型
      

      

説明
      

	
       name text
      

      

準備済み文の識別子
      

	
       statement text
      

      

この準備済み文を作成するためにクライアントが送付した問い合わせ文字列。
SQL経由で作成された準備済み文では、これはクライアントが送信したPREPARE文です。
フロントエンド/バックエンドプロトコル経由で作成された準備済み文では、これは準備済み文自身のテキストです。
      

	
       prepare_time timestamptz
      

      

準備済み文が作成された時間
      

	
       parameter_types regtype[]
      

      

regtype配列形式の準備済み文が想定しているパラメータ型。
配列要素に対応するOIDは、regtypeからoidへのキャストを行うことで取り出すことができます。
      

	
       result_types regtype[]
      

      

regtype配列形式の準備済み文が返す列の型。
配列要素に対応するOIDは、regtypeからoidへのキャストを行うことで取り出すことができます。
準備済み文が結果を提供しない場合（例えばDML文）は、このフィールドはNULLになります。
      

	
       from_sql bool
      

      

trueの場合は、準備済み文がPREPARE SQLコマンド経由で作成された。
falseの場合は、フロントエンド/バックエンドプロトコル経由で文が準備された
      

	
       generic_plans int8
      

      

汎用計画が選択された回数
      

	
       custom_plans int8
      

      

カスタム計画が選択された回数
      






pg_prepared_statementsビューは読み取り専用です。
  

pg_prepared_xacts





pg_prepared_xactsビューは、現状で2相コミットのためにプリペアドトランザクションについての情報を表示します（詳細はPREPARE TRANSACTION(7)を参照してください）。
  


pg_prepared_xactsは、プリペアドトランザクション毎に1つの行を含みます。
この項目はトランザクションがコミットもしくはロールバックされたときに削除されます。
  
表53.17 pg_prepared_xactsの列
	

列 型
      

      

説明
      

	
       transaction xid
      

      

プリペアドトランザクションに対する数値のトランザクション識別子
      

	
       gid text
      

      

トランザクションに割り当てられたグローバルのトランザクション識別子
      

	
       prepared timestamptz
      

      

トランザクションがコミットのために準備された時間
      

	
       owner name

（参照先 pg_authid.rolname）
      

      

トランザクションを実行したユーザ名
      

	
       database name

（参照先 pg_database.datname）
      

      

トランザクションを実行したデータベース名
      






pg_prepared_xactsビューにアクセスすると、内部のトランザクション管理データ構造が一時的にロックされます。
そして表示用にコピーが作成されます。
これは、必要以上に長く通常の操作をブロックさせずに、ビューが一貫性のある結果を生成することを保証します。
このビューが頻繁にアクセスされると、データベースの性能になんらかの影響を及ぼします。
  

pg_publication_tables





pg_publication_tablesビューはパブリケーションとそれに含まれるテーブルの間のマッピングに関する情報を提供します。
その元となるカタログpg_publication_relとは異なり、このビューはFOR ALL TABLESとFOR TABLES IN SCHEMAで定義されたパブリケーションを展開するため、そのようなパブリケーションについては対象となる各テーブルについて1行があります。
  
表53.18 pg_publication_tablesの列
	

列 型
      

      

説明
      

	
       pubname name

（参照先 pg_publication.pubname）
      

      

パブリケーションの名前
      

	
       schemaname name

（参照先 pg_namespace.nspname）
      

      

テーブルがあるスキーマの名前
      

	
       tablename name

（参照先 pg_class.relname）
      

      

テーブルの名前
      

	
       attnames name[]

（参照先 pg_attribute.attname）
      

      

パブリケーションに含まれるテーブル列の名前。
ユーザがテーブルの列リストを指定しなかった場合に、テーブルのすべての列が含まれます。
      

	
       rowfilter text
      

      

テーブルのパブリケーション必要条件の式
      





pg_replication_origin_status





pg_replication_origin_statusビューには、ある起点の再生の進捗についての情報が含まれます。
レプリケーション起点についての詳細は48章レプリケーション進捗の追跡を参照してください。
  
表53.19 pg_replication_origin_statusの列
	

列 型
      

      

説明
      

	
       local_id oid

（参照先 pg_replication_origin.roident）
      

      

内部ノード識別子
      

	
       external_id text

（参照先 pg_replication_origin.roname）
      

      

外部ノード識別子
      

	
       remote_lsn pg_lsn
      

      

そのデータまで複製されたことを示す起点ノードのLSN
      

	
       local_lsn pg_lsn
      

      

そのremote_lsnが複製されたことを示す、このノードのLSN。
非同期コミットを使用している場合に、データをディスクに書き出す前にコミットレコードをフラッシュするために使用されます。
      





pg_replication_slots





pg_replication_slotsは、現在存在するデータベースクラスタとその状態、全てのレプリケーションスロットの一覧を提供します。
  


レプリケーションスロットに関する詳細は、「レプリケーションスロット」と47章ロジカルデコーディングを参照してください。
  
表53.20 pg_replication_slotsの列
	

列 型
      

      

説明
      

	
       slot_name name
      

      

クラスタ間で一意なレプリケーションスロットの識別子
      

	
       plugin name
      

      

出力プラグインに使用されている論理スロットまたは物理スロットの場合はNULL、を含む共有オブジェクトの基底名。
      

	
       slot_type text
      

      

スロットのタイプ：physicalまたはlogical
      

	
       datoid oid

（参照先 pg_database.oid）
      

      

このスロットと関連しているデータベースのOID、またはNULL。論理スロットだけがデータベースと関連を持つことができます。
      

	
       database name

（参照先 pg_database.datname）
      

      

このスロットと関連しているデータベース名、またはNULL。論理スロットだけがデータベースと関連を持つことができます。
      

	
       temporary bool
      

      

trueの場合は、これが一時レプリケーションスロットである。
一時スロットはディスクに保存されず、エラーのとき、またはセッションが終了したときには自動的に削除されます。
      

	
       active bool
      

      

trueの場合は、このスロットが現在ストリーミングされている
      

	
       active_pid int4
      

      

このスロットのデータをストリーミングしているセッションのプロセスID。
非アクティブな場合はNULL。
      

	
       xmin xid
      

      

このスロットがデータベースとの接続を必要としている最も古いトランザクション。
VACUUM は後でトランザクションによって削除されたタプルを除去できません。
      

	
       catalog_xmin xid
      

      

このスロットがデータベースとの接続を必要としている、システムカタログに影響する最も古いトランザクション。
VACUUMは後でトランザクションによって削除されたカタログのタプルを除去できません。
      

	
       restart_lsn pg_lsn
      

      

消費者のスロットによって必要とされており、LSNが現在のLSNからmax_slot_wal_keep_size以上遅れていない限り、チェックポイント中に自動的に削除されない最も古いWALのアドレス（LSN）です。
このスロットのLSNが保存されていなければNULLです。
      

	
       confirmed_flush_lsn pg_lsn
      

      

利用者がデータの受信を確認できている論理スロットのアドレス（LSN）。
このLSNより前にコミットされたトランザクションに対応するデータは、もはや有効ではありません。
物理スロットの場合はNULL。
      

	
       wal_status text
      

      

このスロットが報告するWALファイルの入手可能性。
可能な値は以下です。
       
	reserved。報告されたファイルはmax_wal_size内であることを意味します。

	extended。max_wal_sizeは超えているものの、ファイルはレプリケーションスロットあるいはwal_keep_sizeによって保存されていることを意味します。
         

	

unreserved。スロットはもはや要求されたWALファイルを保持しておらず、その一部が次のチェックポイントで削除される予定であることを意味しています。
これは通常、max_slot_wal_keep_sizeが負ではない値に設定されている場合に発生します。
この状態はreservedまたはextendedに戻ることができます。
         

	

lost。このスロットが使用できなくなったことを意味します。
         




      

	
       safe_wal_size int8
      

      

「ロスト」状態に陥る危険性のないスロットにおいて、WALに書き込むことのできるバイト数です。
失われたスロットに対して、あるいはmax_slot_wal_keep_sizeが-1ならNULLです。
      

	
       two_phase bool
      

      

trueの場合は、準備されたトランザクションのデコーディングのためにスロットが有効。
物理スロットでは常にfalse。
      

	
       two_phase_at pg_lsn
      

      

準備されたトランザクションのデコードが有効になっているアドレス（LSN）。
two_phaseがfalseである論理スロットおよび物理スロットの場合はNULL。
      

	
       inactive_since timestamptz
      

      

スロットが非アクティブになった時刻。
スロットが現在ストリーミングされている場合はNULL。
スロットが無効になると、この値は決して更新されません。
プライマリサーバから同期されている（syncedフィールドがtrueである）スタンバイスロットでは、inactive_sinceはスロットの同期（「レプリケーションスロットの同期」を参照）が最後に停止された時間を示すことに注意してください。
スロットが常に同期されている場合はNULL。
これにより、スタンバイスロットはいつ同期が中断されたかを追跡しやすくなります。
      

	
       conflicting bool
      

      

trueの場合は、この論理スロットがリカバリと競合した（したため、無効になっている）。
この列がtrueの場合、競合理由をinvalidation_reason列で確認してください。
物理スロットでは常にNULL。
      

	
       invalidation_reason text
      

      

スロットが無効化された理由。
論理スロットと物理スロットの両方で設定されます。
スロットが無効化されない場合はNULL。
指定可能な値は以下のとおりです。
       
	

wal_removedは、必要なWALが削除されたことを意味します。
         

	

rows_removedは、必要な行が削除されたことを意味します。
これは論理スロットに対してのみ設定されます。
         

	

wal_level_insufficientは、プライマリがロジカルデコーディングを実行するのに十分なwal_levelを持っていないことを意味します。
これは論理スロットに対してのみ設定されます。
         

	

idle_timeoutは、設定されたidle_replication_slot_timeout期間よりも長くスロットが非アクティブのままであることを意味します。
         




      

	
       failover bool
      

      

trueの場合は、この論理スロットがスタンバイに同期されるように有効になっており、フェイルオーバー後の新しいプライマリから論理レプリケーションを再開できます。
物理スロットの場合は、常にfalse。
      

	
       synced bool
      

      

trueの場合は、これがプライマリサーバから同期された論理スロットです。
ホットスタンバイでは、同期されたカラムがtrueとマークされているスロットは、ロジカルデコーディングにも手動でドロップすることもできません。
この列の値はプライマリサーバでは意味を持ちません。
プライマリの列の値は、すべてのスロットに対してfalseですが、（昇格したスタンバイから残っている場合）trueになる場合もあります。
      





pg_roles





pg_rolesビューはデータベースのロールに関する情報を提供します。
これは単に一般に公開されているpg_authidのビューですが、パスワード列が空白になっています。
  
表53.21 pg_rolesの列
	

列 型
      

      

説明
      

	
       rolname name
      

      

ロール名
      

	
       rolsuper bool
      

      

ロールはスーパーユーザの権限を持っている
      

	
       rolinherit bool
      

      

ロールは自動的にメンバとして属するロールの権限を継承する
      

	
       rolcreaterole bool
      

      

ロールはロールを作成できる
      

	
       rolcreatedb bool
      

      

ロールはデータベースを作成できる
      

	
       rolcanlogin bool
      

      

ロールはログインできる。つまりロールはセッションを始める認証の識別子となることができます
      

	
       rolreplication bool
      

      

ロールはレプリケーション用のロール。
レプリケーションロールは、レプリケーション接続を開始すること、およびレプリケーションスロットを作成および削除できます。
      

	
       rolconnlimit int4
      

      

ログイン可能なロールでは、これはロールが確立できる同時実行接続数を設定します。
-1は制限無しを意味します。
      

	
       rolpassword text
      

      

パスワードでありません（常に********のように読まれます）
      

	
       rolvaliduntil timestamptz
      

      

パスワード有効期限（パスワード認証でのみ使用）。
NULLの場合には満了時間はありません。
      

	
       rolbypassrls bool
      

      

すべての行単位セキュリティポリシーを無視するロール。詳しくは「行セキュリティポリシー」を参照してください。
      

	
       rolconfig text[]
      

      

実行時設定変数に関するロール固有のデフォルト
      

	
       oid oid

（参照先 pg_authid.oid）
      

      

ロールのID
      





pg_rules





   pg_rulesビューは問い合わせ書き換えルールについての有用な情報へのアクセスを提供します。
  
表53.22 pg_rulesの列
	

列 型
      

      

説明
      

	
       schemaname name

（参照先 pg_namespace.nspname）
      

      

テーブルがあるスキーマの名前
      

	
       tablename name

（参照先 pg_class.relname）
      

      

ルールの対象のテーブル名
      

	
       rulename name

（参照先 pg_rewrite.rulename）
      

      

ルール名
      

	
       definition text
      

      

ルール定義（再構築された生成コマンド）
      






pg_rulesビューは、ビューおよびマテリアライズドビューに対するON SELECTルールを除外します。
これらはpg_viewsおよびpg_matviewsにあります。
  

pg_seclabels





pg_seclabelsビューはセキュリティラベルに関する情報を提供します。
これはpg_seclabelカタログをより問い合わせし易くしたものです。
  
表53.23 pg_seclabelsの列
	

列 型
      

      

説明
      

	
       objoid oid

（いずれかのOID列）
      

      

このセキュリティラベルが関係するオブジェクトのOID
      

	
       classoid oid

（参照先 pg_class.oid）
      

      

このオブジェクトが現れるシステムカタログのOID
      

	
       objsubid int4
      

      

テーブル列上のセキュリティラベルでは、これは列番号です（objoidおよびclassoidはテーブル自身を参照します）。
他のすべての種類のオブジェクトでは、この列はゼロです。
      

	
       objtype text
      

      

このラベルが適用されるオブジェクトの種類のテキスト表現
      

	
       objnamespace oid

（参照先 pg_namespace.oid）
      

      

もし適用可能であればこのオブジェクト用の名前空間のOID。そうでない場合はNULL
      

	
       objname text
      

      

このラベルが適用されるオブジェクト名称のテキスト表現
      

	
       provider text

（参照先 pg_seclabel.provider）
      

      

このラベルに関連付いたラベルプロバイダです。
      

	
       label text

（参照先 pg_seclabel.label）
      

      

このオブジェクトに適用されるセキュリティラベルです。
      





pg_sequences





pg_sequencesビューはデータベース内の各シーケンスについての有用な情報へのアクセスを提供します。
  
表53.24 pg_sequencesの列
	

列 型
      

      

説明
      

	
       schemaname name

（参照先 pg_namespace.nspname）
      

      

シーケンスがあるスキーマの名前
      

	
       sequencename name

（参照先 pg_class.relname）
      

      

シーケンスの名前
      

	
       sequenceowner name

（参照先 pg_authid.rolname）
      

      

シーケンスの所有者の名前
      

	
       data_type regtype

（参照先 pg_type.oid）
      

      

シーケンスのデータ型
      

	
       start_value int8
      

      

シーケンスの開始値
      

	
       min_value int8
      

      

シーケンスの最小値
      

	
       max_value int8
      

      

シーケンスの最大値
      

	
       increment_by int8
      

      

シーケンスの増分値
      

	
       cycle bool
      

      

シーケンスが周回するかどうか
      

	
       cache_size int8
      

      

シーケンスのキャッシュサイズ
      

	
       last_value int8
      

      

ディスクに書き込まれた最後のシーケンス値。
キャッシュが使用されている場合、この値はシーケンスから最後に取り出された値より大きくなることがあります。
      






last_value列は以下のいずれかがtrueである場合、NULLとして読み込みます。
   
	

シーケンスからまだ読み取られていない。
     

	

現在のユーザがシーケンスについてUSAGEあるいはSELECT権限を持っていない。
     

	

ログを取らないシーケンスで、サーバはスタンバイ。
     




  

pg_settings





pg_settingsビューはサーバの実行時パラメータへのアクセスを提供します。
基本的にSHOWとSETコマンドの代わりとなるインタフェースです。
同時に最大・最小値などのようにSHOWコマンドでは直接入手できないそれぞれのパラメータのいくつかの実状にアクセスする機能を提供します。
  
表53.25 pg_settingsの列
	

列 型
      

      

説明
      

	
       name text
      

      

実行時設定パラメータ名
      

	
       setting text
      

      

パラメータの現在値
      

	
       unit text
      

      

暗黙的なパラメータの単位
      

	
       category text
      

      

パラメータの論理グループ
      

	
       short_desc text
      

      

パラメータの簡潔な説明
      

	
       extra_desc text
      

      

追加で、より詳細なパラメータについての説明
      

	
       context text
      

      

パラメータ値を設定するために必要な文脈（後述）
      

	
       vartype text
      

      

パラメータの型（bool、enum、integer、realもしくはstring）
      

	
       source text
      

      

現在のパラメータ値のソース
      

	
       min_val text
      

      

容認されている最小のパラメータ値（数値でない場合はNULL）
      

	
       max_val text
      

      

容認されている最大のパラメータ値（数値でない場合はNULL）
      

	
       enumvals text[]
      

      

許可された列挙パラメータの値（列挙型ではない場合はNULL）
      

	
       boot_val text
      

      

パラメータが設定されていなかったとした場合に仮定されるサーバ起動時のパラメータ値
      

	
       reset_val text
      

      

現状のセッションにおいてRESETによって戻されるパラメータの値
      

	
       sourcefile text
      

      

現状の値が設定されている設定ファイル（設定ファイル以外のソースから設定された値の場合、スーパーユーザでもpg_read_all_settingsの権限を持たないユーザから検査された時はNULLです）。
設定ファイル内でinclude指示子を使用する時に役に立ちます。
      

	
       sourceline int4
      

      

現状の値が設定されている設定ファイル内の行番号（設定ファイル以外のソースから設定された値の場合、スーパーユーザでもpg_read_all_settingsの権限を持たないユーザから検査された時はNULLです）。
      

	
       pending_restart bool
      

      

trueの場合は、値が設定ファイル内で変更されたが再起動が必要。
それ以外はfalse
      






contextが取り得る値は複数あります。
この設定の変更の困難さを軽くするために、以下に示します。
  
	internal
	

これらの設定は直接変更できません。
これらは内部で決定された値を反映するものです。
一部は異なる設定オプションでサーバを再構築する、または、initdbに与えるオプションを変更することで調整できます。
     

	postmaster
	

これらの設定はサーバ起動時にのみ適用できます。
このため何かを変更するためにはサーバを再起動しなければなりません。
これらの設定用の値は通常postgresql.confファイル内に格納されている、あるいは、サーバを起動する際のコマンドラインから渡されます。
当然ながら、より低い種類のcontextを持つ設定もサーバ起動時に設定できます。
     

	sighup
	

これらの設定は、サーバを再起動することなくpostgresql.conf内を変更することで行うことができます。
postgresql.confを再度読み込み、変更を適用させるためには、postmasterにSIGHUPシグナルを送信してください。
すべての子プロセスが新しい値を選択するように、postmasterは同時に子プロセスにSIGHUPシグナルを転送します。
     

	superuser-backend
	

これらの設定は、サーバを再起動することなくpostgresql.conf内を変更することで行うことができます。
また、接続要求パケットの中で特定のセッション向けに設定することもできます（例えばlibpqのPGOPTIONS環境変数）が、これは接続ユーザがスーパーユーザか、適切なSET権限を与えられたユーザの場合に限られます。
しかし、これらの設定はセッションが開始してから、そのセッションの中で変更することはできません。
postgresql.conf内でそれらを変更した場合は、postgresql.confを再度読み込ませるために、postmasterにSIGHUPシグナルを送信してください。
新しい値はその後で始まったセッションにのみ影響を与えます。
     

	backend
	

これらの設定は、サーバを再起動することなくpostgresql.conf内を変更することで行うことができます。
また、接続要求パケットの中で特定のセッション向けに設定することもできます（例えばlibpqのPGOPTIONS環境変数）。
どのユーザでも、自分のセッション向けにそのような変更ができます。
しかし、これらの設定はセッションが開始してから、そのセッションの中で変更することはできません。
postgresql.conf内でそれらを変更した場合は、postgresql.confを再度読み込ませるために、postmasterにSIGHUPシグナルを送信してください。
新しい値はその後で始まったセッションにのみ影響を与えます。
     

	superuser
	

これらの設定はpostgresql.conf、または、セッションの中でSETコマンドを使用することで設定ができます。
しかしSET経由で変更できるのは、接続するユーザがスーパーユーザか、適切なSET権限を与えられたユーザに限られます。
postgresql.conf内の変更は、セッション独自の値がSETで設定されていない場合にのみ、既存のセッションに影響を与えます。
     

	user
	

これらの設定はpostgresql.conf、または、セッションの中でSETコマンドを使用することで設定ができます。
任意のユーザが自身のセッション独自の値を変更することが許されています。
postgresql.conf内の変更は、セッション独自の値がSETで設定されていない場合にのみ、既存のセッションに影響を与えます。
     





これらのパラメータを変更する各種方法に関する情報については「パラメータの設定」を参照してください。
  


このビューには挿入も削除もできませんが、更新することは可能です。
pg_settingsの行へ適用されたUPDATEは、SETコマンドを名前付きの引数に対して実行するのと同等です。
pg_settings行に適用されるUPDATEは名前付きのパラメータに対してSETコマンドを実行することと同値です。
変更は現在のセッションで使用されている値にのみ有効です。
もしも後に中止されるトランザクション内でUPDATEが発行されると、トランザクションがロールバックされた時点でUPDATEコマンドは効力を失います。
排他制御中のトランザクションがひとたびコミットされると、その効果は他のUPDATEもしくはSETコマンドで上書きされない限りセッションの完了まで保たれます。
  


カスタマイズオプションを定義する拡張モジュールが、クエリを実行するバックエンドプロセスによって（たとえばshared_preload_librariesで記述された方法、拡張モジュール内のC関数の呼び出し、LOADコマンドなどによって）ロードされていない限り、このビューには表示されません。
たとえば、アーカイブモジュールは通常、通常のセッションではなくアーカイバプロセスによってのみロードされるため、クエリを実行するバックエンドプロセスにロードするための特別なアクションがとられていない限り、このビューにはこれらのモジュールによって定義されたカスタマイズされたオプションは表示されません。
  

pg_shadow





pg_shadowビューは下位互換のために存在しています。
バージョン8.1以前のPostgreSQL™に存在していたカタログを模擬します。
pg_authid内でrolcanloginのマークがついた全てのロールの属性を保持します。
  


名前の由来は、このテーブルがパスワードを含むため、一般的には読めないことから来ています。
pg_userは、pg_shadowのビューですが、パスワードの列が空白となっているため一般に読むことが可能です。
  
表53.26 pg_shadowの列
	

列 型
      

      

説明
      

	
       usename name

（参照先 pg_authid.rolname）
      

      

ユーザ名
      

	
       usesysid oid

（参照先 pg_authid.oid）
      

      

ユーザID
      

	
       usecreatedb bool
      

      

ユーザはデータベースを作成可能です。
      

	
       usesuper bool
      

      

ユーザはスーパーユーザです。
      

	
       userepl bool
      

      

ユーザはストリーミングレプリケーションを開始することができ、システムをバックアップモードにしたり、戻したりできます。
      

	
       usebypassrls bool
      

      

ユーザはすべての行単位セキュリティポリシーを無視します。
詳しくは「行セキュリティポリシー」を参照してください。
      

	
       passwd text
      

      

暗号化されたパスワード。存在しない場合はNULLです。
暗号化されたパスワードの格納方法についてはpg_authidを参照してください。
      

	
       valuntil timestamptz
      

      

パスワード有効期限（パスワード認証でのみ使用）
      

	
       useconfig text[]
      

      

実行時設定変数のセッションデフォルト
      





pg_shmem_allocations





pg_shmem_allocationsビューは、サーバの主共有メモリセグメントによるメモリの獲得状況を表示します。
これはPostgreSQL™自身が獲得したメモリと、「共有メモリ」で詳細を説明している機構を使って拡張が獲得したメモリの両方が含まれます。
  


このビューは動的共有メモリ基盤を使って獲得したメモリは含まれないことに注意してください。
  
表53.27 pg_shmem_allocationsの列
	

列 型
      

      

説明
      

	
       name text
      

      

共有メモリ獲得の名前です。
NULLなら未使用のメモリで、無名の獲得なら<anonymous>です。
      

	
       off int8
      

      

この獲得が開始する位置です。
無名の獲得は詳細が不明なので、NULLとなります。
      

	
       size int8
      

      

バイト単位の獲得サイズ
      

	
       allocated_size int8
      

      

パディングを含むバイト単位の獲得サイズです。
無名の獲得では、パディングに関する情報はありません。ですからsizeとallocated_size列は常に同じです。
パディングは未使用メモリでは意味がありません。ですからそのような列でも同じになります。
      






無名の獲得は、ShmemInitStruct()あるいはShmemInitHash()ではなく、ShmemAlloc()で直接行われたものです。
  


デフォルトではpg_shmem_allocationsはスーパーユーザか、pg_read_all_statsロールの権限を持つロールだけが読み取りできます。
  

pg_shmem_allocations_numa





pg_shmem_allocations_numaは、サーバの主な共有メモリセグメントの共有メモリ獲得が、NUMAノード間でどのように分散されているかを示します。
これには、PostgreSQL™自体が獲得したメモリと、セクション「共有メモリ」で詳細に説明されているメカニズムを使用している拡張が獲得したメモリの両方が含まれます。
このビューは、共有メモリセグメントが複数のNUMAノードに分散している場合、それぞれの共有メモリセグメントについて複数の行を出力します。
このビューは非常に遅く、以前に使用されていなかった場合の共有メモリを獲得してしまう可能性があるため、監視システムで問い合わせることは推奨されません。
このビューの現在の制限は、匿名の共有メモリ獲得が表示されないことです。
  


このビューは動的共有メモリ基盤を使って獲得したメモリは含まれないことに注意してください。
  
警告


NUMAノードを決定する場合、ビューは共有メモリセグメントのすべてのメモリページに触れます。
これにより、共有メモリがまだ獲得されていない場合は強制的に獲得され、メモリは単一のNUMAノードで獲得される場合があります（システム構成に依存します）。
    

表53.28 pg_shmem_allocations_numa列
	

列 型
      

      

説明
      

	
       name text
      

      

共有メモリ獲得の名前。
      

	
       numa_node int4
      

      

NUMAノードのID。
      

	
       size int8
      

      

この特定のNUMAメモリノード上のバイト単位の獲得サイズ
      






デフォルトではpg_shmem_allocations_numaビューはスーパーユーザか、pg_read_all_statsロールの権限を持つロールだけが読み取りできます。
  

pg_stats





pg_statsビューはpg_statisticカタログの情報にアクセスするためのビューです。
このビューは、ユーザが読み込み権限を持つテーブルに一致するpg_statisticの行に対してのみアクセスを許可しています。
よって、このビューに対して一般に読み込みを許可しても安全です。
  


pg_statsも、その基礎となっているカタログよりも、より読みやすい書式で情報を提供するように設計されています。
しかし、これは、もしpg_statisticに対して新しいスロット型が定義されるたびに、スキーマが拡張されなくてはならない、という犠牲を払っています。
  
表53.29 pg_statsの列
	

列 型
      

      

説明
      

	
       schemaname name

（参照先 pg_namespace.nspname）
      

      

テーブルがあるスキーマの名前
      

	
       tablename name

（参照先 pg_class.relname）
      

      

テーブルの名前
      

	
       attname name

（参照先 pg_attribute.attname）
      

      

この行が記述する列名
      

	
       inherited bool
      

      

trueの場合は、この行には指定されたテーブルの値だけではなく、子テーブルの値が含まれます
      

	
       null_frac float4
      

      

NULLとなっている列項目の割合
      

	
       avg_width int4
      

      

列項目のバイト単位による平均幅
      

	
       n_distinct float4
      

      

ゼロより大きい値は列内の個別値の推定数です。
ゼロより小さければ行数で個別値を割算した数字の負数です。
（テーブルが肥大するにつれ個別値の増大があり得るとANALYZEが判断した場合に負変換形式が使われます。
正変換形式は列の取り得る値が固定数を持つと思われる場合に使用されます。）
例えば-1は個別値の数が行数と等しいような、一意な列を表します。
      

	
       most_common_vals anyarray
      

      

列の中の最頻値のリストです。
（他の値より頻出する値がない場合はNULLです。）
      

	
       most_common_freqs float4[]
      

      

最頻値の出現頻度のリストで、つまり行の総数で出現数を割算した数字です。
（most_common_valsがNULLの時はNULLです。）
      

	
       histogram_bounds anyarray
      

      

列の値を満遍なく似たような数でグループに分配した値のリストです。
most_common_valsの値がもし存在すればこのヒストグラム計算は行われません。
（列データ型が<演算子を所有しない場合、もしくはmost_common_valsが全体の構成要素アカウントをリストしている場合、この列はNULLです。）
      

	
       correlation float4
      

      

物理的な[訳注：ディスク上の]行の並び順と論理的な列の値の並び順に関する統計的相関です。
この値は-1から+1の範囲です。
値が-1もしくは+1の近辺にある時、ディスクにランダムアクセスする必要が少なくなるためこの列に対してのインデックススキャンはゼロ近辺にある場合に比較して安価であると推定されます。
（列データ型に<演算子がない場合、この列はNULLです。）
      

	
       most_common_elems anyarray
      

      

列の値の中で最もよく出現する非NULLの要素値のリストです。（スカラ型の場合はNULLです。）
      

	
       most_common_elem_freqs float4[]
      

      

最も一般的な要素値の出現頻度のリストで、与えられた値の少なくとも1つのインスタンスを含む行の断片です。
2つもしくは3つの追加の値が1つの要素ごとの出現頻度に続きます。
最小で最大の要素ごとの出現頻度があります。さらにオプションとしてNULL要素の出現頻度もあります。
（most_common_elemsがNULLの時はNULLです。）
      

	
       elem_count_histogram float4[]
      

      

列の値でNULLではない要素値の個別数のヒストグラム。これは個別のNULLではない平均値が後に続きます。（スカラ型の場合はNULLです。）
      

	
       range_length_histogram anyarray
      

      

範囲型の列が空やNULLでない範囲値の長さのヒストグラム。
（範囲型以外の場合はNULL。）
      

      

このヒストグラムは、範囲の境界が包含的であるかどうかに関係なく、subtype_diff範囲関数を使用して計算されます。
      

	
       range_empty_frac float4
      

      

列項目の値が空の範囲である割合。
（範囲型以外の場合はNULL。）
      

	
       range_bounds_histogram anyarray
      

      

空やNULLではない範囲値の上限と下限のヒストグラム。
（範囲型以外の場合はNULL。）
      

      

これら2つのヒストグラムは、範囲の単一の配列として表され、その下限は下限のヒストグラムを表し、上限は上限のヒストグラムを表します。
      






配列の最大項目数はALTER TABLE SET STATISTICSコマンドで列ごとに設定されるか、もしくはdefault_statistics_target実行時パラメータで包括的に設定されるかのいずれかです。
  

pg_stats_ext





pg_stats_extビューはpg_statistic_extとpg_statistic_ext_dataカタログに格納されている情報へのアクセスを提供します。
このビューは、ユーザが所有するテーブルに対応するpg_statistic_extとpg_statistic_ext_dataの行に対してのみアクセスを許可しています。
よって、このビューに対して一般に読み込みを許可しても安全です。
  


pg_stats_extも、その基礎となっているカタログよりも、より読みやすい書式で情報を提供するように設計されています。
しかし、これはpg_statistic_extに対して新しいスロット型が定義されるたびに、スキーマが拡張されなくてはならない、という犠牲を払っています。
  
表53.30 pg_stats_extの列
	

列 型
      

      

説明
      

	
       schemaname name

（参照先 pg_namespace.nspname）
      

      

テーブルがあるスキーマの名前
      

	
       tablename name

（参照先 pg_class.relname）
      

      

テーブルの名前
      

	
       statistics_schemaname name

（参照先 pg_namespace.nspname）
      

      

拡張統計情報オブジェクトを含むスキーマの名前
      

	
       statistics_name name

（参照先 pg_statistic_ext.stxname）
      

      

拡張統計情報オブジェクトの名前
      

	
       statistics_owner name

（参照先 pg_authid.rolname）
      

      

拡張統計情報オブジェクト所有者
      

	
       attnames name[]

（参照先 pg_attribute.attname）
      

      

拡張統計情報オブジェクトが定義された列名
      

	
       exprs text[]
      

      

拡張統計情報オブジェクトが含む式
      

	
       kinds char[]
      

      

このレコードに対して有効になった拡張統計情報の型
      

	
       inherited bool

（参照先 pg_statistic_ext_data.stxdinherit）
      

      

trueの場合は、統計情報には指定されたリレーションの値だけではなく、子テーブルの値も含まれます。
      

	
       n_distinct pg_ndistinct
      

      

列値の組み合わせに対するN個別統計カウント。
ゼロよりも大きければ、その組み合わせに対する個別の値の数の見積で、ゼロよりも小さければ、個別の値の数の見積を符号反転し行数で割ったものです。
（負の値の形式は、ANALYZEがテーブルが大きくなるにつれ個別の値の数も大きくなると判断した場合に使用されます。
正の値の形式は、可能な値の数が定まった数になると思われる時に使用されます。）
たとえば-1は、列のユニークな組み合わせに対し異なる組み合わせの数が行数と同じであることを示しています。
      

	
       dependencies pg_dependencies
      

      

関数従属性統計情報
      

	
       most_common_vals text[]
      

      

列における最頻出の値の組み合わせのリスト。
（他の組み合わせよりも頻出組み合わせが見つからない場合はNULL。）
      

	
       most_common_val_nulls bool[]
      

      

最も共通した値の組み合わせに対するNULLフラグのリスト。
（most_common_valsがNULLならNULL。）
      

	
       most_common_freqs float8[]
      

      

最も共通した組み合わせの発生頻度のリスト。つまり、発生数を合計行数で割ったもの。
（most_common_valsがNULLならNULL。）
      

	
       most_common_base_freqs float8[]
      

      

最も共通した組み合わせの発生頻度の基底のリスト。つまり値ごとの頻度の積。
（most_common_valsがNULLの時はNULLです。）
      






配列フィールド中の最大項目数はALTER TABLE SET STATISTICSコマンドを使って列ごとに管理することも、あるいはdefault_statistics_target実行時パラメータで広域的に設定することもできます。
  

pg_stats_ext_exprs





pg_stats_ext_exprsビューは、pg_statistic_extとpg_statistic_ext_dataカタログと組み合わせて拡張統計オブジェクトに含まれるすべての式に関する情報へのアクセスを提供します。
このビューは、ユーザが所有するテーブルに対応するpg_statistic_extとpg_statistic_ext_dataの行に対してのみアクセスを許可しています。
よって、このビューに対して一般に読み込みを許可しても安全です。
  


またpg_stats_ext_exprsは背後にあるカタログよりも可読性の高い情報を提供するように設計されています。
ただしそのためにpg_statistic_extの統計情報の構造が変更されるたびに、そのスキーマを拡張しなければならないというコストがかかります。
  
表53.31 pg_stats_ext_exprs Columns
	

列 型
      

      

説明
      

	
       schemaname name

（参照先 pg_namespace.nspname）
      

      

テーブルを含むスキーマ名
      

	
       tablename name

（参照先 pg_class.relname）
      

      

統計情報オブジェクトが定義されているテーブル名
      

	
       statistics_schemaname name

（参照先 pg_namespace.nspname）
      

      

拡張統計情報オブジェクトを含むスキーマ名
      

	
       statistics_name name

（参照先 pg_statistic_ext.stxname）
      

      

拡張統計オブジェクトの名前
      

	
       statistics_owner name

（参照先 pg_authid.rolname）
      

      

拡張統計オブジェクトの所有者
      

	
       expr text
      

      

拡張統計オブジェクトに含まれる式
      

	
       inherited bool

（参照先 pg_statistic_ext_data.stxdinherit）
      

      

trueの場合は、統計情報には指定されたリレーションの値だけではなく、子テーブルの値も含まれます。
      

	
       null_frac float4
      

      

NULLである式項目の割合
      

	
       avg_width int4
      

      

式項目の幅の平均バイト数
      

	
       n_distinct float4
      

      

ゼロよりも大きければ、式中の個別の値の数の見積で、ゼロよりも小さければ、個別の値の数を符号反転し行数で割ったものです。
（負の値の形式は、ANALYZEがテーブルが大きくなるにつれ個別の値の数も大きくなると判断した場合に使用されます。
正の値の形式は、可能な値の数が定まった数になると思われる時に使用されます。）
たとえば-1は、列のユニークな組み合わせに対し異なる組み合わせの数が行数と同じであることを示しています。
      

	
       most_common_vals anyarray
      

      

列における最も共通した値の組み合わせのリスト。
（他の組み合わせよりも共通した組み合わせが見つからない場合はNULL。）
      

	
       most_common_freqs float4[]
      

      

最頻値の発生頻度のリスト。つまり、発生数を合計行数で割ったもの。
（most_common_valsがNULLならNULL。）
      

	
       histogram_bounds anyarray
      

      

式の値を大体同じ母集団のグループ分けになるようにする値のリスト。
most_common_valsがあれば、この中の値はこのヒストグラムの計算では無視されます。
（この式は式のデータ型が<演算子を持たないか、most_common_valsリストが全体の人口を取り扱う時にはNULLとなります。）
      

	
       correlation float4
      

      

物理的な行の順序と式の値の論理的な順序の間の統計的な相関。
範囲は-1から+1です。
値が-1あるいは+1に近ければ、ディスクへのランダムアクセスが減るので、式に対するインデックススキャンはその値がゼロに近いときよりも安価であると見積もられます。
（式のデータ型が<演算子を持たなければ、式はNULLとなります。）
      

	
       most_common_elems anyarray
      

      

列の値の中で最もよく出現する非NULLの要素値のリストです。（スカラ型の場合はNULLです。）
      

	
       most_common_elem_freqs float4[]
      

      

最も一般的な要素値の出現頻度のリストで、与えられた値の少なくとも1つのインスタンスを含む行の断片です。
2つもしくは3つの追加の値が1つの要素ごとの出現頻度に続きます。
最小で最大の要素ごとの出現頻度があります。さらにオプションとしてNULL要素の出現頻度もあります。
（most_common_elemsがNULLの時はNULLです。）
      

	
       elem_count_histogram float4[]
      

      

列の値でNULLではない要素値の個別数のヒストグラム。これは個別のNULLではない平均値が後に続きます。（スカラ型の場合はNULLです。）
      






ALTER TABLE SET STATISTICSコマンドを使って配列フィールドの最大のエントリ数を列単位に制御できます。
あるいはdefault_statistics_target実行時パラメータを設定して一括で制御できます。
  

pg_tables





   pg_tablesビューはデータベース内のそれぞれのテーブルに関する有用な情報へのアクセスを提供します。
  
表53.32 pg_tablesの列
	

列 型
      

      

説明
      

	
       schemaname name

（参照先 pg_namespace.nspname）
      

      

テーブルがあるスキーマの名前
      

	
       tablename name

（参照先 pg_class.relname）
      

      

テーブルの名前
      

	
       tableowner name

（参照先 pg_authid.rolname）
      

      

テーブルの所有者
      

	
       tablespace name

（参照先 pg_tablespace.spcname）
      

      

テーブルを含むテーブル空間の名前（データベースのデフォルトの場合はNULL）
      

	
       hasindexes bool

（参照先 pg_class.relhasindex）
      

      

trueの場合は、テーブルがインデックスを持っている（もしくは最近まで持っていた）
      

	
       hasrules bool

（参照先 pg_class.relhasrules）
      

      

trueの場合は、テーブルにルールがある（もしくは以前あった）
      

	
       hastriggers bool

（参照先 pg_class.relhastriggers）
      

      

trueの場合は、テーブルにトリガがある（もしくは以前あった）
      

	
       rowsecurity bool

（参照先 pg_class.relrowsecurity）
      

      

trueの場合は、テーブルの行セキュリティが有効
      





pg_timezone_abbrevs





pg_timezone_abbrevsビューは、現在日付時間の入力処理で認識されている、時間帯省略形のリストを提供します。
このビューの内容は、TimeZoneまたはtimezone_abbreviations実行時パラメータが変更された時に変わります。
  
表53.33 pg_timezone_abbrevsの列
	

列 型
      

      

説明
      

	
       abbrev text
      

      

時間帯省略形
      

	
       utc_offset interval
      

      

UTCからのオフセット（正はグリニッジより東側を意味する）
      

	
       is_dst bool
      

      

trueの場合は、夏時間省略形
      






多くのタイムゾーンの省略形は、UTCからの固定されたオフセットで表現されている一方で、いくつかのものは歴史的にオフセット値が変化しています（詳細は「日付/時刻設定ファイル」を参照してください）。
このような場合には、それらの現在の意味を表示します。
  

pg_timezone_names





pg_timezone_namesビューは、SET TIMEZONEで認識される時間帯名称の一覧を提供します。
ここには、その関連付けされた省略形、UTCオフセット、夏時間状況などが含まれます。
（PostgreSQL™は技術的には、うるう秒を扱いませんので、UTCを使用しません。）
pg_timezone_abbrevsで示した省略形とは異なり、名前の多くが夏時間変換規則を意味しています。
したがって、関連する情報はローカルなDST境界によって異なります。
表示される情報は、現在のCURRENT_TIMESTAMPに基づいて計算されたものです。
  
表53.34 pg_timezone_namesの列
	

列 型
      

      

説明
      

	
       name text
      

      

時間帯名
      

	
       abbrev text
      

      

時間帯省略形
      

	
       utc_offset interval
      

      

UTCからのオフセット（正はグリニッジより東側を意味する）
      

	
       is_dst bool
      

      

trueの場合は、現在夏時間である
      





pg_user





pg_userビューはデータベースユーザに関する情報へのアクセスを提供します。
これはパスワードフィールドを隠蔽したpg_shadowを公に読めるようにしたビューです。
  
表53.35 pg_userの列
	

列 型
      

      

説明
      

	
       usename name
      

      

ユーザ名
      

	
       usesysid oid
      

      

ユーザID
      

	
       usecreatedb bool
      

      

ユーザはデータベースを作成可能です。
      

	
       usesuper bool
      

      

ユーザはスーパーユーザです。
      

	
       userepl bool
      

      

ユーザはストリーミングレプリケーションを開始することができ、システムをバックアップモードにしたり、戻したりできます。
      

	
       usebypassrls bool
      

      

ユーザはすべての行単位セキュリティポリシーを無視します。
詳しくは「行セキュリティポリシー」を参照してください。
      

	
       passwd text
      

      

パスワードでありません（常に********のように読まれます）
      

	
       valuntil timestamptz
      

      

パスワード有効期限（パスワード認証でのみ使用）
      

	
       useconfig text[]
      

      

実行時設定変数のセッションデフォルト
      





pg_user_mappings





pg_user_mappingsビューはユーザマッピングについての情報へのアクセスを提供します。
これはユーザが使用する権利を持っていないオプションフィールドを取り除いた、基本的には公開されていて読み取り可能なpg_user_mappingのビューです。
  
表53.36 pg_user_mappingsの列
	

列 型
      

      

説明
      

	
       umid oid

（参照先 pg_user_mapping.oid）
      

      

ユーザマッピングのOID
      

	
       srvid oid

（参照先 pg_foreign_server.oid）
      

      

マッピングを保持する外部サーバのOID
      

	
       srvname name

（参照先 pg_foreign_server.srvname）
      

      

外部サーバの名前
      

	
       umuser oid

（参照先 pg_authid.oid）
      

      

マッピングされているローカルのロールのOID。
ユーザマッピングが公開されている場合はゼロになります。
      

	
       usename name
      

      

マッピングされているローカルユーザの名前
      

	
       umoptions text[]
      

      

「keyword=value」文字列のようなユーザマッピングの特定のオプション
      






ユーザマッピングオプションとして格納されたパスワード情報を保護するために、umoptions列は以下に該当しない限りはNULLとして読み込みます。
   
	

現在のユーザはマッピングされているユーザであり、サーバを所有しているか、サーバ上にUSAGE権限を持っている
     

	

現在のユーザはサーバ所有者であり、PUBLICとしてマッピングされている
     

	

現在のユーザはスーパーユーザである
     




  

pg_views





   pg_viewsビューはデータベース内のそれぞれのビューに関する有用な情報へのアクセスを提供します。
  
表53.37 pg_viewsの列
	

列 型
      

      

説明
      

	
       schemaname name

（参照先 pg_namespace.nspname）
      

      

ビューを持つスキーマ名
      

	
       viewname name

（参照先 pg_class.relname）
      

      

ビュー名
      

	
       viewowner name

（参照先 pg_authid.rolname）
      

      

ビューの所有者
      

	
       definition text
      

      

ビュー定義（再構築されたSELECT(7)問い合わせ）
      





pg_wait_events





pg_wait_eventsビューは、待機イベントに関する説明を提供します。
  
表53.38 pg_wait_events Columns
	

列 型
      

      

説明
      

	
       type text
      

      

待機イベントの種別
      

	
       name text
      

      

待機イベント名
      

	
       description text
      

      

待機イベントの説明
      





第54章 フロントエンド/バックエンドプロトコル





PostgreSQL™はフロントエンドとバックエンド（クライアントとサーバ）の通信にメッセージベースのプロトコルを使用します。
このプロトコルはTCP/IPに加え、Unixドメインソケットをサポートします。
ポート番号5432は、このプロトコルをサポートするサーバ用のTCPポートとしてIANAに登録されています。
しかし、実際には任意の非特権ポート番号を使用することができます。
 


この文書は、PostgreSQL™バージョン18で導入されたプロトコルのバージョン3.2を記述しています。
サーバおよびlibpqクライアントライブラリは、PostgreSQL™7.4以降で実装されたプロトコルバージョン3.0と下位互換性があります。
 


複数のクライアントにサービスを効率的に提供するために、サーバは各クライアント毎に新規の「バックエンド」プロセスを起動します。
現在の実装では、サーバに接続が届いたことを検知すると即座に新しい子プロセスが生成されます。
しかし、これはプロトコルに対して透過的です。
プロトコルという意味では、「バックエンド」と「サーバ」という用語は相互交換可能です。
同様に「フロントエンド」と「クライアント」も相互交換可能です。
  
概要





このプロトコルでは、接続開始と通常操作で段階が分かれています。
接続開始段階で、フロントエンドはサーバへの接続を開き、サーバの義務を履行できるよう自身を証明します。
（これは使用する認証方法に応じて、単一のメッセージになったり、複数のメッセージになったりします。）
すべてうまく行けば、サーバはフロントエンドに状態情報を送信し、最終的に通常操作段階に入ります。
初期の開始要求メッセージを除いて、プロトコルのこの部分はサーバによって駆動されます。
  


通常操作の間、フロントエンドは問い合わせやその他のコマンドをバックエンドに送信し、バックエンドは問い合わせ結果やその他の応答を返送します。
（NOTIFYのように）バックエンドから依頼されずにメッセージが送信されるまれな場合がありますが、セッションのこの部分のほとんどはフロントエンドの要求によって駆動されます。
  


セッションの終了は通常フロントエンドが選択することですが、特定の場合はバックエンドによって強制される可能性があります。
どちらの場合でも、バックエンドが接続を閉じる時、終了前に実行中の（未完の）トランザクションをすべてロールバックします。
  


通常操作中は、SQLコマンドを２つのサブプロトコルのうちのいずれかによって実行することができます。
「簡易問い合わせ」プロトコルでは、フロントエンドはテキストで問い合わせ文字列を単に送信し、バックエンドによって解析され、即実行されます。
「拡張問い合わせ」プロトコルでは、問い合わせの処理は、解析、パラメータ値の結び付け、そして実行という複数の段階に分離されます。
これは複雑性が加わりますが、柔軟性と性能という点で利点が生まれます。
  


通常操作には、さらに、COPYのような特殊な操作向けのサブプロトコルがあります。
  
メッセージ処理の概要





すべての通信はメッセージストリームを介します。
メッセージの先頭バイトはメッセージ種類を識別するもの、次の４バイトはメッセージの残りの長さを指定するものです
（この長さにはメッセージ種類バイトは含まれませんが、自身を含んで数えられます）。
残りのメッセージの内容は、メッセージ種類で決まります。
歴史的な理由のため、一番初めにクライアントから送信されるメッセージ（開始メッセージ）にはメッセージ種類バイトはありません。
  


メッセージストリームの同期ずれを防ぐために、サーバとクライアントの両方は、通常、メッセージの内容を処理し始める前に、（バイト数を使用して）メッセージ全体をバッファ内に読み込みます。
これにより、その内容を処理する時にエラーが検出された場合に、簡単に復旧することができます。
（メッセージをバッファするために十分なメモリがない場合のような）極限状況では、受信側はメッセージの読み取りを再開する前にどれだけの量の入力を飛ばすかどうかを決定するために、バイト数を活用することができます。
  


反対に、サーバとクライアントの両方は、不完全なメッセージを決して送信しないように注意しなければなりません。
これは通常、送信する前にバッファ内のメッセージ全体を整列させることで行われます。
メッセージの送受信の途中で通信エラーが発生した場合、メッセージ境界の同期を復旧できる望みはほとんどありませんので、実用的な唯一の応答は通信を中断することです。
  

拡張問い合わせの概要





拡張問い合わせプロトコルでは、SQLコマンドの実行は複数の段階に分割されます。
段階間で保持される状態は、プリペアド文とポータルの２種類のオブジェクトで表現されます。
プリペアド文は、テキスト問い合わせ文字列の解析、意味解析を表現します。
プリペアド文は実行準備が整ったことを示すものではありません。
パラメータの特定の値が欠落しているかもしれないからです。
ポータルは、すべてのパラメータ値が設定され、実行準備が整った、あるいは、既に一部実行された文を表現します。
（SELECT文では、ポータルは開いているカーソルと等価です。
しかし、カーソルはSELECT以外の文を扱いませんので、ここでは異なる用語を使用するよう選択しました。）
   


実行サイクル全体は、テキストの問い合わせ文字列からプリペアド文を生成するparse段階、プリペアド文と必要なパラメータ値によりポータルを作成するbind段階、ポータルの問い合わせを実行するexecute段階からなります。
行を返す問い合わせ（SELECT、SHOWなど）の場合、操作を完了させるために複数の実行段階が必要とすることができるように、実行段階に限定された行数のみを取り出すよう指示することができます。
   


バックエンドは複数のプリペアド文とポータルの経過を追うことができます
（しかし、1つのセッション内でのみ存在可能です。複数のセッションで共有することはできません）。
存在するプリペアド文とポータルは、作成時に割り当てられた名前で参照されます。
さらに、「無名の」プリペアド文とポータルも存在します。
これらは名前付きのオブジェクトとほとんど同じ動きをしますが、問い合わせを一回だけ実行し、その後に破棄する場合に備えて、これらに対する操作は最適化されています。
一方、名前付きオブジェクトの操作は複数回の使用を想定して最適化されています。
   

書式と書式コード





特定のデータ型のデータはいくつかの異なる書式で転送することができます。
PostgreSQL™ 7.4の時点でサポートしている書式は「テキスト」と「バイナリ」のみですが、プロトコルは将来の拡張に備えて準備をしています。
任意の値の必要な書式は書式コードで指定されます。
クライアントは、転送されるパラメータ値それぞれに書式コードを指定することも、問い合わせ結果の列それぞれに書式コードを指定することもできます。
テキストは書式コード0、バイナリは書式コード1です。
他の書式コードは将来の定義用に予約されています。
   


値のテキスト表現は、特定のデータ型の入出力変換関数で生成され、受け付けられる何らかの文字列です。
転送時の表現では、ヌル終端文字はありません。
フロントエンドでC言語文字列として処理したい場合は、必ず受信した値にヌル終端文字を追加しなければなりません。
（ついでですが、テキスト書式ではヌルを埋め込むことはできません。）
   


整数用のバイナリ表現はネットワークバイト順（先頭に最上位バイト）を使用します。
他のデータ型のバイナリ表現については、文書もしくはソースコードを参照してください。
複雑なデータ型のバイナリ表現はサーバのバージョンによって異なる可能性があることに注意してください。
通常、テキスト書式がより移植性が高い選択肢です。
   

プロトコルバージョン





現在、プロトコルの最新バージョンはバージョン3.2です。
ただし、古いサーババージョン、およびバージョンネゴシエーションをまだサポートしていないミドルウェアとの下位互換性のために、libpqは依然としてデフォルトのプロトコルバージョン3.0を使用します。
   


単一のサーバが複数のプロトコルバージョンをサポートできます。
はじめの開始要求メッセージは、サーバに対し、クライアントが使用する予定のプロトコルバージョンを通知します。
クライアントが要求したメジャーバージョンをサーバがサポートしない場合は、接続は拒否されます。（これはたとえば、クライアントが本稿執筆時点で存在しないプロトコルバージョン4.0を要求した際に起るでしょう。）
クライアントが要求したマイナーバージョンをサーバがサポートしない場合は（たとえばクライアントがバージョン3.2を要求し、サーバが3.0しかサポートしていないようなときです）、サーバは接続を拒否しても良いですし、サポートする最も大きなマイナープロトコルバージョンを含むNegotiateProtocolVersionメッセージを返しても構いません。
クライアントは、指定されたプロトコルバージョンで接続を継続するか、あるいは接続を切断するかのどちらかを選択できます。
   


プロトコルネゴシエーションが導入されたのはPostgreSQL™バージョン9.3.21です。
以前のバージョンでは、サーバがサポートしていないマイナーバージョンをクライアントが要求した場合、コネクションは拒否されました。
   


表54.1「プロトコルバージョン」に、現在サポートされているプロトコルバージョンを示します。
   
表54.1 プロトコルバージョン
	バージョン	サポートするサーババージョン	説明
	3.2	PostgreSQL 18以後	
現在の最新のバージョン。
問い合わせの取り消しで使用される秘密キーが4バイトから可変長フィールドに拡大されました。
BackendKeyDataメッセージはこれに対応するように変更され、CancelRequestメッセージは可変長のペイロードを持つように再定義されました。
      
	3.1	-	
予約中。
バージョン3.1はどのPostgreSQLバージョンでも使用されていませんが、広く使われているpgbouncerアプリケーションの古いバージョンではプロトコルネゴシエーションにバグがあり、バージョン3.1をサポートしていると誤って主張したため、このバージョンはスキップされました。
      
	3.0	PostgreSQL 7.4以後	 
	2.0	PostgreSQL 13まで	
以前のリリースの詳細は、PostgreSQL™文書を参照してください。
      






メッセージの流れ





本節では、メッセージの流れと各メッセージ種類のセマンティクスを説明します。
（各メッセージの正確な表現の詳細については「メッセージの書式」で説明します。）
開始、問い合わせ、関数呼び出し、COPY、終了といった接続状態に応じて、複数の異なるサブプロトコルがあります。
また、開始段階の後の任意の時点で発生する可能性がある、非同期操作（通知応答やコマンドのキャンセルを含む）用の特別な準備もあります。
  
開始





セッションを開始するために、フロントエンドはサーバへの接続を開き、開始メッセージを送信します。
このメッセージには、ユーザ名と接続を希望するデータベース名が含まれます。
これはまた、使用する特定のプロトコルバージョンを識別します。
（オプションとして、開始メッセージに、実行時パラメータの追加設定を含めることもできます。）
サーバはその後、この情報と設定ファイル（pg_hba.confなど）の内容を使用して、接続が暫定的に受け付けられるかどうか、そして（もしあれば）どのような追加認証が必要かを決定します。
   


サーバはその後、適切な認証要求メッセージを送信します。
フロントエンドはこれに適切な認証応答メッセージ（パスワードなど）で答えなければなりません。
GSSAPI、SSPI、SASLを除くすべての認証方式では、多くても１つの要求と１つの応答が存在します。
認証方式の中には、フロントエンドからの応答をまったく必要としないものもあり、その場合、認証要求も発生しません。
GSSAPI、SSPI、SASLでは認証を完了するために複数のパケットの交換が必要となるかもしれません。
   


認証サイクルは、サーバによって接続要求を拒絶する（ErrorResponse）か、あるいはAuthenticationOkを送信することで終わります。
   


この段階でサーバから送信される可能性があるメッセージを以下に示します。

    
	ErrorResponse
	

接続試行が拒絶されました。
サーバはその後即座に接続を閉ざします。
       

	AuthenticationOk
	

認証情報の交換が正常に完了しました。
       

	AuthenticationKerberosV5
	

フロントエンドはここでサーバとのKerberos V5認証ダイアログ（ここでは説明しません。Kerberos仕様の一部）に参加する必要があります。
これが成功すれば、サーバはAuthenticationOk応答を行います。
失敗すれば、ErrorResponse応答を行います。
これはもはやサポートされていません。
       

	AuthenticationCleartextPassword
	

フロントエンドはここで平文形式のパスワードを含むPasswordMessageを送信する必要があります。
これが正しいパスワードであればサーバはAuthenticationOk応答を行います。
さもなくば、ErrorResponse応答を行います。
       

	AuthenticationMD5Password
	

フロントエンドはここでMD5で暗号化したパスワード（とユーザ名）を再度AuthenticationMD5Passwordメッセージで指定されたランダムな４バイトのソルトを使用して暗号化したものを含むPasswordMessageを送信する必要があります。
これが正しいパスワードであればサーバはAuthenticationOk応答を行います。
さもなくば、ErrorResponse応答を行います。
実際のPasswordMessageをconcat('md5', md5(concat(md5(concat(password, username)), random-salt)))というSQLで計算することができます。
（md5()関数がその結果を１６進数表記で返すことに注意してください。）
       
警告


MD5で暗号化されたパスワードのサポートは非推奨となり、将来のPostgreSQL™のリリースで削除されます。
他のパスワード形式への移行の詳細については、「パスワード認証」を参照してください。
         


	AuthenticationGSS
	

ここでフロントエンドはGSSAPIの調停を開始しなければなりません。
これに対する応答におけるGSSAPIデータストリームの最初の部分で、フロントエンドはGSSResponseを送信します。
さらにメッセージが必要となる場合、サーバはAuthenticationGSSContinueで応答します。
       

	AuthenticationSSPI
	

ここでフロントエンドはSSPI調停を開始しなければなりません。
これに対する応答におけるSSPIデータストリームの最初の部分で、フロントエンドはGSSResponseを送信します。
さらにメッセージが必要となる場合、サーバはAuthenticationGSSContinueで応答します。
       

	AuthenticationGSSContinue
	

このメッセージには、GSSAPIまたはSSPI調停の直前の段階（AuthenticationGSS、AuthenticationSSPIまたは前回のAuthenticationGSSContinue）についての応答データが含まれます。
このメッセージ内のGSSAPIまたはSSPIデータが認証を完結させるため、更なる追加データが必要であることを指示している場合、フロントエンドは他のGSSResponseとしてデータを送信しなければなりません。
このメッセージでGSSAPIまたはSSPI認証が完了すれば、次にサーバはAuthenticationOkを送信して認証が成功したことを示すか、あるいはErrorResponseを送信して失敗したことを示します。
       

	AuthenticationSASL
	

ここでフロントエンドはメッセージ内に列挙されているSASL機構の1つを使ってSASL調停を開始しなければなりません。
これに応答するSASLデータストリームの最初の部分で、フロントエンドはSASLInitialResponseと選択した機構の名前を送信します。
さらにメッセージが必要な場合、サーバはAuthenticationSASLContinueで応答します。
詳細については「SASL認証」を参照してください。
       

	AuthenticationSASLContinue
	

このメッセージには、SASL調停における直前の段階（AuthenticationSASLまたは以前のAuthenticationSASLContinue）のチャレンジデータが含まれます。
フロントエンドはSASLResponseメッセージで応答しなければなりません。
       

	AuthenticationSASLFinal
	

機構固有のクライアント用の追加データを伴ってSASL認証が完了します。
サーバは次に認証成功を示すAuthenticationOkを送信するか、あるいは失敗を示すErrorResponseを送信します。
このメッセージはSASLの機構が完了時にサーバからクライアントに送信する追加データを指定しているときにのみ送信されます。
       

	NegotiateProtocolVersion
	

サーバは、クライアントから要求されたマイナープロトコルバージョンをサポートしませんが、以前のプロトコルバージョンをサポートします。
このメッセージは、サポートされている最高のマイナーバージョンを示します。
このメッセージは、クライアントがスタートアップパケット中でサポートされていないプロトコルオプション（つまり_pq_.で始まる）を要求した場合にも送信されます。
       


このメッセージの後、認証はサーバが示すバージョンを引き続き使用します。
このクライアントが古いバージョンをサポートしない場合は、すぐにコネクションをクローズする必要があります。
サーバがこのメッセージを送信しない場合は、クライアントの要求したプロトコルバージョンとすべてのプロトコルオプションをサポートします。
       




   


サーバが要求した認証方式をフロントエンドがサポートしていない場合、フロントエンドは即座に接続を閉ざします。
   


AuthenticationOkを受け取った後、フロントエンドはさらにサーバからのメッセージを待機する必要があります。
この段階で、バックエンドプロセスが起動し、このフロントエンドは単なる関心を有する第三者となります。
開始試行が失敗（ErrorResponse）するか、サーバが要求されたマイナープロトコルバージョンを拒否する（NegotiateProtocolVersion）可能性がまだありますが、通常、バックエンドは何らかのParameterStatusメッセージ、BackendKeyData、そして最後にReadyForQueryを送信します。
   


この段階の期間中、バックエンドは開始メッセージで与えられた任意の実行時パラメータの追加設定を適用しようとします。
成功した場合は、これらの値はセッションのデフォルトになります。
エラーが発生した場合はErrorResponseを行い、終了します。
   


この段階でバックエンドから送信される可能性があるメッセージを以下に示します。

    
	BackendKeyData
	

このメッセージは、フロントエンドがキャンセル要求を後で送信できるようにしたい場合に保存しなければならない、秘密キーデータを用意します。
フロントエンドはこのメッセージに応答してはいけませんが、ReadyForQueryメッセージの監視を続けなくてはなりません。
       


PostgreSQL™サーバは常にこのメッセージを送信しますが、サードパーティによるこのプロトコルのバックエンド実装の中には、クエリキャンセルをサポートしていないものがあることが知られています。
       

	ParameterStatus
	

このメッセージは、フロントエンドに現在（初期）のclient_encodingやDateStyleなどのバックエンドパラメータの設定情報を通知します。
フロントエンドはこのメッセージを無視しても、将来の使用に備えてその設定を記録しても構いません。
詳細は「非同期操作」を参照してください。
フロントエンドはこのメッセージに応答してはいけませんが、ReadyForQueryメッセージの監視を続けなくてはなりません。
       

	ReadyForQuery
	

開始処理が完了しました。
フロントエンドはここでコマンドを発行することができます。
       

	ErrorResponse
	

開始処理が失敗しました。
接続はこのメッセージの送信後に閉ざされます。
       

	NoticeResponse
	

警告メッセージが発行されました。
フロントエンドはこのメッセージを表示し、ReadyForQueryもしくはErrorResponseメッセージの監視を続けなければなりません。
       




   


ReadyForQueryメッセージは各コマンドサイクルの後にバックエンドが発行するものと同じものです。
フロントエンドのコーディングにおいて必要であれば、ReadyForQueryをコマンドサイクルの開始とみなしても構いませんし、ReadyForQueryを開始段階とその後の各コマンドサイクルの終端とみなしても構いません。
   

簡易問い合わせ





フロントエンドがQueryメッセージをバックエンドに送信することで、簡易問い合わせサイクルが開始されます。
このメッセージには、テキスト文字列で表現されたSQLコマンド（またはコマンド）が含まれます。
そうすると、バックエンドは、問い合わせコマンド文字列の内容に応じて1つ以上の応答を送信し、最終的にReadyForQueryを応答します。
ReadyForQueryは、新しいコマンドを安全に送信できることをフロントエンドに知らせます。
（実際には、フロントエンドが他のコマンドを発行する前にReadyForQueryを待機することは不要です。
しかし、フロントエンドは、前のコマンドが失敗し、発行済みの後のコマンドが成功した場合に何が起きるかを了解する責任を持たなければなりません。）
   


バックエンドから送信される可能性がある応答メッセージを以下に示します。

    
	CommandComplete
	

SQLコマンドが正常に終了しました。
       

	CopyInResponse
	

バックエンドがフロントエンドからのデータをテーブルにコピーする準備ができました。
「COPY操作」を参照してください。
       

	CopyOutResponse
	

バックエンドがデータをテーブルからフロントエンドにコピーする準備ができました。
「COPY操作」を参照してください。
       

	RowDescription
	

SELECTやFETCHなどの問い合わせの応答の行がまさに返されようとしていることを示します。
このメッセージには、行の列レイアウトに関する説明が含まれます。
このメッセージの後に、フロントエンドに返される各行に対するDataRowメッセージが続きます。
       

	DataRow
	

SELECTやFETCHなどの問い合わせで返される行の集合の1つです。
       

	EmptyQueryResponse
	

空の問い合わせ文字列が検知されました。
       

	ErrorResponse
	

エラーが起こりました。
       

	ReadyForQuery
	

問い合わせ文字列の処理が終了しました。
問い合わせ文字列は複数のSQLコマンドが含まれる場合があるため、このことを通知するために分離したメッセージが送出されます。
（CommandCompleteは文字列全体ではなく、1つのSQLコマンドの処理の終了を明らかにします。）
処理が成功またはエラーで終了したかどうかにかかわらずReadyForQueryは常に送出されます。
       

	NoticeResponse
	

問い合わせに関して警告メッセージが発行されました。
警告メッセージは他の応答に対する追加のメッセージです。
したがって、バックエンドはそのコマンドの処理を続行します。
       




   


SELECT問い合わせ（あるいは、EXPLAINやSHOWなどの行集合を返す他の問い合わせ）に対する応答は、通常、RowDescription、0個以上のDataRowメッセージ、そしてその後のCommandCompleteから構成されます。
フロントエンドへのCOPYもしくはフロントエンドからのCOPYは「COPY操作」で説明する特別なプロトコルを呼び出します。
他の種類の問い合わせは通常CommandCompleteメッセージのみを生成します。
   


問い合わせ文字列には（セミコロンで区切られた）複数の問い合わせが含まれることがありますので、バックエンドが問い合わせ文字列の処理を完了する前に、こうした応答シーケンスが複数発生する可能性があります。
ReadyForQueryは、文字列全体が処理され、バックエンドが新しい問い合わせ文字列を受け付ける準備が整った時点で発行されます。
   


完全に空の（空白文字以外の文字がない）問い合わせ文字列を受け取った場合、その応答は、EmptyQueryResponse、続いて、ReadyForQueryとなります。
   


エラーが発生した場合、ErrorResponse、続いて、ReadyForQueryが発行されます。
その問い合わせ文字列に対する以降の処理は（複数の問い合わせが残っていたとしても）すべて、ErrorResponseによって中断されます。
これは、個々の問い合わせで生成されるメッセージの並びの途中で発生する可能性があることに注意してください。
   


簡易問い合わせモードでは、読み出される値の書式は常にテキストです。
ただし、与えられたコマンドがBINARYオプション付きで宣言されたカーソルからのFETCHであった場合は例外です。
この場合は、読み出される値はバイナリ書式になります。
RowDescriptionメッセージ内で与えられる書式コードは、どの書式が使用されているかを通知します。
   


他の種類のメッセージの受信を待機している時、フロントエンドは常にErrorResponseとNoticeResponseメッセージを受け取る準備ができていなければなりません。
また、外部イベントのためにバックエンドが生成する可能性があるメッセージの扱いについては「非同期操作」を参照してください。
   


メッセージの正しい並びを前提としてコーディングするのではなく、任意のメッセージ種類を、そのメッセージが意味を持つ任意の時点で受け付ける状態マシン形式でフロントエンドのコーディングを行うことを推奨します。
   
簡易問い合わせでの複文





簡易Queryメッセージが二つ以上の（セミコロンで区切られた）SQL文を含むとき、振る舞いを変えるように明示的なトランザクション制御コマンドが含まれていない限り、これらの文は単一トランザクションで実行されます。
例えばメッセージが以下を含む場合、


INSERT INTO mytable VALUES(1);
SELECT 1/0;
INSERT INTO mytable VALUES(2);



SELECTでのゼロ除算エラーは最初のINSERTのロールバックを強制します。
さらに、メッセージの実行が最初のエラー時点で中止されるので、二番目のINSERTは全く試みられません。
    


代わりにメッセージが以下を含んでいる場合、


BEGIN;
INSERT INTO mytable VALUES(1);
COMMIT;
INSERT INTO mytable VALUES(2);
SELECT 1/0;



最初のINSERTは明示的なCOMMITコマンドによりコミットされます。
二番目のINSERTとSELECTは、やはり単一トランザクションとして処理されます。
そのためゼロ除算エラーが二番目のINSERTをロールバックしますが、最初のINSERTはロールバックされません。
    


この振る舞いは、暗黙トランザクションブロックで複文Queryメッセージ内の文を実行することで、その中に明示的なトランザクションブロックがある場合を除き、発現します。
暗黙トランザクションブロックと通常のトランザクションブロックとの主な違いは、暗黙ブロックは自動的にQueryメッセージの最後にて、エラーが無いなら暗黙のコミット、エラーがあるなら暗黙のロールバックで、自動的に閉じられることです。
これは（トランザクションブロック内に無いときの）文の単体実行に対して生じる暗黙のコミットあるいはロールバックに似ています。
    


何らか手前のメッセージでのBEGINの結果として、セッションが既にトランザクションブロック内である場合、Queryメッセージは、含まれるのが単一文でもいくつかの文でも、単にそのトランザクションを継続します。
しかしながら、Queryメッセージが既存トランザクションブロックを閉じるCOMMITやROLLBACKを含む場合、続く全ての文は暗黙トランザクションブロックで実行されます。
逆に言えば、複文QueryメッセージでBEGINが現れたなら、このQueryメッセージ内または後のメッセージのいずれかにあらわれる明示的なCOMMITやROLLBACKでのみ終了する、通常のトランザクションブロックが開始されます。
BEGINが暗黙トランザクションブロックとして実行されたいくつかの文に続く場合、これらの文が直ちにコミットされることはありません。
結果として、これらは遡って新たな通常のトランザクションブロックに含められます。
    


暗黙トランザクションブロック内に現れたCOMMITやROLLBACKは通常通り実行され、暗黙ブロックを閉じますが、手前のBEGIN無しのCOMMITやROLLBACKは誤りであるかもしれないので警告が発行されます。
さらに文が続く場合、それらに対して新たな暗黙トランザクションブロックが開始されます。
    


エラー時の自動ブロッククローズの振る舞いと競合するので暗黙トランザクションブロックでセーブポイントは使えません。
    


現状のいかなるトランザクション制御コマンドでも、Queryメッセージの実行は最初のエラー時点で打ち切られることに留意してください。
例を示します。


BEGIN;
SELECT 1/0;
ROLLBACK;



上記が単一Queryメッセージにあるとして、ゼロ除算エラーの後にROLLBACKに達することがないため、このセッションは失敗した通常のトランザクション内のままとなります。
このセッションを通常の状態に回復させるには別のROLLBACKが必要となります。
    


その他の注意すべき振る舞いは、初期の字句および構文解析が少しも実行されない段階で問い合わせ文字列全体に対して行われることです。
従って、後ろの分にある（スペルミスしたキーワードなどの）単純なエラーは全ての文の実行を妨げることがあります。
暗黙トランザクションブロックとして起きたとき、いずれにせよ全ての文はロールバックされるので、これは通常はユーザに見えません。
しかしながら、複文問い合わせの中で複数のトランザクションを実行しようとするとき、この挙動が明らかになることがあります。
例えば、タイプミスで先の例を以下のようにします。


BEGIN;
INSERT INTO mytable VALUES(1);
COMMIT;
INSERT INTO mytable VALUES(2);
SELCT 1/0;



そうすると、含まれる文は一つも実行されず、最初のINSERTがコミットされないという違いが明らかになります。
エラーは、ミススペルしたテーブルやカラム名など、語彙の解析かその後に検出され、コマンドの効力はありません。
    


最後に、Queryメッセージ内のすべての文は、statement_timestamp()の値が同じになることに注意してください。これは、タイムスタンプがQueryメッセージの受信時にのみ更新されるためです。
これにより、問い合わせ文字列が以前に開始されたトランザクションを終了し、新しいトランザクションを開始する場合を除き、すべての文はstatement_timestamp()の値も同じになります。
    


拡張問い合わせ





拡張問い合わせプロトコルは、上述の簡易問い合わせプロトコルを複数段階に分解します。
予備段階の結果は複数回再利用できますので、効率が上がります。
さらに、問い合わせ文字列に直接埋め込むのではなく、データ値をパラメータとして分離して提供できる機能など、利用できる追加機能があります。
   


拡張プロトコルでは、フロントエンドはまず、テキストの問い合わせ文字列とオプションとしてパラメータプレースホルダのデータ型情報やプリペアド文のオブジェクトの宛先名（空文字列は無名のプリペアド文を選択）を含む、Parseメッセージを送信します。
この応答はParseCompleteまたはErrorResponseです。
パラメータデータ型はそのOIDで指定することができます。
指定がなければ、パーサは型指定のないリテラル文字列定数に対する方法と同じ方法でデータ型を推定します。
   
注記


パラメータデータ型をゼロと設定する、または、問い合わせ文字列内で使用されているパラメータ記号（$n）の数より短くパラメータ型のOIDの配列を作成することで、指定しないまま残すことができます。
他にも、パラメータの型をvoid（つまりvoid仮想型のOID）と指定するという特別な場合があります。
これは、パラメータ記号を、実際のOUTパラメータである関数パラメータとして使用することができることを意味します。
通常では、voidパラメータが使用される文脈はありませんが、関数パラメータリストにこうしたパラメータ記号があると、実質的には無視されます。
例えば、$3と$4がvoid型を持つと指定された場合、foo($1,$2,$3,$4)といった関数呼び出しは、2つのINと2つのOUT引数を持つ関数に一致します。
    

注記


Parseメッセージ内の問い合わせ文字列には、複数のSQL文を含めることはできません。
さもないと、構文エラーが報告されます。
この制限は簡易問い合わせプロトコルにはありませんが、複数のコマンドを持つプリペアド文やポータルを許すと、プロトコルが複雑になり過ぎるため、拡張プロトコルではこの制限があります。
    



作成に成功すると、名前付きプリペアド文オブジェクトは明示的に破棄されない限り現在のセッションが終わるまで残ります。
無名のプリペアド文オブジェクトは、次に無名のプリペアド文を宛先に指定したParse文が発行されるまでの間のみに残ります。
（単なるQueryメッセージでも無名のプリペアド文オブジェクトは破壊されることに注意してください。）
名前付きプリペアド文は、他のParseメッセージで再定義する前に明示的に閉じなければなりません。
しかし、これは無名のプリペアド文では必要ありません。
名前付きプリペアド文はまた、SQLコマンドレベルでPREPAREとEXECUTEを使用して作成しアクセスすることができます。
   


プリペアド文が存在すると、Bindメッセージを使用してそれを実行可能状態にすることができます。
Bindメッセージは、元となるプリペアド文（空文字列は無名のプリペアド文を表します）の名前、宛先となるポータル（空文字列は無名ポータルを表します）の名前、およびプリペアド文内のパラメータプレースホルダに使用する値を与えます。
与えられたパラメータ集合はプリペアド文で必要とするものと一致しなければなりません。
（Parseメッセージ内でvoidパラメータを1つでも宣言した場合、BindメッセージではそれらにはNULLを渡します。）
また、Bindは問い合わせで返されるデータに使用する書式を指定します。
書式は全体に対して指定することも、列単位で指定することも可能です。
応答はBindCompleteもしくはErrorResponseです。
   
注記


テキスト出力とバイナリ出力との選択は、含まれるSQLコマンドに関係なく、Bindで与えられた書式コードで決定されます。
拡張問い合わせプロトコルを使用する場合、カーソル宣言のBINARY属性は役に立ちません。
    



典型的に問い合わせ計画はBindメッセージが処理される時に作成されます。
プリペアド文がパラメータを持たない場合、または繰り返し実行される場合、サーバは作成した計画を保管し、その後の同じプリペアド文に対するBindメッセージの際に再利用する可能性があります。
しかし、作成できる汎用的な計画が提供された特定のパラメータ値に依存する計画より効率が大して劣化しないことが分かった場合のみ、このように動作します。
プロトコルに注目している限り、これは透過的に行われます。
   


作成に成功すると、名前付きポータルオブジェクトは明示的に破棄されない限り現在のセッションが終わるまで残ります。
無名ポータルは、トランザクションの終わり、もしくは、次に無名ポータルを宛先に指定したBind文が発行されるまでの間のみに残ります。
（単なるQueryメッセージでも無名ポータルは破壊されることに注意してください。）
名前付きポータルは、他のBindメッセージで再定義する前に明示的に閉じなければなりません。
しかし、これは無名ポータルでは必要ありません。
名前付きポータルはまた、SQLコマンドレベルでDECLARE CURSORとFETCHを使用して作成しアクセスすることができます。
   


ポータルが存在すると、Executeメッセージを使用してそれを実行することができます。
Executeメッセージは、ポータル名（空文字列は無名ポータルを表します）と結果行数の最大値（ゼロは「fetch all rows」を意味します）を指定します。
結果行数は、ポータルが行集合を返すコマンドを含む場合のみ意味があります。
その他の場合では、コマンドは常に終わりまで実行され、行数は無視されます。
Executeで起こり得る応答は、ExecuteではReadyForQueryやRowDescriptionが発行されない点を除き、上述の簡易問い合わせプロトコル経由で発行された問い合わせの場合と同じです。
   


Executeがポータルの実行を完了する前に（非ゼロの結果行数に達したために）終了した場合、PortalSuspendedを送信します。
このメッセージの出現は、フロントエンドに操作を完了させるためには同一のポータルに対して、別のExecuteを発行しなければならないことを通知します。
元となったSQLコマンドが完了したことを示すCommandCompleteメッセージはポータルが完了するまで送信されません。
したがって、Execute段階は常にCommandComplete、EmptyQueryResponse（空の問い合わせ文字列からポータルが作成された場合）、ErrorResponse、またはPortalSuspendedの中の、正確にどれかが出現することによって常に終了します。
   


拡張問い合わせメッセージの一連の流れのそれぞれの終了時、フロントエンドはSyncメッセージを発行しなければなりません。
このパラメータのないメッセージにより、もしBEGIN/COMMITトランザクションブロックの内部でなければ、バックエンドは現在のトランザクションを閉ざします
（「閉じる」とは、エラーがなければコミット、エラーがあればロールバックすることを意味します）。
そして、ReadyForQuery応答が発行されます。
Syncの目的は、エラーからの復旧用の再同期を行う時点を提供することです。
拡張問い合わせメッセージの処理中にエラーが検出されると、バックエンドはErrorResponseを発行し、Syncが届くまでメッセージを読み、それを破棄します。
その後、ReadyForQueryを発行し、通常のメッセージ処理に戻ります。
（しかし、Sync処理中にエラーが検出された場合に処理が飛ばされないことに注意してください。
これにより、各Syncに対してReadyForQueryが1つのみであることを保証します。）
   
注記


Syncによって、BEGINで開かれたトランザクションブロックが閉ざされることはありません。
ReadyForQueryメッセージにはトランザクションの状態情報が含まれていますので、この状況を検出することができます。
    



これらの基本的な必要操作に加え、拡張問い合わせプロトコルで使用することができる、複数の省略可能な操作があります。
   


Describeメッセージ（ポータルの亜種）は、既存のポータルの名前（もしくは、無名ポータル用の空文字）を指定します。
応答は、実行中のポータルで返される予定の行を記述するRowDescriptionメッセージです。
ポータルが行を返す問い合わせを含まない場合はNoDataメッセージです。
指定したポータルが存在しない場合はErrorResponseです。
   


Describeメッセージ（ステートメントの亜種）は、既存のプリペアド文の名前（もしくは無名のプリペアド文用の空文字）を指定します。
応答は、文で必要とされるパラメータを記述するParameterDescriptionメッセージ、続いて、文が実行された場合に返される予定の行を記述するRowDescriptionメッセージ（もしくは文が行を返さない場合のNoDataメッセージ）です。
指定したプリペアド文が存在しない場合はErrorResponseが発行されます。
Bindがまだ発行されていませんので、返される列の書式はまだバックエンドでは不明であることに注意してください。
RowDescriptionメッセージ内の書式コードフィールドはこの場合はゼロになります。
   
ヒント


ほとんどの状況では、フロントエンドはExecuteを発行する前に、返ってくる結果を解釈する方法を確実に判断できるように、Describeもしくはその亜種を実行すべきです。
    



Closeメッセージは、既存のプリペアド文、もしくはポータルを閉ざし、リソースを解放します。
存在しない文やポータルに対してCloseを発行してもエラーになりません。
応答は通常CloseCompleteですが、リソースの解放に何らかの問題が発生した場合はErrorResponseになります。
プリペアド文を閉じると、そこから構築され、開いたポータルが暗黙的に閉ざされることに注意してください。
   


Flushメッセージにより特定の出力が生成されることはありません。
しかし、バックエンドに対して、出力バッファ内で待機しているデータを強制的に配送させます。
フロントエンドが他のコマンドを発行する前にコマンドの結果を検証したい場合に、FlushはSync以外の拡張問い合わせコマンドの後に送信される必要があります。
Flushを行わないと、バックエンドで返されるメッセージは、ネットワークオーバーヘッドを最小化する、最小限のパケット数にまとめられます。
   
注記


簡易問い合わせメッセージは、おおよそ、無名のプリペアド文とポータルオブジェクトを使用したパラメータなしのParse、Bind、ポータル用Describe、Execute、Close、Syncの流れと同一です。
違いは、問い合わせ文字列内に複数のSQL文を受け付けられ、bind/describe/executeという流れがそれぞれが成功すれば自動的に行われる点です。
他の違いとして、ParseCompleteやBindComplete、CloseComplete、NoDataメッセージが返されない点があります。
    


パイプライン化





拡張問い合わせプロトコルの利用により、パイプライン化(pipelining)が可能となります。
これは、先に送った問い合わせの完了を待つことなく一連の問い合わせを送るということです。
これにより、指定された操作を完了するためのネットワークのやり取りの回数が減ります。
しかし、ある段階が失敗した時に必要とされる振る舞いを、ユーザは注意深く検討しなければなりません。
それ以降の問い合わせはすでにサーバに送信中だからです。
   


これに対処するための一つの方法は、一連の問い合わせ全体を単一のトランザクションにすることです。
すなわち、BEGIN ... COMMITで囲みます。
しかし、あるコマンドを他のコマンドとは独立してコミットしたい時にはこの方法は役に立ちません。
   


拡張問い合わせプロトコルは、この問題に対応する別の方法を提供しています。
これは、お互いに依存するステップの間ではSyncメッセージを送るのを省略するというものです。
エラーが起こると、バックエンドはがyncが見つかるまでコマンドメッセージをスキップすることにより、それよりも前のコマンドが失敗した時に、クライアントが明示的にBEGINとCOMMITで管理することなく、パイプラインの中の後続のコマンドが自動的にスキップされるからです。
パイプラインの中の独立してコミットできる部分は、Syncメッセージで分けておくことができます。
   


クライアントが明示的なBEGINを発行していない場合、暗黙的なトランザクションブロックが開始され、通常各Syncにより、前のステップが成功した場合は暗黙的なCOMMIT、あるいは前のステップが失敗した場合には暗黙的なROLLBACKがもたらされます。
この暗黙的なトランザクションブロックは、最初のコマンドがSyncなしで終了した場合にのみサーバによって検出されます。
トランザクションブロック内で実行できないDDLコマンド（CREATE DATABASEなど）がいくつかあります。
これらのコマンドの1つがパイプラインで実行されると、Sync後の最初のコマンドでない限り失敗します。
さらに、成功した場合は、データベース一貫性を保持するために即時のコミットに強制します。
したがって、これらのコマンドの1つの直後に行われたSyncは、ReadyForQueryで応答する以外には効果がありません。
   


この方法を使うときには、パイプラインの終了は、ReadyForQueryメッセージの数が送信したSyncメッセージの数と一致することで決定しなければなりません。
コマンドのうちいくつかはスキップされたかも知れず、その場合は完了メッセージを生成しないので、コマンド完了メッセージを数えるのは信頼性に欠けます。
   

関数呼び出し





関数呼び出しサブプロトコルにより、クライアントはデータベースのpg_procシステムカタログに存在する任意の関数を直接呼び出す要求を行うことができます。
クライアントはその関数を実行する権限を持たなければなりません。
   
注記


関数呼び出しサブプロトコルは、おそらく新しく作成するコードでは使用すべきではない古い機能です。
同様の結果は、SELECT function($1, ...)を行うプリペアド文を設定することで得ることができます。
そして、この関数呼び出しサイクルをBind/Executeで置き換えることができます。
    



関数呼び出しサイクルはフロントエンドがFunctionCallメッセージをバックエンドに送ることで起動されます。
バックエンドは1つまたは複数の応答メッセージを関数呼び出しの結果に基づいて送り、最終的にReadyForQueryメッセージを送出します。
ReadyForQueryはフロントエンドに対し新規の問い合わせまたは関数呼び出しを行っても安全確実であることを通知します。
   


バックエンドから送信される可能性がある応答メッセージを以下に示します。

    
	ErrorResponse
	

エラーが起こりました。
       

	FunctionCallResponse
	

関数呼び出しが完了し、メッセージで与えられた結果が返されました。
（関数呼び出しプロトコルは単一のスカラ結果のみを扱うことができます。行型や結果集合を扱うことはできません。）
       

	ReadyForQuery
	

関数呼び出しの処理が終了しました。
処理が成功またはエラーで終了したかどうかにかかわらずReadyForQueryは常に送出されます。
       

	NoticeResponse
	

関数呼び出しに関して警告メッセージが出されました。
警告メッセージは他の応答に対する追加のメッセージです。
したがって、バックエンドはそのコマンドの処理を続行します。
       




   

COPY操作





COPYコマンドにより、サーバとの間で高速な大量データ転送を行うことができます。
コピーインとコピーアウト操作はそれぞれ接続を別のサブプロトコルに切り替えます。
これは操作が完了するまで残ります。
   


コピーインモード（サーバへのデータ転送）は、バックエンドがCOPY FROM STDIN SQL文を実行した時に起動されます。
バックエンドはフロントエンドにCopyInResponseメッセージを送信します。
フロントエンドはその後、ゼロ個以上のCopyDataメッセージを送信し、入力データのストリームを形成します。
（このメッセージの境界は行の境界に何かしら合わせる必要ありませんが、往々にしてそれが合理的な選択となります。）
フロントエンドは、CopyDoneメッセージ（正常に終了させる）、もしくは、CopyFailメッセージ（COPY SQL文をエラーで失敗させる）を送信することで、コピーインモードを終了させることができます。
そして、バックエンドは、COPYが始まる前の、簡易もしくは拡張問い合わせプロトコルを使用するコマンド処理モードに戻ります。
そして次に、CommandComplete（成功時）またはErrorResponse（失敗時）のどちらかを送信します。
   


コピーインモードの期間中にバックエンドがエラー（CopyFailメッセージの受信を含む）を検知すると、バックエンドはErrorResponseメッセージを発行します。
拡張問い合わせメッセージ経由でCOPYコマンドが発行された場合、バックエンドはSyncメッセージを受け取るまでフロントエンドのメッセージを破棄するようになります。
Syncメッセージを受け取ると、ReadyForQueryを発行し、通常処理に戻ります。
簡易問い合わせメッセージでCOPYが発行された場合、メッセージの残りは破棄され、ReadyForQueryメッセージを発行します。
どちらの場合でも、その後にフロントエンドによって発行されたCopyData、CopyDone、CopyFailは単に削除されます。
   


バックエンドは、コピーインモード期間中、FlushとSyncメッセージを無視します。
その他の種類の非コピーメッセージを受け取ると、エラーになり、上述のようにコピーイン状態を中断します。
（クライアントライブラリがExecuteメッセージの後に、実行したコマンドがCOPY FROM STDINかどうかを検査することなく、常にFlushまたはSyncを送信できる、という便利さのためにFlushとSyncは例外です。）
   


コピーアウトモード（サーバからのデータ転送）は、バックエンドがCOPY TO STDOUT SQL文を実行した時に起動します。
バックエンドはCopyOutResponseメッセージをフロントエンドに送信し、その後、ゼロ個以上のCopyDataメッセージ（常に行ごとに1つ）を、そして、CopyDoneを送信します。
その後、バックエンドはCOPYが始まる前のコマンド処理モードに戻り、CommandCompleteを送信します。
フロントエンドは（接続の切断やCancel要求の発行は例外ですが）転送を中断することはできません。
しかし、不要なCopyDataとCopyDoneメッセージを破棄することは可能です。
   


コピーアウトモード期間中バックエンドはエラーを検知すると、ErrorResponseメッセージを発行し、通常処理に戻ります。
フロントエンドはErrorResponseの受信をコピーアウトモードの終了として扱うべきです。
   


NoticeResponseおよびParameterStatusメッセージがCopyDataメッセージ間に散在することがあります。
フロントエンドはこのような場合も扱わなければなりません。
また、他の種類の非同期メッセージ（「非同期操作」を参照）も同様に準備すべきです。
さもなくば、CopyDataまたはCopyDone以外の種類のメッセージがコピーアウトモードの終了として扱われてしまう可能性があります。
   


他にも、サーバへ、およびサーバからの高速な一括データ転送を行うことができるコピーボースというコピーに関連したモードがあります。
コピーボースモードは、walsenderモードのバックエンドがSTART_REPLICATION文を実行した時に初期化されます。
バックエンドはCopyBothResponseメッセージをフロントエンドに送信します。
この後バックエンドとフロントエンドの両方が、接続が終了するまでの間にCopyDataメッセージを送信できるようになります。
クライアントがCopyDoneメッセージを送信した場合、接続はコピーボースモードからコピーアウトモードに移行し、クライアントはそれ以上のCopyDataメッセージを送信できません。
同様に、サーバがCopyDoneメッセージを送信した場合、接続はコピーインモードとなり、サーバはそれ以上のCopyDataメッセージを送信できません。
両方の側がCopyDoneメッセージを送信した後、コピーモードは終了し、バックエンドはコマンド処理モードに戻ります。
コピーボースモード中にバックエンドが検出したエラーのイベントにおいては、バックエンドはErrorResponseメッセージを発行し、Syncメッセージの受信までフロントエンドのメッセージを破棄し、その後ReadyForQueryを発行して通常の処理に戻ります。
フロントエンドは両方向のコピーを終了するように、ErrorResponse受理の処理をするべきです。
この場合CopyDoneを送信するべきではありません。
コピーボースモードにおけるサブプロトコル転送の詳細は「ストリーミングレプリケーションプロトコル」を参照してください。
   


CopyInResponse、CopyOutResponse、CopyBothResponseメッセージには、フロントエンドに1行当たりの列数と各列で使用する書式コードを通知するためのフィールドが含まれています。
（現在の実装では、COPY操作で与えられるすべての列は同一の書式を使用します。
しかし、メッセージ設計においては、これを前提としていません。）
   

非同期操作





バックエンドが、フロントエンドのコマンドストリームで特に依頼されていないメッセージを送信する場合が複数あります。
フロントエンドは、問い合わせ作業を行っていない時であっても常に、これらのメッセージを扱う準備をしなければなりません。
少なくとも、問い合わせの応答の読み込みを始める前にこれらを検査すべきです。
   


外部の活動によって、NoticeResponseメッセージが生成されることがあり得ます。
例えば、データベース管理者が「高速」データベース停止コマンドを実行した場合、バックエンドは接続を閉じる前にこれを通知するためにNoticeResponseを送信します。
したがって、たとえ接続が名目上待機状態であったとしても、フロントエンドは常にNoticeResponseメッセージを受け付け、表示する準備をすべきです。
   


ParameterStatusメッセージは、任意のパラメータの実際の値が変更され、それをバックエンドがフロントエンドに通知するべきであるとみなした場合は常に生成されます。
ほとんどの場合、これはフロントエンドによるSET SQLコマンド実行に対する応答の中で起こります。
これは実質的には同期していますが、管理者が設定ファイルを変更し、SIGHUPシグナルをサーバに送った場合にも、パラメータ状態の変更が発生することがあります。
また、SETコマンドがロールバックされた場合、現在の有効値を報告するために適切なParameterStatusメッセージが生成されます。
   


現時点では、ParameterStatusを生成するパラメータ群は固定されています。
それらは次の通りです。
    
	application_name	scram_iterations
	client_encoding	search_path
	DateStyle	server_encoding
	default_transaction_read_only	server_version
	in_hot_standby	session_authorization
	integer_datetimes	standard_conforming_strings
	IntervalStyle	TimeZone
	is_superuser	 



（default_transaction_read_onlyとin_hot_standbyはバージョン14以前では報告されませんでした。
scram_iterationsはバージョン16以前では報告されませんでした。
search_pathはバージョン18以前では報告されませんでした。）
server_version、server_encoding、およびinteger_datetimesは、起動後に変更できない疑似パラメータであることに注意してください。
このセットは将来変わる可能性があり、変更が可能になる可能性もあります。
したがって、フロントエンドは理解しない、または気にしないパラメータについてはParameterStatusは無視した方が良いです。
   


フロントエンドがLISTENコマンドを発行した場合、同じチャネル名に対しNOTIFYコマンドが実行された時にバックエンドはNotificationResponseメッセージ（NoticeResponseと間違えないように！）を送出します。
   
注記


現在、NotificationResponseをトランザクションの外部でのみ送信することができます。
このため、これはコマンド応答の流れの途中では起こりませんが、ReadyForQueryの直前に発生する可能性があります。
しかし、これを前提にフロントエンドのロジックを設計することは避けてください。
プロトコル内の任意の時点でNotificationResponseを受け付けられるようにすることを勧めます。
    


処理中のリクエストの取り消し





問い合わせの処理中に、フロントエンドが問い合わせを取り消す可能性があります。
取り消し要求は、効率を高めるために、接続を開いたバックエンドに対して直接送信されません。
その問い合わせを処理中のバックエンドが、フロントエンドからの新しい入力があるかどうかを定期的に確認することは好ましくありません。
取り消し要求はたいていの場合、頻繁には起こらないので、通常の状態においての負担を避けるため、多少扱いにくくなっています。
   


取り消し要求を出す場合、フロントエンドは通常の新規接続の時に送出されるStartupMessageメッセージではなくCancelRequestメッセージをサーバに送り、新規接続を開始します。
サーバはこの要求を処理し、接続を切断します。
セキュリティ上の理由から、取り消し要求メッセージに対し直接の回答はありません。
   


CancelRequestメッセージは、接続開始段階でフロントエンドに送られたものと同一の鍵データ（PIDと秘密鍵）を含んでいない場合は無視されます。
現在バックエンドが実行中の処理に対するPIDと秘密鍵が要求と一致した場合、その現在の問い合わせ処理は中断されます。
（現状では、これは、その問い合わせを処理しているバックエンドプロセスに対し特別なシグナルを送ることで実装されています。）
   


この取り消しシグナルは何の効果も生まないことがあります。
例えば、バックエンドが問い合わせの処理を完了した後に届いた場合、効果がありません。
もし取り消し処理が有効であれば、エラーメッセージとともに、現在のコマンドは終了されます。
   


セキュリティと効率上の理由による上述の実装の結果、フロントエンドは取り消し要求が成功したかどうかを直接判断することはできません。
フロントエンドはバックエンドからの問い合わせの回答を待ち続けなければいけません。
取り消しを要求することは単に現在の問い合わせを早めに終わらせ、成功ではなくエラーメッセージを出して不成功とする可能性を単に高める程度のものです。
   


取り消し要求は、通常のフロントエンドとバックエンドの通信接続を通してではなく新規のサーバとの接続に送られるため、取り消される問い合わせを実行したフロントエンドだけでなく、任意のプロセスによっても送信することができます。
このことはマルチプロセスアプリケーションを作るに当たって柔軟性を提供します。
同時に、権限のない者が問い合わせを取り消そうとするといったセキュリティ上のリスクも持ち込みます。
このセキュリティ上のリスクは、取り消し要求内に動的に生成される秘密キーを供給することを必須とすることで回避されます。
   

終了





通常の洗練された終了手順はフロントエンドがTerminateメッセージを出し、すぐに接続を閉じることです。
このメッセージを受け取るとすぐにバックエンドは接続を閉じ終了します。
   


まれに（管理者によるデータベース停止コマンドなど）、バックエンドはフロントエンドからの要求なしに切断することがあります。
こうした場合、バックエンドは、接続を閉じる前に切断理由を通知するエラーまたは警報メッセージの送信を試みます。
   


他にも、どちらかの側のコアダンプ、通信リンクの消失、メッセージ境界の同期の消失など各種失敗によって終了する状況があります。
フロントエンドかバックエンドいずれかが予期しない接続の中断を検知した場合、後始末を行い終了しなければいけません。
フロントエンドはもし自身が終了を望まない場合、サーバに再交信し新規のバックエンドを立ち上げる選択権を持っています。
解釈できないメッセージ種類を受け取った時、おそらくメッセージ境界の同期が消失したことを示しますので、接続を閉じることを勧めます。
   


通常の終了、異常な終了のどちらの場合でも、開いているトランザクションはすべてコミットされずにロールバックされます。
しかし、フロントエンドがSELECT以外の問い合わせを処理中に切断した場合、バックエンドはおそらく切断に気付く前にその問い合わせを完了させてしまうでしょう。
その問い合わせがトランザクションブロック（BEGIN ... COMMITの並び）外部であった場合、切断に気付く前にその結果はコミットされる可能性があります。
   

SSLセッション暗号化





PostgreSQL™がSSLサポート付きで構築された場合、フロントエンドとバックエンド間の通信をSSLで暗号化することができます。
攻撃者がセッショントラフィックをキャプチャできるような環境における通信を安全にすることができます。
SSLを使用したPostgreSQL™セッションの暗号化に関する詳細は「SSLによる安全なTCP/IP接続」を参照してください。
   


SSL暗号化接続を開始するには、フロントエンドはまず、StartupMessageではなくSSLRequestを送信します。
その後サーバはそれぞれSSLの実行を行うか行わないかを示すSかNかを持つ1バイトの応答を返します。
フロントエンドはその応答に満足できなければ、この時点で接続を切断することができます。
Sの後に継続するのであれば、サーバと間でSSL起動ハンドシェイク（ここではSSLの仕様に関しては説明しません）を行います。
これが成功した場合、続いて通常のStartupMessageの送信を行います。
この場合、StartupMessageおよびその後のデータはSSLにより暗号化されます。
Nの後に、通常のStartupMessageを送信することで暗号化なしで進みます。
（他に、SSLの代わりにGSSAPI暗号化の利用を試行するために、N応答の後にGSSENCRequestメッセージを送信することが認められています。）
   


また、フロントエンドはサーバからのSSLRequestに対するErrorMessage応答を取り扱うための用意もすべきです。
フロントエンドは、サーバが認証されていないため、このエラーメッセージをユーザやアプリケーションに表示してはいけません（CVE-2024-10977）。
この場合接続を切断しなければなりませんが、フロントエンドはSSL要求なしで新しく接続を開き、処理を進めることもできます。
   


SSL暗号化が実行可能なら、サーバはSバイトだけを送信し、フロントエンドがSSLハンドシェイクを開始するのを待つことが期待されます。
この段階でそれ以上のバイトが読み取り可能であるなら、中間者がバッファスタッフィング攻撃(CVE-2021-23222)を開始しようとしている可能性が高いです。
フロントエンドは、ソケットをSSLライブラリに渡す前に正確に1バイトだけをソケットから読み出すべきです。
でなければ、追加のバイトが読み取られた場合には、プロトコル違反として扱うべきです。
   


同様に、サーバはクライアントがSSL要求に対するサーバの単一バイト応答を受信するまで、SSLネゴシエーションを開始しないことを期待します。
クライアントがサーバからの応答を待たずに直ちに SSLネゴシエーションを開始する場合、接続の待ち時間を1往復分減らすことができます。
しかし、これは、サーバがSSLリクエストに対して否定的な応答を送信する場合を処理できないという代償を伴います。
その場合、GSSAPIや暗号化されていない接続、あるいはプロトコルエラーで接続を続ける代わりに、サーバは単に接続を切断するだけです。
   


最初のSSLRequestはCancelRequestメッセージを送信するために開いた接続で使用することもできます。
   


SSL暗号化を開始するための2つ目の代替方法があります。
サーバは、以前のSSLRequestパケットなしで直ちにSSLネゴシエーションを開始する接続を認識します。
SSL接続が確立されると、サーバは通常の起動要求パケットを期待し、暗号化されたチャネルを介してネゴシエーションを続行します。
この場合、他の暗号化要求は拒否されます。
この方法は、利用可能な最良の接続暗号化をネゴシエートできないため、または暗号化されていない接続を処理できないため、汎用ツールには推奨されません。
ただし、サーバとクライアントの両方が一緒に制御される環境では便利です。
この場合、一往復の遅延を回避し、標準のSSL接続に依存するネットワークツールの使用を可能にします。
このスタイルのSSL接続を使用する場合、クライアントはRFC 7301で定義されたALPN拡張を使用して、プロトコルの混乱攻撃から保護する必要があります。
PostgreSQL™プロトコルはIANA TLS ALPN Protocol IDsレジストリに"postgresql"として登録されています。
   


プロトコル自体には、サーバにSSL暗号化を強制する方法は用意されていませんが、管理者は認証検査の一方法として、暗号化されていないセッションを拒否するようにサーバを設定することができます。
   

GSSAPIセッション暗号化





PostgreSQL™がGSSAPIサポートを有効にして構築されていれば、GSSAPIを使ってフロントエンド/バックエンド通信を暗号化できます。
これにより、攻撃者がセッションのやり取りを読み取れるかもしれない環境における通信のセキュリティが提供されます。
PostgreSQL™での通信をGSSAPIで暗号化するための情報に関しては、「GSSAPIによる安全なTCP/IP接続」をご覧ください。
   


GSSAPI暗号化接続を開始するには、フロントエンドは最初にStartupMessageではなく、GSSENCRequestメッセージを送ります。
次にサーバは、それぞれGSSAPI暗号化を希望する、しないを意味するGまたはNを含む1バイトを送信します。
このレスポンスに満足できなければ、この時点でフロントエンドは接続を打ち切って構いません。
Gの受信後継続するには、RFC 2744あるいは同様の文書で説明されているGSSAPI Cバインディングを使い、ループの中でgss_init_sec_context()を呼び出してGSSAPIを初期化し、結果をサーバに送信し、空の入力を受け取ることから始めて、サーバが出力を返さなくなるまでサーバからの出力を受け取ります。
gss_init_sec_context()の結果をサーバに送る際には、ネットワークバイトオーダーで4バイトの整数にメッセージ長を先頭に付与します。
Nの後継続するには、通常のStartupMessageを送信し、暗号化せずに続けてください。
（他に、GSSAPIの代わりにSSL暗号化の使用を試行するために、N応答の後にSSLRequestメッセージを送信することが認められています。）
   


また、フロントエンドはサーバからのGSSENCRequestに対するErrorMessage応答を取り扱うための用意もすべきです。
フロントエンドは、サーバが認証されていないため、このエラーメッセージをユーザやアプリケーションに表示してはいけません（CVE-2024-10977）。
この場合接続を切断しなければなりませんが、フロントエンドはGSSAPI暗号化要求なしで新しく接続を開き、処理を進めることもできます。
   


GSSAPI暗号化が実行可能なら、サーバはGバイトだけを送信し、フロントエンドがGSSAPIハンドシェイクを開始するのを待つことが期待されます。
この段階でそれ以上のバイトが読み取り可能であるなら、中間者がバッファスタッフィング攻撃(CVE-2021-23222)を開始しようとしている可能性が高いです。
フロントエンドは、ソケットをGSSAPIライブラリに渡す前に正確に1バイトだけをソケットから読み出すべきです。
でなければ、追加のバイトが読み取られた場合には、プロトコル違反として扱うべきです。
   


最初のGSSENCRequestは、CancelRequestメッセージを送信するために開いている接続でも利用できます。
   


GSSAPI暗号化の確立に成功したら、gss_wrap()を使って通常のStartupMessageと後続のすべてのメッセージを暗号化します。
実際に暗号化した送信データの前に、gss_wrap()の結果をネットワークバイトオーダーで4バイトの整数にしたものを付与します。
サーバは16kB未満のクライアントからの暗号化パケットだけを受け付けることに注意してください。
クライアントはgss_wrap_size_limit()を使って暗号化前のメッセージの大きさがこの制限に収まるかどうかを確認し、それより大きなメッセージは複数のgss_wrap()呼び出しに分解すべきです。
典型的なセグメントは暗号化前で8kBのデータで、暗号化後のパケットは8kBより少し大きくなりますが、最大長の16kB以内には問題なく収まります。
サーバは16kBよりも大きな暗号化パケットをクライアントに送らないものと期待することができます。
   


プロトコル自身はサーバにGSSAPI暗号化を強制する方法を提供していませんが、管理者は認証チェックの副次的効果として暗号化されていないセッションをサーバが拒否するように設定できます。
   


SASL認証





SASLは接続指向のプロトコルでの認証のためのフレームワークです。
現時点ではPostgreSQL™は3つのSASLの認証機構、SCRAM-SHA-256、SCRAM-SHA-256-PLUS、OAUTHBEARERを実装しています。
将来には更に他の機構が追加されるかもしれません。
以下の手順は、SASLの認証が一般的にどのように行われるかを示したものですが、次の副節では特定の機構についてより詳細について説明します。
  
手順54.1 SASL認証のメッセージフロー
	

SASL認証の交換を開始するため、サーバはAuthenticationSASLメッセージを送信します。
これにはサーバが受け付けることができるSASLの認証機構を、サーバにとって望ましいものから順に並べたリストが含まれます。
    

	

クライアントはリストからサポートされる機構を1つ選択し、サーバにSASLInitialResponseメッセージを送信します。
このメッセージには選択された機構の名前が含まれ、また選択した機構がInitial Client Response（最初のクライアントの応答）を使用するなら、オプションでそれも含まれます。
    

	

サーバのチャレンジメッセージおよびクライアントのレスポンスメッセージが1つ以上続きます。
サーバのチャレンジはそれぞれがAuthenticationSASLContinueメッセージで送信され、それにクライアントからのレスポンスがSASLResponseメッセージで続きます。
メッセージの詳細は機構に固有のものです。
    

	

最後に、認証の交換が成功裏に終了すると、サーバはオプションのAuthenticationSASLFinalメッセージを送信し、その直後にAuthenticationOkメッセージを送信します。
AuthenticationSASLFinalにはサーバからクライアントへの追加のデータが含まれ、その内容は選択した認証機構毎に異なります。
完了時に送信する追加データを認証機構が使用していない場合、AuthenticationSASLFinalメッセージは送信されません。
    





エラーが発生したときは、サーバは認証を任意の段階で終了してErrorMessageを送信することができます。
  
SCRAM-SHA-256認証





SCRAM-SHA-256、およびそのチャネルバインディング版SCRAM-SHA-256-PLUS、はパスワードベースの認証メカニズムです。
RFC 7677およびRFC 5802で詳細に説明されています。
   


PostgreSQLでSCRAM-SHA-256を使用する場合、クライアントがclient-first-messageで送信するユーザ名をサーバは無視します。
その代わりに、開始メッセージで送信済みのユーザ名が使用されます。
SCRAMはユーザ名としてUTF-8の使用を指示していますが、PostgreSQL™は複数の文字符号化方式をサポートするため、PostgreSQLのユーザ名をUTF-8で表現できないかもしれません。
   


SCRAMの仕様ではパスワードもUTF-8であり、SASLprepアルゴリズムで処理されることが規定されています。
しかしPostgreSQL™ではパスワードにUTF-8が使用されることを必須としていません。
ユーザのパスワードが設定されたとき、実際に使用された符号化方式に関わらず、それがUTF-8であるかのようにSASLprepで処理されます。
しかし、それが正当なUTF-8バイト列でない場合、あるいはSASLprepが禁止するUTF-8バイト列を含む場合、エラーを発生させるのではなく、SASLprep処理のない生のパスワードが使用されます。
これにより、パスワードがUTF-8であればそれを正規化できる一方で、UTF-8以外のパスワードを使用することもでき、またシステムもパスワードがどの符号化であるかを知る必要もありません。
   


SSLをサポートするPostgreSQLビルドでチャネルバインディングがサポートされます。
チャネルバインディングを伴うSCRAMに対するSASL機構名はSCRAM-SHA-256-PLUSです。
PostgreSQLで使われるチャネルバインディングのタイプはtls-server-end-pointです。
   


チャネルバインディングを伴わないSCRAMではサーバは、送信されるパスワードハッシュの中でユーザに応じたパスワードと混合してクライアントに送る乱数を選びます。
これはパスワードハッシュが後のセッションで再送信されて認証に成功してしまうことを防止しますが、真のサーバとクライアントの間の偽サーバがサーバのランダム値を中継して認証に成功してしまうことを防止しません。
   


チャネルバインディングを伴うSCRAMはこのような中間者攻撃をサーバ証明書のシグネチャを送信されるパスワードハッシュと混合することで防止します。
偽サーバは真のサーバの証明書を再送信できますが、その証明書に一致する秘密鍵にアクセスできず、それゆえ所有者であることを証明できず、結果としてSSL接続は失敗します。
   
手順54.2 例
	

サーバはAuthenticationSASLメッセージを送信します。
それにはサーバが受け付けることができるSASL認証機構のリストが含まれます。
サーバがSSLサポート有でビルドされていれば、これはSCRAM-SHA-256-PLUSとSCRAM-SHA-256になり、そうでなければ後者のみとなります。
     

	

クライアントはSASLInitialResponseメッセージを送信することで応答します。
これは選択した機構、すなわちSCRAM-SHA-256またはSCRAM-SHA-256-PLUSを示します。
（クライアントは何れかの機構を自由に選びますが、より良いセキュリティのためサポートされているならチャネルバインディングを伴うものを選ぶべきです。）
Initial Clientの応答フィールドでは、メッセージにSCRAMのclient-first-messageが含まれます。
client-first-messageにはクライアントが選んだチャネルバインディングのタイプも含まれます。
     

	

サーバがAuthenticationSASLContinueメッセージを送信します。
その内容はSCRAMのserver-first-messageです。
     

	

クライアントがSASLResponseメッセージを送信します。
その内容はSCRAMのclient-final-messageです。
     

	

サーバがSCRAMのserver-final-messageを含むAuthenticationSASLFinalメッセージを送信し、その直後にAuthenticationOkメッセージを送信します。
     




OAUTHBEARER認証





OAUTHBEARERは、トークンベースのフェデレーション認証のメカニズムです。
詳細はRFC 7628に記載されています。
   


典型的な交換は、クライアントがそのユーザ用にキャッシュされたベアラ（bearer）トークンをすでに持っているかどうかによって異なります。
持っていない場合、交換は2つの接続で行われます。
最初の「ディスカバリ」コネクションはサーバからOAuthメタデータを取得し、2番目のコネクションはクライアントがそれを取得した後にトークンを送信します。
（libpqは現在、組み込みフローの一部としてキャッシングメソッドを実装していないため、2つのコネクション交換を使用します。）
   


このメカニズムは、SCRAMと同様にクライアント主導型です。
クライアント初期応答は、SCRAMで使用される標準の「GS2」ヘッダと、それに続くkey=valueペアのリストで構成されます。
現在サーバでサポートされている唯一のキーはauthで、ベアラトークンを含んでいます。
さらにOAUTHBEARERは、クライアント初期応答の3つのオプショナルコンポーネント（GS2ヘッダのauthzidと、現在サーバで無視されているhostおよびportキー）を指定します。
   


OAUTHBEARERチャネルバインディングをサポートしておらず、「OAUTHBEARER-PLUS」メカニズムもありません。
このメカニズムは、認証の成功時にサーバデータを使用しないため、AuthenticationSASLFinalメッセージはやり取りで使用されません。
   
手順54.3 例
	

最初のやり取りでは、サーバはAuthenticationSASLメッセージをOAUTHBEARERメカニズムを表示して送信します。
     

	

クライアントは、OAUTHBEARERメカニズムを示すSASLInitialResponseメッセージを送信することで応答します。
クライアントはまだ現在のユーザの有効なベアラトークンを持っていないものと見なすので、authフィールドは空であり、これはディスカバリコネクションを意味します。
     

	

サーバは、エラーstatusを含むAuthenticationSASLContinueメッセージをクライアントがOAuthフローを実行するために使用するよく知られたURIとスコープとともに送信します。
     

	

クライアントは、空のセット（単一の0x01バイト）を含むSASLResponseメッセージを送信して、ディスカバリ交換の半分を終了します。
     

	

サーバはErrorMessageを送信して最初のやり取りを失敗させます。
     


この時点で、クライアントはサーバによって提供されるものに加えて、設定されている任意のメタデータを使用して、ベアラトークンを取得するために多くの可能なOAuthフローの1つを実行します。
（この説明は意図的に曖昧にされています。OAUTHBEARERはトークンを取得するための特定のメソッドを指定または義務付けていません。）
     


クライアントはトークンを所有すると、最終的なやり取りのためにサーバに再接続します。
     

	

サーバは再びAuthenticationSASLメッセージをOAUTHBEARERメカニズムを表示して送信します。
     

	

クライアントはSASLInitialResponseメッセージを送信することで応答しますが、今回はメッセージ中のauthフィールドはクライアントフロー中に取得されたベアラトークンを含みます。
     

	

サーバは、トークンプロバイダの指示に従ってトークンを検証します。
クライアントが接続を認可されている場合は、AuthenticationOkメッセージを送信してSASL交換を終了します。
     





ストリーミングレプリケーションプロトコル





ストリーミングレプリケーションを初期化するために、フロントエンドは開始メッセージにてreplicationパラメータを送信します。
ブール値のtrue（またはon、yes、1）がバックエンドに対して、SQL文ではなく小規模なレプリケーションコマンド群を発行できるようになる、物理レプリケーションのwalsenderモードに入るように伝えます。
  


replicationパラメータに対する値としてdatabaseを渡すことは、dbnameパラメータで指定されたデータベースに接続して、バックエンドに論理レプリケーションのwalsenderモードに入ることを指示します。
論理レプリケーションwalsenderモードでは、以下に示すレプリケーションコマンドを通常のSQLコマンドと同様に実行できます。
  


物理レプリケーション、論理レプリケーションいずれかのwalsenderモードでは、簡易問い合わせプロトコルのみ使用できます。
  


レプリケーションコマンドをテストするために、replicationオプションを含む接続文字列を使用して、psqlまたは他のlibpqを使用するツールによるレプリケーション接続を作成できます。
例を示します。


psql "dbname=postgres replication=database" -c "IDENTIFY_SYSTEM;"



しかし、物理レプリケーションのためにpg_receivewal(1)を使用し、論理レプリケーションのためにpg_recvlogical(1)を使用すれば、もっと有用なことが多いです。
  


log_replication_commandsが有効であるとき、サーバログにレプリケーションコマンドが記録されます。
  


レプリケーションモードで受け付けられるコマンドは以下の通りです。

   
	IDENTIFY_SYSTEM
      
     
	

サーバに自身を識別することを要求します。
サーバは以下の４つのフィールドを持つ単一行の結果セットをもって応答します。
      
	systemid (text)
	

クラスタを識別する一意なシステム識別子です。
これを使用してスタンバイを初期化するために使用するベースバックアップが同じクラスタに由来していることを検査することができます。
         

	timeline (int8)
	

現在のタイムラインIDです。
同様にスタンバイがプライマリと一貫性を持つことを検査するために使用されます。
         

	xlogpos (text)
	

現在のWALのフラッシュ位置です。
ストリーミングを開始できる先行書き込みログ（WAL）の既知の位置を得る際に有用です。
         

	dbname (text)
	

接続したデータベース名またはNULLです。
         




	SHOW name
      
     
	

実行時パラメータの現在の設定を送信するようサーバに要求します。
これはSQLコマンドSHOW(7)と同等です。
      
	name
	

実行時パラメータの名前です。
利用できるパラメータは19章サーバ設定に記述されています。
         




	TIMELINE_HISTORY tli
      
     
	

tliのタイムラインのため、サーバにタイムライン履歴ファイルの送付を要求します。
サーバは2列単一行の結果セットを返します。
フィールドにはtextの印が付けられていますが、実際には符号化変換なしの生のバイトが返ります。
      
	filename (text)
	

タイムライン履歴ファイル名、例えば00000002.history
         

	content (text)
	

タイムライン履歴ファイルの内容
         




	CREATE_REPLICATION_SLOT slot_name [ TEMPORARY ] { PHYSICAL | LOGICAL output_plugin } [ ( option [, ...] ) ]
      
     
	

物理的または論理レプリケーションスロットを作成します。
レプリケーションスロットの詳細は「レプリケーションスロット」を参照。
      
	slot_name
	

作成するスロット名。
有効なレプリケーションスロット名でなければならない。
（「レプリケーションスロットへの問い合わせと操作」を参照）。
         

	output_plugin
	

ロジカルデコーディングに使用される出力プラグイン名。
（「ロジカルデコーディングの出力プラグイン」を参照）。
         

	TEMPORARY
	

このレプリケーションスロットが一時スロットであることを指定します。
一時スロットはディスクに保存されず、エラー発生時またはセッション終了時に自動的に削除されます。
         



次のオプションがサポートされています。
	TWO_PHASE [ boolean ]
	

trueの場合、この論理レプリケーションスロットは2相コミットのデコードをサポートします。
このオプションを使用すると、PREPARE TRANSACTION、COMMIT PREPAREDおよびROLLBACK PREPAREDなどの2相コミットに関連するコマンドがデコードおよび転送されます。
トランザクションはPREPARE TRANSACTION時にデコードおよび転送されます。
デフォルトはfalseです。
         

	RESERVE_WAL [ boolean ]
	

trueの場合、この物理レプリケーションスロットが直ちにWALを予約することを指定します。
そうでなければ、WALはストリーミングレプリケーションクライアントからの接続時の予約のみです。
デフォルトはfalseです。
         

	SNAPSHOT { 'export' | 'use' | 'nothing' }
	

論理スロットの初期化時に作成されたスナップショットの処理について決定します。
デフォルトの'export'はスナップショットが他のセッションで利用できるようエクスポートします。
このオプションはトランザクションの内側で使用することはできません。
'use'はこのコマンドを実行している現在のトランザクションでスナップショットを利用します。
このオプションはトランザクション内で使用しなければならず、CREATE_REPLICATION_SLOTがそのトランザクション内で実行される最初のコマンドでなければなりません。
最後に、'nothing'はロジカルデコーディングで通常通りにスナップショットを使用するだけで、他には何もしません。
         

	FAILOVER [ boolean ]
	

trueの場合、スロットはスタンバイに同期化できるようになり、フェイルオーバー後に論理レプリケーションを再開できます。
デフォルトはfalseです。
         





このコマンドへの応答として、サーバは以下のフィールドを含む1行の結果セットを送信します。

       
	slot_name (text)
	

新しく作成されたレプリケーションスロットの名前です。
          

	consistent_point (text)
	

スロットが一貫性のある状態になった時点のWAL位置です。
これが、このスロット上でストリーミングを開始できる最も早い場所となります。
          

	snapshot_name (text)
	

このコマンドでエクスポートされるスナップショットの識別子です。
スナップショットは、この接続上で新しいコマンドが実行されるか、レプリケーション接続が閉じられるまで有効です。
作成されたのが物理スロットの場合はNULLになります。
          

	output_plugin (text)
	

新しく作成されたレプリケーションスロットが使用する出力プラグインの名前です。
作成されたのが物理スロットの場合はNULLになります。
          




      

	CREATE_REPLICATION_SLOT slot_name [ TEMPORARY ] { PHYSICAL [ RESERVE_WAL ] | LOGICAL output_plugin [ EXPORT_SNAPSHOT | NOEXPORT_SNAPSHOT | USE_SNAPSHOT | TWO_PHASE ] }
     
	

旧リリースとの互換性を保つために、CREATE_REPLICATION_SLOTコマンドのこの代替構文は引き続きサポートされています。
      

	ALTER_REPLICATION_SLOT slot_name ( option [, ...] )
      
     
	

レプリケーションスロットの定義を変更します。
レプリケーションスロットについての詳細は「レプリケーションスロット」を参照してください。
このコマンドは現在、論理レプリケーションスロットのみでサポートされています。
      
	slot_name
	

変更するスロットの名前。
有効なレプリケーションスロット名でなければなりません（「レプリケーションスロットへの問い合わせと操作」を参照）。
         



次のオプションがサポートされています。
	TWO_PHASE [ boolean ]
	

trueの場合、この論理レプリケーションスロットは2相コミットのデコードをサポートします。
このオプションを使用すると、PREPARE TRANSACTION、COMMIT PREPAREDおよびROLLBACK PREPAREDなどの2相コミットに関連するコマンドがデコードおよび転送されます。
トランザクションはPREPARE TRANSACTION時にデコードおよび転送されます。
         



	FAILOVER [ boolean ]
	

trueの場合、スロットはスタンバイに同期化できるようになり、フェイルオーバー後に論理レプリケーションを再開できます。
         




	READ_REPLICATION_SLOT slot_name
      
     
	

レプリケーションスロットに関連付けられた情報を読みます。
レプリケーションスロットが存在しない場合は、NULL値を持つタプルが戻されます。
このコマンドは現在、物理レプリケーションスロットでのみサポートされています。
      


このコマンドへの応答として、サーバは以下のフィールドを含む1行の結果セットを返します。
       
	slot_type (text)
	

レプリケーションスロットのタイプ、physicalまたはNULL。
          

	restart_lsn (text)
	

レプリケーションスロットのrestart_lsn。
          

	restart_tli (int8)
	

現在のタイムライン履歴に従って、restart_lsnに関連付けられたタイムラインID。
          




      

	START_REPLICATION [ SLOT slot_name ] [ PHYSICAL ] XXX/XXX [ TIMELINE tli ]
      
     
	

サーバに対して、WALのストリーミングをXXX/XXX WAL時点から開始するよう指示します。
TIMELINEオプションが指定された場合、ストリーミングはtliのタイムラインから開始されます。
そうでなければ、サーバの現在のタイムラインが選択されます。
サーバが、例えば、要求されたWALの断片がすでに回収されているなど、エラーを返すことがありえます。
成功時サーバはCopyBothResponseメッセージで応答し、フロントエンドに対するWALストリームを開始します。
      


slot_nameを経由してスロット名が提供された場合、それはレプリケーションの進行として更新されます。
それによってサーバは、どのWALセグメントがまだスタンバイに必要か、hot_standby_feedbackのトランザクションはどれか、を感知します。
      


最新ではなくて、サーバの過去のタイムラインをクライアントが要求した場合、サーバは要求された開始時点から他のタイムラインに切り替えるまでの、全てのWALストリームを送付します。
クライアントが旧タイムラインの終点のストリームを要求した場合、サーバはCOPYモード全体をスキップします。
      


最新でないタイムラインの全てのWALストリームを送付した後、サーバはCOPYモードを出ることによりストリームを終了します。
クライアントもCOPYモードを出ることにより承認した場合、サーバは2列単一行の結果セットを送付し、サーバにある次のタイムラインを示します。
最初の列は次のタイムラインID(int8型)であり、次の列は切り替えたWALの位置(text型)です。
通常切り替えた位置はWALストリームの終点ですが、昇格する前に再実行されなかった旧タイムラインからWALを送付するというまれな場合もあります。
最後に、サーバは２つのCommandCompleteメッセージ（一方はCopyDataを終了し、もう一方はSTART_REPLICATION自体を終了する）を送付し、新規のコマンドを受理できるようになります。
      


WALデータはCopyDataメッセージ群として送信されます。
詳細は「メッセージのデータ型」と「メッセージの書式」を参照してください。
（これにより他の情報を混在させることができます。
具体的にはサーバはストリーム開始後に失敗が起きた場合にErrorResponseメッセージを送信することができます。）
サーバからクライアントへの各CopyDataメッセージのペイロード、は以下の書式のどれかを含みます。
      
	XLogData (B)
		Byte1('w')
	

メッセージをWALデータとして識別します。
            

	Int64
	

このメッセージ内のWALの開始点。
            

	Int64
	

サーバ上の現在のWAL終了点。
            

	Int64
	

転送時点でのサーバのシステム時刻。
2000年1月1日午前0時からのマイクロ秒。
            

	Byten
	

WALデータストリームの断片。
            


単一のWALレコードが2つのXLogDataメッセージに分かれることはありません。
しかしWALレコードがWALページ境界を跨る場合、継続レコードを用いてすでに分割されていますので、ページ境界で分割することができます。
言い換えると、先頭の主WALレコードとその継続レコードは、別のXLogDataメッセージとして分かれることがありえます。
            




	プライマリキープアライブメッセージ(B)
		Byte1('k')
	

メッセージを送信元キープアライブとして識別します。
            

	Int64
	

サーバ上の現在のWAL終端。
            

	Int64
	

転送時点でのサーバのシステム時刻。
2000年1月1日午前0時からのマイクロ秒。
            

	Byte1
	

タイムアウトによる切断を避けるため、クライアントがこのメッセージに即時に応答するべき方法の1つ。
0またはその他
            








以下のメッセージ書式の1つ（およびCopyDataメッセージのペイロード中のもの）を使用して、受理プロセスは送信者にいつでも応答できます。
      
	スタンバイ状態の更新(F)
		Byte1('r')
	

メッセージを受信側の状態更新として識別します。
            

	Int64
	

スタンバイにおいて受信しディスクに書き込まれた最終WALバイト+1の場所。
            

	Int64
	

スタンバイにおいてディスクにフラッシュされた最終WALバイト+1の場所。
            

	Int64
	

スタンバイにおいて適用された最終WALバイト+1の場所。
            

	Int64
	

転送時点でのクライアントのシステム時刻。
2000年1月1日午前0時からのマイクロ秒。
            

	Byte1
	

値が1の場合、このメッセージにすぐ応答するように、クライアントはサーバへ要求します。
この方法は、接続がまだ保持されているか検査するために、サーバへのピング送信として使用できます。
            




	ホットスタンバイフィードバックメッセージ(F)
		Byte1('h')
	

メッセージをホットスタンバイのフィードバックメッセージとして識別します。
            

	Int64
	

転送時点でのクライアントのシステム時刻。
2000年1月1日午前0時からのマイクロ秒。
            

	Int32
	

スタンバイの現在のグローバルのxminですが、すべてのレプリケーションスロットのcatalog_xminは除きます。
この値と次のcatalog_xminがいずれも0なら、この接続ではホットスタンバイのフィードバックはもう送信されないという通知として扱われます。
後でゼロでないメッセージによりフィードバック機構を再開することができます。
            

	Int32
	

スタンバイのグローバルのxmin xidのエポックです。
            

	Int32
	

スタンバイのすべてのレプリケーションスロットのcatalog_xminの最小値です。
スタンバイ上にcatalog_xminが存在しない、あるいはホットスタンバイのフィードバックが無効化されている場合は0に設定します。
            

	Int32
	

スタンバイのcatalog_xmin xidのエポックです。
            







	START_REPLICATION SLOT slot_name LOGICAL XXX/XXX [ ( option_name [ option_value ] [, ...] ) ]
	

サーバに対して、XXX/XXXWAL時点かスロットconfirmed_flush_lsn(「pg_replication_slots」参照)のどちらか大きい方から、論理レプリケーションのWALストリームを開始するよう指示します。
この動作により、クライアントは処理するデータがないときにローカルLSNステータスを更新しないようにしやすくなります。
しかし、要求されたLSNとは異なるLSNで開始すると、特定の種類のクライアントエラーを検出できない可能性があります。
したがって、クライアントはSTART_REPLICATIONを発行する前にconfirmed_flush_lsnが期待どおりであることを確認したい場合があります。
      


サーバは、スロットが存在しない場合などにエラーを返すことができます。
成功すると、サーバはCopyBothResponseメッセージで応答し、フロントエンドへのWALのストリーミングを開始します。
      


CopyBothResponse内部のメッセージは、2つのCommandCompleteメッセージを含めてSTART_REPLICATION ... PHYSICALの記述と同じ書式です。
      


選択されたスロットに関連した出力プラグインは、出力ストリームの処理に使用されます。
      
	SLOT slot_name
	

ストリームを変更したスロット名。
このパラメータは必須であり、LOGICALモードにおいてCREATE_REPLICATION_SLOTによって作成された、実在する論理レプリケーションスロットに対応しなければなりません。
         

	XXX/XXX
	

ストリームを開始するWAL時点。
         

	option_name
	

レプリケーションスロットのロジカルデコーディング出力プラグインに渡すオプション名。
標準(pgoutput)プラグインで受け付けられるオプションについては「論理ストリーミングレプリケーションのプロトコル」を参照してください。
         

	option_value
	

オプションの値。
文字列定数の形式。
         




	
      DROP_REPLICATION_SLOT slot_name [ WAIT ]
      
     
	

レプリケーションスロットを削除し、サーバ側で準備したリソースを解放します。
      
	slot_name
	

削除するスロット名。
         

	WAIT
	

このオプションを使用すると、スロットが使用中の時に、スロットの使用が終わるまでコマンドを待機させます。
デフォルトの動作ではエラーを発生させます。
         




	
      UPLOAD_MANIFEST
      
     
	

増分バックアップの取得を準備するために、バックアップマニフェストをアップロードします。
      

	BASE_BACKUP [ ( option [, ...] ) ]
      
     
	

ベースバックアップのストリーミングを開始するようにサーバに指示します。
システムは自動的に、バックアップが開始される前にバックアップモードに入り、バックアップが完了するとバックアップモードから出ます。
次のオプションを使用できます。

       
	LABEL 'label'
	

バックアップのラベルを設定します。
何も指定しない場合は、base backupのバックアップラベルが使用されます。
ラベルの引用符付け規則は、standard_conforming_stringsをオンにした標準SQL文字列と同じです。
          

	TARGET 'target'
	

バックアップの送信先をサーバに通知します。
ターゲットがclientの場合、デフォルトでバックアップデータがクライアントに送信されます。
ターゲットがserverの場合、バックアップデータはサーバのTARGET_DETAILオプションで指定されたパス名に書き込まれます。
ターゲットがblackholeの場合、バックアップデータはどこにも送信されず、単に破棄されます。
          


serverターゲットはスーパーユーザ権限を必要とするか、pg_write_server_filesロールを与えられている必要があります。
          

	TARGET_DETAIL 'detail'
	

バックアップターゲットに関する追加情報を提供します。
          


現在、このオプションはバックアップターゲットがサーバの場合にのみ使用できます。
バックアップを書き込むサーバディレクトリを指定します。
          

	PROGRESS [ boolean ]
	

trueの場合、進行状況の報告を生成するために必要な情報を要求します。
これは、ストリームが完了するまでにどのくらいかかるかを計算するために使用することができる、各テーブル空間のヘッダ内の概算容量を返送します。
これは、転送を始める前のすべてのファイルサイズを１度数え上げることで計算されます。
これ自体が性能に与える悪影響があるかもしれません。
特に最初のデータがストリームされるまでにより多くの時間がかかる可能性があります。
データベースファイルはバックアップの間変更される可能性がありますので、容量は概算に過ぎず、概算時と実ファイルを送信するまでの間に増減される可能性があります。
デフォルトはfalseです。
          

	CHECKPOINT { 'fast' | 'spread' }
	

ベースバックアップの開始時に実行されるチェックポイントのタイプを設定します。
デフォルトはspreadです。
          

	WAL [ boolean ]
	

trueの場合、バックアップ内に必要なWALセグメントを含めます。
ベースディレクトリtarファイルのpg_walディレクトリにある、バックアップの開始から終了までのすべてのファイルが含まれます。
デフォルトはfalseです。
          

	WAIT [ boolean ]
	

trueの場合、バックアップは必要な最終WALセグメントがアーカイブされるまで待機します。
WALアーカイブが有効でない場合は警告が発せられます。
falseの場合、バックアップは待機も警告もせず、必要なログが利用できるようになったことの確認をクライアントに任せます。
デフォルトはtrueです。
          

	COMPRESSION 'method'
	

指定された方式を使用してバックアップを圧縮するようサーバに指示します。
現在サポートされている方式は、gzip、lz4およびzstdです。
          

	COMPRESSION_DETAIL detail
	

選択した圧縮方式の詳細を指定します。
これはCOMPRESSIONオプションと一緒にのみ使用します。
値が整数の場合は、圧縮レベルを指定します。
それ以外の場合は、カンマで区切られたアイテムのリストであり、それぞれの形式はkeywordまたはkeyword=valueです。
現在サポートされているキーワードはlevel、longおよびworkersです。
          


levelキーワードは圧縮レベルを設定します。
gzipの場合、圧縮レベルは1から9までの整数（デフォルトZ_DEFAULT_COMPRESSIONまたは-1）、lz4の場合は1から12までの整数（高速圧縮モードの場合デフォルト0）、zstdの場合はZSTD_minCLevel()（通常-131072）からZSTD_maxCLevel()（通常は22）、（デフォルトはZSTD_CLEVEL_DEFAULTまたは3）までの整数です。
          


longキーワードは、長距離一致モードを有効にします。 これにより、圧縮率は向上しますが、メモリ使用量は増加します。
長距離モードはzstdに対してのみサポートされます。
          


workersキーワードは、並列圧縮に使用するスレッドの数を設定します。
並列圧縮はzstdでのみサポートされています。
          

	MAX_RATE rate
	

サーバからクライアントへ転送する単位時間当たりの最大データ容量を制限します（絞ります）。
予期される単位はkB/s（キロバイト/秒）です。
このオプションが指定された場合、値はゼロまたは32 kB以上1 GB以下でなければなりません。
ゼロが渡されるかオプションが指定されない場合、転送の制約は課されません。
          

	TABLESPACE_MAP [ boolean ]
	

trueの場合、ディレクトリpg_tblspcにあるシンボリックリンクに関する情報をtablespace_mapという名前のファイルに含めます。
テーブル空間マップファイルには、ディレクトリpg_tblspc/に存在する各シンボリックリンクの名前とそのシンボリックリンクのフルパスが含まれています。
デフォルトはfalseです。
          

	VERIFY_CHECKSUMS [ boolean ]
	

trueの場合、チェックサムが有効になっていれば、ベースバックアップ中にチェックサムが検証されます。
falseの場合、スキップされます。
デフォルトはtrueです。
          

	MANIFEST manifest_option
	

このオプションをyesまたはforce-encodeの値で設定すると、バックアップマニフェストが作成され、バックアップとともに送信されます。
マニフェストは、含まれる可能性のあるWALファイルを除きバックアップ内に存在するすべてのファイルのリストです。
また、サイズ、最終更新時刻、オプションでファイル毎のチェックサムも格納します。
force-encodeの値は、全てのファイル名を強制的に16進数でエンコーディングします。
それ以外の場合、このタイプのエンコードは、名前が非UTF-8オクテットシーケンスであるファイルに対してのみ実行されます。
force-encodeは、主にテスト目的で使用されており、バックアップマニフェストを読み取るクライアントがこのケースを処理できることを確認するために使用されます。
以前のリリースとの互換性を保つため、デフォルトは、MANIFEST 'no'です。
          

	MANIFEST_CHECKSUMS checksum_algorithm
	

バックアップマニフェストに含まれている各ファイルに適用するチェックサムアルゴリズムを指定します。
現在使用可能なアルゴリズムは、NONE、CRC32C、SHA224, SHA256、SHA384、SHA512です。
デフォルトはCRC32Cです。
          

	INCREMENTAL
	

増分バックアップを要求します。
このオプションでベースバックアップを実行する前に、UPLOAD_MANIFESTコマンドを実行する必要があります。
          




      


バックアップを開始する時、サーバはまず２つの通常の結果セットを送信し、続けて１つ以上のCopyOutResponse結果を送信します。
      


最初の通常の結果セットには、1行2列という形でバックアップの開始位置が含まれます。
最初の列にはXLogRecPtr書式の開始位置が、２番目の列には対応するタイムラインIDが含まれます。
      


２番目の通常の結果セットには各テーブル空間に付き１行を持ちます。
この行のフィールドは以下の通りです。

       
	spcoid (oid)
	

テーブル空間のOIDです。
ベースディレクトリの場合はNULLです。
          

	spclocation (text)
	

テーブル空間ディレクトリのフルパスです。
ベースディレクトリの場合はNULLです。
          

	size (int8)
	

進行状況の報告が要求された場合は、テーブル空間の概算容量です（キロバイト(1024バイト)単位）。
要求されていない場合はNULLです。
          




      


２番目の通常の結果セットの後、CopyOutResponseが送信されます。
各CopyDataメッセージのペイロードには、次のいずれかの形式のメッセージが含まれます
      
	new archive (B)
		Byte1('n')
	

新規アーカイブの開始を示すメッセージを識別します。
メインデータディレクトリ用に1つのアーカイブがあり、追加テーブル空間ごとに1つのアーカイブがあります。
各アーカイブはtarフォーマットを使用します（POSIX 1003.1-2008標準で規定されている「ustar交換形式」に従う）。
           

	String
	

このアーカイブのファイル名。
           

	String
	

メインデータディレクトリの場合は空の文字列。
その他のテーブル空間の場合は、このアーカイブが作成されたディレクトリへのフルパス。
           




	manifest (B)
		Byte1('m')
	

バックアップマニフェストの開始を示すメッセージを識別します。
           




	archive or manifest data (B)
		Byte1('d')
	

メッセージにアーカイブデータまたはマニフェストデータが含まれていることを識別します。
           

	Byten
	

データバイト。
           




	progress report (B)
		Byte1('p')
	

メッセージが進捗レポートであることを識別します。
           

	Int64
	

処理が完了した現在のテーブル空間のバイト数。
           








CopyOutResponse、あるいはこのような応答の全てが送信された後に、バックアップのWAL終了位置を含む通常の最終結果セットが開始位置と同じフォーマットで送信されます。
      


データディレクトリと各テーブル空間のtarアーカイブには、そのディレクトリ内のファイルがPostgreSQL™ファイルかそのディレクトリに追加された他のファイルかに関係なく、すべて含まれます。
以下に除かれるファイルを示します。

       
	
          postmaster.pid
         

	
          postmaster.opts
         

	

          pg_internal.init（複数のディレクトリに在ります）
         

	

PostgreSQLサーバの操作中に作成される種々の一時ファイルおよびディレクトリで、pgsql_tmpで始まるすべてのファイルおよびディレクトリ、および一時リレーション。
         

	

ログを取らないリレーション。ただし、リカバリでログを取らないリレーションの再作成に必要なinitフォークは除かれない。
         

	

サブディレクトリを含むpg_wal。
バックアップがWALファイルを含めて実行される場合、合成された版のpg_walが含まれます。
これにはバックアップが動作するために必要なファイルのみが含まれ、残りの内容は含まれません。
         

	

pg_dynshmem、pg_notify、pg_replslot、pg_serial、pg_snapshots、pg_stat_tmp、pg_subtransは（それがシンボリックリンクであったとしても）空のディレクトリとしてコピーされます。
         

	

シンボリックリンク（上記で列挙したディレクトリは除きます）や特殊デバイスファイル、オペレーティングシステムのファイルなど、通常のファイルとディレクトリ以外のものは省略されます。
（pg_tblspc中のシンボリックリンクは保持されます。）
         





サーバ上の基盤となるファイルシステムがサポートする場合、所有者、グループ、ファイルのモードが設定されます。
      




  


boolean型のパラメータを指定する場合、上記のすべてのコマンドで、value部分を省略することができます。これはTRUEを指定した場合と同じです。
  

論理ストリーミングレプリケーションのプロトコル





この節では論理レプリケーションのプロトコルについて説明します。
このプロトコルはレプリケーションコマンドSTART_REPLICATION SLOT slot_name LOGICALで始まるメッセージフローです。
 


論理ストリーミングレプリケーションのプロトコルは、物理レプリケーションプロトコルの基本要素の上に構築されています。
 


PostgreSQL™ロジカルデコーディングは出力プラグインをサポートしています。
組み込み論理レプリケーションに使用される標準のプラグインはpgoutputです。
 
論理ストリーミングレプリケーションのパラメータ





START_REPLICATIONコマンドを使用する際、pgoutputは以下のオプションを受け付けます。

   
	
      proto_version
     
	

プロトコルバージョン。現在1、2、3、および4がサポートされています。
有効なバージョンを指定する必要があります。
      


バージョン2は、サーババージョン14以降でのみサポートされており、大規模な進行中トランザクションのストリーミングが可能です。
      


バージョン3はサーババージョン15以降でのみサポートされており、2フェーズコミットのストリーミングが可能です。
      


バージョン4は、サーババージョン16以降でのみサポートされており、大規模な進行中トランザクションのストリーミングを並行して適用可能です。
      

	
      publication_names
     
	

サブスクライブする（変更を受け取る）対象となるパブリケーション名をカンマで区切ったリストです。
個々のパブリケーション名は標準的なオブジェクト名として扱われ、必要に応じて引用符で括ることができます。
少なくとも１つのパブリケーション名が必要です。
      

	
      binary
     
	

バイナリ転送モードを使用するブールオプションです。
バイナリモードはテキストモードより高速ですが、堅牢性が少し低くなります。
      

	
      messages
     
	

pg_logical_emit_messageによって書き込まれたメッセージの送信を有効にするブールオプションです。
      

	
      streaming
     
	

進行中のトランザクションのストリーミングを有効にするオプションです。
有効な値はoff（デフォルトです）、onおよびparallelです。
parallelに設定すると、並列化に使われるいくつかの情報が追加で送られるようになります。
本パラメータをonに設定するには、プロトコルバージョンが2以上である必要があります。
parallelに設定するには、プロトコルバージョンが4以上である必要があります。
      

	
      two_phase
     
	

2相コミットを有効にするブールオプションです。
本パラメータを有効化するには、プロトコルバージョンが3以上である必要があります。
      

	
      origin
     
	

オリジンに応じて変更を送信するオプションです。
取りうる値はオリジンのない変更のみを送信するnoneか、オリジンに関係なく変更を送信するanyです。
本パラメータはレプリケーションノード間でループ（同じデータの無限の複製）を回避するために使用できます。
      





  

論理レプリケーションのプロトコルのメッセージ





個々のプロトコルのメッセージについては以降の副節で説明します。
個々のメッセージについては「論理レプリケーションのメッセージ書式」で説明されています。
  


トップレベルのプロトコルのメッセージはすべてメッセージタイプのバイトで始まります。
コード内では文字として表現されますが、これは文字符号化のないバイト（符号付き）です。
  


ストリーミングレプリケーションのプロトコルはメッセージ長を含むため、トップレベルのプロトコルのメッセージはそのヘッダに長さを埋め込む必要がありません。
  

論理レプリケーションのプロトコルのメッセージフロー





START_REPLICATIONコマンドと再生進捗のメッセージを除き、すべての情報はバックエンド側からフロントエンド側にのみ流れます。
  


論理レプリケーションのプロトコルは、個々のトランザクションを一つずつ送信します。
これはつまり、BeginとCommitのメッセージの対の間にある全てのメッセージは同じトランザクションに属するということです。
同様に、Begin PrepareとPrepare messagesの間のすべてのメッセージが同じトランザクションに属しています。
また、ストリーム開始とストリーム終了メッセージの対の間の大きな継続中トランザクションの変更を送信します。
そのようなトランザクションの最後のストリームは、ストリームコミットあるいはストリームアボートメッセージを含んでいます。
  


送信されるすべてのトランザクションにはゼロ個以上のDMLメッセージ（Insert、Update、Delete）が含まれます。
カスケードの設定がされている場合は、Originメッセージを含めることができます。
Originメッセージはトランザクションの起点が別のレプリケーションノードであることを示します。
   
論理レプリケーションのプロトコルという観点では、レプリケーションノードはほぼ何でも良いため、唯一の識別子はOriginの名前です。
（必要なら）必要に応じてこれを処理するのは下流側の責任です。
Originメッセージは必ずトランザクション内のどのDMLよりも前に送信されます。
  


すべてのDMLメッセージには、パブリッシャーが処理していたリレーションOIDが含まれています。
指定されたリレーションOIDの最初DMLメッセージの前に、リレーションのスキーマを記述するリレーションメッセージが送られます。
最後に送信されたリレーションメッセージ以降にリレーションの定義が変更されていたら、続いて新しいリレーションメッセージが送信されます。
（必要なだけクライアントはこのメタデータを記憶できるとプロトコルは見なしています。）
  


リレーションメッセージはOIDによって列型を識別します。
組み込みの型では、クライアントはローカルに型OIDを検索できると見なされ、追加のデータは必要ありません。
組み込み以外の型OIDでは、OIDに紐づく型名を提供するために、リレーションメッセージの前に型メッセージが送られます。
したがって、リレーションの列の型を特に識別する必要のあるクライアントは、型メッセージの内容をキャッシュし、型OIDがキャッシュにあるかどうかまずキャッシュを調べるべきです。
もしなければ、ローカルでその型OIDを調べます。
  


メッセージのデータ型





本節ではメッセージの中で使われる基本的なデータ型を説明します。
  
	Intn(i)
	

ネットワークバイト順（最上位バイトが先頭）におけるnビットの整数。
もしiが指定されていれば、それがそのまま使われます。
さもなければ変数です。
例えばInt16、Int32(42)などです。
     

	Intn[k]
	

nビット整数の要素数kの配列で、それぞれはネットワークバイト順です。
配列サイズkは常にメッセージの前のフィールドで決定されます。
例えばInt16[M]です。
     

	String(s)
	

NULL終端文字列（C様式文字列）。文字列には長さ制限の指定はありません。
sが指定されていれば、それがそのまま使われます。
さもなければ値は変数です。
例えばString、String("user")などです。
     
注記


バックエンドから返すことができる文字列の長さには事前に定義された制限はありません。
フロントエンドではメモリに収まるものはすべて受け入れられるように拡張可能なバッファを使用するコーディング戦略を勧めます。
これが実行できないのであれば、文字列全体を読み取り、固定長バッファに合わない後の方の文字を破棄してください。
      


	Byten(c)
	

厳密にnバイト。
フィールド幅nが定数でない場合、メッセージの前のフィールドから決定されます。
cが指定されていれば、それがそのまま使われます。
例えば Byte2、Byte1('\n')などです。
     




メッセージの書式





本節ではそれぞれのメッセージの詳細書式について説明します。
それぞれにはフロントエンド（F）、バックエンド（B）あるいは双方（F & B）から送出されることを示す印が付いています。
各メッセージには先頭にバイト数を持っていますが、バイト数を参照しなくてもメッセージの終わりを検知できるようにメッセージ書式は定義されていることに注意してください。
これは歴史的な理由によるもので、オリジナルであり、現在は廃止されたプロトコルバージョン2には明示的な長さフィールドがありませんでした。
ただし、これは妥当性チェックにも役立ちます。
  
	AuthenticationOk (B)
		Byte1('R')
	

認証要求としてメッセージを識別します。
        

	Int32(8)
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(0)
	

認証が成功したことを指定します。
        




	AuthenticationKerberosV5 (B)
		Byte1('R')
	

認証要求としてメッセージを識別します。
        

	Int32(8)
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(2)
	

Kerberos V5認証が必要であることを指定します。
        




	AuthenticationCleartextPassword (B)
		Byte1('R')
	

認証要求としてメッセージを識別します。
        

	Int32(8)
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(3)
	

平文パスワードが必要であることを指定します。
        




	AuthenticationMD5Password (B)
		Byte1('R')
	

認証要求としてメッセージを識別します。
        

	Int32(12)
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(5)
	

MD5暗号化パスワードが必要であることを指定します。
        

	Byte4
	

パスワード暗号化用ソルトです。
        




	AuthenticationGSS (B)
		Byte1('R')
	

認証要求としてメッセージを識別します。
        

	Int32(8)
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(7)
	

GSSAPI認証証明メッセージが必要であることを指定します。
        




	AuthenticationGSSContinue (B)
		Byte1('R')
	

認証要求としてメッセージを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(8)
	

このデータがGSSAPIあるいはSSPIデータを含むことを指定します。
        

	Byten
	

GSSAPIあるいはSSPI認証データ。
        




	AuthenticationSSPI (B)
		Byte1('R')
	

認証要求としてメッセージを識別します。
        

	Int32(8)
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(9)
	

SSPI認証が要求されていることを指定します。
        




	AuthenticationSASL (B)
		Byte1('R')
	

認証要求としてメッセージを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(10)
	

SASL認証が必要であることを指定します。
        





メッセージ本体はSASL認証機構をサーバにとって望ましい順に並べたリストです。
最後の認証機構名の後に終端子としてゼロのバイトを置く必要があります。
各機構は以下のようになります。

      
	String
	

SASL認証機構の名前です。
         




     

	AuthenticationSASLContinue (B)
		Byte1('R')
	

認証要求としてメッセージを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(11)
	

このメッセージがSASLのチャレンジを含むことを指定します。
        

	Byten
	

使用するSASL機構に固有のSASLデータです。
        




	AuthenticationSASLFinal (B)
		Byte1('R')
	

認証要求としてメッセージを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(12)
	

SASL認証が完了したことを指定します。
        

	Byten
	

SASLの結果の「追加データ」で、使用するSASL機構に固有のものです。
        




	BackendKeyData (B)
		Byte1('K')
	

メッセージが取り消しのキーデータであることを識別します。
フロントエンドが後でCancelRequestメッセージを発行できるようにするためには、これらの値を保存しておかなければなりません。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32
	

このバックエンドのプロセスIDです。
        

	Byten
	

このバックエンドの秘密キー。
このフィールドは、長さフィールドで示されるメッセージの端まで延びています。
        


キーの最小長と最大長は、それぞれ4バイトと256バイトです。
PostgreSQL™サーバは最大32バイトまでのキーしか送信しませんが、最大サイズを大きくすることで、将来のサーババージョンや、コネクションプーラーやその他のミドルウェアで、より長いキーを使用できるようになります。
考えられるユースケースの1つは、サーバのキーに追加情報を追加することです。
したがって、ミドルウェアはすべてのバイトを使い果たさないようにすることも推奨されます。
複数のミドルウェアアプリケーションが互いの上に階層化され、それぞれがキーに追加データをラップする可能性があります。
        





前プロトコルバージョン3.2では、秘密キーの長さは常に4バイトでした。
     

	Bind (F)
		Byte1('B')
	

メッセージがBindコマンドであることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	String
	

宛先ポータルの名前（空文字列にすると無名ポータルを選択します）。
        

	String
	

入力元のプリペアド文の名前（空文字列にすると無名のプリペアド文を選択します）。
        

	Int16
	

その後に続くパラメータ書式コードの数（以下ではCで表します）。
これは、パラメータがない、またはパラメータはすべてデフォルトの書式（テキスト）を使うことを示す0、あるいは指定の書式コードがすべてのパラメータに適用されることを示す1にすることができます。
そうでなければ、実際のパラメータの数と同じになります。
        

	Int16[C]
	

パラメータ書式コードです。
現在はそれぞれが0（テキスト）あるいは1（バイナリ）でなければなりません。
        

	Int16
	

後続するパラメータ値の数
（ゼロの場合もあります）。
これは問い合わせが必要とするパラメータ数と一致する必要があります。
        





次に、各パラメータに対して、以下のフィールドのペアが現れます。
     
	Int32
	

パラメータ値のバイト単位の長さ（これには自身は含まれません）。
ゼロにすることもできます。
特別な場合として、-1はNULLというパラメータ値を示します。
NULLの場合、後続の値用のバイトはありません。
        

	Byten
	

関連する書式コードで示される書式におけるパラメータの値。
nは上述の長さです。
        





最後のパラメータの後に、以下のフィールドが現れます。
     
	Int16
	

後続する結果列書式コードの数
（以下ではRで表します）。
これは、結果列が存在しないことを示す0、あるいはすべての結果列が（もしあれば）デフォルトの書式コード（テキスト）を使用することを示す1にすることができます。
さもなくば、問い合わせの結果列の実際の数と同じになります。
        

	Int16[R]
	

結果列の書式コード。
現在それぞれは0（テキスト）もしくは1（バイナリ）のいずれかでなければなりません。
        




	BindComplete (B)
		Byte1('2')
	

メッセージがBind完了指示子であることを識別します。
        

	Int32(4)
	

自身を含むメッセージ内容のバイト単位の長さ。
        




	CancelRequest (F)
		Int32(16)
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(80877102)
	

取消要求コードです。
この値は、最上位16ビットに1234が、下位16ビットに5678を持つように選択されています。
（混乱を防ぐため、このコードはプロトコルバージョン番号と同一になってはいけません。）
        

	Int32
	

対象バックエンドのプロセスIDです。
        

	Byten
	

ターゲットバックエンドの秘密キーです。
このフィールドは、長さフィールドで示されるメッセージの端まで伸びています。
キーの最大長は256バイトです。
        





プロトコルバージョン3.2より前では、秘密キーの長さは常に4バイトでした。
     

	Close (F)
		Byte1('C')
	

メッセージがCloseコマンドであることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Byte1
	

プリペアド文を閉じる時は'S'。
ポータルを閉じる時は'P'です。
        

	String
	

閉じるプリペアド文またはポータルの名前です
（空文字列で無名のプリペアド文または無名ポータルを選択します）。
        




	CloseComplete (B)
		Byte1('3')
	

メッセージがClose完了指示子であることを識別します。
        

	Int32(4)
	

自身を含むメッセージ内容のバイト単位の長さ。
        




	CommandComplete (B)
		Byte1('C')
	

メッセージがコマンド完了応答であることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	String
	

コマンドタグです。
これは通常どのSQLコマンドが完了したかを表す単一の単語です。
       


INSERTコマンドの場合、タグはINSERT oid rowsです。
ここでrowsは挿入された行数です。
かつてoidは、rowsが1、かつ、対象テーブルがOIDを持つ場合、挿入された行のオブジェクトIDでしたが、もはやOID列はサポートされていません。
ですからoidは常に0です。
       


DELETEコマンドの場合、タグはDELETE rowsです。
ここでrowsは削除された行数です。
       


UPDATEコマンドの場合、タグはUPDATE rowsです。
ここでrowsは更新された行数です。
       


MERGEコマンドの場合、タグはMERGE rowsです。
ここでrowsは挿入、更新、削除された行数です。
       


SELECTまたはCREATE TABLE ASの場合、タグはSELECT rowsとなります。
ここでrowsは取り込んだ行数です。
       


MOVEコマンドの場合、タグはMOVE rowsです。
ここでrowsは、カーソル位置が何行変更されたかを示す数です。
       


FETCHコマンドの場合、タグはFETCH rowsです。
ここでrowsは、カーソルから何行取り出したかを示す行数です。
       


COPYコマンドの場合、タグはCOPY rowsです。
ここでrowsは、コピーされた行数です（注意：この行数はPostgreSQL™ 8.2以降でのみ出力されます）。
       




	CopyData (F & B)
		Byte1('d')
	

メッセージがデータのCOPYであることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Byten
	

COPYデータストリームの一部を形成するデータです。
バックエンドから送信されるメッセージは、常に1つのデータ行に対応します。
しかし、フロントエンドから送信されるメッセージは任意のデータストリームに分割される可能性があります。
        




	CopyDone (F & B)
		Byte1('c')
	

メッセージがCOPY完了指示子であることを識別します。
        

	Int32(4)
	

自身を含むメッセージ内容のバイト単位の長さ。
        




	CopyFail (F)
		Byte1('f')
	

メッセージがCOPY失敗指示子であることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	String
	

失敗の原因を報告するエラーメッセージです。
        




	CopyInResponse (B)
		Byte1('G')
	

メッセージがStart Copy Inの応答であることを識別します。
フロントエンドはここで必ずコピーインデータを送信しなければなりません
（まだ準備ができていない場合はCopyFailメッセージを送信してください）。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int8
	

0はCOPY全体の書式がテキスト（行は改行で区切られ、列は区切り文字などで区切られます）であることを示します。
1はコピー全体の書式がバイナリ（DataRowの書式同様）であることを示します。
詳細についてはCOPY(7)を参照してください。
        

	Int16
	

コピーされるデータ内の列数です
（以下ではNと表されます）。
        

	Int16[N]
	

各列で使用される書式コードです。
現在それぞれは0（テキスト）または1（バイナリ）でなければなりません。
コピー全体の書式がテキストの場合、すべてが0でなければなりません。
        




	CopyOutResponse (B)
		Byte1('H')
	

メッセージがStart Copy Outの応答であることを識別します。
このメッセージの後にコピーアウトデータが続きます。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int8
	

0はCOPY全体の書式がテキスト（行は改行で区切られ、列は区切り文字などで区切られます）であることを示します。
1はコピー全体の書式がバイナリ（DataRowの書式同様）であることを示します。
詳細についてはCOPY(7)を参照してください。
        

	Int16
	

コピーされるデータ内の列数です
（以下ではNと表されます）。
        

	Int16[N]
	

各列で使用される書式コードです。
現在それぞれは0（テキスト）または1（バイナリ）でなければなりません。
コピー全体の書式がテキストの場合、すべてが0でなければなりません。
        




	CopyBothResponse (B)
		Byte1('W')
	

メッセージがStart Copy Bothの応答であることを識別します。
このメッセージはストリーミングレプリケーションのみで使用されます。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int8
	

0はCOPY全体の書式がテキスト（行は改行で区切られ、列は区切り文字などで区切られます）であることを示します。
1はコピー全体の書式がバイナリ（DataRowの書式同様）であることを示します。
詳細についてはCOPY(7)を参照してください。
        

	Int16
	

コピーされるデータ内の列数です
（以下ではNと表されます）。
        

	Int16[N]
	

各列で使用される書式コードです。
現在それぞれは0（テキスト）または1（バイナリ）でなければなりません。
コピー全体の書式がテキストの場合、すべてが0でなければなりません。
        




	DataRow (B)
		Byte1('D')
	

メッセージがデータ行であることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int16
	

後に続く列値の数です
（ゼロの場合もあります）。
        





次に、各列について以下のフィールドのペアが現れます。
     
	Int32
	

列値のバイト単位の長さです
（これには自身は含まれません）。
ゼロとすることもできます。
特別な場合として、-1はNULLという列値を示します。
NULLの場合、後続の値用のバイトはありません。
        

	Byten
	

関連する書式コードで示される書式における列の値。
nは上述の長さです。
        




	Describe (F)
		Byte1('D')
	

メッセージがDescribeコマンドであることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Byte1
	

プリペアド文の記述の場合は'S'。
ポータルの記述の場合は'P'です。
        

	String
	

記述を求めるプリペアド文またはポータルの名前です
（空文字列で無名のプリペアド文または無名ポータルを選択します）。
        




	EmptyQueryResponse (B)
		Byte1('I')
	

メッセージが空の問い合わせ文字列に対する応答であることを識別します。
（これはCommandCompleteを置き換えます。）
        

	Int32(4)
	

自身を含むメッセージ内容のバイト単位の長さ。
        




	ErrorResponse (B)
		Byte1('E')
	

メッセージがエラーであることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        





このメッセージの本体には、ゼロバイトを終端として後続する、1つ以上の識別されるフィールドが含まれます。
フィールドは任意の順番で現れる可能性があります。
各フィールドには以下があります。
     
	Byte1
	

フィールド種類を識別するコードです。
ゼロならば、メッセージの終端であり、後続する文字列がないことを表します。
「エラーおよび警報メッセージフィールド」に、現時点でフィールド種類として定義されているものを列挙します。
将来もっと多くのフィールド種類が追加される可能性がありますので、フロントエンドは、認知できない種類のフィールドに対して何もせずに無視すべきです。
        

	String
	

フィールド値です。
        




	Execute (F)
		Byte1('E')
	

メッセージがExecuteコマンドであることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	String
	

実行するポータルの名前です。
（空文字列で無名ポータルを選択します）。
        

	Int32
	

ポータルが行を返す問い合わせの場合、返される行数の最大値です
（他の問い合わせでは無視されます）。
ゼロは「無制限」を表します。
        




	Flush (F)
		Byte1('H')
	

メッセージがFlushコマンドであることを識別します。
        

	Int32(4)
	

自身を含むメッセージ内容のバイト単位の長さ。
        




	FunctionCall (F)
		Byte1('F')
	

メッセージが関数呼び出しであることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32
	

呼び出す関数のオブジェクトIDを指定します。
        

	Int16
	

後述する引数書式コード数です
（以下ではCと表します）。
これは、引数が存在しない、あるいは、すべての引数がデフォルトの書式（テキスト）を使用することを示す0に、指定する書式コードをすべての引数に適用することを示す1にすることができます。
さもなくば、これは実際の引数の数と同じになります。
        

	Int16[C]
	

引数の書式コードです。
それぞれは、0（テキスト）もしくは1（バイナリ）でなければなりません。
        

	Int16
	

関数に提供する引数の数を指定します。
        





次に、各引数に対して以下のフィールドのペアが現れます。
     
	Int32
	

引数の値のバイト単位の長さです
（これには自身は含まれません）。
0とすることもできます。
特別な場合として、-1はNULLという引数の値を示します。
NULLの場合、後続の値用のバイトはありません。
        

	Byten
	

関連する書式コードで示される書式における引数の値。
nは上述の長さです。
        





最後の引数の後に、以下のフィールドが現れます。
     
	Int16
	

関数結果用の書式コードです。
現在、0（テキスト）または1（バイナリ）でなければなりません。
        




	FunctionCallResponse (B)
		Byte1('V')
	

メッセージが関数呼び出しの結果であることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32
	

関数の結果の値のバイト単位の長さです
（これには自身は含まれません）。
ゼロとすることもできます。
特別な場合として、-1はNULLという関数の結果の値を示します。
NULLの場合、後続の値用のバイトはありません。
        

	Byten
	

関連する書式コードで示される書式における関数の結果の値。
nは上述の長さです。
        




	GSSENCRequest (F)
		Int32(8)
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(80877104)
	

GSSAPI暗号化要求コードです。
この値は、最上位16ビットに1234が、下位16ビットに5680を持つように選択されています。
（混乱を防ぐため、このコードはプロトコルバージョン番号と同一になってはいけません。）
        




	GSSResponse (F)
		Byte1('p')
	

このメッセージがGSSAPIまたはSSPI応答であることを識別します。
これはSASLおよびパスワードの応答メッセージにも使用されることに注意してください。
厳密なメッセージ種別は、その状況から推論できます。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Byten
	

GSSAPI/SSPIに固有のメッセージデータ。
        




	NegotiateProtocolVersion (B)
		Byte1('v')
	

メッセージが、プロトコルバージョン交渉メッセージであることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32
	

クライアントが要求したメジャープロトコルバージョンに対し、サーバがサポートする最新のマイナープロトコルバージョン。
        

	Int32
	

サーバが認識しなかったプロトコルオプションの数。
        





続いて、サーバが認識しなかったプロトコルオプションに対して以下が続きます。
     
	String
	

オプション名。
        




	NoData (B)
		Byte1('n')
	

メッセージがデータなしの指示子であることを識別します。
        

	Int32(4)
	

自身を含むメッセージ内容のバイト単位の長さ。
        




	NoticeResponse (B)
		Byte1('N')
	

メッセージが警報であることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        





このメッセージの本体には、ゼロバイトを終端として後続する、1つ以上の識別されるフィールドが含まれます。
フィールドは任意の順番で現れる可能性があります。
各フィールドには以下があります。
     
	Byte1
	

フィールド種類を識別するコードです。
ゼロならば、メッセージの終端であり、後続する文字列がないことを表します。
「エラーおよび警報メッセージフィールド」に、現時点でフィールド種類として定義されているものを列挙します。
将来もっと多くのフィールド種類が追加される可能性がありますので、フロントエンドは、認知できない種類のフィールドに対して何もせずに無視すべきです。
        

	String
	

フィールド値です。
        




	NotificationResponse (B)
		Byte1('A')
	

メッセージが通知応答であることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32
	

通知元バックエンドのプロセスIDです。
        

	String
	

通知の発生元となったチャネル名です。
        

	String
	

通知プロセスから渡される「ペイロード」文字列です。
        




	ParameterDescription (B)
		Byte1('t')
	

メッセージがパラメータ記述であることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int16
	

文で使用されるパラメータ数です
（ゼロとすることができます）。
        





そして、各パラメータに対して、以下が続きます。
     
	Int32
	

パラメータのデータ型のオブジェクトIDを指定します。
        




	ParameterStatus (B)
		Byte1('S')
	

メッセージが実行時パラメータ状態報告であることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	String
	

報告される実行時パラメータの名前です。
        

	String
	

そのパラメータの現在値です。
        




	Parse (F)
		Byte1('P')
	

メッセージがParseコマンドであることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	String
	

宛先のプリペアド文の名前です
（空文字列で無名のプリペアド文を選択します）。
        

	String
	

解析される問い合わせ文字列です。
        

	Int16
	

指定されるパラメータデータ型の数です
（ゼロとすることができます）。
これは、問い合わせ文字列内にあるパラメータの数を示すものではないことに注意してください。
フロントエンドが型指定を希望するパラメータの数でしかありません。
        





そして、各パラメータに対して、以下が続きます。
     
	Int32
	

パラメータのデータ型のオブジェクトIDを指定します。
ここにゼロを書くことは型指定を行わないことと同じです。
        




	ParseComplete (B)
		Byte1('1')
	

メッセージがParse完了指示子であることを識別します。
        

	Int32(4)
	

自身を含むメッセージ内容のバイト単位の長さ。
        




	PasswordMessage (F)
		Byte1('p')
	

メッセージがパスワード応答であることを識別します。
これがGSSAPI、SSPIまたはSASL応答メッセージでも使用されることに注意してください。
厳密なメッセージ種別は、その状況から推論できます。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	String
	

パスワードです
（必要ならば暗号化されています）。
        




	PortalSuspended (B)
		Byte1('s')
	

メッセージがポータル中断指示子であることを識別します。
これは、Executeメッセージの行数制限に達した場合にのみ現れることに注意してください。
        

	Int32(4)
	

自身を含むメッセージ内容のバイト単位の長さ。
        




	Query (F)
		Byte1('Q')
	

メッセージが簡易問い合わせであることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	String
	

問い合わせ文字列自体です。
        




	ReadyForQuery (B)
		Byte1('Z')
	

このメッセージ種類を識別します。
バックエンドで新しい問い合わせサイクルの準備が整った時には常にReadyForQueryが送信されます。
        

	Int32(5)
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Byte1
	

現在のバックエンドのトランザクション状態指示子です。
取り得る値は、待機状態（トランザクションブロックにない状態）に'I'、トランザクションブロック内の場合に'T'、失敗したトランザクションブロック（ブロックが終わるまで問い合わせは拒絶されます）内の場合に'E'です。
        




	RowDescription (B)
		Byte1('T')
	

メッセージが行の記述であることを識別します。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int16
	

行内のフィールド数を指定します
（ゼロとすることができます）。
        





その後、各フィールドに対して以下が続きます。
     
	String
	

フィールド名です。
        

	Int32
	

フィールドが特定のテーブルの列として識別できる場合、テーブルのオブジェクトIDです。
さもなくばゼロです。
        

	Int16
	

フィールドが特定のテーブルの列として識別できる場合、列の属性番号です。
さもなくばゼロです。
        

	Int32
	

フィールドのデータ型のオブジェクトIDです。
        

	Int16
	

データ型の大きさ（pg_type.typlenを参照）です。
負の値が可変長の型を表すことに注意してください。
        

	Int32
	

型修飾子（pg_attribute.atttypmodを参照）です。
修飾子の意味は型に固有です。
        

	Int16
	

フィールドに使用される書式コードです。
現在、0（テキスト）または1（バイナリ）のいずれかになります。
RowDescriptionがステートメント用のDescribeから返された場合、書式コードはまだ不明ですので、常に0になります。
        




	SASLInitialResponse (F)
		Byte1('p')
	

メッセージが最初のSASL応答であることを識別します。
これがGSSAPI、SSPIまたはパスワード応答メッセージでも使用されることに注意してください。
厳密なメッセージ種別は、その状況から推論できます。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	String
	

クライアントが選択したSASL認証機構の名前。
        

	Int32
	

それに続くSASLの機構固有の「Initial Client Response（最初のクライアントの応答）」の長さ、またはInitial Responseがなければ-1。
        

	Byten
	

SASLの機構固有の「Initial Response（最初の応答）」。
        




	SASLResponse (F)
		Byte1('p')
	

メッセージがSASL応答であることを識別します。
これがGSSAPI、SSPIまたはパスワード応答メッセージでも使用されることに注意してください。
厳密なメッセージ種別は、その状況から推論できます。
        

	Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Byten
	

SASLの機構固有のメッセージデータ
        




	SSLRequest (F)
		Int32(8)
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(80877103)
	

SSL要求コードです。
この値は最上位の16ビットに1234が、最下位の16ビットに5679が含まれるように選択されます。
（混乱を防ぐため、このコードはどのプロトコルのバージョン番号とも同じになってはいけません。）
        




	StartupMessage (F)
		Int32
	

自身を含むメッセージ内容のバイト単位の長さ。
        

	Int32(196610)
	

プロトコルのバージョン番号です。
最上位の16ビットはメジャーバージョン番号（ここで説明しているプロトコルでは3）です。
最下位の16ビットはマイナーバージョン番号（ここで説明しているプロトコルでは2）です。
        





プロトコルのバージョン番号の後には、パラメータ名と値文字列の対が1つ以上続きます。
最後の名前／値の対の後に終端子としてゼロのバイトが必要です。
パラメータは任意の順番に並べることができます。
userが必須、他はオプションです。
各パラメータは以下のように指定します。
     
	String
	

パラメータ名。現在認識されている名前は:

         
	user
	

接続するデータベースユーザ名。必須。
デフォルトはありません。
            

	database
	

接続するデータベースです。
デフォルトはユーザ名です。
            

	options
	

バックエンド用のコマンドライン引数です。
（これは廃棄予定であり、個々の実行時パラメータを設定する方が好ましいです。）
この文字列の中の空白は、バックスラッシュ(\)でエスケープされていなければ、引数を分けるためのものとみなされます。
バックスラッシュそのものを表すためには\\と書いてください。
            

	replication
	

ストリーミングレプリケーションモードで接続するのに使用され、SQL文の代わりにレプリケーションコマンドの小さな集合を発行することができます。
値はtrue、falseまたはdatabaseをとることができ、デフォルトはfalseです。
詳細は「ストリーミングレプリケーションプロトコル」を参照してください。
            






上記に加え、他のパラメータが列挙される可能性があります
_pq_.で始まるパラメータ名は、プロトコルの拡張用途のために予約されています。
それ以外は、バックエンド開始時に設定される実行時パラメータとして扱われます。
こうした設定は、バックエンド起動時に（もしあればコマンドライン引数の解析の後に）適用されます。
この値はセッションのデフォルトとして動作します。
        

	String
	

パラメータの値です。
        




	Sync (F)
		Byte1('S')
	

メッセージがSyncコマンドであることを識別します。
        

	Int32(4)
	

自身を含むメッセージ内容のバイト単位の長さ。
        




	Terminate (F)
		Byte1('X')
	

メッセージが終了であることを識別します。
        

	Int32(4)
	

自身を含むメッセージ内容のバイト単位の長さ。
        







エラーおよび警報メッセージフィールド





本節では、ErrorResponseおよびNoticeResponseメッセージ内で現れる可能性があるフィールドについて説明します。
それぞれのフィールド種類は、単一バイトの識別子トークンを持ちます。
メッセージ内に与えられる任意のフィールド種類は、多くてもメッセージ当たり1つでなければならないことに注意してください。
  
	S
	

深刻度です。
フィールドの内容はERROR、FATAL、PANIC（エラーメッセージ内）、WARNING、NOTICE、DEBUG、INFO、LOG（警報メッセージ内）、もしくはこれらの1つのローカライズ化された翻訳です。
常に存在します。
     

	V
	

深刻度です。
フィールドの内容はERROR、FATAL、PANIC（エラーメッセージ内）、WARNING、NOTICE、DEBUG、INFO、LOG（警報メッセージ内）です。
これは、その内容が決して地域化されないという点以外はSフィールドと同一です。
これはPostgreSQL™バージョン9.6以降で生成されたメッセージにだけあります。
     

	C
	

コード、そのエラー用のSQLSTATEコードです（付録A PostgreSQL™エラーコードを参照）。
地域化されません。
常に存在します。
     

	M
	

メッセージ、主に人にわかりやすいエラーメッセージです。
これは正確、簡潔でなければなりません（通常は1行です）。
常に存在します。
     

	D
	

詳細です。
問題のより詳細を説明する省略可能な二次的なエラーメッセージです。
複数行にまたがる可能性があります。
     

	H
	

ヒントです。
その問題にどう対応するかを表す省略可能な提言です。
これは、詳細と異なり、事実ではなく提案（不適切な場合もありますが）を提供することを目的としたものです。
複数行にまたがる可能性があります。
     

	P
	

位置です。
フィールド値は、エラーカーソルの位置を示すもので、元の問い合わせ文字列へのインデックスを10進ASCIIで表した整数です。
先頭の文字がインデックス1になり、位置はバイトではなく文字で数えられます。
     

	p
	

内部的位置です。
これはPと同じ定義ですが、カーソルの位置がクライアントによって発せられたコマンドではなく内部的に生成されたコマンドを参照する場合に使用されます。
このフィールドが現れる時には常にqも現れます。
     

	q
	

内部的問い合わせ。
失敗した、内部生成のコマンドテキストです。
これは例えば、PL/pgSQL関数によって発行されたSQL問い合わせなどです。
     

	W
	

場所です。
エラーが発生したコンテキストを示します。
現在ここには、実行中の手続き言語関数と内部生成問い合わせの呼び出しスタックトレースバックが含まれます。
この追跡情報は、1行当たり1項目として、最も最近のものが初めに現れます。
     

	s
	

スキーマ名。
エラーが特定のデータベースオブジェクトに関連する場合、そのオブジェクトを含むスキーマ名。
無名でなければ。
     

	t
	

テーブル名。
エラーが特定のテーブルに関連する場合、そのテーブル名。
（スキーマ名フィールドにおいて、そのテーブルのスキーマ名を参照します。）
     

	c
	

列名。
エラーが特定のテーブルの列に関連する場合、その列名。
（テーブルを識別するため、スキーマ名とテーブル名のフィールドを参照します。）
     

	d
	

データ型名。
エラーが特定のデータ型に関連する場合、そのデータ型名。
（スキーマ名フィールドにおいて、そのデータ型のスキーマ名を参照します。）
     

	n
	

制約名。
エラーが特定の制約に関連する場合、その制約名。
上に列挙したフィールドにおいて、関連するテーブルまたはドメインを参照します。
（この目的のために、制約の構文のもとに作成されていない場合でも、インデックスは制約として扱われます。）
     

	F
	

ファイルです。
エラーを報告した、ソースコードのファイル名です。
     

	L
	

行です。
エラーを報告した、ソースコードの行番号です。
     

	R
	

ルーチンです。
エラーを報告した、ソースコードのルーチン名です。
     



注記


スキーマ名、テーブル名、列名、データ型名および制約名のフィールドは、限られたエラー型のためにしか提供されません。
付録A PostgreSQL™エラーコードを参照してください。
フロントエンドは、これらのフィールドの一部の存在が、他のフィールドの存在も保障すると仮定してはいけません。
上記の相互関係により主なエラーの原因を探す方法がありますが、ユーザが定義した関数は他の方法でこれらのフィールドを利用できるかもしれません。
同様の理由により、クライアントはこれらのフィールドが、現在のデータベースにおける適切なオブジェクトを示すと仮定してはいけません。
   



クライアントには、必要な情報を表示する際、整形する責任があります。
具体的には、必要に応じて長い行を分割しなければなりません。
エラーメッセージフィールド内にある改行文字は、改行ではなく、段落の区切りとして扱わなければなりません。
  

論理レプリケーションのメッセージ書式





本節では論理レプリケーションの各メッセージの書式の詳細について説明します。
これらのメッセージはレプリケーションスロットのSQLインタフェースから返されるか、あるいはwalsenderから送信されるかのいずれかです。
walsenderの場合は、「ストリーミングレプリケーションプロトコル」で説明されているようにレプリケーションプロトコルのWALメッセージ内でカプセル化され、通常は物理レプリケーションと同じメッセージフローに従います。
  
	Begin
		Byte1('B')
	

メッセージが開始メッセージであることを識別します。
        

	Int64 (XLogRecPtr)
	

トランザクションの最後のLSNです。
        

	Int64 (TimestampTz)
	

トランザクションのコミット時刻です。
その値はPostgreSQLのエポック（2000-01-01）からのマイクロ秒数です。
        

	Int32 (TransactionId)
	

トランザクションのXIDです。
        




	Message
		Byte1('M')
	

ロジカルデコーディングメッセージであることを識別します。
        

	Int32 (TransactionId)
	

トランザクションのxid（ストリームトランザクションのためにのみ存在します）。
このフィールドはプロトコルバージョン2以降で利用可能です。
        

	Int8
	

フラグ。0はフラグなし、ロジカルデコーディングメッセージがトランザクションであれば1です。
        

	Int64 (XLogRecPtr)
	

ロジカルデコーディングメッセージのLSN。
        

	String
	

ロジカルデコーディングメッセージの接頭辞。
        

	Int32
	

内容の長さ。
        

	Byten
	

ロジカルデコーディングメッセージの内容。
        




	Commit
		Byte1('C')
	

メッセージがCommitメッセージであることを識別します。
        

	Int8(0)
	

フラグ。
現在は使用されていません。
        

	Int64 (XLogRecPtr)
	

コミットのLSNです。
        

	Int64 (XLogRecPtr)
	

トランザクションの終了LSNです。
        

	Int64 (TimestampTz)
	

トランザクションのコミット時刻です。
その値はPostgreSQLのエポック（2000-01-01）からのマイクロ秒数です。
        




	Origin
		Byte1('O')
	

メッセージがOriginメッセージであることを識別します。
        

	Int64 (XLogRecPtr)
	

Originサーバ上のコミットのLSNです。
        

	String
	

Originの名前です。
        





一つのトランザクション内で複数のOriginメッセージがあり得ることに注意してください。
     

	Relation
		Byte1('R')
	

メッセージがRelationメッセージであることを識別します。
        

	Int32 (TransactionId)
	

トランザクションのxid（ストリームトランザクションのためにのみ存在します）。
このフィールドはプロトコルバージョン2以降で利用可能です。
        

	Int32 (Oid)
	

リレーションのOID。
        

	String
	

名前空間（pg_catalogの場合は空文字列）。
        

	String
	

リレーション名。
        

	Int8
	

リレーションのレプリカ識別子の設定（pg_classのrelreplidentと同じ）。
        

	Int16
	

列数。
        





次に、パブリケーションを含む各列について以下のメッセージ部分があります。
     
	Int8
	

列のフラグ。
現在は、フラグがないことを示す0か、列がキーの一部であることを示す1のいずれかにできます。
        

	String
	

列名。
        

	Int32 (Oid)
	

列のデータ型のOID。
        

	Int32
	

列の型修飾子（atttypmod）。
        




	Type
		Byte1('Y')
	

メッセージがTypeメッセージであることを識別します。
        

	Int32 (TransactionId)
	

トランザクションのxid（ストリームトランザクションのためにのみ存在します）。
このフィールドはプロトコルバージョン2以降で利用可能です。
        

	Int32 (Oid)
	

データ型のOID。
        

	String
	

名前空間（pg_catalogの場合は空文字列）。
        

	String
	

データ型の名前。
        




	Insert
		Byte1('I')
	

メッセージがInsertメッセージであることを識別します。
        

	Int32 (TransactionId)
	

トランザクションのxid（ストリームトランザクションのためにのみ存在します）。
このフィールドはプロトコルバージョン2以降で利用可能です。
        

	Int32 (Oid)
	

Relationメッセージ中のIDに対応するリレーションのOID。
        

	Byte1('N')
	

以下のTupleDataメッセージが新しいタプルであることを識別します。
        

	TupleData
	

新しいタプルの内容を表すTupleDataメッセージ部分です。
        




	Update
		Byte1('U')
	

メッセージがUpdateメッセージであることを識別します。
        

	Int32 (TransactionId)
	

トランザクションのxid（ストリームトランザクションのためにのみ存在します）。
このフィールドはプロトコルバージョン2以降で利用可能です。
        

	Int32 (Oid)
	

Relationメッセージ中のIDに対応するリレーションのOID。
        

	Byte1('K')
	

これに続くTupleData副メッセージがキーであることを識別します。
このフィールドはオプションで、UPDATEがREPLICA IDENTITYインデックスの一部となっている列のどれかを変更したときにのみ存在します。
        

	Byte1('O')
	

これに続くTupleData副メッセージが古いタプルであることを識別します。
このフィールドはオプションで、UPDATEが発生したテーブルでREPLICA IDENTITYがFULLに設定されている場合にのみ存在します。
        

	TupleData
	

古いタプルまたは主キーの内容を表すTupleDataメッセージ部分です。
この前に'O'または'K'の部分が存在するときにのみ存在します。
        

	Byte1('N')
	

以下のTupleDataメッセージが新しいタプルであることを識別します。
        

	TupleData
	

新しいタプルの内容を表すTupleDataメッセージ部分です。
        





Updateメッセージは'K'メッセージ部分と'O'メッセージ部分のいずれかを含むか、どちらも含まないかであり、その両方を含むことはできません。
     

	Delete
		Byte1('D')
	

メッセージがDeleteメッセージであることを識別します。
        

	Int32 (TransactionId)
	

トランザクションのxid（ストリームトランザクションのためにのみ存在します）。
このフィールドはプロトコルバージョン2以降で利用可能です。
        

	Int32 (Oid)
	

Relationメッセージ中のIDに対応するリレーションのOID。
        

	Byte1('K')
	

これに続くTupleData副メッセージがキーであることを識別します。
このフィールドはDELETEが発生したテーブルがインデックスをREPLICA IDENTITYとして使用している場合にのみ存在します。
        

	Byte1('O')
	

これに続くTupleDataメッセージが古いタプルであることを識別します。
このフィールドはDELETEが発生したテーブルでREPLICA IDENTITYがFULLに設定されている場合にのみ存在します。
        

	TupleData
	

直前のフィールドに従って、古いタプルまたは主キーの内容を表すTupleDataメッセージ部分です。
        





Deleteメッセージは'K'メッセージ部分と'O'メッセージ部分のいずれかを含みますが、両方を含むことはできません。
     

	Truncate
		Byte1('T')
	

メッセージをTruncateメッセージと識別します。
        

	Int32 (TransactionId)
	

トランザクションのxid（ストリームトランザクションのためにのみ存在します）。
このフィールドはプロトコルバージョン2以降で利用可能です。
        

	Int32
	

リレーション数
        

	Int8
	

TRUNCATEに対するオプションビット。1はCASCADE、2はRESTART IDENTITY
        

	Int32 (Oid)
	

リレーションメッセージのIDに一致するリレーションのOID。
このフィールドは各リレーション毎に繰り返されます。
        








次のメッセージ（Stream Start、Stream Stop、Stream Commit、Stream Abort）はプロトコルバージョン2以降で利用可能です。
  
	Stream Start
		Byte1('S')
	

メッセージがストリーム開始メッセージであることを識別します。
        

	Int32 (TransactionId)
	

トランザクションのXIDです。
        

	Int8
	

値が1ならこのXIDの最初のストリームセグメントであることを、0なら他のストリームセグメントであることを識別します。
        




	Stream Stop
		Byte1('E')
	

メッセージがストリーム停止メッセージであることを識別します。
        




	Stream Commit
		Byte1('c')
	

メッセージがストリームコミットメッセージであることを識別します。
        

	Int32 (TransactionId)
	

トランザクションのXIDです。
        

	Int8(0)
	

フラグ。
現在は使用されていません。
        

	Int64 (XLogRecPtr)
	

コミットのLSNです。
        

	Int64 (XLogRecPtr)
	

トランザクションの終了LSNです。
        

	Int64 (TimestampTz)
	

トランザクションのコミット時刻です。
その値はPostgreSQLのエポック（2000-01-01）からのマイクロ秒数です。
        




	Stream Abort
		Byte1('A')
	

メッセージがストリームアボートメッセージであることを識別します。
        

	Int32 (TransactionId)
	

トランザクションのXIDです。
        

	Int32 (TransactionId)
	

サブトランザクションxid（トップレベルのトランザクションのxidと同じものになるでしょう）。
        

	Int64 (XLogRecPtr)
	

アボート操作のLSNです。streamingオプションがparallelに設定された場合にのみ存在します。
このフィールドはプロトコルバージョン4以降で使用可能です。
        

	Int64 (TimestampTz)
	

トランザクションのアボート時刻です。streamingオプションがparallelに設定された場合にのみ存在します。
その値はPostgreSQLのエポック（2000-01-01）からのマイクロ秒数です。
このフィールドはプロトコルバージョン4以降で使用可能です。
        








次のメッセージ（Begin Prepare、Prepare、 Commit Prepared、Rollback Prepared、Stream Prepare）はプロトコルバージョン3以降で利用可能です。
  
	Begin Prepare
		Byte1('b')
	

メッセージがプリペアドトランザクションメッセージの先頭であることを識別します。
        

	Int64 (XLogRecPtr)
	

プリペアドのLSNです。
        

	Int64 (XLogRecPtr)
	

プリペアドトランザクションの終了LSNです。
        

	Int64 (TimestampTz)
	

トランザクションのプリペアド（準備された）時刻です。
その値はPostgreSQLのエポック（2000-01-01）からのマイクロ秒数です。
        

	Int32 (TransactionId)
	

トランザクションのXIDです。
        

	String
	

プリペアドトランザクションのユーザ定義GIDです。
        




	Prepare
		Byte1('P')
	

メッセージがプリペアドトランザクションメッセージであることを識別します。
        

	Int8(0)
	

フラグ。
現在は使用されていません。
        

	Int64 (XLogRecPtr)
	

プリペアドのLSNです。
        

	Int64 (XLogRecPtr)
	

プリペアドトランザクションの終了LSNです。
        

	Int64 (TimestampTz)
	

トランザクションのプリペアド（準備された）時刻です。
その値はPostgreSQLのエポック（2000-01-01）からのマイクロ秒数です。
        

	Int32 (TransactionId)
	

トランザクションのXIDです。
        

	String
	

プリペアドトランザクションのユーザ定義GIDです。
        




	Commit Prepared
		Byte1('K')
	

メッセージがプリペアドトランザクションメッセージのコミットであることを識別します。
        

	Int8(0)
	

フラグ。
現在は使用されていません。
        

	Int64 (XLogRecPtr)
	

プリペアドトランザクションのコミットのLSNです。
        

	Int64 (XLogRecPtr)
	

プリペアドトランザクションのコミットの終了LSNです。
        

	Int64 (TimestampTz)
	

トランザクションのコミット時刻です。
その値はPostgreSQLのエポック（2000-01-01）からのマイクロ秒数です。
        

	Int32 (TransactionId)
	

トランザクションのXIDです。
        

	String
	

プリペアドトランザクションのユーザ定義GIDです。
        




	Rollback Prepared
		Byte1('r')
	

メッセージがプリペアドトランザクションメッセージのロールバックであることを識別します。
        

	Int8(0)
	

フラグ。
現在は使用されていません。
        

	Int64 (XLogRecPtr)
	

プリペアドトランザクションの終了LSNです。
        

	Int64 (XLogRecPtr)
	

プリペアドトランザクションのロールバックの終了LSNです。
        

	Int64 (TimestampTz)
	

トランザクションのプリペアド（準備された）時刻です。
その値はPostgreSQLのエポック（2000-01-01）からのマイクロ秒数です。
        

	Int64 (TimestampTz)
	

トランザクションのロールバック時刻です。
その値はPostgreSQLのエポック（2000-01-01）からのマイクロ秒数です。
        

	Int32 (TransactionId)
	

トランザクションのXIDです。
        

	String
	

プリペアドトランザクションのユーザ定義GIDです。
        




	Stream Prepare
		Byte1('p')
	

メッセージがストリーム準備トランザクションメッセージであることを識別します。
        

	Int8(0)
	

フラグ。
現在は使用されていません。
        

	Int64 (XLogRecPtr)
	

プリペアドのLSNです。
        

	Int64 (XLogRecPtr)
	

プリペアドトランザクションの終了LSNです。
        

	Int64 (TimestampTz)
	

トランザクションのプリペアド（準備された）時刻です。
その値はPostgreSQLのエポック（2000-01-01）からのマイクロ秒数です。
        

	Int32 (TransactionId)
	

トランザクションのXIDです。
        

	String
	

プリペアドトランザクションのユーザ定義GIDです。
        








以下のメッセージ部分は上記のメッセージに共通です。
  
	TupleData
		Int16
	

列数。
        





次に、発行されたカラムごとに、次のいずれかのサブメッセージが表示されます。

      
	Byte1('n')
	

データをNULL値として識別します。
         




      Or
      
	Byte1('u')
	

TOAST値が変更されないことを識別します（実際の値は送信されません）。
         




      Or
      
	Byte1('t')
	

データがテキスト形式の値であることを識別します。
         




      Or
      
	Byte1('b')
	

データがバイナリフォーマット値であることを識別します。
         

	Int32
	

列値の長さ。
         

	Byten
	

テキスト形式あるいはバイナリ形式での列の値。
（先行するフォーマットバイトで指定されます。）
nは上記の長さです。
         




     




プロトコル2.0からの変更点の要約





本節では、既存のクライアントライブラリをプロトコル3.0に更新しようとする開発者向けに、変更点の簡易チェックリストを示します。
  


最初の開始パケットは、固定書式ではなく、柔軟な文字列のリスト書式を使用します。
実行時パラメータのセッションのデフォルト値が直接開始パケット内に指定できるようになった点に注意してください。
（実際、以前でもoptionsフィールドを使用してこれを行うことができましたが、optionsには長さに制限があること、および値内の空白文字を引用符でくくる方法がないことから、あまり安全な技法ではありませんでした。）
  


すべてのメッセージが、メッセージ種類バイトの直後にバイト数を持つようになりました
（種類バイトがない開始パケットは例外です）。
また、PasswordMessageが種類バイトを持つようになったことにも注意してください。
  


ErrorResponseおよびNoticeResponse（'E'および'N'）メッセージが複数のフィールドを持つようになりました。
これを使用して、クライアントコードは、必要な冗長度に合わせて、エラーメッセージを組み立てることができます。
個々のフィールドが通常改行で終わらないことに注意してください。
単一の文字列を送信する古いプロトコルでは、常に改行で終わっていました。
  


ReadyForQuery（'Z'）メッセージに、トランザクション状態指示子が含まれます。
  


BinaryRowとDataRowメッセージ種類間の区別がなくなりました。
1つのDataRowメッセージ種類で、すべての書式で記述されたデータを返すことができます。
DataRowのレイアウトが解析しやすいように変更されたことに注意してください。
またバイナリ値の表現も変更されました。
もはやサーバの内部表現に直接束縛されません。
  


新しい「拡張問い合わせ」サブプロトコルがあります。
これにより、フロントエンドメッセージ種類にParse、Execute、Describe、Close、Flush、およびSyncが、バックエンドメッセージ種類にParseComplete、BindComplete、PortalSuspended、ParameterDescription、NoData、およびCloseCompleteが追加されました。
既存のクライアントは、このサブプロトコルを意識する必要はありませんが、これを使用することで、性能や機能を向上させることができます。
  


COPYデータは現在、CopyDataおよびCopyDoneメッセージにカプセル化されています。
COPYの間のエラーから回復するための明確に定義された方法があります。
最後の行の特殊な「\.」はもはや必要ではなく、COPY OUTでは送信されません。
（COPY INテキストモードでは終端として認識されますが、CSVモードでは認識されません。
テキストモードの動作は廃止され、最終的には削除される可能性があります。）
バイナリCOPYはサポートされています。
CopyInResponseおよびCopyOutResponseメッセージには、列の数と各列のフォーマットを示すフィールドが含まれます。
  


FunctionCallとFunctionCallResponseメッセージのレイアウトが変更されました。
FunctionCallは関数へのNULL引数を渡すことができるようになりました。
また、テキストとバイナリ書式のどちらでもパラメータの引き渡しと結果の取り出しを扱うことができます。
サーバの内部データ表現への直接アクセスを提供しなくなりましたので、FunctionCallを潜在的なセキュリティホールとみなす理由はもはやありません。
  


バックエンドは、接続開始時にクライアントライブラリが興味を持つとみなされるすべてのパラメータのためにParameterStatus（'S'）メッセージを送信します。
その後、これらのパラメータのいずれかの実際の値が変更された時は常に、ParameterStatusメッセージが送信されます。
  


RowDescription（'T'）メッセージは、新規に、記述する各列に対してテーブルのOIDと列番号フィールドを伝えます。
また各列の書式コードも示します。
  


CursorResponse（'P'）メッセージはもはやバックエンドで生成されません。
  


NotificationResponse（'A'）メッセージは、NOTIFYイベントの送信者から渡される「ペイロード」文字列を伝えることができる追加文字列フィールドを持ちます。
  


EmptyQueryResponse（'I'）メッセージは、空の文字列パラメータを含めるために使用されていました。
これは削除されました。
  

第55章 PostgreSQLコーディング規約



書式





ソースコードの書式では、タブを4カラムとするスペーシングを使用し、現在はタブを保存しています（つまりタブをスペースに展開しません）。
各論理インデントのレベルは、さらに1つのタブストップです。
   


配置規則（括弧の位置など）はBSDの慣例に従います。
特にif、while、switchなどの制御ブロックのための中括弧はそれ自身を一行で表します。
   


コードが80カラムのウィンドウで読み易くなるように1行の長さを制限してください。
（これは80カラムを超えてはならないことを意味していません。
例えば、任意の場所にある長いエラーメッセージ文字列をコードが80カラムに収まるように改行を含めても、おそらく可読性を向上させることはありません。）
   


一貫したコーディング形式を保つため、C++形式のコメント（//コメント）は使用しないでください。
pgindentは、それらを/* ... */で置き換えます。
   


複数行に渡るコメントブロックの推奨書式は以下のようになります。



/*
 * コメントテキストはここから始まり
 * ここまで続きます
 */



カラム1から始まるコメントブロックはpgindentによりそのまま維持されますが、字下げされたコメントブロックは、あたかも平文テキストのように再整形されることに注意してください。
ある字下げブロックの中で改行を維持したい場合は以下のようにダッシュを追加します。


    /*----------

     * コメントテキストはここから始まり
     * ここまで続きます
     *----------
     */


   


登録されたパッチは完全にはこの書式規則に従う必要はありませんが、そのようにすることを勧めます。
登録されるコードは次のリリースの前にpgindentを通します。
ですので、他の書式規則に従って作成して、見た目を良くすることに意味がありません。
優れたパッチに関する原則は、「新しいコードがその前後にある既存のコードのように見える」ことです。
   


src/tools/editorsディレクトリには、確実に上記の規約に従った書式になることを補助する、Emacs™、xemacs™、vim™エディタで使用できるサンプルの設定ファイルがあります。
   


pgindentをローカルで実行して、コードをプロジェクトスタイルに合わせたい場合は、src/tools/pgindentディレクトリを参照してください。
   


テキスト閲覧ツールmoreとlessでは以下のようにすれば、


more -x4
less -x4



タブを適切に表示させることができます。
   


サーバ内部からのエラーの報告





サーバコード内から生成されるエラー、警告、ログメッセージは、ereportもしくはこれに似た古いelogを使用して作成してください。
この関数の使用はいくつか説明が必要なほど複雑です。
   


すべてのメッセージには、深刻度レベル（DEBUGからPANICまでの範囲で、src/include/utils/elog.hで定義されています）と主メッセージテキストという、2つの必須要素があります。
さらに、省略可能な要素があります。その中で最もよく使用されるのは、SQL仕様のSQLSTATE規則に従うエラー識別コードです。
ereport自身はシェルマクロで、主に、メッセージ生成をCソースコード内のひとつの関数呼び出しのように行わせる、構文の便宜上存在します。
ereportで直接受け付けられる唯一のパラメータは深刻度レベルです。
主メッセージテキストと任意の省略可能なメッセージ要素は、ereport呼び出し内でerrmsgなどの補助関数を呼び出すことで生成されます。
   


典型的なereportの呼び出しは以下のようなものです。


ereport(ERROR,
        errcode(ERRCODE_DIVISION_BY_ZERO),
        errmsg("division by zero"));



これはエラー深刻度レベルERROR（普通のエラー）を指定します。
errcode呼び出しは、src/include/utils/errcodes.hで定義されたマクロを使用してSQLSTATEエラーコードを指定します。
errmsg呼び出しは主メッセージテキストを提供します。
   


また、補助関数の呼び出しを追加の括弧のセットで囲んだ、この古いスタイルもよく見ることでしょう。


ereport(ERROR,
        (errcode(ERRCODE_DIVISION_BY_ZERO),
         errmsg("division by zero")));



この余分な括弧はPostgreSQL™バージョン12より前では必要でしたが、現在ではオプションです。
   


以下に、より複雑な例を示します。


ereport(ERROR,
        errcode(ERRCODE_AMBIGUOUS_FUNCTION),
        errmsg("function %s is not unique",
               func_signature_string(funcname, nargs,
                                     NIL, actual_arg_types)),
        errhint("Unable to choose a best candidate function. "
                "You might need to add explicit typecasts."));



これは、実行時の値をメッセージテキスト内に埋め込むための整形用コードの使用を示します。
また、省略可能な「ヒント」メッセージも提供されています。
補助関数の呼び出しは任意の順序で記述できますが、慣習的にerrcodeとerrmsgが最初に記述されます。
   


深刻度レベルがERROR以上であれば、ereportは現在の問い合わせの実行を中断し、呼び出し元には戻りません。
深刻度レベルがERROR未満であれば、ereportは正常に戻ります。
   


ereportで使用可能な補助ルーチンを以下に示します。
  
	

errcode(sqlerrcode)は、その条件用のSQLSTATEエラー識別コードを指定します。
このルーチンが呼び出されないと、エラー識別子のデフォルトは、エラー深刻度レベルがERROR以上の場合にはERRCODE_INTERNAL_ERRORに、エラー深刻度レベルがWARNINGの場合にはERRCODE_WARNINGに、さもなければ（NOTICE以下）ERRCODE_SUCCESSFUL_COMPLETIONになります。
これらのデフォルトはしばしば便利ですが、errcode()呼び出しを省略する前に、常に適切かどうかを検討してください。
    

	

errmsg(const char *msg, ...)は、主エラーメッセージテキストを指定し、また、実行時の値をそこに挿入することもできます。
挿入は、sprintf様式の書式コードで指定されます。
sprintfで受け付けられる標準の書式コードに加え、%m書式コードを使用して、現在のerrnoの値用のstrerrorで返されるエラーメッセージを挿入することができます。
     [18]

%mはerrmsgのパラメータリスト内に対応する項目を必要としません。
メッセージ文字列は、書式コードの処理を行う前に、ローカライゼーションのためにgettextを通ることに注意してください。
    

	

errmsg_internal(const char *msg, ...)は、そのメッセージ文字列は翻訳されず、国際化用メッセージ辞書に含まれない点を除き、errmsgと同一です。
これは、おそらく翻訳作業を行う価値がない「発生し得ない」場合用に使用すべきです。
    

	

errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n, ...)はerrmsgのようですが、メッセージの各種の複数書式があります。
fmt_singularは英語の単数書式、fmt_pluralは英語の複数書式、nはどの複数書式が必要なのかを決定する整数値で、残りの引数は選択された書式文字列に従って書式化されます。
より詳細な情報は「メッセージ記述の指針」を参照してください。
    

	

errdetail(const char *msg, ...)は省略可能な「詳細」メッセージを提供します。
これは、主メッセージ内に記述するには不適切と考えられる追加情報がある場合に使用されます。
このメッセージ文字列はerrmsgとまったく同じ方法で処理されます。
    

	

errdetail_internal(const char *msg, ...)は、メッセージが翻訳されない、または、国際化メッセージ辞書内に含まれない点を除き、errdetailと同じです。
これは、例えばほとんどのユーザに役に立つにはあまりにも技術的すぎるなど、翻訳する手間をかける価値がない詳細メッセージで有用であるはずです。
    

	

errdetail_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n, ...)はerrdetailと似ていますが、メッセージの各種の複数書式をサポートします。
より詳細な情報は「メッセージ記述の指針」を参照してください。
    

	

この文字列がサーバログのみに渡り、クライアントに渡らない点を除きerrdetail_log(const char *msg, ...)はerrdetailと同一です。
errdetail（や上記の等価物の１つ）とerrdetail_logが共に使用された場合、１つの文字列はクライアントに渡り、もう１つはログに渡ります。
クライアントに送られるレポートに含めるにはセキュリティに対して慎重を期さなければならないもの、あるいは膨大すぎるエラー詳細に対して効果があります。
    

	

errdetail_log_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n, ...)はerrdetail_logと似ていますが、メッセージの各種の複数書式をサポートします。
より詳細な情報は「メッセージ記述の指針」を参照してください。
    

	

errhint(const char *msg, ...)は、省略可能な「ヒント」メッセージを提供します。
これは、何が悪かったのかについての事実に基づく詳細とは反対で、問題を解決させる方法に関する提言を提供するために使用されます。
このメッセージ文字列はerrmsgとまったく同じ方法で処理されます。
    

	

 errhint_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n, ...)はerrhintと似ていますが、メッセージの各種の複数書式をサポートします。
より詳細な情報は「メッセージ記述の指針」を参照してください。
    

	

errcontext(const char *msg, ...)は通常ereportメッセージ側から直接呼び出されません。
エラーが発生したコンテキスト、例えばPL関数の現在位置の情報を提供するためにerror_context_stackコールバック関数内で使用されます。
メッセージ文字列はerrmsgとまったく同じ方法で処理されます。
他の補助関数とは異なり、1つのereport呼び出しで何度も呼び出すことができます。
こうして提供される文字列の並びは、改行で区切った形で連結されます。
    

	

errposition(int cursorpos)は、問い合わせ文字列内でエラーが発生した位置をテキストで指定します。
現在、問い合わせ処理の字句解析および構文解析段階でエラーが検出された場合にのみ役に立ちます。
    

	

errtable(Relation rel)はエラーレポートにおいて名前とスキーマ名が外部フィールドとして含まれなければならないリレーションを指定します。
    

	

errtablecol(Relation rel, int attnum)はエラーレポートにおいて名前、テーブル名、およびスキーマ名が外部フィールドとして含まれなければならない列を指定します。
    

	

errtableconstraint(Relation rel, const char *conname)はエラーレポートにおいて名前、テーブル名、およびスキーマ名が外部フィールドとして含まれなければならないテーブル制約を指定します。
この目的のため、関連したpg_constraintエントリの有る無しに関わらず、インデックスは制約と見なされなければなりません。進行中のヒープリレーションを受け渡すにはインデックスではなくrelとすることに注意してください。
    

	

errdatatype(Oid datatypeOid)はエラーレポートにおいて名前とスキーマ名が外部フィールドとして含まれなければならないデータ型を指定します。
    

	

errdomainconstraint(Oid datatypeOid, const char *conname)はエラーレポートにおいて名前、ドメイン名、およびスキーマ名が外部フィールドとして含まれなければならないドメイン制約を指定します。
    

	

errcode_for_file_access()は、ファイルアクセス関連のシステムコールでの失敗用のSQLSTATEエラー識別子を適切に選択する、便利な関数です。
保存されたerrnoを使用して、どのエラーコードを生成するかを決定します。
通常、これは主エラーメッセージテキスト内で%mと組み合わせて使用されなければなりません。
    

	

errcode_for_socket_access()は、ソケット関連のシステムコールでの失敗用のSQLSTATEエラー識別子を適切に選択する、便利な関数です。
    

	

errhidestmt(bool hide_stmt)は、postmasterのログ内のメッセージにおけるSTATEMENT:部分を抑制するために呼び出すことができます。
通常これは、メッセージテキスト内にすでに現在の文が含まれている場合に適しています。
    

	

errhidecontext(bool hide_ctx)は、postmasterのログ内のメッセージにおけるCONTEXT:部分を抑制するために呼び出すことができます。
これは、冗長なデバッグメッセージにおいてコンテキストを繰り返し含めることがログのサイズを巨大にしてしまうような場合にのみ用いられるべきです。
    




   
注記


ereport呼び出しにおいて、最大限でもerrtable、errtablecol、 errtableconstraint、errdatatype、またはerrdomainconstraintのうちの一つの関数が使用されなければなりません。
これらの関数は、潜在的にローカライズされたエラーメッセージテキストを調べることなく、エラー条件に関連付けられたデータベースオブジェクトの名前を抽出するためにアプリケーションが使用できるように存在します。
これらの関数は、アプリケーションが自動エラー対応であって欲しいと期待するエラーレポートにおいて使用されるべきです。
PostgreSQL™ 9.3の時点で、この機能を完璧に保証する範囲はSQLSTATEクラス23（整合性制約違反）のみですが、将来的には十中八九拡張されそうです。
    



まだ頻繁に使用されている、古めのelog関数があります。
以下のelog呼び出しは、


elog(level, "format string", ...);



以下とまったく同じです。


ereport(level, errmsg_internal("format string", ...));



SQLSTATEエラーコードが常にデフォルトになること、メッセージ文字列が翻訳されないことに注意してください。
したがって、elogは、内部エラーと低レベルなデバッグ用ログにのみ使用すべきです。
一般ユーザを対象とする任意のメッセージはereportを使用すべきです。
それでもなお、システム内の「発生できなかった」内部エラーの検査にelogがまだ多く使用されています。
これは、こうした単純な表記のメッセージに適しています。
   


「エラーメッセージのスタイルガイド」に推奨するエラーメッセージの作成についての提言を示します。
   


[18] 

つまり、ereport呼び出しに達した時点の値です。
補助報告ルーチン内でerrnoを変更しても効果はありません。
errmsg内でstrerror(errno)を明示的に記述したとしても正確なものにはなりません。
したがって、このようにはしないでください。
      



エラーメッセージのスタイルガイド





このスタイルガイドでは、PostgreSQL™で生成されるすべてのメッセージに対する、一貫性維持、ユーザに親切なスタイルについての希望を説明します。
   
何がどこで起こったか





主メッセージは、簡潔に事実を示すものにすべきです。
特定の関数名など実装の詳細への参照は止めるべきです。
「簡潔」は「ごく普通の条件下で1行に収まる」ことを意味します。
主メッセージを簡潔にするために必要であれば、また、特定のシステムコールが失敗したなど実装の詳細について記載したいのであれば、詳細メッセージを使用してください。
主メッセージ、詳細メッセージの両方は事実を示すものにすべきです。
どうすれば問題を解決できるかに関する提言には、その提言が常に適切とは限らない場合は特に、ヒントメッセージを使用してください。
   


例えば、


IpcMemoryCreate: shmget(key=%d, size=%u, 0%o) failed: %m
(plus a long addendum that is basically a hint)



ではなく、以下のように記述してください。


Primary:    could not create shared memory segment: %m
Detail:     Failed syscall was shmget(key=%d, size=%u, 0%o).
Hint:       The addendum, written as a complete sentence.


   


理論的根拠：
主メッセージを簡潔にすることは、要点を維持することを助けます。
そして、クライアントは、エラーメッセージ用に1行分確保すれば十分であるという仮定の下で画面設計を行うことができます。
詳細メッセージやヒントメッセージを冗長モードに格下げしたり、エラーの詳細を表示するウィンドウをポップアップさせることもできます。
また、詳細メッセージやヒントメッセージは通常ディスク容量を節約するためにサーバログには出力されません。
ユーザがその詳細を知っているとは期待できないので、実装の詳細への参照を避けることが最善です。
   

整形





メッセージテキストの整形に関して、特定の前提を行わないでください。
クライアントやサーバログでは、自身の必要性に合わせて行を改行すると想定してください。
長めのメッセージでは、改行文字（\n）を推奨する段落の区切りを示すものとして使用することができます。
メッセージの終わりに改行を付けないでください。
タブや他の整形用文字を使用しないでください。
（エラーの内容の表示では、関数呼び出しなどのコンテキストのレベルを区切るために、改行が自動的に追加されます。）
   


理論的根拠：
メッセージは必ずしも端末型のディスプレイに表示されるとは限りません。
GUIのディスプレイやブラウザでは、こうした書式指示はうまくいったとしても無視されます。
   

引用符





英文では、引用が適切な場合には二重引用符を使用すべきです。
他の言語でのテキストは、出版上の慣習や他のプログラムのコンピュータ出力と矛盾しない種類の引用符の1つを一貫して使用してください。
   


理論的根拠：
二重引用符と単一引用符の選択はどちらかでもよいものですが、推奨する方がよく使われています。
SQL規約（すなわち文字列には単一引用符、識別子には二重引用符）に従って、オブジェクトの種類に応じて引用符を選択することを推奨する人もいます。
しかし、これは言語内部の技術的な事項であり、多くのユーザが理解できるものではありません。
また、他の種類の引用手法には拡張できません。
他の言語へ翻訳できません。
ですので、あまり意味がありません。
   

引用符の使用





ファイル名、ユーザ提供の識別子、設定変数名、その他の変数に単語が含まれている可能性がある場合には、必ず引用符で区切ってください。
単語を含まない変数（例えば演算子名）をマークアップする際には引用符を使用しないでください。
   


バックエンドには必要に応じて出力に二重引用符を付与する関数(例えばformat_type_be())があります。
こうした関数の出力の前後にさらに引用符を追加しないでください。
   


理論的根拠：
オブジェクトの名前をメッセージ内に埋め込む際に曖昧さが生じることがあります。
埋め込む名前がどこから始まりどこで終わるかついての表記には一貫性を持たせてください。
しかし、不必要にメッセージをまとめたり、引用符を二重にすることは止めてください。
   

文法と句読点





この規則は、主エラーメッセージと詳細/ヒントメッセージとで異なります。
   


主エラーメッセージ：
最初の文字を大文字にしないでください。
メッセージの最後にピリオドを付けないでください。
メッセージの終わりに感嘆符を付けようとは考えないでください。
   


詳細メッセージとヒントメッセージ：
完全な文章を使用し、終わりにピリオドを付けてください。
文章の最初の単語は大文字にしてください。
他の文が続く場合はピリオドの後に空白を2つ入れてください（英文の場合です。他の言語では不適切かもしれません）。
   


エラー文脈文字列:
先頭文字を大文字にせず、また、終わりにはピリオドを付けないでください。
文脈文字列は通常完全な文章にすべきではありません。
   


理論的根拠：
句読点の禁止により、クライアントアプリケーションでは、そのメッセージを各種文法的なコンテキストに埋め込みやすくなります。
主メッセージはしばしば文法的に完全な文章になっていません。
（そして、1行以上の長さになりそうであれば、主メッセージと詳細メッセージに分割すべきです。）
しかし、詳細メッセージとヒントメッセージは、より長く、かつ複数の文章を持つ必要があるかもしれません。
一貫性のため、これらは、たとえ文章が1つだけであっても、完全な文章形式に従うべきです。
   

大文字と小文字





メッセージの言葉使いでは小文字を使用してください。
主エラーメッセージの場合は先頭文字も含みます。
SQLコマンドとキーワードがメッセージ内に出現する場合は大文字を使用してください。
   


理論的根拠：
メッセージは完全な文章かもしれませんし、そうではないかもしれませんので、この方法は、より簡単にすべての見た目の一貫性を向上します。
   

受動態の禁止





能動態を使用してください。
能動的な主語がある（「AはBを行うことができない」）場合は完全な文章を使用してください。
主語がプログラム自体である場合は、主語を付けずに電報様式を使用してください。
プログラムに「I（私）」を使用しないでください。
   


理論的根拠：
プログラムは人間ではありません。
他を真似ないでください。
   

現在形と過去形





試行が失敗したが、次は（何らかの問題を修正した後に）成功するかもしれない場合は過去形を使用してください。
失敗が永続するようであれば、現在形を使用してください。
   


以下の2つの意味には無視できないほどの違いがあります。


could not open file "%s": %m



および


cannot open file "%s"



最初のものは、ファイルを開くことに失敗したことを意味します。
メッセージには、「ディスクが一杯」や「ファイルが存在しない」といった、その理由を付けるべきです。
次回はディスクに空きがあるかもしれませんし、問題のファイルが存在するかもしれませんので過去形が適切です。
   


2番目の形式は、そのプログラム内の指定されたファイルを開く機能が存在しない、あるいは、概念的に不可能であることを示します。
この条件は永遠に続きますので現在形が適切です。
   


理論的根拠：
仮定ですが、一般的なユーザは単なるメッセージの時制から多くの意味を引き出すことはできないでしょう。
しかし、言語が文法を提供してくれますので、それを正確に使用すべきでしょう。
   

オブジェクトの種類





オブジェクトの名前を引用する時、そのオブジェクトの種類を記載してください。
   


理論的根拠：
さもないと、「foo.bar.baz」が何なのか誰もわかりません。
   

角括弧





角括弧は、（1）コマンドの概要にて省略可能な引数を表す、（2）配列の添字を表す、ためだけに使用されます。
   


理論的根拠：
広く知られる慣習に対応するものがなく、人々を混乱させることになります。
   

エラーメッセージの組み立て





メッセージに、他で生成されるテキストを含める場合、以下の様式で埋め込んでください。


could not open file %s: %m


   


理論的根拠：
すべての起こり得るエラーコードを単一のなめらかな文章に埋め込むことを考えることは困難です。
ですので、何らかの句読点が必要とされます。
括弧の中にテキストを埋め込むこともまた推奨されていますが、よくあるように埋め込むテキストがそのメッセージの最も重要となる場合は不自然です。
   

エラーの理由





メッセージは常にエラーが発生した理由を記述すべきです。
以下に例を示します。


BAD:    could not open file %s
BETTER: could not open file %s (I/O failure)



理由がわからない場合はコードを直すべきです。
   

関数名





エラーテキストには、それを報告したルーチンの名前を含めないでください。
必要に応じて、そのルーチンを見つける他の機構がありますし、また、ほとんどのユーザにとって役に立つ情報ではありません。
関数名がないと、エラーメッセージにあまり意味がないのであれば、言葉使いを変えてください。


BAD:    pg_strtoint32: error in "z": cannot parse "z"
BETTER: invalid input syntax for type integer: "z"


   


同時に呼び出した関数名の記述も止めてください。
代わりにそのコードが何をしようとしたのかを記述してください。


BAD:    open() failed: %m
BETTER: could not open file %s: %m



もし本当に必要であれば、詳細メッセージにそのシステムコールを記載してください。
（詳細メッセージの情報としてシステムコールに実際に渡した値を与えることが適切な場合もあります。）
   


理論的根拠：
ユーザはその関数が何を行うのかを知りません。
   

ややこしい単語の防止



Unable. 

「Unable」はほとんど受動態です。
「cannot」または「could not」の適切な方を使用してください。
   
Bad. 

「bad result」といったエラーメッセージは、知的に解釈することが非常に困難です。
結果が「bad」である理由、例えば「invalid format」を記述してください。
   
Illegal. 

「Illegal」は規則違反を表します。
他は「invalid」です。
より良くするために、なぜ無効なのかについても記述してください。
   
Unknown. 

「unknown」は極力使用しないでください。
「error: unknown response」について考えてみましょう。
どんな応答であるかわからなければ、どうやって何がエラーなのかわかるでしょうか。
「Unrecognized」を選んだ方が良い場合がしばしばあります。
また、その警告の中に値が含まれていることを確認してください。


BAD:    unknown node type
BETTER: unrecognized node type: 42


   
Find対Exists. 

プログラムがリソースの場所について無視できないアルゴリズム（例えばパスの検索）を使用し、そのアルゴリズムが失敗した場合、プログラムがリソースを「find」できなかったと記述すべきでしょう。
一方、想定したリソースの場所はわかっているが、プログラムがアクセスできなかった場合は、リソースが「exist」しなかったと記述してください。
この場合に「find」を使用すると、弱く取られ、問題が混乱します。
   
May、Can、Might. 

「May」は許可を示し、文書やエラーメッセージではあまり使われません（たとえば、熊手を借りられます）。
「Can」は能力を示し（たとえば、"丸太を持ち上げることができます。"）、「might」は可能性を示します（たとえば、"雨が降るかもしれません。"）。
意味を明確にし、翻訳を補助するために適切に使用してください。
   
短縮. 

「can't」などの短縮は避けてください。
代わりに「cannot」を使用してください。
   
Non-negative（非負）. 

0を受け入れるかどうかが不明確なため、「non-negative（非負）」の使用は避けてください。
「0より大きい」または「0以上」を使用することをお勧めします。
   

適切なスペル





単語の完全なスペルを使用してください。
例えば、以下は止めてください。
  
	
     spec
    

	
     stats
    

	
     parens
    

	
     auth
    

	
     xact
    




   


理論的根拠：
これは一貫性を向上します。
   

ローカライゼーション





エラーメッセージは他の言語に翻訳される必要があることを忘れないでください。
「メッセージ記述の指針」のガイドラインに従い、翻訳者に苦労を強いることを防いでください。
   


その他のコーディング規約



標準C





PostgreSQL™のコードはC99の標準で利用可能な言語機能にのみ依存することになっています。
つまり、C99に準拠したコンパイラであれば、少数のプラットフォーム依存の部分を除けばpostgresをコンパイルできるはずです。
    


現時点では、C99の標準に含まれる機能のいくつかはPostgreSQL™のコアコードでは使うことが許可されていません。
今のところ、可変長配列、型宣言とコードの混在、//コメント、汎用文字名が含まれます。
その理由には、移植性と歴史的な慣例が含まれます。
    


代替策が用意されているのであれば、それより後のバージョンの標準Cの機能、あるいはコンパイラに依存した機能を使用することもできます。
    


例えば、_Static_assert()と__builtin_constant_pは、それぞれ、標準Cのより新しいバージョン由来、GCC™拡張ですが、現在、使用されています。
それらが利用できない場合は、それぞれ、同じチェックをする（ただし、やや暗号的なメッセージを発する）C99互換のもので代用し、__builtin_constant_pは使いません。
    

関数のようなマクロとインライン関数





引数付きのマクロとstatic inlineの関数のどちらも使用することができます。
マクロとして記述した場合に、複数回評価されるリスクがあるならば、後者を選択します。
例えば次のような場合です。


#define Max(x, y)       ((x) > (y) ? (x) : (y))



あるいは、マクロにすると非常に長くなる場合も、インライン関数を選択します。
その他に、マクロだけしか利用できない、あるいはマクロの方が使いやすい場合があります。
例えば、マクロに様々な型の式を渡す必要がある場合などです。
    
    


インライン関数の定義がバックエンドの一部としてのみ利用可能なシンボル（つまり、変数、関数）を参照する場合、その関数はフロントエンドのコードからインクルードされたときに不可視かもしれません。


#ifndef FRONTEND
static inline MemoryContext
MemoryContextSwitchTo(MemoryContext context)
{
    MemoryContext old = CurrentMemoryContext;

    CurrentMemoryContext = context;
    return old;
}
#endif   /* FRONTEND */



この例では、バックエンドのみで利用可能なCurrentMemoryContextが参照されているため、関数は#ifndef FRONTENDで隠されています。
一部のコンパイラはインライン関数に含まれるシンボルの参照を、その関数が使われていなくても吐き出すため、この規則があります。
    

シグナルハンドラの作成





シグナルハンドラの内部で実行されるのに適切であるためには、注意深くコードを書く必要があります。
根本的問題は、シグナルハンドラは、ブロックされない限り、いつでもコードに対して割り込むことができるということです。
シグナルハンドラの内側のコードが、外側のコードと同じ状態を使うと、混沌が発生するかもしれません。
例えば、シグナルハンドラが、割り込まれたコードで既に保持されているロックを獲得しようとしたら何が起きるか考えてみてください。
    


特別に準備された状況を別にすると、シグナルハンドラのコードは、（POSIXで定義される通りの）非同期シグナルで安全な関数だけを呼ぶことができ、型volatile sig_atomic_tの変数だけにアクセスできます。
postgresでも、いくつかの関数はシグナルで安全とされており、なかでも重要なのはSetLatch()です。
    


ほとんどの場合、シグナルハンドラはシグナルが到着したことを記録し、ハンドラの外部で動作しているコードをラッチを使って呼び起こす以上のことをすべきではありません。
以下はそのようなハンドラの例です。


static void
handle_sighup(SIGNAL_ARGS)
{
    got_SIGHUP = true;
    SetLatch(MyLatch);
}


    

関数ポインタの呼び出し





明快にするため、ポインタが単純な変数である場合に指し示す関数を呼び出すときには、関数ポインタを以下の例のように明示的に参照することが望ましいです。


(*emit_log_hook) (edata);



（emit_log_hook(edata)でも動作するとしても）。
関数ポインタが構造体の一部であるときには、以下のように、追加的な区切りは省略してよいし、通常は省略すべきです。


paramInfo->paramFetch(paramInfo, paramId);


    


第56章 各国語サポート



翻訳者へ





PostgreSQL™プログラムは（サーバ、クライアントともに）メッセージが翻訳されていれば、使い慣れた言語でそのメッセージを出すことができます。
翻訳メッセージセットの作成と保守は、自分の言語を上手に話しPostgreSQL™の成果に貢献したい人々の協力が必要です。
この作業にはプログラマである必要はまったくありません。
本節ではお手伝いの仕方を説明します。
  
必要条件





協力者の言語の熟練度については判断しません。
本節ではソフトウェアツールについて説明します。
理論的には、テキストエディタのみが必要です。
しかし、これは自分で作成した翻訳メッセージを試そうとはしないという、あまりあり得ない場合のみです。
ソースツリーを構築する際に、--enable-nlsオプションを使用していることを確認してください。
これにより、全てのエンドユーザがとにかく必要とする、libintlライブラリとmsgfmtプログラムも同時に検査されます。
作業を試す際には、インストール手順の適切な部分に従ってください。
   


新規に翻訳作業を始めるか、（後述の）メッセージカタログのマージを行いたい場合、GNU版と互換性を持った実装のxgettextとmsgmergeという2つのプログラムがそれぞれ必要です。
将来はパッケージ化されたソース配布物を使用する場合にxgettextを必要としないように変更する予定です。
（Git版で作業をしているのであれば、まだこれが必要です。）
現在GNU Gettext 0.10.36以上を推奨します。
   


使用するマシンのgettextの実装については、文書が一緒に付いてくると思います。
以下のいくつかはおそらく重複していますが、追補すべき詳細についてはその文書を参照してください。
   

概念





英語による元のメッセージとそれを基に（場合によって）翻訳されたメッセージの組み合わせはメッセージカタログに、（関連するプログラムはメッセージカタログを共有することができますが）各プログラム、対象とする言語に対して一つずつ保持されます。
メッセージカタログには2つのファイル形式があります。
1つは「PO」ファイル（移植可能オブジェクト-Portable Object-を意味します）で翻訳者が編集する特別な構文を持った平文ファイルです。
2番目は「MO」ファイル（マシンオブジェクト-Machine Object-を意味します）で対応するPOファイルから生成され、国際化プログラムの実行の際に使用されるバイナリファイルです。
翻訳者は、MOファイルを扱いません。
実際に扱うことは困難です。
   


メッセージカタログファイルの拡張子は想像していたかもしれませんが.poもしくは.moです。
基本名（拡張子を除いた部分）は、プログラムが伴っている名前、もしくは翻訳目的とする言語の名前のいずれかで、状況によって変わります。
少し混乱するかもしれません。
例えば、psql.po（psql用のPOファイル）、もしくはfr.mo（フランス語用のMOファイル）です。
   


POファイルの書式を以下に示します。


# comment

msgid "original string"
msgstr "translated string"

msgid "more original"
msgstr "another translated"
"string can be broken up like this"

...



msgid行はプログラムのソースから抽出されます。
（これは必要はありませんが最も一般的な方法です。）
msgstr行は初期状態では空であり、翻訳者によって有益な文字列が埋め込まれます。
この文字列には、C言語形式のエスケープ文字を含めることも、上に示したように複数行にまたがって続けることもできます。
（継続行は必ず行の先頭から始まらなければなりません。）
   


#文字はコメントの開始を示します。
#文字の直後に空白文字があった場合、それは翻訳者によって保守されるコメントです。
#の直後に非空白文字が付く、自動的に付与されるコメントもあります。
これらは、POファイルに対する操作を行う各種ツールによって保守され、翻訳者の補助を意図しています。


#. automatic comment
#: filename.c:1023
#, flags, flags



#.スタイルのコメントはそのメッセージが使用されているソースファイルから抽出されます。
おそらくプログラマが、翻訳者のために追加した、そのようにしてほしいと考える体裁についてなどの情報です。
#:コメントは、ソース内でそのメッセージが使用される正確な場所を示します。
翻訳者はプログラムソースを参照する必要はありませんが、翻訳の正確さに疑問がある場合にソースを参照することができます。
#,コメントは何らかの方法でメッセージを説明するフラグです。
現在、2つのフラグがあります。
そのメッセージがプログラムソースの変更によって古いものとなった可能性がある場合、fuzzyが設定されます。
翻訳者はこれを検証し、fuzzyフラグを削除できます。
fuzzyメッセージはエンドユーザからは利用できないことに注意してください。
もう1つのフラグはc-formatで、そのメッセージがprintf形式の書式テンプレートであることを示します。
これは、翻訳側もプレースホルダの型と同じ番号を持った書式文字列でなければならないことを意味します。
これを検証するツールがあり、それらはc-formatフラグを入力として受け取ります。
   

メッセージカタログの作成と保守





さて、「空の」メッセージカタログをどうやって作成するのでしょうか。
まず、翻訳したいメッセージを持つプログラムが存在するディレクトリに移動します。
nls.mkファイルがあればこのプログラムは翻訳の準備が整っています。
   


もし、.poファイルが数個既にあれば、誰かがある翻訳作業を行っています。
そのファイルはlanguage.po と名前が付けられています。
ここで、languageはISO 639-1の2文字言語コード（小文字）を表します。
例えば、fr.poはフランス語用です。
1つの言語に複数の翻訳成果が必要である場合そのファイルの名前はlanguage_region.poのようになります。
ここで、regionはISO 3166-1の2文字国コード（大文字）を表します。
例えば、pt_BR.poはブラジルでのポルトガル語用を示します。
翻訳対象とする言語用のファイルがあれば、それを基に作業を始めることができます。
   


新規に翻訳を始める必要がある場合、以下のコマンドを最初に実行してください。


make init-po



これは、progname.potファイルを作成します。
（.potは「実用の」POファイルと区別するためのものです。
Tは「テンプレート」を意味します。）
このファイルをlanguage.poにコピーして編集します。
新規の言語が利用可能になったことを知らせるために、po/LINGUASを編集し、言語（もしくは言語と国）コードを既存の言語リストの後に以下のように追加してください。


de fr



（もちろん他の言語があるかもしれません。）
   


対象のプログラムやライブラリの変更に伴い、メッセージはプログラマによって変更、追加されます。
この場合は始めからやり直す必要はありません。
その代わりに以下のコマンドを実行してください。


make update-po



そうすると新しい空のメッセージカタログファイル（最初に使用したpotファイル）が作成され、既存のPOファイルにマージされます。
このマージのアルゴリズムが特定のメッセージに関して確実でない場合、それは上で説明した「fuzzy」となります。
新規POファイルは.po.newという拡張子付きで保存されます。
   

POファイルの編集





POファイルは普通のテキストエディタで編集できます。
翻訳に特化した機能で作業を補助する、POファイルに特化したエディタもいくつかあります。
Emacsには（予想通り）POモードがあり、非常に使いやすいものです。
   


翻訳者はmsgstrディレクティブの後の引用符の間の部分の変更、コメントの追加、fuzzyフラグの変更のみを行えばよいのです。
   


POファイルを完全に埋めることは必要ありません。
ソフトウェアは使用できる翻訳がない（もしくは翻訳が空の）場合自動的に元の文字列に戻します。
他の人が作業を引き継ぐことができますので、ソースツリー内に不完全な翻訳を含めることにも問題はありません。
しかし、マージの後のfuzzyフラグを削除することを優先に考えることが推奨されています。
fuzzyエントリはインストールされないことを忘れないでください。
これらは何が正しい翻訳になり得るかの参照のためにのみ提供されています。
   


以下に、翻訳の編集を行う際に注意すべき点を示します。
    
	

元の文字列の終端が改行の場合、翻訳も同様になっていることを確認してください。
タブなども同様です。
      

	

元がprintf書式文字列の場合、翻訳も同じでなければなりません。
また、翻訳は同じ書式識別子を同じ順番で持たなければなりません。
言語固有の規則によっては不可能な場合や扱いづらい場合も起こります。
このような場合は、以下の書式指定子を使用することができます。


msgstr "Die Datei %2$s hat %1$u Zeichen."



そして、リストの最初のプレースホルダが実際にはこのリストの2番目の引数に使用されます。
digits$は%の直後に続く必要があり、他の書式の操作の前に使用する必要があります。
（この機能はprintf系の関数に本当に存在するものです。
メッセージ国際化以外ではほとんど使用されませんので、聞いたことがないかもしれません。）
      

	

元の文字列に言語上の間違いがある場合、それを報告し（もしくはプログラムソースを直して）、普通に翻訳してください。
修正された文字列は、プログラムのソースが修正された時にマージ可能になります。
元の文字列が事実と異なる場合、それを報告し（もしくは自ら直して）、翻訳を行わないでください。
その代わりに、POファイルのその文字列にコメントを付けてください。
      

	

元の文字列のスタイルや調子を維持してください。
特に、（cannot open file %sなど）文章になっていないメッセージは、（翻訳する言語が大文字小文字を区別するのであれば）おそらく最初の文字を大文字にしてはなりませんし、（翻訳する言語が句読点として使用しているのであれば）ピリオドを終わりに付けてはいけません。
「エラーメッセージのスタイルガイド」を読むと参考になります。
      

	

メッセージの意味がわからない時や、曖昧な場合は、開発者用のメーリングリストに問い合わせてください。
英語を話すエンドユーザも理解できない、または曖昧であると判断することができる機会となり、メッセージの改良を行う最善のものです。
      




   



プログラマへ



仕組み





本節では、PostgreSQL™配布物の一部であるプログラムやライブラリにおける各国語サポートの実装方法を説明します。
現在はCプログラムにのみ適用できます。
  
手順56.1 プログラムにNLSサポートを追加する
	

プログラムの起動処理に以下のコードを追加してください。


#ifdef ENABLE_NLS
#include <locale.h>
#endif

...

#ifdef ENABLE_NLS
setlocale(LC_ALL, "");
bindtextdomain("progname", LOCALEDIR);
textdomain("progname");
#endif



（prognameは実際には自由に選択できます。）
    

	

どこであろうと翻訳の候補となるメッセージが見つかったら、gettext()の呼び出しが追加される必要があります。
例えば、


fprintf(stderr, "panic level %d\n", lvl);



は、次のように変更されます。


fprintf(stderr, gettext("panic level %d\n"), lvl);



（NLSサポートが組み込まれていない場合、gettextはノーオペレーション命令として定義されます。）
    


これは混乱しがちになります。一般的なショートカットは以下のものです。


#define _(x) gettext(x)



他の解決方法は、バックエンドにおけるereport()のように、そのプログラムが通信のほとんどを1つまたは数個の関数で行っている場合有効です。
その場合、この関数の内部で全ての入力文字列に対しgettextを呼び出すようにすることになります。
    

	

プログラムのソースのあるディレクトリにnls.mkを追加してください。
これはmakefileとして読まれます。
以下の変数への代入をここで設定する必要があります。

     
	CATALOG_NAME
	

textdomain()の呼び出しに使用されるプログラム名です。
        

	GETTEXT_FILES
	

翻訳可能文字列を含むファイルの一覧です。
つまり、これらはgettextもしくは他の解決法として印が付けられます。
結局、これはプログラムのほとんど全てのソースファイルを含むことになります。
この一覧があまりに長くなる場合、最初の「file」を+とし、2番目の単語を1行に対して1つのファイル名を持ったファイルとすることができます。
        

	GETTEXT_TRIGGERS
	

翻訳者が作業を行う上で、どの関数呼び出しが翻訳可能文字列を含むかを知る必要に迫られた場合に、メッセージカタログを生成するツールです。
デフォルトでは、gettext()呼び出しのみを認識します。
_や他の識別子を使用した場合、ここに記載しなければなりません。
翻訳可能文字列がその最初の引数ではない場合、その項目は（例えば2番目の引数の場合）func:2という形式でなければなりません。
複数形メッセージをサポートする関数がある場合、その項目は（単一形および複数形メッセージ引数を特定する）func:1,2のようになります。
        




    

	

提供された翻訳のリストを含むファイルpo/LINGUASを追加します。初めは空です。
    





ビルドシステムは、自動的にメッセージカタログの構築およびインストールを行います。
  

メッセージ記述の指針





メッセージの翻訳を簡単にするために以下に指針をいくつか示します。

   
	

以下のように実行時に文章を構築することはしないでください。


printf("Files were %s.\n", flag ? "copied" : "removed");



文章内の単語の順番は言語によって異なる可能性があります。
さらに全ての断章に対してgettext()を呼び出すことを覚えていたとしても、断章が個別に的確に翻訳されるわけではありません。
それぞれのメッセージが全て調和して翻訳されるかどうか、ちょっとしたコードの複製を用意するとよいかもしません。
番号、ファイル名、および実行時変数のみメッセージテキストに実行時に挿入するべきです。
     

	

同様の理由で、以下も上手くいきません。


printf("copied %d file%s", n, n!=1 ? "s" : "");



これは複数形がどのように形成されるかを決めてかかっているからです。
もし、以下のようにして回避できたと考えると、


if (n==1)
    printf("copied 1 file");
else
    printf("copied %d files", n):



失望することになります。
言語の中には、独特の規則によって2つ以上の形式になるものもあります。
問題全体を回避するためこのメッセージを設計することが最善です。たとえば以下のようにします。


printf("number of copied files: %d", n);


     


適切に複数形を持つメッセージを構築したいと本当に思うのなら、これに対するサポートがありますが、多少厄介です。
ereport()内の主たる、または詳細なエラーメッセージを生成する場合、以下のように書くことができます。


errmsg_plural("copied %d file",
              "copied %d files",
              n,
              n)



最初の引数は英文の単数形に適切な書式文字列で、二番目は英文の複数形に適切な書式文字列、そして三番目はどの複数形を使用するのかを決定する整数制御値です。
引き続く引数はいつものように書式文字列毎に書式化されます。
（通常、複数化制御値は書式化されるべき値の内の１つでもありますので、２回書かなければなりません。）
英語ではnが１であるか、そうでないかのみ重要ですが、他の言語では数多くの複数書式が存在します。
翻訳者にはグループとして２つの英文書式を参照し、nの実行時の値に基づいて選択される適切な１つでもって、複数の代替文字列を供給する機会があります。
     


errmsgあるいはerrdetail報告に直接行かない複数形メッセージが必要であれば、基礎となっている関数、ngettextを使用する必要があります。
gettextのドキュメントを参照してください。
     

	

メッセージをどのように他の出力と合わせる予定なのかなど翻訳者と何か連絡を取り合いたい場合、translatorで始まるコメントを最初に付けてどうなるかを知らせてください。
以下のようにします。


/* translator: This message is not what it seems to be. */



これらのコメントはメッセージカタログファイルにコピーされますので翻訳者は参照できます。
     




  


第57章 手続き言語ハンドラの作成





現在のコンパイル言語用「Version-1」インタフェース以外のある言語で作成された関数の呼び出しはすべて、特定の言語用の呼び出しハンドラを経由します
（これには、ユーザ定義手続き言語で作成された関数、SQLで作成された関数が含まれます）。
提供されたソーステキストを解釈するなどによって、関数の実行を意味のある方法で行うことは、呼び出しハンドラの責任です。
本章では、どのように新しい手続き言語の呼び出しハンドラを作成できるかについて概要を示します。
   


手続き言語用の呼び出しハンドラは「通常」の関数で、Cなどのコンパイル言語で作成し、Version-1インタフェースを使用し、引数を取らずにlanguage_handlerを返すものとしてPostgreSQL™に登録しなければなりません。
この特殊な仮想型は、その関数を呼び出しハンドラとして識別し、SQLコマンド内で直接その関数が呼び出されることを防止します。
C言語の呼び出し規約と動的ロードについては「C言語関数」を参照してください。
   


呼び出しハンドラは、他の関数と同じ方法で呼び出されます。
引数値と呼び出された関数についての情報を含むFunctionCallInfoBaseData structのポインタを受け取り、Datum型の結果を返すもの（そして、SQLのNULLという結果を返そうとする場合に、FunctionCallInfoBaseData構造体のisnullフィールドを設定するかもしれないもの）と想定されています。
呼び出しハンドラと通常の呼び出される関数との違いは、FunctionCallInfoBaseData構造体のflinfo->fn_oidに、呼び出しハンドラ自身ではなく、実際に呼び出される関数のOIDが含まれるという点です。
呼び出しハンドラはこのフィールドを使用して、どの関数を呼び出すのかを決定しなければなりません。
また、渡された引数リストは、呼び出しハンドラの宣言ではなく、目的とする関数の宣言に従うよう設定されています。
   


pg_procシステムカタログから関数のエントリを取り出し、呼び出される関数の引数と戻り値の型を解析するまでを呼び出しハンドラが行います。
関数のCREATE FUNCTIONコマンドのAS句は、pg_procの行のprosrc列にあります。
これは通常、手続き言語自体で作成されたソーステキストですが、理論上はファイルへのパス名や、何らかの呼び出しハンドラに詳細に何をすべきかを通知するものとすることもできます。
   


1つのSQL文で同じ関数が何回も呼び出されることがよくあります。
呼び出しハンドラは、flinfo->fn_extraフィールドを使用して、呼び出す関数に関する情報を繰り返し検索することを防ぐことができます。
これは初期状態ではNULLですが、呼び出しハンドラによって呼び出す関数の情報を指すように設定することもできます。
その後の呼び出しでは、flinfo->fn_extraが非NULLであれば、それを使用して、情報検索の段階を省略することができます。
呼び出しハンドラはflinfo->fn_extraが少なくとも現在の問い合わせの終了まで有効なメモリを指しているかどうかを確認しなければなりません。
FmgrInfoデータ構造体は長く保持される可能性があるからです。
この方法の1つとして、flinfo->fn_mcxtで指定されたメモリコンテキスト内に余分なデータを割り当てることです。
このデータは通常FmgrInfo自身と同期間有効です。
しかし、ハンドラはまた、長時間メモリコンテキストにあるものを使用するかどうかを選ぶこともできます。
これにより関数定義情報を、問い合わせをまたいでキャッシュすることができます。
   


手続き言語関数がトリガとして呼び出された場合、引数は通常の方法では渡されず、FunctionCallInfoBaseDataのcontextフィールドが、普通の関数呼び出しのようにNULLにはならずに、TriggerData構造体を指しています。
呼び出しハンドラは、手続き言語に対しトリガ情報を取り出す機構を提供しなければなりません。
   


Cで拡張として書かれた手続き言語ハンドラの雛型がsrc/test/modules/plsampleに提供されています。
これは、手続き言語ハンドラを作成し、パラメータを処理して値を返す1つの方法を示す動作するサンプルです。
   


最低限の手続き言語を作成する場合には呼び出しハンドラを提供するだけで十分ですが、他にも省略可能ですが、その言語の利用をより簡便にするために提供できる2つの関数があります。
これらは有効性検証関数とインラインハンドラです。
有効性検証関数を提供して、CREATE FUNCTION(7)時に言語固有の検査を行うことができます。
インラインハンドラを提供して、言語にDO(7)コマンド経由の匿名コードブロック実行をサポートさせることができます。
   


有効性検証関数が手続き言語により提供される場合、oid型の単一パラメータを取る関数として宣言しなければなりません。
有効性検証関数の結果は無視されます。
そのためよくvoidを返すものと宣言されます。
有効性検証関数はその手続き言語で関数を作成または置換するCREATE FUNCTIONの最後に呼び出されます。
渡されるOIDは関数のpg_proc行のOIDです。
有効性検証関数は通常の方法でこの行を取り出さなければならず、そして適切な検査を実行します。
まずユーザがCREATE FUNCTIONで到達できない有効性検証関数への明示的な呼び出しを診断するため、CheckFunctionValidatorAccess()を呼び出します。
典型的な検査として、さらに関数引数および結果の型がその言語でサポートされているかや関数本体がその言語において文法的に正しいかどうかを検証することが挙げられます。
有効性検証関数がその関数に問題がないことを判定したら、単に戻ります。
エラーがあることを判定したら、通常のereport()エラー報告機構を使用して報告しなければなりません。
エラーを返すことで、強制的にトランザクションはロールバックされ、不正な関数定義がコミットされることを防ぎます。
   


有効性検証関数は通常check_function_bodiesパラメータを遵守しなければなりません。
これが無効な場合、高価な、または文脈次第の検査を飛ばさなければなりません。
言語がコンパイル時のコード実行を提供するのであれば、有効性検証関数はそのような実行を引き起こす検査を抑制しなければなりません。
特にこのパラメータは、副作用や関数本体の他のデータベースオブジェクトへの依存を心配することなく手続き言語関数をロードできるように、pg_dumpにより無効にされます。
(この仕様のため呼び出しハンドラは有効性検証関数が完全にその関数を検査したことを前提としてはいけません。
有効性検証関数を持つ目的は、呼び出しハンドラが検査を省略できることではなく、明確なエラーがCREATE FUNCTIONコマンド内に存在する場合、それを即座にユーザに通知することです。)
厳密に何を検査すべきかの選択は主として有効性検査関数の裁量に委ねられていますが、check_function_bodiesが有効な場合にはCREATE FUNCTIONの中心となるコードは関数に関連づけられたSET句を実行するだけですので注意して下さい。
そのため、その結果がGUCパラメータの影響を受ける検査は、ダンプをリストアする時の偽の失敗を避けるために、check_function_bodiesが無効な場合には確実に飛ばさなければなりません。
   


インラインハンドラが手続き言語により提供される場合、その関数はinternal型の単一パラメータを取るものとして宣言されなければなりません。
インラインハンドラの結果は無視されます。
そのためよくvoidを返すものと宣言されます。
インラインハンドラは特定の手続き言語でDO文が実行された時に呼び出されます。
実際に渡されるパラメータはInlineCodeBlock構造体のポインタです。
ここにはDO文のパラメータ、具体的には実行される匿名コードブロックのテキスト、に関する情報が含まれています。
インラインハンドラはこのコードを実行し、戻らなければなりません。
   


簡単なCREATE EXTENSIONコマンドで言語をインストールすることが十分にできるように、これらの関数宣言とCREATE LANGUAGEコマンド自身を拡張としてまとめることを勧めます。
拡張の作成方法については「関連するオブジェクトを拡張としてパッケージ化」を参照してください。
   


独自の言語ハンドラを作成する際、標準配布物に含まれる手続き言語は優れたリファレンスです。
ソースツリーのsrc/plサブディレクトリを調べてください。
CREATE LANGUAGE(7)マニュアルページもまた有用な情報を含みます。
   

第58章 外部データラッパーの作成





外部テーブルへの全ての操作は、コアサーバから呼び出される関数のセットで構成される、外部データラッパーで処理されます。
外部データラッパーは、リモートデータソースからデータを取り出し、そのデータをPostgreSQL™エグゼキュータに返却することを担当します。
外部テーブルの更新をサポートする場合、ラッパーはそれも扱わなければなりません。
本章では、新しい外部データラッパーを作成する方法の概要を示します。
   


独自の外部データラッパーを作成する際、標準配布物に含まれているものは優れたリファレンスです。
ソースツリーのcontribサブディレクトリを調べてください。
CREATE FOREIGN DATA WRAPPER(7)マニュアルページにも有用な情報があります。
   
注記


標準SQLでは外部データラッパーを作成するインタフェースを定義しています。
しかしながら、PostgreSQLに適応させる労力が大きく、また標準のAPIが広く採用されているわけでもないので、PostgreSQLはそのAPIを実装していません。
    

外部データラッパー関数





FDWの作者は、ハンドラ関数と、オプションで検証関数を実装する必要があります。
両関数とも、version-1インタフェースを使用して、Cなどのコンパイル言語で作成しなければなりません。
C言語の呼び出し規約と動的ロードについては「C言語関数」を参照してください。
    


ハンドラ関数は単に、プランナやエグゼキュータ、様々なメンテナンスコマンドから呼び出されるコールバックの関数ポインタを含む構造体を返します。
FDWを作成するための労力のほとんどは、これらのコールバック関数を実装することに費やされます。
ハンドラ関数は、引数を取らず特殊な仮想型であるfdw_handlerを返す関数としてPostgreSQL™に登録しなければなりません。
コールバック関数は通常のC言語関数で、SQLレベルでは参照も呼び出しもできません。コールバック関数の説明は「外部データラッパーのコールバックルーチン」にあります。
    


検証関数は、そのラッパーを使用する外部サーバ、ユーザマッピング、外部テーブルだけでなく、外部データラッパー自身のCREATEやALTERといったコマンドで指定されたオプションの妥当性の検証を担当します。
検証関数は、検証するオプションを含むtext配列と、オプションを関連付けるオブジェクトの種類を表すOIDという二つの引数を取るものとして登録しなければなりません。
後者はそのオブジェクトが格納されるシステムカタログのOIDに対応するもので、以下のいずれかです。
     
	AttributeRelationId

	ForeignDataWrapperRelationId

	ForeignServerRelationId

	ForeignTableRelationId

	UserMappingRelationId





検証関数が指定されなかった場合、オブジェクト作成時やオブジェクト変更時にオプションはチェックされません。
    


外部データラッパーのコールバックルーチン





FDWハンドラ関数は、以下で説明するコールバックの関数ポインタを含む、pallocされたFdwRoutine構造体を返します。
スキャンに関連した関数は必須で、それ以外は省略可能です。
    


FdwRoutine構造体はsrc/include/foreign/fdwapi.hで宣言されていますので、追加情報はそちらを参照してください。
    
外部テーブルスキャンのためのFDWルーチン






void
GetForeignRelSize(PlannerInfo *root,
                  RelOptInfo *baserel,
                  Oid foreigntableid);




外部テーブルのリレーションサイズ見積もりを取得します。
この関数は、ある外部テーブルをスキャンする問い合わせのプラン作成の開始時に呼び出されます。
rootはその問い合わせに関するプランナのグローバル情報です。
baserelはそのテーブルに関するプランナの情報です。
そして、foreigntableidはその外部テーブルのpg_class OIDです。
(foreigntableidはプランナデータ構造体からも取得できますが、手間を省くために明示的に渡されます。)
    


この関数は、検索条件によるフィルタリングも考慮に入れた、そのテーブルスキャンが返すと見込まれる件数にbaserel->rowsを更新するべきです。
baserel->rowsの初期値は固定のデフォルト見積もりなので、可能な限り置き換えられるべきです。この関数は、行の幅のよりよい見積もりを計算できるのであれば、baserel->widthを更新することも選択出来ます。
(初期値は列の型と最後に実行されたANALYZEから計測された平均列幅に基づいています。)
また、外部テーブルの総行数の見積もりをより正しく計算できる場合、この関数は、baserel->tuplesを更新しても構いません。
(初期値はpg_class.reltuplesで、最後に実行されたANALYZEによって確認された総行数です。
もしこの外部テーブルにANALYZEが実行されていない場合は、-1になります。)
    


追加情報については「外部データラッパーの問い合わせプラン作成」を参照してください。
    



void
GetForeignPaths(PlannerInfo *root,
                RelOptInfo *baserel,
                Oid foreigntableid);




外部テーブル対するスキャンとして可能なアクセスパスを作成します。
この関数は問い合わせのプラン作成中に呼び出されます。
引数は、先に呼ばれているGetForeignRelSizeと同じです。
    


この関数は、外部テーブルのスキャンに対して少なくとも一つのアクセスパス(ForeignPathノード)を作成して、それぞれのパスをbaserel->pathlistに追加するためにadd_pathを呼ばなければなりません。
ForeignPathノードを構築するにはcreate_foreignscan_pathを使うことが推奨されています。
この関数は、たとえばソート済みの結果を表現する有効なpathkeysを持つパスのような複数のアクセスパスを作成することが出来ます。
それぞれのアクセスパスはコスト見積もりを含まねばならず、また意図した特定のスキャン方式を識別するのに必要なFDW固有の情報を持つことが出来ます。
    


追加情報については「外部データラッパーの問い合わせプラン作成」を参照してください。
    



ForeignScan *
GetForeignPlan(PlannerInfo *root,
               RelOptInfo *baserel,
               Oid foreigntableid,
               ForeignPath *best_path,
               List *tlist,
               List *scan_clauses,
               Plan *outer_plan);




選択された外部アクセスパスからForeignScanプランノードを作成します。
この関数は問い合わせのプラン作成の最後に呼び出されます。
引数は、GetForeignRelSizeと同じものに、選択されたForeignPath(事前にGetForeignPaths、GetForeignJoinPathsまたはGetForeignUpperPathsによって作成されたもの)、そのプランノードによって出力されるターゲットリスト、そのプランノードで強制される条件句、およびRecheckForeignScanが実行する再検査で使用されるForeignScanの外側のサブプランが追加されます。
（パスがベースリレーションではなく結合のためのものの場合、foreigntableidはInvalidOidになります。）
    


この関数はForeignScanプランノードを作成して返さなければなりません。ForeignScanノードを構築するにはmake_foreignscanを使うことが推奨されています。
    


追加情報については「外部データラッパーの問い合わせプラン作成」を参照してください。
    



void
BeginForeignScan(ForeignScanState *node,
                 int eflags);




外部テーブルスキャンの実行を開始します。
この関数はエグゼキュータの起動中に呼び出されます。
スキャンを開始できるようになる前に、あらゆる必要な初期化を実行するべきですが、実際のスキャンの実行を始めるべきではありません(それは最初のIterateForeignScan呼び出しにおいて行われるべきです)。
ForeignScanStateノードは作成されていますが、そのfdw_stateフィールドはNULLのままです。
スキャンするテーブルの情報は、ForeignScanStateノード(特に、その先にあるGetForeignPlanから提供されたFDWプライベート情報を含む、ForeignScanプランノード)を通じてアクセス可能です。
eflagsは、このプランノードに関するエグゼキュータの操作モードを表すフラグビットを含みます。
    


(eflags & EXEC_FLAG_EXPLAIN_ONLY)が真の場合、この関数は外部に見える処理を実行すべきではないことに注意してください。
ExplainForeignScanやEndForeignScan用にノード状態を有効にするのに必要とされる最小限のことだけをすべきです。
    



TupleTableSlot *
IterateForeignScan(ForeignScanState *node);




外部ソースから一行を取り出して、それをタプルテーブルスロットに入れて返します(この用途にはノードのScanTupleSlotを使うべきです)。
利用可能な行がない場合は、NULLを返します。
タプルテーブルスロット機構を使うと、物理タプルと仮想タプルのどちらでも返せます。
ほとんどの場合、パフォーマンスの観点から後者を選ぶのが良いでしょう。
この関数は、呼出しごとにリセットされる短命なメモリコンテキスト内で呼び出されることに注意してください。
より長命なストレージが必要な場合は、BeginForeignScanでメモリコンテキストを作成するか、ノードのEStateに含まれるes_query_cxtを使用してください。
    


返される行は、ターゲットリストfdw_scan_tlistが提供されたなら、それとマッチしなければならず、提供されていない場合はスキャンされている外部テーブルの行型とマッチしなければなりません。
不要な列を取り出さないように最適化することを選ぶなら、それらの列の位置にNULLを入れるか、あるいはそれらの列を除いたfdw_scan_tlistリストを生成するべきです。
    


PostgreSQL™のエグゼキュータは返された行が外部テーブルに定義された制約に違反しているかどうかは気にしません。
しかし、プランナはそれに着目するので、宣言された制約に反する行が外部テーブル上にあった場合に、不正な最適化をするかもしれません。
ユーザが制約が成り立つと宣言したのに制約に違反した場合は(データ型が一致しなかった場合にする必要があるのと同様に)エラーを発生させるのが適切でしょう。
    



void
ReScanForeignScan(ForeignScanState *node);




先頭からスキャンを再開します。
スキャンが依存するいずれかのパラメータが値を変更しているかもしれないので、新しいスキャンが必ずしも厳密に同じ行を返すとは限らないことに注意してください。
    



void
EndForeignScan(ForeignScanState *node);




スキャンを終了しリソースを解放します。
通常、pallocされたメモリを解放することは重要ではありませんが、たとえば開いたファイルやリモートサーバへの接続などはクリーンアップするべきです。
    

外部テーブルの結合をスキャンするためのFDWルーチン





FDWが外部テーブルの結合を（両方のテーブルのデータをフェッチして、ローカルで結合するのでなく）リモートで実行することをサポートする場合、次のコールバック関数を提供します。
    



void
GetForeignJoinPaths(PlannerInfo *root,
                    RelOptInfo *joinrel,
                    RelOptInfo *outerrel,
                    RelOptInfo *innerrel,
                    JoinType jointype,
                    JoinPathExtraData *extra);



同じ外部サーバにある2つ（またはそれ以上）の外部テーブルの結合のための可能なアクセスパスを作成します。
このオプション関数は、問い合わせの計画時に呼び出されます。
GetForeignPathsと同じく、この関数は提供されたjoinrelのためのForeignPathパスを生成し（そのためにcreate_foreign_join_pathを使用します）、add_pathを呼んで、それらのパスを結合のために考慮されるパスの集合に追加します。
しかし、GetForeignPathsとは異なり、この関数が少なくとも1つのパスの作成に成功することは必要ではありません。
なぜなら、ローカルの結合を含んだパスはいつでも可能だからです。
    


この関数は、同じ結合のリレーションに対して、内側と外側のリレーションの異なる組み合わせで繰り返し呼び出されることに注意して下さい。
同じ作業の繰り返しを最小化することはFDWの責任です。
    


また、extra->restrictlistとして渡される、結合に適用される結合句の集合は、内側と外側のリレーションの組み合わせによって異なることに注意してください。
joinrelに対して生成されるForeignPathパスには、使用する結合句の集合が含まれている必要があります。これは、joinrelに対する最適なパスとしてプランナによって選択された場合に、ForeignPathパスをプランに変換するためにプランナにより使用されます。
    


ForeignPathパスが結合のために選択されると、それは結合プロセス全体を代表することになり、構成テーブルとその関連の結合のために生成されたパスは使われなくなります。
結合パスの以降の処理は、単一の外部テーブルをスキャンするパスとほぼ同様に進みます。
1つの相違点は、結果として作られるForeignScan計画ノードのscanrelidが0にセットされるべき、ということで、これはそれが表現する単一のリレーションがないためです。
その代わりに、ForeignScanノードのfs_relidsフィールドが結合されるリレーションの集合を表します。
（後者のフィールドはコアのプランナのコードによって自動的にセットされるので、FDWによって設定される必要はありません。）
他の相違点は、リモートの結合についての列リストがシステムカタログにはないため、FDWはfdw_scan_tlistに適切なTargetEntryノードのリストを入れて、実行時に返されるタプル内の列の集合を表すようにしなければならないということです。
    
注記


PostgreSQL™ 16以降、fs_relidsには、この結合に関連する外部結合がある場合、その範囲テーブルの添字が含まれます。
新しいフィールドfs_base_relidsはベースリレーションの添字のみを含み、fs_relidsの古いセマンティクスを模倣しています。
     



追加情報については「外部データラッパーの問い合わせプラン作成」を参照してください。
    

スキャン/結合後の処理をプラン生成するためのFDWルーチン





FDWがリモート集約など、リモートでのスキャン/結合後の処理をサポートする場合、次のコールバック関数を提供します。
    



void
GetForeignUpperPaths(PlannerInfo *root,
                     UpperRelationKind stage,
                     RelOptInfo *input_rel,
                     RelOptInfo *output_rel,
                     void *extra);



上位リレーション処理のための、ありうるアクセスパスを作成します。上位リレーションはプランナ用語で、ウィンドウ関数、ソート、テーブル更新など、全てのスキャン/結合後の問い合わせのことです。
この省略可能な関数は問い合わせのプラン作成時に呼ばれます。
今のところ、これは問い合わせに含まれる全てのベースリレーションが同じFDWに属する場合だけ呼ばれます。
この関数では、FDWがどのようにリモートで実行するか分かっている全てのスキャン/結合後の処理にForeignPathパスを生成し（そのためにcreate_foreign_upper_pathを使用します）、それらパスを指定された上位リレーションに加えるためにadd_pathを呼び出してください。
GetForeignJoinPathsの時と同様に、この関数が何らかのパス作成に成功する必要はありません。なぜなら、ローカル処理を含んでいるパスはいつでも可能だからです。
    


stageパラメータはどのスキャン/結合後の処理が現在考慮されているかを定めます。
output_relは本処理の計算方法をあらわすパスを受け取るであろう上位リレーションで、input_relは本処理への入力をあらわすリレーションです。
extraパラメータは追加の詳細を指定し、今のところUPPERREL_PARTIAL_GROUP_AGGとUPPERREL_GROUP_AGGに対して指定できて、この場合はGroupPathExtraData構造体へのポインタです。
さらにUPPERREL_FINALに対しても指定できて、この場合はFinalPathExtraData構造体へのポインタです。
（注意：これらの処理は外部で実行されると考えられるため、output_relに加えられるForeignPathパスは、一般的にinput_relのパスへの直接の依存を全く持たないでしょう。
しかしながら、手前の処理段階のために以前に生成されたパスを検査することは、冗長なプラン作成活動を回避するのに役立ちます。）
    


追加情報については「外部データラッパーの問い合わせプラン作成」を参照してください。
    

外部テーブル更新のためのFDWルーチン





もしFDWが更新可能な外部テーブルをサポートする場合、FDWのニーズと能力に応じて、以下のコールバック関数の一部または全てを提供する必要があります。
    



void
AddForeignUpdateTargets(PlannerInfo *root,
                        Index rtindex,
                        RangeTblEntry *target_rte,
                        Relation target_relation);




UPDATEとDELETEの操作は、テーブルスキャン関数によって事前にフェッチされた行に対して実行されます。
FDWは、更新や削除の対象行を厳密に識別できるように行IDや主キー列の値といった追加情報を必要とするかもしれません。
それをサポートするために、この関数はUPDATEやDELETEの間に外部テーブルから取得される列のリストに追加の隠された(または「ジャンクの」)対象列を追加できます。
    


それを行うには、必要な追加の値を表すVarを作成し、それをジャンク列の名前とともにadd_row_identity_varに渡します。
（複数の列が必要な場合は、これを二回以上実行できます。）
必要とするそれぞれのVarに個別のジャンク列名を選択する必要があります。ただし、Varがvarnoフィールドを除いて同一である場合は、列名を共有することができるのでそうすべきです。
コアシステムは、テーブルのtableoid列をジャンク列名tableoidに、ctidまたはctidNをctidに使用し、vartype = RECORDと記された行全体のVarをwholerowに、vartypeを記された行全体のVarをwholerowN使用しており、テーブルで宣言された行型が同じです。
できる限りこれらの名前を再利用してください（プランナは同一のジャンク列に対する重複したリクエストを結合します）。
もしこれらとは別の種類のジャンク列が必要なら、他のFDWとの衝突を避けるために拡張子名をプレフィックスとした名前を選ぶのが賢明かもしれません。
    


もしAddForeignUpdateTargetsポインタがNULLに設定されている場合は、追加の対象式は追加されません。
(FDWが行を識別するのに不変の主キーに依存するのであればUPDATEは依然として実現可能かもしれませんが、DELETE操作を実装することは不可能になるでしょう。)
    



List *
PlanForeignModify(PlannerInfo *root,
                  ModifyTable *plan,
                  Index resultRelation,
                  int subplan_index);




外部テーブルに対する挿入、更新、削除に必要となる、追加のプラン生成アクションを実行します。
この関数は、更新処理を実行するModifyTableプランノードに追加されるFDW固有の情報を生成します。この固有情報はList形式でなければならず、また実行段階の間にBeginForeignModifyに渡されます。
    


rootはその問い合わせに関するプランナのグローバル情報です。
planはfdwPrivListsフィールドを除いて完成しているModifyTableプランノードです。
resultRelationは対象の外部テーブルをレンジテーブルの添字で識別します。
subplan_indexはModifyTableプランノードの対象がどれであるかを0始まりで識別します。
これは、planノードの対象リレーションごとのサブ構造にインデックスを付けたい場合に使用してください。
    


追加情報は「外部データラッパーの問い合わせプラン作成」を参照してください。
    


もしPlanForeignModifyポインタがNULLに設定されている場合は、追加のプラン作成時処理は実行されず、BeginForeignModifyに渡されるfdw_privateリストはNILになります。
    



void
BeginForeignModify(ModifyTableState *mtstate,
                   ResultRelInfo *rinfo,
                   List *fdw_private,
                   int subplan_index,
                   int eflags);




外部テーブルへの変更操作の実行を開始します。
このルーチンはエグゼキュータの起動中に呼び出されます。
実際のテーブル変更に先立って必要なあらゆる初期化処理を実行する必要があります。
その後、各タプルが挿入、更新、削除されるようにExecForeignInsert/ExecForeignBatchInsert、ExecForeignUpdate、ExecForeignDeleteのいずれかが呼ばれます。
    


mtstateは実行されているModifyTableプランノード全体の状態です。プランに関する全般的なデータと実行状態はこの構造体経由で利用可能です。
rinfoは対象の外部テーブルを表すResultRelInfo構造体です。
(ResultRelInfoのri_FdwStateフィールドはこの操作で必要となる固有の状態をFDWが格納するのに利用できます。)
fdw_privateは、もしあればPlanForeignModifyで生成された固有データを含みます。
subplan_indexは、これがModifyTableプランノードのどのターゲットであるかを識別します。
eflagsは、このプランノードに関するエグゼキュータの操作モードを表すフラグビットを含みます。
    


(eflags & EXEC_FLAG_EXPLAIN_ONLY)が真の場合、この関数は外部に見える処理を実行すべきではないことに注意してください。
ExplainForeignModifyやEndForeignModify用にノード状態を有効にするのに必要な最小限のことだけを実行するべきです。
    


もしBeginForeignModifyポインタがNULLに設定されている場合は、エグゼキュータ起動時には追加処理は何も実行されません。
    



TupleTableSlot *
ExecForeignInsert(EState *estate,
                  ResultRelInfo *rinfo,
                  TupleTableSlot *slot,
                  TupleTableSlot *planSlot);




外部テーブルにタプルを一つ挿入します。
estateはその問い合わせのグローバルな実行状態です。
rinfoは対象の外部テーブルを表すResultRelInfo構造体です。
slotには挿入されるタプルが含まれます。その行型定義は外部テーブルと一致します。
planSlotにはModifyTableプランノードのサブプランが生成したタプルが含まれます。追加の「ジャンク」列を含みうる点において、slotとは異なります。(planSlotは一般的にINSERTのケースにおいてはそれほど意味を持ちませんが、完全性のために提供されます。)
    


戻り値は実際に挿入されたデータ(例えばトリガ処理の結果などにより、提供されたデータとは異なるかもしれません)を含むスロットか、または(こちらも一般的にトリガの結果)実際には挿入されなかった場合はNULLです。
渡されたslotはこの用途に再利用可能です。
    


返却されたスロット内のデータはINSERT文がRETURNING句を持っているか、WITH CHECK OPTIONを伴うビューに影響を及ぼす場合、もしくは、外部テーブルがAFTER ROWトリガを持っていた場合にのみ使われます。
トリガは全列を必要としますが、FDWはRETURNING句やWITH CHECK OPTIONの制約の内容に応じて、返却する列を一部にするかすべてにするかを最適化する余地があります。
それとは関係なく、処理成功を表すためになんらかのスロットは返却しなければなりません。さもないと、報告される問い合わせの結果行数が誤った値になってしまいます。
    


もしExecForeignInsertポインタがNULLに設定されている場合は、外部テーブルへの挿入の試みはエラーメッセージとともに失敗します。
    


この関数は外部テーブルパーティションに転送対象のタプルを挿入する際、あるいはCOPY FROMを外部テーブルに対して実行する際にも呼び出されることに注意してください。
COPY FROMの場合、INSERTとはこの関数の呼び出され方は異なります。
FDWがそれをサポートすることを可能にする以下で説明するコールバック関数をご覧ください。
    



TupleTableSlot **
ExecForeignBatchInsert(EState *estate,
                       ResultRelInfo *rinfo,
                       TupleTableSlot **slots,
                       TupleTableSlot **planSlots,
                       int *numSlots);




外部テーブルに一括で複数のタプルを挿入します。
slotsとplanSlotsが複数のタプルを含むことと*numSlotsがそれらの配列のタプルの数を指定すること以外はExecForeignInsertとパラメータは同じです。
    


戻り値は実際に挿入されたデータを含んだスロットの配列です。（これは例えばトリガ実行の結果として、提供された結果と異なるかもしれません。）
渡されたslotsは、この目的のために再利用できます。
挿入に成功したタプルの数は、*numSlotsに返されます。
    


返却されたスロット内のデータはINSERT文がビューWITH CHECK OPTIONを含む場合、または外部テーブルにAFTER ROWトリガがある場合にのみ、使用されます。
トリガはすべての列を必要としますが、FDWはWITH CHECK OPTION制約の内容に応じて、一部またはすべての列を返さないように最適化することを選択することができます。
    


ExecForeignBatchInsertまたはGetForeignModifyBatchSizeポインタにNULLが設定された場合、外部テーブルにはExecForeignInsertを使って挿入を試みます。
この関数はRETURNING句をもつINSERTの場合、使用されません。
    


この関数は外部テーブルパーティションに転送対象のタプルを挿入する際、あるいはCOPY FROMを外部テーブルに対して実行する際にも呼び出されることに注意してください。
COPY FROMの場合、INSERTとはこの関数の呼び出され方は異なります。
FDWがそれをサポートすることを可能にする以下で説明するコールバック関数をご覧ください。
    



int
GetForeignModifyBatchSize(ResultRelInfo *rinfo);




指定された外部テーブルに対して、単一のExecForeignBatchInsert呼び出しが処理できる最大のタプル数を報告します。
エグゼキュータは、最大で指定された数のタプルをExecForeignBatchInsertに渡します。
rinfoには、対象の外部テーブルを記述したResultRelInfo構造体を指定します。
FDWは、ユーザがこの値またはハードコードされた値を設定するための外部サーバや外部テーブルオプションを提供することを想定しています。
    


ExecForeignBatchInsertまたはGetForeignModifyBatchSizeポインタにNULLが設定された場合、外部テーブルにはExecForeignInsertを使って挿入を試みます。
    



TupleTableSlot *
ExecForeignUpdate(EState *estate,
                  ResultRelInfo *rinfo,
                  TupleTableSlot *slot,
                  TupleTableSlot *planSlot);




外部テーブル内のタプルを一つ更新します。
estateはその問い合わせのグローバルな実行状態です。
rinfoは対象の外部テーブルを表すResultRelInfo構造体です。
slotにはタプルの新しいデータが含まれます。その行型定義は外部テーブルと一致します。
planSlotにはModifyTableプランノードのサブプランが生成したタプルが含まれます。
slotとは異なり、このタプルは問い合わせによって変更された列の新しい値のみを含むので、planSlotにインデックスを付けるために外部テーブルの属性番号に依存しないようにしましょう。
また、planSlotは通常、追加の「ジャンク」列を含んでいます。
特に、AddForeignUpdateTargetsによって要求されたジャンク列は、このスロットから利用できるようになります。
    


戻り値は実際に更新されたデータ(例えばトリガ処理の結果などにより、提供されたデータとは異なるかもしれません)を含むスロットか、または(こちらも一般的にトリガの結果)実際には更新されなかった場合はNULLです。
渡されたslotはこの用途に再利用可能です。
    


返却されたスロット内のデータはUPDATE文がRETURNING句を持っているか、WITH CHECK OPTIONを伴うビューに影響を及ぼす場合、もしくは外部テーブルがAFTER ROWトリガを持っていた場合にのみ使われます。
トリガは全列を必要としますが、FDWはRETURNING句やWITH CHECK OPTIONの制約の内容に応じて返却する列を一部にするか全てにするかを最適化する余地があります。
それとは関係なく、処理成功を表すためになんらかのスロットは返却しなければなりません。さもないと、報告される問い合わせの結果行数が誤った値になってしまいます。
    


もしExecForeignUpdateポインタがNULLに設定されている場合は、外部テーブルへの更新の試みはエラーメッセージとともに失敗します。
    



TupleTableSlot *
ExecForeignDelete(EState *estate,
                  ResultRelInfo *rinfo,
                  TupleTableSlot *slot,
                  TupleTableSlot *planSlot);




外部テーブルからタプルを一つ削除します。
estateはその問い合わせのグローバルな実行状態です。
rinfoは対象の外部テーブルを表すResultRelInfo構造体です。
slotにはタプルの新しいデータが含まれます。その行型定義は外部テーブルと一致します。
planSlotにはModifyTableプランノードのサブプランが生成したタプルが含まれます。実際、AddForeignUpdateTargetsが要求するジャンク列はこのスロットが運びます。ジャンク列は削除されるタプルを識別するために使用しなければなりません。
    


戻り値は実際に削除されたデータを含むスロットか、または(一般的にトリガの結果)実際には削除されなかった場合はNULLです。
渡されたslotは返却するタプルを保持する用途に利用可能です。
    


返却されたスロット内のデータはDELETE問い合わせがRETURNING句を持っていた場合もしくは外部テーブルがAFTER ROWトリガを持っていた場合にのみ使われます。
トリガは全列を必要としますが、FDWはRETURNING句の内容に応じて返却する列を一部にするか全てにするかを最適化する余地があります。
それとは関係なく、処理成功を表すためになんらかのスロットは返却しなければなりません。さもないと、報告される問い合わせの結果行数が誤った値になってしまいます。
    


もしExecForeignDeleteポインタがNULLに設定されている場合は、外部テーブルからの削除の試みはエラーメッセージとともに失敗します。
    



void
EndForeignModify(EState *estate,
                 ResultRelInfo *rinfo);




テーブル更新を終えてリソースを解放します。
通常、pallocされたメモリを解放することは重要ではありませんが、たとえば開いたファイルやリモートサーバへの接続などはクリーンアップするべきです。
    


もしEndForeignModifyポインタがNULLに設定されている場合は、エグゼキュータ終了時には追加処理は何も実行されません。
    


INSERTあるいはCOPY FROMでパーティション化テーブルに挿入されたタプルはパーティションに転送されます。
FDWが外部テーブルのパーティションへの転送をサポートしているなら、以下のコールバック関数も提供すべきです。
これらの関数は、外部テーブルでCOPY FROMが実行された時に呼び出されます。
    



void
BeginForeignInsert(ModifyTableState *mtstate,
                   ResultRelInfo *rinfo);




外部テーブルへの挿入操作の実行を開始します。
このルーチンは、タプル転送のためにパーティションが選択された場合か、COPY FROMコマンドでターゲットが指定された場合に、最初の行が外部テーブルに挿入される直前に呼び出されます。
この関数は、実際の挿入に先立つすべての必要な初期化を実行すべきです。
続いて、ExecForeignInsertまたはExecForeignBatchInsertが外部テーブルにタプルを挿入するために呼び出されます。
    


mtstateは、実行中のModifyTableプランノードの全体的な状態です。
プランのグローバルデータと実行状態がこの構造体を通じて得られます。
rinfoはResultRelInfo構造体で、対象の外部テーブルを記述します。
（この操作中に必要なFDWのプライベート状態を保存するためにResultRelInfoのri_FdwStateフィールドが利用可能です。）
    


この関数がCOPY FROMコマンドで呼ばれると、外部テーブルがタプル転送で選択された対象なのか、あるいはコマンドがターゲットを指定したのかに関わらず、mtstate中のプランに関係するグローバルデータは提供されず、次に個々の挿入されるタプルに対して呼び出されるExecForeignInsertのplanSlotパラメータはNULLとなります。
    


BeginForeignInsertポインタがNULLなら、初期化処理は実施されません。
    


FDWが外部テーブルパーティションのタプル転送をサポートしていないか、または外部テーブルに対してCOPY FROMの実行をサポートしていないか、あるいはその両方なら、この関数あるいは以後呼ばれたExecForeignInsert/ExecForeignBatchInsertは、必ず必要なだけエラーを引き起こします。
    



void
EndForeignInsert(EState *estate,
                 ResultRelInfo *rinfo);




挿入操作を終了してリソースを解放します。
通常、pallocされたメモリを解放することは重要ではありませんが、たとえば開いたファイルやリモートサーバへの接続などはクリーンアップするべきです。
    


EndForeignInsertポインタがNULLなら、終了処理は実施されません。
    



int
IsForeignRelUpdatable(Relation rel);




指定された外部テーブルがどの更新処理をサポートしているかを報告します。
戻り値は、その外部テーブルがサポートする操作を表すルールイベント番号のビットマスクである必要があります。
UPDATE用の(1 << CMD_UPDATE) = 4、INSERT用の(1 << CMD_INSERT) = 8、DELETE用の(1 << CMD_DELETE) = 16といったCmdType列挙値を使います。
    


もしIsForeignRelUpdatableポインタがNULLに設定されていると、外部テーブルはExecForeignInsert、ExecForeignUpdate、ExecForeignDeleteを提供していると、それぞれ挿入、更新、削除をサポートしていると判断します。
この関数は、FDWが一部のテーブルについてのみ更新をサポートする場合にのみ必要です。
(そのような場合でも、この関数でチェックする代わりに問い合わせ実行関数でエラーにしても構いません。しかしながら、この関数はinformation_schemaのビューの表示で更新可否を判定するのに使用されます。)
    


外部テーブルへの挿入、更新、削除は、代替インタフェース一式を実装することで最適化できます。
通常の挿入、更新、削除のインタフェースは行をリモートサーバから取得し、その後、それらの行を一つずつ変更します。
一部の場合にはこの一行ごとのやり方は必要ですが、非効率とも言えます。
外部サーバについて行が本当はそれらを引き出すことなしに変更されるべきと判断できて、操作に影響を与える仕組み（行レベルのローカルトリガ、格納生成列、あるいは、親ビューからのWITH CHECK OPTIONの制約）が無いならば、操作全体がリモートサーバで実行されるように計画することができます。
以下に示すインタフェースはこれを可能にします。
    



bool
PlanDirectModify(PlannerInfo *root,
                 ModifyTable *plan,
                 Index resultRelation,
                 int subplan_index);




リモートサーバ上で直接変更を実行することが安全かを判断します。
そうであれば、そのために必要なプラン作成の動作を実行した後にtrueを返します。
さもなくば、falseを返します。
この省略可能な関数は問い合わせのプラン作成時に呼ばれます。
この関数が成功すると、BeginDirectModify、IterateDirectModify、EndDirectModifyが実行段階で代わりに呼び出されます。
成功しなければ、テーブルの変更は前述のテーブル更新関数を使って実行されます。
パラメータはPlanForeignModifyに対するものと同じです。
    


リモートサーバで直接変更を実行するには、本関数は対象サブプランをリモートサーバ上で直接変更するForeignScanプランノードで書き換えしなければなりません。
ForeignScanのoperationとresultRelationフィールドは適切にセットされる必要があります。
operationは文の種類に対応するCmdType列挙値にセットする必要があり(すなわちUPDATEにはCMD_UPDATE、INSERTにはCMD_INSERT、DELETEにはCMD_DELETE)、そして、resultRelation引数はresultRelationフィールドにコピーされる必要があります。
    


追加情報は「外部データラッパーの問い合わせプラン作成」を参照してください。
    


PlanDirectModifyポインタにNULLが設定されている場合、
リモートサーバでの直接変更の実行は試みられません。
    



void
BeginDirectModify(ForeignScanState *node,
                  int eflags);




リモートサーバでの直接変更を実行する準備をします。
この関数はエグゼキュータが開始するときに呼び出されます。
この関数は（最初のIterateDirectModify呼び出しで実行されるであろう）直接変更より前に必要とされる全ての初期化を実行するべきです。
ForeignScanStateノードはすでに作られていますが、fdw_stateがフィールドはまだNULLです。
変更するテーブルに関する情報はForeignScanStateノードを通して（具体的にはPlanDirectModifyで提供されるFDWプライベート情報を含む、元となるForeignScanプランノードから）入手可能です。
eflagsは、このプランノードに関するエグゼキュータの操作モードを表すフラグビットを含みます。
    


(eflags & EXEC_FLAG_EXPLAIN_ONLY)が真の場合、この関数は外部に見える処理を実行すべきではないことに注意してください。
ExplainDirectModifyやEndDirectModify用にノード状態を有効にするのに必要な最小限のことだけを実行するべきです。
    


BeginDirectModifyポインタがNULLに設定されている場合、リモートサーバでの直接変更の実行は試みられません。
    



TupleTableSlot *
IterateDirectModify(ForeignScanState *node);




INSERT、UPDATE、または、DELETEの問い合わせがRETURNING句を持たないときには、リモートサーバでの直接変更の後、単にNULLが返ります。
問い合わせがRETURNING句を持つときには、RETURNING計算に必要なデータを含む結果を一つ取り出し、タプルテーブルスロットでそれを返します（この用途にはノードのScanTupleSlotを使うべきです）。
実際に挿入、更新、削除されたデータはnode->resultRelInfo->ri_projectReturning->pi_exprContext->ecxt_scantupleに格納されなければなりません。
有効な行がそれ以上なければNULLを返します。
これは呼び出しの間でリセットされる寿命の短いメモリコンテキストで呼び出されることに注意してください。
より長命な格納場所を必要とするなら、BeginDirectModifyでメモリコンテキストを作るか、ノードのEStateのes_query_cxtを使ってください。
    


返される行は、ターゲットリストfdw_scan_tlistが提供されたなら、それとマッチしなければならず、提供されていない場合は変更されている外部テーブルの行型とマッチしなければなりません。
RETURNING計算に不要な列を取り出さないように最適化することを選ぶなら、それらの列の位置にNULLを入れるか、あるいはそれらの列を除いたfdw_scan_tlistリストを生成するべきです。
    


問い合わせが句をもつかどうかによらず、問い合わせが報告する行数はFDW自身によって増加されなければなりません。
問い合わせが句を持たないときも、FDWはEXPLAIN ANALYZEの場合のForeignScanState nodeむけに行数を増加させなければなりません。
    


IterateDirectModifyポインタがNULLに設定されている場合、リモートサーバでの直接変更の実行は試みられません。
    



void
EndDirectModify(ForeignScanState *node);




リモートサーバでの直接変更の後、クリーンアップします。
通常、pallocされたメモリを解放することは重要ではありませんが、たとえば開いたファイルやリモートサーバへの接続などはクリーンアップするべきです。
    


EndDirectModifyポインタがNULLに設定されている場合、リモートサーバでの直接変更の実行は試みられません。
    

TRUNCATEのためのFDWルーチン






void
ExecForeignTruncate(List *rels,
                    DropBehavior behavior,
                    bool restart_seqs);




外部テーブルを切り捨てます。
この関数はTRUNCATE(7)が外部テーブルに対して実行されたときに呼び出されます。
relsは切り捨てられる外部テーブルのRelationデータ構造のリストです。
    


behaviorはDROP_RESTRICTかDROP_CASCADEのいずれかで、それぞれ元のTRUNCATEコマンドでRESTRICTまたCASCADEオプションが要求されたことを表しています。
    


restart_seqsがtrue の場合、元のTRUNCATEコマンドがRESTART IDENTITY動作が要求され、それ以外の場合はCONTINUE IDENTITY動作が要求されていたことになります。
    


元のTRUNCATEコマンドで指定されたONLYオプションはExecForeignTruncateに渡されないことに注意してください。
この動作は外部テーブルに対するSELECTとUPDATE、DELETEのコールバック関数と同様です。
    


ExecForeignTruncateは、外部テーブルが切り捨てられる外部サーバごとに一度呼び出されます。
これは、relsに含まれるすべての外部テーブルが同じサーバに所属していなければならないことを意味しています。
    


ExecForeignTruncateポインタがNULLに設定されている場合、外部テーブルを切り捨てる試みはエラーメッセージとともに失敗します。
    

行ロックのためのFDWルーチン





FDWが（「外部データラッパーでの行ロック」で説明される）遅延行ロックをサポートする場合は、以下のコールバック関数を提供する必要があります。
    



RowMarkType
GetForeignRowMarkType(RangeTblEntry *rte,
                      LockClauseStrength strength);




行の印付けでどのオプションを外部テーブルに使うかを報告します。
rteはテーブルのRangeTblEntryノードで、strengthは関連するFOR UPDATE/SHARE句があれば、それが要求するロックの強さを表します。
その結果は、RowMarkType列挙型のメンバでなければなりません。
    


この関数はUPDATE、DELETE、SELECT FOR UPDATE/SHAREの問い合わせに現れ、かつUPDATEあるいはDELETEの対象ではない各外部テーブルについて、問い合わせの計画時に呼び出されます。
    


GetForeignRowMarkTypeのポインタがNULLに設定されていると、必ずROW_MARK_COPYオプションが使われます。
（これはRefetchForeignRowが決して呼び出されないので、それを提供する必要もない、ということを意味します。）
    


さらなる情報については「外部データラッパーでの行ロック」を参照してください。
    



void
RefetchForeignRow(EState *estate,
                  ExecRowMark *erm,
                  Datum rowid,
                  TupleTableSlot *slot,
                  bool *updated);




必要ならロックした後で、外部テーブルから1つのタプルスロットを再フェッチします。
estateは問い合わせのグローバルな実行状態です。
ermは対象の外部テーブルおよび獲得する行ロックの種別（あれば）を記述するExecRowMark構造体です。
rowidはフェッチするタプルを特定するものです。
slotは呼び出しで役立つ内容は含みませんが、返されたタプルを保持するために使用できます。
updatedは出力パラメータです。
    


この関数はタプルを与えられたスロットに格納するか、あるいは行ロックが取得できなければタプルをクリアします。
獲得する行ロックの種別はerm->markTypeで指定されます。この値は事前にGetForeignRowMarkTypeから返されたものです。
（ROW_MARK_REFERENCEは行のロックを獲得せずに、単にタプルを再フェッチすることを意味し、また、ROW_MARK_COPYはこのルーチンで使われることはありません。）
    


そして、*updatedはフェッチしたタプルが、以前に取得したものと同じではなく、更新されたバージョンであったときにtrueにセットされます。
（どちらなのかFDWが判断できない場合は、trueを返すことが推奨されます）。
    


デフォルトでは、行ロックの獲得に失敗したときはエラーを発生させるべきであることに注意してください。
空スロットを返すのが適切なのは、erm->waitPolicyでSKIP LOCKEDオプションが指定されている場合だけです。
    


rowidは、再フェッチする行を以前読んだ時のctid値です。
rowid値はDatumとして渡されますが、現在はtidにしかなりません。
将来は行ID以外のデータ型が可能になることを期待して、関数APIとすることが選択されました。
    


RefetchForeignRowポインタがNULLの場合、行を再フェッチする試みは失敗し、エラーメッセージを発行します。
    


さらなる情報については「外部データラッパーでの行ロック」を参照してください。
    



bool
RecheckForeignScan(ForeignScanState *node,
                   TupleTableSlot *slot);



以前に戻されたタプルが、関連するスキャンおよび結合の制約とまだ一致しているか再検査し、更新されたバージョンのタプルを提供する場合もあります。
結合のプッシュダウンを行わない外部データラッパーでは、通常は、これをNULLにセットし、代わりにfdw_recheck_qualsを適切にセットする方が便利でしょう。
しかし、外部結合をプッシュダウンする場合、すべてのベーステーブルに関する検査を結果のタプルに適用するだけでは、たとえすべての必要な属性がそこにあったとしても十分ではありません。
なぜなら一部の制約が一致しないことで、タプルが戻されない代わりに、一部の属性がNULLになってしまうかもしれないからです。
RecheckForeignScan制約を再検査し、それが依然として満たされていれば真を、そうでなければ偽を返すことができます。
それだけでなく、置換されたタプルを提供されたスロットに格納することもできます。
    


結合のプッシュダウンを実装する場合、外部データラッパーは通常、再検査のためだけに使用される代替のローカル結合プランを構築します。
これがForeignScanの外部サブプランとなります。
再検査が必要な時は、このサブプランを実行して、結果のタプルをスロットに格納することができます。
どのベーステーブルも最大で1行しか返さないので、このプランは効率的である必要はありません。
例えば、すべての結合をネステッドループで実装することもできます。
関数GetExistingLocalJoinPathは、存在するパスから代替ローカルの結合プランとして使用可能な適当なローカル結合パスを検索するのに使われるかもしれません。
GetExistingLocalJoinPathは指定された結合リレーションのパスリストのパラメータ化されていないパスを検索します。
（そのようなパスが見つからなかった場合はNULLを返します。この場合、外部データラッパーはそれ自身によりローカルパスを構築するかもしれず、あるいは、その結合むけのアクセスパスを作らないことを選択するかもしれません。）
    

EXPLAINのためのFDWルーチン






void
ExplainForeignScan(ForeignScanState *node,
                   ExplainState *es);




外部テーブルスキャンの追加のEXPLAIN出力を表示します。
EXPLAIN出力にフィールドを追加するためにExplainPropertyTextや関連する関数を呼び出すことができます。
esの中のフラグフィールドは何を表示するかを決めるのに使用できます。また、EXPLAIN ANALYZEの場合には、実行時統計情報を提供するためにForeignScanStateノードの状態を調べることができます。
    


もしExplainForeignScanポインタがNULLに設定されている場合は、EXPLAIN中に追加情報は表示されません。
    



void
ExplainForeignModify(ModifyTableState *mtstate,
                     ResultRelInfo *rinfo,
                     List *fdw_private,
                     int subplan_index,
                     struct ExplainState *es);




外部テーブル更新の追加のEXPLAIN出力を表示します。
EXPLAIN出力にフィールドを追加するためにExplainPropertyTextや関連する関数を呼び出すことができます。
esの中のフラグフィールドは何を表示するかを決めるのに使用できます。また、EXPLAIN ANALYZEの場合には、実行時統計情報を提供するためにModifyTableStateノードの状態を調べることができます。
最初の4つの引数はBeginForeignModifyと同じです。
    


もしExplainForeignModifyポインタがNULLに設定されている場合は、EXPLAIN中に追加情報は表示されません。
    



void
ExplainDirectModify(ForeignScanState *node,
                    ExplainState *es);




リモートサーバでの直接変更について追加EXPLAIN出力を表示します。
この関数はEXPLAIN出力にフィールドを加えるためにExplainPropertyTextと関連の関数を呼ぶことができます。
esの中のフラグフィールドは何を表示するかを決めるのに使用できます。また、EXPLAIN ANALYZEの場合には、実行時統計情報を提供するためにForeignScanStateノードの状態を調べることができます。
    


ExplainDirectModifyポインタがNULLに設定されている場合は、EXPLAIN中に追加情報は表示されません。
    

ANALYZEのためのFDWルーチン






bool
AnalyzeForeignTable(Relation relation,
                    AcquireSampleRowsFunc *func,
                    BlockNumber *totalpages);




この関数はANALYZE(7)が外部テーブルに対して実行されたときに呼び出されます。
もしFDWがこの外部テーブルの統計情報を収集できる場合は、そのテーブルからサンプル行を集める関数のポインタとページ単位でのテーブルサイズの見積もりをそれぞれfuncとtotalpagesに渡しtrueを返す必要があります。
そうでない場合は、falseを返します。
    


もしFDWが統計情報の収集をどのテーブルについてもサポートしない場合は、AnalyzeForeignTableポインタをNULLにすることもできます。
    


もし提供される場合は、サンプル収集関数はこのようなシグネチャを持つ必要があります。


int
AcquireSampleRowsFunc(Relation relation,
                      int elevel,
                      HeapTuple *rows,
                      int targrows,
                      double *totalrows,
                      double *totaldeadrows);




最大targrows行のランダムサンプルをテーブルから収集し、呼び出し元が提供するrows配列に格納する必要があります。
実際に収集された行の数を返す必要があります。
さらに、テーブルに含まれる有効行と不要行の合計数の見積もりを出力パラメータのtotalrowsとtotaldeadrowsに返す必要があります。(もしFDWが不要行という概念を持たない場合はtotaldeadrowsを0に設定してください。)
    

IMPORT FOREIGN SCHEMAのためのFDWルーチン






List *
ImportForeignSchema(ImportForeignSchemaStmt *stmt, Oid serverOid);




外部テーブル作成コマンドのリストを取得します。
この関数はIMPORT FOREIGN SCHEMA(7)を実行する時に呼び出され、その文の解析木と外部サーバが使用するOIDとを渡されます。
C文字列のリストを返し、その各文字列はCREATE FOREIGN TABLE(7)コマンドを含んでいる必要があります。
これらの文字列はコアサーバが解析して実行します。
    


ImportForeignSchemaStmt構造体において、remote_schemaはリモートスキーマの名前で、そこからテーブルがインポートされます。
list_typeはテーブル名のフィルタ方法を指定します。
ここで、FDW_IMPORT_SCHEMA_ALLはリモートスキーマのすべてのテーブルをインポートすること（この場合、table_listは空にします）、
FDW_IMPORT_SCHEMA_LIMIT_TOはtable_listに列挙されたテーブルだけを含めること、
そしてFDW_IMPORT_SCHEMA_EXCEPTはtable_listに列挙されたテーブルを除外することを意味します。
optionsはインポートのプロセスで使用されるオプションのリストです。
オプションの意味はFDWに依存します。
例えば、FDWは列のNOT NULL属性をインポートするかどうかを定めるオプションを使うことができます。
これらのオプションはFDWがデータベースオブジェクトのオプションとしてサポートするものと何ら関係ある必要はありません。
    


FDWはImportForeignSchemaStmtのlocal_schemaフィールドを無視しても良いです。
なぜなら、コアサーバは解析されたCREATE FOREIGN TABLEコマンドにその名前を自動的に挿入するからです。
    


FDWはlist_typeおよびtable_listで指定されるフィルタの実装にも注意する必要はありません。
なぜなら、コアサーバはそれらのオプションによって除外されるテーブルに対して戻されたコマンドをすべて自動的にスキップするからです。
しかし、除外されるテーブルについてコマンドを作成する作業を回避するのは、そもそも役立つことが多いです。
関数IsImportableForeignTable()は指定の外部テーブル名がフィルタを通るかどうかの検査に役立つかもしれません。
    


FDWがテーブル定義のインポートをサポートしない場合は、ImportForeignSchemaポインタをNULLにセットすることができます。
    

パラレル実行のためのFDWルーチン





ForeignScanノードは、オプションとして、パラレル実行をサポートします。
並列ForeignScanは複数プロセスで実行され、全ての協調プロセスにわたって各行が一度だけ返るようにしなければなりません。
これを行うため、プロセスは動的共有メモリの固定サイズチャンクを通して調整をはかることができます。
この共有メモリは全プロセスで同じアドレスに割り当てされることが保証されませんので、ポインタを含まないようにしなければなりません。
以下のコールバックは一般に全て省略可能ですが、パラレル実行をサポートするためには必要です。
    



bool
IsForeignScanParallelSafe(PlannerInfo *root, RelOptInfo *rel,
                          RangeTblEntry *rte);



スキャンがパラレルワーカーで実行できるかテストします。
この関数はプランナが並列プランが可能であろうと考えるときだけ呼ばれます。また、そのスキャンにとってパラレルワーカーで実行するのが安全であるとき真を返すべきです。
リモートデータソースがトランザクションのセマンティクスを持つ場合は、一般にあてはまりません。ただし、ワーカーのデータへの接続を何らかの形でリーダーとして同じトランザクション文脈を共有させることができる場合を除きます。
    


この関数が定義されていない場合、スキャンはパラレルリーダー内で実行しなければならないと想定されます。
真を返すことは、スキャンがパラレルワーカーで実行可能であるだけで、パラレルに実行可能であることを意味するのでは無いことに注意してください。
そのため、この関数を定義することはパラレル実行がサポートされていないときでも役立つ可能性があります。
    



Size
EstimateDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt);



並列操作に必要とされるであろう動的共有メモリ量を推定します。
これは実際に使われる量よりも大きくてよいですが、小さくてはいけません。
戻り値はバイト単位です。
この関数はオプションであり、必要でない場合は省略することができます。
しかし省略された場合、FDWの使用のために共有メモリが割り当てられないため、次の3つの関数も省略しなければなりません。
    



void
InitializeDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt,
                         void *coordinate);



並列処理で必要とされる動的共有メモリを初期化します。
coordinateはEstimateDSMForeignScanの戻り値に等しいサイズの共有メモリ領域へのポインタです。
この関数はオプションであり、必要でない場合は省略することができます。
   



void
ReInitializeDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt,
                           void *coordinate);



外部スキャンプランノードが再スキャンされようとしているときに、並列操作に必要な動的共有メモリを再初期化します。
この関数はオプションであり、必要でない場合は省略することができます。
ReScanForeignScan関数はローカル状態のみをリセットし、この関数は共有状態のみをリセットすることをお勧めします。
現在、この関数はReScanForeignScanより前に呼び出されますが、その順序に依存しないようにする方が良いでしょう。
   



void
InitializeWorkerForeignScan(ForeignScanState *node, shm_toc *toc,
                            void *coordinate);



InitializeDSMForeignScanでリーダーがセットアップした共有状態に基づくパラレルワーカーのローカル状態を初期化します。
この関数はオプションであり、必要でない場合は省略することができます。
   



void
ShutdownForeignScan(ForeignScanState *node);



ノードが完了するまで実行されないことが予想されるときにリソースを解放します。
これはすべてのケースで呼ばれるわけではありません。
EndForeignScanは、この関数が最初に呼び出されなくても呼び出されることがあります。
このコールバックが呼び出された直後に、パラレルクエリで使用されるDSM(動的共有メモリ)セグメントが破棄されるため、DSMセグメントがなくなる前に何らかのアクションを実行する外部データラッパーがこのメソッドを実装する必要があります。
   

非同期実行のためのFDWルーチン





ForeignScanノードは、オプションとしてsrc/backend/executor/READMEに記述されているように、非同期実行をサポートすることが可能です。
以下の関数はすべてオプションですが、非同期実行をサポートする場合はすべて必須です。
    



bool
IsForeignPathAsyncCapable(ForeignPath *path);



与えられたForeignPathパスが、そもそも外部リレーションを非同期でスキャンできるかどうかをテストします。
この関数は与えられたパスがAppendPathパスの直接の子であり、プランナが非同期実行が性能を向上させると考える場合にのみ、問い合わせ計画の最後で呼ばれ、与えられたパスが外部リレーションを非同期にスキャンできる場合に真を返さなければなりません。
    


この関数が定義されていない場合、与えられたパスはIterateForeignScanを使用して外部リレーションをスキャンすることが想定されます。
(これは以下で説明されるコールバック関数が決して呼ばれないことを意味します。呼ばれないことを意味するので、それらも提供される必要はありません。)
    



void
ForeignAsyncRequest(AsyncRequest *areq);



ForeignScanノードから非同期に1つのタプルを生成します。
areqはForeignScanノードと、そこからタプルを要求した親Appendノードを記述するAsyncRequest構造体です。
areq->resultで指定されたスロットにタプルを格納し、areq->request_completeにtrueを設定します。
または、ネットワークI/Oなどコアサーバの外部のイベントを待つ必要があり、すぐにタプルを生成できない場合は、フラグをfalseに、areq->callback_pendingをtrueに設定して、ForeignScanノードが後述のコールバック関数からコールバックを取得するようにします。
それ以上のタプルがない場合、スロットにNULLまたは空のスロットを設定し、areq->request_completeフラグにtrueを設定します。
ExecAsyncRequestDoneやExecAsyncRequestPendingを使ってareqに出力パラメータを設定することが推奨されています。
    



void
ForeignAsyncConfigureWait(AsyncRequest *areq);



ForeignScanノードが待機したいファイル記述子イベントを設定します。
この関数は、ForeignScanノードにareq->callback_pendingフラグが設定されている場合にのみ呼び出され、areqで記述された親ノードAppendのas_eventsetにイベントを追加しなければなりません。
詳細はsrc/backend/executor/execAsync.cのExecAsyncConfigureWaitに対するコメントを参照してください。
ファイルディスクリプタのイベントが発生すると、ForeignAsyncNotifyが呼ばれます。
    



void
ForeignAsyncNotify(AsyncRequest *areq);



発生した関連イベントを処理し、ForeignScanノードから非同期に1つのタプルを生成します。
この関数はForeignAsyncRequestと同じようにareqに出力パラメータを設定する必要があります。
    

パスの再パラメータ化のためのFDWルーチン






List *
ReparameterizeForeignPathByChild(PlannerInfo *root, List *fdw_private,
                                 RelOptInfo *child_rel);



この関数は、child_relで指定された子リレーションの最上位の親によってパラメータ化されたパスを、子リレーションによってパラメータ化されたパスに変換する際に呼び出されます。
この関数はパスをパラメータ化する、あるいはForeignPathのfdw_privateメンバに保存されている式ノードを変換するために使用されます。
このコールバックは必要に応じて、reparameterize_path_by_child、adjust_appendrel_attrsあるいはadjust_appendrel_attrs_multilevelを呼び出すことができます。
    


外部データラッパーヘルパ関数





FDWオプションのようなFDW関連オブジェクトの属性に外部データラッパーの作者が簡単にアクセスできるように、いくつかのヘルパ関数がコアサーバからエクスポートされています。
これらの関数を使用するには、ヘッダファイルforeign/foreign.hをあなたのソースファイルにインクルードする必要があります。
このヘッダはまたこれらの関数が返す構造体も定義しています。
    



ForeignDataWrapper *
GetForeignDataWrapperExtended(Oid fdwid, bits16 flags);




この関数は、与えられたOIDの外部データラッパーに対してForeignDataWrapperオブジェクトを返します。
ForeignDataWrapperオブジェクトにはFDWの属性（詳しくはforeign/foreign.hを参照）が含まれます。
flags は追加的なオプション一式を示すビット毎にorを取ったビットマスクです。
ここにはFDW_MISSING_OK値を指定できて、この場合、未定義オブジェクトに対するエラーの代わりに呼び出し元にNULL結果が返されます。
    



ForeignDataWrapper *
GetForeignDataWrapper(Oid fdwid);




この関数は指定されたOIDを持つ外部データラッパーのForeignDataWrapperオブジェクトを返します。ForeignDataWrapperオブジェクトはFDWのプロパティを含みます(詳細はforeign/foreign.hを参照して下さい)。
    



ForeignServer *
GetForeignServerExtended(Oid serverid, bits16 flags);




この関数は、与えられたOIDの外部サーバに対してForeignServerオブジェクトを返します。
ForeignServerオブジェクトにはサーバの属性（詳しくはforeign/foreign.hを参照）が含まれます。
flagsは追加的なオプション一式を示すビット毎にorを取ったビットマスクです。
ここにはFSV_MISSING_OK値を指定できて、この場合、未定義オブジェクトに対するエラーの代わりに呼び出し元にNULL結果が返されます。
    



ForeignServer *
GetForeignServer(Oid serverid);




この関数は指定されたOIDを持つ外部サーバのForeignServerオブジェクトを返します。ForeignServerオブジェクトは外部サーバのプロパティを含みます(詳細はforeign/foreign.hを参照して下さい)。
    



UserMapping *
GetUserMapping(Oid userid, Oid serverid);




この関数は指定されたロールと指定された外部サーバのユーザマッピングのUserMappingオブジェクトを返します。(もし特定のユーザのマッピングがない場合は、PUBLICのためのマッピングを返すか、それもなければエラーを発生させます。)
UserMappingオブジェクトはユーザマッピングのプロパティを含みます(詳細はforeign/foreign.hを参照して下さい)。
    



ForeignTable *
GetForeignTable(Oid relid);




この関数は指定されたOIDを持つ外部テーブルのForeignTableオブジェクトを返します。ForeignTableオブジェクトは外部テーブルのプロパティを含みます(詳細はforeign/foreign.hを参照して下さい)。
    



List *
GetForeignColumnOptions(Oid relid, AttrNumber attnum);




この関数は指定された外部テーブルOIDと属性番号に該当する列の列単位のFDWオプションをDefElemのリスト形式で返します。その列がオプションを持たない場合はNILが返ります。
    


いくつかのオブジェクト種別については、OIDベースのものに加えて名前ベースの検索関数もあります。
    



ForeignDataWrapper *
GetForeignDataWrapperByName(const char *name, bool missing_ok);




この関数は指定された名前の外部データラッパーのForeignDataWrapperオブジェクトを返します。外部データラッパーが見つからない場合は、missing_okがtrueの場合はNULLを返し、それ以外の場合はエラーを発生させます。
    



ForeignServer *
GetForeignServerByName(const char *name, bool missing_ok);




この関数は指定された名前の外部サーバのForeignServerオブジェクトを返します。外部サーバが見つからない場合は、missing_okがtrueの場合はNULLを返し、それ以外の場合はエラーを発生させます。
    

外部データラッパーの問い合わせプラン作成





FDWコールバック関数のGetForeignRelSize、GetForeignPaths、GetForeignPlan、PlanForeignModify、GetForeignJoinPaths、GetForeignUpperPaths、PlanDirectModifyはPostgreSQL™プランナの動作と協調しなければなりません。ここでは、これらの関数がすべき事に関するいくつかの注意事項を述べます。
    


rootとbaserelに含まれる情報は、外部テーブルから取得する必要のある情報の量(とそれによるコスト)を削減するために使用できます。
baserel->baserestrictinfoは、取得される行をフィルタリングする検索条件(WHERE句)を含んでいるため、特に興味深いものです。(コアのエグゼキュータが代わりにそれらをチェックできるので、FDW自身がこれらの制約を適用しなければならないわけではありません。)
baserel->reltarget->exprsはどの列が取得される必要があるかを決定するのに使用できます。ただし、このリストはForeignScanプランノードから出力すべき列しか含んでおらず、条件検査には必要だが問い合わせからは出力されない列は含まないことに注意してください。
    


様々なプライベートフィールドがFDWのプラン作成関数で情報を格納する目的で利用できます。
一般的に、プラン作成の最後に回収できるように、FDW固有フィールドに格納するものは全てpallocで確保すべきです。
    


baserel->fdw_privateは、voidポインタで、FDWのプラン作成関数で特定の外部テーブルに関する情報を格納する目的で利用できます。
コアプランナは、RelOptInfoノードが作成されるときにNULLで初期化するときを除いて、このフィールドに一切に触れません。
このフィールドは、GetForeignRelSizeからGetForeignPathsやGetForeignPathsからGetForeignPlanといったように情報を順次伝えるの便利で、結果として再計算を省くことができます。
    


GetForeignPathsでは、ForeignPathノードのfdw_privateフィールドに固有情報を格納することで、異なるアクセスパスを区別できます。fdw_privateはListポインタとして宣言されていますが、コアプランナがこのフィールドを操作することはないため、実際にはなんでも格納できます。
しかし、バックエンドのデバッグサポート機能を利用できるようにnodeToStringでダンプ出来る形式を使うのが最良の手法です。
    


GetForeignPlanでは、選択されたForeignPathノードのfdw_privateフィールドを調べて、ForeignScanプランノード内に格納されプラン実行時に利用可能なfdw_exprsとfdw_privateの二つのリストを生成することができます。
これらは両方ともcopyObjectがコピーできる形式でなければなりません。
fdw_privateリストにはこれ以外に制約はなく、コアバックエンドによって解釈されることはありません。
fdw_exprsリストがNILでない場合は、問い合わせ実行時に実行されることを意図した式ツリーが含まれていることが期待されます。
これらのツリーは、完全に実行可能な状態にするためにプランナによる後処理を受けます。
    


GetForeignPlanでは、一般的に渡されたターゲットリストはそのままプランノードにコピーできます。
渡されたscan_clausesリストはbaserel->baserestrictinfoと同じ句を含みますが、実行効率のよい別の順番に並べ替えることもできます。
FDWにできるのがRestrictInfoノードをscan_clausesリストから(extract_actual_clausesを使って)抜き出して、全ての句をプランノードの条件リストに入れるだけ、といった単純なケースでは、全ての句は実行時にエグゼキュータによってチェックされます。
より複雑なFDWは内部で一部の句をチェックできるかもしれませんが、そのような場合には、エグゼキュータが再チェックのために時間を無駄にしないように、それらの句はプランノードの条件リストから削除できます。
    


たとえば、ローカル側で評価されたsub_expressionの値があればリモートサーバ側で実行出来るとFDWが判断するような、foreign_variable = sub_expressionといった形式の条件句をFDWが識別するかもしれません。
パスのコスト見積もりに影響するので、そのような句の実際の識別はGetForeignPathsでなされるべきです。
おそらく、そのパスのfdw_privateフィールドは識別された句のRestrictInfoノードをさすポインタを含むでしょう。
そして、GetForeignPlanはその句をscan_clausesから取り除き、実行可能な形式にほぐされることを保障するためにsub_expressionをfdw_exprsに追加するでしょう。
また、おそらく、実行時に何をすべきかをプラン実行関数に伝えるためにプランノードのfdw_privateフィールドに制御情報を入れるでしょう。
リモートサーバに送られた問い合わせは、実行時にfdw_exprs式ツリーを評価して得られた値をパラメータ値とするWHERE foreign_variable = $1のようなものを伴うでしょう。
    


READ COMMITTED分離レベルでの正しい動作を保証するため、プランノードの条件リストから除かれた句はすべて、代わりにfdw_recheck_qualsに追加されるか、RecheckForeignScanで再検査される必要があります。
問い合わせに含まれる他のテーブルで同時更新があった場合、エグゼキュータはタプルが元の条件を、それも場合によっては異なるパラメータ値の組み合わせに対して満たすことを確認する必要があるかもしれません。
fdw_recheck_qualsを使うのは、RecheckForeignScanの内部で検査を実装するより、通常は簡単でしょう。
しかしこの方法は、外部結合がプッシュダウンされる場合は不十分です。
なぜなら、この場合の結合タプルはタプル全体を拒絶せずに、一部のフィールドをNULLにしてしまうからです。
    


FDWがセットできる別のForeignScanフィールドにfdw_scan_tlistがあります。
これはこのプランノードについてFDWが返すタプルを記述するものです。
単純な外部テーブルスキャンに対しては、これをNILにセットすることができ、それは戻されるタプルが外部テーブルで宣言された行型を持つことを意味します。
NILでない値はVar型の変数、あるいは返される列を表す式、あるいはその両方を含む対象のリスト（TargetEntryのリスト）でなければなりません。
これは例えば、FDWが問い合わせのために必要ないと気づいた列を無視したことを示すのに使えるかもしれません。
また、FDWが問い合わせで使われる式をローカルで計算するより安価に計算できるなら、それらの式をfdw_scan_tlistに追加することができます。
結合プラン（GetForeignJoinPathsが作るパスから作成される）は、それが返す列の集合を記述するfdw_scan_tlistを必ず提供しなければならないことに注意して下さい。
    


FDWはそのテーブルの条件句のみに依存するパスを常に少なくとも一つは生成すべきです。結合問い合わせでは、例えばforeign_variable = local_variableといった結合句に依存するパス(群)を生成することもできます。
そのような句はbaserel->baserestrictinfoには見つからず、リレーションの結合リストにあるはずです。
そのような句を使用するパスは「パラメータ化されたパス」と呼ばれます。
このようなパスでは、選択された結合句（群）で使用されているリレーション（群）をparam_infoの適合する値から特定しなければなりません;その値を計算するにはget_baserel_parampathinfoを使用します。
GetForeignPlanでは、結合句のlocal_variable部分がfdw_exprsに追加され、実行時には通常の条件句と同じように動作します。
    


FDWがリモートでの結合をサポートする場合、GetForeignPathsがベーステーブルに対して処理するのとほぼ同じように、GetForeignJoinPathsは潜在的なリモートの結合に対してForeignPathを生成することになります。
意図した結合に関する情報は、上記と同じ方法でGetForeignPlanに送ることができます。
しかし、baserestrictinfoは結合のリレーションには関連がなく、代わりに、特定の結合に関連するJOIN句はGetForeignJoinPathsに別のパラメータ(extra->restrictlist)として渡されます。
    


FDWはグルーピングや集約のような、スキャンや結合のレベルより上位のプラン動作の直接実行を追加的にサポートできるかもしれません。
このような方法を行うには、FDWはパスを生成して、それを適切な上位リレーションに挿入する必要があります。
例えば、リモート集約をあらわすパスはadd_pathを使ってUPPERREL_GROUP_AGGリレーションに挿入されるべきです。
このパスは外部リレーションに対する単純なスキャンパスを読むことによるローカル集約実行とコストに基づいて比較されます（このようなパスが提供されなければならないことに注意してください、さもないとプラン時にエラーになります）。
リモート集約パスが、通常そうなりますが、勝った場合には、パスはGetForeignPlanを呼ぶ通常の手段でプランに変換されます。
もし問い合わせの全てのベースリレーションが同じFDWから来るなら、このようなパスを生成するのに推奨される場所は、各上位リレーション（すなわち各スキャン/結合後の処理の段階）に対して呼び出されるGetForeignUpperPathsコールバック関数の中です。
    


PlanForeignModifyと「外部テーブル更新のためのFDWルーチン」で記述された他のコールバックは、外部リレーションは通常の方法でスキャンされ、それから個別の行変更がローカルのModifyTableプランノードで駆動されるという想定をもとに設計されています。
この方法は変更が外部テーブルと同様にローカルテーブルを読む必要がある一般的な場合に必要です。
しかしながら、操作が全体的に外部サーバで実行できるなら、FDWはそのようにするパスを生成してUPPERREL_FINAL上位リレーションに挿入することができます。ここではModifyTable方式に対して競合します。
この方式は、「行ロックのためのFDWルーチン」で記述された行ロックコールバックを使うのでなしに、リモートSELECT FOR UPDATEを実装するのにも使われます。
UPPERREL_FINALに挿入されたパスは問い合わせの全ての振る舞いの実装に責任があることに留意してください。
    


UPDATEやDELETEのプランを生成しているとき、
PlanForeignModifyとPlanDirectModifyは、事前にスキャンプラン生成関数で作られたbaserel->fdw_privateデータを使うために、その外部テーブルのためのRelOptInfo構造体を検索することができます。
しかしながら、INSERTでは対象テーブルはスキャンされないので対応するRelOptInfoは存在しません。
PlanForeignModifyから返されるListには、ForeignScanプランノードのfdw_privateリストと同様に、copyObjectがコピーの仕方を知っている構造体しか保持してはいけないという制約があります。
    


ON CONFLICT句のあるINSERTは競合の対象の指定をサポートしません。
なぜなら、リモートのテーブルの一意性制約や排他制約についての情報がローカルにはないからです。
これは結果的にON CONFLICT DO UPDATEがサポートされないことを意味します。
なぜなら、競合の対象の指定が必須だからです。
    

外部データラッパーでの行ロック





FDWの元になる記憶機構が、行の同時更新を防ぐために個々の行をロックするという概念を持っているなら、PostgreSQL™の通常のテーブルで使われている意味にできる限り現実的で近い行単位のロックをFDWが実施することは価値があるでしょう。
これに関していくつかの考慮点があります。
    


なされるべき重要な決定の一つは、早いロックを実行するか遅いロックを実行するか、です。
早いロックでは、行は、元となる記憶機構から最初に取り出されたときにロックされます。
一方、遅いロックでは、行は、それがロックされる必要があることがわかってからロックされます。
（この違いは、一部の行がローカルで検査される制約や結合条件によって除外されるために発生します。）
早いロックの方がずっと単純ですし、リモートの記憶機構との間の余分なやりとりもなくて済みますが、ロックしなくても良い行をロックするかもしれませんし、結果的に同時実行性が低下したり、予期しないデッドロックさえ発生します。
一方で、遅いロックは、ロックすべき行が後で一意に再識別できる場合にのみ可能です。
できれば、PostgreSQL™のTIDがそうしているように、行識別子は行の特定のバージョンを識別できるのが望ましいです。
    


デフォルトではPostgreSQL™はFDWとのやりとりにおいてロックの考慮をしませんが、FDWはコアのコードからの明示的なサポートなしに、早いロックを実行することができます。
PostgreSQL™バージョン9.5で追加された「行ロックのためのFDWルーチン」に記載されたAPI関数を使うことで、望むならFDWで遅いロックを使うことも可能です。
    


さらなる考慮点は、READ COMMITTED分離モードにおいて、PostgreSQL™は対象のタプルの更新されたバージョンに対して制約と結合条件の再検査を行う必要があるかもしれないということです。
結合条件を再検査するには、前回取得対象のタプルと結合された、取得対象外の行の複製を再取得する必要があります。
PostgreSQL™の標準テーブルを使うときは、結合を通じて生成される列リストに対象でないテーブルのTIDを含めて、必要な時には対象でない行を再フェッチすることで解決しています。
この方法は結合のデータセットを小さくできますが、安価な再フェッチ機能と再フェッチすべきバージョンの行を一意に特定できるTIDが必要になります。
そのためデフォルトで外部テーブルに対して使われる方法は、外部テーブルからフェッチされた行全体を結合を通じて生成した列リストに含めるというものです。
これによりFDWに対する特別な要請はなくなりますが、マージ結合およびハッシュ結合に置いてパフォーマンスが低下する結果となるかもしれません。
再フェッチの要求を満たすことができるFDWでは最初の方法を選択するのも良いでしょう。
    


外部テーブルに対するUPDATEやDELETEでは、対象テーブルに対するForeignScan操作はフェッチする行を、恐らくはSELECT FOR UPDATEと同等なものを用いてロックすることが推奨されます。
FDWはテーブルがUPDATEまたはDELETEの対象かどうかを、計画時にそのrelidをroot->parse->resultRelationと比較することで、あるいは実行時にExecRelationIsTargetRelation()を使うことで検知できます。
これに代わる可能性として、ExecForeignUpdateまたはExecForeignDeleteのコールバック内で遅いロックを実行することがありますが、これについて特別なサポートは提供されません。
    


SELECT FOR UPDATE/SHAREコマンドによりロックすることが指定された外部テーブルについて、ForeignScanの操作ではSELECT FOR UPDATE/SHAREと同等なものを使ってタプルをフェッチすることで、ここでも早いロックを実行できます。
逆に遅いロックを実行するには、「行ロックのためのFDWルーチン」で定義されるコールバック関数を提供して下さい。
GetForeignRowMarkTypeでは、要求されたロックの強度に応じて、rowmarkのオプションROW_MARK_EXCLUSIVE、ROW_MARK_NOKEYEXCLUSIVE、ROW_MARK_SHAREまたはROW_MARK_KEYSHAREを選択して下さい。
（コアのコードは、この4つのオプションのどれが選ばれたかに関係なく、同じ動作をします。）
その他には、この種のコマンドによって外部テーブルのロックが指定されたかどうかを、計画時にget_plan_rowmarkを使うことで、あるいは実行時にExecFindRowMarkを使うことで検知できます。
このとき、NULLでないrowmark構造体が戻されるかどうかだけでなく、そのstrengthフィールドがLCS_NONEでないことも確認しなければなりません。
    


最後に、UPDATE、DELETEまたはSELECT FOR UPDATE/SHAREコマンドで使用されたが、行ロックの指定はされなかった外部テーブルについて、ロック強度がLCS_NONEになっているときにGetForeignRowMarkTypeでオプションROW_MARK_REFERENCEを選択すれば、すべての行を複製するというデフォルトの動作を変更することができます。
これにより、markTypeにその値を入れてRefetchForeignRowが呼び出されるようになります。
このとき、新しいロックを取得することなく行を再取得します。
（GetForeignRowMarkType関数を使うが、ロックしていない行を再フェッチしたくない場合は、LCS_NONEについてオプションROW_MARK_COPYを選択して下さい。）
    


さらなる情報は、src/include/nodes/lockoptions.h、src/include/nodes/plannodes.hでのRowMarkTypeとPlanRowMarkについてのコメント、src/include/nodes/execnodes.hでのExecRowMarkについてのコメントを参照して下さい。
    

第59章 テーブルサンプリングメソッドの書き方





PostgreSQL™によるTABLESAMPLE句の実装は、標準SQLが求めるBERNOULLIとSYSTEMのメソッドに加え、ユーザ定義のテーブルサンプリングメソッドをサポートしています。
サンプリングメソッドは、TABLESAMPLE句が使用された際にどの行が選択されるかを決定します。
 


SQLレベルでは、テーブルサンプリングメソッドは、以下の呼び出し形式を持ち、典型的にはCで実装された単一のSQLの関数で表現されます。


method_name(internal) RETURNS tsm_handler



関数の名前はTABLESAMPLE句に現れるメソッド名と同じです。
internal引数は、ダミー(常に0の値を持つ)で、単にこの関数がSQLコマンドから直接呼ばれるのを防ぐために用意されています。
関数の戻り値は、pallocされたTsmRoutine型の構造体でなければなりません。
その構造体の中には、サンプリングメソッド用のサポート関数へのポインタが含まれています。
サポート関数は普通のC関数で、SQLレベルからは見ることも呼び出すこともできません。
サポート関数は「サンプリングメソッドサポート関数」で説明されています。
 


関数へのポインタに加え、TsmRoutine構造体は以下の追加のフィールドを提供しなければなりません。
 
	List *parameterTypes
	

このサンプリングメソッドが使用される際に、TABLESAMPLE句が受け付ける引数のデータ型のOIDが格納された、OIDのリストです。
たとえば、組み込みのメソッドに対しては、このリストは、サンプリングのパーセンテージを表すFLOAT4OIDという値を持つ単一の要素が含まれています。
カスタムサンプリングメソッドは、複数の異なるパラメータを持つことができます。
    

	bool repeatable_across_queries
	

trueの場合、もし毎回同じ引数とREPEATABLEシード値が提供され、テーブル内容に変更がないならば、サンプリングメソッドは実行されたどの問い合わせに対しても、同一のサンプルを出力することができます。
falseの場合は、サンプリングメソッドを使用する際にREPEATABLE句を受け付けません。
    

	bool repeatable_across_scans
	

trueの場合、サンプリングメソッドは同じ問い合わせ内で実行されたどのスキャンに対しても、同一のサンプルを出力することができます(パラメータ、シード値、スナップショットに変更がない、という前提で)。
falseの場合、プランナは、サンプル対象のテーブルを2度以上スキャンする必要のあるようなプランは選択しません。
問い合わせの結果に不整合が発生する可能性があるからです。
    





TsmRoutine構造体はsrc/include/access/tsmapi.hで宣言されています。
詳細はそちらをご覧ください。
 


標準配布物に含まれるテーブルサンプリングメソッドは、自分でサンプリングメソッドを書く際に良いお手本になります。
組み込みのサンプリングメソッドに関しては、ソースツリー中のsrc/backend/access/tablesampleサブディレクトリを見てください。
追加のメソッドに関してはcontribサブディレクトリを見てください。
 
サンプリングメソッドサポート関数





TSMハンドラ関数は、以下に示すサポート関数へのポインタを含むpallocされたTsmRoutine構造体を返します。
大半の関数は必須ですが、いくつかオプションのものがあり、そうした関数へのポインタはNULLにできます。
  



void
SampleScanGetSampleSize (PlannerInfo *root,
                         RelOptInfo *baserel,
                         List *paramexprs,
                         BlockNumber *pages,
                         double *tuples);




この関数はプランニングの際に呼び出されます。
サンプルスキャン中に読み出すリレーションのページ数と、スキャン中に選択されるタプル行数の見積もりを行わなければなりません。
(たとえば、サンプル比率を推定し、それにbaserel->pagesとbaserel->tuplesを掛け、整数値になるように丸めることで見積もりが可能となるでしょう。)
paramexprsリストは、TABLESAMPLE句への引数となる式を格納します。
見積のためにその推測値が必要なら、estimate_expression_value()を使ってこれらの式を定数に簡約化してみることをおすすめします。
ただし、関数は簡約化ができない場合でもサイズに関する見積は提供しなければなりませんし、値が正しくない場合でも関数がエラーになってはいけません(推測値は、実行時には値がそうなるであろうということに過ぎないことを思い出してください)。
pagesとtuplesパラメータは出力です。
  



void
InitSampleScan (SampleScanState *node,
                int eflags);




SampleScan計画ノードを実行するための初期化を行います。
この関数はエグゼキュータの起動時に呼び出されます。
処理を開始する前に必要な初期化をすべて行う必要があります。
SampleScanStateノードは作成済みですが、tsm_stateフィールドはNULLです。
InitSampleScan関数はサンプリングメソッドが必要とする内部データをすべてpallocし、node->tsm_stateに格納します。
スキャン対象のテーブルに関する情報はSampleScanStateノードの他のフィールドを通じてアクセスできます
(ただし、node->ss.ss_currentScanDescスキャンディスクリプタはまだ設定されていません)。
eflagsには、この計画ノードにおけるエグゼキュータの動作モードを記述するフラグビットが含まれます。
  


(eflags & EXEC_FLAG_EXPLAIN_ONLY)が真ならば、スキャンは実際には行われず、この関数はEXPLAINとEndSampleScanにとってノードの状態が意味のあるように最低限必要な処理を行うことになります。
  


この関数は(ポインタをNULLにすることにより)省略できますが、この場合、BeginSampleScanがサンプリングメソッドに必要なすべての初期化を行なわなければなりません。
  



void
BeginSampleScan (SampleScanState *node,
                 Datum *params,
                 int nparams,
                 uint32 seed);




サンプルスキャンの実行を開始します。
これははじめてタプルを取得する直前に呼び出されます。
また、再スキャンを行う必要が出た場合にも呼び出されます。
スキャン対象のテーブルに関する情報はSampleScanStateノードのフィールドを通じてアクセスできます
(ただし、node->ss.ss_currentScanDescスキャンディスクリプタはまだ設定されていません)。
nparamsの長さを持つparams配列は、TABLESAMPLE句で指定された引数の値を保持しています。
これらは、サンプリングメソッドのparameterTypesリストで指定された数と型を持ち、NULLでないことがチェック済みです。
seedには、サンプリングメソッド内で使われる乱数のために使われるシードが格納されます。
これは、REPEATABLEの値が指定されている場合はそこから派生したハッシュか、でなければrandom()の結果です。
  


この関数はnode->use_bulkreadとnode->use_pagemodeフィールドによって動作を変更します。
node->use_bulkreadがtrueなら(これはデフォルトです)、スキャンは使用後のバッファの再利用を推奨するバッファアクセス戦略を使います。
テーブルのわずかな部分だけをスキャンがアクセスするようなら、falseにするのが妥当かもしれません。
node->use_pagemodeがtrueなら(これはデフォルトです)、スキャンはアクセスするページ上のすべてのタプルに対して一括で可視性チェックを行います。
スキャンがアクセスするページ上のわずかな部分のタプルだけを選択するのであれば、false にするのが妥当かもしれません。
これにより、より少ないタプルに対して可視性チェックが行われます。
ただし、個々の操作はより高くつきます。
というのも、より多くのロックが必要になるからです。
  


サンプリングメソッドにrepeatable_across_scansという印があれば、最初にスキャンした時と同じタプルの集合を、再スキャンでも選択できることになります。
つまり、新しいBeginSampleScanが、前回と同じタプルを選択することになるわけです。
(もしTABLESAMPLEの引数とシードが変わらなければ、の話ですが)
  



BlockNumber
NextSampleBlock (SampleScanState *node, BlockNumber nblocks);




次にスキャンするページのブロック番号を返します。
もはやスキャンするページがない場合にはInvalidBlockNumberを返します。
  


この関数は(ポインタをNULLにすることにより)省略できます。
この場合コアのコードはリレーション全体をシーケンシャルスキャンします。
そのようなスキャンは同期スキャンを行う可能性があるので、毎回のスキャンで同じ順番でリレーションのページをアクセスするとは、サンプリングメソッドは仮定できません。
  



OffsetNumber
NextSampleTuple (SampleScanState *node,
                 BlockNumber blockno,
                 OffsetNumber maxoffset);




サンプル対象の指定ページ内の次のタプルのオフセット番号を返します。
サンプル対象のタプルが残っていない場合は、InvalidOffsetNumberを返します。
maxoffsetは、使用中のページ中の最大オフセット番号です。
  
注記


NextSampleTupleは、範囲1 .. maxoffsetの中のどのオフセット番号が有効なタプルにあたるのかは明示的には教えてくれません。
コアのコードは、存在しない、あるいは不可視のタプルを対象とするサンプルの要求は無視するため、通常これは問題にはなりません。サンプルの偏りも起きません。
それでも必要ならば、関数はnode->donetuplesを使って、返されたタプルのうちのいくつが有効で可視であったのかを調べることができます。
   

注記


NextSampleTupleは、直近のNextSampleBlockの呼び出しが返したページ番号とblocknoが同じであると見なすべきではありません。
ページ番号は、以前のNextSampleBlockの呼び出しが返したものではありますが、コアのコードは、先読みのために実際のスキャンに先立ってNextSampleBlockを呼び出すことが認められています。
一旦あるページのサンプリングが開始すれば、InvalidOffsetNumberが返るまでは、続くNextSampleTupleに呼び出しがすべて同じページを参照すると見なすことは問題ありません。
   




void
EndSampleScan (SampleScanState *node);




スキャンを終了し、リソースを解放します。
通常pallocされたメモリを解放するのは重要なことではありませんが、外部から見えるリソースはすべて解放しなければなりません。
そのようなリソースが存在しない場合は、この関数は(ポインタをNULLにすることにより)省略できます。
  


第60章 カスタムスキャンプロバイダの作成





PostgreSQL™では、システムに新しいスキャン方式を追加する拡張モジュールを可能にするためのいくつかの実験的機構をサポートしています。
外部データラッパーが自分の外部テーブルのスキャン方法を知っていることだけを担当するのと異なり、カスタムスキャンプロバイダはシステム内のリレーションをスキャンする代替方式を提供することができます。
典型的には、カスタムスキャンプロバイダを作成する理由は、キャッシュの利用や何らかの形式のハードウェアアクセラレーションといったコアシステムによってサポートされない最適化を利用可能にすることでしょう。
本章では新しいカスタムスキャンプロバイダの作成方法について概要を説明します。
 


新しい種類のカスタムスキャンの実装には3段階のプロセスがあります。
第一に、計画段階において、提案される戦略を用いたスキャンを表現するアクセスパスを生成する必要があります。
第二に、プランナがあるリレーションをスキャンするための最適戦略として、そのアクセスパスの一つを選んだとき、アクセスパスが計画に変換されなければなりません。
最後に、計画を実行して、同じリレーションを対象とする他のアクセスパスが生成するのと同じ結果を生成することが可能でなければなりません。
 
カスタムスキャンパスの作成





カスタムスキャンプロバイダは、典型的には、以下のフックを設定することでベースリレーションのためのパスを追加します。
このフックはコアのコードがそのリレーションへのすべてのアクセスパスを生成した後で呼び出されます（フックが追加した部分パスを利用できるようにするためにフックの呼び出しの後に作成される、ギャザーパス(Gather path)とギャザーマージパス(Gather Merge path)を除きます）。


typedef void (*set_rel_pathlist_hook_type) (PlannerInfo *root,
                                            RelOptInfo *rel,
                                            Index rti,
                                            RangeTblEntry *rte);
extern PGDLLIMPORT set_rel_pathlist_hook_type set_rel_pathlist_hook;


  


このフックはコアシステムが生成したパスを検査し、修正し、あるいは削除するために使うことができますが、カスタムスキャンプロバイダは、典型的にはCustomPathオブジェクトを生成し、add_path、または、部分パスであるならadd_partial_pathを使って、それをrelに追加することのみを行います。
カスタムスキャンプロバイダはCustomPathオブジェクトの初期化を担当します。
このオブジェクトは以下のように宣言されています。


typedef struct CustomPath
{
    Path      path;
    uint32    flags;
    List     *custom_paths;
    List     *custom_restrictinfo;
    List     *custom_private;
    const CustomPathMethods *methods;
} CustomPath;


  


pathは、他のすべてのパスと同じく、行数の推定値、開始とトータルのコスト、このパスで提供されるソート順を含めて初期化される必要があります。
flagsはビットマスクで、スキャンプロバイダが特定のオプションをサポートできるかどうかを指定します。
カスタムパスが逆向きスキャンをサポートできるならCUSTOMPATH_SUPPORT_BACKWARD_SCANを、マークとリストアをサポートできるならCUSTOMPATH_SUPPORT_MARK_RESTOREを、プロジェクションを実行できるならCUSTOMPATH_SUPPORT_PROJECTIONをflagsに含めます。
(CUSTOMPATH_SUPPORT_PROJECTIONが設定されていなければ、スキャンノードはスキャンされるリレーションのVarを生成するよう依頼されるだけです。一方、そのフラグが設定されていれば、スキャンノードはこのVarのスカラ式を評価できないといけません。)
オプションのcustom_pathsはこのカスタムパスのノードで使用されるPathのノードのリストです。
プランナがこれをPlanのノードに変換します。
後述するように、結合リレーションに対してもカスタムパスを作成できます。
このような場合には、カスタムパスが置き換える結合に適用する結合句の集合を格納するために、custom_restrictinfoを使用する必要があります。
それ以外の場合はNILです。
custom_privateはカスタムパスのプライベートデータを格納するために使うことができます。
プライベートデータはnodeToStringが処理できるような形式で格納してください。
そうすることで、カスタムパスを出力するデバッグルーチンが設計通りに動作します。
methodsは要求されるカスタムパスのメソッドのオブジェクト（通常は静的に割り当てられる）を指している必要があり、以下でさらに詳しく説明します。
  


カスタムスキャンプロバイダは結合(join)のパスを提供することもできます。
ベースのリレーションの場合と同様、そのようなパスは置換される結合が普通に生成したであろうものと同じ結果を生成しなければなりません。
そのために、結合のプロバイダは以下のフックをセットし、フック関数内で結合リレーション用にCustomPathのパスを作成します。


typedef void (*set_join_pathlist_hook_type) (PlannerInfo *root,
                                             RelOptInfo *joinrel,
                                             RelOptInfo *outerrel,
                                             RelOptInfo *innerrel,
                                             JoinType jointype,
                                             JoinPathExtraData *extra);
extern PGDLLIMPORT set_join_pathlist_hook_type set_join_pathlist_hook;




このフックは、同じ結合リレーションについて、内側あるいは外側のリレーションとの様々な組み合わせで繰り返し呼び出されます。
繰り返しの作業を最小化するのはフック側の責任です。
  


extra->restrictlistとして渡される結合に適用される結合句のセットは、内部と外部のリレーションの組み合わせによって異なることにも注意してください。
joinrelに対して生成されるCustomPathパスには、使用する結合句の集合が含まれていなければならず、このパスをプランナがjoinrelに対する最適パスとして選択した場合、これらはCustomPathパスをプランに変換するためにプランナによって使用されます。
  
カスタムスキャンパスのコールバック






Plan *(*PlanCustomPath) (PlannerInfo *root,
                         RelOptInfo *rel,
                         CustomPath *best_path,
                         List *tlist,
                         List *clauses,
                         List *custom_plans);



カスタムパスを完成した計画に変換します。
戻り値は一般的にはCustomScanオブジェクトで、その領域はコールバックが割り当てて初期化しなければなりません。
詳しくは「カスタムスキャン計画の作成」を参照してください。
   



List *(*ReparameterizeCustomPathByChild) (PlannerInfo *root,
                                          List *custom_private,
                                          RelOptInfo *child_rel);



このコールバックは、指定された子リレーションchild_relの最上位の親によりパラメータ化されたパスを子リレーションによりパラメータ化されるよう変換する時に呼び出されます。
コールバックはパスを再パラメータ化したり、CustomPathの指定されたcustom_privateメンバに保存されている式ノードを変換したりするのに使われます。
コールバックは必要に応じてreparameterize_path_by_child、adjust_appendrel_attrsまたはadjust_appendrel_attrs_multilevelを使います。
   



カスタムスキャン計画の作成





カスタムスキャンは完成した計画ツリー内で、以下の構造体を使って表現されます。


typedef struct CustomScan
{
    Scan      scan;
    uint32    flags;
    List     *custom_plans;
    List     *custom_exprs;
    List     *custom_private;
    List     *custom_scan_tlist;
    Bitmapset *custom_relids;
    const CustomScanMethods *methods;
} CustomScan;


  


scanは他のすべてのスキャンと同じく、推定コスト、対象のリスト、制約などを含めて初期化される必要があります。
flagsはCustomPathと同じ意味のビットマスクです。
custom_plansは子のPlanノードを格納するために使うことができます。
custom_exprsはsetrefs.cおよびsubselect.cによって作成される必要がある式のツリーを格納するために使われます。
一方でcustom_privateはカスタムスキャンプロバイダ自体によってのみ使用されるその他のプライベートデータを格納するために使われます。
custom_scan_tlistはベースリレーションをスキャンするときはNILとすることができます。
これはカスタムスキャンがベースリレーションの行の型と一致するスキャンタプルを返すことを意味します。
それ以外の場合は、実際のスキャンタプルを表現する対象のリストとなります。
custom_scan_tlistは結合の場合には提供される必要があります。
また、カスタムスキャンプロバイダがVarでない式を計算できる場合はスキャン用に提供することができます。
custom_relidsは、コアコードにより、このスキャンノードが処理するリレーションの集合（範囲テーブルのインデックス）にセットされます。
ただし、このスキャンが結合を置換する場合は例外で、ただ1つのメンバだけになります。
methodsは必要なカスタムスキャンメソッドを実装しているオブジェクト（通常は静的に割り当てられる）を指していなければなりません。
これについては以下で詳しく説明します。
  


CustomScanがリレーションを1つだけスキャンするときは、scan.scanrelidはスキャンされるテーブルの範囲テーブルのインデックスである必要があります。
結合を置換するときはscan.scanrelidはゼロになります。
  


計画ツリーはcopyObjectにより複製できる必要があるので、「custom」フィールド内に格納されるすべてのデータは、その関数が処理できるノードから構成されていなければなりません。
また、カスタムスキャンプロバイダはCustomScanを組み込んでいる大きな構造体をCustomScanの構造体で代替することができません。
CustomPathやCustomScanStateに対してはこれが可能です。
  
カスタムスキャン計画のコールバック






Node *(*CreateCustomScanState) (CustomScan *cscan);



このCustomScanにCustomScanStateの領域を割り当てます。
多くのプロバイダは、より大きな構造体の最初のフィールドとしてこれを組み込もうとするので、実際の割り当ては通常のCustomScanStateが必要とするよりも多くくなることが多いでしょう。
戻り値では、ノードのタグとmethodsが適切に設定されている必要がありますが、その他のフィールドはこの段階ではゼロのままになっています。
ExecInitCustomScanが基本的な初期化をした後、BeginCustomScanコールバックが呼び出されることで、カスタムスキャンプロバイダがその他の必要なことを実行する機会が与えられます。
   


カスタムスキャンの実行





CustomScanが実行されるとき、その実行状態はCustomScanStateで表現されます。
これは次のように宣言されています。


typedef struct CustomScanState
{
    ScanState ss;
    uint32    flags;
    const CustomExecMethods *methods;
} CustomScanState;


  


ssは他のすべてのスキャン状態と同じく初期化されますが、スキャンがベースリレーションではなく結合を対象にしているときは例外で、ss.ss_currentRelationはNULLのままになります。
flagsはCustomPathおよびCustomScanと同じ意味のビットマスクです。
methodsは必要なカスタムスキャン状態のメソッドを実装するオブジェクト（通常は静的に割り当てられる）を指していなければなりません。
これについては以下で詳しく説明します。
CustomScanStateはcopyObjectをサポートしなくてもよく、典型的には上記を先頭のメンバとして組み込んだより大きな構造体になっています。
  
カスタムスキャン実行のコールバック






void (*BeginCustomScan) (CustomScanState *node,
                         EState *estate,
                         int eflags);



提供されたCustomScanStateの初期化を完了します。
標準的なフィールドはExecInitCustomScanで初期化が済んでいますが、プライベートフィールドはここで初期化されます。
   



TupleTableSlot *(*ExecCustomScan) (CustomScanState *node);



次のスキャンタプルをフェッチします。
タプルが残っている場合は、現在のスキャン方向で次にあるタプルをps_ResultTupleSlotに入れます。
タプルが残っていないときは、NULLまたは空のスロットが戻されます。
   



void (*EndCustomScan) (CustomScanState *node);



CustomScanStateに関連付けられたプライベートデータを整理します。
このメソッドは必須ですが、関連付けられたデータがない場合、あるいはそれが自動的に整理される場合は、このメソッドは何もする必要はありません。
   



void (*ReScanCustomScan) (CustomScanState *node);



現在のスキャンを先頭まで巻き戻し、リレーションの再スキャンの準備をします。
   



void (*MarkPosCustomScan) (CustomScanState *node);



現在のスキャン位置を保存し、後でRestrPosCustomScanコールバックでリストアできるようにします。
このコールバックは必須ではなく、CUSTOMPATH_SUPPORT_MARK_RESTOREフラグがセットされている場合にのみ、提供する必要があります。
   



void (*RestrPosCustomScan) (CustomScanState *node);



MarkPosCustomScanコールバックで保存された以前のスキャン位置をリストアします。
このコールバックは必須ではなく、CUSTOMPATH_SUPPORT_MARK_RESTOREフラグがセットされている場合にのみ、提供する必要があります。
   



Size (*EstimateDSMCustomScan) (CustomScanState *node,
                               ParallelContext *pcxt);



並列操作に要求される動的共有メモリの使用量を予測します。
使用を予測される量よりも多い量の結果が返しても良いですが、少なく返してはいけません。
戻り値の単位はバイトとなります。
このコールバックは必須ではなく、カスタムスキャンプロバイダが並列実行をサポートする場合にのみ提供される必要があります。
   



void (*InitializeDSMCustomScan) (CustomScanState *node,
                                 ParallelContext *pcxt,
                                 void *coordinate);



並列操作に要求される動的共有メモリを初期化します。
coordinateは、EstimateDSMCustomScanの戻り値と大きさが一致する動的共有メモリ領域を指します。
このコールバックは必須ではなく、カスタムスキャンプロバイダが並列実行をサポートする場合にのみ提供される必要があります。
   



void (*ReInitializeDSMCustomScan) (CustomScanState *node,
                                   ParallelContext *pcxt,
                                   void *coordinate);



カスタムスキャンプランノードが再スキャンしようとするときに、並列操作に必要な動的共有メモリを再初期化します。
このコールバックは必須ではなく、カスタムスキャンプロバイダが並列実行をサポートする場合にのみ提供される必要があります。
推奨する使い方としては、ReScanCustomScanコールバックはローカル状態だけをリセットし、このコールバックは共有状態だけをリセットするようにします。
今のところ、このコールバックはReScanCustomScanの前に呼ばれますが、この順序関係には依存しない方が良いです。
   



void (*InitializeWorkerCustomScan) (CustomScanState *node,
                                    shm_toc *toc,
                                    void *coordinate);



InitializeDSMCustomScanによりリーダーにて設定された共有状態を元に、並列ワーカーのローカル状態を初期化します。
このコールバックは必須ではなく、カスタムスキャンプロバイダが並列実行をサポートする場合にのみ提供される必要があります。
   



void (*ShutdownCustomScan) (CustomScanState *node);



ノードが実行を完了しないと思われるときに、リソースを解放します。
これはすべての場合に呼ばれるわけではありません。
ときには、この関数がまず呼ばれることなしに、EndCustomScanが呼ばれるかもしれません。
パラレルクエリで使用されるDSMセグメントは、このコールバックが呼ばれた直後に削除されるので、DSMセグメントが削除される前に何らかのアクションを起こしたいカスタムスキャンプロバイダは、このメソッドを実装すべきです。
   



void (*ExplainCustomScan) (CustomScanState *node,
                           List *ancestors,
                           ExplainState *es);



カスタムスキャンの計画ノードのEXPLAINについて追加情報を出力します。
このコールバックは必須ではありません。
対象のリストやスキャンのリレーションなどScanStateに格納される共通データは、このコールバックがなくても表示されますが、このコールバックにより、追加のプライベートな状態が表示できるようになります。
   


第61章 遺伝的問い合わせオプティマイザ




   
作者


このドキュメントはMartin Utesch（<utesch@aut.tu-freiberg.de>）によって、ドイツ、フライブルグにあるUniversity of Mining and TechnologyのInstitute of Automatic Controlのために書かれました。
    


  
複雑な最適化問題としての問い合わせ処理





リレーショナル演算子の中で、処理と最適化が一番難しいのは結合です。
実行可能な問い合わせ計画の数は問い合わせの中に含まれる結合の数によって指数関数的に増加します。
個々の結合や、多様なインデックス（例えばPostgreSQL™のB-tree、ハッシュ、GiST、GINなど）をリレーションのアクセスパスとして処理するため、様々な結合メソッド（例えばPostgreSQL™のネステッドループ、ハッシュ結合、マージ結合など）を提供することが、さらなる最適化を行わなければならない腐心の原因となっています。
   


通常のPostgreSQL™問い合わせオプティマイザは、候補ストラテジ空間にわたってしらみつぶしに近い検索を行います。
IBMのSystem Rデータベースで初めて導入された、このアルゴリズムはほぼ最適な結合順を生成しますが、問い合わせ内の結合数が増えると膨大な処理時間とメモリ空間を必要とします。
このため、通常のPostgreSQL™問い合わせオプティマイザは結合するテーブル数の多い問い合わせには向いていません。
   


ドイツ、フライブルグにあるUniversity of Mining and TechnologyのInstitute of Automatic Controlでは、送電網の保守のための意志決定知識ベースシステムのためのバックエンドとしてPostgreSQL™ DBMSを使おうとしたため問題が起こりました。
そのDBMSは知識ベースシステムの推論マシンのために、大規模な結合の問い合わせを処理する必要があったのです。
こうした問い合わせに含まれる結合数を行うことは、通常の問い合わせオプティマイザでは実現不可能でした。
   


以下では、多数の結合を持つ問い合わせを効率的に行うことができるように、結合順問題を解決する遺伝的アルゴリズムの実装を説明します。
   


遺伝的アルゴリズム





遺伝的アルゴリズム（GA）は発見的な最適化手法で、無作為の検索として働きます。
最適化の問題に対する解の集合は個体群とみなされます。
個体の環境への順応の度合は適応度によって指定されます。
   


検索空間の中で個体の同格性は、その実体が文字列の集合である染色体によって表現されます。
遺伝子は最適化をしようとしている1つのパラメータの値を符号化する染色体の一部分です。
遺伝子の符号化の典型的な例としてバイナリもしくは整数が挙げられます。
   


進化の過程のシミュレーションである、再組合せ、突然変異、淘汰を通して、祖先よりも適応度の平均が高い新世代の検索点が見つけられます。
この段階を図61.1「遺伝的アルゴリズムの構造」で図解しています。
   
図61.1 遺伝的アルゴリズムの構造





comp.ai.geneticのFAQによると、GAが問題に対する純粋な無作為検索ではないことをどんなに強調してもし過ぎということはありません。
GAは確率的なプロセスを使いますが、結果は明らかに（無作為よりもより良い）非無作為です。
   

PostgreSQLの遺伝的問い合わせ最適化（GEQO）





GEQOのモジュールは、問い合わせ最適化問題をあたかもよく知られている巡回セールスマン問題（TSP）のように扱います。
可能な問い合わせプランは、整数の文字列として符号化されます。
それぞれの文字列は、問い合わせの1つのリレーションから次へと結合の順番を表します。
例えば、以下の結合ツリーは整数文字列「4-1-3-2」によって符号化されています。


   /\
  /\ 2
 /\ 3
4  1



これが意味するのは、まずリレーション「4」と「1」を、次に「3」を、そして「2」を結合するということです。
ここで1、2、3、4はPostgreSQL™オプティマイザ内でリレーションIDを表します。
   


PostgreSQL™におけるGEQO実装の特有な特徴は下記の様なものです。

    
	

定常状態GAの使用（世代全体の置き換えではなく、個体の中で適応度の低いものだけの置き換え）は、改良された問い合わせ計画へ素早い収束を可能にします。
これは、妥当な時間内での問い合わせ処理にはきわめて重要です。
      

	

GAによるTSPの解決策の辺損失を低く抑えるため、非常に適した辺再組合せ交叉を使用します。
      

	

TSPの合法な巡回を行うために必要な修復処理を要求しないように、遺伝的演算子の突然変異は無視しています。
      




   


GEQOモジュールの部品は D. WhitleyのGenitorアルゴリズムを適合させたものです。
   


GEQOモジュールにより、PostgreSQL™問い合わせオプティマイザが、大きな結合問い合わせをしらみつぶし検索以外の方法で実行することが可能になります。
   
GEQOを使用した計画候補の生成





GEQOの計画作成では、個々のリレーションのスキャンに対する計画を生成するために標準のプランナが使用されます。
そして、結合計画が遺伝的手法を用いて展開されます。
上で示した通り、
結合計画候補はそれぞれ、基本リレーションの結合順によって表現されています。
初期段階では、GEQOコードは単純にランダムに取り得る結合順をいくつか生成します。
考慮された結合順それぞれについて、標準プランナコードが呼び出され、その結合順を使用して問い合わせを行った場合のコストを推定します。
（結合順の各段階において、全体で3つの取り得る結合戦略が考慮されます。
そして、あらかじめ決められたリレーションスキャン計画もすべて利用可能です。
推定コストとはこれらの可能性の中から最も安価なものです。）
より低い推定コストの結合順を、より高い推定コストのものより「より高い適応度」と判断します。
遺伝的アルゴリズムは適応度が低い候補を破棄します。
そして、より多く合致する候補の遺伝子を組み合わせて、つまり、検討すべき新しい順序を作成するために既知の低コスト結合順をランダムに位置を選択して、新しい候補が生成されます。
事前に設定された数まで結合順を検討するまで、この処理が繰り返されます。
そして、この検索の間にもっとも優れたものが、最終的な計画を生成するために使用されます。
   


初期の群を選択する時、および、その後の最善の候補の「突然変異」の時に無作為な選択がなされますので、この処理は生来非決定論的なものです。
選択された計画の予期せぬ変化を避けるために、GEQOアルゴリズムの各実行では乱数生成器を現在のgeqo_seedパラメータ設定で再スタートさせます。
geqo_seedとその他のGEQOパラメータが変更されない限り、一定の問い合わせ（と統計のようなプランナへの他の入力）に対しては同じ計画が生成されます。
異なる検索パスで実験するためには、geqo_seedを変更してみて下さい。
   

PostgreSQL™ GEQOの今後の実装作業





遺伝的アルゴリズムのパラメータ設定を改善するためにはまだ課題が残っています。
src/backend/optimizer/geqo/geqo_main.cのgimme_pool_sizeとgimme_number_generationsというルーチンでは、次の2つの相反する要求を満たす妥協点を見つけなければいけません。
      
	

問い合わせ計画の最適性
        

	

計算時間
        




     


現在の実装では、各結合順候補の適応度は標準プランナの結合選択と、一から作成したコスト推定コードを実行して推定されます。
異なる候補が同様の副結合順で使用されるにつれて、多くの作業が繰り返されることになります。
これは、副結合のコスト推定を記憶することで、非常に高速になるはずです。
この状態を記憶するために要するメモリ量が非合理的に拡大することを防止することが問題です。
     


最も基本的なレベルでは、TSP用に設計されたGAアルゴリズムを用いた問い合わせ最適化の解法が適切かどうかは明確ではありません。
TSPの場合は、部分文字列（巡回経路の一部）に関連付けられたコストは残りの巡回経路と独立していますが、これは問い合わせ最適化の場合には確実に成り立ちません。
したがって、辺再組合せ交叉が最も有効な突然変異手続きかどうかは疑わしいと言えます。
     


さらに深く知るには





次に示す資料は、さらに詳しい遺伝的アルゴリズムに関する情報が記載されています。

   
	
      
      The Hitch-Hiker's Guide to Evolutionary Computation, (FAQ for news://comp.ai.genetic)
     

	
      

      Evolutionary Computation and its application to art and design、
      Craig Reynoldsによるもの
     

	
      [elma04]
     

	
      [fong]
     




  

第62章 テーブルアクセスメソッドのインタフェース定義





本章は、PostgreSQL™のコアシステムと、テーブルの格納を制御するテーブルアクセスメソッドとのインタフェースを説明します。
コアシステムはこのアクセスメソッドについて、ここで指定されたことのみを把握しています。これにより、追加コードを記述することで全く新しいアクセスメソッド種類を開発することができます。
 


各テーブルアクセスメソッドはpg_amシステムカタログの行で記述されます。
pg_amのエントリではテーブルアクセスメソッドの名前とハンドラ関数を指定します。
これらのエントリはSQLコマンドCREATE ACCESS METHOD(7)とDROP ACCESS METHOD(7)を使って、作成および削除することができます。
 


テーブルアクセスメソッドのハンドラ関数はinternal型の引数を一つ取り、table_am_handler疑似型を返すように宣言されなければなりません。
この引数はハンドラ関数がSQLコマンドから直接呼び出されるのを防ぐためだけのダミーの値です。
 


拡張SQLスクリプトファイルでテーブルアクセスメソッドのハンドラを作成する方法を以下に示します。
 

CREATE OR REPLACE FUNCTION my_tableam_handler(internal)
  RETURNS table_am_handler AS 'my_extension', 'my_tableam_handler'
  LANGUAGE C STRICT;

CREATE ACCESS METHOD myam TYPE TABLE HANDLER my_tableam_handler;



関数の結果はTableAmRoutine型の構造体へのポインタでなければならず、そこにはテーブルアクセスメソッドを使用するためにコアコードが知る必要のあるすべてのことが含まれます。
戻り値は、サーバの存続期間中は有効である必要があります。
これは通常、グローバルスコープでstatic const変数として定義することによって達成されます。
 


テーブルアクセスメソッドのハンドラを含むソースファイルは次のようになります。
 

#include "postgres.h"

#include "access/tableam.h"
#include "fmgr.h"

PG_MODULE_MAGIC;

static const TableAmRoutine my_tableam_methods = {
    .type = T_TableAmRoutine,

    /* Methods of TableAmRoutine omitted from example, add them here. */
};

PG_FUNCTION_INFO_V1(my_tableam_handler);

Datum
my_tableam_handler(PG_FUNCTION_ARGS)
{
    PG_RETURN_POINTER(&my_tableam_methods);
}




アクセスメソッドのAPI構造体とも呼ばれるTableAmRoutine構造体は、コールバックを使ってアクセスメソッドの振る舞いを定義します。
これらのコールバックは通常のC関数へのポインタで、SQLレベルでは見ることも呼び出すこともできません。
全てのコールバックとその振る舞いは、TableAmRoutine構造体（とコールバックの必要性を説明する構造体内のコメント）で定義されます。
たいていのコールバックはラッパー関数を持ち、これらはテーブルアクセスメソッドの（開発者ではなく）使用者の立場でドキュメントに記載されています。
詳細はsrc/include/access/tableam.hファイルを参照してください。
 


アクセスメソッドを実装するには開発者は通常、タプルテーブルスロットのAM固有の型を実装する必要があります（src/include/executor/tuptable.hを参照してください）。
これはアクセスメソッド外のコードが、AMのタプルへの参照を保持できるようにして、そのタプルの列にアクセスできるようにするものです。
 


今のところAMが実際にデータを格納する方法は全く制限されていません。
例えば、postgresの共有バッファキャッシュを使うことも、必須ではありませんが、可能です。
使う場合、おそらく「データベースページのレイアウト」に記述されたPostgreSQL™の標準ページレイアウトを使うには有意義でしょう。
 


現在のテーブルアクセスメソッドAPIのそれなりに大きい制約は、AMが更新および/またはインデックスに対応したい場合、各タプルがブロック番号とアイテム番号から成るタプル識別子（TID）を持つ必要があることです（「データベースページのレイアウト」も参照してください）。
TIDsの下位要素が、例えばheapに対して持つのと同じ意味を持つことは、厳密には必要ありません。しかし、ビットマップスキャン対応（これは任意です）を望むなら、ブロック番号は局所性を備える必要があります。
 


クラッシュ安全性のために、AMはpostgresのWAL、あるいは、カスタム実装を使うことができます。
WALを選んだ場合、汎用WALレコードを利用するか、カスタムWALリソースマネージャを実装することができます。
 


異なるテーブルアクセスメソッドが単一トランザクション内でアクセスできるという類のトランザクション対応を実装するには、おそらくsrc/backend/access/transam/xlog.cの仕組みと注意深く統合することが必要でしょう。
 


新テーブルアクセスメソッドの開発者は、実装の詳細について、src/backend/access/heap/heapam_handler.cにある既存のheapの実装を参照できます。
 

第63章 インデックスアクセスメソッドのインタフェース定義





本章は、PostgreSQL™のコアシステムと個々のインデックス種類を管理するインデックスアクセスメソッドとの間のインタフェースを定義します。
コアシステムはインデックスの仕様のみを把握しています。
したがって、追加コードを記述することで完全に新しいインデックス種類を開発することができます。
  


PostgreSQL™のインデックスはすべて、技術的には補助的なインデックスとして知られるものです。
つまり、インデックスは対象となるテーブルファイルとは物理的に分かれています。
各インデックスは独自の物理的なリレーションとして格納され、また、pg_classカタログ内の項目として記述されます。
インデックスの内容は完全にそのインデックスアクセスメソッドの制御下にあります。
実際、すべてのインデックスアクセスメソッドは、通常の格納マネージャとバッファマネージャを使用してインデックスの内容にアクセスできるように、インデックスを標準サイズのページに分割します。
（既存のすべてのインデックスアクセスメソッドではさらに、「データベースページのレイアウト」で説明する標準ページレイアウトを使用し、そのほとんどは同じ書式をインデックスタプルヘッダに使用します。
しかし、これはアクセスメソッドに強制されていることではありません。）
  


インデックスは効率的にあるデータキー値を、インデックスの親テーブル内の行バージョン（タプル）のタプル識別子言い換えるとTIDに関連付けます。
TIDは、ブロック番号、ブロック内の項目番号（「データベースページのレイアウト」を参照）から構成されます。
これは、特定の行バージョンをテーブルから取り出すのに十分な情報です。
MVCCでは1つの論理的な行に複数の現在のバージョンがあることを、インデックスが直接意識することはありません。
インデックスでは、各タプルは、独自にインデックス項目を持たなければならない独立したオブジェクトです。
したがって、行を更新すると、キーの値が変わっていなかってとしても、その行に対してまったく新しいインデックス項目が作成されます。
（HOTタプルはこの説明の例外ですが、インデックスはこれらにも関与しません。）
（バキューム実行によって）無効タプル自身が回収された時に、無効タプルに対するインデックス項目は回収されます。
  
インデックスの基本的API構造





各インデックスメソッドはpg_amシステムカタログの行で説明されます。
pg_amエントリはインデックスアクセスメソッドの名前とハンドラ関数を指定します。
これらのエントリはSQLコマンドCREATE ACCESS METHOD(7)とDROP ACCESS METHOD(7)を使って、作成および削除することができます。
  


インデックスメソッドのハンドラ関数は、internal型の引数を1つ取り、疑似型index_am_handlerを返すものとして宣言しなければなりません。
引数は単にハンドラ関数がSQLコマンドから直接呼び出されるのを防ぐためのダミーの値です。
関数の結果は型IndexAmRoutineのpallocされた構造体でなければならず、そこにはインデックスアクセスメソッドを使用するためにコアコードが知っている必要のあるすべてのことが含まれています。
IndexAmRoutine構造体は、アクセスメソッドのAPI構造体とも呼ばれ、複数列のインデックスをサポートするかどうかなどといった、アクセスメソッドに関する様々な既定の属性を指定するフィールドが含まれます。
さらに重要なことに、この構造体にはアクセスメソッドのサポート関数へのポインタが含まれ、これによってインデックスにアクセスするためのすべての実際の処理が行われます。
これらのサポート関数は単なるCの関数で、SQLレベルでは見ることも呼び出すこともできません。
サポート関数は「インデックスアクセスメソッド関数」で説明されています。
  


構造体IndexAmRoutineは以下のように定義されています。


typedef struct IndexAmRoutine
{
    NodeTag     type;

    /*
     * Total number of strategies (operators) by which we can traverse/search
     * this AM.  Zero if AM does not have a fixed set of strategy assignments.
     */
    uint16      amstrategies;
    /* total number of support functions that this AM uses */
    uint16      amsupport;
    /* opclass options support function number or 0 */
    uint16      amoptsprocnum;
    /* does AM support ORDER BY indexed column's value? */
    bool        amcanorder;
    /* does AM support ORDER BY result of an operator on indexed column? */
    bool        amcanorderbyop;
    /* does AM support hashing using API consistent with the hash AM? */
    bool        amcanhash;
    /* do operators within an opfamily have consistent equality semantics? */
    bool        amconsistentequality;
    /* do operators within an opfamily have consistent ordering semantics? */
    bool        amconsistentordering;
    /* does AM support backward scanning? */
    bool        amcanbackward;
    /* does AM support UNIQUE indexes? */
    bool        amcanunique;
    /* does AM support multi-column indexes? */
    bool        amcanmulticol;
    /* does AM require scans to have a constraint on the first index column? */
    bool        amoptionalkey;
    /* does AM handle ScalarArrayOpExpr quals? */
    bool        amsearcharray;
    /* does AM handle IS NULL/IS NOT NULL quals? */
    bool        amsearchnulls;
    /* can index storage data type differ from column data type? */
    bool        amstorage;
    /* can an index of this type be clustered on? */
    bool        amclusterable;
    /* does AM handle predicate locks? */
    bool        ampredlocks;
    /* does AM support parallel scan? */
    bool        amcanparallel;
    /* does AM support parallel build? */
    bool        amcanbuildparallel;
    /* does AM support columns included with clause INCLUDE? */
    bool        amcaninclude;
    /* does AM use maintenance_work_mem? */
    bool        amusemaintenanceworkmem;
    /* does AM summarize tuples, with at least all tuples in the block
     * summarized in one summary */
    bool        amsummarizing;
    /* OR of parallel vacuum flags */
    uint8       amparallelvacuumoptions;
    /* type of data stored in index, or InvalidOid if variable */
    Oid         amkeytype;

    /* interface functions */
    ambuild_function ambuild;
    ambuildempty_function ambuildempty;
    aminsert_function aminsert;
    aminsertcleanup_function aminsertcleanup;   /* can be NULL */
    ambulkdelete_function ambulkdelete;
    amvacuumcleanup_function amvacuumcleanup;
    amcanreturn_function amcanreturn;   /* can be NULL */
    amcostestimate_function amcostestimate;
    amgettreeheight_function amgettreeheight;   /* can be NULL */
    amoptions_function amoptions;
    amproperty_function amproperty;     /* can be NULL */
    ambuildphasename_function ambuildphasename;   /* can be NULL */
    amvalidate_function amvalidate;
    amadjustmembers_function amadjustmembers; /* can be NULL */
    ambeginscan_function ambeginscan;
    amrescan_function amrescan;
    amgettuple_function amgettuple;     /* can be NULL */
    amgetbitmap_function amgetbitmap;   /* can be NULL */
    amendscan_function amendscan;
    ammarkpos_function ammarkpos;       /* can be NULL */
    amrestrpos_function amrestrpos;     /* can be NULL */

    /* interface functions to support parallel index scans */
    amestimateparallelscan_function amestimateparallelscan;    /* can be NULL */
    aminitparallelscan_function aminitparallelscan;    /* can be NULL */
    amparallelrescan_function amparallelrescan;    /* can be NULL */

    /* interface functions to support planning */
    amtranslate_strategy_function amtranslatestrategy;  /* can be NULL */
    amtranslate_cmptype_function amtranslatecmptype;    /* can be NULL */
} IndexAmRoutine;


  


使い易くするために、インデックスアクセスメソッドはまた、pg_opfamily、pg_opclass、pg_amopおよびpg_amproc内で定義される、複数の演算子族と演算子クラスを持ちます。
これらの項目により、プランナは、このアクセスメソッドのインデックスがどのような問い合わせ条件に対して使用できるかを決定することができます。
演算子族と演算子クラスについては、「インデックス拡張機能へのインタフェース」で説明します。
これは本章を読む上で必要となる資料です。
  


個々のインデックスは、インデックスを物理的なリレーションとして記述するpg_class項目と、インデックスの論理的な内容、つまり、インデックスが持つインデックス列の集合とその列の意味を、関連する演算子クラスで再現されたものとして表すpg_index項目とで定義されます。
インデックス列（キー値）は、背後のテーブルの単純な列、あるいは、テーブル行に対する式とすることができます。
通常、インデックスアクセスメソッドはインデックスキー値が何を表すかについて考慮しません。
（常に計算済みのキー値として扱われます。）
しかし、pg_index内の演算子クラスの情報を深く考慮します。
この両方のカタログ項目は、インデックスに対するすべての操作に渡されるRelationデータ構造の一部としてアクセスすることができます。
  


IndexAmRoutineのフラグフィールドの中には、意味がわかりにくいものがあります。
amcanuniqueの必要条件は「インデックス一意性検査」で説明されています。
amcanmulticolフラグはアクセスメソッドが複数キー列に対するインデックスをサポートすることを表し、amoptionalkeyは、インデックス可能な制限句が最初のインデックス列に指定されていないスキャンを許可することを表します。
amcanmulticolが偽の場合、amoptionalkeyは基本的に、アクセスメソッドが制限句なしで完全なインデックススキャンをサポートするかどうかを表します。
複数列に対するインデックスをサポートするアクセスメソッドは、最初の列以降のすべてまたは一部の列に関する制限がなくてもスキャンをサポートしなければなりません。
しかし、最初のインデックス列にいくつかの制限を要求することは認められています。
これは、amoptionalkeyを偽に設定することで通知されます。
インデックスAMがamoptionalkeyを偽にする１つの理由は、NULLをインデックス付けしない場合です。
ほとんどのインデックス可能な演算子は厳密で、NULL値の入力に対して真を返すことができませんので、NULLに対してインデックス項目を格納しないことは一見魅力的です。
これはインデックススキャンによって何も返しません。
しかし、最初のインデックス列に対する制限がないインデックススキャンでは、この引数は失敗します。
プランナがこうしたスキャンキーをまったく持たないインデックスを使用することを決定する可能性がありますので、実際これは、amoptionalkeyが真のインデックスはNULLインデックスを持たなければならないことを意味します。
関連する制限として、プランナはこれらの列を制限しない問い合わせでインデックスを使用できることを前提とするため、複数のインデックス列をサポートするインデックスアクセスメソッドは1番目の後の列でNULL値のインデックスをサポートしなければならないということがあります。
例えば、(a,b)に対するインデックスに、WHERE a = 4という条件で問い合わせを行うことを考えてみます。
システムは、このインデックスをa = 4を持つ行をスキャンすることに使用できるものと仮定します。
これはもし、bがNULLの場合の行をインデックスが省略する場合は間違っています。
しかし、最初のインデックス列がNULLの場合に行を省略することは問題ありません。
また、NULLをインデックス付けするインデックスアクセスメソッドはamsearchnullsを設定する可能性があります。
これは検索条件としてIS NULLおよびIS NOT NULL句をサポートすることを示します。
  


amcanincludeフラグは、このアクセスメソッドが（処理することなく）キー列以外の追加の列を格納することができる「included」列をサポートしているかどうかを示します。
前段落の要件はキー列にのみ適用されます。
とりわけ、amcanmulticol=falseとamcaninclude=trueの組み合わせは実用的です。
これは単一のキー列だけが存在しつつも、include列が存在することができることを示しています。
また、amoptionalkeyとは独立して、include列はNULLにすることができなければなりません。
  


amsummarizingフラグは、このアクセスメソッドがインデックス付きタプルを要約するかどうかを示します。
要約の粒度は少なくともブロック以上です。
個々のタプルを指すのではなく、ブロック範囲を指すアクセスメソッド（BRINのような）は、HOT最適化を継続できる可能性があります。
これは、インデックス述語で参照される属性には適用されません。
そのような属性の更新は常にHOTが無効になります。
  


インデックスアクセスメソッド関数





インデックスアクセスメソッドがIndexAmRoutineで提供しなければならない、インデックス構築および保守関数を以下に示します。
  



IndexBuildResult *
ambuild (Relation heapRelation,
         Relation indexRelation,
         IndexInfo *indexInfo);



新しいインデックスを構築します。
空のインデックスリレーションが物理的に作成されます。
これは、アクセスメソッドが必要とする何らかの固定データと、テーブル内に既に存在するすべてのタプルに対応する項目が書き込まれなければなりません。
通常、ambuild関数はtable_index_build_scan()を呼び出し、既存のタプルをテーブルからスキャンし、インデックスに挿入しなければならないキーを計算します。
この関数は、新しいインデックスに関する統計情報を含むpallocされた構造体を返さなければなりません。
amcanbuildparallelフラグは、アクセスメソッドがパラレルインデックス作成をサポートするかどうかを示します。
trueに設定すると、システムは作成のためにパラレルワーカーを割り当てようとします。
パラレルインデックス作成をサポートしないアクセスメソッドでは、このフラグはfalseのままにするべきです。
  



void
ambuildempty (Relation indexRelation);



空のインデックスを構築し、それを指定されたリレーションの初期フォーク(INIT_FORKNUM)に書き出します。
このメソッドはログを取らないインデックスに対してのみ呼び出されます。
初期フォークに書き出された空のインデックスは、サーバの再起動の度に主リレーションフォークにコピーされます。
  



bool
aminsert (Relation indexRelation,
          Datum *values,
          bool *isnull,
          ItemPointer heap_tid,
          Relation heapRelation,
          IndexUniqueCheck checkUnique,
          bool indexUnchanged,
          IndexInfo *indexInfo);



既存のインデックスに新しいタプルを挿入します。
values配列とisnull配列がインデックスされるキー値を提供するもので、heap_tidがインデックスされるTIDです。
アクセスメソッドが一意なインデックスをサポートする場合（そのamcanuniqueが真の場合）、checkUniqueは実行する一意性検査の種類を示します。
これは一意性制約が遅延可能か否かによって変わります。
「インデックス一意性検査」を参照してください。
通常アクセスメソッドは、一意性検査を行う時にheapRelationパラメータのみを必要とします
(タプルの有効性を検証するためにヒープ内を検索しなければなりません)。
  


indexUnchanged真偽値はインデックス付されるタプルの性質に関するヒントを与えます。
真なら、そのタプルは既存のインデックス中のタプルと重複しています。
新しいタプルは論理的に変わっていない後継であるMVCCタプルバージョンです。
これはUPDATEの実行によりインデックス対象のどの列も変更されず、それにもかかわらずインデックスにおいて新しいバージョンを要求する場合に起こります。
インデックスAMは、同じ論理的な行の多くのバージョンが蓄積されるときに、インデックスのある部分にボトムアップインデックス削除を適用するかどうかを決定するためにこのヒントを使うことができます。
非キー列や部分インデックス述語にのみ現れる列を更新してもindexUnchangedの値には影響がないことに留意してください。
コアコードは、偽陽性と偽陰性の両方を許容する低オーバーヘッドのアプローチを使用して、各タプルのindexUnchanged値を決定します。
インデックスAMは、indexUnchangedを、タプルの可視性やバージョニングに関する信頼できる情報源として扱ってはいけません。
  


checkUniqueがUNIQUE_CHECK_PARTIALの場合、関数の論理型の結果値で十分です。
この場合、真の結果は新しい項目は一意であることが確認されたことを、一方偽の結果は一意でない可能性があること(遅延一意性検査を予定しなければならないこと)を意味します。
他の場合では、一定の偽という結果が推奨されます。
  


一部のインデックスではすべてのタプルをインデックス付けしない可能性があります。
タプルがインデックス付けされない場合、aminsertは何も行わずに戻らなければなりません。
  


SQL文の中で、インデックスAMがインデックスへの連続的な挿入をまたがってデータをキャッシュすることが望ましい場合は、indexInfo->ii_Contextにメモリを確保し、そのデータへのポインタをindexInfo->ii_AmCache（初期値はNULLです）に格納することができます。
インデックスへの挿入の後に、メモリ以外のリソースを解放する必要がある場合は、メモリが解放される前に呼び出されるaminsertcleanupが提供されます。
  



void
aminsertcleanup (Relation indexRelation,
                 IndexInfo *indexInfo);



indexInfo->ii_AmCacheへの連続する挿入で維持されていた状態をクリーンアップします。
これは、データに追加のクリーンアップステップ（たとえばピンの付いたバッファを解放するなど）が必要で、メモリを解放するだけでは不十分な場合に便利です。
  



IndexBulkDeleteResult *
ambulkdelete (IndexVacuumInfo *info,
              IndexBulkDeleteResult *stats,
              IndexBulkDeleteCallback callback,
              void *callback_state);



インデックスからタプル（複数可）を削除します。
これは「一括削除」操作を行いますが、インデックス全体をスキャンし、各項目に対して削除すべきかどうか検査を行うように実装されることが想定されています。
渡されるcallback関数は、callback(TID, callback_state) returns boolという形で、参照用TIDで識別されるインデックス項目を削除すべきかどうか決定するために呼び出さなければなりません。
NULLまたはpallocした削除操作の影響に関する統計情報を含む構造体を返さなければなりません。
amvacuumcleanupに渡さなければならない情報がなければ、NULLを返しても問題ありません。
  


maintenance_work_memの制限により、多くのタプルが削除される時、ambulkdeleteを複数回呼び出す必要があるかもしれません。
stats引数は、このインデックスに対する前回の呼び出し結果です。
（VACUUM操作における最初の呼び出しではこれはNULLです。）
これにより、アクセスメソッドは操作全体に跨った統計情報を計算することができます。
典型的に、渡されたstatsがNULLでない場合、ambulkdeleteは同じ構造体を変更し、返します。
  



IndexBulkDeleteResult *
amvacuumcleanup (IndexVacuumInfo *info,
                 IndexBulkDeleteResult *stats);



VACUUM操作（0回以上のambulkdelete呼び出し）後の整理を行います。
これは、インデックス統計情報を返す以上の処理を行う必要はありません。
しかし、空のインデックスページの回収などの一括整理を行う可能性があります。
statsは最後のambulkdelete呼び出しが返したものです。
削除する必要があるタプルが存在しなかったためにambulkdeleteが呼び出されなかった場合はNULLとなります。
結果はNULLでなければ、pallocされた構造体でなければなりません。
含まれる統計情報はpg_classを更新するために使用され、また、VERBOSEが指定されたVACUUMによって報告されます。
VACUUM操作の間にインデックスがまったく変わらなかった場合はNULLを返しても問題ありません。
しかし、そうでなければ正しい統計情報を返さなければなりません。
  


amvacuumcleanupもANALYZE操作の完了時点にも呼び出されます。
この場合、statsは常にNULLで、戻り値はまったく無視されます。
この事象はinfo->analyze_onlyを検査することで識別されます。
アクセスメソッドがそのような呼び出しで挿入後の整理以外何もしないように、そしてそれは自動バキュームワーカープロセスのみであるようにすることを推奨します。
  



bool
amcanreturn (Relation indexRelation, int attno);



列のインデックスされた元の値を返すことにより、そのインデックスが指定された列でインデックスオンリースキャンをサポート可能かどうかを判断します。
属性番号は1始まり、すなわち最初の列のattnoは1です。
インデックスオンリースキャンがサポートされている場合は真が返され、サポートされていない場合は偽が返ります。
取得できない列がinclude列である意味はないので、この関数は（サポートされていれば）include列に対しては常に真を返すでしょう。
アクセスメソッドがインデックスオンリースキャンをサポートしていない場合、IndexAmRoutine構造体のamcanreturnフィールドをNULLにセットすることができます。
  



void
amcostestimate (PlannerInfo *root,
                IndexPath *path,
                double loop_count,
                Cost *indexStartupCost,
                Cost *indexTotalCost,
                Selectivity *indexSelectivity,
                double *indexCorrelation,
                double *indexPages);



インデックススキャンのコストを推定します。
この関数については後述の「インデックスコスト推定関数」で説明します。
  



int
amgettreeheight (Relation rel);



ツリー構造のインデックスの高さを計算します。
この情報は、amcostestimate関数にpath->indexinfo->tree_heightで提供され、コスト推定のサポートに使用できます。
この結果は他のどこにも使用されないため、コスト推定関数が知りたいインデックスについてのあらゆる種類の（整数に収まる）データを計算するために、この関数を実際に使用できます。
計算にコストがかかる場合は、結果をRelationData.rd_amcacheの一部としてキャッシュすると便利です。
  



bytea *
amoptions (ArrayType *reloptions,
           bool validate);



インデックス用のreloptionsの解析と検証を行います。
インデックスに非NULLのreloptions配列が存在する場合にのみ呼び出されます。
reloptionsは、name=value形式の項目からなる、text型の配列です。
この関数はbytea型の値を生成しなければならず、この値はインデックスのrelcache項目のrd_optionsフィールドにコピーされます。
bytea型の値の内容はアクセスメソッドが独自に定義できるように開放されています。
標準のアクセスメソッドのほとんどはすべてStdRdOptions構造体を使用します。
validateが真の場合、何らかのオプションが認識できなかった場合や無効な値が存在した場合、この関数は適切なエラーメッセージを報告しなければなりません。
validateが偽の場合、無効な項目は単に無視されます。
（読み込みオプションが既にpg_catalogに格納されている場合validateは偽です。
アクセスメソッドがそのオプション用の規則を変更した場合にのみ、無効な項目が検出されます。
そして、その場合、古い項目を無視することが適切です。）
デフォルトの動作を行わせたい場合はNULLを返しても問題ありません。
  



bool
amproperty (Oid index_oid, int attno,
            IndexAMProperty prop, const char *propname,
            bool *res, bool *isnull);



ampropertyメソッドにより、インデックスメソッドはpg_index_column_has_propertyおよび関連する関数のデフォルトの動作を上書きすることができます。
インデックスアクセスメソッドがインデックスの属性の問い合わせについて特別な動作をしないのなら、IndexAmRoutine構造体のampropertyフィールドはNULLにすることができます。
そうでなければ、ampropertyはpg_indexam_has_propertyの呼び出しに対し、index_oidとattnoをいずれもゼロにして、pg_index_has_propertyの呼び出しに対してindex_oidが有効、attnoがゼロで、あるいはpg_index_column_has_propertyの呼び出しに対してindex_oidが有効、attnoが1以上で呼び出されます。
propは検査対象の属性を指定する列挙型の値、propnameは元の属性の名称の文字列です。
コアのコードが属性名を認識しない場合、propはAMPROP_UNKNOWNになります。
アクセスメソッドはカスタム属性名を定義して、マッチするものをpropnameで確認する（コアコードとの一貫性のため、pg_strcasecmpを使ってください）ことができます。
コアコードに既知の名前については、propを検査する方が良いです。
ampropertyメソッドがtrueを返すなら、それは属性検査の結果が決定したということで、*resを返すべき論理値にセットするか、NULLを返すために*isnullをtrueにセットするかしなければなりません。
（どちらの参照変数も、呼び出しの前にfalseに初期化されます。）
ampropertyメソッドがfalseを返すなら、コアコードは属性検査の結果を決定するために、通常の手続きを進めます。
  


順序付け演算子をサポートするアクセスメソッドは、AMPROP_DISTANCE_ORDERABLEの属性検査を実装する必要があります。
なぜなら、コアコードはそれをどうすれば良いか知らないため、NULLを返すからです。
コアコードのデフォルトの動作であるインデックスのオープンとamcanreturnの呼び出しよりも安価にできるのであれば、AMPROP_RETURNABLEの検査を実装するのは利点となります。
その他のすべての標準属性に対しては、デフォルトの動作が満足できるもののはずです。
  



char *
ambuildphasename (int64 phasenum);



指定されたビルドフェーズ番号のテキスト名を返します。
フェーズ番号は、pgstat_progress_update_paramインタフェースを介してインデックス構築中に報告されたものです。
それから、フェーズ名はpg_stat_progress_create_indexビューで公開されます。
  



bool
amvalidate (Oid opclassoid);



指定の演算子クラスについて、アクセスメソッドが合理的に可能な範囲でカタログエントリを検証します。
例えば、これには必要なすべてのサポート関数が提供されていることのテストが含まれるかもしれません。
amvalidate関数は演算子クラスが無効なときは偽を返さなければなりません。
問題があれば典型的にはINFOレベルでereportメッセージにより報告されます。
  



void
amadjustmembers (Oid opfamilyoid,
                 Oid opclassoid,
                 List *operators,
                 List *functions);



アクセスメソッドが合理的に可能な範囲で提案された新しい演算子族の演算子と関数メンバを検証し、デフォルトが不十分なら依存型を設定します。
これはCREATE OPERATOR CLASSとALTER OPERATOR FAMILY ADDの実行中に呼び出されます。
後者の場合、opclassoidはInvalidOidです。
List引数はamapi.hで定義されているOpFamilyMember構造体のリストです。

この関数で実施されるテストは典型的にはamvalidateが行うテストのサブセットです。
なぜなら、amadjustmembersはメンバの集合のすべてを観察しているとは仮定することができないからです。
たとえば、サポート関数の呼び出し形式を検証することは妥当ですが、必要なすべてのサポート関数が提供されていることを検証するのは妥当ではないからです。
問題が発生すればどの場合でもエラーが生じます。

OpFamilyMember構造体の依存性に関するフィールドに、CREATE OPERATOR CLASSの場合にはopclassにコアコードがハード依存性で初期化します。ALTER OPERATOR FAMILY ADDならばopfamilyをソフト依存性で初期化します。
それ以外の振る舞いがより適正ならば、amadjustmembersでこれらのフィールドを調整することができます。
たとえば、GIN、GiST、SP-GiSTのようなインデックス形式では演算子とopclassの関連性が相対的低く、演算子メンバの追加削除を自由に行うことが合理的であるため、これらの演算子メンバにおいてはopfamilyに常にソフト依存性が設定されます。
また、必要ならば削除可能にするために、追加のサポート関数にソフト依存性を設定するのが一般的です。
  


当然ながらインデックスの目的は、よく修飾子やスキャンキーと呼ばれる、インデックス可能なWHERE条件を満たすタプルのスキャンをサポートすることです。
インデックススキャンのセマンティクスは後の「インデックススキャン」でより詳しく説明します。
インデックスアクセスメソッドは「単純」インデックススキャン、「ビットマップ」インデックススキャン、またはこれら双方を提供します。
インデックスアクセスメソッドが提供しなければならない、もしくは提供する可能性のあるスキャン関連の関数を以下に示します。
  



IndexScanDesc
ambeginscan (Relation indexRelation,
             int nkeys,
             int norderbys);



インデックススキャンを準備します。
nkeysおよびnorderbysパラメータは、スキャンで使用される等価性演算子と順序付け演算子の個数を表します。
これらは領域を割り当てる目的で便利かもしれません。
スキャンキーの実値がまだ提供されていないことに注意してください。
結果はpallocした構造体でなければなりません。
実装上の理由により、インデックスアクセスメソッドはRelationGetIndexScan()呼び出しによってこの構造体を作成しなければなりません。
ほとんどの場合、ambeginscanはこの呼び出しとおそらくロックの獲得の他にはほとんど何も行いません。
インデックススキャンを始める際の興味深い部分は、amrescanにあります。
  



void
amrescan (IndexScanDesc scan,
          ScanKey keys,
          int nkeys,
          ScanKey orderbys,
          int norderbys);



インデックススキャンを起動または再起動します。
スキャンキーを新しくすることもできます。
（過去に渡されたキーを使用して再起動するには、key、orderbys、またはその両方にNULLを渡します。）
ambeginscanに渡したキー演算子、順序付け演算子の個数より多くを使用することはできないことに注意してください。
実際には、ネステッドループ結合によって新しい外部タプルが選択され、同じスキャンキー構造体で新しいキー比較値が必要とされた場合に、この再起動機能は使用されます。
  



bool
amgettuple (IndexScanDesc scan,
            ScanDirection direction);



指定されたスキャン内から指定された方向（インデックス内の前方または後方）で次のタプルを取り出します。
タプルを取り出した場合は真を返します。
一致するタプルが残っていない場合は偽を返します。
真の場合、そのタプルのTIDがscanに格納されます。
「成功」とは、単にインデックスにスキャンキーに一致する項目があったことを意味しているだけです。
タプルが必ずヒープ内に存在することや、呼び出し元のスナップショットの試験を通過したことを意味してはいません。
成功した場合、amgettupleはscan->xs_recheckを真または偽に設定しなければなりません。
偽の意味は、インデックス項目が確実にスキャンキーに一致することです。
真の意味は、これが確かなことではなく、スキャンキーで表示された条件がヒープタプルを取り出された後で再検査されなければならないことです。
この対策は「非可逆」インデックス演算子をサポートします。
再検査はスキャン条件のみに拡大適用されることに注意してください。
部分インデックス述語（もしあれば）はamgettuple呼び出し元で決して再検査されません。
  


そのインデックスがインデックスオンリースキャンをサポートしている場合（つまりamcanreturnがいずれかの列に対して真を返す場合）、そのアクセスメソッドはスキャンが成功したならばscan->xs_want_itupも確認し、それが真の場合、そのインデックスエントリに対応する元のインデックスされたデータを返さなければなりません。
amcanreturnが列に対して偽を返す場合、その列はNULLとして返されます。
返却されるデータは、scan->xs_itupdescタプルディスクリプタとともにscan->xs_itupに格納されたIndexTupleポインタの形式か、あるいは、scan->xs_hitupdescタプルディスクリプタとともにscan->xs_hitupに格納されたHeapTupleポインタの形式です。
（後者の形式は、再構成されたデータがIndexTupleに収まらない場合に使用するべきです。）
どちらの場合でも、そのポインタが参照するデータの管理はアクセスメソッドの責任です。
データは少なくともamgettuple、amrescanまたはamendscanによってスキャンされるまでよい状態を保たなくてはなりません。
  


amgettuple関数は、アクセスメソッドが「単純」インデックススキャンをサポートするときのみ提供される必要があります。
そうでなければ、IndexAmRoutine構造体のamgettupleフィールドはNULLに設定されなければなりません。
  



int64
amgetbitmap (IndexScanDesc scan,
             TIDBitmap *tbm);



指定されたスキャンから全てのタプルを取り出し、呼び出し側が提供するTIDBitmapにそれらを付加します
（つまり、既にビットマップ内にある集合とタプルIDの集合とのORを取ります）。
取り出されたタプル数が返されます（例えばいくつかのAMは重複を検出しませんので、これは単なる概算です）。
タプルIDをビットマップに挿入する間、amgetbitmapは特定のタプルIDに必要なスキャン条件の再検査を示すことが可能です。
これはamgettupleのxs_recheck出力パラメータに類似しています。
注意：現在の実装においてこの機能の提供はビットマップそのものの非可逆格納を提供するのに結びついていて、したがって呼び出し側はスキャン条件と部分インデックスの述部（存在すれば）を再検査可能なタプルに対して再検査します。
とは言っても常に正しいとは限りません。
amgetbitmapおよびamgettupleを同じインデックススキャン内で使用することはできません。
「インデックススキャン」で説明した通り、amgetbitmapを使用する場合には他にも制限があります。
  


amgetbitmap関数はアクセスメソッドが「ビットマップ」インデックススキャンをサポートしている場合のみ必要です。
そうでなければ、IndexAmRoutine構造体の中のamgetbitmapフィールドはNULLに設定されなければなりません。
  



void
amendscan (IndexScanDesc scan);



スキャンを停止し、リソースを解放します。
scan構造体自体は解放すべきではありません。
アクセスメソッドで内部的に取られたロックやピンは、ambeginscanや他のスキャン関連の関数により確保されたメモリと同様に解放しなければなりません。
  



void
ammarkpos (IndexScanDesc scan);



現在のスキャン位置を記録します。
アクセスメソッドは1スキャン当たり1つの記録済みスキャンのみをサポートしなければなりません。
  


ammarkpos関数はアクセスメソッドが順序付けされたスキャンをサポートする場合にのみ提供する必要があります。
そうでなければ、そのIndexAmRoutine構造体のammarkposフィールドはNULLに設定しても構いません。
  



void
amrestrpos (IndexScanDesc scan);



もっとも最近に記録された位置にスキャンを戻します。
  


amrestrpos関数はアクセスメソッドが順序付けされたスキャンをサポートする場合にのみ提供する必要があります。
そうでなければ、そのIndexAmRoutine構造体のamrestrposフィールドはNULLに設定しても構いません。
  


通常のインデックススキャンのサポートに加え、ある種のインデックスは、複数のバックエンドが協調してインデックススキャンを実行するパラレルインデックススキャンをサポートすることができます。
インデックスアクセスメソッドは、協調するプロセスが、通常の非パラレルインデックススキャンが実行対象とする行のサブセットを返しつつ、しかもそれらのサブセットの合計が、通常の非パラレルインデックススキャンが返すタプルの集合と同じになるように調整しなければなりません。
それだけでなく、パラレルスキャンが返すタプル全体の順序付けが想定されていない場合でも、協調するバックエンドが返すサブセットのタプルの順序付けは、要求された順序付けと一致しなければなりません。
パラレルインデックススキャンをサポートするために、以下の関数を実装することができます。
  



Size
amestimateparallelscan (Relation indexRelation,
                        int nkeys,
                        int norderbys);



パラレルスキャンを実行するために、アクセスメソッドによって必要とされる動的共有メモリのバイト数を推測し、返します。
（この数値は、ParallelIndexScanDescDataのAM独立データに必要となる量に追加するための値であり、それを置き換えるものではありません。）
  


nkeysおよびnorderbysパラメータは、スキャンで使用される等価性演算子と順序付け演算子の個数を表し、これらの値はamrescanにも渡されます。
スキャンキーの実際の値はまだ提供されていないことに注意してください。
  


パラレルスキャンをサポートしない、あるいはメモリ領域への追加のバイト数が0のアクセスメソッドでは、この関数を実装する必要はありません。
  



void
aminitparallelscan (void *target);



この関数は、パラレルスキャンの最初に動的共有メモリを初期化するために呼ばれます。
targetは、前もってamestimateparallelscanが返したバイト数を少なくとも持つ領域を指し、この関数はその分だけのスペースを使って必要なデータを保管することができます。
  


パラレルスキャンをサポートしない、あるいは共有メモリスペースの初期化が必要ないアクセスメソッドでは、この関数を実装する必要はありません。
  



void
amparallelrescan (IndexScanDesc scan);



実装された場合、この関数はパラレルインデックススキャンを再起動しなければならない時に呼ばれます。
この関数は、aminitparallelscanが設定した共有状態を初期化し、スキャンが最初から再開できるようにします。
  



CompareType
amtranslatestrategy (StrategyNumber strategy, Oid opfamily, Oid opcintype);

StrategyNumber
amtranslatecmptype (CompareType cmptype, Oid opfamily, Oid opcintype);



実装された場合、これらの関数はプランナとエグゼキュータによって呼び出され、規定のCompareType値とアクセスメソッドで使用される特定の戦略番号との間の変換が行われます。
これらの関数は、組み込みのB-Treeまたはハッシュアクセスメソッドと同様の機能を実装するアクセスメソッドによって実装することができ、これらの変換を実装することによって、システムはアクセスメソッドの操作のセマンティクスを学習し、さまざまな場所でB-Treeまたはハッシュインデックスの代わりに使用できます。
アクセスメソッドの機能が組み込みのアクセスメソッドと類似していない場合、これらの関数を実装する必要はありません。
これらの関数が実装されていない場合、アクセスメソッドは特定のプランナとエグゼキュータの決定に対して無視されますが、それ以外は完全に機能します。
  

インデックススキャン





インデックススキャンでは、スキャンキーに一致するものと示したすべてのタプルのTIDを繰り返すことに関する責任をインデックスアクセスメソッドが持ちます。
アクセスメソッドには、実際のインデックスの親テーブルからのタプルの取り出しやタプルがスキャンの可視性テストや他の条件を通過したかどうかの決定は含まれません。
  


スキャンキーは、index_key operator constantという形式のWHERE句の内部的表現です。
ここで、index_keyは、インデックス列の1つで、operatorはインデックス列に関連した演算子族のメンバの1つです。
インデックススキャンは、暗黙的にAND演算される0個以上のスキャンキーを持ちます。
返されるタプルは指定された条件を満たすものと想定されます。
  


アクセスメソッドはインデックスがある特定の問い合わせに対し非可逆、または再検査を要求するかどうかを報告することができます。
これは、インデックススキャンがスキャンキーを満たすすべての項目と、それに加えて、満たさない可能性のある項目を返すことを意味します。
コアシステムのインデックススキャン機構はヒープタプルに対し、本当に選択されるべきかどうかを検証するためにその演算子をインデックス条件に再度適用します。
再検査オプションが指定されない場合、インデックススキャンは一致する項目の集合を返さなければなりません。
  


確実に、指定されたスキャンキーすべてに一致するもののみをすべて正しく見つけ出すことは、完全にアクセスメソッドの責任であることに注意してください。
また、コアシステムは、冗長かどうかや矛盾するかどうかを決定するための意味的な解析を行わず、単にインデックスキーと演算子族に一致するWHERE句をすべて渡します。
例えば、WHERE x > 4 AND x > 14があり、xがB-treeインデックス列であったとすると、これは、B-tree amrescan関数に任されて、最初のスキャンキーが冗長であり、無視できることが認知されます。
amrescanにおける前処理の必要性は、インデックスアクセスメソッドがスキャンキーを「正規化」形式にする必要があるかどうかに依存します。
  


一部のアクセスメソッドは、他では行いませんが、十分に定義された順序でインデックス項目を返します。
アクセスメソッドが出力の順序付けをサポートできるようにする方法は、実質２種類存在します。

    
	

常にそのデータ（btreeなど）の自然な順序で項目を返すアクセスメソッドはamcanorderを真に設定しなければなりません。
現在、こうしたアクセスメソッドは、その等価性と順序付け演算子でbtree互換の戦略番号を使用しなければなりません。
      

	

順序付け演算子をサポートするアクセスメソッドはamcanorderbyopを真に設定しなければなりません。
これは、インデックスがORDER BY index_key operator constantを満たす順序で項目を返すことができることを示します。
前述の通り、この形式のスキャン修飾子をamrescanに渡すことができます。
      




  


amgettuple関数はdirection引数を持ちます。
これはForwardScanDirection（通常の場合）またはBackwardScanDirectionのいずれかを取ることができます。
amrescan後の最初の呼び出しがBackwardScanDirectionを指定していた場合、一致したインデックス項目は通常の前から後ろという方向ではなく、後ろから前という方向でスキャンされます。
そのため、amgettupleは通常ならばインデックス内の最初に一致したタプルを返すところですが、最後に一致したタプルを返さなければなりません。
（これはamcanorderが真に設定されたアクセスメソッドでのみ発生します。）
最初の呼び出しの後、amgettupleは、最も最近に返された項目からどちらの方向にスキャンを進めるかを準備しなければなりません。
（しかしamcanbackwardが偽であれば、引き続くすべての呼び出しは最初のものと同じ方向を持ちます。）
  


順序付けされたスキャンを提供するアクセスメソッドはスキャン内位置の「記録」をサポートしなければならず、また、後でその記録された位置に戻ることをサポートしなければなりません。
同じ位置が複数回記録されるかもしれません。
しかし、スキャン内の1つの位置のみを記録する必要があります。
新しいammarkpos呼び出しにより前回記録された位置は上書きされます。
順序付けされたスキャンをサポートしないアクセスメソッドはIndexAmRoutineでammarkpos関数およびamrestrpos関数を提供する必要はないので、これらのポインタをNULLにセットしてください。
  


スキャン位置と記録された位置（もしあれば）の両方は、インデックス内の同時挿入や削除という観点における一貫性を保持しなければなりません。
スキャンが始まった時に存在していた場合、項目を見つけ出したスキャンが新しく挿入された項目を返さなかったとしても問題ありません。
このような場合のスキャンでは、再スキャンやバックアップによって、あたかも最初の時点で返されたものとして項目が返されます。
同様に、同時実行削除によってスキャンの結果に影響が出るかもしれません。
重要なことは、挿入や削除によって、その項目自体が挿入・削除されていない項目がスキャンで失われたり二重になったりすることが起こらないという点です。
  


インデックスが設定された列値がインデックスに格納されている(かつ、損失のある表現ではない)場合、ヒープタプルのTIDではなくインデックスに格納された実際のデータを返すインデックスオンリースキャンをサポートするのに有用です。
これは、可視性マップによってTIDが全可視のページ上にあると判断できる場合にI/Oを避けるだけのことです。
判断できない場合はMVCCを確認するためにヒープタプルにアクセスしなくてはなりません。
しかしその動作はアクセスメソッドでは考慮されていません。
  


amgettupleを使用する代わりに、amgetbitmapを使用して、一回の呼出しですべてのタプルを取り出してインデックススキャンを行うことができます。
これはアクセスメソッド内でのロック/ロック解除という過程を防ぐことができますので、amgettupleよりもかなり効率的です。
実際には、amgetbitmapはamgettuple呼び出しを繰り返すことと同じ効果を持つはずですが、物事を単純化するために複数の制限を加えています。
まず第一に、amgetbitmapは一回ですべてのタプルを返し、スキャン位置の記録と位置戻しをサポートしません。
第二に、特定の順序付けをまったく持たないビットマップの中にタプルが返されます。
これはamgetbitmapがdirection引数を取らない理由です。
（順序付け演算子はこのようなスキャンでは決して与えられません。）
また、amgetbitmapによるインデックスオンリースキャンは提供されていません。なぜなら、インデックスタプルの内容を返す手段がないからです。
最後に、amgetbitmapは返されたタプルに関し、「インデックスのロック処理に関する検討」に記載した意味でのロックを保証しません。
  


アクセスメソッドの内部実装がどちらか片方のAPIにそぐわない場合、amgettupleを実装せずamgetbitmapのみを実装、またはその逆も許されていることに注意してください。
  

インデックスのロック処理に関する検討





インデックスアクセスメソッドは、複数のプロセスによるインデックスの同時更新を取り扱えなければなりません。
PostgreSQL™コアシステムはインデックススキャン中にインデックスに対してAccessShareLockを獲得します。
また、（通常のVACUUMを含む）インデックスの更新中にRowExclusiveLockを獲得します。
これらの種類のロックは競合しませんので、アクセスメソッドは必要になるかもしれない粒度の細かなロック処理に関して責任を持ちます。
インデックスの生成、破棄、REINDEX時にインデックス全体に対するACCESS EXCLUSIVEロックが獲得されます(CONCURRENTLYでは代わりにSHARE UPDATE EXCLUSIVEが取得されます)。
  


同時更新をサポートするインデックス種類を構築することは通常、必要な動作について広範かつ微細にわたる解析が必要です。
B-treeおよびハッシュインデックス種類では、src/backend/access/nbtree/READMEと src/backend/access/hash/READMEにある設計に関する決定事項を読むことができます。
  


インデックス自身の内部的な一貫性要求の他に、同時実行更新には、親テーブル（ヒープ）とインデックス間の一貫性に関する問題が発生します。
PostgreSQL™はヒープへのアクセスおよび更新とインデックスへのアクセスおよび更新を分離していますので、インデックスとヒープとの間の一貫性が無くなる間隔が存在します。
以下の規則でこうした問題を扱います。

    
	

新しいヒープ項目はインデックス項目を作成する前に作成されます。
（このため、同時実行インデックススキャンはヒープエントリを確認する時によく失敗します。
インデックスの読み取りは、未コミットの行を対象としませんので問題ありません。
しかし、「インデックス一意性検査」を参照してください。）
      

	

ヒープエントリが（VACUUMによって）削除される時、これに対するすべてのインデックス項目が先に削除されます。
      

	

インデックススキャンは、最後にamgettupleが返した項目を保持するインデックスページ上のピンを管理しなければなりません。
また、ambulkdeleteは、他のバックエンドがピンを持つページから項目を削除することはできません。
この規則の必要性については後で説明します。
      






３番目の規則がないと、VACUUMによって削除される直前に、インデックス読み取りがインデックス項目を見つけ、そして、VACUUMによって削除された後に対応するヒープ項目に達する可能性があります。
空の項目スロットはheap_fetch()で無視されますので、これは読み取りが達した時にその項目番号が未使用である場合でも大きな問題は起こりません。
しかし、第三のバックエンドがすでにその項目スロットを他のものに再使用した場合はどうなるでしょうか？
そのスロット内の新しいものが、スナップショット試験を通過するには新しすぎることが確実ですので、MVCCに則ったスナップショットを使用する場合は問題ありません。
しかし、MVCCに則らないスナップショット(SnapshotAnyなど)では、実際にはスキャンキーに合わない行を受付け、返す可能性があります。
すべての場合においてヒープ行に対しスキャンキーの再検査を行うことを必須とすることで、こうした状況から保護することができますが、これは高価すぎます。
代わりに、読み取りがまだ一致するヒープ項目へのインデックス項目の「作業中」であることを示す代理として、インデックスページに対するピンを使用します。
このピンに対してambulkdeleteがブロックするようにすることで、読み取りの作業が終わる前にVACUUMがそのヒープ項目を削除できないことを確実にします。
実行時におけるこの対策のコストは小さく、実際に競合が発生するごく稀な場合にのみブロックするためのオーバーヘッドが加わります。
  


この対策は、インデックススキャンが「同期」していることを要求します。
対応するインデックス項目のスキャンの後即座に各ヒープタプルを取り出さなければなりません。
多くの理由のため、これは高価です。
インデックスから多くのTIDを収集し、少し後でのみヒープタプルにアクセスする「非同期」スキャンでは、必要なロック処理オーバーヘッドがかなり少なくなり、また、より効率的なヒープへのアクセスパターンを取ることができます。
上の解析に従うと、MVCCに則らないスナップショットでは同期方式を使用しなければなりませんが、問い合わせがMVCCスナップショットを使用する場合は非同期スキャンを使用することができます。
  


amgetbitmapインデックススキャンでは、アクセスメソッドは返されるタプル上にインデックスピンをまったく保持しません。
したがって、MVCCに則ったスナップショットでこうしたスキャンを使用することのみが安全です。
  


ampredlocksフラグが設定されていない場合、シリアライザブルトランザクション内でそのインデックスアクセスメソッドを使用するスキャンはいずれもインデックス全体に対するブロックしない述語ロックを獲得します。
これは、同時実行のシリアライザブルトランザクションによるそのインデックスへの何らかのタプル挿入で、読み書きの競合が発生することがあります。
同時実行のシリアライザブルトランザクションの集合の中で特定の読み書きの競合パターンが検知された場合、データの整合性を保護するためにこれらのトランザクションの１つはキャンセルされます。
このフラグが設定されている場合、こうしたトランザクションのキャンセルの頻度を低減することになる、より粒度の細かな述語ロックをインデックスアクセスメソッドが実装していることを示します。
  

インデックス一意性検査





PostgreSQL™は、SQLの一意性制約を一意性インデックスを使用して強制します。
このインデックスでは、同一キーに対し複数の項目を許しません。
この機能をサポートするアクセスメソッドはamcanuniqueを真に設定します。
（現時点ではb-treeのみがこれをサポートします。）
INCLUDE句内の列のリストは、一意性制約の強制時には考慮されません。
  


MVCCのため、インデックス内に物理的に重複した項目が存在できることが常に必要です。
これらの項目は１つの論理的な行の連続的なバージョンを示します。
実際に強制させたい動作は、MVCCスナップショットが同じインデックスキーを持つ行を２つ含めないことです。
一意性インデックスに新しい行を挿入する時に検査しなければならない状況を以下のように分割することができます。

    
	

競合する有効な行が現在のトランザクションで削除された場合は問題ありません。
（具体的には、UPDATEは常に新しいバージョンを挿入する前に古い行バージョンを削除します。
これによりキーを変更することなく行をUPDATEすることができます。）
      

	

競合する行が未コミットのトランザクションで挿入された場合、挿入しようとしている方はトランザクションのコミットが分かるまで待機しなければなりません。
ロールバックした場合は競合しません。
競合する行が削除されずにコミットした場合、一意性違反となります。
（具体的には、他のトランザクションの終了をただ待機し、終了後に可視性の検査を完全に再実行します。）
      

	

同様に、競合する有効な行が未コミットのトランザクションで削除された場合、挿入しようとしている方はトランザクションのコミットまたはアボートを待機しなければならず、その後、試験を繰り返します。
      




  


さらに、上記規則に従った一意性違反を報告する直前に、アクセスメソッドは挿入される行の有効性を再度検査しなければなりません。
もし、無効なコミットであれば、違反を報告してはいけません。
（現在のトランザクションによって作成された通常の行の挿入という状況では、これは発生することはありません。
しかし、これはCREATE UNIQUE INDEX CONCURRENTLY中に発生することがあります。）
  


インデックスアクセスメソッドにこうした試験を自身で行うことを要求します。
これは、インデックスの内容に対して重複するキーを持つことを示している任意の行のコミット状態を検査するために、ヒープまでアクセスしなければならないことを意味します。
これが醜くモジュール化されないことには疑う余地はありません。
しかし、余計な作業を防ぐことができます。
もし分離された探査を行ったとすると、新しいインデックス項目を挿入する場所を検索する時、競合する行に対するインデックス検索がどうしても繰り返されます。
さらに、競合検査がインデックス行の挿入部分で統合されて行われない限り、競合状態を防ぐ明確な方法がありません。
  


一意性制約が遅延可能である場合はさらに複雑になります。
新しい行向けのインデックス項目を挿入可能にする必要があります。
しかし一意性違反エラーは文の終わりまたはそれ以降まで遅延されます。
不要なインデックス検索の繰り返しを防ぐために、インデックスアクセスメソッドは初期の挿入の間に前座の一意性検査を行わなければなりません。
これが現存するタプルとまったく競合がないことを示した場合、それで終了です。
さもなければ、制約を強制する時に再検査を行うようスケジュールします。
再検査の時点で対象のタプルと同じキーを持つ何らかの他のタプルが存在すると、エラーを報告しなければなりません。
（この目的のために「存在する」は実際には「インデックス項目のHOTチェイン内に何らかのタプルが存在する」ことを意味します。）
これを実装するために、aminsertは以下のいずれかの値を持つcheckUniqueパラメータを渡されます。

    
	

UNIQUE_CHECK_NOは、一意性検査を行うことはない(これは一意性インデックスではない)ことを示します。
      

	

UNIQUE_CHECK_YESは、上述の通り遅延がない一意性インデックスであり、一意性検査を即時に行わなければならないことを示します。
      

	

UNIQUE_CHECK_PARTIALは一意性制約が遅延可能であることを示します。
PostgreSQL™はこのモードを使用して、各行のインデックス項目を挿入します。
このアクセスメソッドはインデックス内の重複する項目を許さなければなりません。
そしてaminsertから偽を返すことで重複の可能性があることを報告しなければなりません。
偽が返された行それぞれに対して、遅延再検査が予定されます。
      


アクセスメソッドは一意性制約違反となるかもしれない行を識別しなければなりません。
しかし間違った偽を報告することはエラーではありません。
これにより他のトランザクションを待つことなく検査を行うことができます。
ここで報告された重複はエラーとして扱われず、後で再検査されます。
再検査時には重複しなくなっている可能性があります。
      

	

UNIQUE_CHECK_EXISTINGは、一意性違反の可能性があると報告された行に対する遅延再検査であることを示します。
これはaminsertを呼び出すことで実装されますが、アクセスメソッドはこの場合に新しいインデックス項目を挿入してはいけません。
インデックス項目はすでに存在します。
それよりも、アクセスメソッドは他に存在するインデックス項目があるか検査する必要があります。
もし存在し、対象の行もまだ存在する場合エラーを報告します。
      


UNIQUE_CHECK_EXISTING呼び出しでは、アクセスメソッドはさらに対象行が実際にインデックス内に既存の項目を持つか検証し、もしなければエラーを報告することを推奨します。
aminsertに渡されるインデックスタプル値が再計算されているため勧めます。
インデックス定義に実際には不変ではない関数が含まれる場合、インデックスの間違った領域を検査してしまうかもしれません。
再検査にて対象行の存在を検査することで、元の挿入で使用されたものと同じタプル値をスキャンしていることを検証します。
      




  

インデックスコスト推定関数





amcostestimate関数には、インデックスと共に使用できることが決まっているWHERE句およびORDER BY句のリストを含む、インデックススキャンの可能性を記述する情報が与えられます。
この関数はインデックスにアクセスするコストの概算とWHERE句の選択度（つまりインデックススキャンにて抽出される行の親テーブルにおける割合）を返さなくてはなりません。
単純な場合だと、ほとんどすべてのコスト概算の作業は、オプティマイザの標準ルーチンを呼び出すことで行われます。
amcostestimate関数を持つことの意味は、標準の概算を改善することができる場合に、インデックスアクセスメソッドがインデックス型固有の知識体系を提供することができるということです。
  


それぞれのamcostestimate関数は以下のシグネチャを持たなければいけません。



void
amcostestimate (PlannerInfo *root,
                IndexPath *path,
                double loop_count,
                Cost *indexStartupCost,
                Cost *indexTotalCost,
                Selectivity *indexSelectivity,
                double *indexCorrelation,
                double *indexPages);




最初の3つのパラメータは入力です。

   
	root
	

処理されている問い合わせに関するプランナの情報。
      

	path
	

考慮されるインデックスアクセスパス。
コストと選択性値を除くすべてのフィールドが有効です。
      

	loop_count
	

コスト概算の算出対象となるインデックススキャンが繰り返された回数です。
これは通常、ネステッドループ結合の内部で利用されるパラメータ化されたスキャンの回数よりも大きい値になります。
コスト概算は1回のスキャンのための値であることに注意してください。loop_countがより大きい場合、複数のスキャンにより得られる効果をみるには十分な値といえるでしょう。
      




  


最後の5つのパラメータは参照渡しの出力です。

   
	*indexStartupCost
	

インデックスの起動処理にかかるコストに設定されます。
      

	*indexTotalCost
	

インデックス処理の全体のコストに設定されます。
      

	*indexSelectivity
	

インデックスの選択度に設定されます。
      

	*indexCorrelation
	

インデックススキャンの順番と背後のテーブルの順番間の相関係数に設定されます。
      

	*indexPages
	

インデックスのリーフページ数が設定されます。
      




  


コスト概算関数は、SQLやその他の手続き言語ではなく、C言語で書かれなければいけないことに注意してください。
理由はプランナ/オプティマイザの内部データ構造にアクセスしなければいけないためです。
  


インデックスアクセスコストはsrc/backend/optimizer/path/costsize.cで使われる、逐次的なディスクブロックの取り出しにはseq_page_costのコストが、順不同の取り出しにはrandom_page_costのコストが、そして、1つのインデックス行の処理には通常cpu_index_tuple_costというコストがかかる、というパラメータで計算されなければなりません。
さらに、インデックス処理（特にindexquals自体の評価）の間に呼び出される比較演算すべてに対して、cpu_operator_costに適当な係数をかけたコストがかかります。
  


アクセスコストは、インデックス自身のスキャンと関係するすべてのディスクとCPUコストも含むべきですが、インデックスで識別される親テーブルの行の処理や抽出にかかるコストは含めてはいけません。
  


「起動用コスト」は、最初の行を取り出し始めることができるようになる前に費やされなければならない総スキャンコストの一部です。
ほとんどのインデックスでは、これはゼロとすることができます。
しかし、高い起動用コストを持つインデックス種類ではこれを非ゼロにすることを勧めます。
  


indexSelectivityは、インデックススキャンの間に抽出される親テーブルの行の概算された割合として設定されるべきです。
非可逆問い合わせの場合はこの値が、与えられた制約条件を実際に通過する行の割合よりも高くなることがよくあります。
  


indexCorrelationは、インデックスの順番とテーブルの順番の間の（-1.0から1.0までの間の値を取る）相関として設定されるべきです。
この値は、メインテーブルから行を取り出すためのコスト概算を調整するために使用されます。
  


indexPagesは、リーフページ数が設定されるべきです。
これは、パラレルインデックススキャンのワーカー数の見積もりに使用されます。
  


loop_countの値が1より大きい場合、戻り値はインデックスを利用した1回のスキャンを想定した平均値であるべきです。
  
手順63.1 コスト概算


典型的なコスト概算は次のように進められます。
   
	

与えられた制約条件に基づいて訪れられるメインテーブルの行の割合を概算して返します。
インデックス型固有の知識体系を持たない場合、標準のオプティマイザの関数であるclauselist_selectivity()を使用してください。



*indexSelectivity = clauselist_selectivity(root, path->indexquals,
                                           path->indexinfo->rel->relid,
                                           JOIN_INNER, NULL);


    

	

スキャン中に訪れられるインデックスの行数を概算します。
多くのインデックス種類では、これはindexSelectivityとインデックスの中にある行数を掛けたものと等しいですが、それより多い場合もあります。
（ページおよび行内のインデックスのサイズはpath->indexinfo構造体から得ることができることに注意してください。）
    

	

スキャン中に抽出されるインデックスページ数を概算します。
これは単にindexSelectivityにページ内のインデックスのサイズを掛けたものになるでしょう。
    

	

インデックスアクセスコストを計算します。
汎用的な概算においては以下のように行うでしょう。



/*

 * 一般的な仮定は、インデックスページは逐次的に読まれるので、
 * random_page_costではなく、それぞれseq_page_costが掛かるというものです。
 * 各インデックス行でのindexqualsの評価にもコストが掛かります。
 * コストはすべてスキャンの間に徐々に支払われると仮定します。
 */
cost_qual_eval(&index_qual_cost, path->indexquals, root);
*indexStartupCost = index_qual_cost.startup;
*indexTotalCost = seq_page_cost * numIndexPages +
    (cpu_index_tuple_cost + index_qual_cost.per_tuple) * numIndexTuples;




しかし、上では繰り返されるインデックススキャンにかかるインデックス読み込みについて減価償却を考慮していません。
    

	

インデックスの相関を概算します。
1つのフィールドに対する単純な順番のインデックスでは、これはpg_statisticから入手することができます。
相関が未知の場合、概算を用心深く考えるとゼロ（無相関）となります。
    





コスト概算関数の例はsrc/backend/utils/adt/selfuncs.cにあります。
  

第64章 拡張機能の先行書き込みログ（WAL）





特定の拡張、主にカスタムアクセスメソッドを実装する拡張は、クラッシュ時の安全性を確保するために先行書き込みログ（WAL）を実行する必要があるかもしれません。
PostgreSQL™は、拡張がこの目標を達成するために2つの方法を提供します。
  


1つ目として、拡張は汎用WALの使用を選択できます。
これは、ページの変更を汎用的な方法で記述する特殊なWALレコードです。
この方法は実装が簡単で、レコードを適用するために拡張ライブラリをロードする必要がありません。
ただし、汎用WALレコードはロジカルデコーディングを実行するときには無視されます。
  


2つ目として、拡張はカスタムリソースマネージャの使用を選択できます。
この方法はより柔軟で、ロジカルデコーディングをサポートし、汎用WALよりも小さな先行書き込みログ（WAL）レコードを生成できる場合があります。
ただし、拡張が実装するのはより複雑です。
  
汎用WALレコード





組み込みのWALにログを書き込むすべてのモジュールは、それぞれに独自の型のWALレコードがありますが、ページへの変更を汎用的な方法で記述する汎用WALレコード型もあります。
  
注記


汎用WALレコードはロジカルデコーディング時に無視されます。
拡張にロジカルデコーディングが必要な場合は、カスタムWALリソースマネージャを検討してください。
   



汎用WALレコードを構築するためのAPIはaccess/generic_xlog.hに定義されており、access/transam/generic_xlog.cで実装されています。
  


汎用WALレコードの機能を使ってWAL書き込みを伴うデータ更新を行うには、以下の手順に従ってください。

   
	

state = GenericXLogStart(relation) により、指定のリレーションについての汎用WALレコードの構築を開始します。
     

	

page = GenericXLogRegisterBuffer(state, buffer, flags) により、現在の汎用WALレコード内で更新されるバッファを登録します。
この関数はバッファページの一時コピーへのポインタを返すので、更新はそれに対して行ってください。
（バッファの内容は直接更新しないでください。）
3番目の引数は、操作についてのフラグのビットマスクです。
現在のところ、使用できるフラグはGENERIC_XLOG_FULL_IMAGEのみで、これはWALレコードには変更の差分ではなく、ページ全体のイメージが含まれることを示します。
典型的には、このフラグはページが新しいか、あるいは完全に書き換えられるときにセットされます。
WAL書き込み対象の動作が複数のページを更新する必要がある場合は、GenericXLogRegisterBufferを繰り返すことができます。
     

	

前の手順で取得したページのイメージに更新を適用する。
     

	

GenericXLogFinish(state)により、バッファの変更を適用し、汎用WALレコードを送出する。
     




  


WALレコードの構築は、上記の手順内の間のどこででも、GenericXLogAbort(state)を呼び出すことで中止できます。
これによりページイメージのコピーに対する変更はすべて廃棄されます。
  


汎用WALレコードの機能を使うときは、以下の点に注意してください。

   
	

バッファの直接更新は許されません！
すべての更新はGenericXLogRegisterBuffer()で取得したコピーに対して行わなければなりません。
言い換えれば、汎用WALレコードを使うコードではBufferGetPage()を呼び出してはいけません。
しかし、適切なときにバッファにピンを立てる、外す、そしてロックする、解除するのが呼び出し側の責任であることに変わりはありません。
各ターゲットバッファの排他的ロックをGenericXLogRegisterBuffer()の前からGenericXLogFinish()の後まで保持していなければなりません。
     

	

手順2のバッファの登録と、手順3のページイメージの更新は自由に混在させることができます。
つまり、両方の手順を任意の順序で繰り返すことができます。
バッファの登録は、再生時にロックを取得する順序と同じにすべきであることを覚えていてください。
     

	

汎用WALレコードに登録できるバッファの最大数はMAX_GENERIC_XLOG_PAGESです。
この制限を超えるとエラーが発生します。
     

	

汎用WALでは、更新対象のページが標準的なレイアウトになっている、特にpd_lowerとpd_upperの間には意味のあるデータがないということを想定しています。
     

	

ここではバッファページのコピーを更新するため、GenericXLogStart()はクリティカルセクションを開始しません。
従って、GenericXLogStart()とGenericXLogFinish()の間では、メモリの割り当て、エラーの発生などを安全に実行できます。
唯一の本当のクリティカルセクションはGenericXLogFinish()の内部にあります。
エラー終了の中でGenericXLogAbort()を呼び出すことについても心配する必要はありません。
     

	

GenericXLogFinish()はバッファをダーティにして、LSNの設定をすることの処理をします。
これについて明示的な処理をする必要はありません。
     

	

ログを取らないリレーションは、実際のWALレコードが送出されないことを除けば、すべてが同じように動作します。
従って、通常は、ログを取らないリレーションについて明示的な検査をする必要はありません。
     

	

汎用WALを再生する機能は、バッファの排他的ロックを、バッファが登録されたのと同じ順序で取得します。
すべての変更を再生した後で、ロックは同じ順序で解放されます。
     

	

登録バッファにGENERIC_XLOG_FULL_IMAGEが指定されない場合、汎用WALレコードは古いページイメージと新しいページイメージの間の差分を含むものとされます。
この差分はバイト毎の比較に基づくものです。
これはデータをページ内で移動する場合、あまり小さくなりませんが、将来は改善されるかもしれません。
     




  


カスタムWALリソースマネージャ





この節では、PostgreSQL™コアシステムとカスタムWALリソースマネージャ間のインタフェースについて説明します。
これらは拡張モジュールがWALと直接統合できるようにします。
 


拡張、特にテーブルアクセスメソッドやインデックスアクセスメソッドは、リカバリ、レプリケーション、および／またはロジカルデコーディングにWALを使用する必要があるかもしれません。
 


新しいカスタムWALリソースマネージャを作成するためには、まずリソースマネージャメソッドの実装を持つRmgrData構造体を定義します。
PostgreSQL™ソースのsrc/backend/access/transam/READMEとsrc/include/access/xlog_internal.hを参照してください。


/*
 * Method table for resource managers.
 *
 * This struct must be kept in sync with the PG_RMGR definition in
 * rmgr.c.
 *
 * rm_identify must return a name for the record based on xl_info (without
 * reference to the rmid). For example, XLOG_BTREE_VACUUM would be named
 * "VACUUM". rm_desc can then be called to obtain additional detail for the
 * record, if available (e.g. the last block).
 *
 * rm_mask takes as input a page modified by the resource manager and masks
 * out bits that shouldn't be flagged by wal_consistency_checking.
 *
 * RmgrTable[] is indexed by RmgrId values (see rmgrlist.h). If rm_name is
 * NULL, the corresponding RmgrTable entry is considered invalid.
 */
/*
 * （日本語訳）
 * テーブルのリソースマネージャの方法。
 *
 * この構造体は、rmgr.cのPG_RMGR定義と同期している必要があります。
 *
 * rm_identifyは、xl_info（rmidへの参照なし）に基づくレコードの名前を返す必要があります。
 * 例えば、XLOG_BTREE_VACUUMは"VACUUM"になります。
 * その後、rm_descを呼び出して、可能であれば（最後のブロックなど）、
 * レコードの追加の詳細を取得できます。
 *
 * rm_maskリソースマネージャによって変更されたページを入力として受け取り、
 * wal_consistency_checkingによってフラグが立てられないビットをマスクします。
 *
 * RmgrTable[]はRmgrId値によってインデックス化されます(rmgrlist.hを参照)。
 * rm_nameがNULLの場合、対応するRmgrTableエントリは無効と見なされます。
 */
typedef struct RmgrData
{
    const char *rm_name;
    void        (*rm_redo) (XLogReaderState *record);
    void        (*rm_desc) (StringInfo buf, XLogReaderState *record);
    const char *(*rm_identify) (uint8 info);
    void        (*rm_startup) (void);
    void        (*rm_cleanup) (void);
    void        (*rm_mask) (char *pagedata, BlockNumber blkno);
    void        (*rm_decode) (struct LogicalDecodingContext *ctx,
                              struct XLogRecordBuffer *buf);
} RmgrData;


 


実例としてsrc/test/modules/test_custom_rmgrsモジュールがあります。そこではカスタムWALリソースマネージャの使い方を示しています。
  


次に、新しいリソースマネージャを登録します。



/*
 * Register a new custom WAL resource manager.
 *
 * Resource manager IDs must be globally unique across all extensions. Refer
 * to https://wiki.postgresql.org/wiki/CustomWALResourceManagers to reserve a
 * unique RmgrId for your extension, to avoid conflicts with other extension
 * developers. During development, use RM_EXPERIMENTAL_ID to avoid needlessly
 * reserving a new ID.
 */
/*
 * （日本語訳）
 * カスタムWALリソースマネージャの登録。
 *
 * リソースマネージャIDは、すべての拡張にわたってグローバルにユニークである必要があります。
 * https://wiki.postgresql.org/wiki/CustomWALResourceManagers を参照して、
 * 拡張のユニークRmgrIdを予約し、他の拡張開発者との競合を回避します。
 * 開発時には、RM_EXPERIMENTAL_IDを使用して、新しいIDが不必要に予約されないようにします。
 */
extern void RegisterCustomRmgr(RmgrId rmid, const RmgrData *rmgr);



RegisterCustomRmgrは拡張モジュールの_PG_init関数から呼び出される必要があります。
新しい拡張を開発する際には、rmidにRM_EXPERIMENTAL_IDを使用してください。
拡張をユーザにリリースする準備ができたら、Custom WAL Resource Managerのページで新しいリソースマネージャIDを予約してください。
 


カスタムリソースマネージャを実装する拡張モジュールをshared_preload_librariesに配置して、PostgreSQL™の起動の初期にロードされるようにします。
 
注記


拡張モジュールは、システム内にカスタムWALレコードが存在する限り、shared_preload_libraries内に保持されなければなりません。
そうしないとPostgreSQL™はカスタムWALレコードを適用またはデコードすることができず、サーバの起動を妨げる可能性があります。
   


第65章 組み込みインデックスアクセスメソッド



B-Treeインデックス



はじめに





PostgreSQL™は、標準的なbtree（multi-way balanced tree）インデックスデータ構造を実装しています。
明確に定義された線形順にソート可能なデータ型は、すべてbtreeインデックスで索引付できます。
唯一の制限は、一つのインデックスエントリが（適用可能であれば、TOAST圧縮後）ページの約1/3を超えられないことです。
 


btree演算子クラスはそのデータ型がソート順を持つことが必要なので、btree演算子クラス（実際には演算子族）は、PostgreSQL™の一般的表現として、およびソートセマンティクスを理解するものとして利用されてきました。
ですから、単にbtreeインデックスをサポートするだけに必要なもの以上の機能と、btree AMが使用するものからはかけ離れたシステムの部品を備えなければなりません。
 

B-Tree演算子クラスの振る舞い





表36.3「B-treeストラテジ」で示すように、btree演算子クラスは次の5つの比較演算子を提供しなければなりません。
<、<=、=、>=、そして>です。
<>も演算子クラスの一部であると期待する方もいるかもしれませんが、そうではありません。
インデックス検索のWHERE句で<>を使うのは、ほとんど常に役に立たないからです。
（ある種の目的のためにプランナは<>をbtree演算子クラスに関連しているものとして扱います。
しかし、プランナはpg_amopから検索するのではなく=の否定子リンクから検索します。）
 


複数のデータ型がほとんど同じソートセマンティクスを共有している場合、それらの演算子クラスは演算子族にまとめることができます。
そうすることによりプランナが型をまたがる比較を推論できるので、これはメリットがあります。
演算子族内の各演算子クラスは、入力データ型のための単一型演算子（および関連するサポート関数）を含むべきです。
一方、型をまたがる比較演算子とサポート関数は演算子族中で「ゆるやか」です。
プランナが推移関係から推論するすべての比較条件を提示できるように、型をまたがる演算子の完全な集合を演算子族に入れておくことをお勧めします。
 


btree演算子族が満たさなければならない基本的な前提条件があります。
 
	

=演算子は等号関係でなければなりません。
つまり、そのデータ型のすべての非NULL値A、B、Cについて、

    
	

A = Aが真である（反射律）
      

	

A = Bなら、B = Aである（対称律）
      

	

A = BかつB= Cなら、A = Cである（推移律）
      




   

	

<は強順序関係でなければなりません。つまり、すべての非NULL値A、B、Cに対して、

    
	

A < Aは偽である（非反射律）
      

	

A < BかつB < Cなら、A < Cである（推移律）
      




   

	

更に、順序は全である。すなわち、すべての非NULL値A、Bに対して、

    
	

厳密にA < B、A = B、B < Aのうちどれか一つが真（三分律）
      






（もちろん、三分律は比較サポート関数の定義を正当化します。）
   





他の3つの演算子は=と<に沿って自明に定義され、それらと一貫していなければなりません。
 


複数のデータ型をサポートする演算子族について、演算子族中のデータ型であるどんなA、B、Cも上記の法則を満たさなければなりません。
型をまたがる場合、2つまたは3つの異なる演算子の動作が一貫している必要があるため、推移律を満たすことが最も困難です。
例をあげると、少なくともfloat8と比較するためにnumeric値をfloat8に変換する現在の意味論のもとでは、float8とnumericを同じ演算子族に加えるのはうまくいかないでしょう。
float8の精度に限りがあるからです。
これは同じfloat8値に対して等号比較する複数の異なるnumeric値が存在することを意味し、したがって推移律は満たされません。
 


複数データ型族に関する別な要件は、演算子族に含まれるデータ型間に定義される暗黙的あるいは二値型強制(binary-coercion)キャストは、関係するソート順を変更してはならないことです。
 


単一のデータ型において、btreeインデックスがこれらの法則を守ることを要求するのはかなり明確です。
これらの法則なしにはキー並べる順序がなくなってしまうからです。
また、異なるデータ型の比較キーを使うインデックス検索では、2つのデータ型またがる比較が正常に動作することが必要です。
演算子族中で3つ以上のデータ型に対する拡張はbtreeインデックスの機構自体では要求されませんが、プランナは最適化の目的でそれらに依存します。
 

B-Treeサポート関数





表36.9「B-treeサポート関数」で示すように、btreeでは一つの必須サポート関数と、5つの省略可能なサポート関数を定義します。
6つのユーザ定義メソッドは以下の通りです。
 
	order
	

btreeの演算子族が比較演算子を提供する各データ型の組み合わせに対して、比較サポート関数を提供しなければなりません。それらはサポート関数1番でpg_amprocに、また、比較での左右のデータ型と等しいamproclefttype/amprocrighttypeに、登録されます（すなわち、pg_amopに登録されている演算子が対応するものと同じデータ型です）。
比較関数は2つの非NULL値AとBを取り、
A < B、A = B、または、A > Bであるときにそれぞれ、< 0、0、または、> 0であるint32の値を返さなければなりません。
NULLを返すことは許されず、データ型の全ての値は比較可能でなければなりません。
例としてsrc/backend/access/nbtree/nbtcompare.cを参照してください。
    


比較される値が照合順序が適用可能なデータ型のものである場合、比較サポート関数に適切な照合順序のOIDが渡され、標準のPG_GET_COLLATION()機構が使用されます。
    

	sortsupport
	

任意で、btree演算子族はソートサポート関数を提供してもよいです。これはサポート関数2番で登録されます。
この関数は、素朴に比較サポート関数を呼び出すよりも、ソート目的により効果的な方法での比較の実装を可能にします。
これに関するAPIはsrc/include/utils/sortsupport.hで定義されています。
    

	in_range
	

任意で、btree演算子族はin_rangeサポート関数を提供してもよいです。これはサポート関数3番に登録されます。
これはbtreeインデックス操作中には使われません。そうではなく、演算子族のセマンティクスをRANGE offset PRECEDINGとRANGE offset FOLLOWINGフレーム境界タイプ（「ウィンドウ関数呼び出し」を参照）を含むWINDOW句に対応できるように拡張します。
基本的には、提供される拡張情報はどのように演算子族のデータ並び順と互換性のある方法でoffset値を足すか引くかです。
    


in_range関数は以下のシグネチャを持たなければなりません。


in_range(val type1, base type1, offset type2, sub bool, less bool)
returns bool



valとbaseは同じ型でなければならず、これは演算子族でサポートされる型の一つ（すなわち、並び順を提供する対象の型）です。
しかしながら、offsetは異なる型のものでも可能です。それは演算子族でサポートされないものでもよいです。
例としては、組み込みのtime_ops族がinterval型のoffsetを持つin_range関数を提供しています。
演算子族は、任意のサポートされる型と一つまたは複数のoffset型に対するin_range関数を提供できます。
各in_range関数は、pg_amprocにtype1と等しいamproclefttypeとtype2に等しいamprocrighttypeで登録されるべきです。
    


in_range関数の本質的なセマンティクスは2つのBooleanフラグパラメータに依存します。
これは以下のように、baseにoffsetを加算または減算して、それからvalを結果と比較すべきです。
     
	

        !subかつ
        !lessであるなら、
        val >=
        (base +
        offset)を返します
       

	

        !subかつ
        lessであるなら、
        val <=
        (base +
        offset)を返します
       

	

        subかつ
        !lessであるなら、
        val >=
        (base -
        offset)を返します
       

	

        subかつ
        lessであるなら、
        val <=
        (base -
        offset)を返します
       





このように実行する前に、本関数は、offsetの符号を検査すべきです。
すなわち、負であったなら、エラーERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE(22013)、エラー文面としては「invalid preceding or following size in window function(ウィンドウ関数で先行または後続のサイズが不正です)」などを出すことです。
（意味上の必要性が乏しいと見られることから非標準の演算子族はこの制限を無視することを選ぶかもしれませんが、これは標準SQLで必要とされています。）
中核コードが特定のデータ型における「ゼロより小さい」ことの意味を理解しなくても良いように、この要件はin_range関数に委託されます。
    


さらに期待されることは、in_range関数は、実用的には、base + offsetやbase - offsetがオーバーフローする場合にエラーを投げるのを避けるべきです。
たとえ値がデータ型の範囲を超えたとしても正しい比較結果は決定できます。
データ型が「infinity」や「NaN」などの概念を含む場合には、in_rangeの結果が演算子族の通常のソート順序と一致するように特別な対応が必要となることに注意してください。
    


in_range関数の結果は、演算子族で規定されるソート順序と整合していなければなりません。
正確には、与えられた任意のoffsetとsubの固定値については以下のようになります。
     
	

less = trueのin_rangeがいくつかのval1とbaseに対して真であるなら、同じbaseの全てのval2 <= val1に対して真でなければなりません。
       

	

less = trueのin_rangeが、いくつかのval1とbaseに対して偽であるなら、同じbaseの全てのval2 >= val1に対して偽でなければなりません。
       

	

less = trueのin_rangeがいくつかのvalとbase1に対して真であるなら、同じvalの全てのbase2 >= base1に対して真でなければなりません。
       

	

less = trueのin_rangeが一部のvalとbase1に対して偽であるなら、同じvalの全てのbase2 <= base1に対して偽でなければなりません。
       





less = falseのときには、逆条件の類似した命題が適用できます。
    


整列しようとしている型(type1)が照合可能であるなら、標準のPG_GET_COLLATION()機構を使って、in_range関数に適切な照合順序のOIDが渡されます。
    


in_range関数は、通例STRICTと印付けされ、NULL入力を処理する必要がありません。
    

	equalimage
	

省略可能ですが、btree演算子族はequalimage (「イメージ等価を意味する等価」)サポート関数を提供してもよいです。これはサポート関数4番で登録されます。
この関数は、中核コードがbtree重複排除の最適化を適用するのが安全かを決定できるようにします。
今のところ、equalimage関数はインデックスの構築または再構築時にのみ呼び出されます。
    


equalimage関数は以下のシグネチャを持たなければなりません。


equalimage(opcintype oid) returns bool



戻り値は演算子クラスと照合順序についての静的な情報です。
trueを返すことは、AおよびB引数が何らセマンティック情報を損失すること無しに交換可能でもあるとき、演算子クラスに対するorder関数が0（「引数が等しい」）だけを返すことが保証されていることを示します。
equalimage関数が登録されていなかったり、falseを返すことは、この条件は守られないであろうことを示します。
    


opcintype引数は演算子クラスタがインデックスを作るデータ型のpg_type.oidです。
これは同じ基となるequalimage関数を演算子クラスを横断して再利用できるようになる利便性があります。
opcintypeが照合可能なデータ型である場合には、適切な照合順序のOIDが、標準のPG_GET_COLLATION()機構を使って、equalimage関数に渡されます。
    


演算子クラスに関する限り、trueを返すことは、重複排除が安全（あるいはequalimage関数に渡されたOIDの照合順序について安全）であることを示します。
しかしながら、コアコードは、全てのインデックス列がequalimage関数を登録する演算子クラスを使っていて、各関数が呼ばれたとき実際にtrueを返すときに、そのインデックスに対して重複排除を安全と見做すだけです。
    


イメージ等価は単純にビット毎に等しいこととほとんど同じ条件です。
一点微妙な違いがあります。varlenaデータ型にインデックス作成するとき、入力時の一貫性のないTOAST圧縮の適用のために、同じdatumの二つのイメージのディスク上の表現はビット毎には等しくないかもしれません。
形式的には、演算子クラスのequalimage関数がtrueを返すときには、datum_image_eq() C関数が常に演算子クラスのorder関数と一致すると想定して安全でした（同じ照合順序のOIDがequalimageとorderの両関数に渡されるとして）。
    


コアコードは基本的に、複数データ型の族の中の演算子クラスの「等価性がイメージ等価性を含む」状態について、同族の他の演算子クラスの詳細に基づいた、いかなる推測もできません。
また、ある演算子族が型にまたがってequalimage関数を登録していることを認識できず、そのような試みはエラーになります。
これは「等価性がイメージ等価性を含む」状態は、演算子族の階層でおおむね定義されている、ソートと等価性のセマンティクスに依存しているだけでは無いためです。
一般に、ある特定データ型の実装によるセマンティクスは別個に考慮されなければなりません。
    


PostgreSQL™のコア配布物に含まれる演算子クラスが従う慣習は、標準品、すなわち、一般的なequalimage関数を登録することです。
大部分の演算子クラスタはbtequalimage()を登録しています。これは重複排除が無条件に安全であることを示しています。
textなどの照合可能なデータ型に対する演算子クラスはbtvarstrequalimage()を登録します。これは決定的な照合順序では重複排除が安全であることを示します。
サードパーティ拡張におけるベストプラクティスは制御を保つためにそれら自身のカスタム関数を登録することです。
    

	options
	

省略可能ですが、B-treeの演算子族はoptions（「演算子クラス固有オプション」）サポート関数を提供してもよいです。これはサポート関数5番に登録されます。
この関数はユーザに見える演算子クラスの振る舞いを制御するパラメータの集合を定義します。
    


optionsサポート関数は以下のシグネチャを持たなければなりません。


options(relopts local_relopts *) returns void



関数にはlocal_relopts構造体へのポインタが渡されます。ここには演算子クラス固有のオプションの集合が書かれている必要があります。
このオプションにはPG_HAS_OPCLASS_OPTIONS()およびPG_GET_OPCLASS_OPTIONS()マクロを使って他のサポート関数からアクセスが可能です。
    


今のところ、optionsサポート関数を持ったB-Treeの演算子クラスはありません。
B-treeはGiST、SP-GiST、GINおよびBRINで行われているような柔軟なキーの表現を許していません。
そのため、おそらくはoptionsが現在のB-treeインデックスアクセスメソッドで多数適用されることはありません。
それでも、統一性のためにサポート関数がB-treeに追加されました。おそらくPostgreSQL™でのB-treeの更なる進化の過程で使用法を見つけ出すでしょう。
    

	skipsupport
	

省略可能ですが、btree演算子族はスキップサポート関数を提供してもよいです。これはサポート関数6番に登録されます。
この関数は、B-treeコードに対して、演算子クラスの基となる入力型で表すことができるすべての値を、キー空間の順序で繰り返し処理する方法を提供します。
これは、スキップスキャンを最適化するときにコアコードによって使用されます。
これに関するAPIはsrc/include/utils/skipsupport.hで定義されています。
    


スキップサポート関数を提供しない演算子クラスでも、スキップスキャンを使用できます。
コアコードでも代替の戦略を使用できますが、一部の離散型では最適ではない場合があります。
通常、連続型の演算子クラスがスキップサポート関数を提供することは意味がありません（実行不可能な場合もあります）。
    


演算子族が型をまたがるskipsupport関数を登録するのは賢明ではなく、登録しようとするとエラーになります。
これは、次のインデックス可能な値を決定するには、インデックスタプルからコピーされた値を増分する必要があるためです。
生成される値はすべて、基になるデータ型 (「スキップされた」インデックス列の演算子クラス入力型) が同じである必要があります。
    




実装





本節では、上級ユーザに役立つかもしれない、B-Treeインデックスの実装の詳細について説明します。
更なる詳細、B-Tree実装の内部に焦点をあてた記述については、ソース配布物のsrc/backend/access/nbtree/READMEを参照してください。
 
B-Treeの構造





PostgreSQL™のB-Treeインデックスは複数階層のツリー構造で、ツリーの各階層はページの双方向連結リストとして使用できます。
一つのメタページがインデックスの最初のセグメントファイルの固定位置に格納されます。
それ以外の全てのページはリーフページか内部ページのいずれかです。
リーフページはツリーの最下階層にあるページです。
それ以外の全ての階層は内部ページで構成されます。
各リーフページはテーブルの行を指すタプルを含みます。
各内部ページはツリーの次の下位層を指すタプルを含みます。
典型的には、全ページの99％以上がリーフページです。
内部ページとリーフページは共に、「データベースページのレイアウト」に記載されている標準のページ書式を使用します。
  


既存リーフページがやってくるタプルをはめ込むことができないとき、新たなリーフページがB-Treeインデックスに追加されます。
ページ分割操作は一部のアイテムを新ページに動かすことで、当初は溢れているページに属していたアイテムのために空間を作ります。
ページ分割は、また、新ページへの新たなダウンリンクを親ページに挿入しなければなりません。これは親ページの分割を同様に引き起こすかもしれません。
ページは分割は再帰的に「上向きに連鎖」します。
最終的にルートページが新たなダウンリンクをはめ込みできないときには、ルートページ分割が実施されます。
これは元のルートページの一つ上の階層に新たなルートページを作ることで、ツリー構造に新しい階層を加えます。
  

ボトムアップインデックスの削除





B-Treeインデックスは、MVCCの下で同じ論理テーブル行の複数の現存するバージョンが存在する可能性があることを直接認識していません。
インデックスに対して、各タプルは独自のインデックスエントリを必要とする独立したオブジェクトです。
「バージョンチャーン」タプルは蓄積し、クエリ待ち時間とスループットに悪影響を与える可能性があります。
これは通常、個々の更新のほとんどがHOT最適化を適用できないようなUPDATEの重いワークロードで発生します。
UPDATE中にあるインデックスによって、カバーされる一つだけの行の値を変更するには、新しいインデックスタプルのセットをいつも必要とします。
テーブル上にある ありとあらゆるインデックスにつき一つです。
具体的には、UPDATEによって「論理的に変更」されなかったインデックスが含まれることに注意してください。
すべてのインデックスは、テーブル上で最新バージョンを指す後継の物理的なインデックスタプルを必要とします。
各インデックス中のそれぞれの新しいタプルは通常元の「更新された」タプルと短期間共存する必要があります（通常、UPDATEトランザクションのコミットした直後までです）。
  


B-Treeインデックスは、ボトムアップインデックスの削除パスの実行によって、バージョンチャーンのインデックスタプルを徐々に削除します。
各削除パスは、予期された「バージョンチャーンのページ分割」に対してトリガされます。
これは、UPDATE文によって論理的に変更されてないインデックスだけで発生します。
さもないと、特定のページで使われなくなったバージョンが集中的に蓄積されます。
ある種の実装レベルの発見的手法は、均一のごみインデックスタプルの特定及び削除に失敗する可能がありますが、ページの分割は通常避けることができます（ページ分割もしくは重複排除パスの場合に、リーフページ上の収まらない新しいタプルが入ることの問題が解決します）。
インデックススキャンが（単一の論理行に対して）通過しなければならない最悪の場合のバージョン数は、システム全体の応答性やスループットに重要な影響があります。
ボトムアップインデックス削除パスは、論理行とバージョンを含む定性的な特徴に基づいた単一のリーフページ内の疑わしいごみタプルを対象としています。
これは、一定の定量的なテーブルレベルの閾値が超えられたとき（「自動バキュームデーモン」参照）に起動されるautovacuumワーカーによって実行された「トップダウン」インデックスのクリーンアップと対照的です。
  
注記


B-Treeインデックス内で実行されたすべての削除操作がボトムアップ削除操作とは限りません。
インデックスタプルの削除の異なる分類があります。
それは、単純なインデックスのタプル削除です。
これは、削除が安全であると分かるインデックスタプル(アイテム識別子のLP_DEADビットが既に設定されているタプル)を削除する遅延メンテナンス操作です。
ボトムアップインデックス削除と同様に、単純インデックス削除は分割を回避する方法としてページ分割が予測された時点で実行されます。
   


単純削除は、最近のインデックススキャンでは影響があるアイテムにLP_DEADビットをセットする際に、ついでに実行できる機会の場合のみに実行されるという意味で、機会主義と言えます。
PostgreSQL™ 14より前では、B-Treeの削除の種類は単純な削除のみでした。
単純な削除とボトムアップ削除の主な違いは、前者だけがインデックススキャンの動きによって機会を狙って駆動されることに対して、後者だけがインデックスカラムが論理的に変更されないUPDATEからのバージョンチャーンを具体的に対象とすることです。
   



ボトムアップインデックス削除は、明確なワークロードによる特定インデックスのすべてのゴミインデックスタプルの掃除の大多数を実行します。
これは、インデックスがカバーするカラムを論理的に変更することが滅多にまたは決してないUPDATEからの有意なバージョンチャーンに依存するB-Treeインデックスで予想されます。
論理行ごとのバージョン数の平均と最も悪いケースは、対象とされた増分削除パスによって純粋に低く維持することができます。
特定インデックスのディスク上のサイズは、UPDATEからの一定のバージョンチャーンがあるにも関わらず、ページやブロックが一つも増加することがない可能性が十分にあります。
そのような場合でも、VACUUM操作（通常、自動バキュームワーカープロセスで実行します）による、徹底的な「一掃」が、テーブルとその各インデックスの共通のクリーンアップの一部として最終的に要求されます。
  


 VACUUMとは異なり、ボトムアップインデックス削除は最も古いゴミのインデックスタプルがどのくらい経過しているかについて強い保証を提供しません。
テーブルと全てのインデックスの合計によって共通する保守的な切り捨て点より前に、不要になる「浮いているゴミ」インデックスタプルの維持を許可することはできません。
この基本的なテーブルレベルの不変条件は、テーブルのTIDを安全にリサイクルします。
これにより、時間の経過と共に異なる論理行が同じテーブルTIDを再利用することが可能です（ただし、これは存続期間が同じVACUUMサイクルにまたがる、二つの論理行に同時には発生しません）。
  

重複排除





重複とは、同じインデックスで全てのインデックスキー列が少なくとも一つの他のリーフページタプルの該当する列の値と一致する値をもっている、リーフページタプル（テーブルの行を指すタプル）です。
重複タプルは実際によくあります。
オプションの技法「重複排除」が有効にされているとき、B-Treeインデックスは、特別な重複に対する空間効率の良い表現方法を使用できます。
  


重複排除は重複タプルのグループを定期的に合併して、各グループに対する単一のポスティングリストタプルを形成することで機能します。
この表現方法では列のキー値は一度だけ現れます。
テーブルの行を指すTIDのソートされた配列がこれに続きます。
概して各値（あるいは列値の異なる組み合わせ）が複数回出現する場合に、これは顕著にインデックスの格納サイズを減らします。
問い合わせの遅延も顕著に削減できます。
全体的な問い合わせのスループットも顕著に増加するかもしれません。
インデックスのバキューム処理のオーバーヘッドも顕著に削減されるかもしれません。
  
注記


B-Tree重複排除は、B-Tree演算子クラスの=項に従ってNULL値が決して互いに等しくならないとしても、NULL値を含む「重複」に対しても同様に効果的です。
ディスク上のB-Tree構造を理解するいかなる実装部分に関しても、NULLはインデックス値の定義域からの他の値に過ぎません。
   



既存のリーフページに収まらない新たな要素が挿入されたとき、重複排除の処理は怠惰に実行されますが、インデックスタプルの削除は新しいアイテムのための十分なスペースを解放できなかった場合に限ります（通常、削除は簡易に検討した上で無視されます）。
GINのポスティングリストのタプルと違って、B-Treeのポスティングリストのタプルは新たな重複が挿入される度に拡張する必要がありません。それらはリーフページの元の論理内容に対する単なる代替の物理表現にすぎません。
この設計は読み書き混合のワークロードでの性能の一貫性を重視しています。
ほとんどのクライアントアプリケーションは重複排除を使うことで少なくとも控えめな性能の恩恵を確認することができるでしょう。
重複排除はデフォルトで有効になっています。
  


CREATE INDEXとREINDEXは、使用する手順が若干異なりますが、ポスティングリストタプルを作って重複排除を適用します。
テーブルから取得されてソートされた入力で遭遇した重複した通常タプルの各グループは、現在のペンディングリーフページに追加される前に、ポスティングリストタプルにマージされます。
個別のポスティングリストタプルには、可能な限り多数のTIDが詰め込まれます。
リーフページは、重複排除用の別パスではなく、通常の方法で書き出されます。
この戦略はCREATE INDEXとREINDEXに良く適合します。これらは1回で終わるバッチ操作であるからです。
  


インデックスの値に重複が無いか殆ど無いために重複排除から利益を得られない、書き込みの多いワークロードには、（重複排除が明示的に無効化されて居ない限り）固定のペナルティによる小さい負荷増があります。
deduplicate_items格納パラメータは個別のインデックス内で重複排除を無効化するのに使うことができます。
ポスティングリストタプルの読み込みは少なくとも通常タプル表現の読み込み程度に効率的であるため、読み込みのみのワークロードで性能ペナルティは一切ありません。
通常は重複排除を無効化することは有益ではありません。
  


一意性インデックス（や一意性制約）が重複排除に使用できる場合があります。
これにより、リーフページは余分なバージョンチャーンの重複を一時的に「吸収」することができます。
一意性インデックス内の重複排除は、特に時間のかかるトランザクションがガベージコレクションを妨げるスナップショットを保持している場合にボトムアップインデックス削除を増強します。
目的は、ボトムアップインデックス削除の戦略が再び有効になるための時間を稼ぐことです。
一つの時間のかかるトランザクションが自然に消えるまでページ分割を遅らせることで、以前の削除パスが失敗した場所でボトムアップ削除パスを成功することができます。
  
ヒント


一意性インデックスで重複排除パスを実行すべきかどうかの判断には、特別なヒューリスティックが適用されます。
これは、しばしばリーフページ分割まで連続してスキップして、無益な重複排除パスでの無駄なサイクルによる性能ペナルティを回避できます。
重複排除のオーバーヘッドを懸念するなら、選択的に設定deduplicate_items = offを検討してください。
一意性インデックスで重複排除を有効にしておいてもほとんどデメリットはありません。
   



実装レベルの制限により、重複排除は全ての場合に使えるわけではありません。
重複排除の安全性はCREATE INDEXあるいはREINDEXが実行されたときに決定されます。
  


等しいデータの間で意味的に明らかな違いを伴う以下の場合には、重複排除は安全でないと見做されて使用できないことに注意してください。
  

   
	

非決定的な照合順序が使われているときtext、varchar、および、charは重複排除を使えません。
等しいデータの間で大文字小文字やアクセントの違いが維持されなければなりません。
     

	

numericは重複排除を使えません。
等しいデータの間で数の表示スケールが維持されなければなりません。
     

	

jsonbのB-Tree演算子クラスは内部的にnumericを使っているため、jsonbは重複排除を使えません。
     

	

float4およびfloat8は重複排除を使えません。
これらの型は-0と0に異なる表現を持ち、にもかかわらずこれらは等しいと見做されます。
この違いは維持されなければなりません。
     




  


さらに以下の実装レベルの制限があります。これはPostgreSQL™の将来バージョンで解消されるかもしれません。
  

   
	

コンテナ型（複合型、配列型、あるいは、範囲型など）は、重複排除を使えません。
     




  


さらに以下の実装レベルの制限があります。これは使われている演算子クラスや照合順序にかかわりなく該当します。
  

   
	

      INCLUDEインデックスには重複排除は使えません。
     




  




GiSTインデックス



はじめに





GiSTは汎用検索ツリー（Generalized Search Tree）を表します。
これは、均衡な、ツリー構造のアクセスメソッドで、任意のインデックスの枠組みを実装する基本的なテンプレートとして動作します。
B-tree、R-treeやその他多くのインデックスの枠組みをGiSTで実装することができます。
 


GiSTの利点の1つは、データベースの専門家ではなく、データ型分野の専門家によって、適切なアクセスメソッドで独自のデータ型を開発することができることです。
 


ここで示す情報の一部は、カリフォルニア大学バークレイ校のGiSTインデックスプロジェクト、ウェブサイトおよびMarcel Kornackerの論文、Access Methods for Next-Generation Database Systemsから派生したものです。
PostgreSQL™におけるGiSTの実装は、主に、Teodor SigaevとOleg Bartunovによって保守されています。
そして、彼らのウェブサイトにも多くの情報があります。
  

組み込み演算子クラス





PostgreSQL™のコア配布物は表65.1「組み込みGiST演算子クラス」に示すGiST演算子クラスを含みます。
(付録F 追加で提供されるモジュールと拡張に記載された追加モジュールの中には追加のGiST演算子クラスを提供するものもあります。)
 
表65.1 組み込みGiST演算子クラス
	名前	インデックス可能な演算子	順序付け演算子
	box_ops	<< (box, box)	<-> (box, point)
	&< (box, box)
	&& (box, box)
	&> (box, box)
	>> (box, box)
	~= (box, box)
	@> (box, box)
	<@ (box, box)
	&<| (box, box)
	<<| (box, box)
	|>> (box, box)
	|&> (box, box)
	circle_ops	<< (circle, circle)	<-> (circle, point)
	&< (circle, circle)
	&> (circle, circle)
	>> (circle, circle)
	<@ (circle, circle)
	@> (circle, circle)
	~= (circle, circle)
	&& (circle, circle)
	|>> (circle, circle)
	<<| (circle, circle)
	&<| (circle, circle)
	|&> (circle, circle)
	inet_ops	<< (inet, inet)	 
	<<= (inet, inet)
	>> (inet, inet)
	>>= (inet, inet)
	= (inet, inet)
	<> (inet, inet)
	< (inet, inet)
	<= (inet, inet)
	> (inet, inet)
	>= (inet, inet)
	&& (inet, inet)
	multirange_ops	= (anymultirange, anymultirange)	 
	&& (anymultirange, anymultirange)
	&& (anymultirange, anyrange)
	@> (anymultirange, anyelement)
	@> (anymultirange, anymultirange)
	@> (anymultirange, anyrange)
	<@ (anymultirange, anymultirange)
	<@ (anymultirange, anyrange)
	<< (anymultirange, anymultirange)
	<< (anymultirange, anyrange)
	>> (anymultirange, anymultirange)
	>> (anymultirange, anyrange)
	&< (anymultirange, anymultirange)
	&< (anymultirange, anyrange)
	&> (anymultirange, anymultirange)
	&> (anymultirange, anyrange)
	-|- (anymultirange, anymultirange)
	-|- (anymultirange, anyrange)
	point_ops	|>> (point, point)	<-> (point, point)
	<< (point, point)
	>> (point, point)
	<<| (point, point)
	~= (point, point)
	<@ (point, box)
	<@ (point, polygon)
	<@ (point, circle)
	poly_ops	<< (polygon, polygon)	<-> (polygon, point)
	&< (polygon, polygon)
	&> (polygon, polygon)
	>> (polygon, polygon)
	<@ (polygon, polygon)
	@> (polygon, polygon)
	~= (polygon, polygon)
	&& (polygon, polygon)
	<<| (polygon, polygon)
	&<| (polygon, polygon)
	|&> (polygon, polygon)
	|>> (polygon, polygon)
	range_ops	= (anyrange, anyrange)	 
	&& (anyrange, anyrange)
	&& (anyrange, anymultirange)
	@> (anyrange, anyelement)
	@> (anyrange, anyrange)
	@> (anyrange, anymultirange)
	<@ (anyrange, anyrange)
	<@ (anyrange, anymultirange)
	<< (anyrange, anyrange)
	<< (anyrange, anymultirange)
	>> (anyrange, anyrange)
	>> (anyrange, anymultirange)
	&< (anyrange, anyrange)
	&< (anyrange, anymultirange)
	&> (anyrange, anyrange)
	&> (anyrange, anymultirange)
	-|- (anyrange, anyrange)
	-|- (anyrange, anymultirange)
	tsquery_ops	<@ (tsquery, tsquery)	 
	@> (tsquery, tsquery)
	tsvector_ops	@@ (tsvector, tsquery)	 





歴史的な理由から、inet_ops演算子クラスは型inetとcidrのデフォルトクラスではありません。
これを使用するには、CREATE INDEXでクラス名を指定します。
例えば、以下のようにします。


CREATE INDEX ON my_table USING GIST (my_inet_column inet_ops);


 

拡張性





伝統的に、新しいインデックスアクセスメソッドの実装は、非常に難しい作業を意味していました。
ロックマネージャや先行書き込みログ（WAL）などデータベースの内部動作を理解する必要がありました。
GiSTインタフェースは高度に抽象化されており、アクセスメソッドの実装者には、アクセスするデータ型のセマンティクスのみの実装を要求します。
GiST層自身が同時実行性、ログ処理、ツリー構造の検索処理に関する注意を行います。
 


この拡張性と、他の、扱うことができるデータを対象とした標準検索ツリーの拡張性とを混同すべきではありません。
例えば、PostgreSQL™は拡張可能なB-treeとハッシュインデックスをサポートしています。
これは、PostgreSQL™を使用して、任意のデータ型に対するB-treeやハッシュを構築することができることを意味します。
しかし、B-treeは範囲述語（<、=、>）のみをサポートし、ハッシュインデックスは等価性問い合わせのみをサポートします。
 


ですから、PostgreSQL™のB-treeで例えば画像群をインデックス付けする場合、「画像xは画像yと同じか」、「画像xは画像yより小さいか」、「画像xは画像yより大きいか」といった問い合わせのみ発行することができます。
この文脈でどのように「同じか」や「より小さいか」、「より大きいか」を定義するかに依存して、これが有意なこともあるでしょう。
しかし、GiSTを基にしたインデックスを使用すれば、問題分野に特化した、おそらくは、「馬の画像を全て見つけたい」、「露出オーバーの写真をすべて見つけたい」といった質問に答えられる手段を作成することができます。
 


GiSTアクセスメソッドを有効にし、実行するために行なわなければならないことは、ツリーのキーの動作を定義する、複数のユーザ定義のメソッドを実装することです。
当然ながら、これらのメソッドは手の込んだ問い合わせをサポートするためかなり意匠を凝らす必要があります。
しかし、すべての標準的な問い合わせ（B-treeやR-treeなど）ではこれらは、相対的に見てごく簡単です。
まとめると、GiSTは汎用性、コード再利用、整理されたインタフェースと拡張性を兼ね備えたものです。
  


GiST用の演算子クラスが提供しなければならないメソッドが5つ、オプションで提供可能なメソッドが7つあります。
インデックスの正確性は、same、consistent、unionメソッドを適切に実装することで保証されます。
一方、インデックスの効率（容量と速度）はpenaltyとpicksplitメソッドに依存します。
オプションのメソッドの２つは、compressとdecompressです。これによりインデックスはインデックス付けするデータと異なるデータ型のツリーデータを内部で持つことができるようになります。
リーフはインデックス付けするデータ型となりますが、他のツリーノードは何らかのC構造体を取ることができます。
（しかしここでもPostgreSQL™のデータ型規約に従わなければなりません。
容量が可変のデータに関してはvarlenaを参照してください。）
ツリーの内部データ型がSQLレベルで存在する場合、CREATE OPERATOR CLASSコマンドのSTORAGEオプションを使用することができます。
オプションの8番目のメソッドはdistanceです。
これは演算子クラスに順序付けスキャン（最近傍検索）をサポートさせたい場合に必要です。
オプションの9番目のメソッドfetchは、compressメソッドが省略されている場合を除き、演算子クラスがインデックスオンリースキャンをサポートしたい場合に必要になります。
オプションの10番目のメソッドoptionsは、演算子クラスがユーザに固有のパラメータを持つ場合に必要です。
オプションの11番目のメソッドsortsupportは、GiSTインデックスの構築を高速にするのに使われます。
オプションの12番目のメソッドstratnumは、（src/include/nodes/primnodes.hにある）比較型を演算子クラスで使用されるストラテジ番号に変換します。
これにより、コアコードは時間的な制約インデックスの演算子を検索できます。
 
	consistent
	

インデックス項目pと問い合わせ値qが与えられると、この関数はインデックス項目が問い合わせと「一貫性」があるかどうか、つまり、述語「indexed_columnindexable_operator q」が、インデックス項目で表現される行に対して真かどうかを決定します。
リーフインデックス項目では、これはインデックス付条件の試験と等価です。
一方で内部ツリーノードでは、これはツリーノードで表現されるインデックスの副ツリーをスキャンする必要があるかどうかを決定します。
結果がtrueならば、recheckフラグも返されなければなりません。
これは、述語が確実に真なのか一部のみ真なのかを示します。
recheck = falseならば、インデックスは述語条件を正確に試験されたことを示し、recheck= trueならば行が単に一致候補であることを示します。
この場合、システムは自動的にindexable_operatorを実際の行値に対して評価し、本当に一致するかどうか確認します。
この規則により、GiSTはインデックス構造が非可逆な場合でも可逆な場合でもサポートすることができます。
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_consistent(internal, data_type, smallint, oid, internal)
RETURNS bool
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;




そして、Cモジュール内の対応するコードは以下のような骨格に従うことになります。



PG_FUNCTION_INFO_V1(my_consistent);

Datum
my_consistent(PG_FUNCTION_ARGS)
{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    data_type  *query = PG_GETARG_DATA_TYPE_P(1);
    StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
    /* Oid subtype = PG_GETARG_OID(3); */
    bool       *recheck = (bool *) PG_GETARG_POINTER(4);
    data_type  *key = DatumGetDataType(entry->key);
    bool        retval;

    /*

     * strategy、keyおよびqueryの関数として戻り値を決定してください。
     *
     * インデックスツリー内のどこで呼びだされているかを知るためGIST_LEAF(entry)を使用してください。
     * それは、例えば = 演算子をサポートする場合重宝です
     *（非リーフノードにおける空でないunion()とリーフノードにおける等価性を検査することができます）。
     */


    *recheck = true;        /* もしくは検査が正確であれば偽 */

    PG_RETURN_BOOL(retval);
}




ここで、keyはインデックス要素であり、queryはインデックスに対して検索される値です。
StrategyNumberパラメータは、演算子クラスのどの演算子が適用されるかを示します。
これはCREATE OPERATOR CLASSコマンドの演算子番号の1つに一致します。
      


演算子の右辺にはいかなる型も来ることがあり、それは左辺に現れるインデックス付けされたデータ型とは違うものかもしれませんので、このクラスにどの演算子を含めたかに依存して、queryのデータ型は演算子に応じて変動することがあります。
(上のコードの骨格は型が1つだけ可能であることを仮定しています。
そうでなければ、query引数の値を取得するのは演算子に依存しないといけないでしょう。)
consistent関数のSQL宣言では、実際の型は演算子に依存して何か他のものであるとしても、query引数の演算子クラスのインデックス付けされたデータ型を使うことをお勧めします。
      

	union
	

このメソッドはツリー内の情報を統合します。
項目の集合が与えられると、この関数は与えられた項目すべてを表現するインデックス項目を新しく生成します。
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_union(internal, internal)
RETURNS storage_type
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;




そして、Cモジュール内の対応するコードは以下のような骨格に従うことになります。



PG_FUNCTION_INFO_V1(my_union);

Datum
my_union(PG_FUNCTION_ARGS)
{
    GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
    GISTENTRY  *ent = entryvec->vector;
    data_type  *out,
               *tmp,
               *old;
    int         numranges,
                i = 0;

    numranges = entryvec->n;
    tmp = DatumGetDataType(ent[0].key);
    out = tmp;

    if (numranges == 1)
    {
        out = data_type_deep_copy(tmp);

        PG_RETURN_DATA_TYPE_P(out);
    }

    for (i = 1; i < numranges; i++)
    {
        old = out;
        tmp = DatumGetDataType(ent[i].key);
        out = my_union_implementation(out, tmp);
    }

    PG_RETURN_DATA_TYPE_P(out);
}


      


ご覧になったように、この骨格でunion(X, Y, Z) = union(union(X, Y), Z)であるようなデータ型を処理しています。
このGiSTサポートメソッドに適切なunionアルゴリズムを実装することで、このような場合以外のデータ型をサポートすることは非常に容易です。
      


union関数の結果は、(インデックス付けされた列の型とは異なるかもしれないし、異ならないかもしれませんが)それが何であれインデックスの格納型の値でなければなりません。
union関数は新たにpalloc()されたメモリへのポインタを返さなければなりません。
型の変更がなかったとしても、入力値をそのまま返すことはできません。
      


上に示したように、union関数の1番目のinternal引数は実際はGistEntryVectorのポインタです。
2番目の引数は整数の変数へのポインタであり、無視できます。
(union関数がその結果値の大きさをその変数に保存するのに必要だったのですが、これはもはや必要ではありません。)
      

	compress
	

データ項目をインデックスページ内の物理的な格納に適した形式に変換します。
compressメソッドが省略されている場合、データ項目は変更されずにインデックスに格納されます。
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_compress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;




そして、Cモジュール内の対応するコードは以下のような骨格に従うことになります。



PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    GISTENTRY  *retval;

    if (entry->leafkey)
    {

        /* 圧縮バージョンで entry->key を差し替え */
        compressed_data_type *compressed_data = palloc(sizeof(compressed_data_type));


        /* entry->key ... から *compressed_data を補填 */

        retval = palloc(sizeof(GISTENTRY));
        gistentryinit(*retval, PointerGetDatum(compressed_data),
                      entry->rel, entry->page, entry->offset, FALSE);
    }
    else
    {

        /* 通常非リーフ項目に対して行うことはない */
        retval = entry;
    }

    PG_RETURN_POINTER(retval);
}


      


当然ながらcompressed_data_typeを、リーフノードを圧縮するために変換する特定の型に適合させなければなりません。
      

	decompress
	

データ項目の格納された表現を、演算子クラスの他のGiSTメソッドで操作できる形式に変換します。
decompressメソッドが省略された場合、他のGiSTメソッドが直接操作出来るデータ形式で格納されると想定されます。
（decompressは、必ずしもcompressメソッドの逆になるわけではありません。
特に、compressが不可逆な場合、decompressで元のデータを正確に再構築するのが不可能になります。
他のGiSTメソッドはすべてのデータを再構築することは必要としないかもしれないので、decompressはfetchと等価であるとは限りません。）
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_decompress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;




そして、Cモジュール内の対応するコードは以下のような骨格に従うことになります。



PG_FUNCTION_INFO_V1(my_decompress);

Datum
my_decompress(PG_FUNCTION_ARGS)
{
    PG_RETURN_POINTER(PG_GETARG_POINTER(0));
}




上記骨格は、伸長を必要としない場合に適したものです。
（ただし、もちろん、このメソッドを完全に省略する方がさらに簡単なので、このような場合は省略することをお勧めします。）
      

	penalty
	

新しい項目をツリーの特定の分岐点に挿入するための「コスト」を示す値を返します。
項目は、ツリー内でpenaltyが最小の経路に挿入されます。
penaltyから返される値は非負でなければなりません。
負の値が返された場合、ゼロとして扱われます。
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_penalty(internal, internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'

LANGUAGE C STRICT;  -- penalty関数は厳密である必要がない場合もあります




そして、Cモジュール内の対応するコードは以下のような骨格に従うことになります。



PG_FUNCTION_INFO_V1(my_penalty);

Datum
my_penalty(PG_FUNCTION_ARGS)
{
    GISTENTRY  *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
    GISTENTRY  *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
    float      *penalty = (float *) PG_GETARG_POINTER(2);
    data_type  *orig = DatumGetDataType(origentry->key);
    data_type  *new = DatumGetDataType(newentry->key);

    *penalty = my_penalty_implementation(orig, new);
    PG_RETURN_POINTER(penalty);
}




歴史的な理由により、penalty関数は単純にfloatの結果を返しません。
その代わり、3番目の引数で指定された場所に値を格納しなければなりません。
その引数のアドレスを戻すのが慣例ですが、戻り値それ自体は無視されます。
      


penalty関数は優れた性能のインデックスではきわめて重要です。
これは、挿入の段階で新しい項目をツリーに追加する場所を決定する際にどの分岐に従うかを決定するために使用されます。
問い合わせの際、インデックスのバランスが良ければ、検索が速くなります。
      

	picksplit
	

インデックスページ分割が必要になった時、この関数は、ページ内のどの項目を古いページに残すか、および、どれを新しいページに移動するかを決定します。
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_picksplit(internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;




そして、Cモジュール内の対応するコードは以下のような骨格に従うことになります。



PG_FUNCTION_INFO_V1(my_picksplit);

Datum
my_picksplit(PG_FUNCTION_ARGS)
{
    GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
    GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
    OffsetNumber maxoff = entryvec->n - 1;
    GISTENTRY  *ent = entryvec->vector;
    int         i,
                nbytes;
    OffsetNumber *left,
               *right;
    data_type  *tmp_union;
    data_type  *unionL;
    data_type  *unionR;
    GISTENTRY **raw_entryvec;

    maxoff = entryvec->n - 1;
    nbytes = (maxoff + 1) * sizeof(OffsetNumber);

    v->spl_left = (OffsetNumber *) palloc(nbytes);
    left = v->spl_left;
    v->spl_nleft = 0;

    v->spl_right = (OffsetNumber *) palloc(nbytes);
    right = v->spl_right;
    v->spl_nright = 0;

    unionL = NULL;
    unionR = NULL;


    /* 項目自体のベクトルの初期化 */
    raw_entryvec = (GISTENTRY **) malloc(entryvec->n * sizeof(void *));
    for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
        raw_entryvec[i] = &(entryvec->vector[i]);

    for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
    {
        int         real_index = raw_entryvec[i] - entryvec->vector;

        tmp_union = DatumGetDataType(entryvec->vector[real_index].key);
        Assert(tmp_union != NULL);

        /*

         * インデックス項目の格納場所を決定し、それに合わせてunionLとunionRを更新
         * します。v->spl_left もしくは v->spl_right のどちらかに項目を追加します。
         * カウンタに留意してください。
         */

        if (my_choice_is_left(unionL, curl, unionR, curr))
        {
            if (unionL == NULL)
                unionL = tmp_union;
            else
                unionL = my_union_implementation(unionL, tmp_union);

            *left = real_index;
            ++left;
            ++(v->spl_nleft);
        }
        else
        {
            /*

             * 右と同じ
             */
        }
    }

    v->spl_ldatum = DataTypeGetDatum(unionL);
    v->spl_rdatum = DataTypeGetDatum(unionR);
    PG_RETURN_POINTER(v);
}




picksplit関数の結果は渡されたv構造体を修正することで返されることに注意してください。
vのアドレスを戻すのが慣例ですが、戻り値それ自体は無視されます。
      


penalty同様、picksplit関数も優れた性能のインデックスのためにきわめて重要です。
penaltyとpicksplitの実装を適切に設計することが、性能が良いGiSTインデックスの実装を行うことにつながります。
      

	same
	

２つのインデックス項目が同一の場合に真、さもなくば偽を返します。
(「インデックス項目」はインデックスの格納型の値であり、必ずしも元のインデックス付けされた列の型という訳ではありません。)
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_same(storage_type, storage_type, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;




そして、Cモジュール内の対応するコードは以下のような骨格に従うことになります。



PG_FUNCTION_INFO_V1(my_same);

Datum
my_same(PG_FUNCTION_ARGS)
{
    prefix_range *v1 = PG_GETARG_PREFIX_RANGE_P(0);
    prefix_range *v2 = PG_GETARG_PREFIX_RANGE_P(1);
    bool       *result = (bool *) PG_GETARG_POINTER(2);

    *result = my_eq(v1, v2);
    PG_RETURN_POINTER(result);
}




歴史的な理由により、same関数は単純に論理値の結果を返しません。
その代わり、3番目の引数で指定された場所にフラグを格納しなければなりません。
その引数のアドレスを戻すのが慣例ですが、戻り値それ自体は無視されます。
      

	distance
	

インデックス項目pと問い合わせ値qを与えると、この関数は問い合わせ値からのインデックス項目の「距離」を決定します。
この関数は、演算子クラスが何らかの順序付け演算子を含む場合には提供しなければなりません。
順序付け演算子を使用する問い合わせは、まず最小の「距離」を持つインデックス項目を返すことで実装されます。
このためこの結果は演算子の意味と一貫性を持たなければなりません。
リーフインデックスノード項目では、結果は単にインデックス項目との距離を表します。
内部ツリーノードでは、結果はすべての子項目が持つ中から最も最小の距離でなければなりません。
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_distance(internal, data_type, smallint, oid, internal)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;




そして、Cモジュール内の対応するコードは以下のような骨格に従うことになります。



PG_FUNCTION_INFO_V1(my_distance);

Datum
my_distance(PG_FUNCTION_ARGS)
{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    data_type  *query = PG_GETARG_DATA_TYPE_P(1);
    StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
    /* Oid subtype = PG_GETARG_OID(3); */
    /* bool *recheck = (bool *) PG_GETARG_POINTER(4); */
    data_type  *key = DatumGetDataType(entry->key);
    double      retval;

    /*

     * strategy、keyおよびqueryの関数として戻り値を決定してください。
     */

    PG_RETURN_FLOAT8(retval);
}




distance関数の引数はconsistent関数の引数と同一です。
      


距離の決定において、その結果がエントリの実際の距離よりも大きくならない限り、多少の概算は許されます。
したがって、例えば、幾何学に関するアプリケーションでは、通常は外接矩形への距離で十分です。
内部ツリーノードについては、返される距離はどの子ノードへの距離よりも大きくなることは許されません。
返される距離が正確でない場合、関数は*recheckを真にセットする必要があります。
（内部ツリーノードについては、計算はいつでも不正確であると見なされるため、これは必要ありません。）
この場合、エグゼキュータはヒープからタプルを取得した後で正確な距離を計算し、必要ならタプルを並べ替えます。
      


距離関数がリーフノードについて*recheck = trueを返す場合、元の順序づけ演算子の戻り型はfloat8またはfloat4でなければならず、また距離関数の結果の値は元の順序づけ演算子の戻り型と比較可能でなければなりません。
なぜならエグゼキュータは距離関数の結果および再計算された順序づけ演算子の結果の両方を利用してソート処理を行うからです。
その他の場合は、結果値の相対的な順序が順序づけ演算子が返す順序と一致する限り、距離関数の戻り値は任意の有限のfloat8の値とすることができます。
（無限大とマイナス無限大は内部的にNULLなどの場合を処理するために利用するので、distance関数がこれらの値を戻すことは薦められません。）
      

	fetch
	

インデックスオンリースキャンで使用するため、データ項目の圧縮されたインデックス表現を元のデータ型に変換します。
返されたデータは元のインデックス値の正確で、何も失われていない複製でなければなりません。
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_fetch(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;




引数はGISTENTRY構造体へのポインタです。
関数が呼び出された時点では、そのkeyフィールドには、NULLでないリーフデータが圧縮形式で入っています。
戻り値は別のGISTENTRY構造体で、そのkeyフィールドには、同じデータが元の非圧縮形式で入っています。
opclassの圧縮関数がリーフのエントリに対して何もしないなら、fetchメソッドは引数をそのまま返すことができます。
また、opclassに圧縮関数がない場合、fetchメソッドも省略できます。
これは、必然的にno-opになるからです。
       


Cモジュールにおける対応するコードは次の骨格に従うことになります。



PG_FUNCTION_INFO_V1(my_fetch);

Datum
my_fetch(PG_FUNCTION_ARGS)
{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    input_data_type *in = DatumGetPointer(entry->key);
    fetched_data_type *fetched_data;
    GISTENTRY  *retval;

    retval = palloc(sizeof(GISTENTRY));
    fetched_data = palloc(sizeof(fetched_data_type));

    /*

     * fetched_dataを元のデータ型のデータに変換する。
     */


    /* fetched_dataを使って*retvalに値を入れる。 */
    gistentryinit(*retval, PointerGetDatum(converted_datum),
                  entry->rel, entry->page, entry->offset, FALSE);

    PG_RETURN_POINTER(retval);
}


      


compressメソッドがリーフエントリに対してデータ損失がある場合、演算子クラスはインデックスオンリースキャンをサポートすることができず、fetch関数を定義してはいけません。
      

	options
	

演算子クラスの振舞いを制御するユーザに可視のパラメータの集合を定義します。
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_options(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;


      


関数にはlocal_relopts構造体へのポインタが渡されますが、構造体を演算子クラスに固有のオプションの集合で満たすことが必要です。
オプションはマクロPG_HAS_OPCLASS_OPTIONS()とPG_GET_OPCLASS_OPTIONS()を使って他のサポート関数からアクセスできます。
      


my_options()の実装と他のサポート関数からのパラメータの使用の例は以下の通りです。



typedef enum MyEnumType
{
    MY_ENUM_ON,
    MY_ENUM_OFF,
    MY_ENUM_AUTO
} MyEnumType;

typedef struct
{

    int32   vl_len_;    /* varlenaヘッダ(直接触らないこと!) */
    int     int_param;  /* 整数パラメータ */
    double  real_param; /* 実数パラメータ */
    MyEnumType enum_param; /* enumパラメータ */
    int     str_param;  /* 文字列パラメータ */
} MyOptionsStruct;


/* enum値の文字列表現 */
static relopt_enum_elt_def myEnumValues[] =
{
    {"on", MY_ENUM_ON},
    {"off", MY_ENUM_OFF},
    {"auto", MY_ENUM_AUTO},

    {(const char *) NULL}   /* リストの終端 */
};

static char *str_param_default = "default";

/*

 * 有効性検査の例: 文字列が8バイトより長くないことを検査します。
 */
static void
validate_my_string_relopt(const char *value)
{
    if (strlen(value) > 8)
        ereport(ERROR,
                (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
                 errmsg("str_param must be at most 8 bytes")));
}

/*

 * 充填の例: 文字を小文字に交換します。
 */
static Size
fill_my_string_relopt(const char *value, void *ptr)
{
    char   *tmp = str_tolower(value, strlen(value), DEFAULT_COLLATION_OID);
    int     len = strlen(tmp);

    if (ptr)
        strcpy(ptr, tmp);

    pfree(tmp);
    return len + 1;
}

PG_FUNCTION_INFO_V1(my_options);

Datum
my_options(PG_FUNCTION_ARGS)
{
    local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);

    init_local_reloptions(relopts, sizeof(MyOptionsStruct));
    add_local_int_reloption(relopts, "int_param", "integer parameter",
                            100, 0, 1000000,
                            offsetof(MyOptionsStruct, int_param));
    add_local_real_reloption(relopts, "real_param", "real parameter",
                             1.0, 0.0, 1000000.0,
                             offsetof(MyOptionsStruct, real_param));
    add_local_enum_reloption(relopts, "enum_param", "enum parameter",
                             myEnumValues, MY_ENUM_ON,
                             "Valid values are: \"on\", \"off\" and \"auto\".",
                             offsetof(MyOptionsStruct, enum_param));
    add_local_string_reloption(relopts, "str_param", "string parameter",
                               str_param_default,
                               &validate_my_string_relopt,
                               &fill_my_string_relopt,
                               offsetof(MyOptionsStruct, str_param));

    PG_RETURN_VOID();
}

PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{
    int     int_param = 100;
    double  real_param = 1.0;
    MyEnumType enum_param = MY_ENUM_ON;
    char   *str_param = str_param_default;

    /*

     * 通常は、演算子クラスが'options'メソッドを含む場合、optionsは常にサポート関数に
     * 渡されます。しかしながら、'options'メソッドを既存の演算子クラスに追加した場合、
     * 前に定義されたインデックスにoptionsがない場合、検査が必要です。
     */
    if (PG_HAS_OPCLASS_OPTIONS())
    {
        MyOptionsStruct *options = (MyOptionsStruct *) PG_GET_OPCLASS_OPTIONS();

        int_param = options->int_param;
        real_param = options->real_param;
        enum_param = options->enum_param;
        str_param = GET_STRING_RELOPTION(options, str_param);
    }


    /* サポート関数の残りの実装 */
}



      


GiSTでのキーの表現には柔軟性がありますので、ユーザに固有のパラメータに依存するかもしれません。
例えば、キーの署名の長さが指定されるかもしれません。
例についてはgtsvector_options()を参照してください。
      

	sortsupport
	

ある程度局所性を保つ方法でデータをソートする比較関数を返します。
CREATE INDEXとREINDEXコマンドで使われます。
作成されるインデックスの質は、比較関数により決定された順序が入力の局所性をどれだけよく保っているかに依存します。
      


sortsupportメソッドは省略可能です。
提供されなければ、CREATE INDEXは各タプルをpenalty関数とpicksplit関数を使ってツリーに挿入することでインデックスを構築します。これはずっと遅いです。
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_sortsupport(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;




引数はSortSupport構造体へのポインタです。
最低でも、関数は構造体のcomparatorフィールドを埋めなければなりません。
比較関数は引数を3つ取ります。比較するDatumを2つとSortSupport構造体へのポインタです。
Datumはインデックス付けされる値2つで、インデックスに格納される形式です。すなわち、compressメソッドにより返される形式です。
完全なAPIはsrc/include/utils/sortsupport.hで定義されています。
       


Cモジュールにおける対応するコードは次の骨格に従うことになります。



PG_FUNCTION_INFO_V1(my_sortsupport);

static int
my_fastcmp(Datum x, Datum y, SortSupport ssup)
{

  /* ソートのための値zを計算することでxとyの間に順序を確立する */

  int z1 = ComputeSpatialCode(x);
  int z2 = ComputeSpatialCode(y);

  return z1 == z2 ? 0 : z1 > z2 ? 1 : -1;
}

Datum
my_sortsupport(PG_FUNCTION_ARGS)
{
  SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);

  ssup->comparator = my_fastcmp;
  PG_RETURN_VOID();
}


      

	translate_cmptype
	

src/include/nodes/primnodes.hにあるCompareType値を指定すると、この演算子クラスが一致機能に使用するストラテジ番号を返します。
演算子クラスに一致するストラテジがない場合、この関数はInvalidStrategyを返すべきです。
      


これは、時間的なインデックス制約（つまりPRIMARY KEYとUNIQUE）に使用されます。
演算子クラスがこの関数を提供し、COMPARE_EQの結果を返す場合は、インデックス制約のWITHOUT OVERLAPS以外の部分で使用できます。
      


このサポート関数は、インデックスアクセスメソッドのコールバック関数amtranslatecmptype（「インデックスアクセスメソッド関数」を参照）に対応しています。
GiSTインデックスのアクセスメソッド自体には固定のストラテジ番号がないため、GiSTインデックス用のamtranslatecmptypeコールバック関数は、それぞれの演算子族のtranslate_cmptypeサポート関数を呼び出すだけです。
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_translate_cmptype(integer)
RETURNS smallint
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;




そして、演算子族の登録は以下のようになります。


ALTER OPERATOR FAMILY my_opfamily USING gist ADD
    FUNCTION 12 ("any", "any") my_translate_cmptype(int);


      


Cモジュールにおける対応するコードは次の骨格に従うことになります。



PG_FUNCTION_INFO_V1(my_translate_cmptype);

Datum
my_translate_cmptype(PG_FUNCTION_ARGS)
{
    CompareType cmptype = PG_GETARG_INT32(0);
    StrategyNumber ret = InvalidStrategy;

    switch (cmptype)
    {
        case COMPARE_EQ:
            ret = BTEqualStrategyNumber;
    }

    PG_RETURN_UINT16(ret);
}


      


PostgreSQL™では1つの変換関数が提供されています。
RT*StrategyNumber定数を使用する演算子クラス用の、gist_translate_cmptype_commonです。
btree_gist拡張では、BT*StrategyNumber定数を使用する演算子クラス用に、2つめの変換関数gist_translate_cmptype_btreeが定義されています。
      





すべてのGiSTサポートメソッドは通常短期間有効なメモリコンテキストで呼び出されます。
つまりCurrentMemoryContextは各タプルが処理された後にリセットされます。
そのためpallocしたすべてをpfreeすることに注意するのはあまり重要ではありません。
しかし、サポートメソッドで、繰り返される呼び出しを跨がってデータをキャッシュすることが有用な場合があります。
このためには、fcinfo->flinfo->fn_mcxtの中で長期間有効なデータを割り当て、そこへのポインタをfcinfo->flinfo->fn_extraの中に保持してください。
こうしたデータはインデックス操作（例えば１つのGiSTインデックススキャン、インデックス構築、インデックスタプルの挿入）の間有効です。
fn_extra値を置き換える時に以前の値をpfreeすることに注意してください。
さもないと操作の間リークが蓄積されます。
  

実装



GiSTインデックス構築法





GiSTインデックスを構築する一番簡単な方法は、全項目を単に1つ1つ挿入することです。
インデックスタプルがインデックス全体に分散し、インデックスがキャッシュに収まらない程大規模である場合、大量のランダムI/Oを必要としますので、これは大規模なインデックスに対して低速になりがちです。
PostgreSQL™はGiSTインデックスの初期構築のために他に2つの方法をサポートします。ソート処理モードとバッファ処理モードです。
  


ソート処理法は、インデックスで使われる演算子クラスのそれぞれが、「拡張性」に記載されているようにsortsupportを提供している場合にのみ利用可能です。
もしそうであれば、この方法が普通は最善ですので、デフォルトで使われます。
  


バッファ処理法はタプルを直ちに直接インデックスに挿入しないことで動作します。
これは、順序付けられていないデータ群に対して必要とされるランダムI/Oの量を劇的に減らすかもしれません。
十分に順序付けられたデータ群では、一度にわずかなページ数のみが新しいタプルを受け取り、そのためインデックス全体がキャッシュに収まらなくてもこれらのページがキャッシュ内に収まりますので、利点はより小さく、または利点がなくなります。
  


バッファ処理法は、penalty関数を単純な方法よりもより多く呼び出すことが必要で、余計にCPUリソースを消費します。
またバッファは、最大作成されるインデックスと同じサイズまで、一時的にディスク容量を必要とします。
バッファ処理は作成されるインデックスの品質にも、良くも悪くも、影響を与えます。
この影響は、入力データの分布や演算子クラスの実装等、様々な要因に依存します。
  


ソートが可能でない場合、デフォルトでは、インデックスのサイズがeffective_cache_sizeに達した時にGiSTインデックス構築はバッファ処理法に切り替わります。
バッファ処理はCREATE INDEXコマンドのbufferingパラメータによって、手動で強制あるいは無効にできます。
デフォルトの動作は大抵の場合良好です。
しかし、入力データが順序付けされている場合、バッファ処理を無効にすることで構築が多少高速になります。
  


例





PostgreSQL™のソース配布物にはGiSTを使用したインデックスメソッドの実装のいくつかの事例が含まれています。
コアシステムは現在全文検索サポート（tsvectorとtsqueryのインデックス付け）や組み込みの幾何データ型の一部に対するR-Treeと等価な機能を提供します
（src/backend/access/gist/gistproc.cを参照してください）。
以下のcontribモジュールも同時にGiST演算子クラスを含みます。

 
	btree_gist
	いくつかのデータ型に対するB-tree等価機能

	cube
	多次元の立方体用のインデックス

	hstore
	（キー、値）の組み合わせを格納するモジュール

	intarray
	int4値の1次元配列用のRD-Tree

	ltree
	疑似ツリー構造用のインデックス

	pg_trgm
	トライグラム一致を使用したテキストの類似性

	seg
	「浮動小数点範囲」のインデックス




 


SP-GiSTインデックス



はじめに





SP-GiSTは、空間分割された(Space-Partitioned)GiSTを短縮した語です。
SP-GiSTは分割された探索木をサポートし、四分木、kd木、基数木(トライ木)など広範にわたる様々な非平衡データ構造の開発を可能にします。
これらの構造に共通の特徴は、それらが探索空間を繰り返し小さな領域に分割し、その領域の大きさが必ずしも等しくない、ということです。
分割規則によく適合した検索は非常に高速になります。
 


これらのよく使われるデータ構造は、元々はメモリ内での利用のために開発されたものでした。
主記憶上では、それらは通常、ポインタにより接続され、動的に割り当てられるノードの集合として設計されます。
このようなポインタのチェーンは長くなりがちで、非常に多くのディスクアクセスが必要となるため、ディスク上に直接格納するには適しません。
これとは反対に、ディスクベースのデータ構造は、I/Oを最小化する、大きな論理出力数を持つべきです。
SP-GiSTによって解決される困難とは、探索木のノードをディスクのページにマップするときに、多数のノードを通り抜ける場合であっても、探索ではごく少数のディスクページにしかアクセスしないですむようにすることです。
 


GiSTと同じく、SP-GiSTは適切なアクセスメソッドのある独自のデータ型の開発を可能にするためのもので、データベースのエキスパートよりもむしろ、そのデータ型の領域のエキスパートによる開発を可能にします。
 


ここで記述する情報の一部はPurdue大学のSP-GiSTインデックスプロジェクトWEBサイトによるものです。
PostgreSQL™でのSP-GiSTの実装は、おもにTeodor SigaevとOleg Bartunovによって保守されており、詳しい情報は彼らのWEBサイトにあります。
 

組み込み演算子クラス





PostgreSQL™のコア配布物には表65.2「組み込みSP-GiST演算子クラス」に示されるSP-GiSTの演算子クラスが含まれます。
 
表65.2 組み込みSP-GiST演算子クラス
	名前	インデックス可能な演算子	順序付け演算子
	box_ops	<< (box,box)	<-> (box,point)
	&< (box,box)
	&> (box,box)
	>> (box,box)
	<@ (box,box)
	@> (box,box)
	~= (box,box)
	&& (box,box)
	<<| (box,box)
	&<| (box,box)
	|&> (box,box)
	|>> (box,box)
	inet_ops	<< (inet,inet)	 
	<<= (inet,inet)
	>> (inet,inet)
	>>= (inet,inet)
	= (inet,inet)
	<> (inet,inet)
	< (inet,inet)
	<= (inet,inet)
	> (inet,inet)
	>= (inet,inet)
	&& (inet,inet)
	kd_point_ops	|>> (point,point)	<-> (point,point)
	<< (point,point)
	>> (point,point)
	<<| (point,point)
	~= (point,point)
	<@ (point,box)
	poly_ops	<< (polygon,polygon)	<-> (polygon,point)
	&< (polygon,polygon)
	&> (polygon,polygon)
	>> (polygon,polygon)
	<@ (polygon,polygon)
	@> (polygon,polygon)
	~= (polygon,polygon)
	&& (polygon,polygon)
	<<| (polygon,polygon)
	&<| (polygon,polygon)
	|>> (polygon,polygon)
	|&> (polygon,polygon)
	quad_point_ops	|>> (point,point)	<-> (point,point)
	<< (point,point)
	>> (point,point)
	<<| (point,point)
	~= (point,point)
	<@ (point,box)
	range_ops	= (anyrange,anyrange)	 
	&& (anyrange,anyrange)
	@> (anyrange,anyelement)
	@> (anyrange,anyrange)
	<@ (anyrange,anyrange)
	<< (anyrange,anyrange)
	>> (anyrange,anyrange)
	&< (anyrange,anyrange)
	&> (anyrange,anyrange)
	-|- (anyrange,anyrange)
	text_ops	= (text,text)	 
	< (text,text)
	<= (text,text)
	> (text,text)
	>= (text,text)
	~<~ (text,text)
	~<=~ (text,text)
	~>=~ (text,text)
	~>~ (text,text)
	^@ (text,text)





point型の2つの演算子クラスのうち、quad_point_opsがデフォルトです。
kd_point_opsは同じ演算子をサポートしますが、異なるインデックスデータ構造を使うため、アプリケーションによってはより良いパフォーマンスを提供することがあります。
 


quad_point_ops、kd_point_ops、poly_ops演算子クラスは<->順序付け演算子をサポートしますので、インデックス付けされた点や多角形のデータ集合に対してk近傍(k-NN)探索が可能です。
 

拡張性





SP-GiSTは高度に抽象化されたインタフェースを提供します。アクセスメソッドの開発者は特定のデータ型専用のメソッドだけを開発する必要があります。
SP-GiSTのコアは効率的なディスクマッピングと木構造の探索を担当します。
また、同時実行制御とログ出力も担当します。
 


SP-GiSTのツリーのリーフタプルは、インデックスの付けられた列の損失のある表現を含むこともできますが、通常はインデックスの付けられた列と同じデータ型の値を含んでいます。
ルートレベルに格納されたリーフタプルは、インデックスが付けられた元のデータの値を直接表現していますが、より下のレベルのリーフタプルは、接尾辞など、部分的な値しか含んでいないかも知れません。
この場合、演算子クラスのサポート関数が、内部タプルをリーフレベルまでたどりながら集める情報を使って元の値を再構築できる必要があります。
 


SP-GiSTインデックスがINCLUDE列を付けて作成された場合には、その列の値もリーフタプルに格納されます。
INCLUDE列はSP-GiST演算子クラスとは関係ありませんので、ここではこれ以上説明しません。
 


内部タプルは、探索木の分岐点となるため、もっと複雑です。
それぞれの内部タプルは1つ以上のノードの集合を含んでおり、ノードは類似のリーフ値のグループを表現します。
ノードは下向きのリンクを含んでおり、これは下のレベルの別の内部タプルを指すか、あるいはすべて同じインデックスページ上に載っているリーフタプルの短いリストを指しています。
それぞれのノードは、通常、それを記述するラベルを持っています。
例えば、基数木では、ノードのラベルは文字列の値の次の文字にすることができます。
（あるいは、すべての内部タプルについて、決まったノードの集合しか扱わないのであれば、演算子クラスはノードのラベルを省略することができます。
「ノードラベルのないSP-GiST」を参照してください。）
省略可能ですが、内部タプルはそのすべてのメンバを記述する接頭辞の値を持つことができます。
基数木では、これは表現される文字列に共通の接頭辞とすることができます。
接頭辞の値は、必ずしも本当の接頭辞である必要はなく、演算子クラスが必要とする任意の値で良いです。
例えば四分木では、その中心点を保持し、4つの象限をそこから相対的に測るようにできます。
そうすると、四分木の内部タプルはこの中心点の周りの象限に対応する4つのノードも含むことになるでしょう。
 


木構造のアルゴリズムには、現在のタプルのレベル(深さ)を知っていることが必要なものがあります。そこで、SP-GiSTのコアは、演算子クラスが木構造をたどって下がるときにレベル数の管理を可能にしています。
また、必要であれば、表現される値を加算的に再構築すること、また木構造を下る間に追加データ（探索値と呼ばれます）を渡すこともサポートしています。
 
注記


SP-GiSTのコアのコードはnullエントリについても対応しています。
SP-GiSTのインデックスはインデックス列がnullのエントリについても格納しますが、これはインデックスの演算子クラスのコードからは隠されているので、nullのインデックスエントリや検索条件が演算子クラスのメソッドに渡されることはありません。
(SP-GiSTの演算子は厳格なのでNULL値について成功を返すことはできないと想定されています。)
従って、ここではこれ以上、NULLについて説明しません。
  



SP-GiSTのインデックス演算子クラスが提供しなければならないユーザ定義メソッドは5つあり、加えて、オプションのメソッドが2つあります。
5つの必須メソッド全ては2つのinternal引数を受け付けるというしきたりに従い、1つ目はサポートメソッドへの入力値を含むC構造体へのポインタで、一方2つ目は出力値が配置されるであろうC構造体へのポインタです。
4つの必須メソッドでは、その結果がすべて出力構造体の中にあるので、単にvoidを返します。ですが、leaf_consistentはbooleanの結果を返します。
メソッドは、その入力構造体のどのフィールドも変更してはいけません。
どんな場合でも、出力構造体はユーザ定義メソッドを呼び出す前にゼロに初期化されます。
オプションの6番目のメソッドcompressは、唯一の引数としてインデックス付けされるdatumを受け付け、リーフタプルの物理格納に適した値を返します。
オプションの7番目のメソッドoptionsは、演算子クラスに固有のパラメータを入れるC構造体へのinternalポインタを受け付け、voidを返します。
 


5つの必須ユーザ定義メソッドは以下のとおりです。
 
	config
	

接頭辞とノードラベルのデータ型のデータ型OIDを含め、インデックスの実装に関する静的情報を返します。
      


この関数のSQL宣言は以下のようになります。


CREATE FUNCTION my_config(internal, internal) RETURNS void ...



1番目の引数はCのspgConfigIn構造体へのポインタで、関数の入力データを含みます。
2番目の引数はCのspgConfigOut構造体へのポインタで、関数が結果のデータを入れます。


typedef struct spgConfigIn
{

    Oid         attType;        /* インデックス付けされるデータ型 */
} spgConfigIn;

typedef struct spgConfigOut
{

    Oid         prefixType;     /* 内部タプルの接頭辞のデータ型 */
    Oid         labelType;      /* 内部タプルのノードのラベルのデータ型 */
    Oid         leafType;       /* リーフタプル値のデータ型 */
    bool        canReturnData;  /* 演算子クラスは元のデータを再構築できる */
    bool        longValuesOK;   /* 演算子クラスは1ページより大きな値を扱える */
} spgConfigOut;




attTypeは多様のインデックス演算子クラスをサポートするために渡されます。
通常の固定データ型の演算子クラスでは、それは常に同じ値を持っているので無視できます。
     


接頭辞を使わない演算子クラスでは、prefixTypeをVOIDOIDに設定することができます。
同様に、ノードラベルを使わない演算子クラスでは、labelTypeをVOIDOIDに設定することができます。
演算子クラスが、元々提供されていたインデックスの値を再構築できるときは、canReturnDataをtrueにします。
attTypeが可変長で、演算子クラスが接尾辞付けの繰り返しによって長い値を分割できるときにのみ、longValuesOKをtrueにします(「SP-GiSTの制限」参照)。
     


leafTypeは、演算子クラスのopckeytypeカタログエントリにより定義されたインデックス格納型と一致しなければなりません。
(opckeytypeは0の場合もあり得て、それは格納型が演算子クラスの入力型と同じであることを意味しています。これが最も一般的な状況であることに注意してください。)
後方互換性のため、configメソッドはleafTypeを他の値に設定して、その値を使うことができます。ですが、インデックスの内容がカタログでは誤って特定されますので、これは非推奨です。
また、leafTypeを初期化しないまま(0)にできます。これはopckeytypeから導かれたインデックス格納型を意味すると解釈されます。
     


attTypeとleafTypeが異なる場合には、オプションのメソッドcompressを提供しなければなりません。
メソッドcompressは、インデックス付けされるデータをattTypeからleafTypeに変換する責任があります。
     

	choose
	

内部タプルに新しい値を挿入するときのメソッドを選択します。
      


この関数のSQL宣言は以下のようになります。


CREATE FUNCTION my_choose(internal, internal) RETURNS void ...



1番目の引数はCのspgChooseIn構造体へのポインタで、関数の入力データを含みます。
2番目の引数はCのspgChooseOut構造体へのポインタで、関数が結果のデータを入れます。


typedef struct spgChooseIn
{

    Datum       datum;          /* インデックス付けされる元のデータ */
    Datum       leafDatum;      /* リーフに保存されている現在のデータ */
    int         level;          /* （0から数えた）現在のレベル */


    /* 現在の内部タプルからのデータ */
    bool        allTheSame;     /* タプルはall-the-sameと印が付けられているか？ */
    bool        hasPrefix;      /* タプルは接頭辞を持つか？ */
    Datum       prefixDatum;    /* もしそうなら、接頭辞の値 */
    int         nNodes;         /* 内部タプルの中のノード数 */
    Datum      *nodeLabels;     /* ノードのラベルの値（なければNULL） */
} spgChooseIn;

typedef enum spgChooseResultType
{

    spgMatchNode = 1,           /* 既存のノードに下がる */
    spgAddNode,                 /* ノードに内部タプルを追加する */
    spgSplitTuple               /* 内部タプルを分割する(その接頭辞を変更する) */
} spgChooseResultType;

typedef struct spgChooseOut
{

    spgChooseResultType resultType;     /* アクションコード、上記参照 */
    union
    {

        struct                  /* spgMatchNodeの結果 */
        {

            int         nodeN;      /* このノードに下がる(0からのインデックス) */
            int         levelAdd;   /* この分だけレベルを増やす */
            Datum       restDatum;  /* 新しいリーフデータ */
        }           matchNode;

        struct                  /* spgAddNodeの結果 */
        {

            Datum       nodeLabel;  /* 新しいノードのラベル */
            int         nodeN;      /* 挿入する場所(0からのインデックス) */
        }           addNode;

        struct                  /* spgSplitTupleの結果 */
        {

            /* 子タプルを1つ持つ新しい上位のレベルの内部タプルを生成するための情報 */
            bool        prefixHasPrefix;    /* タプルは接頭辞を持つか */
            Datum       prefixPrefixDatum;  /* そうならば、その値 */
            int         prefixNNodes;       /* ノード数 */
            Datum      *prefixNodeLabels;   /* そのラベル(ラベルがなければNULL) */
            int         childNodeN;         /* どのタプルが子タプルを得るか */


            /* 古いノードをすべて持つ新しい低位の内部タプルを生成するための情報 */
            bool        postfixHasPrefix;   /* タプルは接頭辞を持つか */
            Datum       postfixPrefixDatum; /* そうならば、その値 */
        }           splitTuple;
    }           result;
} spgChooseOut;




datumはインデックスに挿入できたspgConfigIn.attType型の元データです。
leafDatumはspgConfigOut.leafType型の値です。これは最初は、メソッドcompressが提供されているならdatumに適用されたメソッドcompressの結果で、さもなくばdatumと同じ値です。
leafDatumは、chooseやpicksplitメソッドがこれを変更すると、ツリーのより低いレベルで変化することがあります。
挿入の探索がリーフページに到達するとき、leafDatumの現在値は、新しく作成されるリーフタプルに格納される値です。
levelは、ルートレベルを0として、現在の内部タプルのレベルを示します。
現在の内部タプルが複数の同等なノードを含むとして印を付けられているとき、allTheSameをtrueにします(「「All-the-Same」内部タプル」参照)。
現在の内部タプルが接頭辞を含むとき、hasPrefixをtrueにします。
このとき、prefixDatumがその値になります。
nNodesは内部タプルが含む子ノードの数で、nodeLabelsはそれらのラベル値の配列、あるいはラベルがなければNULLになります。
      


choose関数は、新しい値が既存の子ノードの1つとマッチするか、新しい子ノードを追加する必要があるか、あるいは新しい値がタプルの接頭辞と適合しないので内部タプルを分割してより制限のない接頭辞を作成する必要があるか、を決定することができます。
      


新しい値が既存の子ノードの1つにマッチしたときは、resultTypeをspgMatchNodeにセットします。
nodeNはノードの配列中のそのノードの(0からの)番号にセットします。
levelAddは、そのノードをたどって下がるときに生じたlevelの増分にセットします。あるいは演算子クラスがレベルを使っていなければ0のままにします。
restDatumは、演算子クラスがデータをあるレベルから次のレベルに変更しないのであれば、datumに等しくセットします。そうでなければ、次のレベルでleafDatumとして使われる修正された値にセットします。
      


新しい子ノードを追加しなければならないときは、resultTypeをspgAddNodeにセットします。
nodeLabelは、新しいノードで使われるラベルにセットし、nodeNはノードの配列中の挿入される場所のノードの(0からの)番号にセットします。
ノードを追加した後で、choose関数を修正された内部タプルを使って再び呼び出しますが、このときは、spgMatchNodeという結果になるはずです。
      


新しい値がタプルの接頭辞と適合しないときは、resultTypeをspgSplitTupleにセットします。
このアクションは、すべての既存のノードを新しい低位の内部タプルに移動し、新しい低位の内部タプルを指す単一の下向きのリンクを持つ新しいタプルで既存のタプルを置換します。
prefixHasPrefixは新しい上位のタプルが接頭辞を持つかどうかを示し、持つ場合にはprefixPrefixDatumをその接頭辞の値にセットします。
インデックスに追加される新しい値を受け入れるため、新しい接頭辞の値は元のものよりも十分に制限の緩いものになっていなければなりません。
prefixNNodesは新しいタプルで必要なノード数にセットし、prefixNodeLabelsはラベルを保持するためにpallocされた配列に、ノードのラベルが必要でないときはNULLにセットします。
新しい上位のタプルの全サイズは置き換えるタプルの全サイズよりも大きくはないことに注意してください。これは新しい接頭辞と新しいラベルの長さを制約します。
childNodeNは、新しい低位の内部タプルへ下向きにリンクするノードの(0からの)番号にセットします。
postfixHasPrefixは、新しい低位のタプルが接頭辞を持つかどうかを示し、持つときにはpostfixPrefixDatumを接頭辞の値にセットします。
新しい低位に移動したタプルのノードのラベルを変更する機会も、子のインデックスのエントリを変更する機会もありませんから、これら2つの接頭辞と(もしあれば)下向きのリンクのノードのラベルの組み合わせは、元の接頭辞と同じ意味を持つ必要があります。
ノードが分割された後で、置換した内部タプルを使ってchoose関数を再び呼び出します。
この呼び出しは、spgSplitTupleアクションにより適切なノードが作られなければ、spgAddNodeという結果になります。
そのうち、chooseがspgMatchNodeを返し、次のレベルに下がる挿入が可能となります。
      

	picksplit
	

リーフタプルの集合に対し、新しい内部タプルをどうやって作るかを決定します。
      


この関数のSQL宣言は以下のようになります。


CREATE FUNCTION my_picksplit(internal, internal) RETURNS void ...



1番目の引数はCのspgPickSplitIn構造体へのポインタで、関数の入力データを含みます。
2番目の引数はCのspgPickSplitOut構造体へのポインタで、関数が結果のデータを入れます。


typedef struct spgPickSplitIn
{

    int         nTuples;        /* リーフタプルの数 */
    Datum      *datums;         /* そのデータ(長さnTuplesの配列) */
    int         level;          /* (0から数えた)現在のレベル */
} spgPickSplitIn;

typedef struct spgPickSplitOut
{

    bool        hasPrefix;      /* 新しい内部タプルは接頭辞を持つか */
    Datum       prefixDatum;    /* もしそうなら、その値 */


    int         nNodes;         /* 新しい内部タプルのノード数 */
    Datum      *nodeLabels;     /* そのラベル(ラベルがなければNULL) */


    int        *mapTuplesToNodes;   /* 各リーフタプルへのノードのインデックス */
    Datum      *leafTupleDatums;    /* 新しい各リーフタプルに保存されているデータ */
} spgPickSplitOut;




nTuplesは与えられるリーフタプルの個数です。
datumsはspgConfigOut.leafType型のそれらのデータ値の配列です。
levelはすべてのリーフタプルが共有する現在のレベルで、これが新しい内部タプルのレベルになります。
      


hasPrefixは新しい内部タプルが接頭辞を持つかどうかを示し、持つ場合はprefixDatumを接頭辞の値にセットします。
nNodesは新しい内部タプルが含むノードの数を示し、nodeLabelsはそのラベル値の配列に、ノードのラベルが必要でないときはNULLにセットします。
mapTuplesToNodesは、それぞれのリーフタプルが割り当てられるノードの(0からの)番号の配列にセットします。
leafTupleDatumsは新しいリーフタプルに格納される値の配列にセットします(演算子クラスがデータをあるレベルから次のレベルに変更しなければこれらは入力のdatumsと同じになります)。
picksplit関数は、nodeLabels、mapTuplesToNodes、leafTupleDatumsの配列についてpallocしなければならないことに注意してください。
      


2つ以上のリーフタプルを与えた場合、picksplit関数はそれらを2つ以上のノードに分類すると予想されます。そうでなければ、リーフタプルを複数のページにまたがって分割するという、この操作の究極の目的を実現できないからです。
従って、picksplitがすべてのリーフタプルを同じノードに置くことになった場合には、SP-GiSTのコアのコードがその決定を覆して内部タプルを生成し、その中の複数の同一のラベルが付けられたノードに、リーフタプルが無作為に割り当てられます。
そのようなタプルは、このことが発生したことを明示するため、allTheSameと印がつけられます。
choose関数とinner_consistent関数は、これらの内部タプルについて、適切な注意をして取り扱わなければなりません。
詳細な情報は「「All-the-Same」内部タプル」を参照してください。
      


config関数がlongValuesOKをtrueにセットし、1ページよりも大きな入力値を与える場合にのみ、picksplitを1つだけのリーフタプルに適用できます。
この場合の操作の重要な点は、接頭辞をはがして、新しい、より短いリーフデータの値を生成することです。
この呼出は、1ページに収まる短さのリーフデータが生成されるまで繰り返されます。
詳細な情報は「SP-GiSTの制限」を参照してください。
      

	inner_consistent
	

ツリーの探索でたどるべきノード(枝)の集合を返します。
      


この関数のSQL宣言は以下のようになります。


CREATE FUNCTION my_inner_consistent(internal, internal) RETURNS void ...



1番目の引数はCのspgInnerConsistentIn構造体へのポインタで、関数の入力データを含みます。
2番目の引数はCのspgInnerConsistentOut構造体へのポインタで、関数が結果のデータを入れます。



typedef struct spgInnerConsistentIn
{

    ScanKey     scankeys;       /* 演算子と比較する値の配列 */
    ScanKey     orderbys;       /* 順序付け演算子と比較する値の配列 */
    int         nkeys;          /* scankeys配列の長さ */
    int         norderbys;      /* orderbys配列の長さ */


    Datum       reconstructedValue;     /* 親で再構築された値 */
    void       *traversalValue; /* 演算子クラスに固有の探索値 */
    MemoryContext traversalMemoryContext;   /* 新しい探索値をここに入れる */
    int         level;          /* (0から数えた)現在のレベル */
    bool        returnData;     /* 元のデータを返さなければならないか */


    /* 現在の内部タプルからのデータ */
    bool        allTheSame;     /* タプルはall-the-sameと印が付けられているか？ */
    bool        hasPrefix;      /* タプルは接頭辞を持つか？ */
    Datum       prefixDatum;    /* もしそうなら、接頭辞の値 */
    int         nNodes;         /* 内部タプルの中のノード数 */
    Datum      *nodeLabels;     /* ノードのラベルの値（なければNULL） */
} spgInnerConsistentIn;

typedef struct spgInnerConsistentOut
{

    int         nNodes;         /* 訪れるべき子ノードの数 */
    int        *nodeNumbers;    /* ノードの配列でのそのインデックス */
    int        *levelAdds;      /* この分だけそれぞれレベルを挙げる */
    Datum      *reconstructedValues;    /* 関連する再構築された値 */
    void      **traversalValues;        /* 演算子クラスに固有の探索値 */
    double    **distances;              /* 関連する距離 */
} spgInnerConsistentOut;




配列scankeysは長さがnkeysで、インデックス検索の条件を記述します。
複数の条件はANDで結合されます。つまり、条件のすべてを満たすインデックスエントリのみが対象となります。
(nkeys = 0 は全インデックスエントリが問い合わせを満たす意味になる、ということに注意してください。)
通常、consistent関数では、配列のそれぞれのエントリのsk_strategyおよびsk_argumentフィールドのみが問題となります。これらのフィールドにはそれぞれインデックス付け可能な演算子と比較値が入ります。
とりわけ、比較値がNULLかどうかを確認するためにsk_flagsを検査する必要はありません。なぜならSP-GiSTのコアのコードがそのような条件を除外するからです。
配列orderbysは長さがnorderbysで、(もしあれば)順序付け演算子を同じように記述します。
reconstructedValueは親タプルのために再構築された値で、ルートレベルの場合、あるいは親レベルのinner_consistent関数が値を返さなかった場合は(Datum) 0となります。
traversalValueは親インデックスのタプルのinner_consistentの前の呼び出しから渡された探索データへのポインタで、ルートレベルならNULLです。
traversalMemoryContextは出力探索値が格納されるメモリコンテキストです（以下を参照）。
levelは現在の内部タプルのレベルを、ルートレベルを0として数えたものです。
returnDataは、この問い合わせで再構築されたデータが必要な場合にtrueとなりますが、これはconfig関数がcanReturnDataであると主張した場合にのみ、そうなります。
現在の内部タプルが「all-the-same」と印付けされているなら、allTheSameは真になります。この場合、（もしあるなら）全てのノードが同じラベルを持ち、問い合わせに全てが一致するか、全く一致しないかのいずれかになります（「「All-the-Same」内部タプル」を参照）。
現在の内部タプルがプレフィックスを含んでいるならhasPrefixは真になります。その場合、prefixDatumがその値です。
nNodesは内部タプルに含まれる子ノードの数で、nodeLabelsはそれらのラベル値の配列、あるいは、ノードがラベルを持たないならNULLです。
      


nNodesは探索で訪れる必要のある子ノードの数にセットされなければなりません。また、nodeNumbersはそれらの番号の配列にセットされなければなりません。
演算子クラスがレベルを監視しているときは、それぞれのノードへと下って訪れるときに必要なレベルの増分の配列をlevelAddsにセットします。
(この増分はすべてのノードについて同じになることも多いですが、必ずしもそうなるとは限らないので配列が使われます。)
値の再構築が必要なときには、訪れるそれぞれの子ノードについて再構築された値の配列をreconstructedValuesにセットします。再構築が必要でなければ、reconstructedValuesをNULLのままにします。
再構築された値はspgConfigOut.leafType型と仮定されます。
(しかしながら、コアシステムはそれらに対してコピー以外のことをしませんので、leafTypeと同じtyplenとtypbyval属性を持っていれば十分です。)
順序付け検索を実行するなら、orderbys配列に従ってdistancesに距離の値の配列を設定します(距離の最も近いノードが最初に処理されます)。
そうでなければNULLのままにします。
追加の外部情報（「探索値」）をツリー探索の下位レベルに渡したい場合は、traversalValuesを適切な探索値、訪れるそれぞれの子ノードについて1つの配列にセットします。
それ以外の場合はtraversalValuesをNULLのままにします。
inner_consistent関数は、現在のメモリコンテキスト内のnodeNumbers、levelAdds、distances、reconstructedValues、traversalValuesの配列についてpallocしなければならないことに注意してください。
ただし、traversalValues配列が指すすべての出力探索値はtraversalMemoryContext内に割り当てられます。
それぞれの探索値は1つのpallocされた塊でなければなりません。
      

	leaf_consistent
	

リーフタプルが問い合わせを満たす場合、trueを返します。
      


この関数のSQL宣言は以下のようになります。


CREATE FUNCTION my_leaf_consistent(internal, internal) RETURNS bool ...



1番目の引数はCのspgLeafConsistentIn構造体へのポインタで、関数の入力データを含みます。
2番目の引数はCのspgLeafConsistentOut構造体へのポインタで、関数が結果のデータを入れます。


typedef struct spgLeafConsistentIn
{

    ScanKey     scankeys;       /* 演算子と比較する値の配列 */
    ScanKey     orderbys;       /* 順序付け演算子と比較する値の配列 */
    int         nkeys;          /* scankeys配列の長さ */
    int         norderbys;      /* orderbys配列の長さ */


    Datum       reconstructedValue;     /* 親で再構築された値 */
    void       *traversalValue; /* 演算子クラスに固有の探索値 */
    int         level;          /* (0から数えた)現在のレベル */
    bool        returnData;     /* 元のデータを返さなければならないか */


    Datum       leafDatum;      /* リーフタプルのデータ */
} spgLeafConsistentIn;

typedef struct spgLeafConsistentOut
{

    Datum       leafValue;        /* もしあれば、再構築された元のデータ */
    bool        recheck;          /* 演算子を再チェックする必要があればtrue */
    bool        recheckDistances; /* 距離を再チェックする必要があればtrue */
    double     *distances;        /* 関連する距離 */
} spgLeafConsistentOut;




配列scankeysは長さがnkeysで、インデックス探索の条件を記述します。
複数の条件はANDで結合されます。つまり、条件のすべてを満たすインデックスエントリのみが対象となります。
(nkeysが0ならば、すべてのエントリが検索条件を満たすことになる、ということに注意してください。)
通常、consistent関数では、配列のそれぞれのエントリのsk_strategyおよびsk_argumentフィールドのみが問題となります。これらのフィールドにはそれぞれインデックス付け可能な演算子と比較値が入ります。
なお、比較値がNULLかどうかを確認するためにsk_flagsを検査する必要はありません。なぜならSP-GiSTのコアのコードがそのような条件を除外するからです。
配列orderbysは長さがnorderbysで、順序付け演算子を同じように記述します。
reconstructedValueは親タプルのために再構築された値で、ルートレベルの場合、あるいは親レベルのinner_consistent関数が値を返さなかった場合は(Datum) 0となります。
traversalValueは親インデックスのタプルのinner_consistentの前の呼び出しから渡された探索データへのポインタで、ルートレベルならNULLです。
levelは現在のリーフタプルのレベルを、ルートレベルを0として数えたものです。
returnDataは、この問い合わせで再構築されたデータが必要な場合にtrueとなりますが、これはconfig関数がcanReturnDataを確認した場合にのみ、そうなります。
leafDatumは現在のリーフタプルに格納されているspgConfigOut.leafTypeのキーの値です。
      


この関数は、リーフタプルが問い合わせにマッチすればtrueを返し、マッチしなければfalseを返します。
trueの場合、returnDataがtrueであれば、leafValueを、このリーフタプルにインデックス付けするために元々提供された(spgConfigIn.attType型の)値に設定しなければなりません。
また、マッチするかどうかが不確実で、マッチするかの確認のために実際のヒープタプルに演算子を再適用しなければならないときは、recheckがtrueにセットされることがあります。
順序付け検索を実行するなら、orderbys配列に従ってdistancesに距離の値の配列を設定します。
そうでなければNULLのままにします。
返される距離の少なくとも1つが正確でないのなら、recheckDistancesにtrueを設定します。
この場合、エグゼキュータはヒープからタプルを取得した後正確な距離を計算し、必要ならタプルを並べ替えます。
      





オプションのユーザ定義メソッドは以下です。
 
	Datum compress(Datum in)
	

インデックスのリーフタプルでデータ項目を物理ストレージに適した形式に変換します。
spgConfigIn.attType型の値を受け付け、spgConfigOut.leafType型の値を返します。
出力値は行に収まらないTOASTを含んでいてはいけません。
      


注意: compressメソッドは格納される値にのみ適用されます。
適合するメソッドはcompressを使って変換することなく、問い合わせのscankeysをそのまま受け取ります。
      

	options
	

演算子クラスの振舞いを制御するユーザに可視のパラメータの集合を定義します。
      


この関数のSQL宣言は以下のようになります。



CREATE OR REPLACE FUNCTION my_options(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;


      


関数にはlocal_relopts構造体へのポインタが渡されますが、構造体を演算子クラスに固有のオプションの集合で満たすことが必要です。
オプションはマクロPG_HAS_OPCLASS_OPTIONS()とPG_GET_OPCLASS_OPTIONS()を使って他のサポート関数からアクセスできます。
      


SP-GiSTでのキーの表現には柔軟性がありますので、ユーザに固有のパラメータに依存するかもしれません。
      





SP-GiSTのすべてのサポートメソッドは、通常は短期間有効なメモリコンテキスト内で呼び出されます。つまり、それぞれのタプルについて処理した後でCurrentMemoryContextはリセットされます。
したがって、pallocしたものすべてについてpfreeすることを気にかけることはあまり重要ではありません。
(configメソッドは例外で、メモリリークを避けるようにする必要があります。
しかし、通常はconfigメソッドは、パラメータとして渡された構造体に定数を代入する以外、何もする必要がありません。)
  


インデックス付けされた列が照合可能なデータ型の場合、インデックスの照合は、標準的なPG_GET_COLLATION()の仕組みを使ってすべてのサポートメソッドに渡されます。
  

実装





この節では、SP-GiSTの演算子クラスを実装する人にとって知っていると役に立つ、実装についての詳細とその他の秘訣について説明します。
  
SP-GiSTの制限





それぞれのリーフタプルおよび内部タプルは1つのインデックスページ内(デフォルトで8kB)に収まらなければなりません。
従って、可変長のデータ型の値をインデックス付けするときは、長い値は基数木のようなメソッドによってのみサポートされます。つまり、ツリーのそれぞれのレベルではページに収まる短さの接頭辞を含み、最後のリーフレベルでは、やはりページに収まる短さの接尾辞を含む、というようなものです。
このようなことが発生する場合の対応の準備ができている場合のみ、演算子クラスはlongValuesOKを真にセットするべきです。
そうでなければ、SP-GiSTのコアは、インデックスページに収めるには大きすぎる値についてのインデックス付け要求を拒絶します。
  


同様に、内部タプルが大きくなりすぎてインデックスページに収まらない、ということにならないようにするのは、演算子クラスの責任です。
これにより、1つの内部タプルで使うことができる子ノードの数、および接頭辞の値の最大サイズが制限されます。
  


内部タプルのノードがリーフタプルの集合を指しているとき、それらのタプルはすべて同じインデックスページ内になければならない、という制限もあります。
(これは、シークの回数を減らし、そのようなタプルを一つにつなげるリンクに必要なスペースを減らす、という設計上の決定によるものです。)
リーフタプルの集合が大きくなって1ページに収まらなくなると、分割が実行され、中間の内部タプルが挿入されます。
これで問題を解決するためには、新しい内部タプルは、リーフの値の集合を2つ以上のノードのグループに分割しなければなりません。
演算子クラスのpicksplit関数がそれをするのに失敗したときは、SP-GiSTのコアは、「「All-the-Same」内部タプル」に記述されている特別な手段に頼ることになります。
  


longValuesOKが真であれば、SP-GiSTツリーの後続のレベルは、より多くの情報を接頭辞と内部タプルのノードラベルへと吸収し、要求されるリーフデータより小さくして、最終的には1ページに収まるようになることが期待されます。
演算子クラスのバグが無限の挿入ループを引き起こすのを防ぐために、chooseメソッドの呼び出しの10サイクル以内でリーフデータが少しも小さくならなければ、SP-GiSTコアはエラーを発生します。
  

ノードラベルのないSP-GiST





木構造のアルゴリズムには、それぞれの内部タプルに対して固定された集合のノードを使うものがあります。
例えば四分木では、内部タプルの中心点の周りの4つの象限に対応するちょうど4つのノードが必ずあります。
このような場合、コードは典型的には数字を使ったノードで動作し、明示的なノードラベルは必要ありません。
ノードラベルを使わない(そしてそれによりいくらかのスペースを節約する)ために、picksplit関数はnodeLabels配列としてNULLを返すことができ、同様にchoose関数はspgSplitTupleアクションの間prefixNodeLabels配列としてNULLを返すことができます。
この結果、その後のchoose関数およびinner_consistent関数の呼び出しにおいてもnodeLabelsはNULLになります。
原則として、ノードラベルは同じインデックス中の一部の内部タプルに使い、他の内部タプルには省略する、ということができます。
  


ラベルのないノードを持つ内部タプルを処理するときに、chooseがspgAddNodeを返すのはエラーです。というのは、この場合、ノードの集合は固定されていると想定されるからです。
  

「All-the-Same」内部タプル





picksplitが入力のリーフ値を少なくとも2つのノード分類に分割できなかった場合、SP-GiSTのコアは演算子クラスのpicksplit関数の結果を無効にすることがあります。
これが起きると、複数のノードを持つ新しい内部タプルが作成されます。それぞれのノードは、picksplitが一つのノードに付与したもの(あれば)と同じラベルを持ち、リーフ値はこれらの等価なノード間でランダムに分割されます。
内部タプルにはallTheSameのフラグがセットされ、choose関数およびinner_consistent関数に対し、そのタプルが通常期待されるようなノードの集合を持っていないことを警告します。
  


allTheSameの処理において、chooseのspgMatchNodeという結果は、新しい値は等価なノードのどれに割り当てられても良い、という意味に解釈されます。
コアのコードは入力されたnodeNの値を無視し、(ツリーの平衡を保つために)ノードの1つにランダムに降りていきます。
chooseがspgAddNodeを返すのはエラーです。というのは、そうするとすべてのノードが等価ではなくなるからです。
挿入する値が既存のノードとマッチしない時は、spgSplitTupleのアクションを使わなければなりません。
  


allTheSameのタプルの処理において、すべてのノードは等価なので、inner_consistent関数は、インデックス検索を続けるためのターゲットとして、すべてのノードを返すか、ノードを1つも返さないかのいずれかであるべきです。
このために、特殊ケースを扱うコードが必要になるかもしれませんし、必要ないかもしれません。それは、inner_consistent関数が、通常、ノードの意味についてどの程度のことを仮定しているかに依存します。
  


例





PostgreSQL™のソースコードの配布物には、表65.2「組み込みSP-GiST演算子クラス」に示すように、SP-GiSTのインデックス演算子クラスの例がいくつか含まれています。
コードを見るにはsrc/backend/access/spgist/とsrc/backend/utils/adt/を調べてみてください。
 


GINインデックス



はじめに





GINとは汎用転置インデックス(Generalized Inverted Index)を表します。
GINは、以下のような状況を取り扱うために設計されました。(1)インデックス対象の項目が複合型である。(2)そのインデックスにより処理される問い合わせは、複合型の項目内に存在する要素の値を検索する必要がある。
例えば、項目は文書であり、問い合わせは特定の単語を含む文書の検索です。
 


ここでは、インデックス対象の複合型の値を項目と呼びます。また、要素値をキーと呼びます。
GINは項目の値自体ではなく、常にキーを格納し検索します。
 


GINインデックスは(キー、ポスティングリスト(posting list))の組み合わせの集合を格納します。
ここでポスティングリストはキーが発生した行IDの集合です。
項目は１つ以上のキーを含むことができますので、同じ行IDが複数のポスティングリストに現れることがあり得ます。
キー値はそれぞれ一度のみ格納されます。
このためGINインデックスの容量は、同じキーが何度も現れる場合に非常に小さくなります。
 


GINインデックスは、GINアクセスメソッドが高速化対象の操作を把握する必要がないという意味で汎用化されています。
その代わり、特定のデータ型に対して定義された独自の戦略を使用します。
戦略は、インデックス付けされた項目と問い合わせ条件からキーを抽出する方法および問い合わせ内のいくつかのキー値を含む行が実際に問い合わせを満たすかどうかを決定する方法を定義します。
 


GINの利点の1つは、データベース専門家ではなくデータ型の分野における専門家により、適切なアクセスメソッドを持つ独自のデータ型を開発できるという点です。
これはGiSTの使用とほぼ同じ利点です。
 


PostgreSQL™におけるGINの実装は、主にTeodor SigaevとOleg Bartunovにより保守されています。
GINに関する情報は彼らのwebサイトにより多く記載されています。
 

組み込み演算子クラス





PostgreSQL™のコア配布物は表65.3「組み込みGIN演算子クラス」に示すGIN演算子クラスを含みます。
(付録F 追加で提供されるモジュールと拡張に記載された追加モジュールの中には追加のGIN演算子クラスを提供するものもあります。)
 
表65.3 組み込みGIN演算子クラス
	名前	インデックス可能な演算子
	array_ops	&& (anyarray,anyarray)
	@> (anyarray,anyarray)
	<@ (anyarray,anyarray)
	= (anyarray,anyarray)
	jsonb_ops	@> (jsonb,jsonb)
	@? (jsonb,jsonpath)
	@@ (jsonb,jsonpath)
	? (jsonb,text)
	?| (jsonb,text[])
	?& (jsonb,text[])
	jsonb_path_ops	@> (jsonb,jsonb)
	@? (jsonb,jsonpath)
	@@ (jsonb,jsonpath)
	tsvector_ops	@@ (tsvector,tsquery)





jsonb型の2つの演算子クラスのうち、jsonb_opsがデフォルトです。
jsonb_path_opsはより少数の演算子しかサポートしませんが、その演算子に対してはより良いパフォーマンスを提供します。
詳細は「jsonb インデックス」を参照してください。
 

拡張性





GINインタフェースは高度に抽象化されています。
アクセスメソッド実装者に要求されることは、アクセスするデータ型の意味を実装することだけです。
GIN層自体が同時実行性、ログ処理、ツリー構造の検索処理に関する面倒を見ます。
 


GINアクセスメソッドを動作させるために必要なことは、少数のユーザ定義関数を実装することだけです。
これは、ツリー内のキーの動作とキーとインデックス付けされる項目、インデックス可能な問い合わせ間の関係を定義します。
すなわち、GINは、一般化、コード再利用、整理されたインタフェースによる拡張性を組み合わせます。
 


GIN用の演算子クラスが提供しなければならないメソッドは2つあります。

  
	Datum *extractValue(Datum itemValue, int32 *nkeys,
        bool **nullFlags)
	

インデックス対象値に与えられる、pallocで割り当てられたキーの配列を返します。
返されるキーの数は*nkeysに格納しなければなりません。
キーのいずれかがNULLになるかもしれない場合、*nkeys個のboolの配列をpallocで割り当てそのアドレスを*nullFlagsに格納し、必要に応じてNULLフラグを設定してください。
すべてのキーが非NULLであれば、*nullFlagsをNULL（初期値）のままにすることができます。
項目がキーを含まない場合、戻り値はNULLになるかもしれません。
      

	Datum *extractQuery(Datum query, int32 *nkeys,
        StrategyNumber n, bool **pmatch, Pointer **extra_data,
        bool **nullFlags, int32 *searchMode)
	

問い合わせ対象の値に与えられる、pallocで割り当てられたキーの配列を返します。
つまり、queryはインデックス可能な演算子の右辺の値です。
この左辺はインデックス対象の列です。
nは演算子クラス内の演算子の戦略番号です（「インデックスメソッドのストラテジ」を参照）。
extractQueryはしばしば、queryのデータ型とキー値を抽出するために使用しなければならないメソッドを決定するために、nを調べなければなりません。
返されるキーの数を*nkeysに格納しなければなりません。
キーのいずれかがNULLとなる可能性がある場合はまた、*nkeys個のboolの配列をpallocで割り当て、*nullFlagsにそのアドレスを格納し、必要に応じてNULLフラグを設定してください。
すべてのキーが非NULLならば*nullFlagsはNULL（初期値）のままにしておくことができます。
queryがキーを含まない場合、戻り値をNULLにすることができます。
      


searchModeは出力引数です。
これによりextractQueryは検索がどのように行われるかの詳細を指定することができます。
*searchModeがGIN_SEARCH_MODE_DEFAULT（呼び出し前にこの値に初期化されます。）に設定された場合、返されるキーの少なくとも１つに一致する項目が合致候補とみなされます。
*searchModeがGIN_SEARCH_MODE_INCLUDE_EMPTYに設定された場合、少なくとも１つの一致するキーを含む項目に加え、キーをまったく含まない項目が合致候補とみなされます。
（このモードは例えば何のサブセットかを求める演算子を実装する際に有用です。）
*searchModeがGIN_SEARCH_MODE_ALLに設定された場合、返されるキーのいずれかに一致するかどうかは関係なく、インデックス内の非NULLの項目すべてが合致候補とみなされます。
（このモードは、基本的にインデックス全体のスキャン処理が必要ですので、他の２つの選択肢と比べてかなり低速になります。
しかし境界条件を正確に実装するためにこれが必要になるかもしれません。
おそらく、このモードを必要とする演算子はほとんどの場合、GIN演算子クラス向けに優れた候補ではありません。）
このモードを設定するために使用する記号はaccess/gin.hで定義されています。
      


pmatchは部分一致が提供されている場合に使用する出力引数です。
使用するには、extractQueryが*nkeys個のboolの配列を割り当て、そのアドレスを*pmatchに格納しなければなりません。
関連するキーが部分一致を必要とするとき、それぞれの配列要素は真に、そうでなければ偽に設定されなければなりません。
*pmatchがNULLに設定されている場合、GINは部分一致が必要ないと想定します。
呼び出し前に変数はNULLに初期化されますので、この引数は部分一致が提供されていない演算子クラスでは、単に無視できます。
      


extra_dataは、extractQueryがconsistentとcomparePartialメソッドに追加データを渡すことができるようにする出力引数です。
使用するには、extractQueryが*nkeysポインタの配列を割り当て、そのアドレスを*extra_dataに格納し、そして望まれるものは何でも個別のポインタに格納しなければなりません。
変数は呼び出し前にNULLに初期化されますので、追加データを必要としない演算子クラスでこの引数は単に無視できます。
もし*extra_dataが設定されれば、配列全部がconsistentメソッドに、適切な要素がcomparePartialメソッドに渡されます。
      






演算子クラスは、インデックス付けされた項目が問い合わせに一致するか確認する関数も提供しなければなりません。
それは2つの方法で行なわれます。
2値のconsistent関数と3値のtriConsistent関数です。
triConsistentが両方の機能を含みますので、triConsistentだけを提供しても十分です。
しかし、2値の亜種を計算するのが著しく安価であれば、両方を提供することは役に立つかもしれません。
2値の亜種のみが提供されていれば、すべてのキーを取得する前にインデックス項目が一致しないことを確認することに基づく最適化の中には無効となるものもあります。

  
	bool consistent(bool check[], StrategyNumber n, Datum query,
        int32 nkeys, Pointer extra_data[], bool *recheck,
        Datum queryKeys[], bool nullFlags[])
	

インデックス付けられた項目が戦略番号nを持つ問い合わせ演算子を満たす（または、recheck印が返されたときはたぶん満たすかもしれない）場合に真を返します。
GINは項目を明示的に格納しませんので、この関数はインデックス付けされた項目の値に直接アクセスすることができません。
どちらかというと、この問い合わせから取り出される指定された問い合わせで現れるキー値に関する知識が利用できるものです。
check配列は長さnkeysであり、このqueryデータに対して事前に行われたextractQueryが返したキーの数と同じです。
インデックス対象の項目が対応する問い合わせキーを持つ場合、check配列の各要素は真です。
つまり、(check[i] == true)の場合、extractQueryの結果配列のi番目のキーがインデックス対象項目内に存在します。
元のqueryデータは、consistentメソッドがそれを調査する必要がある場合に、渡されます。
このためqueryKeys[]およびnullFlags[]は事前にextractQueryによって返されます。
extra_dataはextractQueryにより返された追加データ配列で、ない場合はNULLです。
      


extractQueryがqueryKeys[]内でNULLキーを返す時、インデックス対象項目がNULLキーを含む場合は対応するcheck[]要素は真です、
つまり、check[]の意味はIS NOT DISTINCT FROMのようなものです。
consistent関数は、通常の値の合致とNULL合致との違いを通知する必要がある場合、対応するnullFlags[]要素を検査することができます。
      


成功の場合、*recheckは、問い合わせ演算子に対してヒープタプルを再検査する必要があればtrue、インデックス検査が的確であればfalseに設定する必要があります。
つまり、falseの戻り値はヒープタプルが問い合わせに一致しないことを保証します。
trueの戻り値で、*recheckがfalseに設定された場合はヒープタプルが問い合わせに一致することを保証します。
trueの戻り値で、*recheckがtrueに設定された場合はヒープタプルが問い合わせに一致する可能性があることを意味します。
したがって、それを取り出し、元のインデックス付けされた項目を直接問い合わせ演算子で評価することで再検査する必要があることを意味します。
      

	GinTernaryValue triConsistent(GinTernaryValue check[], StrategyNumber n, Datum query,
        int32 nkeys, Pointer extra_data[],
        Datum queryKeys[], bool nullFlags[])
	

triConsistentはconsistentと似ていますが、checkベクトルの論理値の代わりに、各キーに対して3つの可能な値があります。GIN_TRUE、GIN_FALSE、GIN_MAYBEです。
GIN_FALSEとGIN_TRUEは通常の論理値と同じ意味であり、GIN_MAYBEはそのキーの存在が分からないこと意味します。
GIN_MAYBE値があれば、インデックス項目が対応する問い合わせキーを含むかどうかに関わらず、項目が確実に一致する場合にのみ関数はGIN_TRUEを返すべきです。
同様に、GIN_MAYBEを含むかどうかに関わらず項目が確実に一致しない場合にのみ関数はGIN_FALSEを返さなければなりません。
結果がGIN_MAYBE項目に依存する、すなわち、分かっている問い合わせキーに基づいて、一致することもしないことも確認できない場合には、関数はGIN_MAYBEを返さなければなりません。
      


checkベクトルにGIN_MAYBE値がなければ、GIN_MAYBE戻り値は論理値のconsistent関数でrecheckフラグを設定することと同じです。
      




 


さらに、GINにはインデックス内に格納されているキー値をソートする方法がなければなりません。
演算子クラスは比較メソッドを指定することでソート順を定義できます。

  
	int compare(Datum a, Datum b)
	

キー（インデックス付けされる項目ではありません）を比較し、0より小さい、0、または0より大きい整数を返します。
それぞれ、最初のキーが2番目のキーより、小さい、等しい、または大きいことを示します。
NULLキーがこの関数に渡されることはありません。
      






あるいは、演算子クラスがcompareメソッドを提供しない場合には、GINはそのインデックスキーデータ型に対するデフォルトのbtree演算子クラスを探し、その比較関数を使います。
btree演算子クラスを探すのは処理に多少掛かりますので、GIN演算子クラスの中で比較関数を指定することを勧めます。それはただ一つのデータ型に対するものであることを意味します。
しかし、(array_opsのような)多様GIN演算子クラスでは、通常は単一の比較関数を指定できません。
 


省略可能ですが、GINに対する演算子クラスは以下のメソッドを提供します。

  
	int comparePartial(Datum partial_key, Datum key, StrategyNumber n,
                              Pointer extra_data)
	

問い合わせキーとインデックスキーの部分一致を比較します。
符号が結果を示す整数が返ります。
ゼロ未満はインデックスキーは問い合わせに一致しないが、インデックススキャンを続けるべきであることを示します。
ゼロはインデックスキーが問い合わせに一致することを示します。
ゼロより大きな値はこれ以上の一致はありえないためインデックススキャンを停止すべきであることを示します。
スキャンをいつ停止するかを決めるためにセマンティクスが必要とされる場合、部分一致問い合わせを生成した演算子の戦略番号nが提供されます。
またextra_dataはextractQueryで作成される追加データ配列の対応する要素、もしなければNULLです。
NULLキーがこの関数に渡されることはありません。
      

	void options(local_relopts *relopts)
	

演算子クラスの振舞いを制御するユーザに可視のパラメータの集合を定義します。
      


options関数にはlocal_relopts構造体へのポインタが渡されますが、構造体を演算子クラスに固有のオプションの集合で満たすことが必要です。
オプションはマクロPG_HAS_OPCLASS_OPTIONS()とPG_GET_OPCLASS_OPTIONS()を使って他のサポート関数からアクセスできます。
      


インデックス付けされた値からのキーの抽出にもGINでのキーの表現にも柔軟性がありますので、ユーザに固有のパラメータに依存するかもしれません。
      




 


「部分一致」問い合わせをサポートするためには、演算子クラスはcomparePartialメソッドを提供しなければなりません。
またそのextractQueryは、部分一致問い合わせであった時にpmatchパラメータを設定しなければなりません。
詳細については「部分一致アルゴリズム」を参照してください。
 


上記の各種Datum値の実データ型は、演算子クラスに依存して変動します。
extractValueに渡される項目値は常に演算子クラスの入力型であり、キー値はすべてそのクラスのSTORAGE型でなければなりません。
extractQuery、consistentおよびtriConsistentに渡されるquery引数の型は、戦略番号によって識別されるクラスのメンバ演算子の右辺入力型です。
正しい型のキー値がそこから抽出できる限り、これはインデックス付けされた型と同じである必要はありません。
しかしながら、この3つのサポート関数のSQL宣言では、実際の型は演算子に依存して何か他のものであるとしても、query引数には演算子クラスのインデックス付けされたデータ型を使うことを勧めます。
 

実装





GINインデックスはキー全体に対するB-treeインデックスを持ちます。
そのキーはそれぞれインデックス対象項目の要素（例えば配列のメンバ）であり、リーフページ内のタプルはそれぞれ、ヒープポインタのB-treeへのポインタ（「ポスティングツリー(posting tree)」）か、もしリストがキー値と共に単一インデックスタプルに合う程度十分に小さければヒープポインタの単純なリスト（「ポスティングリスト(posting list)」）です。
図65.1「GINの内部」にGINインデックスのこれらのコンポーネントを示します。
 


PostgreSQL™ 9.1からNULLキー値をインデックスに含められるようになりました。
またプレースホルダとしてのNULLが、NULLまたはextractValueによるとキーを含まないインデックス対象項目についてインデックスに含められます。
これにより空の項目を見つけ出すための検索を行うことができます。
 


複数列に対するGINインデックスは複合型の値（列番号、キー値）全体について単一のB-treeを構築することで実装されます。
異なる列に対するキー値は別の型となるかもしれません。
 
図65.1 GINの内部



GIN高速更新手法





1つのヒープ行の挿入または更新によりインデックスへの挿入が多く発生するという、転置インデックスの本質的な性質のためGINインデックスの更新は低速になりがちです。
（各キー用のヒープ行はインデックス付けされた項目から取り出されます。）
GINは、新しいタプルを一時的なソートされていない、待機中の項目リストに挿入することにより、この作業の大部分を遅延させることができるようになりました。
テーブルがバキュームまたは自動解析された時、gin_clean_pending_list関数が呼ばれたとき、または、待機中のリスト(pending list)がgin_pending_list_limitよりも大きくなった時、初期のインデックス作成の際に使用されるものと同様の一括挿入技法を使用して、項目は主GINデータ構造に移動されます。
これは、バキュームのオーバーヘッドが追加されることを考慮したとしても、GINインデックスの更新速度を著しく向上します。
さらに、フォアグラウンドの問い合わせ処理ではなくバックグラウンド処理でこのオーバーヘッド作業を実行することができます。
  


この手法の大きな欠点は、検索時に通常のインデックス検索に加え待機中の項目リストのスキャンを行わなければならない点です。
このため、待機中の項目リストが大きくなると検索が顕著に遅くなります。
他の欠点は、ほとんどの更新は高速ですが、待機中の項目リストが「大きくなりすぎる」きっかけとなった更新は即時の整理処理を招くことになり、他の更新に比べ大きく低速になります。
自動バキュームを適切に使用することで、これらの両方の問題を最小化することができます。
  


一貫した応答時間が更新速度より重要な場合、GINインデックスに対するfastupdate格納パラメータを無効にすることにより、待機中の項目の使用を無効にすることができます。
詳細はCREATE INDEX(7)を参照してください。
  

部分一致アルゴリズム





GINは「部分一致」問い合わせをサポートすることができます。
この問い合わせは１つ以上のキーに正確に一致することは決定しませんが、キー値の合理的に狭い（compareサポートメソッドで決まるキーのソート順に従った）範囲内に一致する可能性があります。
extractQueryは、正確に一致したキー値を返す代わりに、検索される範囲の下限となるキー値を返し、pmatchフラグを真に設定します。
そしてキー範囲をcomparePartialメソッドを使用して検索します。
comparePartialは一致するインデックスキーではゼロを、一致しないが検索すべき範囲内にあればゼロ未満の値を、インデックスキーが一致可能な範囲を超えた場合はゼロより大きな値を返さなければなりません。
  


GINの小技



	作成と挿入
	

各項目に対して多くのキーが挿入される可能性がありますので、GINインデックスへの挿入は低速になることがあります。
ですので、テーブルに対する大量の挿入では、GINインデックスを削除し、大量の挿入が終わった段階で再作成することを勧めます。
    


GINではfastupdateが有効である場合、このペナルティはそうでない場合よりも少なくなります。
（「GIN高速更新手法」を参照してください。）
しかし非常に大規模な更新では、インデックスの削除と再作成がまだ最善かもしれません。
    

	maintenance_work_mem
	

GINインデックスの構築時間はmaintenance_work_memの設定に非常に敏感です。
インデックス作成時に作業メモリをより少なく使用しようとはしません。
    

	gin_pending_list_limit
	

fastupdateが有効な既存のGINインデックスに対して挿入を繰り返す間、待機中の項目リストがgin_pending_list_limitより大きくなると、システムはこのリストを整理します。
観測される応答時間の変動を防ぐためには、待機中リストの整理をバックグラウンド（すなわち自動バキューム）で起きるようにすることが望まれます。
フォアグラウンドでの整理処理は、gin_pending_list_limitを大きくすること、もしくは自動バキュームをより積極的に行うことで防ぐことができます。
しかし、整理処理の閾値を大きくすることは、フォアグラウンドで整理処理が発生した時により長い時間がかかることを意味します。
    


gin_pending_list_limitは格納パラメータを変更することで個々のGINインデックスに対して上書きでき、それにより各GINインデックスが自身の整理閾値を持てます。
例えば、頻繁に更新される可能性のあるGINインデックスの閾値のみを増やして、それ以外は減らすことができます。
    

	gin_fuzzy_search_limit
	

GINインデックス開発の主な目的は、スケーラビリティが高い全文検索のサポートをPostgreSQL™で作成することでした。
全文検索の結果は非常に大規模な結果セットを返します。
さらに、問い合わせが非常に高頻度な単語を持つ場合、こうした状況はよく発生しますが、大規模な結果セットは有用ですらありません。
ディスクから大量のタプルを読み、ソートすることは長い時間がかかりますので、実運用レベルでは受け入れられません。
（インデックス検索自体は非常に高速であることに注意してください。）
    


こうした問い合わせの実行を簡単に制御できるように、GINは返される行数に対して設定可能なソフト上限、gin_fuzzy_search_limit設定パラメータを持ちます。
これはデフォルトでは0です（無制限を意味します）。
非0の制限が設定された場合、返されるセットは結果セット全体からランダムに選んだサブセットになります。
    


「ソフト」は、問い合わせとシステムの乱数ジェネレータの品質に依存して、返される結果の実際の数が指定した上限より多少異なることを意味します。
    


経験上、数千（例えば5000から20000）の値がうまく動作します。
    




制限事項





GINは、インデックス付け可能な演算子は厳密であると仮定します。
これはextractValueはNULL項目値についてはまったく呼び出されない（代わりにインデックス項目のプレースホルダが自動的に生成される）こと、および、extractQueryは問い合わせの値がNULLの場合に呼び出されない（代わりに問い合わせは不一致であるとみなされる）ことを意味します。
しかし非NULLの複合型項目内または問い合わせ値内のNULLキー値はサポートされます。
 

例





PostgreSQL™のコア配布物は以前表65.3「組み込みGIN演算子クラス」に示したGIN演算子クラスを含みます。
以下のcontribモジュールにもGIN演算子クラスが含まれています。

 
	btree_gin
	さまざまなデータ型に対するB-tree等価の機能

	hstore
	（キー、値）の組み合わせを格納するモジュール

	intarray
	int[]に対する高度サポート

	pg_trgm
	トライグラム一致を使用したテキスト類似度




 


BRINインデックス



はじめに





BRINは「ブロックレンジインデックス」(Block Range Index)の略です。
BRINは、ある列がテーブル内の物理的な位置と自然な相関があるような、非常に大規模なテーブルのために設計されています。
 


BRINはブロックレンジ(block range)（または「ページレンジ(page range)」）として動作します。
ブロックレンジ(block range)は、テーブル内で物理的に隣接するページのグループです。それぞれのブロックレンジに対して、ある種の要約情報がインデックス内に格納されます。
たとえば、店舗の受注情報を格納するテーブルは、各々の受注時期を格納する日付列を持つでしょう。大抵の場合、より前の受注エントリは、テーブルのより前の方にあるでしょう。
郵便番号を管理するテーブルでは、ある市に属する郵便番号が自然にグループ化されることになるでしょう。
 


BRINインデックスは、通常のビットマップインデックススキャンを通じて要求されるクエリに使用することができます。
すなわち、インデックス内のレンジ要約情報が検索条件と一致すれば、BRINインデックスは各レンジ内のすべてのページにあるすべてのタプルを返します。
クエリエグゼキュータの役割は、検索条件を再チェックし、条件に合致しないタプルを捨てることです。
つまり言い換えると、BRINインデックスには損失性があります。
BRINインデックスは非常に小さいため、それに対するスキャンはシーケンシャルスキャンに比べると小さなオーバーヘッドしか与えません。しかし、あらかじめ条件に合致しないと分かっているテーブルの多くの部分をスキャンすることを避けることができます。
 


BRINインデックスに格納される特定のデータと、そのインデックスが対応できる特定のクエリは、インデックスに対応する各々の列に与えられた演算子クラスに依存します。
線形のソート順を持つデータ型は、ブロックレンジ内の最小値と最大値と格納する演算子クラスを持つことができます。
たとえば、幾何データ型は、ブロックレンジ内のすべてのオブジェクトを含む外接矩形を持つことでしょう。
 


ブロックレンジの大きさは、ストレージパラメータpages_per_rangeでインデックス作成時に決定されます。
インデックスエントリの数は、リレーションのページ数をpages_per_rangeに設定した数で割ったものと等しくなります。
ですから、pages_per_rangeの設定値が小さいほど、インデックスは大きくなります(より多くのインデックスエントリを格納する必要があるので)が、反面、格納されたサマリデータはより精密になり、インデックススキャンの際により多くのデータブロックをスキップすることができるようになります。
 
インデックスの保守





インデックスを作成した当初は、すべてのヒープページがスキャンされ、終端が不完全なものも含め、各々のレンジに対してサマリインデックスタプルが作成されます。
新しいページにデータが登録されると、新しいタプルのデータを元に、すでにサマリ済みのページレンジのサマリ情報が更新されます。
最終サマリレンジに適合しない新しいページが作成されると、そのレンジに対して自動的にはサマリタプルが作成されません。
これらのタプルは、後でサマリ処理が走って初期サマリ情報が作成されるまではサマリされません。
  


ページレンジの初期サマリ処理を起動する複数の方法があります。
手動あるいはautovacuumのどちらでも良いですが、テーブルがバキュームされるとすべてのまだサマライズされていないページレンジがサマライズされます。
また、インデックスのautosummarizeパラメータが有効なら、これはデフォルトでは有効ではありませんが、そのデータベースに対してバキュームが実行されると、自動バキュームによってそのテーブル自体が処理されるかどうかにかかわらず、すべての挿入された未サマリページレンジに対してサマリ処理が実行されます。
以下を見てください。
  


最後に、次の関数を使用できます（これらの関数の実行中、search_pathは一時的にpg_catalog, pg_tempに変更されます）。
   
	

すべての未サマリレンジをサマライズするbrin_summarize_new_values(regclass)
    
	

もしまだサマライズされていなければ、指定されたページを含む指定されたレンジのみをサマライズするbrin_summarize_range(regclass, bigint)
    


  


自動サマリ機能が有効な場合、次のブロックレンジの最初のページの最初の項目の挿入が検出されると、同じデータベースで実行中の自動バキュームワーカーの次の実行の終了時に処理されるブロックレンジをターゲットとするサマリ機能を実行する要求がautovacuumに送信されます。
もしリクエストキューが満杯ならばそのリクエストは記録されず、次のメッセージがサーバのログに送信されます。


LOG:  request for BRIN range summarization for index "brin_wi_idx" page 128 was not recorded



この状態が発生すると、テーブルの次の通常バキュームが実行されるか、上で述べた関数のどれかが実行されるまでは、そのレンジはサマライズされない状態にとどまります。
  


反対に、レンジはbrin_desummarize_range(regclass, bigint)関数で非サマリ化できます。
これは、既存の値が変更されたためにインデックスタプルがもはや値の表現としては適当でなくなった場合に有効です。
詳細は「インデックス保守関数」を見てください。
  


組み込み演算子クラス





PostgreSQL™のコア配布物には、表65.4「組み込みBRIN演算子クラス」で示されるBRIN演算子クラスが含まれます。
 


minmax演算子クラスは、インデックスが貼られた列の範囲内に現れる最小値と最大値を格納します。
inclusion演算子クラスは、インデックスが貼られた列の範囲内に含まれる値を格納します。
bloom演算子クラスは、その範囲内のすべての値に対してブルームフィルタを構築します。
minmax-multi演算子クラスは、インデックスが貼られた列の範囲内に現れる複数の最小値と最大値、代表値を格納します。
 
表65.4 組み込みBRIN演算子クラス
	名前	インデックス可能な演算子
	bit_minmax_ops	= (bit,bit)
	< (bit,bit)
	> (bit,bit)
	<= (bit,bit)
	>= (bit,bit)
	box_inclusion_ops	@> (box,point)
	<< (box,box)
	&< (box,box)
	&> (box,box)
	>> (box,box)
	<@ (box,box)
	@> (box,box)
	~= (box,box)
	&& (box,box)
	<<| (box,box)
	&<| (box,box)
	|&> (box,box)
	|>> (box,box)
	bpchar_bloom_ops	= (character,character)
	bpchar_minmax_ops	= (character,character)
	< (character,character)
	<= (character,character)
	> (character,character)
	>= (character,character)
	bytea_bloom_ops	= (bytea,bytea)
	bytea_minmax_ops	= (bytea,bytea)
	< (bytea,bytea)
	<= (bytea,bytea)
	> (bytea,bytea)
	>= (bytea,bytea)
	char_bloom_ops	= ("char","char")
	char_minmax_ops	= ("char","char")
	< ("char","char")
	<= ("char","char")
	> ("char","char")
	>= ("char","char")
	date_bloom_ops	= (date,date)
	date_minmax_ops	= (date,date)
	< (date,date)
	<= (date,date)
	> (date,date)
	>= (date,date)
	date_minmax_multi_ops	= (date,date)
	< (date,date)
	<= (date,date)
	> (date,date)
	>= (date,date)
	float4_bloom_ops	= (float4,float4)
	float4_minmax_ops	= (float4,float4)
	< (float4,float4)
	> (float4,float4)
	<= (float4,float4)
	>= (float4,float4)
	float4_minmax_multi_ops	= (float4,float4)
	< (float4,float4)
	> (float4,float4)
	<= (float4,float4)
	>= (float4,float4)
	float8_bloom_ops	= (float8,float8)
	float8_minmax_ops	= (float8,float8)
	< (float8,float8)
	<= (float8,float8)
	> (float8,float8)
	>= (float8,float8)
	float8_minmax_multi_ops	= (float8,float8)
	< (float8,float8)
	<= (float8,float8)
	> (float8,float8)
	>= (float8,float8)
	inet_inclusion_ops	<< (inet,inet)
	<<= (inet,inet)
	>> (inet,inet)
	>>= (inet,inet)
	= (inet,inet)
	&& (inet,inet)
	inet_bloom_ops	= (inet,inet)
	inet_minmax_ops	= (inet,inet)
	< (inet,inet)
	<= (inet,inet)
	> (inet,inet)
	>= (inet,inet)
	inet_minmax_multi_ops	= (inet,inet)
	< (inet,inet)
	<= (inet,inet)
	> (inet,inet)
	>= (inet,inet)
	int2_bloom_ops	= (int2,int2)
	int2_minmax_ops	= (int2,int2)
	< (int2,int2)
	> (int2,int2)
	<= (int2,int2)
	>= (int2,int2)
	int2_minmax_multi_ops	= (int2,int2)
	< (int2,int2)
	> (int2,int2)
	<= (int2,int2)
	>= (int2,int2)
	int4_bloom_ops	= (int4,int4)
	int4_minmax_ops	= (int4,int4)
	< (int4,int4)
	> (int4,int4)
	<= (int4,int4)
	>= (int4,int4)
	int4_minmax_multi_ops	= (int4,int4)
	< (int4,int4)
	> (int4,int4)
	<= (int4,int4)
	>= (int4,int4)
	int8_bloom_ops	= (bigint,bigint)
	int8_minmax_ops	= (bigint,bigint)
	< (bigint,bigint)
	> (bigint,bigint)
	<= (bigint,bigint)
	>= (bigint,bigint)
	int8_minmax_multi_ops	= (bigint,bigint)
	< (bigint,bigint)
	> (bigint,bigint)
	<= (bigint,bigint)
	>= (bigint,bigint)
	interval_bloom_ops	= (interval,interval)
	interval_minmax_ops	= (interval,interval)
	< (interval,interval)
	<= (interval,interval)
	> (interval,interval)
	>= (interval,interval)
	interval_minmax_multi_ops	= (interval,interval)
	< (interval,interval)
	<= (interval,interval)
	> (interval,interval)
	>= (interval,interval)
	macaddr_bloom_ops	= (macaddr,macaddr)
	macaddr_minmax_ops	= (macaddr,macaddr)
	< (macaddr,macaddr)
	<= (macaddr,macaddr)
	> (macaddr,macaddr)
	>= (macaddr,macaddr)
	macaddr_minmax_multi_ops	= (macaddr,macaddr)
	< (macaddr,macaddr)
	<= (macaddr,macaddr)
	> (macaddr,macaddr)
	>= (macaddr,macaddr)
	macaddr8_bloom_ops	= (macaddr8,macaddr8)
	macaddr8_minmax_ops	= (macaddr8,macaddr8)
	< (macaddr8,macaddr8)
	<= (macaddr8,macaddr8)
	> (macaddr8,macaddr8)
	>= (macaddr8,macaddr8)
	macaddr8_minmax_multi_ops	= (macaddr8,macaddr8)
	< (macaddr8,macaddr8)
	<= (macaddr8,macaddr8)
	> (macaddr8,macaddr8)
	>= (macaddr8,macaddr8)
	name_bloom_ops	= (name,name)
	name_minmax_ops	= (name,name)
	< (name,name)
	<= (name,name)
	> (name,name)
	>= (name,name)
	numeric_bloom_ops	= (numeric,numeric)
	numeric_minmax_ops	= (numeric,numeric)
	< (numeric,numeric)
	<= (numeric,numeric)
	> (numeric,numeric)
	>= (numeric,numeric)
	numeric_minmax_multi_ops	= (numeric,numeric)
	< (numeric,numeric)
	<= (numeric,numeric)
	> (numeric,numeric)
	>= (numeric,numeric)
	oid_bloom_ops	= (oid,oid)
	oid_minmax_ops	= (oid,oid)
	< (oid,oid)
	> (oid,oid)
	<= (oid,oid)
	>= (oid,oid)
	oid_minmax_multi_ops	= (oid,oid)
	< (oid,oid)
	> (oid,oid)
	<= (oid,oid)
	>= (oid,oid)
	pg_lsn_bloom_ops	= (pg_lsn,pg_lsn)
	pg_lsn_minmax_ops	= (pg_lsn,pg_lsn)
	< (pg_lsn,pg_lsn)
	> (pg_lsn,pg_lsn)
	<= (pg_lsn,pg_lsn)
	>= (pg_lsn,pg_lsn)
	pg_lsn_minmax_multi_ops	= (pg_lsn,pg_lsn)
	< (pg_lsn,pg_lsn)
	> (pg_lsn,pg_lsn)
	<= (pg_lsn,pg_lsn)
	>= (pg_lsn,pg_lsn)
	range_inclusion_ops	= (anyrange,anyrange)
	< (anyrange,anyrange)
	<= (anyrange,anyrange)
	>= (anyrange,anyrange)
	> (anyrange,anyrange)
	&& (anyrange,anyrange)
	@> (anyrange,anyelement)
	@> (anyrange,anyrange)
	<@ (anyrange,anyrange)
	<< (anyrange,anyrange)
	>> (anyrange,anyrange)
	&< (anyrange,anyrange)
	&> (anyrange,anyrange)
	-|- (anyrange,anyrange)
	text_bloom_ops	= (text,text)
	text_minmax_ops	= (text,text)
	< (text,text)
	<= (text,text)
	> (text,text)
	>= (text,text)
	tid_bloom_ops	= (tid,tid)
	tid_minmax_ops	= (tid,tid)
	< (tid,tid)
	> (tid,tid)
	<= (tid,tid)
	>= (tid,tid)
	tid_minmax_multi_ops	= (tid,tid)
	< (tid,tid)
	> (tid,tid)
	<= (tid,tid)
	>= (tid,tid)
	timestamp_bloom_ops	= (timestamp,timestamp)
	timestamp_minmax_ops	= (timestamp,timestamp)
	< (timestamp,timestamp)
	<= (timestamp,timestamp)
	> (timestamp,timestamp)
	>= (timestamp,timestamp)
	timestamp_minmax_multi_ops	= (timestamp,timestamp)
	< (timestamp,timestamp)
	<= (timestamp,timestamp)
	> (timestamp,timestamp)
	>= (timestamp,timestamp)
	timestamptz_bloom_ops	= (timestamptz,timestamptz)
	timestamptz_minmax_ops	= (timestamptz,timestamptz)
	< (timestamptz,timestamptz)
	<= (timestamptz,timestamptz)
	> (timestamptz,timestamptz)
	>= (timestamptz,timestamptz)
	timestamptz_minmax_multi_ops	= (timestamptz,timestamptz)
	< (timestamptz,timestamptz)
	<= (timestamptz,timestamptz)
	> (timestamptz,timestamptz)
	>= (timestamptz,timestamptz)
	time_bloom_ops	= (time,time)
	time_minmax_ops	= (time,time)
	< (time,time)
	<= (time,time)
	> (time,time)
	>= (time,time)
	time_minmax_multi_ops	= (time,time)
	< (time,time)
	<= (time,time)
	> (time,time)
	>= (time,time)
	timetz_bloom_ops	= (timetz,timetz)
	timetz_minmax_ops	= (timetz,timetz)
	< (timetz,timetz)
	<= (timetz,timetz)
	> (timetz,timetz)
	>= (timetz,timetz)
	timetz_minmax_multi_ops	= (timetz,timetz)
	< (timetz,timetz)
	<= (timetz,timetz)
	> (timetz,timetz)
	>= (timetz,timetz)
	uuid_bloom_ops	= (uuid,uuid)
	uuid_minmax_ops	= (uuid,uuid)
	< (uuid,uuid)
	> (uuid,uuid)
	<= (uuid,uuid)
	>= (uuid,uuid)
	uuid_minmax_multi_ops	= (uuid,uuid)
	< (uuid,uuid)
	> (uuid,uuid)
	<= (uuid,uuid)
	>= (uuid,uuid)
	varbit_minmax_ops	= (varbit,varbit)
	< (varbit,varbit)
	> (varbit,varbit)
	<= (varbit,varbit)
	>= (varbit,varbit)



演算子クラスパラメータ





いくつかの組み込み演算子クラスは演算子クラスの振舞いに影響するパラメータを指定できます。
それぞれの演算子クラスで、指定できる独自のパラメータ群があります。
bloom演算子クラスとminmax-multi演算子クラスのみ特定のパラメータが指定できます。
   


bloom演算子クラスでは次のパラメータを受け取ります。
   
	n_distinct_per_range
	

BRINブルームインデックスでブルームフィルタのサイズ設定に使用される、ブロックレンジ内の重複しない非NULL値の推定数を定義します。
これは、ALTER TABLE(7)のn_distinctオプションと同様に動作します。
正の値に設定された場合、各ブロックレンジにはこの数の重複しない非NULL値が含まれているとみなされます。
負の値に設定された場合、重複しない非NULL値の数はブロックレンジ内でのタプルの最大数(ブロックあたり約290行)に比例して増加するとみなされ、-1以上である必要があります。
デフォルト値は-0.1で、重複しない非NULL値の最小数は16です。
    

	false_positive_rate
	

ブルームフィルタのサイズ設定のためにBRINブルームインデックスによって使用される、必要な偽陽性率を定義します。
値は0.0001から0.25の間でなければなりません。デフォルト値は0.01で、これは1%の偽陽性率です。
    





minmax-multi演算子クラスでは次のパラメータを受け取ります。
   
	values_per_range
	

ブロック範囲を集計するためにBRIN minmaxインデックスによって格納される値の最大数を定義します。
各値は、点または区間の境界として表すこともできます。値は8から256の間である必要があり、デフォルト値は32です。
    





拡張性





BRINのインタフェースは高度に抽象化されており、アクセスメソッドを実装する人は、アクセスされるデータ型のセマンティクスを実装するだけで良いようになっています。
BRIN層は、同時実行性、ログ、インデックス構造の検索を担当します。
 


BRINアクセスメソッドを動作させるために必要なのは、インデックスに格納された要約値の振る舞いと、それらがインデックススキャンする際にどう関係するのかを定義する少数のメソッドを実装することだけです。
つまり、BRINは一般性、コードの再利用性、整理されたインタフェースと拡張性を同時に実現しています。
 


BRIN用の演算子クラスは、4つのメソッドを提供する必要があります。

  
	BrinOpcInfo *opcInfo(Oid type_oid)
	

インデックスが貼られた列の要約データに関する内部情報を返します。
返却値はpallocされたBrinOpcInfoへのポインタでなければなりません。
BrinOpcInfoは以下の定義を持ちます。


typedef struct BrinOpcInfo
{
    /* Number of columns stored in an index column of this opclass */
    uint16      oi_nstored;

    /* Opaque pointer for the opclass' private use */
    void       *oi_opaque;

    /* Type cache entries of the stored columns */
    TypeCacheEntry *oi_typcache[FLEXIBLE_ARRAY_MEMBER];
} BrinOpcInfo;



BrinOpcInfo.oi_opaqueは、演算子クラスのルーチンが、インデックススキャン中にサポート関数同士で情報のやり取りをするために使うことができます。
     

	bool consistent(BrinDesc *bdesc, BrinValues *column,
       ScanKey *keys, int nkeys)
	

ある範囲について、すべてのScanKeyエントリが指定されたインデックス値と一致するかどうかを返します。
使用する属性の数はスキャンキーの一部として渡されます。
同じ属性の複数のスキャンキーを一度に渡すこともできます。
エントリの数はnkeysパラメータによって決定されます。
     

	bool consistent(BrinDesc *bdesc, BrinValues *column,
       ScanKey key)
	

ScanKeyがある範囲のインデックス値と一致しているかどうかを返します。
属性の数はスキャンキーの一部として渡されます。
これはconsistent関数の古い後方互換のための派生型です。
     

	bool addValue(BrinDesc *bdesc, BrinValues *column,
       Datum newval, bool isnull)
	

追加された新しい値をインデックスが表現できるように、与えられたインデックスタプルとインデックス値にしたがい、タプルの指定アトリビュートを変更します。
タプルの更新が行われれば、trueが返却されます。
     

	bool unionTuples(BrinDesc *bdesc, BrinValues *a,
       BrinValues *b)
	

2つのインデックスタプルを統合します。
与えられた2つのインデックスタプルのうち、最初のインデックスタプルを変更して、両方のタプルを表現できるようにします。
2番目のタプルは変更されません。
     






省略可能ですが、BRINに対する演算子クラスは以下のメソッドを指定できます。

  
	void options(local_relopts *relopts)
	

演算子クラスの振舞いを制御するユーザに可視のパラメータの集合を定義します。
      


options関数にはlocal_relopts構造体へのポインタが渡されますが、構造体を演算子クラスに固有のオプションの集合で満たすことが必要です。
オプションはマクロPG_HAS_OPCLASS_OPTIONS()とPG_GET_OPCLASS_OPTIONS()を使って他のサポート関数からアクセスできます。
      


インデックス付けされた値からのキーの抽出にもBRINでのキーの表現にも柔軟性がありますので、ユーザに固有のパラメータに依存するかもしれません。
      






コア配布物には、4種類の演算子クラスが含まれます。すなわち、minmax、inclusion、minmax-multiとbloomです。
それらを使った演算子クラスの定義がコア配布物に必要に応じて含まれます。
同じ定義を使って、ユーザは他のデータ型のために演算子クラスを定義することができます。
そのためにソースコードを書く必要はありません。適切なシステムカタログの定義があれば十分です。
演算子ストラテジのセマンティクスは、サポート関数のソースコード中に埋め込まれていることに注意してください。
 


前述の4つの主要なサポート関数を実装することにより、まったく異なるセマンティクスを実装する演算子クラスも可能です。
なお、メジャーリリース間では下位互換性は保証されていません。
たとえば、新しいリリースでは、サポート関数が追加で必要になるかもしれません。
 


表65.5「Minmax演算子クラスの関数とサポート番号」で示すように、全順序集合を実装するデータ型のための演算子クラスを書くために、関連する演算子とともにminmaxサポート関数を使うことができます。
演算子クラスのメンバ(関数と演算子)はすべて必須です。
 
表65.5 Minmax演算子クラスの関数とサポート番号
	演算子クラスメンバ	オブジェクト
	サポート関数 1	内部関数brin_minmax_opcinfo()
	サポート関数 2	内部関数brin_minmax_add_value()
	サポート関数 3	内部関数brin_minmax_consistent()
	サポート関数 4	内部関数brin_minmax_union()
	Operator Strategy 1	operator less-than
	Operator Strategy 2	operator less-than-or-equal-to
	Operator Strategy 3	operator equal-to
	Operator Strategy 4	operator greater-than-or-equal-to
	Operator Strategy 5	operator greater-than





表65.6「Inclusion演算子クラスの関数とサポート番号」で示すように、他のデータ型の値を含む複合データ型の演算子クラスを書くには、関連する演算子とともに、inclusionサポート関数を使うことができます。
任意の言語で書かれたたったひとつの関数を追加するだけです。
機能を追加するために関数を追加できます。
すべての演算子はオプションです。
表の中依存性の項目で示されているように、ある種の演算子は他の演算子を必要とすることもあります。
 
表65.6 Inclusion演算子クラスの関数とサポート番号
	演算子クラスメンバ	オブジェクト	依存性
	サポート関数 1	内部関数brin_inclusion_opcinfo()	 
	サポート関数 2	内部関数brin_inclusion_add_value()	 
	サポート関数 3	内部関数brin_inclusion_consistent()	 
	サポート関数 4	内部関数brin_inclusion_union()	 
	サポート関数 11	2つの要素をマージする関数	 
	サポート関数 12	2つの要素がマージ可能かどうか確認するオプションの関数	 
	サポート関数 13	要素が他の要素に含まれるかどうかを確認するオプションの関数	 
	サポート関数 14	要素が空かどうかを確認するオプションの関数	 
	Operator Strategy 1	operator left-of	Operator Strategy 4
	Operator Strategy 2	operator does-not-extend-to-the-right-of	Operator Strategy 5
	Operator Strategy 3	operator overlaps	 
	Operator Strategy 4	operator does-not-extend-to-the-left-of	Operator Strategy 1
	Operator Strategy 5	operator right-of	Operator Strategy 2
	Operator Strategy 6, 18	operator same-as-or-equal-to	Operator Strategy 7
	Operator Strategy 7, 16, 24, 25	operator contains-or-equal-to	 
	Operator Strategy 8, 26, 27	operator is-contained-by-or-equal-to	Operator Strategy 3
	Operator Strategy 9	operator does-not-extend-above	Operator Strategy 11
	Operator Strategy 10	operator is-below	Operator Strategy 12
	Operator Strategy 11	operator is-above	Operator Strategy 9
	Operator Strategy 12	operator does-not-extend-below	Operator Strategy 10
	Operator Strategy 20	operator less-than	Operator Strategy 5
	Operator Strategy 21	operator less-than-or-equal-to	Operator Strategy 5
	Operator Strategy 22	operator greater-than	Operator Strategy 1
	Operator Strategy 23	operator greater-than-or-equal-to	Operator Strategy 1





サポート関数番号1から10は、BRINの内部関数用に予約されており、SQLレベルの関数は番号11から始まります。
サポート関数11は、インデックスを構築するのに必要なメイン関数です。
その関数は演算子クラスと同じデータ型を持つ2つの引数を受け取り、それらの和を返します。
もしSTORAGEパラメータで定義されていれば、inclusion 演算子クラスは異なるデータ型の和を格納できます。
和関数の戻り値は、STORAGEデータ型と一致していなければなりません。
 


サポート関数番号12と14は、組み込みデータ型の例外事象をサポートするために提供されます。
サポート関数番号12は、マージできない異なるファミリーのネットワークアドレスをサポートするために使用されます。
サポート関数番号14は、空のレンジをサポートするために使用されます。
サポート関数番号13はオプションですが、和関数に渡される前に新しい値のチェックを行うためのものとして推奨されます。
BRINフレームワークは和が変化しない時に操作を省略することができるため、この関数を使うことによってインデックスの性能が向上する可能性があります。
 


表65.7「Bloom演算子クラスのプロシージャとサポート番号」で示すように、等号演算子のみを実装しハッシュをサポートするデータ型の演算子クラスを書くために、関連する演算子とともにbloomがサポートするプロシージャを使うことができます。
演算子クラスのメンバ(プロシージャと演算子)はすべて必須です。
 
表65.7 Bloom演算子クラスのプロシージャとサポート番号
	演算子クラスメンバ	オブジェクト
	サポートプロシージャ 1	内部関数brin_bloom_opcinfo()
	サポートプロシージャ 2	内部関数brin_bloom_add_value()
	サポートプロシージャ 3	内部関数brin_bloom_consistent()
	サポートプロシージャ 4	内部関数brin_bloom_union()
	サポートプロシージャ 5	内部関数brin_bloom_options()
	サポートプロシージャ 11	要素のハッシュを計算する関数
	Operator Strategy 1	operator equal-to





サポートプロシージャ番号1から10は、BRINの内部関数として予約されており、SQLレベルの関数は11番から始まります。
サポート関数11は、インデックスを構築するのに必要なメイン関数です。
演算子クラスと同じデータ型の引数を1つ受け取り、その値のハッシュを返す必要があります。
 


minmax-multi演算子クラスもまた、全順序集合を実装するデータ型を対象としており、minmax演算子クラスの単純な拡張と見なすことができます。
minmax演算子クラスは各ブロックの範囲を一つの連続した区間にまとめますが、minmax-multiはより小さな複数の区間にまとめることで、外れ値の扱いを改善します。
表65.8「minmax-multi演算子クラスのプロシージャとサポート番号」で示すように、関連する演算子とともにminmax-multiがサポートするプロシージャを使うことができます。
演算子クラスのメンバ(プロシージャと演算子)はすべて必須です。
 
表65.8 minmax-multi演算子クラスのプロシージャとサポート番号
	演算子クラスメンバ	オブジェクト
	サポートプロシージャ 1	内部関数brin_minmax_multi_opcinfo()
	サポートプロシージャ 2	内部関数brin_minmax_multi_add_value()
	サポートプロシージャ 3	内部関数brin_minmax_multi_consistent()
	サポートプロシージャ 4	内部関数brin_minmax_multi_union()
	サポートプロシージャ 5	内部関数brin_minmax_multi_options()
	サポートプロシージャ 11	2つの値の間の距離(範囲の長さ)を計算する関数
	Operator Strategy 1	operator less-than
	Operator Strategy 2	operator less-than-or-equal-to
	Operator Strategy 3	operator equal-to
	Operator Strategy 4	operator greater-than-or-equal-to
	Operator Strategy 5	operator greater-than





minmaxとinclusion演算子クラスは、データ型をまたがる演算子をサポートします。
しかし、これらを使用すると依存関係はより複雑になります。
minmax演算子クラスは、両方の引数がデータ型が同じ型である完全な演算子のセットが必要になります。
追加の演算子の組を定義することにより、追加のデータ型をサポートすることができます。
表65.6「Inclusion演算子クラスの関数とサポート番号」で示すように、inclusion演算子クラスのストラテジは、他の演算子クラスのストラテジに依存するか、自分自身の演算子クラスのストラテジに依存します。
演算子クラスは、依存演算子がSTORAGEデータ型とともにサポートするデータ型の左辺引数、他のサポートするデータ型をサポートする演算子の右辺引数として定義される必要があります。
minmaxの例としてfloat4_minmax_ops、inclusionの例としてbox_inclusion_opsを参照してください。
 


ハッシュインデックス



概要





PostgreSQL™には、クラッシュから完全に回復可能なディスク上の永続的なハッシュインデックスの実装が含まれています。
明確な線形順序付けを持たないものも含め、すべてのデータ型がハッシュインデックスでインデックス可能です。
ハッシュインデックスは、インデックスされる値のハッシュ値のみを保存するので、インデックス対象の列のサイズは制限となりません。
 


ハッシュインデックスは単一列のインデックスのみをサポートし、唯一性のチェックはできません。
 


ハッシュインデックスは=演算子のみをサポートしており、範囲演算を指定するWHERE句はハッシュインデックスの恩恵をこうむることができません。
 


各インデックスタプルは単なる4バイトのハッシュ値で、実際の列の値ではありません。
そのため、UUIDやURLのような大きなデータをインデックスすると、ハッシュインデックスはB-treeよりもずっと小さくなるかも知れません。
また、列値が含まれていないため、すべてのハッシュスキャンは損失がある(lossy)ものになります。
ハッシュインデックスはビットマップインデックススキャンおよび後方スキャンに参加できます。
 


ハッシュインデックスは、大きなテーブルに対して同値スキャンを使用するSELECTとUPDATEを多用するワークロードに対して最適です。
B-treeインデックスでは、スキャンはリーフページが見つかるまで木を降下しなければなりません。
何百万行のテーブルではこの降下スキャンによりデータをアクセスする時間がかかることがあります。
ハッシュインデックスにおけるリーフページに相当するものはバケットページと呼ばれます。
対照的に、ハッシュインデックスはバケットページを直接アクセスすることが可能で、大きなテーブルでのインデックスアクセスの時間を短縮できる可能性があります。
「論理的なI/O」における時間短縮は、共有バッファ/RAMよりもインデックス/データが大きな時にはより顕著になります。
 


ハッシュインデックスはハッシュ値の均等ではない分布を想定して設計されています。
バケットページへのアクセスはハッシュ値が均一に分布している時にうまく働きます。
挿入によりバケットページが満杯になると、追加のオーバーフローページが特定のバケットページに連結され、そのハッシュ値に適合するインデックスタプル用の領域を局所的に拡張します。
問い合わせ中にハッシュバケットをスキャンする際は、すべてのオーバーフローページをスキャンする必要があります。
そのため、不均等なハッシュインデックスは、いくつかのデータに対してアクセスが必要なブロックの数の点で、Bツリーよりも悪いかも知れません。
 


オーバーフローが発生する場合を考慮すると、ハッシュインデックスは一意か、ほぼ一意に近いデータあるいは、それぞれのハッシュバケットに少数の行があるデータがもっとも適していると言えます。
問題を回避できる方法の１つは部分インデックス条件を使って極端に一意ではない値を排除することですが、多くの場合にこれが適しているとは言えないかも知れません。
 


Bツリーのように、ハッシュインデックスは単純なインデックスタプルの削除を行います。
これは削除しても安全であると分かる（アイテム識別子のLP_DEADビットがすでにセットされている）インデックスタプルを削除する遅延メンテナンス操作です。
挿入の際にページに領域が確保できない場合は、不要インデックスタプルを削除することによって、新しいオーバーフローページの作成を回避しようとします。
その時点でそのページにピンがある場合は削除することはできません。
不要インデックスポインタの削除もVACUUM中に発生します。
 


可能ならば、VACUUMはインデックスタプルをできるだけ少ないオーバーフローページに押し込むことも試み、オーバーフローの連結を最小限に抑えます。
あるオーバーフローページが空になったらそのオーバーフローページは再利用できますが、オペレーティングシステムに返却することはありません。
今の所、REINDEXで再構築する以外にハッシュインデックスを縮小するようにする予定はありません。
バケット数を少なくする予定もありません。
 


ハッシュインデックスはインデックスされた行数が増えるとバケットページ数も拡張します。
ハッシュキーからバケット番号へのマッピングは、インデックスが徐々に拡張できるように選択されます。
新しいバケットがインデックスに追加されることになったら、存在しているバケットの厳密に一つが「分割」される必要があります。
更新されたハッシュキーからバケット番号へのマッピングにしたがって、タプルが新しいバケットに転送されます。
 


その拡張はフォアグラウンドで行われるので、ユーザが挿入を実行するのにかかる時間を増加させるでしょう。
ですから、ハッシュインデックスは行数が急激に拡張するテーブルには適していないかもしれません。
 

実装





ハッシュインデックスには4種類のページがあります。
静的に確保された制御情報を持つメタページ(ページ0)、主バケットページ、オーバーフローページ、解放されて再利用が可能なオーバーフローページを追跡するビットマップページ、です。
アドレッシング目的という点では、ビットマップページはオーバーフローページのサブセットと見なされます。
 


インデックスのスキャンおよびタプルの挿入は両者とも、与えられたタプルが置かれるべきバケットを特定する必要があります。
これを実施するためには、メタページ内のバケット数、上位マスク、下位マスクが必要です。
しかし、性能上の理由で、そのような操作を行うたびにメタページをロックしてピンを立てるのは好ましいことではありません。
そうする代わりに、それぞれのバックエンドのリレーションキャッシュ(relcache)のエントリにキャッシュされたメタページの複製を保持します。
最後にキャッシュが更新されてから目的のバケットが分割されていない限り、これは正しいバケットのマッピングを生成します。
 


特定のインデックスにおいて、バケット数に対して必要なオーバーフローページは増減する可能性があるため、主バケットページとオーバーフローページは独立して確保されます。
ハッシュコードは可変数のオーバーフローページをサポートするために一連の興味深いアドレッシング規則を使用しており、主バケットページを作成後に移動する必要もありません。
 


インデックス付されたテーブル内の各行はハッシュインデックスにおいては単一のインデックスタプルで表現されています。
ハッシュインデックスタプルはバケットページに格納され、オーバーフローページが存在するならそこにも存在します。
一つのインデックスページにインデックスエントリをハッシュコードによりソートされた状態で保持することで、インデックスページ内での二分探索を可能とし、探索を高速化しています。
しかし、バケット内の異なるインデックスページ間においては、ハッシュコードの相対的な順序付けに何も前提はないことに留意してください。
 


ハッシュインデックスを拡張するためにバケットを分割するアルゴリズムは複雑過ぎてここで言及するには及びませんが、より詳細がsrc/backend/access/hash/READMEに記載されています。
分割アルゴリズムはクラッシュ耐性があり、正常に完了していなくても再スタートできます。
 


第66章 データベースの物理的な格納





本章ではPostgreSQL™データベースで使用される物理的格納書式についての概要を説明します。

データベースファイルのレイアウト





本節ではファイルとディレクトリというレベルで格納書式について説明します。



伝統的に、データベースクラスタで利用される制御ファイルとデータファイルは、クラスタのデータディレクトリ内に一緒に格納され、通常（このディレクトリを定義するために使用できる環境変数名にちなんで）PGDATAとして参照されます。
通常のPGDATAの位置は/var/lib/pgsql/dataです。
異なるサーバインスタンスによって管理することで、複数のクラスタを同一のマシン上に存在させることができます。



表66.1「PGDATAの内容」に示すように、PGDATAディレクトリには数個のサブディレクトリと制御ファイルがあります。
これら必要な項目に加え、クラスタの設定ファイルであるpostgresql.conf、pg_hba.confおよびpg_ident.confが、他の場所にも置くことができますが、伝統的にPGDATA内に格納されます。

表66.1 PGDATAの内容
	

項目
	説明
	PG_VERSION	PostgreSQL™の主バージョン番号を保有するファイル
	base	データベースごとのサブディレクトリを保有するサブディレクトリ
	current_logfiles	ログ収集機構が現在書き込んでいるログファイルを記録するファイル
	global	pg_databaseのようなクラスタで共有するテーブルを保有するサブディレクトリ
	pg_commit_ts	トランザクションのコミット時刻のデータを保有するサブディレクトリ
	pg_dynshmem	動的共有メモリサブシステムで使われるファイルを保有するサブディレクトリ
	pg_logical	ロジカルデコーディングのための状態データを保有するサブディレクトリ
	pg_multixact	マルチトランザクションの状態のデータを保有するサブディレクトリ（共有行ロックで使用されます）
	pg_notify	LISTEN/NOTIFY状態データを保有するサブディレクトリ
	pg_replslot	レプリケーションスロットデータを保有するサブディレクトリ
	pg_serial	コミットされたシリアライザブルトランザクションに関する情報を保有するサブディレクトリ
	pg_snapshots	エクスポートされたスナップショットを保有するサブディレクトリ
	pg_stat	統計サブシステム用の永続ファイルを保有するサブディレクトリ
	pg_stat_tmp	統計サブシステム用の一時ファイルを保有するサブディレクトリ
	pg_subtrans	サブトランザクションの状態のデータを保有するサブディレクトリ
	pg_tblspc	テーブル空間へのシンボリックリンクを保有するサブディレクトリ
	pg_twophase	プリペアドトランザクション用の状態ファイルを保有するサブディレクトリ
	pg_wal	 WAL（先行書き込みログ）ファイルを保有するサブディレクトリ
	pg_xact	トランザクションのコミット状態のデータを保有するサブディレクトリ
	postgresql.auto.conf	ALTER SYSTEMにより設定された設定パラメータを格納するのに使われるファイル
	postmaster.opts	最後にサーバを起動した時のコマンドラインオプションを記録するファイル
	postmaster.pid	
現在のpostmasterプロセスID（PID）、クラスタのデータディレクトリパス、postmaster起動時のタイムスタンプ、ポート番号、Unixドメインソケットのディレクトリパス（空も可）、有効な監視アドレスの一番目（IPアドレスまたは*、TCPを監視していない場合は空）および共有メモリのセグメントIDを記録するロックファイル（サーバが停止した後は存在しません）






クラスタ内の各データベースに対して、PGDATA/base内にサブディレクトリが存在し、サブディレクトリ名はpg_database内のデータベースOIDとなります。
このサブディレクトリはデータベースファイルのデフォルトの位置であり、特にシステムカタログがそこに格納されます。



以下の節では、組み込みのheapテーブルアクセスメソッドと組み込みのインデックスアクセスメソッドの振舞いを説明していることに注意してください。
PostgreSQL™の拡張性のため、他のアクセスメソッドは異なる動作をするかもしれません。



各テーブルおよびインデックスは別個のファイルに格納されます。
通常のリレーションでは、これらのファイル名はテーブルまたはインデックスのファイルノード番号となります。
ファイルノード番号はpg_class.relfilenode内で見つけられます。
しかし一時的なリレーションでは、ファイル名はtBBB_FFFという形になります。
ここでBBBはファイルを生成したバックエンドのプロセス番号、FFFはファイルノード番号です。
どちらの場合でも、主ファイル（いわゆる主フォーク）に加え、それぞれのテーブルとインデックスはリレーションに利用できる空き領域についての情報を格納する空き領域マップ（「空き領域マップ」参照）を持ちます。
空き領域マップはファイルノード番号に接尾辞_fsmがついた名前のファイルに格納されます。
テーブルは同時に、どのページが無効なタプルを持っていないと判断できるように追跡する可視性マップを持ち、フォークに接尾辞_vmを付けたファイルに格納します。
可視性マップは「可視性マップ」でより詳しく解説します。
ログを取らないテーブルとインデックスは、初期化フォークという第３のフォークを持ち、フォークに接尾辞_initを付けたファイルに格納します（「初期化フォーク」参照）。

注意


テーブルにおけるファイルノード番号とOIDは多くの場合一致しますが、常に一致するとは限らないことに注意してください。
TRUNCATE、REINDEX、CLUSTER等のいくつかの操作、およびALTER TABLEにおけるいくつかの構文は、OIDを保持したままファイルノード番号を変更できます。
ファイルノード番号とテーブルOIDが同一であると仮定しないでください。
またpg_class自身を含む特定のシステムカタログにおいて、pg_class.relfilenodeはゼロを持ちます。
これらのカタログの実際のファイルノード番号は低レベルなデータ構造内に保管されており、pg_relation_filenode()関数を使用して入手できます。




テーブルまたはインデックスが１ギガバイトを超えると、ギガバイト単位のセグメントに分割されます。
最初のセグメントのファイル名はファイルノード番号と同一であり、それ以降は、ファイルノード番号.1、ファイルノード番号.2等の名称になります。
この配置法によってファイル容量に制限のあるプラットフォームにおける問題を回避します。
（実際、１ギガバイトは単なるデフォルトのセグメント容量です。
セグメント容量はPostgreSQL™を構築する際、--with-segsize設定オプションを使用して調整することができます。）
原理上、空き領域マップと可視性マップのフォークにおいても複数のセグメントも必要とする可能性がありますが、実際のところは起こりそうにありません。



項目が大きくなりそうな列を持ったテーブルは、連携したTOASTテーブルを保有する可能性があります。
TOASTテーブルは、テーブル行の中には大き過ぎて適切に保持できないフィールド値を行外の格納をするために使用されます。
TOASTテーブルが存在する時、pg_class.reltoastrelidは元のテーブルとTOASTテーブルを結びつけます。
「TOAST」を参照してください。



テーブルおよびインデックスの内容は、「データベースページのレイアウト」においてさらに考察されています。



テーブル空間は状況をさらに複雑にします。
ユーザが定義したテーブル空間はそれぞれ、PGDATA/pg_tblspcディレクトリ内に物理的なテーブル空間ディレクトリ（つまりそのテーブル空間のCREATE TABLESPACEコマンドで指定された場所）を指し示す、シンボリックリンクを持ちます。
シンボリックリンクの名称はテーブル空間のOIDとなります。
物理的テーブル空間ディレクトリの内部では、PG_9.0_201008051などのPostgreSQL™サーバのバージョンに依存した名前のサブディレクトリが存在します。
（このサブディレクトリを使用する理由は、競合することなくCREATE TABLESPACEで指定する場所と同じものを将来のバージョンのデータベースでも使用できるようにするためです。）
このバージョン固有のサブディレクトリの内部では、テーブル空間に要素を持つデータベースごとに、データベースOIDをディレクトリ名としたサブディレクトリが存在します。
テーブルとインデックスは、ファイルノードの命名の規定に従って、そのディレクトリ内に格納されます。
pg_defaultテーブル空間は pg_tblspcを通してアクセスされるのではなく、PGDATA/baseと連携します。
同様に、pg_globalテーブル空間はpg_tblspcを通してアクセスされるのではなく、PGDATA/globalと連携します。



pg_relation_filepath()関数は任意のリレーションの(PGDATAから相対的な)パス全体を示します。
これは上の規則の多くを記憶する必要がありませんので、しばしば有用です。
しかし、この関数がリレーションの主フォークの最初のセグメントの名前だけを返すことに注意して下さい。
リレーションに関したすべてのファイルを見つけるためにセグメント番号や_fsmや_vm、_initを追加する必要があるかもしれません。



一時ファイル（メモリ内に収まりきらないデータのソートなどの操作用）はPGDATA/base/pgsql_tmp内、または、pg_default以外のテーブル空間が指定されていた場合はテーブル空間ディレクトリ下のpgsql_tmpサブディレクトリ内に作成されます。
一時ファイルの名前はpgsql_tmpPPP.NNNという形式です。
ここで、PPPは所有するバックエンドのPIDであり、NNNで同一バックエンドで作成された別の一時ファイルと区別します。



TOAST





本節ではTOAST（過大属性格納技法：The Oversized-Attribute Storage Technique）の概要について説明します。



PostgreSQL™は固定長のページサイズ（通常8キロバイト）を使用し、複数ページにまたがるタプルを許しません。
そのため、大規模なフィールド値を直接格納できません。
この限界を克服するため、大規模なフィールド値を圧縮したり、複数の物理的な行に分割したりしています。
これはユーザからは透過的に発生し、また、バックエンドのコード全体には小さな影響しか与えません。
この技法はTOAST（または「パンをスライスして以来最善のもの」）という愛称で呼ばれます。
[訳注：TOASTはパンのトーストと綴りが同じなので、スライスしたパンを美味しく食べる方法に掛けて洒落ています。]
TOASTの基盤は大きなデータ値のインメモリで処理の改善にも使用されています。



一部のデータ型のみがTOASTをサポートします。
大規模なフィールド値を生成することがないデータ型にオーバーヘッドを負わせる必要はありません。
TOASTをサポートするためには、データ型は可変長（varlena）表現を持たなければなりません。
通常は、格納する値の最初の4バイトワードには値の長さ（このワード自体を含む）がバイト単位で含まれます。
TOASTは残りのデータ型の表現について制限しません。
TOAST化された値として集合的に呼ばれる特別な表現は、この先頭の長さのワードを更新または再解釈することで動作します。
したがって、TOAST可能なデータ型をサポートするC言語関数は、潜在的にTOAST化されている入力値の扱い方に注意しなければなりません。
つまり、入力がTOAST解除されなければ、それは実際には4バイトの長さのワードと内容から構成されていないかもしれないのです。
（通常これは、入力に対して何か作業をする前にPG_DETOAST_DATUMを呼び出すことで行われますが、もっと効率的な方法が可能な場合もあります。
詳しくは「TOASTの考慮」を参照してください。）



TOASTはvarlenaの長さワードの2ビット(ビッグエンディアンのマシンでは上位ビット、リトルエンディアンのマシンでは下位ビット)を勝手に使用します。
そのため、すべてのTOAST可能なデータ型の値の論理サイズは1ギガバイト（230 - 1バイト）までになります。
両ビットが0の場合、値はそのデータ型の普通のTOAST化されていない値となり、長さワードの残りのビットはデータの（長さワードを含む）総サイズ（バイト単位）となります。
上位側または下位側のどちらか片方のビットが設定された場合、値は通常の4バイトのヘッダを持たず1バイトのヘッダを持ちます。
また、そのバイトの残りビットはデータの（長さワードを含む）総サイズ（バイト単位）となります。
この方式により、127バイトより短い値の効率的な格納をサポートする一方で、データ型が必要なら1GBにまで大きくなることを可能にしています。
1バイトのヘッダを持つ値は特定の境界に整列されませんが、4バイトのヘッダを持つ値は少なくとも4バイト境界の上に整列されます。
このように整列のためのパディングを省略することで、短い値と比べて重要な追加のスペース節約ができます。
特殊な状況として、1バイトのヘッダの残りビットがすべて0（自身の長さを含む場合はありえません）の場合、その値は行外データへのポインタで、以下に述べるようにいくつかの可能性があります。
そのようなTOASTポインタの型とサイズはデータの2番目のバイトに格納されるコードによって決定されます。
最後に上位側または下位側のビットが0で隣のビットが設定されている場合、データの内容は圧縮され、使用前に伸長しなければなりません。
この場合、4バイトの長さワードの残りビットは元データのサイズではなく圧縮したデータの総サイズになります。
圧縮が行外データでも起こりえますが、varlenaヘッダには圧縮されているかどうかについての情報がないことに注意してください。
その代わりTOASTポインタの内容にこの情報が含まれています。



行内あるいは行外の圧縮データで使用される圧縮技術は、CREATE TABLEまたはALTER TABLEでCOMPRESSION列オプションを設定することで各列に対して選択できます。
明示的な設定のない列に対するデフォルトは、データが挿入されるときにdefault_toast_compressionパラメータを参照することです。



前に触れたように、TOASTポインタデータにはいくつかの型があります。
最も古くて一般的な型はTOASTテーブルに格納されている行外データへのポインタです。
TOASTテーブルは、TOASTポインタデータ自体を含むテーブルとは別の、しかし関連付けられるテーブルです。
これらのディスク上のポインタデータは、ディスク上に格納されるタプルが、そのまま格納するには大きすぎる時に、TOAST管理コード（access/common/toast_internals.cにあります）によって作られます。
更なる詳細は「行外ディスク上のTOAST格納」に記述されています。
あるいはTOASTポインタデータは、メモリ内のどこかにある行外データへのポインタのこともあります。
そのようなデータは短命で、ディスク上に現れることは決してありませんが、大きなデータ値を複製し、余分な処理をするのを避けるために有用です。
更なる詳細は「行外インメモリのTOAST格納」に記述されています。

行外ディスク上のTOAST格納





テーブルの列に1つでもTOAST可能なものがあれば、そのテーブルには連携したTOASTテーブルがあり、そのOIDがテーブルのpg_class.reltoastrelidエントリに格納されます。
ディスク上のTOAST化された値は以下で詳しく説明する通り、TOASTテーブルに保持されます。



行外の値は（圧縮される場合は圧縮後に）最大TOAST_MAX_CHUNK_SIZEバイトの塊に分割されます
（デフォルトではこの値は4チャンク行が1ページに収まり、およそ2000バイトになるように選ばれます）。
各塊は、データを持つテーブルと連携するTOASTテーブル内に個別の行として格納されます。
すべてのTOASTテーブルはchunk_id列（特定のTOAST化された値を識別するOID）、chunk_seq列（値の塊に対する連番）、chunk_data（塊の実際のデータ）列を持ちます。
chunk_idとchunk_seqに対する一意性インデックスは値の抽出を高速化します。
したがって、行外のディスク上のTOAST化された値を示すポインタデータには、検索先となるTOASTテーブルのOIDと指定した値のOID(chunk_id)を格納しなければなりません。
簡便性のために、ポインタデータには論理データサイズ（元々の非圧縮のデータ長）、物理的な格納サイズ（圧縮時には異なります）、そして、利用されているのであれば、その圧縮方式も格納されます。
varlenaヘッダバイトに収納するためにディスク上のTOASTポインタデータの総サイズは、表現される値の実サイズに関係なく、18バイトになります。



TOAST管理のコードは、テーブル内に格納される値がTOAST_TUPLE_THRESHOLDバイト（通常2キロバイト）を超える時にのみ実行されます。
TOASTコードは、行の値がTOAST_TUPLE_TARGETバイト（こちらも通常2キロバイト、調整可能）より小さくなるかそれ以上の縮小ができなくなるまで、フィールド値の圧縮や行外への移動を行います。
更新操作中、変更されない値は通常そのまま残ります。
行外の値を持つ行の更新では、行外の値の変更がなければTOASTするコストはかかりません。



TOAST管理のコードでは、ディスク上にTOAST可能な列を格納するために、以下の4つの異なる戦略を認識します。

   
	

PLAINは圧縮や行外の格納を防止します。
これはTOAST化不可能のデータ型の列に対してのみ取り得る戦略です。
     

	

EXTENDEDでは、圧縮と行外の格納を許します。
これはほとんどのTOAST可能のデータ型のデフォルトです。
圧縮がまず行われ、それでも行が大き過ぎるのであれば行外の格納をします。
     

	

EXTERNALは非圧縮の行外の格納を許します。
EXTERNALを使用すると、textとbytea列全体に対する部分文字列操作が高速化されます。
こうした操作は非圧縮の行外の値から必要な部分を取り出す時に最適化されるためです
（格納領域が増加するという欠点があります）。
     

	

MAINは圧縮を許しますが、行外の格納はできません。
（実際にはこうした列についても行外の格納は行われます。
しかし、他に行を縮小させページに合わせる方法がない場合の最後の手段としてのみです。）
     






TOAST可能なデータ型はそれぞれ、そのデータ型の列用のデフォルトの戦略を指定します。
しかしALTER TABLE ... SET STORAGEを使用して、あるテーブル列の戦略を変更することができます。



TOAST_TUPLE_TARGETはALTER TABLE ... SET (toast_tuple_target = N)を使って各テーブルで調整できます。



この機構には、ページをまたがる行の値を許可するといった素直な手法に比べて多くの利点があります。
通常問い合わせは比較的小さなキー値に対する比較で条件付けされるものと仮定すると、エグゼキュータの仕事のほとんどは主だった行の項目を使用して行われることになります。
TOAST化属性の大規模な値は、（それが選択されている時）結果集合をクライアントに戻す時に引き出されるだけです。
このため、主テーブルは行外の格納を使用しない場合に比べて、かなり小さくなり、その行は共有バッファキャッシュにより合うようになります。
ソート集合もまた小さくなり、ソートが完全にメモリ内で行われる頻度が高くなります。
小規模な試験結果ですが、典型的なHTMLページとそのURLを持つテーブルでは、TOASTテーブルを含め、元々のデータサイズのおよそ半分で格納でき、さらに、主テーブルには全体のデータのおよそ10%のみ（URLと一部の小さなHTMLページ）が格納されました。
すべてのHTMLページを7キロバイト程度に切り詰めたTOAST化されない比較用テーブルと比べ、実行時間に違いはありませんでした。


行外インメモリのTOAST格納





TOASTポインタは、ディスク上にあるデータだけでなく、現在のサーバプロセスのメモリ内の場所を指すこともできます。
そのようなポインタは明らかに短命ですが、それでも有用です。
現在のところ、間接データへのポインタと、展開データへのポインタの2つのケースがあります。



間接TOASTポインタは、単にメモリ上のどこかに格納されている間接的でないvarlena値を指すだけです。
このケースは元々は単なる概念実証として作られたのですが、現在はロジカルデコーディング時に1GBを越える物理的タプルを作成する可能性を防ぐために使用されています。
（すべての行外フィールド値をタプルに持ってこようとすると、そうなるかもしれません。）
このケースでは、ポインタデータの作成者はポインタが存在可能な限り参照データが存在し続けることに全責任を負うため、利用が限られ、またこれを支援するための基盤もありません。



展開TOASTポインタは、ディスク上の表現が計算目的にあまり適さない複雑なデータ型で有用です。
例えばPostgreSQL™の配列の標準varlena表現には、次元の情報、NULLの要素があればNULLのビットマップ、そしてすべての要素の値が順番どおりに含まれます。
要素型自体が可変長だと、N番目の要素を探す唯一の方法は前にある要素のすべてをスキャンすることです。
この表現は、そのサイズの小ささからディスク上の記録には適していますが、配列を使った計算では、すべての要素の開始位置が特定されている「展開」または「解体」された表現があるとずっと良いです。
TOASTポインタの機構では、参照渡しのデータが、標準のvarlena値（ディスク上の表現）あるいはメモリ上のどこかにある展開表現を指すTOASTポインタを指すことを許すことで、このニーズに応えています。
この展開表現の詳細はデータ型に依存しますが、標準ヘッダを持ち、src/include/utils/expandeddatum.hにある他のAPIの要求を満たす必要があります。
データ型を処理するc言語の関数は、どちらかの表現を扱うことを選ぶことができます。
展開表現を認識せず、入力データに単にPG_DETOAST_DATUMを適用するだけの関数は、自動的に伝統的なvarlena表現を受け取ります。
従って、展開表現のサポートは徐々に、1回に1つの関数だけ導入することができます。



展開された値へのTOASTポインタは、さらに読み書きのポインタと読み取りのみのポインタに分類されます。
指された先の表現はどちらでも同じですが、読み書きのポインタを受け取った関数は、そこにある参照値を変更できるのに対し、読み取りのみのポインタを受け取った関数では変更が許されないため、値を変更したバージョンを作りたければ、まずその複製を作る必要があります。
この区別と、関連したいくつかの慣習により、問い合わせの実行時に展開された値を不必要に複製するのを避けることが可能になります。



すべてのタイプのインメモリのTOASTポインタについて、TOAST管理のコードはそのようなポインタデータが偶然、ディスクに保存されてしまうことが決して起こらないようにします。
インメモリのTOASTポインタは保存される前に自動的に展開されて通常の行内のvarlena値になります。
その後、含んでいるタプルが大きすぎるような時には、ディスク上のTOASTポインタに変換されることもあります。



空き領域マップ





ヒープとハッシュインデックス以外のインデックスリレーションはそれぞれ、そのリレーション内で利用可能な領域を継続して追跡するために、空き領域マップ（FSM）を持ちます。
これは、個々のリレーションのフォーク内の主リレーションデータに沿って、リレーションのファイルノード番号に_fsmという接尾辞を付けた名前のファイルに格納されます。
例えばリレーションのファイルノードが12345であれば、FSMは主リレーションファイルと同じディレクトリ内の12345_fsmという名前のファイルに格納されます。



空き領域マップはFSMページのツリーとして編成されます。
最下位レベルのFSMページはすべてのヒープ（またはインデックス）ページで利用可能な空き領域を、各ページ毎に1バイト使用して格納します。
上位レベルは下位レベルからの情報を集約します。



各FSMページの内部はノード当たり1バイトを持つ配列内に格納されたバイナリツリーです。
各リーフノードはヒープページ、または下位レベルのFSMページを表現します。
各非リーフノード内には、子の値より大きな値が格納されます。
したがってリーフノード内の最大値がルートに格納されます。



FSMがどのように構築されるか、そしてどのように更新、検索されるかに関する詳細はsrc/backend/storage/freespace/READMEを参照してください。
pg_freespacemapモジュールを使用して、空き領域マップに格納された情報を調べることができます。


可視性マップ





各ヒープリレーションは、どのページがすべての実行中のトランザクションから可視であることが分かっているタプルだけを含むかを追跡する、可視性マップ（VM）を持ちます。どのページが凍結状態のタプルだけを含むのかも追跡します。
これは、リレーションのファイルノード番号に_vmという接尾辞を付与した名前の別のリレーションフォーク内に主リレーションデータと並行して格納されます。
例えばリレーションのファイルノードが12345の場合、VMは主リレーションファイルと同じディレクトリ内の12345_vmというファイル内に格納されます。
インデックスはVMを持たないことに注意してください。



可視性マップはヒープページ当たり2ビットを保持します。
最初のビットがセットされていれば、ページはすべて可視であること、すなわち、そのページにはバキュームが必要なタプルをまったく含んでいないことを示しています。
またこの情報は、インデックスタプルのみを使用して問い合わせに答えるためにインデックスオンリースキャンによっても使用されます。
2番目のビットがセットされていれば、そのページのタプルはすべて凍結状態であることを意味します。
これは、周回対策のバキュームすらそのページを再び訪れる必要はないことを意味します。



このマップは、ビットがセットされている時は常にこの条件が真であることを確実に把握できるという点で保守的ですが、ビットがセットされていない場合は、真かもしれませんし偽かもしれません。
可視性マップのビットはバキュームによってのみで設定されます。
しかしページに対する任意のデータ編集操作によってクリアされます。



pg_visibilityモジュールは可視性マップに入っている情報を確かめるのに使えます。


初期化フォーク





ログを取らないテーブルと、ログを取らないテーブルに対するインデックスは、それぞれ初期化フォークを持ちます。
初期化フォークとは適切な種類の空テーブルと空インデックスです。
ログを取らないテーブルをクラッシュのために再度空にしなければならない場合、初期化フォークで主フォーク全体をコピーし、その他のフォークは消去されます（これらは必要に応じて自動的に再作成されます）。


データベースページのレイアウト





本節ではPostgreSQL™のテーブルおよびインデックスで使われるページ書式の概略について説明します。
[19]

TOASTのテーブルとシーケンスは、通常のテーブルと同様に整形されています。



以下の説明では1バイトは8ビットからなることを前提としています。
さらに、アイテムという単語は、ページに格納される個別のデータ値のことを指しています。
テーブル内ではアイテムは行であり、インデックス内ではアイテムはインデックスのエントリです。



テーブルとインデックスはすべて、固定サイズ（通常8キロバイト。サーバのコンパイル時に異なるサイズを設定可能）のページの集まりとして格納されます。
テーブルでは、すべてのページは論理上等価です。
したがって、あるアイテム（行）はどのページにでも格納することができます。
インデックスでは、初めのページは通常、制御用の情報を保持するメタページとして予約されます。
また、インデックスではインデックスアクセスメソッドに依存した様々なページ種類があります。



表66.2「ページレイアウト」はページの全体的なレイアウトを示しています。
各ページには5つの部分があります。

表66.2 ページレイアウト全体
	

アイテム
	説明
	PageHeaderData	長さは24バイト。空き領域ポインタを含む、ページについての一般情報です。
	ItemIdData	実際のアイテムを指すアイテム識別子の配列です。
各項目は（オフセットと長さの）ペアです。
1アイテムにつき4バイトです。
	空き領域	割り当てられていない空間です。
新規のアイテム識別子はこの領域の先頭から、新規のアイテムは最後から割り当てられます。

	アイテム	実際のアイテムそのものです。
	特別な空間	インデックスアクセスメソッド特有のデータです。異なるメソッドは異なるデータを格納します。通常のテーブルでは空です。






それぞれのページの最初の24バイトはページヘッダ(PageHeaderData)から構成されています。
その書式を表66.3「PageHeaderDataのレイアウト」にて説明します。
最初のフィールドは、このページに関連する最も最近のWAL項目を表しています。
2番目のフィールドには-kが有効な場合にページチェックサムが格納されています。
次にフラグビットを含む2バイトのフィールドがあります。
その後に2バイトの整数フィールドが3つ続きます（pd_lower、pd_upper、pd_special）。
これらには、割り当てられていない空間の始まり、割り当てられていない空間の終わり、そして特別な空間の始まりのバイトオフセットが格納されています。
ページヘッダの次の2バイトであるpd_pagesize_versionは、ページサイズとバージョン指示子の両方を格納します。
PostgreSQL™ 8.3以降のバージョン番号は4、PostgreSQL™ 8.1と8.2のバージョン番号は3、PostgreSQL™ 8.0のバージョン番号は2、PostgreSQL™ 7.3と7.4のバージョン番号は1です。
それより前のリリースのバージョン番号は0です。
（ほとんどのバージョン間で基本的なページレイアウトやヘッダの書式は変更されていませんが、ヒープ行ヘッダのレイアウトが変更されました。）
ページサイズは基本的に照合用としてのみ存在しています。
同一インストレーションでの複数のページサイズはサポートされていません。
最後のフィールドはそのページの切り詰めが有益かどうかを示すヒントです。
これはページ上で切り詰められていないもっとも古いXMAXが追跡するものです。

 
表66.3 PageHeaderDataのレイアウト
	フィールド	型	長さ	説明
	pd_lsn	PageXLogRecPtr	8バイト	LSN: このページへの最終変更に対応するWALレコードの最後のバイトの次のバイト
	pd_checksum	uint16	2バイト	ページチェックサム
	pd_flags	uint16	2バイト	フラグビット
	pd_lower	LocationIndex	2バイト	空き領域の始まりに対するオフセット
	pd_upper	LocationIndex	2バイト	空き領域の終わりに対するオフセット
	pd_special	LocationIndex	2バイト	特別な空間の始まりに対するオフセット
	pd_pagesize_version	uint16	2バイト	ページサイズおよびレイアウトのバージョン番号の情報
	pd_prune_xid	TransactionId	4バイト	ページ上でもっとも古い切り詰められていないXMAX。存在しなければゼロ。





詳細情報についてはsrc/include/storage/bufpage.hを参照してください。
 


ページヘッダに続くのはアイテム識別子（ItemIdData）です。
識別子ごとに4バイトを必要とします。
アイテム識別子は、アイテムが開始されるバイトオフセット、バイト単位の長さ、そしてその解釈に影響する属性ビット群を持っています。
新しいアイテム識別子は必要に応じて、未割当て空間の最初から割り当てられます。
アイテム識別子の数は、新しい識別子を割り当てるために増加されるpd_lowerを見ることで決定できます。
アイテム識別子は解放されるまで動かされることがないので、アイテム自体が空き領域をまとめるためにページ上で移動される場合でも、そのインデックスはアイテムを参照するために長期にわたって使うことができます。
実際、PostgreSQL™が作る、アイテムへのポインタ（ItemPointer、CTIDとも言います）はページ番号とアイテム識別子のインデックスによって構成されています。

 



アイテム自体は、未割り当て空間の最後から順番に割り当てられた空間に格納されます。
正確な構造は、テーブルに何を含めるかによって異なります。
テーブルとシーケンスの両方が、以下で説明するHeapTupleHeaderDataという構造を使用します。

 



最後のセクションは、アクセスメソッドが格納しようとするものを何でも含めることのできる「特別なセクション」です。
例えば、B-treeインデックスは、そのページの両隣のページへのリンク、ならびに、インデックス構造体に関連したその他の何らかのデータを持ちます。
通常のテーブルではこれはまったく使用されません（ページサイズを同じにするためにpd_specialを設定することで示されます）。

 


図66.1「ページレイアウト」は、これらの部分がページ内でどのようにレイアウトされているかを図解しています。
 
図66.1 ページレイアウト



テーブル行のレイアウト






テーブル行はすべて同じ方法で構成されています。
固定サイズのヘッダ（ほとんどのマシンで23バイトを占有します）があり、その後にオプションのNULLビットマップ、オプションのオブジェクトIDフィールド、およびユーザデータが続きます。
ヘッダについては表66.4「HeapTupleHeaderDataのレイアウト」で説明します。
実際のユーザデータ（行内の列）は、常にプラットフォームのMAXALIGN距離の倍数であるt_hoffで示されるオフセットから始まります。
NULLビットマップはHEAP_HASNULLビットがt_infomaskで設定されている場合にのみ存在します。
存在する場合は、固定ヘッダのすぐ後ろから始まり、データ列ごとに1ビットとするのに十分なバイト数を占有します（すなわち、t_infomask2内の属性の個数と等しいビット数です）。
このビットのリスト内では、1ビットは非NULLを、0ビットはNULLを示します。
このビットマップが存在しない場合、すべての列が非NULLとみなされます。
オブジェクトIDはHEAP_HASOID_OLDビットがt_infomaskで設定されている場合にのみ存在します。
存在する場合、これはt_hoff境界の直前に現れます。
t_hoffをMAXALIGNの倍数とするために必要なパッドは全て、NULLビットマップとオブジェクトIDの間に現れます。
（このことにより、オブジェクトIDの位置揃えが確実に適切になります。）

 
表66.4 HeapTupleHeaderDataのレイアウト
	フィールド	型	長さ	説明
	t_xmin	TransactionId	4バイト	挿入XIDスタンプ
	t_xmax	TransactionId	4バイト	削除XIDスタンプ
	t_cid	CommandId	4バイト	挿入、削除の両方または片方のCIDスタンプ（t_xvacと共有）
	t_xvac	TransactionId	4バイト	行バージョンを移すVACUUM操作用XID
	t_ctid	ItemPointerData	6バイト	この行または最新バージョンの行の現在のTID
	t_infomask2	uint16	2バイト	属性の数と各種フラグビット
	t_infomask	uint16	2バイト	様々なフラグビット
	t_hoff	uint8	1バイト	ユーザデータに対するオフセット





詳細情報についてはsrc/include/access/htup_details.hを参照してください。
 



実際のデータの解釈は、他のテーブル、ほとんどの場合、pg_attributeから取得された情報でのみ行うことができます。
フィールド位置を識別するために必要なキー値は、attlenおよびattalignです。
フィールドの幅が固定されていてNULL値が存在しない場合を除き、特定の属性を直接取得する方法はありません。
この仕組みはすべて、heap_getattr、fastgetattrおよびheap_getsysattr関数にラップされています。

 



データを読むためには、それぞれの属性を順番に検査する必要があります。
まず、NULLビットマップに従ってフィールドがNULLかどうかを検査します。
もしNULLであれば、次に進みます。
次に、位置揃えが正しいことを確認してください。
フィールドの幅が固定されていれば、すべてのバイトが単純に配置されます。
可変長のフィールド（attlen == -1）の場合はもう少し複雑です。
可変長のデータ型はすべて、格納する値の長さといくつかのフラグビットを持つstruct varlenaという共通ヘッダ構造体を共有します。
フラグによって、データは行内、または別のテーブル（TOAST）のいずれかとなったり、圧縮済みとなったりします
（「TOAST」を参照してください）。

 



[19] 

実際には、テーブルアクセスメソッドもインデックスアクセスメソッドも、このページ書式を使用する必要はありません。
heapテーブルアクセスメソッドは常にこの書式を使用します。
既存のすべてのインデックスメソッドも、この基本書式を使用しています。しかし、インデックスメタページに保持されるデータは通常、アイテムレイアウト規則に従っていません。
  



ヒープ専用タプル(HOT)





高い同時実行性を可能にするために、PostgreSQL™はマルチバージョン同時実行制御(MVCC)を使用して行を格納します。
しかし、MVCCには更新クエリに対していくつかの欠点があります。
特に、更新では、テーブルに新しいバージョンの行を追加する必要があります。
また、更新された行ごとに新しいインデックスエントリが必要になる可能性があり、古いバージョンの行とそのインデックスエントリを削除するとコストが高くなります。
 


更新のオーバーヘッドを減らすために、PostgreSQL™にはヒープ専用タプルHOTと呼ばれる最適化があります。
この最適化は以下の場合に可能です。

  
	

更新は、集約インデックスを除き、テーブルのインデックスによって参照される列を変更しません。
PostgreSQL™のコア配布物で唯一の集約インデックスメソッドはBRINです。
     

	

古い行を含むページには、更新された行に対して十分な空き領域があります。
    






そのような場合に、ヒープ専用タプルは2つの最適化を提供します。

  
	

更新された行を表すために新しいインデックスエントリは必要ありませんが、集約インデックスは更新が必要でしょう。
    

	

行が複数回更新されると、最も古いものと最も新しいもの以外の行バージョンは、定期的なバキューム操作を必要とせずに、SELECTを含む通常の操作で完全に削除されることがあります。
（インデックスは常に元の行バージョンのページアイテム識別子を参照します。
その行バージョンに関連付けられたタプルデータは削除され、そのアイテム識別子は、依然としていくつかの同時トランザクションに見える可能性のある最も古いバージョンを指すリダイレクトに変換されます。
もはや誰にも見えない中間行バージョンは完全に削除され、関連するページアイテム識別子は再利用可能になります。）
    




 


テーブルのfillfactorを減らすことで、HOT更新のための十分なページ領域の可能性を高めることができます。
そうしない場合でも、HOT更新は発生します。
なぜなら、新しい行は新しいページや、新しい行バージョンのために十分な空き領域を持つ既存のページに自然に移動するからです。
システムビューpg_stat_all_tablesは、HOTおよび非HOT更新の発生を監視できます。
 

第67章 トランザクション処理





この章では、PostgreSQL™のトランザクション制御システムの内部構造について概説します。
トランザクションという単語は、しばしばxactと省略されます。
 
トランザクションと識別子





トランザクションは、BEGINまたはSTART TRANSACTIONを使用して明示的に作成し、COMMITまたはROLLBACKを使用して終了します。
明示的なトランザクションの外側のSQL文は、自動的に単一文トランザクションを使用します。
  


各トランザクションは、一意のVirtualTransactionId（あるいはvirtualXIDまたはvxidとも呼ばれます）で識別します。
これは、バックエンドのプロセス番号（またはprocNumber）と、localXIDと呼ばれる各バックエンドに固有の連続した番号で構成されます。
たとえば、仮想トランザクションID4/12532のprocNumberは4で、localXIDは12532です。
  


非仮想TransactionId（またはxid）、例えば278394は、PostgreSQL™クラスタ内のすべてのデータベースが使用するグローバルカウンタからトランザクションに順番に割り当てられます。
この割り当ては、トランザクションがデータベースに最初に書き込みを行ったときに行われます。
これは、低い番号のxidが、より大きな番号のxidよりも前に書き込みを開始したことを意味します。
トランザクションが最初にデータベースに書き込みを行った順序は、トランザクションの開始順序とは異なるかもしれないことに注意してください。
特に、トランザクションがデータベース読み取りのみを実行する文で開始した場合にはそうなります。
  


内部トランザクションID型xidは32ビット幅で、40億トランザクションごとに周回します。
32ビットエポックは各周回ごとに加算されます。
また、このエポックを含むために、インストールの寿命中には周回しない64ビット型xid8もあり、キャストでxidに変換できます。
表9.84「トランザクションIDとスナップショット情報関数」の関数はxid8値を返します。
XIDはPostgreSQL™のMVCC同時実行機構とストリーミングレプリケーションの基礎として使用されます。
  


（非仮想）xidを持つトップレベルのトランザクションがコミットすると、pg_xactディレクトリにコミット済みとしてマークされます。
track_commit_timestampが有効な場合、追加情報がpg_commit_tsディレクトリに記録されます。
  


vxidとxidに加えて、準備されたトランザクションにはグローバルトランザクション識別子（GID）も割り当てられます。
GIDは最大200バイト長の文字列リテラルで、現在準備されている他のトランザクション中で一意でなければなりません。
GIDからxidへのマッピングはpg_prepared_xactsに表示されます。
  


トランザクションとロック





現在実行中のトランザクションのトランザクションIDは、pg_locksのvirtualxidとtransactionidに表示されます。
読み出し専用のトランザクションはvirtualxidはありますが、transactionidはNULLです。
一方、読み書きのトランザクションは、両方の列が設定されます。
  


ロックのタイプによってvirtualxidを待ちますが、他のタイプのロックはtransactionidを待ちます。
行レベルの読み書きロックはロックされた行に直接記録され、pgrowlocks拡張を使用して検査できます。
行レベルの読み取りロックはマルチトランザクションID（mxid。「マルチトランザクションと周回」を参照）の割当ても必要とするかもしれません。
  

サブトランザクション





サブトランザクションはトランザクション内で開始され、大きなトランザクションを小さな単位に分割できます。
サブトランザクションは、親トランザクションに影響を与えることなくコミットまたは中断できるため、親トランザクションを継続できます。
これにより、アプリケーションの開発パターンによくあるエラーの処理が容易になります。
この用語は、しばしばsubxactと省略されます。
  


サブトランザクションはSAVEPOINTコマンドを使用して明示的に開始できますが、PL/pgSQLのEXCEPTION句などの他の方法でも開始できます。
PL/PythonとPL/Tclも明示的なサブトランザクションをサポートしています。
サブトランザクションは他のサブトランザクションから開始することもできます。
トップレベルのトランザクションとその子トランザクションは階層またはツリーを形成するため、メイントランザクションをトップレベルのトランザクションと呼びます。
  


サブトランザクションに仮想トランザクションID以外のIDが割り当てられた場合、そのトランザクションIDは「subxid」と呼ばれます。
読取専用のサブトランザクションにはsubxidは割り当てられませんが、書込みを試みると割り当てられます。
これにより、トップレベルのトランザクションを含むすべての親サブトランザクションに、非仮想トランザクションIDが割り当てられます。
親xidは常に子subxidのいずれよりも小さいことが保証されます。
  


各subxidの直接の親xidはpg_subtransディレクトリに記録されます。
トップレベルのxidには親がないのでエントリは記録されません。
読み取り専用のサブトランザクションにもエントリは記録されません。
  


サブトランザクションがコミットされると、その子サブトランザクションのすべての子サブトランザクションのxidがコミットされたものとみなされます。
サブトランザクションが中断された場合、その子サブトランザクションすべても中断されたものとみなされます。
  


xidを持つトップレベルトランザクションがコミットすると、そのサブトランザクションの子サブトランザクションもすべてpg_xactサブディレクトリに永続的にコミット済みとして記録されます。
トップレベルトランザクションが中断された場合、そのサブトランザクションは、たとえサブトランザクションがコミットされていたとしても中断されます。
  


トランザクションがオープンしたサブトランザクション数が多いほど（ロールバックや解放されない）、トランザクション制御のオーバーヘッドが大きくなります。
各バックエンドで最大64個のオープンしたサブトランザクションが共有メモリにキャッシュされます。
その後、pg_subtrans内のサブxidエントリの追加検索により、ストレージI/Oオーバーヘッドが大幅に増加します。
  

2相トランザクション





PostgreSQL™は、複数の分散システムがトランザクション処理として連携することを可能にする2相コミット（2PC）プロトコルをサポートしています。
そのコマンドはPREPARE TRANSACTION、COMMIT PREPARED、ROLLBACK PREPAREDです。
2相トランザクションは外部のトランザクション制御システムで使用することを意図しています。
PostgreSQL™は、X/Open XA標準で提案されている機能とモデルに従いますが、あまり使用されていないいくつかの側面は実装しません。
  


ユーザがPREPARE TRANSACTIONを実行すると、次のコマンドとしてはCOMMIT PREPAREDまたはROLLBACK PREPAREDしか使用できません。
一般的に、この準備済み状態は非常に短い期間であることを意図していますが、外部での可用性の問題により、トランザクションがこの状態に長期間とどまる可能性があります。
短命な準備済みトランザクションは共有メモリとWALにのみ格納されます。
チェックポイントをまたいだトランザクションはpg_twophaseディレクトリに記録されます。
現在準備済みのトランザクションはpg_prepared_xactsを使用して検査できます。
  

第68章 システムカタログの宣言と初期内容





PostgreSQL™は、テーブルや関数のようなデータベースオブジェクトの存在の有無と特性を追跡するために、多くの異なるシステムカタログを使用します。
物理的な観点ではシステムカタログとユーザテーブルの間に違いはありませんが、バックエンドのCコードはそれぞれのカタログの構造と特性を把握しており、直接カタログを低レベルで操作することができます。
ですから、たとえばカタログの構造を思いつきで変更しようとするのはおすすめできません。そのことによって、Cのコードに組み込まれているカタログの行のレイアウトに関する前提を壊してしまうことになるからです。
とはいえ、カタログの構造はメジャーバージョン間で変更されることがあります。
 


カタログの構造は、ソースツリーのsrc/include/catalog/ディレクトリの中の特殊な形式のCヘッダファイルに宣言されています。
個々のカタログに対応して、カタログと同じ名前のヘッダファイルが存在し（たとえば、pg_classに対してpg_class.hというように）、カタログが持つ一連の列やOIDのような基本的な特性を定義しています。
 


SQLコマンドを実行可能な状態にまでシステムを持っていくために、多くのカタログはinitdbの「bootstrap」フェーズで読み込まなければならない初期データを持っています。
（たとえば、pg_class.hは、他のシステムカタログとインデックス同様、自分自身のエントリを含んでいなければなりません。）
この初期データも、src/include/catalog/ディレクトリに格納されているデータファイル中に編集可能な形式で保存されています。
たとえば、pg_proc.datは、pg_procカタログに挿入されるべき初期の行を記述しています。
 


カタログファイルを作り初期データをそこにロードするために、ブートストラップモードで実行中のバックエンドは、コマンドと初期データを含むBKI（Backend Interface: バックエンドインタフェース）ファイルを読み込みます。
このモードで使用されるpostgres.bkiは、genbki.plというPerlスクリプトを使って、PostgreSQL™ディストリビューションを構築する過程で前述のヘッダとデータファイルから作成されます。
postgres.bkiはPostgreSQL™の特定のリリースに固有のものですが、プラットフォームからは独立しており、インストレーションツリーのshareサブディレクトリにインストールされます。
 


genbki.plは、他にも各々のカタログで使用する、たとえばpg_classのためのpg_class_d.hのような派生ファイルを生成します。
このファイルには自動生成されたマクロ定義が含まれているほか、他のマクロとenum宣言も含まれており、特定のカタログを読み込むクライアントCコードに役立ちます。
 


ほとんどのPostgreSQL開発者は直接BKIファイルのことを気にかける必要はありませんが、バックエンドに些細ではない機能を追加する際にはカタログヘッダファイル、あるいはまた初期データファイルの変更が必要になるでしょう。
この章の残りの部分でそれについての情報をお届けします。
また網羅性のために、BKIファイルのフォーマットも説明します。
 
システムカタログの宣言ルール





カタログヘッダファイルの肝心な部分は、カタログにおける行の配置を記述するC構造体定義です。
これはCATALOGマクロで始まりますが、Cコンパイラの観点からすると、単にtypedef struct
   FormData_catalognameの短縮形です。
構造体の各々のフィールドは、カタログの列を生成します。
フィールドにはgenbki.hに記述されたBKIプロパティマクロを使って注釈を付けることができます。
たとえば、フィールドのデフォルト値を定義したり、NULLが許されるかどうかのフラグを付けることができます。
CATALOG行にも注釈が付けられます。
genbki.hに記述されたBKIプロパティマクロを使って、共有リレーションであるかどうかといった、そのカタログ全体のプロパティを定義することができます。
  


システムカタログキャッシュのコード（そして一般的にたいていのカタログを触るコード）は、すべてのシステムカタログタプルに固定長部分が実際に存在するとみなします。
システムカタログキャッシュのコードは、C構造体定義をその固定部分にマップするからです。
したがって、すべての可変長フィールドと、NULLを許容するフィールドは、最後尾に置かれなければならず、また、構造体のフィールドとしてはアクセスできません。
たとえば、pg_type.typrelidをNULLにしようとすると、他のコード部分がtypetup->typrelidを参照しようとして失敗します。（あるいはもっと悪いことにtypetup->typelemを参照中に失敗します。なぜなら、そのフィールドはtyprelidの後に来るからです。）
これはランダムなエラーとなるか、あるいはセグメンテーション違反にすらなってしまいます。
  


この種のエラーから部分的に身を守るためには、可変長あるいはNULLを許容するフィールドはCコンパイラから直接見えないようにすべきです。
これは#ifdef CATALOG_VARLEN ... #endifの中に入れることで達成できます。（ここで、CATALOG_VARLENは、決して定義されないシンボルです。）
これにより、Cコードが不注意で存在しないフィールドにアクセスしようとしたり、オフセットが違うフィールドにアクセスしようとするのを防ぐことができます。
不正な行を作るのを防ぐ独立したガードとして、NULLを許容しないすべての列をpg_attributeでそのように宣言することを要求します。
ブートストラップコードは、固定長で、かつ、NULLを許容したり可変幅である列の次ではないカタログ列に対して自動的にNOT NULLのマークを付けます。
このルールが不適切なら、BKI_FORCE_NOT_NULLとBKI_FORCE_NULLを必要に応じて使ってマーキングを修正できます。
  


フロントエンドのコードはすべてのpg_xxx.hカタログヘッダファイルをincludeすべきではありません。
バックエンド以外ではコンパイルできないCコードを含んでいるかもしれないからです。
（典型的には、src/backend/catalog/ファイル中に関数宣言を含んでいることによって起こります。）
その代わりに、フロントエンドは生成されたpg_xxx_d.hヘッダをincludeできます。
このファイルは、OIDの#defineと、クライアント側で必要になるデータを含んでいます。
カタログヘッダ中のマクロやその他のコードをフロントエンドから見えるようにしたい場合は、#ifdef EXPOSE_TO_CLIENT_CODE ... #endifで該当セクションを囲むことにより、genbki.plがそのセクションをpg_xxx_d.hにコピーするように指示してください。
  


少数のカタログは非常に基本的なものなので、ほとんどのカタログで使用されるBKI createコマンドですら作成できません。そのコマンドが、新しいカタログの記述をこれらのカタログに書き込む必要があるからです。
これらはブートストラップカタログと呼ばれ、定義するためには大量の追加の作業が必要です。
pg_classとpg_typeのあらかじめロード済みの内容上に手動で適切なエントリを用意し、後のカタログ構造への変更に合わせてそれらのエントリを更新する必要があります。
（また、ブートストラップカタログはpg_attribute中のロード済みのエントリを必要としますが、幸いにも最近はgenbki.plが適切に処理してくれます。）
可能ならば、新しいカタログをブートストラップカタログとして作るのは避けてください。
  


システムカタログ初期データ





手動で生成した初期データを持つ（いくつかのものは持っていません）各々のカタログには、編集可能なデータ形式の初期データを含み、対応する.datファイルがあります。
  
データファイル形式





個々の.datファイルにはPerlのデータ構造文字列が含まれます。
それらは単に評価されることによって1個がカタログの1行に対応するハッシュ参照の配列を含むメモリ上のデータ構造を生成します。
pg_database.datから抜きだしたものに些細な変更を加えたものを使って、鍵となる機能を示します。
   

[

# A comment could appear here.
{ oid => '1', oid_symbol => 'Template1DbOid',
  descr => 'database\'s default template',
  datname => 'template1', encoding => 'ENCODING',
  datlocprovider => 'LOCALE_PROVIDER', datistemplate => 't',
  datallowconn => 't', dathasloginevt => 'f', datconnlimit => '-1', datfrozenxid => '0',
  datminmxid => '1', dattablespace => 'pg_default', datcollate => 'LC_COLLATE',
  datctype => 'LC_CTYPE', datlocale => 'DATLOCALE', datacl => '_null_' },

]



特筆すべきポイント：
   
	

全体的なファイルレイアウトは次のようになります。
開き大括弧、カタログの行を表現する一つ以上の中括弧、閉じ大括弧。
各々の閉じ中括弧の後にはカンマを書きます。
     

	

各々のカタログ行にカンマ区切りでkey=>valueペアを書きます。
記述可能なkeyは、カタログの列に加えてメタデータキーであるoid、oid_symbol、array_type_oid、descrです。
（oidとoid_symbolの使い方は後述の「OIDの割当」で説明されていて、一方、array_type_oidは「配列型の自動作成」で説明されています。
descrはオブジェクトの説明文字列に使用し、pg_descriptionかpg_shdescriptionの適切な方に挿入されます。）
メタデータキーは省略可能であるのに対し、カタログの.hファイルが列のデフォルト値を指定する場合を除いてカタログの定義済み列はすべて提供されなければなりません。
（上記の例ではpg_database.hが適切なデフォルト値を供するのでdatdbaフィールドは省略されました。）
     

	

すべての値は単一引用符で囲まなければなりません。
値中の単一引用符はバックスラッシュでエスケープします。
データを意味するバックスラッシュは二重にできますが、必須ではありません。
これはPerlの単純な単一引用符で引用されたリテラルに関するルールに基づいています。
データとして使われるバックスラッシュは、エスケープ文字列定数（「C形式エスケープでの文字列定数」参照）と同じルールに基づき、ブートストラップスキャナはエスケープと解釈することに注意してください。
たとえば\tはタブへと変換されます。
最終的な値としてバックスラッシュを使用したい場合は、4つ書く必要があります。
Perlが２つ削除し、ブートストラップスキャナが認識するために\\が残ります。
     

	

NULL値は_null_で表します。
（それと同じ文字列を作る方法はないことに注意してください。）
     

	

コメントは#を前に置いてください。また同じ行上に置かなければなりません。
     

	

他のカタログエントリのOIDであるフィールド値は、実際の数値のOIDではなくシンボル名で記述されるべきです。
（上記の例ではdattablespaceがこのような参照を含みます。）
これは後述の「OID参照検索」で説明します。
     

	

ハッシュは順序付けられないデータ構造なので、フィールドの順や行の配置には重要な意味はありません。
しかし、見た目を統一するために、フォーマットスクリプトreformat_dat_file.plが適用される少数のルールを設定しました。

      
	

中括弧のペアの中で、メタデータフィールドのoid、oid_symbol、array_type_oid、および、（もし存在するなら）descrがこの順で最初に来ます。
そして、定義された順にカタログ自身のフィールドが現れます。
        

	

可能ならば、行の長さを80文字に制限するために、必要に応じてフィールドの間に改行を挿入します。
改行はメタデータフィールドと通常のフィールドの間にも挿入します。
        

	

カタログの.hファイルが列のデフォルト値を指定していて、データエントリが同じ値なら、reformat_dat_file.plはデータファイルからデータエントリを省略します。
これでデータ表現が小さくなります。
        

	

reformat_dat_file.plは空白行とコメント行をそのまま維持します。
        






カタログデータパッチを投稿する前に、reformat_dat_file.plを実行することをお勧めします。
便利さのために、単にsrc/include/catalog/に変更を加えてmake reformat-dat-filesを実行することができます。
     

	

データ表現をより小さくする新しい方法を付け加えたいのであれば、reformat_dat_file.plで実装し、また
データを完全な表現に戻す方法をCatalog::ParseData()に指示しなければなりません。
     




OIDの割当





初期データに現れるカタログ行にはoid=> nnnnメタデータフィールドを書くことで手動で割り当てたOIDを与えることができます。
それだけでなく、OIDを割り当てられたならば、oid_symbol => nameメタデータフィールドを書くことでそのOID用のCマクロを作ることができます。
   


他のプリロードカタログ行の中にそのOIDへの参照がある場合には、プリロードカタログ行は割当済みのOIDを持たなければなりません。
Cコードから行OIDが参照されるときにも割当済みのOIDは必要です。
どちらも当てはまらない場合は、oidメタデータフィールドは省略可能です。
その場合、ブートストラップコードが自動的にOIDを割り当てます。
実用的には、カタログの一部のみが実際に相互参照されている場合でも、与えられたプリロードカタログ行のOIDをすべて割当済みにするか、一つも割当済みにしないかのどちらかに通常します。
   


Cコード中でOIDの実際の数値を書くのは非常に良くないと考えられます。
pg_procを直接参照するのは普通のことなので、自動的に必要なマクロを生成する特別な仕掛けがあります。
src/backend/utils/Gen_fmgrtab.plを見てください。
歴史的理由により、似ていはいますが同じではない方法によるpg_type OID用のマクロを自動生成する仕組みがあります。
ですから、oid_symbolエントリはこれらの２つのカタログに必ずしも存在しなければならないというわけではありません。
同様に、pg_classシステムカタログのOIDとインデックスマクロは自動的に設定されます。
他のすべてのシステムカタログでは、oid_symbolを使って必要なマクロを手動で指定しなければなりません。
   


新しいプリロード行のために利用可能なOIDを見つけるには、src/include/catalog/unused_oidsスクリプトを実行してください。
未使用のOIDの範囲が表示されます。
（たとえば、出力行45-900はOIDs 45から900が利用されていないことを示します。）
今の所OID 1–9999 は手動での割当のために予約されています。
unused_oidsスクリプトは、単にカタログヘッダと.datを見てそこに出現していないOIDを探しているだけです。
間違い見つけるためにduplicate_oidsを利用することもできます。
（genbki.plは手動アサインされていない全ての行にOIDを割り当て、また、コンパイル時に重複OIDを検出します。）
   


即座にコミットされるとは期待できないパッチ用にOIDを選ぶときの最良の手法は、8000—9999の範囲でランダムに選択したところから始まるおおむね連続したOIDのグループを使うことです。
これは同時に開発されている他のパッチとのOID衝突の危険を最小化します。
8000—9999の範囲を開発目的に空けておくため、パッチがマスタgitリポジトリにコミットされた後、そのOIDはこの範囲の下位の使用可能な場所に番号の振り直しをすべきです。
通例これは各開発サイクルの終わり近くに行われ、同時にそのサイクルでコミットされたパッチで消費された全てのOIDを移動するでしょう。
スクリプトrenumber_oids.plはこの目的に使用できます。
コミットされていないパッチが最近コミットされたパッチとOID衝突していることに気づいた場合に、このような状況から回復するのにもrenumber_oids.plがおそらく役立つでしょう。
   


パッチに割り当てられたOIDを番号付け替えすることがあるこの慣習のため、パッチに割り当てられたOIDはそのパッチが正式リリースに含まれるまでは永続的と考えるべきではありません。
さまざまな互換性の問題を生み出すかもしれないため、一度リリースされた手動でアサインされたオブジェクトのOIDは変更しません。
   


genbki.plは、手動アサインされたOIDを持たないカタログエントリにOIDを割り当てる必要がある場合、10000—11999範囲の値を使います。
ブートストラップの実行開始時にその場で作成されるオブジェクトもこの範囲のOIDが設定されるように、ブートストラップ実行開始の際にはサーバのOIDカウンタは10000に設定されます。（通常のOID割当機構は、衝突を回避するように調整を行います。）
   


FirstUnpinnedObjectId (12000)以下のOIDを持つオブジェクトは「固定」と見なされ、削除されません。
（IsPinnedObject()に固定されている少数の例外があります。）
initdbは、固定されていないオブジェクトを作成する準備ができるとすぐに、OIDカウンタをFirstUnpinnedObjectIdまで強制的に増加させます。
このため、information_schema.sqlスクリプトの実行中に作成されたオブジェクトなど、initdbの後半のフェーズで作成されたオブジェクトは固定されませんが、genbki.plで認識されているすべてのオブジェクトは固定されます。
   


通常のデータベース操作で割り当てられたOIDは16384以上に限定されます。
これはgenbki.plやinitdb中に自動的に割り当てられたOIDに対して10000—16383の範囲が空いていること保証します。
これらの自動割り当てされたOIDは今後も変更がないとはいえず、あるインストレーションから他のインストレーションで変更されるかもしれません。
   

OID参照検索





原則としては、ある初期カタログ行から他への相互参照は、参照しているフィールドで参照されている行の事前割り当てされたOIDを書くことだけで記述できます。
しかしながら、間違いやすく、読みにくく、また、新たに割り当てられたOIDが番号付け直しされたときに破損しやすいため、これはプロジェクト方針に反します。
そのため、genbki.plが代わりにシンボル参照を記述する機構を提供しています。
そのルールは以下のとおりです。
   
	

BKI_LOOKUP(lookuprule)を列の定義に加えることで、特定のカタログ列でのシンボル参照が利用可能になります。
ここでlookupruleは参照されているカタログ名で、例えばpg_procです。
BKI_LOOKUPを、Oid、regproc、oidvector、Oid[]の列に加えることができます。
最後の２つにおいては、配列の個々の要素を検索することを暗に意味します。
     

	

文字集合符号化方式を参照する整数の列にBKI_LOOKUP(encoding)を加えることも許容されます。これは今のところカタログのOIDとして現れませんが、値の集合をgenbki.plに知らせます。
     

	

カタログ列の中には、エントリを有効な参照の代わりにゼロとすることが許されているものがあります。
これが許されているなら、BKI_LOOKUPの代わりにBKI_LOOKUP_OPTを書いてください。
そうすれば、エントリに0を書くことができます。
（列がregprocと宣言されている場合は、0の代わりに-と書くことができます。）
この特別な場合を除いて、BKI_LOOKUP列内のすべてのエントリはシンボル参照でなければなりません。
genbki.plは認識できない名前には警告を出します。
     

	

たいていのカタログオブジェクト類は単純にその名前で参照されます。
型名は参照されているpg_typeのエントリのtypnameと正確に一致しなければならないことに注意してください。int4に対するintegerなどの別名は使えません。
     

	

それがpg_proc.dat内でユニークなら、関数はpronameで表現できます。
（regprocの入力はこのように働きます。）
そうでなければ、regprocedureのように、proname(argtypename,argtypename,...)と書いてください。
引数型名は正確にpg_proc.datエントリのproargtypesで指定しなければなりません。
空白は挿入しないでください。
     

	

演算子はoprname(lefttype,righttype)で表現します。
型名は正確にpg_operator.datエントリのoprleftフィールドとoprrightフィールドで記述します。
（省略された単項演算子のオペランドは0と書きます。）
     

	

opclassesとopfamiliesの名前はアクセスメソッド内でのみユニークなので、access_method_name/object_nameで表します。
     

	

以上のいずれの場合にもスキーマ修飾の規定はありません。
ブートストラップ中に作成されるすべてのオブジェクトは、pg_catalogスキーマにあると期待されます。
     





genbki.plは実行中にすべてのシンボル参照を解決し、生成したBKIファイルの中に単純な数字のOIDを設定します。
ですから、ブートストラップバックエンドはシンボル参照にかかわる必要はありません。
   


カタログに検索の必要な初期データがなかったとしても、OID参照列にBKI_LOOKUPやBKI_LOOKUP_OPTの印を付けておくことが望ましいです。
これにより、genbki.plがシステムカタログ内に存在する外部キー関係を記録できるようになります。
その情報は間違ったエントリを確認するリグレッションテストで使われます。
マクロDECLARE_FOREIGN_KEY、DECLARE_FOREIGN_KEY_OPT、DECLARE_ARRAY_FOREIGN_KEY、DECLARE_ARRAY_FOREIGN_KEY_OPTも参照してください。BKI_LOOKUPには複雑すぎる外部キー関係（典型的には、複数列の外部キー）を宣言するのに使われます。
   

配列型の自動作成





たいていのスカラデータ型は対応する配列型を持つはずです（すなわち、要素がスカラ型の標準varlena配列型で、スカラ型のpg_typeエントリのtyparrayフィールドから参照されているもの）。
genbki.plはたいていの場合に配列型に対するpg_typeエントリも自動的に生成できます。
   


この機能を使うには、スカラ型のpg_typeエントリにarray_type_oid => nnnnというメタデータフィールドを記述して、配列型に使用するOIDを指定します。
自動的にそのOIDが書かれるため、このときtyparrayフィールドを省いてもよいです。
   


生成された配列型の名前は、スカラ型の名前の手前にアンダースコアを付けたものです。
配列エントリの他のフィールドは、pg_type.hでBKI_ARRAY_DEFAULT(value)注釈から充当され、もし無ければスカラ型からコピーされます。
（typalignに対する特別な場合もあります。）
さらに両エントリのtypelemおよびtyparrayフィールドは相互参照するように設定されます。
   

データファイルの編集方法





カタログデータファイルを更新する共通の作業を実施するためのもっとも簡単な方法の提案を示します。
   
カタログにデフォルト付きの新しい列を追加する. 

BKI_DEFAULT(value)注釈付きでヘッダファイルに列を追加します。
非デフォルト値が必要な既存の行に対してのみフィールドを追加によるデータファイルの調整が必要です。
    
デフォルト値を持たない既存の列にデフォルト値を追加する. 

BKI_DEFAULT注釈をヘッダファイルに追加し、冗長になったフィールドエントリを削除するためにmake reformat-dat-filesを実行します。
    
デフォルト値の有無にかかわらず、列を削除する. 

ヘッダから列を削除し、make reformat-dat-filesを実行して不要になったフィールドエントリを削除します。
    
既存のデフォルト値を変更もしくは削除する. 

現在のデータが正しく解釈されなくなるため、単にヘッダファイルを変更することはできません。
まずmake expand-dat-filesを実行し、すべてのデフォルト値が明示的に挿入されるようにデータファイルを書き換えます。
次にBKI_DEFAULT注釈を変更もしくは削除し、make reformat-dat-filesを実行して余分のフィールドを再び削除します。
    
特定の目的のための大量の編集: 

reformat_dat_file.plを使って色々な大量の変更を実施できます。
一度限りのコードを挿入できることを示すブロックコメントを見つけます。
次の例では、pg_proc中の２つの論理値型フィールドを一つの文字フィールドに統合します。

     
	

デフォルトがある新しい列をpg_proc.hに追加します。


+    /* see PROKIND_ categories below */
+    char        prokind BKI_DEFAULT(f);


       

	

臨機応変に適当な値を挿入するために、reformat_dat_file.plを元に新しいスクリプトを作ります。


-           # At this point we have the full row in memory as a hash
-           # and can do any operations we want. As written, it only
-           # removes default values, but this script can be adapted to
-           # do one-off bulk-editing.
+           # One-off change to migrate to prokind
+           # Default has already been filled in by now, so change to other
+           # values as appropriate
+           if ($values{proisagg} eq 't')
+           {
+               $values{prokind} = 'a';
+           }
+           elsif ($values{proiswindow} eq 't')
+           {
+               $values{prokind} = 'w';
+           }


       

	

スクリプトを実行します。


$ cd src/include/catalog
$ perl  rewrite_dat_with_prokind.pl  pg_proc.dat



この時点でpg_proc.datにはprokind、proisagg、proiswindowのすべての3つの列がありますが、非デフォルト値を持つ行だけに表れます。
       

	

pg_proc.hから古い列を削除します。


-    /* is it an aggregate? */
-    bool        proisagg BKI_DEFAULT(f);
-
-    /* is it a window function? */
-    bool        proiswindow BKI_DEFAULT(f);


       

	

最後に、make reformat-dat-filesを実行してpg_proc.datから不要になった古いエントリを削除します。
       






さらなる大量編集スクリプトの例については、https://www.postgresql.org/message-id/CAJVSVGVX8gXnPm+Xa=DxR7kFYprcQ1tNcCT5D0O3ShfnM6jehA@mail.gmail.comに付随するconvert_oid2name.plとremove_pg_type_oid_symbols.plを見てください。
    


BKIファイル形式





本節ではPostgreSQL™のバックエンドがどのようにしてBKIファイルを解釈するのかを説明します。
例としてpostgres.bkiファイルが手元にあると、説明が一層理解しやすくなるでしょう。
  


BKIの入力は一連のコマンドで構成されます。
コマンドはいくつものトークンから構成されていて、コマンドの構文に依存しています。
トークンは通常空白で分離されていますが、どちらとも解釈されるような曖昧性がなければ必要性ありません。
特別なコマンド区切り文字はありません。
したがって、構文上その前のコマンドに属すことができない次のトークンは新たなコマンドとなります。
（通常、わかりやすくするために、新しいコマンドは新しい行に記述します）。
トークンはある一定のキーワードや特別な文字（括弧やカンマなど）、識別子、数字、単一引用符で囲まれた文字列などが使用できます。
大文字/小文字は全て区別されます。
  


#で始まる行は無視されます。
  

BKIコマンド



	
     create
     tablename
     tableoid
     [bootstrap]
     [shared_relation]
     [rowtype_oid oid]
     (name1 =
     type1
     [FORCE NOT NULL | FORCE NULL ] [,
     name2 =
     type2
     [FORCE NOT NULL | FORCE NULL ],
     ...])
    
	

括弧で与えられた列と、OID tableoidを持つtablenameというテーブルを作成します。
     


次の列型はbootstrap.cで直接サポートされます。
bool、bytea、char（1バイト）、name、int2、int4、regproc、regclass、regtype、text、oid、tid、xid、cid、int2vector、oidvector、_int4（配列）、_text（配列）、_oid（配列）、_char（配列）、_aclitem（配列）。
この他の型の列を持つテーブルを作成することはできますが、pg_typeが完了し適切な項目で埋められるまで完了させることができません。
（これらの列型のみブートストラップカタログで使用されますが、非ブートストラップカタログは如何なる組み込み型も含む事があるという事を実際に意味しています。）
     


bootstrapが指定された場合、テーブルはディスク上に作成されるだけで、pg_classやpg_attributeなどにその項目は登録されません。
したがって、これらの項目が（insertコマンドで）固定化されるまで、普通のSQL操作でこのテーブルにアクセスできません。
このオプションはpg_classなど自身を作成するために使用されます。
     


shared_relationが指定された場合、テーブルは共有として作成されます。
テーブルの行型OID（pg_type OID）はrowtype_oid句で指定できます。
指定されなければ、OIDは自動的に生成されます。
（bootstrap が指定されていれば、rowtype_oid句は役に立ちません。しかし、文書化のためにともかく指定はできます。）
     

	
     open tablename
    
	

データを挿入するためにtablenameと名前が付けられたテーブルを開きます。
現在開いているテーブルは閉じられます。
     

	
     close tablename
    
	

開いているテーブルを閉じます。
照合用にテーブル名を指定しなければなりません。
     

	
     insert ( [oid_value] value1 value2 ... )
    
	

value1やvalue2などを列の値として、開いているテーブルに行を挿入します。
     


NULL値は特別なキーワード、_null_によって指定できます。
識別子に見えない値、あるいは数値文字列は単一引用符で囲まなければなりません。
(単一引用符を値に含めるには、二重に書いてください。
エスケープ文字列形式のバックスラッシュエスケープも、文字列内で許されています。)
     

	
     declare [unique]
     index indexname
     indexoid
     on tablename
     using amname
     ( opclass1
     name1
     [, ...] )
    
	

amnameアクセスメソッドを使用して、tablenameと名付けられたテーブル上に、OID indexoidを所有する、indexnameという名前のインデックスを作成します。
インデックスが付けられるフィールドは、name1、name2など、そして使用される演算子クラスはopclass1、opclass2などとそれぞれ呼ばれます。
このインデックスファイルは作成され、適切なカタログ項目が作成されますが、このコマンドではインデックスの内容の初期化を行いません。
     

	
     declare toast
     toasttableoid
     toastindexoid
     on tablename
    
	

tablenameという名前のテーブル用のTOASTテーブルを作成します。
このTOASTテーブルはOIDとしてtoasttableoidが割り当てられ、そのインデックスはOIDとしてtoastindexoidが割り当てられます。
declare indexと同様、インデックスの作成は遅延されます。
     

	build indices
	

前に宣言されたインデックスを作成します。
     




BKIファイルのブートストラップの構成





openコマンドは、テーブルが、使用するテーブルが存在し、開かれるテーブルに対しエントリを所有するまで使用できません。（これら最小限度のテーブルは、pg_class、pg_attribute、pg_proc、およびpg_typeです。）これらのテーブル自体が充填されるようにするには、bootstrapオプションを伴ったcreateが明示的にデータの挿入のために作成されたテーブルを開きます。
  


また、必要とするシステムカタログが作成され、値が設定されるまで、declare indexおよびdeclare toastコマンドは使用できません。
  


従い、postgres.bkiの構造は以下でなければなりません。
   
	

      1つの重要なテーブルをcreate bootstrap
     

	

      少なくとも重要なテーブルを記述するデータをinsert
     

	
      close
     

	

      その他の重要テーブルに対して反復。
     

	

      重要でないテーブルを（bootstrap無しで）create
     

	
      open
     

	

      求められるデータのinsert
     

	
      close
     

	

     その他の重要でないテーブルに対して反復。
     

	

      インデックスおよびTOASTテーブルの定義。
     

	
      build indices
     




  


他にもドキュメント化されていない順序に関する依存性があることは疑いの余地がありません。
  

BKIの例





次の一連のコマンドは、それぞれoid型、int4型、text型の3つの列、oid、cola、colbを持ち、OID 420 が付いたtest_tableテーブルを作成し、そして2つの行をテーブルに挿入します。


create test_table 420 (oid = oid, cola = int4, colb = text)
open test_table
insert ( 421 1 'value 1' )
insert ( 422 2 _null_ )
close test_table


  

第69章 プランナは統計情報をどのように使用するか





本章は、「EXPLAINの利用」と「プランナで使用される統計情報」で扱われている題材を基にしていて、問い合わせの各段階において返される行数を推定するために、プランナがシステムの統計情報をどのように使用するかについて更なる詳細をいくつか説明します。
これは計画作成処理において重要な部分で、コスト計算用の多くの情報を提供します。
  


本章の目的はコードを詳しく文書化することではありません。
どのように動作するのかに関する概要を表すことが目的です。
これによりおそらく、後にコードを参照するユーザの習得速度が向上するでしょう。
  
行数推定の例





以下の例はPostgreSQL™リグレッションテストデータベースのテーブルを使用しています。
また、ANALYZEは統計を生成する際にランダムサンプリングを使用するため、新しいANALYZEを実行した後は結果がわずかに変化することに注意してください。
  


非常に簡単な問い合わせから始めましょう。



EXPLAIN SELECT * FROM tenk1;

                         QUERY PLAN
-------------------------------------------------------------
 Seq Scan on tenk1  (cost=0.00..458.00 rows=10000 width=244)




プランナがどのようにtenk1のカーディナリティを決定するかについては「プランナで使用される統計情報」で説明しました。
しかし、ここでは完全を期するために説明を繰り返します。
ページ数および行数はpg_classから検索されます。



SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenk1';

 relpages | reltuples
----------+-----------
      358 |     10000




これらの値は最後にそのテーブルをVACUUMまたはANALYZEを行った時点のものです。
プランナはその後、テーブル内の実際のページ数を取り出します（これはテーブルスキャンを行わない安価な操作です）。
それがrelpagesと異なる場合、reltuplesを得られたページ数の割合に応じて変更して現在の推定行数を求めます。
上の例では、relpagesの値は最新のものなので、推定行数はreltuplesと同じです。
  


次にWHERE句に範囲条件を持つ例に進みましょう。



EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000;

                                   QUERY PLAN
-------------------------------------------------------------------​-------------
 Bitmap Heap Scan on tenk1  (cost=24.06..394.64 rows=1007 width=244)
   Recheck Cond: (unique1 < 1000)
   ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..23.80 rows=1007 width=0)
         Index Cond: (unique1 < 1000)




プランナはWHERE句の条件を検査し、pg_operator内の<演算子用の選択度関数を検索します。
これはoprrest列に保持されます。
今回の例ではこの項はscalarltselです。
scalarltsel関数は、pg_statisticからunique1のヒストグラムを取り出します。
手作業で問い合わせる場合は、より単純なpg_statsビューを検索した方が簡単です。



SELECT histogram_bounds FROM pg_stats
WHERE tablename='tenk1' AND attname='unique1';

                   histogram_bounds
------------------------------------------------------
 {0,993,1997,3050,4040,5036,5957,7057,8029,9016,9995}




次に、「< 1000」で占められるヒストグラムの割合を取り出します。
これが選択度(selectivity)です。
このヒストグラムは、範囲を等頻度のバケット(bucket)に分割します。
ですので、行わなければならないことは、値が入るバケットを見つけ、その部分と、その前にあるバケット全体を数えることだけです。
1000という値は明らかに2番目のバケット(993–1997)にあります。
従って、値が各バケットの中で線形に分布していると仮定すると、選択度を以下のように計算することができます。



selectivity = (1 + (1000 - bucket[2].min)/(bucket[2].max - bucket[2].min))/num_buckets
            = (1 + (1000 - 993)/(1997 - 993))/10
            = 0.100697




つまり、1つのバケット全体に、2番目のバケットとの線形比率を加えたものを、バケット数で割ったものとなります。
ここで、行の推定値は、選択度とtenk1のカーディナリティを掛け合わせたものとして計算されます。



rows = rel_cardinality * selectivity
     = 10000 * 0.100697

     = 1007  (四捨五入)


  


次に、WHERE句に等価条件を持つ例を検討してみましょう。



EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'CRAAAA';

                        QUERY PLAN
----------------------------------------------------------
 Seq Scan on tenk1  (cost=0.00..483.00 rows=30 width=244)
   Filter: (stringu1 = 'CRAAAA'::name)




ここでも、プランナはWHERE句の条件を検査し、=用の選択度関数、この場合はeqselを検索します。
等価性の推定では、ヒストグラムは役に立ちません。
代わりに、選択度の決定には頻出値（MCV）のリストが使用されます。
MCVを見てみましょう。
後で有用になる列がいくつかあります。



SELECT null_frac, n_distinct, most_common_vals, most_common_freqs FROM pg_stats
WHERE tablename='tenk1' AND attname='stringu1';

null_frac         | 0
n_distinct        | 676
most_common_vals  | {EJAAAA,BBAAAA,CRAAAA,FCAAAA,FEAAAA,GSAAAA,​JOAAAA,MCAAAA,NAAAAA,WGAAAA}
most_common_freqs | {0.00333333,0.003,0.003,0.003,0.003,0.003,​0.003,0.003,0.003,0.003}





CRAAAAがMCVのリスト内にありますので、選択度は単に頻出値の頻度（MCF）のリスト内の対応する項目になります。



selectivity = mcf[3]
            = 0.003




前と同様、推定される行数は単に前回同様、この値とtenk1のカーディナリティとの積です。



rows = 10000 * 0.003
     = 30


  


ここで、同じ問い合わせを見てみます。
ただし、今回は定数がMCV内にありません。



EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'xxx';

                        QUERY PLAN
----------------------------------------------------------
 Seq Scan on tenk1  (cost=0.00..483.00 rows=15 width=244)
   Filter: (stringu1 = 'xxx'::name)




値がMCVの一覧にない場合、選択度をどのように推定するかは大きく異なります。
値が一覧にない場合に使用される方法は、MCVすべての頻度に関する知識を組み合わせたものです。



selectivity = (1 - sum(mcv_freqs))/(num_distinct - num_mcv)
            = (1 - (0.00333333 + 0.003 + 0.003 + 0.003 + 0.003 + 0.003 +
                    0.003 + 0.003 + 0.003 + 0.003))/(676 - 10)
            = 0.0014559




つまり、MCVの頻度をすべて足し合わせたものを1から差し引き、そして、この他の個別値の数で除算します。
これは、MCV以外の列の割合は、この他の個別値すべてに渡って一様に分布していることを前提としていることになります。
NULL値が存在しないため、これを考慮する必要がないことに注意してください。
（さもなくば、分子から同様にNULLの割合を差し引くことになります。）
推定行数は以下のように普通に計算されます。



rows = 10000 * 0.0014559

     = 15  (四捨五入)


  


前述のunique1 < 1000を使用した例はscalarltselが本当は何を行うかについて、単純化しすぎたものでした。
ここまでで、MCVを使用した例を見てきましたので、多少詳細に補てんすることができます。
unique1は一意な列であるため、MCVが存在しません（ある値が他の値より頻出しないことは明確です）ので、例は計算自体は正確なものでした。
一意ではない列では、通常ヒストグラムとMCVリストの両方が存在します。
そして、ヒストグラムは、MCVで表される列母集団の位置を含みません。
より正確な推定を行うことができるため、この方法を行います。
この状況では、scalarltselは直接条件（例えば「< 1000」）をMCVリストの各値に適用し、条件を満たすMCVの頻度を足し合わせます。
これがMCVのテーブル部分における正確な推定選択度です。
その後ヒストグラムが上記と同様に使われ、MCV以外のテーブル部分における選択度を推定します。
そしてこの2つの値を組み合わせて、全体の選択度を推定します。
例えば、以下を検討します。



EXPLAIN SELECT * FROM tenk1 WHERE stringu1 < 'IAAAAA';

                         QUERY PLAN
------------------------------------------------------------
 Seq Scan on tenk1  (cost=0.00..483.00 rows=3077 width=244)
   Filter: (stringu1 < 'IAAAAA'::name)




すでにstringu1のMCV情報は確認していますので、ここではヒストグラムを見てみます。



SELECT histogram_bounds FROM pg_stats
WHERE tablename='tenk1' AND attname='stringu1';

                                histogram_bounds
-------------------------------------------------------------------​-------------
 {AAAAAA,CQAAAA,FRAAAA,IBAAAA,KRAAAA,NFAAAA,PSAAAA,SGAAAA,VAAAAA,​XLAAAA,ZZAAAA}




MCVリストを検査すると、stringu1 < 'IAAAAA'条件は先頭の6項目で満たされ、最後の4項目で満たされないことがわかります。
ですので、母集団のMCV部分における選択度は以下のようになります。



selectivity = sum(relevant mvfs)
            = 0.00333333 + 0.003 + 0.003 + 0.003 + 0.003 + 0.003
            = 0.01833333




MCFの総和はまた、MCVで表される母集団の合計割合が0.03033333であり、したがってヒストグラムで表される割合が0.96966667であることがわかります。
（この場合もNULLは存在しません。もし存在する場合はここで除外しなければなりません。）
IAAAAAという値は3番目のバケットの終端近辺になることを確認することができます。
異なる文字の頻度について多少安っぽい仮定を使用すると、プランナはIAAAAAより小さいヒストグラムの母集団の部分の推定値は0.298387になります。
そしてMCVと非MCV母集団についての推定値を組み合わせます。



selectivity = mcv_selectivity + histogram_selectivity * histogram_fraction
            = 0.01833333 + 0.298387 * 0.96966667
            = 0.307669

rows        = 10000 * 0.307669

            = 3077  (四捨五入)




列の分布がかなり平坦ですので、この特定の例におけるMCVリストによる訂正はかなり小さなものです。
（これらの特定の値が他より頻出するものと示す統計情報はほとんどサンプリングエラーによります。）
より一般的な、一部の値が他より非常に多く頻出する場合では、最頻値に対する選択度が正確に検出されますので、この複雑な処理により精度が改良されます。
  


次にWHERE句に複数の条件を持つ場合を検討しましょう。



EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000 AND stringu1 = 'xxx';

                                   QUERY PLAN
-------------------------------------------------------------------​-------------
 Bitmap Heap Scan on tenk1  (cost=23.80..396.91 rows=1 width=244)
   Recheck Cond: (unique1 < 1000)
   Filter: (stringu1 = 'xxx'::name)
   ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..23.80 rows=1007 width=0)
         Index Cond: (unique1 < 1000)




プランナは2つの条件が独立していると仮定します。
このため、個々の句の選択度が掛け合わされます。



selectivity = selectivity(unique1 < 1000) * selectivity(stringu1 = 'xxx')
            = 0.100697 * 0.0014559
            = 0.0001466

rows        = 10000 * 0.0001466

            = 1  (四捨五入)




ビットマップインデックススキャンにより返されるものと推定される行数は、インデックスで使用される条件のみを反映することに注意してください。
後続のヒープ取り出しのコスト推定に影響しますので、これは重要です。
  


最後に、結合を含む問い合わせを見てみましょう。



EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 50 AND t1.unique2 = t2.unique2;

                                      QUERY PLAN
-------------------------------------------------------------------​-------------------
 Nested Loop  (cost=4.64..456.23 rows=50 width=488)
   ->  Bitmap Heap Scan on tenk1 t1  (cost=4.64..142.17 rows=50 width=244)
         Recheck Cond: (unique1 < 50)
         ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..4.63 rows=50 width=0)
               Index Cond: (unique1 < 50)
   ->  Index Scan using tenk2_unique2 on tenk2 t2  (cost=0.00..6.27 rows=1 width=244)
         Index Cond: (unique2 = t1.unique2)




tenk1 unique1 < 50に関する制限が、ネステッドループ結合の前に評価されます。
これは、前の範囲に関する例と同様に扱われます。
しかし、今回の値50はunique1ヒストグラムの最初のバケットにありますので、以下のようになります。



selectivity = (0 + (50 - bucket[1].min)/(bucket[1].max - bucket[1].min))/num_buckets
            = (0 + (50 - 0)/(993 - 0))/10
            = 0.005035

rows        = 10000 * 0.005035

            = 50  (四捨五入)




結合の制限はt2.unique2 = t1.unique2です。
演算子はよく使用する単なる=ですが、選択度関数はpg_operatorのoprjoin列から入手され、eqjoinselとなります。
eqjoinselはtenk2およびtenk1の両方の統計情報を検索します。



SELECT tablename, null_frac,n_distinct, most_common_vals FROM pg_stats
WHERE tablename IN ('tenk1', 'tenk2') AND attname='unique2';

tablename  | null_frac | n_distinct | most_common_vals
-----------+-----------+------------+------------------
 tenk1     |         0 |         -1 |
 tenk2     |         0 |         -1 |




この場合、unique2に関するMCVの情報はなく、すべての値が一意であるように見えます（n_distinct = -1）。
そのため、両方のリレーションの行数推定値（（ここでは表示されていませんが"tenk"の）num_rows）と、列のNULL率（両方ともゼロ）に基づいたアルゴリズムが使用されます。



selectivity = (1 - null_frac1) * (1 - null_frac2) / max(num_rows1, num_rows2)
            = (1 - 0) * (1 - 0) / max(10000, 10000)
            = 0.0001




これは、各リレーションにおいて、1からNULL部分を差し引き、それを大きい方のリレーションの行数で割ります（この値は一意でない場合にはスケーリングされます）。
この結合が生成するはずの行数は、2つの入力のデカルト積のカーディナリティに、この選択度を掛けたものとして計算されます。



rows = (outer_cardinality * inner_cardinality) * selectivity
     = (50 * 10000) * 0.0001
     = 50


  


2つの列に対するMCVリストがありますので、eqjoinselはMCVで表される列母集団部分の結合選択度を決めるために、MCVリストを直接比較します。
残りの母集団に対する推定はここで示した同じ手法に従います。
  


inner_cardinalityを10000、つまりtenk2の変更がないサイズと示していることに注意してください。
EXPLAINの出力を検査すると、結合行の推定が50 * 1、つまり、外側の行数とtenk2上の内側のインデックススキャン毎に得られる推定行数を掛けた数から来ていると思うかもしれません。
しかし、実際はそうではありません。
結合リレーションサイズは、具体的な結合計画が検討される前に推定されます。
もしすべてがうまくいけば、結合サイズを推定する2つの方法は同じ答えを導きます。
しかし、四捨五入誤差などの要因により多少異なる場合があります。
  


詳細に興味を持った方向けに、テーブル（すべてのWHERE句の前にあるもの）のサイズ推定はsrc/backend/optimizer/util/plancat.cで行われます。
句の選択度に関する一般的なロジックについてはsrc/backend/optimizer/path/clausesel.cにあります。
演算子固有の選択度関数についてはたいていsrc/backend/utils/adt/selfuncs.c内にあります。
  


多変量統計の例



関数従属性





非常に単純なデータ集合で、多変量相関係数の例を示すことができます。
2つの列を持ち、両方の列が同じ値を持つテーブルです。



CREATE TABLE t (a INT, b INT);
INSERT INTO t SELECT i % 100, i % 100 FROM generate_series(1, 10000) s(i);
ANALYZE t;




「プランナで使用される統計情報」で説明されているように、pg_classから得られるページ数と行数を使って、tのカーディナリティを決定できます。



SELECT relpages, reltuples FROM pg_class WHERE relname = 't';

 relpages | reltuples
----------+-----------
       45 |     10000




データの分布はとても単純です。各々の列にはわずか100の異なる値があるだけであり、かつ均一に分布しています。
   


次の例では、a列に関するWHERE条件の見積もり結果を示しています。



EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT * FROM t WHERE a = 1;
                                 QUERY PLAN
-------------------------------------------------------------------​------------
 Seq Scan on t  (cost=0.00..170.00 rows=100 width=8) (actual rows=100.00 loops=1)
   Filter: (a = 1)
   Rows Removed by Filter: 9900




プランナは、この条件を調べ、この句の選択度を1%と決定しました。
この見積もりと、実際の行数を比較すると、見積もりは非常に正確であることがわかります。
（テーブルがとても小さいので、実際には見積もり通りです。）
WHERE条件を変更してb列を使うようにすると、同じプランが生成されます。
では、AND条件でつないで、この二つの列に同じ条件を適用するとどうなるか見てみましょう。



EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
                                 QUERY PLAN
-------------------------------------------------------------------​----------
 Seq Scan on t  (cost=0.00..195.00 rows=1 width=8) (actual rows=100.00 loops=1)
   Filter: ((a = 1) AND (b = 1))
   Rows Removed by Filter: 9900




個別に選択度を見積もった結果、上記と同じ1%の見積もりとなります。
次に、その条件が独立であると見なし、それらの選択度を掛けあわせ、最終的な選択度の見積もりをわずか0.01%であるとします。
その条件に一致する実際の行数は2桁多いので(100)、これはかなり過小見積もりです。
   


この問題は、ANALYZEに二つの列について関数従属性多変量統計を計算させる、統計オブジェクトを作成することによって解決できます。



CREATE STATISTICS stts (dependencies) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
                                  QUERY PLAN
-------------------------------------------------------------------​------------
 Seq Scan on t  (cost=0.00..195.00 rows=100 width=8) (actual rows=100.00 loops=1)
   Filter: ((a = 1) AND (b = 1))
   Rows Removed by Filter: 9900


   

多変量N個別値計数





GROUP BY句が生成するグループ数のような、複数列の集合のカーディナリティの見積もりについても、同様の問題が起きます。
GROUP BYの対象が単一の列なら、N個別値の推定（HashAggregateノードが返す推定行数で示されます）はとても正確です。


EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT COUNT(*) FROM t GROUP BY a;
                                       QUERY PLAN
-------------------------------------------------------------------​----------------------
 HashAggregate  (cost=195.00..196.00 rows=100 width=12) (actual rows=100.00 loops=1)
   Group Key: a
   ->  Seq Scan on t  (cost=0.00..145.00 rows=10000 width=4) (actual rows=10000.00 loops=1)



しかし、多変量統計がないと、二つの列についてのGROUP BY問い合わせにおけるグループ数の見積もりは、次の例のようにひと桁ずれてしまいます。


EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT COUNT(*) FROM t GROUP BY a, b;
                                       QUERY PLAN
-------------------------------------------------------------------​-------------------------
 HashAggregate  (cost=220.00..230.00 rows=1000 width=16) (actual rows=100.00 loops=1)
   Group Key: a, b
   ->  Seq Scan on t  (cost=0.00..145.00 rows=10000 width=8) (actual rows=10000.00 loops=1)



二つの列についてのN個別値計数を含むように統計オブジェクトを再定義することにより、見積もりは大きく改善されます。


DROP STATISTICS stts;
CREATE STATISTICS stts (dependencies, ndistinct) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT COUNT(*) FROM t GROUP BY a, b;
                                       QUERY PLAN
-------------------------------------------------------------------​-------------------------
 HashAggregate  (cost=220.00..221.00 rows=100 width=16) (actual rows=100.00 loops=1)
   Group Key: a, b
   ->  Seq Scan on t  (cost=0.00..145.00 rows=10000 width=8) (actual rows=10000.00 loops=1)


   

MCVリスト





「関数従属性」で説明したように、関数従属性は非常に安価で効率的な統計情報ですが、主要な制限はその大域的な性質です（列レベルだけでの従属性の追跡であり、個々の列の値の間のものではありません）。
   


この節ではMCV(最頻値)リストの多変量のもの、「行数推定の例」で述べた行毎の統計情報の素直な拡張を導入します。
この統計情報は格納された個々の値による制限を解決しますが、ANALYZEでの統計情報の構築や容量や計画作成時間に関して当然より高価です。
   


再び「関数従属性」の問い合わせを見てみましょう。ですが、今回は列の同じ集合に対してMCVリストを作ります（プランナが新しく作られた統計情報を確実に利用するよう、関数従属性を確実に削除してください）。



DROP STATISTICS stts;
CREATE STATISTICS stts2 (mcv) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
                                   QUERY PLAN
-------------------------------------------------------------------​------------
 Seq Scan on t  (cost=0.00..195.00 rows=100 width=8) (actual rows=100.00 loops=1)
   Filter: ((a = 1) AND (b = 1))
   Rows Removed by Filter: 9900




主に、テーブルがかなり小さく、異なる値の少ない単純な分布のおかげで、推定は関数従属性と同じくらい正確です。
関数従属性では特に上手く扱えない2番目の問い合わせを見る前に、MCVリストを少し調べてみましょう。
   


MCVを調べるのは、集合を返すpg_mcv_list_items関数でできます。



SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
                pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts2';
 index |  values  | nulls | frequency | base_frequency
-------+----------+-------+-----------+----------------
     0 | {0, 0}   | {f,f} |      0.01 |         0.0001
     1 | {1, 1}   | {f,f} |      0.01 |         0.0001
   ...
    49 | {49, 49} | {f,f} |      0.01 |         0.0001
    50 | {50, 50} | {f,f} |      0.01 |         0.0001
   ...
    97 | {97, 97} | {f,f} |      0.01 |         0.0001
    98 | {98, 98} | {f,f} |      0.01 |         0.0001
    99 | {99, 99} | {f,f} |      0.01 |         0.0001
(100 rows)




これで、2つの列の100個の個別の組み合わせがあり、すべてほぼ同様に確からしい(それぞれ1%の頻度)ことが確かめられます。
基準となる頻度(base frequency)は、複数列の統計情報がないとして、列毎の統計情報から計算された頻度です。
列のどちらか一方にでもNULL値があれば、nulls列で見分けられます。
   


選択性を推定する場合、プランナはMCVリストの項目にすべての条件を適用してから、一致するものの頻度を合計します。
詳細はsrc/backend/statistics/mcv.cのmcv_clauselist_selectivityを参照してください。
   


関数従属性に比べて、MCVは主要な利点が2つあります。1つ目は、リストが実際の値を格納していることで、これによりどの組み合わせが適合するのか決定できます。



EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT * FROM t WHERE a = 1 AND b = 10;
                                 QUERY PLAN
-------------------------------------------------------------------​--------
 Seq Scan on t  (cost=0.00..195.00 rows=1 width=8) (actual rows=0.00 loops=1)
   Filter: ((a = 1) AND (b = 10))
   Rows Removed by Filter: 10000




2つ目は、MCVリストが、関数従属性のような等式句だけでなく、より広い範囲の形の句を扱うことです。
例えば、以下のような同じテーブルに対する範囲の問い合わせを考えてみましょう。



EXPLAIN (ANALYZE, TIMING OFF, BUFFERS OFF) SELECT * FROM t WHERE a <= 49 AND b > 49;
                                QUERY PLAN
-------------------------------------------------------------------​--------
 Seq Scan on t  (cost=0.00..195.00 rows=1 width=8) (actual rows=0.00 loops=1)
   Filter: ((a <= 49) AND (b > 49))
   Rows Removed by Filter: 10000



   


プランナの統計情報とセキュリティ





テーブルpg_statisticへのアクセスはスーパーユーザのみに制限されているため、一般ユーザはこのテーブルを使って他のユーザのテーブル内容について調べることはできません。
選択性推定関数には保存されている統計情報を解析するためにユーザ定義の演算子（問い合わせに現れる演算子あるいは関連する演算子）を使うものがあります。
例えば、保存されている最頻値を適用できるかどうかを調べるためには、選択性推定関数は適切な=演算子を実行して問い合わせ内の定数を保存されている値と比較する必要があるでしょう。
従って、pg_statistic内のデータは、潜在的に、ユーザ定義演算子に渡される可能性があります。
巧妙に作られた演算子を使うと、渡された引数を意図的に漏らす（例えば、それをログに出力する、他のテーブルに書き出すなど）、あるいはその値をエラーメッセージに出力することで偶然に漏らすことが可能で、いずれにせよpg_statisticのデータを、それを見ることができないはずのユーザに対して露出する可能性があります。
  


このことを防ぐため、すべての組み込みの選択性推定関数には以下のことが適用されます。
問い合わせの計画を作成するとき、保存されている統計情報を使用できるためには、現在のユーザはテーブルあるいは対象の列にSELECT権限を持っている必要がある、あるいは使用する演算子（正確には、演算子の元となる関数）がLEAKPROOFである必要があります。
そうでないときは、選択性推定はあたかも利用可能な統計情報がないかのような動作をし、プランナはデフォルトあるいは代替の推定に従って処理をします。
psql(1)プログラムの\do+メタコマンドは、どの演算子が漏洩防止（leakproof）としてマークされているかを判断するのに役立ちます。
  


ユーザがテーブルや列について必要な権限を持っていない場合、最終的には権限不足のエラーを受け取ることが多いでしょう。
この場合、上記の仕組みは実際にはユーザからはわかりません。
しかし、ユーザがセキュリティバリアビューから読み取ろうとしている場合、プランナはそのビューの元となっているテーブルの統計情報を検査したいと思うかもしれず、またユーザはそのテーブルにはアクセス権がないかもしれません。
その場合は、演算子が漏洩防止でなければ、統計情報は使用されません。
そのことについての直接的なフィードバックは何もなく、プランが理想的ではないかもしれないというだけです。
このことが起きているかもしれないと思った場合は、より権限のあるユーザで問い合わせを実行して、異なる計画が得られるかどうか調べることができます。
  


この制限は、プランナがpg_statisticの1つ以上の値についてユーザ定義演算子を実行する必要がある場合にのみ適用されます。
従って、列内でのNULL値の割合や異なる値の個数といった一般的な統計情報については、プランナはアクセス権限に関わらず使用することが許されています。
  


サードパーティの拡張に含まれる選択性推定関数で、ユーザ定義演算子で統計情報の演算をする可能性のあるものは、同じセキュリティ規則に従うべきです。
そのための手引については、PostgreSQLのソースコードを参照してください。
  

第70章 バックアップマニフェスト書式





pg_basebackup(1)で生成されるバックアップマニフェストはpg_verifybackup(1)を用いてバックアップを検証できるようにすることを主目的としています。
しかしながら、他のツールでバックアップマニフェストファイルを読んで中に含まれる情報を独自の目的に利用することも可能です。
そのために、本章ではバックアップマニフェストファイルの書式を説明します。
  


バックアップマニフェストはUTF-8でエンコードされたJSONドキュメントです。
（一般にJSONドキュメントはユニコードであることを必要としますが、PostgreSQLはjsonおよびjsonbデータ型にサポートされる全てのサーバエンコーディングを用いることを許しています。バックアップマニフェストに同様の例外はありません。）
このJSONドキュメントは常に単一オブジェクトです。オブジェクトにあるキーについて、次節で説明します。
  
バックアップマニフェストの最上位レベルオブジェクト





バックアップマニフェストのJSONドキュメントには以下のキーがあります。
  
	PostgreSQL-Backup-Manifest-Version
	

関連付けられた値は整数です。
PostgreSQL™17以降は2で、古いバージョンでは1です。
     

	System-Identifier
	

バックアップが取得されたPostgreSQL™インスタンスのデータベースシステム識別子。
このフィールドは、PostgreSQL-Backup-Manifest-Versionが2の場合にのみ存在します。
     

	Files
	

関連付けられた値は常にオブジェクトのリストで、それぞれがバックアップ中にある一つのファイルを記述しています。
このリストにはバックアップを使うために必要なWALファイルやバックアップマニフェスト自体に対するエントリは含まれません。
リスト内の各オブジェクトの構造は「バックアップマニフェストのファイルオブジェクト」で説明します。
     

	WAL-Ranges
	

関連付けられた値は常にオブジェクトのリストで、それぞれがバックアップを使用するために特定タイムラインから読み込み可能でなければならないWALレコードの範囲を記述しています。
これらオブジェクトの構造は後段の「バックアップマニフェストのWAL範囲オブジェクト」で説明します。
     

	Manifest-Checksum
	

このキーは常にバックアップマニフェストファイルの最後の行にあります。
関連付けられた値はこれ以前の全行のSHA-256チェックサムです。
クライアントでマニフェストの逐次的な解析を可能とするため、ここでは固定のチェックサム方式を使います。
SHA-256チェックサムはCRC-32Cチェックサムよりもかなり高コストですが、マニフェストは通常、追加の計算が大きな問題とならない程度に小さいはずです。
     





バックアップマニフェストのファイルオブジェクト





単一ファイルを記述するオブジェクトは、PathキーかEncoded-Pathキーを持ちます。
通常はPathキーになります。
関連付けられた文字列値はファイルのバックアップディレクトリからの相対パスです。
ユーザ定義テーブル空間にあるファイルは、最初の2つの要素がpg_tblspcとテーブル空間のOIDであるパスを持ちます。
パスがUTF-8として正当な文字列でなかったり、ユーザが全ファイルにエンコードされたパスが使われることを要求した場合には、代替にEncoded-Pathキーがあらわれます。
これは同じデータを格納しますが、16進数の文字列としてエンコードされます。
文字列における16進数の各2つ組で1オクテットを表現します。
  


以下の2つのキーは常に含まれます。
  
	Size
	

ファイルの期待されるサイズです。整数として書かれます。
     

	Last-Modified
	

バックアップ時にサーバによって報告されたファイルの最終変更時刻です。
バックアップに格納された他フィールドと違い、本フィールドはpg_verifybackup(1)では使われません。
情報提供のみを目的として含まれています。
     





ファイルチェックサムを有効にしてバックアップが取得された場合、以下のキーが含まれます。
  
	Checksum-Algorithm
	

このファイルのチェックサム計算で使用されるチェックサムアルゴリズムです。
今のところ、これはバックアップマニフェスト内の全ファイルで同じになりますが、将来のリリースで変更されるかもしれません。
現在サポートされるアルゴリズムは、CRC32C、SHA224、SHA256、SHA384、および、SHA512です。
     

	Checksum
	

このファイルに対して計算されたチェックサムで、チェックサムの各バイト毎に2文字の、16進数の文字列として格納されます。
     




バックアップマニフェストのWAL範囲オブジェクト





WAL範囲を記述するこのオブジェクトは常に以下の3つのキーを持ちます。
  
	Timeline
	

WALレコードのこの範囲に対するタイムラインです。整数として書かれます。
     

	Start-LSN
	

バックアップを使用するためにリプレイを開始しなければならない指定されたタイムライン上のLSNです。
このLSNはPostgreSQL™で標準的に使われる書式で格納されます。すなわち、2つの16進数文字列で構成され、それぞれの長さが1から8で、スラッシュで区切られた文字列です。
     

	End-LSN
	

このバックアップを使うときにリプレイを終了してもよい、指定されたタイムライン上の最も早いLSNです。
これはStart-LSNと同じ書式で格納されます。
     





通常、単一のWAL範囲だけが存在します。
しかしながら、バックアップが、上流の昇格のためにバックアップ中にタイムラインを変更したスタンバイから取得された場合、それぞれ異なるタイムラインを持つ複数の範囲が存在する可能性があります。
同じタイムラインに対して複数のWAL範囲があらわれることは決してありません。
  

パート VIII. 付録




付録A PostgreSQL™エラーコード





PostgreSQL™サーバによって発行されるメッセージは全て、標準SQLにおける「SQLSTATE」コードの記述方法に従った、5文字のエラーコードが割り当てられています。
どのようなエラー条件が発生したかを把握しなければならないアプリケーションは、通常テキスト形式のエラーメッセージを確認するのではなく、このエラーコードを検査すべきです。
このエラーコードは、PostgreSQL™リリースの違いによって変更することはあまりありません。また、エラーメッセージのローカライゼーションによる変更にも影響されません。
PostgreSQL™で発行されるエラーコードのいくつか（全部ではありません）は、標準SQLで定義されていることに注意してください。
標準SQLで定義されていない追加のエラーコードは、独自のものであったり他のデータベースから取り入れたものです。
 


標準に従い、エラーコードの最初の2文字はエラーのクラスを表し、残り3文字がそのクラス内の特定条件を表します。
したがって、特定のエラーコードを認識できないアプリケーションであっても、エラークラスから何をすべきか推定できることがあります。
 


表A.1「PostgreSQL™エラーコード」は、PostgreSQL™ 18.0で定義されたエラーコードを全て一覧で示しています。
（標準SQLでは定義されていますが、現在実際に使用されていないものもあります。）
エラークラスも示しています。
各エラークラスには、残りの3文字が000となる「標準」エラーコードが存在します。
あるクラスの範囲内で発生したが、より特定のコードが割り当てられていないエラー条件のためだけに、このコードが使用されます。
 


「条件名」列に示されているシンボルはPL/pgSQLで使用している条件名です。
条件名は大文字もしくは小文字でも記述されます。（PL/pgSQLは、エラーの場合と異なり、警告の場合にはその状態名を認識しません。これらはクラス00と01と02です）。
 


いくつかのエラー型に対し、サーバはそのエラーに起因するデータベースオブジェクト（テーブル、テーブル列、データ型、もしくは制約）の名前を報告します。たとえば、unique_violationエラーの原因となった一意性制約の名前です。
これら名前はエラーレポート文書の分離されたフィールドに与えられます。これにより、アプリケーションは読んで理解できる翻訳されているかも知れない文書のテキストからそれらを抽出しようと試みる必要がなくなります。
PostgreSQL™ 9.3の時点で、この機能を完璧に保証する範囲はSQLSTATEクラス23（整合性制約違反）のみですが、将来的には十中八九拡張されそうです。
 
表A.1 PostgreSQL™エラーコード
	エラーコード	条件名
	クラス 00 — 正常終了
	00000	successful_completion
	クラス 01 — 警告
	01000	warning
	0100C	dynamic_result_sets_returned
	01008	implicit_zero_bit_padding
	01003	null_value_eliminated_in_set_function
	01007	privilege_not_granted
	01006	privilege_not_revoked
	01004	string_data_right_truncation
	01P01	deprecated_feature
	クラス 02 — データがない(標準SQLではこれは警告クラスでもある)
	02000	no_data
	02001	no_additional_dynamic_result_sets_returned
	クラス 03 — SQL文の未完了
	03000	sql_statement_not_yet_complete
	クラス 08 — 接続の例外
	08000	connection_exception
	08003	connection_does_not_exist
	08006	connection_failure
	08001	sqlclient_unable_to_establish_sqlconnection
	08004	sqlserver_rejected_establishment_of_sqlconnection
	08007	transaction_resolution_unknown
	08P01	protocol_violation
	クラス 09 — トリガによるアクションの例外
	09000	triggered_action_exception
	クラス 0A — サポートされない機能
	0A000	feature_not_supported
	クラス 0B — 無効なトランザクションの開始
	0B000	invalid_transaction_initiation
	クラス 0F — 位置付け子の例外
	0F000	locator_exception
	0F001	invalid_locator_specification
	クラス 0L — 無効な権限付与
	0L000	invalid_grantor
	0LP01	invalid_grant_operation
	クラス 0P — 無効なロールの指定
	0P000	invalid_role_specification
	クラス 0Z — 診断の例外
	0Z000	diagnostics_exception
	0Z002	stacked_diagnostics_accessed_without_active_handler
	Class 10 — XQueryエラー
	10608	invalid_argument_for_xquery
	クラス 20 — caseが存在しない
	20000	case_not_found
	クラス 21 — 次数違反
	21000	cardinality_violation
	クラス 22 — データ例外
	22000	data_exception
	2202E	array_subscript_error
	22021	character_not_in_repertoire
	22008	datetime_field_overflow
	22012	division_by_zero
	22005	error_in_assignment
	2200B	escape_character_conflict
	22022	indicator_overflow
	22015	interval_field_overflow
	2201E	invalid_argument_for_logarithm
	22014	invalid_argument_for_ntile_function
	22016	invalid_argument_for_nth_value_function
	2201F	invalid_argument_for_power_function
	2201G	invalid_argument_for_width_bucket_function
	22018	invalid_character_value_for_cast
	22007	invalid_datetime_format
	22019	invalid_escape_character
	2200D	invalid_escape_octet
	22025	invalid_escape_sequence
	22P06	nonstandard_use_of_escape_character
	22010	invalid_indicator_parameter_value
	22023	invalid_parameter_value
	22013	invalid_preceding_or_following_size
	2201B	invalid_regular_expression
	2201W	invalid_row_count_in_limit_clause
	2201X	invalid_row_count_in_result_offset_clause
	2202H	invalid_tablesample_argument
	2202G	invalid_tablesample_repeat
	22009	invalid_time_zone_displacement_value
	2200C	invalid_use_of_escape_character
	2200G	most_specific_type_mismatch
	22004	null_value_not_allowed
	22002	null_value_no_indicator_parameter
	22003	numeric_value_out_of_range
	2200H	sequence_generator_limit_exceeded
	22026	string_data_length_mismatch
	22001	string_data_right_truncation
	22011	substring_error
	22027	trim_error
	22024	unterminated_c_string
	2200F	zero_length_character_string
	22P01	floating_point_exception
	22P02	invalid_text_representation
	22P03	invalid_binary_representation
	22P04	bad_copy_file_format
	22P05	untranslatable_character
	2200L	not_an_xml_document
	2200M	invalid_xml_document
	2200N	invalid_xml_content
	2200S	invalid_xml_comment
	2200T	invalid_xml_processing_instruction
	22030	duplicate_json_object_key_value
	22031	invalid_argument_for_sql_json_datetime_function
	22032	invalid_json_text
	22033	invalid_sql_json_subscript
	22034	more_than_one_sql_json_item
	22035	no_sql_json_item
	22036	non_numeric_sql_json_item
	22037	non_unique_keys_in_a_json_object
	22038	singleton_sql_json_item_required
	22039	sql_json_array_not_found
	2203A	sql_json_member_not_found
	2203B	sql_json_number_not_found
	2203C	sql_json_object_not_found
	2203D	too_many_json_array_elements
	2203E	too_many_json_object_members
	2203F	sql_json_scalar_required
	クラス 23 — 整合性制約違反
	23000	integrity_constraint_violation
	23001	restrict_violation
	23502	not_null_violation
	23503	foreign_key_violation
	23505	unique_violation
	23514	check_violation
	23P01	exclusion_violation
	クラス 24 — 無効なカーソル状態
	24000	invalid_cursor_state
	クラス 25 — 無効なトランザクション状態
	25000	invalid_transaction_state
	25001	active_sql_transaction
	25002	branch_transaction_already_active
	25008	held_cursor_requires_same_isolation_level
	25003	inappropriate_access_mode_for_branch_transaction
	25004	inappropriate_isolation_level_for_branch_transaction
	25005	no_active_sql_transaction_for_branch_transaction
	25006	read_only_sql_transaction
	25007	schema_and_data_statement_mixing_not_supported
	25P01	no_active_sql_transaction
	25P02	in_failed_sql_transaction
	25P03	idle_in_transaction_session_timeout
	25P04	transaction_timeout
	クラス 26 — 無効なSQL文の名前
	26000	invalid_sql_statement_name
	クラス 27 — トリガによるデータ変更違反
	27000	triggered_data_change_violation
	クラス 28 — 無効な認証指定
	28000	invalid_authorization_specification
	28P01	invalid_password
	クラス 2B — 依存する権限記述子がまだ存在する
	2B000	dependent_privilege_descriptors_still_exist
	2BP01	dependent_objects_still_exist
	クラス 2D — 無効なトランザクションの終了
	2D000	invalid_transaction_termination
	クラス 2F — SQLルーチン例外
	2F000	sql_routine_exception
	2F005	function_executed_no_return_statement
	2F002	modifying_sql_data_not_permitted
	2F003	prohibited_sql_statement_attempted
	2F004	reading_sql_data_not_permitted
	クラス 34 — 無効なカーソル名称
	34000	invalid_cursor_name
	クラス 38 — 外部ルーチン例外
	38000	external_routine_exception
	38001	containing_sql_not_permitted
	38002	modifying_sql_data_not_permitted
	38003	prohibited_sql_statement_attempted
	38004	reading_sql_data_not_permitted
	クラス 39 — 外部ルーチン呼び出し例外
	39000	external_routine_invocation_exception
	39001	invalid_sqlstate_returned
	39004	null_value_not_allowed
	39P01	trigger_protocol_violated
	39P02	srf_protocol_violated
	39P03	event_trigger_protocol_violated
	クラス 3B — セーブポイント例外
	3B000	savepoint_exception
	3B001	invalid_savepoint_specification
	クラス 3D — 無効なカタログ名称
	3D000	invalid_catalog_name
	クラス 3F — 無効なスキーマ名称
	3F000	invalid_schema_name
	クラス 40 — トランザクションロールバック
	40000	transaction_rollback
	40002	transaction_integrity_constraint_violation
	40001	serialization_failure
	40003	statement_completion_unknown
	40P01	deadlock_detected
	クラス 42 — 構文エラーもしくはアクセス規則違反
	42000	syntax_error_or_access_rule_violation
	42601	syntax_error
	42501	insufficient_privilege
	42846	cannot_coerce
	42803	grouping_error
	42P20	windowing_error
	42P19	invalid_recursion
	42830	invalid_foreign_key
	42602	invalid_name
	42622	name_too_long
	42939	reserved_name
	42804	datatype_mismatch
	42P18	indeterminate_datatype
	42P21	collation_mismatch
	42P22	indeterminate_collation
	42809	wrong_object_type
	428C9	generated_always
	42703	undefined_column
	42883	undefined_function
	42P01	undefined_table
	42P02	undefined_parameter
	42704	undefined_object
	42701	duplicate_column
	42P03	duplicate_cursor
	42P04	duplicate_database
	42723	duplicate_function
	42P05	duplicate_prepared_statement
	42P06	duplicate_schema
	42P07	duplicate_table
	42712	duplicate_alias
	42710	duplicate_object
	42702	ambiguous_column
	42725	ambiguous_function
	42P08	ambiguous_parameter
	42P09	ambiguous_alias
	42P10	invalid_column_reference
	42611	invalid_column_definition
	42P11	invalid_cursor_definition
	42P12	invalid_database_definition
	42P13	invalid_function_definition
	42P14	invalid_prepared_statement_definition
	42P15	invalid_schema_definition
	42P16	invalid_table_definition
	42P17	invalid_object_definition
	クラス 44 — WITH CHECK OPTION違反
	44000	with_check_option_violation
	クラス 53 — リソース不足
	53000	insufficient_resources
	53100	disk_full
	53200	out_of_memory
	53300	too_many_connections
	53400	configuration_limit_exceeded
	クラス 54 — プログラム制限超過
	54000	program_limit_exceeded
	54001	statement_too_complex
	54011	too_many_columns
	54023	too_many_arguments
	クラス 55 — 必要条件を満たさないオブジェクト
	55000	object_not_in_prerequisite_state
	55006	object_in_use
	55P02	cant_change_runtime_param
	55P03	lock_not_available
	55P04	unsafe_new_enum_value_usage
	クラス 57 — 操作の介入
	57000	operator_intervention
	57014	query_canceled
	57P01	admin_shutdown
	57P02	crash_shutdown
	57P03	cannot_connect_now
	57P04	database_dropped
	57P05	idle_session_timeout
	クラス 58 — システムエラー(PostgreSQL™自体の外部のエラー)
	58000	system_error
	58030	io_error
	58P01	undefined_file
	58P02	duplicate_file
	58P03	file_name_too_long
	クラス F0 — 設定ファイルエラー
	F0000	config_file_error
	F0001	lock_file_exists
	クラス HV — 外部データラッパーエラー (SQL/MED)
	HV000	fdw_error
	HV005	fdw_column_name_not_found
	HV002	fdw_dynamic_parameter_value_needed
	HV010	fdw_function_sequence_error
	HV021	fdw_inconsistent_descriptor_information
	HV024	fdw_invalid_attribute_value
	HV007	fdw_invalid_column_name
	HV008	fdw_invalid_column_number
	HV004	fdw_invalid_data_type
	HV006	fdw_invalid_data_type_descriptors
	HV091	fdw_invalid_descriptor_field_identifier
	HV00B	fdw_invalid_handle
	HV00C	fdw_invalid_option_index
	HV00D	fdw_invalid_option_name
	HV090	fdw_invalid_string_length_or_buffer_length
	HV00A	fdw_invalid_string_format
	HV009	fdw_invalid_use_of_null_pointer
	HV014	fdw_too_many_handles
	HV001	fdw_out_of_memory
	HV00P	fdw_no_schemas
	HV00J	fdw_option_name_not_found
	HV00K	fdw_reply_handle
	HV00Q	fdw_schema_not_found
	HV00R	fdw_table_not_found
	HV00L	fdw_unable_to_create_execution
	HV00M	fdw_unable_to_create_reply
	HV00N	fdw_unable_to_establish_connection
	クラス P0 — PL/pgSQLエラー
	P0000	plpgsql_error
	P0001	raise_exception
	P0002	no_data_found
	P0003	too_many_rows
	P0004	assert_failure
	クラス XX — 内部エラー
	XX000	internal_error
	XX001	data_corrupted
	XX002	index_corrupted




付録B 日付/時刻のサポート





PostgreSQL™は、全ての日付/時刻入力のサポートにおいて、内蔵しているヒューリスティックなパーサを使用します。
日付と時刻は文字列で入力され、そのフィールドにはどのような種類の情報が入るのかが事前に決められている別個のフィールドに分割されます。
それぞれのフィールドは解釈された後、数値を割り当てられたり、無視されたり、あるいははねられたりします。
構文解析に際し、月、曜日、および時間帯を含む、テキストフィールドすべてに対する内部参照テーブルがあります。
  


この付録ではこれらの参照テーブルの内容についての情報と構文解析で日付と時刻を解読する手順を説明します。
  
日付/時刻入力の解釈





日付/時刻入力文字列は以下の手続きを使って解読します。
   
	

入力文字列をトークンに分割し、そしてそれぞれのトークンを文字列、時刻、時間帯、または数値というように分類します。
     
	

数値トークンにコロン（:）が含まれている場合は、時刻文字列です。
そこに続く全ての数字とコロンを含みます。
       

	

数値トークンにハイフン（-）、スラッシュ（/）、または2つ以上のドット（.）が含まれている場合は、テキストの月名がある日付文字列です。
日付トークンがすでに現れている場合は代わりに、時間帯名として解釈されます（例えばAmerica/New_York）。
       

	

トークンが数値だけの場合、それは単項、もしくはISO 8601の連結形式の日付（例：1999年1月13日を示す19990113）、あるいは時刻（例：14:15:16を示す141516）のいずれかです。
       

	

トークンがプラス記号（+）あるいはマイナス記号（-）で始まっている場合は、数値形式の時間帯フィールドか特殊なフィールドです。
       



	

もしトークンがアルファベット文字列の場合、以下のように可能性のある文字列と照合されます。
     
	

トークンが既知の時間帯省略形と一致するかどうかを調べます。
これらの短縮形は「日付/時刻設定ファイル」で記述する設定で決定されます。
       

	

見つからなかった場合は、そのトークンに対し特殊文字列（たとえばtoday）、曜日（たとえばThursday）、月（たとえばJanuary）、ノイズ（たとえばat、on）に一致するかどうか、内部テーブルを検索します。
       

	

それでも探し出せなかった場合、エラーを返します。
       



	

トークンが数値あるいは数値フィールドの場合を以下に示します。
     
	

トークンが8桁または6桁、かつ、以前に他のどのような日付フィールドも読まれていない場合は、「連結された日付」（例えば、19990118または990118）として解釈されます。
その解釈方法はYYYYMMDDまたはYYMMDDです。
       

	

もしトークンが3桁で年が既に読み込まれている場合は年内の経過日数と解釈されます。
       

	

4桁または6桁の場合で年が既に読み込まれている時は時刻（HHMMまたはHHMMSS）と解釈されます。
       

	

3桁以上の場合、かつ、どの日付フィールドもまだ見つかっていない場合は年と解釈されます
（この場合、残る日付フィールドの順序は強制的にyy-mm-ddと解釈されます）。
       

	

さもなければ、日付フィールドの順序は、DateStyleの設定mm-dd-yy、dd-mm-yy、yy-mm-ddに従うものと仮定されます。
月や月内の日のフィールドが範囲外であれば、エラーになります。
       



	

もしBCが指定された場合は内部格納用に年を負の数にして1を加えます。
（グレゴリオ暦にはゼロ年がないので、数値的には1BC（紀元前1年）がゼロ年になります。）
     

	

BCが指定されず年フィールドの長さが2桁の場合、年は4桁になるよう調整されます。
そのフィールドが70未満の場合は2000が加えられますが、その他の場合には1900が加えられます。

      
ヒント


（例えば、西暦99年を0099のように）グレゴリオ暦の西暦元年から99年までは、ゼロを前に付加して4桁で入力することができます。
       


     





不正あるいは曖昧なタイムスタンプの扱い





日付/時刻文字列が構文的に正しいが、フィールドの範囲外の値を含んでいる場合、通常、エラーとなります。
たとえば、2月31日を指定した入力は受け付けられません。
   


夏時間の移行期間では、一見正しく見えるタイムスタンプ文字列が、存在しない、あるいは曖昧なタイムスタンプを表現してしまうことがあります。
そのような場合はエラーで弾くことはせず、どのUTCオフセットを適用するかを決定する過程で曖昧さが解消されます。
たとえばTimeZoneパラメータがAmerica/New_Yorkに設定されているとして、以下の例を考えてみましょう。


=> SELECT '2018-03-11 02:30'::timestamptz;
      timestamptz
------------------------
 2018-03-11 03:30:00-04
(1 row)



その時間帯では、その日は春に時刻を進める(spring-forward transition)日なので、標準時で2:30AMは存在しません。
2AM ESTから3AM EDTに時計がジャンプするからです。
PostgreSQL™はあたかも標準時(UTC-5)で時刻を与えられたかのように解釈し、続いて3:30AM EDT (UTC-4)として表示しました。
   


逆に、秋に時刻を戻す移行期間(fall-back transition)の振る舞いを考えます。


=> SELECT '2018-11-04 01:30'::timestamptz;
      timestamptz
------------------------
 2018-11-04 01:30:00-05
(1 row)



その日は、1:30AMに対してふた通りの解釈が可能でした。
まず1:30AM EDTがあり、2 AM EDTから1 AM ESTに遡行するので1時間後に1:30AM ESTがあります。
ここでもPostgreSQL™はあたかも標準時(UTC-5)で時刻を与えられたかのように解釈しました。
夏時間を指定することにより、他の解釈を強制できます。


=> SELECT '2018-11-04 01:30 EDT'::timestamptz;
      timestamptz
------------------------
 2018-11-04 01:30:00-04
(1 row)


   


このような場合に適用される正確なルールは次のようなものです。
夏時間で時刻を進める移行期間に入る不正なタイムスタンプは、移行期間の直前の時間帯に適用されるUTCオフセットが割り当てられます。
一方、時刻を戻す移行期間の前あるいは後のどちらにでも入る可能性のある不正なタイムスタンプは、移行期間の後に相当するUTCオフセットが割り当てられます。
ほとんどの時間帯にとってこれは「疑わしければ標準時間として解釈する」と言うのと同じです。
   


どんな場合でも、数字のUTCオフセットを使うか、あるいは時間帯省略形に関連する固定のUTCオフセットを使って、タイムスタンプに付随するUTCオフセットを明示的に指定できます。
ここで説明したルールは、ある時間帯のUTCオフセットが変動し、UTCオフセットを推測する必要がある場合にのみ適用されます。
   

日付/時刻キーワード





表B.1「月名」に月名として認識されるトークンを示します。
   
表B.1 月名
	月	簡略形
	January	Jan
	February	Feb
	March	Mar
	April	Apr
	May	 
	June	Jun
	July	Jul
	August	Aug
	September	Sep、Sept
	October	Oct
	November	Nov
	December	Dec





表B.2「曜日名」に、曜日名として認識されるトークンを示します。
    
表B.2 曜日名
	曜日	簡略形
	Sunday	Sun
	Monday	Mon
	Tuesday	Tue、Tues
	Wednesday	Wed、Weds
	Thursday	Thu、Thur、Thurs
	Friday	Fri
	Saturday	Sat





表B.3「日付/時刻フィールドの修飾子」に、様々な修飾子の目的を持つトークンを示します。
   
表B.3 日付/時刻フィールドの修飾子
	識別子	説明
	AM	12:00以前の時刻
	AT	このキーワードは無視されます
	JULIAN, JD, J	次のフィールドはユリウス日
	ON	このキーワードは無視されます
	PM	12:00と12:00以降の時刻
	T	次のフィールドは時刻




日付/時刻設定ファイル





時間帯省略形は十分に標準化されていませんので、PostgreSQL™では、サーバで受付け可能な省略形群をカスタマイズできる仕組みを提供します。
これらの省略形には2つの情報源があります。

    
	

TimeZone実行時パラメータは通常、IANA時間帯データベース内のエントリの名前に設定されます。
そのゾーンに広く使用されているゾーン省略形がある場合、それらはIANAデータに現れ、PostgreSQL™はIANAデータで与えられた意味を持つ省略形を優先的に認識します。
例えば、timezoneがAmerica/New_Yorkに設定されている場合、ESTはUTC-5として認識され、EDTはUTC-4として認識されます。
（DateStyleが数値以外のゾーン省略形を優先するスタイルに設定されている場合、これらのIANA省略形は日時の出力にも使用されます。）
      

	

省略形が現在IANA時間帯で見つからない場合は、timezone_abbreviationsの実行時パラメータで指定されたリストが検索されます。
timezone_abbreviationsリストは主に、日時入力で現在の時間帯以外の時間帯の省略形を認識できるようにする場合に便利です。
（これらの省略形は日時出力では使用されません。）
      




   


timezone_abbreviationsパラメータはすべてのデータベースユーザで変更可能ですが、取り得る値はデータベース管理者により制御されます — これらは実際にはインストレーションディレクトリの.../share/timezonesets/内の設定ファイル名です。
このディレクトリにファイルを追加または変更することにより、管理者は時間帯省略形に対するローカルポリシーを設定できます。
   


timezone_abbreviationsは、 .../share/timezonesets/に存在する、名前のすべてがアルファベットである任意のファイルの名前を指定できます。
（timezone_abbreviations内の非アルファベット文字の禁止により、意図したディレクトリ以外のファイル読み取りを防ぐことができます。
また、バックアップファイルやその他のファイルの読み取りを防ぐこともできます。）
   


時間帯省略形ファイルには空白行や#から始まるコメントを含めることができます。
コメント以外は以下の書式を持たなければなりません。



zone_abbreviation offset
zone_abbreviation offset D
zone_abbreviation time_zone_name
@INCLUDE file_name
@OVERRIDE


   


zone_abbreviationは単なる定義された省略形です。
offsetはUTCからの相当するオフセットを秒数で表した整数です。
グリニッジより東にあれば正、西にあれば負の値となります。
たとえば、-18000はグリニッジより西に5時間、すなわち、北アメリカ東海岸の標準時間を示します。
Dは、時間帯名が標準時間ではなくローカル時間での夏時間を表すことを示します。
   


あるいは、IANA時間帯データベースで定義されている地域名を参照するtime_zone_nameを指定することもできます。
地域の定義はその地域の省略形が存在するか、もしくは、使われてきたかを確認し、もしそうであれば、適切な意味として使われます。
適切な意味とは、確定した値を持つタイムスタンプが使われている意味、その当時は使われていなかったかもしれないが、後に即座に使われる意味、もしくは、その時の後にのみ使われる最も古い意味です。
この挙動は歴史的に変化した意味を持つ省略形を扱う際には不可欠です。
また、省略形が現れない地域名に関して省略形を定義することもできます。
この省略形を使うことは地域名を書き出すことと全く同じです。
   
ヒント


タイムゾーンの定義の参照が必要になる過程よりはるかに安価であるため、UTCからのオフセットが今までに一度も変わっていない省略形を扱う場合は、単純な整数型のoffsetを使う方が好ましいでしょう。
    



@INCLUDE構文により、.../share/timezonesets/ディレクトリ内の他のファイルを含有することができます。
深さに制限がありますが、入れ子に含有することができます。
   


@OVERRIDE構文は、ファイル内の続く項目が既存の項目（典型的には、インクルードされたファイルから得られた項目）を上書きできることを示します。
これがないと、同一時間帯省略形の定義が競合した場合にエラーとみなされます。
   


未変更のインストレーションでは、Defaultファイルに、ほとんど全世界の競合しない時間帯省略形をすべて記載しています。
さらにAustraliaおよびIndiaファイルがこれらの地区向けに提供されています。
これらのファイルはDefaultファイルの先頭で含有されています。
必要に応じて省略形の追加・変更を行ってください。
   


参考のため、標準のインストレーションにはAfrica.txt、America.txtなども含まれています。
これらにはIANA時間帯データベースに従って使用されている時間帯省略形に関する情報がすべて含まれています。
これらのファイル内にある時間帯定義を必要に応じてコピーペーストして独自の設定ファイルを編集することができます。
これらのファイル名にドットが入っていますので、timezone_abbreviations設定から直接参照できないことに注意してください。
   
注記


時間帯省略形を読み込む時にエラーが発生した場合、新しい値は適用されず、古い値がそのまま残ります。
データベースの起動時にエラーが起きた場合は、起動に失敗します。
    

注意


設定ファイル内で定義される時間帯省略形は、PostgreSQL™に組み込み済みの時間帯以外の意味も変更します。
たとえば、Australia設定ファイルではSAT（南オーストラリア標準時間）を定義しています。
このファイルが有効な場合、SATは土曜の省略形として認識されなくなります。
    

注意


.../share/timezonesets/を変更する時にバックアップを責任を持って行ってください。
このディレクトリは通常のデータベースダンプに含まれません。
    


POSIX時間帯の指定





PostgreSQL™はTZ環境変数を使ったPOSIX標準ルールに沿って記述された時間帯指定を受け入れることができます。
POSIX時間帯の指定は複雑な実世界の時間帯の歴史を扱うには不足しているところもありますが、それを利用する理由があることもあります。
  


POSIX時間帯の指定には以下の形式があります。


STD offset [ DST [ dstoffset ] [ , rule ] ]


(可読性のためにフィールド間にスペースを表示していますが、実際にはスペースは使用されません。)
フィールドは以下の通りです。
   
	

STDは標準時間に使用されるゾーンの省略形です。
     

	

offsetはUTCから標準時間のオフセットです。
     

	

DSTは夏時間に使用されるゾーンの省略形です。
このフィールドと以下のフィールドが省略された場合、時間帯は夏時間のルールを適用しない固定されたUTCからのオフセットを使用します。
     

	

dstoffsetはUTCからの夏時間のオフセットです。
このフィールドは通常は省略されます。このため、デフォルトでは標準時間の offsetより１時間短くなりますが、これは通常は正しい動作です。
     

	

以下に記載するように、ruleは夏時間が有効な場合のルールを定義します。
     




  


この構文では、ゾーンの省略形はESTのような文字列か、<UTC-05>のような角括弧で囲った任意の文字列にすることができます。
ここで与えられた省略形は出力にのみ、中でも一部のタイムスタンプの出力フォーマットにのみ使われることに注意してください。
タイムスタンプの入力で認識される時間帯の省略形は「日付/時刻設定ファイル」の中で説明されているように決定されます。
  


オフセットのフィールドはUTCからの差を時間、オプションで分、秒で指定します。
オフセットはhh[:mm[:ss]]のフォーマットで、オプションで先頭に符号をつけることができます(+ もしくは -)。
正の符号はグリニッジよりも西の時間帯に使用されます。(これは他のPostgreSQL™で使われているISO-8601の規定とは反対であることに注意してください。)
hhは１桁もしくは２桁です。mmとssを使う場合は２桁でなければなりません。
  


サマータイム変換のruleには以下のフォーマットがあります。


dstdate [ / dsttime ] , stddate [ / stdtime ]



（前述の通り、実際にはスペースを含めるべきではありません。）
夏時間の開始時刻は、dstdateとdsttimeフィールドが定義し、標準時間の開始時刻はstddateとstdtimeで定義します。
（特に赤道より南の時間帯では前者は後者より年の後半になることもあります。）
日付フィールドには以下のような形式があります。
   
	n
	

単純な整数は年の日を示し、0から364、閏年の場合は365までを数えます。
      

	Jn
	

この形式ではnは1から365までを数え、2月29日は存在したとしても数えません。
(このように、2月29日の変換が発生する場合はこの方法では指定できません。
しかし、2月以降は、うるう年でもそうでなくとも同じ数になります。 このため、この形式は特定のある日に変換する場合、通常、単純な整数型の形式を利用するよりも有用です。)
      

	Mm.n.d
	

この形式は同じ月の同じ曜日にいつも発生する変換を指定します。
mは1から12までの月を指定します。
nはnで指定された週のd番目の日を指定します。
nは数字の1から5で、5の場合はその月の最後の週を意味します(4番目か５番目の週になる可能性があります)。
dは数字の0から6で、0は日曜日を指します。
例えば、M3.2.0は「3月の第２日曜日」を意味します。
      




  
注記


M形式は多くの一般的な夏時間の変換法を記述するのに十分です。
しかし、夏時間変換法の変化を扱う変数は無いため、実際には、過去のデータを名前付き時間帯(IANA時間帯のデータベースにある)で配置するためには、過去のタイムスタンプを変換する必要があります。
   



変換ルール中の時間フィールドは符号を含めることができない点を除いて、先に記載したオフセットのフィールドと同じ形式を持っています。
これらのフィールドは他の時間への変換が発生した時の現在のローカル時間を定義します。
省略された場合、デフォルトは02:00:00です。
  


夏時間の省略形が与えられているが移行ruleフィールドが省略されている場合、代替の動作には2020年のアメリカ合衆国の習慣と照合されるM3.2.0,M11.1.0(3月の第2日曜日に夏時間に切り替わり、11月の第1日曜日に戻ります。両方の移行はその時進んでいる時間の午前2時に行われます)が使用されます。
この規則は、2007年より前の年の正しいアメリカ合衆国移行日を示していないことに注意してください。
  


例えば、CET-1CEST,M3.5.0,M10.5.0/3は(2020年時点の)パリの現時点の時計方法を表しています。
この指定では、標準時間はCETという略語を持ち、UTCより１時間(東)進んでいます。また、夏時間には、CESTという略語を持ち、暗黙的にUTCより２時間進んでいます。夏時間は3月の最終日曜のAM2時に始まり、10月の最終日曜日の3AM CESTに終わります。
  


4つの時間帯名、EST5EDT、CST6CDT、MST7MDT、PST8PDTはPOSIXゾーンの指定に見えます。
しかし、(歴史的な理由で)IANA時間帯データベースにこれらの名前が記録されているため、実際には名前付き時間帯として扱われます。
これの実際の影響は、明白なPOSIX仕様が提供されない場合でも、これらのゾーン名が有効な歴史的なアメリカ合衆国の夏時間の変換を提供することです。
  


ゾーンの省略形は妥当性をチェックされていないため、POSIX形式の時間帯指定はスペルミスしやすいことに注意してください。
例えば、SET TIMEZONE TO FOOBAR0は動作しますが、実質的にシステムはUTCの特殊な省略形を使用します。
  

単位の歴史





標準SQLでは、「「日付時刻リテラル」定義の中で、「日付時刻の値」はグレゴリオ暦に従った日付と時間の自然法則に則る」と明記されています。
PostgreSQL™は標準SQLの指針に従い、グレゴリオ暦が使われる以前の年に対してもグレゴリオ暦で日付を数えます。
この規則は先発グレゴリオ暦として知られています。
  


ユリウス暦は、紀元前45年にユリウス・カエサル（Julius Caesar）によって広められたものです。
西欧でグレゴリオ暦への移行が開始された1582年まで一般的に使用されていました。
ユリウス暦では、太陽年は365日+1/4日=365.25日と概算されます。
この暦では、128年で約1日のずれが生じます。
  


ローマ教皇グレゴリウス13世（Gregory XIII）はトレントの公会議（Council of Trent）の勧告に従って累積していた暦のずれを修正しました。
グレゴリオ暦では、太陽年は365+97/400日=365.2425日と近似されます。
したがって、グレゴリオ暦で太陽年が1日ずれるにはおよそ3,300年を要します。
  


365+97/400という近似は、下記の規則に従って400年間に97回のうるう年を設けることによって得られています。

   
	

4で割り切れる年を、うるう年にする。
    
	

ただし、100で割り切れる年は、うるう年にしない。
    
	

ただし、400で割り切れる年は、結局うるう年とする。
    




したがって、1700、1800、1900、2100、2200はうるう年ではありません。
しかし、1600、2000、2400はうるう年です。


それに比べ、古いユリウス暦では4で割り切れる年のみがうるう年でした。
  


1582年2月の教皇勅書は、1582年の10月から10日間除外することを命じ、したがって10月4日の翌日を10月15日としました。
この慣行はイタリア、ポーランド、ポルトガル、スペインで遵守されました。
他のカトリックの国々もすぐ後に追従しましたが、プロテスタントの国々は変更を嫌がり、ギリシャ正教を信奉する国々は20世紀の初めまで変更を行いませんでした。
1752年に大英帝国とその自治領（現在のアメリカ合衆国を含む）でもその改革は行われました。
したがって、1752年9月2日の次は1752年9月14日となっています。
このような理由から、Unixシステムでcalプログラムを実行すると、下記のような結果になります。



$ cal 9 1752
   September 1752
 S  M Tu  W Th  F  S
       1  2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30




しかし、当然、この暦は大英帝国とその自治領でのみ有効なものであり、他の場所ではそうではありません。
様々な場所で様々な時代に使われていた実際の暦を追いかけることは難しく、また、混乱することになるでしょうから、PostgreSQL™は追いかけることはせず、この方法が歴史的に正確でなくても日付すべてでグレゴリオ暦の規則に従います。
  


グレゴリオ暦が開発されるより前から、様々な暦が世界の多くの地域で開発されました。
例えば、中国暦のルーツは紀元前14世紀まで遡ることができますし、伝説では、黄帝が紀元前2637年にこの暦を発明したとされています。
中華人民共和国では、公的な目的ではグレゴリオ暦を使用していますが、祝祭日の決定には中国暦を使用します。
  

ユリウス日(Julian Date)





ユリウス日は日に番号を付ける方法です。
名前が似ていて混乱しますが、ユリウス暦とは関係ありません。
ユリウス日は、フランスの学者Joseph Justus Scaliger（1540–1609）によって発明され、おそらくこの語源は彼の父であるイタリアの学者、Julius Caesar Scaliger（1484–1558）からの引用と考えられます。
  


ユリウス日システムでは、JD 0（よくいわゆるユリウス日と呼ばれます）から始まる日は連番です。
JD 0はユリウス暦の紀元前4713年1月1日、またはグレゴリオ暦の紀元前4714年11月24日に対応します。
ユリウス日の数え方は、天文学者が夜間の観測にラベルを付けるためにより良く使用されました。
このため、深夜0時から深夜0時までではなく、UTC正午から次のUTC正午までが1日でした。
JD 0は紀元前4714年11月24日のUTC正午から紀元前4714年11月25日のUTC正午までの24時間であると明示されています。
  


PostgreSQL™は日付の入出力においてユリウス日記法を（および、一部の日付時間間隔の計算においてユリウス日を）サポートしますが、正午から正午までという微妙な日付の数え方を守っていません。
PostgreSQL™は通常の日付と同様に、ローカルの深夜0時から深夜0時までとしてユリウス日を扱います。
  


ただし、この定義は必要に応じて天文時の定義を取得する方法を提供します。タイムゾーンUTC+12で計算します。
たとえば、


=> SELECT extract(julian from '2021-06-23 7:00:00-04'::timestamptz at time zone 'UTC+12');
           extract
------------------------------
 2459388.95833333333333333333
(1 row)
=> SELECT extract(julian from '2021-06-23 8:00:00-04'::timestamptz at time zone 'UTC+12');
               extract
--------------------------------------
 2459389.0000000000000000000000000000
(1 row)
=> SELECT extract(julian from date '2021-06-23');
 extract
---------
 2459389
(1 row)


  

付録C SQLキーワード





表C.1「SQLキーワード」に標準SQLとPostgreSQL™ 18.0においてキーワードとされているすべてのトークンを示します。
この背景となる情報は「識別子とキーワード」にあります。
（スペースの都合上、標準SQLのより新しい２つのバージョンと歴史的な比較のためのSQL-92のみを含めています。
これらと他の標準の中間のバージョンの違いはわずかです。）
 


SQLは予約と未予約キーワードを区別します。
標準に従うと予約キーワードのみが真のキーワードとなり、その予約キーワードは識別子として使用することはできません。
未予約キーワードはある特定の文脈で特別な意味を持ち、また、その他の文脈では識別子として使用することができます。
ほとんどの未予約キーワードは、SQLで規定された組み込みのテーブル名と関数名です。
未予約キーワードの本質的な存在意義は、ある文脈においては前もって定義された意味があることを宣言することだけです。
 


PostgreSQL™の構文解析の過程では、少々複雑になります。
複数の異なったトークンのクラスがあり、それらは識別子としてまったく使用できないものから、普通の識別子と見なされるものの、パーサ内で特別なステータスを持たないものまであります。
（後者は一般的にはSQLで規定された関数です。）
PostgreSQL™では予約キーワードは完全に予約されたものではなく、列ラベルとして使用することができます（例：CHECKは予約キーワードですが、SELECT 55 AS CHECKのようにすることができます）。
 


表C.1「SQLキーワード」のPostgreSQL™の列では、パーサがはっきりと理解しているキーワードではあるが、列名やテーブル名としても使用できるものを「未予約」としています。
キーワードの中には、どちらかといえば未予約であるが、関数名や型名として使用できないものもあり、そのように注記しています。
（このようなキーワードのほとんどは、特殊な構文をもった組み込み済みの関数やデータ型を表しています。
この関数または型は使用することができますが、ユーザによって定義し直すことはできません。）
一方、「予約」とされるものは列名やテーブル名として使用できないトークンです。
予約キーワードの中には関数名やデータ型として使用できるものもあります。
この情報も以下の表に示しています。
何も注記がなければ、予約キーワードは列ラベル名としてしか使用することができません。
列が空白のエントリは、PostgreSQL™が通常の識別子として扱う単語であることを示します。
 


さらに、（「列ラベル」に記載されているように）ほとんどのキーワードはその前にASを書かなくても「裸の」列ラベルとして使用することができますが、曖昧さを避けるために前置ASを必要とするものが多少あります。
これらは表の中で「ASが必要」と印を付けられています。
 


一般的な規則として、以下に示すキーワードのいずれかを識別子として使うコマンドで、おかしなパーサエラーが発生した場合、その識別子を引用符でくくって問題が解決するかどうか確認してください。
 


表C.1「SQLキーワード」を見る前に、PostgreSQL™において予約されていないキーワードが、その単語に関連する機能を実装していないということを意味していないことを理解しておいてください。
逆に、キーワードがあるということも機能が存在することを意味していません。
 
表C.1 SQLキーワード
	キーワード	PostgreSQL™	SQL:2023	SQL:2016	SQL-92
	A	 	未予約	未予約	 
	ABORT	未予約	 	 	 
	ABS	 	予約	予約	 
	ABSENT	未予約	予約	予約	 
	ABSOLUTE	未予約	未予約	未予約	予約
	ACCESS	未予約	 	 	 
	ACCORDING	 	未予約	未予約	 
	ACOS	 	予約	予約	 
	ACTION	未予約	未予約	未予約	予約
	ADA	 	未予約	未予約	未予約
	ADD	未予約	未予約	未予約	予約
	ADMIN	未予約	未予約	未予約	 
	AFTER	未予約	未予約	未予約	 
	AGGREGATE	未予約	 	 	 
	ALL	予約	予約	予約	予約
	ALLOCATE	 	予約	予約	予約
	ALSO	未予約	 	 	 
	ALTER	未予約	予約	予約	予約
	ALWAYS	未予約	未予約	未予約	 
	ANALYSE	予約	 	 	 
	ANALYZE	予約	 	 	 
	AND	予約	予約	予約	予約
	ANY	予約	予約	予約	予約
	ANY_VALUE	 	予約	 	 
	ARE	 	予約	予約	予約
	ARRAY	予約, requires AS	予約	予約	 
	ARRAY_AGG	 	予約	予約	 
	ARRAY_​MAX_​CARDINALITY	 	予約	予約	 
	AS	予約, requires AS	予約	予約	予約
	ASC	予約	未予約	未予約	予約
	ASENSITIVE	未予約	予約	予約	 
	ASIN	 	予約	予約	 
	ASSERTION	未予約	未予約	未予約	予約
	ASSIGNMENT	未予約	未予約	未予約	 
	ASYMMETRIC	予約	予約	予約	 
	AT	未予約	予約	予約	予約
	ATAN	 	予約	予約	 
	ATOMIC	未予約	予約	予約	 
	ATTACH	未予約	 	 	 
	ATTRIBUTE	未予約	未予約	未予約	 
	ATTRIBUTES	 	未予約	未予約	 
	AUTHORIZATION	予約(関数または型として使用可)	予約	予約	予約
	AVG	 	予約	予約	予約
	BACKWARD	未予約	 	 	 
	BASE64	 	未予約	未予約	 
	BEFORE	未予約	未予約	未予約	 
	BEGIN	未予約	予約	予約	予約
	BEGIN_FRAME	 	予約	予約	 
	BEGIN_PARTITION	 	予約	予約	 
	BERNOULLI	 	未予約	未予約	 
	BETWEEN	未予約(関数または型として使用不可)	予約	予約	予約
	BIGINT	未予約(関数または型として使用不可)	予約	予約	 
	BINARY	予約(関数または型として使用可)	予約	予約	 
	BIT	未予約(関数または型として使用不可)	 	 	予約
	BIT_LENGTH	 	 	 	予約
	BLOB	 	予約	予約	 
	BLOCKED	 	未予約	未予約	 
	BOM	 	未予約	未予約	 
	BOOLEAN	未予約(関数または型として使用不可)	予約	予約	 
	BOTH	予約	予約	予約	予約
	BREADTH	未予約	未予約	未予約	 
	BTRIM	 	予約	 	 
	BY	未予約	予約	予約	予約
	C	 	未予約	未予約	未予約
	CACHE	未予約	 	 	 
	CALL	未予約	予約	予約	 
	CALLED	未予約	予約	予約	 
	CARDINALITY	 	予約	予約	 
	CASCADE	未予約	未予約	未予約	予約
	CASCADED	未予約	予約	予約	予約
	CASE	予約	予約	予約	予約
	CAST	予約	予約	予約	予約
	CATALOG	未予約	未予約	未予約	予約
	CATALOG_NAME	 	未予約	未予約	未予約
	CEIL	 	予約	予約	 
	CEILING	 	予約	予約	 
	CHAIN	未予約	未予約	未予約	 
	CHAINING	 	未予約	未予約	 
	CHAR	未予約(関数または型として使用不可), requires AS	予約	予約	予約
	CHARACTER	未予約(関数または型として使用不可), requires AS	予約	予約	予約
	CHARACTERISTICS	未予約	未予約	未予約	 
	CHARACTERS	 	未予約	未予約	 
	CHARACTER_LENGTH	 	予約	予約	予約
	CHARACTER_​SET_​CATALOG	 	未予約	未予約	未予約
	CHARACTER_SET_NAME	 	未予約	未予約	未予約
	CHARACTER_SET_SCHEMA	 	未予約	未予約	未予約
	CHAR_LENGTH	 	予約	予約	予約
	CHECK	予約	予約	予約	予約
	CHECKPOINT	未予約	 	 	 
	CLASS	未予約	 	 	 
	CLASSIFIER	 	予約	予約	 
	CLASS_ORIGIN	 	未予約	未予約	未予約
	CLOB	 	予約	予約	 
	CLOSE	未予約	予約	予約	予約
	CLUSTER	未予約	 	 	 
	COALESCE	未予約(関数または型として使用不可)	予約	予約	予約
	COBOL	 	未予約	未予約	未予約
	COLLATE	予約	予約	予約	予約
	COLLATION	予約(関数または型として使用可)	未予約	未予約	予約
	COLLATION_CATALOG	 	未予約	未予約	未予約
	COLLATION_NAME	 	未予約	未予約	未予約
	COLLATION_SCHEMA	 	未予約	未予約	未予約
	COLLECT	 	予約	予約	 
	COLUMN	予約	予約	予約	予約
	COLUMNS	未予約	未予約	未予約	 
	COLUMN_NAME	 	未予約	未予約	未予約
	COMMAND_FUNCTION	 	未予約	未予約	未予約
	COMMAND_​FUNCTION_​CODE	 	未予約	未予約	 
	COMMENT	未予約	 	 	 
	COMMENTS	未予約	 	 	 
	COMMIT	未予約	予約	予約	予約
	COMMITTED	未予約	未予約	未予約	未予約
	COMPRESSION	未予約	 	 	 
	CONCURRENTLY	予約(関数または型として使用可)	 	 	 
	CONDITION	 	予約	予約	 
	CONDITIONAL	未予約	未予約	未予約	 
	CONDITION_NUMBER	 	未予約	未予約	未予約
	CONFIGURATION	未予約	 	 	 
	CONFLICT	未予約	 	 	 
	CONNECT	 	予約	予約	予約
	CONNECTION	未予約	未予約	未予約	予約
	CONNECTION_NAME	 	未予約	未予約	未予約
	CONSTRAINT	予約	予約	予約	予約
	CONSTRAINTS	未予約	未予約	未予約	予約
	CONSTRAINT_CATALOG	 	未予約	未予約	未予約
	CONSTRAINT_NAME	 	未予約	未予約	未予約
	CONSTRAINT_SCHEMA	 	未予約	未予約	未予約
	CONSTRUCTOR	 	未予約	未予約	 
	CONTAINS	 	予約	予約	 
	CONTENT	未予約	未予約	未予約	 
	CONTINUE	未予約	未予約	未予約	予約
	CONTROL	 	未予約	未予約	 
	CONVERSION	未予約	 	 	 
	CONVERT	 	予約	予約	予約
	COPARTITION	 	未予約	 	 
	COPY	未予約	予約	予約	 
	CORR	 	予約	予約	 
	CORRESPONDING	 	予約	予約	予約
	COS	 	予約	予約	 
	COSH	 	予約	予約	 
	COST	未予約	 	 	 
	COUNT	 	予約	予約	予約
	COVAR_POP	 	予約	予約	 
	COVAR_SAMP	 	予約	予約	 
	CREATE	予約, requires AS	予約	予約	予約
	CROSS	予約(関数または型として使用可)	予約	予約	予約
	CSV	未予約	 	 	 
	CUBE	未予約	予約	予約	 
	CUME_DIST	 	予約	予約	 
	CURRENT	未予約	予約	予約	予約
	CURRENT_CATALOG	予約	予約	予約	 
	CURRENT_DATE	予約	予約	予約	予約
	CURRENT_​DEFAULT_​TRANSFORM_​GROUP	 	予約	予約	 
	CURRENT_PATH	 	予約	予約	 
	CURRENT_ROLE	予約	予約	予約	 
	CURRENT_ROW	 	予約	予約	 
	CURRENT_SCHEMA	予約(関数または型として使用可)	予約	予約	 
	CURRENT_TIME	予約	予約	予約	予約
	CURRENT_TIMESTAMP	予約	予約	予約	予約
	CURRENT_​TRANSFORM_​GROUP_​FOR_​TYPE	 	予約	予約	 
	CURRENT_USER	予約	予約	予約	予約
	CURSOR	未予約	予約	予約	予約
	CURSOR_NAME	 	未予約	未予約	未予約
	CYCLE	未予約	予約	予約	 
	DATA	未予約	未予約	未予約	未予約
	DATABASE	未予約	 	 	 
	DATALINK	 	予約	予約	 
	DATE	 	予約	予約	予約
	DATETIME_​INTERVAL_​CODE	 	未予約	未予約	未予約
	DATETIME_​INTERVAL_​PRECISION	 	未予約	未予約	未予約
	DAY	未予約, requires AS	予約	予約	予約
	DB	 	未予約	未予約	 
	DEALLOCATE	未予約	予約	予約	予約
	DEC	未予約(関数または型として使用不可)	予約	予約	予約
	DECFLOAT	 	予約	予約	 
	DECIMAL	未予約(関数または型として使用不可)	予約	予約	予約
	DECLARE	未予約	予約	予約	予約
	DEFAULT	予約	予約	予約	予約
	DEFAULTS	未予約	未予約	未予約	 
	DEFERRABLE	予約	未予約	未予約	予約
	DEFERRED	未予約	未予約	未予約	予約
	DEFINE	 	予約	予約	 
	DEFINED	 	未予約	未予約	 
	DEFINER	未予約	未予約	未予約	 
	DEGREE	 	未予約	未予約	 
	DELETE	未予約	予約	予約	予約
	DELIMITER	未予約	 	 	 
	DELIMITERS	未予約	 	 	 
	DENSE_RANK	 	予約	予約	 
	DEPENDS	未予約	 	 	 
	DEPTH	未予約	未予約	未予約	 
	DEREF	 	予約	予約	 
	DERIVED	 	未予約	未予約	 
	DESC	予約	未予約	未予約	予約
	DESCRIBE	 	予約	予約	予約
	DESCRIPTOR	 	未予約	未予約	予約
	DETACH	未予約	 	 	 
	DETERMINISTIC	 	予約	予約	 
	DIAGNOSTICS	 	未予約	未予約	予約
	DICTIONARY	未予約	 	 	 
	DISABLE	未予約	 	 	 
	DISCARD	未予約	 	 	 
	DISCONNECT	 	予約	予約	予約
	DISPATCH	 	未予約	未予約	 
	DISTINCT	予約	予約	予約	予約
	DLNEWCOPY	 	予約	予約	 
	DLPREVIOUSCOPY	 	予約	予約	 
	DLURLCOMPLETE	 	予約	予約	 
	DLURLCOMPLETEONLY	 	予約	予約	 
	DLURLCOMPLETEWRITE	 	予約	予約	 
	DLURLPATH	 	予約	予約	 
	DLURLPATHONLY	 	予約	予約	 
	DLURLPATHWRITE	 	予約	予約	 
	DLURLSCHEME	 	予約	予約	 
	DLURLSERVER	 	予約	予約	 
	DLVALUE	 	予約	予約	 
	DO	予約	 	 	 
	DOCUMENT	未予約	未予約	未予約	 
	DOMAIN	未予約	未予約	未予約	予約
	DOUBLE	未予約	予約	予約	予約
	DROP	未予約	予約	予約	予約
	DYNAMIC	 	予約	予約	 
	DYNAMIC_FUNCTION	 	未予約	未予約	未予約
	DYNAMIC_​FUNCTION_​CODE	 	未予約	未予約	 
	EACH	未予約	予約	予約	 
	ELEMENT	 	予約	予約	 
	ELSE	予約	予約	予約	予約
	EMPTY	未予約	予約	予約	 
	ENABLE	未予約	 	 	 
	ENCODING	未予約	未予約	未予約	 
	ENCRYPTED	未予約	 	 	 
	END	予約	予約	予約	予約
	END-EXEC	 	予約	予約	予約
	END_FRAME	 	予約	予約	 
	END_PARTITION	 	予約	予約	 
	ENFORCED	未予約	未予約	未予約	 
	ENUM	未予約	 	 	 
	EQUALS	 	予約	予約	 
	ERROR	未予約	未予約	未予約	 
	ESCAPE	未予約	予約	予約	予約
	EVENT	未予約	 	 	 
	EVERY	 	予約	予約	 
	EXCEPT	予約, requires AS	予約	予約	予約
	EXCEPTION	 	 	 	予約
	EXCLUDE	未予約	未予約	未予約	 
	EXCLUDING	未予約	未予約	未予約	 
	EXCLUSIVE	未予約	 	 	 
	EXEC	 	予約	予約	予約
	EXECUTE	未予約	予約	予約	予約
	EXISTS	未予約(関数または型として使用不可)	予約	予約	予約
	EXP	 	予約	予約	 
	EXPLAIN	未予約	 	 	 
	EXPRESSION	未予約	未予約	未予約	 
	EXTENSION	未予約	 	 	 
	EXTERNAL	未予約	予約	予約	予約
	EXTRACT	未予約(関数または型として使用不可)	予約	予約	予約
	FALSE	予約	予約	予約	予約
	FAMILY	未予約	 	 	 
	FETCH	予約, requires AS	予約	予約	予約
	FILE	 	未予約	未予約	 
	FILTER	未予約, requires AS	予約	予約	 
	FINAL	 	未予約	未予約	 
	FINALIZE	未予約	 	 	 
	FINISH	 	未予約	未予約	 
	FIRST	未予約	未予約	未予約	予約
	FIRST_VALUE	 	予約	予約	 
	FLAG	 	未予約	未予約	 
	FLOAT	未予約(関数または型として使用不可)	予約	予約	予約
	FLOOR	 	予約	予約	 
	FOLLOWING	未予約	未予約	未予約	 
	FOR	予約, requires AS	予約	予約	予約
	FORCE	未予約	 	 	 
	FOREIGN	予約	予約	予約	予約
	FORMAT	未予約	未予約	未予約	 
	FORTRAN	 	未予約	未予約	未予約
	FORWARD	未予約	 	 	 
	FOUND	 	未予約	未予約	予約
	FRAME_ROW	 	予約	予約	 
	FREE	 	予約	予約	 
	FREEZE	予約(関数または型として使用可)	 	 	 
	FROM	予約, requires AS	予約	予約	予約
	FS	 	未予約	未予約	 
	FULFILL	 	未予約	未予約	 
	FULL	予約(関数または型として使用可)	予約	予約	予約
	FUNCTION	未予約	予約	予約	 
	FUNCTIONS	未予約	 	 	 
	FUSION	 	予約	予約	 
	G	 	未予約	未予約	 
	GENERAL	 	未予約	未予約	 
	GENERATED	未予約	未予約	未予約	 
	GET	 	予約	予約	予約
	GLOBAL	未予約	予約	予約	予約
	GO	 	未予約	未予約	予約
	GOTO	 	未予約	未予約	予約
	GRANT	予約, requires AS	予約	予約	予約
	GRANTED	未予約	未予約	未予約	 
	GREATEST	未予約(関数または型として使用不可)	予約	 	 
	GROUP	予約, requires AS	予約	予約	予約
	GROUPING	未予約(関数または型として使用不可)	予約	予約	 
	GROUPS	未予約	予約	予約	 
	HANDLER	未予約	 	 	 
	HAVING	予約, requires AS	予約	予約	予約
	HEADER	未予約	 	 	 
	HEX	 	未予約	未予約	 
	HIERARCHY	 	未予約	未予約	 
	HOLD	未予約	予約	予約	 
	HOUR	未予約, requires AS	予約	予約	予約
	ID	 	未予約	未予約	 
	IDENTITY	未予約	予約	予約	予約
	IF	未予約	 	 	 
	IGNORE	 	未予約	未予約	 
	ILIKE	予約(関数または型として使用可)	 	 	 
	IMMEDIATE	未予約	未予約	未予約	予約
	IMMEDIATELY	 	未予約	未予約	 
	IMMUTABLE	未予約	 	 	 
	IMPLEMENTATION	 	未予約	未予約	 
	IMPLICIT	未予約	 	 	 
	IMPORT	未予約	予約	予約	 
	IN	予約	予約	予約	予約
	INCLUDE	未予約	 	 	 
	INCLUDING	未予約	未予約	未予約	 
	INCREMENT	未予約	未予約	未予約	 
	INDENT	未予約	未予約	未予約	 
	INDEX	未予約	 	 	 
	INDEXES	未予約	 	 	 
	INDICATOR	 	予約	予約	予約
	INHERIT	未予約	 	 	 
	INHERITS	未予約	 	 	 
	INITIAL	 	予約	予約	 
	INITIALLY	予約	未予約	未予約	予約
	INLINE	未予約	 	 	 
	INNER	予約(関数または型として使用可)	予約	予約	予約
	INOUT	未予約(関数または型として使用不可)	予約	予約	 
	INPUT	未予約	未予約	未予約	予約
	INSENSITIVE	未予約	予約	予約	予約
	INSERT	未予約	予約	予約	予約
	INSTANCE	 	未予約	未予約	 
	INSTANTIABLE	 	未予約	未予約	 
	INSTEAD	未予約	未予約	未予約	 
	INT	未予約(関数または型として使用不可)	予約	予約	予約
	INTEGER	未予約(関数または型として使用不可)	予約	予約	予約
	INTEGRITY	 	未予約	未予約	 
	INTERSECT	予約, requires AS	予約	予約	予約
	INTERSECTION	 	予約	予約	 
	INTERVAL	未予約(関数または型として使用不可)	予約	予約	予約
	INTO	予約, requires AS	予約	予約	予約
	INVOKER	未予約	未予約	未予約	 
	IS	予約(関数または型として使用可)	予約	予約	予約
	ISNULL	予約(関数または型として使用可), requires AS	 	 	 
	ISOLATION	未予約	未予約	未予約	予約
	JOIN	予約(関数または型として使用可)	予約	予約	予約
	JSON	未予約(関数または型として使用不可)	予約	 	 
	JSON_ARRAY	未予約(関数または型として使用不可)	予約	予約	 
	JSON_ARRAYAGG	未予約(関数または型として使用不可)	予約	予約	 
	JSON_EXISTS	未予約(関数または型として使用不可)	予約	予約	 
	JSON_OBJECT	未予約(関数または型として使用不可)	予約	予約	 
	JSON_OBJECTAGG	未予約(関数または型として使用不可)	予約	予約	 
	JSON_QUERY	未予約(関数または型として使用不可)	予約	予約	 
	JSON_SCALAR	未予約(関数または型として使用不可)	予約	 	 
	JSON_SERIALIZE	未予約(関数または型として使用不可)	予約	 	 
	JSON_TABLE	未予約(関数または型として使用不可)	予約	予約	 
	JSON_TABLE_PRIMITIVE	 	予約	予約	 
	JSON_VALUE	未予約(関数または型として使用不可)	予約	予約	 
	K	 	未予約	未予約	 
	KEEP	未予約	未予約	未予約	 
	KEY	未予約	未予約	未予約	予約
	KEYS	未予約	未予約	未予約	 
	KEY_MEMBER	 	未予約	未予約	 
	KEY_TYPE	 	未予約	未予約	 
	LABEL	未予約	 	 	 
	LAG	 	予約	予約	 
	LANGUAGE	未予約	予約	予約	予約
	LARGE	未予約	予約	予約	 
	LAST	未予約	未予約	未予約	予約
	LAST_VALUE	 	予約	予約	 
	LATERAL	予約	予約	予約	 
	LEAD	 	予約	予約	 
	LEADING	予約	予約	予約	予約
	LEAKPROOF	未予約	 	 	 
	LEAST	未予約(関数または型として使用不可)	予約	 	 
	LEFT	予約(関数または型として使用可)	予約	予約	予約
	LENGTH	 	未予約	未予約	未予約
	LEVEL	未予約	未予約	未予約	予約
	LIBRARY	 	未予約	未予約	 
	LIKE	予約(関数または型として使用可)	予約	予約	予約
	LIKE_REGEX	 	予約	予約	 
	LIMIT	予約, requires AS	未予約	未予約	 
	LINK	 	未予約	未予約	 
	LISTAGG	 	予約	予約	 
	LISTEN	未予約	 	 	 
	LN	 	予約	予約	 
	LOAD	未予約	 	 	 
	LOCAL	未予約	予約	予約	予約
	LOCALTIME	予約	予約	予約	 
	LOCALTIMESTAMP	予約	予約	予約	 
	LOCATION	未予約	未予約	未予約	 
	LOCATOR	 	未予約	未予約	 
	LOCK	未予約	 	 	 
	LOCKED	未予約	 	 	 
	LOG	 	予約	予約	 
	LOG10	 	予約	予約	 
	LOGGED	未予約	 	 	 
	LOWER	 	予約	予約	予約
	LPAD	 	予約	 	 
	LTRIM	 	予約	 	 
	M	 	未予約	未予約	 
	MAP	 	未予約	未予約	 
	MAPPING	未予約	未予約	未予約	 
	MATCH	未予約	予約	予約	予約
	MATCHED	未予約	未予約	未予約	 
	MATCHES	 	予約	予約	 
	MATCH_NUMBER	 	予約	予約	 
	MATCH_RECOGNIZE	 	予約	予約	 
	MATERIALIZED	未予約	 	 	 
	MAX	 	予約	予約	予約
	MAXVALUE	未予約	未予約	未予約	 
	MEASURES	 	未予約	未予約	 
	MEMBER	 	予約	予約	 
	MERGE	未予約	予約	予約	 
	MERGE_ACTION	未予約(関数または型として使用不可)	 	 	 
	MESSAGE_LENGTH	 	未予約	未予約	未予約
	MESSAGE_OCTET_LENGTH	 	未予約	未予約	未予約
	MESSAGE_TEXT	 	未予約	未予約	未予約
	METHOD	未予約	予約	予約	 
	MIN	 	予約	予約	予約
	MINUTE	未予約, requires AS	予約	予約	予約
	MINVALUE	未予約	未予約	未予約	 
	MOD	 	予約	予約	 
	MODE	未予約	 	 	 
	MODIFIES	 	予約	予約	 
	MODULE	 	予約	予約	予約
	MONTH	未予約, requires AS	予約	予約	予約
	MORE	 	未予約	未予約	未予約
	MOVE	未予約	 	 	 
	MULTISET	 	予約	予約	 
	MUMPS	 	未予約	未予約	未予約
	NAME	未予約	未予約	未予約	未予約
	NAMES	未予約	未予約	未予約	予約
	NAMESPACE	 	未予約	未予約	 
	NATIONAL	未予約(関数または型として使用不可)	予約	予約	予約
	NATURAL	予約(関数または型として使用可)	予約	予約	予約
	NCHAR	未予約(関数または型として使用不可)	予約	予約	予約
	NCLOB	 	予約	予約	 
	NESTED	未予約	未予約	未予約	 
	NESTING	 	未予約	未予約	 
	NEW	未予約	予約	予約	 
	NEXT	未予約	未予約	未予約	予約
	NFC	未予約	未予約	未予約	 
	NFD	未予約	未予約	未予約	 
	NFKC	未予約	未予約	未予約	 
	NFKD	未予約	未予約	未予約	 
	NIL	 	未予約	未予約	 
	NO	未予約	予約	予約	予約
	NONE	未予約(関数または型として使用不可)	予約	予約	 
	NORMALIZE	未予約(関数または型として使用不可)	予約	予約	 
	NORMALIZED	未予約	未予約	未予約	 
	NOT	予約	予約	予約	予約
	NOTHING	未予約	 	 	 
	NOTIFY	未予約	 	 	 
	NOTNULL	予約(関数または型として使用可), requires AS	 	 	 
	NOWAIT	未予約	 	 	 
	NTH_VALUE	 	予約	予約	 
	NTILE	 	予約	予約	 
	NULL	予約	予約	予約	予約
	NULLABLE	 	未予約	未予約	未予約
	NULLIF	未予約(関数または型として使用不可)	予約	予約	予約
	NULLS	未予約	未予約	未予約	 
	NULL_ORDERING	 	未予約	未予約	 
	NUMBER	 	未予約	未予約	未予約
	NUMERIC	未予約(関数または型として使用不可)	予約	予約	予約
	OBJECT	未予約	未予約	未予約	 
	OBJECTS	未予約	 	 	 
	OCCURRENCE	 	未予約	未予約	 
	OCCURRENCES_REGEX	 	予約	予約	 
	OCTETS	 	未予約	未予約	 
	OCTET_LENGTH	 	予約	予約	予約
	OF	未予約	予約	予約	予約
	OFF	未予約	未予約	未予約	 
	OFFSET	予約, requires AS	予約	予約	 
	OIDS	未予約	 	 	 
	OLD	未予約	予約	予約	 
	OMIT	未予約	予約	予約	 
	ON	予約, requires AS	予約	予約	予約
	ONE	 	予約	予約	 
	ONLY	予約	予約	予約	予約
	OPEN	 	予約	予約	予約
	OPERATOR	未予約	 	 	 
	OPTION	未予約	未予約	未予約	予約
	OPTIONS	未予約	未予約	未予約	 
	OR	予約	予約	予約	予約
	ORDER	予約, requires AS	予約	予約	予約
	ORDERING	 	未予約	未予約	 
	ORDINALITY	未予約	未予約	未予約	 
	OTHERS	未予約	未予約	未予約	 
	OUT	未予約(関数または型として使用不可)	予約	予約	 
	OUTER	予約(関数または型として使用可)	予約	予約	予約
	OUTPUT	 	未予約	未予約	予約
	OVER	未予約, requires AS	予約	予約	 
	OVERFLOW	 	未予約	未予約	 
	OVERLAPS	予約(関数または型として使用可), requires AS	予約	予約	予約
	OVERLAY	未予約(関数または型として使用不可)	予約	予約	 
	OVERRIDING	未予約	未予約	未予約	 
	OWNED	未予約	 	 	 
	OWNER	未予約	 	 	 
	P	 	未予約	未予約	 
	PAD	 	未予約	未予約	予約
	PARALLEL	未予約	 	 	 
	PARAMETER	未予約	予約	予約	 
	PARAMETER_MODE	 	未予約	未予約	 
	PARAMETER_NAME	 	未予約	未予約	 
	PARAMETER_​ORDINAL_​POSITION	 	未予約	未予約	 
	PARAMETER_​SPECIFIC_​CATALOG	 	未予約	未予約	 
	PARAMETER_​SPECIFIC_​NAME	 	未予約	未予約	 
	PARAMETER_​SPECIFIC_​SCHEMA	 	未予約	未予約	 
	PARSER	未予約	 	 	 
	PARTIAL	未予約	未予約	未予約	予約
	PARTITION	未予約	予約	予約	 
	PASCAL	 	未予約	未予約	未予約
	PASS	 	未予約	未予約	 
	PASSING	未予約	未予約	未予約	 
	PASSTHROUGH	 	未予約	未予約	 
	PASSWORD	未予約	 	 	 
	PAST	 	未予約	未予約	 
	PATH	未予約	未予約	未予約	 
	PATTERN	 	予約	予約	 
	PER	 	予約	予約	 
	PERCENT	 	予約	予約	 
	PERCENTILE_CONT	 	予約	予約	 
	PERCENTILE_DISC	 	予約	予約	 
	PERCENT_RANK	 	予約	予約	 
	PERIOD	未予約	予約	予約	 
	PERMISSION	 	未予約	未予約	 
	PERMUTE	 	未予約	未予約	 
	PIPE	 	未予約	未予約	 
	PLACING	予約	未予約	未予約	 
	PLAN	未予約	未予約	未予約	 
	PLANS	未予約	 	 	 
	PLI	 	未予約	未予約	未予約
	POLICY	未予約	 	 	 
	PORTION	 	予約	予約	 
	POSITION	未予約(関数または型として使用不可)	予約	予約	予約
	POSITION_REGEX	 	予約	予約	 
	POWER	 	予約	予約	 
	PRECEDES	 	予約	予約	 
	PRECEDING	未予約	未予約	未予約	 
	PRECISION	未予約(関数または型として使用不可), requires AS	予約	予約	予約
	PREPARE	未予約	予約	予約	予約
	PREPARED	未予約	 	 	 
	PRESERVE	未予約	未予約	未予約	予約
	PREV	 	未予約	未予約	 
	PRIMARY	予約	予約	予約	予約
	PRIOR	未予約	未予約	未予約	予約
	PRIVATE	 	未予約	未予約	 
	PRIVILEGES	未予約	未予約	未予約	予約
	PROCEDURAL	未予約	 	 	 
	PROCEDURE	未予約	予約	予約	予約
	PROCEDURES	未予約	 	 	 
	PROGRAM	未予約	 	 	 
	PRUNE	 	未予約	未予約	 
	PTF	 	予約	予約	 
	PUBLIC	 	未予約	未予約	予約
	PUBLICATION	未予約	 	 	 
	QUOTE	未予約	 	 	 
	QUOTES	未予約	未予約	未予約	 
	RANGE	未予約	予約	予約	 
	RANK	 	予約	予約	 
	READ	未予約	未予約	未予約	予約
	READS	 	予約	予約	 
	REAL	未予約(関数または型として使用不可)	予約	予約	予約
	REASSIGN	未予約	 	 	 
	RECOVERY	 	未予約	未予約	 
	RECURSIVE	未予約	予約	予約	 
	REF	未予約	予約	予約	 
	REFERENCES	予約	予約	予約	予約
	REFERENCING	未予約	予約	予約	 
	REFRESH	未予約	 	 	 
	REGR_AVGX	 	予約	予約	 
	REGR_AVGY	 	予約	予約	 
	REGR_COUNT	 	予約	予約	 
	REGR_INTERCEPT	 	予約	予約	 
	REGR_R2	 	予約	予約	 
	REGR_SLOPE	 	予約	予約	 
	REGR_SXX	 	予約	予約	 
	REGR_SXY	 	予約	予約	 
	REGR_SYY	 	予約	予約	 
	REINDEX	未予約	 	 	 
	RELATIVE	未予約	未予約	未予約	予約
	RELEASE	未予約	予約	予約	 
	RENAME	未予約	 	 	 
	REPEATABLE	未予約	未予約	未予約	未予約
	REPLACE	未予約	 	 	 
	REPLICA	未予約	 	 	 
	REQUIRING	 	未予約	未予約	 
	RESET	未予約	 	 	 
	RESPECT	 	未予約	未予約	 
	RESTART	未予約	未予約	未予約	 
	RESTORE	 	未予約	未予約	 
	RESTRICT	未予約	未予約	未予約	予約
	RESULT	 	予約	予約	 
	RETURN	未予約	予約	予約	 
	RETURNED_CARDINALITY	 	未予約	未予約	 
	RETURNED_LENGTH	 	未予約	未予約	未予約
	RETURNED_​OCTET_​LENGTH	 	未予約	未予約	未予約
	RETURNED_SQLSTATE	 	未予約	未予約	未予約
	RETURNING	予約, requires AS	未予約	未予約	 
	RETURNS	未予約	予約	予約	 
	REVOKE	未予約	予約	予約	予約
	RIGHT	予約(関数または型として使用可)	予約	予約	予約
	ROLE	未予約	未予約	未予約	 
	ROLLBACK	未予約	予約	予約	予約
	ROLLUP	未予約	予約	予約	 
	ROUTINE	未予約	未予約	未予約	 
	ROUTINES	未予約	 	 	 
	ROUTINE_CATALOG	 	未予約	未予約	 
	ROUTINE_NAME	 	未予約	未予約	 
	ROUTINE_SCHEMA	 	未予約	未予約	 
	ROW	未予約(関数または型として使用不可)	予約	予約	 
	ROWS	未予約	予約	予約	予約
	ROW_COUNT	 	未予約	未予約	未予約
	ROW_NUMBER	 	予約	予約	 
	RPAD	 	予約	 	 
	RTRIM	 	予約	 	 
	RULE	未予約	 	 	 
	RUNNING	 	予約	予約	 
	SAVEPOINT	未予約	予約	予約	 
	SCALAR	未予約	未予約	未予約	 
	SCALE	 	未予約	未予約	未予約
	SCHEMA	未予約	未予約	未予約	予約
	SCHEMAS	未予約	 	 	 
	SCHEMA_NAME	 	未予約	未予約	未予約
	SCOPE	 	予約	予約	 
	SCOPE_CATALOG	 	未予約	未予約	 
	SCOPE_NAME	 	未予約	未予約	 
	SCOPE_SCHEMA	 	未予約	未予約	 
	SCROLL	未予約	予約	予約	予約
	SEARCH	未予約	予約	予約	 
	SECOND	未予約, requires AS	予約	予約	予約
	SECTION	 	未予約	未予約	予約
	SECURITY	未予約	未予約	未予約	 
	SEEK	 	予約	予約	 
	SELECT	予約	予約	予約	予約
	SELECTIVE	 	未予約	未予約	 
	SELF	 	未予約	未予約	 
	SEMANTICS	 	未予約	未予約	 
	SENSITIVE	 	予約	予約	 
	SEQUENCE	未予約	未予約	未予約	 
	SEQUENCES	未予約	 	 	 
	SERIALIZABLE	未予約	未予約	未予約	未予約
	SERVER	未予約	未予約	未予約	 
	SERVER_NAME	 	未予約	未予約	未予約
	SESSION	未予約	未予約	未予約	予約
	SESSION_USER	予約	予約	予約	予約
	SET	未予約	予約	予約	予約
	SETOF	未予約(関数または型として使用不可)	 	 	 
	SETS	未予約	未予約	未予約	 
	SHARE	未予約	 	 	 
	SHOW	未予約	予約	予約	 
	SIMILAR	予約(関数または型として使用可)	予約	予約	 
	SIMPLE	未予約	未予約	未予約	 
	SIN	 	予約	予約	 
	SINH	 	予約	予約	 
	SIZE	 	未予約	未予約	予約
	SKIP	未予約	予約	予約	 
	SMALLINT	未予約(関数または型として使用不可)	予約	予約	予約
	SNAPSHOT	未予約	 	 	 
	SOME	予約	予約	予約	予約
	SORT_DIRECTION	 	未予約	未予約	 
	SOURCE	未予約	未予約	未予約	 
	SPACE	 	未予約	未予約	予約
	SPECIFIC	 	予約	予約	 
	SPECIFICTYPE	 	予約	予約	 
	SPECIFIC_NAME	 	未予約	未予約	 
	SQL	未予約	予約	予約	予約
	SQLCODE	 	 	 	予約
	SQLERROR	 	 	 	予約
	SQLEXCEPTION	 	予約	予約	 
	SQLSTATE	 	予約	予約	予約
	SQLWARNING	 	予約	予約	 
	SQRT	 	予約	予約	 
	STABLE	未予約	 	 	 
	STANDALONE	未予約	未予約	未予約	 
	START	未予約	予約	予約	 
	STATE	 	未予約	未予約	 
	STATEMENT	未予約	未予約	未予約	 
	STATIC	 	予約	予約	 
	STATISTICS	未予約	 	 	 
	STDDEV_POP	 	予約	予約	 
	STDDEV_SAMP	 	予約	予約	 
	STDIN	未予約	 	 	 
	STDOUT	未予約	 	 	 
	STORAGE	未予約	 	 	 
	STORED	未予約	 	 	 
	STRICT	未予約	 	 	 
	STRING	未予約	未予約	未予約	 
	STRIP	未予約	未予約	未予約	 
	STRUCTURE	 	未予約	未予約	 
	STYLE	 	未予約	未予約	 
	SUBCLASS_ORIGIN	 	未予約	未予約	未予約
	SUBMULTISET	 	予約	予約	 
	SUBSCRIPTION	未予約	 	 	 
	SUBSET	 	予約	予約	 
	SUBSTRING	未予約(関数または型として使用不可)	予約	予約	予約
	SUBSTRING_REGEX	 	予約	予約	 
	SUCCEEDS	 	予約	予約	 
	SUM	 	予約	予約	予約
	SUPPORT	未予約	 	 	 
	SYMMETRIC	予約	予約	予約	 
	SYSID	未予約	 	 	 
	SYSTEM	未予約	予約	予約	 
	SYSTEM_TIME	 	予約	予約	 
	SYSTEM_USER	予約	予約	予約	予約
	T	 	未予約	未予約	 
	TABLE	予約	予約	予約	予約
	TABLES	未予約	 	 	 
	TABLESAMPLE	予約(関数または型として使用可)	予約	予約	 
	TABLESPACE	未予約	 	 	 
	TABLE_NAME	 	未予約	未予約	未予約
	TAN	 	予約	予約	 
	TANH	 	予約	予約	 
	TARGET	未予約	 	 	 
	TEMP	未予約	 	 	 
	TEMPLATE	未予約	 	 	 
	TEMPORARY	未予約	未予約	未予約	予約
	TEXT	未予約	 	 	 
	THEN	予約	予約	予約	予約
	THROUGH	 	未予約	未予約	 
	TIES	未予約	未予約	未予約	 
	TIME	未予約(関数または型として使用不可)	予約	予約	予約
	TIMESTAMP	未予約(関数または型として使用不可)	予約	予約	予約
	TIMEZONE_HOUR	 	予約	予約	予約
	TIMEZONE_MINUTE	 	予約	予約	予約
	TO	予約, requires AS	予約	予約	予約
	TOKEN	 	未予約	未予約	 
	TOP_LEVEL_COUNT	 	未予約	未予約	 
	TRAILING	予約	予約	予約	予約
	TRANSACTION	未予約	未予約	未予約	予約
	TRANSACTIONS_​COMMITTED	 	未予約	未予約	 
	TRANSACTIONS_​ROLLED_​BACK	 	未予約	未予約	 
	TRANSACTION_ACTIVE	 	未予約	未予約	 
	TRANSFORM	未予約	未予約	未予約	 
	TRANSFORMS	 	未予約	未予約	 
	TRANSLATE	 	予約	予約	予約
	TRANSLATE_REGEX	 	予約	予約	 
	TRANSLATION	 	予約	予約	予約
	TREAT	未予約(関数または型として使用不可)	予約	予約	 
	TRIGGER	未予約	予約	予約	 
	TRIGGER_CATALOG	 	未予約	未予約	 
	TRIGGER_NAME	 	未予約	未予約	 
	TRIGGER_SCHEMA	 	未予約	未予約	 
	TRIM	未予約(関数または型として使用不可)	予約	予約	予約
	TRIM_ARRAY	 	予約	予約	 
	TRUE	予約	予約	予約	予約
	TRUNCATE	未予約	予約	予約	 
	TRUSTED	未予約	 	 	 
	TYPE	未予約	未予約	未予約	未予約
	TYPES	未予約	 	 	 
	UESCAPE	未予約	予約	予約	 
	UNBOUNDED	未予約	未予約	未予約	 
	UNCOMMITTED	未予約	未予約	未予約	未予約
	UNCONDITIONAL	未予約	未予約	未予約	 
	UNDER	 	未予約	未予約	 
	UNENCRYPTED	未予約	 	 	 
	UNION	予約, requires AS	予約	予約	予約
	UNIQUE	予約	予約	予約	予約
	UNKNOWN	未予約	予約	予約	予約
	UNLINK	 	未予約	未予約	 
	UNLISTEN	未予約	 	 	 
	UNLOGGED	未予約	 	 	 
	UNMATCHED	 	未予約	未予約	 
	UNNAMED	 	未予約	未予約	未予約
	UNNEST	 	予約	予約	 
	UNTIL	未予約	 	 	 
	UNTYPED	 	未予約	未予約	 
	UPDATE	未予約	予約	予約	予約
	UPPER	 	予約	予約	予約
	URI	 	未予約	未予約	 
	USAGE	 	未予約	未予約	予約
	USER	予約	予約	予約	予約
	USER_​DEFINED_​TYPE_​CATALOG	 	未予約	未予約	 
	USER_​DEFINED_​TYPE_​CODE	 	未予約	未予約	 
	USER_​DEFINED_​TYPE_​NAME	 	未予約	未予約	 
	USER_​DEFINED_​TYPE_​SCHEMA	 	未予約	未予約	 
	USING	予約	予約	予約	予約
	UTF16	 	未予約	未予約	 
	UTF32	 	未予約	未予約	 
	UTF8	 	未予約	未予約	 
	VACUUM	未予約	 	 	 
	VALID	未予約	未予約	未予約	 
	VALIDATE	未予約	 	 	 
	VALIDATOR	未予約	 	 	 
	VALUE	未予約	予約	予約	予約
	VALUES	未予約(関数または型として使用不可)	予約	予約	予約
	VALUE_OF	 	予約	予約	 
	VARBINARY	 	予約	予約	 
	VARCHAR	未予約(関数または型として使用不可)	予約	予約	予約
	VARIADIC	予約	 	 	 
	VARYING	未予約, requires AS	予約	予約	予約
	VAR_POP	 	予約	予約	 
	VAR_SAMP	 	予約	予約	 
	VERBOSE	予約(関数または型として使用可)	 	 	 
	VERSION	未予約	未予約	未予約	 
	VERSIONING	 	予約	予約	 
	VIEW	未予約	未予約	未予約	予約
	VIEWS	未予約	 	 	 
	VIRTUAL	未予約	 	 	 
	VOLATILE	未予約	 	 	 
	WHEN	予約	予約	予約	予約
	WHENEVER	 	予約	予約	予約
	WHERE	予約, requires AS	予約	予約	予約
	WHITESPACE	未予約	未予約	未予約	 
	WIDTH_BUCKET	 	予約	予約	 
	WINDOW	予約, requires AS	予約	予約	 
	WITH	予約, requires AS	予約	予約	予約
	WITHIN	未予約, requires AS	予約	予約	 
	WITHOUT	未予約, requires AS	予約	予約	 
	WORK	未予約	未予約	未予約	予約
	WRAPPER	未予約	未予約	未予約	 
	WRITE	未予約	未予約	未予約	予約
	XML	未予約	予約	予約	 
	XMLAGG	 	予約	予約	 
	XMLATTRIBUTES	未予約(関数または型として使用不可)	予約	予約	 
	XMLBINARY	 	予約	予約	 
	XMLCAST	 	予約	予約	 
	XMLCOMMENT	 	予約	予約	 
	XMLCONCAT	未予約(関数または型として使用不可)	予約	予約	 
	XMLDECLARATION	 	未予約	未予約	 
	XMLDOCUMENT	 	予約	予約	 
	XMLELEMENT	未予約(関数または型として使用不可)	予約	予約	 
	XMLEXISTS	未予約(関数または型として使用不可)	予約	予約	 
	XMLFOREST	未予約(関数または型として使用不可)	予約	予約	 
	XMLITERATE	 	予約	予約	 
	XMLNAMESPACES	未予約(関数または型として使用不可)	予約	予約	 
	XMLPARSE	未予約(関数または型として使用不可)	予約	予約	 
	XMLPI	未予約(関数または型として使用不可)	予約	予約	 
	XMLQUERY	 	予約	予約	 
	XMLROOT	未予約(関数または型として使用不可)	 	 	 
	XMLSCHEMA	 	未予約	未予約	 
	XMLSERIALIZE	未予約(関数または型として使用不可)	予約	予約	 
	XMLTABLE	未予約(関数または型として使用不可)	予約	予約	 
	XMLTEXT	 	予約	予約	 
	XMLVALIDATE	 	予約	予約	 
	YEAR	未予約, requires AS	予約	予約	予約
	YES	未予約	未予約	未予約	 
	ZONE	未予約	未予約	未予約	予約




付録D SQLへの準拠





本節では、PostgreSQL™がどの程度現在の標準SQLに準拠しているかについて、概要を説明します。
以下の情報は互換性についての完全な説明ではありません。
しかし、ユーザにとって十分適切かつ有用な詳細を主な話題としてここで示しています。
 


標準SQLの公式な名称は、ISO/IEC 9075 「Database Language SQL」です。
この標準SQLの改訂バージョンは不定期にリリースされています。
最も最近の改訂は2023年に行われました。
この2023年版はISO/IEC 9075:2023、もしくは単にSQL:2023と呼ばれています。
この前のバージョンはSQL:2016、SQL:2011、SQL:2008、SQL:2006、SQL:2003、SQL:1999とSQL-92です。
それぞれ前のバージョンを置き換えたバージョンですので、より昔のバージョンへの適合性についての主張には公的な利点がありません。
PostgreSQL™の開発では、伝統的な機能もしくは共通の考えと矛盾しないように、標準SQLの最新の公式バージョンに準拠させようとしています。
標準SQLで必須とされた機能の多くは、多少構文や機能に違いはあるものの、サポートされています。
さらに適合性を高めることが将来のリリースで期待されています。
 


SQL-92では、適合性について、Entry、Intermediate、Fullという3つの機能セットを定義しました。
標準SQLの準拠をうたっているデータベース管理システムのほとんどは、Entryレベルのみに適合しています。
IntermediateもしくはFullレベルの機能の全体的なセットは、非常に膨大になり過ぎるか、もしくは旧来の動作と競合するからです。
 


SQL:1999から、標準SQLは、SQL-92で見受けられた3レベルに機能を非効率的に分散させるのではなく、個々の機能を大規模な集合として定義されるようになりました。
こうした機能の大規模なサブセットを、全てのSQL準拠の実装が提供しなければならない「コア」機能として表しています。
残りの機能は完全に省略可能です。
 


標準はいくつかの部分に分かれており、それぞれが省略形の名前でも知られています:

  
	ISO/IEC 9075-1 Framework (SQL/Framework)

	ISO/IEC 9075-2 Foundation (SQL/Foundation)

	ISO/IEC 9075-3 Call Level Interface (SQL/CLI)

	ISO/IEC 9075-4 Persistent Stored Modules (SQL/PSM)

	ISO/IEC 9075-9 Management of External Data (SQL/MED)

	ISO/IEC 9075-10 Object Language Bindings (SQL/OLB)

	ISO/IEC 9075-11 Information and Definition Schemas (SQL/Schemata)

	ISO/IEC 9075-13 Routines and Types using the Java Language (SQL/JRT)

	ISO/IEC 9075-14 XML-related specifications (SQL/XML)

	ISO/IEC 9075-15 Multi-dimensional arrays (SQL/MDA)

	ISO/IEC 9075-16 Property Graph Queries (SQL/PGQ)






部分の番号の中には使われていない（もしくは、もはや使われていない）ものがあることに注意してください。
 


PostgreSQL™のコア部分は 1、2、9、11、および14番の部分に対応しています。
第3部分はODBCドライバを、そして第13部分はPL/Javaプラグインを網羅していますが、これらコンポーネントに対する正確な適合性は検証されていません。
4、10、15および16番の部分は現時点でPostgreSQL™に実装されていません。
 


PostgreSQLはSQL:2023の主な機能のほとんどをサポートします。
完全なコアの互換性に必要な177の必須機能の内、PostgreSQLは少なくとも170個に適合します。
さらに省略可能な機能を数多くサポートします。
本書の執筆時点で、SQL:2023のコアに完全に適合したデータベース管理システムのバージョンはないということを、ここで言及しておくのは価値のあることかもしれません。
 


以下の2つの節では、PostgreSQL™でサポートされているこれらの機能をリストし、その後にPostgreSQL™でまだサポートされていないSQL:2023で定義された機能をリストしています。
これら2つのリストはおおよそのものです。
サポート対象であるとリストされている機能が些細な部分で準拠していない可能性があり、サポートされていないある機能の大部分が、実際には実装されている可能性があります。
本書の主要な部分では、動作するものとしないものについての最も正確な情報を常に伝えます。
 
注記


ハイフンを含む機能コードはサブ機能です。
したがって、特定のサブ機能がサポートされない場合、他のサブ機能がサポートされていてもそのメイン機能はサポートされない機能としてリストされています。
  

サポートされている機能




    
	識別子	コアか？	説明	コメント
	B012	 	埋め込みC	 
	B021	 	直接SQL	 
	B128	 	ルーチン言語 SQL	 
	E011	コア	数値データ型	 
	E011-01	コア	NTEGERおよびSMALLINTデータ型	 
	E011-02	コア	REAL、DOUBLE PRECISION、FLOATデータ型	 
	E011-03	コア	DECIMALおよびNUMERICデータ型	 
	E011-04	コア	算術演算子	 
	E011-05	コア	数値比較	 
	E011-06	コア	数値データ型間の暗黙キャスト	 
	E021	コア	文字データ型	 
	E021-01	コア	CHARACTERデータ型	 
	E021-02	コア	CHARACTER VARYINGデータ型	 
	E021-03	コア	文字リテラル	 
	E021-04	コア	CHARACTER_LENGTH関数	数える前にCHARACTER値の最後の空白を除去します
	E021-05	コア	OCTET_LENGTH関数	 
	E021-06	コア	SUBSTRING関数	 
	E021-07	コア	文字の連結	 
	E021-08	コア	UPPERおよびLOWER関数	 
	E021-09	コア	TRIM関数	 
	E021-10	コア	文字列型間の暗黙的キャスト	 
	E021-11	コア	POSITION関数	 
	E021-12	コア	文字の比較	 
	E031	コア	識別子	 
	E031-01	コア	制限付き識別子	 
	E031-02	コア	小文字の識別子	 
	E031-03	コア	末尾のアンダースコア	 
	E051	コア	基本問い合わせ仕様	 
	E051-01	コア	SELECT DISTINCT	 
	E051-02	コア	GROUP BY句	 
	E051-04	コア	選択リスト中にない列を含むことができるGROUP BY	 
	E051-05	コア	再命名できる選択リスト項目	 
	E051-06	コア	HAVING句	 
	E051-07	コア	選択リスト内の修飾付き*	 
	E051-08	コア	FROM句内の相関名	 
	E051-09	コア	FROM句内の列名の変更	 
	E061	コア	基本述語および検索条件	 
	E061-01	コア	比較述語	 
	E061-02	コア	BETWEEN述語	 
	E061-03	コア	値のリストが付いたIN述語	 
	E061-04	コア	LIKE述語	 
	E061-05	コア	LIKE述語 ESCAPE句	 
	E061-06	コア	NULL述語	 
	E061-07	コア	修飾付き比較述語	 
	E061-08	コア	EXISTS述語	 
	E061-09	コア	比較述語内の副問い合わせ	 
	E061-11	コア	IN述語内の副問い合わせ	 
	E061-12	コア	修飾付き比較述語内の副問い合わせ	 
	E061-13	コア	相関副問い合わせ	 
	E061-14	コア	検索条件	 
	E071	コア	基本問い合わせ式	 
	E071-01	コア	UNION DISTINCTテーブル演算子	 
	E071-02	コア	UNION ALLテーブル演算子	 
	E071-03	コア	EXCEPT DISTINCTテーブル演算子	 
	E071-05	コア	正確に同一のデータ型を持つ必要がないテーブル演算子経由の列の結合	 
	E071-06	コア	副問い合わせ内のテーブル演算子	 
	E081	コア	基本権限	 
	E081-01	コア	SELECT権限	 
	E081-02	コア	DELETE権限	 
	E081-03	コア	テーブルレベルのINSERT権限	 
	E081-04	コア	テーブルレベルのUPDATE権限	 
	E081-05	コア	列レベルのUPDATE権限	 
	E081-06	コア	テーブルレベルのREFERENCES権限	 
	E081-07	コア	列レベルのREFERENCES権限	 
	E081-08	コア	WITH GRANT OPTION	 
	E081-09	コア	USAGE権限	 
	E081-10	コア	EXECUTE権限	 
	E091	コア	集合関数	 
	E091-01	コア	AVG	 
	E091-02	コア	COUNT	 
	E091-03	コア	MAX	 
	E091-04	コア	MIN	 
	E091-05	コア	SUM	 
	E091-06	コア	ALL修飾子	 
	E091-07	コア	DISTINCT修飾子	 
	E101	コア	基本データ操作	 
	E101-01	コア	INSERT文	 
	E101-03	コア	探索UPDATE文	 
	E101-04	コア	探索DELETE文	 
	E111	コア	単一行SELECT文	 
	E121	コア	基本カーソルサポート	 
	E121-01	コア	DECLARE CURSOR	 
	E121-02	コア	選択リスト内にある必要がないORDER BY列	 
	E121-03	コア	ORDER BY句内の値式	 
	E121-04	コア	OPEN文	 
	E121-06	コア	位置指定UPDATE文	 
	E121-07	コア	位置指定DELETE文	 
	E121-08	コア	CLOSE文	 
	E121-10	コア	FETCH文、暗黙的なNEXT	 
	E121-17	コア	WITH HOLDカーソル	 
	E131	コア	NULL値のサポート(値の変わりとなるNULL)	 
	E141	コア	基本整合性制約	 
	E141-01	コア	NOT NULL制約	 
	E141-02	コア	NOT NULL列のUNIQUE制約	 
	E141-03	コア	PRIMARY KEY制約	 
	E141-04	コア	参照削除動作、参照更新動作の両方でNO ACTIONをデフォルトで持つ基本FOREIGN KEY制約	 
	E141-06	コア	CHECK制約	 
	E141-07	コア	列デフォルト	 
	E141-08	コア	PRIMARY KEYから推定されるNOT NULL	 
	E141-10	コア	任意の順序で指定できる外部キー中の名前	 
	E151	コア	トランザクションサポート	 
	E151-01	コア	COMMIT文	 
	E151-02	コア	ROLLBACK文	 
	E152	コア	基本SET TRANSACTION文	 
	E152-01	コア	SET TRANSACTION文: ISOLATION LEVEL SERIALIZABLE句	 
	E152-02	コア	SET TRANSACTION文: READ ONLYおよびREAD WRITE句	 
	E153	コア	副問い合せのある更新可能な問い合わせ	 
	E161	コア	二重のマイナス記号から始まるSQLコメント	 
	E171	コア	SQLSTATEサポート	 
	E182	コア	ホスト言語バインド	 
	F021	コア	基本情報スキーマ	 
	F021-01	コア	COLUMNSビュー	 
	F021-02	コア	TABLESビュー	 
	F021-03	コア	VIEWSビュー	 
	F021-04	コア	TABLE_CONSTRAINTSビュー	 
	F021-05	コア	REFERENTIAL_CONSTRAINTSビュー	 
	F021-06	コア	CHECK_CONSTRAINTSビュー	 
	F031	コア	基本スキーマ操作	 
	F031-01	コア	永続基礎テーブルを作成するCREATE TABLE文	 
	F031-02	コア	CREATE VIEW文	 
	F031-03	コア	GRANT文	 
	F031-04	コア	ALTER TABLE文: ADD COLUMN句	 
	F031-13	コア	DROP TABLE文: RESTRICT句	 
	F031-16	コア	DROP VIEW文: RESTRICT句	 
	F031-19	コア	REVOKE文: RESTRICT句	 
	F032	 	CASCADE削除動作	 
	F033	 	ALTER TABLE文: DROP COLUMN句	 
	F034	 	拡張REVOKE文	 
	F035	 	CASCADEを持つREVOKE	 
	F036	 	所有者以外が実行するREVOKE文	 
	F037	 	REVOKE文: GRANT OPTION FOR句	 
	F038	 	WITH GRANT OPTION権限のREVOKE	 
	F041	コア	基本結合テーブル	 
	F041-01	コア	内部結合(INNERキーワードは不要)	 
	F041-02	コア	INNERキーワード	 
	F041-03	コア	LEFT OUTER JOIN	 
	F041-04	コア	RIGHT OUTER JOIN	 
	F041-05	コア	入れ子にできる外部結合	 
	F041-07	コア	内部結合内でも使用できる左または右外部結合の内部テーブル	 
	F041-08	コア	すべての比較演算子のサポート(単なる=は除く)	 
	F051	コア	基本日付時刻	 
	F051-01	コア	DATEデータ型(DATEリテラルのサポートを含む)	 
	F051-02	コア	少なくとも0の小数秒精度を持つTIMEデータ型(TIMEリテラルのサポートを含む)	 
	F051-03	コア	少なくとも0と6の小数秒精度を持つTIMESTAMPデータ型(TIMESTAMPリテラルのサポートを含む)	 
	F051-04	コア	DATE、TIME、TIMESTAMPデータ型に対する比較述語	 
	F051-05	コア	日付時刻型と文字列型間の明示的なCAST	 
	F051-06	コア	CURRENT_DATE	 
	F051-07	コア	LOCALTIME	 
	F051-08	コア	LOCALTIMESTAMP	 
	F052	 	時間間隔および日付時刻計算	 
	F053	 	OVERLAPS述語	 
	F081	コア	ビューのUNIONおよびEXCEPT	 
	F111	 	SERIALIZABLE以外の隔離レベル	 
	F112	 	隔離レベルREAD UNCOMMITTED	 
	F113	 	隔離レベルREAD COMMITTED	 
	F114	 	隔離レベルREPEATABLE READ	 
	F131	コア	グループ化操作	 
	F131-01	コア	グループ化されたビューを使用する問い合わせで提供されるWHERE、GROUP BY、HAVING句	 
	F131-02	コア	グループ化されたビューを使用する問い合わせで提供される複数テーブル	 
	F131-03	コア	グループ化されたビューを使用する問い合わせで提供される集合関数	 
	F131-04	コア	GROUP BY、HAVING句、グループ化されたビューを持つ副問い合わせ	 
	F131-05	コア	GROUP BY、HAVING句、グループ化されたビューを持つ単一行SELECT	 
	F171	 	ユーザ毎の複数スキーマ	 
	F181	コア	複数モジュールサポート	 
	F191	 	参照削除動作	 
	F200	 	TRUNCATE TABLE文	 
	F201	コア	CAST関数	 
	F202	 	TRUNCATE TABLE: identity column restartオプション	 
	F221	コア	明示的なデフォルト	 
	F222	 	INSERT文: DEFAULT VALUES句	 
	F231	 	権限テーブル	 
	F251	 	ドメインサポート	 
	F261	コア	CASE式	 
	F261-01	コア	単純CASE	 
	F261-02	コア	探索CASE	 
	F261-03	コア	NULLIF	 
	F261-04	コア	COALESCE	 
	F262	 	拡張CASE式	 
	F271	 	複合文字リテラル	 
	F281	 	LIKE強化	 
	F292	 	UNIQUE nullの扱い	 
	F302	 	INTERSECTテーブル演算子	 
	F303	 	INTERSECT DISTINCTテーブル演算子	 
	F304	 	EXCEPT ALLテーブル演算子	 
	F305	 	INTERSECT ALLテーブル演算子	 
	F311	コア	スキーマ定義文	 
	F311-01	コア	CREATE SCHEMA	 
	F311-02	コア	永続基礎テーブル用のCREATE TABLE	 
	F311-03	コア	CREATE VIEW	 
	F311-04	コア	CREATE VIEW: WITH CHECK OPTION	 
	F311-05	コア	GRANT文	 
	F312	 	MERGE文	 
	F313	 	拡張MERGE文	 
	F314	 	DELETE分岐を持つMERGE文	 
	F321	 	ユーザ認証	 
	F341	 	使用方法テーブル	 
	F361	 	副プログラムのサポート	 
	F381	 	拡張スキーマ操作	 
	F382	 	列データ型変更	 
	F383	 	Set column not null句	 
	F384	 	Drop identity property句	 
	F385	 	Drop column generation expression句	 
	F386	 	Set identity column generation句	 
	F387	 	ALTER TABLE文: ALTER COLUMN句	 
	F388	 	ALTER TABLE文: ADD/DROP CONSTRAINT句	 
	F391	 	長い識別子	 
	F392	 	識別子Unicodeエスケープ	 
	F393	 	リテラル内のUnicodeエスケープ	 
	F394	 	省略可能な標準フォーム指定	 
	F401	 	拡張結合テーブル	 
	F402	 	LOB、配列、複数集合と結合する名前付きの列	 
	F404	 	共通の列名に対する範囲変数	 
	F405	 	NATURAL JOIN	 
	F406	 	FULL OUTER JOIN	 
	F407	 	CROSS JOIN	 
	F411	 	時間帯指定	リテラル解釈に関する違いあり
	F421	 	各国文字	 
	F431	 	読み取りのみのスクロール可能なカーソル	 
	F432	 	明示的なNEXTを持つFETCH	 
	F433	 	FETCH FIRST	 
	F434	 	FETCH LAST	 
	F435	 	FETCH PRIOR	 
	F436	 	FETCH ABSOLUTE	 
	F437	 	FETCH RELATIVE	 
	F438	 	スクロール可能なカーソル	 
	F441	 	拡張集合関数のサポート	 
	F442	 	集合関数内の混在する列参照	 
	F471	コア	スカラ副問い合わせ値	 
	F481	コア	拡張NULL述語	 
	F491	 	制約管理	 
	F492	 	省略可能なテーブル制約の強制	非NULL制約を除く
	F501	コア	機能と準拠ビュー	 
	F501-01	コア	SQL_FEATURESビュー	 
	F501-02	コア	SQL_SIZINGビュー	 
	F502	 	高度ドキュメントテーブル	 
	F531	 	一時テーブル	 
	F555	 	高度な秒精度	 
	F561	 	完全な値式	 
	F571	 	真値試験	 
	F591	 	派生テーブル	 
	F611	 	指示子データ型	 
	F641	 	行、テーブルコンストラクタ	 
	F651	 	カタログ名修飾子	 
	F661	 	単純テーブル	 
	F672	 	遡及的検査制約	 
	F690	 	照合サポート	 
	F692	 	拡張照合サポート	 
	F701	 	参照更新動作	 
	F711	 	ドメインのALTER	 
	F731	 	列のINSERT権限	 
	F751	 	ビューCHECK拡張	 
	F761	 	セッション管理	 
	F762	 	CURRENT_CATALOG	 
	F763	 	CURRENT_SCHEMA	 
	F771	 	接続管理	 
	F781	 	自己参照操作	 
	F791	 	Insensitiveカーソル	 
	F801	 	完全な集合関数	 
	F850	 	問い合わせ式における最上位ORDER BY	 
	F851	 	副問い合わせにおけるORDER BY	 
	F852	 	ビューにおける最上位ORDER BY	 
	F855	 	問い合わせ式における入れ子状のORDER BY	 
	F856	 	問い合わせ式における入れ子状のFETCH FIRST	 
	F857	 	問い合わせ式における最上位FETCH FIRST	 
	F858	 	副問い合わせにおけるFETCH FIRST	 
	F859	 	ビューにおける最上位FETCH FIRST	 
	F860	 	動的FETCH FIRSTにおける行数	 
	F861	 	問い合わせ式における最上位OFFSET	 
	F862	 	副問い合わせにおけるOFFSET	 
	F863	 	問い合わせ式における入れ子状のOFFSET	 
	F864	 	ビューにおける最上位OFFSET	 
	F865	 	OFFSETでのオフセット行数	 
	F867	 	FETCH FIRST句: WITH TIESオプション	 
	F868	 	グループ化されたテーブルでのORDER BY	 
	F869	 	SQL実装情報	 
	S071	 	関数内のSQLパスおよび型名の解決	 
	S090	 	最小配列サポート	 
	S092	 	ユーザ定義型の配列	 
	S095	 	問い合わせによる配列の構築	 
	S096	 	省略可能な配列境界	 
	S098	 	ARRAY_AGG	 
	S099	 	配列の式	 
	S111	 	問い合わせ式内のONLY	 
	S201	 	配列に関するSQL呼出しルーチン	 
	S203	 	配列パラメータ	 
	S204	 	関数の結果型としての配列	 
	S211	 	ユーザ定義キャスト関数	 
	S301	 	拡張UNNEST	 
	S404	 	TRIM_ARRAY	 
	T031	 	BOOLEANデータ型	 
	T054	 	GREATEST、LEAST	NULLの扱いが異なります
	T055	 	文字列パディング関数	 
	T056	 	複数文字TRIM関数	 
	T061	 	UCSサポート	 
	T071	 	BIGINTデータ型	 
	T081	 	省略可能な文字列型の最大長	 
	T121	 	問い合わせ式内のWITH(RECURSIVEを除く)	 
	T122	 	副問い合わせ内のWITH(RECURSIVEを除く)	 
	T131	 	再帰問い合わせ	 
	T132	 	副問い合わせ内の再帰問い合わせ	 
	T133	 	拡張循環指標値	 
	T141	 	SIMILAR述語	 
	T151	 	DISTINCT述語	 
	T152	 	否定付きDISTINCT述語	 
	T171	 	テーブル定義内のLIKE句	 
	T172	 	テーブル定義内のAS副問い合わせ句	 
	T173	 	テーブル定義内の拡張LIKE句	 
	T174	 	識別列	 
	T177	 	連番生成子サポート: 簡単なリスタートオプション	 
	T178	 	識別列: 簡単なリスタートオプション	 
	T191	 	参照動作のRESTRICT	 
	T201	 	参照制約向けの比較可能データ型	 
	T212	 	拡張トリガ機能	 
	T213	 	INSTEAD OFトリガ	 
	T214	 	BEFOREトリガ	 
	T215	 	AFTERトリガ	 
	T216	 	トリガ呼び出し前に真になる検索条件の指定機能	 
	T217	 	TRIGGER権限	 
	T241	 	START TRANSACTION文	 
	T261	 	連鎖トランザクション	 
	T271	 	セーブポイント	 
	T281	 	列粒度のSELECT権限	 
	T285	 	拡張派生列名	 
	T312	 	OVERLAY関数	 
	T321-01	コア	オーバーロードがないユーザ定義関数	 
	T321-02	コア	オーバーロードがないユーザ定義ストアドプロシージャ	 
	T321-03	コア	関数呼び出し	 
	T321-04	コア	CALL文	 
	T321-05	コア	RETURN文	 
	T321-06	コア	ROUTINESビュー	 
	T321-07	コア	PARAMETERSビュー	 
	T323	 	外部ルーチンに対する明示的なセキュリティ	 
	T325	 	修飾付きSQLパラメータ参照	 
	T331	 	基本ロール	 
	T332	 	拡張ロール	 
	T341	 	SQLから呼び出される関数、SQLから呼び出されるプロシージャのオーバーロード	 
	T351	 	囲みコメント	 
	T431	 	拡張グループ化機能	 
	T432	 	入れ子および連結GROUPING SETS	 
	T433	 	複数引数のGROUPING関数	 
	T434	 	GROUP BY DISTINCT	 
	T441	 	ABSおよびMOD関数	 
	T461	 	対称BETWEEN述語	 
	T491	 	LATERAL派生テーブル	 
	T501	 	拡張EXISTS述語	 
	T521	 	CALL文における名前付き引数	 
	T523	 	SQL呼び出しプロシージャのINOUTパラメータに対するデフォルト値	 
	T524	 	CALL文以外でのルーチン呼び出しにおける名前付き引数	 
	T525	 	SQL呼び出し関数のパラメータに対するデフォルト値	 
	T551	 	デフォルト構文用の省略可能なキーワード	 
	T581	 	正規表現部分文字列関数	 
	T591	 	NULLになる可能性のある列のUNIQUE制約	 
	T611	 	基本OLAP演算	 
	T612	 	高度OLAP演算	 
	T613	 	サンプリング	 
	T614	 	NTILE関数	 
	T615	 	LEADおよびLAG関数	 
	T617	 	FIRST_VALUEおよびLAST_VALUE関数	 
	T620	 	WINDOW句: GROUPSオプション	 
	T621	 	拡張数値関数	 
	T622	 	三角関数	 
	T623	 	一般の対数関数	 
	T624	 	常用対数関数	 
	T626	 	ANY_VALUE	 
	T627	 	COUNT DISTINCTがフレームにあるウィンドウ	 
	T631	コア	リスト要素内のIN述語	 
	T651	 	SQLルーチン内のSQLスキーマ文	 
	T653	 	外部ルーチン内のSQLスキーマ文	 
	T655	 	循環依存ルーチン	 
	T661	 	非10進整数リテラル	 
	T662	 	数値リテラルでのアンダースコア	 
	T670	 	スキーマとデータ文の混在	 
	T803	 	文字列に基づくJSON	 
	T811	 	基本SQL/JSON構築関数	 
	T812	 	SQL/JSON: JSON_OBJECTAGG	 
	T813	 	SQL/JSON: ORDER BY付きのJSON_ARRAYAGG	 
	T814	 	JSON_OBJECTやJSON_OBJECTAGGでのコロン	 
	T821	 	基本SQL/JSON問い合わせ演算子	 
	T822	 	SQL/JSON: IS JSON WITH UNIQUE KEYS述語	 
	T823	 	SQL/JSON: PASSING句	 
	T825	 	SQL/JSON: ON EMPTYとON ERROR句	 
	T826	 	ON ERRORまたはON EMPTY句での一般値式	 
	T827	 	JSON_TABLE: 兄弟のNESTED COLUMNS句	 
	T828	 	JSON_QUERY	 
	T829	 	JSON_QUERY: 配列ラッパーオプション	 
	T830	 	SQL/JSON構築関数内での一意キーの強制	 
	T831	 	SQL/JSONパス言語: 厳密モード	 
	T832	 	SQL/JSONパス言語: 項目メソッド	 
	T833	 	SQL/JSONパス言語: 複数の添字	 
	T834	 	SQL/JSONパス言語: ワイルドカードメンバアクセサ	 
	T835	 	SQL/JSONパス言語: フィルター式	 
	T836	 	SQL/JSONパス言語: starts with述語	 
	T837	 	SQL/JSONパス言語: regex_like述語	 
	T840	 	SQL/JSONパス言語での16進整数リテラル	 
	T851	 	SQL/JSON: デフォルトの構文での省略可能なキーワード	 
	T865	 	SQL/JSON項目メソッド: bigint()	 
	T866	 	SQL/JSON項目メソッド: boolean()	 
	T867	 	SQL/JSON項目メソッド: date()	 
	T868	 	SQL/JSON項目メソッド: decimal()	 
	T869	 	SQL/JSON項目メソッド: 精度と位取りを持つdecimal()	 
	T870	 	SQL/JSON項目メソッド: integer()	 
	T871	 	SQL/JSON項目メソッド: number()	 
	T872	 	SQL/JSON項目メソッド: string()	 
	T873	 	SQL/JSON項目メソッド: time()	 
	T874	 	SQL/JSON項目メソッド: time_tz()	 
	T875	 	SQL/JSON項目メソッド: time精度	 
	T876	 	SQL/JSON項目メソッド: timestamp()	 
	T877	 	SQL/JSON項目メソッド: timestamp_tz()	 
	T879	 	等価演算でのJSON	jsonbにて
	T880	 	グループ化演算でのJSON	jsonbにて
	X010	 	XML型	 
	X011	 	XML型の配列	 
	X014	 	XML型の属性	 
	X016	 	永続XML値	 
	X020	 	XMLConcat	 
	X031	 	XMLElement	 
	X032	 	XMLForest	 
	X034	 	XMLAgg	 
	X035	 	XMLAgg: ORDER BYオプション	 
	X036	 	XMLComment	 
	X037	 	XMLPI	 
	X038	 	XMLText	RETURNINGを除いてサポート
	X040	 	基本テーブル対応付け	 
	X041	 	基本テーブル対応付け: NULLがない	 
	X042	 	基本テーブル対応付け: NULLをnilとして扱う	 
	X043	 	基本テーブル対応付け: テーブルをフォレストとして扱う	 
	X044	 	基本テーブル対応付け: テーブルを要素として扱う	 
	X045	 	基本テーブル対応付け: 対象名前空間あり	 
	X046	 	基本テーブル対応付け: データ対応付け	 
	X047	 	基本テーブル対応付け: メタデータ対応付け	 
	X048	 	基本テーブル対応付け: バイナリ列のBASE64符号化	 
	X049	 	基本テーブル対応付け: バイナリ列のHEX符号化	 
	X050	 	高度テーブル対応付け	 
	X051	 	高度テーブル対応付け: NULLがない	 
	X052	 	高度テーブル対応付け: NULLをnilとして扱う	 
	X053	 	高度テーブル対応付け: テーブルをフォレストとして扱う	 
	X054	 	高度テーブル対応付け: テーブルを要素として扱う	 
	X055	 	高度テーブル対応付け: 対象名前空間	 
	X056	 	高度テーブル対応付け: データ対応付け	 
	X057	 	高度テーブル対応付け: メタデータ対応付け	 
	X058	 	高度テーブル対応付け: バイナリ列のBASE64符号化	 
	X059	 	高度テーブル対応付け: バイナリ列のHEX符号化	 
	X060	 	XMLParse: 文字列入力およびCONTENTオプション	 
	X061	 	XMLParse: 文字列入力およびDOCUMENTオプション	 
	X069	 	XMLSerialize: INDENT	 
	X070	 	XMLSerialize: 文字列シリアル化およびCONTENTオプション	 
	X071	 	XMLSerialize: 文字列シリアル化およびDOCUMENTオプション	 
	X072	 	XMLSerialize: 文字列シリアル化	 
	X090	 	XML文書述語	 
	X120	 	SQLルーチンにおけるXMLパラメータ	 
	X121	 	外部ルーチンにおけるXMLパラメータ	 
	X221	 	値により(BY VALUE)XMLを渡す機構	 
	X301	 	XMLTable: 派生列リストオプション	 
	X302	 	XMLTable: 序数列オプション	 
	X303	 	XMLTable: 列デフォルトオプション	 
	X304	 	XMLTable: コンテキスト項目を渡す	XML DOCUMENTでなければなりません
	X400	 	名前と識別子の対応付け	 
	X410	 	列のデータ型の変更: XML型	 



   


サポートされていない機能





以下のSQL:2023で定義されている機能は本リリースのPostgreSQL™では実装されていません。
たまに同等の機能が実装されていることがあります。

    
	識別子	コアか？	説明	コメント
	B011	 	埋め込みAda	 
	B013	 	埋め込みCOBOL	 
	B014	 	埋め込みFortran	 
	B015	 	埋め込みMUMPS	 
	B016	 	埋め込みPascal	 
	B017	 	埋め込みPL/I	 
	B030	 	高度な動的SQL	 
	B031	 	基本動的SQL	 
	B032	 	拡張動的SQL	 
	B033	 	型のないSQLから呼び出す関数の引数	 
	B034	 	カーソル属性の動的指定	 
	B035	 	非拡張記述子名	 
	B036	 	describe input文	 
	B041	 	埋め込みSQL例外宣言への拡張	 
	B051	 	高度な実行権	 
	B111	 	モジュール言語 Ada	 
	B112	 	モジュール言語 C	 
	B113	 	モジュール言語 COBOL	 
	B114	 	モジュール言語 Fortran	 
	B115	 	モジュール言語 MUMPS	 
	B116	 	モジュール言語 Pascal	 
	B117	 	モジュール言語 PL/I	 
	B121	 	ルーチン言語 Ada	 
	B122	 	ルーチン言語 C	 
	B123	 	ルーチン言語 COBOL	 
	B124	 	ルーチン言語 Fortran	 
	B125	 	ルーチン言語 MUMPS	 
	B126	 	ルーチン言語 Pascal	 
	B127	 	ルーチン言語 PL/I	 
	B200	 	多相型テーブル関数(PTF)	 
	B201	 	2つ以上のPTFジェネリックテーブルパラメータ	 
	B202	 	PTFコパーティション	 
	B203	 	2つ以上のコパーティション指定	 
	B204	 	PRUNE WHEN EMPTY	 
	B205	 	パススルー列	 
	B206	 	PTF記述子パラメータ	 
	B207	 	パーティションの外積	 
	B208	 	PTFコンポーネントプロシージャインタフェース	 
	B209	 	PTF拡張名	 
	B211	 	モジュール言語 Ada: VARCHARおよびNUMERICのサポート	 
	B221	 	ルーチン言語 Ada: VARCHARおよびNUMERICのサポート	 
	F054	 	DATE型優先リストにおけるTIMESTAMP	 
	F120	 	GET DIAGNOSTICS文	 
	F121	 	基本診断管理	 
	F122	 	拡張診断管理	 
	F123	 	すべての診断	 
	F124	 	SET TRANSACTION文: DIAGNOSTICS SIZE句	 
	F263	 	単純CASE式におけるカンマ区切り述語	 
	F291	 	UNIQUE述語	 
	F301	 	問い合わせ式内のCORRESPONDING	 
	F403	 	分割結合されたテーブル	 
	F451	 	文字セット定義	 
	F461	 	名前付き文字セット	 
	F521	 	表明	 
	F671	 	CHECK内の副問い合わせ	意図的な省略
	F673	 	CHECK制約内のSQLデータルーチン呼び出しの読み取り	 
	F693	 	SQLセッション、クライアントモジュールの照合	 
	F695	 	翻訳サポート	 
	F696	 	追加用翻訳ドキュメント	 
	F721	 	遅延可能制約	外部キーおよび一意キーのみ
	F741	 	参照MATCH型	部分一致は未実装
	F812	 	基本フラグ付け	 
	F813	 	拡張フラグ付け	 
	F821	 	ローカルなテーブル参照	 
	F831	 	完全なカーソル更新	 
	F832	 	更新可能なスクロール可能カーソル	 
	F833	 	更新可能な順序付けカーソル	 
	F841	 	LIKE_REGEX述語	regexp_like()を検討してください
	F842	 	OCCURRENCES_REGEX関数	regexp_matches()を検討してください
	F843	 	POSITION_REGEX関数	regexp_instr()を検討してください
	F844	 	SUBSTRING_REGEX関数	regexp_substr()を検討してください
	F845	 	TRANSLATE_REGEX関数	regexp_replace()を検討してください
	F846	 	正規表現演算子における8進形式サポート	 
	F847	 	値式正規表現	 
	F866	 	FETCH FIRST句: PERCENTオプション	 
	R010	 	行パターン認識: FROM句	 
	R020	 	行パターン認識: WINDOW句	 
	R030	 	行パターン認識: 完全集約サポート	 
	S011	コア	Distinctデータ型	 
	S011-01	コア	USER_DEFINED_TYPESビュー	 
	S023	 	基本構造化型	 
	S024	 	拡張構造化型	 
	S025	 	終端構造化型	 
	S026	 	自己参照構造化型	 
	S027	 	メソッド名を指定したメソッドの作成	 
	S028	 	交換可能UDTオプションリスト	 
	S041	 	基本参照型	 
	S043	 	拡張参照型	 
	S051	 	型のテーブルの作成	一部サポート
	S081	 	副テーブル	 
	S091	 	基本配列サポート	一部サポート
	S093	 	個別型の配列	 
	S094	 	参照型の配列	 
	S097	 	配列要素の代入	 
	S151	 	型述語	pg_typeof()を参照
	S161	 	副型の扱い	 
	S162	 	参照用の副型の扱い	 
	S202	 	複数集合に関するSQL呼出しルーチン	 
	S231	 	構造化型の位置付け子	 
	S232	 	配列の位置付け子	 
	S233	 	複数集合の位置付け子	 
	S241	 	変換関数	 
	S242	 	変換文の変更	 
	S251	 	ユーザ定義の順序	 
	S261	 	特定型メソッド	 
	S271	 	基本複数集合サポート	 
	S272	 	ユーザ定義型の複数集合	 
	S274	 	参照型の複数集合	 
	S275	 	高度複数集合サポート	 
	S281	 	入れ子の照合型	 
	S291	 	行全体に対する一意性制約	 
	S401	 	配列型に基づく個別型	 
	S402	 	個別型に基づく個別型	 
	S403	 	ARRAY_MAX_CARDINALITY	 
	T011	 	情報スキーマ内のタイムスタンプ	 
	T021	 	BINARYおよびVARBINARYデータ型	 
	T022	 	BINARYおよびVARBINARYデータ型の高度サポート	 
	T023	 	複合2進リテラル	 
	T024	 	2進リテラルにおける空白	 
	T039	 	CLOB位置付け子: 保持不可能	 
	T040	 	CLOBの連結	 
	T041	 	基本LOBデータ型サポート	 
	T042	 	拡張LOBデータ型サポート	 
	T043	 	乗数T	 
	T044	 	乗数P	 
	T045	 	BLOBデータ型	 
	T046	 	CLOBデータ型	 
	T047	 	BLOBに対するPOSITION、OCTET_LENGTH、TRIM、SUBSTRING	 
	T048	 	BLOBの連結	 
	T049	 	BLOB位置付け子: 保持不可能	 
	T050	 	CLOBに対するPOSITION、CHAR_LENGTH、OCTET_LENGTH、LOWER、TRIM、UPPER、SUBSTRING	 
	T051	 	行型	 
	T053	 	すべてのフィールドを参照するための明示的な別名	 
	T062	 	文字長単位	 
	T076	 	DECFLOATデータ型	 
	T101	 	拡張nullabilityの決定	 
	T111	 	更新可能な結合、和集合、列	 
	T175	 	生成列	ほとんどサポート
	T176	 	連番生成子サポート	NEXT VALUE FORを除いてサポート
	T180	 	システムバージョン付きテーブル	 
	T181	 	Application-time periodテーブル	 
	T200	 	トリガDDL	類似していますが完全互換ではありません
	T211	 	基本トリガ機能	 
	T218	 	同一イベントに対する複数のトリガは、作成された順番に実行される	意図的な省略
	T231	 	Sensitiveカーソル	 
	T251	 	SET TRANSACTION文: LOCALオプション	 
	T262	 	複数サーバトランザクション	 
	T272	 	拡張セーブポイント管理	 
	T301	 	関数従属性	一部サポート
	T321	コア	基本SQL呼び出しルーチン	一部サポート
	T322	 	宣言されたデータ型属性	 
	T324	 	SQLルーチンに対する明示的なセキュリティ	 
	T326	 	テーブル関数	 
	T471	 	結果集合戻り値	 
	T472	 	DESCRIBE CURSOR	 
	T495	 	データ変更と取り出しの組み合わせ	異なる構文
	T502	 	Period述語	 
	T511	 	トランザクション数	 
	T522	 	SQL呼び出しプロシージャのINパラメータに対するデフォルト値	呼び出しでのDEFAULTキーワードを除いてサポート
	T561	 	保持可能な位置付け子	 
	T571	 	配列を返すSQL呼び出し関数	 
	T572	 	複数集合を返すSQL呼び出し関数	 
	T601	 	ローカルなカーソル参照	 
	T616	 	LEADおよびLAG関数用のnull処理オプション	 
	T618	 	NTH_VALUE関数	関数自体はありますが、一部のオプションがありません
	T619	 	入れ子状ウィンドウ関数	 
	T625	 	LISTAGG	 
	T641	 	複数列の代入	構文の一部のみサポート
	T652	 	SQLルーチン内の動的SQL文	 
	T654	 	外部ルーチン内の動的SQL文	 
	T801	 	JSONデータ型	 
	T802	 	拡張JSONデータ型	 
	T824	 	JSON_TABLE: 特定のPLAN句	 
	T838	 	JSON_TABLE: PLAN DEFAULT句	 
	T839	 	文字列への/からのdatetimeの書式化されたキャスト	 
	T860	 	SQL/JSON単純化アクセサ: 列参照のみ	 
	T861	 	SQL/JSON単純化アクセサ: 大文字小文字を区別するJSONメンバアクセサ	 
	T862	 	SQL/JSON単純化アクセサ: ワイルドカードメンバアクセサ	 
	T863	 	SQL/JSON単純化アクセサ: メンバアクセサとしての単一引用符で括られた文字列リテラル	 
	T864	 	SQL/JSON単純化アクセサ	 
	T878	 	SQL/JSON項目メソッド: timestamp精度	 
	T881	 	順序演算でのJSON	jsonbにて、一部サポート
	T882	 	複数集合要素グループ化演算でのJSON	 
	M001	 	データリンク	 
	M002	 	SQL/CLI経由のデータリンク	 
	M003	 	埋め込みSQL経由のデータリンク	 
	M004	 	外部データサポート	一部サポート
	M005	 	外部スキーマサポート	 
	M006	 	GetSQLStringルーチン	 
	M007	 	TransmitRequest	 
	M009	 	GetOptsおよびGetStatisticsルーチン	 
	M010	 	外部データラッパーサポート	異なるAPI
	M011	 	Ada経由のデータリンク	 
	M012	 	C経由のデータリンク	 
	M013	 	COBOL経由のデータリンク	 
	M014	 	Fortran経由のデータリンク	 
	M015	 	M経由のデータリンク	 
	M016	 	Pascal経由のデータリンク	 
	M017	 	PL/I経由のデータリンク	 
	M018	 	Adaにおける外部データラッパーインタフェース処理	 
	M019	 	Cにおける外部データラッパーインタフェース処理	異なるAPI
	M020	 	COBOLにおける外部データラッパーインタフェース処理	 
	M021	 	Fortranにおける外部データラッパーインタフェース処理	 
	M022	 	MUMPSにおける外部データラッパーインタフェース処理	 
	M023	 	Pascalにおける外部データラッパーインタフェース処理	 
	M024	 	PL/Iにおける外部データラッパーインタフェース処理	 
	M030	 	SQLサーバ外部データサポート	 
	M031	 	外部データラッパー汎用ルーチン	 
	X012	 	XML型の複数集合	 
	X013	 	XML型の個別型	 
	X015	 	XML型のフィールド	 
	X025	 	XMLCast	 
	X030	 	XMLDocument	 
	X065	 	XMLParse: バイナリ文字列入力およびCONTENTオプション	 
	X066	 	XMLParse: バイナリ文字列入力およびDOCUMENTオプション	 
	X068	 	XMLSerialize: BOM	 
	X073	 	XMLSerialize: BLOBシリアル化およびCONTENTオプション	 
	X074	 	XMLSerialize: BLOBシリアル化およびDOCUMENTオプション	 
	X075	 	XMLSerialize: BLOBシリアル化	 
	X076	 	XMLSerialize: VERSION	 
	X077	 	XMLSerialize: 明示的ENCODINGオプション	 
	X078	 	XMLSerialize: 明示的XML宣言	 
	X080	 	XML発行における名前空間	 
	X081	 	問い合わせレベルのXML名前空間宣言	 
	X082	 	DMLにおけるXML名前空間宣言	 
	X083	 	DDLにおけるXML名前空間宣言	 
	X084	 	複合文におけるXML名前空間宣言	 
	X085	 	事前定義の名前空間接頭辞	 
	X086	 	XMLTableにおけるXML名前空間宣言	 
	X091	 	XMLコンテンツ述語	 
	X096	 	XMLExists	XPath 1.0のみ
	X100	 	XML用のホスト言語サポート: CONTENTオプション	 
	X101	 	XML用のホスト言語サポート: DOCUMENTオプション	 
	X110	 	XML用のホスト言語サポート: VARCHAR対応付け	 
	X111	 	XML用のホスト言語サポート: CLOB対応付け	 
	X112	 	XML用のホスト言語サポート: BLOB対応付け	 
	X113	 	XML用のホスト言語サポート: STRIP WHITESPACEオプション	 
	X114	 	XML用のホスト言語サポート: PRESERVE WHITESPACEオプション	 
	X131	 	問い合わせレベルのXMLBINARY句	 
	X132	 	DMLにおけるXMLBINARY句	 
	X133	 	DDLにおけるXMLBINARY句	 
	X134	 	複合文におけるXMLBINARY句	 
	X135	 	副問い合わせにおけるXMLBINARY句	 
	X141	 	IS VALID述語: データ駆動ケース	 
	X142	 	IS VALID述語: ACCORDING TO句	 
	X143	 	IS VALID述語: ELEMENT句	 
	X144	 	IS VALID述語: スキーマ位置	 
	X145	 	検査制約外のIS VALID述語	 
	X151	 	DOCUMENTオプション付きIS VALID述語	 
	X152	 	CONTENTオプション付きIS VALID述語	 
	X153	 	SEQUENCEオプション付きIS VALID述語	 
	X155	 	IS VALID述語: ELEMENT句のないNAMESPACE	 
	X157	 	IS VALID述語: ELEMENT句付きのNO NAMESPACE	 
	X160	 	登録XMLスキーマに対する基本情報スキーマ	 
	X161	 	登録XMLスキーマに対する高度情報スキーマ	 
	X170	 	XMLにおけるnull取り扱いオプション	 
	X171	 	NIL ON NO CONTENTオプション	 
	X181	 	XML(DOCUMENT(UNTYPED))型	 
	X182	 	XML(DOCUMENT(ANY))型	 
	X190	 	XML(SEQUENCE)型	 
	X191	 	XML(DOCUMENT(XMLSCHEMA))型	 
	X192	 	XML(CONTENT(XMLSCHEMA))型	 
	X200	 	XMLQuery	 
	X201	 	XMLQuery: RETURNING CONTENT	 
	X202	 	XMLQuery: RETURNING SEQUENCE	 
	X203	 	XMLQuery: コンテキスト項目を渡す	 
	X204	 	XMLQuery: XQuery変数の初期化	 
	X205	 	XMLQuery: EMPTY ON EMPTYオプション	 
	X206	 	XMLQuery: NULL ON EMPTYオプション	 
	X211	 	XML 1.1サポート	 
	X222	 	参照により(BY REF)XMLを渡す機構	パーサはBY REFを受け付けますが無視します。常にBY VALUEで渡されます
	X231	 	XML(CONTENT(UNTYPED))型	 
	X232	 	XML(CONTENT(ANY))型	 
	X241	 	XML発行におけるRETURNING CONTENT	 
	X242	 	XML発行におけるRETURNING SEQUENCE	 
	X251	 	XML(DOCUMENT(UNTYPED))型の永続的なXML値	 
	X252	 	XML(DOCUMENT(ANY))型の永続的なXML値	 
	X253	 	XML(CONTENT(UNTYPED))型の永続的なXML値	 
	X254	 	XML(CONTENT(ANY))型の永続的なXML値	 
	X255	 	XML(SEQUENCE)型の永続的なXML値	 
	X256	 	XML(DOCUMENT(XMLSCHEMA))型の永続的なXML値	 
	X257	 	XML(CONTENT(XMLSCHEMA))型の永続的なXML値	 
	X260	 	XML型: ELEMENT句	 
	X261	 	XML型: ELEMENT句のないNAMESPACE	 
	X263	 	XML型: ELEMENT句付きNO NAMESPACE	 
	X264	 	XML型: スキーマ位置	 
	X271	 	XMLValidate: データ駆動ケース	 
	X272	 	XMLValidate: ACCORDING TO句	 
	X273	 	XMLValidate: ELEMENT句	 
	X274	 	XMLValidate: スキーマ位置	 
	X281	 	XMLValidate DOCUMENTオプション付き	 
	X282	 	XMLValidate CONTENTオプション付き	 
	X283	 	XMLValidate SEQUENCEオプション付き	 
	X284	 	XMLValidate: ELEMENT句のないNAMESPACE	 
	X286	 	XMLValidate: ELEMENT句付きNO NAMESPACE	 
	X300	 	XMLTable	XPath 1.0のみ
	X305	 	XMLTable: XQuery変数の初期化	 



   

XMLの制限とSQL/XMLへの適合





SQL:2006でISO/IEC 9075-14 (SQL/XML)のXML関連の仕様についての重要な改定が導入されました。
PostgreSQL™のXMLデータ型と関連する関数の実装は、いくつか新しい版から取り入れつつ、主として2003以前の版に従っていました。
特に:
    
	

現在の標準は、型付けされていないかXMLスキーマで型付けされている変数で「document」や「content」を格納するXMLのデータ型の一群や、任意のXML内容の断片を格納するXML(SEQUENCE)型を提供しますが、PostgreSQL™は「document」か「content」だけを格納できる単一のxml型を提供します。
標準の「sequence」型と同等のものはありません。
      

	

PostgreSQL™はSQL:2006で導入された二つの関数を提供しますが、それらに対して標準で指定されているXML QueryではなくXPath 1.0言語を使う変形としてです。
      

	

PostgreSQL™はRETURNING CONTENTやRETURNING SEQUENCE句をサポートしません。これらの句を持つように定義された関数は暗黙的に内容を返します。
      




   


本節では遭遇するであろういくつかの結果の違いを示します。
   
問い合わせはXPath 1.0に限定される





PostgreSQL™固有の関数xpath()とxpath_exists()はXPath言語を使ってXML文書に問い合わせます。
PostgreSQL™は、公式にはXQuery言語を使う標準関数のXMLEXISTSとXMLTABLEについても、XPathのみという変形を提供しています。
これら全ての関数についてPostgreSQL™は、XPath 1.0のみを提供する、libxml2ライブラリに依存しています。
    


XQuery言語とXPathバージョン2.0以降との間には強い関連があり、両方で構文として有効で正常に実行できる全ての式は同じ結果を生成します（数字を含む式の参照や事前定義された要素の参照について細かな例外があり、それらをXQueryは対応する文字で置換しますが、XPathはそのままにします）。
しかし、これら言語とXPath 1.0との間には、このような関連はありません。XPath 1.0はより古い言語であって多くの点で異なります。
    


認識すべき二つの種類の制限事項があります。
標準SQLで指定される関数に対してXQueryでなくXPathであるという制限と、標準関数でもPostgreSQL™固有関数でもXPathがバージョン1.0であるという制限です。
    
XQueryがXPathである制限





XPathに含まれないXQueryの機能:

      
	

XQueryの式は、全てのXPathでできる値に加えて、新たなXMLノードを生成して返すことができます。
XPathは原子型（数値、文字列など）の値を作成して返すことができますが、XMLノードは入力として式に与えられる文書にあらかじめ存在するものしか返せません。
        

	

XQueryは構造に対する反復、並べ替え、グループ化の制御ができます。
        

	

XQueryでは局所関数を宣言して使用することができます。
        




     


最近のXPathバージョンはこれらをカバーする機能（関数形式のfor-eachとsort、無名関数、文字列からノードを作るparse-xmlなど）を提供し始めていますが、これら機能はXPath 3.0より前では提供されません。
     

XPathが1.0であることによる制限





XQueryとXPath 2.0以降に慣れた開発者にとって、XPath 1.0には以下の対処すべき違いがあります。

      
	

XQuery/XPath式の基本的な型で、XMLノードや原子値、それらの両方を複数含むことができるsequenceがXPath 1.0には存在しません。
1.0の式はノードセット（0個以上のXMLノードを含む）か単独の原子値のみ生成できます。
        

	

任意の要素群を任意の順序で含めることができるXQuery/XPathのシーケンスと違い、XPath 1.0のノードセットは順序保証がなく、集合のように、同じ要素が複数出現することを許しません。
         
注記


libxml2ライブラリは常に入力文書での順序に連動した同じ順序でPostgreSQL™にノードセット返すように見えます。
ライブラリのドキュメントはこの振る舞いを保証していませんし、XPath 1.0式はこれを制御できません。
          


        

	

XQuery/XPathがXML Schemaで定義されたすべての型と、これらの型に対する多数の演算子や関数を提供する一方、XPath 1.0ではノードセットと3つの原子型boolean、double、stringのみが使えます。
        

	

XPath 1.0には条件演算子がありません。
if ( hat ) then hat/@size else "no hat"といったXQuery/XPathの式は、XPath 1.0では実現できません。
        

	

XPath 1.0には文字列の順序比較演算子がありません。
"cat" < "dog"も"cat" > "dog"も、どちらも2つのNaNの数値比較であるため、偽になります。
対照的に=と!=は文字列を文字列として比較します。
        

	

XPath 1.0では、XQuery/XPathで定義されているところの値比較と一般比較の区別が曖昧です。
sale/@hatsize = 7とsale/@customer = "alice"は、共に実体のある定量的な比較であり、与えられた属性に対する値を伴うsaleがあるなら真ですが、sale/@taxable = false()はノードセット全体の有効なブール値との値比較です。
taxable属性を持つsaleが全く無い場合のみ真になります。
        

	

XQuery/XPathデータモデルでは、ドキュメントノードはドキュメント形式（すなわちコメントと外側の処理指示だけを伴う厳密に一つだけのトップレベル要素）かコンテキスト形式（これらの制約が緩められたもの）のいずれかを持つことができます。
これに対してXPath 1.0ではルートノードはドキュメント形式のみです。
このことは、PostgreSQL™のXPathに基づくどの関数に対してもコンテキスト要素として渡されるxml値がドキュメント形式でなければならない理由の一つです。
        




     


ここに挙げたものは違いの全てではありません。
XQueryと2.0以降のXPathには、XPath 1.0互換モードがあり、このモードで摘要されるW3Cの関数ライブラリの変更点と言語の変更点のリストは、より完成された（しかし未だ完全ではない）違いの説明を提供します。
この互換モードは新しい言語を正確にXPath 1.0と等しくできるわけではありません。
     

SQLとXMLのデータ型および値のマッピング





SQL:2006以降では、標準SQLデータ型とXMLスキーマ型の間の両方向の変換が正確に明記されています。
しかしながら、その規則はXQuery/XPathの型と意味を用いて説明されていて、XPath1.0の異なるデータモデルへの直接の適用は含まれません。
     


PostgreSQL™がSQLデータの値からXML（xmlelementで）、あるいは、XMLからSQL（xmltableの出力列で）に変換するとき、特別扱いされる一部の場合を除いて、PostgreSQL™は単純にXMLデータ型のXPath 1.0文字列形式がSQLデータ型のテキスト入力形式として有効であると想定し、逆向きの変換でも同様です。
この規則は多くのデータ型に対して実装が単純という長所を持ち、標準で明記された変換と似た結果になります。
     


他システムとの相互運用性が重要なところでは、一部のデータ型に対して標準の変換を実現するために明示的に（「データ型書式設定関数」にあるような）データ型整形関数を使うことがおそらく必要です。
     


その他の実装の制限





本節はlibxml2ライブラリ固有の制限ではないけれども、PostgreSQL™の現在の実装で適用される制限について述べます。
    
引き渡し機構はBY VALUEのみ対応





標準SQLは、SQLからXML関数にXML引数を渡す、あるいは結果を受け取るときに適用される2つの引き渡し方式を定義しています。
BY REFでは特定のXML値がそのノードIDを保持し、BY VALUEではXML内容が渡されてノードIDは保持されません。
方式は、パラメータリストの手前にそれらすべてのデフォルトとして、あるいは、各パラメータの後ろにデフォルトを上書きするものとして、指定することができます。
     


違いを例を挙げて示します。もしxがXML値であるなら、SQL:2006環境でのこれら2つの問い合わせは、それぞれtrueとfalseを返すでしょう。



SELECT XMLQUERY('$a is $b' PASSING BY REF x AS a, x AS b NULL ON EMPTY);
SELECT XMLQUERY('$a is $b' PASSING BY VALUE x AS a, x AS b NULL ON EMPTY);


     


PostgreSQL™は、XMLEXISTSやXMLTABLE構築でBY VALUEやBY REFを受け付けますが、無視します。
xmlデータ型は連続した文字列表現を持ちますので、保持されるノードIDは無く、引き渡しは実際には常にBY VALUEです。
     

問い合わせに名前付きパラメータは渡せない





XPathベースの関数はXPath式のコンテキスト要素として働くようにパラメータを渡すことをサポートしていますが、名前付きパラメータの式にできるように追加値を渡すことはサポートしていません。
     

XML(SEQUENCE)型は無い





PostgreSQL™のxmlデータ型はDOCUMENTまたはCONTENT形式でのみ値を保持できます。
XQuery/XPath式コンテキストの要素は単独のXMLノードか原子値でなければなりません。しかし、XPath 1.0ではさらにXMLノードのみに制限していて、加えてCONTENTが可能なノードタイプを持ちません。
結果として、整形式のDOCUMENTのみが、PostgreSQL™でXPathコンテキストの要素として提供されるXML値の形式です。
     



付録E リリースノート





このリリースノートには、PostgreSQL™の各リリースでなされた重要な変更点が記載されています。
また、主要機能や移行に関する問題点も最初に記載されています。
リリースノートにはごく一部のユーザにしか影響しない変更点や内部的なものであるためユーザには隠れている変更点は記載されていません。
例えば、オプティマイザはほぼすべてのリリースで改良されていますが、この改良はユーザにとっては通常、ただ問い合わせが高速になったと感じるものです。
  


各リリースにおける変更点の全一覧は、各リリースのGitログを参照することで入手できます。
pgsql-committersメーリングリストにもすべてのソースコードの変更点が記録されています。
また、特定のファイルに対する変更点を表示するWebインタフェースが存在します。
  


各項目の後に記述した名前は、その項目の主な開発者の名前です。
もちろんすべての変更はコミュニティによる議論やパッチレビューが行われていますので、各項目は本当はコミュニティによるものと言えます。
  


リリースノート内のセクションマーカー(§)は、リリースノート項目の主要な責任者によるgitコミットメッセージとソースツリーの変更が確認できるgitwebページにリンクしています。
表示されていない追加のgitコミットがあるかもしれません。
  
リリース18



リリース日: 2025-09-25
概要





PostgreSQL™ 18には、以下をはじめとする多数の新機能と拡張が含まれています。
   
	

シーケンシャルスキャン、ビットマップヒープスキャン、バキューム、その他操作のパフォーマンスを改善できる非同期I/O(AIO)サブシステム。
     

	

pg_upgradeはオプティマイザ統計を保持するようになりました。
     

	

より多くの場合で複数列B-treeインデックスを使用できる「スキップスキャン」検索のサポート。
     

	

タイムスタンプ順のUUIDを生成するuuidv7()関数。
     

	

読み取り操作中に値を計算する仮想生成列。
これが生成列のデフォルトになりました。
     

	

OAuth認証サポート。
     

	

INSERT(7)、UPDATE(7)、DELETE(7)、MERGE(7)コマンドのRETURNING句でのOLDおよびNEWのサポート。
     

	

PRIMARY KEY、UNIQUE、およびFOREIGN KEY制約の一時的な制約、または範囲に対する制約。
     





PostgreSQL™ 18の上記の項目とその他の新機能は次節でより詳しく説明されます。
   

バージョン18への移行





以前のリリースからデータを移行したい時は、どのリリースについても、pg_dumpall(1)を利用したダンプとリストア、あるいはpg_upgrade(1)や論理レプリケーションの使用が必要です。
新たなメジャーバージョンへの移行に関する一般的な情報については「PostgreSQL™クラスタのアップグレード処理」を参照してください。
   


バージョン18には、以前のバージョンとの互換性に影響するかもしれない多数の変更点が含まれています。
以下の非互換性に注意してください。
   
	

initdb(1)のデータチェックサムのデフォルト値が有効に変更されました。
(Greg Sabino Mullane)
    §
    


チェックサムは、新しいinitdbの--no-data-checksumsオプションで無効にすることができます。
pg_upgrade(1)はクラスタのチェックサム設定の一致を必要とするため、この新しいオプションはチェックサム無しの古いクラスタをアップグレードする際に役立ちます。
    

	

タイムゾーン略称の扱いが変更されました。
(Tom Lane)
    §
    


システムは今後、サーバ変数timezone_abbreviationsを確認する前に、現在のセッションのタイムゾーン略称を優先するようになりました。
以前はtimezone_abbreviationsが最初にチェックされていました。
    

	

MD5パスワード認証が非推奨になりました。
(Nathan Bossart)
    §
    


MD5パスワードのサポートは、将来のメジャーバージョンリリースで削除される予定です。
CREATE ROLE(7)とALTER ROLE(7)は、MD5パスワードを設定する際に非推奨の警告を出力するようになりました。
これらの警告は、md5_password_warningsパラメータをoffに設定することで無効にできます。
    

	

VACUUM(7)とANALYZE(7)が親の継承子テーブルも処理するようになりました。
(Michael Harris)
    §
    


以前の動作は、新しいONLYオプションを使用することで実行できます。
    

	

COPY FROMがCSVファイルの読み込み時に、\.をファイル終端マーカーとして扱わないようになりました。
(Daniel Vérité, Tom Lane)
    §
    §
    


psql(1)は、STDINからCSVファイルを読み込む際に、引き続き\.をファイル終端マーカーとして扱います。
PostgreSQL™ 18サーバに接続する古いpsqlクライアントでは、\copyの問題が発生する可能性があります。
また、このリリースでは、\.は行に単独で記述する必要があります。
    

	

UNLOGGEDパーティションテーブルが禁止されました。
(Michael Paquier)
    §
    


以前はALTER TABLE SET [UN]LOGGEDは何もせず、UNLOGGEDパーティションテーブルを作成しても、その子テーブルがUNLOGGEDになりませんでした。
    

	

AFTERトリガは、トリガイベントがキューに追加された時点で有効なロールで実行されるようになりました。
(Laurenz Albe)
    §
    


以前は、このようなトリガはトリガの実行時（例えばCOMMIT(7)時）に有効であったロールとして実行されていました。
これは、キュー追加時とトランザクションコミットの間でロールが変更される場合に重要です。
    

	

GRANT(7)/REVOKE(7)で機能していなかったRULE権限が削除されました。
(Fujii Masao)
    §
    


これらはPostgreSQL™ 8.2以降、機能していませんでした。
    

	

pg_backend_memory_contextsビューのparent列が削除されました。
(Melih Mutlu)
    §
    


pg_backend_memory_contextsビューにpath列が追加されたため、これは不要になりました。
    

	

pg_backend_memory_contextsビューのlevel列とpg_log_backend_memory_contexts()関数が1始まりに変更されました。
(Melih Mutlu, Atsushi Torikoshi, David Rowley, Fujii Masao)
    §
    §
    §
    


これらは以前0始まりでした。
    

	

全文検索において、常にlibcを使用するのではなく、クラスタのデフォルトの照合順序プロバイダを使用して設定ファイルと辞書を読み込むように変更されました。
(Peter Eisentraut)
    §
    


LC_CTYPEで処理される文字に対してlibcとは異なる動作をする非libcプロバイダ（例えばICUやbuiltinなど）をデフォルトで使用しているクラスタでは、一部の全文検索関数とpg_trgm拡張の動作が変更される可能性があります。
このようなクラスタをpg_upgrade(1)を使用してアップグレードする場合は、アップグレード後に全文検索とpg_trgmに関するすべてのインデックスを再作成することが推奨されます。
    




変更点





PostgreSQL™ 18と前メジャーリリースとの詳細な変更点を記載しました。
    
サーバ



オプティマイザ



	

不要なテーブルの自己結合が自動的に除去されるようになりました。
(Andrey Lepikhov, Alexander Kuzmenkov, Alexander Korotkov, Alena Rybakina)
      §
      


この最適化は、サーバ変数enable_self_join_eliminationを使用して無効にできます。
      

	

オプティマイザ統計を改善するために、一部のIN (VALUES ...)がx = ANY ...に変換されるようになりました。
(Alena Rybakina, Andrei Lepikhov)
      §
      

	

インデックス処理を高速化するために、OR句を配列に変換できるようになりました。
(Alexander Korotkov, Andrey Lepikhov)
      §
      

	

INTERSECT、EXCEPT、ウィンドウ集約関数、ビュー列の別名の処理が高速化されました。
(Tom Lane, David Rowley)
      §
      §
      §
      §
      

	

並べ替えを回避するために、SELECT DISTINCTのキーを内部的に並べ替えられるようになりました。
(Richard Guo)
      §
      


この最適化は、enable_distinct_reorderingを使用して無効にできます。
      

	

他の列に関数的に従属しているGROUP BY列が無視されるようになりました。
(Zhang Mingli, Jian He, David Rowley)
      §
      


GROUP BY句に、一意インデックスのすべての列と、同じテーブルの他の列が含まれる場合、これらの他の列は冗長であるため、グループ化から除外できます。
これは、非遅延主キーではすでに当てはまっていました。
      

	

GROUPING SETSの一部HAVING句をWHERE句にプッシュできるようになりました。
(Richard Guo)
      §
      §
      §
      §
      


これにより、より早い段階での行フィルタリングが可能になりました。
このリリースでは、誤った結果を返していた一部のGROUPING SETS問い合わせも修正されています。
      

	

numeric型およびtimestamp型の値を使用したgenerate_series()の行推定値が改善されました。
(David Rowley, Song Jinzhou)
      §
      §
      

	

オプティマイザがRight Semi Joinプランを使用できるようになりました。
(Richard Guo)
      §
      


準結合は、少なくとも1つの一致があるかどうかを確認する必要がある場合に使用されます。
      

	

マージ結合でインクリメンタルソートが使用できるようになりました。
(Richard Guo)
      §
      

	

多数のパーティションにアクセスする問い合わせの実行計画作成の効率が改善されました。
(Ashutosh Bapat, Yuya Watari, David Rowley)
      §
      §
      

	

より多くのケースでパーティション単位の結合ができるようになり、メモリ使用量が削減されました。
(Richard Guo, Tom Lane, Ashutosh Bapat)
      §
      §
      

	

パーティションへの問い合わせのコスト見積りが改善されました。
(Nikita Malakhov, Andrei Lepikhov)
      §
      

	

SQL言語関数の実行計画のキャッシュが改善されました。
(Alexander Pyhalov, Tom Lane)
      §
      §
      

	

無効化されたオプティマイザ機能の処理が改善されました。
(Robert Haas)
      §
      




インデックス



	

btreeインデックスのスキップスキャンが利用可能となりました。
(Peter Geoghegan)
      §
      §
      


これにより、マルチカラムbtreeインデックスをより多くの場合に使用することができます。
例えば、最初または前の方のインデックス付けされた列に制限がない場合（または、等しくない列がある場合）や、後の方のインデックス付けされた列に有用な制限がある場合などです。
      

	

非btree一意インデックスをパーティションキーやマテリアライズドビューで使用できるようになりました。
(Mark Dilger)
      §
      §
      


インデックス型は依然として等価比較をサポートする必要があります。
      

	

GINインデックスの並列作成が可能になりました。
(Tomas Vondra, Matthias van de Meent)
      §
      

	

値のソートサポートにより、範囲型GiSTおよびbtreeインデックス構築が高速化されました。
(Bernd Helmle)
      §
      




性能一般



	

非同期I/Oサブシステムが追加されました。
(Andres Freund, Thomas Munro, Nazir Bilal Yavuz, Melanie Plageman)
      §
      §
      §
      §
      §
      §
      §
      §
      §
      §
      §
      


この機能により、バックエンドは複数の読み取り要求をキューイングできるようになり、シーケンシャルスキャン、ビットマップヒープスキャン、バキューム処理などをより効率的に実行できます。
これは、サーバ変数io_methodによって有効化され、制御用にサーバ変数io_combine_limitとio_max_combine_limitが追加されました。
また、fadvise()をサポートしないシステムでeffective_io_concurrencyとmaintenance_io_concurrencyにゼロより大きな値を設定できます。
新しいシステムビューpg_aiosは、非同期I/Oに使用されているファイルハンドルを表示します。
      

	

多くのリレーションにアクセスする問い合わせのロック性能が改善しました。
(Tomas Vondra)
      §
      

	

ハッシュ結合とGROUP BYのパフォーマンスが向上して、メモリ使用量が削減されました。
(David Rowley, Jeff Davis)
      §
      §
      §
      §
      §
      


これにより、EXCEPTで使用されるハッシュ集合操作と、サブプラン値のハッシュ検索も改善されます。
      

	

通常のバキューム処理で全可視ページであっても、一部のページを凍結できるようになりました。
(Melanie Plageman)
      §
      §
      


これにより、後続のリレーション全体の凍結でのオーバーヘッドが軽減されます。
凍結の積極性はサーバ変数およびテーブルごとの設定であるvacuum_max_eager_freeze_failure_rateによって制御できます。
従来は、凍結が必要になるまでバキュームは全可視ページを処理しませんでした。
      

	

VACUUM(7)実行時のファイル切り捨てを制御するサーバ変数vacuum_truncateが追加されました。
(Nathan Bossart, Gurjeet Singh)
      §
      


同じ名前と動作を持つストレージレベルのパラメータは既に存在していました。
      

	

サーバ変数effective_io_concurrencyとmaintenance_io_concurrencyのデフォルト値が16に増やされました。
(Melanie Plageman)
      §
      §
      


これにより、現代のハードウェアをより正確に反映できます。
      




監視



	

サーバ変数log_connectionsのロギング粒度が向上しました。
(Melanie Plageman)
      §
      


このサーバ変数は以前はブール値だけでしたが、現在もサポートされています。
      

	

接続段階の継続時間を報告するためのlog_connectionsオプションが追加されました。
(Melanie Plageman)
      §
      

	

クライアントIPアドレスを出力するためのlog_line_prefixにエスケープ%Lが追加されました。
(Greg Sabino Mullane)
      §
      

	

ロック取得の失敗を記録するためのサーバ変数log_lock_failuresが追加されました。
(Yuki Seino, Fujii Masao)
      §
      §
      


具体的には、SELECT ... NOWAITのロック失敗を報告します。
      

	

VACUUM(7)、ANALYZE(7)、およびそれらの自動実行で費やされた時間を報告するようpg_stat_all_tablesとその類型が修正されました。
(Sami Imseih)
      §
      


新しい列はtotal_vacuum_time、total_autovacuum_time、total_analyze_time、およびtotal_autoanalyze_timeです。
      

	

VACUUM(7)とANALYZE(7)に遅延時間の報告が追加されました。
(Bertrand Drouvot, Nathan Bossart)
      §
      §
      


この情報は、サーバログ、システムビューpg_stat_progress_vacuumとpg_stat_progress_ANALYZE、およびVERBOSEモード時のVACUUM(7)とANALYZE(7)の出力に表示されます。
追跡はサーバ変数track_cost_delay_timingで有効にする必要があります。
      

	

ANALYZE VERBOSEにWAL、CPU、平均読み取り統計の出力が追加されました。
(Anthonin Bonnefoy)
      §
      §
      

	

VACUUM/ANALYZE (VERBOSE)および自動バキュームのログ出力に完全なWALバッファカウントが追加されました。
(Bertrand Drouvot)
      §
      

	

バックエンドごとのI/O統計のレポート機能が追加されました。
(Bertrand Drouvot)
      §
      §
      


統計はpg_stat_get_backend_io()経由でアクセスします。
バックエンドごとのI/O統計はpg_stat_reset_backend_stats()経由でクリアできます。
      

	

I/Oアクティビティをバイト単位で報告するpg_stat_io列が追加されました。
(Nazir Bilal Yavuz)
      §
      


新しい列はread_bytes、write_bytes、extend_bytesです。
常にBLCKSZと等しいop_bytes列は削除されました。
      

	

pg_stat_ioにWAL I/Oアクティビティの行が追加されました。
(Nazir Bilal Yavuz, Bertrand Drouvot, Michael Paquier)
      §
      §
      §
      


これにはWALレシーバのアクティビティと、そのような書き込みのためのイベント待機が含まれます。
      

	

サーバ変数track_wal_io_timingで制御するWALタイミングの追跡をpg_stat_walからpg_stat_ioに変更します。
(Bertrand Drouvot)
      §
      

	

pg_stat_walから読み取り/同期の列が削除されました。
(Bertrand Drouvot)
      §
      §
      


これにより、wal_write、wal_sync、wal_write_time、wal_sync_timeの各列が削除されます。
      

	

バックエンドごとのWAL統計を返すpg_stat_get_backend_wal()関数が追加されました。
(Bertrand Drouvot)
      §
      


バックエンドごとのWAL統計は、pg_stat_reset_backend_stats()でクリアできます。
      

	

PGDATA/pg_wal/summariesの内容を具体的にリストするpg_ls_summariesdir()関数が追加されました。
(Yushi Ogiwara)
      §
      

	

完了したチェックポイントの数を報告するpg_stat_checkpointer.num_done列が追加されました。
(Anton A. Melnikov)
      §
      


num_timedおよびnum_requested列は完了したチェックポイントとスキップされたチェックポイントの両方をカウントします。
      

	

SLRUバッファの書き込みを報告するpg_stat_checkpointer.slru_written列が追加されました。
(Nitin Jadhav)
      §
      


また、チェックポイントサーバのログメッセージを変更して、共有バッファSLRUバッファの値を別々に報告するようにします。
      

	

pg_stat_databaseに並列ワーカーのアクティビティを報告する列が追加されました。
(Benoit Lobréau)
      §
      


新しい列はparallel_workers_to_launchとparallel_workers_launchedです。
      

	

定数リストのquery id計算では、最初と最後の定数のみを考慮するようになりました。
(Dmitry Dolgov, Sami Imseih)
      §
      §
      §
      


ジャンブリングはpg_stat_statementsで使用されます。
      

	

同じリレーション名を使用する問い合わせをグループ化するためにquery id計算が調整されました。
(Michael Paquier, Sami Imseih)
      §
      


異なるスキーマのテーブルに異なる列名がある場合でも当てはまります。
      

	

メモリコンテキストの型を報告するpg_backend_memory_contexts.type列が追加されました。
(David Rowley)
      §
      

	

メモリコンテキストの親を示すpg_backend_memory_contexts.path列が追加されました。
(Melih Mutlu)
      §
      




権限



	

データベースアクセス制御の詳細を取得するpg_get_acl()関数が追加されました。
(Joel Jacobson)
      §
      §
      

	

ラージオブジェクトの権限を確認するhas_largeobject_privilege()関数が追加されました。
(Yugo Nagata)
      §
      

	

ALTER DEFAULT PRIVILEGES(7)でラージオブジェクトのデフォルト権限を定義できるようになりました。
(Takatsuka Haruka, Yugo Nagata, Laurenz Albe)
      §
      

	

定義済みロールpg_signal_autovacuum_workerが追加されました。
(Kirill Reshke)
      §
      


これにより、自動バキュームのワーカーにシグナルを送ることができます。
      




サーバ設定



	

OAuth認証方式のサポートが追加されました。
(Jacob Champion, Daniel Gustafsson, Thomas Munro)
      §
      


これにより、pg_hba.confにOAuth認証方式、libpq OAuthオプション、トークン検証ライブラリをロードするためのサーバ変数oauth_validator_libraries、必要なコンパイル時ライブラリを追加するためのconfigureフラグ--with-libcurlが追加されます。
      

	

コロンで区切られた複数のTLSv1.3暗号スイートの指定が出来るサーバ変数ssl_tls13_ciphersが追加されました。
(Erica Zhang, Daniel Gustafsson)
      §
      

	

サーバ変数ssl_groupsのデフォルト値が楕円曲線X25519を含むものに変更されました。
(Daniel Gustafsson, Jacob Champion)
      §
      

	

サーバ変数ssl_ecdh_curveの名前がssl_groupsに変更され、コロンで区切られた複数のECDH曲線が指定できるようになりました。
(Erica Zhang, Daniel Gustafsson)
      §
      


以前の名前も引き続き使用可能です。
      

	

キャンセル要求キーが256ビットになりました。
(Heikki Linnakangas, Jelte Fennema-Nio)
      §
      §
      


これは、サーバとクライアントが本リリースで導入されたワイヤプロトコルバージョン3.2をサポートしている場合にのみ可能です。
      

	

バックグラウンドワーカーの最大数を指定するサーバ変数autovacuum_worker_slotsが追加されました。
(Nathan Bossart)
      §
      


この変数を設定すると、サーバを再起動することなく実行時にautovacuum_max_workersをこの最大値まで調整できます。
      

	

自動バキュームをトリガするデッドタプルの固定数を指定できるようになりました。
(Nathan Bossart, Frédéric Yhuel)
      §
      


サーバ変数はautovacuum_vacuum_max_thresholdです。
トリガには引き続きパーセンテージが使用されます。
      

	

サーバ変数max_files_per_processが、バックエンドによって開かれたファイルのみを制限対象とするよう変更されました。
(Andres Freund)
      §
      


以前は、postmasterによって開かれたファイルもこの制限にカウントされていました。
      

	

必要なセマフォ数を報告するためのサーバ変数num_os_semaphoresが追加されました。
(Nathan Bossart)
      §
      


これはオペレーティングシステムの設定に役立ちます。
      

	

拡張の制御ファイルの場所を指定するためのサーバ変数extension_control_pathが追加されました。
(Peter Eisentraut, Matheus Alcantara)
      §
      §
      




ストリーミングレプリケーションとリカバリ



	

サーバ変数idle_replication_slot_timeoutを使用して、非アクティブなレプリケーションスロットを自動的に無効化できるようになりました。
(Nisha Moond, Bharath Rupireddy)
      §
      

	

アクティブなレプリケーションオリジンの最大数を制御できるサーバ変数max_active_replication_originsが追加されました。
(Euler Taveira)
      §
      


これは以前はmax_replication_slotsによって制御されていましたが、この新しい設定により、必要なスロット数が少ない場合でもオリジンの数を増やすことができます。
      




論理レプリケーション



	

生成列の値を論理的にレプリケートできるようになりました。
(Shubham Khanna, Vignesh C, Zhijie Hou, Shlok Kyal, Peter Smith)
      §
      §
      §
      §
      


パブリケーションで列リストを指定した場合、生成列と非生成列を問わず、指定されたすべての列がパブリッシュされます。
列リストが指定されていない場合、パブリケーションオプションpublish_generated_columnsによって生成列をパブリッシュするかどうかが制御されます。
以前は生成列はレプリケートされず、サブスクライバーは可能な場合は値を計算する必要がありました。
これは、このような機能を持たないPostgreSQL™以外のサブスクライバーの場合に特に便利です。
      

	

デフォルトのCREATE SUBSCRIPTION(7)ストリーミングオプションがoffからparallelに変更されました。
(Vignesh C)
      §
      

	

ALTER SUBSCRIPTION(7)でレプリケーションスロットの二相コミットの動作を変更できるようになりました。
(Hayato Kuroda, Ajin Cherian, Amit Kapila, Zhijie Hou)
      §
      §
      

	

論理レプリケーションの変更を適用する際のコンフリクトがログ記録されるようになりました。
(Zhijie Hou, Nisha Moond)
      §
      §
      §
      §
      §
      


pg_stat_subscription_statsの新しい列にもレポートされます。
      





ユーティリティコマンド



	

生成列を仮想列として許可し、デフォルト設定にします。
(Peter Eisentraut, Jian He, Richard Guo, Dean Rasheed)
     §
     §
     §
     


仮想生成列は、列が書き込まれるのではなく、読み取られるときに値を生成します。
書き込み動作は、STOREDオプションを使用して指定できます。
     

	

DML問い合わせのRETURNING句にOLD/NEWのサポートが追加されました。
(Dean Rasheed)
     §
     


以前は、RETURNING句はINSERT(7)とUPDATE(7)では新しい値のみを返し、DELETE(7)では古い値のみを返していました。
MERGE(7)は、実行された内部問い合わせの適切な値を返していました。
この新しい構文では、INSERT/UPDATE/DELETE/MERGEのRETURNINGリストで、特別なエイリアスoldとnewを使用することで、古い値と新しい値を明示的に返すことができます。
これらのエイリアスは、識別子の衝突を避けるために名前を変更できます。
     

	

既存のローカルテーブルと同様の外部テーブルを作成できるようになりました。
(Zhang Mingli)
     §
     


構文はCREATE FOREIGN TABLE ... LIKEです。
     

	

非決定論的な照合順序でLIKEを使用できるようになりました。
(Peter Eisentraut)
     §
     

	

非決定論的な照合順序でテキスト位置検索関数を使用できるようになりました。
(Peter Eisentraut)
     §
     


以前はエラーが発生していました。
     

	

組み込みの照合順序プロバイダPG_UNICODE_FASTが追加されました。
(Jeff Davis)
     §
     


このロケールは大文字と小文字のマッピングをサポートしますが、自然言語順ではなく、コードポイント順でソートされます。
     

	

VACUUM(7)とANALYZE(7)がパーティションテーブルを子テーブルを処理せずに実行できるようになりました。
(Michael Harris)
     §
     


これは、新しいONLYオプションで有効になります。
自動バキュームがパーティションテーブルではなく、その子テーブルのみを処理するためこれは便利です。
     

	

リレーション単位およびカラム単位のオプティマイザ統計を変更する関数が追加されました。
(Corey Huinker)
     §
     §
     §
     


関数は、pg_restore_relation_stats()、pg_restore_attribute_stats()、pg_clear_relation_stats()、pg_clear_attribute_stats()です。
     

	

ファイルコピー方法を制御するサーバ変数file_copy_methodが追加されました。
(Nazir Bilal Yavuz)
     §
     


これにより、CREATE DATABASE ... STRATEGY=FILE_COPYおよびALTER DATABASE ... SET TABLESPACEでファイルコピーまたはクローンのどちらを使用するかが制御されます。
     



制約



	

重複しないPRIMARY KEY制約、UNIQUE制約、外部キー制約が指定できるようになりました。
(Paul A. Jungwirth)
      §
      §
      


これは、PRIMARY KEY制約とUNIQUE制約の場合はWITHOUT OVERLAPS句で、外部キー制約の場合はPERIOD句で指定され、いずれも最後に指定された列に適用されます。
      

	

CHECK制約と外部キー制約をNOT ENFORCEDとして指定できるようになりました。
(Amul Sul)
      §
      §
      


これにより、pg_constraint.conenforced列も追加されます。
      

	

主キー/外部キーの関係において、決定論的照合順序、または同一の非決定論的照合順序の使用が必要となりました。
(Peter Eisentraut)
      §
      


これらの要件が満たされていない場合、pg_upgrade(1)でも使用されるpg_dump(1)のリストアは失敗します。これらのアップグレード方法を成功させるには、スキーマ変更が必要です。
      

	

列のNOT NULL指定がpg_constraintに格納されるようになりました。
(Álvaro Herrera, Bernd Helmle)
      §
      §
      


これにより、NOT NULL制約に名前を指定できるようになります。
また、これにより外部テーブルにNOT NULL制約が追加され、ローカルテーブルにNOT NULL継承制御が追加されます。
      

	

ALTER TABLE(7)でNOT NULL制約のNOT VALID属性を設定できるようになりました。
(Rushabh Lathia, Jian He)
      §
      

	

NOT NULL制約の継承可能性を変更できるようになりました。
(Suraj Kharage, Álvaro Herrera)
      §
      §
      


構文はALTER TABLE ... ALTER CONSTRAINT ... [NO] INHERITです。
      

	

パーティションテーブルでNOT VALID外部キー制約が可能になりました。
(Amul Sul)
      §
      

	

パーティションテーブルの制約を削除する際にONLYが利用可能となりました。
(Álvaro Herrera)
      §
      


これは以前は誤って禁止されていました。
      




COPY(7)



	

COPY FROMで無視できる無効な行数を制御するためにREJECT_LIMITが追加されました。
(Atsushi Torikoshi)
      §
      


これは、ON_ERROR = 'ignore'の時に使用できます。
      

	

データが格納されたマテリアライズドビューからのCOPY TOによる行のコピーが可能になりました。
(Jian He)
      §
      

	

COPYのLOG_VERBOSITYレベルに無視された行のログ出力を抑制するsilentが追加されました。
(Atsushi Torikoshi)
      §
      


この新しいレベルでは、on_error = 'ignore'の場合に破棄された入力行の出力が抑制されます。
      

	

外部テーブルに対するCOPY FREEZEが禁止されました。
(Nathan Bossart)
      §
      


以前はCOPYは動作しましたが、FREEZEは無視されたため、このコマンドが禁止されました。
      




EXPLAIN(7)



	

EXPLAIN ANALYZEにBUFFERS出力が自動的に含まれました。
(Guillaume Lelarge, David Rowley)
      §
      

	

EXPLAIN (WAL)出力にWALバッファフル回数が追加されました。
(Bertrand Drouvot)
      §
      

	

EXPLAIN ANALYZEで、インデックススキャンノードごとに使用されたインデックス検索数が表示されるようになりました。
(Peter Geoghegan)
      §
      

	

EXPLAINが小数点以下の行数が出力されるように修正されました。
(Ibrar Ahmed, Ilia Evdokimov, Robert Haas)
      §
      §
      

	

EXPLAIN出力に、Material、Window Aggregate、共通テーブル式ノードのメモリとディスク使用量の詳細が追加されました。
(David Rowley, Tatsuo Ishii)
      §
      §
      §
      §
      

	

EXPLAIN出力にウィンドウ関数の引数に関する詳細が追加されました。
(Tom Lane)
      §
      

	

EXPLAIN ANALYZEにParallel Bitmap Heap Scanワーカーキャッシュ統計が追加されました。
(David Geier, Heikki Linnakangas, Donghang Lin, Alena Rybakina, David Rowley)
      §
      

	

EXPLAIN ANALYZEで無効化されたノードが出力されるようになりました。
(Robert Haas, David Rowley, Laurenz Albe)
      §
      §
      §
      





データ型



	

Unicodeの完全な大文字小文字のマッピングと変換が改善されました。
(Jeff Davis)
     §
     §
     


これにより、条件付きおよびタイトルケースのマッピング、単一文字から複数文字へマッピングが可能になりました。
     

	

jsonbのNULL値をNULLとしてスカラ型にキャストできるようになりました。
(Tom Lane)
     §
     


以前は、このようなキャストはエラーが発生していました。
     

	

NULL配列要素を削除できるようにするjson{b}_strip_NULLsのオプションパラメータが追加されました。
(Florents Tselai)
     §
     

	

配列の最初の次元をソートする関数array_sort()が追加されました。
(Junwang Zhao, Jian He)
     §
     

	

配列の最初の次元を逆にする関数array_reverse()が追加されました。
(Aleksander Alekseev)
     §
     

	

byteaのバイトを反転する関数reverse()が追加されました。
(Aleksander Alekseev)
     §
     

	

整数型とbyteaの間のキャストが可能になりました。
(Aleksander Alekseev)
     §
     


整数値はbyteaの2の補数値として格納されます。
     

	

UnicodeデータがUnicode 16.0.0に更新されました。
(Peter Eisentraut)
     §
     

	

エストニア語の全文検索ステミングが追加されました。
(Tom Lane)
     §
     

	

XMLエラーコードがより標準SQLに準拠するよう改善されました。
(Tom Lane)
     §
     


これらのエラーは、SQLSTATEを介して報告されます。
     




関数



	

より高度な大文字小文字を区別しないマッチングを可能にする関数casefold()が追加されました。
(Jeff Davis)
     §
     


これにより、より正確な比較が可能になります。つまり、1つの文字が複数の大文字や小文字と同等のものである場合や、大文字または小文字変換によって文字数が変化する場合に対応します。
     

	

配列型および複合型に対してMIN()/MAX()集約関数が使用できるようになりました。
(Aleksander Alekseev, Marat Buharov)
     §
     §
     

	

EXTRACT()にWEEKオプションが追加されました。
(Tom Lane)
     §
     

	

負の値に対するEXTRACT(QUARTER ...)出力が改善されました。
(Tom Lane)
     §
     

	

to_number()にローマ数字のサポートが追加されました。
(Hunaid Sohail)
     §
     


これはRNパターン経由でアクセスされます。
     

	

UUIDバージョン7生成関数uuidv7()が追加されました。
(Andrey Borodin)
     §
     


このUUID値は時間的にソート可能です。
明示的にバージョン4 UUIDを生成する関数エイリアスuuidv4()が追加されました。
     

	

CRC値を計算する関数crc32()およびcrc32c()が追加されました。
(Aleksander Alekseev)
     §
     

	

算術関数gamma()およびlgamma()が追加されました。
(Dean Rasheed)
     §
     

	

PL/pgSQLで名前付きカーソル引数に=>構文が使用できるようになりました。
(Pavel Stehule)
     §
     


以前は:=のみ使用できました。
     

	

regexp_match[es]()/regexp_like()/regexp_replace()/regexp_count()/regexp_instr()/regexp_substr()/regexp_split_to_table()/regexp_split_to_array()で名前付き引数が使用できるようになりました。
(Jian He)
     §
     




libpq



	

マイナーバージョンを含む完全なプロトコルバージョン番号を報告する関数PQfullProtocolVersion()が追加されました。
(Jacob Champion, Jelte Fennema-Nio)
     §
     

	

接続時に許容されるプロトコルバージョンの最小値と最大値を指定するためのlibpq接続パラメータと環境変数が追加されました。
(Jelte Fennema-Nio)
     §
     §
     

	

search_pathの変更がクライアントに報告するようになりました。
(Alexander Kukushkin, Jelte Fennema-Nio, Tomas Vondra)
     §
     §
     

	

認証を含むすべてのメッセージタイプのPQtrace()出力が追加されました。
(Jelte Fennema-Nio)
     §
     §
     §
     §
     §
     

	

SSL鍵情報を出力するlibpq接続パラメータsslkeylogfileが追加されました。
(Abhishek Chanda, Daniel Gustafsson)
     §
     


これはデバッグに役立ちます。
     

	

一部のlibpq関数のシグニチャがint64_tを使用するように変更されました。
(Thomas Munro)
     §
     


これらは以前pg_int64を使用していましたが現在は非推奨です。
     




psql(1)



	

psqlで名前付きプリペアドステートメントのパース、バインド、クローズができるようになりました。
(Anthonin Bonnefoy, Michael Paquier)
     §
     §
     


これは、新しいコマンド\parse、\bind_named、\close_preparedによって実現されます。
     

	

パイプライン問い合わせの発行を可能にするpsqlのバックスラッシュコマンドが追加されました。
(Anthonin Bonnefoy)
     §
     §
     §
     


新しいコマンドは、\startpipeline、\syncpipeline、\sendpipeline、\endpipeline、\flushrequest、\flush、\getresultsです。
     

	

psqlプロンプトへのパイプライン状態の追加と、関連する状態変数の追加ができるようになりました。
(Anthonin Bonnefoy)
     §
     


新しいプロンプト文字は%Pで、新しいpsql変数はPIPELINE_SYNC_COUNT、PIPELINE_COMMAND_COUNT、PIPELINE_RESULT_COUNTです。
     

	

psqlプロンプトに接続サービス名を追加したり、psql変数経由でアクセスできるようになりました。
(Michael Banck)
     §
     

	

すべてのリストコマンドで拡張モードを使用するためのpsqlオプションが追加されました。
(Dean Rasheed)
     §
     


バックスラッシュ接尾辞xを追加することでこれが可能になります。
     

	

psqlの\conninfoが表形式でより多くの情報を含めるように変更されました。
(Álvaro Herrera, Maiquel Grassi, Hunaid Sohail)
     §
     

	

psqlの\df+、\do+、\dAo+、\dC+出力に関数のLEAKPROOF属性が追加されました。
(Yugo Nagata)
     §
     

	

\dP+にパーティションリレーションのアクセスメソッドの詳細が追加されました。
(Justin Pryzby)
     §
     

	

psqlの\dx拡張出力にdefault_versionが追加されました。
(Magnus Hagander)
     §
     

	

デフォルトの\watch待ち時間を設定するpsql変数WATCH_INTERVALが追加されました。
(Daniel Gustafsson)
     §
     




サーバアプリケーション



	

initdb(1)がチェックサム有効のデフォルト設定に変更されました。
(Greg Sabino Mullane)
     §
     §
     


initdbの新しいオプション--no-data-checksumsは、チェックサムを無効にします。
     

	

ヒープ/インデックスファイルの同期を回避するinitdbオプション--no-sync-data-filesが追加されました。
(Nathan Bossart)
     §
     


ファイルの同期を回避するinitdbオプション--no-syncは引き続き使用できます。
     

	

欠落したオプティマイザ統計処理のみを計算するvacuumdb(1)オプション--missing-stats-onlyが追加されました。
(Corey Huinker, Nathan Bossart)
     §
     §
     


このオプションはスーパーユーザのみが実行でき、オプション--analyze-onlyおよび--analyze-in-stagesとのみ併用できます。
     

	

ハードリンクを有効にするpg_combinebackup(1)オプション-k/--linkが追加されました。
(Israel Barth Rubio, Robert Haas)
     §
     


ハードリンクできるのは一部のファイルのみです。
バックアップを個別に使用する場合は、このオプションを使用しないでください。
     

	

pg_verifybackup(1)でtar形式のバックアップが検証できるようになりました。
(Amul Sul)
     §
     

	

pg_rewind(1)の--source-serverオプションでデータベース名を指定している場合、--write-recovery-confの出力でその名前が使用されます。
(Masahiko Sawada)
     §
     

	

デフォルトのcharの符号を変更するpg_resetwal(1)オプション--char-signednessが追加されました。
(Masahiko Sawada)
     §
     



pg_dump/pg_dumpall/pg_restore



	

pg_dump(1)に--statisticsオプションが追加されました。
(Jeff Davis)
      §
      §
      

	

pg_dumpおよびpg_dumpall(1)に通常は除外されるシーケンスデータをダンプする--sequence-dataオプションが追加されました。
(Nathan Bossart)
      §
      §
      

	

pg_dump(1)、pg_dumpall(1)、pg_restore(1)に--statistics-only、--no-statistics、--no-data、--no-schemaオプションが追加されました。
(Corey Huinker, Jeff Davis)
      §
      

	

pg_dump(1)、pg_dumpall(1)、pg_restore(1)に行レベルセキュリティポリシー処理を無効にする--no-policiesオプションが追加されました。
(Nikolay Samokhvalov)
      §
      


これは、異なるポリシーを持つシステムへの移行に有用です。
      




pg_upgrade(1)



	

pg_upgradeがオプティマイザ統計情報を保持できるようになりました。
(Corey Huinker, Jeff Davis, Nathan Bossart)
      §
      §
      §
      §
      


拡張統計情報は保存されません。
pg_upgradeに統計情報の保存を無効にする--no-statisticsオプションが追加されました。
      

	

pg_upgradeがデータベースチェックを並列に処理できるようになりました。
(Nathan Bossart)
      §
      §
      §
      §
      §
      §
      §
      §
      §
      §
      §
      


これは、既存の--jobsオプションによって制御されます。
      

	

ファイルのコピー、クローン、またはリンクのファイルではなく、ディレクトリをスワップするpg_upgradeの--swapオプションが追加されました。
(Nathan Bossart)
      §
      


このモードは潜在的に最も高速です。
      

	

新規クラスタのデフォルトchar型符号を設定するpg_upgradeの--set-char-signednessオプションが追加されました。
(Masahiko Sawada)
      §
      §
      


これは、PostgreSQL™ 18より前のクラスタのデフォルトのCPU符号が新しいクラスタと一致しない場合に対応するためです。
      




Logical Replication Applications



	

pg_createsubscriber(1)にすべてのデータベースの論理レプリカを作成する--allオプションが追加されました。
(Shubham Khanna)
      §
      

	

pg_createsubscriberにパブリケーションを削除する--cleanオプションが追加されました。
(Shubham Khanna)
      §
      §
      

	

pg_createsubscriberにプリペアドトランザクションを有効にする--enable-two-phaseオプションが追加されました。
(Shubham Khanna)
      §
      

	

pg_recvlogical(1)にフェイルオーバースロットを指定する--enable-failoverオプションが追加されました。
(Hayato Kuroda)
      §
      


また、--enable-two-phaseオプションが--two-phaseの同義語として追加され、後者が非推奨となりました。
      

	

pg_recvlogical --drop-slotが--dbnameなしで動作できるようになりました。
(Hayato Kuroda)
      §
      





ソースコード



	

インジェクションポイントの読み込みと実行が分離されました。
(Michael Paquier, Heikki Linnakangas)
     §
     §
     


INJECTION_POINT_LOAD()でインジェクションポイントを作成できるようになりましたが、実行はできません。また、このようなインジェクションポイントはINJECTION_POINT_CACHED()で実行できます。
     

	

インジェクションポイントでランタイム引数がサポートされました。
(Michael Paquier)
     §
     

	

IS_INJECTION_POINT_ATTACHED()でインラインインジェクションポイントテストコードが使用できるようになりました。
(Heikki Linnakangas)
     §
     

	

SIMD (Single Instruction Multiple Data)の使用により、長いJSON文字列の処理性能が改善されました。
(David Rowley)
     §
     

	

x86 AVX-512命令の使用により、CRC32C計算が高速化されました。
(Raghuveer Devulapalli, Paul Amonson)
     §
     

	

popcount(整数ビットカウント)用のARM NeonおよびSVE CPUの組み込み関数が追加されました。
(Chiranmoy Bhattacharya, Devanga Susmitha, Rama Malladi)
     §
     §
     

	

数値の乗算と除算の速度が改善されました。
(Joel Jacobson, Dean Rasheed)
     §
     §
     §
     §
     

	

NUMA対応を有効にするconfigureオプション--with-libnumaが追加されました。
(Jakub Wartak, Bertrand Drouvot)
     §
     §
     §
     


関数pg_numa_available()はNUMA対応状況を報告し、システムビューpg_shmem_allocations_numaとpg_buffercache_numaはNUMAノード間の共有メモリの分布状況について報告します。
     

	

非常に大きな式インデックスを可能にするため、pg_indexにTOASTテーブルが追加されました。
(Nathan Bossart)
     §
     

	

pg_attribute.attcacheoff列が削除されました。
(David Rowley)
     §
     

	

pg_class.relallfrozen列が追加されました。
(Melanie Plageman)
     §
     

	

インデックスアクセスメソッドAPIにamgettreeheight、amconsistentequality、amconsistentorderingが追加されました。
(Mark Dilger)
     §
     §
     

	

GiSTサポート関数stratnum()が追加されました。
(Paul A. Jungwirth)
     §
     

	

pg_controldata(1)にcharのデフォルトCPU符号属性が記録されるようになりました。
(Masahiko Sawada)
     §
     

	

PL/PythonでPython「LimitedAPI」のサポートが追加されました。
(Peter Eisentraut)
     §
     §
     


これにより、Python 3.xのバージョン不一致による問題を防ぐことができます。
     

	

サポートされるPythonの最小バージョンが3.6.8に変更されました。
(Jacob Champion)
     §
     

	

OpenSSL 1.1.1より前のバージョンのサポートが削除されました。
(Daniel Gustafsson)
     §
     §
     

	

LLVMが有効な場合は、バージョン14以降が必要です。
(Thomas Munro)
     §
     

	

拡張が自身の名前とバージョンを報告できるように、マクロPG_MODULE_MAGIC_EXTが追加されました。
(Andrei Lepikhov)
     §
     


この情報は、新しい関数pg_get_loaded_modules()経由でアクセスできます。
     

	

SPI_connect()/SPI_connect_ext()が常に成功SPI_OK_CONNECTを返すことがドキュメント化されました。
(Stepan Neretin)
     §
     


エラーは常にereport()経由で報告されます。
     

	

APIおよびABI互換性に関するドキュメントセクションが追加されました。
(David Wheeler, Peter Eisentraut)
     §
     

	

WindowsでのMesonビルドの実験的指定が削除されました。
(Aleksander Alekseev)
     §
     

	

configureオプション--disable-spinlocksと--disable-atomicsが削除されました。
(Thomas Munro)
     §
     §
     


32ビットのアトミック操作が必須となりました。
     

	

HPPA/PA-RISCアーキテクチャのサポートが削除されました。
(Tom Lane)
     §
     




追加モジュール



	

論理スナップショットを検査する拡張pg_logicalinspectが追加されました。
(Bertrand Drouvot)
     §
     

	

EXPLAIN出力にデバッグ詳細を追加する拡張pg_overexplainが追加されました。
(Robert Haas)
     §
     

	

postgres_fdw_get_connections()に出力列が追加されました。
(Hayato Kuroda, Sagar Dilip Shedge)
     §
     §
     §
     §
     


新しい出力列used_in_xactは外部データラッパーが現在のトランザクションで使用されているかどうか、closedはそれが閉じているかどうか、user_nameはユーザ名、remote_backend_pidはリモートバックエンドのプロセス識別子を示します。
     

	

クライアントからのSCRAM認証がpostgres_fdwサーバに渡されるようになりました。
(Matheus Alcantara, Peter Eisentraut)
     §
     


これにより、postgres_fdw認証情報のデータベース保存が回避されます。これはpostgres_fdwuse_scram_passthrough接続オプションで有効になります。
libpqは新しい接続パラメータscram_client_keyとscram_server_keyを使用します。
     

	

クライアントからのSCRAM認証がdblinkサーバに渡されるようになりました。
(Matheus Alcantara)
     §
     

	

file_fdwにon_errorとlog_verbosityオプションが追加されました。
(Atsushi Torikoshi)
     §
     


これらはfile_fdwが無効なファイル行をどのように処理して報告するかを制御します。
     

	

file_fdwが無視できる無効な行数を制御するreject_limitが追加されました。
(Atsushi Torikoshi)
     §
     


これは、ON_ERROR = 'ignore'の時に有効です。
     

	

passwordcheckに設定可能な変数min_password_lengthが追加されました。
(Emanuele Musella, Maurizio Boriani)
     §
     


これはパスワードの最小の長さを制御します。
     

	

pgbench(1)がスクリプトごとのレポートで、失敗したトランザクション、再試行されたトランザクション、スキップしたトランザクションの数を報告するようになりました。
(Yugo Nagata)
     §
     

	

無効なチェックデジットの受け入れを制御するisnサーバ変数weakが追加されました。
(Viktor Holmberg)
     §
     


これは以前は関数isn_weak()によってのみ制御されていました。
     

	

btree_gistインデックス構築を高速化するために、値をソートできるようになりました。
(Bernd Helmle, Andrey Borodin)
     §
     

	

GINインデックスを検証するamcheckチェック関数gin_index_check()が追加されました。
(Grigory Kryachko, Heikki Linnakangas, Andrey Borodin)
     §
     

	

固定されていない共有バッファを追い出す関数pg_buffercache_evict_relation()とpg_buffercache_evict_all()が追加されました。
(Nazir Bilal Yavuz)
     §
     


既存の関数pg_buffercache_evict()は、バッファのフラッシュ状態を返すようになりました。
     

	

拡張でカスタムEXPLAIN(7)オプションをインストールできるようになりました。
(Robert Haas, Sami Imseih)
     §
     §
     §
     

	

拡張でサーバの累積統計APIを使用できるようになりました。
(Michael Paquier)
     §
     §
     



pg_stat_statements



	

CREATE TABLE AS(7)とDECLARE(7)の問い合わせをpg_stat_statementsで追跡できるようになりました。
(Anthonin Bonnefoy)
      §
      


これらの問い合わせにもクエリIDが割り当てられます。
      

	

pg_stat_statementsでSET(7)値をパラメータ化できるようになりました。
(Greg Sabino Mullane, Michael Paquier)
      §
      


これにより、異なる定数を持つSET文による肥大化が軽減されます。
      

	

pg_stat_statementsに並列処理活動を報告する列が追加されました。
(Guillaume Lelarge)
      §
      


新しい列はparallel_workers_to_launchとparallel_workers_launchedです。
      

	

WALバッファがいっぱいになったことを報告するためのpg_stat_statements.wal_buffers_fullが追加されました。
(Bertrand Drouvot)
      §
      




pgcrypto



	

pgcryptoアルゴリズムにsha256cryptとsha512cryptが追加されました。
(Bernd Helmle)
      §
      

	

pgcrypto暗号化と復号にCFBモードが追加されました。
(Umar Hayat)
      §
      

	

サーバのFIPSモードを報告する関数fips_mode()が追加されました。
(Daniel Gustafsson)
      §
      

	

組み込みの非FIPSモード暗号化関数を無効できるpgcryptoサーバ変数builtin_crypto_enabledが追加されました。
(Daniel Gustafsson, Joe Conway)
      §
      


これは、FIPSモードの動作を保証するのに役立ちます。
      






謝辞





以下の人々（アルファベット順）はパッチ作者、コミッター、レビューア、テスターあるいは問題の報告者として本リリースに貢献しました。
   
	Abhishek Chanda
	Adam Guo
	Adam Rauch
	Aidar Imamov
	Ajin Cherian
	Alastair Turner
	Alec Cozens
	Aleksander Alekseev
	Alena Rybakina
	Alex Friedman
	Alex Richman
	Alexander Alehin
	Alexander Borisov
	Alexander Korotkov
	Alexander Kozhemyakin
	Alexander Kukushkin
	Alexander Kuzmenkov
	Alexander Kuznetsov
	Alexander Lakhin
	Alexander Pyhalov
	Alexandra Wang
	Alexey Dvoichenkov
	Alexey Makhmutov
	Alexey Shishkin
	Ali Akbar
	Álvaro Herrera
	Álvaro Mongil
	Amit Kapila
	Amit Langote
	Amul Sul
	Andreas Karlsson
	Andreas Scherbaum
	Andreas Ulbrich
	Andrei Lepikhov
	Andres Freund
	Andrew
	Andrew Bille
	Andrew Dunstan
	Andrew Jackson
	Andrew Kane
	Andrew Watkins
	Andrey Borodin
	Andrey Chudnovsky
	Andrey Rachitskiy
	Andrey Rudometov
	Andy Alsup
	Andy Fan
	Anthonin Bonnefoy
	Anthony Hsu
	Anthony Leung
	Anton Melnikov
	Anton Voloshin
	Antonin Houska
	Antti Lampinen
	Arseniy Mukhin
	Artur Zakirov
	Arun Thirupathi
	Ashutosh Bapat
	Asphator
	Atsushi Torikoshi
	Avi Weinberg
	Aya Iwata
	Ayush Tiwari
	Ayush Vatsa
	Bastien Roucariès
	Ben Peachey Higdon
	Benoit Lobréau
	Bernd Helmle
	Bernd Reiß
	Bernhard Wiedemann
	Bertrand Drouvot
	Bertrand Mamasam
	Bharath Rupireddy
	Bogdan Grigorenko
	Boyu Yang
	Braulio Fdo Gonzalez
	Bruce Momjian
	Bykov Ivan
	Cameron Vogt
	Cary Huang
	Cédric Villemain
	Cees van Zeeland
	ChangAo Chen
	Chao Li
	Chapman Flack
	Charles Samborski
	Chengwen Wu
	Chengxi Sun
	Chiranmoy Bhattacharya
	Chris Gooch
	Christian Charukiewicz
	Christoph Berg
	Christophe Courtois
	Christopher Inokuchi
	Clemens Ruck
	Corey Huinker
	Craig Milhiser
	Crisp Lee
	Dagfinn Ilmari Mannsåker
	Daniel Elishakov
	Daniel Gustafsson
	Daniel Vérité
	Daniel Westermann
	Daniele Varrazzo
	Daniil Davydov
	Daria Shanina
	Dave Cramer
	Dave Page
	David Benjamin
	David Christensen
	David Fiedler
	David G. Johnston
	David Geier
	David Rowley
	David Steele
	David Wheeler
	David Zhang
	Davinder Singh
	Dean Rasheed
	Devanga Susmitha
	Devrim Gündüz
	Dian Fay
	Dilip Kumar
	Dimitrios Apostolou
	Dipesh Dhameliya
	Dmitrii Bondar
	Dmitry Dolgov
	Dmitry Koval
	Dmitry Kovalenko
	Dmitry Yurichev
	Dominique Devienne
	Donghang Lin
	Dorjpalam Batbaatar
	Drew Callahan
	Duncan Sands
	Dwayne Towell
	Dzmitry Jachnik
	Egor Chindyaskin
	Egor Rogov
	Emanuel Ionescu
	Emanuele Musella
	Emre Hasegeli
	Eric Cyr
	Erica Zhang
	Erik Nordström
	Erik Rijkers
	Erik Wienhold
	Erki Eessaar
	Ethan Mertz
	Etienne LAFARGE
	Etsuro Fujita
	Euler Taveira
	Evan Si
	Evgeniy Gorbanev
	Fabio R. Sluzala
	Fabrízio de Royes Mello
	Feike Steenbergen
	Feliphe Pozzer
	Felix
	Fire Emerald
	Florents Tselai
	Francesco Degrassi
	Frank Streitzig
	Frédéric Yhuel
	Fredrik Widlert
	Gabriele Bartolini
	Gavin Panella
	Geoff Winkless
	George MacKerron
	Gilles Darold
	Grant Gryczan
	Greg Burd
	Greg Sabino Mullane
	Greg Stark
	Grigory Kryachko
	Guillaume Lelarge
	Gunnar Morling
	Gunnar Wagner
	Gurjeet Singh
	Haifang Wang
	Hajime Matsunaga
	Hamid Akhtar
	Hannu Krosing
	Hari Krishna Sunder
	Haruka Takatsuka
	Hayato Kuroda
	Heikki Linnakangas
	Hironobu Suzuki
	Holger Jakobs
	Hubert Lubaczewski
	Hugo Dubois
	Hugo Zhang
	Hunaid Sohail
	Hywel Carver
	Ian Barwick
	Ibrar Ahmed
	Igor Gnatyuk
	Igor Korot
	Ilia Evdokimov
	Ilya Gladyshev
	Ilyasov Ian
	Imran Zaheer
	Isaac Morland
	Israel Barth Rubio
	Ivan Kush
	Jacob Brazeal
	Jacob Champion
	Jaime Casanova
	Jakob Egger
	Jakub Wartak
	James Coleman
	James Hunter
	Jan Behrens
	Japin Li
	Jason Smith
	Jayesh Dehankar
	Jeevan Chalke
	Jeff Davis
	Jehan-Guillaume de Rorthais
	Jelte Fennema-Nio
	Jian He
	Jianghua Yang
	Jiao Shuntian
	Jim Jones
	Jim Nasby
	Jingtang Zhang
	Jingzhou Fu
	Joe Conway
	Joel Jacobson
	John Hutchins
	John Naylor
	Jonathan Katz
	Jorge Solórzano
	José Villanova
	Josef Šimánek
	Joseph Koshakow
	Julien Rouhaud
	Junwang Zhao
	Justin Pryzby
	Kaido Vaikla
	Kaimeh
	Karina Litskevich
	Karthik S
	Kartyshov Ivan
	Kashif Zeeshan
	Keisuke Kuroda
	Kevin Hale Boyes
	Kevin K Biju
	Kirill Reshke
	Kirill Zdornyy
	Koen De Groote
	Koichi Suzuki
	Koki Nakamura
	Konstantin Knizhnik
	Kouhei Sutou
	Kuntal Ghosh
	Kyotaro Horiguchi
	Lakshmi Narayana Velayudam
	Lars Kanis
	Laurence Parry
	Laurenz Albe
	Lele Gaifax
	Li Yong
	Lilian Ontowhee
	Lingbin Meng
	Luboslav Špilák
	Luca Vallisa
	Lukas Fittl
	Maciek Sakrejda
	Magnus Hagander
	Mahendra Singh Thalor
	Mahendrakar Srinivasarao
	Maiquel Grassi
	Maksim Korotkov
	Maksim Melnikov
	Man Zeng
	Marat Buharov
	Marc Balmer
	Marco Nenciarini
	Marcos Pegoraro
	Marina Polyakova
	Mark Callaghan
	Mark Dilger
	Marlene Brandstaetter
	Marlene Reiterer
	Martin Rakhmanov
	Masahiko Sawada
	Masahiro Ikeda
	Masao Fujii
	Mason Mackaman
	Mat Arye
	Matheus Alcantara
	Mats Kindahl
	Matthew Gabeler-Lee
	Matthew Kim
	Matthew Sterrett
	Matthew Woodcraft
	Matthias van de Meent
	Matthieu Denais
	Maurizio Boriani
	Max Johnson
	Max Madden
	Maxim Boguk
	Maxim Orlov
	Maximilian Chrzan
	Melanie Plageman
	Melih Mutlu
	Mert Alev
	Michael Banck
	Michael Bondarenko
	Michael Christofides
	Michael Guissine
	Michael Harris
	Michaël Paquier
	Michail Nikolaev
	Michal Kleczek
	Michel Pelletier
	Mikaël Gourlaouen
	Mikhail Gribkov
	Mikhail Kot
	Milosz Chmura
	Muralikrishna Bandaru
	Murat Efendioglu
	Mutaamba Maasha
	Naeem Akhter
	Nat Makarevitch
	Nathan Bossart
	Navneet Kumar
	Nazir Bilal Yavuz
	Neil Conway
	Niccolò Fei
	Nick Davies
	Nicolas Maus
	Niek Brasa
	Nikhil Raj
	Nikita
	Nikita Kalinin
	Nikita Malakhov
	Nikolay Samokhvalov
	Nikolay Shaplov
	Nisha Moond
	Nitin Jadhav
	Nitin Motiani
	Noah Misch
	Noboru Saito
	Noriyoshi Shinoda
	Ole Peder Brandtzæg
	Oleg Sibiryakov
	Oleg Tselebrovskiy
	Olleg Samoylov
	Onder Kalaci
	Ondrej Navratil
	Patrick Stählin
	Paul Amonson
	Paul Jungwirth
	Paul Ramsey
	Pavel Borisov
	Pavel Luzanov
	Pavel Nekrasov
	Pavel Stehule
	Peter Eisentraut
	Peter Geoghegan
	Peter Mittere
	Peter Smith
	Phil Eaton
	Philipp Salvisberg
	Philippe Beaudoin
	Pierre Giraud
	Pixian Shi
	Polina Bungina
	Przemyslaw Sztoch
	Quynh Tran
	Rafia Sabih
	Raghuveer Devulapalli
	Rahila Syed
	Rama Malladi
	Ran Benita
	Ranier Vilela
	Renan Alves Fonseca
	Richard Guo
	Richard Neill
	Rintaro Ikeda
	Robert Haas
	Robert Treat
	Robins Tharakan
	Roman Zharkov
	Ronald Cruz
	Ronan Dunklau
	Rui Zhao
	Rushabh Lathia
	Rustam Allakov
	Ryo Kanbayashi
	Ryohei Takahashi
	RyotaK
	Sagar Dilip Shedge
	Salvatore Dipietro
	Sam Gabrielsson
	Sam James
	Sameer Kumar
	Sami Imseih
	Samuel Thibault
	Satyanarayana Narlapuram
	Sebastian Skalacki
	Senglee Choi
	Sergei Kornilov
	Sergey Belyashov
	Sergey Dudoladov
	Sergey Prokhorenko
	Sergey Sargsyan
	Sergey Soloviev
	Sergey Tatarintsev
	Shaik Mohammad Mujeeb
	Shawn McCoy
	Shenhao Wang
	Shihao Zhong
	Shinya Kato
	Shlok Kyal
	Shubham Khanna
	Shveta Malik
	Simon Riggs
	Smolkin Grigory
	Sofia Kopikova
	Song Hongyu
	Song Jinzhou
	Soumyadeep Chakraborty
	Sravan Kumar
	Srinath Reddy
	Stan Hu
	Stepan Neretin
	Stephen Fewer
	Stephen Frost
	Steve Chavez
	Steven Niu
	Suraj Kharage
	Sven Klemm
	Takamichi Osumi
	Takeshi Ideriha
	Tatsuo Ishii
	Ted Yu
	Tels
	Tender Wang
	Teodor Sigaev
	Thom Brown
	Thomas Baehler
	Thomas Krennwallner
	Thomas Munro
	Tim Wood
	Timur Magomedov
	Tobias Wendorff
	Todd Cook
	Tofig Aliev
	Tom Lane
	Tomas Vondra
	Tomasz Rybak
	Tomasz Szypowski
	Torsten Foertsch
	Toshi Harada
	Tristan Partin
	Triveni N
	Umar Hayat
	Vallimaharajan G
	Vasya Boytsov
	Victor Yegorov
	Vignesh C
	Viktor Holmberg
	Vinícius Abrahão
	Vinod Sridharan
	Virender Singla
	Vitaly Davydov
	Vladlen Popolitov
	Vladyslav Nebozhyn
	Walid Ibrahim
	Webbo Han
	Wenhui Qiu
	Will Mortensen
	Will Storey
	Wolfgang Walther
	Xin Zhang
	Xing Guo
	Xuneng Zhou
	Yan Chengpen
	Yang Lei
	Yaroslav Saburov
	Yaroslav Syrytsia
	Yasir Hussain
	Yasuo Honda
	Yogesh Sharma
	Yonghao Lee
	Yoran Heling
	Yu Liang
	Yugo Nagata
	Yuhang Qiu
	Yuki Seino
	Yura Sokolov
	Yurii Rashkovskii
	Yushi Ogiwara
	Yusuke Sugie
	Yuta Katsuragi
	Yuto Sasaki
	Yuuki Fujii
	Yuya Watari
	Zane Duffield
	Zeyuan Hu
	Zhang Mingli
	Zhihong Yu
	Zhijie Hou
	Zsolt Parragi




以前のリリース





以前のリリースブランチのリリースノートはhttps://www.postgresql.org/docs/release/にあります。
  

付録F 追加で提供されるモジュールと拡張





この付録と次の付録にはPostgreSQL™配布物のcontribディレクトリにあるオプションとなっているコンポーネントに関する情報があります。
ここには、PostgreSQLのコアシステムにはない移植用のツール、解析ユーティリティ、プラグイン機能が含まれます。
これらは、限定した利用者を対象にしていること、または、主ソースツリーに含めるには実験的すぎることが主な理由で分けられています。
これはその有用性を妨げるものではありません。
 


この付録では、contribにある拡張やその他のサーバプラグインモジュールライブラリを説明します。
 付録G 追加で提供されるプログラムは、ユーティリティプログラムをカバーしています。
 


ソース配布から構築する場合、"world"を対象に構築しない限り、これらのオプションのコンポーネントは自動的には構築されません(ステップ 2参照)。
次のコマンドを実行することで、これらすべてを構築しインストールすることができます。


make
make install



設定されたソースツリーのcontribディレクトリにあります。
あるいは、選択した1つのモジュールのみを構築しインストールするには、そのモジュールのサブディレクトリで同じコマンドを行ってください。
多くのモジュールにはリグレッションテストがあり、以下を


make check



インストール前に実行、または以下を


make installcheck



PostgreSQL™サーバが動いている状態で実行できます。
 


PostgreSQL™のパッケージ化されたバージョンを使用している場合は通常、例えばpostgresql-contribのような別途副パッケージとしてこれらのコンポーネントが利用可能です。
 


多くのコンポーネントは拡張としてパッケージ化され、新しいユーザ定義関数、演算子、型を提供します。
こうした拡張の1つを使用できるようにするためには、コードをインストールした後に、新しいSQLオブジェクトをデータベースサーバに登録する必要があります。
これはCREATE EXTENSION(7)コマンドを実行することで行われます。
新しいデータベースでは、以下のように簡単に行うことができます。



CREATE EXTENSION extension_name;




このコマンドは現在のデータベースの中にのみ新しいSQLオブジェクトを登録します。このため、その拡張の機能を利用可能にさせたいデータベース毎にこのコマンドを実行しなければなりません。
その拡張が今後作成されるデータベースにデフォルトでコピーされるようにtemplate1データベースに対して実行する方法もあります。
 


これらすべての拡張について、拡張が「trusted」と見なされていなければ、CREATE EXTENSIONコマンドはデータベーススーパーユーザによって実行されなければなりません。
信頼されている拡張は、現在のデータベースに対してCREATE権限を持つユーザであれば誰でも実行できます。
信頼されている拡張は、以降の節でそのように明確にされています。
一般的に信頼されている拡張とは、データベース外の機能へのアクセスを提供できない拡張のことです。
 


デフォルトのインストールでは以下の拡張が信頼されているものです。

  
	btree_gin	fuzzystrmatch	ltree	tcn
	btree_gist	hstore	pgcrypto	tsm_system_rows
	citext	intarray	pg_trgm	tsm_system_time
	cube	isn	seg	unaccent
	dict_int	lo	tablefunc	uuid-ossp


 


多くの拡張はユーザが選択したスキーマ内にそのオブジェクトをインストールすることができます。
これを行うためにはCREATE EXTENSIONコマンドにSCHEMA schema_nameを追加してください。
デフォルトでは、オブジェクトは現在の作成対象スキーマ内に格納され、そのスキーマのデフォルトはpublicです。
 


しかしながら、いくつかのコンポーネントはこの意味での「拡張」ではなく、例えばshared_preload_librariesといった他の方法でサーバにロードされることに注意してください。
各コンポーネントの詳細はドキュメントを参照してください。
 
amcheck — テーブルとインデックスの一貫性を検査するツール





amcheckモジュールは、リレーションの構造の論理的な一貫性を検査する機能を提供します。
 


B-Tree検査関数は、特定のリレーションの構造表現における様々な不変量を検査します。
インデックススキャンや、その他の重要な操作を担うアクセスメソッド関数の正しさは、これらの不変量を常に保つことに依存しています。
たとえば、ある関数は、とりわけすべてのB-Treeページの中の項目が「論理的な」順序になっていることを検査します。（たとえばtextのB-Treeインデックスでは、インデックスタプルは語句の照合順になっていなければなりません。）
その特定の不変量が何らかの理由で保たれなければ、該当するページで二分探索が不正なインデックススキャンをもたらし、SQL問い合わせに誤った答えを返すことになるでしょう。
構造が適正であると見なされれば、エラーは報告されません。
これらのチェック関数の実行中、search_pathは一時的にpg_catalog, pg_tempに変更されます。
 


検証は、インデックススキャン自身で使われるのと同じ手続きを用いて行われます。
その手続きは、ユーザ定義演算子クラスのコードかもしれません。
たとえば、B-Treeインデックスの検査は、一つ以上のB-Treeサポート関数1ルーチンを用いる比較に依存しています。
演算子クラスサポート関数の詳細については「インデックスメソッドのサポートルーチン」をご覧ください。
 


エラーを起こすことによって破損を報告するB-Tree検査関数とは違って、ヒープ検査関数verify_heapamはテーブルを検査し、破損の検出ごとに1行が対応する行の集合を返そうとします。
にも関わらず、verify_heapamが依存する機能自体が破損していれば、この関数は続行することができず、代わりにエラーを引き起こすかもしれません。
 


非スーパーユーザにamcheck関数の実行許可を与えることができますが、そのような権限を許可する前に、データのセキュリティとプライバシー上の懸念を注意深く考慮すべきです。
これらの関数が生成する破損報告は、データの構造と見つかった破損の性質ほどには、破損データの内容に焦点を当てるわけではありませんが、とりわけ攻撃者が破損を引き起こすこともできるのであれば、これらの関数の実行権限を与えられた攻撃者はそうしたメッセージからデータ自身を推測できるかもしれません。
 
関数



	
     bt_index_check(index regclass, heapallindexed boolean, checkunique boolean) returns void
     
    
	

bt_index_checkは対象となるB-Treeインデックスが、様々な不変量を維持していることをテストします。
例を示します。


test=# SELECT bt_index_check(index => c.oid, heapallindexed => i.indisunique),
               c.relname,
               c.relpages
FROM pg_index i
JOIN pg_opclass op ON i.indclass[0] = op.oid
JOIN pg_am am ON op.opcmethod = am.oid
JOIN pg_class c ON i.indexrelid = c.oid
JOIN pg_namespace n ON c.relnamespace = n.oid
WHERE am.amname = 'btree' AND n.nspname = 'pg_catalog'
-- Don't check temp tables, which may be from another session:
AND c.relpersistence != 't'
-- Function may throw an error when this is omitted:
AND c.relkind = 'i' AND i.indisready AND i.indisvalid
ORDER BY c.relpages DESC LIMIT 10;
 bt_index_check |             relname             | relpages
----------------+---------------------------------+----------
                | pg_depend_reference_index       |       43
                | pg_depend_depender_index        |       40
                | pg_proc_proname_args_nsp_index  |       31
                | pg_description_o_c_o_index      |       21
                | pg_attribute_relid_attnam_index |       14
                | pg_proc_oid_index               |       10
                | pg_attribute_relid_attnum_index |        9
                | pg_amproc_fam_proc_index        |        5
                | pg_amop_opr_fam_index           |        5
                | pg_amop_fam_strat_index         |        5
(10 rows)



この例では、データベース「test」中のもっとも大きな10個のカタログインデックスの検証を行うセッションを示しています。
インデックスタプルに対応するヒープタプルの存在の検証が、ユニークインデックスであるインデックスの一部に対して要求されています。
エラーは出ていないので、テストしたすべてのインデックスは論理的に一貫していることがわかります。
当然のことながら、この問い合わせは、検証可能なデータベース中のすべてのインデックスに対してbt_index_checkを呼び出すように変更できます。
     


bt_index_checkは、対象となるインデックスと、それが所属するヒープリレーションに対してAccessShareLockを獲得します。
このロックモードは、単純なSELECT文がリレーションに対して獲得するのと同じものです。
bt_index_checkは、子／親関係にわたる不変量を検査しませんが、heapallindexedがtrueの場合には、インデックス中のインデックスタプルに対応するすべてのヒープタプルの存在が検証されます。
checkuniqueがtrueの場合、bt_index_checkは一意インデックス内の重複エントリの中で可視のものが1つだけであることを検証します。
実行中の運用環境で定期的、軽量なデータ破損検査が必要な場合、bt_index_checkを使うのが、検査の完全性と、アプリケーションの性能と稼働への影響を限定することとの間の最良のトレードオフになることがしばしばあります。
     

	
     bt_index_parent_check(index regclass, heapallindexed boolean, rootdescend boolean, checkunique boolean) returns void
     
    
	

bt_index_parent_checkは、対象となるB-Treeインデックスが様々な不変量を保っていることを検査します。
オプションとして、heapallindexed引数がtrueの場合、インデックスに対応して存在すべきすべてのヒープタプルの存在を検証します。
checkuniqueがtrueの場合、一意インデックスの重複エントリの中で可視のものが1つだけであることを検査します。
省略可能な引数rootdescendがtrueであれば、各タプルに対するルートページから新しく探索することで、検証はリーフレベルのタプルを再び見つけます。
bt_index_parent_checkにより実施される検査は、bt_index_checkにより実施される検査のスーパーセットになっています。
bt_index_parent_checkは、bt_index_checkの更なる完璧版であると考えることができます。
つまり、bt_index_checkと違ってbt_index_parent_checkは、インデックス構造中のダウンリンクに漏れがないことを含め、親／子関係に渡る不変量も検査します。
bt_index_parent_checkは、論理的な非一貫性やその他の問題を発見した場合、一般的な習慣に従ってエラーを報告します。
     


bt_index_parent_checkは、対象インデックスにShareLockを獲得することを必要とします。
（ShareLockはヒープリレーションにも獲得されます。）
このロックは、INSERT、UPDATE、DELETEが並行してデータ更新することを防ぎます。
また、このロックはVACUUMその他のユーティリティコマンドによって、背後にあるリレーションが同時に処理されることを防ぎます。
この関数は実行中のみロックを保持し、トランザクション全体に保持するのではないことに注意してください。
     


bt_index_parent_checkによる追加の検査では、様々な病的な事象を検出する可能性があります。
これらの現象は、チェック対象のインデックスが使用している間違った実装がされたB-Tree演算子クラスによるものや、もしかしたら関連するB-Treeインデックスアクセスメソッドのコード中のまだ見つかっていないバグによるものなのかもしれません。
bt_index_checkと違って、bt_index_parent_checkは、ホットスタンバイモードが有効な場合（すなわち、読み出し専用物理レプリカ）では使用できません。
     

	
     gin_index_check(index regclass) returns void
     
    
	

gin_index_checkは、対象のGINインデックスが一貫した親子タプル関係を持っていること（親タプルがタプル調整を必要としない）と、ページグラフが平衡木の不変量を保っていること（内部ページはリーフページのみ、あるいは内部ページのみを参照する）を検査します。
     



ヒント


bt_index_checkとbt_index_parent_checkは両方とも、DEBUG1とDEBUG2の深刻度レベルで検証プロセスに関するログメッセージを出力します。
このメッセージは、PostgreSQL™開発者にとって興味のあるかもしれない検証プロセスに関する詳細な情報を提供します。
検証が実際に非一貫性を検出する追加の状況を提供しますので、上級ユーザにもこの情報は役立つかもしれません。
以下を実行すると、


SET client_min_messages = DEBUG1;



検証問い合わせを実行する前に対話式のpsqlセッションで扱いやすい程度の詳細で検証の進行状況に関するメッセージを表示します。
   

	
     
      verify_heapam(relation regclass,
                    on_error_stop boolean,
                    check_toast boolean,
                    skip text,
                    startblock bigint,
                    endblock bigint,
                    blkno OUT bigint,
                    offnum OUT integer,
                    attnum OUT integer,
                    msg OUT text)
      returns setof record
     
    
	

リレーションのページが不正なフォーマットのデータを含む構造上の破損と、ページは構造的に正しいものの、データベースクラスタの他の部分と一貫していない論理上の破損に関してテーブル、シーケンス、またはマテリアライズドビューを検査します。
     


次のようなオプションの引数を認識します。
     
	on_error_stop
	

真なら、破損が見つかった最初のブロックの終端で破損検査は終了します。
        


デフォルトは偽です。
        

	check_toast
	

真なら、TOASTされた値が対象リレーションのTOASTテーブルに対して検査されます。
        


このオプションは遅いことが知られています。
また、TOASTテーブルあるいはそのインデックスが破損していると、それをTOAST値に対して検査することで、おそらくサーバがクラッシュすることもあり得ます。
もっとも、多くの場合には単にエラーが生じるだけでしょう。
        


デフォルトは偽です。
        

	skip
	

noneでなければ、指定されたとおりに破損検査はすべて可視あるいは凍結されていると印が付けられたブロックをスキップします。
可能なオプションはall-visible、all-frozen、noneです。
        


デフォルトはnoneです。
        

	startblock
	

指定すると、破損検査は前のブロックをすべてスキップして指定ブロックから開始されます。
startblockを対象テーブルに含まれるブロックの範囲外で指定するとエラーになります。
        


デフォルトでは最初のブロックから検索が始まります。
        

	endblock
	

指定すると、残りのすべてのブロックをスキップして指定ブロックで破損検査が終了します。
endblockを対象テーブルに含まれるブロックの範囲外で指定するとエラーになります。
        


デフォルトではすべてのブロックが検査されます。
        





個々の破損の検出に対してverify_heapamは以下の列を含む行を返します。
     
	blkno
	

破損ページを含むブロック番号。
        

	offnum
	

破損タプルのオフセット番号。
        

	attnum
	

タプル全体ではなく、破損が特定の列にのみ起こっているなら、タプル内の破損列の属性番号。
        

	msg
	

検出された問題を記述するメッセージ。
        







オプションheapallindexed検証





B-Tree検証関数のheapallindexed引数がtrueならば、対象のインデックスリレーションと関連付けられたテーブルに対して追加の検証フェーズが実施されます。
これは「ダミー」のCREATE INDEX操作から構成され、インメモリ上の一時的なサマリ構造（これは必要に応じて基礎的な最初の検証フェーズで構築されます）に対する仮想的な新しいインデックスタプルがすべて存在することをチェックします。
サマリ構造は対象のインデックスで見つかったすべてのタプルに対して「指紋採取(fingerprint)」を行います。
heapallindexed検証の背後にある高レベルの原理は、新しいインデックスが既存のインデックスと等しいこと、対象のインデックスが既存の構造中に見つかったエントリのみを含むことです。
 


追加のheapallindexedフェーズは大きなオーバーヘッドをもたらします。
典型的には、検証に数倍時間かかるようになります。
しかし、取得されたリレーションレベルのロックに対して、heapallindexed検証が実施されるときに変更はありません。
 


サマライズ構造は、maintenance_work_memによってその大きさが制限されます。
インデックス中に存在すべきヒープタプルの非一貫性の検出失敗の確率が2%を超えないことを保証するために、タプルごとに約2バイトのメモリが必要です。
タプルごとに利用可能なメモリが少ないほど、非一貫性を見逃す可能性が徐々に増えていきます。
この手法によって検証のオーバーヘッドを大幅に減らせる一方、とりわけ検証を日常的な保守作業として行うシステムでは、問題を検出できる確率が少し減少するだけです。
失われた、あるいは不正なタプルは次の検証の機会に検出されます。
 

amcheckを効果的に使う





amcheckは、データチェックサムが検知できないような、様々なタイプの障害モードを効果的に検知できます。
以下のようなものがあります。

  
	

演算子クラスの正しくない実装によって引き起こされる構造の非一貫性。
    


オペレーティングシステムの照合順序の比較ルールの変更による問題も含まれます。
textのような照合可能な型のデータの比較は、不変でなければならず（B-Treeインデックスのスキャンのための、すべての比較が不変でなければならないのと同じことです）、それはオペレーティングシステムの照合順序が決して変化してはいけないことを意味します。
まれであるとは言え、オペレーティングシステムの照合順序ルールの更新は、これらの問題を引き起こします。
もっと普通に起こることとしては、プライマリサーバとスタンバイサーバの照合順序の違いが関与することです。
これは、使用されているオペレーティングシステムのメジャーバージョンに一貫性がないことによります。
そうした一貫性の欠如は一般的にスタンバイサーバでのみ起こるので、通常スタンバイサーバでのみ検出されます。
    


そうした問題が起きても、影響を受けた照合順序を使って順序付けられた個々のインデックスには影響ないかもしれません。
これは単純に、振る舞いにおける一貫性のなさにかかわらずインデックスされた値は同じ絶対的な順になるからです。
PostgreSQL™がオペレーティングシステムのロケールと照合順序をどう使用するかについての更なる詳細については、「ロケールのサポート」と「照合順序サポート」をご覧ください。
    

	

インデックスとインデックス付されたヒープリレーションの間の構造的な非一貫性（heapallindexed検証が実施される場合）
    


通常の操作においてはインデックスとそのヒープリレーションの間にはクロスチェックはありません。
ヒープの破壊による症状は些細なものかもしれません。
    

	

依拠するPostgreSQL™のアクセスメソッド、あるいはソート、トランザクション管理コードにおける、潜在的なまだ見つかっていないバグによる破損。
    


新規、あるいは提案中の PostgreSQL™の機能が、論理的な非一貫性をもたらしかねないかどうか全般的にテストする際に、インデックスの構造的な一貫性の自動検証が役立ちます。
テーブル構造と、関連する可視性およびトランザクション状態情報の検証も同じような役割を果たします。
わかりやすいテスト戦略の一つは、標準のリグレッションテストを実行中に、amcheck関数を継続的に呼び出すことです。
テストの実行に関する詳細は、「テストの実行」をご覧ください。
    

	

データチェックサムが無効な場合のファイルシステムあるいはストレージサブシステムの障害。
    


amcheckは、ブロックをアクセスする際に共有バッファがヒットした場合、検査時に共有メモリバッファ上に表現されたページを調査します。
そのため、amcheckは、検査時にファイルシステムから読み込んだデータを調査するとは限りません。
チェックサムが有効な場合、amcheckは壊れたブロックをバッファに読み込んだ際にチェックサム障害によるエラーを報告するかもしれません。
    

	

欠陥のあるRAMあるいは、広範囲に渡るメモリサブシステムによる破損。
    


PostgreSQL™は、訂正可能なメモリエラーからは身を守らないので、業界標準のエラー訂正コード(ECC)、あるいはもっと優れた保護機構を使ったRAMを使って運用する前提となっています。
しかし、ECCメモリは典型的には単一ビットエラーに対してのみ耐性があり、メモリ破損に起因する障害に対して完全な保護を提供すると考えるべきではありません。
    


heapallindexed検証が実施されると、一般に1ビットエラーを検出する可能性が非常に高くなります。
これは、バイナリ一致を厳密にテストすることと、またヒープ内のインデックス付けされたアトリビュートをテストすることによります。
    




 


構造上の破損は故障したストレージハードウェア、あるいはリレーションファイルが無関係のソフトウェアによって上書きされたり変更されることによって起こることがあります。
この種の破損はデータページチェックサムによっても検出することができます。
 


正しくフォーマットされ、内部的に一貫していて、かつ自身の内部チェックサムが正しいリレーションページでも論理的に破損していることがあります。
ですから、この種の破損はチェックサムでは検出できません。
例としては、主テーブルのTOASTされた値に対応するTOASTテーブルのエントリが存在しない、主テーブルのタプルのトランザクションIDがデータベースクラスタ内の有効な最古のトランザクションIDよりも古い、などがあります。
 


PostgreSQL™サーバソフトウェアのバグ、欠陥があったり、よく考慮されていないバックアップ、リストアツール、ユーザのエラーなど、論理的破損の複数の原因が実運用システム上で観測されています。
 


破損したリレーションは、リスクの高い活動がもっとも忌避される環境である、運用中の実システム環境では最大の懸念事項です。
このため、verify_heapamは過度のリスクを伴わずに破損を診断するように設計されています。
ひどく破損したシステムでは問い合わせの呼び出しを実行するだけでも安全ではないため、バックエンドのクラッシュのすべての原因から守ることはできません。
カタログ自身が破損していればカタログテーブルへのアクセスの実行も問題になるでしょう。
 


一般的に、amcheckは破損の存在を証明することはできますが、破損がないことを証明することはできません。
 

破損の修復





amcheckが報告するエラーが関与する破損で、偽陽性のものはありません。
amcheckは、定義により発生してはならないはずの条件下で発生したエラーを報告するので、amcheckの報告するエラーを注意深く解析することがしばしば求められます。
 


amcheckが検出した問題を修復する一般的な方法はありません。
不変条件違反の根本的な原因の説明が求められます。
amcheckが検出した破損の診断には、pageinspectが有用な役割を担うかもしれません。
REINDEXは破損の修復には効果的ではないかもしれません。
 



auth_delay — 認証エラー時に一時停止





auth_delayはパスワードの総当たり攻撃をより難しくするために認証エラーの報告を行う前にわずかにサーバを停止させます。
これはDoS攻撃を防ぐためのものでは無いことに注意してください。認証エラーを待たせ、コネクションスロットを消費させるため、DoS攻撃の影響を増長させるかもしれません。
 


この機能を有効にするためにはpostgresql.confの shared_preload_librariesよりモジュールをロードする必要があります。
 
設定パラメータ



	
     auth_delay.milliseconds (integer)
     
     
    
	

指定されたミリ秒数認証エラーを返す前に待機します。デフォルトは0です。
     





これらのパラメータをpostgresql.confファイルに設定する必要があります。典型的な使用方法は以下のようになります。
  

# postgresql.conf
shared_preload_libraries = 'auth_delay'

auth_delay.milliseconds = '500'


作者




   KaiGai Kohei <kaigai@ak.jp.nec.com>
  


auto_explain — 低速な問い合わせ実行計画のログ





auto_explainモジュールは、手動でEXPLAIN(7)の実行を必要とせず、自動的に遅い文の実行計画をログ記録する手段を提供します。
大きなアプリケーションにおける最適化されていない問い合わせを追跡するのに特に有用です。
 


このモジュールはSQLでアクセスできる関数を提供しません。
使用するには、サーバに単に読み込ませます。
ある個別のセッションに読み込ませることができます。



LOAD 'auto_explain';




（実行するためにはスーパーユーザでなければなりません。）
より一般的な使用方法は、postgresql.confのsession_preload_librariesまたはshared_preload_librariesにauto_explainを含めて、特定のまたはすべてのセッションで事前にロードしておくことです。
すると、想定外に低速な問い合わせを発生時に何も行うことなく追跡することができます。
当然ながらこのためのオーバーヘッドという代償があります。
 
設定パラメータ





auto_explainの動作を制御するいくつかの設定パラメータが存在します。
デフォルトの動作は何もしないことなので、なんらかの結果を望むのであれば少なくともauto_explain.log_min_durationを設定しなければならないことに注意してください。
 
	
     auto_explain.log_min_duration (integer)
     
     
    
	

auto_explain.log_min_durationは、文の実行計画がログに記録されるようになる、ミリ秒単位の最小の文実行時間です。
これを0にすれば、すべての計画が記録されます。
-1（デフォルト）は計画の記録を無効にします。
例えば、250msに設定すると、250ms以上実行する文すべてが記録されます。
スーパーユーザのみがこの設定を変更することができます。
     

	
     auto_explain.log_parameter_max_length (integer)
     
     
    
	

auto_explain.log_parameter_max_lengthは、問い合わせパラメータ値を記録するか制御します。
-1という値（デフォルト）は、パラメータ値を完全に記録します。
0はパラメータ値の記録を無効にします。
ゼロより大きい値は、各パラメータ値を指定されたバイト数に切り捨てます。
この設定を変更できるのは、スーパーユーザのみです。
     

	
     auto_explain.log_analyze (boolean)
     
     
    
	

auto_explain.log_analyzeは、実行計画のログが取得されたときに出力されるものとして、単にEXPLAIN出力ではなく、EXPLAIN ANALYZE出力を行います。
このパラメータはデフォルトで無効です。
スーパーユーザのみがこの設定を変更できます。
     
注記


このパラメータが有効の場合、計画ノードごとの時間的調整は事実上ログされるまで如何に時間が掛かろうと、全ての実行文に対して引き起こります。
極端に性能上のマイナスの影響が起こり得ます。
auto_explain.log_timingを無効にすれば、得られる情報が少なくなるという犠牲を払って、性能の損失が改善されます。
      


	
     auto_explain.log_buffers (boolean)
     
     
    
	

auto_explain.log_buffersは実行計画のログを取得するときに、バッファ使用統計を出力するかどうかを制御します。
EXPLAINのBUFFERSオプションと同じです。
auto_explain.log_analyzeパラメータが設定されていなければ、このパラメータは効果がありません。
このパラメータはデフォルトで無効です。
スーパーユーザのみがこの設定を変更することができます。
     

	
     auto_explain.log_wal (boolean)
     
     
    
	

auto_explain.log_walは実行計画のログを取得するときに、WAL使用統計を出力するかどうかを制御します。
EXPLAINのWALオプションと同じです。
auto_explain.log_analyzeパラメータが設定されていなければ、このパラメータは効果がありません。
このパラメータはデフォルトで無効です。
スーパーユーザのみがこの設定を変更することができます。
     

	
     auto_explain.log_timing (boolean)
     
     
    
	

auto_explain.log_timingは、実行計画のログが取得されたときに、ノード毎の時間的調整情報を出力するかどうかを制御します。
EXPLAINのTIMINGオプションと同じです。
システムクロックを繰り返し読み出すことによるオーバーヘッドのため、システムの中には問い合わせが非常に遅くなるものがありますので、実際の行数のみ必要で正確な時刻は必要でない場合にはこのパラメータを無効にすると役に立つかも知れません。
auto_explain.log_analyzeが設定されていなければ、このパラメータは効果がありません。
デフォルトで有効です。
スーパーユーザのみがこの設定を変更することができます。
     

	
     auto_explain.log_triggers (boolean)
     
     
    
	

auto_explain.log_triggersにより、実行計画のログを記録するときに、トリガ実行の統計を含めるようになります。
auto_explain.log_analyzeパラメータが設定されていなければ、このパラメータは効果がありません。
このパラメータはデフォルトで無効です。
スーパーユーザのみがこの設定を変更することができます。
     

	
     auto_explain.log_verbose (boolean)
     
     
    
	

auto_explain.log_verboseは、実行計画のログが取得されたときに、冗長な詳細が出力されるかどうかを制御します。
EXPLAINのVERBOSEオプションと同じです。
このパラメータはデフォルトで無効です。
スーパーユーザのみがこの設定を変更できます。
     

	
     auto_explain.log_settings (boolean)
     
     
    
	

auto_explain.log_settingsは、実行計画が記録される時に修正された設定オプションに関する情報を表示するかどうかを制御します。
問い合わせ計画に影響し、組み込みのデフォルトの値と異なる値であるオプションだけが出力に含まれます。
このパラメータはデフォルトで無効です。
スーパーユーザのみがこの設定を変更できます。
     

	
     auto_explain.log_format (enum)
     
     
    
	

auto_explain.log_formatは使用するEXPLAIN出力書式を選びます。
許容される値はtext、xml、json、yamlです。
デフォルトはtextです。
スーパーユーザのみがこの設定を変更することができます。
     

	
     auto_explain.log_level (enum)
     
     
    
	

auto_explain.log_levelは、auto_explainが問い合わせ計画を記録するログレベルを選択します。
有効な値はDEBUG5、DEBUG4、DEBUG3、DEBUG2、DEBUG1、INFO、NOTICE、WARNING、LOGです。
デフォルトはLOGです。
スーパーユーザのみがこの設定を変更できます。
     

	
     auto_explain.log_nested_statements (boolean)
     
     
    
	

auto_explain.log_nested_statementsにより、入れ子状の文（関数内から実行される文）を考慮して記録するようになります。
無効ならば、最上位の問い合わせ計画のみが記録されます。
このパラメータはデフォルトで無効です。
スーパーユーザのみがこの設定を変更することができます。
     

	
     auto_explain.sample_rate (real)
     
     
    
	

auto_explain.sample_rateにより、auto_explainは各セッションで一部の文の実行計画のみをログに記録するようになります。
デフォルトは1で、すべての問い合わせの実行計画をログに記録します。
入れ子になった文の場合には、実行計画がすべてログに記録されるか、全くされないかのどちらかです。
スーパーユーザのみがこの設定を変更できます。
     





スーパーユーザは自身のセッション内でその場で変更できますが、通常の使用では、これらパラメータはpostgresql.confに設定しなければなりません。
典型的な使用方法は以下のようになります。
  

# postgresql.conf
session_preload_libraries = 'auto_explain'

auto_explain.log_min_duration = '3s'


例




postgres=# LOAD 'auto_explain';
postgres=# SET auto_explain.log_min_duration = 0;
postgres=# SET auto_explain.log_analyze = true;
postgres=# SELECT count(*)
           FROM pg_class, pg_index
           WHERE oid = indrelid AND indisunique;



これにより、以下のようなログ出力が作成されます。
  

LOG:  duration: 3.651 ms  plan:
  Query Text: SELECT count(*)
              FROM pg_class, pg_index
              WHERE oid = indrelid AND indisunique;
  Aggregate  (cost=16.79..16.80 rows=1 width=0) (actual time=3.626..3.627 rows=1.00 loops=1)
    ->  Hash Join  (cost=4.17..16.55 rows=92 width=0) (actual time=3.349..3.594 rows=92.00 loops=1)
          Hash Cond: (pg_class.oid = pg_index.indrelid)
          ->  Seq Scan on pg_class  (cost=0.00..9.55 rows=255 width=4) (actual time=0.016..0.140 rows=255.00 loops=1)
          ->  Hash  (cost=3.02..3.02 rows=92 width=4) (actual time=3.238..3.238 rows=92.00 loops=1)
                Buckets: 1024  Batches: 1  Memory Usage: 4kB
                ->  Seq Scan on pg_index  (cost=0.00..3.02 rows=92 width=4) (actual time=0.008..3.187 rows=92.00 loops=1)
                      Filter: indisunique


作者





   板垣 貴裕 <itagaki.takahiro.at.oss.ntt.co.jp>
  


basebackup_to_shell — pg_basebackupモジュール"shell"の例





basebackup_to_shellは、shellという名前のカスタムbasebackupターゲットを追加します。
これにより、pg_basebackup --target=shellを実行するか、このモジュールの設定方法に応じてpg_basebackup --target=shell:DETAIL_STRINGを実行し、サーバ管理者が選択したサーバコマンドを、バックアッププロセスで生成されたtarアーカイブごとに実行させることができます。
コマンドは、標準入力を介してアーカイブの内容を受け取ります。
 


このモジュールは主に、拡張モジュールを使用して新しいバックアップターゲットを作成する方法の例として作成されていますが、シナリオによってはそれ自体が役立つ場合があります。
このモジュールを機能させるには、shared_preload_librariesまたはlocal_preload_librariesを使用してロードする必要があります。
 
設定パラメータ



	
     basebackup_to_shell.command (string)
     
     
    
	

バックアップ処理によって生成された各アーカイブに対してサーバが実行する必要があるコマンドです。
コマンド文字列に%fが含まれている場合は、アーカイブの名前に置き換えられます（例:base.tar）。
コマンド文字列に%dが含まれている場合は、ユーザが指定したターゲット詳細に置き換えられます。
コマンド文字列に%dが使用されている場合は、ターゲット詳細が必要です。
それ以外の場合は禁止されています。
セキュリティ上の理由から、ターゲット詳細には英数字のみを使用できます。
%%がコマンド文字列に含まれている場合は、単一の%に置き換えられます。
%がコマンド文字列に含まれていて、その後に他の文字または文字列の末尾にある場合は、エラーが発生します。
     

	
     basebackup_to_shell.required_role (string)
     
     
    
	

shellバックアップターゲットを使用するために必要なロールです。
これが設定されていない場合、レプリケーションユーザはshellバックアップターゲットを使用できます。
     




作者




   Robert Haas <rhaas@postgresql.org>
  


basic_archive — WALアーカイブモジュールの例





basic_archiveはアーカイブモジュールの例です。
このモジュールは、完成したWALセグメントファイルを指定されたディレクトリにコピーします。
これは特に有用ではありませんが、独自のアーカイブモジュールを開発するための出発点として役立ちます。
アーカイブモジュールの詳細は49章アーカイブモジュールを参照してください。
 


機能するには、このモジュールをarchive_library経由でロードし、archive_modeを有効にする必要があります。
 
設定パラメータ



	
     basic_archive.archive_directory (string)
     
     
    
	

サーバがWALセグメントファイルをコピーするディレクトリです。
このディレクトリは既に存在している必要があります。
デフォルトは空文字列で、事実上WALアーカイブを停止します。
しかしarchive_modeが有効になっている場合、サーバはこの値が間もなく提供されることを期待してWALセグメントファイルを蓄積します。
     





これらのパラメータはpostgresql.confの中で設定しなければなりません。
 典型的な使用方法は以下のようになります。
  

# postgresql.conf
archive_mode = 'on'
archive_library = 'basic_archive'
basic_archive.archive_directory = '/path/to/archive/directory'


注釈





サーバがクラッシュすると、アーカイブディレクトリに接頭辞archtempを持つ一時ファイルが残る場合があります。
クラッシュ後にサーバを再起動する前に、このようなファイルを削除することをお薦めします。
このようなファイルは、進行中のアーカイブと無関係であれば、サーバの実行中に削除しても安全ですが、その際には十分な注意が必要です。
  

作者




   Nathan Bossart
  


bloom — ブルームフィルタインデックスアクセスメソッド





  bloomは、ブルームフィルタによるインデックスアクセスメソッドを提供します。
 


ブルームフィルタは、空間効率の良いデータ構造で、ある要素が集合のメンバかどうかをテストするのに用いられます。
インデックスアクセスメソッドとして使用する場合、インデックス作成時に大きさが決まるシグネチャを使って、条件を満たさないタプルを高速に除外することができます。
 


シグネチャはインデックス化された属性を非可逆的に表現するもので、その性質上、偽陽性の結果を出すことがあります。
すなわち、集合の中にない要素が、集合の中にあると報告するかもしれません。
ですから、インデックスの検索結果は、ヒープエントリ中の実際の属性値を使って、必ず再検査しなければなりません。
シグネチャが大きくなれば偽陽性の可能性が下がるので不必要なヒープの検索は減りますが、もちろんそうなるとインデックスが大きくなるので、スキャンが遅くなります。
 


この種のインデックスは、テーブルに多数の属性があり、その任意の組み合わせを検索する問い合わせを実行するときにもっとも有効です。
伝統的なbtreeインデックスはブルームインデックスよりも高速ですが、可能なすべての問い合わせをサポートするためには多数のbtreeインデックスが必要なのに対し、ブルームインデックスでは、たった一つのブルームインデックスだけで事足ります。
しかし、ブルームインデックスでは等価検索だけをサポートすることに注意してください。
btreeインデックスでは、等価だけでなく、範囲検索も実行できます。
 
パラメータ





bloomインデックスは、WITH句中の以下のパラメータを受け付けます。
  
	length
	

ビット単位の個々のシグネチャ（インデックスエントリ）の長さ。
16の倍数に近い値に丸められます。
デフォルトは80ビットで、最大値は4096です。
     



	col1 — col32
	

各インデックスカラムに対して生成するビット数。
各々のパラメータ名は、管理対象のインデックスカラムの番号です。
デフォルトは2ビットで、最大値は4095です。
実際には使用されないインデックスカラムについてのパラメータは無視されます。
     




例





ブルームインデックスの作成例です。
  

CREATE INDEX bloomidx ON tbloom USING bloom (i1,i2,i3)
       WITH (length=80, col1=2, col2=2, col3=4);



このインデックスは80ビット長のシグネチャで作成され、属性i1とi2は2ビットに、i3は4ビットにマップされます。
length、col1、col2指定はデフォルト値を使っているので、省略しても構いません。
  


より完全なブルームインデックスの定義と使用法を示します。
比較のために、これと同等のbtreeインデックスも併せて示します。
ブルームインデックスはbtreeインデックスよりもかなり小さく、また、より良い性能を発揮できるかもしれません。
  

=# CREATE TABLE tbloom AS
   SELECT
     (random() * 1000000)::int as i1,
     (random() * 1000000)::int as i2,
     (random() * 1000000)::int as i3,
     (random() * 1000000)::int as i4,
     (random() * 1000000)::int as i5,
     (random() * 1000000)::int as i6
   FROM
  generate_series(1,10000000);
SELECT 10000000



これだけ大きなテーブルに対するシーケンシャルスキャンは長い時間がかかります。


=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
                                              QUERY PLAN
-------------------------------------------------------------------​-----------------------------------
 Seq Scan on tbloom  (cost=0.00..213744.00 rows=250 width=24) (actual time=357.059..357.059 rows=0.00 loops=1)
   Filter: ((i2 = 898732) AND (i5 = 123451))
   Rows Removed by Filter: 10000000
   Buffers: shared hit=63744
 Planning Time: 0.346 ms
 Execution Time: 357.076 ms
(6 rows)


  


たとえbtreeインデックスが定義されていたとしても、結果はまだシーケンシャルスキャンです。


=# CREATE INDEX btreeidx ON tbloom (i1, i2, i3, i4, i5, i6);
CREATE INDEX
=# SELECT pg_size_pretty(pg_relation_size('btreeidx'));
 pg_size_pretty
----------------
 386 MB
(1 row)
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
                                              QUERY PLAN
-------------------------------------------------------------------​-----------------------------------
 Seq Scan on tbloom  (cost=0.00..213744.00 rows=2 width=24) (actual time=351.016..351.017 rows=0.00 loops=1)
   Filter: ((i2 = 898732) AND (i5 = 123451))
   Rows Removed by Filter: 10000000
   Buffers: shared hit=63744
 Planning Time: 0.138 ms
 Execution Time: 351.035 ms
(6 rows)


  


そのテーブルにブルームインデックスが定義されていれば、btreeよりもこの種の検索をうまく扱います。


=# CREATE INDEX bloomidx ON tbloom USING bloom (i1, i2, i3, i4, i5, i6);
CREATE INDEX
=# SELECT pg_size_pretty(pg_relation_size('bloomidx'));
 pg_size_pretty
----------------
 153 MB
(1 row)
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
                                                     QUERY PLAN
-------------------------------------------------------------------​--------------------------------------------------
 Bitmap Heap Scan on tbloom  (cost=1792.00..1799.69 rows=2 width=24) (actual time=22.605..22.606 rows=0.00 loops=1)
   Recheck Cond: ((i2 = 898732) AND (i5 = 123451))
   Rows Removed by Index Recheck: 2300
   Heap Blocks: exact=2256
   Buffers: shared hit=21864
   ->  Bitmap Index Scan on bloomidx  (cost=0.00..178436.00 rows=1 width=0) (actual time=20.005..20.005 rows=2300.00 loops=1)
         Index Cond: ((i2 = 898732) AND (i5 = 123451))
         Index Searches: 1
         Buffers: shared hit=19608
 Planning Time: 0.099 ms
 Execution Time: 22.632 ms
(11 rows)


  


btree検索の主要な問題は、検索条件が、先頭（そしてそれに続く）インデックスカラムを使用しないときに、効率が悪くなってしまうことです。
btreeでは各々のカラムに対して別々のインデックスを作るのが良い戦略です。
するとプランはこのような選択をします。


=# CREATE INDEX btreeidx1 ON tbloom (i1);
CREATE INDEX
=# CREATE INDEX btreeidx2 ON tbloom (i2);
CREATE INDEX
=# CREATE INDEX btreeidx3 ON tbloom (i3);
CREATE INDEX
=# CREATE INDEX btreeidx4 ON tbloom (i4);
CREATE INDEX
=# CREATE INDEX btreeidx5 ON tbloom (i5);
CREATE INDEX
=# CREATE INDEX btreeidx6 ON tbloom (i6);
CREATE INDEX
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
                                                        QUERY PLAN
-------------------------------------------------------------------​--------------------------------------------------------
 Bitmap Heap Scan on tbloom  (cost=9.29..13.30 rows=1 width=24) (actual time=0.032..0.033 rows=0.00 loops=1)
   Recheck Cond: ((i5 = 123451) AND (i2 = 898732))
   Buffers: shared read=6
   ->  BitmapAnd  (cost=9.29..9.29 rows=1 width=0) (actual time=0.047..0.047 rows=0.00 loops=1)
         Buffers: shared hit=6
         ->  Bitmap Index Scan on btreeidx5  (cost=0.00..4.52 rows=11 width=0) (actual time=0.026..0.026 rows=7.00 loops=1)
               Index Cond: (i5 = 123451)
               Index Searches: 1
               Buffers: shared hit=3
         ->  Bitmap Index Scan on btreeidx2  (cost=0.00..4.52 rows=11 width=0) (actual time=0.007..0.007 rows=8.00 loops=1)
               Index Cond: (i2 = 898732)
               Index Searches: 1
               Buffers: shared hit=3
 Planning Time: 0.264 ms
 Execution Time: 0.047 ms
(15 rows)



個別のインデックスのどれかを使うよりもこの問い合わせはずっと高速に実行できますが、インデックスのサイズにペナルティを払わなければなりません。
各々の単一カラムのbtreeインデックスは、88.5MBになります。ですから、全体で必要なスペースは531MBです。ブルームインデックスで使用するスペースの3倍以上です。
  

演算子クラスインタフェース





ブルームインデックスの演算子クラスには、インデックス対象のデータ型に対するハッシュ関数と、検索のための等価演算子だけが必要です。
この例では、textデータ型に対する演算子クラスの定義を示します。
  

CREATE OPERATOR CLASS text_ops
DEFAULT FOR TYPE text USING bloom AS
    OPERATOR    1   =(text, text),
    FUNCTION    1   hashtext(text);


制限事項




   
	

このモジュールには、int4とtextに対する演算子クラスだけが含まれています。
     

	

=演算子だけが検索ではサポートされています。
しかし、配列の和、積演算のサポートを将来追加することは可能です。
     

	

bloomアクセスメソッドはUNIQUEインデックスをサポートしていません。
     

	

bloomアクセスメソッドはNULL値の検索をサポートしていません。
     




  

作者




   Teodor Sigaev <teodor@postgrespro.ru>,
   Postgres Professional, Moscow, Russia
  

   Alexander Korotkov <a.korotkov@postgrespro.ru>,
   Postgres Professional, Moscow, Russia
  

   Oleg Bartunov <obartunov@postgrespro.ru>,
   Postgres Professional, Moscow, Russia
  


btree_gin — GIN演算子クラスとB-tree動作





btree_ginは、次に列挙するデータ型に対しB-treeと同等な動作を実装するGIN演算子クラスを提供します。データ型は、int2、int4、int8、float4、float8、timestamp with time zone、timestamp without time zone、time with time zone、time without time zone、date、interval、oid、money、"char"、varchar、text、bytea、bit、varbit、macaddr、macaddr8、inet、cidr、uuid、name、bool、bpcharおよびすべてのenum型です。
 


一般的に、これらの演算子クラスは同等な標準B-treeインデックスメソッドを性能的に凌駕する物ではなく、標準B-treeコードの１つの重要機能である一意性を強制する能力を欠いています。
しかしながら、GINの試験、およびその他のGIN演算子クラスの開発の基礎として便利です。
同時に、GINインデックス化可能列およびB-treeインデックス化可能列双方を試験する問い合わせに対し、ビットマップを介してANDを取り一体化されるべき２つの別々のインデックスを作成するよりも、これらの演算子クラスの１つを使用する複数列GINインデックスを作成するほうがより効率的です。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
使用例




CREATE TABLE test (a int4);

-- インデックスの作成
CREATE INDEX testidx ON test USING GIN (a);

-- 問い合わせ
SELECT * FROM test WHERE a < 10;


作者





   Teodor Sigaev（<teodor@stack.net>）および
   Oleg Bartunov（<oleg@sai.msu.su>）。
追加情報はhttp://www.sai.msu.su/~megera/oddmuse/index.cgi/Ginを参照ください。
  


btree_gist — GiST演算子クラスとB-tree動作





btree_gistは、次に列挙するデータ型に対しB-treeと同等な動作を実装するGiSTインデックス演算子クラスを提供します。データ型は、int2、int4、int8、float4、float8、numeric、timestamp with time zone、timestamp without time zone、time with time zone、time without time zone、date、interval、oid、money、char、varchar、text、bytea、 bit、varbit、macaddr、macaddr8、inet、cidr、uuid、bool、およびすべてのenum型です。
 


一般的に、これらの演算子クラスは同等な標準B-treeインデックスメソッドを性能的に凌駕する物ではなく、標準B-treeコードの１つの重要機能である一意性を強制する能力を欠いています。
しかしながら、以下で述べるようにB-treeインデックスにはない特徴をいくつか備えています。
また、これらの演算子クラスは、GiSTでのみインデックス可能なデータ型の列もあれば、単純なデータ型の列もあるような複数列のGiSTインデックスが必要な場合に便利です。
最後に、GiSTの試験、およびその他のGiST演算子クラスの開発の基礎として便利です。
 


典型的なB-tree検索演算子に加えて、btree_gistは<>（「等しくない」）に対してもインデックスのサポートを提供します。
これは、後で述べるような排他制約と組み合わせると便利でしょう。
 


また、自然な距離のあるデータ型には、btree_gistは距離演算子<->を定義し、この演算子を使った最近接検索へのGiSTインデックスのサポートを提供します。
距離演算子はint2、int4、int8、float4、float8、timestamp with time zone、timestamp without time zone、time without time zone、date、interval、oid、moneyに提供されます。
 


デフォルトでは、btree_gistはsortsupportによるソート処理モードでGiSTインデックスを構築します。
これにより、通常、インデックスの構築速度が大幅に向上します。
インデックスの作成時にbufferingパラメータを使用することで、バッファ処理での構築戦略に変更することもできます。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
使用例





btreeの代わりにbtree_gistを使った簡単な例
  

CREATE TABLE test (a int4);

-- インデックスの作成
CREATE INDEX testidx ON test USING GIST (a);

-- 問い合わせ
SELECT * FROM test WHERE a < 10;

-- 最近接検索: "42"に一番近い10個のエントリを見つける
SELECT *, a <-> 42 AS dist FROM test ORDER BY a <-> 42 LIMIT 10;



動物園の一つの檻に1種類の動物しかいないというルールを強制するために排他制約を使います。
  

=> CREATE TABLE zoo (
  cage   INTEGER,
  animal TEXT,
  EXCLUDE USING GIST (cage WITH =, animal WITH <>)
);

=> INSERT INTO zoo VALUES(123, 'zebra');
INSERT 0 1
=> INSERT INTO zoo VALUES(123, 'zebra');
INSERT 0 1
=> INSERT INTO zoo VALUES(123, 'lion');
ERROR:  conflicting key value violates exclusion constraint "zoo_cage_animal_excl"
DETAIL:  Key (cage, animal)=(123, lion) conflicts with existing key (cage, animal)=(123, zebra).
=> INSERT INTO zoo VALUES(124, 'lion');
INSERT 0 1


作者





   Teodor Sigaev（<teodor@stack.net>）、
   Oleg Bartunov（<oleg@sai.msu.su>）、
   Janko Richter (<jankorichter@yahoo.de>)、およびPaul Jungwirth (<pj@illuminatedcomputing.com>)。
追加情報はhttp://www.sai.msu.su/~megera/postgres/gist/を参照ください。
  


citext — 大文字小文字の区別がない文字列型





citextモジュールは、大文字小文字の区別がないcitext文字列型を提供します。
これは値の比較の際、基本的に内部でlowerを呼び出します。
この他はほぼtextと同様に動作します。
 
ヒント


このモジュールの代わりに非決定論的照合順序(「非決定論的な照合順序」参照)を使うことを検討してください。
大文字小文字を区別しない比較、アクセントを区別しない比較、その他の組み合わせに対して使えますし、より多くのユニコードの特別な場合を正しく扱います。
  



このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
原理





PostgreSQL™において大文字小文字の区別のない比較を行う標準的な手法は、値を比べる際に以下のようにlower関数を使用することでした。例です。



SELECT * FROM tab WHERE lower(col) = LOWER(?);


  


これはまあまあ動作しますが、数多くの欠点があります。
  
	

作成するSQL文を冗長にします。
また常に列と問い合わせの値両方にlowerを使用することを忘れないようにしなければなりません。
     

	

lowerを使用して関数インデックスを作成していない限り、インデックスを使用しません。
     

	

UNIQUEまたはPRIMARY KEYとして列を宣言するのであれば、暗黙的に生成されるインデックスは大文字小文字を区別します。
このため、大文字小文字を区別しない検索では使えず、また、大文字小文字を区別しない一意性を強制させられません。
     





citextデータ型によりSQL問い合わせ内のlower呼び出しを省くことができます。
さらに、大文字小文字の区別がない主キーを実現できます。
citextはtextと同様にロケールも考慮します。
つまり大文字と小文字のマッチングは、LC_CTYPEデータベース設定の規則に依存します。
ここでも、この動作はlowerを使用した問い合わせと同一です。
しかしこのデータ型により、ロケールの考慮は透過的に行われますので、問い合わせで特殊なことを行うことを覚えておく必要はありません。
   

使用方法





簡単な例を示します。



CREATE TABLE users (
    nick CITEXT PRIMARY KEY,
    pass TEXT   NOT NULL
);

INSERT INTO users VALUES ( 'larry',  sha256(random()::text::bytea) );
INSERT INTO users VALUES ( 'Tom',    sha256(random()::text::bytea) );
INSERT INTO users VALUES ( 'Damian', sha256(random()::text::bytea) );
INSERT INTO users VALUES ( 'NEAL',   sha256(random()::text::bytea) );
INSERT INTO users VALUES ( 'Bjørn',  sha256(random()::text::bytea) );

SELECT * FROM users WHERE nick = 'Larry';




SELECT文は、nick列がlarryに設定され、問い合わせがLarryに対してであっても、１つのタプルを返します。
  

文字列比較の動作





citextはそれぞれの文字列を（lowerが呼ばれますが）小文字に変換して結果を普通に比較します。
よって、例えばlowerで小文字にした場合に同じ結果となるような２つの文字列が等しいとみなされます。
  


大文字小文字の区別のない照合をできる限り正確にエミュレートするために、数多くのcitext独自版の各種文字列処理演算子と関数があります。
したがって、例えば正規表現演算子~および~*は、citextに適用する時に同じ動作を提供します。
これら両方は大文字小文字を区別することなくマッチします。
!~や!~*だけではなくLIKE演算子、~~、~~*、!~~、!~~*でも同じことが言えます。
もし大文字小文字を区別して比較したい場合は、演算子の引数をtextにキャストすることができます。
  


引数がcitextであれば、同様にして以下の関数は大文字小文字を区別しない一致を実行します。
  
	
      regexp_match()
    

	
      regexp_matches()
    

	
      regexp_replace()
    

	
      regexp_split_to_array()
    

	
      regexp_split_to_table()
    

	
      replace()
    

	
      split_part()
    

	
      strpos()
    

	
      translate()
    





正規表現関数（RegExp関数）では、大文字小文字を区別して一致させたい場合「c」フラグを付けて、強制的に大文字小文字を区別して一致させることができます。
そうしないと、大文字小文字を区別させたい場合にはこれらの関数のいずれかを使用する前段階でtextにキャストしなければなりません。
  

制限事項



	

citextの大文字小文字を区別しない動作は使用するデータベースのLC_CTYPEに依存します。
どのように値を比較するかは、データベースが作成されたときに決定されます。
Unicode標準の定義という観点では、真に大文字小文字の区別がないわけではありません。
実質的に何を意味しているかというと、使用している照合が十分なものであれば、citextによる比較も十分なものになるはずです。
しかしデータベースに様々な言語でデータを格納している場合は、ある言語のユーザは照合が他の言語用のものであった場合想定外の問い合わせ結果を得るかもしれません。
     

	

PostgreSQL™ 9.1では、COLLATE指定をcitext列もしくはデータ値に付け加えることができます。
現状では、citext演算子は大文字小文字を含んだ文字列を比較する際に、デフォルトではないCOLLATE指定を重んじます。
しかし、最初の小文字変換はデータベースのLC_CTYPE設定にしたがって、常に実行されます（つまり、COLLATE "default"が指定されたようになります）
これは、両方のステップが入力されたCOLLATE指定に従うように、将来のリリースにおいて変更されるでしょう。
     

	

演算子関数およびB-tree比較関数でデータの複製を作成しそれを比較のために小文字に変換しなければなりませんので、citextはtextほど効率的ではありません。
また、textだけがB-Tree重複排除をサポートできます。
しかしcitextは、大文字小文字の区別をしない一致をさせるためにlowerを使用する場合よりかなり効率的です。
     

	

citextは、ある文脈では大文字小文字の区別を行い、またある文脈では大文字小文字の区別を行わない比較をする必要がある場合、あまり役に立ちません。
標準的な解法はtext型を使用し、大文字小文字を区別する比較が必要であれば手作業でlower関数を使用することです。
これは大文字小文字を区別しない比較の必要性がまれであれば、問題なく動作します。
大文字小文字を区別しない比較がほとんどで、大文字小文字を区別する比較の必要性がまれである場合は、データをcitextとして格納し、大文字小文字を区別する比較の際にその列を明示的にtextにキャストすることを検討してください。
どちらの場合でも、2種類の検索の両方を高速にするために２つのインデックスを作成しなければならないでしょう。
    

	

citext演算子を含んだスキーマは、現在のsearch_path(典型的にはpublic)に
存在しなければいけません。もし無い場合は通常の大文字小文字が区別されるtext比較が代わりに呼び出されます。
    

	

比較のために文字列を小文字にする方法は、例えば、大文字1つに対応する小文字が2つある場合等、ユニコードの特別な場合を正しく扱えないことがあります。
ユニコードはこの理由で大文字小文字の対応関係と大文字小文字の畳み込みを区別します。
正しくその場合を扱うには、citextの代わりに非決定論的照合順序を使ってください。
     




作者




   David E. Wheeler <david@kineticode.com>
  


    Donald Fraserによるcitextモジュール原本からのヒント
  


cube — 多次元立方体データ型





本モジュールは、多次元立方体を表すためのcubeデータ型を実装します。
（訳注：以下cubeを立方体と訳しますが、ここでのcubeが指しているものは、厳密には「（超）立方体」ではありません。正確には、それぞれの「（超）面」がある座標軸に対して垂直な「（超）直方体」です。）
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
構文





表F.1「cubeの外部表現」はcube型で有効な外部表現を示します。
x、yなどは浮動小数点数を意味します。
  
表F.1 cubeの外部表現
	外部構文	意味
	x	
1次元の点。（すなわち、幅ゼロの一次元間隔）
      
	(x)	同上
	x1,x2,...,xn	
n次元空間の点。
内部的には体積0の立方体として表されます。
      
	(x1,x2,...,xn)	同上
	(x),(y)	
xからyまで（またはその逆）の1次元の間隔。
順序は関係ありません。
      
	[(x),(y)]	同上
	(x1,...,xn),(y1,...,yn)	
対角の組み合わせで表されるn次元の立方体。
      
	[(x1,...,xn),(y1,...,yn)]	同上





立方体の対角の入力順序は関係ありません。
統一的な「左下 — 右上」という内部表現を作成するために必要ならば、cube関数は自動的に値を交換します。
角が一致する場合、cube型には無駄を省くために、「点である」フラグを加えた一つの角のみ格納されます。
  


空白文字は入力時に無視されます。
このため、[(x),(y)]は[ ( x ), ( y ) ]と同じです。
  

精度





値は内部的に64ビットの浮動小数点数値として格納されます。
つまり、有効桁が16より大きい数値は切り詰められることを意味します。
  

使用方法





表F.2「cubeの演算子」は、cube型に提供されている専用の演算子を示します。
  
表F.2 cubeの演算子
	

        演算子
       

       

        説明
       

	
        cube && cube
        boolean
       

       

立方体が重なるか？
       

	
        cube @> cube
        boolean
       

       

1番目の立方体は2番目のものを含むか？
       

	
        cube <@ cube
        boolean
       

       

1番目の立方体は2番目のものに含まれるか？
       

	
        cube -> integer
        float8
       

       

立方体の（1から数えた）n次座標を取得します。
       

	
        cube ~> integer
        float8
       

       

以下のように立方体のn次座標を取得します。
n = 2 * k - 1 はk次元の下界を、n = 2 * k はk次元の上界を意味します。
負のnは、対応する正の座標の正負反転した値を示します。
この演算子はKNN-GiSTのサポートのために設計されています。
       

	
        cube <-> cube
        float8
       

       

2つの立方体のユークリッド距離を計算します。
       

	
        cube <#> cube
        float8
       

       

2つの立方体のタクシー(L-1計量)距離を計算します。
       

	
        cube <=> cube
        float8
       

       

2つの立方体のチェビシェフ(L-無限大計量)距離を計算します。
       






上記の演算子に加えて、cube型では表9.1「比較演算子」にある通常の比較演算子が利用可能です。
これらの演算子は、まず最初の座標を比較し、それらが同一の場合は2番目の座標を比較し、と続けます。
それらは、主にcube型のためのB-treeインデックス演算子クラスをサポートするために存在し、例えばcube型の列にUNIQUE制約をつけたい場合に便利です。
それ以外の場合、この順序はあまり実用的ではありません。
  


cubeモジュールは、cube型の値用にGiSTインデックス演算子クラスも提供します。
cube型GiSTインデックスは、WHERE句内にて=、&&、@>、<@演算子を用いて値を検索するために使用することができます。
  


加えて、cube型GiSTインデックスは、ORDER BY句内にて<->、<#>、<=>のメトリック演算子を用いて近傍値を発見するために使用することができます。
例えば、3次元の点である(0.5, 0.5, 0.5)の最近傍点は、以下のように効率よく発見できます。


SELECT c FROM test ORDER BY c <-> cube(array[0.5,0.5,0.5]) LIMIT 1;


  


~>演算子でもこの方法で、選択された座標によってソートされた最初のいくつかの値を効率よく探査するために使用できます。
例えば、1番目の座標（左下隅）によって昇順に並べ替えられた最初のいくつかの立方体を取得するために、以下のような問い合わせを使用することができます。


SELECT c FROM test ORDER BY c ~> 1 LIMIT 5;



そして、右上の1番目の座標によって昇順に並べ替えられた2次元の立方体を取得するために、以下のような問い合わせを使用することができます。


SELECT c FROM test ORDER BY c ~> 3 DESC LIMIT 5;


  


表F.3「cubeの関数」は有効な関数を示します。
  
表F.3 cubeの関数
	

        関数
       

       

        説明
       

       

        例
       

	
        cube ( float8 )
        cube
       

       

同じ座標をもつ、1次元の立方体を作成します。
       

       
        cube(1)
        (1)
       

	
        cube ( float8, float8 )
        cube
       

       

1次元の立方体を作成します。
       

       
        cube(1, 2)
        (1),(2)
       

	
        cube ( float8[] )
        cube
       

       

配列で定義される座標を使用した体積0の立方体を作成します。
       

       
        cube(ARRAY[1,2,3])
        (1, 2, 3)
       

	
        cube ( float8[], float8[] )
        cube
       

       

2つの配列で定義される右上および左下座標を持つ立方体を作成します。配列長は同じでなければなりません。
       

       
        cube(ARRAY[1,2], ARRAY[3,4])
        (1, 2),(3, 4)
       

	
        cube ( cube, float8 )
        cube
       

       

既存の立方体に次元を加え、新しい座標の同じ値の端点をもつ立方体を新しく作成します。
これは計算した値で部品を追加しながら立方体を構築する場合に有用です。
       

       
        cube('(1,2),(3,4)'::cube, 5)
        (1, 2, 5),(3, 4, 5)
       

	
        cube ( cube, float8, float8 )
        cube
       

       

既存の立方体に次元を加えた立方体を新しく作成します。
これは計算した値で部品を追加しながら立方体を構築する場合に有用です。
       

       
        cube('(1,2),(3,4)'::cube, 5, 6)
        (1, 2, 5),(3, 4, 6)
       

	
        cube_dim ( cube )
        integer
       

       

立方体の次元数を返します。
       

       
        cube_dim('(1,2),(3,4)')
        2
       

	
        cube_ll_coord ( cube, integer )
        float8
       

       

立方体の左下隅のn次座標の値を返します。
       

       
        cube_ll_coord('(1,2),(3,4)', 2)
        2
       

	
        cube_ur_coord ( cube, integer )
        float8
       

       

立方体の右上隅のn次座標の値を返します。
       

       
        cube_ur_coord('(1,2),(3,4)', 2)
        4
       

	
        cube_is_point ( cube )
        boolean
       

       

立方体が点、つまり立方体が定義する2つの隅が同一の場合真を返します。
       

       
        cube_is_point(cube(1,1))
        t
       

	
        cube_distance ( cube, cube )
        float8
       

       

2つの立方体間の距離を返します。
両方の立方体が点の場合、これは通常の距離測定関数です。
       

       
        cube_distance('(1,2)', '(3,4)')
        2.8284271247461903
       

	
        cube_subset ( cube, integer[] )
        cube
       

       

配列内の次元インデックスの一覧を使用して、既存の立方体から新しい立方体を作成します。
単一次元の端点を展開するために使用したり、次元を除去したり、希望通りの順序に並べ替えたりすることができます。
       

       
        cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[2])
        (3),(7)
       

       
        cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[3,2,1,1])
        (5, 3, 1, 1),(8, 7, 6, 6)
       

	
        cube_union ( cube, cube )
        cube
       

       

2つの立方体の和集合を作成します。
       

       
        cube_union('(1,2)', '(3,4)')
        (1, 2),(3, 4)
       

	
        cube_inter ( cube, cube )
        cube
       

       

2つの立方体の共通部分を作成します。
       

       
        cube_inter('(1,2)', '(3,4)')
        (3, 4),(1, 2)
       

	
        cube_enlarge ( c cube, r double, n integer )
        cube
       

       

最小でn次元において指定した径rで立方体のサイズを増加させます。
径が負の場合、立方体は縮小されます。
定義済のすべての次元は径rだけ変わります。
左下座標をrだけ減少し、右上座標をrだけ増加します。
左下座標が対応する右上座標よりも増加する場合(これはr < 0の場合にのみ発生します)、両方の座標はその平均値に設定されます。
nが定義済の次元より多く、かつ、立方体が拡大される(r > 0)場合、n次元すべてを作成するために余分な次元が追加されます。余分な座標には、初期値として0が使用されます。
この関数は、近傍点を見つけるための点を囲む外接矩形を作成する際に有用です。
       

       
        cube_enlarge('(1,2),(3,4)', 0.5, 3)
        (0.5, 1.5, -0.5),(3.5, 4.5, 0.5)
       





デフォルト





  

select cube_union('(0,5,2),(2,3,1)', '0');
cube_union
-------------------
(0, 0, 0),(2, 5, 2)
(1 row)



この和集合および以下の共通集合は一般常識と矛盾しません。
   

select cube_inter('(0,-1),(1,1)', '(-2),(2)');
cube_inter
-------------
(0, 0),(1, 0)
(1 row)



次元が異なる立方体の二項演算すべてにおいて、より低い次元の方がデカルト投影、つまり、文字列表現で省略された座標に0を持つものになると仮定します。
上の例は以下と同じです。
   

cube_union('(0,5,2),(2,3,1)','(0,0,0),(0,0,0)');
cube_inter('(0,-1),(1,1)','(-2,0),(2,0)');



以下の包含の述部は点構文を使用しますが、実際内部的には第2引数は矩形として表されます。
この構文により、別の点用の型や(box,point)という述部用の関数を定義することが不要になります。
   

select cube_contains('(0,0),(1,1)', '0.5,0.5');
cube_contains
--------------
t
(1 row)


注釈





使用例については、sql/cube.sqlリグレッションテストを参照してください。
  


破壊防止のために立方体の次元数に100までという制限を行いました。
これはcubedata.hで設定されており、必要に応じて多少大きくすることができます。
  

クレジット





   原作者: Gene Selkov, Jr. <selkovjr@mcs.anl.gov>,
   Mathematics and Computer Science Division, Argonne National Laboratory.
  


GiST (http://gist.cs.berkeley.edu/)の要点(gist)を説明してくださったJoe Hellerstein博士 (https://dsf.berkeley.edu/jmh/) に感謝します。
また、Illustra用の例の作者である彼の以前の生徒Andy Dongに感謝します。
また、自分の世界を作成できるようにし、静かに生活できるようにしてもらった、過去から現在までのすべてのPostgres開発者に感謝します。
データベース研究を長年誠実にサポートしてくれたArgonne LabとU.S. Department of Energyにも感謝します。
  


2002年8月/9月にBruno Wolff III <bruno@wolff.to>による小規模な改修がこのパッケージになされました。
この改修には、単精度から倍精度への精度の変更といくつかの関数の追加が含まれます。
  


2006年7月にJoshua Reich <josh@root.net>による改修がさらになされました。
この改修にはcube(float8[], float8[])が含まれ、また、古いV0プロトコルからV1呼び出しプロトコルを使用するようコードが整理されました。
  


dblink — 他のPostgreSQLデータベースへ接続する





dblinkは、データベースセッション内から他のPostgreSQL™データベースへの接続をサポートするモジュールです。
 


dblinkは、待機イベントの種類Extensionで以下の待機イベントを報告できます。
 
	DblinkConnect
	

リモートサーバへの接続が確立するのを待機しています。
    

	DblinkGetConnect
	

すでに開かれた接続のリストに見つからなかった場合、リモートサーバへの接続が確立するのを待機しています。
    

	DblinkGetResult
	

リモートサーバから問い合わせの結果を受信するのを待機しています。
    





postgres_fdwも参照して下さい。より新しく標準に対する互換性の高い基盤を使ってほぼ同じ機能を提供しています。
 


名前
dblink_connect — リモートデータベースへの永続的な接続を開く

概要

dblink_connect(text connstr) returns text
dblink_connect(text connname, text connstr) returns text


説明


dblink_connect()はリモートのPostgreSQL™データベースへの接続を確立します。
接続先のサーバとデータベースは標準のlibpq接続文字列を通して識別されます。
省略可能ですが、名前を接続に割り当てることも可能です。
複数の名前付きの接続を一度に開くことができますが、無名の接続は同時に1つしか許されません。
接続は、閉ざされるまで、または、データベースセッションが終わるまで永続します。
   


接続文字列は同時に既存の外部サーバ名であっても構いません。
外部サーバを定義する場合、外部データラッパーdblink_fdwを使用することを推奨します。
後述の例とCREATE SERVER(7)、CREATE USER MAPPING(7)を参照してください。
   

引数
	connname
	

接続に使用する名前です。省略した場合、既存の無名の接続を閉ざし、無名の接続を開きます。
      

	connstr
	
例えばhostaddr=127.0.0.1 port=5432 dbname=mydb user=postgres  password=mypasswdといったlibpq形式の接続情報文字列です。
詳細は「接続文字列」を参照してください。
もしくは外部サーバ名です。
      




戻り値


状態を返します。
これは常にOKです（何らかのエラーが起きるとこの関数は戻らずエラーとなるためです）。
   

注釈


信頼できないユーザが、安全なスキーマ使用パターンを適用していないデータベースへアクセスする際には、セッション開始時にsearch_pathから、第三者が書き込みができるスキーマを削除してください。
これはたとえばconnstrに値-csearch_path=を設定することで可能となります。
このような配慮は、dblinkに限ったことではありません。
任意のSQLコマンドを実行するすべてのインタフェースに当てはまります。
   


外部データラッパーdblink_fdwには、追加のブールオプションuse_scram_passthroughがあり、dblinkがSCRAMパススルー認証を使用してリモートデータベースに接続するかどうかを制御します。
SCRAMパススルー認証では、dblinkはプレーンテキストユーザパスワードの代わりにSCRAMハッシュ化されたシークレットを使用してリモートサーバに接続します。
これにより、プレーンテキストユーザパスワードがPostgreSQLシステムカタログに格納されるのを回避します。
詳細と制限については、postgres_fdwの相当するuse_scram_passthroughオプションの文書を参照してください。
   


スーパーユーザのみがパスワード認証やSCRAMパススルー、GSSAPI認証がない接続を作成するためにdblink_connectを使用できます。
スーパーユーザ以外でこの機能が必要ならばdblink_connect_uを代わりに使用してください。
   


他のdblink関数内で接続情報文字列が混乱する危険が発生しますので、等号記号を含む接続名を選択することは勧めません。
   

例

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect
----------------
 OK
(1 row)

SELECT dblink_connect('myconn', 'dbname=postgres options=-csearch_path=');
 dblink_connect
----------------
 OK
(1 row)


-- 外部データラッパー（FOREIGN DATA WRAPPER）の機能
-- 注意：SCRAMパススルーを使わないローカル接続でこれが正常に機能するには
--       パスワード認証が必須です。
--       さもないと、dblink_connect()から以下のエラーを受け取ります。
--       ERROR:  password is required
--       DETAIL:  Non-superuser cannot connect if the server does not request a password.
--       HINT:  Target server's authentication method must be changed.

CREATE SERVER fdtest FOREIGN DATA WRAPPER dblink_fdw OPTIONS (hostaddr '127.0.0.1', dbname 'contrib_regression');

CREATE USER regress_dblink_user WITH PASSWORD 'secret';
CREATE USER MAPPING FOR regress_dblink_user SERVER fdtest OPTIONS (user 'regress_dblink_user', password 'secret');
GRANT USAGE ON FOREIGN SERVER fdtest TO regress_dblink_user;
GRANT SELECT ON TABLE foo TO regress_dblink_user;

\set ORIGINAL_USER :USER
\c - regress_dblink_user
SELECT dblink_connect('myconn', 'fdtest');
 dblink_connect
----------------
 OK
(1 row)

SELECT * FROM dblink('myconn', 'SELECT * FROM foo') AS t(a int, b text, c text[]);
 a  | b |       c
----+---+---------------
  0 | a | {a0,b0,c0}
  1 | b | {a1,b1,c1}
  2 | c | {a2,b2,c2}
  3 | d | {a3,b3,c3}
  4 | e | {a4,b4,c4}
  5 | f | {a5,b5,c5}
  6 | g | {a6,b6,c6}
  7 | h | {a7,b7,c7}
  8 | i | {a8,b8,c8}
  9 | j | {a9,b9,c9}
 10 | k | {a10,b10,c10}
(11 rows)

\c - :ORIGINAL_USER
REVOKE USAGE ON FOREIGN SERVER fdtest FROM regress_dblink_user;
REVOKE SELECT ON TABLE foo FROM regress_dblink_user;
DROP USER MAPPING FOR regress_dblink_user SERVER fdtest;
DROP USER regress_dblink_user;
DROP SERVER fdtest;




名前
dblink_connect_u — リモートデータベースへの永続的な危険な接続を開く

概要

dblink_connect_u(text connstr) returns text
dblink_connect_u(text connname, text connstr) returns text


説明


dblink_connect_u()は、非スーパーユーザが任意の認証方式を使用して接続することができる点を除き、dblink_connect()と同じです。
   


リモートサーバがパスワードを含まない認証方式を選択していた場合、セッションがローカルなPostgreSQL™サーバを実行するユーザから構成されたものとなりますので、なりすましやその後の権限昇格が起こり得ます。
また、リモートサーバがパスワードを要求したとしても、サーバ側のユーザに属する~/.pgpassファイルなどサーバの環境から提供されるパスワードになる可能性があります。
これはなりすましの危険性だけでなく、信頼できないリモートサーバへのパスワードが漏れる可能性を引き起こします。
このためdblink_connect_u()はまず、スーパーユーザ以外から呼び出すことができないように、PUBLICからすべての権限を取り除いた形でインストールされます。
状況によっては、信頼できるとみなされた特定のユーザにdblink_connect_u()のEXECUTE権限を与えることが適切となる場合があります。
しかしこれは注意して行わなければなりません。
また、サーバのユーザに属する~/.pgpassファイルにはすべて、ホスト名としてワイルドカードを指定した項目をまったく含めないことを推奨します。
   


この他の情報はdblink_connect()を参照してください。
   



名前
dblink_disconnect — リモートデータベースへの永続的な接続を閉じる

概要

dblink_disconnect() returns text
dblink_disconnect(text connname) returns text


説明


dblink_disconnect()はdblink_connect()で開かれた既存の接続を閉ざします。
引数がない構文では無名の接続を閉ざします。
   

引数
	connname
	

閉じる名前付き接続の名前です。
      




戻り値


状態を返します。
これは常にOKです（何らかのエラーが起きるとこの関数は戻らずエラーとなるためです）。
   

例

SELECT dblink_disconnect();
 dblink_disconnect
-------------------
 OK
(1 row)

SELECT dblink_disconnect('myconn');
 dblink_disconnect
-------------------
 OK
(1 row)




名前
dblink — リモートデータベースで問い合わせを実行する

概要

dblink(text connname, text sql [, bool fail_on_error]) returns setof record
dblink(text connstr, text sql [, bool fail_on_error]) returns setof record
dblink(text sql [, bool fail_on_error]) returns setof record


説明


dblinkはリモートデータベースで問い合わせ（通常はSELECTですが行を返す任意のSQLコマンドを行うことができます）を実行します。
   


2つのtext型の引数が与えられた場合、一番目の引数はまず永続接続の名前を検索するために使われます。
もし見つかれば、コマンドがその接続上で実行されます。
見つからなければ、一番目の引数はdblink_connect用の接続情報文字列として扱われ、このコマンド実行時と同様に指定された接続が開きます。
   

引数
	connname
	

使用する接続の名前です。
無名の接続を使用する場合はこのパラメータを省略します。
      

	connstr
	

上でdblink_connectで説明した接続情報文字列です。
      

	sql
	

例えばselect * from fooといった、リモートデータベースで実行させるSQL問い合わせです。
      

	fail_on_error
	

真（省略時のデフォルト）の場合、接続のリモート側で発生したエラーによりローカル側でもエラーが発生します。
偽の場合リモート側のエラーはローカル側にはNOTICEとして報告され、この関数は行を返しません。
      




戻り値


この関数は問い合わせにより生成された行を返します。
dblinkは任意の問い合わせで使用することができますので、これは特定の列集合を指定するのではなく、record型を返すものと宣言されています。
これは呼び出し元の問い合わせで想定列集合を指定しなければならないことを意味します。
さもないとPostgreSQL™は何が想定されているかわかりません。
以下に例を示します。



SELECT *
    FROM dblink('dbname=mydb options=-csearch_path=',
                'select proname, prosrc from pg_proc')
      AS t1(proname name, prosrc text)
    WHERE proname LIKE 'bytea%';




FROM句の「別名」部分は関数が返す列名とその型を指定しなければなりません。
（別名内の列名の指定は標準SQLの構文ですが、列の型の指定はPostgreSQL™の拡張です。）
これによりシステムは、関数を実行する前に、*がどのように展開されるか、WHERE句内のpronameが何を参照するかを理解します。
実行時、リモートデータベースから返る実際の問い合わせの結果がFROM句で示された列数と異なる場合エラーが発生します。
しかし、列名は一致する必要はありません。
また、dblinkは正確な型一致も強制しません。
返されるデータ文字列がFROM句で宣言された列型の有効な入力である限り成功します。
   

注釈


前もって判明している問い合わせをdblinkで使用する簡便な方法はビューを作成することです。
これにより問い合わせの度に列型の情報を記載することなく、ビュー内に隠すことができます。
以下に例を示します。



CREATE VIEW myremote_pg_proc AS
  SELECT *
    FROM dblink('dbname=postgres options=-csearch_path=',
                'select proname, prosrc from pg_proc')
    AS t1(proname name, prosrc text);

SELECT * FROM myremote_pg_proc WHERE proname LIKE 'bytea%';


例

SELECT * FROM dblink('dbname=postgres options=-csearch_path=',
                     'select proname, prosrc from pg_proc')
  AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
  proname   |   prosrc
------------+------------
 byteacat   | byteacat
 byteaeq    | byteaeq
 bytealt    | bytealt
 byteale    | byteale
 byteagt    | byteagt
 byteage    | byteage
 byteane    | byteane
 byteacmp   | byteacmp
 bytealike  | bytealike
 byteanlike | byteanlike
 byteain    | byteain
 byteaout   | byteaout
(12 rows)

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect
----------------
 OK
(1 row)

SELECT * FROM dblink('select proname, prosrc from pg_proc')
  AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
  proname   |   prosrc
------------+------------
 byteacat   | byteacat
 byteaeq    | byteaeq
 bytealt    | bytealt
 byteale    | byteale
 byteagt    | byteagt
 byteage    | byteage
 byteane    | byteane
 byteacmp   | byteacmp
 bytealike  | bytealike
 byteanlike | byteanlike
 byteain    | byteain
 byteaout   | byteaout
(12 rows)

SELECT dblink_connect('myconn', 'dbname=regression options=-csearch_path=');
 dblink_connect
----------------
 OK
(1 row)

SELECT * FROM dblink('myconn', 'select proname, prosrc from pg_proc')
  AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
  proname   |   prosrc
------------+------------
 bytearecv  | bytearecv
 byteasend  | byteasend
 byteale    | byteale
 byteagt    | byteagt
 byteage    | byteage
 byteane    | byteane
 byteacmp   | byteacmp
 bytealike  | bytealike
 byteanlike | byteanlike
 byteacat   | byteacat
 byteaeq    | byteaeq
 bytealt    | bytealt
 byteain    | byteain
 byteaout   | byteaout
(14 rows)




名前
dblink_exec — リモートデータベースでコマンドを実行する

概要

dblink_exec(text connname, text sql [, bool fail_on_error]) returns text
dblink_exec(text connstr, text sql [, bool fail_on_error]) returns text
dblink_exec(text sql [, bool fail_on_error]) returns text


説明


dblink_execはリモートデータベースでコマンド（つまり行を返さない任意のSQL文）を実行します。
   


2つのtext型の引数が与えられた場合、一番目の引数はまず永続接続の名前を検索するために使われます。
もし見つかれば、コマンドがその接続上で実行されます。
見つからなければ、一番目の引数はdblink_connect用の接続情報文字列として扱われ、このコマンド実行時と同様に指定された接続が開きます。
   

引数
	connname
	

使用する接続の名前です。
無名の接続を使用する場合はこのパラメータを省略します。
      

	connstr
	

上でdblink_connectで説明した接続情報文字列です。
      

	sql
	

例えばinsert into foo values(0, 'a', '{"a0","b0","c0"}')といった、リモートデータベースで実行させるSQL問い合わせです。
      

	fail_on_error
	

真（省略時のデフォルト）の場合、接続のリモート側で発生したエラーによりローカル側でもエラーが発生します。
偽の場合リモート側のエラーはローカル側にはNOTICEとして報告され、この関数の戻り値はERRORになります。
      




戻り値


状態、つまりコマンドの状態またはERRORを返します。
   

例

SELECT dblink_connect('dbname=dblink_test_standby');
 dblink_connect
----------------
 OK
(1 row)

SELECT dblink_exec('insert into foo values(21, ''z'', ''{"a0","b0","c0"}'');');
   dblink_exec
-----------------
 INSERT 943366 1
(1 row)

SELECT dblink_connect('myconn', 'dbname=regression');
 dblink_connect
----------------
 OK
(1 row)

SELECT dblink_exec('myconn', 'insert into foo values(21, ''z'', ''{"a0","b0","c0"}'');');
   dblink_exec
------------------
 INSERT 6432584 1
(1 row)

SELECT dblink_exec('myconn', 'insert into pg_class values (''foo'')',false);
NOTICE:  sql error
DETAIL:  ERROR:  null value in column "relnamespace" violates not-null constraint

 dblink_exec
-------------
 ERROR
(1 row)




名前
dblink_open — リモートデータベースでカーソルを開く

概要

dblink_open(text cursorname, text sql [, bool fail_on_error]) returns text
dblink_open(text connname, text cursorname, text sql [, bool fail_on_error]) returns text


説明


dblink_open()はリモートデータベースでカーソルを開きます。
その後カーソルをdblink_fetch()とdblink_close()で操作することができます。
   

引数
	connname
	

使用する接続の名前です。
無名の接続を使用する場合はこのパラメータを省略します。
      

	cursorname
	

このカーソルに割り当てる名前です。
      

	sql
	

例えばselect * from pg_classといった、リモートデータベースで実行させたいSELECT文です。
      

	fail_on_error
	

真（省略時のデフォルト）の場合、接続のリモート側で発生したエラーによりローカル側でもエラーが発生します。
偽の場合リモート側のエラーはローカル側にはNOTICEとして報告され、この関数の戻り値はERRORになります。
      




戻り値


状態、つまりOKまたはERRORを返します。
   

注釈


カーソルはトランザクション内でのみ持続することができますので、リモート側がまだトランザクションの内部でない場合、dblink_openはリモート側で明示的なトランザクションブロックを開始（BEGIN）します。
このトランザクションは対応するdblink_closeが実行された時に同様に閉ざされます。
dblink_openとdblink_closeの間にdblink_execを使用してデータを変更した場合、エラーが発生することに注意してください。
また、dblink_closeの前にdblink_disconnectを使用すると、トランザクションがアボートしますので変更が失われることに注意してください。
   

例

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect
----------------
 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc');
 dblink_open
-------------
 OK
(1 row)




名前
dblink_fetch — リモートデータベースで開いているカーソルから行を取り出す

概要

dblink_fetch(text cursorname, int howmany [, bool fail_on_error]) returns setof record
dblink_fetch(text connname, text cursorname, int howmany [, bool fail_on_error]) returns setof record


説明


dblink_fetchはdblink_openによりあらかじめ確立したカーソルから行を取り出します。
   

引数
	connname
	

使用する接続の名前です。
無名の接続を使用する場合はこのパラメータを省略します。
      

	cursorname
	

行を取り出すカーソルの名前です。
      

	howmany
	

受け取る行の最大数です。
カーソルの現在位置から次のhowmany行を取り出し、カーソルの位置を前方に移動します。
カーソルが終端まで達すると、これ以上の行は生成されません。
      

	fail_on_error
	

真（省略時のデフォルト）の場合、接続のリモート側で発生したエラーによりローカル側でもエラーが発生します。
偽の場合リモート側のエラーはローカル側にはNOTICEとして報告され、この関数は行を返しません。
      




戻り値


この関数はカーソルから取り出された行を返します。
この関数を使用するためには、dblinkで説明したように、想定する列集合を指定する必要があります。
   

注釈


リモートカーソルから返る実際の列数とFROM句で指定された列数と異なる場合エラーが発生します。
この場合リモート側のカーソルは、エラーが発生しなかった場合と同じ行数分位置が変わります。
リモート側のFETCHが完了した後にローカル側でこの他のエラーが発生した場合も同じです。
   

例

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect
----------------
 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc where proname like ''bytea%''');
 dblink_open
-------------
 OK
(1 row)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname |  source
----------+----------
 byteacat | byteacat
 byteacmp | byteacmp
 byteaeq  | byteaeq
 byteage  | byteage
 byteagt  | byteagt
(5 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname  |  source
-----------+-----------
 byteain   | byteain
 byteale   | byteale
 bytealike | bytealike
 bytealt   | bytealt
 byteane   | byteane
(5 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
  funcname  |   source
------------+------------
 byteanlike | byteanlike
 byteaout   | byteaout
(2 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
----------+--------
(0 rows)




名前
dblink_close — リモートデータベースでカーソルを閉じる

概要

dblink_close(text cursorname [, bool fail_on_error]) returns text
dblink_close(text connname, text cursorname [, bool fail_on_error]) returns text


説明


dblink_closeは前もってdblink_openで開かれたカーソルを閉ざします。
   

引数
	connname
	

使用する接続の名前です。
無名の接続を使用する場合はこのパラメータを省略します。
      

	cursorname
	

閉じるカーソルの名前です。
      

	fail_on_error
	

真（省略時のデフォルト）の場合、接続のリモート側で発生したエラーによりローカル側でもエラーが発生します。
偽の場合リモート側のエラーはローカル側にはNOTICEとして報告され、この関数の戻り値はERRORになります。
      




戻り値


状態、つまりOKまたはERRORを返します。
   

注釈


dblink_openが明示的なトランザクションブロックを開始し、これが接続上で最後まで開き続けているカーソルであった場合、dblink_closeは対応するCOMMITを発行します。
   

例

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect
----------------
 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc');
 dblink_open
-------------
 OK
(1 row)

SELECT dblink_close('foo');
 dblink_close
--------------
 OK
(1 row)




名前
dblink_get_connections — 接続中の名前付きdblink接続すべての名前を返す

概要

dblink_get_connections() returns text[]


説明


dblink_get_connectionsは、接続中の名前付きのdblink接続すべての名前を配列として返します。
   

戻り値
接続名のテキスト型配列を返します。なければNULLです。

例

SELECT dblink_get_connections();




名前
dblink_error_message — 名前付き接続上の最後のエラーメッセージを取得する

概要

dblink_error_message(text connname) returns text


説明


dblink_error_messageは指定された接続における、最後のリモートエラーメッセージを取り出します。
   

引数
	connname
	

使用する接続名です。
      




戻り値


最後のエラーメッセージを返します。
接続においてエラーが存在しなかった場合はOKを返します。
   

注釈


非同期問い合わせがdblink_send_queryで開始された場合、接続に伴うエラーメッセージは、サーバの応答メッセージが消費されるまで更新されないかもしれません。
典型的にはこのことは、dblink_error_messageに先立ってdblink_is_busyあるいはdblink_get_resultを呼び出すべきであることを意味します。
そうすることによって非同期問い合わせによって生成されたエラーが見えるようになります。
   

例

SELECT dblink_error_message('dtest1');




名前
dblink_send_query — リモートデータベースに非同期問い合わせを送信する

概要

dblink_send_query(text connname, text sql) returns int


説明


dblink_send_queryは非同期に、つまり、結果をすぐに待機することなく実行する問い合わせを送信します。
接続上で進行中の非同期問い合わせが存在してはなりません。
   


非同期問い合わせの登録が成功した後、dblink_is_busyを使用して完了状況を検査することができます。
そして最後に、dblink_get_resultを使用して結果を収集します。
また、dblink_cancel_queryを使用して実行中の非同期問い合わせを取り消すことができます。
   

引数
	connname
	

使用する接続名です。
      

	sql
	

例えばselect * from pg_classといった、リモートデータベースで実行させたいSQL文です。
      




戻り値


問い合わせの登録に成功した場合1を返します。
失敗した場合は0を返します。
   

例

SELECT dblink_send_query('dtest1', 'SELECT * FROM foo WHERE f1 < 3');




名前
dblink_is_busy — 接続において非同期問い合わせが実行中か検査する

概要

dblink_is_busy(text connname) returns int


説明


dblink_is_busyは非同期問い合わせが進行中かどうか試験します。
   

引数
	connname
	

検査対象の接続名です。
      




戻り値


接続において進行中だった場合は1、さもなくば0を返します。
この関数が0を返した場合、dblink_get_resultがブロックされないことが保証されます。
   

例

SELECT dblink_is_busy('dtest1');




名前
dblink_get_notify — 接続上の非同期通知を取り出す

概要

dblink_get_notify() returns setof (notify_name text, be_pid int, extra text)
dblink_get_notify(text connname) returns setof (notify_name text, be_pid int, extra text)


説明


dblink_get_notifyは名前の付いていない接続、または、もし指定されて名前が付いている接続いずれからも通知を取り出します。
dblink経由で通知を受け取るには、dblink_execを使用してLISTENを最初に発行しなければなりません。
詳細はLISTEN(7)とNOTIFY(7)を参照ください。
   

引数
	connname
	

通知を受け取る名前つきの接続の名前
      




戻り値
setof (notify_name text, be_pid int, extra text)または存在しない場合は空集合を返します。

例

SELECT dblink_exec('LISTEN virtual');
 dblink_exec
-------------
 LISTEN
(1 row)

SELECT * FROM dblink_get_notify();
 notify_name | be_pid | extra
-------------+--------+-------
(0 rows)

NOTIFY virtual;
NOTIFY

SELECT * FROM dblink_get_notify();
 notify_name | be_pid | extra
-------------+--------+-------
 virtual     |   1229 |
(1 row)




名前
dblink_get_result — 非同期問い合わせの結果を取得する

概要

dblink_get_result(text connname [, bool fail_on_error]) returns setof record


説明


dblink_get_resultは、事前にdblink_send_queryで送信された非同期問い合わせの結果を収集します。
問い合わせがまだ完了していなかった場合、dblink_get_resultは終わるまで待機します。
   

引数
	connname
	

使用する接続名です。
      

	fail_on_error
	

真（省略時のデフォルト）の場合、接続のリモート側で発生したエラーによりローカル側でもエラーが発生します。
偽の場合リモート側のエラーはローカル側にはNOTICEとして報告され、この関数は行を返しません。
      




戻り値


非同期問い合わせ（行を返すSQL文の場合）について、この関数は問い合わせで生成された行を返します。
この関数を使用するためには、上のdblinkで説明したように想定する列集合を指定する必要があります。
   


非同期コマンド（行を返さないSQL文の場合）について、この関数はコマンド状態文字列からなるテキスト列を1つ持つ1行を返します。
この場合も呼び出し元のFROM句で結果が単一のテキスト列を持つことを指定する必要があります。
   

注釈


dblink_send_queryが1を返した場合にこの関数を呼び出さなければなりません。
接続を再度利用できるようになる前に、送信した問い合わせに対し一度呼び出されなければなりません。
もう一度実行すると空の結果集合を得ることになります。
   


dblink_send_queryとdblink_get_resultを使う場合には、dblinkはリモート側の問い合わせ結果をローカルの問い合わせ処理に渡す前にすべて取り込みます。
問い合わせが大量の行を返す場合、ローカルセッションで一時的なメモリ膨張が起こるかも知れません。
そのような問い合わせはdblink_openでカーソルとして開き、それから一度に管理可能な行数を取り出す方が良いでしょう。
あるいは、普通のdblink()を使って下さい。
大きな結果集合をディスクにスプールすることでメモリ膨張を回避します。
   

例

contrib_regression=# SELECT dblink_connect('dtest1', 'dbname=contrib_regression');
 dblink_connect
----------------
 OK
(1 row)

contrib_regression=# SELECT * FROM
contrib_regression-# dblink_send_query('dtest1', 'select * from foo where f1 < 3') AS t1;
 t1
----
  1
(1 row)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text, f3 text[]);
 f1 | f2 |     f3
----+----+------------
  0 | a  | {a0,b0,c0}
  1 | b  | {a1,b1,c1}
  2 | c  | {a2,b2,c2}
(3 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text, f3 text[]);
 f1 | f2 | f3
----+----+----
(0 rows)

contrib_regression=# SELECT * FROM
contrib_regression-# dblink_send_query('dtest1', 'select * from foo where f1 < 3; select * from foo where f1 > 6') AS t1;
 t1
----
  1
(1 row)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text, f3 text[]);
 f1 | f2 |     f3
----+----+------------
  0 | a  | {a0,b0,c0}
  1 | b  | {a1,b1,c1}
  2 | c  | {a2,b2,c2}
(3 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text, f3 text[]);
 f1 | f2 |      f3
----+----+---------------
  7 | h  | {a7,b7,c7}
  8 | i  | {a8,b8,c8}
  9 | j  | {a9,b9,c9}
 10 | k  | {a10,b10,c10}
(4 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text, f3 text[]);
 f1 | f2 | f3
----+----+----
(0 rows)




名前
dblink_cancel_query — 名前付き接続上の実行中の問い合わせを取り消す

概要

dblink_cancel_query(text connname) returns text


説明


dblink_cancel_queryは名前付き接続上で進行中の問い合わせをすべて取り消そうとします。
これは成功するとは限らないことに注意してください（例えばリモート問い合わせがすでに終わっているかもしれないからです）。
取り消し要求は単に問い合わせがすぐに失敗する可能性を大きくするだけです。
例えば、dblink_get_resultを呼び出すなど、通常の問い合わせ手順を完了させる必要があります。
   

引数
	connname
	

使用する接続名です。
      




戻り値


取り消し要求が送信された場合OKを、さもなくば失敗についてのエラーメッセージテキストを返します。
   

例

SELECT dblink_cancel_query('dtest1');




名前
dblink_get_pkey — 
リレーションの主キーフィールドの位置とフィールド名を返します
   

概要

dblink_get_pkey(text relname) returns setof dblink_pkey_results


説明


dblink_get_pkeyは、ローカルデータベース内のリレーションの主キーに関する情報を提供します。
これはリモートデータベースに送信する問い合わせを生成する際に役に立つことがあります。
   

引数
	relname
	

例えばfooやmyschema.mytabといった、ローカル側のリレーションの名前です。
例えば"FooBar"のように名前に大文字小文字が混在する場合や特殊文字が含まれる場合は二重引用符で括ってください。
引用符がないと文字列は小文字に変換されます。
      




戻り値


主キー毎に1行を返します。
リレーションが主キーを持たない場合は行は返されません。
結果の行型は以下のように定義されます。



CREATE TYPE dblink_pkey_results AS (position int, colname text);




position列は単に1からNを返します。
それは、主キー内にあるフィールドの数で、テーブルの列内にある数ではありません。
   

例

CREATE TABLE foobar (
    f1 int,
    f2 int,
    f3 int,
    PRIMARY KEY (f1, f2, f3)
);
CREATE TABLE

SELECT * FROM dblink_get_pkey('foobar');
 position | colname
----------+---------
        1 | f1
        2 | f2
        3 | f3
(3 rows)




名前
dblink_build_sql_insert — 

ローカル側のタプルを使用してINSERT文を構築し、主キーフィールドの値を代替の値に置き換える
   

概要

dblink_build_sql_insert(text relname,
                        int2vector primary_key_attnums,
                        integer num_primary_key_atts,
                        text[] src_pk_att_vals_array,
                        text[] tgt_pk_att_vals_array) returns text


説明


dblink_build_sql_insertはローカル側のテーブルの一部を選択した複製をリモートデータベースに行う場合に有用になる可能性があります。
これは主キーによりローカルテーブルから行を選択し、その主キー値を最後の引数で与えた値に置き換えて、行を複製するINSERT SQLコマンドを構築します。
（行をそのまま複製する場合は、単に最後の2つの引数に同じ値を指定してください。）
   

引数
	relname
	

例えばfooやmyschema.mytabといったローカル側のリレーションの名前です。
例えば"FooBar"のように名前に大文字小文字が混在する場合や特殊文字が含まれる場合は二重引用符で括ってください。
引用符がないと文字列は小文字に変換されます。
      

	primary_key_attnums
	

例えば1 2といった、主キーフィールドの属性番号（1始まり）です。
      

	num_primary_key_atts
	

主キーフィールドの個数です。
      

	src_pk_att_vals_array
	

ローカルタプルを検索するために使用される主キーフィールドの値です。
各フィールドはテキスト形式で表されます。
これらの主キーの値を持つ行がローカル側に存在しない場合はエラーが発生します。
      

	tgt_pk_att_vals_array
	

最終的なINSERTコマンドにおいて置き換えられる主キーフィールドの値です。
各フィールドはテキスト形式で表されます。
      




戻り値
要求したSQL文をテキストとして返します。

注釈


PostgreSQL™ 9.0の段階で、primary_key_attnumsの中の属性数は、SELECT * FROM relname内の列の位置に対応する、論理的列数として翻訳されます。
以前のバージョンは物理的な列の位置として数を翻訳しました。
テーブルの存続期間中に、表示された列の左側のどんな列でも削除されると差異が生じます。
   

例

SELECT dblink_build_sql_insert('foo', '1 2', 2, '{"1", "a"}', '{"1", "b''a"}');
             dblink_build_sql_insert
--------------------------------------------------
 INSERT INTO foo(f1,f2,f3) VALUES('1','b''a','1')
(1 row)




名前
dblink_build_sql_delete — 
主キーフィールドの値として提供された値を使用したDELETE文を構築します
   

概要

dblink_build_sql_delete(text relname,
                        int2vector primary_key_attnums,
                        integer num_primary_key_atts,
                        text[] tgt_pk_att_vals_array) returns text


説明


dblink_build_sql_deleteはローカル側のテーブルの一部を選択した複製をリモートデータベースに行う場合に有用になる可能性があります。
これは指定した主キーの値を持つ行を削除するDELETE SQLコマンドを構築します。
   

引数
	relname
	

例えばfooやmyschema.mytabといったローカル側のリレーションの名前です。
例えば"FooBar"のように名前に大文字小文字が混在する場合や特殊文字が含まれる場合は二重引用符で括ってください。
引用符がないと文字列は小文字に変換されます。
      

	primary_key_attnums
	

例えば1 2といった、主キーフィールドの属性番号（1始まり）です。
      

	num_primary_key_atts
	

主キーフィールドの個数です。
      

	tgt_pk_att_vals_array
	

最終的なDELETEコマンドにおいて使用される主キーフィールドの値です。
各フィールドはテキスト形式で表されます。
      




戻り値

要求したSQL文をテキストとして返します。
   

注釈


PostgreSQL™ 9.0の段階で、primary_key_attnumsの中の属性数は、SELECT * FROM relname内の列の位置に対応する、論理的列数として翻訳されます。
以前のバージョンは物理的な列の位置として数を翻訳しました。
テーブルの存続期間中に、表示された列の左側のどんな列でも削除されると差異が生じます。
   

例

SELECT dblink_build_sql_delete('"MyFoo"', '1 2', 2, '{"1", "b"}');
           dblink_build_sql_delete
---------------------------------------------
 DELETE FROM "MyFoo" WHERE f1='1' AND f2='b'
(1 row)




名前
dblink_build_sql_update — ローカル側のタプルを使用してUPDATE文を構築し、主キーフィールドの値を代替の値に置き換える
   

概要

dblink_build_sql_update(text relname,
                        int2vector primary_key_attnums,
                        integer num_primary_key_atts,
                        text[] src_pk_att_vals_array,
                        text[] tgt_pk_att_vals_array) returns text


説明


dblink_build_sql_updateはローカル側のテーブルの一部を選択した複製をリモートデータベースに行う場合に有用になる可能性があります。
これは主キーによりローカルテーブルから行を選択し、その主キー値を最後の引数で与えた値に置き換えて、行を複製するUPDATE SQLコマンドを構築します。
（行をそのまま複製する場合は、単に最後の2つの引数に同じ値を指定してください。）
このUPDATEコマンドは常に行のすべてのフィールドを代入します。
この関数とdblink_build_sql_insertの主な違いは、対象の行がリモート側のテーブルにすでに存在すると仮定している点です。
   

引数
	relname
	

例えばfooやmyschema.mytabといったローカル側のリレーションの名前です。
例えば"FooBar"のように名前に大文字小文字が混在する場合や特殊文字が含まれる場合は二重引用符で括ってください。
引用符がないと文字列は小文字に変換されます。
      

	primary_key_attnums
	

例えば1 2といった、主キーフィールドの属性番号（1始まり）です。
      

	num_primary_key_atts
	

主キーフィールドの個数です。
      

	src_pk_att_vals_array
	

ローカルタプルを検索するために使用される主キーフィールドの値です。
各フィールドはテキスト形式で表されます。
これらの主キーの値を持つ行がローカル側に存在しない場合はエラーが発生します。
      

	tgt_pk_att_vals_array
	

最終的なUPDATEコマンドにおいて置き換えられる主キーフィールドの値です。
各フィールドはテキスト形式で表されます。
      




戻り値
要求したSQL文をテキストとして返します。

注釈


PostgreSQL™ 9.0の段階で、primary_key_attnumsの中の属性数は、SELECT * FROM relname内の列の位置に対応する、論理的列数として翻訳されます。
以前のバージョンは物理的な列の位置として数を翻訳しました。
テーブルの存続期間中に、表示された列の左側のどんな列でも削除されると差異が生じます。
   

例

SELECT dblink_build_sql_update('foo', '1 2', 2, '{"1", "a"}', '{"1", "b"}');
                   dblink_build_sql_update
-------------------------------------------------------------
 UPDATE foo SET f1='1',f2='b',f3='1' WHERE f1='1' AND f2='b'
(1 row)



dict_int — 整数のための全文検索用の辞書の例





dict_intは、全文検索用の辞書テンプレートの追加例です。
この辞書例の目的は、検索性能に大きく影響する一意な単語数の急激な増大を防ぎながら、こうした数のインデックス付けを行うことができるように、整数（符号付きおよび符号無）のインデックス付けを制御することです。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
設定





この辞書は3つのオプションを受け付けます。
  
	

maxlenパラメータは整数型の単語で許される最大桁数を指定します。
デフォルト値は6です。
    

	

rejectlongパラメータは、桁数を超える整数を切り詰めるか無視するかを指定します。
rejectlongがfalse（デフォルト）ならば、辞書は整数の先頭のmaxlen桁を返します。
rejectlongがtrueならば、辞書は桁数を超えた整数をストップワードとして扱います。
このためインデックス付けされません。
これはまた、こうした整数を検索することができないことを意味します。
    

	

absvalパラメータは、先頭の「+」または「-」符号を整数型の単語から削除するかどうかを指定します。
デフォルトはfalseです。
trueの場合、maxlenが適用される前に符号は削除されます。
    




使用方法





dict_int拡張機能をインストールすると、intdict_templateテキスト検索テンプレートとこれに基づき、そのデフォルト値でintdict辞書が作成されます。
以下のようにパラメータを変更することができます。



mydb# ALTER TEXT SEARCH DICTIONARY intdict (MAXLEN = 4, REJECTLONG = true);
ALTER TEXT SEARCH DICTIONARY




または、このテンプレートを基に新しい辞書を作成してください。
  


辞書を試験するためには以下を試してください。



mydb# select ts_lexize('intdict', '12345678');
 ts_lexize
-----------
 {123456}




しかし、現実世界で使用する場合は、12章全文検索で説明されるテキスト検索設定内にこれを含むようになるでしょう。
以下のようになります。



ALTER TEXT SEARCH CONFIGURATION english
    ALTER MAPPING FOR int, uint WITH intdict;



  


dict_xsyn — 類義語の全文検索用の辞書の例





dict_xsyn（拡張類義語辞書）は全文検索用の辞書テンプレートの追加例です。
この種類の辞書は、単語を類義語の集まりに置き換え、その類義語のいずれかを使用して単語を検索できるようにします。
 
設定





dict_xsyn辞書は以下のオプションを受け付けます。
  
	

matchorigは辞書で元の単語が受け付けられるか否かを制御します。
デフォルトはtrueです。
    

	

matchsynonymsは類義語が辞書で受け付けられるか否かを制御します。
デフォルトはfalseです。
    

	

keeporigは元の単語が辞書出力に含められるか否かを制御します。
デフォルトはtrueです。
    

	

keepsynonymsは類義語が辞書出力に含められるか否かを制御します。
デフォルトはtrueです。
    

	

rulesは、類義語リストを含むファイルのベース名です。
このファイルは$SHAREDIR/tsearch_data/（$SHAREDIRはPostgreSQL™インストレーションの共有データ用ディレクトリを示します）に格納しなければなりません。
この名前は.rulesで終わらなければなりません（これはrulesパラメータには含まれません）。
    





rulesファイルは以下の書式です。
  
	

各行は、行の先頭で与えられる1つの単語に対する類義語の集まりを表します。
類義語は以下のように空白文字で区切られます。


word syn1 syn2 syn3


    

	

シャープ記号（#）はコメント区切り記号です。
行の任意の位置に記載することができます。
行の残りの部分は飛ばされます。
    





例として$SHAREDIR/tsearch_data/にインストールされるxsyn_sample.rulesを参照してください。
  

使用方法





dict_xsyn拡張機能をインストールすると、xsyn_templateテキスト検索テンプレートが作成され、それに基づき、デフォルトのパラメータを持ったxsyn辞書が作成されます。
例えば以下のように、パラメータを変更することができます。



mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=false);
ALTER TEXT SEARCH DICTIONARY




またこのテンプレートに基づいた新しい辞書を作成することもできます。
  


辞書を試験するためには以下を試してください。



mydb=# SELECT ts_lexize('xsyn', 'word');
      ts_lexize
-----------------------
 {syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=true);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'word');
      ts_lexize
-----------------------
 {word,syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=false, MATCHSYNONYMS=true);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'syn1');
      ts_lexize
-----------------------
 {syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=true, MATCHORIG=false, KEEPSYNONYMS=false);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'syn1');
      ts_lexize
-----------------------
 {word}




現実世界で使用する場合は、12章全文検索で説明されるテキスト検索設定内にこれを含むようになるでしょう。
以下のようになります。



ALTER TEXT SEARCH CONFIGURATION english
    ALTER MAPPING FOR word, asciiword WITH xsyn, english_stem;



  


earthdistance — 大圏距離を計算する





earthdistanceは地表面上の大圏距離を計算する、2つの異なる方式を提供します。
最初に説明する方式はcubeモジュールに依存します。
2番目の方式は、座標系として緯度経度を使用した、組み込みのpointデータ型を基にしたものです。
 


このモジュールでは地球は完全な球体であると仮定します。
（この精度が不十分な場合は、PostGISプロジェクトを参照することを勧めます。）
 


cubeモジュールはearthdistanceをインストールする前にインストールしなければなりません(一つのコマンドで両方をインストールするためにCREATE EXTENSIONのCASCADEオプションを使うこともできますが)。
 
注意


earthdistanceとcubeは同じスキーマにインストールし、そのスキーマは信頼できないユーザにCREATE権限を許可していないし、今後も許可することのないものとすることを強く勧めます。
さもないと、earthdistanceのスキーマが悪意のあるユーザにより定義されたオブジェクトを含んでいた場合に、インストール時のセキュリティ問題になります。
さらに、インストール後にearthdistanceの関数を使う時には、サーチパス全体には信頼するスキーマだけが含まれるようにすべきです。
  

cubeを基にした地表距離





地球中心からのx、y、z距離をあらわす3つの座標を使用した点（両隅が同じ）であるcubeとして、データは格納されます。
cube型上にearthドメインが提供されます。
これには、値がこれら制限を満たすか、また値が実際の地表面に十分近いかどうかの制約検査を含みます。
  


地球の半径はearth()関数から入手されます。
この単位はメートルです。
しかしこの1つの関数を変更することで、何らかの他の単位を使用するようにしたり、より適切と考える別の半径を使用したりするようにこのモジュールを変更することができます。
  


このパッケージは天文学データベースへの応用もあります。
天文学者はおそらく距離が度単位になるように、earth()が180/pi()の半径を返すものと変更したいでしょう。
  


緯度経度（度単位）の入力をサポート、緯度経度の出力をサポート、2点間の大圏距離を計算、インデックス検索に使用可能な簡単に外接矩形を指定するための関数が提供されます。
  


提供されている関数は表F.4「cubeを基にしたearthdistanceの関数」に示されています。
  
表F.4 cubeを基にしたearthdistanceの関数
	

        関数
       

       

        説明
       

	
        
        earth ()
        float8
       

       

地球の想定半径を返します。
       

	
        
        sec_to_gc ( float8 )
        float8
       

       

地表の2点間の通常の直線（割線）距離を大圏距離に変換します。
       

	
        
        gc_to_sec ( float8 )
        float8
       

       

地表の2点間の大圏距離を通常の直線（割線）距離に変換します。
       

	
        
        ll_to_earth ( float8, float8 )
        earth
       

       

度単位で指定された緯度（第1引数）と経度（第2引数）に対する地表位置を返します。
       

	
        
        latitude ( earth )
        float8
       

       

地表上の点の緯度を度単位で返します。
       

	
        
        longitude ( earth )
        float8
       

       

地表上の点の経度を度単位で返します。
       

	
        
        earth_distance ( earth, earth )
        float8
       

       

地表上の2点間の大圏距離を返します。
       

	
        
        earth_box ( earth, float8 )
        cube
       

       

位置から指定した大圏距離内の点に対するcubeの@>演算子を使用するインデックス検索に適した矩形を返します。
矩形内の点の一部は指定した大圏距離の外部にあります。
このため、earth_distanceを使用した第2の検査を問い合わせに含めなければなりません。
       





pointを基にした地表距離





このモジュールの第2部分はpoint型の値として地球上の位置を表現することに依存します。
ここで第1要素は経度を度単位で、第2要素は緯度を度単位で表現していると見なします。
直感的に経度はX軸、緯度はY軸という考えがより合うため、点は（経度、緯度）として見なされますが、逆には見なされません。
  


表F.5「pointを基にしたearthdistanceの演算子」に示されている1つの演算子が提供されます。
  
表F.5 pointを基にしたearthdistanceの演算子
	

        演算子
       

       

        説明
       

	
        point <@> point
        float8
       

       

法定マイル単位の地表の2点間の距離を計算します。
       






このモジュールのcubeを基にした場合と異なり、ここでの単位はコード内に固定で記載されることに注意してください。
earth()関数を変更しても、この演算子の結果には影響しません。
  


緯度経度表現の1つの欠点は、極近辺と経度±180度近辺の限界条件に注意する必要があることです。
cubeを基にした表現ではこうした不連続性を防止できます。
  


file_fdw — サーバのファイルシステムにあるデータファイルにアクセスする





file_fdwモジュールは、サーバのファイルシステムにあるデータファイルにアクセスするのに使用できる外部データラッパーfile_fdwを提供します。
サーバのファイルにアクセスしたり、サーバ上のプログラムを実行して出力を読み取ったりできます。
データファイルはCOPY FROMで読むことのできるフォーマットでなければなりません。
詳細は COPY(7) を参照してください。
データファイルへのアクセスは現時点では読み取り専用です。
 


このラッパーで作成された外部テーブルには以下のオプションを設定することができます。
 
	filename
	

読み取るファイルを指定します。
相対パスはデータディレクトリからの相対パスです。
filenameかprogramのどちらかを指定できますが、両方は指定できません。
    

	program
	

実行するコマンドを指定します。
このコマンドの標準出力をCOPY FROM PROGRAMが使用されたかのように読み込みます。
programかfilenameのどちらかを指定できますが、両方は指定できません。
    

	format
	

データフォーマットを指定するもので、COPYのFORMATオプションと同じです。
    

	header
	

データがヘッダ行を持つか指定するもので、COPYのHEADERオプションと同じです。
    

	delimiter
	

データの区切り文字を指定するもので、COPYのDELIMITERオプションと同じです。
    

	quote
	

データの引用符文字を指定するもので、COPYのQUOTEオプションと同じです。
    

	escape
	

データのエスケープ文字を指定するもので、COPYのESCAPEオプションと同じです。
    

	null
	

データのNULL文字列を指定するもので、COPYのNULLオプションと同じです。
    

	encoding
	

データのエンコーディングを指定するもので、COPYのENCODINGオプションと同じです。
    

	on_error
	

列の入力値をそのデータ型に変換する際にエラーが発生した場合の動作を指定するもので、COPYのON_ERRORオプションと同じです。
    

	reject_limit
	

列の入力値をそのデータ型に変換する時に許容されるエラーの最大数を指定するもので、COPYのREJECT_LIMITオプションと同じです。
    

	log_verbosity
	

file_fdwにより出力されるメッセージの量を指定するもので、COPYのLOG_VERBOSITYオプションと同じです。
    





COPYではHEADERといったオプションを対応する値なしで指定できるのに対して、外部テーブルのオプション構文では全ての場合において値を指定する必要がある点に注意してください。
通常の値なしで指定されるCOPYオプションを有効にするには、それらはすべてブールオプションであるため、代わりにTRUEを渡すことができます。
 


このラッパーを使って作られた外部テーブルのカラムは、以下のオプションを持つことができます。
 
	force_not_null
	

これはブールオプションです。
真の場合は、このカラムの値はNULL文字列(これはテーブルレベルのnullオプションです)と比較されません。
これは、COPYのFORCE_NOT_NULLオプションに列名を指定するのと同じ効果があります。
    

	force_null
	

これはブールオプションです。
真の場合、NULL文字列と一致するこのカラムの値は、たとえ引用符で括られていたとしてもNULLと返されます。
このオプションがなければ、NULL文字列と一致する引用符で括られていない値のみがNULLと返されます。
これは、COPYのFORCE_NULLオプションに列名を指定するのと同じ効果があります。
    





COPYのFORCE_QUOTEオプションはfile_fdwでは現在サポートされていません。
 


これらのオプションは外部テーブルまたはその列にのみ指定可能で、file_fdw外部データラッパーやそれを使用するサーバ、ユーザマッピングのオプションには指定できません。
 


どのファイルが読み込まれ、どのプログラムが実行されるかをコントロールできるのは一定のユーザのみであるべきというセキュリティ上の理由から、テーブルレベルのオプションを変更するにはスーパーユーザであるか、ロールのpg_read_server_files（ファイル名を使う）やpg_execute_server_program（プログラムを使う）の権限を持っていることが必要です。
原則としては非スーパーユーザはその他のオプションを変更することを許されてもよいのですが、現時点ではサポートされていません。
 


programオプションが指定されたとき、オプションの文字列がシェルによって実行されることに注意してください。
信頼できないソースをコマンド引数に渡す場合、シェルにとって特別な意味を持つ可能性のある文字を取り除くかエスケープするように注意する必要があります。
セキュリティ上の理由から、固定のコマンド文字列を使用するか、少なくともユーザ入力を渡さないようにすることをお勧めします。
 


file_fdwを使用する外部テーブルでは、EXPLAINは読み込むファイルの名前又は実行しているプログラムを表示します。
COSTS OFFが指定されない場合は(バイト単位の)ファイルサイズも表示されます。
 
例F.1 PostgreSQL CSV ログ用の外部テーブル作成


file_fdwの明確な用途の一つはPostgreSQLの活動ログをテーブルとして検索できるようにすることです。
これを実現するには、ここではpglog.csvと呼ぶCSVファイルにログを記録している必要があります。
まず、file_fdwを拡張機能としてインストールします。
  

CREATE EXTENSION file_fdw;



続いて外部サーバを作成します。



CREATE SERVER pglog FOREIGN DATA WRAPPER file_fdw;


  


これで外部テーブルを作成する準備ができました。
CREATE FOREIGN TABLEコマンドを使って、テーブルのカラム、CSVファイル名とそのフォーマットを定義する必要があるでしょう。



CREATE FOREIGN TABLE pglog (
  log_time timestamp(3) with time zone,
  user_name text,
  database_name text,
  process_id integer,
  connection_from text,
  session_id text,
  session_line_num bigint,
  command_tag text,
  session_start_time timestamp with time zone,
  virtual_transaction_id text,
  transaction_id bigint,
  error_severity text,
  sql_state_code text,
  message text,
  detail text,
  hint text,
  internal_query text,
  internal_query_pos integer,
  context text,
  query text,
  query_pos integer,
  location text,
  application_name text,
  backend_type text,
  leader_pid integer,
  query_id bigint
) SERVER pglog
OPTIONS ( filename 'log/pglog.csv', format 'csv' );


  


これで全てです。
もうあなたはログに直接検索を実行することができます。
実運用においては、もちろんログローテーションを処理する方法を定義する必要があるでしょう。
  


例F.2 列にオプションの付いた外部テーブルの作成


列にforce_nullオプションを設定するには、OPTIONSキーワードを使用します。
  

CREATE FOREIGN TABLE films (
 code char(5) NOT NULL,
 title text NOT NULL,
 rating text OPTIONS (force_null 'true')
) SERVER film_server
OPTIONS ( filename 'films/db.csv', format 'csv' );




fuzzystrmatch — 文字列の類似度と距離を決定する





fuzzystrmatchモジュールは、文字列間の類似度や相違度を決める複数の関数を提供します。
 
注意


現時点で、soundex、metaphone、dmetaphone、dmetaphone_altは（UTF-8のような）マルチバイト符号化方式では充分に動作しません。
このようなデータにはdaitch_mokotoffまたはlevenshteinを使用してください。
  



このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
Soundex





Soundexシステムは、同一コードに変換することで似ているように見える名称を一致させる手法です。
これは、1880年、1900年、1910年の米国国勢調査で初めて使用されました。
Soundexは非英語圏の名称では特に有用なものではないことに注意してください。
  


fuzzystrmatchはSoundexコードを使用して動作する2つの関数を提供します。
  

soundex(text) returns text
difference(text, text) returns int



soundex関数は文字列をSoundexコードに変換します。
difference関数は2つの文字列をそのSoundexコードに変換し、コード位置が一致する個数を報告します。
Soundexコードは4文字からなりますので、結果は0から4までの範囲になります。
0はまったく一致しないことを、4は完全に一致することを示します。
（したがってこの関数の名前は間違っています。similarityの方がより優れた名前だったかもしれません。）
  


以下に使用例をいくつか示します。
  

SELECT soundex('hello world!');

SELECT soundex('Anne'), soundex('Ann'), difference('Anne', 'Ann');
SELECT soundex('Anne'), soundex('Andrew'), difference('Anne', 'Andrew');
SELECT soundex('Anne'), soundex('Margaret'), difference('Anne', 'Margaret');

CREATE TABLE s (nm text);

INSERT INTO s VALUES ('john');
INSERT INTO s VALUES ('joan');
INSERT INTO s VALUES ('wobbly');
INSERT INTO s VALUES ('jack');

SELECT * FROM s WHERE soundex(nm) = soundex('john');

SELECT * FROM s WHERE difference(s.nm, 'john') > 2;


Daitch-Mokotoff Soundex





従来Soundexシステムと同様に、Daitch-Mokotoff Soundexは、似たような名称を同じコードに変換することで一致させます。
ただし、Daitch-Mokotoff Soundexは、非英語圏の名称に対しては、従来システムよりもはるかに便利です。
従来システムに対する主な改善点は以下のとおりです。

   
	

コードは4文字ではなく意味のある最初の6文字に基づいています。
     

	

文字または文字の組み合わせは、7つではなく10の可能なコードにマップされます。
     

	

2つの連続した文字が1つの音を持つ場合、それらは1つの数字としてコード化されます。
     

	

文字または文字の組み合わせには異なる音がある場合、すべての可能性をカバーするために複数のコードが出力されます。
     




  


この関数は入力に対するDaitch-Mokotoff soundexコードを生成します。
  

daitch_mokotoff(source text) returns text[]



結果は、考えられる発音がいくつあるかによって1つ以上のコードを含む可能性があるため、配列として表現されます。
  


Daitch-Mokotoff soundexコードは6桁の数字のみで構成されるため、sourceは単語または名前であることが好ましいです。
  


以下に例をいくつか示します。
  

SELECT daitch_mokotoff('George');
 daitch_mokotoff
-----------------
 {595000}

SELECT daitch_mokotoff('John');
 daitch_mokotoff
-----------------
 {160000,460000}

SELECT daitch_mokotoff('Bierschbach');
                      daitch_mokotoff
-----------------------------------------------------------
 {794575,794574,794750,794740,745750,745740,747500,747400}

SELECT daitch_mokotoff('Schwartzenegger');
 daitch_mokotoff
-----------------
 {479465}



単一の名前の一致には、返されたテキスト配列を直接&&演算子を使用して一致させられます。
重複はマッチとみなされます。
効率のためにGINインデックスを使用できます。
「GINインデックス」および以下の例を参照してください。
  

CREATE TABLE s (nm text);
CREATE INDEX ix_s_dm ON s USING gin (daitch_mokotoff(nm)) WITH (fastupdate = off);

INSERT INTO s (nm) VALUES
  ('Schwartzenegger'),
  ('John'),
  ('James'),
  ('Steinman'),
  ('Steinmetz');

SELECT * FROM s WHERE daitch_mokotoff(nm) && daitch_mokotoff('Swartzenegger');
SELECT * FROM s WHERE daitch_mokotoff(nm) && daitch_mokotoff('Jane');
SELECT * FROM s WHERE daitch_mokotoff(nm) && daitch_mokotoff('Jens');



任意の順序で任意の数の名前のインデックス付けと一致には、全文検索機能を使用できます。
12章全文検索および以下の例を参照してください。
  

CREATE FUNCTION soundex_tsvector(v_name text) RETURNS tsvector
BEGIN ATOMIC
  SELECT to_tsvector('simple',
                     string_agg(array_to_string(daitch_mokotoff(n), ' '), ' '))
  FROM regexp_split_to_table(v_name, '\s+') AS n;
END;

CREATE FUNCTION soundex_tsquery(v_name text) RETURNS tsquery
BEGIN ATOMIC
  SELECT string_agg('(' || array_to_string(daitch_mokotoff(n), '|') || ')', '&')::tsquery
  FROM regexp_split_to_table(v_name, '\s+') AS n;
END;

CREATE TABLE s (nm text);
CREATE INDEX ix_s_txt ON s USING gin (soundex_tsvector(nm)) WITH (fastupdate = off);

INSERT INTO s (nm) VALUES
  ('John Doe'),
  ('Jane Roe'),
  ('Public John Q.'),
  ('George Best'),
  ('John Yamson');

SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('john');
SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('jane doe');
SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('john public');
SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('besst, giorgio');
SELECT * FROM s WHERE soundex_tsvector(nm) @@ soundex_tsquery('Jameson John');



インデックス再チェック中にsoundexコードの再計算を避ける場合は、式のインデックスの代わりに別の列のインデックスを使用できます。
これには、格納された生成列を使用できます。
「生成列」を参照してください。
  

レーベンシュタイン(Levenshtein)





この関数は2つの文字列間のレーベンシュタイン距離(Levenshtein distance)を計算します。
  

levenshtein(source text, target text, ins_cost int, del_cost int, sub_cost int) returns int
levenshtein(source text, target text) returns int
levenshtein_less_equal(source text, target text, ins_cost int, del_cost int, sub_cost int, max_d int) returns int
levenshtein_less_equal(source text, target text, max_d int) returns int



sourceおよびtargetは255文字までの任意の非NULL文字列を取ることができます。
コストパラメータはそれぞれ、文字の挿入、削除、置換に負わせる文字数を指定します。
この関数の2番目のバージョンのようにコストパラメータを省略することができます。
この場合デフォルトですべて1になります。
  


levenshtein_less_equalは小さな距離だけを問題にする場合についてのlevenshtein関数の高速化版です。
実際の距離がmax_d以下の場合、levenshtein_less_equalは正しい値を返しますが、そうでなければ、max_dより大きい何らかの値を返します。
max_dが負の場合は、levenshteinと同じ動作になります。
  


以下に例を示します。
  

test=# SELECT levenshtein('GUMBO', 'GAMBOL');
 levenshtein
-------------
           2
(1 row)

test=# SELECT levenshtein('GUMBO', 'GAMBOL', 2, 1, 1);
 levenshtein
-------------
           3
(1 row)

test=# SELECT levenshtein_less_equal('extensive', 'exhaustive', 2);
 levenshtein_less_equal
------------------------
                      3
(1 row)

test=# SELECT levenshtein_less_equal('extensive', 'exhaustive', 4);
 levenshtein_less_equal
------------------------
                      4
(1 row)


Metaphone





Metaphoneは、Soundex同様、入力文字に対する対応するコードを構築するという考えに基づいたものです。
2つの文字列が同一コードを持つ場合、類似とみなされます。
  


以下の関数は入力文字列に対するmetaphoneコードを計算します。
  

metaphone(source text, max_output_length int) returns text



sourceは255文字までの非NULL文字列を取ることができます。
max_output_lengthは出力metaphoneコードの最大長を設定します。
出力は長すぎるとこの長さに切り詰められます。
  


以下に例を示します。
  

test=# SELECT metaphone('GUMBO', 4);
 metaphone
-----------
 KM
(1 row)


Double Metaphone





Double Metaphoneシステムは与えられた入力文字列に対する、「primary」と「alternate」という2つの「似たように見える」文字列を計算します。
ほとんどの場合、これらは同じですが、英語以外の名称では特に発音に応じて多少異なる場合があります。
以下の関数はprimaryコードとalternateコードを計算します。
  

dmetaphone(source text) returns text
dmetaphone_alt(source text) returns text



入力文字列長に関する制限はありません。
  


以下に例を示します。
  

test=# SELECT dmetaphone('gumbo');
 dmetaphone
------------
 KMP
(1 row)



hstore — hstoreキー/値データ型





本モジュールはキー、値の組み合わせの集合を単一のPostgreSQL™値に格納するためのhstoreデータ型を実装します。
あまり厳密に検査されない属性を多く持つ行や半構造化データなど、多くの状況で有用になる可能性があります。
キーと値は単純なテキスト文字列です。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
hstoreの外部表現






入力および出力で使用されるhstore値のテキスト表現はカンマで区切られた、ゼロ以上のkey => valueという組み合わせを含みます。
以下に例を示します。



k => v
foo => bar, baz => whatever
"1-a" => "anything at all"




組み合わせの順序は重要ではありません（出力時に再現されないこともあります）。
組み合わせ間や=>記号の前後の空白文字は無視されます。
キーや値が空白文字、カンマ、=、>を含む場合は二重引用符でくくります。
キーや値に二重引用符やバックスラッシュを含めるには、バックスラッシュでエスケープしてください。
  


hstore内の各キーは一意です。
重複するキーを持つhstoreを宣言すると、hstoreには1つしか保存されません。
またどちらが残るかは保証されません。



SELECT 'a=>1,a=>2'::hstore;
  hstore
----------
 "a"=>"1"


  


値はSQLのNULLを取ることができます（キーは不可）。
以下に例を示します。



key => NULL




NULLキーワードは大文字小文字の区別をしません。
nullを普通の文字列「NULL」として扱うためには二重引用符でくくってください。
  
注記


入力として使用される場合hstoreテキスト書式は、前もって必要な引用符付けやエスケープ処理を適用することに注意してください。
パラメータとしてhstoreリテラルを渡す場合、追加処理は必要ありません。
しかし、引用符付けしたリテラル定数として渡す場合には、単一引用符および(standard_conforming_strings設定パラメータに依存しますが)バックスラッシュ文字をすべて正しくエスケープしなければなりません。
文字列定数の取り扱いについては「文字列定数」を参照してください。
  



出力の場合、厳密に必要がない場合であっても、常にキーと値は二重引用符でくくられます。
  

hstoreの演算子と関数





hstoreモジュールで提供される演算子を表F.6「hstoreの演算子」に、関数を表F.7「hstoreの関数」に示します。
  
表F.6 hstoreの演算子
	

        演算子
       

       

        説明
       

       

        例
       

	
        hstore -> text
        text
       

       

与えられたキーに対応する値を、存在しなければNULLを返します。
       

       
        'a=>x, b=>y'::hstore -> 'a'
        x
       

	
        hstore -> text[]
        text[]
       

       

与えられたキーに対応する値を、存在しなければNULLを返します。
       

       
        'a=>x, b=>y, c=>z'::hstore -> ARRAY['c','a']
        {"z","x"}
       

	
        hstore || hstore
        hstore
       

       

2つのhstoreを連結します。
       

       
        'a=>b, c=>d'::hstore || 'c=>x, d=>q'::hstore
        "a"=>"b", "c"=>"x", "d"=>"q"
       

	
        hstore ? text
        boolean
       

       

hstoreがキーを含むか？
       

       
        'a=>1'::hstore ? 'a'
        t
       

	
        hstore ?& text[]
        boolean
       

       

hstoreが指定したキーをすべて含むか？
       

       
        'a=>1,b=>2'::hstore ?& ARRAY['a','b']
        t
       

	
        hstore ?| text[]
        boolean
       

       

hstoreが指定したキーのいずれかを含むか？
       

       
        'a=>1,b=>2'::hstore ?| ARRAY['b','c']
        t
       

	
        hstore @> hstore
        boolean
       

       

左辺は右辺を含むか？
       

       
        'a=>b, b=>1, c=>NULL'::hstore @> 'b=>1'
        t
       

	
        hstore <@ hstore
        boolean
       

       

左辺は右辺に含まれるか？
       

       
        'a=>c'::hstore <@ 'a=>b, b=>1, c=>NULL'
        f
       

	
        hstore - text
        hstore
       

       

左辺からキーを削除します。
       

       
        'a=>1, b=>2, c=>3'::hstore - 'b'::text
        "a"=>"1", "c"=>"3"
       

	
        hstore - text[]
        hstore
       

       

左辺からキー(複数)を削除します。
       

       
        'a=>1, b=>2, c=>3'::hstore - ARRAY['a','b']
        "c"=>"3"
       

	
        hstore - hstore
        hstore
       

       

右辺の組み合わせに一致する組み合わせを左辺から削除します。
       

       
        'a=>1, b=>2, c=>3'::hstore - 'a=>4, b=>2'::hstore
        "a"=>"1", "c"=>"3"
       

	
        anyelement #= hstore
        anyelement
       

       

左辺(複合型でなければなりません)のフィールドをhstoreの対応する値で置換します。
       

       
        ROW(1,3) #= 'f1=>11'::hstore
        (11,3)
       

	
        %% hstore
        text[]
       

       

hstoreをキーと値が交互に並んだ配列に変換します。
       

       
        %% 'a=>foo, b=>bar'::hstore
        {a,foo,b,bar}
       

	
        %# hstore
        text[]
       

       

hstoreをキーと値の2次元配列に変換します。
       

       
        %# 'a=>foo, b=>bar'::hstore
        {{a,foo},{b,bar}}
       




表F.7 hstoreの関数
	

        関数
       

       

        説明
       

       

        例
       

	
        
        hstore ( record )
        hstore
       

       

レコードまたは行からhstoreを生成します。
       

       
        hstore(ROW(1,2))
        "f1"=>"1", "f2"=>"2"
       

	
        hstore ( text[] )
        hstore
       

       

配列からhstoreを生成します。配列はキー、値の配列でも2次元の配列でも構いません。
       

       
        hstore(ARRAY['a','1','b','2'])
        "a"=>"1", "b"=>"2"
       

       
        hstore(ARRAY[['c','3'],['d','4']])
        "c"=>"3", "d"=>"4"
       

	
        hstore ( text[], text[] )
        hstore
       

       

キー、値で分けた配列からhstoreを作成します。
       

       
        hstore(ARRAY['a','b'], ARRAY['1','2'])
        "a"=>"1", "b"=>"2"
       

	
        hstore ( text, text )
        hstore
       

       

hstore型の単一項目を作成します。
       

       
        hstore('a', 'b')
        "a"=>"b"
       

	
        
        akeys ( hstore )
        text[]
       

       

hstoreのキーを配列として取り出します。
       

       
        akeys('a=>1,b=>2')
        {a,b}
       

	
        
        skeys ( hstore )
        setof text
       

       

hstoreのキーを集合として取り出します。
       

       
        skeys('a=>1,b=>2')
        


a
b


       

	
        
        avals ( hstore )
        text[]
       

       

hstoreの値を配列として取り出します。
       

       
        avals('a=>1,b=>2')
        {1,2}
       

	
        
        svals ( hstore )
        setof text
       

       

hstoreの値を集合として取り出します。
       

       
        svals('a=>1,b=>2')
        


1
2


       

	
        
        hstore_to_array ( hstore )
        text[]
       

       

hstoreのキーと値を、キーと値が交互に並んだ配列として取り出します。
       

       
        hstore_to_array('a=>1,b=>2')
        {a,1,b,2}
       

	
        
        hstore_to_matrix ( hstore )
        text[]
       

       

hstoreのキーと値を、2次元の配列として取り出します。
       

       
        hstore_to_matrix('a=>1,b=>2')
        {{a,1},{b,2}}
       

	
        
        hstore_to_json ( hstore )
        json
       

       

非nullの値をすべてJSON文字列に変換しながら、hstoreをjson値に変換します。
       

       

この関数はhstore値がjsonにキャストされるときに暗黙的に使用されます。
       

       
        hstore_to_json('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4')
        {"a key": "1", "b": "t", "c": null, "d": "12345", "e": "012345", "f": "1.234", "g": "2.345e+4"}
       

	
        
        hstore_to_jsonb ( hstore )
        jsonb
       

       

非nullの値をすべてJSON文字列に変換しながら、hstoreをjsonb値に変換します。
       

       

この関数はhstore値がjsonbにキャストされるときに暗黙的に使用されます。
       

       
        hstore_to_jsonb('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4')
        {"a key": "1", "b": "t", "c": null, "d": "12345", "e": "012345", "f": "1.234", "g": "2.345e+4"}
       

	
        
        hstore_to_json_loose ( hstore )
        json
       

       

hstoreをjson値に変換します。ですが、数値およびブール値を識別しようとするため、その2つはJSON中では引用符が付きません。
       

       
        hstore_to_json_loose('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4')
        {"a key": 1, "b": true, "c": null, "d": 12345, "e": "012345", "f": 1.234, "g": 2.345e+4}
       

	
        
        hstore_to_jsonb_loose ( hstore )
        jsonb
       

       

hstoreをjsonb値に変換します。ですが、数値およびブール値を識別しようとするため、その2つはJSON中では引用符が付きません。
       

       
        hstore_to_jsonb_loose('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4')
        {"a key": 1, "b": true, "c": null, "d": 12345, "e": "012345", "f": 1.234, "g": 2.345e+4}
       

	
        
        slice ( hstore, text[] )
        hstore
       

       

指定されたキーだけを含むhstoreの部分集合を取り出します。
       

       
        slice('a=>1,b=>2,c=>3'::hstore, ARRAY['b','c','x'])
        "b"=>"2", "c"=>"3"
       

	
        
        each ( hstore )
        setof record
        ( key text,
        value text )
       

       

hstoreのキーと値をレコードの集合として取り出します。
       

       
        select * from each('a=>1,b=>2')
        


 key | value
-----+-------
 a   | 1
 b   | 2


       

	
        
        exist ( hstore, text )
        boolean
       

       

hstoreがキーを含むか？
       

       
        exist('a=>1', 'a')
        t
       

	
        
        defined ( hstore, text )
        boolean
       

       

hstoreがキーに対して非NULLの値を含むか？
       

       
        defined('a=>NULL', 'a')
        f
       

	
        
        delete ( hstore, text )
        hstore
       

       

キーに一致する組み合わせを削除します。
       

       
        delete('a=>1,b=>2', 'b')
        "a"=>"1"
       

	
        delete ( hstore, text[] )
        hstore
       

       

キー(複数)に一致する組み合わせを削除します。
       

       
        delete('a=>1,b=>2,c=>3', ARRAY['a','b'])
        "c"=>"3"
       

	
        delete ( hstore, hstore )
        hstore
       

       

第2引数内の組み合わせと一致する組み合わせを削除します。
       

       
        delete('a=>1,b=>2', 'a=>4,b=>2'::hstore)
        "a"=>"1"
       

	
        
        populate_record ( anyelement, hstore )
        anyelement
       

       

左辺(複合型でなければなりません)のフィールドをhstoreの対応する値で置換します。
       

       
        populate_record(ROW(1,2), 'f1=>42'::hstore)
        (42,2)
       






この演算子や関数に加えて、hstore型の値は添字を付けることができ、その場合、連想配列のように振る舞います。
text型の単一の添字のみが指定可能です。添字はキーとして解釈され、対応する値が取り出されたり、保存されたりします。
以下に例を示します。



CREATE TABLE mytable (h hstore);
INSERT INTO mytable VALUES ('a=>b, c=>d');
SELECT h['a'] FROM mytable;
 h
---
 b
(1 row)

UPDATE mytable SET h['c'] = 'new';
SELECT h FROM mytable;
          h
----------------------
 "a"=>"b", "c"=>"new"
(1 row)




添字がNULLの場合や、そのキーがhstore内に存在しない場合には、添字による取り出しはNULLを返します。
(ですので、添字による取り出しは->演算子とそれほど異なりません。)
添字がNULLの場合には、添字による更新は失敗します。そうでなければ、そのキーに対応する値を置き換え、キーがまだ存在していなければhstoreにエントリを追加します。
  

インデックス





hstoreは@>、?、?&および?|演算子向けのGiSTおよびGINインデックスをサポートします。
以下に例を示します。
  

CREATE INDEX hidx ON testhstore USING GIST (h);

CREATE INDEX hidx ON testhstore USING GIN (h);



gist_hstore_ops GiST演算子クラスはキー/値の集合をビットマップ署名として近似します。
オプションの整数パラメータsiglenは、署名の長さをバイト単位で決定します。
デフォルトの署名の長さは16バイトです。
署名の長さの有効な値は1から2024バイトまでです。
長い署名では、インデックスはより大きくなってしまいますが、(インデックスのより小さな部分とより少ないヒープページをスキャンすることで)検索がより正確になります。
  


署名の長さが32バイトのインデックスを作成する例


CREATE INDEX hidx ON testhstore USING GIST (h gist_hstore_ops(siglen=32));


  


hstoreはまた、=演算子向けにbtreeまたはhashインデックスをサポートします。
これによりhstoreの列をUNIQUEと宣言すること、また、GROUP BY、ORDER BY、DISTINCTの式で使用することができます。
hstore値のソート順序付けはあまり有用ではありません。
しかしこれらのインデックスは同値検索の際に有用になるかもしれません。
=比較用のインデックスを以下のように作成します。
  

CREATE INDEX hidx ON testhstore USING BTREE (h);

CREATE INDEX hidx ON testhstore USING HASH (h);


例





キーを追加、または、既存のキーを新しい値で更新します。


UPDATE tab SET h['c'] = '3';



同じことを行なう他の方法を以下に示します。


UPDATE tab SET h = h || hstore('c', '3');



1つの操作で複数のキーを追加したり変更したりする場合には、連結する方が添字を使うよりも効率的です。


UPDATE tab SET h = h || hstore(array['q', 'w'], array['11', '12']);


  


キーを削除します。


UPDATE tab SET h = delete(h, 'k1');


  


recordをhstoreに変換します。


CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, 'foo', 'bar');

SELECT hstore(t) FROM test AS t;
                   hstore
---------------------------------------------
 "col1"=>"123", "col2"=>"foo", "col3"=>"bar"
(1 row)


  


hstoreを事前に定義されたrecord型に変換します。


CREATE TABLE test (col1 integer, col2 text, col3 text);

SELECT * FROM populate_record(null::test,
                              '"col1"=>"456", "col2"=>"zzz"');
 col1 | col2 | col3
------+------+------
  456 | zzz  |
(1 row)


  


hstoreの値を使用して既存のレコードを変更します。


CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, 'foo', 'bar');

SELECT (r).* FROM (SELECT t #= '"col3"=>"baz"' AS r FROM test t) s;
 col1 | col2 | col3
------+------+------
  123 | foo  | baz
(1 row)


  

統計情報





内在する自由度のため、hstore型は異なるキーを多く含むことができます。
有効なキーを検査することはアプリケーション側の作業です。
以下の例では、キー検査および統計情報の入手に関する複数の技法を示します。
  


簡単な例を示します。


SELECT * FROM each('aaa=>bq, b=>NULL, ""=>1');


  


テーブルを使用する例です。


CREATE TABLE stat AS SELECT (each(h)).key, (each(h)).value FROM testhstore;


  


オンライン統計値です。


SELECT key, count(*) FROM
  (SELECT (each(h)).key FROM testhstore) AS stat
  GROUP BY key
  ORDER BY count DESC, key;
    key    | count
-----------+-------
 line      |   883
 query     |   207
 pos       |   203
 node      |   202
 space     |   197
 status    |   195
 public    |   194
 title     |   190
 org       |   189
...................


  

互換性





PostgreSQL 9.0からhstoreの内部表現はこれまでから変更されました。
(ダンプ内で使用される)テキスト表現には変更がありませんので、ダンプ/リストアによる更新の妨げにはなりません。
  


バイナリによる更新の際、新しいコードで古い書式のデータを認識させることにより、上位互換が保持されます。
これには、新しいコードによりまだ変更されていないデータを処理する際に、性能の劣化を多少伴います。
以下のようにUPDATE文を実行することによりテーブル列内のすべての値を強制的に更新することができます。


UPDATE tablename SET hstorecol = hstorecol || '';


  


上を行う他の方法を以下に示します。


ALTER TABLE tablename ALTER hstorecol TYPE hstore USING hstorecol || '';



ALTER TABLEによる方法はテーブルに対してACCESS EXCLUSIVEロックを必要とします。
しかし、古いバージョンの行でテーブルが膨張することはありません。
  

変換





PL/Perl言語やPL/Python言語向けにhstore型の変換を実装した追加の拡張が入手可能です。
PL/Perl向けの拡張は、信頼されたPL/Perlに対してはhstore_plperlという名前で、信頼されないものに対してはhstore_plperluという名前です。
関数を作成するときにこの変換をインストールして指定していれば、hstoreの値はPerlのハッシュにマップされます。
PL/Python向けの拡張はhstore_plpython3uという名前です。
この拡張を使うとhstoreの値はPythonの辞書型にマップされます。
  

作者




   Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia
  

   Teodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd., Russia
  


追加の改良はAndrew Gierth <andrew@tao11.riddles.org.uk>,United Kingdomによりなされました。
  


intagg — 整数型の集約子と列挙子





intaggモジュールは整数型の集約子と列挙子を提供します。
その能力の上位集合を提供する組み込み関数が存在しますので、intaggは現在使われません。
しかし、このモジュールは組み込み関数の互換ラッパーとして今でもまだ提供されています。
 
関数





集約子は、正確に提供する整数のみを含む整数型配列を生成するint_array_aggregate(integer)集約関数です。
これは任意の配列型で同じことを行うarray_aggのラッパーです。
 


列挙子は、setof integerを返すint_array_enum(integer[])関数です。
これは基本的に上記集約子の反対の操作を行います。
指定された整数型配列を行集合に拡張します。
これは任意の配列型で同じことを行うunnestのラッパーです。
 

使用例





多くのデータベースシステムは多対多のテーブルを持ちます。
こうしたテーブルは通常、以下のように2つのインデックス用のテーブルの間に存在します。



CREATE TABLE left_table  (id INT PRIMARY KEY, ...);
CREATE TABLE right_table (id INT PRIMARY KEY, ...);
CREATE TABLE many_to_many(id_left  INT REFERENCES left_table,
                          id_right INT REFERENCES right_table);




通常以下のように使用されます。



SELECT right_table.*
FROM right_table JOIN many_to_many ON (right_table.id = many_to_many.id_right)
WHERE many_to_many.id_left = item;




これは、左辺のテーブル内にある項目に対応した、右辺のテーブル内のすべての項目を返します。
これはSQLで非常によく使用される式です。
 


さて、この方法論はmany_to_manyテーブル内に非常に多数の項目がある場合に扱いにくくなることがあり得ます。
しばしばこうした結合は、インデックススキャンと特定された左辺の項目に対応した右辺のテーブル内の項目をそれぞれ取り出すことになります。
非常に動的なシステムでは、できることは多くありません。
しかし、ほぼ静的なデータが一部にある場合、集約子を使用して要約テーブルを作成することができます。



CREATE TABLE summary AS
  SELECT id_left, int_array_aggregate(id_right) AS rights
  FROM many_to_many
  GROUP BY id_left;




これは左辺項目毎に1行を持ち、右辺の項目の配列をもつテーブルを作成します。
さて、これは配列を使用する何らかの方法がないとかなり使い勝手が悪くなります。
これが配列列挙子が存在する理由です。
以下を行うことができます。



SELECT id_left, int_array_enum(rights) FROM summary WHERE id_left = item;




上のint_array_enumを使用した問い合わせは、以下と同じ結果を生成します。



SELECT id_left, id_right FROM many_to_many WHERE id_left = item;




違いは、要約テーブルに対する問い合わせはテーブルから1行だけを取り出す必要があるのに対し、直接many_to_manyに問い合わせる場合はインデックススキャンと各項目に対し行を取り出さなければならないという点です。
 


あるシステムではEXPLAINを行うと8488というコストを持つ問い合わせが329というコストまで減少しました。
元の問い合わせはmany_to_manyテーブルを含む結合でしたが、以下のように置き換えられました。



SELECT id_right, count(id_right) FROM
  ( SELECT id_left, int_array_enum(rights) AS id_right
    FROM summary
    JOIN (SELECT id FROM left_table
          WHERE id = item) AS lefts
    ON (summary.id_left = lefts.id)
  ) AS list
  GROUP BY id_right
  ORDER BY count DESC;


 


intarray — 整数の配列を操作する





intarrayモジュールはNULLのない整数の配列の操作に便利な関数と演算子を多く提供します。
また、一部の演算子を使用したインデックス検索をサポートします。
 


配列にNULL要素が一つでも含まれていれば、これらの操作はすべてエラーを発生します。
 


これらの操作の多くは一次元配列に対してのみ適当なものです。
高次元の入力配列を受け付けますが、データは格納された順の一次元の配列であるかのように扱われます。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
intarrayの関数および演算子





intarrayモジュールで提供される関数を表F.8「intarray関数」に、演算子を表F.9「intarray演算子」に示します。
  
表F.8 intarray関数
	

        関数
       

       

        説明
       

       

        例
       

	
        
        icount ( integer[] )
        integer
       

       

配列内の要素数を返します。
       

       
        icount('{1,2,3}'::integer[])
        3
       

	
        
        sort ( integer[], dir text )
        integer[]
       

       

昇順または降順に配列をソートします。
dirはascまたはdescのいずれかでなければなりません。
       

       
        sort('{1,3,2}'::integer[], 'desc')
        {3,2,1}
       

	
        sort ( integer[] )
        integer[]
       

       
        
        sort_asc ( integer[] )
        integer[]
       

       

昇順にソートします。
       

       
        sort(array[11,77,44])
        {11,44,77}
       

	
        
        sort_desc ( integer[] )
        integer[]
       

       

降順にソートします。
       

       
        sort_desc(array[11,77,44])
        {77,44,11}
       

	
        
        uniq ( integer[] )
        integer[]
       

       

隣接する重複を削除します。
すべての重複を削除するために、しばしばsortと一緒に用いられます。
       

       
        uniq('{1,2,2,3,1,1}'::integer[])
        {1,2,3,1}
       

       
        uniq(sort('{1,2,3,2,1}'::integer[]))
        {1,2,3}
       

	
        
        idx ( integer[], item integer )
        integer
       

       

itemに最初に一致する要素番号を、一致するものがなければ0を返します。
       

       
        idx(array[11,22,33,22,11], 22)
        2
       

	
        
        subarray ( integer[], start integer, len integer )
        integer[]
       

       

startの位置から始まりlen個の要素の部分配列を取り出します。
       

       
        subarray('{1,2,3,2,1}'::integer[], 2, 3)
        {2,3,2}
       

	
        subarray ( integer[], start integer )
        integer[]
       

       

startの位置から始まる部分配列を取り出します。
       

       
        subarray('{1,2,3,2,1}'::integer[], 2)
        {2,3,2,1}
       

	
        
        intset ( integer )
        integer[]
       

       

単一要素の配列を作成します。
       

       
        intset(42)
        {42}
       




表F.9 intarray演算子
	

        演算子
       

       

        説明
       

	
        integer[] && integer[]
        boolean
       

       

配列が重なるか（少なくとも1つの共通要素があるか）？
       

	
        integer[] @> integer[]
        boolean
       

       

左辺の配列は右辺の配列を含むか？
       

	
        integer[] <@ integer[]
        boolean
       

       

左辺の配列は右辺の配列に含まれるか？
       

	
         # integer[]
        integer
       

       

配列内の要素数を返します。
       

	
        integer[] # integer
        integer
       

       

右辺の引数に最初に一致する要素番号を、一致するものがなければ0を返します。
(idx関数と同じです。)
       

	
        integer[] + integer
        integer[]
       

       

要素を配列の末尾に追加します。
       

	
        integer[] + integer[]
        integer[]
       

       

配列を連結します。
       

	
        integer[] - integer
        integer[]
       

       

配列から右辺の引数に一致する項目を削除します。
       

	
        integer[] - integer[]
        integer[]
       

       

左辺の配列から右辺の配列要素を削除します。
       

	
        integer[] | integer
        integer[]
       

       

引数の結合を計算します。
       

	
        integer[] | integer[]
        integer[]
       

       

引数の結合を計算します。
       

	
        integer[] & integer[]
        integer[]
       

       

引数の共通部分を計算します。
       

	
        integer[] @@ query_int
        boolean
       

       

配列が問い合わせを満たすか？(下記参照)
       

	
        query_int ~~ integer[]
        boolean
       

       

配列が問い合わせを満たすか？(@@の交代演算子)
       






演算子&&、@>と<@は、これらはNULLを含まない整数配列のみで動作し、組み込み演算子はどの配列型に対しても動作する点を除き、同じ名前のPostgreSQL™の組み込み演算子とそれぞれほぼ等価です。
この制限により、多くの場合、組み込み演算子より高速です。
  


@@および~~演算子は、配列が特化したデータ型query_intで表現される問い合わせを満たすかどうかを試験します。
問い合わせは、おそらく&(論理積)、| (論理和)、! (否定)演算子を組み合わせて使用した、配列要素に対して検査される整数値からなります。
必要に応じて括弧を使用できます。
例えば1&(2|3)という問い合わせは1および、2か3のいずれかを含む配列に一致します。
  

インデックスサポート





intarrayは&&、@>、@@演算子に関して通常の配列等価性と同様にインデックスサポートを提供します。
  


2つのパラメータ化されたGiSTインデックス演算子クラスが提供されます。
gist__int_ops（デフォルトで使用されます）は小中規模要素数のデータセットに適します。
一方、gist__intbig_opsはより大きな署名を使用しますので、大規模データセット（つまり、異なった配列値を多数持つ列）のインデックスにより適しています。
実装は組み込みの非可逆圧縮を持ったRD-treeデータ構造を使用します。
  


gist__int_opsは整数の集合を整数の範囲の配列として近似します。
オプションの整数パラメータnumrangesは、一つのインデックスキー内の範囲の最大数を決定します。
numrangesのデフォルト値は100です。
有効な値は1から253までです。
GiSTインデックスキーとしてより大きな値を使うと、インデックスはより大きくなってしまいますが、(インデックスのより小さな部分とより少ないヒープページをスキャンすることで)検索がより正確になります。
  


gist__intbig_opsは整数の集合をビットマップ署名として近似します。
オプションの整数パラメータsiglenは、署名の長さをバイト単位で決定します。
デフォルトの署名の長さは16バイトです。
署名の長さの有効な値は1から2024バイトまでです。
長い署名では、インデックスはより大きくなってしまいますが、(インデックスのより小さな部分とより少ないヒープページをスキャンすることで)検索がより正確になります。
  


また、デフォルトではないGIN演算子クラスgin__int_opsも存在し、<@と同様にこれらの演算子をサポートします。
  


GiSTおよびGINインデックスのどちらを選択するかは、別途説明されるGiSTとGINの相対的な性能特徴に依存します。
  

例





-- メッセージ(message)は1つ以上の「節(section)」の中にある
CREATE TABLE message (mid INT PRIMARY KEY, sections INT[], ...);


-- 署名の長さが32バイトの特化したインデックスを作成
CREATE INDEX message_rdtree_idx ON message USING GIST (sections gist__intbig_ops (siglen = 32));


-- 節1 OR 2のメッセージを選択 - OVERLAP演算子
SELECT message.mid FROM message WHERE message.sections && '{1,2}';


-- 節1 AND 2のメッセージを選択 - CONTAINS演算子
SELECT message.mid FROM message WHERE message.sections @> '{1,2}';


-- 同上、QUERY演算子を使用
SELECT message.mid FROM message WHERE message.sections @@ '1&2'::query_int;


ベンチマーク





ソースディレクトリ以下のcontrib/intarray/benchにはベンチマーク試験一式があり、インストールされたPostgreSQL™サーバで実行できます。
(DBD::Pgもインストールされていないといけません。)
以下のように実行します。
  

cd .../contrib/intarray/bench
createdb TEST
psql -c "CREATE EXTENSION intarray" TEST
./create_test.pl | psql TEST
./bench.pl



bench.plスクリプトには多くのオプションがあります。
これらは引数を付けずに実行すると表示されます。
  

作者





Teodor Sigaev (<teodor@sigaev.ru>)とOleg Bartunov (<oleg@sai.msu.su>)によりすべての作業がなされました。
さらなる情報についてはhttp://www.sai.msu.su/~megera/postgres/gist/を参照してください。
Andrey Oktyabrskiは新しい関数、演算子の追加において素晴らしい作業を行いました。
  


isn — 国際標準番号（ISBN、EAN、UPC等）のためのデータ型





isnモジュールは、EAN13、UPC、ISBN (書籍)、ISMN (音楽)、ISSN (逐次刊行物)という国際的な標準製品番号に従うデータ型を提供します。
番号は入力時にハードコードされた接頭辞の一覧に基づいて検証されます。
この接頭辞の一覧は出力時に数字にハイフンを付けるのにも使われます。
新しい接頭辞が時々追加されますので、接頭辞の一覧は古くなっているかもしれません。
このモジュールの将来のバージョンでは、必要なときにユーザが簡単に更新できる一つもしくは複数のテーブルから接頭辞の一覧を取得することが望まれます。
しかし、現時点では、一覧はソースコードを修正し再コンパイルすることでしか更新できません。
あるいは、接頭辞の検証とハイフン付けのサポートはこのモジュールの将来のバージョンからは外されるかもしれません。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
データ型





表F.10「isnデータ型」にisnモジュールで提供されるデータ型を示します。
  
表F.10 isnデータ型
	データ型	説明
	EAN13	

ヨーロッパ統一商品コード。
常にEAN13用表示形式で表示されます。
      
	ISBN13	

国際標準図書番号。
新しいEAN13用表示形式で表示されます。
      
	ISMN13	

国際標準楽譜番号。
新しいEAN13用表示形式で表示されます。
      
	ISSN13	

国際標準逐次刊行物番号。
新しいEAN13用表示形式で表示されます。
      
	ISBN	

国際標準図書番号。
旧式の簡略表示形式で表示されます。
      
	ISMN	

国際標準楽譜番号。
旧式の簡略表示形式で表示されます。
      
	ISSN	

国際標準逐次刊行物番号。
旧式の簡略表示形式で表示されます。
      
	UPC	

統一商品コード。
      





数点注意事項があります。
  
	ISBN13、ISMN13、ISSN13番号はすべてEAN13数値です。

	EAN13番号は必ずISBN13、ISMN13、ISSN13のいずれかであるという訳ではありません (一部はそうです)。

	一部のISBN13番号はISBNとして表示可能です。

	一部のISMN13番号はISMNとして表示可能です。

	一部のISSN13番号はISSNとして表示可能です。

	UPC番号はEAN13番号の部分集合です（基本的にはEAN13から先頭の0の数字を取り除いたものです）。

	すべてのUPC、ISBN、ISMN、ISSNはEAN13番号として表現可能です。





すべての型は内部的には同一表現（64ビット整数）を使用し、すべて相互交換が可能です。
複数の型は、表示書式を制御する、および、番号のある特定の型を表さなければならない入力に対する有効性検査をより強く行えるようにするために提供されています。
  


ISBN、ISMN、ISSN型では、可能ならば番号の簡略表示形式（ISxN 10）で表示されます。
簡略形式に合わない番号ではISxN 13書式で表示されます。
EAN13、ISBN13、ISMN13、ISSN13型では常にISxNの長めの形式（EAN13）で表示されます。
  

キャスト





isnモジュールは以下の型の組合せに関するキャストを提供します。
  
	
     ISBN13 <=> EAN13
    

	
     ISMN13 <=> EAN13
    

	
     ISSN13 <=> EAN13
    

	
     ISBN <=> EAN13
    

	
     ISMN <=> EAN13
    

	
     ISSN <=> EAN13
    

	
     UPC  <=> EAN13
    

	
     ISBN <=> ISBN13
    

	
     ISMN <=> ISMN13
    

	
     ISSN <=> ISSN13
    





EAN13から他の型へキャストする時、その値が他の型のドメイン内であるかどうか実行時に検査が行われます。
ドメイン内になければエラーが発生します。
他のキャストでは単にラベル付けを再実行するだけですので、常に成功します。
  

関数と演算子





isnモジュールは標準的な比較演算子とこれらデータ型すべてに対するB-treeおよびハッシュインデックスサポートを提供します。
さらに、表F.11「isn関数」で示される複数の特化した関数も存在します。
以下の表ではisnはこのモジュールのデータ型のいずれか1つを意味します。
  
表F.11 isn関数
	

関数
       

       

説明
       

	
        
        make_valid ( isn )
        isn
       

       

値の無効なチェックデジットのフラグをクリアします。
       

	
        
        is_valid ( isn )
        boolean
       

       

無効なチェックデジットのフラグが存在するかどうかを確認します。
       

	
        
        isn_weak ( boolean )
        boolean
       

       

weak入力モードを設定し、新しい設定を返します。
この関数は後方互換性のために残されています。
weakモードを設定するお勧めの方法は、isn.weak設定パラメータを経由することです。
       

	
        isn_weak ()
        boolean
       

       

weakモードの現在の状態を返します。
この関数は後方互換性のために残されています。
weakモードを確認するお勧めの方法は、isn.weak設定パラメータを経由することです。
       





設定パラメータ



	
     isn.weak (boolean)
     
    
	

isn.weakを指定すると、weak入力モードが有効になります。これにより、チェックデジットが間違いの場合でもISNの入力値を受け入れることができます。
デフォルトはfalseであり、無効なチェックデジットは拒否されます。
     





このweakモードを使いたいと考えるのは何故でしょうか。
大規模なISBN番号群があり、その内の多くが何らかの理由で間違ったチェックデジットを持つことはあり得ます。
（印刷された一覧をスキャンしてOCRした結果番号を間違えた場合、手作業で番号を取り出した場合などがあり得ます。）
とにかく、こうした混乱は整理したいことですが、データベース内に番号をすべて取り込んで、より簡単に情報を検査し有効にすることができるように、外部ツールを使用してデータベース内の無効な番号の位置を特定したいと思うかも知れません。
例えば、テーブル内の無効な番号をすべて選択したいと思うかも知れません。
  


weakモードを使用して無効な番号をテーブルに挿入する時、番号は修正されたチェックデジット付きで挿入されますが、最後に感嘆符（!）付きで、例えば0-11-000322-5!と表示されます。
この無効印はis_valid関数を使って検査することができ、また、 make_valid関数で消去することができます。
  


また、番号の最後に!文字を付与することで、weakモードでなくとも無効印の付いた番号を強制的に挿入することもできます。
  


この他の入力における特殊な機能として、チェックデジットとして?を書くことができます。
これにより正確なチェックデジットが自動的に挿入されます。
  

例





---型を直接使う
SELECT isbn('978-0-393-04002-9');
SELECT isbn13('0901690546');
SELECT issn('1436-4522');


--型キャスト
-- 番号が対象の型の範囲として有効な場合にのみean13から他の型へキャストできることに注意
-- そのため、次のようなものは上手くいかない: select isbn(ean13('0220356483481'));
-- しかし以下は上手くいく
SELECT upc(ean13('0220356483481'));
SELECT ean13(upc('220356483481'));


--ISBN番号を保持する列が１つあるテーブルを作成する
CREATE TABLE test (id isbn);
INSERT INTO test VALUES('9780393040029');


--チェックデジットを自動的に計算する('?'を見よ)
INSERT INTO test VALUES('220500896?');
INSERT INTO test VALUES('978055215372?');

SELECT issn('3251231?');
SELECT ismn('979047213542?');


--weakモードを利用する
SET isn.weak TO true;
INSERT INTO test VALUES('978-0-11-000533-4');
INSERT INTO test VALUES('9780141219307');
INSERT INTO test VALUES('2-205-00876-X');
SET isn.weak TO false;

SELECT id FROM test WHERE NOT is_valid(id);
UPDATE test SET id = make_valid(id) WHERE id = '2-205-00876-X!';

SELECT * FROM test;

SELECT isbn13(id) FROM test;


参考文献





本モジュールを実装するための情報は以下を含むいくつかのサイトを通して集められました。
   
	https://www.isbn-international.org/

	https://www.issn.org/

	https://www.ismn-international.org/

	https://www.wikipedia.org/






ハイフン付けに使用した接頭辞も以下から集められました。
   
	https://www.gs1.org/standards/id-keys

	https://en.wikipedia.org/wiki/List_of_ISBN_registration_groups

	https://www.isbn-international.org/content/isbn-users-manual/29

	https://en.wikipedia.org/wiki/International_Standard_Music_Number

	https://www.ismn-international.org/ranges/tools






アルゴリズムの作成には注意を払い、公式ISBN、ISMN、ISSNユーザマニュアルで提示されたアルゴリズムに対して念入り過ぎるほど検証されました。
  

作者




   Germán Méndez Bravo (Kronuz), 2004–2006
  


本モジュールはGarrett A. Wollmanのisbn_issnコードに触発されたものです。
  


lo — ラージオブジェクトを管理する





loモジュールはラージオブジェクト（LOやBLOBとも呼ばれます）保守作業のサポートを提供します。
loデータ型とlo_manageトリガが含まれます。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
原理





JDBCドライバにおける問題の1つ（ODBCドライバでもこれは影響します）は、規定ではBLOB（バイナリラージオブジェクト）への参照はテーブル内に格納され、その項目が変更されると、関連するBLOBがデータベースから削除されると想定している点です。
  


PostgreSQL™の立場では、これは起こりません。
ラージオブジェクトは独自の権限をもったオブジェクトとして扱われます。
テーブル項目はOIDによりラージオブジェクトを参照することはできますが、同じラージオブジェクトOIDを参照するテーブル項目を複数持つことも可能です。
このため、システムは、こうした項目を変更または削除したという理由だけでは、ラージオブジェクトを削除しません。
  


さて、これはPostgreSQL™固有のアプリケーションでは問題ありませんが、JDBCやODBCを使用する標準的なコードでは、オブジェクトが削除されず、孤児、つまりどこからも参照されずディスクを消費するだけのオブジェクトになります。
  


loモジュールによりLO参照列を持つテーブルにトリガを付与して、これを解消することができます。
このトリガは基本的には、ラージオブジェクトを参照する値を削除または変更した時常にlo_unlinkを単に行います。
このトリガを使用する時は、単一のデータベースのみがトリガの対象列で参照されるラージオブジェクトを参照することを前提とします。
  


また、本モジュールは、単にoid型のドメインに過ぎないloデータ型を提供します。
ラージオブジェクトへの参照を持つデータベース列とこの他のOIDを持つデータベース列との間に違いを持たせるために有用です。
実際このトリガを使用するためにlo型を使用する必要はありません。
しかし、データベース内のどの列がトリガで管理されているラージオブジェクトを示しているかを保持するために、これを使用することは簡便かもしれません。
また、BLOB列でloを使用しない場合、ODBCドライバが混乱してしまうと取りざたされています。
  

使用方法





簡単な使用例を示します。
  

CREATE TABLE image (title text, raster lo);

CREATE TRIGGER t_raster BEFORE UPDATE OR DELETE ON image
    FOR EACH ROW EXECUTE FUNCTION lo_manage(raster);



一意なラージオブジェクト参照を含む列それぞれに対し、BEFORE UPDATE OR DELETEトリガを作成してください。
そして、単一のトリガ引数として列名を指定してください。
BEFORE UPDATE OF column_nameを使って列が更新される時にのみ実行するようトリガを制限することもできます。
同一テーブル上に複数のlo型の列を持たせる必要がある場合、それぞれに対して別のトリガを作成してください。
同一テーブル上の各トリガに別の名前を与えることは忘れないでください。
  

制限事項



	

トリガが実行されませんので、テーブル削除により含まれるオブジェクトは孤児化します。
DROP TABLEの前にDELETE FROM tableを行うことで防止することができます。
    


TRUNCATEも同様の危険があります。
    


ラージオブジェクトを孤児化させた、または孤児化させた疑いがある場合は、消去するための手助けとなるvacuumlo(1)モジュールを参照してください。
lo_manageトリガのバックネットとしてvacuumloを時々実行することを勧めます。
    

	

フロントエンドの中には独自のテーブルを作成するものがあり、その場合、関連するトリガは作成されません。
また、ユーザはトリガを作成することを忘れる（または知らない）かもしれません。
    




作者




   Peter Mount <peter@retep.org.uk>
  


ltree — 階層ツリーを模擬したデータ型





本モジュールは階層ツリーを模擬した構造に格納されたデータのラベルを表現する ltreeデータ型を実装します。
ラベルツリー全体を検索する高度な機能を提供します。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
定義





ラベルは、英数字、アンダースコア、ハイフンの並びです。
有効な英数字の範囲はデータベースのロケールに依存します。
例えば、CロケールではA-Za-z0-9_-という文字が許されます。
ラベルの長さは1000文字以内でなければなりません。
  


例えば42、Personal_Servicesです。
  


ラベル経路は、例えばL1.L2.L3のようなドットで区切られた0個以上のラベルの並びであり、階層ツリーのルートから特定のノードまでの経路を表します。
ラベル経路の長さは65535ラベルを超えることはできません。
  


例：'Top.Countries.Europe.Russia'
  


ltreeモジュールは以下の複数のデータ型を提供します。
  
	

ltreeはラベル経路を格納します。
    

	

lqueryは、ltree値に一致する正規表現のようなパターンを表現します。
単一の単語は経路内のラベルに一致します。
スター記号（*）は0個以上のラベルに一致します。
ドットでつなげることで、ラベル経路全体に一致するパターンを形作ることができます。
以下に例を示します。



foo         正確にfooというラベル経路に一致します。
*.foo.*     fooというラベルを含むラベル経路すべてに一致します。
*.foo       fooというラベルで終わるラベル経路すべてに一致します。


    


スター記号と単一の単語のどちらも一致可能なラベル数を制限するために量指定を行うことができます。



*{n}        正確にn個のラベルに一致します。
*{n,}       少なくともn個のラベルに一致します。
*{n,m}      少なくともn個に一致し、多くてもm個を超えないラベルに一致します。
*{,m}       最大m個のラベルに一致します。つまりと次と同じです。*{0,m}
foo{n,m}    少なくともn個に一致し、多くてもm個を超えないfooに一致します。
foo{,}      ゼロを含む任意の数のfooに一致します。



明示的な量指定子が存在しなければ、スター記号に対するデフォルトは任意の数のラベルに一致(つまり{,})である一方、非スター項目に対するデフォルトは正確に1回(つまり{1})です。
    


単なる正確な一致以上の一致を行うために、スターでないlquery項目の終端に記述できる複数の修飾子が存在します。



@           大文字小文字を区別しない一致。例えばa@はAに一致します。
*           この接頭辞を持つすべてのラベルに一致。例えばfoo*はfoobarに一致します。
%           最初のアンダースコアで区切られた単語に一致。



%の動作は多少複雑です。
ラベル全体ではなく単語一致を試みます。
例えばfoo_bar%はfoo_bar_bazに一致しますがfoo_barbazに一致しません。
*と組み合わせる場合、接頭辞一致が各単語ごとに適用されます。
例えばfoo_bar%*はfoo1_bar2_bazに一致しますが、foo1_br2_bazに一致しません。
    


また、項目のいずれかに一致させるために|（論理和）で区切って、修飾子が付いているかもしれない複数の非スター項目を記述することもできます。
さらに、非スターグループ先頭に! (否定)を記述して選択肢のいずれにも一致しないすべてのラベルに一致させることもできます。
もしあれば、量指定子はグループの最後になります。これはグループ全体として一致する数を意味します(すなわち、一致するラベルの数、または、選択肢のいずれにも一致しない数です)。
    


以下に注釈付きのlqueryの例を示します。


Top.*{0,2}.sport*@.!football|tennis{1,}.Russ*|Spain
a.  b.     c.      d.                   e.



この問い合わせは以下のようなラベルに一致します。
    
	

Topラベルから始まる。
      

	

次いで0から2個のラベルを持つ。
      

	

直後にsport接頭辞（大文字小文字の区別無）から始まるラベルを持つ。
      

	

そして、footballにもtennisにも一致しない1つ以上のラベルを持つ。
      

	

Russから始まる、または、正確にSpainに一致するラベルで終わる。
      




	
ltxtqueryはltree値に対する全文検索のようなパターンを表します。
ltxtquery値は、おそらく最後に@、*、%修飾子を持った単語からなります。
修飾子の意味はlqueryと同じです。
単語は& (論理積)、| (論理和)、! (否定)、括弧を組み合わせることが可能です。
主なlqueryとの違いは、ltxtqueryはラベル経路上の位置を考慮せずに単語に一致することです。
    


ltxtqueryの例を示します。


Europe & Russia*@ & !Transportation



これはEuropeラベルとRussia（大文字小文字の区別無）から始まるラベルを含む経路に一致します。
しかし、Transportationラベルを含む経路は一致しません。
経路内の単語の位置は重要ではありません。
また、%が使用された場合、位置に関係なく、単語をラベル内のアンダースコアで区切られた何らかの単語に一致させることができます。
    





注意：ltxtqueryではシンボルの間に空白を入れることができますが、ltreeとlqueryではできません。
  

演算子と関数





ltree型は、通常の比較演算子=、<>、<、>、<=、>=を持ちます。
比較では、ツリーの巡回順でソートされ、ノードの子要素はラベルテキストでソートされます。
さらに、表F.12「ltree演算子」に示す特殊な演算子が使用可能です。
  
表F.12 ltree演算子
	

        演算子
       

       

        説明
       

	
        ltree @> ltree
        boolean
       

       

左辺の引数が右辺の祖先要素（か同じ）かどうか？
       

	
        ltree <@ ltree
        boolean
       

       

左辺の引数が右辺の子孫要素（か同じ）かどうか？
       

	
        ltree ~ lquery
        boolean
       

       
        lquery ~ ltree
        boolean
       

       

ltreeがlqueryに一致するかどうか？
       

	
        ltree ? lquery[]
        boolean
       

       
        lquery[] ? ltree
        boolean
       

       

ltreeが配列内のいずれかのlqueryに一致するかどうか？
       

	
        ltree @ ltxtquery
        boolean
       

       
        ltxtquery @ ltree
        boolean
       

       

ltreeがltxtqueryに一致するかどうか？
       

	
        ltree || ltree
        ltree
       

       

ltree経路を連結します。
       

	
        ltree || text
        ltree
       

       
        text || ltree
        ltree
       

       

テキストをltreeに変換し、連結します。
       

	
        ltree[] @> ltree
        boolean
       

       
        ltree <@ ltree[]
        boolean
       

       

配列にltreeの祖先要素が含まれるかどうか？
       

	
        ltree[] <@ ltree
        boolean
       

       
        ltree @> ltree[]
        boolean
       

       

配列にltreeの子孫要素が含まれるかどうか？
       

	
        ltree[] ~ lquery
        boolean
       

       
        lquery ~ ltree[]
        boolean
       

       

配列にlqueryに一致する経路が含まれるかどうか？
       

	
        ltree[] ? lquery[]
        boolean
       

       
        lquery[] ? ltree[]
        boolean
       

       

ltree配列にいずれかのlqueryに一致する経路が含まれるかどうか？
       

	
        ltree[] @ ltxtquery
        boolean
       

       
        ltxtquery @ ltree[]
        boolean
       

       

配列にltxtqueryに一致する経路が含まれるかどうか？
       

	
        ltree[] ?@> ltree
        ltree
       

       

ltreeの祖先要素となる配列内の最初の要素を、存在しなければNULLを返します。
       

	
        ltree[] ?<@ ltree
        ltree
       

       

ltreeの子孫要素となる配列内の最初の要素を、存在しなければNULLを返します。
       

	
        ltree[] ?~ lquery
        ltree
       

       

lqueryに一致する配列内の最初の要素を、存在しなければNULLを返します。
       

	
        ltree[] ?@ ltxtquery
        ltree
       

       

ltxtqueryに一致する配列内の最初の要素を、存在しなければNULLを返します。
       






演算子<@、@>、@、~には類似の演算子^<@、^@>、^@、^~があります。
後者はインデックスを使用しない点を除き、同一です。
後者は試験の際にだけ役に立ちます。
  


使用可能な関数を表F.13「ltree関数」に示します。
  
表F.13 ltree関数
	

        関数
       

       

        説明
       

       

        例
       

	
        
        subltree ( ltree, start integer, end integer )
        ltree
       

       

start位置からend-1位置までのltreeの部分経路を返します（位置は0から始まります）。
       

       
        subltree('Top.Child1.Child2', 1, 2)
        Child1
       

	
        
        subpath ( ltree, offset integer, len integer )
        ltree
       

       

offset位置からlen個のltreeの部分経路を返します。
offsetが負の場合、部分経路は経路の終端から数えた位置から始まります。
lenが負の場合、経路の終端から指定個のラベルを除きます。
       

       
        subpath('Top.Child1.Child2', 0, 2)
        Top.Child1
       

	
        subpath ( ltree, offset integer )
        ltree
       

       

offset位置から経路の終端までのltreeの部分経路を返します。
offsetが負の場合、部分経路は経路の終端から数えた位置から始まります。
       

       
        subpath('Top.Child1.Child2', 1)
        Child1.Child2
       

	
        
        nlevel ( ltree )
        integer
       

       

経路内のラベル数を返します。
       

       
        nlevel('Top.Child1.Child2')
        3
       

	
        
        index ( a ltree, b ltree )
        integer
       

       

a内でbが最初に出現する位置を、存在しなければ-1を返します。
       

       
        index('0.1.2.3.5.4.5.6.8.5.6.8', '5.6')
        6
       

	
        index ( a ltree,  b ltree, offset integer )
        integer
       

       

a内でbが最初に出現する位置を、存在しなければ-1を返します。
検索はoffsetから始まります。負のoffsetは経路終端から-offsetラベルから検索を始めることを意味します。
       

       
        index('0.1.2.3.5.4.5.6.8.5.6.8', '5.6', -4)
        9
       

	
        
        text2ltree ( text )
        ltree
       

       

textをltreeにキャストします。
       

	
        
        ltree2text ( ltree )
        text
       

       

ltreeをtextにキャストします。
       

	
        
        lca ( ltree [, ltree [, ... ]] )
        ltree
       

       

経路で共通する最長接頭辞を計算します（最大8個の引数をサポートします）。
       

       
        lca('1.2.3', '1.2.3.4.5.6')
        1.2
       

	
        lca ( ltree[] )
        ltree
       

       

配列内の経路で共通する最長接頭辞を計算します。
       

       
        lca(array['1.2.3'::ltree,'1.2.3.4'])
        1.2
       





インデックス





ltreeは、以下で示された演算子を高速化できる、複数種類のインデックスをサポートします。
  
	

ltreeに対するB-treeインデックス：<、<=、=、>=、>
    

	

ltreeに対するハッシュインデックス：
=
    

	

ltreeに対するGiSTインデックス(gist_ltree_ops演算子クラス)：
<、<=、=、>=、>、@>、<@、@、~、?
    


gist_ltree_ops GiST演算子クラスは経路ラベルの集合をビットマップ署名として近似します。
オプションの整数パラメータsiglenは、署名の長さをバイト単位で決定します。
デフォルトの署名の長さは8バイトです。
長さは、int整列(ほとんどのマシンで4バイト)の正の倍数であり、最大で2024であることが必要です。
長い署名では、インデックスはより大きくなってしまいますが、(インデックスのより小さな部分とより少ないヒープページをスキャンすることで)検索がより正確になります。
    


デフォルトの署名の長さが8バイトのインデックスを作成する例。
    

CREATE INDEX path_gist_idx ON test USING GIST (path);



署名の長さが100バイトのインデックスを作成する例。
    

CREATE INDEX path_gist_idx ON test USING GIST (path gist_ltree_ops(siglen=100));


	

ltree[]に対するGiSTインデックス（gist__ltree_ops演算子クラス）：ltree[] <@ ltree、ltree @> ltree[]、@、~、?
    


gist__ltree_ops GiST演算子クラスはgist_ltree_opsと同じように動作しますが、署名の長さをパラメータとして取ります。
gist__ltree_opsでのsiglenのデフォルトの値は28バイトです。
    


デフォルトの署名の長さが28バイトのインデックスを作成する例。
    

CREATE INDEX path_gist_idx ON test USING GIST (array_path);



署名の長さが100バイトのインデックスを作成する例。
    

CREATE INDEX path_gist_idx ON test USING GIST (array_path gist__ltree_ops(siglen=100));



注意：この種類のインデックスは非可逆です。
    




例





この例は、後述のデータを使用します（ソース配布内のcontrib/ltree/ltreetest.sqlファイルでも利用可能です）。
  

CREATE TABLE test (path ltree);
INSERT INTO test VALUES ('Top');
INSERT INTO test VALUES ('Top.Science');
INSERT INTO test VALUES ('Top.Science.Astronomy');
INSERT INTO test VALUES ('Top.Science.Astronomy.Astrophysics');
INSERT INTO test VALUES ('Top.Science.Astronomy.Cosmology');
INSERT INTO test VALUES ('Top.Hobbies');
INSERT INTO test VALUES ('Top.Hobbies.Amateurs_Astronomy');
INSERT INTO test VALUES ('Top.Collections');
INSERT INTO test VALUES ('Top.Collections.Pictures');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Stars');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Galaxies');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Astronauts');
CREATE INDEX path_gist_idx ON test USING GIST (path);
CREATE INDEX path_idx ON test USING BTREE (path);
CREATE INDEX path_hash_idx ON test USING HASH (path);



これで、以下の階層を記述するデータが投入されたtestテーブルができます。
  

                        Top
                     /   |  \
             Science Hobbies Collections
                 /       |              \
        Astronomy   Amateurs_Astronomy Pictures
           /  \                            |
Astrophysics  Cosmology                Astronomy
                                        /  |    \
                                 Galaxies Stars Astronauts



継承を行うことができます。


ltreetest=> SELECT path FROM test WHERE path <@ 'Top.Science';
                path
------------------------------------
 Top.Science
 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(4 rows)


  


経路一致の例をいくつか示します。


ltreetest=> SELECT path FROM test WHERE path ~ '*.Astronomy.*';
                     path
-----------------------------------------------
 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
 Top.Collections.Pictures.Astronomy
 Top.Collections.Pictures.Astronomy.Stars
 Top.Collections.Pictures.Astronomy.Galaxies
 Top.Collections.Pictures.Astronomy.Astronauts
(7 rows)

ltreetest=> SELECT path FROM test WHERE path ~ '*.!pictures@.Astronomy.*';
                path
------------------------------------
 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(3 rows)


  


全文検索の例をいくつか示します。


ltreetest=> SELECT path FROM test WHERE path @ 'Astro*% & !pictures@';
                path
------------------------------------
 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
 Top.Hobbies.Amateurs_Astronomy
(4 rows)

ltreetest=> SELECT path FROM test WHERE path @ 'Astro* & !pictures@';
                path
------------------------------------
 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(3 rows)


  


関数を使用した経路構築の例です。


ltreetest=> SELECT subpath(path,0,2)||'Space'||subpath(path,2) FROM test WHERE path <@ 'Top.Science.Astronomy';
                 ?column?
------------------------------------------
 Top.Science.Space.Astronomy
 Top.Science.Space.Astronomy.Astrophysics
 Top.Science.Space.Astronomy.Cosmology
(3 rows)


  


経路内の位置にラベルを挿入するSQL関数を作成することで、これを簡略化することができます。


CREATE FUNCTION ins_label(ltree, int, text) RETURNS ltree
    AS 'select subpath($1,0,$2) || $3 || subpath($1,$2);'
    LANGUAGE SQL IMMUTABLE;

ltreetest=> SELECT ins_label(path,2,'Space') FROM test WHERE path <@ 'Top.Science.Astronomy';
                ins_label
------------------------------------------
 Top.Science.Space.Astronomy
 Top.Science.Space.Astronomy.Astrophysics
 Top.Science.Space.Astronomy.Cosmology
(3 rows)


  

変換





ltree_plpython3u拡張は、PL/Python用のltree型の変換を実装します。
関数を作成するときにこの変換をインストールして指定していれば、ltreeの値はPythonのリストにマップされます。
(しかしながら、その逆は今のところサポートされていません。)
  

作者





開発はすべてTeodor Sigaev (<teodor@stack.net>)とOleg Bartunov (<oleg@sai.msu.su>)によりなされました。
さらなる情報についてはhttp://www.sai.msu.su/~megera/postgres/gist/を参照してください。
作者は有用な議論を行ったEugeny Rodichevに感謝しています。
コメントや不具合報告を歓迎します。
  


pageinspect — データベースページの低レベルな調査





pageinspectモジュールは、デバッグの際に有用となる低レベルなデータベースページの内容を調べることができる関数を提供します。
これらの関数はすべて、スーパーユーザのみが使用することができます。
 
一般的な関数



	
     get_raw_page(relname text, fork text, blkno bigint) returns bytea
     
    
	

get_raw_pageは指定された名前付きリレーションの指定されたブロックを読み取り、bytea値としてそのコピーを返します。
これにより、単一ブロックの時間的に一貫性を持つコピーを入手することができます。
forkは、主データフォークでは'main'、空き領域マップでは'fsm'、可視性マップでは'vm'、初期化フォークでは'init'としなければなりません。
     

	
     get_raw_page(relname text, blkno bigint) returns bytea
    
	

get_raw_pageの簡略形であり、主フォークから読み取ります。
get_raw_page(relname, 'main', blkno)と同じです。
     

	
     page_header(page bytea) returns record
     
    
	

page_headerは、すべてのPostgreSQL™ヒープとインデックスページで共通するフィールドを表示します。
     


get_raw_pageで得られたページイメージを引数として渡さなければなりません。
以下に例を示します。


test=# SELECT * FROM page_header(get_raw_page('pg_class', 0));
    lsn    | checksum | flags  | lower | upper | special | pagesize | version | prune_xid
-----------+----------+--------+-------+-------+---------+----------+---------+-----------
 0/24A1B50 |        0 |      1 |   232 |   368 |    8192 |     8192 |       4 |         0



返される列は、PageHeaderData構造体のフィールドに対応します。
詳細はsrc/include/storage/bufpage.hを参照してください。
     


checksumフィールドはページに保存されたチェックサムであり、ページがどういうわけか壊れていれば正しくないでしょう。
このインスタンスに対してデータチェックサムが無効になっていれば、保存されている値には意味がありません。
     

	
     page_checksum(page bytea, blkno bigint) returns smallint
     
    
	

page_checksumは指定されたブロックに位置するかのようにページのチェックサムを計算します。
     


get_raw_pageで得られたページイメージを引数として渡さなければなりません。
以下に例を示します。


test=# SELECT page_checksum(get_raw_page('pg_class', 0), 0);
 page_checksum
---------------
         13443



チェックサムはブロック番号に依存するので、(難解なデバッグをする場合以外は)対応するブロック番号を渡さなければならないことに注意してください。
     


この関数で計算されたチェックサムは、page_header関数のchecksum結果フィールドと比較できます。
このインスタンスに対してデータチェックサムが有効になっていれば、二つの値は等しくならなければなりません。
     

	
     fsm_page_contents(page bytea) returns text
     
    
	

fsm_page_contentsは、FSMページの内部ノード構造を表示します。
以下に例を示します。


test=# SELECT fsm_page_contents(get_raw_page('pg_class', 'fsm', 0));



出力は複数行からなる文字列で、各行がページ内のバイナリツリー（二分木）の1ノードを表します。
それらのノードのうち、非ゼロのノードのみが出力されます。
そのページから返される次のスロットを指し示すための"next（次）"と呼ばれるポインタも出力されます。
     


 FSMページの構造に関する更に詳しい情報は、src/backend/storage/freespace/READMEを参照してください。
     




ヒープ関数



	
     heap_page_items(page bytea) returns setof record
     
    
	

heap_page_itemsはヒープページ上の行ポインタをすべて表示します。
使用中の行ポインタでは、タプルヘッダおよびタプルの生データも表示されます。
生ページがコピーされた時点のMVCCスナップショットでタプルが可視かどうかは関係なく、すべてのタプルが表示されます。
     


get_raw_pageで得られたヒープページイメージを引数として渡さなければなりません。
以下に例を示します。


test=# SELECT * FROM heap_page_items(get_raw_page('pg_class', 0));



返されるフィールドの説明については、src/include/storage/itemid.hおよびsrc/include/access/htup_details.hを参照してください。
     


heap_tuple_infomask_flags関数を使用すると、ヒープタプルのt_infomaskおよびt_infomask2のフラグビットを展開することができます。
     

	
     tuple_data_split(rel_oid oid, t_data bytea, t_infomask integer, t_infomask2 integer, t_bits text [, do_detoast bool]) returns bytea[]
     
    
	

tuple_data_splitはバックエンドの内部がするのと同じ方法で、タプルデータを属性に分割します。


test=# SELECT tuple_data_split('pg_class'::regclass, t_data, t_infomask, t_infomask2, t_bits) FROM heap_page_items(get_raw_page('pg_class', 0));



この関数はheap_page_itemsの戻り値の属性と同じ引数で呼び出してください。
     


do_detoastがtrueの場合、属性は必要に応じて非TOAST化されます。
デフォルト値はfalseです。
     

	
     heap_page_item_attrs(page bytea, rel_oid regclass [, do_detoast bool]) returns setof record
     
    
	

heap_page_item_attrsはheap_page_itemsと同じですが、タプルの生データをdo_detoast（デフォルトはfalse）によって非TOAST化可能な属性の配列として返すところが異なります。
     


get_raw_pageで取得できるヒープページのイメージを引数として渡してください。
以下に例を示します。


test=# SELECT * FROM heap_page_item_attrs(get_raw_page('pg_class', 0), 'pg_class'::regclass);


     

	
     heap_tuple_infomask_flags(t_infomask integer, t_infomask2 integer) returns record
     
    
	

heap_tuple_infomask_flagsは、heap_page_itemsから返されるt_infomaskおよびt_infomask2を、フラグ名で構成される人間が見てわかる形式の配列セットにデコードします。
このとき、すべてのフラグ用の列が一つ、結合されたフラグ用の列が一つあります。
以下に例を示します。


test=# SELECT t_ctid, raw_flags, combined_flags
         FROM heap_page_items(get_raw_page('pg_class', 0)),
           LATERAL heap_tuple_infomask_flags(t_infomask, t_infomask2)
         WHERE t_infomask IS NOT NULL OR t_infomask2 IS NOT NULL;



この関数はheap_page_itemsの戻り値の属性と同じ引数で呼び出してください。
     


結合されたフラグは、 HEAP_XMIN_FROZENなど、複数のrawビットの値を考慮するソースレベルのマクロから得られたビットを表示します。
     


返されるフラグ名の説明については、src/include/access/htup_details.hを参照して下さい。
     




B-tree関数



	
     bt_metap(relname text) returns record
     
    
	

bt_metapはB-treeインデックスのメタページに関する情報を返します。
以下に例を示します。


test=# SELECT * FROM bt_metap('pg_cast_oid_index');
-[ RECORD 1 ]-------------+-------
magic                     | 340322
version                   | 4
root                      | 1
level                     | 0
fastroot                  | 1
fastlevel                 | 0
last_cleanup_num_delpages | 0
last_cleanup_num_tuples   | 230
allequalimage             | f


     

	
     bt_page_stats(relname text, blkno bigint) returns record
     
    
	

bt_page_statsは、B-treeインデックスのデータページについての要約情報を返します。
以下に例を示します。


test=# SELECT * FROM bt_page_stats('pg_cast_oid_index', 1);
-[ RECORD 1 ]-+-----
blkno         | 1
type          | l
live_items    | 224
dead_items    | 0
avg_item_size | 16
page_size     | 8192
free_size     | 3668
btpo_prev     | 0
btpo_next     | 0
btpo_level    | 0
btpo_flags    | 3


     

	
     bt_multi_page_stats(relname text, blkno bigint, blk_count bigint) returns setof record
     
    
	

bt_multi_page_statsはbt_page_statsと同じ情報を返しますが、blknoから始まりblk_countページ及ぶ範囲の各ページについて行ないます。
blk_countが負の場合、blknoからindexの最後までのすべてのページが報告されます。
例えば、次のようになります。


test=# SELECT * FROM bt_multi_page_stats('pg_proc_oid_index', 5, 2);
-[ RECORD 1 ]-+-----
blkno         | 5
type          | l
live_items    | 367
dead_items    | 0
avg_item_size | 16
page_size     | 8192
free_size     | 808
btpo_prev     | 4
btpo_next     | 6
btpo_level    | 0
btpo_flags    | 1
-[ RECORD 2 ]-+-----
blkno         | 6
type          | l
live_items    | 367
dead_items    | 0
avg_item_size | 16
page_size     | 8192
free_size     | 808
btpo_prev     | 5
btpo_next     | 7
btpo_level    | 0
btpo_flags    | 1


     

	
     bt_page_items(relname text, blkno bigint) returns setof record
     
    
	

bt_page_itemsは、B-treeインデックスページ上の全項目についての詳細情報を返します。
以下に例を示します。


test=# SELECT itemoffset, ctid, itemlen, nulls, vars, data, dead, htid, tids[0:2] AS some_tids
        FROM bt_page_items('tenk2_hundred', 5);
 itemoffset |   ctid    | itemlen | nulls | vars |          data           | dead |  htid  |      some_tids
------------+-----------+---------+-------+------+-------------------------+------+--------+---------------------
          1 | (16,1)    |      16 | f     | f    | 30 00 00 00 00 00 00 00 |      |        |
          2 | (16,8292) |     616 | f     | f    | 24 00 00 00 00 00 00 00 | f    | (1,6)  | {"(1,6)","(10,22)"}
          3 | (16,8292) |     616 | f     | f    | 25 00 00 00 00 00 00 00 | f    | (1,18) | {"(1,18)","(4,22)"}
          4 | (16,8292) |     616 | f     | f    | 26 00 00 00 00 00 00 00 | f    | (4,18) | {"(4,18)","(6,17)"}
          5 | (16,8292) |     616 | f     | f    | 27 00 00 00 00 00 00 00 | f    | (1,2)  | {"(1,2)","(1,19)"}
          6 | (16,8292) |     616 | f     | f    | 28 00 00 00 00 00 00 00 | f    | (2,24) | {"(2,24)","(4,11)"}
          7 | (16,8292) |     616 | f     | f    | 29 00 00 00 00 00 00 00 | f    | (2,17) | {"(2,17)","(11,2)"}
          8 | (16,8292) |     616 | f     | f    | 2a 00 00 00 00 00 00 00 | f    | (0,25) | {"(0,25)","(3,20)"}
          9 | (16,8292) |     616 | f     | f    | 2b 00 00 00 00 00 00 00 | f    | (0,10) | {"(0,10)","(0,14)"}
         10 | (16,8292) |     616 | f     | f    | 2c 00 00 00 00 00 00 00 | f    | (1,3)  | {"(1,3)","(3,9)"}
         11 | (16,8292) |     616 | f     | f    | 2d 00 00 00 00 00 00 00 | f    | (6,28) | {"(6,28)","(11,1)"}
         12 | (16,8292) |     616 | f     | f    | 2e 00 00 00 00 00 00 00 | f    | (0,27) | {"(0,27)","(1,13)"}
         13 | (16,8292) |     616 | f     | f    | 2f 00 00 00 00 00 00 00 | f    | (4,17) | {"(4,17)","(4,21)"}
(13 rows)



これはB-treeのリーフページです。
テーブルを指し示すすべてのタプルは、ポスティングリストのタプルになっています（これらはすべて6バイトTIDが合計100個格納されます）。
また、itemoffset番号１には「ハイキー(high key)」タプルもあります。
この例では、各タプルに関するエンコードされた情報を格納するためにctidが使用されていますが、リーフページタプルでは、ヒープTIDが直接ctidフィールドに格納されることがよくあります。
tidsはポスティングリストとして格納されるTIDのリストです。
     


内部ページ（示されていません）では、ctidのブロック番号部分は、「ダウンリンク(downlink)」であり、インデックス内の他のページのブロック番号です。
ctidのオフセット部分（２番め）には、存在する列の数など、タプルに関するエンコードされた情報が格納されます（サフィックスの切り捨てによって、不要なサフィックス列が削除されている場合があります）。
切り捨てられた列は、「マイナス無限大(minus infinity)」を持つものとして扱われます。
     


htidは、基礎となるタプル表現に関係なく、タプルのヒープTIDを示します。
この値は、ctidと一致する場合もあれば、ポスティングリストのタプルおよび内部ページのタプルが使用する別の表現からデコードされる場合もあります。
内部ページのタプルでは、実装レベルのヒープTID列が切り捨てられ、NULL htid値として表されます。
     


右端以外のページ（btpo_nextフィールドの値が0でないページ）において、最初の項目はページの「ハイキー」であることに注意してください。
つまりそのページに現れるすべての項目の上限となるdataになりますが、一方でそのctidフィールドは別のブロックを指していないことを意味します。
また、内部ページでは、最初の実データ項目（ハイキーでない最初の項目）は、確実にすべての列が切り捨てられ、そのdataフィールドに実際の値は残りません。
しかし、そのような項目でも、そのctidフィールドには有効なダウンリンクが入っています。
     


B-Treeインデックスの構造についての詳細は「B-Treeの構造」を参照してください。
重複排除とポスティングリストについての詳細は「重複排除」を参照してください。
     

	
     bt_page_items(page bytea) returns setof record
     
    
	

ページをbt_page_itemsにbyteaの値として渡すことも可能です。
get_raw_pageで得られたページイメージを引数として渡さなければなりません。
なので、最後の例は以下のように書き直すこともできます。


test=# SELECT itemoffset, ctid, itemlen, nulls, vars, data, dead, htid, tids[0:2] AS some_tids
        FROM bt_page_items(get_raw_page('tenk2_hundred', 5));
 itemoffset |   ctid    | itemlen | nulls | vars |          data           | dead |  htid  |      some_tids
------------+-----------+---------+-------+------+-------------------------+------+--------+---------------------
          1 | (16,1)    |      16 | f     | f    | 30 00 00 00 00 00 00 00 |      |        |
          2 | (16,8292) |     616 | f     | f    | 24 00 00 00 00 00 00 00 | f    | (1,6)  | {"(1,6)","(10,22)"}
          3 | (16,8292) |     616 | f     | f    | 25 00 00 00 00 00 00 00 | f    | (1,18) | {"(1,18)","(4,22)"}
          4 | (16,8292) |     616 | f     | f    | 26 00 00 00 00 00 00 00 | f    | (4,18) | {"(4,18)","(6,17)"}
          5 | (16,8292) |     616 | f     | f    | 27 00 00 00 00 00 00 00 | f    | (1,2)  | {"(1,2)","(1,19)"}
          6 | (16,8292) |     616 | f     | f    | 28 00 00 00 00 00 00 00 | f    | (2,24) | {"(2,24)","(4,11)"}
          7 | (16,8292) |     616 | f     | f    | 29 00 00 00 00 00 00 00 | f    | (2,17) | {"(2,17)","(11,2)"}
          8 | (16,8292) |     616 | f     | f    | 2a 00 00 00 00 00 00 00 | f    | (0,25) | {"(0,25)","(3,20)"}
          9 | (16,8292) |     616 | f     | f    | 2b 00 00 00 00 00 00 00 | f    | (0,10) | {"(0,10)","(0,14)"}
         10 | (16,8292) |     616 | f     | f    | 2c 00 00 00 00 00 00 00 | f    | (1,3)  | {"(1,3)","(3,9)"}
         11 | (16,8292) |     616 | f     | f    | 2d 00 00 00 00 00 00 00 | f    | (6,28) | {"(6,28)","(11,1)"}
         12 | (16,8292) |     616 | f     | f    | 2e 00 00 00 00 00 00 00 | f    | (0,27) | {"(0,27)","(1,13)"}
         13 | (16,8292) |     616 | f     | f    | 2f 00 00 00 00 00 00 00 | f    | (4,17) | {"(4,17)","(4,21)"}
(13 rows)



その他の詳細はすべて前の項目で説明したものと同じです。
     




BRIN関数



	
     brin_page_type(page bytea) returns text
     
    
	

brin_page_typeは指定のBRINインデックスページのページ種別を返します。
ページが有効なBRINページでないときはエラーが発生します。
以下に例を示します。


test=# SELECT brin_page_type(get_raw_page('brinidx', 0));
 brin_page_type
----------------
 meta


     

	
     brin_metapage_info(page bytea) returns record
     
    
	

brin_metapage_infoはBRINインデックスのメタページについて様々な情報を返します。
以下に例を示します。


test=# SELECT * FROM brin_metapage_info(get_raw_page('brinidx', 0));
   magic    | version | pagesperrange | lastrevmappage
------------+---------+---------------+----------------
 0xA8109CFA |       1 |             4 |              2


     

	
     brin_revmap_data(page bytea) returns setof tid
     
    
	

brin_revmap_dataはBRINインデックスの範囲マップページのタプル識別子のリストを返します。
以下に例を示します。


test=# SELECT * FROM brin_revmap_data(get_raw_page('brinidx', 2)) LIMIT 5;
  pages
---------
 (6,137)
 (6,138)
 (6,139)
 (6,140)
 (6,141)


     

	
     brin_page_items(page bytea, index oid) returns setof record
     
    
	

brin_page_itemsはBRINデータページに記録されているデータを返します。
以下に例を示します。


test=# SELECT * FROM brin_page_items(get_raw_page('brinidx', 5),
                                     'brinidx')
       ORDER BY blknum, attnum LIMIT 6;
 itemoffset | blknum | attnum | allnulls | hasnulls | placeholder | empty |    value
------------+--------+--------+----------+----------+-------------+-------+--------------
        137 |      0 |      1 | t        | f        | f           | f     |
        137 |      0 |      2 | f        | f        | f           | f     | {1 .. 88}
        138 |      4 |      1 | t        | f        | f           | f     |
        138 |      4 |      2 | f        | f        | f           | f     | {89 .. 176}
        139 |      8 |      1 | t        | f        | f           | f     |
        139 |      8 |      2 | f        | f        | f           | f     | {177 .. 264}



返される列はBrinMemTuple構造体およびBrinValues構造体のフィールドに対応します。
詳しくはsrc/include/access/brin_tuple.hを参照して下さい。
     




GIN関数



	
     gin_metapage_info(page bytea) returns record
     
    
	

gin_metapage_infoはGINインデックスのメタページに関する情報を返します。
以下に例を示します。


test=# SELECT * FROM gin_metapage_info(get_raw_page('gin_index', 0));
-[ RECORD 1 ]----+-----------
pending_head     | 4294967295
pending_tail     | 4294967295
tail_free_size   | 0
n_pending_pages  | 0
n_pending_tuples | 0
n_total_pages    | 7
n_entry_pages    | 6
n_data_pages     | 0
n_entries        | 693
version          | 2


     

	
     gin_page_opaque_info(page bytea) returns record
     
    
	

gin_page_opaque_infoはページ種別のようなGINインデックスの不透明な領域についての情報を返します。
以下に例を示します。


test=# SELECT * FROM gin_page_opaque_info(get_raw_page('gin_index', 2));
 rightlink | maxoff |         flags
-----------+--------+------------------------
         5 |      0 | {data,leaf,compressed}
(1 row)


     

	
     gin_leafpage_items(page bytea) returns setof record
     
    
	

gin_leafpage_itemsは圧縮されたGINのリーフページに格納されているデータについての情報を返します。
以下に例を示します。


test=# SELECT first_tid, nbytes, tids[0:5] AS some_tids
        FROM gin_leafpage_items(get_raw_page('gin_test_idx', 2));
 first_tid | nbytes |                        some_tids
-----------+--------+----------------------------------------------------------
 (8,41)    |    244 | {"(8,41)","(8,43)","(8,44)","(8,45)","(8,46)"}
 (10,45)   |    248 | {"(10,45)","(10,46)","(10,47)","(10,48)","(10,49)"}
 (12,52)   |    248 | {"(12,52)","(12,53)","(12,54)","(12,55)","(12,56)"}
 (14,59)   |    320 | {"(14,59)","(14,60)","(14,61)","(14,62)","(14,63)"}
 (167,16)  |    376 | {"(167,16)","(167,17)","(167,18)","(167,19)","(167,20)"}
 (170,30)  |    376 | {"(170,30)","(170,31)","(170,32)","(170,33)","(170,34)"}
 (173,44)  |    197 | {"(173,44)","(173,45)","(173,46)","(173,47)","(173,48)"}
(7 rows)


     




GiST関数



	
     gist_page_opaque_info(page bytea) returns record
     
    
	

gist_page_opaque_infoはNSN、rightlink、ページ種別などのGiSTインデックスの不透明な領域についての情報を返します。
以下に例を示します。


test=# SELECT * FROM gist_page_opaque_info(get_raw_page('test_gist_idx', 2));
 lsn | nsn | rightlink | flags
-----+-----+-----------+--------
 0/1 | 0/0 |         1 | {leaf}
(1 row)


     

	
     gist_page_items(page bytea, index_oid regclass) returns setof record
     
    
	

gist_page_itemsはGiSTのインデックスのページに格納されているデータについての情報を返します。
以下に例を示します。


test=# SELECT * FROM gist_page_items(get_raw_page('test_gist_idx', 0), 'test_gist_idx');
 itemoffset |   ctid    | itemlen | dead |             keys
------------+-----------+---------+------+-------------------------------
          1 | (1,65535) |      40 | f    | (p)=("(185,185),(1,1)")
          2 | (2,65535) |      40 | f    | (p)=("(370,370),(186,186)")
          3 | (3,65535) |      40 | f    | (p)=("(555,555),(371,371)")
          4 | (4,65535) |      40 | f    | (p)=("(740,740),(556,556)")
          5 | (5,65535) |      40 | f    | (p)=("(870,870),(741,741)")
          6 | (6,65535) |      40 | f    | (p)=("(1000,1000),(871,871)")
(6 rows)


     

	
     gist_page_items_bytea(page bytea) returns setof record
     
    
	

gist_page_itemsと同じですが、キーデータを生byteablobとして返します。
キーをデコードしようとしないので、どのインデックスが含まれているかを知る必要はありません。
以下に例を示します。


test=# SELECT * FROM gist_page_items_bytea(get_raw_page('test_gist_idx', 0));
 itemoffset |   ctid    | itemlen | dead |                                      key_data
------------+-----------+---------+------+-----------------------------------------​-------------------------------------------
          1 | (1,65535) |      40 | f    | \x00000100ffff28000000000000c0644000000000​00c06440000000000000f03f000000000000f03f
          2 | (2,65535) |      40 | f    | \x00000200ffff28000000000000c0744000000000​00c074400000000000e064400000000000e06440
          3 | (3,65535) |      40 | f    | \x00000300ffff28000000000000207f4000000000​00207f400000000000d074400000000000d07440
          4 | (4,65535) |      40 | f    | \x00000400ffff28000000000000c0844000000000​00c084400000000000307f400000000000307f40
          5 | (5,65535) |      40 | f    | \x00000500ffff28000000000000f0894000000000​00f089400000000000c884400000000000c88440
          6 | (6,65535) |      40 | f    | \x00000600ffff28000000000000208f4000000000​00208f400000000000f889400000000000f88940
          7 | (7,65535) |      40 | f    | \x00000700ffff28000000000000408f4000000000​00408f400000000000288f400000000000288f40
(7 rows)


     




Hash関数



	
     hash_page_type(page bytea) returns text
     
    
	

hash_page_typeは与えられたHASHインデックスページのページ種別を返します。
以下に例を示します。


test=# SELECT hash_page_type(get_raw_page('con_hash_index', 0));
 hash_page_type
----------------
 metapage


     

	
     hash_page_stats(page bytea) returns setof record
     
    
	

hash_page_statsはHASHインデックスのバケットページやオーバーフローページに関する情報を返します。
以下に例を示します。


test=# SELECT * FROM hash_page_stats(get_raw_page('con_hash_index', 1));
-[ RECORD 1 ]---+-----------
live_items      | 407
dead_items      | 0
page_size       | 8192
free_size       | 8
hasho_prevblkno | 4096
hasho_nextblkno | 8474
hasho_bucket    | 0
hasho_flag      | 66
hasho_page_id   | 65408


     

	
     hash_page_items(page bytea) returns setof record
     
    
	

hash_page_itemsはHASHインデックスページのバケットページやオーバーフローページに保存されたデータに関する情報を返します。
以下に例を示します。


test=# SELECT * FROM hash_page_items(get_raw_page('con_hash_index', 1)) LIMIT 5;
 itemoffset |   ctid    |    data
------------+-----------+------------
          1 | (899,77)  | 1053474816
          2 | (897,29)  | 1053474816
          3 | (894,207) | 1053474816
          4 | (892,159) | 1053474816
          5 | (890,111) | 1053474816


     

	
     hash_bitmap_info(index oid, blkno bigint) returns record
     
    
	

hash_bitmap_infoはHASHインデックスの特定のオーバーフローページに対するビットマップページのビットの状態を表示します。
以下に例を示します。


test=# SELECT * FROM hash_bitmap_info('con_hash_index', 2052);
 bitmapblkno | bitmapbit | bitstatus
-------------+-----------+-----------
          65 |         3 | t


     

	
     hash_metapage_info(page bytea) returns record
     
    
	

hash_metapage_infoはHASHインデックスのメタページに保存された情報を返します。
以下に例を示します。


test=# SELECT magic, version, ntuples, ffactor, bsize, bmsize, bmshift,
test-#     maxbucket, highmask, lowmask, ovflpoint, firstfree, nmaps, procid,
test-#     regexp_replace(spares::text, '(,0)*}', '}') as spares,
test-#     regexp_replace(mapp::text, '(,0)*}', '}') as mapp
test-# FROM hash_metapage_info(get_raw_page('con_hash_index', 0));
-[ RECORD 1 ]-------------------------------------------------​------------------------------
magic     | 105121344
version   | 4
ntuples   | 500500
ffactor   | 40
bsize     | 8152
bmsize    | 4096
bmshift   | 15
maxbucket | 12512
highmask  | 16383
lowmask   | 8191
ovflpoint | 28
firstfree | 1204
nmaps     | 1
procid    | 450
spares    | {0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,4,4,4,45,55,58,59,​508,567,628,704,1193,1202,1204}
mapp      | {65}


     





passwordcheck — パスワードの強度を検査する





passwordcheckモジュールはCREATE ROLE(7)またはALTER ROLE(7)によって設定したユーザのパスワードを検査します。
パスワードが弱すぎると考えられた場合、パスワードは拒絶されてコマンドはエラーで終わります。
 


このモジュールを有効にするには、postgresql.conf中のshared_preload_librariesに'$libdir/passwordcheck'を追加して、サーバを再起動してください。
 


ソースコードの変更により、このモジュールをユーザの用途に適合できます。
例えば、パスワード検査のためCrackLibを使用できます。
これに必要な作業はMakefile中の 2行のコメントアウトを外してモジュールを再構築することだけです。
（ライセンスの理由からCrackLib™をデフォルトで組み込むことができません。）
CrackLib™がなくても、モジュールはパスワードの強度に関する幾つかの単純な規則を強制します。
ユーザはこの規則を、適切となるように修正または拡張できます。
 
注意


暗号化されないパスワードが、ネットワークを送信されること、サーバログに記録されることおよびデータベース管理者に盗聴されることを防ぐために、PostgreSQL™はパスワードの一方向暗号化をユーザに提供できます。
この機能を使用して、多くのクライアントプログラムはサーバへ送信する前にパスワードを暗号化できます。
  


一方向暗号化されたパスワードは復号できないので、これがpasswordcheckモジュールの有効性の限界となります。
この理由により、高度のセキュリティが要求される場合、passwordcheckは推奨されません。
データベース内部に保存したパスワードに依存するよりは、GSSAPIのような外部の認証方法を使用した方が安全です（20章クライアント認証参照）。
  


その他の方法として、一方向暗号化されたパスワードを拒否するためにpasswordcheckを修正できます。
しかし、この方法ではパスワードが平文のテキストとして送信されるため、ユーザに多大なセキュリティリスクを負担させます。
  

設定パラメータ



	
     passwordcheck.min_password_length (integer)
     
    
	

バイト単位での許容される最小パスワードの長さ。
デフォルトは8です。
スーパーユーザのみがこの設定を変更できます。
     
注記


このパラメータは、ユーザが事前に暗号化されたパスワードを提供する場合、効果がありません。
      






通常の使用では、このパラメータはpostgresql.confで設定されますが、スーパーユーザは自身のセッション内でその場で変更できます。
典型的な使用例は以下の通りです。
  

# postgresql.conf
passwordcheck.min_password_length = 12



pg_buffercache — PostgreSQL™のバッファキャッシュの状態を確認する





pg_buffercacheモジュールは、共有バッファキャッシュで何が起きているかをリアルタイムに確認する方法を提供します。
また、テスト目的で、低レベルでデータを取り出す方法も提供します。
 


このモジュールは、pg_buffercache_pages()関数（pg_buffercacheビューでラップされています）、pg_buffercache_numa_pages()関数（pg_buffercache_numaビューでラップされています）、pg_buffercache_summary()関数、pg_buffercache_usage_counts()関数、pg_buffercache_evict()関数、pg_buffercache_evict_relation()関数、およびpg_buffercache_evict_all()関数を提供します。
 


pg_buffercache_pages()関数は、各行が1つの共有バッファエントリの状態を記述するレコード集合を返します。
pg_buffercacheビューは、簡単に利用できるようにこの関数をラップしています。
 


pg_buffercache_numa_pages()関数は、共有バッファエントリのNUMAノードマッピングを提供します。
この情報は、pg_buffercache_pages()自体の一部ではありません。なぜなら、取得に時間がかかるからです。
pg_buffercache_numaビューは、簡単に利用できるようにこの関数をラップしています。
 


pg_buffercache_summary()関数は、共有バッファキャッシュの状態を要約した1行を返します。
 


pg_buffercache_usage_counts()関数は、各行が対応する使用カウントを持つバッファの数を記述するレコード集合を返します。
 


デフォルトでは、上記関数の使用はスーパーユーザとpg_monitorロールの権限を持つロールに限定されています。
他のユーザに対してはGRANTを使用してアクセス権を付与できます。
 


pg_buffercache_evict()関数は、バッファ識別子を指定して、ブロックをバッファプールから退避させることができます。
この関数の使用はスーパーユーザのみに制限されています。
 


pg_buffercache_evict_relation()関数は、リレーション識別子を指定して、ピン留めされていないすべての共有バッファをバッファプールから退避させることができます。
この関数の使用はスーパーユーザのみに制限されています。
 


pg_buffercache_evict_all()関数は、ピン留めされていないすべての共有バッファをバッファプール内で退避させることができます。
この関数の使用はスーパーユーザのみに制限されています。
 
pg_buffercacheビュー





ビューによって公開されている列の定義を表F.14「pg_buffercacheの列」に示します。
  
表F.14 pg_buffercacheの列
	

列 型
      

      

説明
      

	
       bufferid integer
      

      

1からshared_buffersまでの範囲で示されるID
      

	
       relfilenode oid

（参照先 pg_class.relfilenode）
      

      

リレーションのファイルノード番号
      

	
       reltablespace oid

（参照先 pg_tablespace.oid）
      

      

リレーションのテーブル空間OID
      

	
       reldatabase oid

（参照先 pg_database.oid）
      

      

リレーションのデータベースOID
      

	
       relforknumber smallint
      

      

リレーション内のフォーク番号。common/relpath.h参照
      

	
       relblocknumber bigint
      

      

リレーション内のページ番号
      

	
       isdirty boolean
      

      

ダーティページかどうか？
      

	
       usagecount smallint
      

      

Clock-sweepアクセスカウント
      

	
       pinning_backends integer
      

      

このバッファをピン留めしているバックエンドの数
      






共有キャッシュ内の各バッファに対して、1行が存在します。
未使用のバッファは、bufferidを除き、すべてのフィールドがNULLになります。
共有システムカタログは、OIDがゼロのデータベースに属するものとして表示されます。
  


キャッシュはすべてのデータベースで共有されているため、現在のデータベースに属さないリレーションのページも表示されます。
これは、一部の行に対して一致するpg_classの結合行が存在しない、間違った結合をしてしまう可能性すらあることを意味します。
pg_classに対して結合しようとする場合、現在のデータベースのOIDまたは0と等しいreldatabaseを持つ行に限定して結合することをお勧めします。
  


ビューが表示するバッファ状態データのコピーのために、バッファマネージャのロックを取得しません。このため、pg_buffercacheビューへのアクセスは、通常のバッファ処理への影響がより小さくなりますが、バッファすべてに渡る矛盾のない結果を提供しません。
しかしながら、各バッファの情報に自己矛盾がないことは保証されます。
  

pg_buffercache_numaビュー





ビューによって公開されている列の定義を表F.15「pg_buffercache_numaの列」に示します。
  
表F.15 pg_buffercache_numaの列
	

列 型
      

      

説明
      

	
       bufferid integer
      

      

1からshared_buffersまでの範囲で示されるID
      

	
       os_page_num bigint
      

      

このバッファのOSメモリページの数
      

	
       numa_node int
      

      

NUMAノードのID
      






各ページのNUMAノードID照会は、メモリページをページインする必要があるため、この関数の最初の実行にはかなりの時間がかかることがあります。
いずれの場合も（最初の実行の有無にかかわらず）、この情報の取得にはコストがかかり、高い頻度でビューを照会することはお薦めしません。
  
警告


NUMAノードを決定する場合、ビューは共有メモリセグメントのすべてのメモリページにアクセスします。
これにより、共有メモリがまだ割り当てられていない場合は強制的に割り当てられ、メモリは単一のNUMAノードに割り当てられる可能性があります（システム構成によります）。
    


pg_buffercache_summary()関数





関数によって公開されている列の定義を表F.16「pg_buffercache_summary()出力列」に示します。
  
表F.16 pg_buffercache_summary()出力列
	

列 型
      

      

説明
      

	
       buffers_used int4
      

      

使用中の共有バッファの数
      

	
       buffers_unused int4
      

      

未使用の共有バッファの数
      

	
       buffers_dirty int4
      

      

ダーティ共有バッファの数
      

	
       buffers_pinned int4
      

      

ピン留めされた共有バッファの数
      

	
       usagecount_avg float8
      

      

使用中の共有バッファの平均使用カウント
      






pg_buffercache_summary()関数は、すべての共有バッファの状態を要約した単一の行を返します。
同様の、より詳細な情報はpg_buffercacheビューによって提供されますが、pg_buffercache_summary()はかなり安価です。
  


pg_buffercacheビューと同様に、pg_buffercache_summary()はバッファマネージャのロックを取得しません。
そのため、同時実行中の処理によって結果に小さな不正確さが生じる可能性があります。
  

pg_buffercache_usage_counts()関数





関数によって公開されている列の定義を表F.17「pg_buffercache_usage_counts()出力列」に示します。
  
表F.17 pg_buffercache_usage_counts()出力列
	

列 型
      

      

説明
      

	
       usage_count int4
      

      

取り得るバッファ使用カウント
      

	
       buffers int4
      

      

その使用カウントのバッファの数
      

	
       dirty int4
      

      

その使用カウントのダーティバッファの数
      

	
       pinned int4
      

      

その使用カウントのピン留めされたバッファの数
      






pg_buffercache_usage_counts()関数は、すべての共有バッファの状態を要約した行の集合を返します。これは、取り得る使用カウント値に基づいて集計されます。
同様の、より詳細な情報はpg_buffercacheビューによって提供されますが、pg_buffercache_usage_counts()はかなり安価です。
  


pg_buffercacheビューと同様に、pg_buffercache_usage_counts()はバッファマネージャのロックを取得しません。
そのため、同時実行中の処理によって結果に小さな不正確さが生じる可能性があります。
  

pg_buffercache_evict()関数





pg_buffercache_evict()関数は、pg_buffercacheビューのbufferid列に示されるバッファ識別子を取ります。
バッファが退避され、フラッシュされたかどうかに関する情報を返します。
buffer_evicted列は成功時にtrueを返し、バッファが無効であった場合、ピン留めされているために退避できなかった場合、または書き出しを試みた後に再びダーティになった場合にfalseを返します。
buffer_flushed列は、バッファがフラッシュされた場合にtrueを返します。
これは、バッファが私たちによってフラッシュされたことを必ずしも意味するわけではなく、他の誰かによってフラッシュされた可能性があります。
同時アクティビティのためにバッファがいつでも再び有効になる可能性があるため、結果は返却時にすぐに古くなります。
この関数は、開発者のテストのみを目的としています。
  

pg_buffercache_evict_relation()関数





pg_buffercache_evict_relation()関数はpg_buffercache_evict()関数と非常によく似ています。
違いは、pg_buffercache_evict_relation()がバッファ識別子の代わりにリレーション識別子を取ることです。
この関数は、そのリレーションのすべてのフォークのすべてのバッファを排除しようとします。

排除されたバッファの数、フラッシュされたバッファの数、および排除できなかったバッファの数を返します。
フラッシュされたバッファは、必ずしも私たちによってフラッシュされたわけではありません。
他の誰かによってフラッシュされた可能性があります。
同時アクティビティのためにバッファがすぐに読み戻される可能性があるため、結果は返却時にすぐに古くなります。
この関数は、開発者のテストのみを目的としています。
  

pg_buffercache_evict_all()関数





pg_buffercache_evict_all()関数はpg_buffercache_evict()関数と非常によく似ています。
違いは、pg_buffercache_evict_all()関数が引数を取得しないことです。
代わりに、バッファプール内のすべてのバッファを排除しようとします。
排除されたバッファの数、フラッシュされたバッファの数、および排除できなかったバッファの数を返します。
フラッシュされたバッファは、必ずしも私たちによってフラッシュされたわけではありません。
他の誰かによってフラッシュされた可能性があります。
同時アクティビティのためにバッファがすぐに読み戻される可能性があるため、結果は返却時にすぐに古くなります。
この関数は、開発者のテストのみを目的としています。
  

サンプル出力




regression=# SELECT n.nspname, c.relname, count(*) AS buffers
             FROM pg_buffercache b JOIN pg_class c
             ON b.relfilenode = pg_relation_filenode(c.oid) AND
                b.reldatabase IN (0, (SELECT oid FROM pg_database
                                      WHERE datname = current_database()))
             JOIN pg_namespace n ON n.oid = c.relnamespace
             GROUP BY n.nspname, c.relname
             ORDER BY 3 DESC
             LIMIT 10;

  nspname   |        relname         | buffers
------------+------------------------+---------
 public     | delete_test_table      |     593
 public     | delete_test_table_pkey |     494
 pg_catalog | pg_attribute           |     472
 public     | quad_poly_tbl          |     353
 public     | tenk2                  |     349
 public     | tenk1                  |     349
 public     | gin_test_idx           |     306
 pg_catalog | pg_largeobject         |     206
 public     | gin_test_tbl           |     188
 public     | spgist_text_tbl        |     182
(10 rows)


regression=# SELECT * FROM pg_buffercache_summary();
 buffers_used | buffers_unused | buffers_dirty | buffers_pinned | usagecount_avg
--------------+----------------+---------------+----------------+----------------
          248 |        2096904 |            39 |              0 |       3.141129
(1 row)


regression=# SELECT * FROM pg_buffercache_usage_counts();
 usage_count | buffers | dirty | pinned
-------------+---------+-------+--------
           0 |   14650 |     0 |      0
           1 |    1436 |   671 |      0
           2 |     102 |    88 |      0
           3 |      23 |    21 |      0
           4 |       9 |     7 |      0
           5 |     164 |   106 |      0
(6 rows)


作者




   Mark Kirkwood <markir@paradise.net.nz>
  


設計協力: Neil Conway <neilc@samurai.com>
  


デバッグのアドバイス: Tom Lane <tgl@sss.pgh.pa.us>
  


pgcrypto — 暗号関数





pgcryptoモジュールはPostgreSQL™用の暗号関数を提供します。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 


pgcryptoはOpenSSLを必要とし、PostgreSQLの構築時にOpenSSLサポートが選択されなかった場合にはインストールされません。
 
汎用ハッシュ関数



digest()




digest(data text, type text) returns bytea
digest(data bytea, type text) returns bytea



与えられたdataのバイナリハッシュを計算します。
typeは使用するアルゴリズムです。
標準アルゴリズムはmd5、sha1、sha224、sha256、sha384、およびsha512です。
さらに、OpenSSL™がサポートするダイジェストアルゴリズムが自動的に選択されます。
   


ダイジェストを16進数表記の文字列としたい場合は、結果に対してencode()を使用してください。
以下に例を示します。


CREATE OR REPLACE FUNCTION sha1(bytea) returns text AS $$
    SELECT encode(digest($1, 'sha1'), 'hex')
$$ LANGUAGE SQL STRICT IMMUTABLE;


   

hmac()




hmac(data text, key text, type text) returns bytea
hmac(data bytea, key bytea, type text) returns bytea



keyをキーとしたdataのハッシュ化MACを計算します。
typeはdigest()の場合と同じです。
   


digest()と似ていますが、ハッシュはキーを知っている場合にのみ再計算できます。
これは、誰かがデータを変更し、同時に一致するようにハッシュを変更するという状況を防ぎます。
   


キーがハッシュブロックサイズより大きい場合、まずハッシュ化され、その結果をキーとして使用します。
   


パスワードハッシュ化関数





crypt()およびgen_salt()関数は特にパスワードのハッシュ化のために設計されたものです。
crypt()がハッシュ処理を行い、gen_salt()はハッシュ処理用のアルゴリズム上のパラメータを準備します。
  


crypt()アルゴリズムは、以下の点で通常のMD5やSHA-1のようなハッシュ処理アルゴリズムと異なります。
  
	

低速です。
データ量が少ないためパスワード総当たり攻撃に対して頑健にする唯一の方法です。
    

	

結果にはソルトというランダムな値が含まれます。
このため同じパスワードのユーザでも異なった暗号化パスワードを持ちます。
これはアルゴリズムの逆処理に対する追加の防御です。
    

	

結果内にアルゴリズムの種類が含まれます。
このため異なるアルゴリズムでハッシュ化したパスワードが混在可能です。
    

	

一部は適応型です。
つまり、コンピュータが高速になったとしても、既存のパスワードとの互換性を損なうことなくアルゴリズムを低速に調整することができます。
    





crypt()関数がサポートするアルゴリズムを表F.18「crypt()がサポートするアルゴリズム」に列挙します。
  
表F.18 crypt()がサポートするアルゴリズム
	アルゴリズム	パスワード最大長	適応型かどうか	ソルトビット長	出力長	説明
	bf	72	はい	128	60	Blowfishベース、2a版
	md5	無制限	いいえ	48	34	MD5ベースの暗号
	xdes	8	はい	24	20	拡張DES
	des	8	いいえ	12	13	元来のUNIX crypt
	sha256crypt	無制限	はい	最大32	80	公開されているリファレンス実装
       SHA-256とSHA-512を使用したUnix暗号化
       に基づく
      
	sha512crypt	無制限	はい	最大32	123	公開されているリファレンス実装
       SHA-256とSHA-512を使用したUnix暗号化
       に基づく
      



crypt()




crypt(password text, salt text) returns text



passwordのcrypt(3)形式のハッシュを計算します。
新しいパスワードを保管する時には、gen_salt()を使用して新しいsaltを生成する必要があります。
パスワードを検査する時、既存のハッシュ値をsaltとして渡し、結果が格納された値と一致するかどうかを確認します。
   


新しいパスワードの設定例を以下に示します。


UPDATE ... SET pswhash = crypt('new password', gen_salt('md5'));


   


認証の例です。


SELECT (pswhash = crypt('entered password', pswhash)) AS pswmatch FROM ... ;



入力パスワードが正しければtrueを返します。
   

gen_salt()




gen_salt(type text [, iter_count integer ]) returns text



crypt()で使用するランダムなソルト文字列を新規に生成します。
また、このソルト文字列はcrypt()にどのアルゴリズムを使用するかを通知します。
   


typeパラメータは、ハッシュ化アルゴリズムを指定します。
受付可能な種類は、des、xdes、md5、bf、sha256crypt、sha512cryptです。
最後の2つのsha256cryptとsha512cryptは、最新のSHA-2ベースのパスワードハッシュです。
   


繰り返し回数を持つアルゴリズムでは、ユーザはiter_countパラメータを使用して繰り返し回数を指定できます。
指定する回数を高くすれば、パスワードのハッシュ化にかかる時間が長くなり、それを破るための時間も長くなります。
しかし、あまりに多くの回数を指定すると、ハッシュ計算にかかる時間は数年に渡ってしまう可能性があります。
これは実用的ではありません。
iter_countパラメータを省略した場合、デフォルトの繰り返し回数が使用されます。
iter_countで受け付けられる値はアルゴリズムに依存し、表F.19「crypt()用の繰り返し回数」に示す通りです。
   
表F.19 crypt()用の繰り返し回数
	アルゴリズム	デフォルト	最小	最大
	xdes	725	1	16777215
	bf	6	4	31
	sha256crypt, sha512crypt	5000	1000	999999999





xdesの場合は他にも、回数が奇数でなければならないという制限があります。
   


適切な繰り返し回数を選択するために、元々のDES暗号は当時のハードウェアで1秒あたり4個のハッシュを持つことができるように設計されたことを考えてください。
毎秒4ハッシュより遅いと、おそらく使い勝手が悪いでしょう。
毎秒100ハッシュより速いというのは、十中八九、あまりにも速すぎるでしょう。
   


ハッシュ化アルゴリズム別に相対的な速度に関する概要を表F.20「ハッシュアルゴリズムの速度」にまとめました。
この表は、8文字のパスワード内のすべての文字の組合せを取るためにかかる時間を示します。
また、すべて小文字の英字のみのパスワードである場合と大文字小文字が混在した英字と数字のパスワードの場合を仮定します。
crypt-bfの項では、スラッシュの後の数値はgen_saltのiter_countです。
   


sha256cryptとsha512cryptのデフォルトのiter_countは5000であり、現在のハードウェアには低すぎると考えられていますが、より強力なパスワードハッシュを生成するように調整できます。
それ以外の場合、両方のハッシュsha256cryptとsha512cryptは安全と見なされます。
   
表F.20 ハッシュアルゴリズムの速度
	アルゴリズム	1秒当たりのハッシュ数	[a-z]の場合	[A-Za-z0-9]の場合	md5ハッシュを単位とした持続期間
	crypt-bf/8	1792	4年	3927年	100k
	crypt-bf/7	3648	2年	1929年	50k
	crypt-bf/6	7168	1年	982年	25k
	crypt-bf/5	13504	188日	521年	12.5k
	crypt-md5	171584	15日	41年	1k
	crypt-des	23221568	157.5分	108日	7
	sha1	37774272	90分	68日	4
	md5(ハッシュ)	150085504	22.5分	17日	1





注意：
   
	

Intel Mobile Core i3のマシンを使用しました。
     

	

crypt-desおよびcrypt-md5アルゴリズムの数値はJohn the Ripper v1.6.38の-test出力から得たものです。
     

	

md5ハッシュの数値はmdcrack 1.2のものです。
     

	

sha1の数値はlcrack-20031130-betaのものです。
     

	

crypt-bfの数は、1000個の8文字パスワードをループする単純なプログラムを使用して得たものです。
こうして、異なる回数の速度を示すことができました。
参考までに、john -testはcrypt-bf/5で13506 loops/secでした。
（結果の差異が非常に小さいことは、pgcryptoにおけるcrypt-bf実装がJohn the Ripperで使用されるものと同じであるという事実と一致します。）
     





「すべての組み合わせを試行する」ことは現実的な行使ではありません。
通常パスワード推定は、普通の単語とその変形の両方を含む辞書を使用して行われます。
ですので、いささかなりとも言葉に似たパスワードは上で示した数値よりも速く推定されます。
また6文字の単語に似ていないパスワードは推定を免れるかもしれませんし、免れないかもしれません。
   


PGP暗号化関数





ここで示す関数はOpenPGP（RFC 4880）標準の暗号処理部分を実装します。
対称鍵および公開鍵暗号化がサポートされます。
  


暗号化されたPGPメッセージは次の2つの部品（またはパケット）から構成されます。
  
	

セッションキーを含むパケット。
対称鍵または公開鍵で暗号化されています。
    

	

セッションキーにより暗号化されたデータを含むパケット。
    





対称鍵（つまりパスワード）で暗号化する場合
  
	

与えられたパスワードはString2Key(S2K)アルゴリズムでハッシュ化されます。
これはどちらかというとcrypt()アルゴリズムと似て、意図的に低速で、かつランダムなソルトを使用します。
しかし、全長のバイナリキーを生成します。
    

	

分離したセッションキーが要求された場合、新しいランダムなキーが生成されます。
さもなくば、S2Kキーがそのままセッションキーとして使用されます。
    

	

S2Kキーがそのまま使用される場合、S2K設定のみがセッションキーパケットに格納されます。
さもなくば、セッションキーはS2Kキーで暗号化され、セッションキーパケットに格納されます。
    





公開鍵で暗号化する場合
  
	

新しいランダムなセッションキーが生成されます。
    

	

これは公開鍵を使用して暗号化され、セッションキーパケットに格納されます。
    





どちらの場合でもデータ暗号化は以下のように処理されます。
  
	

省略可能なデータ操作として、圧縮、UTF-8への変換、改行の変換があります。
    

	

データの前にはランダムなバイト数のブロックが付きます。
これはrandom IVを使用する場合と同じです。
    

	

ランダムな前置ブロックとデータのSHA-1ハッシュが後に付けられます。
    

	

これをすべてセッションキーで暗号化し、データパケットに格納します。
    



pgp_sym_encrypt()




pgp_sym_encrypt(data text, psw text [, options text ]) returns bytea
pgp_sym_encrypt_bytea(data bytea, psw text [, options text ]) returns bytea



対称PGPキーpswでdataを暗号化します。
optionsパラメータには後述のオプション設定を含めることができます。
   

pgp_sym_decrypt()




pgp_sym_decrypt(msg bytea, psw text [, options text ]) returns text
pgp_sym_decrypt_bytea(msg bytea, psw text [, options text ]) returns bytea



対称鍵で暗号化されたPGPメッセージを復号します。
   


pgp_sym_decryptでbytea型のデータを復号することはできません。
これは無効な文字データの出力を防止するためです。
元のテキストのデータをpgp_sym_decrypt_byteaで復号することが正しい方法です。
   


optionsパラメータには後述のオプション設定を含めることができます。
   

pgp_pub_encrypt()




pgp_pub_encrypt(data text, key bytea [, options text ]) returns bytea
pgp_pub_encrypt_bytea(data bytea, key bytea [, options text ]) returns bytea



公開PGPキーkeyでdataを暗号化します。
この関数に秘密キーを与えるとエラーになります。
   


optionsパラメータには後述のオプション設定を含めることができます。
   

pgp_pub_decrypt()




pgp_pub_decrypt(msg bytea, key bytea [, psw text [, options text ]]) returns text
pgp_pub_decrypt_bytea(msg bytea, key bytea [, psw text [, options text ]]) returns bytea



公開鍵で暗号化されたメッセージを復号します。
keyは、暗号化に使用した公開鍵に対応する秘密鍵でなければなりません。
秘密鍵がパスワードで保護されている場合は、そのパスワードをpswで指定しなければなりません。
パスワードはないが、オプションを指定したい場合は空のパスワードを指定する必要があります。
   


pgp_pub_decryptでbytea型のデータを復号することはできません。
これは無効な文字データの出力を防止するためです。
元のテキストのデータをpgp_pub_decrypt_byteaで復号することが正しい方法です。
   


optionsパラメータには後述のオプション設定を含めることができます。
   

pgp_key_id()




pgp_key_id(bytea) returns text



pgp_key_idはPGP公開鍵または秘密鍵のキーIDを取り出します。
暗号化されたメッセージが指定された場合は、データの暗号化に使用されたキーIDを与えます。
   


2つの特殊なキーIDを返すことがあります。
   
	
      SYMKEY
     


メッセージは対称鍵で暗号化されました。
     

	
      ANYKEY
     


メッセージは公開鍵で暗号化されましたが、キーIDが消去されていました。
つまり、どれで復号できるかを判定するためにはすべての秘密キーを試行しなければならないことを意味します。
pgcrypto自身はこうしたメッセージを生成しません。
     





異なるキーが同一IDを持つ場合があることに注意してください。
これは稀ですが、正常なイベントです。
この場合クライアントアプリケーションはどちらが当てはまるかを調べるために、ANYKEYの場合と同様に、それぞれのキーで復号を試行しなければなりません。
   

armor(), dearmor()




armor(data bytea [ , keys text[], values text[] ]) returns text
dearmor(data text) returns bytea



PGPのASCIIアーマー形式にデータを隠す、または、データを取り出します。
ASCIIアーマーは基本的にCRC付きのBASE64という形式で、追加のフォーマットがあります。
   


keysとvaluesの配列が指定された場合には、各キーと値の対に対してアーマーヘッダがアーマー形式に追加されます。
どちらの配列も1次元で、同じ長さでなければなりません。
keysとvaluesに非ASCII文字を含めることはできません。
   

pgp_armor_headers




pgp_armor_headers(data text, key out text, value out text) returns setof record



pgp_armor_headers()はdataからアーマーヘッダを取り出します。
戻り値はキーと値の2つの列からなる行の集合です。
もしキーや値に非アスキー文字が含まれていれば、UTF-8として扱われます。
   

PGP関数用のオプション





オプションはGnuPGに似せて命名しています。
オプションの値は等号記号の後に指定しなければなりません。
複数のオプションはカンマで区切ってください。
以下に例を示します。


pgp_sym_encrypt(data, psw, 'compress-algo=1, cipher-algo=aes256')


   


convert-crlfを除くすべてのオプションは暗号化関数にのみ適用可能です。
復号関数はPGPデータからこうしたパラメータを入手します。
   


もっとも興味深いオプションはおそらくcompress-algoとunicode-modeでしょう。
残りはデフォルトで問題ないはずです。
   
cipher-algo





使用する暗号アルゴリズム。
   




値: bf, aes128, aes192, aes256, 3des, cast5

デフォルト: aes128

適用範囲: pgp_sym_encrypt, pgp_pub_encrypt




compress-algo





使用する圧縮アルゴリズム。
PostgreSQL™がzlib付きで構築されている場合のみ利用可能です。
   




値:

 0 - 非圧縮

 1 - ZIP圧縮

 2 - ZLIB圧縮 (ZIPにメタデータとブロックCRCを加えたもの)

デフォルト: 0

適用範囲: pgp_sym_encrypt, pgp_pub_encrypt




compress-level





どの程度圧縮するかです。
レベルが大きい程小さくなりますが、低速になります。
0は圧縮を無効にします。
   




値: 0, 1-9

デフォルト: 6

適用範囲: pgp_sym_encrypt, pgp_pub_encrypt




convert-crlf





暗号化の際に\nを\r\nに、復号の際に\r\n を\n に変換するかどうか。
RFC 4880では、テキストデータは改行コードとして\r\n を使用して格納すべきであると規定されています。
完全にRFC準拠の動作を行いたければ、これを使用してください。
   




値: 0, 1

デフォルト: 0

適用範囲: pgp_sym_encrypt, pgp_pub_encrypt, pgp_sym_decrypt, pgp_pub_decrypt




disable-mdc





データをSHA-1で保護しません。
このオプションを使用することが良い唯一の理由は、SHA-1で保護されたパケットがRFC 4880に追加される前の、古いPGP製品との互換性を得るためです。
最近のgnupg.orgおよびpgp.comのソフトウェアではこれを正しくサポートしています。
   




値: 0, 1

デフォルト: 0

適用範囲: pgp_sym_encrypt, pgp_pub_encrypt




sess-key





分離したセッションキーを使用します。
公開鍵暗号では常に分離したセッションキーを使用します。
このオプションは対称鍵暗号向けのもので、デフォルトではS2Kキーをそのまま使用します。
   




値: 0, 1

デフォルト: 0

適用範囲: pgp_sym_encrypt




s2k-mode





使用するS2Kアルゴリズム。
   




値:

  0 - ソルト無。危険です!

  1 - ソルト有。固定繰り返し回数。

  3 - 可変繰り返し回数。

デフォルト: 3

適用範囲: pgp_sym_encrypt




s2k-count





使用するS2Kアルゴリズムで使う繰り返しの回数。
1024以上、65011712以下の値でなければなりません。
   




デフォルト: 65536から253952までの乱数値

適用範囲: s2k-mode=3と指定した時のpgp_sym_encrypt




s2k-digest-algo





S2K計算で使用するダイジェストアルゴリズム。
   




値: md5, sha1

デフォルト: sha1

適用範囲: pgp_sym_encrypt




s2k-cipher-algo





分離したセッションキーの暗号化に使用する暗号。
   




値: bf, aes, aes128, aes192, aes256

デフォルト: cipher-algoを使用

適用範囲: pgp_sym_encrypt




unicode-mode





テキストデータをデータベース内部符号化方式からUTF-8に変換して戻すかどうかです。
データベースがすでにUTF-8であれば、変換は起こらず、データにUTF-8としてタグが付くのみです。
このオプションがないと、何も行われません。
   




値: 0, 1

デフォルト: 0

適用範囲: pgp_sym_encrypt, pgp_pub_encrypt





GnuPGを使用したキーの生成





新しいキーを生成します。


gpg --gen-key


  


推奨するキー種類は「DSAとElgamal」です。
  


RSA暗号化のためには、マスタとしてDSAまたはRSAで署名のみのキーを作成し、そしてgpg --edit-keyを使用してRSAで暗号化された副キーを追加しなければなりません。
  


キーを列挙します。


gpg --list-secret-keys


  


ASCIIアーマー形式で公開鍵をエクスポートします。


gpg -a --export KEYID > public.key


  


ASCIIアーマー形式の秘密鍵をエクスポートします。


gpg -a --export-secret-keys KEYID > secret.key


  


PGP関数にこれらのキーを渡す前にdearmor()を使用する必要があります。
バイナリデータを扱うことができる場合、コマンドから-aフラグを省略することができます。
  


詳細はman gpg、The GNU Privacy Handbook、https://www.gnupg.org/サイトの各種文書を参照してください。
  

PGPコードの制限



	

署名に関するサポートはありません。
これはまた、暗号化副キーがマスタキーに属しているかどうか検査しないことを意味します。
    

	

マスタキーとして暗号化キーをサポートしません。
一般的にこうした状況は現実的ではありませんので、問題にならないはずです。
    

	

複数の副キーに関するサポートはありません。
よくありますので、これは問題になりそうに見えます。
一方、通常のGPG/PGPキーをpgcryptoで使用すべきではありません。
使用する状況が多少異なりますので新しく作成してください。
    





暗号化そのものを行う関数





これらの関数はデータ全体を暗号化するためだけに実行します。
PGP暗号化の持つ先端的な機能はありません。
したがって、大きな問題がいくつか存在します。
  
	

暗号キーとしてユーザキーをそのまま使用します。
    

	

暗号化されたデータが変更されたかどうかを確認するための整合性検査をまったく提供しません。
    

	

ユーザが、IVをも含め暗号化パラメータ自体をすべて管理していることを想定しています。
    

	

テキストは扱いません。
    





このため、PGP暗号化の導入もあり、暗号化のみの関数はあまり使用されません。
  

encrypt(data bytea, key bytea, type text) returns bytea
decrypt(data bytea, key bytea, type text) returns bytea

encrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea
decrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea



typeで指定した暗号方法を使用してデータの暗号化・復号を行います。
type文字列の構文は以下の通りです。



algorithm [ - mode ] [ /pad: padding ]



ここでalgorithmは以下のいずれかです。

  
	bf — Blowfish

	aes — AES (Rijndael-128, -192 or -256)





またmodeは以下のいずれかです。
  
	

cbc — 次のブロックは前ブロックに依存します（デフォルト）
    

	

cfb — 次のブロックは前に暗号化されたブロックに依存します
    

	

ecb — 各ブロックは独自に暗号化されます（試験用途のみ）
    





paddingは以下のいずれかです。
  
	

pkcs — データ長に制限はありません（デフォルト）
    

	

none — データは暗号ブロックサイズの倍数でなければなりません
    




  


このため、例えば以下は同じです。


encrypt(data, 'fooz', 'bf')
encrypt(data, 'fooz', 'bf-cbc/pad:pkcs')


  


encrypt_ivおよびdecrypt_ivでは、ivパラメータはCBCモードとCFBモード用の初期値となります。
ECBでは無視されます。
正確にブロック長でない場合、切り詰められるか、もしくはゼロで埋められます。
このパラメータがない場合、関数のデフォルト値はすべてゼロです。
  

ランダムデータ関数




gen_random_bytes(count integer) returns bytea



暗号論的に強いランダムなcountバイトを返します。
一度に最大で1024バイトを抽出することができます。
ランダム性ジェネレータプールを空にすることを防止するためのものです。
  

gen_random_uuid() returns uuid



バージョン4(ランダムな)UUIDを返します。
(廃れたものです。この関数は内部では同名のコア関数を呼び出します。)
  

OpenSSLサポート関数




fips_mode() returns boolean



OpenSSL™がFIPSモードを有効にして実行されている場合はtrueを返し、それ以外の場合はfalseを返します。
  

設定パラメータ





pgcryptoの動作を制御する設定パラメータが1つあります。
 
	
     pgcrypto.builtin_crypto_enabled (enum)
     
     
    
	

pgcrypto.builtin_crypto_enabledは、組み込みの暗号関数gen_salt()およびcrypt()が使用可能かどうかを決定します。
これをoffに設定すると、これらの関数は無効になります。
on（デフォルト）はこれらの関数が通常通り動作します。
fipsは、OpenSSL™がFIPSモードで動作していることが検出された場合に、これらの関数を無効にします。
     





通常の使用では、このパラメータはpostgresql.confで設定されますが、スーパーユーザは自身のセッション内でその場で変更することができます。
  

注釈



設定





pgcryptoは自身で主PostgreSQLのconfigureスクリプトの検出結果に従って構築します。
構築に影響するオプションは--with-zlibと--with-opensslです。
   


ZLIB付きでコンパイルされた場合、PGP暗号化関数は暗号化前にデータを圧縮することができます。
   


pgcryptoはOpenSSL™を必要とします。
そうでなければ、構築もインストールもされません。
   


OpenSSL™ 3.0.0とそれ以降に対してコンパイルされた場合、DESやBlowfishのような古い暗号を使うためにはopenssl.cnf設定ファイルでレガシープロバイダを有効にしなければなりません。
   

NULLの扱い





標準SQLの通り、引数のいずれかがNULLの場合、すべての関数はNULLを返します。
注意せずに使用すると、これがセキュリティ上の問題になるかもしれません。
   

セキュリティ上の制限





pgcryptoの関数はすべてデータベースサーバ内部で実行されます。
これは、pgcryptoとクライアントアプリケーションとの間でやり取りされるデータはすべて平文であることを意味します。
したがって、以下を行う必要があります。
   
	ローカルまたはSSL接続で接続

	システム管理者およびデータベース管理者を信頼





これらが不可能であれば、クライアントアプリケーション内で暗号化する方が望まれます。
   


実装はサイドチャネル攻撃に耐えられません。
例えば、pgcrypto復号関数が完了するのに掛かる時間は、一定の長さの暗号文に対して一様ではありません。
   


作者




   Marko Kreen <markokr@gmail.com>
  


   pgcryptoは以下のソースを使用しています。
  
	アルゴリズム	作者	元ソース
	DES crypt	David Burren他	FreeBSD libcrypt
	MD5 crypt	Poul-Henning Kamp	FreeBSD libcrypt
	Blowfish crypt	Solar Designer	www.openwall.com




pg_freespacemap — 空き領域マップを検査する





pg_freespacemapモジュールは、空き領域マップ（FSM）を検査する手法を提供します。
pg_freespaceと呼ばれる関数、正確に言うと、二つの多重定義された関数を提供します。
これらの関数は、指定されたページ、あるいはリレーションのすべてのページについての、空き領域マップに記録されている値を表示します。
 


デフォルトでは、使用はスーパーユーザとpg_stat_scan_tablesロールの権限を持つロールに限定されています。
GRANTを使って他人にアクセス権を付与できます。
 
関数



	
     pg_freespace(rel regclass IN, blkno bigint IN) returns int2
     
    
	

FSMを参照して、blknoで指定されたリレーションのページ上の空き領域のサイズを返します。
     

	
     pg_freespace(rel regclass IN, blkno OUT bigint, avail OUT int2)
    
	

FSMを参照して、リレーションの各ページの空き領域のサイズを表示します。
リレーションの各ページに対して(blkno bigint, avail int2)が1タプルとなり、これらのタプルのセットが返却されます。
     





空き領域マップに格納された値は、正確ではありません。
これらの値はBLCKSZの1/256(デフォルトBLCKSZでは32バイト)の精度で丸められ、また、タプルが挿入や更新されるのと同時に完全に最新に保たれているというわけではありません。
  


インデックスでは、ページ内の空き領域ではなく、完全に未使用のページが追跡されます。
したがって、その値には意味がなく、単にページが使用中か空かを表します。
  

サンプル出力




postgres=# SELECT * FROM pg_freespace('foo');
 blkno | avail
-------+-------
     0 |     0
     1 |     0
     2 |     0
     3 |    32
     4 |   704
     5 |   704
     6 |   704
     7 |  1216
     8 |   704
     9 |   704
    10 |   704
    11 |   704
    12 |   704
    13 |   704
    14 |   704
    15 |   704
    16 |   704
    17 |   704
    18 |   704
    19 |  3648
(20 rows)

postgres=# SELECT * FROM pg_freespace('foo', 7);
 pg_freespace
--------------
         1216
(1 row)


作者





オリジナルバージョンは Mark Kirkwood <markir@paradise.net.nz>によるものです。
バージョン8.4では、Heikki Linnakangas <heikki@enterprisedb.com>により、新しいFSM実装に合うよう書き直されました。
  


pg_logicalinspect — ロジカルデコーディングコンポーネントの調査





pg_logicalinspectモジュールは、ロジカルデコーディングコンポーネントの内容を調査することができるSQL関数を提供します。
これにより実行中のPostgreSQL™データベースクラスタのシリアル化された論理スナップショットを調査することができ、デバッグや教育目的に役立ちます。
 


デフォルトでは、これらの関数の使用はスーパーユーザとpg_read_server_filesロールのメンバに制限されています。
スーパーユーザはGRANTを使うことによってほかのユーザにアクセスを許可できます。
 
関数



	
     pg_get_logical_snapshot_meta(filename text) returns record
    
	

サーバのpg_logical/snapshotsにあるスナップショットファイルの論理スナップショットメタデータを取得します。
filename引数はスナップショットファイル名を表します。
例：


postgres=# SELECT * FROM pg_ls_logicalsnapdir();
-[ RECORD 1 ]+-----------------------
name         | 0-40796E18.snap
size         | 152
modification | 2024-08-14 16:36:32+00

postgres=# SELECT * FROM pg_get_logical_snapshot_meta('0-40796E18.snap');
-[ RECORD 1 ]--------
magic    | 1369563137
checksum | 1028045905
version  | 6

postgres=# SELECT ss.name, meta.* FROM pg_ls_logicalsnapdir() AS ss,
pg_get_logical_snapshot_meta(ss.name) AS meta;
-[ RECORD 1 ]-------------
name     | 0-40796E18.snap
magic    | 1369563137
checksum | 1028045905
version  | 6


     


filenameがスナップショットファイルと一致しない場合は、関数はエラーを発生します。
     

	
     pg_get_logical_snapshot_info(filename text) returns record
    
	

サーバのpg_logical/snapshotsにあるスナップショットファイルの論理スナップショット情報を取得します。
filename引数はスナップショットファイル名を表します。
例：


postgres=# SELECT * FROM pg_ls_logicalsnapdir();
-[ RECORD 1 ]+-----------------------
name         | 0-40796E18.snap
size         | 152
modification | 2024-08-14 16:36:32+00

postgres=# SELECT * FROM pg_get_logical_snapshot_info('0-40796E18.snap');
-[ RECORD 1 ]------------+-----------
state                    | consistent
xmin                     | 751
xmax                     | 751
start_decoding_at        | 0/40796AF8
two_phase_at             | 0/40796AF8
initial_xmin_horizon     | 0
building_full_snapshot   | f
in_slot_creation         | f
last_serialized_snapshot | 0/0
next_phase_at            | 0
committed_count          | 0
committed_xip            |
catchange_count          | 2
catchange_xip            | {751,752}

postgres=# SELECT ss.name, info.* FROM pg_ls_logicalsnapdir() AS ss,
pg_get_logical_snapshot_info(ss.name) AS info;
-[ RECORD 1 ]------------+----------------
name                     | 0-40796E18.snap
state                    | consistent
xmin                     | 751
xmax                     | 751
start_decoding_at        | 0/40796AF8
two_phase_at             | 0/40796AF8
initial_xmin_horizon     | 0
building_full_snapshot   | f
in_slot_creation         | f
last_serialized_snapshot | 0/0
next_phase_at            | 0
committed_count          | 0
committed_xip            |
catchange_count          | 2
catchange_xip            | {751,752}


     


filenameがスナップショットファイルと一致しない場合は、関数はエラーを発生します。
     




作者




   Bertrand Drouvot <bertranddrouvot.pg@gmail.com>
  


pg_overexplain — EXPLAINで詳細をダンプする





pg_overexplainモジュールは、EXPLAINを拡張して追加の情報を出力する新しいオプションを提供します。
これは主にプランナのデバッグと開発を支援することを目的としており、一般的な使用を目的としたものではありません。
このモジュールはプランナのデータ構造の内部詳細を表示するため、出力を理解するにはソースコードを参照する必要があるかもしれません。
さらに、これらのデータ構造が変更されるたびに（そして頻繁に）出力が変化する可能性があります。
 


使用するには、サーバにロードするだけです。
個々のセッションにロードすることができます。



LOAD 'pg_overexplain';




また、postgresql.confのsession_preload_librariesまたはshared_preload_librariesにpg_overexplainを含めることで、一部またはすべてのセッションで事前にロードすることもできます。
 
EXPLAIN (DEBUG)





DEBUGオプションを使用すると、一般的には必要ないと想定されるために通常は表示されないさまざまなプランツリーの情報が表示されます。
個々のプランノードに対して、次のフィールドを表示します。
これらのフィールドの詳細については、nodes/plannodes.hのPlanを参照してください。
  
	

Disabled Nodes。
通常のEXPLAINは、ノードが無効化されているかどうかを判断するために、そのノードにおける無効化されたノードのカウンタが、その子ノードにおける無効化されたノードのカウンタの合計よりも多いかどうかを確認します。
このオプションでは、カウンタの値をそのまま表示します。
    

	

Parallel Safe。
プランツリーノードがGatherノードまたはGather Mergeノードの下に現れても安全かどうかを示します。
実際にこれらのノードの下にあるかどうかは関係ありません。
    

	

Plan Node ID。
プランツリー内の各ノードで一意である内部ID番号。
パラレルクエリの活動を調整するために使用されます。
    

	

extParamおよびallParam。
このプランノードまたはその子ノードに影響する番号付きパラメータに関する情報。
テキストモードでは、これらのフィールドが空の集合ではない場合にのみ表示されます。
    





問い合わせごとに1回、DEBUGオプションは次のフィールドを表示します。
詳細についてはnodes/plannodes.hのPlannedStmtを参照してください。
  
	

Command Type。
たとえば、selectやupdateです。
    

	

Flags。
PlannedStmt構造体の論理値型メンバのうち、trueに設定されているメンバ名をカンマで区切ったリスト。
対象となる構造体のメンバは、hasReturning、hasModifyingCTE、canSetTag、transientPlan、dependsOnRole、およびparallelModeNeededです。
    

	

Subplans Needing Rewind。
エグゼキュータによる巻き戻しが必要なサブプランの整数値ID。
    

	

Relation OIDs。
このプランに関わるリレーションのOID。
    

	

Executor Parameter Types。
各エグゼキュータパラメータの型OID（たとえば、ネステッドループが選択されて内側のインデックススキャンに値を渡すためにパラメータが使用される場合）。
ユーザがプリペアドステートメントに提供するパラメータは含まれません。
    

	

Parse Location。
プランナに渡された問い合わせ文字列内で、この問い合わせテキストが見つかる位置。
場合によってはUnknownになることがあります。
それ以外の場合、整数値NNNに対してNNN to end、または整数値NNNとMMMに対してNNN for MMM bytesになることがあります。
    




EXPLAIN (RANGE_TABLE)





RANGE_TABLEオプションは、特に問い合わせの範囲テーブルに関するプランツリーの情報を表示します。
範囲テーブルの項目は問い合わせのFROM句に含まれる項目とほぼ一致しますが、多くの例外があります。
たとえば、不要であることが判明した副問い合わせは範囲テーブルから完全に削除される場合がある一方で、継承を展開するときには問い合わせで直接名前が付けられていない子テーブルに対して範囲テーブルの項目が追加されます。
  


範囲テーブルの項目は通常、範囲テーブルインデックス（RTI）によって問い合わせ計画内で参照されます。
1つ以上のRTIを参照するプランノードは、Scan RTI、Nominal RTI、Exclude Relation RTI、およびAppend RTIsのフィールドのいずれかを使用し、それに応じてラベルが付けられます。
  


さらに、問い合わせ全体では、さまざまな目的に必要な範囲テーブルインデックスのリストが保持される場合があります。
これらのリストは問い合わせごとに1回表示され、必要に応じてUnprunable RTIsまたはResult RTIsというラベルが付けられます。
テキストモードでは、これらのフィールドが空の集合ではない場合にのみ表示されます。
  


最後に、最も重要なのは、RANGE_TABLEオプションは問い合わせの範囲テーブル全体のダンプを表示するということです。
各範囲テーブルの項目には、適切な範囲テーブルインデックス、範囲テーブルの項目の種類（例えば、relation、subquery、またはjoinなど）のラベルが付けられ、その後に通常のEXPLAINによる出力には含まれない範囲テーブルの項目のフィールドに関する様々な内容が表示されます。
これらのフィールドの一部は、特定種類の範囲テーブルの項目でのみ表示されます。
たとえば、Erefはすべての種類の範囲テーブルの項目で表示されますが、CTE Nameはcteの範囲テーブルの項目でのみ表示されます。
  


範囲テーブルの項目の詳細については、nodes/plannodes.hのRangeTblEntryの定義を参照してください。
  

作者




   Robert Haas <rhaas@postgresql.org>
  


pg_prewarm — リレーションデータをバッファキャッシュにプリロードする





 pg_prewarmはオペレーティングシステムのバッファキャッシュまたはPostgreSQL™のバッファキャッシュいずれかにリレーションデータをロードするための便利な方法を提供します。
プレウォームはpg_prewarm関数を使って手動で行うこともできますし、pg_prewarmをshared_preload_librariesに含めることで自動でも実行できます。
後者の場合には、システムは、定期的にautoprewarm.blocksという名前のファイルに共有バッファの内容を記録するバックグラウンドワーカーを実行し、再起動後には2つのバックグラウンドワーカー使って同じブロックを再ロードします。
 
関数




pg_prewarm(regclass, mode text default 'buffer', fork text default 'main',
           first_block int8 default null,
           last_block int8 default null) RETURNS int8



第１引数はプレウォーム(あらかじめロード)したいリレーションを指定します。
第２引数はプレウォームに使用する方法を指定します。詳細は以下でさらに説明します。第３引数はプレウォームされるリレーションフォークを指定します、これは通常mainです。
第４引数は、プレウォームを開始するブロックを指定します(NULLはゼロとみなされます)。
第５引数は終了ブロックを指定します(NULL はリレーションの最後のブロックまで指定したとみなされます)。
戻り値は、プレウォームされたブロック数です。
  


 プレウォームに使用する方法としては以下の３種類が使用可能です。
prefetchは、オペレーティングシステムに非同期のプリフェッチをリクエストします。もしオペレーティングシステムやビルド時にプレフェッチをサポートしていない場合はエラーとなります。
readは、ブロックの要求された範囲を読み込みます。prefetchとは違って、すべてのプラットフォームにサポートするようにビルドされていますが、速度が遅くなります。
bufferは、データベースのバッファキャッシュに要求された範囲を読み込みます。
  


これらの方法のいずれかでもキャッシュ出来るよりも多くのブロックをプレウォームしようとすると注意が必要です。prefetchやreadのようなOSのキャッシュを使用する場合、または PostgreSQL™のbufferにキャッシュする場合、高い番号のブロックが読み込まれると低い番号のブロックが追い出されます。
プレウォームは、キャッシュに対して特別な保護をしていないので、それが他のシステムにとって可能であるように、それらが読み込まれた直後に、新しいプレウォームによって追い出すことが可能です。逆に、プレウォームはキャッシュから他のデータを追い出すこともあります。
これらの理由から、プレウォームはキャッシュが主に空のとき、一般的には起動時にもっとも有用です。
  

autoprewarm_start_worker() RETURNS void



自動プレウォームワーカーを起動します。
通常これは自動的に行なわれますが、サーバのスタート時に自動プレウォームが設定されておらず、後でワーカーを起動したい場合に有用です。
  

autoprewarm_dump_now() RETURNS int8



直ちにautoprewarm.blocksを更新します。
これは、自動プレウォームワーカーが動いていなくて、次の再起動後に自動プレウォームワーカーを動かそうと考えているときに有用かもしれません。
戻り値はautoprewarm.blocksに書き込まれたブロック数です。
  

設定パラメータ



	
     pg_prewarm.autoprewarm (boolean)
     
     
    
	

サーバが自動プレウォームワーカーを起動すべきかどうかを制御します。
デフォルトはonです。
このパラメータはサーバ起動時のみ設定可能です。
     



	
     pg_prewarm.autoprewarm_interval (integer)
     
     
    
	

これはautoprewarm.blocksを更新する間隔です。
デフォルトは300秒です。
0に設定すると、このファイルは定常間隔では更新されず、サーバが停止する時にだけ更新されます。
     





これらのパラメータはpostgresql.confで設定しなければなりません。
典型的な使用法は以下の通りです。
  

# postgresql.conf
shared_preload_libraries = 'pg_prewarm'

pg_prewarm.autoprewarm = true
pg_prewarm.autoprewarm_interval = 300s



作者




   Robert Haas <rhaas@postgresql.org>
  


pgrowlocks — テーブルの行ロックの情報を示す





pgrowlocksモジュールは、指定したテーブルにおける行ロックの情報を示す関数を提供します。
 


デフォルトでは、使用は、スーパーユーザ、pg_stat_scan_tables権限を持つロール、そのテーブルのSELECT権限を持つユーザに限定されています。
 
概要




pgrowlocks(text) returns setof record



パラメータはテーブルの名前です。
結果はレコードの集合となり、各レコードはテーブル内のロックされた1行を示します。
出力列は表F.21「pgrowlocksの出力列」の通りです。
  
表F.21 pgrowlocksの出力列
	名前	型	説明
	locked_row	tid	ロックされた行のタプルID（TID）
	locker	xid	ロックを獲得したトランザクションのトランザクションID、もしマルチトランザクションの場合はマルチトランザクションID。「トランザクションと識別子」を参照
	multi	boolean	ロックをマルチトランザクションが獲得していた場合は真
	xids	xid[]	ロックを獲得しているトランザクションのトランザクションID（マルチトランザクションの場合は複数）
	modes	text[]	ロックを獲得しているトランザクションのロックモード（マルチトランザクションの場合は複数）。For Key Share、For Share、For No Key Update、No Key Update、For Update、Updateの配列。
	pids	integer[]	ロックを獲得しているバックエンドのプロセスID（マルチトランザクションの場合は複数）





pgrowlocksは対象テーブルに対してAccessShareLockを獲得し、ロック情報の収集のために1行ずつ行を読み取ります。
これは大規模テーブルにおいては高速とは言えません。
以下に注意してください:
  
	

テーブルでACCESS EXCLUSIVEロックが獲得されている場合、pgrowlocksはブロックされます。
    

	

pgrowlocksでは、自己矛盾のないスナップショットを生成することは保証されません。
その実行中に、新しい行ロックが獲得されることも、古いロックが解放されることもあり得ます。
    





pgrowlocksは、ロックされた行の内容は表示しません。
同時に行の内容を参照したい場合には、以下のようにして実現することができます:



SELECT * FROM accounts AS a, pgrowlocks('accounts') AS p
  WHERE p.locked_row = a.ctid;




しかし、こうした問い合わせが非常に非効率であることに注意してください。
  

サンプル出力




=# SELECT * FROM pgrowlocks('t1');
 locked_row | locker | multi | xids  |     modes      |  pids
------------+--------+-------+-------+----------------+--------
 (0,1)      |    609 | f     | {609} | {"For Share"}  | {3161}
 (0,2)      |    609 | f     | {609} | {"For Share"}  | {3161}
 (0,3)      |    607 | f     | {607} | {"For Update"} | {3107}
 (0,4)      |    607 | f     | {607} | {"For Update"} | {3107}
(4 rows)


作者




   Tatsuo Ishii
  


pg_stat_statements — SQL文のプラン生成時と実行時の統計情報を記録する





pg_stat_statementsモジュールは、サーバで実行されたすべてのSQL文のプラン生成時と実行時の統計情報を記録する手段を提供します。
 


このモジュールは追加の共有メモリを必要とするため、postgresql.confのshared_preload_librariesにpg_stat_statementsを追加してモジュールをロードしなければなりません。
このことは、このモジュールを追加もしくは削除するには、サーバを再起動する必要があるということを意味しています。
さらに、モジュールをアクティブにするには、問い合わせIDの計算を有効にする必要があります。これはcompute_query_idパラメータがautoかonに設定されているか、問い合わせIDを計算するサードパーティのモジュールがロードされている場合に自動的に実行されます。
 


pg_stat_statementsはアクティブになると、サーバのデータベース全体に渡って統計情報を記録します。
この統計情報にアクセスしたり操作したりするために、このモジュールはビューpg_stat_statementsとpg_stat_statements_infoとユーティリティ関数pg_stat_statements_reset、pg_stat_statementsを提供します。
これらは大域的に利用可能ではなく、CREATE EXTENSION pg_stat_statementsで特定のデータベースで可能になります。
 
pg_stat_statements ビュー





このモジュールによって収集された統計情報は、pg_stat_statementsというビューを通して利用することができます。
このビューは、1行に対して、それぞれ個々のデータベースID、ユーザID、問い合わせID、および最上位レベルの文かどうかの組み合わせを含んでいます（モジュールが記録できるSQL文の最大数まで）。
ビューの列は、表F.22「pg_stat_statementsの列」に示す通りです。
  
表F.22 pg_stat_statementsの列
	

列 型
      

      

説明
      

	
       userid oid

（参照先 pg_authid.oid）
      

      

SQL文を実行したユーザのOID
      

	
       dbid oid

（参照先 pg_database.oid）
      

      

SQL文が実行されたデータベースのOID
      

	
       toplevel bool
      

      

問い合わせが最上位レベルのSQL文として実行された時は真
（pg_stat_statements.trackがtopに設定されている場合は常に真）
      

	
       queryid bigint
      

      

同一の正規化された問い合わせを識別するためのハッシュコード
      

	
       query text
      

      

代表的なSQL文の文字列
      

	
       plans bigint
      

      

SQL文がプラン生成された回数
（pg_stat_statements.track_planningが有効な場合。無効であればゼロ）
      

	
       total_plan_time double precision
      

      

SQL文のプラン生成に費やした総時間（ミリ秒単位）
（pg_stat_statements.track_planningが有効な場合。無効であればゼロ）
      

	
       min_plan_time double precision
      

      

SQL文のプラン生成に費やした最小時間（ミリ秒単位）
このフィールドは、pg_stat_statements.track_planningが無効な場合、またはminmax_onlyパラメータにtrueを設定したpg_stat_statements_reset関数を使用してカウンタがリセットされ、それ以降プランが生成されていない場合にゼロになります
      

	
       max_plan_time double precision
      

      

SQL文のプラン生成に費やした最大時間（ミリ秒単位）
このフィールドは、pg_stat_statements.track_planningが無効な場合、またはminmax_onlyパラメータにtrueを設定したpg_stat_statements_reset関数を使用してカウンタがリセットされ、それ以降プランが生成されていない場合にゼロになります
      

	
       mean_plan_time double precision
      

      

SQL文のプラン生成に費やした平均時間（ミリ秒単位）
（pg_stat_statements.track_planningが有効な場合。無効であればゼロ）
      

	
       stddev_plan_time double precision
      

      

SQL文のプラン生成に費やした時間の母標準偏差（ミリ秒単位）
（pg_stat_statements.track_planningが有効な場合。無効であればゼロ）
      

	
       calls bigint
      

      

SQL文が実行された回数
      

	
       total_exec_time double precision
      

      

SQL文の実行に費やした総時間（ミリ秒単位）
      

	
       min_exec_time double precision
      

      

SQL文の実行に費やした最小時間（ミリ秒単位）
このフィールドは、minmax_onlyパラメータにtrueを設定したpg_stat_statements_reset関数を使用してリセットされた後、SQL文が最初に実行されるまでゼロになります
      

	
       max_exec_time double precision
      

      

SQL文の実行に費やした最大時間（ミリ秒単位）
このフィールドは、minmax_onlyパラメータにtrueを設定したpg_stat_statements_reset関数を使用してリセットされた後、SQL文が最初に実行されるまでゼロになります
      

	
       mean_exec_time double precision
      

      

SQL文の実行に費やした平均時間（ミリ秒単位）
      

	
       stddev_exec_time double precision
      

      

SQL文の実行に費やした時間の母標準偏差（ミリ秒単位）
      

	
       rows bigint
      

      

SQL文によって取得された、あるいは影響を受けた行の総数
      

	
       shared_blks_hit bigint
      

      

SQL文によってヒットした共有ブロックキャッシュの総数
      

	
       shared_blks_read bigint
      

      

SQL文によって読み込まれた共有ブロックの総数
      

	
       shared_blks_dirtied bigint
      

      

SQL文によってダーティ状態となった共有ブロックの総数
      

	
       shared_blks_written bigint
      

      

SQL文によって書き込まれた共有ブロックの総数
      

	
       local_blks_hit bigint
      

      

SQL文によってヒットしたローカルブロックキャッシュの総数
      

	
       local_blks_read bigint
      

      

SQL文によって読み込まれたローカルブロックの総数
      

	
       local_blks_dirtied bigint
      

      

SQL文によってダーティ状態となったローカルブロックの総数
      

	
       local_blks_written bigint
      

      

SQL文によって書き込まれたローカルブロックの総数
      

	
       temp_blks_read bigint
      

      

SQL文によって読み込まれた一時ブロックの総数
      

	
       temp_blks_written bigint
      

      

SQL文によって書き込まれた一時ブロックの総数
      

	
       shared_blk_read_time double precision
      

      

SQL文が共有ブロックの読み取りに費やした総時間（ミリ秒単位）
（track_io_timingが有効な場合。無効であればゼロ）
      

	
       shared_blk_write_time double precision
      

      

SQL文が共有ブロックの書き出しに費やした総時間（ミリ秒単位）
（track_io_timingが有効な場合。無効であればゼロ）
      

	
       local_blk_read_time double precision
      

      

SQL文がローカルブロックの読み取りに費やした総時間（ミリ秒単位）
（track_io_timingが有効な場合。無効であればゼロ）
      

	
       local_blk_write_time double precision
      

      

SQL文がローカルブロックの書き出しに費やした総時間（ミリ秒単位）
（track_io_timingが有効な場合。無効であればゼロ）
      

	
       temp_blk_read_time double precision
      

      

SQL文が一時ファイルブロックの読み取りに費やした総時間（ミリ秒単位）
（track_io_timingが有効な場合。無効であればゼロ）
      

	
       temp_blk_write_time double precision
      

      

SQL文が一時ファイルブロックの書き出しに費やした総時間（ミリ秒単位）
（track_io_timingが有効な場合。無効であればゼロ）
      

	
       wal_records bigint
      

      

SQL文により生成されたWALレコードの総数
      

	
       wal_fpi bigint
      

      

SQL文により生成されたWALフルページイメージの総数
      

	
       wal_bytes numeric
      

      

SQL文により生成されたバイト単位のWAL総量
      

	
       wal_buffers_full bigint
      

      

WALバッファが満杯になった回数
      

	
       jit_functions bigint
      

      

SQL文がJITコンパイルされた関数の総数
      

	
       jit_generation_time double precision
      

      

SQL文のJITコードの生成に費やした総時間（ミリ秒単位）
      

	
       jit_inlining_count bigint
      

      

関数がインライン化された回数
      

	
       jit_inlining_time double precision
      

      

SQL文が関数のインライン化に費やした総時間（ミリ秒単位）
      

	
       jit_optimization_count bigint
      

      

SQL文が最適化された回数
      

	
       jit_optimization_time double precision
      

      

SQL文の最適化に費やした総時間（ミリ秒単位）
      

	
       jit_emission_count bigint
      

      

コードが出力された回数
      

	
       jit_emission_time double precision
      

      

SQL文のコードを出力するのに費やした総時間（ミリ秒単位）
      

	
       jit_deform_count bigint
      

      

SQL文がJITコンパイルされたタプルデフォーム関数の総数
      

	
       jit_deform_time double precision
      

      

SQL文がJITコンパイルによる関数のタプルデフォームに費やした総時間（ミリ秒単位）
      

	
       parallel_workers_to_launch bigint
      

      

起動が計画されたパラレルワーカーの数
      

	
       parallel_workers_launched bigint
      

      

実際に起動されたパラレルワーカーの数
      

	
       stats_since timestamp with time zone
      

      

SQL文の統計情報収集が開始された時刻
      

	
       minmax_stats_since timestamp with time zone
      

      

SQL文の最小/最大の統計情報収集が開始された時刻（min_plan_time、max_plan_time、min_exec_time、max_exec_time フィールド）
      






セキュリティ上の理由から、スーパーユーザとpg_read_all_statsロールの権限を持つメンバだけが、他のユーザによって実行されたSQLテキストや問い合わせのqueryidを見ることができます。
ただし、ユーザのデータベースにビューがインストールされている場合、統計情報については他のユーザから見ることができます。
  


計画作成が可能な問い合わせ（つまりSELECT、INSERT、UPDATE、DELETE、 MERGE）とユーティリティコマンドは、内部のハッシュ計算に従った、同一の問い合わせ構造を持つ限り、１つのpg_stat_statements項目に組み合わせられます。
典型的には、２つの問い合わせは、問い合わせの中に現れるリテラル定数の値以外、意味的に等価である場合、この目的では同一とみなされます。
  
注記


定数置換とqueryidに関する以下の詳細は、compute_query_idが有効な場合のみ適用されます。
queryidの計算に外部モジュールを使用する場合、詳細はその外部モジュールのドキュメントを参照する必要があります。
   



他の問い合わせと合致させるために定数値が無視された場合、pg_stat_statementsの表示の中で定数は$1のようなパラメータ記号に置換されます。
問い合わせの残りのテキストは、pg_stat_statements項目に関連付いた特定のqueryidハッシュ値を持つ、１つ目の問い合わせのテキストです。
  


正規化が適用できる問い合わせは、pg_stat_statements内で一定の値で観察されるでしょう。 特に、エントリの割り当て解除率が高い場合にそうです。
このような事態の発生を減らすためには、pg_stat_statements.maxを増やすことを検討してください。
pg_stat_statements_infoビューは、後述の「pg_stat_statements_infoビュー」で説明しますが、エントリの割り当て解除に関する統計情報を提供します。
  


一部の状況では、見た目上異なるテキストを持つ問い合わせが１つのpg_stat_statements項目にまとめられることがあります。
上で説明したように、これは意味的に等価である問い合わせで発生することが想定されます。
さらに、問い合わせ間の唯一の違いが定数リスト内の要素数である場合、リストは１つの要素にまとめられ、コメントアウトされたリスト指示子が表示されます。



=# SELECT pg_stat_statements_reset();
=# SELECT * FROM test WHERE a IN (1, 2, 3, 4, 5, 6, 7);
=# SELECT * FROM test WHERE a IN (1, 2, 3, 4, 5, 6, 7, 8);
=# SELECT query, calls FROM pg_stat_statements
   WHERE query LIKE 'SELECT%';
-[ RECORD 1 ]------------------------------
query | SELECT * FROM test WHERE a IN ($1 /*, ... */)
calls | 2




これらの場合に加えて、ハッシュ競合が発生して関連のない問い合わせが１つの項目にまとめられる可能性がわずかながら存在します。
（しかし、これは異なるユーザまたはデータベースに属する問い合わせでは発生しません。）
  


queryidハッシュ値は問い合わせの解析後の表現に対して計算されますので、search_pathの設定が異なる等の要因の結果として異なる意味を持つ場合、同じテキストを持つ問い合わせが別の項目として現れるという、反対もまたあり得ます。
  


pg_stat_statementsの消費者は、問い合わせテキストよりもより安定で信頼できる各項目への識別子として（おそらくdbidやuseridと組み合わせて）queryidを使いたいかもしれません。
しかし、queryidハッシュ値の安定性には限定された保証しかない点を理解することが重要です。
識別子は解析後の木から得られますので、その値は、とりわけ、この表現に現れる内部オブジェクト識別子の関数です。
これは少々直観に反する結果です。
例えば、見た目上同一な問い合わせであっても、それらが参照する関数が2つの問い合わせ実行の間で削除および再作成された場合などには、pg_stat_statementsはそれらを異なる問い合わせと見なします。
反対に、問い合わせの実行の間にテーブルが削除および再作成される場合、見た目上同一な2つの問い合わせは同じものと見なされるかもしれません。
しかし、他の点では類似している問い合わせでもテーブルの別名が異なる場合、それらは異なる問い合わせと見なされます。
ハッシュ処理はプラットフォームのマシンアーキテクチャやその他の面の違いにも敏感です。
その上、PostgreSQL™のメジャーバージョンをまたがってqueryidが安定であるとみなすのは安全ではありません。
  


物理WAL再生に基づくレプリケーションに参加する2つのサーバでは、同じ問い合わせに対して同一のqueryid値を持つことが期待できます。
しかし、論理レプリケーションの仕組みは、レプリカが対応する詳細すべてで同一であることを約束しません。そのため、論理レプリカの集まりで増えるコストを識別するのにqueryidは有用な識別子ではないでしょう。
疑わしければ、直接テストすることを薦めます。
  


一般に、queryid値は、インスタンスが同じマシンアーキテクチャで動作し、カタログメタデータの詳細が一致する場合、PostgreSQL™のマイナーバージョンリリース間で安定していると仮定できます。
マイナーバージョン間で互換性が破壊されるのは、最後の手段としてのみでしょう。
  


代表的な問い合わせテキストの定数を置き換えるのに使われたパラメータ記号は、元の問い合わせテキストの最も大きな$nパラメータの次の数字から、もしそれがなければ$1から始まります。
ある場合には、この番号付けに影響する隠れたパラメータ記号があるかもしれないことに言及しておく価値はあります。
例えば、PL/pgSQLは関数の局所変数の値を問い合わせに挿入するために隠れたパラメータ記号を使います。そのため、SELECT i + 1 INTO jのようなPL/pgSQL文はSELECT i + $2のような代表的なテキストになります。
  


代表的な問い合わせテキストは外部ディスクファイルに保持され、共有メモリを消費しません。
そのため、非常に長い問い合わせテキストであっても保存に成功します。
しかし、数多くの長い問い合わせテキストが蓄積されると、外部ファイルは手に負えないくらい大きくなるかもしれません。
もしそのようなことが起きれば、回復手法として、pg_stat_statementsは問い合わせテキストを破棄することを選ぶでしょう。その結果、各queryidに関連する統計は保存されるものの、pg_stat_statementsビュー内に存在するエントリはすべてqueryフィールドがヌルになります。
もしこのようなことが起きたら、再発防止のためpg_stat_statements.maxを減らすことを検討してください。
  


プラン生成時と実行時の統計情報はそれぞれの終了フェーズで更新され、操作に成功した場合にのみ更新されるため、plansとcallsは常に一致するとは限りません。
例えば、SQL文のプラン生成に成功しても実行フェーズの間に失敗した場合、そのプラン生成時の統計情報のみが更新されます。
キャッシュされたプランが使用されプラン生成がスキップされた場合、実行時の統計情報のみが更新されます。
  

pg_stat_statements_infoビュー





pg_stat_statementsモジュール自体の統計は記録され、pg_stat_statements_infoというビューを通して利用することができます。
このビューは、1行のみが含まれます。
ビューの列は、表F.23「pg_stat_statements_infoの列」に示す通りです。
  
表F.23 pg_stat_statements_infoの列
	

列 型
      

      

説明
      

	
       dealloc bigint
      

      

pg_stat_statements.maxよりも多くの異なるSQL文が検出されたため、実行回数が最も少ないSQL文のpg_stat_statementsエントリが割り当て解除された合計回数
      

	
       stats_reset timestamp with time zone
      

      

pg_stat_statementsビューのすべての統計情報が最後にリセットされた時刻
      





関数



	
     pg_stat_statements_reset(userid Oid, dbid Oid, queryid
     bigint, minmax_only boolean) returns timestamp with time zone
     
    
	

pg_stat_statements_resetは指定されたuserid、dbid、queryidに対応するpg_stat_statementsによってこれまでに収集したすべての統計情報を削除します。
いずれかのパラメータを指定しないのであれば、デフォルト値0（無効）を使ってください。他のパラメータに一致する統計情報がリセットされます。
どのパラメータも指定しない、または、すべての指定されたパラメータが0（無効）ならば、すべての統計情報を削除します。
pg_stat_statementsビューのすべての統計情報が破棄された場合、pg_stat_statements_infoビューの統計情報もリセットされます。
minmax_onlyがtrueの場合、最小および最大のプラン生成・実行時間の値のみリセットされます。（min_plan_time、max_plan_time、min_exec_time、max_exec_time フィールド）。
minmax_onlyパラメータのデフォルト値はfalseです。
最後に実行された最小/最大のリセット時刻は、pg_stat_statementsビューのminmax_stats_sinceフィールドに表示されます。
この関数は、リセット時刻を返します。
対応するリセットが実際に実行された場合、この時刻はpg_stat_statements_infoビューのminmax_stats_sinceフィールド、またはpg_stat_statementsビューのminmax_stats_sinceフィールドに保存されます。
デフォルトでは、この関数はスーパーユーザのみ実行できます。
GRANTを使ってアクセス権を他のユーザに付与できます。
     

	
     pg_stat_statements(showtext boolean) returns setof record
     
     
    
	

pg_stat_statementsビューは同じくpg_stat_statementsという名前の関数の項で定義されています。
クライアントがpg_stat_statements関数を直接呼び出し、showtext := falseと指定することで問い合わせテキストを省略することが可能です（すなわち、ビューのquery列に対応するOUT引数はNULLを返します）。
この機能は不定長の問い合わせテキストを繰り返し取得するオーバーヘッドを避けたいと考える外部のツールをサポートすることを意図したものです。
そのようなツールは代わりに、それがpg_stat_statements自身が行なっていることのすべてですので、各項目で最初に観察された問い合わせテキストをキャッシュし、必要とされる問い合わせテキストのみを取得できます。
サーバは問い合わせテキストをファイルに格納しますので、この方法はpg_stat_statementsデータの繰り返しの検査に対する物理I/Oを減らすでしょう。
     




設定パラメータ



	
     pg_stat_statements.max (integer)
     
     
    
	

pg_stat_statements.maxは、このモジュールによって記録されるSQL文の最大数（すなわち、pg_stat_statementsビューにおける行の最大数）です。
これを超えて異なるSQL文を検出した場合は、最も実行回数の低いSQL文の情報が捨てられます。
このような情報が破棄された回数は、pg_stat_statements_infoビューで確認できます。
デフォルトは5000です。
このパラメータはサーバの起動時にのみ指定できます。
     

	
     pg_stat_statements.track (enum)
     
     
    
	

pg_stat_statements.trackは、どのSQL文をモジュールによって計測するかを制御します。
topを指定した場合は（直接クライアントによって発行された）最上層のSQL文を記録します。
allは（関数の中から呼び出された文などの）入れ子になった文も記録します。
noneは文に関する統計情報収集を無効にします。
デフォルトはtopです。
この設定はスーパーユーザだけが変更できます。
     

	
     pg_stat_statements.track_utility (boolean)
     
     
    
	

pg_stat_statements.track_utilityは、このモジュールがユーティリティコマンドを記録するかどうかを指定します。
ユーティリティコマンドとは、 SELECT、INSERT、UPDATE、DELETE、およびMERGE以外のすべてです。
デフォルトはonです。
この設定はスーパーユーザのみが変更できます。
     

	
     pg_stat_statements.track_planning (boolean)
     
     
    
	

pg_stat_statements.track_planningは、このモジュールがプラン生成の操作と時間を記録するかどうかを指定します。
このパラメータを有効にすると、特に同一の問い合わせ構造を持つSQL文が、少数のpg_stat_statementsエントリ更新のために競合する多数の同時接続によって実行される場合にパフォーマンスが著しく低下する可能性があります。
デフォルトはoffです。
この設定はスーパーユーザのみが変更できます。
     

	
     pg_stat_statements.save (boolean)
     
     
    
	

pg_stat_statements.saveは、サーバを終了させる際に文の統計情報を保存するかどうかを指定します。
offの場合、統計情報は終了時に保存されず、サーバ開始時に再読み込みもされません。
デフォルト値はonです。
このパラメータはpostgresql.confファイル、またはサーバコマンドラインでのみ設定できます。
     





このモジュールは、pg_stat_statements.maxに比例する追加の共有メモリを必要とします。
pg_stat_statements.trackにnoneが設定されていても、モジュールがロードされている限り常にこのメモリが消費されることに注意してください。
  


これらのパラメータはpostgresql.confの中で設定しなければなりません。
典型的な使用方法は以下のようになります。



# postgresql.conf
shared_preload_libraries = 'pg_stat_statements'

compute_query_id = on
pg_stat_statements.max = 10000
pg_stat_statements.track = all


  

サンプル出力




bench=# SELECT pg_stat_statements_reset();

$ pgbench -i bench
$ pgbench -c10 -t300 bench

bench=# \x
bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
               nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
          FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5;
-[ RECORD 1 ]---+--------------------------------------------------​------------------
query           | UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2
calls           | 3000
total_exec_time | 25565.855387
rows            | 3000
hit_percent     | 100.0000000000000000
-[ RECORD 2 ]---+--------------------------------------------------​------------------
query           | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2
calls           | 3000
total_exec_time | 20756.669379
rows            | 3000
hit_percent     | 100.0000000000000000
-[ RECORD 3 ]---+--------------------------------------------------​------------------
query           | copy pgbench_accounts from stdin
calls           | 1
total_exec_time | 291.865911
rows            | 100000
hit_percent     | 100.0000000000000000
-[ RECORD 4 ]---+--------------------------------------------------​------------------
query           | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2
calls           | 3000
total_exec_time | 271.232977
rows            | 3000
hit_percent     | 98.8454011741682975
-[ RECORD 5 ]---+--------------------------------------------------​------------------
query           | alter table pgbench_accounts add primary key (aid)
calls           | 1
total_exec_time | 160.588563
rows            | 0
hit_percent     | 100.0000000000000000


bench=# SELECT pg_stat_statements_reset(0,0,s.queryid) FROM pg_stat_statements AS s
            WHERE s.query = 'UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2';

bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
               nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
          FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5;
-[ RECORD 1 ]---+--------------------------------------------------​------------------
query           | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2
calls           | 3000
total_exec_time | 20756.669379
rows            | 3000
hit_percent     | 100.0000000000000000
-[ RECORD 2 ]---+--------------------------------------------------​------------------
query           | copy pgbench_accounts from stdin
calls           | 1
total_exec_time | 291.865911
rows            | 100000
hit_percent     | 100.0000000000000000
-[ RECORD 3 ]---+--------------------------------------------------​------------------
query           | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2
calls           | 3000
total_exec_time | 271.232977
rows            | 3000
hit_percent     | 98.8454011741682975
-[ RECORD 4 ]---+--------------------------------------------------​------------------
query           | alter table pgbench_accounts add primary key (aid)
calls           | 1
total_exec_time | 160.588563
rows            | 0
hit_percent     | 100.0000000000000000
-[ RECORD 5 ]---+--------------------------------------------------​------------------
query           | vacuum analyze pgbench_accounts
calls           | 1
total_exec_time | 136.448116
rows            | 0
hit_percent     | 99.9201915403032721

bench=# SELECT pg_stat_statements_reset(0,0,0);

bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
               nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
          FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5;
-[ RECORD 1 ]---+--------------------------------------------------​---------------------------
query           | SELECT pg_stat_statements_reset(0,0,0)
calls           | 1
total_exec_time | 0.189497
rows            | 1
hit_percent     |
-[ RECORD 2 ]---+--------------------------------------------------​---------------------------
query           | SELECT query, calls, total_exec_time, rows, $1 * shared_blks_hit /          +
                |                nullif(shared_blks_hit + shared_blks_read, $2) AS hit_percent+
                |           FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT $3
calls           | 0
total_exec_time | 0
rows            | 0
hit_percent     |



作者





   板垣 貴裕 <itagaki.takahiro@oss.ntt.co.jp>。
   Peter Geoghegan <peter@2ndquadrant.com>により問い合わせの正規化が追加されました。
  


pgstattuple — タプルレベルの統計情報を入手する





pgstattupleモジュールはタプルレベルの統計情報を入手するための各種関数を提供します。
 


これらの関数は詳細なページレベルの情報を返しますので、デフォルトではアクセスが制限されています。
デフォルトではpg_stat_scan_tablesロールだけがEXECUTE権限を持っています。
スーパーユーザは、当然、この制限を無視します。
拡張がインストールされた後、ユーザはGRANTコマンドを発行して他のユーザがそれらを実行できるよう関数に対する権限を変更できます。
しかしながら、その代わりにpg_stat_scan_tablesロールにそのユーザを追加する方が好ましいでしょう。
 
関数



	
     
     pgstattuple(regclass) returns record
    
	

pgstattupleはリレーションの物理的な長さ、「無効」なタプルの割合、およびその他の情報を返します。
これはバキュームが必要かどうかユーザが判断する時に有用かもしれません。
引数は対象とするリレーションの名前（スキーマ修飾可）もしくはOIDです。
以下に例を示します。


test=> SELECT * FROM pgstattuple('pg_catalog.pg_proc');
-[ RECORD 1 ]------+-------
table_len          | 458752
tuple_count        | 1470
tuple_len          | 438896
tuple_percent      | 95.67
dead_tuple_count   | 11
dead_tuple_len     | 3157
dead_tuple_percent | 0.69
free_space         | 8932
free_percent       | 1.95



出力列を表F.24「pgstattupleの出力列」で説明します。
    
表F.24 pgstattupleの出力列
	列	型	説明
	table_len	bigint	リレーションのバイト単位の物理長
	tuple_count	bigint	有効なタプル数
	tuple_len	bigint	有効なタプルの物理長（バイト単位）
	tuple_percent	float8	有効タプルの割合
	dead_tuple_count	bigint	無効なタプル数
	dead_tuple_len	bigint	バイト単位の総無効タプル長
	dead_tuple_percent	float8	無効タプルの割合
	free_space	bigint	バイト単位の総空き領域
	free_percent	float8	空き領域の割合



注記


table_lenは、tuple_len、dead_tuple_len、free_spaceの合計よりも常に大きいです。
違いの原因は、固定ページのオーバーヘッド、ページ毎のタプルへのポインタのテーブル、タプルが正しく整列することを確実にするためのパディングです。
     



pgstattuple はリレーション上で読み取りロックのみを獲得します。
ですので、結果はこの瞬間のスナップショットを考慮しません。つまり、同時実行の更新がその結果に影響を与えます。
    


pgstattupleは、HeapTupleSatisfiesDirtyが偽を返すかどうかで、タプルが「無効」かどうか判定します。
    

	
     pgstattuple(text) returns record
    
	

TEXTで対象リレーションを指定する点を除き、これはpgstattuple(regclass)と同じです。
この関数は今までのところ後方互換のために残されており、近い将来のリリースでは廃止予定になるでしょう。
     

	
    
     pgstatindex(regclass) returns record
    
	

pgstatindexはB-treeインデックスに関する情報を示すレコードを返します。
以下は例です。


test=> SELECT * FROM pgstatindex('pg_cast_oid_index');
-[ RECORD 1 ]------+------
version            | 2
tree_level         | 0
index_size         | 16384
root_block_no      | 1
internal_pages     | 0
leaf_pages         | 1
empty_pages        | 0
deleted_pages      | 0
avg_leaf_density   | 54.27
leaf_fragmentation | 0


     


出力列は以下の通りです。

    
	列	型	説明
	version	integer	B-treeバージョン番号
	tree_level	integer	ルートページのツリーレベル
	index_size	bigint	バイト単位のインデックスサイズ
	root_block_no	bigint	ルートページの場所（存在しない場合はゼロ）
	internal_pages	bigint	「内部」（上位レベル）ページ数
	leaf_pages	bigint	リーフページ数
	empty_pages	bigint	空ページ数
	deleted_pages	bigint	削除ページ数
	avg_leaf_density	float8	リーフページの平均密度
	leaf_fragmentation	float8	リーフページの断片化



    


報告されるindex_sizeは、通常、internal_pages + leaf_pages + empty_pages + deleted_pagesが占めるより1多いページに相当するでしょう。
これは、index_sizeがインデックスメタページも含むためです。
    


pgstattuple同様、結果はページ毎に累積されます。
この瞬間のインデックス全体のスナップショットが存在すると想定してはいけません。
    

	
     pgstatindex(text) returns record
    
	

TEXTで対象インデックスを指定する点を除き、これはpgstatindex(regclass)と同じです。
この関数は今までのところ後方互換のために残されており、近い将来のリリースでは廃止予定になるでしょう。
     

	
     
     pgstatginindex(regclass) returns record
    
	

pgstatginindexは、GINインデックスに関する情報を示すレコードを返します。
以下に例を示します。


test=> SELECT * FROM pgstatginindex('test_gin_index');
-[ RECORD 1 ]--+--
version        | 1
pending_pages  | 0
pending_tuples | 0


     


出力列は以下の通りです。

    
	列	型	説明
	version	integer	GINバージョン番号
	pending_pages	integer	待機中リスト内のページ数
	pending_tuples	bigint	待機中リスト内のタプル数



    

	
     
     pgstathashindex(regclass) returns record
    
	

pgstathashindexは、HASHインデックスに関する情報を示すレコードを返します。
以下に例を示します。


test=> select * from pgstathashindex('con_hash_index');
-[ RECORD 1 ]--+-----------------
version        | 4
bucket_pages   | 33081
overflow_pages | 0
bitmap_pages   | 1
unused_pages   | 32455
live_items     | 10204006
dead_items     | 0
free_percent   | 61.8005949100872


     


出力列は以下の通りです。

    
	列	型	説明
	version	integer	HASHバージョン番号
	bucket_pages	bigint	バケットページの数
	overflow_pages	bigint	オーバーフローページの数
	bitmap_pages	bigint	ビットマップページの数
	unused_pages	bigint	使われていないページの数
	live_items	bigint	有効なタプルの数
	dead_tuples	bigint	無効なタプルの数
	free_percent	float	空き領域の割合



    

	
     
     pg_relpages(regclass) returns bigint
    
	

pg_relpagesはリレーション内のページ数を返します。
     

	
     pg_relpages(text) returns bigint
    
	

TEXTで対象リレーションを指定する点を除き、これはpg_relpages(regclass)と同じです。
この関数は今までのところ後方互換のために残されており、近い将来のリリースでは廃止予定になるでしょう。
     

	
     
     pgstattuple_approx(regclass) returns record
    
	

pgstattuple_approxはpgstattupleの代わりとなる高速なバージョンで、近似の結果を返します。
引数は対象のリレーションの名前またはOIDです。
以下に例を示します。


test=> SELECT * FROM pgstattuple_approx('pg_catalog.pg_proc'::regclass);
-[ RECORD 1 ]--------+-------
table_len            | 573440
scanned_percent      | 2
approx_tuple_count   | 2740
approx_tuple_len     | 561210
approx_tuple_percent | 97.87
dead_tuple_count     | 0
dead_tuple_len       | 0
dead_tuple_percent   | 0
approx_free_space    | 11996
approx_free_percent  | 2.09



出力列については表F.25「pgstattuple_approxの出力列 」で説明します。
     


pgstattupleが常に全件スキャンを実行し、有効タプルと無効タプルの正確な数（およびそのサイズ）と空き領域を返すのに対し、pgstattuple_approxは全件スキャンを避けようとし、無効タプルの正確な統計情報および有効タプルと空き領域の数とサイズの近似値を返します。
     


可視性マップに従えば可視のタプルしかないページ（ページに対応するVMビットがセットされているなら、無効タプルが含まれていないとみなします）についてスキップすることで、これを実現します。
そのようなページについて空き領域の値を空き領域マップから導き、ページ上の残りのスペースは有効タプルによって占められているとみなします。
     


スキップできないページについては、各タプルをスキャンし、その存在とサイズを適切なカウンタに記録し、ページ上の空き領域を加算します。
最後に有効タプルの合計数をスキャンしたページとタプルの数に基づいて推定します（VACUUMがpg_class.reltuplesを推定するのと同じ方法です）。
     
表F.25 pgstattuple_approxの出力列 
	列	型	説明
	table_len	bigint	リレーションの物理的なバイト長（正確）
	scanned_percent	float8	スキャンしたテーブルの割合
	approx_tuple_count	bigint	有効タプル数（推定）
	approx_tuple_len	bigint	有効タプルの合計のバイト長（推定）
	approx_tuple_percent	float8	有効タプルの割合
	dead_tuple_count	bigint	無効タプル数（正確）
	dead_tuple_len	bigint	無効タプルの合計のバイト長（正確）
	dead_tuple_percent	float8	無効タプルの割合
	approx_free_space	bigint	空き領域の合計バイト数（推定）
	approx_free_percent	float8	空き領域の割合





上記の出力で、空き領域の数字はpgstattupleの出力と正確には一致しないかもしれません。
これは空き領域マップは正確な数字を提供しますが、バイト単位で正確であることまでは保証されていないためです。
     




作者





   Tatsuo Ishii、Satoshi Nagayasu、Abhijit Menon-Sen
  


pg_surgery — リレーションデータに対して低レベルの手術を行う





pg_surgeryモジュールは、破損したリレーションに対して手術を行うための様々な関数を提供します。
これらの関数は設計上安全ではなく、使用することによってデータベースを破損する（あるいは既存の破損を更に拡大する）可能性があります。
たとえば、これらの関数を使用することによって簡単にテーブルは自身のインデックスと一貫性がなくなり、UNIQUEあるいはFOREIGN KEY制約の違反が生じたり、更には読み出すことによってデータベースサーバをクラッシュさせるタプルを可視状態にすることさえあります。
これらの関数は使用にあたっては十分に注意するとともに、最後の手段としてのみ使用すべきです。
 
関数



	
     heap_force_kill(regclass, tid[]) returns void
    
	

heap_force_killはタプルを調べることなく「使用中」ラインポインタ(line pointer)に「削除済み(dead)」の印を付けます。
この関数はアクセスする方法がないタプルを強制的に削除するために使用することを意図しています。
例を示します。


test=> select * from t1 where ctid = '(0, 1)';
ERROR:  could not access status of transaction 4007513275
DETAIL:  Could not open file "pg_xact/0EED": No such file or directory.

test=# select heap_force_kill('t1'::regclass, ARRAY['(0, 1)']::tid[]);
 heap_force_kill
-----------------

(1 row)

test=# select * from t1 where ctid = '(0, 1)';
(0 rows)



    

	
     heap_force_freeze(regclass, tid[]) returns void
    
	

heap_force_freezeはタプルデータを調べることなくタプルに凍結済みの印を付けます。
この関数は可視性情報が破壊されていてタプルがアクセスできなかったり、あるいは可視性が破壊されたタプルによってテーブルがバキュームできなくなったときに、タプルを強制的にアクセスできるようにするために使用することを意図しています。
例を示します。


test=> vacuum t1;
ERROR:  found xmin 507 from before relfrozenxid 515
CONTEXT:  while scanning block 0 of relation "public.t1"

test=# select ctid from t1 where xmin = 507;
 ctid
-------
 (0,3)
(1 row)

test=# select heap_force_freeze('t1'::regclass, ARRAY['(0, 3)']::tid[]);
 heap_force_freeze
-------------------

(1 row)

test=# select ctid from t1 where xmin = 2;
 ctid
-------
 (0,3)
(1 row)



    




作者




   Ashutosh Sharma <ashu.coek88@gmail.com>
  


pg_trgm — トライグラム一致を使ったテキストの類似度をサポートする





pg_trgmモジュールは、類似文字列の高速検索をサポートするインデックス演算子クラスだけではなく、トライグラム一致に基づく英数字の類似度の決定に関する関数と演算子も提供します。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
トライグラム（またはトリグラフ）の概念





トライグラムは文字列から3つの連続する文字を取り出したグループです。
共有するトライグラムの個数を数えることで、２つの文字列の類似度を測定することができます。
この単純な考えが、多くの自然言語における単語の類似度を測定する際に非常に効率的であることが判明しています。
  
注記


pg_trgmは、文字列からトライグラムを抽出する時に単語以外の文字（英数字以外）を無視します。
文字列内に含まれるトライグラム集合を決める際、文字列の前に２つの空白、後に1つの空白が付いているものとみなされます。
例えば、「cat」という文字列のトライグラム集合は、「  c」、「 ca」、「cat」、「at 」です。
「foo|bar」という文字列のトライグラム集合は、「  f」、「 fo」、「foo」、「oo 」、「  b」、「 ba」、「bar」、「ar 」です。
   


関数と演算子





pg_trgmモジュールで提供される関数を表F.26「pg_trgm Functions」に、演算子を表F.27「pg_trgm Operators」に示します。
  
表F.26 pg_trgm Functions
	

        関数
       

       

        説明
       

	
        
        similarity ( text, text )
        real
       

       

２つの引数がどの程度似ているかを示す数値を返します。
結果はゼロ（２つの文字列がまったく類似していないことを示す）から1（２つの文字列が同一であることを示す）までの範囲です。
       

	
        
        show_trgm ( text )
        text[]
       

       

与えられた文字列内のすべてのトライグラムからなる配列を返します。
（実際これはデバッグ時を除いて役に立つことはほぼありません。）
       

	
        
        word_similarity ( text, text )
        real
       

       

最初の引数文字列中のトライグラムの集合と、二番目の引数文字列中の順序付きトライグラム集合の中で最も類似度の高い連続した範囲の類似度を表す数字を返します。
詳細は以下の説明をご覧ください。
       

	
        
        strict_word_similarity ( text, text )
        real
       

       

word_similarityと同様ですが、境界の範囲を単語の境界に一致させます。
単語間にまたがるトライグラムは無いため、この関数は実際のところ最初の文字列と二番目の文字列の単語の任意の連続した範囲との間での最大類似度を返します。
       

	
        
        show_limit ()
        real
       

       

%演算子で使用される現在の類似度閾値を返します。
これは、例えば２つの単語それぞれでミススペルがあったとしても類似しているものとみなす、その2つの単語間の最低の類似度を設定します。
(廃止予定です。代わりにSHOW pg_trgm.similarity_thresholdを使ってください。)
       

	
        
        set_limit ( real )
        real
       

       

%演算子で使用される現在の類似度閾値を設定します。
閾値は0から1までの値でなければなりません（デフォルトは0.3です）。
渡された値と同じ値が返ります。
(廃止予定です。; 代わりにSET pg_trgm.similarity_thresholdを使ってください。)
       






以下の例を考えます。



# SELECT word_similarity('word', 'two words');
 word_similarity
-----------------
             0.8
(1 row)




最初の文字列では、トライグラムの集合は{"  w"," wo","wor","ord","rd "}です。
二番目の文字列では、順序付きトライグラムの集合は{"  t"," tw",two,"wo ","  w"," wo","wor","ord","rds", "ds "}です。
二番目の文字列中の順序付きトライグラムの集合の中で最も類似度の高い範囲は、{"  w"," wo","wor","ord"}で、類似度は0.8となります。
  


この関数が返す値は、最初の文字列と、二番目の文字列の部分文字列の間の最大の類似度を表す値であると、概ね解釈できます。
しかし、この関数は範囲の境界に対してパディングを行いません。
ですから、一致しない語の境界を除くと、二番目の文字列中に存在する追加文字数は考慮されません。
  


一方で、strict_word_similarityは二番目の文字列の単語の範囲を選択します。
上記の例でstrict_word_similarityは単語'words'の範囲を選択して、そのトライグラム集合は{"  w"," wo","wor","ord","rds","ds "}になるでしょう。



# SELECT strict_word_similarity('word', 'two words'), similarity('word', 'words');
 strict_word_similarity | similarity
------------------------+------------
               0.571429 |   0.571429
(1 row)


  


このようにstrict_word_similarity関数は単語の並び全体の類似度を求めるのに有益で、対して、word_similarityは単語の並びの一部の類似度を求めるのにより適しています。
  
表F.27 pg_trgm Operators
	

        演算子
       

       

        説明
       

	
        text % text
        boolean
       

       

２つの引数がpg_trgm.similarity_thresholdで設定された類似度閾値以上の類似度を持つ場合trueを返します。
       

	
        text <% text
        boolean
       

       

最初の引数中のトライグラムの集合と、二番目の引数中の順序付きトライグラム集合の中の範囲の類似度が、pg_trgm.word_similarity_thresholdパラメータで設定した現在の語類似度の閾値よりも高い場合にtrueを返します。
       

	
        text %> text
        boolean
       

       

<%演算子の交代演算子です。
       

	
        text <<% text
        boolean
       

       

二番目の引数が単語の境界と一致する順序付きトライグラム集合の連続した範囲を持っていて、かつ、最初の引数のトライグラム集合に対する類似度がpg_trgm.strict_word_similarity_thresholdパラメータで設定される現在の厳密な単語類似度の閾値より大きい場合、trueを返します。
       

	
        text %>> text
        boolean
       

       

<<%演算子の交代演算子です。
       

	
        text <-> text
        real
       

       

引数間の「距離」、この場合は1 - similarity()の値を返します。
       

	
        text <<-> text
        real
       

       

引数間の「距離」、この場合は1 - word_similarity()の値を返します。
       

	
        text <->> text
        real
       

       

<<->演算子の交代演算子です。
       

	
        text <<<-> text
        real
       

       

引数間の「距離」、この場合は1 - strict_word_similarity()の値を返します。
       

	
        text <->>> text
        real
       

       

<<<->演算子の交代演算子です。
       





GUCパラメータ



	
     pg_trgm.similarity_threshold (real)
     
     
    
	

%演算子が使用する現在の類似度閾値を設定します。
閾値は0から1の間でなければなりません。（デフォルトは0.3です）
     

	
     pg_trgm.word_similarity_threshold (real)
     
     
    
	

<%と%>演算子が使用する現在の語類似度閾値を設定します。
閾値は0から1の間でなければなりません。（デフォルトは0.6です）
     

	
     pg_trgm.strict_word_similarity_threshold (real)
     
     
    
	

<<%と%>>演算子が使用する現在の厳密な語類似度閾値を設定します。
閾値は0から1の間でなければなりません。（デフォルトは0.5です）
     




インデックスサポート





pg_trgmモジュールは、テキスト列全体に非常に高速な類似度検索を行うためのインデックスを作成できるように、GiSTおよびGINインデックス演算子クラスを提供します。
これらのインデックス種類は上記類似度演算子をサポートし、さらにLIKE、ILIKE、~、~*および=問い合わせにおけるトライグラムを基にしたインデックス検索をサポートします。
pg_trgmのデフォルトのビルドでは、類似度比較は大文字と小文字を区別しません。
非等価演算子はサポートされていません。
これらのインデックスは、等価演算子に対する通常のB-treeインデックスほど効率的ではないかもしれないことに注意してください。
  


例：



CREATE TABLE test_trgm (t text);
CREATE INDEX trgm_idx ON test_trgm USING GIST (t gist_trgm_ops);



または


CREATE INDEX trgm_idx ON test_trgm USING GIN (t gin_trgm_ops);


  


gist_trgm_ops GiST演算子クラスはトライグラムの集合をビットマップ署名として近似します。
オプションの整数パラメータsiglenは、署名の長さをバイト単位で決定します。
デフォルトの署名の長さは12バイトです。
署名の長さの有効な値は1から2024バイトまでです。
長い署名では、インデックスはより大きくなってしまいますが、(インデックスのより小さな部分とより少ないヒープページをスキャンすることで)検索がより正確になります。
  


署名の長さが32バイトのインデックスを作成する例
  

CREATE INDEX trgm_idx ON test_trgm USING GIST (t gist_trgm_ops(siglen=32));



この段階で、テキスト列tに類似度検索で使用可能なインデックスがあります。
典型的な問い合わせを以下に示します。


SELECT t, similarity(t, 'word') AS sml
  FROM test_trgm
  WHERE t % 'word'
  ORDER BY sml DESC, t;



これは、wordに十分似たテキスト列の値をすべて、類似度の高い順番に返します。
インデックスは非常に大規模なデータ群に対する高速操作を行うために使用されます。
  


上の問い合わせを変形させた


SELECT t, t <-> 'word' AS dist
  FROM test_trgm
  ORDER BY dist LIMIT 10;



は、GINインデックスではなくGiSTインデックスにより非常に効率的に実装することができます。
通常、類似度が高いものの中から少ない個数のみを必要とする場合、1番目の式よりも効率的です。
  


また、単語の類似度あるいは厳密な単語の類似度に対してt列のインデックスを使うことができます。
典型的な問い合わせ例を示します。


SELECT t, word_similarity('word', t) AS sml
  FROM test_trgm
  WHERE 'word' <% t
  ORDER BY sml DESC, t;



と


SELECT t, strict_word_similarity('word', t) AS sml
  FROM test_trgm
  WHERE 'word' <<% t
  ORDER BY sml DESC, t;



これは、wordのトライグラム集合に十分似ている順序付きトライグラム集合に対応する連続した領域が存在するテキスト列中のすべての値を返します。
結果は、最も似ているものから、最も似ていないものへの順にソートされます。
インデックスは、非常に大きなデータ集合に対しても高速な操作ができるようにするために使われます。
  


いくつか例を示します。


SELECT t, 'word' <<-> t AS dist
  FROM test_trgm
  ORDER BY dist LIMIT 10;



と


SELECT t, 'word' <<<-> t AS dist
  FROM test_trgm
  ORDER BY dist LIMIT 10;



は、GINインデックスではなくGiSTインデックスによって非常に効率的に実装できます。
  


PostgreSQL™ 9.1から、これらのインデックス種類はLIKEおよびILIKEにおけるインデックス検索をサポートします。
以下に例を示します。


SELECT * FROM test_trgm WHERE t LIKE '%foo%bar';



インデックス検索は、検索文字列からトライグラムを抽出し、それらをインデックスから検索することによって動作します。
検索文字列内のトライグラムが多ければ、よりインデックス検索が効率的になります。
B-treeを基にした検索とは異なり、検索文字列の左側が固定されている必要はありません。
  


PostgreSQL™ 9.3から、これらの種類のインデックスは正規表現一致（~および~*演算子）に対するインデックス検索もサポートします。
以下に例を示します。


SELECT * FROM test_trgm WHERE t ~ '(foo|bar)';



インデックス検索は、正規表現からトライグラムを抽出し、それらをインデックスから検索することで動作します。
より多くのトライグラムが正規表現から抽出される場合、インデックス検索はより効率的になります。
B-treeを基にした検索と異なり、検索文字列は先頭一致である必要はありません。
  


LIKEおよび正規表現検索の両方で、トライグラムが抽出されないパターンでは完全インデックススキャンより性能が落ちることに注意してください。
  


GiSTまたはGINインデックスの選択は、GiSTとGINの相対的な性能特性に依存します。
これについては、別途説明されています。
  

テキスト検索の統合





トライグラム一致は全文テキストインデックスと一緒に使用する時、非常に有用なツールです。
特に、全文検索機構では直接一致しない、ミススペルがある入力単語の認識を行うために役に立ちます。
  


第一段階は文書内で一意な単語からなる補助テーブルを生成することです。



CREATE TABLE words AS SELECT word FROM
        ts_stat('SELECT to_tsvector(''simple'', bodytext) FROM documents');




ここでdocumentsは、検索対象のbodytextテキストフィールドを持つテーブルです。
言語固有の設定を使用するのではなく、to_tsvector関数でsimple設定を使用する理由は、元の（語幹抽出されていない）単語のリストが欲しいためです。
  


次にword列にトライグラムインデックスを作成します。



CREATE INDEX words_idx ON words USING GIN (word gin_trgm_ops);




これで、上の例に似たSELECT問い合わせを使用して、ユーザの検索語内でミススペルのある単語を提示できるようになります。
有用な追加された試験は、選択された単語の長さがミススペルのある単語の長さとほぼ同じになることを要求するものです。
  
注記


wordsテーブルは別に生成された静的なテーブルですので、文書群の更新に合理的に追従できるよう定期的に再生成する必要があります。
正確に最新状態を維持する必要性は通常ありません。
   


参考





GiST開発サイト
   http://www.sai.msu.su/~megera/postgres/gist/
  


Tsearch2開発サイト
   http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/
  

作者




   Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia
  

   Teodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd.,Russia
  

   Alexander Korotkov <a.korotkov@postgrespro.ru>, Moscow, Postgres Professional, Russia
  


文書作成: Christopher Kings-Lynne
  


本モジュールはロシアモスクワのDelta-Soft Ltd.による後援です。
  


pg_visibility — 可視性マップ情報とユーティリティ





pg_visibilityモジュールは可視性マップ(Visibility Map, VM)およびテーブルのページレベルでの可視性情報を検査する手段を提供します。
このモジュールはまた、可視性マップの整合性を検査し、強制的に再構築する機能も提供します。
 


ページレベルの可視性についての情報を格納するために、3つの異なるビットが使用されます。
可視性マップの全可視ビットは、対応するリレーションのページの全タプルがすべての現在および将来のトランザクションに対して可視であることを示します。
可視性マップの全凍結ビットは、そのページのすべてのタプルが凍結されていることを示します。
これはすなわち、そのページに対してタプルの挿入、更新、削除、ロックなどが発生しない限り、将来もバキュームによる修正が必要ないことを意味します。
ページヘッダのPD_ALL_VISIBLEビットは、可視性マップの全可視ビットと同じ意味ですが、別のデータ構造ではなく、データページ自体の中に格納されています。
これら2つのビットは通常は同じ値になりますが、クラッシュリカバリの後は、ページの全可視ビットがセットされているのに、可視性マップの全可視ビットはクリアされているということもあります。
また、pg_visibilityが可視性マップを検査した後、データページを検査する前に更新が行われたために、これらについて報告される値が一致しないということもあり得ます。
データ破壊を起こすような何らかのイベントの後も、これらのビットが異なることがあり得ます。
 


PD_ALL_VISIBLEビットに関する情報を表示する関数は、可視性マップのみを参照する関数に比べるとずっと高価です。
これは、可視性マップだけではなく、（それよりずっと大きな）リレーションのデータブロックを読む必要があるからです。
リレーションのデータブロックを検査する関数は、同様に高価です。
 
関数



	pg_visibility_map(relation regclass, blkno bigint, all_visible OUT boolean, all_frozen OUT boolean) returns record
	

指定のリレーションの指定のブロックについて、可視性マップ内の全可視ビットと全凍結ビットを返します。
     

	pg_visibility(relation regclass, blkno bigint, all_visible OUT boolean, all_frozen OUT boolean, pd_all_visible OUT boolean) returns record
	

指定のリレーションの指定のブロックについて、可視性マップ内の全可視ビットと全凍結ビット、およびそのブロックのPD_ALL_VISIBLEを返します。
     

	pg_visibility_map(relation regclass, blkno OUT bigint, all_visible OUT boolean, all_frozen OUT boolean) returns setof record
	

指定のリレーションの各ブロックについて、全可視ビットと全凍結ビットを返します。
     

	pg_visibility(relation regclass, blkno OUT bigint, all_visible OUT boolean, all_frozen OUT boolean, pd_all_visible OUT boolean) returns setof record
	

指定のリレーションの各ブロックについて、全可視ビットと全凍結ビット、および各ブロックのPD_ALL_VISIBLEビットを返します。
     

	pg_visibility_map_summary(relation regclass, all_visible OUT bigint, all_frozen OUT bigint) returns record
	

可視性マップに従って、リレーション内の全可視ページの数と全凍結ページの数を返します。
     

	pg_check_frozen(relation regclass, t_ctid OUT tid) returns setof tid
	

可視性マップ内で全凍結と印を付けられたページ内に格納されている非凍結タプルのTIDを返します。
この関数が返すTIDの集合が空でないなら、可視性マップは壊れています。
     

	pg_check_visible(relation regclass, t_ctid OUT tid) returns setof tid
	

可視性マップ内で全可視と印を付けられたページ内に格納されている全可視でないタプルのTIDを返します。
この関数が返すTIDの集合が空でないなら、可視性マップは壊れています。
     

	pg_truncate_visibility_map(relation regclass) returns void
	

指定のリレーションの可視性マップを切り詰めます。
そのリレーションの可視性マップが壊れていると思われ、強制的に再構築したい場合にこの関数は有効です。
この関数を実行した後に、指定のリレーション上で実行される最初のVACUUMにおいて、リレーション内の全ページがスキャンされ、可視性マップが再構築されます。
（それが終わるまでは、可視性マップの中がすべてゼロになっているものとして問い合わせは動作します。）
     





デフォルトでは、これらの関数はスーパーユーザとpg_stat_scan_tablesロールの権限を持つロールのみが実行可能です。pg_truncate_visibility_map(relation regclass)は例外で、スーパーユーザのみが実行可能です。
  

作者




   Robert Haas <rhaas@postgresql.org>
  


pg_walinspect — 低レベルのWAL検査





pg_walinspectモジュールは、実行中のPostgreSQL™データベースクラスタの先行書き込みログ（WAL）の内容を低レベルで検査することを可能にするSQL関数を提供します。
これはデバッグ、分析、報告、教育目的に有用です。
pg_waldump(1)と似ていますが、独立したユーティリティではなくSQLを通してアクセスできます。
 


このモジュールのすべての関数は、サーバの現在のタイムラインIDを使用してWAL情報を提供します。
 
注記


pg_walinspect関数は、しばしば、関心のある既知のWALレコードの開始位置を指定するLSN引数を使用して呼び出されます。
しかし、pg_logical_emit_messageのようないくつかの関数は、挿入されたレコードの後のLSNを返します。
  

ヒント


あるLSN範囲内にあるレコードに関する情報を表示するpg_walinspect関数はすべて、サーバの現在のLSNより後のend_lsn引数を受け入れることに対して寛容です。
「未来の」end_lsnを使用することはエラーを引き起こしません。
  


FFFFFFFF/FFFFFFFF（最大有効pg_lsn値）をend_lsn引数として指定すると便利です。
これは、サーバの現在のLSNに一致するend_lsn引数を指定することと同じです。
  



デフォルトでは、これらの関数の使用はスーパーユーザとpg_read_server_filesロールのメンバに制限されています。
スーパーユーザはGRANTを使用して他のユーザにアクセスを許可できます。
 
一般的な関数



	
     pg_get_wal_record_info(in_lsn pg_lsn) returns record
    
	

in_lsn引数以降のレコードに関するWALレコード情報を取得します。
例を示します。


postgres=# SELECT * FROM pg_get_wal_record_info('0/E419E28');
-[ RECORD 1 ]----+-------------------------------------------------
start_lsn        | 0/E419E28
end_lsn          | 0/E419E68
prev_lsn         | 0/E419D78
xid              | 0
resource_manager | Heap2
record_type      | VACUUM
record_length    | 58
main_data_length | 2
fpi_length       | 0
description      | nunused: 5, unused: [1, 2, 3, 4, 5]
block_ref        | blkref #0: rel 1663/16385/1249 fork main blk 364


     


in_lsnがWALレコードの先頭にない場合、次の有効なWALレコードに関する情報が代わりに表示されます。
次の有効なWALレコードがない場合、関数はエラーを発生します。
     

	
     
      pg_get_wal_records_info(start_lsn pg_lsn, end_lsn pg_lsn)
      returns setof record
     
    
	

start_lsnとend_lsnの間のすべての有効なWALレコードの情報を取得します。
WALレコードごとに1つの行が返されます。
例を示します。


postgres=# SELECT * FROM pg_get_wal_records_info('0/1E913618', '0/1E913740') LIMIT 1;
-[ RECORD 1 ]----+--------------------------------------------------------------
start_lsn        | 0/1E913618
end_lsn          | 0/1E913650
prev_lsn         | 0/1E9135A0
xid              | 0
resource_manager | Standby
record_type      | RUNNING_XACTS
record_length    | 50
main_data_length | 24
fpi_length       | 0
description      | nextXid 33775 latestCompletedXid 33774 oldestRunningXid 33775
block_ref        |


     


start_lsnが利用できない場合、この関数はエラーを発生します。
     

	
     pg_get_wal_block_info(start_lsn pg_lsn, end_lsn pg_lsn, show_data boolean DEFAULT true) returns setof record
     
      pg_get_wal_records_info_till_end_of_wal(start_lsn pg_lsn)
      returns setof record
     
    
	

start_lsnとend_lsnの間のすべての有効なWALレコードから、1つ以上のブロック参照を持つすべてのブロック参照に関する情報を取得します。
WALレコードのブロック参照ごとに1行返します。
例を示します。


postgres=# SELECT * FROM pg_get_wal_block_info('0/1230278', '0/12302B8');
-[ RECORD 1 ]-----+-----------------------------------
start_lsn         | 0/1230278
end_lsn           | 0/12302B8
prev_lsn          | 0/122FD40
block_id          | 0
reltablespace     | 1663
reldatabase       | 1
relfilenode       | 2658
relforknumber     | 0
relblocknumber    | 11
xid               | 341
resource_manager  | Btree
record_type       | INSERT_LEAF
record_length     | 64
main_data_length  | 2
block_data_length | 16
block_fpi_length  | 0
block_fpi_info    |
description       | off: 46
block_data        | \x00002a00070010402630000070696400
block_fpi_data    |


     


この例は、1つのブロック参照のみを含むWALレコードを含んでいますが、多くのWALレコードには複数のブロック参照が含まれています。
 pg_get_wal_block_infoによって出力される行は、一意のstart_lsnとblock_id値の組み合わせを持つことが保証されています。
     


ここに示す情報の多くは、pg_get_wal_records_infoに同じ引数を与えた場合に出力される出力と一致します。
しかし、pg_get_wal_block_infoは、各WALレコードをブロック参照ごとに展開した形式で情報を展開するため、ブロック参照レベルでは全体のレコードよりも多くの行が出力されます。
この構造は、個々のブロックが時間の経過とともにどのように変化したかを追跡する問い合わせで役立ちます。
ブロック参照を持たないレコード（例えば、COMMITWALレコード）は行を返さないので、pg_get_wal_block_infoは実際にはpg_get_wal_records_infoよりも少ない行を返すかもしれません。
     


reltablespace、reldatabase、relfilenodeパラメータは、pg_tablespace.oid、pg_database.oid、pg_class.oid、pg_class.relfilenodeを参照します。
relforknumberは、ブロック参照のリレーション内のフォーク番号です。
詳細はcommon/relpath.hを参照してください。
     
ヒント


pg_filenode_relation関数（表9.103「データベースオブジェクト位置関数」を参照）は、元の実行中にどのリレーションが変更されたかを判断するのに役立ちます。
      



クライアントは、ブロックデータの取り出しによるオーバーヘッドを回避することができます。
これにより、関数の実行が大幅に高速化されます。
 show_dataがfalseに設定されている場合、block_dataとblock_fpi_dataの値は省略されます（つまり、返されたすべての行に対してblock_dataとblock_fpi_dataのOUT引数はNULL）。
明らかに、この最適化はブロックデータが本当に必要でない問い合わせでのみ許されます。
     


start_lsnが利用できない場合、この関数はエラーを発生します。
     

	
     
      pg_get_wal_stats(start_lsn pg_lsn, end_lsn pg_lsn, per_record boolean DEFAULT false)
      returns setof record
     
    
	

start_lsnとend_lsnの間のすべての有効なWALレコードの統計を取得します。
デフォルトでは、resource_manager型ごとに1つの行を返します。
per_recordがtrueに設定されている場合、record_typeごとに1つの行を返します。
例を示します。


postgres=# SELECT * FROM pg_get_wal_stats('0/1E847D00', '0/1E84F500')
           WHERE count > 0 AND
                 "resource_manager/record_type" = 'Transaction'
           LIMIT 1;
-[ RECORD 1 ]----------------+-------------------
resource_manager/record_type | Transaction
count                        | 2
count_percentage             | 8
record_size                  | 875
record_size_percentage       | 41.23468426013195
fpi_size                     | 0
fpi_size_percentage          | 0
combined_size                | 875
combined_size_percentage     | 2.8634072910530795


     


start_lsnが利用できない場合、この関数はエラーを発生します。
     




作者




   Bharath Rupireddy <bharath.rupireddyforpostgres@gmail.com>
  


postgres_fdw — 外部のPostgreSQL™サーバに格納されたデータにアクセスする





postgres_fdwモジュールは、外部のPostgreSQL™サーバに格納されたデータをアクセスするために使用する、postgres_fdw外部データラッパーを提供します。
 


実質上、本モジュールの提供する機能は以前のdblinkモジュールが提供する機能と重複しています。
しかし、postgres_fdwはリモートのテーブルにアクセスするためにより透過的で標準に準拠した構文を利用できるほか、多くの場合においてより良い性能を得る事ができます。
 


postgres_fdwを使用したリモートアクセスを準備するには:
  
	

CREATE EXTENSION(7)を使用してpostgres_fdw拡張をインストールします。
    

	

CREATE SERVER(7)を使用して、接続しようとする各リモートデータベースを定義する外部サーバオブジェクトを作成します。
userおよびpasswordを除く接続パラメータを、外部サーバオブジェクトのオプションとして指定します。
    

	

CREATE USER MAPPING(7)を使用して、外部サーバへのアクセスを許可するデータベースユーザごとにユーザマッピングを作成します。
ユーザマッピングのuserおよびpasswordオプションを使用してリモートユーザのためのユーザ名とパスワードを指定します。
    

	

CREATE FOREIGN TABLE(7)もしくはIMPORT FOREIGN SCHEMA(7)を使用して、アクセスしたいリモートテーブルごとに外部テーブルを作成します。
外部テーブルのカラム定義は被参照側のリモートテーブルに一致していなければなりません。
しかしながら、外部テーブルのオプションとして正しいリモートの名前を外部テーブルのオプションに指定すれば、テーブルおよびカラム名はリモートのものと異なった名前を付ける事ができます。
    




 


今のところ、リモートテーブルに格納されているデータにアクセスするには少なくとも外部テーブルに対するSELECT権限が必要です。
また、INSERTやUPDATE、DELETE、COPY、TRUNCATEを使用してリモートテーブルを操作する事もできます。
（もちろん、ユーザマッピングで指定されたリモートユーザは、これらの操作を実行する権限を有している必要があります）
 


リモートテーブルをアクセスあるいは変更する際、SELECT、UPDATE、DELETE、TRUNCATEに対してONLYオプションを指定しても効果はありません。
 


postgres_fdwは今のところ、ON CONFLICT DO UPDATE句のあるINSERT文をサポートしていないことに注意して下さい。
しかし、一意インデックスの推定の指定を省略しているならば、ON CONFLICT DO NOTHING句はサポートされます。
postgres_fdwは、パーティションテーブルで実行されたUPDATE文により引き起こされる行の移動をサポートしますが、移動した行を挿入するよう選択されたリモートパーティションが同じコマンド内で別の場所で更新されるUPDATE対象のパーティションでもある場合は、今のところ扱わないことにも注意してください。
 


一般的な推奨事項として、可能であれば外部テーブルのカラムを、被参照側のリモートテーブル側のカラムと全く同一のデータ型および照合順序によって定義してください。
postgres_fdwは必要に応じてデータ型の変換を行いますが、リモートサーバがローカルサーバとは異なる問い合わせ条件の解釈を行うため、データ型や照合順序が一致していないと、時には予期しない意味論的に異常な結果を得る事があるかもしれません。
 


リモートテーブルより少ないカラム数で、あるいは異なった順序であっても外部テーブルを定義できる事に留意してください。
リモートテーブル側のカラムとの対応付けは、その位置ではなく、名前によって行われます。
 
postgres_fdwの外部データラッパーオプション



接続オプション





postgres_fdw外部データラッパーを使用する外部サーバは、以下に記す許されていないものや特別な取り扱いのものを除き、「パラメータキーワード」に記載されているlibpqが接続文字列としてサポートするものと同一のオプションを使用する事ができます。

    
	

user、passwordおよびsslpassword（これらは代わりにユーザマッピングのオプションの中で指定するか、サービスファイルを使用します）
      

	

client_encoding（これはローカルサーバのエンコーディングが自動的にセットされます）
      

	

application_name-これは接続とpostgres_fdw.application_nameのいずれかまたは両方に現れる可能性があります。
両方が存在する場合、postgres_fdw.application_nameは接続設定を上書きします。
libpqとは異なり、postgres_fdwはapplication_nameに「エスケープシーケンス」を含めることを許可します。
詳細はpostgres_fdw.application_nameを参照してください。
      

	

fallback_application_name（自動的にpostgres_fdwとセットされます）
      

	

sslkeyとsslcert - これは、接続とユーザマッピングのどちらか一方、または両方に現れます。
両方に存在する場合、ユーザマッピングの設定が接続設定に優先します。
      




   


スーパーユーザのみがsslcertやsslkeyの設定のあるユーザマッピングを作成したり修正したりできます。
   


非スーパーユーザはパスワード認証またはGSSAPI委任認証情報を使用して外部サーバに接続するため、パスワード認証が必要な非スーパーユーザに属するユーザマッピングにはpasswordオプションを指定します。
   


ユーザマッピングオプションpassword_required 'false'を設定することで、スーパーユーザはこのユーザマッピング単位の検査を無効にできます。例えば以下の通りです。


ALTER USER MAPPING FOR some_non_superuser SERVER loopback_nopw
OPTIONS (ADD password_required 'false');



非特権ユーザが、postgresサーバが動作しているunixユーザの認証権限を悪用して、スーパーユーザ権限へ昇格するのを防ぐため、スーパーユーザのみがユーザマッピングでこのオプションを設定できます。
    


CVE-2007-3278やCVE-2007-6601により、マップされたユーザがマップされたデータベースにスーパーユーザとして接続するのを許可しないことを確実にするよう注意が必要です。
publicロールではpassword_required=falseを設定しないでください。
postgresサーバが動作しているシステムユーザのunixのホームディレクトリにある、任意のクライアント証明書や.pgpass、.pg_service.confなどをマップされたユーザは潜在的には利用可能なことを心に留めておいてください。
（ホームディレクトリの検索方法の詳細については、「パスワードファイル」を参照してください。）
peerやident認証のような認証モードで付与された信頼関係を使うこともできます。
   

オブジェクト名オプション





これらのオプションによりリモートのPostgreSQL™サーバに送出されるSQL文で使用される名前を制御する事ができます。
外部テーブルがリモートテーブルとは異なった名前で定義されている場合、これらのオプションは必須です。
   
	schema_name (string)
	

外部テーブルに対して指定できるこのオプションは、リモートサーバ上のリモートテーブルのスキーマ名を与えます。
省略された場合、外部テーブルのスキーマ名が使用されます。
      
      

	table_name (string)
	

外部テーブルに対して指定できるこのオプションは、リモートサーバ上のリモートテーブル名を与えます。
省略された場合、外部テーブルのテーブル名が使用されます。
      

	column_name (string)
	

外部テーブルのカラムに対して指定できるこのオプションは、リモートサーバ上のカラム名を与えます。
省略された場合、外部テーブルのカラム名が使用されます。
      




コスト推定オプション





postgres_fdwはリモートサーバに対するクエリを実行しリモートのデータを受信します。したがって、理想的には外部テーブルをスキャンする推定コストは、それをリモートサーバで実行するコストと通信オーバーヘッドの和となります。
この推定を行うための最も信頼できる方法は、リモートサーバに問い合わせを行い、その結果にオーバーヘッド分を加算する事ですが、小さいクエリではコスト推定を得るための追加的な問い合わせに要するコストに見合わないかもしれません。
そこで、どのようにコスト推定を行うかを制御するため、postgres_fdwは以下のようなオプションを提供します。
   
	use_remote_estimate (boolean)
	

外部テーブルまたは外部サーバに指定できるこのオプションは、コスト推定を得るためにpostgres_fdwがリモートのEXPLAINコマンドを発行するかどうかを制御します。
外部テーブルに対する設定は、関連付けられた外部サーバに対する設定を上書きしますが、その効果は当該外部テーブルに限定されます。
デフォルト値はfalseです。
      

	fdw_startup_cost (floating point)
	

外部テーブルまたは外部サーバに指定できるこのオプションは、当該外部サーバに関連付けられた全ての外部テーブルスキャンの推定開始コストに加算される浮動小数点値です。
これは、接続の確立、リモート側でのクエリのパース・最適化など、追加的なオーバーヘッドを表現します。
デフォルト値は100です。
      

	fdw_tuple_cost (floating point)
	

外部サーバに指定できるこのオプションは、このサーバでの外部テーブルのスキャンにおいて、各タプル毎に発生する追加的なコストとして使用される浮動小数点値です。
これは、サーバ間のデータ転送における追加的なオーバーヘッドを表現し、リモートサーバへのネットワーク遅延の高低を反映するためにこの数値を増減することができます。
デフォルト値は0.2です。
      





use_remote_estimateがtrueの時、postgres_fdwはリモートサーバから行数とコスト推定値を取得し、それをfdw_startup_costとfdw_tuple_costに加算します。
一方、use_remote_estimateがfalseの時、postgres_fdwはローカルの行数とコスト推定値を取得しfdw_startup_costとfdw_tuple_costをコスト推定値に加算します。
このローカルな推定は、リモートテーブルの統計情報のローカルコピーが利用可能でないと、正確である見込みはほとんどありません。
ローカルな統計情報を更新するには外部テーブルに対するANALYZE(7)を実行します。これはリモートテーブルに対するスキャンを実行し、あたかもローカルなテーブルであるかのように統計情報の計算と保存を行います。
ローカルな統計情報を保存する事で、問い合わせの度にリモートテーブルの実行計画を作成するオーバーヘッドを削減する事ができます。
しかしながら、リモートテーブルの更新頻度が高ければローカルの統計情報はすぐに実態を反映しなくなるでしょう。
   


以下のオプションは、このようなANALYZE操作の動作を制御します。
   
	analyze_sampling (string)
	

このオプションは、外部テーブルまたはリモートサーバに対して指定できます。外部テーブルでのANALYZEによるサンプリングがリモート側で行われるか、すべてのデータを読み取ってローカルでサンプリングするかを決定します。
サポートされている値は、off、random、system、bernoulli、autoです。
offはリモートサンプリングを無効にし、すべてのデータが転送されてローカルでサンプリングされます。
randomはrandom()関数を使用してリモートサンプリングを実行し、返された行を選択します。一方、systemとbernoulliはそれらの名前の組込みTABLESAMPLEメソッドに依存します。
randomはすべてのリモートサーババージョンで動作し、TABLESAMPLEは9.5以降でのみサポートされます。
auto(デフォルト)は推奨されるサンプリング方法を自動的に選択します。現在はリモートサーバのバージョンに応じてbernoulliまたはrandomのいずれかを意味します。
      




リモート実行オプション





デフォルトでは、組み込みの演算子および関数を使ったWHERE句のみがリモートサーバでの実行を考慮されます。
組み込みでない関数を含む句は、行が取得された後、ローカルで検査されます。
そのような関数がリモートサーバで利用でき、かつローカルで実行するのと同じ結果を生成すると信頼できるときは、そのようなWHERE句をリモートでの実行のために送出することでパフォーマンスを向上することができます。
この動作は以下のオプションを使うことで制御できます。
   
	extensions (string)
	

このオプションは、PostgreSQL™の拡張で、ローカルとリモートの両方に、互換のバージョンがインストールされているものの名前のリストです。
IMMUTABLEで、列挙された拡張に属する関数と演算子は、リモートサーバに送出可能とみなされます。
このオプションは外部サーバについてのみ指定可能で、テーブル毎の指定ではありません。
      


extensionsオプションを使用する場合、列挙する拡張が存在し、かつローカルとリモートのサーバで同一の動作をするようにすることはユーザの責任です。
そうでない場合、リモートの問い合わせは失敗したり、期待と異なる動作をするかもしれません。
      

	fetch_size (integer)
	

このオプションは、postgres_fdwが1回のフェッチの動作で何行のデータを取得するかを指定します。
これは外部テーブルあるいは外部サーバに対して指定できます。
テーブルに対して指定されたオプションは、サーバに対して指定されたオプションよりも優先します。
デフォルトは100です。
      

	batch_size (integer)
	

このオプションは、postgres_fdwが個々のINSERT操作で挿入する行数を指定します。
外部テーブルあるいは外部サーバに対して指定することができます。
テーブルに対してこのオプションを指定すると、サーバに対して指定されたオプションを上書きします。
デフォルトは1です。
      


postgres_fdwが実際に一度に挿入する行数は、列の数と指定されたbatch_size値に依存することに注意してください。
一つのバッチは単一の問い合わせとして実行され、libpqプロトコル（postgres_fdwがリモートサーバに接続するために使用します）は単一の問い合わせにおけるパラメータ数を65535に制限していることに注意してください。
列数 * batch_sizeがその上限を超えると、エラーを回避するためにbatch_sizeが調整されます。
      


このオプションは、外部テーブルにコピーする場合にも適用されます。
その場合、postgres_fdwが一度にコピーする実際の行数は、挿入する場合と類似した方法で決定されますが、COPYコマンドの実装上の制限により1000以下に制限されます。
      




非同期実行オプション





postgres_fdwは非同期実行をサポートします。
これは性能を向上するために、複数のAppendノードの部分を順番にではなく、並行して実行します。
この実行は以下のオプションで制御できます。
   
	async_capable (boolean)
	

このオプションは、postgres_fdwが非同期実行の際に外部テーブルの並列スキャンを許すかどうかを制御します。
外部テーブルあるいは外部サーバに対して指定できます。
テーブルレベルのオプションはサーバレベルのオプションを上書きします。
デフォルトはfalseです。
      


外部サーバから返却されるデータの一貫性を保証するために、postgres_fdwは一つの外部サーバに対して一つの接続だけを開きます。
そして、テーブルが異なるユーザマッピングの対象でない限り、複数の外部テーブルが存在してもすべての問い合わせをサーバに対して順番に実行します。
この場合、問い合わせを非同期に実行することによるオーバーヘッドをなくすためにこのオプションを使用しないほうが性能が良くなるかもしれません。
      


Appendノードに順次実行されるサブプランが含まれていても、あるいは非同期実行されるサブプランが含まれていても、非同期実行は適用されます。
このような場合では、非同期実行のサブプランがpostgres_fdwを用いて処理されると、外部サーバに送信される非同期問い合わせの結果を非同期サブプランが待っている間に順次実行サブプランが実行されるため、少なくとも１つの順次実行サブプランがすべてのタプルを返すまでは、非同期実行サブプランによるタプルは返りません。
このふるまいは将来のリリースでは変更されるかもしれません。
      




トランザクション制御オプション





「トランザクション制御」節で説明されているように、postgres_fdwでは、トランザクションは対応するリモートトランザクションを作成することで制御され、サブトランザクションは対応するリモートサブトランザクションを作成することで制御されます。
現在のローカルトランザクションに複数のリモートトランザクションが含まれている場合、デフォルトではpostgres_fdwはローカルトランザクションがコミットまたは中断されたときに、これらのリモートトランザクションを順番にコミットまたは中断します。
現在のローカルサブトランザクションに複数のリモートサブトランザクションが含まれている場合、デフォルトではpostgres_fdwはローカルサブトランザクションがコミットまたは中断されたときに、これらのリモートサブトランザクションを順番にコミットまたは中断します。
次のオプションでパフォーマンスを向上させることができます。
   
	parallel_commit (boolean)
	

このオプションは、ローカルトランザクションがコミットされたときに、ローカルトランザクション内の外部サーバで開かれたリモートトランザクションをpostgres_fdwが並行してコミットするかどうかを制御します。
この設定は、リモートサブトランザクションとローカルサブトランザクションにも適用されます。
このオプションは外部サーバに対してのみ指定でき、テーブル単位では指定できません。
デフォルトはfalseです。
      

	parallel_abort (boolean)
	

このオプションは、ローカルトランザクションが中断されたときに、ローカルトランザクション内の外部サーバで開かれたリモートトランザクションをpostgres_fdwが並行して中断するかどうかを制御します。
この設定は、リモートサブトランザクションとローカルサブトランザクションにも適用されます。
このオプションは外部サーバに対してのみ指定でき、テーブル単位では指定できません。
デフォルトはfalseです。
      





このオプションが有効になっている複数の外部サーバがローカルトランザクションに関与している場合、これらの外部サーバ上の複数のリモートトランザクションは、ローカルトランザクションがコミットまたは中断されるときに、これらの外部サーバ間で並列にコミットまたは中断されます。
   


このオプションを有効にすると、多数のリモートトランザクションを持つ外部サーバは、ローカルトランザクションがコミットまたは中断されたときにパフォーマンスが悪影響を受ける可能性があります。
   

更新機能オプション





デフォルトではpostgres_fdwを使用する全ての外部テーブルは更新可能であると想定されます。以下のオプションにより、この挙動を上書きする事ができます。
   
	updatable (boolean)
	

このオプションは、postgres_fdwがINSERT、UPDATEあるいはDELETEコマンドを使用して外部テーブルを操作する事を許可するかどうかを規定します。
外部テーブルあるいは外部サーバに対して指定できます。
テーブルレベルのオプションはサーバレベルのオプションを上書きします。
デフォルト値はtrueです。
      


もちろん、リモートテーブルが実際には更新可能ではなかった場合、いずれにしてもエラーが発生するでしょう。このオプションを使用することで、リモートサーバへの問い合わせを行う事なくローカルでエラーを発生させることができます。
また、information_schemaビューは、このオプションの値に従ってpostgres_fdw管理下の外部テーブルを更新可能（あるいは不可能）であるとレポートする事に留意してください。
リモートサーバ側のチェックは一切行われません。
      




切り詰めオプション





デフォルトではpostgres_fdwを使用する外部テーブルは切り詰め可能であると見なされます。
これは以下のオプションで変更が可能です。
   
	truncatable (boolean)
	

このオプションはpostgres_fdwが外部テーブルをTRUNCATEを使って切り詰めることができるかどうかを制御します。
外部テーブルあるいは外部サーバに対して指定できます。
テーブルレベルのオプションはサーバレベルのオプションを上書きします。
デフォルトはtrueです。
      


もちろん外部テーブルが切り詰め不可能なら、結局エラーが生じます。
このオプションを使用することにより、リモートサーバに問い合わせることなくエラーをローカルで起こすことができるのが主な用途です。
      




インポートのオプション





postgres_fdwはIMPORT FOREIGN SCHEMA(7)を使って、外部テーブルの定義をインポートすることができます。
このコマンドは、リモートのサーバ上に存在するテーブルあるいはビューとマッチする外部テーブルの定義をローカルサーバ上に作成します。
インポートするリモートのテーブルにユーザ定義のデータ型の列がある場合、ローカルサーバにも同じ名前の互換性のある型がなければなりません。
   


インポートの動作は以下のオプションでカスタマイズできます（IMPORT FOREIGN SCHEMAコマンドで指定します）。
   
	import_collate (boolean)
	

このオプションは、列のCOLLATEオプションが、外部サーバからインポートする外部テーブルの定義に含まれているかどうかを制御します。
デフォルトはtrueです。
リモートサーバとローカルサーバで照合順序の名前の集合が異なる場合は、この設定を無効にする必要があるでしょう。
リモートサーバが異なるOSで動作しているなら、そういうことがありそうです。
しかし、そうした時には、インポートしたテーブルの列の照合順序が実際のデータと一致せず、問い合わせの振る舞いが結果として異常になる大きなリスクがあります。
      


このパラメータがtrueのときでさえ、照合順序がリモートサーバのデフォルトである列をインポートするのは危険性があります。
これらの列はCOLLATE "default"としてインポートされますが、ローカルサーバのデフォルトの照合順序は異なるかもしれません。
      

	import_default (boolean)
	

このオプションは、列のDEFAULT式が外部サーバからインポートされる外部テーブルの定義に含まれているかどうかを制御します。
デフォルトはfalseです。
このオプションを有効にする場合は、ローカルサーバとリモートサーバで異なる計算をされるデフォルトに注意して下さい。
nextval()はよくある問題の一つです。
インポートされるデフォルト式がローカルには存在しない関数または演算子を使っていた場合、IMPORTは失敗します。
      

	import_generated (boolean)
	

このオプションは、外部サーバからインポートされた外部テーブルの定義にGENERATED列式が含まれるかどうかを制御します。
デフォルトはtrueです。
インポートされる生成式がローカルには存在しない関数あるいは演算子を使っていた場合、IMPORTは失敗します。
      

	import_not_null (boolean)
	

このオプションは、列のNOT NULL制約が、外部サーバからインポートされる外部テーブルの定義に含まれているかどうかを制御します。
デフォルトはtrueです。
      





NOT NULL以外の制約は決してリモートのテーブルからインポートされないことに注意して下さい。
PostgreSQL™は外部テーブルのcheck制約をサポートしていますが、それを自動的にインポートする予定はありません。
なぜなら、制約の式はローカルとリモートのサーバで異なる評価をされる危険があるからです。
check制約でそのような一貫しない動作があると、問い合わせの最適化で検知するのが難しい誤りが発生するかもしれません。
そのため、check制約をインポートしたい場合は、それを手作業で実行する必要があり、またその一つ一つの意味を注意深く確認するべきです。
外部テーブルのcheck制約の取扱いについて、詳しくはCREATE FOREIGN TABLE(7)を参照して下さい。
   


他のテーブルのパーティションであるテーブルや外部テーブルは、明示的なLIMIT TO句が指定されている場合にのみインポートされます。
そうでなければそれらは、IMPORT FOREIGN SCHEMA(7)から自動的に除外されます。
パーティショニング化階層のルートであるパーティションテーブルを介してすべてのデータにアクセスできるため、パーティション化テーブルのみをインポートすることで余分なオブジェクトを作成せずにすべてのデータにアクセスできます。
   

接続管理オプション





デフォルトではpostgres_fdwが外部サーバに確立した接続は、再利用のためにローカルセッションにおいて開いたまま維持されます。
    
	keep_connections (boolean)
	

このオプションは、後の再利用のためにpostgres_fdwが外部サーバに対する接続を保持したままにしておくかどうかを制御します。
外部サーバに対してのみ指定ができます。
デフォルトはonです。
offに設定すると、この外部サーバに対するすべての接続は個々のトランザクションの終了時に破棄されます。
      

	use_scram_passthrough (boolean)
	

このオプションは、postgres_fdwがSCRAMパススルー認証を使用して外部サーバに接続するかどうかを制御します。
SCRAMパススルー認証では、postgres_fdwはプレーンテキストユーザパスワードの代わりにSCRAMハッシュ化されたシークレットを使用してリモートサーバに接続します。
これにより、プレーンテキストユーザパスワードがPostgreSQLシステムカタログに格納されるのを回避します。
       


SCRAMパススルー認証を使用するには、以下を確認してください。
        
	

リモートサーバはscram-sha-256認証方式を要求する必要があり、そうしないと接続が失敗します。
          

	

リモートサーバはSCRAMをサポートする任意のPostgreSQLバージョンにすることができます。
use_scram_passthroughのサポートが必要なのは、クライアント側（FDW側）だけです。
          

	

ユーザマッピングパスワードは使用されません。
          

	

postgres_fdwを実行しているサーバとリモートサーバには、外部サーバで認証するためにpostgres_fdwで使用されるユーザに対して、同一のSCRAMシークレット（暗号化されたパスワード）が必要です（同じパスワードだけでなく、同じソルトと繰り返し回数が必要です）。
          


当然の結果として、たとえばパーティション化された外部テーブル/シャーディングなど、複数のホストへのFDW接続を行う場合、すべてのホストが関係するユーザに対して同一のSCRAMシークレットを持っている必要があります。
          

	

FDW接続の発信を行うPostgreSQLインスタンス上の現在のセッションでも、そのクライアント接続の着信にSCRAM認証を使用する必要があります。
 （したがって、「パススルー」は、SCRAMを入出力の両方で使用する必要があります。）
これはSCRAMプロトコルの技術的要件です。
          




       





関数



	postgres_fdw_get_connections(
      IN check_conn boolean DEFAULT false, OUT server_name text,
      OUT user_name text, OUT valid boolean, OUT used_in_xact boolean,
      OUT closed boolean, OUT remote_backend_pid int4)
      returns setof record
	

この関数は、postgres_fdwがローカルセッションから外部サーバに確立した、開いているすべての接続に関する情報を返します。
開いた接続がなければレコードは返されません。
     


check_connがtrueに設定されている場合、関数は各接続の状態を確認し、その結果をclosed列に表示します。
この機能は現在、Linuxを含む、pollシステムコールの非標準のPOLLRDHUP拡張をサポートするシステムでのみ使用できます。
これは、トランザクション内で使用されるすべての接続がまだ開いているかどうかを確認するのに役立ちます。
接続が閉じられていると、トランザクションを正常にコミットできないため、終了した接続が検出されたら最後まで続行するよりもすぐにロールバックする方がよいでしょう。
used_in_xactとclosedの両方がtrueである接続を関数が報告した場合、ユーザはすぐにトランザクションをロールバックできます。
     


関数の使用例は以下です。


postgres=# SELECT * FROM postgres_fdw_get_connections(true);
 server_name | user_name | valid | used_in_xact | closed | remote_backend_pid
-------------+-----------+-------+--------------+-----------------------------
 loopback1   | postgres  | t     | t            | f      |            1353340
 loopback2   | public    | t     | t            | f      |            1353120
 loopback3   |           | f     | t            | f      |            1353156



出力列については表F.28「postgres_fdw_get_connectionsの出力列」で説明します。
     
表F.28 postgres_fdw_get_connectionsの出力列
	列	型	説明
	server_name	text	

この接続の外部サーバ名。
サーバが削除されたが接続は開いたままである（つまり無効と印付けされている）場合は、NULLになります。
        
	user_name	text	

この接続の外部サーバにマップされたローカルユーザの名前、またはパブリックマッピングが使用されている場合はpublic。
ユーザマッピングが削除されたが接続は開いたままである（つまり無効と印付けされている）場合は、NULLになります。
        
	valid	boolean	

この接続が無効な場合、つまり現在のトランザクションでは使用されているが、外部サーバまたはユーザマッピングが変更または削除された場合はfalse。
無効な接続は、トランザクションの終了時に閉じられます。
それ以外の場合はtrueが返されます。
        
	used_in_xact	boolean	

この接続が現在のトランザクションで使用される場合はtrue。
        
	closed	boolean	

この接続が閉じられている場合はtrue、それ以外の場合はfalse。
check_connがfalseに設定されている場合、またはこのプラットフォームで接続状態の確認が利用できない場合は、NULLが返されます。
        
	remote_backend_pid	int4	

接続を処理する外部サーバ上のリモートバックエンドのプロセスID。
リモートバックエンドが終了して接続が閉じられた（closedがtrueに設定されている）場合、終了したバックエンドのプロセスIDが引き続き表示されます。
        




	postgres_fdw_disconnect(server_name text) returns boolean
	

この関数は、postgres_fdwによってローカルセッションから指定された名前の外部サーバに確立された開いている接続を破棄します。
異なるユーザマッピングを使用することにより、指定されたサーバに複数の接続が存在する可能性があることに注意してください。
現在のローカルトランザクションで接続が使われている場合は、接続は切断されず、警告メッセージが報告されます。
少なくとも１つの接続が切断されると、この関数はtrueを返し、そうでない場合はfalseを返します。
指定した名前の外部サーバが存在しなければ、エラーが報告されます。
この関数の使用例を示します。


postgres=# SELECT postgres_fdw_disconnect('loopback1');
 postgres_fdw_disconnect
-------------------------
 t


     

	postgres_fdw_disconnect_all() returns boolean
	

この関数は、postgres_fdwによってローカルセッションから外部サーバに確立されたすべての開いている接続を破棄します。
現在のローカルトランザクションで接続が使われている場合は、接続は切断されず、警告メッセージが報告されます。
少なくとも１つの接続が切断されると、この関数はtrueを返します。
さもなければfalseが返ります。
この関数の使用例を示します。


postgres=# SELECT postgres_fdw_disconnect_all();
 postgres_fdw_disconnect_all
-----------------------------
 t


     




接続管理





postgres_fdwは、外部サーバに関連付けられた外部テーブルを参照するクエリを最初に実行する際に、外部サーバへの接続を確立します。
デフォルトではこの接続は保持され、同じセッションで以降の問い合わせのために再利用されます。
この振る舞いは外部サーバのkeep_connectionsオプションを使って制御できます。
しかし、外部サーバへのアクセスに対して複数のユーザ識別子（ユーザマッピング）が使用される場合には、接続はユーザマッピング毎に確立される事になります。
  


外部サーバあるいはユーザマッピングの定義を変更ないし削除している場合は、関連する接続は閉じられます。
しかし、現在のローカルトランザクションが接続を使っていると、接続はトランザクションが終了するまでは維持されることに注意してください。
このあと外部テーブルを使用する問い合わせで必要になれば、閉じた接続は再び確立されます。
  


ひとたび外部サーバに接続が確立されると、デフォルトではローカルあるいは関連するリモートセッションが終了するまで接続は維持されます。
明示的に接続を切断するには外部サーバのkeep_connectionsオプションを無効にするか、postgres_fdw_disconnect関数あるいはpostgres_fdw_disconnect_all関数を使用します。
たとえば、必要がなくなった接続を切断し、それによって外部サーバの接続を開放するのにこれらの関数が役に立ちます。
  

トランザクション制御





外部サーバ上のリモートテーブルを参照する際に、まだトランザクションが開始されていなければpostgres_fdwはリモートサーバ上でトランザクションを開始します。
ローカルのトランザクションがコミット、あるいはアボートした時、リモートのトランザクションも同様にコミット、あるいはアボートします。
セーブポイントも同様に管理され、リモート側に関連付けられたセーブポイントが作成されます。
  


ローカルトランザクションがSERIALIZABLE分離レベルを用いている時、リモートトランザクションもSERIALIZABLE分離レベルを使用します。
それ以外の場合にはREPEATABLE READ分離レベルを使用します。
これは、あるクエリが複数のテーブルスキャンをリモート側で行う際に、確実に全てのスキャンにおいて一貫したスナップショットで結果を取り出すためです。
その結果、別の要求によってリモートサーバ側で競合する更新が発生したとしても、あるトランザクション内の問い合わせはリモートサーバからの一貫したデータを参照する事となります。
ローカルのトランザクションがSERIALIZABLEあるいはREPEATABLE READ分離レベルを用いている場合、この動作は期待通りのものでしょう。
一方、ローカルのトランザクションがREAD COMMITTED分離レベルを使用している場合には、予想外の動作かもしれません。
将来のPostgreSQL™リリースではこれらのルールに変更が加えられるかもしれません。
  


postgres_fdwは今のところ、二相コミットのためのリモートトランザクションの準備をサポートしていないことに注意して下さい。
  

リモート問い合わせの最適化





外部サーバからのデータ転送量を削減するため、postgres_fdwはリモート問い合わせを最適化しようと試みます。
これは問い合わせのWHERE句をリモートサーバに送出する事、およびクエリで必要とされていないカラムを取得しない事により行われます。
問い合わせの誤作動のリスクを下げるため、組み込みあるいは外部サーバのextensionsオプションに列挙されている拡張に属するデータ型、演算子、関数だけを用いたものでない限り、リモートサーバにWHERE句は送出されません。
また、そのようなWHERE句で使われる演算子と関数はIMMUTABLEでなければなりません。
UPDATEあるいはDELETEの問い合わせについては、リモートサーバに送出できないWHERE句がなく、問い合わせにローカルな結合がなく、対象のテーブルにローカルな行レベルのBEFOREあるいはAFTERトリガや格納された生成列がなく、親ビューからのCHECK OPTION制約がないのであれば、postgres_fdwは問い合わせ全体をリモートサーバに送出することで、問い合わせの実行の最適化を図ります。
UPDATEでは、問い合わせの誤った実行のリスクを低減するため、対象列への代入式では組み込みのデータ型、IMMUTABLE演算子、IMMUTABLE関数のみを使わなければなりません。
  


同一の外部サーバ上の外部テーブルの間の結合がある場合、postgres_fdwはその結合全体を外部サーバに送出します。
ただし、何らかの理由で各テーブルから個別に行を取得する方が効率的だと思われる場合、あるいは結合に含まれるテーブルの参照が異なるユーザマッピングに従う場合を除きます。
JOIN句を送出するにあたり、WHERE句に関して上で説明したことと同じ注意が払われます。
  


リモートサーバでの実行のために実際に送出される問い合わせはEXPLAIN VERBOSEを用いて調べる事ができます。
  

リモート問い合わせ実行環境





postgres_fdwが開いたリモートセッションでは、search_pathパラメータはpg_catalogにだけ設定されますので、スキーマで修飾しなければ組み込みオブジェクトだけが可視です。
postgres_fdw自身が生成した問い合わせでは、常にそのような修飾を行ないますので、これは問題になりません。
しかし、リモートテーブルのトリガやルールによってリモートサーバ上で実行された関数にとっては問題の原因となり得ます。
例えば、リモートテーブルが実際にはビューであれば、そのビューで使われている関数はすべて制限された検索パスで実行されるでしょう。
期待される検索パス環境を確立できるよう、そのような関数では名前はすべてスキーマ修飾するか、そのような関数にSET search_pathオプション(CREATE FUNCTION(7)参照)を付けることをお薦めします。
  


postgres_fdwは、同様に様々なパラメータでリモートセッション設定を確立します。
   
	

TimeZoneはUTCに設定されます。
     

	

DateStyleはISOに設定されます。
     

	

IntervalStyleはpostgresに設定されます。
     

	

extra_float_digitsはリモートサーバが9.0以上では3に設定され、それより古いバージョンでは2に設定されます。
     





これはsearch_pathほど問題にはならないでしょうが、もし必要になったら関数のSETオプションで処理してください。
  


上のパラメータのセッションレベルの設定を変更することで、この振舞いを覆すことはお薦めしません。
postgres_fdwが正常に動作しない原因となるでしょう。
  

バージョン間互換性





postgres_fdwは、PostgreSQL™ 8.3以降のリモートサーバで使用できます。
読み取り専用機能は8.1以降で使用できます。
  


ただし、postgres_fdwはIMMUTABLE属性を持った組み込みの演算子と関数が外部テーブルのWHERE句に含まれる場合、リモート側で実行しても安全であると仮定しているという制限があります。
そのため、リモートサーバのリリース後に追加された関数が実行のために送出されるかもしれず、結果として「関数が見つかりません」あるいは類するエラーを発生させる事になります。
この種の問題は問い合わせの書き換えによって対処する事ができます。
例えば、最適化を妨げるため、外部テーブルへの参照をOFFSET 0を付けてsub-SELECTに埋め込み、問題のある関数や演算子をsub-SELECTの外に配置するなどの方法があります。
  


もう1つの制限として、外部テーブルでON CONFLICT DO NOTHING句を指定してINSERT文を実行する場合、リモートサーバがPostgreSQL™ 9.5以降を実行している必要があります。
これは、これ以前のバージョンではこの機能がサポートされていないためです。
  

待機イベント





postgres_fdwは、待機イベントの種類Extensionで以下の待機イベントを報告できます。
  
	PostgresFdwCleanupResult
	

リモートサーバでトランザクションの中断を待機しています。
     

	PostgresFdwConnect
	

リモートサーバへの接続が確立するのを待機しています。
     

	PostgresFdwGetResult
	

リモートサーバから問い合わせの結果を受信するのを待機しています。
     




設定パラメータ



	
     postgres_fdw.application_name (string)
     
    
	

postgres_fdwが外部サーバへの接続を確立する際に使用されるapplication_name設定パラメータの値を指定します。
これにより、サーバオブジェクトのapplication_nameオプションが上書きされます。
このパラメータを変更しても、再確立されるまで既存の接続には影響しません。
     


postgres_fdw.application_nameは任意の長さの文字列で、非ASCII文字も含むことさえできます。
しかし、外部サーバでapplication_nameとして渡されて使用される場合、NAMEDATALEN文字未満に切り捨てられることに注意してください。
印字可能なASCII文字以外の文字はC言語形式の16進数エスケープ文字に置き換えられます。
詳細はapplication_nameを参照してください。
     


%文字は「エスケープシーケンス」を開始し、以下で説明するようにステータス情報に置き換えられます。
認識されないエスケープは無視されます。
他の文字はアプリケーション名に直接コピーされます。
位置合わせとパディングのために、%の後とオプションの前にプラス/マイナス記号または数値リテラルを指定することはできないことに注意してください。
     
	エスケープ	効果
	%a	ローカルサーバ上のアプリケーション名
	%c	

ローカルサーバ上のセッションID（詳細はlog_line_prefixを参照）
         
	%C	

ローカルサーバ上のクラスタ名（詳細はcluster_nameを参照）
         
	%u	ローカルサーバ上のユーザ名
	%d	ローカルサーバ上のデータベース名
	%p	ローカルサーバ上のバックエンドのプロセスID
	%%	文字 %




たとえば、ユーザlocal_userがデータベースlocal_dbからforeign_dbへの接続をユーザforeign_userとして確立するとします。
設定'db=%d,user=%u'は'db=local_db,user=local_user'に置き換えられます。
     




例





これはpostgres_fdwで外部テーブルを作成する例です。
まず、拡張をインストールします。
  

CREATE EXTENSION postgres_fdw;



次に、CREATE SERVER(7)を使って外部サーバを作成します。
この例では、ホスト192.83.123.89でポート5432を監視しているPostgreSQL™サーバに接続します。
接続されるデータベースはリモートサーバ上でforeign_dbという名前です。



CREATE SERVER foreign_server
        FOREIGN DATA WRAPPER postgres_fdw
        OPTIONS (host '192.83.123.89', port '5432', dbname 'foreign_db');


  


リモートサーバで使われるロールを特定するためにユーザマッピングも必要です。ユーザマッピングはCREATE USER MAPPING(7)で定義されます。



CREATE USER MAPPING FOR local_user
        SERVER foreign_server
        OPTIONS (user 'foreign_user', password 'password');


  


これでCREATE FOREIGN TABLE(7)により外部テーブルが作成できるようになりました。
この例では、リモートサーバのsome_schema.some_tableという名前のテーブルにアクセスします。
対応するローカルの名前はforeign_tableです。



CREATE FOREIGN TABLE foreign_table (
        id integer NOT NULL,
        data text
)
        SERVER foreign_server
        OPTIONS (schema_name 'some_schema', table_name 'some_table');




CREATE FOREIGN TABLEで宣言した列のデータ型やその他の属性は、実際のリモートテーブルと一致していることが必須です。
リモートテーブルでどのような名前なのかを個々の列に対してcolumn_nameオプションで指定しない限り、列名も一致していなければなりません。
多くの場合、外部テーブルの定義を手作業で作成するよりも、IMPORT FOREIGN SCHEMAを使用する方が望ましいです。
  

作者





花田 茂 <shigeru.hanada@gmail.com>
  


seg — 線分または浮動小数点区間のためのデータ型





本モジュールは線分、浮動小数点区間を表現するsegデータ型を実装します。
segは区間の終端内の不確定性を表すことができ、特に実験計測の表現に有用です。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
原理





計測の幾何は数値の連続における点より通常より複雑です。
計測は通常、多少あいまいな制限を持つ連続の部分となります。
不確実性と不規則性のため、さらに、タンパク質を安定させる温度範囲など計測される値は本質的に何らかの状態を示す区間となる可能性があるため、計測は区間として現れます。
  


一般的な見方を使うと、こうしたデータは値の組合せではなく区間としてデータを格納する方が便利なようです。
実際、ほとんどのアプリケーションでより効率的であると判明してさえいます。
  


一般的な見方をさらに進めると、制限の曖昧さは、伝統的な数値データ型を使用することで情報がある程度損失してしまうことを暗示しています。
これを考えてみましょう。
計測機器で6.50と読み取り、読み取ったデータをデータベースに格納します。
それを取り出す時にどうなるでしょう？
見てみましょう。



test=> select 6.50 :: float8 as "pH";
 pH
---
6.5
(1 row)




計測という世界では6.50は6.5と同じではありません。
時としてこれが致命的な違いになる場合があります。
実験者は信頼する桁を書き出し（公開し）ます。
6.50は実際には、6.5というより大きくよりあいまいな区間に含まれるあいまいな区間です。
2つに共通するものは（おそらく）その中央の値だけでしょう。
私達は厳密にこうした異なるデータ項目が同じものとして現れることを好みません。
  


まとめ？
任意の可変精度を持つ区間の制限を記録できる特別なデータ型を持つことは素晴らしいことでしょう。
各データ要素が独自の精度を記録するという意味での可変です。
  


以下を見てください。



test=> select '6.25 .. 6.50'::seg as "pH";
          pH
------------
6.25 .. 6.50
(1 row)


  

構文





区間の外部表現は、1つまたは2つの浮動小数点値を範囲演算子（..または...）で結び付けた形になります。
他にも、中央値と正負の偏差として指定することも可能です。
省略可能な確実性指示子（<、>、~）を格納することもできます。
（しかし、確実性指示子はすべての組み込みの演算子で無視されます。）
表F.29「seg外部表現」に許される表現についての概要を、表F.30「有効なSEG入力の例」にいくつか例を示します。
  


表F.29「seg外部表現」では、x、y、deltaは浮動小数点数値を表します。
delta以外のxとyの前に確実性指示子を付与することができます。
  
表F.29 seg外部表現
	x	単一値（幅0の区間）
      
	x .. y	xからyまでの区間
      
	x (+-) delta	x - deltaからx + deltaまでの区間
      
	x ..	下限値xを持つ閉じていない区間
      
	.. x	上限値xを持つ閉じていない区間
      



表F.30 有効なSEG入力の例
	5.0	

幅0のセグメントを作成します（こうすると点になります）。
      
	~5.0	

幅0のセグメントを作成し、データ内に~を記録します。
~はseg型の演算では無視されますが、コメントとして保持されます。
      
	<5.0	

5.0という点を作成します。
<は無視されますが、コメントとして保持されます。
      
	>5.0	

5.0という点を作成します。
>は無視されますが、コメントとして保持されます。
      
	5(+-)0.3	

4.7 .. 5.3という区間を作成します。
(+-)という記述は保持されないことに注意してください。
      
	50 .. 	 50以上のすべて
	.. 0	0以下のすべて
	1.5e-2 .. 2E-2 	0.015 .. 0.02という区間を作成します
	1 ... 2	

1...2、1 .. 2、1..2と同じです（範囲演算子前後の空白は無視されます）。
      





データソースで...演算子が広く使用されるため、..演算子の代わりの綴りとして許可されています。
残念なことにこれにより解析上の曖昧性が生じました。
0...23の上限が23なのか0.23なのかが明確ではありません。
これは、segの入力において、少なくとも1つの桁を数値内の小数点の前に書くことを要求することで解決されます。
  


健全性検査としてsegは、5 .. 2のような、下限値が上限値より大きな区間を拒絶します。
  

精度





内部的にseg値には32ビット浮動小数点数値の組合せが格納されます。
これは7桁以上の有効桁を持つ数値が切り詰められることを意味します。
  


有効桁が正確に7桁、または7桁未満の数値は元の精度が保たれます。
つまり、問い合わせが0.00を返す場合、後ろに続く0は書式付けのための見かけのものではないことが確実です。
これは元のデータの精度を反映します。
前にある0の数は精度には影響しません。
0.0067は2有効桁のみを持つものと考えられます。
  

使用方法





segモジュールにはseg値用のGiSTインデックス演算子クラスが含まれます。
GiST演算子クラスでサポートされる演算子を表F.31「Seg GiST演算子」に示します。
  
表F.31 Seg GiST演算子
	

        演算子
       

       

        説明
       

	
        seg << seg
        boolean
       

       

1番目のsegが完全に2番目の左側に存在するか？
b < cならば[a, b] << [c, d]は真です。
       

	
        seg >> seg
        boolean
       

       

1番目のsegが完全に2番目の右側に存在するか？
a > dならば[a, b] >> [c, d]は真です。
       

	
        seg &< seg
        boolean
       

       

1番目のsegは2番目の右側にはみ出さないか？
b <= dならば[a, b] &< [c, d]は真です。
       

	
        seg &> seg
        boolean
       

       

1番目のsegは2番目の左側にはみ出さないか？
a >= cならば[a, b] &> [c, d]は真です。
       

	
        seg = seg
        boolean
       

       

2つのsegは等しいか？
       

	
        seg && seg
        boolean
       

       

2つのsegは重なるか？
       

	
        seg @> seg
        boolean
       

       

1番目のsegは2番目を包含するか？
       

	
        seg <@ seg
        boolean
       

       

1番目のsegは2番目に包含されるか？
       






上記の演算子に加えて、seg型では表9.1「比較演算子」にある通常の比較演算子が利用可能です。
これらの演算子はまず(a)と(c)を比べ、等しければ(b)と(d)を比べます。
論理的にはほとんどの場合優れたソート処理と思えます。
こうした型をORDER BYで使用したい場合に有用です。
  

注釈





使用方法の例はリグレッションテストのsql/seg.sqlを参照してください。
  


(+-)を通常の範囲に変換する機構は、境界で有効な桁数を決定するという点で完全に正確ではありません。
例えば以下のように、結果の区間に10の冪乗が含まれる場合、下限値に余計な桁を追加します。



postgres=> select '10(+-)1'::seg as seg;
      seg
---------

9.0 .. 11             -- 次のようになるべきです: 9 .. 11


  


R-treeインデックスの性能は入力値の初期の順序に大きく依存する可能性があります。
seg列で入力テーブルをソートすることは非常に役に立つでしょう。
例としてsort-segments.plスクリプトを参照してください。
  

クレジット





原作者：Gene Selkov, Jr. <selkovjr@mcs.anl.gov>,
   Mathematics and Computer Science Division, Argonne National Laboratory.
  


GiST (http://gist.cs.berkeley.edu/)の要旨（gist）を説明していただいたJoe Hellerstein博士（https://dsf.berkeley.edu/jmh/）に感謝します。
また、自分の世界を作成できるようにし、静かに生活できるようにしてもらった、過去から現在までのすべてのPostgres開発者に感謝します。
データベース研究を長年誠実にサポートしてくれたArgonne LabとU.S. Department of Energyにも感謝します。
  


sepgsql — SELinuxベースでラベルベースの強制アクセス制御（MAC）セキュリティモジュール





sepgsqlは、SELinux™のセキュリティポリシーに基づいた、ラベルベースの強制アクセス制御（MAC; Mandatory Access Control）機能を提供するロード可能なモジュールです。
 
警告


現在の実装にはいくつかの重要な制限事項があり、そのため、全ての操作に対して強制アクセス制御を適用するわけではありません。
詳細は 「制限事項」 をご覧ください。
   

概要





このモジュールは、PostgreSQL™が標準で提供しているものに加えて、SELinux™と統合されたアクセス制御のレイヤを追加します。
SELinux™の視点からは、このモジュールがPostgreSQL™をユーザ空間オブジェクトマネージャとして機能することを可能にします。
すなわち、DMLクエリによる個々のテーブルや関数へのアクセスは、オペレーティングシステムのセキュリティポリシーによってチェックされます。
このチェックは、PostgreSQL™による通常のSQLパーミッションチェックに対して追加的に実施されます。
  


SELinux™におけるアクセス制御の意思決定は、system_u:object_r:sepgsql_table_t:s0のような書式を持ったセキュリティラベルと呼ばれる文字列を用いて行われます。
個々のアクセス制御の意思決定には、２種類のラベルが利用されます。
すなわち、ある操作を行おうとする主体（サブジェクト）のラベルと、その操作の対象となるオブジェクトのラベルです。
これらのラベルはあらゆる種類のオブジェクトに対して適用されるため、（このモジュールを用いる事で）データベースに格納されたオブジェクトに対するアクセス制御は、他の一般的なオブジェクト、例えばファイルに対するものと同一の基準に従って意思決定される事になります。
このデザインは、情報資産を格納する方法とは独立に、一元管理されたセキュリティポリシーによって情報資産を保護することを意図しています。
  


SECURITY LABELを用いてデータベースオブジェクトにセキュリティラベルを設定することができます。
  

インストール





sepgsqlはSELinux™が有効なLinux™カーネル 2.6.28 以上で動作します。
その他のプラットフォーム上では利用する事はできません。
加えて、（ディストリビューションによっては、必要なルールを古いバージョンのポリシーにバックポートしている可能性がありますが）libselinux™ 2.1.10以上、selinux-policy™ 3.9.13以上が必要です。
  


sestatusコマンドを用いてSELinux™の状態を確認することができます。典型的な出力例は以下の通りです。


$ sestatus
SELinux status:                 enabled
SELinuxfs mount:                /selinux
Current mode:                   enforcing
Mode from config file:          enforcing
Policy version:                 24
Policy from config file:        targeted



SELinux™が無効化されている、あるいはインストールされていない場合、このモジュールのインストールの前に、SELinux™のセットアップを行わねばなりません。
  


このモジュールをビルドするには、--with-selinux(makeとautoconfを使う場合)または-Dselinux={ auto | enabled | disabled }(mesonを使う場合)を指定してください。

ビルド時にlibselinux-devel RPMがインストールされている事を確認してください。
  


このモジュールを利用するには、postgresql.confのshared_preload_librariesパラメータにsepgsqlを含める必要があります。
これ以外の方法でロードされた場合、このモジュールは正しく機能しません。
このモジュールのロード後、各データベースに対してsepgsql.sqlを実行してください。
これにより、セキュリティラベル管理のための関数のインストールや、初期セキュリティラベルが割り当てられます。
  


以下にsepgsql関数およびセキュリティラベルと共にデータベースクラスタを初期化する手順を示します。
インストール先に応じて、適宜パス名を読み替えるようにしてください。
  

$ export PGDATA=/path/to/data/directory
$ initdb
$ vi $PGDATA/postgresql.conf

  この行を
    #shared_preload_libraries = ''                # (change requires restart)

  以下に変更
    shared_preload_libraries = 'sepgsql'          # (change requires restart)
$ for DBNAME in template0 template1 postgres; do
    postgres --single -F -c exit_on_error=true $DBNAME \
      </usr/local/pgsql/share/contrib/sepgsql.sql >/dev/null
  done



libselinux™とselinux-policy™のバージョンによっては以下のようなメッセージが出力される事があります。


/etc/selinux/targeted/contexts/sepgsql_contexts:  line 33 has invalid object type db_blobs
/etc/selinux/targeted/contexts/sepgsql_contexts:  line 36 has invalid object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts:  line 37 has invalid object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts:  line 38 has invalid object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts:  line 39 has invalid object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts:  line 40 has invalid object type db_language



これらのメッセージは無害ですので無視してください。
  


インストール手順が正常に終了したら、通常通り、サーバを起動することができます。
  

リグレッションテスト





sepgsqlテストスイートは、PG_TEST_EXTRAがsepgsqlを含む場合に実行されます（「追加のテストスイート」を参照してください）。
この方法は、PostgreSQL™の開発中に適しています。
または、sepgsqlに対してデータベースインスタンスが適切に設定されているかどうかをチェックするためにテストを実行する方法があります。
  


SELinux™の性質上、sepgsqlのリグレッションテストを実行するには、いくつかの追加的な設定が必要で、そのうちの幾つかはrootで実行する必要があります。
  


手動テストは設定済みのPostgreSQLビルドツリーのcontrib/sepgsqlディレクトリで実行する必要があります。
しかしビルドツリーを必要とする一方、このテストはインストールされたサーバに対して実行する必要があります。
これは、make checkではなく、make installcheckによく似ています。
  


最初に、「インストール」に従ってsepgsqlをデータベースにセットアップします。
使用するOS上のユーザは、認証無しでデータベース特権ユーザとして接続できる必要があることに留意してください。
  


次に、リグレッションテスト用のポリシーパッケージのビルドとインストールを行ってください。
sepgsql-regtestポリシーはリグレッションテストの実行に必要な一連のルールを含む特別な目的のポリシーパッケージです。
ポリシーのソースファイルであるsepgsql-regtest.teから、SELinuxの提供するMakefileを用いてmakeコマンドでビルドする事ができます。
この時、インストール先システムにおいて、適切なMakefileの位置を指定する必要があります。以下の例で示されているパスは一例です。
（このMakefileは通常selinux-policy-develやselinux-policyパッケージで提供されています。）
ビルドが完了したら、semoduleを用いてこのポリシーパッケージをインストールする事ができます。このコマンドは、指定されたポリシーパッケージをリンクし、カーネル空間にロードする役割を果たします。
インストールが正常終了したら、semodule -lにより有効なパッケージの一覧としてsepgsql-regtestが表示されるはずです。
  

$ cd .../contrib/sepgsql
$ make -f /usr/share/selinux/devel/Makefile
$ sudo semodule -u sepgsql-regtest.pp
$ sudo semodule -l | grep sepgsql
sepgsql-regtest 1.07



次に、sepgsql_regression_test_modeを有効化してください。
安全のため、デフォルトではsepgsql-regtestに含まれる全てのルールが有効化されている訳ではありません。
sepgsql_regression_test_modeパラメータはリグレッションテストを起動するために必要となる幾つかのルールを有効にします。
setseboolコマンドによって有効化する事ができます。
  

$ sudo setsebool sepgsql_regression_test_mode on
$ getsebool sepgsql_regression_test_mode
sepgsql_regression_test_mode --> on



次に、シェルがunconfined_tドメインで動作している事を確認して下さい。
  

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023



利用者の動作ドメインを設定する方法について、必要であれば、詳細は「外部リソース」をご覧ください。
  


最後に、リグレッションテストのスクリプトを実行します。
  

$ ./test_sepgsql



このスクリプトは全ての設定ステップが正常に行われていることを確認し、その後、sepgsqlモジュールに対するリグレッションテストを実行します。
  


テストの実行後はsepgsql_regression_test_modeパラメータを無効化する事をお勧めします。
  

$ sudo setsebool sepgsql_regression_test_mode off



sepgsql-regtestポリシーをアンロードする際は、以下のコマンドを実行してください。
  

$ sudo semodule -r sepgsql-regtest


GUCパラメータ



	
     sepgsql.permissive (boolean)
     
     
    
	

このパラメータにより、オペレーティングシステムの設定に関わらず、sepgsqlをパーミッシブモードで動作させる事ができます。
デフォルトの設定値はoffです。
このパラメータは、postgresql.confファイルか、サーバのコマンドラインでのみ設定可能です。
     


このパラメータがonの場合、たとえSELinuxがエンフォーシングモードで動作していたとしても、sepgsql関数はパーミッシブモードで動作します。
このパラメータは主としてテストの目的に有用です。
     

	
     sepgsql.debug_audit (boolean)
     
     
    
	

このパラメータにより、セキュリティポリシーの設定とは無関係に監査ログを出力する事が可能になります。
デフォルト値はoff（セキュリティポリシーの設定に従う）です。
     


SELinux™のセキュリティポリシーには、特定のアクセスを監査ログに記録するか否かを制御するルールも存在します。
デフォルトでは、ポリシーに違反したアクセスを記録し、それ以外はログに記録されません。
     


システムのポリシーとは無関係に、このパラメータは全ての監査ログの出力を強制します。
     




機能



制御されるオブジェクトの種類





SELinux™のセキュリティモデルでは、全てのアクセス制御ルールは動作主体（サブジェクト; 典型的にはデータベースクライアント）と対象オブジェクト間の関係として記述し、これらはセキュリティラベルによって識別されます。
ラベル付けされていないオブジェクトに対するアクセスが発生した場合、そのオブジェクトはあたかもunlabeled_tタイプが割り当てられているかのように振舞います。
   


現在のsepgsqlでは、スキーマ、テーブル、カラム、シーケンス、ビューおよび関数に対するラベル付けがサポートされています。
sepgsqlの利用時には、これらのデータベースオブジェクトに対して、その生成時に自動的にセキュリティラベルが割り当てられます。
このラベルはデフォルトセキュリティラベルと呼ばれ、作成者のラベル、親関係にあたるオブジェクトのラベル、そして場合によっては作成されたオブジェクトの名前に基づいて、システムのセキュリティポリシーが決定します。
   


新しいデータベースオブジェクトのセキュリティラベルは、タイプ遷移と呼ばれる異なったラベルを設定するための特別なルールがセキュリティポリシーに設定されている場合を除き、親関係にあるオブジェクトのラベルを引き継ぎます。
スキーマの親オブジェクトはデータベースであり、テーブル、シーケンス、ビュー、および関数はその属するスキーマが、列はその属するテーブルが親オブジェクトという事になります。
   

DMLパーミッション





テーブルに対しては、構文の種類に応じてdb_table:select、db_table:insert、db_table:updateあるいはdb_table:delete権限が全ての被参照テーブルに対してチェックされます。
加えて、WHERE句やRETURNING句で参照されるカラム、又はUPDATEの際のデータ元として利用されるカラムの属するテーブルに対してdb_table:select権限もチェックされます。
   


参照された全てのカラムに対して列レベルの権限チェックが行われます。
SELECT構文で読み出されるカラムに対してだけでなく、他のDML構文で参照されているカラムに対してもdb_column:select権限がチェックされます。
また、UPDATEやINSERTによって操作の対象となっているカラムに対しても、db_column:updateやdb_column:insert権限がそれぞれチェックされます。
   


以下の例を見てください


UPDATE t1 SET x = 2, y = func1(y) WHERE z = 100;




ここでは、更新されるt1.xに対してdb_column:update権限が、更新と同時に参照されるt1.yに対してはdb_column:{select update}権限が、そして参照されるだけのt1.zにはdb_column:select権限がチェックされます。
また、テーブルレベルではdb_table:{select update}権限がチェックされます。
   


SELECT構文を用いてシーケンスを参照する場合、db_sequence:get_valueがチェックされます。
しかし、現在のところlastval()など関連する関数の実行時にはパーミッションチェックを行わない事に留意してください。
   


ビューに対してはdb_view:expand権限がチェックされ、次いで、ビューから展開されたオブジェクトに対するパーミッションが個別にチェックされます。
   


利用者がクエリの一部として、あるいは近道インタフェースを用いた呼び出しによって関数を実行しようとするとき、db_procedure:{execute}権限がチェックされます。
関数がトラステッドプロシージャである場合、関数がトラステッドプロシージャのエントリポイントとして振る舞う事ができるかどうかを検査するためにdb_procedure:{entrypoint}権限がチェックされます。
   


あらゆるスキーマオブジェクトにアクセスするためには、それらを含むスキーマに対するdb_schema:search権限が必要です。
あるスキーマオブジェクトがスキーマ修飾無しに参照された場合、この権限を与えられていないスキーマは探索されません（あたかも利用者がスキーマに対するUSAGE権限を有していないかのように振る舞います）。
明示的なスキーマ修飾があり、このスキーマに対して利用者が要求された権限を有していない場合、エラーが発生します。
   


クライアントは全ての被参照テーブル・カラムに対して参照の権限を有している必要があります。それらがビューに由来し、展開されたものであっても同様です。これにより、テーブルの内容がどのような方法によって参照されるかに関係なく、一貫したアクセス制御ルールを適用する事ができます。
   


データベーススーパーユーザに対して、デフォルトのデータベース権限システムはDMLを用いたシステムカタログの更新と、TOASTテーブルの参照および更新を許しています。
しかし、sepgsqlが有効なとき、これらの操作は禁止されます。
   

DDLパーミッション





オブジェクトの作成、変更、削除やセキュリティラベルの変更など、SELinux™は各オブジェクトに共通の操作を制御するためのパーミッションを何個か定義しています。
また、特定のスキーマに対する名前の追加や削除など、いくつかのオブジェクトにはそれ固有の操作を制御するための特別なパーミッションも定義されています。
   


新しいデータベースオブジェクトの作成にはcreate権限が必要です。
SELinux™は利用者のセキュリティラベルと新しいオブジェクトに付与される事になるセキュリティラベルの対に基づいて、この権限を許可、あるいは拒否します。
いくつかの場合では、追加的な権限チェックが行われます。
   
	

CREATE DATABASEは、複製元またはテンプレートのデータベースに対するgetattr権限を要求します。
     

	

スキーマオブジェクトの作成は、それを含むスキーマに対してadd_name権限を要求します。
     

	

テーブルの作成は同時に、それがあたかも独立したオブジェクトであるかのように、個々のテーブル列を作成する権限を要求します。
     

	

LEAKPROOF属性を持った関数の作成はinstall権限を要求します。
（これはまた、既存の関数にLEAKPROOF属性を設定する時にも要求されます。）
     





DROP構文の実行時、削除されるオブジェクトに対してdrop権限がチェックされます。
CASCADEにより間接的に削除されるオブジェクトに対してもチェックは行われます。
特定のスキーマに含まれるオブジェクト（テーブル、ビュー、シーケンスや関数）の削除に際しては、スキーマに対するremove_name権限も併せてチェックされます。
   


ALTER構文の実行時、テーブルに対するインデックスやトリガなど別オブジェクトに従属するもの（これらは代わりに親オブジェクトに対する権限がチェックされる）を除き、setattrがチェックされます。
いくつかの場合では、追加的な権限チェックが行われます。
   
	

オブジェクトを新しいスキーマに移動させるには、古いスキーマに対してremove_name権限が、新しいスキーマに対してadd_name権限が必要です。
     

	

関数に対するLEAKPROOF属性の設定はinstall権限を要求します。
     

	

SECURITY LABELコマンドの実行時、ラベル付けされるオブジェクトの古いラベルに対してsetattr権限とrelabelfrom権限が、入力された新しいラベルに対してrelabelto権限がチェックされます。
（複数のラベルプロバイダがインストールされており、利用者がSELinux™の管理下にないセキュリティラベルを設定しようとした場合、setattr権限だけがチェックされるべきです。しかし実装上の制約により、現在はこれをチェックしていません。）
     




トラステッドプロシージャ





トラステッドプロシージャはSECURITY DEFINER関数やSet-UIDコマンドに似ています。
通常、機密データに対する高度にコントロールされたアクセス手段（例えば行を削除したり、保存された値の精度をさげたりします）を提供する目的で、SELinux™は利用者のものとは異なるセキュリティラベルで信頼済みのコードを実行するための機能を持っています。
関数がトラステッドプロシージャとして振舞うかどうかは、関数のセキュリティラベルおよびオペレーティングシステムのセキュリティポリシーに従って決まります。
例えば：
   

postgres=# CREATE TABLE customer (
               cid     int primary key,
               cname   text,
               credit  text
           );
CREATE TABLE
postgres=# SECURITY LABEL ON COLUMN customer.credit
               IS 'system_u:object_r:sepgsql_secret_table_t:s0';
SECURITY LABEL
postgres=# CREATE FUNCTION show_credit(int) RETURNS text
             AS 'SELECT regexp_replace(credit, ''-[0-9]+$'', ''-xxxx'', ''g'')
                        FROM customer WHERE cid = $1'
           LANGUAGE sql;
CREATE FUNCTION
postgres=# SECURITY LABEL ON FUNCTION show_credit(int)
               IS 'system_u:object_r:sepgsql_trusted_proc_exec_t:s0';
SECURITY LABEL



これらの操作は管理権限を持つ利用者で行ってください。
   

postgres=# SELECT * FROM customer;
ERROR:  SELinux: security policy violation
postgres=# SELECT cid, cname, show_credit(cid) FROM customer;
 cid | cname  |     show_credit
-----+--------+---------------------
   1 | taro   | 1111-2222-3333-xxxx
   2 | hanako | 5555-6666-7777-xxxx
(2 rows)



この場合、一般の利用者はcustomer.creditを直接参照することはできませんが、トラステッドプロシージャであるshow_creditを用いる事で、一部の桁がマスクされた顧客のクレジットカード番号をプリントする事が可能になります。
   

動的ドメイン遷移





セキュリティポリシーによって許可されている場合、SELinuxの動的ドメイン遷移機能を用いて、利用者のセキュリティラベルを新しいものに切り替える事ができます。
利用者のドメインはsetcurrent権限および、古いドメインから新しいドメインに遷移するためのdyntransition権限を有している必要があります。
   


利用者に自身のラベル、すなわち権限を切り替える事を可能にする動的ドメイン遷移は、システムによる自動切り替え（トラステッドプロシージャの場合）に比べて慎重に取り扱う必要があります。
dyntransition権限は元々のドメインよりも小さな権限セットを持つドメインに切り替える場合にのみ安全であると考えられます。
例えば、
   

regression=# select sepgsql_getcon();
                    sepgsql_getcon
-------------------------------------------------------
 unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
(1 row)

regression=# SELECT sepgsql_setcon('unconfined_u:unconfined_r:unconfined_t:s0-s0:c1.c4');
 sepgsql_setcon
----------------
 t
(1 row)

regression=# SELECT sepgsql_setcon('unconfined_u:unconfined_r:unconfined_t:s0-s0:c1.c1023');
ERROR:  SELinux: security policy violation



上記の例では、広いMCSレンジc1.c1023から狭いMCSレンジc1.c4への遷移は許可されているものの、その逆は禁止されています。
   


動的ドメイン遷移とトラステッドプロシージャの組み合わせは、典型的なコネクションプーラのライフサイクルに適合する興味深い利用法を提供します。
たとえコネクションプーリングソフトウェアが大半のSQLの実行を許可されていない場合でも、トラステッドプロシージャの内側からsepgsql_setcon()関数を用いて利用者のセキュリティラベルを切り替える事ができます。（トラステッドプロシージャは利用者のセキュリティラベルを切り替えるための認証情報を要求すべきです。）
この後、現在のセッションはコネクションプーラの権限ではなく、対象となる利用者の権限で動作する事になります。
また、sepgsql_setcon()にNULL引数を与えて（適切な権限チェックを行う）トラステッドプロシージャから再び呼び出す事で、コネクションプーラは後でセキュリティラベルを元に戻す事ができます。
ここでのポイントは、トラステッドプロシージャだけが実際に有効なセキュリティラベルを変更する権限を持っており、正しい認証情報が与えられた場合にのみそれを実行するという事です。
言うまでもなく、安全な操作のためには、権限のないアクセスから認証情報を保持するテーブルや関数定義などを保護しなければなりません。
   

その他





ロードされたモジュールは、セキュリティポリシーの適用を容易にバイパスできるため、LOADコマンドの実行は全面的に禁止されています。
   


sepgsql関数





表F.32「sepgsql関数」に利用可能な関数を示します。
  
表F.32 sepgsql関数
	

        関数
       

       

        説明
       

	
        sepgsql_getcon ()
        text
       

       

利用者のドメイン、つまり現在の利用者のセキュリティラベルを返します。
       

	
        sepgsql_setcon ( text )
        boolean
       

       

セキュリティポリシーで許可されている場合、現在のセッションの利用者ドメインを新しいドメインへと切り替えます。
NULLを引数に取る事も可能で、その場合、元々の利用者ドメインへの遷移を意味します。
       

	
        sepgsql_mcstrans_in ( text )
        text
       

       

mcstransデーモンが動作している場合、入力されたMLS/MCSレンジを修飾フォーマットから直接フォーマットに変換します。
       

	
        sepgsql_mcstrans_out ( text )
        text
       

       

mcstransデーモンが動作している場合、入力されたMLS/MCSレンジを直接フォーマットから修飾フォーマットに変換します。
       

	
        sepgsql_restorecon ( text )
        boolean
       

       

現在のデータベース内のすべてのオブジェクトに対して初期セキュリティラベルを割り当てます。
引数はNULLもしくはシステムの標準に代わる定義ファイルの名前です。
       





制限事項



	Data Definition Language (DDL) パーミッション
	

実装上の制約により、いくつかのDDL操作はパーミッションをチェックしません。
     

	Data Control Language (DCL) パーミッション
	

実装上の制約により、DCL操作はパーミッションをチェックしません。
     

	行レベルアクセス制御
	

PostgreSQL™は行レベルアクセス制御をサポートしていますが、sepgsqlはサポートしていません。
     

	隠れチャネル
	

たとえ利用者が参照を許可されていないオブジェクトであっても、sepgsqlはその存在を隠すことを意図していません。
例えば、我々があるオブジェクトの内容を参照する事ができなくても、主キーの競合や外部キー違反、その他の方法によって不可視なオブジェクトが存在する事を推測できます。
"最高機密"テーブルの存在を隠すことは不可能であり、その内容を秘匿することだけを意図しています。
     




外部リソース



	SE-PostgreSQL Introduction
	

このwikiページでは、概要、セキュリティ・デザイン、アーキテクチャ、管理、および将来の機能について紹介しています。
     

	SELinux User's and Administrator's Guide
	

このドキュメントはSELinux™システム管理に対する広範な知識を提供しています。
主としてRed Hatオペレーティングシステムを対象としていますが、それに限ったものではありません。
     

	Fedora SELinux FAQ
	

このドキュメントはSELinux™に関するよくある質問と回答(FAQ)です。
主としてFedoraを対象としていますが、それに限ったものではありません。
     




作者




   KaiGai Kohei <kaigai@ak.jp.nec.com>
  


spi — サーバプログラミングインタフェース機能/例





spiモジュールは、サーバプログラミングインタフェース(SPI)およびトリガを使用した、動作可能な例を複数提供します。
これらの関数は独自の何らかの価値を持つものですが、目的に応じて変更するための例としてより有用です。
関数は任意のテーブルと使用できるほど一般的なものですが、トリガを作成する場合は（後述のように）テーブル名とフィールド名を指定する必要があります。
 


以下で説明する関数グループのそれぞれは、別々にインストールすることができる拡張として提供されます。
 
refint — 参照整合性を実装する関数





check_primary_key()およびcheck_foreign_key()は、外部キー制約を検査するために使用されます。
（当然ながら、この機能はかなり前に組み込みの外部キー機能に取って代わりました。しかし例としてはまだ有用です。）
  


check_primary_key()は参照テーブルを検査します。
使用方法は、この関数を使用するAFTER INSERT OR UPDATEトリガを他のテーブルを参照するテーブルに作成することです。
トリガ引数は、外部キーを形成する参照テーブルの列名、被参照テーブル名、主/一意キーを形成する被参照テーブルの列名です。
複数の外部キーを扱うためには、各参照に対してトリガを作成してください。
  


check_foreign_key()は被参照テーブルを検査します。
使用方法は、この関数を使用するAFTER DELETE OR UPDATEトリガを他のテーブルで参照されるテーブルに作成することです。
トリガ引数は、この関数が検査を実行しなければならない参照テーブル数、参照キーが見つかった場合の動作（cascade — 参照行を削除、restrict — 参照キーが存在する場合トランザクションをアボート、setnull —参照キーフィールドをNULLに設定）、主/一意キーを形成するトリガを発行したテーブルの列名、参照テーブルの名前と列名（最初の引数で指定された数のテーブル分繰り返す）です。
主/一意キー列はNOT NULLと指定されていなければならず、また、一意性インデックスを持つべきであることに注意してください。
  


これらのトリガが別のBEFOREトリガから実行される場合、予期せず失敗する可能性があることに注意してください。
例えば、ユーザが行1を挿入し、BEFOREトリガが行2を挿入し、check_foreign_key()を使用してトリガを呼び出すと、check_foreign_key()関数は行1を参照できずに失敗します。
  


refint.exampleに例があります。
  

autoinc — フィールド自動増分用の関数





autoinc()は、整数型フィールドにシーケンスの次の値を格納するトリガです。
これは、組み込みの「SERIAL列」機能と一部重複しますが、同一ではありません。
トリガがフィールドの値を置換するのは、（行を挿入または更新するSQL文のアクションの後で）その値が最初にゼロまたはNULLである場合のみです。
また、シーケンスの次の値がゼロである場合、nextval()は非ゼロ値を取得するために再度呼び出されます。
  


使用方法は、この関数を使用するBEFORE INSERT（または BEFORE INSERT OR UPDATE）トリガを作成することです。
2つのトリガ引数、変更する整数型列の名前と値を生み出すシーケンスオブジェクトの名前を指定します。
（実際、自動増分列を複数更新したい場合、これらの名前の組み合わせを任意の数指定することができます。）
  


autoinc.exampleに例があります。
  

insert_username — 誰がテーブルを変更したかを追跡する関数





insert_username()は現在のユーザ名をテキスト型のフィールドに格納するトリガです。
これはテーブル内のある行を最後に変更したユーザを追跡する際に有用です。
  


使用方法は、この関数を使用するBEFORE INSERT、UPDATEまたはその両方のトリガを作成することです。
1つのトリガ引数、変更するテキスト型の列の名前を指定してください。
  


insert_username.exampleに例があります。
  

moddatetime — 最終更新時刻を追跡する関数





moddatetime()は現在時刻をtimestamp型のフィールドに格納するトリガです。
これは、テーブル内のある行の最終更新時刻を追跡する際に有用です。
  


使用方法は、この関数を使用するBEFORE UPDATEトリガを作成することです。
1つのトリガ引数、変更する列名を指定してください。
この列はtimestamp型またはtimestamp with time zone型でなければなりません。
  


moddatetime.exampleに例があります。
  


sslinfo — クライアントのSSL情報を取得する





現在のクライアントがPostgreSQL™に接続する際に提供する SSL 証明書に関する情報を、sslinfoモジュールは提供します。
現在の接続が SSL を使用しない場合、モジュールは無用です（大部分の関数は NULL を返します）。
 


このモジュールを通じて取得できる情報の中には、組み込みシステムビューpg_stat_sslを使っても取得できるものがあります。
 


インストールを--with-ssl=opensslオプション付きで構築しない限り、この拡張は全く構築されません。
 
提供される関数



	
     ssl_is_used() returns boolean
     
    
	

サーバへの現在の接続において SSL を使用する場合 true、使用しない場合 false を返します。
    

	
     ssl_version() returns text
     
    
	

SSL接続に使われているプロトコルの名前（例えば、TLSv1.0、TLSv1.1、TLSv1.2またはTLSv1.3）を返します。
    

	
     ssl_cipher() returns text
     
    
	

SSL接続に使われている暗号の名前（例えば、DHE-RSA-AES256-SHA）を返します。
    

	
     ssl_client_cert_present() returns boolean
     
    
	

現在のクライアントがサーバに対して、有効な SSL クライアント証明書を提示した場合 true、そうでない場合 false を返します。
（サーバがクライアントに対して、クライアント証明書を要求する方式と要求しない方式があります）。
    

	
     ssl_client_serial() returns numeric
     
    
	

現在のクライアント証明書のシリアル番号を返します。
証明書のシリアル番号と証明書の発行者との組み合わせにより、証明書が一意に識別されることが保証されます
（しかし、証明書の所有者の保証ではありません。
所有者は定期的にその鍵を変更し、発行者から新しい証明書を取得すべきだからです）。
    


したがって、自分で認証局を設立し、その認証局の証明書だけをサーバが受理する場合、シリアル番号は利用者を識別するのに最も信頼できる方法です（あまり記憶の助けにはなりませんが）。
    

	
     ssl_client_dn() returns text
     
    
	

現在のクライアント証明書の所有者の内容を全て返します。
文字データは現在のデータベースのエンコーディングに変換されます。
なお、証明書名で非 ASCII 文字を用いる場合、データベースでもその文字を使用できると仮定します。
データベースが SQL_ASCII エンコーディングを使用する場合、証明書名で用いる非 ASCII 文字は UTF-8 のユニコードとして表示されます。
    


その結果は/CN=Somebody /C=Some country /O=Some organizationのようになります。
    

	
     ssl_issuer_dn() returns text
     
    
	

現在のクライアント証明書の発行者名を全て返します。
文字データは現在のデータベースのエンコーディングに変換されます。
エンコーディングの変換法は ssl_client_dn と同じです。
    


本関数の戻り値と証明書シリアル番号の組み合わせにより、証明書を一意に識別します。
    


実際に本関数が有用となるのは、サーバの認証局ファイルの中に信頼できる認証局の証明書を複数保有している場合、またはこの認証局が中間認証局の証明書を発行している場合だけです。
    

	
     ssl_client_dn_field(fieldname text) returns text
     
    
	

この関数は証明書の所有者の指定した項目の内容を返します。
指定した項目が存在しない場合は NULL を返します。
項目の名前は OpenSSL™ オブジェクトデータベースを使用して ASN1 オブジェクト識別子に変換された文字列定数です。
以下の項目が受理できます。
    

commonName (alias CN)
surname (alias SN)
name
givenName (alias GN)
countryName (alias C)
localityName (alias L)
stateOrProvinceName (alias ST)
organizationName (alias O)
organizationalUnitName (alias OU)
title
description
initials
postalCode
streetAddress
generationQualifier
description
dnQualifier
x500UniqueIdentifier
pseudonym
role
emailAddress



commonName を除き、全ての項目は任意です。
認証局の方針によって、どの項目を含み、どの項目を含まないかが全て決まります。
しかし、X.500 および X.509 標準によって、項目の意味は厳格に定義されています。
したがって、項目に任意の意味を持たせることはできません。
    

	
     ssl_issuer_field(fieldname text) returns text
     
    
	

証明書の所有者に対するものではなく証明書の発行者に対するものであるという点を除き、ssl_client_dn_field と同様の関数です。
    

	
     ssl_extension_info() returns setof record
     
    
	

クライアント証明書の拡張に関する情報を提供します。拡張に関する情報とは、拡張の名前、拡張の値、クリティカルな拡張か否かです。
    




作者




   Victor Wagner <vitus@cryptocom.ru>, Cryptocom LTD
  

   Dmitry Voronin <carriingfate92@yandex.ru>
  


Cryptocom 社 OpenSSL 開発グループのメールアドレス
   <openssl@cryptocom.ru>
  


tablefunc — テーブルを返す関数(crosstab等)





tablefuncモジュールにはテーブル（つまり複数行）を返す各種関数があります。
これらの関数は、その独自の目的として、および、複数行を返すC関数の作成方法を示す例として、有用です。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
提供される関数





  tablefuncモジュールにより提供される関数を表F.33「tablefuncの関数」にまとめます。
  
表F.33 tablefuncの関数
	

        関数
       

       

        説明
       

	
        normal_rand ( numvals integer, mean float8, stddev float8 )
        setof float8
       

       

正規分布乱数値の集合を生成します。
       

	
        crosstab ( sql text )
        setof record
       

       

行の名前とN個の値列からなる「ピボット表」を生成します。
ここでNは呼出元の問い合わせで指定される行型で決定します。
       

	
        crosstabN ( sql text )
        setof table_crosstab_N
       

       

行の名前とN個の値列からなる「ピボット表」を生成します。
crosstab2、crosstab3、crosstab4が定義されていますが、後述する手順で追加のcrosstabN関数を作成することが可能です。
       

	
        crosstab ( source_sql text, category_sql text )
        setof record
       

       

2番目の問い合わせで指定された値列を持つ「ピボット表」を生成します。
       

	
        crosstab ( sql text, N integer )
        setof record
       

       

廃止予定のcrosstab(text)です。
値列の数は呼び出す問い合わせで常に決まりますので、現在パラメータNは無視されます。
       

	
        
        connectby ( relname text, keyid_fld text, parent_keyid_fld text
        [, orderby_fld text ], start_with text, max_depth integer
        [, branch_delim text ] )
        setof record
       

       

階層ツリー構造表現を生成します。
        




normal_rand




normal_rand(int numvals, float8 mean, float8 stddev) returns setof float8



normal_randは正規乱数値の集合（ガウス分布）を生成します。
    


ここでnumvalsはこの関数が返す値の数です。
meanは正規分布の平均値、stddevは正規分布値の標準偏差です。
    


例えば、以下の呼出しは、平均5、標準偏差3で1000個の値を要求します。
    

test=# SELECT * FROM normal_rand(1000, 5, 3);
     normal_rand
----------------------
     1.56556322244898
     9.10040991424657
     5.36957140345079
   -0.369151492880995
    0.283600703686639
       .
       .
       .
     4.82992125404908
     9.71308014517282
     2.49639286969028
(1000 rows)


crosstab(text)




crosstab(text sql)
crosstab(text sql, int N)



crosstab関数は「ピボット」表示を生成するために使用されます。
ここでは、データは下方向にではなくページ横方向に渡って列挙されます。
例えば、以下のようなデータがあるとします。


row1    val11
row1    val12
row1    val13
...
row2    val21
row2    val22
row2    val23
...



これを次のように表示したいとします。


row1    val11   val12   val13   ...
row2    val21   val22   val23   ...
...



crosstab関数は、最初のような書式を持つ生データを生成するSQL問い合わせとなるテキストパラメータを取り、2番目のような書式を持つテーブルを生成します。
   


sqlパラメータは元となるデータ集合を生成するSQL文です。
この文はrow_name列を1つ、category列を1つ、value列を1つ返さなければなりません。
Nは廃れたパラメータであり、指定されたとしても無視されます。
（これまでは、これは出力値列の数と一致する必要がありました。しかし、現在これは呼び出し元の問い合わせにより決まります。）
   


例：指定したSQLは以下のような集合を生成しても構いません。


 row_name    cat    value
----------+-------+-------
  row1      cat1    val1
  row1      cat2    val2
  row1      cat3    val3
  row1      cat4    val4
  row2      cat1    val5
  row2      cat2    val6
  row2      cat3    val7
  row2      cat4    val8


   


crosstab関数はsetof recordを返すものとして宣言されていますので、出力列の実際の名前と型を、以下の例のように、呼出元のSELECTのFROM句で定義しなければなりません。


SELECT * FROM crosstab('...') AS ct(row_name text, category_1 text, category_2 text);



この例は以下のような集合を生成します。


           <== value  columns  ==>
 row_name   category_1   category_2
----------+------------+------------
  row1        val1         val2
  row2        val5         val6


   


FROM句は出力を1つのrow_name列（SQL問い合わせの最初の結果列と同一データ型）と続くN個のvalue列（SQL問い合わせの3番目の結果列とすべて同じデータ型）を持つものとして定義しなければなりません。
必要なだけの個数の値列を出力するように設定することができます。
出力列の名前は使用者に任されています。
   


crosstab関数は、同じrow_name値を持つ入力行の各連続的なグループに対して、1つの出力行を生成します。
左から右へこれらの行のvalueフィールドで出力value列を埋めていきます。
もしグループ内の行が存在する出力value列より少なければ、余った出力列はNULLになります。
もし行が多ければ、余った入力行は無視されます。
   


実際のところ、入力行の順序が適切になるように、つまり、同じrow_nameを持つ値がまとまり、行内で正しく順序付けられるように、SQL問い合わせは常にORDER BY 1,2を指定しなければなりません。
crosstab自体が問い合わせ結果の2番目の列に注意を払わないことに注意してください。
これは順序付けのため、3番目の列の値がページに渡って現れる順序を制御するためだけに存在します。
   


以下に複雑な例を示します。


CREATE TABLE ct(id SERIAL, rowid TEXT, attribute TEXT, value TEXT);
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att1','val1');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att2','val2');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att3','val3');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att4','val4');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att1','val5');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att2','val6');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att3','val7');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att4','val8');

SELECT *
FROM crosstab(
  'select rowid, attribute, value
   from ct
   where attribute = ''att2'' or attribute = ''att3''
   order by 1,2')
AS ct(row_name text, category_1 text, category_2 text, category_3 text);

 row_name | category_1 | category_2 | category_3
----------+------------+------------+------------
 test1    | val2       | val3       |
 test2    | val6       | val7       |
(2 rows)


   


必要な出力行型をその定義に反映した独自のcrosstab関数を構築することで、常に出力列を定義するためのFROM句を書く必要性をなくすことができます。
これは次節で説明します。
他にも必要なFROM句をビュー定義に埋め込むことでも実現可能です。
   
注記


psqlの\crosstabviewコマンドも参照してください。crosstab()と類似の機能を提供します。
    


crosstabN(text)




crosstabN(text sql)



crosstabN関数は、呼び出し元のSELECT問い合わせで列名と型を書き出す必要性をなくすことができるように、一般的なcrosstab関数に対する独自のラッパーを構築する方法の例です。
tablefuncモジュールには、次のように出力行型が定義されたcrosstab2、crosstab3、crosstab4が含まれています。
    

CREATE TYPE tablefunc_crosstab_N AS (
    row_name TEXT,
    category_1 TEXT,
    category_2 TEXT,
        .
        .
        .
    category_N TEXT
);



このように、入力問い合わせがtext型のrow_name列とvalue列を生成し、かつ、2、3、または4個の出力値列を持つ場合、これらの関数を直接使用することができます。
この他の点はすべて、上述の一般的なcrosstab関数で説明した通りの動作をします。
    


例えば、前節で挙げた例は下のように動作します。


SELECT *
FROM crosstab3(
  'select rowid, attribute, value
   from ct
   where attribute = ''att2'' or attribute = ''att3''
   order by 1,2');


    


これらの関数はほぼ説明を目的として提供されたものです。
背後のcrosstab()関数に基いた独自の戻り型と関数を作成することができます。
独自のcrosstab関数を構築する方法は2つあります。

    
	

contrib/tablefunc/tablefunc--1.0.sqlの例と同様にして、必要な出力列を記述する複合型を作成します。
そして、text型のパラメータを1つ取り、setof your_type_nameを返す一意な名前の関数を、同じ背後のcrosstab C関数をリンクさせて定義します。
例えば、元データが行名としてtext型を、値としてfloat8を生成し、5つの値列を希望する場合、以下のようになります。


CREATE TYPE my_crosstab_float8_5_cols AS (
    my_row_name text,
    my_category_1 float8,
    my_category_2 float8,
    my_category_3 float8,
    my_category_4 float8,
    my_category_5 float8
);

CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(text)
    RETURNS setof my_crosstab_float8_5_cols
    AS '$libdir/tablefunc','crosstab' LANGUAGE C STABLE STRICT;


      

	

暗黙的に戻り値の型を定義する場合はOUTパラメータを使用してください。
同じ例を以下のように書くこともできます。


CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(
    IN text,
    OUT my_row_name text,
    OUT my_category_1 float8,
    OUT my_category_2 float8,
    OUT my_category_3 float8,
    OUT my_category_4 float8,
    OUT my_category_5 float8)
  RETURNS setof record
  AS '$libdir/tablefunc','crosstab' LANGUAGE C STABLE STRICT;


      




    

crosstab(text, text)




crosstab(text source_sql, text category_sql)



単一パラメータのcrosstab構文の大きな制限は、各値を最初の利用可能な列に挿入して、すべての値をグループのように扱う点です。
値列を特定のデータカテゴリに対応させ、グループの一部はカテゴリの一部のデータを持たない可能性がある場合は、うまく動作しません。
2パラメータを取るcrosstab構文は、出力列に対応するカテゴリのリストを明示的に提供することで、こうした状況を扱います。
   


source_sqlは元となるデータ集合を生成するSQL文です。
このSQL文はrow_name列を1つcategory列を1つ、value列を1つ返さなければなりません。
また1つ以上の「追加」の列を持つこともできます。
row_name列が先頭でなければなりません。
categoryとvalue列は、この順番で最後の2列でなければなりません。
row_nameとcategoryとの間の列はすべて「追加」の列とみなされます。
「追加」の列は同じrow_name値を持つ行すべてで同一であるということが前提です。
   


例えば、source_sqlは以下のような集合を生成しなければなりません。


SELECT row_name, extra_col, cat, value FROM foo ORDER BY 1;

 row_name    extra_col   cat    value
----------+------------+-----+---------
  row1         extra1    cat1    val1
  row1         extra1    cat2    val2
  row1         extra1    cat4    val4
  row2         extra2    cat1    val5
  row2         extra2    cat2    val6
  row2         extra2    cat3    val7
  row2         extra2    cat4    val8


   


category_sqlはカテゴリの集合を生成するSQL文でなければなりません。
このSQL文は1つの列のみを返さなければなりません。
また、少なくとも1つの結果行を生成しなければならず、さもないと、エラーになります。
さらに重複するカテゴリを生成してはなりません。
さもないとエラーとなります。
category_sqlは以下のようなものになります。



SELECT DISTINCT cat FROM foo ORDER BY 1;
    cat
  -------
    cat1
    cat2
    cat3
    cat4


   


crosstab関数はsetof recordを返すものとして宣言されていますので、出力列の実際の名前と型を、以下の例のように、呼出元のSELECTのFROM句で定義しなければなりません。



SELECT * FROM crosstab('...', '...')
    AS ct(row_name text, extra text, cat1 text, cat2 text, cat3 text, cat4 text);


   


これは以下のような集合を生成します。


                  <==  value  columns   ==>
row_name   extra   cat1   cat2   cat3   cat4
---------+-------+------+------+------+------
  row1     extra1  val1   val2          val4
  row2     extra2  val5   val6   val7   val8


   


FROM句は、出力列の適切な個数、およびその適切なデータ型を定義しなければなりません。
source_sql問い合わせ結果にN個の列がある場合、最初のN-2は最初のN-2出力列と一致しなければなりません。
残りの出力列はsource_sql問い合わせ結果の最後の列の型を持たなければならず、かつ、category_sql問い合わせ結果内の行と同じ個数でなければなりません。
   


crosstab関数は、同一row_name値を持つ入力行の連続したグループ毎に1つの出力行を生成します。
row_name出力列と任意の「追加」列はグループの最初の行からコピーされます。
value出力列は、category値と一致する行のvalueで埋められます。
行のcategoryがcategory_sql問い合わせの出力とまったく一致しなかった場合、そのvalueは無視されます。
グループの入力行内にまったくカテゴリに一致する出力列が存在しない場合、NULLで埋められます。
   


実際は、同じrow_nameを持つ値をまとめられるように、source_sql問い合わせでは常にORDER BY 1を指定すべきです。
しかし、グループ内のカテゴリの順序は重要ではありません。
また、category_sql問い合わせの出力順序が指定された出力列の順序と一致することを確実にすることが重要です。
   


以下に複雑な例を2つ示します。


create table sales(year int, month int, qty int);
insert into sales values(2007, 1, 1000);
insert into sales values(2007, 2, 1500);
insert into sales values(2007, 7, 500);
insert into sales values(2007, 11, 1500);
insert into sales values(2007, 12, 2000);
insert into sales values(2008, 1, 1000);

select * from crosstab(
  'select year, month, qty from sales order by 1',
  'select m from generate_series(1,12) m'
) as (
  year int,
  "Jan" int,
  "Feb" int,
  "Mar" int,
  "Apr" int,
  "May" int,
  "Jun" int,
  "Jul" int,
  "Aug" int,
  "Sep" int,
  "Oct" int,
  "Nov" int,
  "Dec" int
);
 year | Jan  | Feb  | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov  | Dec
------+------+------+-----+-----+-----+-----+-----+-----+-----+-----+------+------
 2007 | 1000 | 1500 |     |     |     |     | 500 |     |     |     | 1500 | 2000
 2008 | 1000 |      |     |     |     |     |     |     |     |     |      |
(2 rows)





CREATE TABLE cth(rowid text, rowdt timestamp, attribute text, val text);
INSERT INTO cth VALUES('test1','01 March 2003','temperature','42');
INSERT INTO cth VALUES('test1','01 March 2003','test_result','PASS');
INSERT INTO cth VALUES('test1','01 March 2003','volts','2.6987');
INSERT INTO cth VALUES('test2','02 March 2003','temperature','53');
INSERT INTO cth VALUES('test2','02 March 2003','test_result','FAIL');
INSERT INTO cth VALUES('test2','02 March 2003','test_startdate','01 March 2003');
INSERT INTO cth VALUES('test2','02 March 2003','volts','3.1234');

SELECT * FROM crosstab
(
  'SELECT rowid, rowdt, attribute, val FROM cth ORDER BY 1',
  'SELECT DISTINCT attribute FROM cth ORDER BY 1'
)
AS
(
       rowid text,
       rowdt timestamp,
       temperature int4,
       test_result text,
       test_startdate timestamp,
       volts float8
);
 rowid |          rowdt           | temperature | test_result |      test_startdate      | volts
-------+--------------------------+-------------+-------------+--------------------------+--------
 test1 | Sat Mar 01 00:00:00 2003 |          42 | PASS        |                          | 2.6987
 test2 | Sun Mar 02 00:00:00 2003 |          53 | FAIL        | Sat Mar 01 00:00:00 2003 | 3.1234
(2 rows)


   


各問い合わせで結果列の名前と型を記述する必要性をなくすために、事前定義した関数を作成することができます。
前節の例を参照してください。
このcrosstab構文用の背後のC関数はcrosstab_hashという名前です。
   

connectby




connectby(text relname, text keyid_fld, text parent_keyid_fld
          [, text orderby_fld ], text start_with, int max_depth
          [, text branch_delim ])



connectby関数はテーブル内に格納された階層データ表示を生成します。
テーブルは行を一意に識別するキーフィールドと各行の親（もしあれば）を参照する親キーフィールドを持たなければなりません。
connectbyは任意の行から辿った部分ツリーを表示することができます。
   


表F.34「connectbyパラメータ」ではパラメータを解説します。
   
表F.34 connectbyパラメータ
	パラメータ	説明
	relname	元となるリレーション名
	keyid_fld	キーフィールドの名前
	parent_keyid_fld	親のキーフィールドの名前
	orderby_fld	兄弟の順序付け用のフィールド名（省略可能）
	start_with	開始行のキー値
	max_depth	辿る深さに対する制限。無制限の場合はゼロ
	branch_delim	キーと分岐出力で区切る文字列（省略可能）





キーおよび親キーフィールドは任意のデータ型を取ることができますが、これらは同じデータ型でなければなりません。
キーフィールドのデータ型に関係なく、start_withはテキスト文字列として入力されなければならないことに注意してください。
    


connectby関数はsetof recordを返すものとして宣言されていますので、以下の例のように、出力列の実際の名前と型を呼出し元のSELECT文のFROM句で定義しなければなりません。
    

SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'pos', 'row2', 0, '~')
    AS t(keyid text, parent_keyid text, level int, branch text, pos int);



先頭から2つの出力列は、現在の行のキーおよび親行のキーとして使用されます。
これらはテーブルのキーフィールドのデータ型と一致する必要があります。
3番目の出力列はツリーの深さであり、integer型である必要があります。
branch_delimパラメータが与えられた場合、次の出力列は分岐表示であり、text型である必要があります。
最後に、orderby_fldパラメータが与えられた場合、最後の出力列は連番であり、integer型である必要があります。
    


「分岐」出力列は現在の行まで達するために取られるキーの経路を示します。
キーは指定されたbranch_delim文字列で区切られます。
分岐表示が不要ならば、branch_delimパラメータと出力列リスト内の分岐列を省略してください。
    


同じ親を持つ兄弟の順序が重要な場合、どのフィールドで兄弟の順序付けを行うかを指定するorderby_fldパラメータを含めてください。
このフィールドは任意のソート可能なデータ型を取ることができます。
orderby_fldが指定された場合のみ、出力列リストには、最終整数型連番列を含めなければなりません。
    


テーブルおよびフィールド名を表すパラメータはそのままconnectbyが内部的に生成するSQL問い合わせにコピーされます。
したがって、大文字小文字が混在した名前または特殊文字を含む名前の場合は二重引用符で括ってください。
またテーブル名をスキーマで修飾する必要があるかもしれません。
    


大規模なテーブルでは、親キーフィールド上にインデックスがないと性能が劣化します。
    


branch_delim文字列がキー値内にまったく出現しないことが重要です。
さもないと、connectbyは無限再帰エラーを間違って報告するかもしれません。
branch_delimが提供されていない場合、再帰を検知するためにデフォルト値~が使用されます。
     
    


以下に例を示します。


CREATE TABLE connectby_tree(keyid text, parent_keyid text, pos int);

INSERT INTO connectby_tree VALUES('row1',NULL, 0);
INSERT INTO connectby_tree VALUES('row2','row1', 0);
INSERT INTO connectby_tree VALUES('row3','row1', 0);
INSERT INTO connectby_tree VALUES('row4','row2', 1);
INSERT INTO connectby_tree VALUES('row5','row2', 0);
INSERT INTO connectby_tree VALUES('row6','row4', 0);
INSERT INTO connectby_tree VALUES('row7','row3', 0);
INSERT INTO connectby_tree VALUES('row8','row6', 0);
INSERT INTO connectby_tree VALUES('row9','row5', 0);


-- 分岐あり、orderby_fldなし(結果の順序は保証されない)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'row2', 0, '~')
 AS t(keyid text, parent_keyid text, level int, branch text);
 keyid | parent_keyid | level |       branch
-------+--------------+-------+---------------------
 row2  |              |     0 | row2
 row4  | row2         |     1 | row2~row4
 row6  | row4         |     2 | row2~row4~row6
 row8  | row6         |     3 | row2~row4~row6~row8
 row5  | row2         |     1 | row2~row5
 row9  | row5         |     2 | row2~row5~row9
(6 rows)


-- 分岐なし、orderby_fldなし(結果の順序は保証されない)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'row2', 0)
 AS t(keyid text, parent_keyid text, level int);
 keyid | parent_keyid | level
-------+--------------+-------
 row2  |              |     0
 row4  | row2         |     1
 row6  | row4         |     2
 row8  | row6         |     3
 row5  | row2         |     1
 row9  | row5         |     2
(6 rows)


-- 分岐あり、orderby_fldあり(row5がrow4の前に来ていることに注目)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'pos', 'row2', 0, '~')
 AS t(keyid text, parent_keyid text, level int, branch text, pos int);
 keyid | parent_keyid | level |       branch        | pos
-------+--------------+-------+---------------------+-----
 row2  |              |     0 | row2                |   1
 row5  | row2         |     1 | row2~row5           |   2
 row9  | row5         |     2 | row2~row5~row9      |   3
 row4  | row2         |     1 | row2~row4           |   4
 row6  | row4         |     2 | row2~row4~row6      |   5
 row8  | row6         |     3 | row2~row4~row6~row8 |   6
(6 rows)


-- 分岐なし、orderby_fldあり(row5がrow4の前に来ていることに注目)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'pos', 'row2', 0)
 AS t(keyid text, parent_keyid text, level int, pos int);
 keyid | parent_keyid | level | pos
-------+--------------+-------+-----
 row2  |              |     0 |   1
 row5  | row2         |     1 |   2
 row9  | row5         |     2 |   3
 row4  | row2         |     1 |   4
 row6  | row4         |     2 |   5
 row8  | row6         |     3 |   6
(6 rows)


    


作者




   Joe Conway
  


tcn — テーブルの内容の変更を監視者に通知するトリガ関数





tcnモジュールは関連づけされたテーブル上の変更を監視者に通知するトリガ関数を提供します。
これはFOR EACH ROWのAFTERトリガとして使用しなければなりません。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 


CREATE TRIGGER文の中で与えることができるパラメータは１つしかありませんが、省略することができます。
与えられた場合、それは通知のチャネル名として使用されます。
省略された場合はチャネル名としてtcnが使用されます。
 


通知のペイロードにはテーブル名、どのような種類の操作が行われたかを示す文字、主キー列における列名と値の組み合わせが含まれます。
部位はそれぞれカンマで区切られています。
正規表現を使用して簡単に解析するために、テーブル名と列名は常に二重引用符で括られ、またデータ値は常に単一引用符で括られています。
内部に含まれる引用符は二重化されます。
 


この拡張を使用する簡単な例を以下に示します。



test=# create table tcndata
test-#   (
test(#     a int not null,
test(#     b date not null,
test(#     c text,
test(#     primary key (a, b)
test(#   );
CREATE TABLE
test=# create trigger tcndata_tcn_trigger
test-#   after insert or update or delete on tcndata
test-#   for each row execute function triggered_change_notification();
CREATE TRIGGER
test=# listen tcn;
LISTEN
test=# insert into tcndata values (1, date '2012-12-22', 'one'),
test-#                            (1, date '2012-12-23', 'another'),
test-#                            (2, date '2012-12-23', 'two');
INSERT 0 3
Asynchronous notification "tcn" with payload ""tcndata",I,"a"='1',"b"='2012-12-22'" received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",I,"a"='1',"b"='2012-12-23'" received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",I,"a"='2',"b"='2012-12-23'" received from server process with PID 22770.
test=# update tcndata set c = 'uno' where a = 1;
UPDATE 2
Asynchronous notification "tcn" with payload ""tcndata",U,"a"='1',"b"='2012-12-22'" received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",U,"a"='1',"b"='2012-12-23'" received from server process with PID 22770.
test=# delete from tcndata where a = 1 and b = date '2012-12-22';
DELETE 1
Asynchronous notification "tcn" with payload ""tcndata",D,"a"='1',"b"='2012-12-22'" received from server process with PID 22770.


 

test_decoding — SQLに基づくWALロジカルデコーディングのためのテストモジュール/モジュール例





test_decodingはロジカルデコーディング出力プラグインの例です。
これは特に有用なことはまったく行いませんが、独自出力プラグイン開発の開始点として使えます。
 


test_decodingはロジカルデコーディング機構を通してWALを受け取り、実行された操作のテキスト表現にデコードします。
 


このプラグインがSQLロジカルデコーディングインタフェースで使われると、そこからの典型的な出力は以下のようになるでしょう。



postgres=# SELECT * FROM pg_logical_slot_get_changes('test_slot', NULL, NULL, 'include-xids', '0');
   lsn     | xid |                       data
-----------+-----+--------------------------------------------------
 0/16D30F8 | 691 | BEGIN
 0/16D32A0 | 691 | table public.data: INSERT: id[int4]:2 data[text]:'arg'
 0/16D32A0 | 691 | table public.data: INSERT: id[int4]:3 data[text]:'demo'
 0/16D32A0 | 691 | COMMIT
 0/16D32D8 | 692 | BEGIN
 0/16D3398 | 692 | table public.data: DELETE: id[int4]:2
 0/16D3398 | 692 | table public.data: DELETE: id[int4]:3
 0/16D3398 | 692 | COMMIT
(8 rows)


 


進行中のトランザクションの変化を知ることもでき、典型的な出力は以下のようになるでしょう。



postgres[33712]=#* SELECT * FROM pg_logical_slot_get_changes('test_slot', NULL, NULL, 'stream-changes', '1');
    lsn    | xid |                       data
-----------+-----+--------------------------------------------------
 0/16B21F8 | 503 | opening a streamed block for transaction TXN 503
 0/16B21F8 | 503 | streaming change for TXN 503
 0/16B2300 | 503 | streaming change for TXN 503
 0/16B2408 | 503 | streaming change for TXN 503
 0/16BEBA0 | 503 | closing a streamed block for transaction TXN 503
 0/16B21F8 | 503 | opening a streamed block for transaction TXN 503
 0/16BECA8 | 503 | streaming change for TXN 503
 0/16BEDB0 | 503 | streaming change for TXN 503
 0/16BEEB8 | 503 | streaming change for TXN 503
 0/16BEBA0 | 503 | closing a streamed block for transaction TXN 503
(10 rows)


 

tsm_system_rows — TABLESAMPLEに対するSYSTEM_ROWSサンプリングメソッド





tsm_system_rowsモジュールはSYSTEM_ROWSというテーブルサンプリングメソッドを提供します。
これはSELECTコマンドのTABLESAMPLE句で利用できます。
 


このテーブルサンプリングメソッドは読み込む最大行数を指定する整数の引数を1つ取ります。
結果のサンプルにはいつでもそれと正確に同じだけの行数が含まれます。
ただしテーブルにそれだけの行数がないときは、テーブル全体が選択されることになります。
 


組み込みのSYSTEMサンプリングメソッドと同様、SYSTEM_ROWSはブロックレベルのサンプリングを行うため、サンプルは完全にはランダムではなく、特にごく少数の行が要求されたときはクラスタリングの影響を受けます。
 


SYSTEM_ROWSはREPEATABLE句をサポートしません。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
例





以下にSYSTEM_ROWSを使ってテーブルのサンプルをSELECTする例を示します。
まず、拡張をインストールします。
  

CREATE EXTENSION tsm_system_rows;



これで、例えば以下のようにSELECTコマンドを使うことができます。



SELECT * FROM my_table TABLESAMPLE SYSTEM_ROWS(100);


  


このコマンドはテーブルmy_tableからサンプルの100行を返します。
（ただし、テーブルに可視の行が100行ないときは、すべての行が返されます。）
  


tsm_system_time — TABLESAMPLEに対するSYSTEM_TIMEサンプリングメソッド





tsm_system_timeモジュールはSYSTEM_TIMEというテーブルサンプリングメソッドを提供します。
これはSELECTコマンドのTABLESAMPLE句で利用できます。
 


このテーブルサンプリングメソッドはテーブルを読み込みのに消費する最大ミリ秒を指定する浮動小数点の引数を1つ取ります。
これにより、サンプルのサイズを予測するのが難しくなる代わりに、問い合わせに要する時間に関する直接的な制御が得られます。
結果のサンプルには、指定した時間内に読み込めただけの数の行が含まれます。
ただし、テーブル全体を先に読み終わった時は除きます。
 


組み込みのSYSTEMサンプリングメソッドと同様、SYSTEM_TIMEはブロックレベルのサンプリングを行うため、サンプルは完全にはランダムではなく、特にごく少数の行がSELECTされたときはクラスタリングの影響を受けます。
 


SYSTEM_TIMEはREPEATABLE句をサポートしません。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
例





以下にSYSTEM_TIMEを使ってテーブルのサンプルをSELECTする例を示します。
まず、拡張をインストールします。
  

CREATE EXTENSION tsm_system_time;



これで、例えば以下のようにSELECTコマンドを使うことができます。



SELECT * FROM my_table TABLESAMPLE SYSTEM_TIME(1000);


  


このコマンドは1秒（1000ミリ秒）の間にmy_tableから読み込めるだけのサンプルを返します。
もちろん、テーブル全体が1秒いないに読み込めるときは、すべての行が返されます。
  


unaccent — 発音区分記号を取り除く全文検索用辞書





unaccentは語彙素からアクセント(発音区分記号)を取り除く全文検索用の辞書です。
これはフィルタ処理を行う辞書、つまり、標準の動作と異なり、その出力が常に次の辞書（もしあれば）に渡されるものです。
これにより全文検索においてアクセントを無視した処理を行うことができます。
 


現在のunaccentの実装ではthesaurus辞書向けの正規化用辞書として使用することはできません。
 


このモジュールは「trusted」と見なされます。つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
設定





unaccent辞書は以下のオプションを受け付けます。
  
	

RULESは変換規則の一覧を含むファイルのベースネームです。
このファイルは$SHAREDIR/tsearch_data/内に格納しなければなりません。（ここで$SHAREDIRはPostgreSQL™インストレーションの共有データディレクトリを意味します。）
この名前は.rulesで終わらなければなりません。（.rulesはRULESパラメータには含まれません。）
    





rulesファイルの書式は以下の通りです。
  
	

各行は、アクセント付き文字とその後にアクセントを取り除いた文字から構成される、1つの変換規則です。
一つ目が二つ目に変換されます。
以下に例を示します。


À        A
Á        A
Â        A
Ã        A
Ä        A
Å        A
Æ        AE



2つの文字は空白で分けられていなければならず、行の先頭や末尾の空白は無視されます。
    

	

あるいは、一行に一文字だけ指定された場合、その文字は削除されます。これは、アクセントが分かれた文字で表現される言語では便利です。
    

	

実のところ、各「文字」は空白を含まなければいかなる文字列でも良いので、unaccent辞書は発音区別符号の除去に加えて、部分文字列の置換などに使うこともできます。
    

	

数字などの一部の文字では、変換規則に空白が必要な場合があります。
この場合、変換された文字を囲むのに二重引用符が使えます。
変換された文字に二重引用符を含める場合は、もう一つの二重引用符でエスケープすることが必要です。
例えば以下の通りです。


¼      " 1/4"
½      " 1/2"
¾      " 3/4"
“       """"
”       """"


    

	

他のPostgreSQL™テキスト検索設定ファイルと同じように、rulesファイルはUTF-8エンコーディングで保存しなければなりません。
データはロード時に自動的に現在のデータベースのエンコーディングに変換されます。
rulesファイルが現在のエンコーディングで適用できない規則も含むことができるように、変換できない文字を含む行は単に無視されます。
    





unaccent.rulesは、ほとんどの欧州圏の言語で直接使用できる、より複雑な例です。
これはunaccentモジュールをインストールした時に$SHAREDIR/tsearch_data/にインストールされます。
このrulesファイルは、アクセント記号のある文字をアクセント記号のない同じ文字に変換し、また、合字を同等な普通の文字の並びに(例えば、ÆをAEに)展開します。
  

使用方法





unaccent拡張をインストールすることで、unaccent全文検索テンプレートとそれに基づくデフォルトのパラメータを持つunaccent辞書が生成されます。
unaccent辞書はRULES='unaccent'というデフォルトパラメータ設定を持ちます。これは標準のunaccent.rulesファイルを即座に使用可能にします。
次の例のようにパラメータを変更することができます。



mydb=# ALTER TEXT SEARCH DICTIONARY unaccent (RULES='my_rules');




また、このテンプレートに基づいた辞書を新規に作成することができます。
  


以下を行うことで、辞書の動作を確認することができます。


mydb=# select ts_lexize('unaccent','Hôtel');
 ts_lexize
-----------
 {Hotel}
(1 row)


  


全文検索設定にunaccent辞書を組み込む方法を示す例を以下に示します。


mydb=# CREATE TEXT SEARCH CONFIGURATION fr ( COPY = french );
mydb=# ALTER TEXT SEARCH CONFIGURATION fr
        ALTER MAPPING FOR hword, hword_part, word
        WITH unaccent, french_stem;
mydb=# select to_tsvector('fr','Hôtels de la Mer');
    to_tsvector
-------------------
 'hotel':1 'mer':4
(1 row)

mydb=# select to_tsvector('fr','Hôtel de la Mer') @@ to_tsquery('fr','Hotels');
 ?column?
----------
 t
(1 row)

mydb=# select ts_headline('fr','Hôtel de la Mer',to_tsquery('fr','Hotels'));
      ts_headline
------------------------
 <b>Hôtel</b> de la Mer
(1 row)


  

関数





unaccent関数は与えられた文字列からアクセント（発音区別符号）を取り除きます。
基本的にこれはunaccent型の辞書のラッパーです。しかし通常の全文検索以外の文脈で使用することができます。
 

unaccent([dictionary regdictionary, ] string text) returns text



引数dictionaryが省略された場合、unaccentという名前でunaccent()関数自体と同じスキーマにある全文検索用の辞書が使われます。
 


下記は使用例です。


SELECT unaccent('unaccent', 'Hôtel');
SELECT unaccent('Hôtel');


 


uuid-ossp — UUID生成器





uuid-osspモジュールは複数の標準的なアルゴリズムの1つを使用して汎用一意識別子（UUID）を生成する関数を提供します。
また、特殊なUUID定数を生成する関数も提供します。
このモジュールは、コアのPostgreSQL™で利用可能なものを超える特別な要件にのみ必要となります。
UUIDを生成する組み込みの方法は「UUID関数」を参照してください。
 


このモジュールは「trusted」と見なされます。
つまり、現在のデータベースに対してCREATE権限を持つ非スーパーユーザがインストールできます。
 
uuid-ossp関数





UUIDを生成するために利用できる関数を表F.35「UUID生成用関数」に示します。
関連する標準ITU-T Rec. X.667、ISO/IEC 9834-8:2005、RFC 4122はUUIDの生成に関して、バージョン番号1、3、4、5で識別される4つのアルゴリズムを規定します。
（バージョン2アルゴリズムは存在しません。）
これらのアルゴリズムのそれぞれは、異なるアプリケーション群に適切でしょう。
  
表F.35 UUID生成用関数
	

関数
       

       

説明
       

	
        
        uuid_generate_v1 ()
        uuid
       

       

バージョン1 UUIDを生成します。
これはコンピュータのMACアドレスとタイムスタンプが含まれます。
この種のUUIDは識別子を生成したコンピュータを識別できる情報や生成した時刻をあばくことができますので、ある種のセキュリティに注意すべきアプリケーションでは適しません。
       

	
        
        uuid_generate_v1mc ()
        uuid
       

       

コンピュータの実MACアドレスではなくランダムなマルチキャストMACアドレスを使用して、バージョン1 UUIDを作成します。
       

	
        
        uuid_generate_v3 ( namespace uuid, name text )
        uuid
       

       

入力で指定されたnameを使用して、与えられた名前空間でバージョン3 UUIDを生成します。
名前空間は、表F.36「UUID定数を返す関数」に示されるuuid_ns_*()関数で生成される特殊な定数の1つでなければなりません。
（理論上これは何らかのUUIDになります。）
nameは選択された名前空間内の識別子です。
       

       

例えば以下の様になります。



SELECT uuid_generate_v3(uuid_ns_url(), 'http://www.postgresql.org');




nameパラメータはMD5でハッシュ化されます。
このため、生成されたUUIDから平文が分かることはありません。
この方法によるUUIDの生成は不規則性はなく、また、環境に依存する要素もないため、再度生成されます。
       

	
        uuid_generate_v4 ()
        uuid
       

       

バージョン4 UUIDを生成します。
これは完全にランダムな数から生成されます。
       

	
        uuid_generate_v5 ( namespace uuid, name text )
        uuid
       

       

バージョン5 UUIDを生成します。
バージョン3 UUIDと似ていますが、ハッシュ方式としてSHA-1を使用することが異なります。
SHA-1がMD5より安全であることから、バージョン5はバージョン3に比べて好まれるはずです。
       




表F.36 UUID定数を返す関数
	

関数
       

       

説明
       

	
        uuid_nil ()
        uuid
       

       

「「nil」」UUID定数を返します。これは実際のUUIDになることはありません。
       

	
        uuid_ns_dns ()
        uuid
       

       

DNS名前空間をUUIDに選定した定数を返します。
       

	
        uuid_ns_url ()
        uuid
       

       

URL名前空間をUUIDに選定した定数を返します。
       

	
        uuid_ns_oid ()
        uuid
       

       

ISOオブジェクト識別子（OID）をUUIDに選定した定数を返します。
（これはASN.1のOIDに関するもので、PostgreSQL™で使われるOIDとは関係ありません。）
       

	
        uuid_ns_x500 ()
        uuid
       

       

X.500区分名（DN）をUIDに選定した定数を返します。
       





uuid-osspの構築





歴史的にこのモジュールは、モジュールの名前の由来となったOSSP UUIDライブラリに依存していました。
OSSP UUIDライブラリはまだhttp://www.ossp.org/pkg/lib/uuid/にありますが、あまりよく維持されておらず、より新しいプラットフォームへ移植することがますます困難になってきています。
uuid-osspは今やいくつかのプラットフォームではOSSPライブラリなしで構築できます。
FreeBSD、その他のBSDから派生したプラットフォームでは、適切なUUID生成関数がコアlibcライブラリに含まれています。
Linux、macOS、その他のプラットフォームでは、適切な関数がlibuuidライブラリで提供されており、(現在のLinuxではutil-linux-ngの一部と考えられていますが)そのライブラリはe2fsprogsプロジェクトに由来します。
configureを実行する時に、BSD関数を使うのなら--with-uuid=bsdを、e2fsprogsのlibuuidを使うのなら--with-uuid=e2fsを、OSSP UUIDライブラリを使うのなら--with-uuid=osspを指定してください。
あるマシンではこのライブラリのうち二つ以上が利用可能かもしれませんので、configureは自動的に一つを選びません。
  

作者




   Peter Eisentraut <peter_e@gmx.net>
  


xml2 — XPath問い合わせとXSLT機能





xml2モジュールはXPath問い合わせとXSLT機能を提供します。
 
廃止予定の可能性についてのお知らせ





PostgreSQL™ 8.3から、SQL/XML標準に基づくXML関連の機能はコアサーバ内に存在します。
その機能は、XML構文検査、XPath問い合わせなど本モジュールが行なうことと同等のこととそれ以上のことを範囲としますが、APIには互換性はありません。
新しい標準APIのため、本モジュールは今後のバージョンのPostgreSQLで削除される予定ですので、アプリケーションの変換が推奨されています。
本モジュールの機能に新しいAPIに適用できないものがあることが分かった場合、その不足に取り組むことができるように<pgsql-hackers@lists.postgresql.org>にその問題を表明してください。
  

関数の説明





表F.37「xml2関数」に本モジュールで提供する関数を示します。
これらの関数は簡単なXML解析とXPath問い合わせを提供します。
  
表F.37 xml2関数
	

        関数
       

       

        説明
       

	
        xml_valid ( document text )
        boolean
       

       

与えられた文書を解析し、文書が整形式のXMLであれば真を返します。
（注意:これは標準のPostgreSQL関数xml_is_well_formed()の別名です。
XMLでは整形と検証が異なる意味を持つため、xml_valid()と言う名前は技術的には正しくありません。）
       

	
        xpath_string ( document text, query text )
        text
       

       

与えられた文書に対するXPath問い合わせを評価し、結果をtextにキャストします。
       

	
        xpath_number ( document text, query text )
        real
       

       

与えられた文書に対するXPath問い合わせを評価し、結果をrealにキャストします。
       

	
        xpath_bool ( document text, query text )
        boolean
       

       

与えられた文書に対するXPath問い合わせを評価し、結果をbooleanにキャストします。
       

	
        xpath_nodeset ( document text, query text, toptag text, itemtag text )
        text
       

       

文書に対する問い合わせを評価し、XMLタグ内に結果を包みます。
結果が複数の値であれば、出力は以下のようになります。


<toptag>
<itemtag>Value 1 which could be an XML fragment</itemtag>
<itemtag>Value 2....</itemtag>
</toptag>



toptagまたはitemtagが空文字だった場合、対応するタグは省略されます。
       

	
        xpath_nodeset ( document text, query text, itemtag text )
        text
       

       

xpath_nodeset(document, query, toptag, itemtag)と同様ですが、結果はtoptagを省きます。
       

	
        xpath_nodeset ( document text, query text )
        text
       

       

xpath_nodeset(document, query, toptag, itemtag)と同様ですが、結果は両方のタグを省きます。
       

	
        xpath_list ( document text, query text, separator text )
        text
       

       

文書に対する問い合わせを評価し、複数の値を指定した区切り文字で区切って返します。
例えば、separatorが,ならばValue 1,Value 2,Value 3となります。
       

	
        xpath_list ( document text, query text )
        text
       

       

これは、,を区切り文字として使用する、上の関数のラッパーです。
       





xpath_table




xpath_table(text key, text document, text relation, text xpaths, text criteria) returns setof record



xpath_tableは各文書集合に対するXPath問い合わせ集合を評価し、結果をテーブルとして返すテーブル関数です。
元文書テーブルの主キーフィールドが結果の第一列として返されますので、結果セットを容易に結合で使用することができます。
パラメータについては表F.38「xpath_tableのパラメータ」で説明します。
  
表F.38 xpath_tableのパラメータ
	パラメータ	説明
	key	
       

「key」フィールドの名前です。
これは、出力テーブルの第一列として使用される単なるフィールドです。
つまり、これは各出力行の出現元を識別するレコードです。
（後述の複数値に関する注記を参照してください。）
       

      
	document	
       

XML文書を含むフィールドの名前です。
       

      
	relation	
       

文書を含むテーブルまたはビューの名前です。
       

      
	xpaths	
       

|で区切られた、1つ以上のXPath式です。
       

      
	criteria	
       

WHERE句の内容です。
これは省略することができません。
リレーション内の全行を処理したい場合はtrueまたは1=1を使用してください。
       

      





（XPath文字列を除く）これらのパラメータは普通のSQL SELECT 文に単純に置換されます。
このため、多少の柔軟性があります。
  

   
    SELECT <key>, <document> FROM <relation> WHERE <criteria>
   
  


文は上の通りですので、これらのパラメータにはそれぞれの場所で有効なものであれば何でもよいわけです。
このSELECTの結果は正確に2つの列を返さなければなりません（キーまたは文書に対して複数のフィールドを列挙させようとしない限りです）。
この簡略された手法では、SQLインジェクション攻撃を防ぐためにユーザから与えられた値をすべて検証しなければならないことに注意してください。
  


この関数は、出力列を指定するためのAS句を付けたFROM式内で使用されなければなりません。
以下に例を示します。


SELECT * FROM
xpath_table('article_id',
            'article_xml',
            'articles',
            '/article/author|/article/pages|/article/title',
            'date_entered > ''2003-01-01'' ')
AS t(article_id integer, author text, page_count integer, title text);



このAS句は、出力テーブルの列名とその型を定義します。
先頭が「key」フィールド、残りがXPath問い合わせに対応します。
結果列より多くのXPath問い合わせが存在する場合、余った問い合わせは無視されます。
XPath問い合わせより多くの結果列が存在する場合は余った列はNULLになります。
  


この例でpage_count結果列が整数として定義されていることに注意してください。
関数は内部的に文字列表現で扱います。
このため、出力内で整数で扱いたいと言っている時、XPath結果の文字列表現を取り出し、整数（またはAS句で要求した任意の型）に変換するためにPostgreSQLの入力関数を使用します。
例えば結果が空など、変換できない場合はエラーになります。
ですので、データに何らかの問題があると考えられる場合、列型としてtextに限定する方がよいかもしれません。
  


SELECT文の呼び出しは、必ずしも単なるSELECT *である必要はありません。
出力列を名前で参照することも他のテーブルと結合することも可能です。
この関数は希望の何らかの操作（例えば集約、結合、ソートなど）を行うことができる仮想テーブルを生成します。
したがって、以下のようにもできます。


SELECT t.title, p.fullname, p.email
FROM xpath_table('article_id', 'article_xml', 'articles',
                 '/article/title|/article/author/@id',
                 'xpath_string(article_xml,''/article/@date'') > ''2003-03-20'' ')
       AS t(article_id integer, title text, author_id integer),
     tblPeopleInfo AS p
WHERE t.author_id = p.person_id;



これはより複雑な例です。
当然ながら、簡便にするためにこれをすべてビューとして包み隠すことができます。
  
複数値の結果





xpath_table関数は各XPath問い合わせの結果が複数の値を持つ可能性があることを前提としています。
このため、この関数が返す行数は入力文書の数と同じにならない可能性があります。
返される最初の行には各問い合わせの最初の結果が、2番目の行には各問い合わせの2番目の結果が含まれます。
問い合わせの1つが他よりも少ない値を持つ場合は代わりにNULL値が返されます。
   


指定したXPath問い合わせが単一の結果（おそらく一意な文書識別子）のみを返すことがユーザが分かっている場合があります。
もしこれを複数の結果を返すXPathと一緒に使用されると、単一値の結果は結果の最初の行にのみ現れます。
この解決方法はより単純なXPath問い合わせに対する結合部分としてキーフィールドを使用することです。
以下に例を示します。



CREATE TABLE test (
    id int PRIMARY KEY,
    xml text
);

INSERT INTO test VALUES (1, '<doc num="C1">
<line num="L1"><a>1</a><b>2</b><c>3</c></line>
<line num="L2"><a>11</a><b>22</b><c>33</c></line>
</doc>');

INSERT INTO test VALUES (2, '<doc num="C2">
<line num="L1"><a>111</a><b>222</b><c>333</c></line>
<line num="L2"><a>111</a><b>222</b><c>333</c></line>
</doc>');

SELECT * FROM
  xpath_table('id','xml','test',
              '/doc/@num|/doc/line/@num|/doc/line/a|/doc/line/b|/doc/line/c',
              'true')
  AS t(id int, doc_num varchar(10), line_num varchar(10), val1 int, val2 int, val3 int)
WHERE id = 1 ORDER BY doc_num, line_num

 id | doc_num | line_num | val1 | val2 | val3
----+---------+----------+------+------+------
  1 | C1      | L1       |    1 |    2 |    3
  1 |         | L2       |   11 |   22 |   33


   


各行にdoc_numを付けるためには、2つのxpath_tableを呼び出し、その結果を結合することです。



SELECT t.*,i.doc_num FROM
  xpath_table('id', 'xml', 'test',
              '/doc/line/@num|/doc/line/a|/doc/line/b|/doc/line/c',
              'true')
    AS t(id int, line_num varchar(10), val1 int, val2 int, val3 int),
  xpath_table('id', 'xml', 'test', '/doc/@num', 'true')
    AS i(id int, doc_num varchar(10))
WHERE i.id=t.id AND i.id=1
ORDER BY doc_num, line_num;

 id | line_num | val1 | val2 | val3 | doc_num
----+----------+------+------+------+---------
  1 | L1       |    1 |    2 |    3 | C1
  1 | L2       |   11 |   22 |   33 | C1
(2 rows)


   


XSLT関数





libxsltがインストールされている場合、以下の関数を使用することができます。
  
xslt_process




xslt_process(text document, text stylesheet, text paramlist) returns text



この関数はXSLスタイルシートを文書に適用し、変換した結果を返します。
paramlistは、a=1,b=2という形で指定された、変換で使用されるパラメータ代入式のリストです。
パラメータ解析はあまり熟考されたものではないことに注意してください。パラメータ値にカンマを入れることができません。
   


また、変換用のパラメータを渡さない、2つのパラメータを取るバージョンのxslt_processも存在します。
   


作者




   John Gray <jgray@azuli.co.uk>
  


本モジュールの開発はTorchbox Ltd. (www.torchbox.com)が後援しました。
PostgreSQLと同じBSDライセンスです。
  


付録G 追加で提供されるプログラム





この付録と前の付録には、PostgreSQL™配布物のcontribディレクトリにあるモジュールに関する情報があります。
contrib節の概要や、特にcontribにあるサーバエクステンションやプラグインに関する情報は、付録F 追加で提供されるモジュールと拡張を参照してください。
 


この付録ではcontribにあるユーティリティプログラムを説明します。
ソースからでもパッケージシステムからでも、いったんインストールされるとそれらはPostgreSQL™がインストールされた場所のbinディレクトリに入り、他のプログラムと同様に使用することができます。
 
クライアントアプリケーション





この節では、contribにあるPostgreSQL™のクライアントアプリケーションを説明します。それらは、データベースサーバがどこで稼働しているかに依存せず、どこからでも実行することが出来ます。
PostgreSQL™のコア配布物に含まれるクライアントアプリケーションに関する情報は、PostgreSQLクライアントアプリケーションを参照してください。
  


サーバアプリケーション





一部のアプリケーションは、PostgreSQL™サーバ自体で実行されます。
現在、そのようなアプリケーションはcontribディレクトリに含まれていません。
PostgreSQL™のコア配布物の一部であるサーバアプリケーションについては、PostgreSQLサーバアプリケーションも参照してください。
  

付録H 外部プロジェクト





PostgreSQL™は複雑なソフトウェアプロジェクトであり、そのプロジェクト管理は困難です。
PostgreSQL™に対する拡張をコアプロジェクトと分離して開発する方がより効率的であることがわかりました。
  
クライアントインタフェース





PostgreSQL™基本配布物内には、以下の2つのクライアントインタフェースのみが存在します。
   
	

libpqは基本C言語インタフェースであり、他の多くのクライアントインタフェース構築に必要なため、存在します。
     

	

ECPGはサーバサイドのSQL文法に依存し、PostgreSQL™自体の変更に敏感であるため、存在します。
     






この他の言語についてのインタフェースは外部プロジェクトのもので、別に提供されています。
 言語インタフェースの一覧がPostgreSQL wikiで維持されています。
パッケージの中にはPostgreSQL™と同じライセンスで提供されていないものがあることに注意してください。
ライセンスなど各言語インタフェースの詳細についてはそのWebサイトや文書を参照してください。
  

    https://wiki.postgresql.org/wiki/List_of_drivers
  


管理ツール





PostgreSQL™で使用できる管理ツールが複数あります。
最も人気のあるのはpgAdminですが、複数の商用版もあります。
  

手続き言語





PostgreSQL™の基本配布には複数の手続き言語が存在します。
PL/pgSQL、PL/Tcl、PL/PerlおよびPL/Pythonです。
  


さらに、PostgreSQL™のコア配布物以外で開発、保守される手続き言語も多く存在します。
手続き言語の一覧がPostgreSQL wikiで維持されています。
これらのプロジェクトの中には、PostgreSQL™と同じライセンスで提供されないものがあることに注意してください。
ライセンス情報など各手続き言語の詳細については、そのWebサイトや文書を参照してください。
  

   https://wiki.postgresql.org/wiki/PL_Matrix
  

拡張





PostgreSQL™は容易に拡張可能なように設計されています。
このため、データベースに読み込まれる拡張は、データベースに組み込まれた機能と同様に働きます。
ソースコードに同梱されているcontribディレクトリには複数の拡張が含まれています。
付録F 追加で提供されるモジュールと拡張で説明します。
他にもPostGISなどが独立して開発されています。
PostgreSQL™のレプリケーションソリューションですら外部で開発することができます。
例えば、人気の高いプライマリ/スタンバイレプリケーションツールである Slony-Iはコアプロジェクトと独立して開発されています。
  

付録I ソースコードリポジトリ





PostgreSQL™のソースコードはGit™バージョン管理システムを使って保存管理されています。
マスタのリポジトリの公的なミラーが使用可能です。このミラーは、マスタのリポジトリに変更があればすぐに更新されます。
 


Wikihttps://wiki.postgresql.org/wiki/Working_with_GitにGitを使用する際の手順が掲載されています。
 
Git™を使ってソースを入手する





Git™を使用すると、コードのリポジトリのコピーがローカルマシンに作成されます。
よってすべての履歴とブランチにオフラインでアクセスすることができます。
これは開発もしくはパッチをテストするには最速で最も柔軟性のある方法です。
  
手順I.1 Git
	

Git™のインストール版が必要となります。インストール版はhttps://git-scm.comから入手可能です。
多くのシステムはデフォルトでGitの比較的新しい版がインストールされているか、パッケージ配布システムにおいて利用可能です。
    

	

Gitリポジトリを使用するには、公式ミラーサイトのクローンを作成してください。



git clone https://git.postgresql.org/git/postgresql.git




これは、ローカルマシンにすべてのリポジトリをコピーします。
よってインターネット接続が遅い場合には特に時間がかかるでしょう。
ファイルは、カレントディレクトリのpostgresqlのサブディレクトリに配置されるでしょう。
    


Gitミラーサイトには、Gitプロトコルでも到達できます。
URLのプレフィックスをgitに変更して以下のようにしてください。



git clone git://git.postgresql.org/git/postgresql.git



    

	

システムの最新の更新を入手する場合は、cdを（ローカルマシンの）リポジトリに対して実行し、次のコマンドを実行してください。



git fetch


    





Git™はソースコードを取得する以外に、もっと多くのことが実行できます。
より詳細な情報は、Git™のmanページを参照するか、またはhttps://git-scm.comのウェブサイトを参照してください。
  


付録J ドキュメンテーション





PostgreSQL™の文書には4つの主要なフォーマットがあります。

  
	

平文：インストール前の情報
    

	

HTML：オンラインでの閲覧と参照
    

	

PDF：印刷用
    

	

マニュアルページ：すぐ知りたい時
    






さらに、PostgreSQL™ソースツリー全体にわたり、様々な実装に関する問題を記述した平文のREADMEファイルが数多くあります。
 


HTML文書とマニュアルページは標準の配布物の一部でデフォルトでインストールされます。
PDF形式の文書は別途ダウンロードすることで入手できます。
 
DocBook





文書のソースは、XMLで定義されたマークアップ言語であるDocBookで作成されています。
ここからは、DocBookとXML両方の用語が使用されますが、技術的に相互の互換性はありません。
  


DocBook™を使用して作成することで、最終的な見栄えがどうなるかに気を遣わずに技術文書の構造と内容を指定できます。
ドキュメントスタイルは、いくつかの最終的な形のいずれかにコンテンツをレンダリングする方法を定義します。
DocBookはOASISグループにより保守されています。
公式DocBookサイトでは役に立つ入門用と参照用の文書、そしてO'Reilly社の本の完全版をオンラインで読むことができます。
FreeBSDドキュメントプロジェクトでも同様にDocBookを使用していて注目すべき数多くのスタイルに関する指針を含め、役立つ情報があります。
  


ツールセット





文書を処理する過程で次のようなツールが使われます。
そのうちのいくつかは付記されているように省略しても構いません。

   
	DocBook DTD
	

DocBookそのものの定義です。
現在はバージョン4.5を使用しており、これより古いまたは新しいバージョンは使用できません。
DocBook DTDのSGML対応版ではなく、XML対応版が必要です。
      

	DocBook XSL Stylesheets
	

DocBookのソースをHTMLのような他のフォーマットに変換する処理手順が含まれています。
      


現在最低必要なバージョンは1.77.0ですが、最良の結果を得るために入手可能な最新の版を使うことをお勧めします。
      

	xmllintのためのLibxml2
	

このライブラリとそこに含まれるxmllintツールはXMLを処理するのに使われます。
PostgreSQLのコードを構築する時にも使われますので、多くの開発者はすでにLibxml2をインストールしているでしょう。
しかしながら、xmllintは別のサブパッケージからインストールする必要があるかもしれないことに注意してください。
      

	xsltprocのためのLibxslt
	

xsltprocはXSLTプロセッサ、すなわち、XSLTスタイルシートを使ってXMLを他のフォーマットに変換するプログラムです。
      

	FOP
	

これは変換、とりわけXMLからPDFへの変換のためのプログラムです。
PDFフォーマットで文書をビルドする場合にのみ必要です。
      




  


文書を作成するために必要な様々なツールのインストール方法についての経験をまとめました。
以下に記載します。
これらのツールは別にパッケージ化されて配布されていることも考えられます。
もしそのような配布物を見つけた場合はdocのメーリングリストに報告してください。
そのような情報をここに付け加えたいと思います。
  
Fedora、RHEL、およびその派生版でのインストール





要求されるパッケージをインストールするには以下のようにしてください。


yum install docbook-dtds docbook-style-xsl libxslt fop


   

FreeBSDでのインストール





pkgで必要なパッケージをインストールするには以下を使います。


pkg install docbook-xml docbook-xsl libxslt fop


   


提供されているMakefileはFreeBSDのmake用ではありませんので、docディレクトリから文書を作成するにはgmakeを使うことが必要でしょう。
   

Debianパッケージ





Debian GNU/Linux™用の文書作成パッケージの一式が揃っています。
インストールには以下を使います。


apt-get install docbook-xml docbook-xsl libxml2-utils xsltproc fop


   

macOS





MacPortsを使っているのであれば、以下のようにすれば設定されます。


sudo port install docbook-xml docbook-xsl-nons libxslt fop



Homebrewを使っているのであれば、こちらを使ってください。


brew install docbook docbook-xsl libxslt fop


   


Homebrewで提供されたプログラムでは、次の環境変数を設定する必要があります。
Intelベースのマシンの場合は、以下を設定します。


export XML_CATALOG_FILES=/usr/local/etc/xml/catalog



Apple Siliconベースのマシンの場合は、以下を設定します。


export XML_CATALOG_FILES=/opt/homebrew/etc/xml/catalog



設定しなかった場合、xsltprocは次のようなエラーを発生させます。


I/O error : Attempt to load network entity http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd
postgres.sgml:21: warning: failed to load external entity "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd"
...


   


Appleが提供するバージョンのxmllintとxsltprocをMacPortsやHomebrewの代わりに使用することは可能ですが、DocBookのDTDとスタイルシートをインストールし、それらを指すカタログファイルを設定する必要があります。
   

configureによる検出





PostgreSQL™本体のプログラムを構築した時のように、文書を構築する際にconfigureスクリプトを実行する必要があります。
実行が終わる近辺の出力を確認してください。次のような感じになっているはずです。


checking for xmllint... xmllint
checking for xsltproc... xsltproc
checking for fop... fop
checking for dbtoepub... dbtoepub



xmllintやxsltprocが見つからない時は、文書の構築はできません。
fopはPDF形式で文書を構築するのにのみ必要です。
dbtoepubはEPUB形式で文書を構築するのにのみ必要です。
  


必要ならconfigureにどこでこれらのプログラムを見つけられるか教えることができます。例えば、


./configure ... XMLLINT=/opt/local/bin/xmllint ...


  


Mesonを使ってPostgreSQL™を構築したい場合は、「Mesonを使った構築とインストール」で説明されているようにmeson setupを実行し、「Mesonを使って文書を構築する」を参照してください。
  


Makeを使って文書を構築する





全ての設定が完了したら、doc/src/sgmlディレクトリに移動し、次の副節で説明されているコマンドのいずれかを実行して文書を構築します。
（GNU makeを使うのを忘れずに。）
  
HTML





HTML形式の文書を作成するには次のようにします。


doc/src/sgml$ make html



これはデフォルトでの対象です。
出力はhtmlサブディレクトリに作成されます。
   


デフォルトの簡単なスタイルではなくpostgresql.orgで使われているスタイルシートのHTMLの文書を作成するには、次のようにします。


doc/src/sgml$ make STYLE=website html


   


STYLE=websiteオプションが使われると、生成されるHTMLファイルはpostgresql.orgで提供されるスタイルシートへの参照を含み、見るにはネットワークアクセスが必要です。
   

マニュアルページ





DocBook™ refentryページをマニュアルページに対応した*roff形式に変換するには、DocBook XSLスタイルシートを使用します。
マニュアルページを作成するには次のようにします。


doc/src/sgml$ make man


  

PDF





FOP™を使ってPDF文書を作成したい時は、対象の用紙のサイズに合わせて以下のコマンドの中から1つを選んでください。

    
	

A4サイズ:


doc/src/sgml$ make postgres-A4.pdf


      

	

U.S.レターサイズ:


doc/src/sgml$ make postgres-US.pdf


      




   


PostgreSQL文書はかなり大きいので、FOP™はかなりの量のメモリを必要とするでしょう。
そのため、システムの中には、メモリに関連するエラーメッセージを出して作成に失敗するものもあるでしょう。
これは、設定ファイル~/.foprcのJavaヒープ設定を設定することで回避できます。例えば、


# FOP binary distribution
FOP_OPTS='-Xmx1500m'
# Debian
JAVA_ARGS='-Xmx1500m'
# Red Hat
ADDITIONAL_FLAGS='-Xmx1500m'



必要なメモリの最小量があり、ある程度はメモリが多いほどより速くなるようです。
非常に少ないメモリ(1GB以下)のシステムでは、作成はスワップのために非常に遅くなるか、全く動かないでしょう。
   


デフォルト設定では、FOP™はページごとにINFOメッセージを発行します。
ログレベルは~/.foprcで変更できます。


LOGCHOICE=-Dorg.apache.commons.logging.Log=​org.apache.commons.logging.impl.SimpleLog
LOGLEVEL=-Dorg.apache.commons.logging.simplelog.defaultlog=WARN


   


他のXSL-FOプロセッサも手動で使えますが、自動化された作成プロセスではFOPだけがサポートされています。
   

構文検証





文書の構築にはとても時間がかかります。
でも文書ファイルの正しい構文だけを検証する方法があります。
以下のように入力します。
ほんの数秒しかかかりません。


doc/src/sgml$ make check


   


Mesonを使って文書を構築する





Mesonを使って文書を構築するには、これらのコマンドの1つを実行する前にbuildディレクトリに移動するか、コマンドに-C buildを追加してください。
   


HTML形式の文書を構築するには次のようにします。


build$ ninja html



他のドキュメントターゲットのリストについては「ドキュメントターゲット」を参照してください。


出力はサブディレクトリbuild/doc/src/sgmlに作成されます。
   

文書の起草





XMLの編集モードを持つエディタを使えばドキュメントソースの編集が非常に便利になります。
更にそれがXMLスキーマ言語を理解すると更に便利になり、DocBook™構文を考慮することができるようになります。
   


歴史的な理由により、今はXMLファイルであるドキュメントのソースファイルは.sgml拡張子を持つファイル名称となっていることに注意してください。
ですから、正しいモードになるようにエディタ設定を調整する必要があるかも知れません。
   
Emacs





Emacs™と一緒に提供されるnXML Mode™は、Emacs™でXML文書を編集するためのモードとしてもっとも広く使われています。
このモードではEmacsでタグを挿入してマークアップの一貫性をチェックでき、出荷時の状態でDocBook™をサポートします。
詳細なドキュメントは、nXML manualを確認してください。
    


src/tools/editors/emacs.samplesにはこのモードで使う推奨設定が含まれています。
    


スタイルガイド



リファレンスページ





リファレンスページは標準のレイアウトに従う必要があります。
このことにより、ユーザが必要な情報を素早く見つけられるようになり、同時にあるコマンドに関連する全ての特徴を文書化するよう書き手を励ましてもいます。
一貫性は、PostgreSQL™の各リファレンスページ間だけでなく、オペレーティングシステムや他のパッケージソフトのリファレンスページとの関係でも求められるものです。
そのために、以下のガイドラインが作成されました。
このガイドラインのほとんどの部分は、様々なオペレーティングシステムで定められている同様のガイドラインと一貫性を持つものです。
   


実行可能なコマンドを説明するリファレンスページには、以下の節がこの順序で含まれる必要があります。
該当しない節は除外しても構いません。
これらと同レベルの節は特殊な状況でのみ追加すべきです。
そのような情報は多くの場合、「使用方法」節に入れることができます。

    
	名前
	

この節は自動的に生成されます。ここには、コマンドの名前および機能の簡単な概要が入ります。
       

	概要
	

この節にはコマンドの構文図が入ります。
この概要には、通常、各コマンドラインオプションを記載しません（それらは、以下の節に記載されます）。
その代わり、入出力ファイルの宛先などのコマンドラインの主要なコンポーネントを記載します。
       

	説明
	

コマンドによって何が行われるかを説明する文章です。
       

	オプション
	

各コマンドラインオプションについて説明するリストです。
オプションが数多くある場合、副節を使用することができます。
       

	終了ステータス
	

成功の場合はゼロを使用し、失敗の場合には非ゼロを使用するプログラムでは、この節を記載する必要はありません。
複数の非ゼロの終了コードに異なる意味があれば、ここに記載します。
       

	使用方法
	

プログラムの副言語またはランタイムインタフェースを全て記載します。
プログラムが対話型でない場合、通常はこの節を除外することができます。
それ以外の場合、この節は実行時の特徴のすべてを記載するために使用されます。
必要に応じて副節を作成してください。
       

	環境
	

プログラムが使用する可能性のある全ての環境変数を列挙します。
なるべく完全なリストを作成してください。
SHELLのような些細に見える変数でも、ユーザに必要なことがあります。
       

	ファイル
	

プログラムが暗黙的にアクセスする可能性のある全てのファイルを列挙します。
つまり、コマンドラインで指定された入出力ファイルではなく、設定ファイルなどを列挙するということです。
       

	診断
	

プログラムが作成する可能性のある全ての異常な出力についての説明を記載します。
全てのエラーメッセージを列挙することは避けてください。
作業が大変な割に、実際にはほとんど役に立たないからです。
ただし、エラーメッセージにユーザが解析できる標準のフォーマットがあれば、ここに記載してください。
       

	注釈
	

特定の不具合、実装の問題点、セキュリティの考慮事項、互換性の問題など、他の節に該当しない全てのものを記載します。
       

	例
	

例を記載します。
       

	更新履歴
	

プログラムの更新履歴に主要な変更点があった場合、ここに列挙します。
通常この節は省くことができます。
       

	作者
	

作者（contrib節のみ使用）
       

	関連項目
	

次の順序で列挙されるクロスリファレンスです。
他のPostgreSQL™コマンドのリファレンスページ、PostgreSQL™のSQLコマンドのリファレンスページ、PostgreSQL™マニュアルの引用、他のリファレンスページ（オペレーティングシステム、他のパッケージソフトなど）、その他の文書。同一グループに属するものは、アルファベット順に列挙します。
       




   


SQLコマンドを説明するリファレンスページには、次の節を含める必要があります。
名前、概要、説明、パラメータ、使用方法、診断、注釈、例、互換性、更新履歴、関連項目。
パラメータ節はオプション節と似ていますが、リストに加えることのできるコマンドの句についてより自由度が高いものです。
出力節は、コマンドがデフォルトのコマンド補完タグ以外のものを返す場合にのみ必要です。
互換性節では、このコマンドがどの程度まで標準SQLに準拠しているか、または、他のどのデータベースシステムに対して互換性があるかを説明します。
SQLコマンドの関連項目節では、プログラムへのクロスリファレンスよりも前にSQLコマンドを記載する必要があります。
   


付録K PostgreSQL™の制限





表K.1「PostgreSQL™の制限」にPostgreSQL™の様々なハード制限を示します。
しかしながら、絶対的なハード制限に達する前に、パフォーマンスの制限や利用可能なディスク容量などの実際の制限が適用されるかもしれません。
 
表K.1 PostgreSQL™の制限
	項目	上限	コメント
	データベースの大きさ	無制限	 
	データベースの数	4,294,950,911	 
	データベース当たりのリレーション	1,431,650,303	 
	リレーションの大きさ	32 TB	BLCKSZがデフォルトの8192バイトの場合。
	テーブル当たりの行	4,294,967,295ページに収まるタプルの数により制限されます。	 
	テーブル当たりの列	1,600	1ページに収まるタプルの大きさによりさらに制限されます。以下の注意書きを参照してください。
	結果集合内の列	1,664	 
	フィールドの大きさ	1 GB	 
	テーブル当たりのインデックス	無制限	データベース当たりの最大リレーションで制限されます。
	インデックス当たりの列	32	PostgreSQL™を再コンパイルすることで増やせます。
	パーティションキー	32	PostgreSQL™を再コンパイルすることで増やせます。
	識別子の長さ	63バイト	PostgreSQL™を再コンパイルすることで増やせます。
	function arguments	100	PostgreSQL™を再コンパイルすることで増やせます。
	問い合わせパラメータ	65,535	 





格納されるタプルが8192バイトの1つのヒープページに収まらないといけませんので、テーブル当たりの列の最大数はさらに少なくなります。
例えば、タプルヘッダを除いて、1,600のintの列は6400バイトを消費しますのでヒープページ1つに収まりますが、1,600のbigintの列は12800バイトを消費しますのでヒープページ1つの中には収まりません。
text、varchar、charのような可変長の型のフィールドは、その必要があるほど値が長くなれば、行に収まらないその値をテーブルのTOASTテーブルに格納します。
18バイトのポインタだけがテーブルのヒープのタプル内に残ります。
より短い長さの可変長フィールドでは、4バイトまたは1バイトのフィールドヘッダが使われ、値はヒープタプルの中に格納されます。
 


テーブルから削除された列も列の上限の一因となります。
さらに、新しく作られたタプルに対する削除された列の値は、内部ではタプルのNULLビットマップにNULLと印を付けられますが、NULLビットマップも容量を占めます。
 


各テーブルは、理論上最大2^32個の行外の値を格納できます。行外の格納の詳細については、「TOAST」を参照してください。
この制限は、そのような各値を識別するために32ビットのOIDを使用することから生じています。
実際の制限は理論的な制限よりも大幅に低くなります。それは、OIDの空間が満杯になるにつれて、まだ空いているOIDを見つけるのに時間が掛かるようになり、INSERT/UPDATE文が遅くなるからです。
通常、これはテーブルにテラバイト単位のデータが含まれている場合にのみ発生する問題であり、パーティショニングが回避策として考えられます。
 

付録L 頭字語





  以下はPostgreSQL™ドキュメントと、PostgreSQL™の論議で一般に使用される頭字語の一覧です。

  
	AIO
	

      Asynchronous I/O（非同期I/O）
     

	ACL
	

      Access Control List（アクセス制御リスト）
     

	AM
	

      Access Method（アクセスメソッド）
     

	ANSI
	

      
      American National Standards Institute（米国規格協会）
     

	API
	

      Application Programming Interface（アプリケーションプログラミングインタフェース）
     

	ASCII
	

      American Standard
      Code for Information Interchange（情報交換用米国標準コード）
     

	BKI
	

      Backend Interface（バックエンドインタフェース）
     

	CA
	

      Certificate Authority（認証局）
     

	CIDR
	

      Classless
      Inter-Domain Routing（クラスレスドメイン間ルーティング）
     

	CPAN
	

      Comprehensive Perl Archive Network（包括的Perlアーカイブネットワーク）
     

	CRL
	

      Certificate
      Revocation List（証明書失効リスト）
     

	CSV
	

      Comma
      Separated Values（カンマ区切り値）
     

	CTE
	

      Common Table Expression（共通テーブル式）
     

	CVE
	

      Common Vulnerabilities and Exposures（共通脆弱性識別子）
     

	DBA
	

      Database
      Administrator（データベース管理者）
     

	DBI
	

      Database Interface (Perl)（[Perlの]データベースインタフェース）
     

	DBMS
	

      Database Management
      System（データベース管理システム）
     

	DDL
	

      Data
      Definition Language（データ定義言語）、CREATE
      TABLE、ALTER USERなどのSQLコマンド
     

	DML
	

      Data
      Manipulation Language（データ操作言語）、INSERT、
      UPDATE、DELETEなどのSQLコマンド
     

	DST
	

      Daylight
      Saving Time（夏時間）
     

	ECPG
	

      Embedded C for PostgreSQL（PostgreSQL用の組み込みC）
     

	ESQL
	

      Embedded
      SQL（組み込みSQL）
     

	FAQ
	

      Frequently Asked
      Questions（よくある質問）
     

	FSM
	

      Free Space Map（空き領域マップ）
     

	GEQO
	

      Genetic Query Optimizer（遺伝的問い合わせオプティマイザ）
     

	GIN
	

      Generalized Inverted Index（汎用転置インデックス）
     

	GiST
	

      Generalized Search Tree（汎用検索ツリー）
     

	Git
	
      Git
     

	GMT
	

      Greenwich Mean Time（グリニッジ標準時）
     

	GSSAPI
	

      Generic
      Security Services Application Programming Interface（汎用セキュリティサービスアプリケーションプログラミングインタフェース）
     

	GUC
	

      Grand Unified Configuration（大統一設定）、
      サーバ設定を扱うPostgreSQL™サブシステム
     

	HBA
	

      Host-Based Authentication（ホストベース認証）
     

	HOT
	

      Heap-Only Tuples（ヒープ専用タプル）
     

	IEC
	

      International
      Electrotechnical Commission（国際電気標準会議）
     

	IEEE
	

      Institute of Electrical and
      Electronics Engineers（米国電気電子学会）
     

	IPC
	

      Inter-Process
      Communication（プロセス間通信）
     

	I/O
	

      Input/Output（入力/出力）
     

	ISO
	

      International Organization for
      Standardization（国際標準化機構）
     

	ISSN
	

      International Standard
      Serial Number（国際標準逐次刊行物番号）
     

	JDBC
	

      Java
      Database Connectivity（Javaデータベース接続）
     

	JIT
	

      Just-in-Time
      compilation（実行時コンパイル）
     

	JSON
	

      JavaScript Object Notation（JavaScriptオブジェクト表記）
     

	LDAP
	

      Lightweight
      Directory Access Protocol（軽量ディレクトリアクセスプロトコル）
     

	LSN
	

Log Sequence Number（ログシーケンス番号）
     

	MCF
	

Most Common Frequency（最頻値の頻度）、つまり最頻値が現れる頻度
     

	MCV
	

Most Common Value（最頻値）、特定のテーブル列で最も頻繁に現れる値の1つ
     

	MITM
	

      
      Man-in-the-middle attack（中間者攻撃）
     

	MSVC
	
      Microsoft
      Visual C™
     

	MVCC
	

      Multi-Version Concurrency Control（多版型同時実行制御）
     

	NLS
	

      National
      Language Support（各国語サポート）
     

	ODBC
	

      Open
      Database Connectivity（オープンデータベース接続）
     

	OID
	

      Object Identifier（オブジェクト識別子）
     

	OLAP
	

      Online Analytical
      Processing（オンライン分析処理）
     

	OLTP
	

      Online Transaction
      Processing（オンライントランザクション処理）
     

	ORDBMS
	

      Object-Relational
      Database Management System（オブジェクトリレーショナルデータベース管理システム）
     

	PAM
	

      Pluggable
      Authentication Modules（着脱可能認証モジュール）
     

	PGSQL
	
      PostgreSQL™
     

	PGXS
	

      PostgreSQL™ Extension System（PostgreSQL™拡張システム）
     

	PID
	

      Process Identifier（プロセス識別子）
     

	PITR
	

      Point-In-Time
      Recovery（ポイントインタイムリカバリ）（Continuous Archiving - 継続的アーカイブ）
     

	PL
	

      Procedural Languages（手続き言語） （サーバ側）
     

	POSIX
	

      Portable Operating
      System Interface（ポータブルオペレーティングシステムインタフェース）
     

	RDBMS
	

      Relational
      Database Management System（リレーショナルデータベース管理システム）
     

	RFC
	

      Request For
      Comments（コメント募集）
     

	SGML
	

      Standard Generalized
      Markup Language（標準汎用マークアップ言語）
     

	SNI
	

      
       Server Name Indication（サーバ名表示）,
      RFC 6066
     

	SPI
	

      Server Programming Interface（サーバプログラミングインタフェース）
     

	SP-GiST
	

      Space-Partitioned Generalized Search Tree（空間分割汎用検索ツリー）
     

	SQL
	

      Structured Query Language（構造化問い合わせ言語）
     

	SRF
	

      Set-Returning Function（集合を返す関数）
     

	SSH
	

      Secure
      Shell（セキュアシェル）
     

	SSL
	

      Secure Sockets Layer（セキュアソケット層）
     

	SSPI
	

      Security
      Support Provider Interface（セキュリティサポートプロバイダインタフェース）
     

	SYSV
	

      Unix System V（UNIXシステムV）
     

	TCP/IP
	

      Transmission
      Control Protocol (TCP) / Internet Protocol (IP)（伝送制御プロトコル/インターネットプロトコル）
     

	TID
	

      Tuple Identifier（タプル識別子）
     

	TLS
	

      
      Transport Layer Security（伝送層セキュリティ）
     

	TOAST
	

      The Oversized-Attribute Storage Technique（過大属性格納技法）
     

	TPC
	

      Transaction Processing
      Performance Council（トランザクション処理性能評議会）
     

	URL
	

      Uniform Resource
      Locator（統一資源位置指定子）
     

	UTC
	

      Coordinated
      Universal Time（協定世界時）
     

	UTF
	

      Unicode Transformation
      Format（ユニコード変換書式）
     

	UTF8
	

      Eight-Bit Unicode
      Transformation Format（８ビットユニコード変換書式）
     

	UUID
	

      Universally Unique Identifier（汎用一意識別子）
     

	WAL
	

      Write-Ahead Log（先行書き込みログ）
     

	XID
	

      Transaction Identifier（トランザクション識別子）
     

	XML
	

      Extensible Markup
      Language（拡張可能マークアップ言語）
     




 

付録M 用語集





これはPostgreSQL™と一般的なリレーショナルデータベースシステムにおける用語とその意味のリストです。
 
	ACID
	

Atomicity（原子性）、Consistency（一貫性）、Isolation（独立性）、Durability（永続性）。
このデータベーストランザクションの性質の集合は、並列操作及び電源障害などによるエラーの際にも正当性を保証することを意図しています。
    

	Aggregate function【集約関数】（ルーチン）
	

たとえば数え上げ、平均、加算によって複数の入力値をまとめて（集約して）、単一の値を出力する関数。
    


詳細については「集約関数」を参照してください。
    
Window function【ウィンドウ関数】（ルーチン）参照

	Access Method【アクセスメソッド】
	

テーブルとインデックス内のデータにアクセスするためにPostgreSQL™が使用するインタフェース。
この抽象化により、新しい種類のデータストレージのサポートを追加できます。
    


詳細については62章テーブルアクセスメソッドのインタフェース定義と63章インデックスアクセスメソッドのインタフェース定義を参照してください。
    

	Analytic function【分析関数】
	Window function【ウィンドウ関数】（ルーチン）参照

	Analyze【アナライズ】（操作）
	

問い合わせプランナが問い合わせをどのように実行するかの決定を支援するためにテーブルと他のリレーションから統計情報データを収集すること。
    


（この用語を、EXPLAIN(7)コマンドのANALYZEオプションと混同しないでください。）
    


詳細についてはANALYZE(7)を参照してください。
    

	Asynchronous I/O【非同期I/O】
	

非同期I/O（AIO）は、I/Oの全期間にわたってブロックする同期I/Oとは対照的に、ブロッキングしない方法（非同期）でI/Oを実行することを指します。
    


AIOでは、I/O操作の開始とその操作の結果を待つことが分離されており、複数のI/O操作を同時に開始したり、I/Oと同時にCPU負荷の高い操作を実行したりすることができます。
この並行性の向上の代償は、複雑さの増加です。
    
Input/Output【入力/出力】参照

	Atomic【原子的】
	

datumとの関連においては、値がより小さな構成要素に分解できないこと。
    

	

データベーストランザクションとの関連においては、原子性を参照のこと。
    

	Atomicity【原子性】
	

すべての操作が不可分なものとして完了するか、あるいは何もなかったことになるかのどちらかで終わるトランザクションの性質。
加えて、トランザクションの実行中にシステム障害が起きても、リカバリ後には中途半端な結果が見えるようなことはないこと。
これはACID特性の一部です。
    

	Attribute【属性】
	

タプル内にある特定の名前とデータ型を持つ要素。
    

	Autovacuum【自動バキューム】（プロセス）
	

バキューム及びアナライズ操作を定期的に実行する一連のバックグラウンドプロセス。
作業を調整し、（自動バキュームが無効になっていない限り）常に存在する補助プロセスは自動バキュームランチャと呼ばれ、タスクを実行するプロセスは自動バキュームワーカーと呼ばれます。
    


詳細については「自動バキュームデーモン」を参照してください。
    

	Auxiliary process【補助プロセス】
	

インスタンス内のプロセスで、インスタンスの特定のバックグラウンドタスクを担当します。
補助プロセスは次のもので構成されます。
     
     

自動バキュームランチャ（自動バキュームワーカーではありません）、バックグラウンドライタ、チェックポインタ、ロガー、スタートアッププロセス、WALアーカイバ、WAL受信（WAL送信ではありません）、WAL要約処理、WALライタ。
    

	Backend【バックエンド】（プロセス）
	

クライアントセッションのために活動し、その要求を処理するインスタンスのプロセス。
    


（この用語を、類似の用語であるバックグラウンドワーカーやバックグラウンドライタと混同しないでください。）
    

	Background worker【バックグラウンドワーカー】（プロセス）
	

システムあるいはユーザが提供するコードを実行するインスタンス内のプロセス。
論理レプリケーション、パラレルクエリといったPostgreSQL™の機能の基盤を供給します。
更に、拡張によってカスタムバックグラウンドワーカープロセスを追加することができます。
   


詳細については46章バックグラウンドワーカープロセスを参照してください。
   

	Background writer【バックグラウンドライタ】（プロセス）
	

共有メモリからファイルシステムに、変更されたデータページを書き出す補助プロセス。
他のプロセスをブロックしてしまうより大きなI/Oピークを引き起こしてしまうことを避けて、高価なI/O活動を時系列で平均化するために、定期的に目覚めて短い期間だけ活動します。
    


詳細については「バックグラウンドライタ」を参照してください。
    

	Base Backup【ベースバックアップ】
	

database clusterのファイルをすべてバイナリコピーします。
pg_basebackup(1)ツールにより生成されます。
WALファイルと組み合わせてリカバリ、ログシッピング、またはストリーミングレプリケーションの開始点として使用できます。
    

	Bloat【ブロート】
	

未使用（自由）空間、あるいは古くなった行バージョンのように、現在の行バージョンを含まないデータページ中の空間。
    

	Bootstrap superuser【ブートストラップスーパーユーザ】
	

データベースクラスタで初期化された最初のユーザ。
    


このユーザは、各データベースでシステムカタログテーブルをすべて所有しています。
また、すべての許可された権限の発生元のロールでもあります。
これらのことから、このロールは削除できません。
    


このロールも通常のデータベーススーパーユーザとして動作し、そのスーパーユーザ状態は削除できません。
    

	Buffer Access Strategy【バッファアクセスストラテジ】
	

いくつかの操作は大量のページにアクセスします。
バッファアクセスストラテジは、これらの操作が共有バッファから多くのページを追い出すのを防ぐのに役立ちます。
    


バッファアクセスストラテジは、限られた数の共有バッファへの参照を設定し、循環的に再利用します。
操作が新しいページを必要とすると、ストラテジリング内のバッファから犠牲バッファが選択されます。
これは、ページのダーティデータとフラッシュされていないWALを永続的なストレージにフラッシュする必要がある場合もあります。
    


バッファアクセスストラテジは、大きなテーブルのシーケンシャルスキャン、VACUUM、COPY、CREATE TABLE AS SELECT、ALTER TABLE、CREATE DATABASE、CREATE INDEX、CLUSTERなど、さまざまな操作に使用されます。
    

	Cast【キャスト】
	

datumを現在のデータ型から別のデータ型に変換すること。
    


詳細についてはCREATE CAST(7)を参照してください。
    

	Catalog【カタログ】
	

標準SQLではこの用語を使用してPostgreSQL™でdatabaseと呼ばれる用語を示します。
    


（この用語を、system catalogと混同しないでください。）
    


詳細については「概要」を参照してください。
    

	Check constraint【チェック制約】
	

一つ以上の属性の取り得る値が制限されるリレーションに定義される制約の一形式。
チェック制約は同じ行内のすべての属性を参照できますが、同じあるいは別のリレーションの別の行は参照できません。
    


詳細については「制約」を参照してください。
    

	Checkpoint【チェックポイント】
	

一連のWALの中で、そのチェックポイント以前に更新された共有メモリのすべての情報がヒープとインデックスのデータファイルに反映されたことが保証されている点。
その点を記録するために、チェックポイントレコードがWALにフラッシュされます。
    


また、チェックポイントは、上で定義されているチェックポイントに到達するために必要なすべてのアクションを実行に移すことでもあります。
このプロセスはあらかじめ決められた条件、たとえば一定の時間が経過した、またはある量のレコードが書き出されたなどの条件が整うことで開始されます。
あるいは、CHECKPOINTコマンドでユーザが起動することもできます。
    


詳細については「WALの設定」を参照してください。
    

	Checkpointer【チェックポインタ】（プロセス）
	

チェックポイントの実行を担当する補助プロセス。
    

	Class【クラス】（旧用語）
	Relation【リレーション】参照

	Client【クライアント】（プロセス）
	

データベースと情報交換するために、遠隔の可能性があり、インスタンスに接続することによってセッションを確立するすべてのプロセス。
    

	Cluster owner【クラスタ所有者】
	

データディレクトリを所有し、postgresプロセスが実行されるオペレーティングシステムのユーザ。
新しいデータベースクラスタを作成する前に、このユーザが存在する必要があります。
    


rootユーザが存在するオペレーティングシステムでは、そのユーザはクラスタの所有者になることはできません。
    

	Column【列】
	

テーブルまたはビューに含まれる属性。
    

	Commit【コミット】
	

他のトランザクションに対してトランザクションを可視化し、その永続性を保証し、データベース中のトランザクションの終了を実行すること。
    


詳細についてはCOMMIT(7)を参照してください。
    

	Concurrency【並行性】
	

データベースの中で複数の独立した操作が同時に行われる概念。
PostgreSQL™においては、並行性は複数バージョン並行性制御(multiversion concurrency control機構によって制御されます。
    

	Connection【接続】
	

通常ネットワーク越しにクライアントプロセスとバックエンドプロセスの間で確立された通信回線。
セッションをサポートします。
この用語は時にセッションの同義語として使われることがあります。
    


詳細については「接続と認証」を参照してください。
    

	Consistency【一貫性】
	

データベース中のデータが常に一貫性制約(integrity constraints)に従う性質。
トランザクションは、コミット前には一時的に制約の一部に違反する可能性もありますが、コミット時点までにそうした違反が解決されなければ、トランザクションは自動的にロールバックされます。
これはACID特性の一部です。
    

	Constraint【制約】
	

テーブル内、またはドメインの属性内で許可されるデータの値に対する制限。
    


詳細については「制約」を参照してください。
    

	Cumulative Statistics System【累積統計システム】
	

有効な場合、インスタンスの活動に関する統計情報を累積するシステム。
    


詳細については「累積統計システム」を参照してください。
    

	Data area【データ領域】
	Data directory【データディレクトリ】参照

	Database【データベース】
	

ローカルなSQLオブジェクトの名前付き集合。
    


詳細については「概要」を参照してください。
    

	Database cluster【データベースクラスタ】
	

データベース、グローバルなSQLオブジェクト、そしてそれらの静的あるいは動的なメタデータの集合。
時にはクラスタ(cluster)として参照されます。
データベースクラスタは、initdb(1)プログラムを使用して作成されます。
    


PostgreSQL™では、インスタンスを指すためにクラスタ(cluster)という用語も使用されることがあります。
（この用語を、SQLコマンドのCLUSTERと混同しないでください。）
    


クラスタ所有者(cluster owner)、クラスタのオペレーティングシステム所有者、およびブートストラップスーパーユーザ(bootstrap superuser)、クラスタのPostgreSQL™所有者も参照してください。
    

	Database server【データベースサーバ】
	Instance【インスタンス】参照

	Database superuser【データベーススーパーユーザ】
	

スーパーユーザ状態を持つロール（「ロールの属性」を参照）。
    


よくスーパーユーザと呼ばれます。
    

	Data directory【データディレクトリ】
	

データベースクラスタに関連付けられるすべてのデータファイルとサブディレクトリ（テーブル空間と、オプションでWALを除く）を含むサーバのファイルシステム上のベースディレクトリ。
環境変数PGDATAは、通常データディレクトリを参照するために使用されます。
    


クラスタのストレージ空間は、データディレクトリに加えてすべての追加のテーブル空間を含みます。
    


詳細については「データベースファイルのレイアウト」を参照してください。
    

	Data page【データページ】
	

リレーションデータを格納するための基本的なデータ構造。
すべてのページは同じサイズです。
データページはそれぞれ特定のファイルに置かれ、典型的にはディスク上に格納され、共有バッファに読み込むことができ、その上で変更を加えることが可能で、その結果変更済み(dirty)となります。
それらはディスクに書き出されたときにきれい(clean)になります。
最初はメモリ上にのみ存在したページも書き出されるまでは変更済みです。
    

	Datum
	

SQLデータ型の１つの値の内部表現。
    

	Delete
	

指定したテーブルまたはリレーションから行を削除するSQLコマンド。
    


詳細についてはDELETE(7)を参照してください。
    

	Domain【ドメイン】
	

他の元となるデータ型に基づくユーザ定義のデータ型です。
元となる型と同じように動作しますが、使用可能な値のセットが制限される可能性があります。
    


詳細については「ドメイン型」を参照してください。
    

	Durability【永続性】
	

トランザクションが一旦コミットされると、その変更がシステム故障あるいはクラッシュ後も維持されることの保証。
これはACID特性の一部です。
    

	Epoch【エポック】
	Transaction ID【トランザクションID】参照

	Extension【拡張】
	

他の機能を入れるためにインスタンスにインストールするソフトウェアの追加パッケージ。
    


詳細については「関連するオブジェクトを拡張としてパッケージ化」を参照してください。
    

	File segment【ファイルセグメント】
	

あるリレーションのデータを格納するための物理ファイル。
ファイルセグメントのサイズは設定値（通常1ギガバイト）に制限されます。
したがってリレーションサイズがそれを超えると、複数のセグメントに分割されます。
    


詳細については「データベースファイルのレイアウト」を参照してください。
    


（この用語を、類似の用語であるWAL segmentと混同しないでください。）
    

	Foreign data wrapper【外部データラッパー】
	

あたかもローカルテーブルであるかのように見せるための、ローカルデータベースには含まれないデータの表現手法。
外部データラッパーを使うと、外部サーバと外部テーブルを定義することができます。
    


詳細についてはCREATE FOREIGN DATA WRAPPER(7)を参照してください。
    

	Foreign key【外部キー】
	

テーブルの一つあるいは複数の列に定義される制約の一形式。
その制約により、別な（稀に同じ）テーブルの0あるいは1個の行を識別するための列の値が存在することが必要となる。
    

	Foreign server【外部サーバ】
	

同じ外部データラッパーを使い、他の設定値を共通に持つ外部テーブルの名前付きの集合。
    


詳細についてはCREATE SERVER(7)を参照してください。
    

	Foreign table【外部テーブル】（リレーション）
	

通常のテーブルと同じように行と列を持つかのように見えるが、外部テーブルの定義に従った構造で結果集合を返す外部データラッパーを通じてデータ要求を転送するリレーション。
    


詳細についてはCREATE FOREIGN TABLE(7)を参照してください。
    

	Fork【フォーク】
	

リレーションが格納される個々のセグメントファイルの集合。
主フォークには、実際のデータが格納されます。
また、メタデータのための2つの二次フォークが存在します。
空き領域マップと可視性マップです。
unloggedリレーションには初期化フォーク(init fork)もあります。
    

	Free space map【空き領域マップ】（フォーク）
	

テーブルのメインフォークの個々のデータページ関するメタデータを保持する格納構造。
個々のページに対応する空き領域マップのエントリには今後追加されるタプルが使用できる空き領域の量が格納され、与えられた大きさの新しいタプルで使用できる空き領域の量を効率的に探索できる構造になっています。
    


詳細については「空き領域マップ」を参照してください。
    

	Function【関数】（ルーチン）
	

ゼロ以上の引数を受け取り、ゼロ以上の出力値を返すルーチンの一形式で、一つのトランザクション内で実行されるように制限されています。
関数はたとえばSELECTクエリの一部として起動されます。
ある関数は集合を返すことができます。
そうした関数は集合を返す関数と呼ばれます。
    


関数はまた、トリガを起動するのにも用いられます。
    


詳細についてはCREATE FUNCTION(7)を参照してください。
    

	GMT
	UTC参照

	Grant
	

ユーザやロールがデータベース内の特定のオブジェクトにアクセスすることを許可するために使われるSQLコマンド。
    


詳細についてはGRANT(7)を参照してください。
    

	Heap【ヒープ】
	

リレーションの行の属性（つまりデータ）の値を含む。
ヒープは、リレーションのメインフォークの一つ以上のファイルセグメントとして実現されています。
    

	Host【ホスト】
	

ネットワークを通じて他のコンピュータと通信するコンピュータ。
時にはサーバの同義語として用いられます。
また、クライアントプロセスを実行するコンピュータを指す用語としても用いられます。
    

	Index【インデックス】（リレーション）
	

テーブルあるいはマテリアライズドビューから派生したデータを含むリレーション。
その内部構造は、元のデータの高速な取り出しとアクセスをサポートします。
    


詳細についてはCREATE INDEX(7)を参照してください。
    

	Incremental backup【増分バックアップ】
	

すべてのベースバックアップの完全な内容ではなく、前のページ以降に変更されたバックアップのみを一部のファイルに含めることができる特別なベースバックアップ。
ベースバックアップと同様に、pg_basebackup(1)ツールによって生成される。
    


増分バックアップのリストアには、増分バックアップをベースバックアップと組み合わせるツールpg_combinebackup(1)が使用されます。
その後、リカバリはWALを使用してデータベースクラスタを一貫した状態にすることができます。
    


詳細については「増分バックアップを作成する」を参照してください。
    

	Input/Output【入力/出力】
	

Input/Output（入力/出力）（I/O）は、プログラムと周辺装置との間の通信を記述します。
データベースシステムの文脈では、I/Oは一般的に、ストレージ装置またはネットワークとの対話を指しますが、これに限定されません。
    
Asynchronous I/O【非同期I/O】参照

	Insert
	

テーブルに新しいデータを追加するために使用されるSQLコマンド。
    


詳細についてはINSERT(7)を参照してください。
    

	Instance【インスタンス】
	

共通する共有メモリを使って通信する一群のバックエンドと補助プロセス。
一つのpostmasterプロセスがインスタンスを管理します。
一つのインスタンスは、すべてのデータベースを含む、正確に一つのデータベースクラスタを管理します。
TCPポートが重ならない限り、同じサーバ内に多くのインスタンスを走らせることができます。
    


インスタンスは、ファイルと共有メモリからの読み出しおよび書き込みアクセス、ACID特性の保障、クライアントプロセスへの接続、権限の検証、クラッシュからの回復、レプリケーションその他のDBMSのすべての重要な機能を管理します。
    

	Isolation【独立性】
	

コミット前にはトランザクションの効果が同時実行するトランザクションから見えない性質。
これはACID特性の一部です。
    


詳細については「トランザクションの分離」を参照してください。
    

	Join【結合】
	

操作の一つであり、複数のリレーションのデータを組み合わせる問い合わせで用いられるSQLキーワード。
    

	Key【キー】
	

リレーションの一つ以上の属性に含まれる値を使ってテーブルあるいは他のリレーションの行を識別するための手段。
    

	Lock【ロック】
	

プロセスがあるリソースへの同時アクセスを制限、あるいは阻止できるようにするための機構。
    

	Log file【ログファイル】
	

ログファイルには事象に関する人間可読なテキスト行が含まれます。
例として、ログイン失敗、長期に渡って実行中の問い合わせなどがあります。
    


詳細については「ログファイルの保守」を参照してください。
    

	Logged【ログされる】
	

WALに変更が送信されると、テーブルはログされると見なされます。
デフォルトでは、すべての通常のテーブルはログされます。
生成時、あるいはALTER TABLEコマンドでunloggedとテーブルを指定することができます。
    

	Logger【ロガー】（プロセス）
	

有効な場合、そのプロセスは現在のログファイルにデータベースのイベントに関する情報を書き込む補助プロセス。
ある時刻あるいは容量による条件に到達すると、新しいログファイルが作られます。
sysloggerとも呼ばれます。
    


詳細については「エラー報告とログ出力」を参照してください。
    

	Logical replication cluster
	

パブリッシャーインスタンスがサブスクライバーインスタンスに変更をレプリケートする、パブリッシャーとサブスクライバーの一連のインスタンス。
    

	Log record【ログレコード】
	

WALレコードの旧用語。
     

	Log sequence number【ログシーケンス番号】
	

WAL内のバイトオフセットで、新しいWALレコードごとに単調に増加します。
    


詳細についてはpg_lsnと「WALの内部」を参照してください。
    

	LSN
	Log sequence number【ログシーケンス番号】参照

	Master【マスタ】（サーバ）
	Primary【プライマリ】（サーバ）参照

	Materialized【マテリアライズド】
	

ある情報をその場で計算するのではなく、後で使うために前もって計算し、格納する属性。
    


この用語は、ビュー問い合わせから派生するデータが、そのデータのソースとは別に格納されることを意味する目的で、マテリアライズドビューで用いられます。
    


またこの用語は、与えられたステップを実行した結果のデータをメモリに格納し（ディスクに吐き出す可能性もあります）、別のステップで複数回読み出されるようにすることを意味する複数ステップの問い合わせを指すためにも使われます。
    

	Materialized view【マテリアライズドビュー】（リレーション）
	

SELECT文により定義されたリレーション（ビューと同様）ですが、テーブルと同じ方法でデータが格納されます。
INSERT、UPDATE、DELETE、MERGEの操作では変更できません。
    


詳細についてはCREATE MATERIALIZED VIEW(7)を参照してください。
    

	Merge【マージ】
	

ソースリレーションからのデータを使用して、指定されたテーブルの行を条件付きで追加、変更、または削除するSQLコマンド。
    


詳細についてはMERGE(7)を参照してください。
    

	Multi-version concurrency control【多版型同時実行制御】(MVCC)
	

複数のトランザクションが、あるプロセスが他のプロセスを停止させることなく同じ行を読み書き可能にするように設計された機構。
PostgreSQL™では、タプルが変更されたときに、その複製（版）を作ることによりMVCCが実装されています。
古い版を見ることができるプロセスが終了した後、これらの古い版は削除する必要があります。
    

	Null
	

関係データベース理論の中心的な原理の一つである、存在しないという概念。
明示的な値が存在しないことを表現します。
    

	Optimizer【オプティマイザ】
	Query planner【問い合わせプランナ】参照

	Parallel query【パラレルクエリ】
	

複数CPUを持つサーバ上の並行プロセスの利点を活かすために、問い合わせの実行の各部分を扱うことが可能である機能。
    

	Partition【パーティション】
	

大きな集合の中の互いに素な（重ならない）部分集合の一つ。
    

	

パーティション化テーブルとの関連では、親(parent)であるパーティション化テーブルの一部のデータを持つテーブルを意味します。
パーティション自身もテーブルなので、直接問い合わせ対象になります。
また、パーティションもパーティション化テーブルになることができるので、階層を作ることができます。
    

	

問い合わせの中のウィンドウ関数との関連では、パーティションは問い合わせの結果集合中のどの隣接する行であるかをその関数によって識別するユーザ定義の基準です。
    

	Partitioned table【パーティション化テーブル】（リレーション）
	

意味論的にはテーブルと同じですが、格納場所が複数のパーティションに渡って分散しているリレーション。
    

	Postmaster（プロセス）
	

インスタンスの最初期のプロセス。
他の補助プロセスを起動して管理し、要求に応じてバックエンドプロセスを生成します。
    


詳細については「データベースサーバの起動」を参照してください。
    

	Primary key【主キー】
	

主キーのどの属性もnull値を持たないことが保証されているテーブルあるいは他のリレーション上に定義される一意性制約の特殊なケース。
その名前から連想されるように、一つのテーブルにはひとつだけ主キーが存在することができます。
しかし、NULLにならない属性を持つ複数の一意性制約を持つことも可能です。
    

	Primary【プライマリ】（サーバ）
	

2つ以上のデータベースがレプリケーションを通じて連携するときに、情報の信頼できるソースであると見なされるサーバはプライマリと呼ばれます。
マスタという用語でも知られています。
    

	Procedure【プロシージャ】（ルーチン）
	

ルーチンの一種。
違いは値を返さないことと、COMMITやROLLBACKといったトランザクション文を発行することが許されていることです。
CALLコマンドを通じて呼び出されます。
    


詳細についてはCREATE PROCEDURE(7)を参照してください。
    

	Query【問い合わせ】
	

通常結果を返す、あるいはデータベース上のデータを変更するためにクライアントからバックエンドに送信される要求。
    

	Query planner【問い合わせプランナ】
	

問い合わせを実行する最も効率の良い方法を決定する（計画する）ために使われるPostgreSQL™の一部分。
問い合わせオプティマイザ、オプティマイザ、あるいは単にプランナとしても知られています。
    

	Record
	Tuple【タプル】参照

	Recycling
	WAL file【WALファイル】参照

	Referential integrity【参照整合性】
	

外部キーによってあるリレーションのデータを制限し、他のリレーションに対応するデータが必ず存在しなければならないようにする手段。
    

	Relation【リレーション】
	

名前と特定の順序で定義された属性のリストを持つ、データベース内の全てのオブジェクトの総称。
テーブル、シーケンス、ビュー、外部テーブル、マテリアライズドビュー、複合型、インデックスはすべてリレーションです。
    


より一般的にはリレーションはタプルの集合です。
例えば問い合わせの結果もリレーションです。
    


PostgreSQL™では、クラスはリレーションの旧用語の同義語です。
    

	Replica【レプリカ】（サーバ）
	

プライマリデータベースと対になり、プライマリデータベースのデータのある部分、あるいはすべてのコピーを維持するデータベース。
これを行う大きな理由は、データへのアクセスを効率化し、プライマリが動作しなくなったときにデータの可用性を維持するためです。
    

	Replication【レプリケーション】
	

あるサーバのデータの複製をレプリカに作る過程。
ここでは、あるサーバのファイルの変更をそのまま複製する物理レプリケーションと、あらかじめ定義したデータの部分集合に対する変更を高レベルの表現を使って転送する論理レプリケーションの２つの形式が可能です。
    

	Restartpoint【リスタートポイント】
	

レプリカ上で行われるチェックポイントの一種。
    


詳細については「WALの設定」を参照してください。
    

	Result set【結果集合】
	

SQLコマンドの完了時にバックエンドプロセスからクライアントに送信されるリレーション。
SQLコマンドは通常SELECTですが、RETURNING句が指定されればINSERT、UPDATE、DELETE、MERGEも可能です。
    


結果集合がリレーションであるということは、問い合わせが他の問い合わせの定義に使用でき、副問い合わせとなるということです。
    

	
    

	Revoke
	

ロールの名前付きリストに対してデータベースオブジェクトの名前付き集合に対するアクセスを防ぐコマンド。
    


詳細についてはREVOKE(7)を参照してください。
    

	Role【ロール】
	

インスタンスに対するアクセス権限の集まり。
ロールはそれ自身が他のロールへ与えることのできる権限です。
これは利便性、あるいは複数のユーザが同じ権限を必要とする際に漏れがないようにするためにしばしば行われます。
    


詳細についてはCREATE ROLE(7)を参照してください。
    

	Rollback【ロールバック】
	

トランザクションの開始以来実行されたすべての操作を取り消すためのコマンド。
    


詳細についてはROLLBACK(7)を参照してください。
    

	Routine【ルーチン】
	

データベースシステムに格納され、実行するために起動可能な予め定義された操作の集合。
ルーチンは多様なプログラミング言語で記述できます。
ルーチンは、関数（集合を返す関数とトリガ関数を含みます）、集約関数、プロシージャのいずれかです。
    


多くのルーチンはPostgreSQL™自身にすでに含まれていますが、ユーザ定義のルーチンを追加することもできます。
    

	Row【行】
	Tuple【タプル】参照

	Savepoint【セーブポイント】
	

トランザクション中の一連のステップ中の特別な印。
セーブポイント時点以降のデータ変更は、この時点まで遡って取り消すことができます。
    


詳細についてはSAVEPOINT(7)を参照してください。
    

	Schema【スキーマ】
	

スキーマは、同じデータベースに存在するSQLオブジェクトのための名前空間です。
各SQLオブジェクトは正確に一つのスキーマに存在する必要があります。
    


すべてのシステム定義のSQLオブジェクトはpg_catalogスキーマに存在します。
    

	

より一般的には、スキーマという用語は、与えられたデータベースあるいはその部分集合中のすべてのデータの記述（テーブル定義、制約、コメントなど）の意味で用いられます。
    


詳細については「スキーマ」を参照してください。
    

	Segment【セグメント】
	File segment【ファイルセグメント】参照

	Select
	

データベースに対してデータを要求するためのSQLコマンド。
通常SELECTコマンドはデータベースを変更しないものと期待されますが、問い合わせ中で起動される関数がデータを変更する副作用を持つことはあり得ます。
    


詳細についてはSELECT(7)を参照してください。
    

	Sequence【シーケンス】（リレーション）
	

値を生成するために使用されるリレーションの一種。
通常、生成される値は非反復な連番です。
これらは通常、代理主キーの値を生成するために使用されます。
    

	Server【サーバ】
	

PostgreSQL™インスタンスを実行するコンピュータ。
サーバという用語は、実際のハードウェア、コンテナ、あるいは仮想マシンを意味します。
    


この用語は時にはインスタンスあるいはホストに関連して用いられます。
    

	Session【セッション】
	

接続を通じて通信し、クライアントとバックエンドが関わり合いを持つことが可能な状態。
    

	Shared memory【共有メモリ】
	

一つのインスタンスに共通のプロセスによって使用されるRAM。
databaseファイルの一部をコピーし、WALレコードのために一時的な領域を提供し、追加の共通情報を格納します。
共有メモリは完全なインスタンスに所属し、単一のデータベースには所属しないことに注意してください。
    


共有メモリの最大の部分は共有バッファとして知られ、ページに分割されてデータファイルのコピーを保持するために使用されます。
ページが変更されると、ファイルシステムに書き出されるまではダーティページ(dirty page)と呼ばれます。
    


詳細については「メモリ」を参照してください。
    

	SQL object【SQLオブジェクト】
	

CREATEコマンドで作られるあらゆるオブジェクト。
ほとんどのオブジェクトは一つのデータベースに限定され、ローカルオブジェクトとして一般的に知られています。
     


ほとんどのローカルオブジェクトは、リレーション （すべての種類）、ルーチン（すべての種類）データ型などのように、データベース中の特定のスキーマに存在します。
スキーマの同じ種類の中のそうしたオブジェクト同士は、名前がユニークであることが強制されます。
     


スキーマに存在しないローカルオブジェクトも存在します。
例としては、拡張、データ型キャスト、外部データラッパーがあります。
データベースの同じ種類の中のそうしたオブジェクト同士は、名前がユニークであることが強制されます。
     


他のオブジェクト型、たとえばロール、テーブル空間、レプリケーション起点、論理レプリケーションのサブスクライブ、データベース自体は、完全に特定のデータベースの外に存在するので、ローカルSQLオブジェクトではありません。
それらはグローバルオブジェクトと呼ばれます。
データベースクラスタ全体の同じ種類の中のそうしたオブジェクト同士は、名前がユニークであることが強制されます。
     


詳細については「概要」を参照してください。
    

	SQL standard【標準SQL】
	

SQL言語を定義する一連の文書。
    

	Standby【スタンバイ】（サーバ）
	Replica【レプリカ】（サーバ）参照

	Startup process【スタートアッププロセス】
	

クラッシュリカバリ中および物理レプリカでWALを再生する補助プロセス。
    


（歴史的経緯のある名前です。スタートアッププロセスは、レプリケーションが実装される前に名前が付けられました。
名前は、クラッシュ後のサーバ起動に関連するタスクを示しています。）
    

	Superuser【スーパーユーザ】
	

このドキュメントで使用される用語として、データベーススーパーユーザの同義語です。
    

	System catalog【システムカタログ】
	

インスタンスのすべてのSQLオブジェクトの構造を記述するテーブルの集まり。
システムカタログはpg_catalogスキーマに存在します。
これらのテーブルは内部表現のデータを格納しているので、典型的にはユーザが調べる目的には適しません。
pg_catalogスキーマにもユーザによりわかりやすい多くのビューが提供されており、一部の情報にはより便利なアクセスを提供しています。
一方標準SQLによって管理されているものと同じあるいはさらに追加の情報を提供するinformation_schemaスキーマ（35章情報スキーマ参照）に追加のテーブルとビューがあります。
    


詳細については「スキーマ」を参照してください。
    

	Table【テーブル】
	

共通のデータ構造を持つタプルの集合（同じ数の属性が同じ順序で、位置ごとに同じ名前と型を持ちます）。
テーブルは、PostgreSQL™におけるリレーションの最も一般的な形式です。
    


詳細についてはCREATE TABLE(7)を参照してください。
    

	Tablespace【テーブル空間】
	

サーバファイルシステムの名前付き場所。
すべてのSQLオブジェクトは、システムカタログ内の定義を超えた格納領域が要求され、単一のテーブル空間に属している必要があります。
最初にデータベースクラスタは、単一で使用可能なテーブル空間が含まれています。
それはpg_defaultと呼ばれ、全てのSQLオブジェクトでデフォルトとして使用されます。
    


詳細については「テーブル空間」を参照してください。
    

	Temporary table【一時テーブル】
	

セッションまたはトランザクションのどちらか（作成時に指定します）の存続期間中にのみ存在するテーブル。
そのデータは他のセッションからは見られず、ログされることはありません。
一時テーブルはしばしば複数ステップ操作の中間データを格納するために使用されます。
    


詳細についてはCREATE TABLE(7)を参照してください。
    

	TOAST
	

テーブル行の大きな属性を分割して副テーブルに格納する機構。
TOASTテーブルと呼ばれます。
大きな属性を持つ各リレーションには、独自のTOASTテーブルがあります。
    


詳細については「TOAST」を参照してください。
    

	Transaction【トランザクション】
	

単一の原子性コマンドとして動作する必要があるコマンドの組み合わせ。
それらは単一の組としてすべて成功かすべて失敗し、トランザクションが完了するまで（分離レベルによってはその後でさえ）、他のセッションからはその効果が見えません。
    


詳細については「トランザクションの分離」を参照してください。
    

	Transaction ID【トランザクションID】
	

個々のトランザクションが最初にデータベースに変更を加える際に、ユニークな数値である順序数としてアサインされる識別子です。
しばしばxidと略されます。
ディスク上ではxidは32ビット幅しかないので、約40億の書き込みトランザクションIDしか生成できません。
それよりも長くシステムが実行できるようにするために、これもまた32ビット幅であるエポックが用いられます。
カウンタがxidの最大値に到達すると、xidは3（これよりも小さな値は予約されています）から再開し、エポックの値は1増えます。
ときにはエポックとxidの値を組み合わせて、単一の64ビット値として扱うこともあります。
詳細については「トランザクションと識別子」を参照してください。
    


詳細については「オブジェクト識別子データ型」を参照してください。
    

	Transactions per second (TPS)【1秒あたりのトランザクション数】
	

１秒あたりに実行されたトランザクションの平均数。
測定された実行中にアクティブな全てのセッションで合計されます。
これはインスタンスのパフォーマンス特性の指標として使用されます。
    

	Trigger【トリガ】
	

特定の操作(INSERT、UPDATE、DELETE、TRUNCATE)がリレーションに適用されるたびに実行することを定義できる関数。
トリガは、トリガを起動した文と同じトランザクション内で実行されます。関数が失敗すると、起動した文も失敗します。
    


詳細についてはCREATE TRIGGER(7)を参照してください。
    

	Tuple【タプル】
	

属性を一定の順序で集めたもの。
この順序はタプルが含まれるテーブル（または他のリレーション）によって定義されます。その場合タプルは、しばしば行と呼ばれます。
また結果セットの構造によって定義される場合もあります。その場合、タプルはレコードと呼ばれることがあります。
    

	Unique constraint【一意性制約】
	

リレーションに定義される制約の一形式で、一つ以上の複数の列の組み合わせで許可される値を制限して、各値または組み合わせの値がリレーションの中で一度しか現れないように制限します。 — つまり、リレーション内の他の行にそれらと等しい値が含まれないようにします。
    


NULL値は互いに等しいとは見なされないため、一意性制約の違反にはならず、NULL値は複数の行に存在することが許可されます。
    

	Unlogged【ログを取らない】
	

特定の性質のリレーションで、それらに対する変更がWALに反映されません。
これらのリレーションのレプリケーションとクラッシュリカバリは無効になります。
    


ログを取らないテーブルの主な用途は、プロセス間で共有する必要がある一時的な作業データを格納することです。
    


一時テーブルは常にログを取りません。
    

	Update
	

指定されたテーブルに既にある行を変更するために使われるSQLコマンド。
行を作成したり削除したりはできません。
    


詳細についてはUPDATE(7)を参照してください。
    

	User【ユーザ】
	

LOGIN権限を持つロール。
（「ロールの属性」を参照）。
    

	User mapping【ユーザマッピング】
	

ローカルデータベース内のログイン認証情報をリモートデータシステム内の外部データラッパーによって定義された認証情報に変換すること。
    


詳細についてはCREATE USER MAPPING(7)を参照してください。
    

	UTC
	

協定世界時。主なグローバルな時間基準で、経度0度の子午線でおおよそ標準とされる時刻です。
しばしば、GMT（グリニッジ標準時）と呼ばれますが正確ではありません。
    

	Vacuum【バキューム】
	

テーブルまたはマテリアライズドビューから古いものとなったタプルバージョンを削除し、またPostgreSQL™のMVCCの実装に必要なその他の密接に関連する処理をおこなうプロセス。
これはVACUUMコマンドを使用して開始できますが、自動バキュームプロセスを介して自動的に処理することもできます。
    


詳細については「定常的なバキューム作業」を参照してください。
    

	View【ビュー】
	

SELECT文によって定義されたリレーションですが、それ自体は格納されません。
問い合わせがビューを参照すると、ビューの名前ではなく副問い合わせとして入力したかのように、ビューの定義が問い合わせに代入されます。
    


詳細についてはCREATE VIEW(7)を参照してください。
    

	Visibility map【可視性マップ】（フォーク）
	

テーブルのメインフォークの各データページに関するメタデータ保持する格納構造です。
各ページの可視性マップのエントリに2ビットが格納されます。
1番目のビット(all-visible)は、ページ内のすべてのタプルがすべてのトランザクションに対して可視であることを示します。
2番目のビット(all-frozen)は、ページ内のすべてのタプルが凍結とマークされていることを示します。
    

	WAL
	Write-ahead log【先行書き込みログ】参照

	WAL archiver【WALアーカイバ】（プロセス）
	

有効な場合、バックアップの作成またはレプリカを最新の状態に保つために、WALファイルのコピーを保持する補助プロセス。
    


詳細については「継続的アーカイブとポイントインタイムリカバリ（PITR）」を参照してください。
    

	WAL file【WALファイル】
	

WALセグメントやWALセグメントファイルとしても知られています。
WALの格納領域を提供する連番のファイル。
ファイルはすべて、事前に定義された同じサイズであり、連続した順序で書き込まれます。複数のセッションで同時に発生する変更が分散しています。
システムがクラッシュした場合、ファイルは順番に読み込まれ、各変更が再生されてクラッシュする前の状態にシステムが復元されます。
    


各WALファイルはチェックポイントがすべての変更を対応するデータファイルをすべて書き込んだ後に解放できます。
ファイルを解放するには、削除するか、名前を変えて将来使用できるようにします。これはrecycling（再利用）と呼ばれます。
    


詳細については「WALの内部」を参照してください。
    

	WAL record【WALレコード】
	

個々のデータの変更を低レベルで記述したもの。
システム障害によって変更が失われた場合に、データの変更を再実行（再生）するための十分な情報が含まれています。
WALレコードは表示できないバイナリフォーマットを使用します。
    


詳細については「WALの内部」を参照してください。
    

	WAL receiver【WAL受信】（プロセス）
	

プライマリサーバからWALを受信してスタートアッププロセスが再生するために、レプリカ上で実行される補助プロセス。
    


詳細については「ログシッピングスタンバイサーバ」を参照してください。
    

	WAL segment【WALセグメント】
	WAL file【WALファイル】参照

	WAL sender【WAL送信】（プロセス）
	

ネットワーク上でWALをストリーミングする特別なバックエンドプロセス。
受信側はレプリカのWAL受信、pg_receivewal(1)、または複製プロトコルを話す他のクライアントプログラムです。
    

	WAL summarizer【WAL要約処理】（プロセス）
	

増分バックアップのためにWALデータを要約する補助プロセス。
    


詳細については「WAL要約」を参照してください。
    

	WAL writer【WALライタ】（プロセス）
	

WALレコードを共有メモリからWALファイルに書き出す補助プロセス。
    


詳細については「先行書き込みログ（WAL）」を参照してください。
    

	Window function【ウィンドウ関数】（ルーチン）
	

問い合わせ内で使用される関数の一種で、問い合わせの結果セットのパーティションに適用されます。
この関数の結果は、同じパーティションまたはフレームの行の値を元にしている。
    


すべての集約関数はウィンドウ関数として使用できますが、ウィンドウ関数は例えば、パーティション内の各行にランク付けすることもできます。
分析関数とも呼ばれます。
    


詳細については「ウィンドウ関数」を参照してください。
    

	Write-ahead log【先行書き込みログ】
	

ユーザおよびシステム起因の操作によるデータベースクラスタ内の変更を追跡するジャーナル。
それは、多くの個別のWALレコードが連続してWALファイルに書き込まれます。
    




付録N 色対応





PostgreSQLパッケージのたいていのプログラムは、色付けされたコンソール出力が可能です。
この付録では、色付けがどのように設定されるかを説明します。
 
いつ色が使われるか





色付けされた出力を使うには、環境変数PG_COLORを以下のように設定します。

   
	

値がalwaysの場合、色が使われます。
     

	

値がautoで標準エラーストリームがターミナルデバイスに関連付けられている場合、色が使われます。
     

	

それ以外の場合には色は使われません。
     




  


色を設定する





実際に使われる色は環境変数PG_COLORS（複数形であることに注意）を使って設定されます。
この値はコロン区切りのkey=valueのリストです。
キー（key）はどこに色が使われるかを示します。
値（value）はSGR（Select Graphic Rendition）の記述で、ターミナルにより解釈されます。
  


現在、以下のキーが使われています。
   
	error
	エラーメッセージでテキスト「error」を強調するのに使われます

	warning
	警告メッセージでテキスト「warning」を強調するのに使われます

	note
	メッセージでテキスト「detail」と「hint」を強調するのに使われます

	locus
	メッセージで位置情報を強調するのに使われます（例えば、プログラム名やファイル名）




  


デフォルト値はerror=01;31:warning=01;35:note=01;36:locus=01です（01;31 = 太字の赤、01;35 = 太字のマゼンタ、01;36 = 太字のシアン、01 = 太字のデフォルト色）。
  
ヒント


この色指定書式は、GCC™、GNU coreutils™、および、GNU grep™など、他のソフトウェアパッケージでも使われています。
   


付録O 廃止または名前が変更された機能





PostgreSQLから機能が削除されたり、機能、設定、ファイル名が変更されたり、文書が別の場所に移動したりすることがあります。
この節では、古いバージョンの文書または外部リンクから来たユーザを、必要な情報を得るために適切な新しい場所に誘導します。
 
recovery.confファイルをpostgresql.confに統合





PostgreSQL 11以下では、recovery.conf

という名前の設定ファイルを使用して、レプリカとスタンバイを管理していました。
このファイルのサポートはPostgreSQL 12で削除されました。
この変更の詳細については、PostgreSQL 12のリリースノートを参照してください。
   


PostgreSQL 12以上では、アーカイブリカバリ、ストリーミングレプリケーション、およびPITRは通常のサーバ設定パラメータを使用して設定されています。
これらはpostgresql.confで設定されるか、他のパラメータと同様にALTER SYSTEMを介して設定されます。
   


recovery.confが存在する場合、サーバは起動しません。
   


PostgreSQL 15以下にはpromote_trigger_file、12より前にはtrigger_fileの設定がありました。
代わりにpg_ctl promoteまたはpg_promote()の呼び出しを使用してスタンバイを昇格します。
   


standby_modeの

設定が削除されました。
代わりに、dataディレクトリ内のstandby.signalファイルが使用されます。
詳細については、スタンバイサーバの動作を参照してください。
   


デフォルトロールの名前を事前定義ロールに変更





PostgreSQL 13以下では、「デフォルトロール」という用語を使用していました。
しかし、これらのロールは実際には変更できず、初期化時にシステムの一部としてインストールされるので、「事前定義ロール」という用語を使用するのがより適切です。
事前定義ロールに関する最新のドキュメントについては「定義済みロール」を、この変更の詳細についてはPostgreSQL 14のリリースノートを参照してください。
   

pg_xlogdumpの名前をpg_waldumpに変更





PostgreSQL 9.6以下では、pg_xlogdumpという名前のコマンドが

write-ahead-log(WAL)ファイルを読み取るために提供されていました。
このコマンドはpg_waldumpに名前が変更されました。
pg_waldumpのドキュメントについてはpg_waldump(1)を、この変更の詳細についてはPostgreSQL 10のリリースノートを参照してください。
   

pg_resetxlogの名前をpg_resetwalに変更





PostgreSQL 9.6以下では、pg_resetxlogという名前のコマンドが

write-ahead-log(WAL)ファイルをリセットするために提供されていました。
このコマンドはpg_resetwalに名前が変更されました。
pg_resetwalのドキュメントについてはpg_resetwal(1)を、この変更の詳細についてはPostgreSQL 10のリリースノートを参照してください。
   

pg_receivexlogの名前をpg_receivewalに変更





PostgreSQL 9.6以下では、pg_receivexlogという名前のコマンドが

write-ahead-log(WAL)ファイルを取り出すために提供されていました。
このコマンドはpg_receivewalに名前が変更されました。
pg_receivewalのドキュメントについてはpg_receivewal(1)を、この変更の詳細についてはPostgreSQL 10のリリースノートを参照してください。
   

付録P 貢献者




以下の方々に日本語ドキュメント作成に貢献いただきました。
ありがとうございました。(PostgreSQL9.6以降の貢献者を記載)

PostgreSQL 18




翻訳者

	小泉 悟
	斉藤 登
	Amazon Web Services 樋口 大輔
	NTTドコモソリューションズ株式会社 黒田 佳祐
	株式会社SRA OSS顧問 石井 達夫
	株式会社SRA OSS 北山 貴広
	株式会社アシスト 佐々木 友厚
	株式会社アシスト 田中 健一朗
	富士通株式会社 黒田 隼人
	富士通株式会社 柴垣 向志


その他の貢献

	NTT OSSセンタ 加藤 慎也
	株式会社SRA OSS　鳥越 淳


謝辞

	国立研究開発法人情報通信研究機構（NICT）が開発した「みんなの自動翻訳＠TexTra®」による機械翻訳を参考に翻訳活動を行なっています。


PostgreSQL 17




翻訳者

	小泉 悟
	斉藤 登
	NTTコムウェア株式会社 黒田 佳祐
	株式会社SRA OSS顧問 石井 達夫
	株式会社SRA OSS　北山 貴広
	株式会社SRA OSS　高塚 遥
	ウォンテッドリー株式会社　加藤 健
	株式会社アシスト 倉本 卓哉
	株式会社アシスト 佐々木 友厚
	株式会社アシスト 田中 健一朗
	株式会社アシスト 拝島 渚
	株式会社アシスト 平沼 真人
	富士通株式会社 黒田 隼人
	富士通株式会社 柴垣 向志


その他の貢献

	Amazon Web Services 樋口 大輔
	株式会社SRA OSS 長田 悠吾
	株式会社アシスト 程 ゆき
	日本電信電話株式会社 白石 裕輝


謝辞

	国立研究開発法人情報通信研究機構（NICT）が開発した「みんなの自動翻訳＠TexTra®」による機械翻訳を参考に翻訳活動を行なっています。


PostgreSQL 16




翻訳者

	小泉 悟
	斉藤 登
	SRA OSS LLC 顧問 石井 達夫
	SRA OSS LLC 北山 貴広
	株式会社アシスト 田中 健一朗
	富士通株式会社 黒田 隼人


その他の貢献

	三谷知広
	SRA OSS LLC 高塚 遥
	三菱電機株式会社 藤井雄規


謝辞

	国立研究開発法人情報通信研究機構（NICT）が開発した「みんなの自動翻訳＠TexTra®」による機械翻訳を参考に翻訳活動を行なっています。


PostgreSQL 15




翻訳者

	小泉 悟
	斉藤 登
	SRA OSS LLC 顧問 石井 達夫
	SRA OSS LLC 北山 貴広
	株式会社アシスト 田中 健一朗


その他の貢献

	伊東 貢一
	大平 直宏
	久保 健洋
	Amazon Web Services 澤田 雅彦
	NTTコムウェア株式会社 川本 将也
	株式会社ナガツグ 神谷 広員
	SRA OSS LLC 高塚 遥
	富士通株式会社 黒田 隼人


謝辞

	国立研究開発法人情報通信研究機構（NICT）が開発した「みんなの自動翻訳＠TexTra®」による機械翻訳を参考に翻訳活動を行なっています。


PostgreSQL 14




翻訳者

	阿部 陣一
	小泉 悟
	五島 英明
	斉藤 登
	塚田 雄志郎
	SRA OSS LLC 顧問 石井 達夫
	SRA OSS LLC 北山 貴広
	SRA OSS LLC 高塚 遙
	NTTコムウェア 星合 拓馬
	株式会社アシスト 喜田 絋介
	株式会社アシスト 田中 健一朗


その他の貢献

	tkuramoto33
	Masatoshi Fukunaga
	ぬこ@横浜
	伊東 貢一
	篠田 典良
	SRA OSS LLC 矢吹 洋一 
	NTT OSSセンタ 池田 真洋
	NTT OSSセンタ 平光 友博
	NTTコムウェア 山田 達朗
	株式会社クリアコード 堀本 泰弘
	富士通株式会社 黒田 隼人


PostgreSQL 13




翻訳者

	小泉 悟
	斉藤 登
	田中 響
	SRA OSS, Inc. 日本支社 石井 達夫
	SRA OSS, Inc. 日本支社 北山 貴広
	SRA OSS, Inc. 日本支社 高塚 遙
	NTTコムウェア 星合 拓馬
	株式会社アシスト 田中 健一朗
	株式会社スカイアーチHRソリューションズ 橋本 淳一


その他の貢献

	富士通株式会社 黒田 隼人


PostgreSQL 12




翻訳者

	小泉 悟
	斉藤 登
	藤井 隆夫
	星合 拓馬
	SRA OSS, Inc. 日本支社 石井 達夫
	SRA OSS, Inc. 日本支社 高塚 遙
	株式会社アシスト 田中 健一朗


その他の貢献

	大平 直宏
	篠田 典良
	SRA OSS, Inc. 日本支社 佐藤 友章
	SRA OSS, Inc. 日本支社 矢吹 洋一
	NTT OSSセンタ 大塚 憲司
	NTT OSSセンタ 坂田 哲夫
	NTTコムウェア 山田達朗
	株式会社NTTデータ 藤井 雅雄
	株式会社ソニックガーデン 西川 一樹
	富士通株式会社 黒田 隼人


PostgreSQL 11




翻訳者

	小泉 悟
	斉藤 登
	星合 拓馬
	SRA OSS, Inc. 日本支社 石井 達夫
	SRA OSS, Inc. 日本支社 千田 貴大
	SRA OSS, Inc. 日本支社 高塚 遙
	NTT OSSセンタ 細谷柚子
	株式会社アシスト 田中 健一朗


その他の貢献

	azarakko
	上原 一樹
	篠田 典良
	堀田　倫英
	株式会社NTTデータ 藤井 雅雄
	中央大学 遠藤 杏奈
	日本電信電話株式会社 澤田 雅彦


PostgreSQL 10




翻訳者

	小泉 悟
	斉藤 登
	寺内 大輝
	SRA OSS, Inc. 日本支社 石井 達夫
	SRA OSS, Inc. 日本支社 高塚 遙
	株式会社アシスト       田中 健一朗
	株式会社シーエーシー　 松田 神一


その他の貢献

	SRA OSS, Inc. 日本支社 佐藤 友章
	SRA OSS, Inc. 日本支社 彭 博


PostgreSQL 9.6




翻訳者

	垣谷 学
	小泉 悟
	斉藤 登
	SRA OSS, Inc. 日本支社 石井 達夫
	SRA OSS, Inc. 日本支社 千田 貴大
	SRA OSS, Inc. 日本支社 高塚 遙
	株式会社アシスト       田中 健一朗
	株式会社シーエーシー　 松田 神一


その他の貢献

	大塚 憲司
	小山 哲志
	篠田 典良
	寺内 大輝
	ぬこ＠横浜
	松枝 智也
	SRA OSS, Inc. 日本支社 佐藤 友章
	NTT OSSセンタ 澤田 雅彦
	NECソリューションイノベータ(株) 近藤 太樹
	NECソリューションイノベータ(株) Dang Minh Huong
	株式会社NTTデータ 藤井 雅雄



参考文献





厳選されたSQLとPostgreSQL™に関する参考文献と図書です。
  


元となったPOSTGRES™開発チームの白書と技術レポートが、カリフォルニア大学バークレイ校コンピュータサイエンス学部のWebサイトにあります。
  
SQL参考図書
[bowman01] The Practical SQL Handbook. Using SQL Variants. Fourth Edition. Bowman Judith [FAMILY Given], Emerson Sandra [FAMILY Given], 、 Darnovsky Marcy [FAMILY Given]. 0-201-70309-2. Addison-Wesley Professional. 2001. 

[date97] A Guide to the SQL Standard [訳注：翻訳は『標準SQLガイド』、4-7561-2047-4]. A user's guide to the standard database language SQL. Fourth Edition. Date C. J. [FAMILY Given] 、 Darwen Hugh [FAMILY Given]. 0-201-96426-0. Addison-Wesley. 1997. 

[date04] An Introduction to Database Systems. Eighth Edition. Date C. J. [FAMILY Given]. 0-321-19784-4. Addison-Wesley. 2003. 

[elma04] Fundamentals of Database Systems. Fourth Edition. Elmasri Ramez [FAMILY Given] 、 Navathe Shamkant [FAMILY Given]. 0-321-12226-7. Addison-Wesley. 2003. 

[melt93] Understanding the New SQL [訳注：改訂版の翻訳は『SQL:1999リレーショナル言語詳解』、4-8947-1531-7]. A complete guide. Melton Jim [FAMILY Given] 、 Simon Alan R. [FAMILY Given]. 1-55860-245-3. Morgan Kaufmann. 1993. 

[ull88] Principles of Database and Knowledge-Base Systems. Classical Database Systems. Ullman Jeffrey D. [FAMILY Given]. Volume 1. Computer Science Press. 1988. 

[sqltr-19075-6] SQL Technical Report. Part 6: SQL support for JavaScript Object
      Notation (JSON). First Edition. 2017. 


PostgreSQLに特化した文書
[sim98] Enhancement of the ANSI SQL Implementation of PostgreSQL. Simkovics Stefan [FAMILY Given]. Department of Information Systems, Vienna University of Technology. Vienna, Austria. November 29, 1998. 

[yu95] The Postgres95.  User Manual. Yu A. [FAMILY Given] 、 Chen J. [FAMILY Given]. University  of  California. Berkeley, California. Sept. 5, 1995. 

[fong] The
   design and implementation of the POSTGRES™ query
   optimizer. Fong Zelaine [FAMILY Given]. University of California, Berkeley, Computer Science Department. 


会報ならびに記事
[berenson95] 「A Critique of ANSI SQL Isolation Levels」. Berenson H. [FAMILY Given], Bernstein P. [FAMILY Given], Gray J. [FAMILY Given], Melton J. [FAMILY Given], O'Neil E. [FAMILY Given], 、 O'Neil P. [FAMILY Given]. ACM-SIGMOD Conference on Management of Data. June 1995. San Jose, California. . 

[hell18] 「Looking Back at Postgres」. Hellerstein J. [FAMILY Given]. Making Databases Work. 978-1-947487-19-2. Association for Computing Machinery and Morgan & Claypool. 2018. 

[olson93] Partial indexing in POSTGRES: research project. Olson Nels [FAMILY Given]. UCB Engin T7.49.1993 O676. University  of  California. Berkeley, California. 1993. 

[ong90] 「A Unified Framework for Version Modeling Using Production Rules in a Database System」. Ong L. [FAMILY Given] 、 Goh J. [FAMILY Given]. ERL Technical Memorandum M90/33. University  of  California. Berkeley, California. April, 1990. 

[ports12] 「Serializable Snapshot Isolation in PostgreSQL」. Ports D. [FAMILY Given] 、 Grittner K. [FAMILY Given]. VLDB Conference. August 2012. Istanbul, Turkey. . 

[rowe87] 「The POSTGRES™
    data model」. Rowe L. [FAMILY Given] 、 Stonebraker M. [FAMILY Given]. VLDB Conference. Sept. 1987. Brighton, England. . 

[seshadri95] 「Generalized
    Partial Indexes」. Seshadri P. [FAMILY Given] 、 Swami A. [FAMILY Given]. Eleventh International Conference on Data Engineering. 6–10 March 1995. Taipeh, Taiwan. . Cat. No.95CH35724. IEEE Computer Society Press. Los Alamitos, California. 1995. 420–7. 

[ston86] 「The
    design of POSTGRES™」. Stonebraker M. [FAMILY Given] 、 Rowe L. [FAMILY Given]. ACM-SIGMOD Conference on Management of Data. May 1986. Washington, DC. . 

[ston87a] 「The design of the POSTGRES™ rules system」. Stonebraker M. [FAMILY Given], Hanson E. [FAMILY Given], 、 Hong C. H. [FAMILY Given]. IEEE Conference on Data Engineering. Feb. 1987. Los Angeles, California. . 

[ston87b] 「The
    design of the POSTGRES™ storage
    system」. Stonebraker M. [FAMILY Given]. VLDB Conference. Sept. 1987. Brighton, England. . 

[ston89] 「A
    commentary on the POSTGRES™ rules
    system」. Stonebraker M. [FAMILY Given], Hearst M. [FAMILY Given], 、 Potamianos S. [FAMILY Given]. SIGMOD Record 18(3). Sept. 1989. 

[ston89b] 「The
    case for partial indexes」. Stonebraker M. [FAMILY Given]. SIGMOD Record 18(4). Dec. 1989. 4–11. 

[ston90a] 「The
    implementation of POSTGRES™」. Stonebraker M. [FAMILY Given], Rowe L. A. [FAMILY Given], 、 Hirohama M. [FAMILY Given]. Transactions on Knowledge and Data Engineering 2(1). IEEE. March 1990. 

[ston90b] 「On
    Rules, Procedures, Caching and Views in Database Systems」. Stonebraker M. [FAMILY Given], Jhingran A. [FAMILY Given], Goh J. [FAMILY Given], 、 Potamianos S. [FAMILY Given]. ACM-SIGMOD Conference on Management of Data. June 1990. . 

[ston92] 「
    An overview of the Sequoia 2000 project
    」. Stonebraker M. [FAMILY Given]. Digest of Papers COMPCON Spring 1992. 1992. 383–388. 



索引



シンボル
	$, 位置パラメータ
	$libdir, 動的ロード
	$libdir/plugins, 共有ライブラリのプリロード, 説明
	*, 選択リスト項目
	.pgpass, パスワードファイル
	.pg_service.conf, 接続サービスファイル
	10進数 (参照 numeric)
	::, 型キャスト
	_PG_archive_module_init, 初期化関数
	_PG_init, 動的ロード
	_PG_oauth_validator_module_init, 初期化関数
	_PG_output_plugin_init, 初期化関数
	アサート
		PL/pgSQLにおける, アサート検査


	アップグレード処理, PostgreSQL™クラスタのアップグレード処理
	アーカイブモジュール, アーカイブモジュール
	イベントトリガ, イベントトリガ, C言語によるイベントトリガ関数の書き方
		C言語による, C言語によるイベントトリガ関数の書き方
	PL/Tclにおける, PL/Tclにおけるイベントトリガ関数


	インストール, ソースコードからインストール
		バイナリ, バイナリからのインストール


	インタフェース
		外部管理の, クライアントインタフェース


	インデックス, インデックス, 複数列インデックス, インデックスとORDER BY, 複数のインデックスの組み合わせ, 一意インデックス, 式に対するインデックス, 部分インデックス, インデックスオンリースキャンとカバリングインデックス, インデックスオンリースキャンとカバリングインデックス, インデックス使用状況の検証, テキスト検索に好ましいインデックス種類, テキスト検索に好ましいインデックス種類, ロックとインデックス, インデックス拡張機能へのインタフェース, インデックスの同時作成, インデックスを同時に再構築
		B-Tree, B-Tree, B-Treeインデックス
	BRIN, BRIN
	式に対する, 式に対するインデックス
	GIN, GIN, テキスト検索に好ましいインデックス種類, GINインデックス
		全文検索, テキスト検索に好ましいインデックス種類


	GiST, GiST, テキスト検索に好ましいインデックス種類, GiSTインデックス
		全文検索, テキスト検索に好ましいインデックス種類


	SP-GiST, SP-GiST, SP-GiSTインデックス
	とORDER BY, インデックスとORDER BY
	の使用状況の検証, インデックス使用状況の検証
	インデックスオンリースキャン, インデックスオンリースキャンとカバリングインデックス
	カバリング, インデックスオンリースキャンとカバリングインデックス
	ハッシュ, Hash, ハッシュインデックス
	ユーザ定義データ型用の, インデックス拡張機能へのインタフェース
	ロック, ロックとインデックス
	一意, 一意インデックス
	同時に再構築, インデックスを同時に再構築
	同時作成, インデックスの同時作成
	複数のインデックスの組み合わせ, 複数のインデックスの組み合わせ
	複数列, 複数列インデックス
	部分, 部分インデックス


	インデックスアクセスメソッド, インデックスアクセスメソッドのインタフェース定義
	インデックスオンリースキャン, インデックスオンリースキャンとカバリングインデックス
	インデックススキャン, プランナメソッド設定
	インデックス再作成, 定常的なインデックスの再作成
	ウィンドウ関数, ウィンドウ関数, ウィンドウ関数呼び出し, ウィンドウ関数処理, ウィンドウ関数
		実行順, ウィンドウ関数処理
	組み込み, ウィンドウ関数
	起動, ウィンドウ関数呼び出し


	ウォームスタンバイ, 高可用性、負荷分散およびレプリケーション
	エスケープ文字列構文, C形式エスケープでの文字列定数
	エラーコード, PostgreSQL™エラーコード
		の一覧, PostgreSQL™エラーコード


	エラー報告
		PL/pgSQLにおける, エラーとメッセージの報告


	オブジェクト指向データベース, 概念
	オブジェクト識別子, オブジェクト識別子データ型
		データ型, オブジェクト識別子データ型


	オーバーコミット, Linuxのメモリオーバーコミット
	オーバーロード, 関数のオーバーロード
		演算子, ユーザ定義の演算子
	関数, 関数のオーバーロード


	カスケードレプリケーション, 高可用性、負荷分散およびレプリケーション
	カスタムスキャンプロバイダ, カスタムスキャンプロバイダの作成
		のハンドラ, カスタムスキャンプロバイダの作成


	カバリングインデックス, インデックスオンリースキャンとカバリングインデックス
	カーソル, カーソル, CLOSE, DECLARE, EXPLAIN, FETCH, MOVE
		CLOSE, CLOSE
	DECLARE, DECLARE
	FETCH, FETCH
	MOVE, MOVE
	PL/pgSQLにおける, カーソル
	の問い合わせ計画の表示, EXPLAIN


	キャスト, CREATE CAST
		入出力変換, CREATE CAST


	キーワード, 識別子とキーワード, SQLキーワード
		の一覧, SQLキーワード
	の構文, 識別子とキーワード


	クライアント認証, クライアント認証
	クラスタ
		データベースの (参照 データベースクラスタ)


	クラスタ化, 高可用性、負荷分散およびレプリケーション
	クロスコンパイル, 構築プロセスの詳細
	クロス結合, 結合テーブル
	グループ化, GROUP BY句とHAVING句
	グレゴリオ暦, 単位の歴史
	グローバルデータ, PL/Tclにおけるグローバルデータ
		PL/Pythonにおける, データの共有
	PL/Tclにおける, PL/Tclにおけるグローバルデータ


	コメント, コメント
		データベースオブジェクトについて, コメント情報関数
	SQL内の, コメント


	コンテナ型, PostgreSQL™の型システム
	コンパイル, libpqプログラムの構築
		libpq アプリケーション, libpqプログラムの構築


	サブトランザクション
		PL/Tclにおける, PL/Tclにおける明示的サブトランザクション


	サポート関数
		in_range, B-Treeサポート関数


	サーバのなりすまし, サーバのなりすまし防止
	サーバログ, エラー報告とログ出力, ログファイルの保守
		ログファイルの保守, ログファイルの保守


	シグナル
		バックエンドプロセス, サーバシグナル送信関数


	システムカタログ, システムカタログスキーマ
		スキーマ, システムカタログスキーマ


	シャットダウン, サーバのシャットダウン
	シリアライザブル, シリアライザブル分離レベル
	シリアライザブルスナップショット分離, はじめに
	シングルユーザモード, シングルユーザモード用のオプション
	シーケンシャルスキャン, プランナメソッド設定
	シーケンス
		連番型, 連番型


	スカラ (参照 式)
	スキーマ, スキーマ, スキーマの作成, publicスキーマ, 概要
		public, publicスキーマ
	の作成, スキーマの作成
	の削除, スキーマの作成
	現在の, スキーマ検索パス


	スタンバイサーバ, 高可用性、負荷分散およびレプリケーション
	ストリーミングレプリケーション, 高可用性、負荷分散およびレプリケーション
	スライスパン (参照 TOAST)
	スレッド, スレッド化プログラムの振舞い
		libpqにおける, スレッド化プログラムの振舞い


	スーパーユーザ, データベースへのアクセス, ロールの属性
	セマフォ, 共有メモリとセマフォ
	セーブポイント, RELEASE SAVEPOINT, ROLLBACK TO SAVEPOINT, SAVEPOINT
		の定義, SAVEPOINT
	の解放, RELEASE SAVEPOINT
	ロールバック, ROLLBACK TO SAVEPOINT


	タイムアウト
		デッドロック, ロック管理


	タイムライン, バックアップとリストア
	ダーティリード, トランザクションの分離
	テキスト検索, テキスト検索に関する型, テキスト検索に関する型, 全文検索
		データ型, テキスト検索に関する型
	関数と演算子, テキスト検索に関する型


	テスト, リグレッションテスト
	テーブル, 概念, テーブルの基本, テーブルの変更
		の作成, テーブルの基本
	の削除, テーブルの基本
	の名称変更, テーブル名の変更
	の変更, テーブルの変更
	パーティショニング, テーブルのパーティショニング
	継承, 継承


	テーブルアクセスメソッド, テーブルアクセスメソッドのインタフェース定義
	テーブルサンプリングメソッド, テーブルサンプリングメソッドの書き方
	テーブル式, テーブル式
	テーブル空間, テーブル空間
		デフォルト, 文の動作
	一時的, 文の動作


	テーブル関数, テーブル関数, xmltable
		XMLTABLE, xmltable


	ディスクドライブ, WALの内部
	ディスク使用量, ディスク使用量の決定
	ディスク容量, ディスク容量の復旧
	デッドロック, デッドロック
		間のタイムアウト, ロック管理


	デフォルトロール, デフォルトロールの名前を事前定義ロールに変更
	デフォルト値, デフォルト値
		の変更, 列のデフォルト値の変更


	データの分割, 高可用性、負荷分散およびレプリケーション
	データベース, データベースの作成, データベース管理
		を作成する権限, ロールの属性
	作成, データベースの作成


	データベースクラスタ, 概念, データベースクラスタの作成
	データベース活動状況, データベース活動状況の監視
		監視, データベース活動状況の監視


	データ型, データ型, 数値データ型, 列挙型, ドメイン型, 型変換, PostgreSQL™の型システム, PostgreSQL™の型システム, PostgreSQL™の型システム, 多様型, C言語関数における基本型, ユーザ定義の型
		カテゴリ, 概要
	コンテナ, PostgreSQL™の型システム
	ドメイン, ドメイン型
	ユーザ定義の, ユーザ定義の型
	内部構成, C言語関数における基本型
	列挙（enum）, 列挙型
	型キャスト, 型キャスト
	基本, PostgreSQL™の型システム
	変換, 型変換
	多様, 多様型
	定数, 他の型の定数
	数値, 数値データ型
	複合, PostgreSQL™の型システム


	データ領域 (参照 データベースクラスタ)
	トランザクション, トランザクション
	トランザクションID, トランザクションIDの周回エラーの防止
		周回, トランザクションIDの周回エラーの防止


	トランザクションの分離, トランザクションの分離
	トランザクションログ (参照 WAL)
	トランザクション分離レベル, トランザクションの分離
		の設定, SET TRANSACTION
	シリアライザブル, シリアライザブル分離レベル
	デフォルト設定, 文の動作
	リピータブルリード, リピータブルリード分離レベル
	リードコミッティド, リードコミッティド分離レベル


	トリガ, トリガ, Cによるトリガ関数の作成, ルール対トリガ, トリガ関数, トリガ関数
		Cによる, Cによるトリガ関数の作成
	PL/pgSQLにおける, トリガ関数
	PL/Pythonにおける, トリガ関数
	PL/Tclにおける, PL/Tclのトリガ関数
	とルールとの比較, ルール対トリガ
	tsvectorから派生した列を更新する, 自動更新のためのトリガ
	トリガ関数の引数, トリガ動作の概要
	制約トリガ, 説明


	トークン, 字句の構造
	ドメイン, ドメイン型
	ドル引用符付け, ドル記号で引用符付けされた文字列定数
	ネットワーク, ネットワークアドレス型
		データ型, ネットワークアドレス型


	ハッシュ (参照 インデックス)
	バイナリデータ, バイナリ列データ型, バイナリ文字列関数と演算子
		関数, バイナリ文字列関数と演算子


	バイナリ文字列
		文字列への変換, バイナリ文字列関数と演算子
	結合, バイナリ文字列関数と演算子


	バキューム, 定常的なバキューム作業
	バックアップ, バックアップ制御関数, バックアップとリストア
	バックアップマニフェスト, バックアップマニフェスト書式
	バックグラウンドワーカー, バックグラウンドワーカープロセス
	バックスラッシュエスケープ, C形式エスケープでの文字列定数
	バッチモード, パイプラインモード
		libpqにおける, パイプラインモード


	バージョン, PostgreSQL™クラスタのアップグレード処理
		互換性, PostgreSQL™クラスタのアップグレード処理


	パイプライン, パイプラインモード
		libpqにおける, パイプラインモード


	パイプライン化, パイプライン化
		プロトコル定義, パイプライン化


	パス
		スキーマへの, 文の動作


	パスワード, ロールの属性
		スーパーユーザの, データベースクラスタの作成
	認証, パスワード認証


	パスワードファイル, パスワードファイル
	パターン
		psqlおよびpg_dumpにおける, パターン


	パターンマッチ, パターンマッチ
	パラメータ
		の構文, 位置パラメータ


	パラレルクエリ, パラレルクエリ
	パーティショニング, テーブルのパーティショニング
	パーティションテーブル, テーブルのパーティショニング
	パーティション除去, パーティション除去
	ビットマップスキャン, 複数のインデックスの組み合わせ, プランナメソッド設定
	ビット列, ビット列データ型
		データ型, ビット列データ型


	ビット文字列, ビット文字列定数, ビット文字列関数と演算子
		定数, ビット文字列定数
	関数, ビット文字列関数と演算子


	ビュー, ビュー, ビューとルールシステム, マテリアライズドビュー, ビューとの協調
		マテリアライズド, マテリアライズドビュー
	ルールを使用した実装, ビューとルールシステム
	更新, ビューとの協調


	ファイルシステムマウントポイント, セカンダリファイルシステムの使用
	ファントムリード, トランザクションの分離
	フィールド
		計算された, 問い合わせでの複合型の使用


	フィールド選択, フィールド選択
	フェイルオーバー, 高可用性、負荷分散およびレプリケーション
	プリペアド文, DEALLOCATE, EXECUTE, EXPLAIN, PREPARE
		の作成, PREPARE
	の削除, DEALLOCATE
	の問い合わせ計画の表示, EXPLAIN
	の実行, EXECUTE


	プロシージャ, ユーザ定義プロシージャ
		ユーザ定義, ユーザ定義プロシージャ
	出力パラメータ, 出力パラメータを持つSQLプロシージャ


	プロトコル, フロントエンド/バックエンドプロトコル
		フロントエンド/バックエンド, フロントエンド/バックエンドプロトコル


	ホスト名, パラメータキーワード
	ホットスタンバイ, 高可用性、負荷分散およびレプリケーション
	ポイントインタイムリカバリ, バックアップとリストア
	ポリシー, 行セキュリティポリシー
	ポータル
		DECLARE, DECLARE
	PL/pgSQLでの, カーソルを開く


	マシンの起動
		時のサーバ起動, データベースサーバの起動


	マジックブロック, 動的ロード
	マテリアライズドビュー, マテリアライズドビュー, pg_matviews
		ルールによる実装, マテリアライズドビュー


	メモリオーバーコミット, Linuxのメモリオーバーコミット
	メモリコンテキスト
		SPI内部の, メモリ管理


	ユリウス日, ユリウス日(Julian Date)
	ユーザ, データベースロール
	ユーザマッピング, 外部データ
	ユーザ名マップ, ユーザ名マップ
	ライブラリ初期化処理関数, 動的ロード
	ラベル (参照 別名)
	ラージオブジェクト, ラージオブジェクト
	リグレッションテスト, インストール手順, インストール手順, リグレッションテスト
	リピータブルリード, リピータブルリード分離レベル
	リレーショナルデータベース, 概念
	リレーション, 概念
	リードコミッティド, リードコミッティド分離レベル
	ルーチン, ユーザ定義プロシージャ
	ループ, 単純なループ
		PL/pgSQLにおける, 単純なループ


	ルール, ルールシステム, ビューとルールシステム, SELECTルールの動き, マテリアライズドビュー, INSERT、UPDATE、DELETEについてのルール, INSERT、UPDATE、DELETEについてのルール, INSERT、UPDATE、DELETEについてのルール, ルール対トリガ
		DELETE用, INSERT、UPDATE、DELETEについてのルール
	INSERT用, INSERT、UPDATE、DELETEについてのルール
	SELECT用, SELECTルールの動き
	とトリガとの比較, ルール対トリガ
	UPDATE用, INSERT、UPDATE、DELETEについてのルール
	とビュー, ビューとルールシステム
	とマテリアライズドビュー, マテリアライズドビュー


	レプリケーション, 高可用性、負荷分散およびレプリケーション
	レプリケーションスロット
		ストリーミングレプリケーション, レプリケーションスロット
	論理レプリケーション, レプリケーションスロット


	レプリケーション起点, レプリケーション進捗の追跡
	レプリケーション進捗の追跡, レプリケーション進捗の追跡
	ログの出力先, どこにログを出力するか
	ログイン権限, ロールの属性
	ログシッピング, 高可用性、負荷分散およびレプリケーション
	ロケール, データベースクラスタの作成, ロケールのサポート
	ロジカルデコーディング, ロジカルデコーディング, ロジカルデコーディング
	ロック, 明示的ロック, 勧告的ロック, ロックの表示
		勧告的, 勧告的ロック
	監視, ロックの表示


	ロール, データベースロール, ロールのメンバ資格, 定義済みロール
		バイパスする権限, ロールの属性
	レプリケーションの新規接続を行う権限, ロールの属性
	作成する権限, ロールの属性
	内のメンバ資格, ロールのメンバ資格
	接続を制限する権限, ロールの属性
	有効な, enabled_roles
	継承する権限, ロールの属性
	適用可能, applicable_roles


	ロールバック
		psql, 変数


	一意性制約, 一意性制約
	並べ替え, 行の並べ替え(ORDER BY)
	中央値(メジアン), 集約式
		(参照 百分位数)


	主キー, 主キー
	仮想集合集約
		組み込み, 集約関数


	任意精度の数, 任意の精度を持つ数
	休止, 遅延実行
	例外
		PL/pgSQLにおける, エラーの捕捉


	保守, 定常的なデータベース保守作業
	信頼, 信頼されたPL/Perlおよび信頼されないPL/Perl
		PL/Perl, 信頼されたPL/Perlおよび信頼されないPL/Perl


	修飾名, スキーマの作成
	倍精度, 浮動小数点データ型
	偽, 論理値データ型
	入力関数, ユーザ定義の型
	全文テキスト検索, テキスト検索に関する型
		関数と演算子, テキスト検索に関する型


	全文検索, テキスト検索に関する型, 全文検索, テキスト検索に好ましいインデックス種類
		インデックス, テキスト検索に好ましいインデックス種類
	データ型, テキスト検索に関する型


	共分散
		標本, 集約関数
	母集団, 集約関数


	共有メモリ, 共有メモリとセマフォ
	共有ライブラリ, 共有ライブラリ, 動的にロードされる関数のコンパイルとリンク
	共通テーブル式 (参照 WITH)
	再試行可能エラー, 直列化失敗の扱い
	出力関数, ユーザ定義の型
	分散
		標本, 集約関数
	母集団, 集約関数


	列, 概念, テーブルの基本
		の削除, 列の削除
	の名称変更, 列名の変更
	の追加, 列の追加
	システム列, システム列


	列のデータ型
		の変更, 列のデータ型の変更


	列の参照, 列の参照
	列挙型, 列挙型
	初期化フォーク, 初期化フォーク
	別名, テーブルと列の別名, 列ラベル
		FROM句内の, テーブルと列の別名
	問い合わせ内のテーブル名用の, テーブル間を結合
	選択リスト内の, 列ラベル


	制御ファイル, 拡張のファイル
	制約, 制約
		の削除, 制約の削除
	の名前, 検査制約
	の追加, 制約の追加
	一意性, 一意性制約
	主キー, 主キー
	外部キー, 外部キー
	排他, 排他制約
	検査, 検査制約
	非NULL, 非NULL制約


	制約による除外, パーティショニングと制約による除外
	制約除外, その他のプランナオプション
	削除, データの削除
	副問い合わせ, 集約関数, スカラ副問い合わせ, 副問い合わせ
	動的ロード, その他のデフォルト, 動的ロード
	勧告的ロック, 勧告的ロック
	参照整合性, 外部キー, 外部キー
	反復不能読み取り, トランザクションの分離
	可視性マップ, 可視性マップ
	右結合, 結合テーブル
	同時実行制御, 同時実行制御
	同期コミット, 非同期コミット
	同期レプリケーション, 高可用性、負荷分散およびレプリケーション
	名前, 識別子とキーワード
		の構文, 識別子とキーワード
	修飾された, スキーマの作成
	非修飾の, スキーマ検索パス


	否定, 論理演算子
	周回
		トランザクションIDの, トランザクションIDの周回エラーの防止
	マルチトランザクションIDの, マルチトランザクションと周回


	問い合わせ, テーブルへの問い合わせ, 問い合わせ
	問い合わせの準備
		PL/pgSQLにおける, 計画のキャッシュ
	PL/Pythonにおける, データベースアクセス関数
	PL/Tclにおける, PL/Tclからのデータベースアクセス


	問い合わせツリー, 問い合わせツリーとは
	問い合わせ計画, EXPLAINの利用
	回帰切片, 集約関数
	回帰勾配, 集約関数
	型 (参照 データ型)
	型キャスト, 数値定数, 型キャスト
	埋め込みSQL, ECPG — C言語による埋め込みSQL
		C言語による, ECPG — C言語による埋め込みSQL


	基本型, PostgreSQL™の型システム
	変動性, 関数の変動性分類
		関数, 関数の変動性分類


	外部キー, 外部キー, 外部キー
	外部テーブル, 外部データ
	外部データ, 外部データ
	外部データラッパー, 外部データラッパーの作成
		のハンドラ, 外部データラッパーの作成


	外部結合, 結合テーブル
	多様型, 多様型
	多様関数, 多様型
	多版型同時実行制御, はじめに
	多重範囲型, 範囲型
	大文字小文字の区別
		SQLコマンドの, 識別子とキーワード


	定常的な保守, 定常的なデータベース保守作業
	定数, 定数
	実行時コンパイル (参照 JIT)
	左結合, 結合テーブル
	式, 評価式
		の構文, 評価式
	の評価順, 式の評価規則


	引用符
		および識別子, 識別子とキーワード
	エスケープ, 文字列定数


	性能, 性能に関するヒント
	情報スキーマ, 情報スキーマ
	所有者, 権限
	手続き言語, 手続き言語, 手続き言語ハンドラの作成
		のハンドラ, 手続き言語ハンドラの作成
	外部管理の, 手続き言語


	拡張, 関連するオブジェクトを拡張としてパッケージ化
		外部で保守される, 拡張


	括弧で囲まれた, 評価式
	挿入, データの挿入
	排他制約, 排他制約
	接続サービスファイル, 接続サービスファイル
	数値
		定数, 数値定数


	文字の並び, 文字型
		データ型, 文字型


	文字列, 文字列定数 (参照 文字の並び)
		エスケープに関する警告, 以前のPostgreSQLバージョン
	バイナリ文字列への変換, バイナリ文字列関数と演算子
	バックスラッシュによる引用, 以前のPostgreSQLバージョン
	定数, 文字列定数
	接頭辞テスト, 文字列関数と演算子
	標準に従う, 以前のPostgreSQLバージョン
	結合, 文字列関数と演算子
	長さ, 文字列関数と演算子


	文字列のエスケープ, SQLコマンドに含めるための文字列のエスケープ処理
		libpqにおける, SQLコマンドに含めるための文字列のエスケープ処理


	文字集合, ロケールと書式設定, 設定済みのオプション, 文字集合サポート
	文書, 文書とは何か?
		全文検索, 文書とは何か?


	日付
		現在, 現在の日付/時刻


	時刻
		現在, 現在の日付/時刻


	時間帯, 時間帯, ロケールと書式設定, POSIX時間帯の指定
		POSIX時間帯の指定, POSIX時間帯の指定
	入力簡略形, 日付/時刻設定ファイル
	変換, AT TIME ZONEとAT LOCAL


	時間帯データ, 構築プロセスの詳細
	時間帯名, ロケールと書式設定
	時間間隔, 日付/時刻データ型, 時間間隔の入力
		出力書式, 時間間隔の出力
		(参照 書式設定)




	暗号化, 暗号化オプション, pgcrypto — 暗号関数
		特定の列の, pgcrypto — 暗号関数


	更新, データの更新
	更新可能ビュー, 更新可能ビュー
	書式設定, データ型書式設定関数
	最適化情報, 関数最適化に関する情報, 演算子最適化に関する情報
		演算子に対する, 演算子最適化に関する情報
	関数に対する, 関数最適化に関する情報


	最頻値(モード)
		統計, 集約関数


	有効なロール, enabled_roles
	有効数字, ロケールと書式設定
	条件式, 条件式
	格納パラメータ, 格納パラメータ
	検査制約, 検査制約
	検索パス, スキーマ検索パス
		オブジェクトの可視性, スキーマ可視性問い合わせ関数


	構文, SQLの構文
		SQL, SQLの構文


	標準偏差, 集約関数
		標本, 集約関数
	母集団, 集約関数


	権利 (参照 権限)
	権限, 権限, 権限, スキーマおよび権限, ルールと権限, ルールと権限
		ルールでの, ルールと権限
	スキーマ用の, スキーマおよび権限
	ビューでの, ルールと権限
	デフォルト, 権限
	問い合わせ, アクセス権限照会関数


	正規表現, SIMILAR TO正規表現, POSIX正規表現
		(参照 パターンマッチ)
	とロケール, 動作


	歴史, PostgreSQL™小史
		PostgreSQLの, PostgreSQL™小史


	比較, 比較関数および演算子, 副問い合わせ式
		副問い合わせ結果行, 副問い合わせ式
	演算子, 比較関数および演算子
	行コンストラクタ, 行と配列の比較
	複合型, 行と配列の比較


	浮動小数点, 浮動小数点データ型
		表示, ロケールと書式設定


	添字, 添字
	演算子, 演算子, 演算子の優先順位, 関数と演算子, 論理演算子, 演算子, ユーザ定義の演算子
		の呼び出しにおける型の解決, 演算子
	ユーザ定義, ユーザ定義の演算子
	優先順位, 演算子の優先順位
	呼び出し, 演算子の呼び出し
	構文, 演算子
	論理, 論理演算子


	演算子クラス, 演算子クラスと演算子族, インデックスメソッドと演算子クラス
	演算子族, 演算子クラスと演算子族, 演算子クラスと演算子族
	無名コードブロック, DO
	無限
		numeric (データ型), 任意の精度を持つ数
	浮動小数点, 浮動小数点データ型


	照合
		PL/pgSQLにおける, PL/pgSQL変数の照合


	照合順序
		SQL関数における, 照合順序を持つSQL関数


	環境変数, 環境変数
	生成列
		トリガでの, トリガ動作の概要


	百分位数
		連続, 集約関数
	離散, 集約関数


	監視, データベース活動状況の監視
		データベース活動状況, データベース活動状況の監視


	目的リスト, 問い合わせツリーとは
	直列化失敗, 直列化失敗の扱い
	直列化異常, トランザクションの分離, シリアライザブル分離レベル
	直線, 直線
	相関, 集約関数
	相関関係
		クエリプランナにおける, 拡張統計情報


	真, 論理値データ型
	矩形, 矩形
	短命の名前付きリレーション
		SPIから登録解除する, SPI_unregister_relation
	SPIで登録する, SPI_register_relation, SPI_register_trigger_data


	移動集約モード, 移動集約モード
	空き領域マップ, 空き領域マップ
	管理ツール
		外部で保守される, 管理ツール


	範囲テーブル, 問い合わせツリーとは
	範囲型, 範囲型
		のインデックス, インデックス
	排他, 範囲の制約


	結合, テーブル間を結合, 結合テーブル, 明示的なJOIN句でプランナを制御する
		クロス, 結合テーブル
	右, 結合テーブル
	外部, テーブル間を結合, 結合テーブル
	左, 結合テーブル
	自己, テーブル間を結合
	自然, 結合テーブル
	順番を制御する, 明示的なJOIN句でプランナを制御する


	統計情報, プランナで使用される統計情報, 拡張統計情報, プランナ用の統計情報の更新, 累積統計システム
		プランナの, プランナで使用される統計情報, 拡張統計情報, プランナ用の統計情報の更新


	継承, 継承, 継承
	継続的アーカイビング
		スタンバイにおける, スタンバイにおける継続的アーカイビング


	継続的アーカイブ, バックアップとリストア
	線分, 線分
	自動コミット
		大量のデータロード, 自動コミットをオフにする


	自動増分 (参照 serial)
	自然結合, 結合テーブル
	色, 色対応
	行, 概念, テーブルの基本
	行に関する比較, 行と配列の比較
	行単位セキュリティ, 行セキュリティポリシー
	行型, 複合型
		のコンストラクタ, 行コンストラクタ


	行数推定, 行数推定の例
		プランナ, 行数推定の例
	多変量, 多変量統計の例


	表記, 関数呼び出し
		関数, 関数呼び出し


	複合型, 複合型, PostgreSQL™の型システム
		のコンストラクタ, 行コンストラクタ
	の定数, 複合型の値の構成
	比較, 行と配列の比較


	計算されたフィールド, 問い合わせでの複合型の使用
	設定
		サーバの
		関数, 構成設定関数


	サーバの, サーバ設定
	リカバリの
		スタンバイサーバの, アーカイブからのリカバリ
	一般設定, リカバリ




	証明書, 証明書認証
	評価式, 評価式
	読み取り専用トランザクション
		の設定, SET TRANSACTION
	デフォルト設定, 文の動作


	論理値
		演算子 (参照 演算子, 論理)


	論理和, 論理演算子
	論理積, 論理演算子
	識別列, 識別列
	識別子, 識別子とキーワード
		の構文, 識別子とキーワード
	長さ, 識別子とキーワード


	警告処理, 警告処理
		libpqでの, 警告処理


	負荷分散, 高可用性、負荷分散およびレプリケーション
	近道, 近道インタフェース
	述語ロック, シリアライザブル分離レベル
	逆分散, 集約関数
	通知プロセッサ, 警告処理
	通知レシーバ, 警告処理
	連鎖トランザクション, トランザクション制御, パラメータ, パラメータ
		PL/pgSQLでの, トランザクション制御


	遅延, 遅延実行
	遅延トランザクション
		の設定, SET TRANSACTION
	デフォルト設定, 文の動作


	適用可能なロール, applicable_roles
	遷移テーブル, CREATE TRIGGER
		(参照 短命の名前付きリレーション)
	Cトリガからの参照, Cによるトリガ関数の作成
	PLでの実装, SPI_register_trigger_data


	遺伝的問い合わせ最適化, 遺伝的問い合わせオプティマイザ
	配列, 配列
		I/O, 配列の入出力構文
	アクセス, 配列へのアクセス
	コンストラクタ, 配列コンストラクタ
	ユーザ定義型の, ユーザ定義の型
	変更, 配列の変更
	定数, 配列の値の入力
	宣言, 配列型の宣言
	検索, 配列内の検索


	重複, テーブルへの問い合わせ, DISTINCT
	長さ
		バイナリ文字列の (参照 バイナリ文字列, 長さ)
	文字列の (参照 文字列, 長さ)


	関数, テーブル関数, 関数と演算子, 統計情報関数, 関数, 多様型, ユーザ定義関数, 問い合わせ言語（SQL）関数, 内部関数, C言語関数
		FROM句内の, テーブル関数
	RETURNS TABLE, TABLEを返すSQL関数
	SETOF 付き, 集合を返すSQL関数
	variadic, 可変長引数を取るSQL関数
	の呼び出しにおける型解決, 関数
	ユーザ定義, ユーザ定義関数, 問い合わせ言語（SQL）関数, C言語関数
		Cで作成された, C言語関数
	SQLで作成した, 問い合わせ言語（SQL）関数


	位置表記, 位置表記の使用
	内部, 内部関数
	出力パラメータ, 出力パラメータを持つSQL関数
	名前付き引数, SQL関数用の引数
	名前付け表記, 名前付け表記の使用
	呼び出し, 関数呼び出し
	多様, 多様型
	引数のデフォルト値, 引数にデフォルト値を持つSQL関数
	混在表記, 混在表記の利用
	統計, 統計情報関数


	関数依存, GROUP BY句とHAVING句
	階層型データベース, 概念
	集合を返す関数, 集合を返す関数
		関数, 集合を返す関数


	集合和, 問い合わせの結合(UNION, INTERSECT, EXCEPT)
	集合差, 問い合わせの結合(UNION, INTERSECT, EXCEPT)
	集合演算, 問い合わせの結合(UNION, INTERSECT, EXCEPT)
	集合積, 問い合わせの結合(UNION, INTERSECT, EXCEPT)
	集約関数, 集約関数, 集約式, 集約関数, ユーザ定義の集約
		サポート関数, 集約サポート関数
	ユーザ定義, ユーザ定義の集約
	可変長引数, 多様引数と可変長引数集約
	呼び出し, 集約式
	多様引数, 多様引数と可変長引数集約
	移動集約, 移動集約モード
	組み込み, 集約関数
	部分集約, 部分集約
	順序集合, 順序集合の集約


	非NULL制約, 非NULL制約
	非ブロッキング接続, データベース接続制御関数, 非同期コマンドの処理
	非ブロック接続, データベース接続制御関数
	非修飾名, スキーマ検索パス
	非同期I/O, 用語集
	非同期コミット, 非同期コミット
	非数
		数値（データ型）, 任意の精度を持つ数
	浮動小数点, 浮動小数点データ型


	非永続性, 永続性がない設定
	順序付け演算子, システムの演算子クラスに対する依存性
	順序性, 集合を返す関数
	順序集合集約, 集約式
		組み込み, 集約関数


	高可用性, 高可用性、負荷分散およびレプリケーション


A
	abbrev, ネットワークアドレス関数と演算子
	ABORT, ABORT
	abs, 算術関数と演算子
	ACL, 権限
	aclcontains, アクセス権限照会関数
	acldefault, アクセス権限照会関数
	aclexplode, アクセス権限照会関数
	aclitem, 権限
	aclitemeq, アクセス権限照会関数
	acos, 算術関数と演算子
	acosd, 算術関数と演算子
	acosh, 算術関数と演算子
	administration tools
		externally maintained, 管理ツール


	advisory lock, 勧告的ロック
	age, 日付/時刻関数と演算子, トランザクションIDとスナップショット情報関数
	aggregate function, 集約関数, 集約式, 集約関数, ユーザ定義の集約
		built-in, 集約関数
	invocation, 集約式
	moving aggregate, 移動集約モード
	ordered set, 順序集合の集約
	partial aggregation, 部分集約
	polymorphic, 多様引数と可変長引数集約
	support functions for, 集約サポート関数
	user-defined, ユーザ定義の集約
	variadic, 多様引数と可変長引数集約


	akeys, hstoreの演算子と関数
	alias, テーブルと列の別名, 列ラベル
		for table name in query, テーブル間を結合
	in the FROM clause, テーブルと列の別名
	in the select list, 列ラベル


	ALL, GROUPING SETS、CUBE、ROLLUP, DISTINCT, 副問い合わせ式, 行と配列の比較
		GROUP BY ALL, GROUPING SETS、CUBE、ROLLUP
	SELECT ALL, DISTINCT


	allow_alter_system configuration parameter, プラットフォームとクライアント互換性
	allow_alter_system設定パラメータ, プラットフォームとクライアント互換性
	allow_in_place_tablespaces configuration parameter, 開発者向けオプション
	allow_in_place_tablespaces設定パラメータ, 開発者向けオプション
	allow_system_table_mods configuration parameter, 開発者向けオプション
	allow_system_table_mods設定パラメータ, 開発者向けオプション
	ALTER AGGREGATE, ALTER AGGREGATE
	ALTER COLLATION, ALTER COLLATION
	ALTER CONVERSION, ALTER CONVERSION
	ALTER DATABASE, ALTER DATABASE
	ALTER DEFAULT PRIVILEGES, ALTER DEFAULT PRIVILEGES
	ALTER DOMAIN, ALTER DOMAIN
	ALTER EVENT TRIGGER, ALTER EVENT TRIGGER
	ALTER EXTENSION, ALTER EXTENSION
	ALTER FOREIGN DATA WRAPPER, ALTER FOREIGN DATA WRAPPER
	ALTER FOREIGN TABLE, ALTER FOREIGN TABLE
	ALTER FUNCTION, ALTER FUNCTION
	ALTER GROUP, ALTER GROUP
	ALTER INDEX, ALTER INDEX
	ALTER LANGUAGE, ALTER LANGUAGE
	ALTER LARGE OBJECT, ALTER LARGE OBJECT
	ALTER MATERIALIZED VIEW, ALTER MATERIALIZED VIEW
	ALTER OPERATOR, ALTER OPERATOR
	ALTER OPERATOR CLASS, ALTER OPERATOR CLASS
	ALTER OPERATOR FAMILY, ALTER OPERATOR FAMILY
	ALTER POLICY, ALTER POLICY
	ALTER PROCEDURE, ALTER PROCEDURE
	ALTER PUBLICATION, ALTER PUBLICATION
	ALTER ROLE, ロールの属性, ALTER ROLE
	ALTER ROUTINE, ALTER ROUTINE
	ALTER RULE, ALTER RULE
	ALTER SCHEMA, ALTER SCHEMA
	ALTER SEQUENCE, ALTER SEQUENCE
	ALTER SERVER, ALTER SERVER
	ALTER STATISTICS, ALTER STATISTICS
	ALTER SUBSCRIPTION, ALTER SUBSCRIPTION
	ALTER SYSTEM, ALTER SYSTEM
	ALTER TABLE, ALTER TABLE
	ALTER TABLESPACE, ALTER TABLESPACE
	ALTER TEXT SEARCH CONFIGURATION, ALTER TEXT SEARCH CONFIGURATION
	ALTER TEXT SEARCH DICTIONARY, ALTER TEXT SEARCH DICTIONARY
	ALTER TEXT SEARCH PARSER, ALTER TEXT SEARCH PARSER
	ALTER TEXT SEARCH TEMPLATE, ALTER TEXT SEARCH TEMPLATE
	ALTER TRIGGER, ALTER TRIGGER
	ALTER TYPE, ALTER TYPE
	ALTER USER, ALTER USER
	ALTER USER MAPPING, ALTER USER MAPPING
	ALTER VIEW, ALTER VIEW
	ALTER_REPLICATION_SLOT, ストリーミングレプリケーションプロトコル
	amcheck, amcheck — テーブルとインデックスの一貫性を検査するツール
	ANALYZE, プランナ用の統計情報の更新, ANALYZE
	AND (operator), 論理演算子
	AND（演算子）, 論理演算子
	anonymous code blocks, DO
	any, 疑似データ型
	ANY, 集約関数, 副問い合わせ式, 行と配列の比較
	anyarray, 疑似データ型
	anycompatible, 疑似データ型
	anycompatiblearray, 疑似データ型
	anycompatiblemultirange, 疑似データ型
	anycompatiblenonarray, 疑似データ型
	anycompatiblerange, 疑似データ型
	anyelement, 疑似データ型
	anyenum, 疑似データ型
	anymultirange, 疑似データ型
	anynonarray, 疑似データ型
	anyrange, 疑似データ型
	any_value, 集約関数
	application_name configuration parameter, なにをログに出力するか
	application_name設定パラメータ, なにをログに出力するか
	arbitrary precision numbers, 任意の精度を持つ数
	Archive Modules, アーカイブモジュール
	archive_cleanup_command configuration parameter, アーカイブからのリカバリ
	archive_cleanup_command設定パラメータ, アーカイブからのリカバリ
	archive_command configuration parameter, アーカイビング
	archive_command設定パラメータ, アーカイビング
	archive_library configuration parameter, アーカイビング
	archive_library設定パラメータ, アーカイビング
	archive_mode configuration parameter, アーカイビング
	archive_mode設定パラメータ, アーカイビング
	archive_timeout configuration parameter, アーカイビング
	archive_timeout設定パラメータ, アーカイビング
	area, 幾何関数と演算子
	armor, armor(), dearmor()
	array, 配列
		accessing, 配列へのアクセス
	constant, 配列の値の入力
	constructor, 配列コンストラクタ
	declaration, 配列型の宣言
	I/O, 配列の入出力構文
	modifying, 配列の変更
	of user-defined type, ユーザ定義の型
	searching, 配列内の検索


	ARRAY, 配列コンストラクタ, UNION、CASEおよび関連する構文, UNION、CASEおよび関連する構文
		determination of result type, UNION、CASEおよび関連する構文
	結果型の決定, UNION、CASEおよび関連する構文


	array_agg, 集約関数, 関数
	array_append, 配列関数と演算子
	array_cat, 配列関数と演算子
	array_dims, 配列関数と演算子
	array_fill, 配列関数と演算子
	array_length, 配列関数と演算子
	array_lower, 配列関数と演算子
	array_ndims, 配列関数と演算子
	array_nulls configuration parameter, 以前のPostgreSQLバージョン
	array_nulls設定パラメータ, 以前のPostgreSQLバージョン
	array_position, 配列関数と演算子
	array_positions, 配列関数と演算子
	array_prepend, 配列関数と演算子
	array_remove, 配列関数と演算子
	array_replace, 配列関数と演算子
	array_reverse, 配列関数と演算子
	array_sample, 配列関数と演算子
	array_shuffle, 配列関数と演算子
	array_sort, 配列関数と演算子
	array_to_json, JSONデータの処理と生成
	array_to_string, 配列関数と演算子
	array_to_tsvector, テキスト検索関数と演算子
	array_upper, 配列関数と演算子
	ascii, 文字列関数と演算子
	asin, 算術関数と演算子
	asind, 算術関数と演算子
	asinh, 算術関数と演算子
	ASSERT
		in PL/pgSQL, アサート検査
	PL/pgSQLにおける, アサート検査


	assertions
		in PL/pgSQL, アサート検査


	asynchronous commit, 非同期コミット
	Asynchronous I/O, 用語集
	AT LOCAL, AT TIME ZONEとAT LOCAL
	AT TIME ZONE, AT TIME ZONEとAT LOCAL
	atan, 算術関数と演算子
	atan2, 算術関数と演算子
	atan2d, 算術関数と演算子
	atand, 算術関数と演算子
	atanh, 算術関数と演算子
	authentication_timeout configuration parameter, 認証
	authentication_timeout設定パラメータ, 認証
	auth_delay, auth_delay — 認証エラー時に一時停止
	auth_delay.milliseconds configuration parameter, 設定パラメータ
	auth_delay.milliseconds設定パラメータ, 設定パラメータ
	auto-increment (参照 serial)
	autocommit
		bulk-loading data, 自動コミットをオフにする
	psql, 変数


	autosummarize storage parameter, インデックス格納パラメータ
	autosummarize格納パラメータ, インデックス格納パラメータ
	autovacuum
		general information, 自動バキュームデーモン
	一般情報, 自動バキュームデーモン


	autovacuum configuration parameter, 自動Vacuum作業
	autovacuum_analyze_scale_factor
		configuration parameter, 自動Vacuum作業
	storage parameter, 格納パラメータ
	格納パラメータ, 格納パラメータ
	設定パラメータ, 自動Vacuum作業


	autovacuum_analyze_threshold
		configuration parameter, 自動Vacuum作業
	storage parameter, 格納パラメータ
	格納パラメータ, 格納パラメータ
	設定パラメータ, 自動Vacuum作業


	autovacuum_enabled storage parameter, 格納パラメータ
	autovacuum_enabled格納パラメータ, 格納パラメータ
	autovacuum_freeze_max_age
		configuration parameter, 自動Vacuum作業
	storage parameter, 格納パラメータ
	格納パラメータ, 格納パラメータ
	設定パラメータ, 自動Vacuum作業


	autovacuum_freeze_min_age storage parameter, 格納パラメータ
	autovacuum_freeze_min_age格納パラメータ, 格納パラメータ
	autovacuum_freeze_table_age storage parameter, 格納パラメータ
	autovacuum_freeze_table_age格納パラメータ, 格納パラメータ
	autovacuum_max_workers configuration parameter, 自動Vacuum作業
	autovacuum_max_workers設定パラメータ, 自動Vacuum作業
	autovacuum_multixact_freeze_max_age
		configuration parameter, 自動Vacuum作業
	storage parameter, 格納パラメータ
	格納パラメータ, 格納パラメータ
	設定パラメータ, 自動Vacuum作業


	autovacuum_multixact_freeze_min_age storage parameter, 格納パラメータ
	autovacuum_multixact_freeze_min_age格納パラメータ, 格納パラメータ
	autovacuum_multixact_freeze_table_age storage parameter, 格納パラメータ
	autovacuum_multixact_freeze_table_age格納パラメータ, 格納パラメータ
	autovacuum_naptime configuration parameter, 自動Vacuum作業
	autovacuum_naptime設定パラメータ, 自動Vacuum作業
	autovacuum_vacuum_cost_delay
		configuration parameter, 自動Vacuum作業
	storage parameter, 格納パラメータ
	格納パラメータ, 格納パラメータ
	設定パラメータ, 自動Vacuum作業


	autovacuum_vacuum_cost_limit
		configuration parameter, 自動Vacuum作業
	storage parameter, 格納パラメータ
	格納パラメータ, 格納パラメータ
	設定パラメータ, 自動Vacuum作業


	autovacuum_vacuum_insert_scale_factor
		configuration parameter, 自動Vacuum作業
	storage parameter, 格納パラメータ
	格納パラメータ, 格納パラメータ
	設定パラメータ, 自動Vacuum作業


	autovacuum_vacuum_insert_threshold
		configuration parameter, 自動Vacuum作業
	storage parameter, 格納パラメータ
	格納パラメータ, 格納パラメータ
	設定パラメータ, 自動Vacuum作業


	autovacuum_vacuum_max_threshold
		configuration parameter, 自動Vacuum作業
	storage parameter, 格納パラメータ
	設定パラメータ, 自動Vacuum作業


	autovacuum_vacuum_scale_factor
		configuration parameter, 自動Vacuum作業
	storage parameter, 格納パラメータ
	格納パラメータ, 格納パラメータ
	設定パラメータ, 自動Vacuum作業


	autovacuum_vacuum_threshold
		configuration parameter, 自動Vacuum作業
	storage parameter, 格納パラメータ
	格納パラメータ, 格納パラメータ
	設定パラメータ, 自動Vacuum作業


	autovacuum_worker_slots configuration parameter, 自動Vacuum作業
	autovacuum_worker_slots設定パラメータ, 自動Vacuum作業
	autovacuum_work_mem configuration parameter, メモリ
	autovacuum_work_mem設定パラメータ, メモリ
	autovacuum設定パラメータ, 自動Vacuum作業
	auto_explain, auto_explain — 低速な問い合わせ実行計画のログ
	auto_explain.log_analyze configuration parameter, 設定パラメータ
	auto_explain.log_analyze設定パラメータ, 設定パラメータ
	auto_explain.log_buffers configuration parameter, 設定パラメータ
	auto_explain.log_buffers設定パラメータ, 設定パラメータ
	auto_explain.log_format configuration parameter, 設定パラメータ
	auto_explain.log_format設定パラメータ, 設定パラメータ
	auto_explain.log_level configuration parameter, 設定パラメータ
	auto_explain.log_level設定パラメータ, 設定パラメータ
	auto_explain.log_min_duration configuration parameter, 設定パラメータ
	auto_explain.log_min_duration設定パラメータ, 設定パラメータ
	auto_explain.log_nested_statements configuration parameter, 設定パラメータ
	auto_explain.log_nested_statements設定パラメータ, 設定パラメータ
	auto_explain.log_parameter_max_length configuration parameter, 設定パラメータ
	auto_explain.log_parameter_max_length設定パラメータ, 設定パラメータ
	auto_explain.log_settings configuration parameter, 設定パラメータ
	auto_explain.log_settings設定パラメータ, 設定パラメータ
	auto_explain.log_timing configuration parameter, 設定パラメータ
	auto_explain.log_timing設定パラメータ, 設定パラメータ
	auto_explain.log_triggers configuration parameter, 設定パラメータ
	auto_explain.log_triggers設定パラメータ, 設定パラメータ
	auto_explain.log_verbose configuration parameter, 設定パラメータ
	auto_explain.log_verbose設定パラメータ, 設定パラメータ
	auto_explain.log_wal configuration parameter, 設定パラメータ
	auto_explain.log_wal設定パラメータ, 設定パラメータ
	auto_explain.sample_rate configuration parameter, 設定パラメータ
	auto_explain.sample_rate設定パラメータ, 設定パラメータ
	avals, hstoreの演算子と関数
	average, 集約関数
	avg, 集約関数


B
	B-Tree (参照 index) (参照 インデックス)
	backend_flush_after configuration parameter, I/O
	backend_flush_after設定パラメータ, I/O
	Background workers, バックグラウンドワーカープロセス
	backslash escapes, C形式エスケープでの文字列定数
	backslash_quote configuration parameter, 以前のPostgreSQLバージョン
	backslash_quote設定パラメータ, 以前のPostgreSQLバージョン
	backtrace_functions configuration parameter, 開発者向けオプション
	backtrace_functions設定パラメータ, 開発者向けオプション
	backup, バックアップ制御関数, バックアップとリストア
	Backup Manifest, バックアップマニフェスト書式
	base type, PostgreSQL™の型システム
	base64 format, バイナリ文字列関数と演算子
	basebackup_to_shell, basebackup_to_shell — pg_basebackupモジュール"shell"の例
	basebackup_to_shell.command configuration parameter, 設定パラメータ
	basebackup_to_shell.command設定パラメータ, 設定パラメータ
	basebackup_to_shell.required_role configuration parameter, 設定パラメータ
	basebackup_to_shell.required_role設定パラメータ, 設定パラメータ
	BASE_BACKUP, ストリーミングレプリケーションプロトコル
	basic_archive, basic_archive — WALアーカイブモジュールの例
	basic_archive.archive_directory configuration parameter, 設定パラメータ
	basic_archive.archive_directory設定パラメータ, 設定パラメータ
	batch mode, パイプラインモード
		in libpq, パイプラインモード


	BEGIN, BEGIN
	BETWEEN, 比較関数および演算子
	BETWEEN SYMMETRIC, 比較関数および演算子
	BGWORKER_BACKEND_​DATABASE_CONNECTION, バックグラウンドワーカープロセス
	BGWORKER_SHMEM_ACCESS, バックグラウンドワーカープロセス
	bgwriter_delay configuration parameter, バックグラウンドライタ
	bgwriter_delay設定パラメータ, バックグラウンドライタ
	bgwriter_flush_after configuration parameter, バックグラウンドライタ
	bgwriter_flush_after設定パラメータ, バックグラウンドライタ
	bgwriter_lru_maxpages configuration parameter, バックグラウンドライタ
	bgwriter_lru_maxpages設定パラメータ, バックグラウンドライタ
	bgwriter_lru_multiplier configuration parameter, バックグラウンドライタ
	bgwriter_lru_multiplier設定パラメータ, バックグラウンドライタ
	bigint, 数値定数, 整数データ型
	bigserial, 連番型
	binary data, バイナリ列データ型, バイナリ文字列関数と演算子
		functions, バイナリ文字列関数と演算子


	binary string
		concatenation, バイナリ文字列関数と演算子
	converting to character string, バイナリ文字列関数と演算子
	length, バイナリ文字列関数と演算子


	bison, 必要条件
	bit string, ビット文字列定数, ビット列データ型
		constant, ビット文字列定数
	data type, ビット列データ型
	length, ビット文字列関数と演算子


	bit strings, ビット文字列関数と演算子
		functions, ビット文字列関数と演算子


	bitmap scan, 複数のインデックスの組み合わせ, プランナメソッド設定
	bit_and, 集約関数
	bit_count, バイナリ文字列関数と演算子, ビット文字列関数と演算子
	bit_length, 文字列関数と演算子, バイナリ文字列関数と演算子, ビット文字列関数と演算子
	bit_or, 集約関数
	bit_xor, 集約関数
	BLOB (参照 large object) (参照 ラージオブジェクト)
	block_size configuration parameter, 設定済みのオプション
	block_size設定パラメータ, 設定済みのオプション
	bloom, bloom — ブルームフィルタインデックスアクセスメソッド
	bonjour configuration parameter, 接続設定
	bonjour_name configuration parameter, 接続設定
	bonjour_name設定パラメータ, 接続設定
	bonjour設定パラメータ, 接続設定
	Boolean, 論理値データ型, 論理値データ型
		data type, 論理値データ型
	operators (参照 operators, logical)
	データ型, 論理値データ型


	bool_and, 集約関数
	bool_or, 集約関数
	bound_box, 幾何関数と演算子
	box, 幾何関数と演算子
	box (data type), 矩形
	box（データ型）, 矩形
	bpchar, 文字型
	BRIN (参照 index) (参照 インデックス)
	brin_desummarize_range, インデックス保守関数
	brin_metapage_info, BRIN関数
	brin_page_items, BRIN関数
	brin_page_type, BRIN関数
	brin_revmap_data, BRIN関数
	brin_summarize_new_values, インデックス保守関数
	brin_summarize_range, インデックス保守関数
	broadcast, ネットワークアドレス関数と演算子
	BSD Authentication, BSD認証
	btree_gin, btree_gin — GIN演算子クラスとB-tree動作
	btree_gist, btree_gist — GiST演算子クラスとB-tree動作
	btrim, 文字列関数と演算子, バイナリ文字列関数と演算子
	bt_index_check, 関数
	bt_index_parent_check, 関数
	bt_metap, B-tree関数
	bt_multi_page_stats, B-tree関数
	bt_page_items, B-tree関数
	bt_page_stats, B-tree関数
	buffering storage parameter, インデックス格納パラメータ
	buffering格納パラメータ, インデックス格納パラメータ
	bytea, バイナリ列データ型
	bytea_output configuration parameter, 文の動作
	bytea_output設定パラメータ, 文の動作


C
	C, libpq — C ライブラリ, ECPG — C言語による埋め込みSQL
	C++, 拡張へのC++の利用
	CALL, CALL
	canceling SQL queries, 処理中の問い合わせのキャンセル
	cardinality, 配列関数と演算子
	CASCADE, 依存関係の追跡, 依存関係の追跡
		DROPの, 依存関係の追跡
	with DROP, 依存関係の追跡
	foreign key action, 外部キー
	外部キー動作, 外部キー


	Cascading Replication, 高可用性、負荷分散およびレプリケーション
	CASE, 条件式, UNION、CASEおよび関連する構文, UNION、CASEおよび関連する構文
		determination of result type, UNION、CASEおよび関連する構文
	結果型の決定, UNION、CASEおよび関連する構文


	case sensitivity
		of SQL commands, 識別子とキーワード


	casefold, 文字列関数と演算子
	cast, CREATE CAST
		I/O conversion, CREATE CAST


	cbrt, 算術関数と演算子
	ceil, 算術関数と演算子
	ceiling, 算術関数と演算子
	center, 幾何関数と演算子
	Certificate, 証明書認証
	chained transactions, トランザクション制御, パラメータ, パラメータ
		in PL/pgSQL, トランザクション制御


	char, 文字型
	character, 文字型
	character set, ロケールと書式設定, 設定済みのオプション, 文字集合サポート
	character string, 文字列定数, 文字型
		concatenation, 文字列関数と演算子
	constant, 文字列定数
	converting to binary string, バイナリ文字列関数と演算子
	data types, 文字型
	length, 文字列関数と演算子
	prefix test, 文字列関数と演算子


	character varying, 文字型
	character_length, 文字列関数と演算子
	char_length, 文字列関数と演算子
	check constraint, 検査制約
	CHECK OPTION, CREATE VIEW
	checkpoint, WALの設定
	CHECKPOINT, CHECKPOINT
	checkpoint_completion_target configuration parameter, チェックポイント
	checkpoint_completion_target設定パラメータ, チェックポイント
	checkpoint_flush_after configuration parameter, チェックポイント
	checkpoint_flush_after設定パラメータ, チェックポイント
	checkpoint_timeout configuration parameter, チェックポイント
	checkpoint_timeout設定パラメータ, チェックポイント
	checkpoint_warning configuration parameter, チェックポイント
	checkpoint_warning設定パラメータ, チェックポイント
	checksums, データチェックサム
	check_function_bodies configuration parameter, 文の動作
	check_function_bodies設定パラメータ, 文の動作
	chr, 文字列関数と演算子
	cid, オブジェクト識別子データ型
	cidr, cidr
	circle, 円, 幾何関数と演算子
	citext, citext — 大文字小文字の区別がない文字列型
	client authentication, クライアント認証
		timeout during, 認証
	タイムアウト期間, 認証


	client_connection_check_interval configuration parameter, TCP設定
	client_connection_check_interval設定パラメータ, TCP設定
	client_encoding configuration parameter, ロケールと書式設定
	client_encoding設定パラメータ, ロケールと書式設定
	client_min_messages configuration parameter, 文の動作
	client_min_messages設定パラメータ, 文の動作
	clock_timestamp, 日付/時刻関数と演算子
	CLOSE, CLOSE
	cluster
		of databases (参照 database cluster)


	CLUSTER, CLUSTER
	clusterdb, clusterdb
	clustering, 高可用性、負荷分散およびレプリケーション
	cluster_name configuration parameter, プロセスのタイトル
	cluster_name設定パラメータ, プロセスのタイトル
	cmax, システム列
	cmin, システム列
	COALESCE, COALESCE
	COLLATE, 照合順序式
	collation, 照合順序サポート
		in PL/pgSQL, PL/pgSQL変数の照合
	in SQL functions, 照合順序を持つSQL関数


	COLLATION FOR, システムカタログ情報関数
	color, 色対応
	column, 概念, テーブルの基本
		adding, 列の追加
	removing, 列の削除
	renaming, 列名の変更
	system column, システム列


	column data type
		changing, 列のデータ型の変更


	column reference, 列の参照
	col_description, コメント情報関数
	comment, コメント
		about database objects, コメント情報関数
	in SQL, コメント


	COMMENT, COMMENT
	COMMIT, COMMIT
	COMMIT PREPARED, COMMIT PREPARED
	commit_delay configuration parameter, 諸設定
	commit_delay設定パラメータ, 諸設定
	commit_siblings configuration parameter, 諸設定
	commit_siblings設定パラメータ, 諸設定
	commit_timestamp_buffers configuration parameter, メモリ
	commit_timestamp_buffers設定パラメータ, メモリ
	common table expression (参照 WITH)
	comparison, 比較関数および演算子, 副問い合わせ式
		composite type, 行と配列の比較
	operators, 比較関数および演算子
	row constructor, 行と配列の比較
	subquery result row, 副問い合わせ式


	compiling, libpqプログラムの構築
		libpq applications, libpqプログラムの構築


	composite type, 複合型, PostgreSQL™の型システム
		comparison, 行と配列の比較
	constant, 複合型の値の構成
	constructor, 行コンストラクタ


	computed field, 問い合わせでの複合型の使用
	compute_query_id configuration parameter, 統計情報の監視
	compute_query_id設定パラメータ, 統計情報の監視
	concat, 文字列関数と演算子
	concat_ws, 文字列関数と演算子
	concurrency, 同時実行制御
	conditional expression, 条件式
	configuration
		of recovery
		general settings, リカバリ
	of a standby server, アーカイブからのリカバリ


	of the server, サーバ設定
	of the server
		functions, 構成設定関数




	configure, インストール手順
	configure environment variables, configure環境変数
	configure options, configureオプション
	configureオプション, configureオプション
	configure環境変数, configure環境変数
	config_file configuration parameter, ファイルの場所
	config_file設定パラメータ, ファイルの場所
	conjunction, 論理演算子
	connectby, 提供される関数, connectby
	connection service file, 接続サービスファイル
	conninfo, 接続文字列
	constant, 定数
	constraint, 制約
		adding, 制約の追加
	check, 検査制約
	exclusion, 排他制約
	foreign key, 外部キー
	name, 検査制約
	NOT NULL, 非NULL制約
	primary key, 主キー
	removing, 制約の削除
	unique, 一意性制約


	constraint exclusion, パーティショニングと制約による除外, その他のプランナオプション
	constraint_exclusion configuration parameter, その他のプランナオプション
	constraint_exclusion設定パラメータ, その他のプランナオプション
	container type, PostgreSQL™の型システム
	CONTINUE
		in PL/pgSQL, CONTINUE
	PL/pgSQLにおける, CONTINUE


	continuous archiving, バックアップとリストア
		in standby, スタンバイにおける継続的アーカイビング


	control file, 拡張のファイル
	convert, バイナリ文字列関数と演算子
	convert_from, バイナリ文字列関数と演算子
	convert_to, バイナリ文字列関数と演算子
	COPY, テーブルに行を挿入, COPYコマンド関連関数, COPYコマンド関連関数, COPY
		libpqを使用した, COPYコマンド関連関数
	with libpq, COPYコマンド関連関数


	corr, 集約関数
	correlation, 集約関数
		in the query planner, 拡張統計情報


	cos, 算術関数と演算子
	cosd, 算術関数と演算子
	cosh, 算術関数と演算子
	cot, 算術関数と演算子
	cotd, 算術関数と演算子
	count, 集約関数
	covariance
		population, 集約関数
	sample, 集約関数


	covar_pop, 集約関数
	covar_samp, 集約関数
	covering index, インデックスオンリースキャンとカバリングインデックス
	cpu_index_tuple_cost configuration parameter, プランナコスト定数
	cpu_index_tuple_cost設定パラメータ, プランナコスト定数
	cpu_operator_cost configuration parameter, プランナコスト定数
	cpu_operator_cost設定パラメータ, プランナコスト定数
	cpu_tuple_cost configuration parameter, プランナコスト定数
	cpu_tuple_cost設定パラメータ, プランナコスト定数
	crc32, バイナリ文字列関数と演算子
	crc32c, バイナリ文字列関数と演算子
	CREATE ACCESS METHOD, CREATE ACCESS METHOD
	CREATE AGGREGATE, CREATE AGGREGATE
	CREATE CAST, CREATE CAST
	CREATE COLLATION, CREATE COLLATION
	CREATE CONVERSION, CREATE CONVERSION
	CREATE DATABASE, データベースの作成, CREATE DATABASE
	CREATE DOMAIN, CREATE DOMAIN
	CREATE EVENT TRIGGER, CREATE EVENT TRIGGER
	CREATE EXTENSION, CREATE EXTENSION
	CREATE FOREIGN DATA WRAPPER, CREATE FOREIGN DATA WRAPPER
	CREATE FOREIGN TABLE, CREATE FOREIGN TABLE
	CREATE FUNCTION, CREATE FUNCTION
	CREATE GROUP, CREATE GROUP
	CREATE INDEX, CREATE INDEX
	CREATE LANGUAGE, CREATE LANGUAGE
	CREATE MATERIALIZED VIEW, CREATE MATERIALIZED VIEW
	CREATE OPERATOR, CREATE OPERATOR
	CREATE OPERATOR CLASS, CREATE OPERATOR CLASS
	CREATE OPERATOR FAMILY, CREATE OPERATOR FAMILY
	CREATE POLICY, CREATE POLICY
	CREATE PROCEDURE, CREATE PROCEDURE
	CREATE PUBLICATION, CREATE PUBLICATION
	CREATE ROLE, データベースロール, CREATE ROLE
	CREATE RULE, CREATE RULE
	CREATE SCHEMA, CREATE SCHEMA
	CREATE SEQUENCE, CREATE SEQUENCE
	CREATE SERVER, CREATE SERVER
	CREATE STATISTICS, CREATE STATISTICS
	CREATE SUBSCRIPTION, CREATE SUBSCRIPTION
	CREATE TABLE, 新しいテーブルの作成, CREATE TABLE
	CREATE TABLE AS, CREATE TABLE AS
	CREATE TABLESPACE, テーブル空間, CREATE TABLESPACE
	CREATE TEXT SEARCH CONFIGURATION, CREATE TEXT SEARCH CONFIGURATION
	CREATE TEXT SEARCH DICTIONARY, CREATE TEXT SEARCH DICTIONARY
	CREATE TEXT SEARCH PARSER, CREATE TEXT SEARCH PARSER
	CREATE TEXT SEARCH TEMPLATE, CREATE TEXT SEARCH TEMPLATE
	CREATE TRANSFORM, CREATE TRANSFORM
	CREATE TRIGGER, CREATE TRIGGER
	CREATE TYPE, CREATE TYPE
	CREATE USER, CREATE USER
	CREATE USER MAPPING, CREATE USER MAPPING
	CREATE VIEW, CREATE VIEW
	createdb, データベースの作成, データベースの作成, createdb
	createrole_self_grant
		configuration parameter, 文の動作
	設定パラメータ, 文の動作


	createrole_self_grant configuration parameter
		use in securing functions, SECURITY DEFINER関数の安全な作成


	createrole_self_grant設定パラメータ
		関数の安全化における使用, SECURITY DEFINER関数の安全な作成


	createuser, データベースロール, createuser
	CREATE_REPLICATION_SLOT, ストリーミングレプリケーションプロトコル
	cross compilation, 構築プロセスの詳細, 構築プロセスの詳細
	cross join, 結合テーブル
	crosstab, crosstab(text), crosstabN(text), crosstab(text, text)
	crypt, crypt()
	cstring, 疑似データ型
	CSV (Comma-Separated Values) format
		in psql, メタコマンド


	CSV(カンマ区切り値)書式
		psqlでの, メタコマンド


	ctid, システム列
	CTID, 非SELECT文のビュールール
	CUBE, GROUPING SETS、CUBE、ROLLUP
	cube (extension), cube — 多次元立方体データ型
	cube (拡張), cube — 多次元立方体データ型
	cume_dist, ウィンドウ関数
		hypothetical, 集約関数
	仮想の, 集約関数


	current_catalog, セッション情報関数
	current_database, セッション情報関数
	current_date, 日付/時刻関数と演算子
	current_logfiles
		and the log_destination configuration parameter, どこにログを出力するか
	and the pg_current_logfile function, セッション情報関数
	およびlog_destination設定パラメータ, どこにログを出力するか
	とpg_current_logfile関数, セッション情報関数


	current_query, セッション情報関数
	current_role, セッション情報関数
	current_schema, セッション情報関数
	current_schemas, セッション情報関数
	current_setting, 構成設定関数
	current_time, 日付/時刻関数と演算子
	current_timestamp, 日付/時刻関数と演算子
	current_user, セッション情報関数
	currval, シーケンス操作関数
	cursor, カーソル, CLOSE, DECLARE, EXPLAIN, FETCH, MOVE
		CLOSE, CLOSE
	DECLARE, DECLARE
	FETCH, FETCH
	in PL/pgSQL, カーソル
	MOVE, MOVE
	showing the query plan, EXPLAIN


	cursor_tuple_fraction configuration parameter, その他のプランナオプション
	cursor_tuple_fraction設定パラメータ, その他のプランナオプション
	custom scan provider, カスタムスキャンプロバイダの作成
		handler for, カスタムスキャンプロバイダの作成


	Cygwin, Cygwin, Cygwin
		installation on, Cygwin
	上へのインストール, Cygwin




D
	daitch_mokotoff, Daitch-Mokotoff Soundex
	data area (参照 database cluster)
	data partitioning, 高可用性、負荷分散およびレプリケーション
	data type, データ型, 数値データ型, 列挙型, ドメイン型, 型変換, PostgreSQL™の型システム, PostgreSQL™の型システム, PostgreSQL™の型システム, 多様型, C言語関数における基本型, ユーザ定義の型
		base, PostgreSQL™の型システム
	category, 概要
	composite, PostgreSQL™の型システム
	constant, 他の型の定数
	container, PostgreSQL™の型システム
	conversion, 型変換
	domain, ドメイン型
	enumerated (enum), 列挙型
	internal organization, C言語関数における基本型
	numeric, 数値データ型
	polymorphic, 多様型
	type cast, 型キャスト
	user-defined, ユーザ定義の型


	database, データベースの作成, データベース管理
		creating, データベースの作成


	database activity, データベース活動状況の監視
		monitoring, データベース活動状況の監視


	database cluster, 概念, データベースクラスタの作成
	data_checksums configuration parameter, 設定済みのオプション
	data_checksums設定パラメータ, 設定済みのオプション
	data_directory configuration parameter, ファイルの場所
	data_directory_mode configuration parameter, 設定済みのオプション
	data_directory_mode設定パラメータ, 設定済みのオプション
	data_directory設定パラメータ, ファイルの場所
	data_sync_retry configuration parameter, エラー処理
	data_sync_retry設定パラメータ, エラー処理
	date, 日付/時刻データ型, 日付
		constants, 特別な値
	current, 現在の日付/時刻
	output format, 日付/時刻の出力
		(参照 formatting)


	出力書式, 日付/時刻の出力
		(参照 書式設定)


	定数, 特別な値


	DateStyle configuration parameter, ロケールと書式設定
	DateStyle設定パラメータ, ロケールと書式設定
	date_add, 日付/時刻関数と演算子
	date_bin, date_bin
	date_part, 日付/時刻関数と演算子, EXTRACTとdate_part
	date_subtract, 日付/時刻関数と演算子
	date_trunc, 日付/時刻関数と演算子, date_trunc
	dblink, dblink — 他のPostgreSQLデータベースへ接続する, dblink
	dblink_build_sql_delete, dblink_build_sql_delete
	dblink_build_sql_insert, dblink_build_sql_insert
	dblink_build_sql_update, dblink_build_sql_update
	dblink_cancel_query, dblink_cancel_query
	dblink_close, dblink_close
	dblink_connect, dblink_connect
	dblink_connect_u, dblink_connect_u
	dblink_disconnect, dblink_disconnect
	dblink_error_message, dblink_error_message
	dblink_exec, dblink_exec
	dblink_fetch, dblink_fetch
	dblink_get_connections, dblink_get_connections
	dblink_get_notify, dblink_get_notify
	dblink_get_pkey, dblink_get_pkey
	dblink_get_result, dblink_get_result
	dblink_is_busy, dblink_is_busy
	dblink_open, dblink_open
	dblink_send_query, dblink_send_query
	deadlock, デッドロック
		timeout during, ロック管理


	deadlock_timeout configuration parameter, ロック管理
	deadlock_timeout設定パラメータ, ロック管理
	DEALLOCATE, DEALLOCATE
	dearmor, armor(), dearmor()
	debug_assertions configuration parameter, 設定済みのオプション
	debug_assertions設定パラメータ, 設定済みのオプション
	debug_copy_parse_plan_trees configuration parameter, 開発者向けオプション
	debug_copy_parse_plan_trees設定パラメータ, 開発者向けオプション
	debug_deadlocks configuration parameter, 開発者向けオプション
	debug_deadlocks設定パラメータ, 開発者向けオプション
	debug_discard_caches configuration parameter, 開発者向けオプション
	debug_discard_caches設定パラメータ, 開発者向けオプション
	debug_io_direct configuration parameter, 開発者向けオプション
	debug_io_direct設定パラメータ, 開発者向けオプション
	debug_logical_replication_streaming configuration parameter, 開発者向けオプション
	debug_logical_replication_streaming設定パラメータ, 開発者向けオプション
	debug_parallel_query configuration parameter, 開発者向けオプション
	debug_parallel_query設定パラメータ, 開発者向けオプション
	debug_pretty_print configuration parameter, なにをログに出力するか
	debug_pretty_print設定パラメータ, なにをログに出力するか
	debug_print_parse configuration parameter, なにをログに出力するか
	debug_print_parse設定パラメータ, なにをログに出力するか
	debug_print_plan configuration parameter, なにをログに出力するか
	debug_print_plan設定パラメータ, なにをログに出力するか
	debug_print_rewritten configuration parameter, なにをログに出力するか
	debug_print_rewritten設定パラメータ, なにをログに出力するか
	debug_raw_expression_coverage_test configuration parameter, 開発者向けオプション
	debug_raw_expression_coverage_test設定パラメータ, 開発者向けオプション
	debug_write_read_parse_plan_trees configuration parameter, 開発者向けオプション
	debug_write_read_parse_plan_trees設定パラメータ, 開発者向けオプション
	decimal (参照 numeric)
	DECLARE, DECLARE
	decode, バイナリ文字列関数と演算子
	decode_bytea
		in PL/Perl, PL/Perlのユーティリティ関数
	PL/Perlにおける, PL/Perlのユーティリティ関数


	decrypt, 暗号化そのものを行う関数
	decrypt_iv, 暗号化そのものを行う関数
	deduplicate_items storage parameter, インデックス格納パラメータ
	deduplicate_items格納パラメータ, インデックス格納パラメータ
	default value, デフォルト値
		changing, 列のデフォルト値の変更


	default-roles, デフォルトロールの名前を事前定義ロールに変更
	default_statistics_target configuration parameter, その他のプランナオプション
	default_statistics_target設定パラメータ, その他のプランナオプション
	default_tablespace configuration parameter, 文の動作
	default_tablespace設定パラメータ, 文の動作
	default_table_access_method configuration parameter, 文の動作
	default_table_access_method設定パラメータ, 文の動作
	default_text_search_config configuration parameter, ロケールと書式設定
	default_text_search_config設定パラメータ, ロケールと書式設定
	default_toast_compression configuration parameter, 文の動作
	default_toast_compression設定パラメータ, 文の動作
	default_transaction_deferrable configuration parameter, 文の動作
	default_transaction_deferrable設定パラメータ, 文の動作
	default_transaction_isolation configuration parameter, 文の動作
	default_transaction_isolation設定パラメータ, 文の動作
	default_transaction_read_only configuration parameter, 文の動作
	default_transaction_read_only設定パラメータ, 文の動作
	deferrable transaction, 文の動作
		setting, SET TRANSACTION
	setting default, 文の動作


	defined, hstoreの演算子と関数
	degrees, 算術関数と演算子
	delay, 遅延実行
	DELETE, 削除, データの削除, 更新された行のデータを返す, DELETE
		RETURNING, 更新された行のデータを返す


	delete, hstoreの演算子と関数
	deleting, データの削除
	dense_rank, ウィンドウ関数
		hypothetical, 集約関数
	仮想の, 集約関数


	diagonal, 幾何関数と演算子
	diameter, 幾何関数と演算子
	dict_int, dict_int — 整数のための全文検索用の辞書の例
	dict_xsyn, dict_xsyn — 類義語の全文検索用の辞書の例
	difference, Soundex
	digest, digest()
	DISCARD, DISCARD
	disjunction, 論理演算子
	disk space, ディスク容量の復旧
	disk usage, ディスク使用量の決定
	DISTINCT, テーブルへの問い合わせ, GROUPING SETS、CUBE、ROLLUP, DISTINCT
		GROUP BY DISTINCT, GROUPING SETS、CUBE、ROLLUP
	SELECT DISTINCT, DISTINCT


	div, 算術関数と演算子
	dmetaphone, Double Metaphone
	dmetaphone_alt, Double Metaphone
	DO, DO
	document, 文書とは何か?
		text search, 文書とは何か?


	dollar quoting, ドル記号で引用符付けされた文字列定数
	domain, ドメイン型
	double precision, 浮動小数点データ型
	DROP ACCESS METHOD, DROP ACCESS METHOD
	DROP AGGREGATE, DROP AGGREGATE
	DROP CAST, DROP CAST
	DROP COLLATION, DROP COLLATION
	DROP CONVERSION, DROP CONVERSION
	DROP DATABASE, データベースの削除, DROP DATABASE
	DROP DOMAIN, DROP DOMAIN
	DROP EVENT TRIGGER, DROP EVENT TRIGGER
	DROP EXTENSION, DROP EXTENSION
	DROP FOREIGN DATA WRAPPER, DROP FOREIGN DATA WRAPPER
	DROP FOREIGN TABLE, DROP FOREIGN TABLE
	DROP FUNCTION, DROP FUNCTION
	DROP GROUP, DROP GROUP
	DROP INDEX, DROP INDEX
	DROP LANGUAGE, DROP LANGUAGE
	DROP MATERIALIZED VIEW, DROP MATERIALIZED VIEW
	DROP OPERATOR, DROP OPERATOR
	DROP OPERATOR CLASS, DROP OPERATOR CLASS
	DROP OPERATOR FAMILY, DROP OPERATOR FAMILY
	DROP OWNED, DROP OWNED
	DROP POLICY, DROP POLICY
	DROP PROCEDURE, DROP PROCEDURE
	DROP PUBLICATION, DROP PUBLICATION
	DROP ROLE, データベースロール, DROP ROLE
	DROP ROUTINE, DROP ROUTINE
	DROP RULE, DROP RULE
	DROP SCHEMA, DROP SCHEMA
	DROP SEQUENCE, DROP SEQUENCE
	DROP SERVER, DROP SERVER
	DROP STATISTICS, DROP STATISTICS
	DROP SUBSCRIPTION, DROP SUBSCRIPTION
	DROP TABLE, 新しいテーブルの作成, DROP TABLE
	DROP TABLESPACE, DROP TABLESPACE
	DROP TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION
	DROP TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY
	DROP TEXT SEARCH PARSER, DROP TEXT SEARCH PARSER
	DROP TEXT SEARCH TEMPLATE, DROP TEXT SEARCH TEMPLATE
	DROP TRANSFORM, DROP TRANSFORM
	DROP TRIGGER, DROP TRIGGER
	DROP TYPE, DROP TYPE
	DROP USER, DROP USER
	DROP USER MAPPING, DROP USER MAPPING
	DROP VIEW, DROP VIEW
	dropdb, データベースの削除, dropdb
	dropuser, データベースロール, dropuser
	DROP_REPLICATION_SLOT, ストリーミングレプリケーションプロトコル
	DTD, XML値の作成
	DTrace, 開発者向けオプション, 開発者向けオプション, 動的追跡
	duplicate, テーブルへの問い合わせ
	duplicates, DISTINCT
	dynamic loading, その他のデフォルト, 動的ロード
	dynamic_library_path, 動的ロード
	dynamic_library_path configuration parameter, その他のデフォルト
	dynamic_library_path設定パラメータ, その他のデフォルト
	dynamic_shared_memory_type configuration parameter, メモリ
	dynamic_shared_memory_type設定パラメータ, メモリ


E
	each, hstoreの演算子と関数
	earth, cubeを基にした地表距離
	earthdistance, earthdistance — 大圏距離を計算する
	earth_box, cubeを基にした地表距離
	earth_distance, cubeを基にした地表距離
	ECPG, ECPG — C言語による埋め込みSQL
	ecpg, ecpg
	effective_cache_size configuration parameter, プランナコスト定数
	effective_cache_size設定パラメータ, プランナコスト定数
	effective_io_concurrency configuration parameter, I/O
	effective_io_concurrency設定パラメータ, I/O
	elog, サーバ内部からのエラーの報告
		in PL/Perl, PL/Perlのユーティリティ関数
	in PL/Python, ユーティリティ関数
	in PL/Tcl, PL/Tclからのデータベースアクセス
	PL/Perlにおける, PL/Perlのユーティリティ関数
	PL/Pythonにおける, ユーティリティ関数
	PL/Tclにおける, PL/Tclからのデータベースアクセス


	embedded SQL, ECPG — C言語による埋め込みSQL
		in C, ECPG — C言語による埋め込みSQL


	enable_async_append configuration parameter, プランナメソッド設定
	enable_async_append設定パラメータ, プランナメソッド設定
	enable_bitmapscan configuration parameter, プランナメソッド設定
	enable_bitmapscan設定パラメータ, プランナメソッド設定
	enable_distinct_reordering configuration parameter, プランナメソッド設定
	enable_distinct_reordering設定パラメータ, プランナメソッド設定
	enable_gathermerge configuration parameter, プランナメソッド設定
	enable_gathermerge設定パラメータ, プランナメソッド設定
	enable_group_by_reordering configuration parameter, プランナメソッド設定
	enable_group_by_reordering設定パラメータ, プランナメソッド設定
	enable_hashagg configuration parameter, プランナメソッド設定
	enable_hashagg設定パラメータ, プランナメソッド設定
	enable_hashjoin configuration parameter, プランナメソッド設定
	enable_hashjoin設定パラメータ, プランナメソッド設定
	enable_incremental_sort configuration parameter, プランナメソッド設定
	enable_incremental_sort設定パラメータ, プランナメソッド設定
	enable_indexonlyscan configuration parameter, プランナメソッド設定
	enable_indexonlyscan設定パラメータ, プランナメソッド設定
	enable_indexscan configuration parameter, プランナメソッド設定
	enable_indexscan設定パラメータ, プランナメソッド設定
	enable_material configuration parameter, プランナメソッド設定
	enable_material設定パラメータ, プランナメソッド設定
	enable_memoize configuration parameter, プランナメソッド設定
	enable_memoize設定パラメータ, プランナメソッド設定
	enable_mergejoin configuration parameter, プランナメソッド設定
	enable_mergejoin設定パラメータ, プランナメソッド設定
	enable_nestloop configuration parameter, プランナメソッド設定
	enable_nestloop設定パラメータ, プランナメソッド設定
	enable_parallel_append configuration parameter, プランナメソッド設定
	enable_parallel_append設定パラメータ, プランナメソッド設定
	enable_parallel_hash configuration parameter, プランナメソッド設定
	enable_parallel_hash設定パラメータ, プランナメソッド設定
	enable_partitionwise_aggregate configuration parameter, プランナメソッド設定
	enable_partitionwise_aggregate設定パラメータ, プランナメソッド設定
	enable_partitionwise_join configuration parameter, プランナメソッド設定
	enable_partitionwise_join設定パラメータ, プランナメソッド設定
	enable_partition_pruning configuration parameter, プランナメソッド設定
	enable_partition_pruning設定パラメータ, プランナメソッド設定
	enable_presorted_aggregate configuration parameter, プランナメソッド設定
	enable_presorted_aggregate設定パラメータ, プランナメソッド設定
	enable_self_join_elimination configuration parameter, プランナメソッド設定
	enable_self_join_elimination設定パラメータ, プランナメソッド設定
	enable_seqscan configuration parameter, プランナメソッド設定
	enable_seqscan設定パラメータ, プランナメソッド設定
	enable_sort configuration parameter, プランナメソッド設定
	enable_sort設定パラメータ, プランナメソッド設定
	enable_tidscan configuration parameter, プランナメソッド設定
	enable_tidscan設定パラメータ, プランナメソッド設定
	encode, バイナリ文字列関数と演算子
	encode_array_constructor
		in PL/Perl, PL/Perlのユーティリティ関数
	PL/Perlにおける, PL/Perlのユーティリティ関数


	encode_array_literal
		in PL/Perl, PL/Perlのユーティリティ関数
	PL/Perlにおける, PL/Perlのユーティリティ関数


	encode_bytea
		in PL/Perl, PL/Perlのユーティリティ関数
	PL/Perlにおける, PL/Perlのユーティリティ関数


	encode_typed_literal
		in PL/Perl, PL/Perlのユーティリティ関数
	PL/Perlにおける, PL/Perlのユーティリティ関数


	encrypt, 暗号化そのものを行う関数
	encryption, 暗号化オプション, pgcrypto — 暗号関数
		for specific columns, pgcrypto — 暗号関数


	encrypt_iv, 暗号化そのものを行う関数
	END, END
	enumerated types, 列挙型
	enum_first, 列挙型サポート関数
	enum_last, 列挙型サポート関数
	enum_range, 列挙型サポート関数
	environment variable, 環境変数
	ephemeral named relation
		registering with SPI, SPI_register_relation, SPI_register_trigger_data
	unregistering from SPI, SPI_unregister_relation


	ereport, サーバ内部からのエラーの報告
	erf, 算術関数と演算子
	erfc, 算術関数と演算子
	error codes, PostgreSQL™エラーコード
		libpq, 主要な関数
	list of, PostgreSQL™エラーコード


	error message
		in PGcancelConn, キャンセル要求の送信関数
	in PGconn, 接続状態関数


	escape format, バイナリ文字列関数と演算子
	escape string syntax, C形式エスケープでの文字列定数
	escape_string_warning configuration parameter, 以前のPostgreSQLバージョン
	escape_string_warning設定パラメータ, 以前のPostgreSQLバージョン
	escaping strings, SQLコマンドに含めるための文字列のエスケープ処理
		in libpq, SQLコマンドに含めるための文字列のエスケープ処理


	event log, WindowsにおけるEvent Logの登録
		event log, WindowsにおけるEvent Logの登録


	event trigger, イベントトリガ, C言語によるイベントトリガ関数の書き方
		in C, C言語によるイベントトリガ関数の書き方
	in PL/Tcl, PL/Tclにおけるイベントトリガ関数


	event_source configuration parameter, どこにログを出力するか
	event_source設定パラメータ, どこにログを出力するか
	event_trigger, 疑似データ型
	event_triggers
		configuration parameter, 文の動作
	設定パラメータ, 文の動作


	every, 集約関数
	EXCEPT, 問い合わせの結合(UNION, INTERSECT, EXCEPT)
	exceptions
		in PL/pgSQL, エラーの捕捉
	in PL/Tcl, PL/Tclのエラー処理


	exclusion constraint, 排他制約
	EXECUTE, EXECUTE
	exist, hstoreの演算子と関数
	EXISTS, 副問い合わせ式
	EXIT
		in PL/pgSQL, EXIT
	PL/pgSQLにおける, EXIT


	exit_on_error configuration parameter, エラー処理
	exit_on_error設定パラメータ, エラー処理
	exp, 算術関数と演算子
	EXPLAIN, EXPLAINの利用, EXPLAIN
	expression, 評価式
		order of evaluation, 式の評価規則
	syntax, 評価式


	extending SQL, SQLの拡張
	extension, 関連するオブジェクトを拡張としてパッケージ化
		externally maintained, 拡張


	extension_control_path configuration parameter, その他のデフォルト
	extension_control_path設定パラメータ, その他のデフォルト
	external_pid_file configuration parameter, ファイルの場所
	external_pid_file設定パラメータ, ファイルの場所
	extract, 日付/時刻関数と演算子, EXTRACTとdate_part
	extra_float_digits configuration parameter, ロケールと書式設定
	extra_float_digits設定パラメータ, ロケールと書式設定


F
	factorial, 算術関数と演算子
	failover, 高可用性、負荷分散およびレプリケーション
	false, 論理値データ型
	family, ネットワークアドレス関数と演算子
	fast path, 近道インタフェース
	fastupdate storage parameter, インデックス格納パラメータ
	fastupdate格納パラメータ, インデックス格納パラメータ
	fdw_handler, 疑似データ型
	FETCH, FETCH
	field
		computed, 問い合わせでの複合型の使用


	field selection, フィールド選択
	file system mount points, セカンダリファイルシステムの使用
	file_copy_method configuration parameter, ディスク
	file_copy_method設定パラメータ, ディスク
	file_fdw, file_fdw — サーバのファイルシステムにあるデータファイルにアクセスする
	fillfactor storage parameter, インデックス格納パラメータ, 格納パラメータ
	fillfactor格納パラメータ, インデックス格納パラメータ, 格納パラメータ
	FILTER, 集約式
	fips_mode, OpenSSLサポート関数
	first_value, ウィンドウ関数
	flex, 必要条件
	float4 (参照 real)
	float8 (参照 double precision)
	floating point, 浮動小数点データ型
	floating-point
		display, ロケールと書式設定


	floor, 算術関数と演算子
	foreign data, 外部データ
	foreign data wrapper, 外部データラッパーの作成
		handler for, 外部データラッパーの作成


	foreign key, 外部キー, 外部キー
		self-referential, 外部キー


	foreign table, 外部データ
	format, 文字列関数と演算子, format
		PL/pgSQLでの使用, 動的コマンドの実行
	use in PL/pgSQL, 動的コマンドの実行


	formatting, データ型書式設定関数
	format_type, システムカタログ情報関数
	Free Space Map, 空き領域マップ
	FreeBSD
		IPC configuration, 共有メモリとセマフォ
	IPC設定, 共有メモリとセマフォ
	shared library, 動的にロードされる関数のコンパイルとリンク
	の起動スクリプト, データベースサーバの起動
	共有ライブラリ, 動的にロードされる関数のコンパイルとリンク


	from_collapse_limit configuration parameter, その他のプランナオプション
	from_collapse_limit設定パラメータ, その他のプランナオプション
	FSM (参照 Free Space Map) (参照 空き領域マップ)
	fsm_page_contents, 一般的な関数
	fsync configuration parameter, 諸設定
	fsync設定パラメータ, 諸設定
	full text search, テキスト検索に関する型, テキスト検索に関する型, 全文検索
		data types, テキスト検索に関する型
	functions and operators, テキスト検索に関する型


	full_page_writes configuration parameter, 諸設定
	full_page_writes設定パラメータ, 諸設定
	function, テーブル関数, 関数と演算子, 統計情報関数, 関数, 多様型, ユーザ定義関数, 問い合わせ言語（SQL）関数, 内部関数, C言語関数
		default values for arguments, 引数にデフォルト値を持つSQL関数
	in the FROM clause, テーブル関数
	internal, 内部関数
	invocation, 関数呼び出し
	mixed notation, 混在表記の利用
	named argument, SQL関数用の引数
	named notation, 名前付け表記の使用
	output parameter, 出力パラメータを持つSQL関数
	polymorphic, 多様型
	positional notation, 位置表記の使用
	RETURNS TABLE, TABLEを返すSQL関数
	statistics, 統計情報関数
	type resolution in an invocation, 関数
	user-defined, ユーザ定義関数, 問い合わせ言語（SQL）関数, C言語関数
		in C, C言語関数
	in SQL, 問い合わせ言語（SQL）関数


	variadic, 可変長引数を取るSQL関数
	with SETOF, 集合を返すSQL関数


	functional dependency, GROUP BY句とHAVING句
	fuzzystrmatch, fuzzystrmatch — 文字列の類似度と距離を決定する


G
	gamma, 算術関数と演算子
	gcd, 算術関数と演算子
	gc_to_sec, cubeを基にした地表距離
	generated column, 生成列, パラメータ, パラメータ
	generate_series, 集合を返す関数
	generate_subscripts, 集合を返す関数
	genetic query optimization, 遺伝的問い合わせオプティマイザ
	gen_random_bytes, ランダムデータ関数
	gen_random_uuid, UUID関数, ランダムデータ関数
	gen_salt, gen_salt()
	GEQO (参照 genetic query optimization) (参照 遺伝的問い合わせ最適化)
	geqo configuration parameter, 遺伝的問い合わせオプティマイザ
	geqo_effort configuration parameter, 遺伝的問い合わせオプティマイザ
	geqo_effort設定パラメータ, 遺伝的問い合わせオプティマイザ
	geqo_generations configuration parameter, 遺伝的問い合わせオプティマイザ
	geqo_generations設定パラメータ, 遺伝的問い合わせオプティマイザ
	geqo_pool_size configuration parameter, 遺伝的問い合わせオプティマイザ
	geqo_pool_size設定パラメータ, 遺伝的問い合わせオプティマイザ
	geqo_seed configuration parameter, 遺伝的問い合わせオプティマイザ
	geqo_seed設定パラメータ, 遺伝的問い合わせオプティマイザ
	geqo_selection_bias configuration parameter, 遺伝的問い合わせオプティマイザ
	geqo_selection_bias設定パラメータ, 遺伝的問い合わせオプティマイザ
	geqo_threshold configuration parameter, 遺伝的問い合わせオプティマイザ
	geqo_threshold設定パラメータ, 遺伝的問い合わせオプティマイザ
	geqo設定パラメータ, 遺伝的問い合わせオプティマイザ
	get_bit, バイナリ文字列関数と演算子, ビット文字列関数と演算子
	get_byte, バイナリ文字列関数と演算子
	get_current_ts_config, テキスト検索関数と演算子
	get_raw_page, 一般的な関数
	GIN (参照 index) (参照 インデックス)
	gin_clean_pending_list, インデックス保守関数
	gin_fuzzy_search_limit configuration parameter, その他のデフォルト
	gin_fuzzy_search_limit設定パラメータ, その他のデフォルト
	gin_index_check, 関数
	gin_leafpage_items, GIN関数
	gin_metapage_info, GIN関数
	gin_page_opaque_info, GIN関数
	gin_pending_list_limit
		configuration parameter, 文の動作
	storage parameter, インデックス格納パラメータ
	格納パラメータ, インデックス格納パラメータ
	設定パラメータ, 文の動作


	GiST (参照 index) (参照 インデックス)
	gist_page_items, GiST関数
	gist_page_items_bytea, GiST関数
	gist_page_opaque_info, GiST関数
	global data, PL/Tclにおけるグローバルデータ
		in PL/Tcl, PL/Tclにおけるグローバルデータ


	GRANT, 権限, GRANT
	GREATEST, GREATESTおよびLEAST, UNION、CASEおよび関連する構文, UNION、CASEおよび関連する構文
		determination of result type, UNION、CASEおよび関連する構文
	結果型の決定, UNION、CASEおよび関連する構文


	Gregorian calendar, 単位の歴史
	GROUP BY, 集約関数, GROUP BY句とHAVING句
	grouping, GROUP BY句とHAVING句
	GROUPING, 集約関数
	GROUPING SETS, GROUPING SETS、CUBE、ROLLUP
	gssapi, GSSAPIによる安全なTCP/IP接続
	GSSAPI, GSSAPI認証
		libpqでの, パラメータキーワード


	gss_accept_delegation configuration parameter, 認証
	gss_accept_delegation設定パラメータ, 認証
	GUID, UUID型


H
	hash (参照 index)
	hash_bitmap_info, Hash関数
	hash_mem_multiplier configuration parameter, メモリ
	hash_mem_multiplier設定パラメータ, メモリ
	hash_metapage_info, Hash関数
	hash_page_items, Hash関数
	hash_page_stats, Hash関数
	hash_page_type, Hash関数
	has_any_column_privilege, アクセス権限照会関数
	has_column_privilege, アクセス権限照会関数
	has_database_privilege, アクセス権限照会関数
	has_foreign_data_wrapper_privilege, アクセス権限照会関数
	has_function_privilege, アクセス権限照会関数
	has_language_privilege, アクセス権限照会関数
	has_largeobject_privilege, アクセス権限照会関数
	has_parameter_privilege, アクセス権限照会関数
	has_schema_privilege, アクセス権限照会関数
	has_sequence_privilege, アクセス権限照会関数
	has_server_privilege, アクセス権限照会関数
	has_tablespace_privilege, アクセス権限照会関数
	has_table_privilege, アクセス権限照会関数
	has_type_privilege, アクセス権限照会関数
	HAVING, 集約関数, GROUP BY句とHAVING句
	hba_file configuration parameter, ファイルの場所
	hba_file設定パラメータ, ファイルの場所
	heap_page_items, ヒープ関数
	heap_page_item_attrs, ヒープ関数
	heap_tuple_infomask_flags, ヒープ関数
	height, 幾何関数と演算子
	hex format, バイナリ文字列関数と演算子
	hierarchical database, 概念
	high availability, 高可用性、負荷分散およびレプリケーション
	history, PostgreSQL™小史
		of PostgreSQL, PostgreSQL™小史


	hmac, hmac()
	host, ネットワークアドレス関数と演算子
	hostmask, ネットワークアドレス関数と演算子
	hot standby, 高可用性、負荷分散およびレプリケーション
	hot_standby configuration parameter, スタンバイサーバ
	hot_standby_feedback configuration parameter, スタンバイサーバ
	hot_standby_feedback設定パラメータ, スタンバイサーバ
	hot_standby設定パラメータ, スタンバイサーバ
	hstore, hstore — hstoreキー/値データ型, hstoreの演算子と関数
	hstore_to_array, hstoreの演算子と関数
	hstore_to_json, hstoreの演算子と関数
	hstore_to_jsonb, hstoreの演算子と関数
	hstore_to_jsonb_loose, hstoreの演算子と関数
	hstore_to_json_loose, hstoreの演算子と関数
	hstore_to_matrix, hstoreの演算子と関数
	huge_pages configuration parameter, メモリ
	huge_pages_status configuration parameter, 設定済みのオプション
	huge_pages_status設定パラメータ, 設定済みのオプション
	huge_pages設定パラメータ, メモリ
	huge_page_size configuration parameter, メモリ
	huge_page_size設定パラメータ, メモリ
	hypothetical-set aggregate
		built-in, 集約関数




I
	icount, intarrayの関数および演算子
	ICU, 機能の無効化, PostgreSQL™の機能, ロケールプロバイダ, 照合順序の管理, パラメータ, パラメータ
	icu_unicode_version, バージョン情報関数
	icu_validation_level configuration parameter, ロケールと書式設定
	icu_validation_level設定パラメータ, ロケールと書式設定
	ident, Ident認証
	identifier, 識別子とキーワード
		length, 識別子とキーワード
	syntax of, 識別子とキーワード


	IDENTIFY_SYSTEM, ストリーミングレプリケーションプロトコル
	identity column, 識別列
	ident_file configuration parameter, ファイルの場所
	ident_file設定パラメータ, ファイルの場所
	idle_in_transaction_session_timeout configuration parameter, 文の動作
	idle_in_transaction_session_timeout設定パラメータ, 文の動作
	idle_replication_slot_timeout configuration parameter, 送出サーバ群
	idle_replication_slot_timeout設定パラメータ, 送出サーバ群
	idle_session_timeout configuration parameter, 文の動作
	idle_session_timeout設定パラメータ, 文の動作
	idx, intarrayの関数および演算子
	IFNULL, COALESCE
	ignore_checksum_failure configuration parameter, 開発者向けオプション
	ignore_checksum_failure設定パラメータ, 開発者向けオプション
	ignore_invalid_pages configuration parameter, 開発者向けオプション
	ignore_invalid_pages設定パラメータ, 開発者向けオプション
	ignore_system_indexes configuration parameter, 開発者向けオプション
	ignore_system_indexes設定パラメータ, 開発者向けオプション
	IMMUTABLE, 関数の変動性分類
	IMPORT FOREIGN SCHEMA, IMPORT FOREIGN SCHEMA
	IN, 副問い合わせ式, 行と配列の比較
	INCLUDE
		in index definitions, インデックスオンリースキャンとカバリングインデックス
	インデックス定義内, インデックスオンリースキャンとカバリングインデックス


	include
		in configuration file, 設定ファイルの内容の管理
	設定ファイルにおける, 設定ファイルの内容の管理


	include_dir
		in configuration file, 設定ファイルの内容の管理
	設定ファイルにおける, 設定ファイルの内容の管理


	include_if_exists
		in configuration file, 設定ファイルの内容の管理
	設定ファイルにおける, 設定ファイルの内容の管理


	index, インデックス, 複数列インデックス, インデックスとORDER BY, 複数のインデックスの組み合わせ, 一意インデックス, 式に対するインデックス, 部分インデックス, インデックスオンリースキャンとカバリングインデックス, インデックスオンリースキャンとカバリングインデックス, インデックス使用状況の検証, テキスト検索に好ましいインデックス種類, テキスト検索に好ましいインデックス種類, ロックとインデックス, インデックス拡張機能へのインタフェース, インデックスの同時作成, インデックスを同時に再構築, 演算子と関数
		and ORDER BY, インデックスとORDER BY
	B-Tree, B-Tree, B-Treeインデックス
	BRIN, BRIN, BRINインデックス
	building concurrently, インデックスの同時作成
	combining multiple indexes, 複数のインデックスの組み合わせ
	covering, インデックスオンリースキャンとカバリングインデックス
	examining usage, インデックス使用状況の検証
	on expressions, 式に対するインデックス
	for user-defined data type, インデックス拡張機能へのインタフェース
	GIN, GIN, テキスト検索に好ましいインデックス種類, GINインデックス
		text search, テキスト検索に好ましいインデックス種類


	GiST, GiST, テキスト検索に好ましいインデックス種類, GiSTインデックス
		text search, テキスト検索に好ましいインデックス種類


	hash, Hash
	Hash, ハッシュインデックス
	index-only scans, インデックスオンリースキャンとカバリングインデックス
	locks, ロックとインデックス
	multicolumn, 複数列インデックス
	partial, 部分インデックス
	rebuilding concurrently, インデックスを同時に再構築
	SP-GiST, SP-GiST, SP-GiSTインデックス
	unique, 一意インデックス


	Index Access Method, インデックスアクセスメソッドのインタフェース定義
	index scan, プランナメソッド設定
	index-only scan, インデックスオンリースキャンとカバリングインデックス
	indexam
		Index Access Method, インデックスアクセスメソッドのインタフェース定義
	インデックスアクセスメソッド, インデックスアクセスメソッドのインタフェース定義


	index_am_handler, 疑似データ型
	inet (data type), inet
	inet_client_addr, セッション情報関数
	inet_client_port, セッション情報関数
	inet_merge, ネットワークアドレス関数と演算子
	inet_same_family, ネットワークアドレス関数と演算子
	inet_server_addr, セッション情報関数
	inet_server_port, セッション情報関数
	inet（データ型）, inet
	infinity
		floating point, 浮動小数点データ型
	numeric (data type), 任意の精度を持つ数


	information schema, 情報スキーマ
	inheritance, 継承, 継承
	initcap, 文字列関数と演算子
	initdb, データベースクラスタの作成, initdb
	Initialization Fork, 初期化フォーク
	initplan, EXPLAINの基本
	input function, ユーザ定義の型
	INSERT, テーブルに行を挿入, データの挿入, 更新された行のデータを返す, INSERT
		RETURNING, 更新された行のデータを返す


	inserting, データの挿入
	installation, ソースコードからインストール
		binaries, バイナリからのインストール


	instr function, 付録
	instr関数, 付録
	int2 (参照 smallint)
	int4 (参照 integer)
	int8 (参照 bigint)
	intagg, intagg — 整数型の集約子と列挙子
	intarray, intarray — 整数の配列を操作する
	integer, 数値定数, 整数データ型
	integer_datetimes configuration parameter, 設定済みのオプション
	integer_datetimes設定パラメータ, 設定済みのオプション
	interfaces
		externally maintained, クライアントインタフェース


	internal, 疑似データ型
	INTERSECT, 問い合わせの結合(UNION, INTERSECT, EXCEPT)
	interval, 日付/時刻データ型, 時間間隔の入力
		output format, 時間間隔の出力
		(参照 formatting)




	IntervalStyle configuration parameter, ロケールと書式設定
	IntervalStyle設定パラメータ, ロケールと書式設定
	intset, intarrayの関数および演算子
	int_array_aggregate, 関数
	int_array_enum, 関数
	inverse distribution, 集約関数
	in_hot_standby configuration parameter, 設定済みのオプション
	in_hot_standby設定パラメータ, 設定済みのオプション
	in_range support functions, B-Treeサポート関数
	in_rangeサポート関数, B-Treeサポート関数
	io_combine_limit configuration parameter, I/O
	io_combine_limit設定パラメータ, I/O
	io_max_combine_limit configuration parameter, I/O
	io_max_combine_limit設定パラメータ, I/O
	io_max_concurrency configuration parameter, I/O
	io_max_concurrency設定パラメータ, I/O
	io_method configuration parameter, I/O
	io_method設定パラメータ, I/O
	io_workers configuration parameter, I/O
	io_workers設定パラメータ, I/O
	IS DISTINCT FROM, 比較関数および演算子, 行と配列の比較
	IS DOCUMENT, IS DOCUMENT
	IS FALSE, 比較関数および演算子
	IS JSON, JSONデータの処理と生成
	IS NOT DISTINCT FROM, 比較関数および演算子, 行と配列の比較
	IS NOT DOCUMENT, IS NOT DOCUMENT
	IS NOT FALSE, 比較関数および演算子
	IS NOT NULL, 比較関数および演算子
	IS NOT TRUE, 比較関数および演算子
	IS NOT UNKNOWN, 比較関数および演算子
	IS NULL, 比較関数および演算子, プラットフォームとクライアント互換性
	IS TRUE, 比較関数および演算子
	IS UNKNOWN, 比較関数および演算子
	isclosed, 幾何関数と演算子
	isempty, 範囲／多重範囲関数と演算子
	isfinite, 日付/時刻関数と演算子
	isn, isn — 国際標準番号（ISBN、EAN、UPC等）のためのデータ型
	isn.weak configuration parameter, 設定パラメータ
	ISNULL, 比較関数および演算子
	isn_weak, 関数と演算子
	isopen, 幾何関数と演算子
	is_array_ref
		in PL/Perl, PL/Perlのユーティリティ関数
	PL/Perlにおける, PL/Perlのユーティリティ関数


	is_valid, 関数と演算子


J
	JIT, 実行時コンパイル(JIT)
	jit configuration parameter, その他のプランナオプション
	jit_above_cost configuration parameter, プランナコスト定数
	jit_above_cost設定パラメータ, プランナコスト定数
	jit_debugging_support configuration parameter, 開発者向けオプション
	jit_debugging_support設定パラメータ, 開発者向けオプション
	jit_dump_bitcode configuration parameter, 開発者向けオプション
	jit_dump_bitcode設定パラメータ, 開発者向けオプション
	jit_expressions configuration parameter, 開発者向けオプション
	jit_expressions設定パラメータ, 開発者向けオプション
	jit_inline_above_cost configuration parameter, プランナコスト定数
	jit_inline_above_cost設定パラメータ, プランナコスト定数
	jit_optimize_above_cost configuration parameter, プランナコスト定数
	jit_optimize_above_cost設定パラメータ, プランナコスト定数
	jit_profiling_support configuration parameter, 開発者向けオプション
	jit_profiling_support設定パラメータ, 開発者向けオプション
	jit_provider configuration parameter, 共有ライブラリのプリロード
	jit_provider設定パラメータ, 共有ライブラリのプリロード
	jit_tuple_deforming configuration parameter, 開発者向けオプション
	jit_tuple_deforming設定パラメータ, 開発者向けオプション
	jit設定パラメータ, その他のプランナオプション
	join, テーブル間を結合, 結合テーブル, 明示的なJOIN句でプランナを制御する
		controlling the order, 明示的なJOIN句でプランナを制御する
	cross, 結合テーブル
	left, 結合テーブル
	natural, 結合テーブル
	outer, テーブル間を結合, 結合テーブル
	right, 結合テーブル
	self, テーブル間を結合


	join_collapse_limit configuration parameter, その他のプランナオプション
	join_collapse_limit設定パラメータ, その他のプランナオプション
	JSON, JSONデータ型, JSON関数と演算子, JSON関数と演算子
		functions and operators, JSON関数と演算子
	関数と演算子, JSON関数と演算子


	json constructor, JSONデータの処理と生成
	JSONB, JSONデータ型
	jsonb
		containment, jsonb型用包含演算子と存在演算子
	existence, jsonb型用包含演算子と存在演算子
	indexes on, jsonb インデックス
	上のインデックス, jsonb インデックス
	包含, jsonb型用包含演算子と存在演算子
	存在, jsonb型用包含演算子と存在演算子


	jsonb_agg, 集約関数
	jsonb_agg_strict, 集約関数
	jsonb_array_elements, JSONデータの処理と生成
	jsonb_array_elements_text, JSONデータの処理と生成
	jsonb_array_length, JSONデータの処理と生成
	jsonb_build_array, JSONデータの処理と生成
	jsonb_build_object, JSONデータの処理と生成
	jsonb_each, JSONデータの処理と生成
	jsonb_each_text, JSONデータの処理と生成
	jsonb_extract_path, JSONデータの処理と生成
	jsonb_extract_path_text, JSONデータの処理と生成
	jsonb_insert, JSONデータの処理と生成
	jsonb_object, JSONデータの処理と生成
	jsonb_object_agg, 集約関数
	jsonb_object_agg_strict, 集約関数
	jsonb_object_agg_unique, 集約関数
	jsonb_object_agg_unique_strict, 集約関数
	jsonb_object_keys, JSONデータの処理と生成
	jsonb_path_exists, JSONデータの処理と生成
	jsonb_path_exists_tz, JSONデータの処理と生成
	jsonb_path_match, JSONデータの処理と生成
	jsonb_path_match_tz, JSONデータの処理と生成
	jsonb_path_query, JSONデータの処理と生成
	jsonb_path_query_array, JSONデータの処理と生成
	jsonb_path_query_array_tz, JSONデータの処理と生成
	jsonb_path_query_first, JSONデータの処理と生成
	jsonb_path_query_first_tz, JSONデータの処理と生成
	jsonb_path_query_tz, JSONデータの処理と生成
	jsonb_populate_record, JSONデータの処理と生成
	jsonb_populate_recordset, JSONデータの処理と生成
	jsonb_populate_record_valid, JSONデータの処理と生成
	jsonb_pretty, JSONデータの処理と生成
	jsonb_set, JSONデータの処理と生成
	jsonb_set_lax, JSONデータの処理と生成
	jsonb_strip_nulls, JSONデータの処理と生成
	jsonb_to_record, JSONデータの処理と生成
	jsonb_to_recordset, JSONデータの処理と生成
	jsonb_to_tsvector, テキスト検索関数と演算子
	jsonb_typeof, JSONデータの処理と生成
	jsonpath, jsonpath型
	json_agg, 集約関数
	json_agg_strict, 集約関数
	json_array, JSONデータの処理と生成
	json_arrayagg, 集約関数
	json_array_elements, JSONデータの処理と生成
	json_array_elements_text, JSONデータの処理と生成
	json_array_length, JSONデータの処理と生成
	json_build_array, JSONデータの処理と生成
	json_build_object, JSONデータの処理と生成
	json_each, JSONデータの処理と生成
	json_each_text, JSONデータの処理と生成
	json_exists, SQL/JSON問い合わせ関数
	json_extract_path, JSONデータの処理と生成
	json_extract_path_text, JSONデータの処理と生成
	json_object, JSONデータの処理と生成
	json_objectagg, 集約関数
	json_object_agg, 集約関数
	json_object_agg_strict, 集約関数
	json_object_agg_unique, 集約関数
	json_object_agg_unique_strict, 集約関数
	json_object_keys, JSONデータの処理と生成
	json_populate_record, JSONデータの処理と生成
	json_populate_recordset, JSONデータの処理と生成
	json_query, SQL/JSON問い合わせ関数
	json_scalar, JSONデータの処理と生成
	json_strip_nulls, JSONデータの処理と生成
	json_table, JSON_TABLE
	json_to_record, JSONデータの処理と生成
	json_to_recordset, JSONデータの処理と生成
	json_to_tsvector, テキスト検索関数と演算子
	json_typeof, JSONデータの処理と生成
	json_value, SQL/JSON問い合わせ関数
	Julian date, ユリウス日(Julian Date)
	Just-In-Time compilation (参照 JIT)
	justify_days, 日付/時刻関数と演算子
	justify_hours, 日付/時刻関数と演算子
	justify_interval, 日付/時刻関数と演算子


K
	key word, 識別子とキーワード, SQLキーワード
		list of, SQLキーワード
	syntax of, 識別子とキーワード


	krb_caseins_users configuration parameter, 認証
	krb_caseins_users設定パラメータ, 認証
	krb_server_keyfile configuration parameter, 認証
	krb_server_keyfile設定パラメータ, 認証


L
	label (参照 alias)
	lag, ウィンドウ関数
	language_handler, 疑似データ型
	large object, ラージオブジェクト
	lastval, シーケンス操作関数
	last_value, ウィンドウ関数
	LATERAL, LATERAL 副問い合わせ, LATERAL 副問い合わせ
		FROM句内の, LATERAL 副問い合わせ
	in the FROM clause, LATERAL 副問い合わせ


	latitude, cubeを基にした地表距離
	lca, 演算子と関数
	lcm, 算術関数と演算子
	lc_messages configuration parameter, ロケールと書式設定
	lc_messages設定パラメータ, ロケールと書式設定
	lc_monetary configuration parameter, ロケールと書式設定
	lc_monetary設定パラメータ, ロケールと書式設定
	lc_numeric configuration parameter, ロケールと書式設定
	lc_numeric設定パラメータ, ロケールと書式設定
	lc_time configuration parameter, ロケールと書式設定
	lc_time設定パラメータ, ロケールと書式設定
	LDAP, PostgreSQL™の機能, PostgreSQL™の機能, LDAP認証
	LDAP connection parameter lookup, 接続パラメータのLDAP検索
	LDAPによる接続パラメータ検索, 接続パラメータのLDAP検索
	ldconfig, 共有ライブラリ
	lead, ウィンドウ関数
	LEAST, GREATESTおよびLEAST, UNION、CASEおよび関連する構文, UNION、CASEおよび関連する構文
		determination of result type, UNION、CASEおよび関連する構文
	結果型の決定, UNION、CASEおよび関連する構文


	left, 文字列関数と演算子
	left join, 結合テーブル
	length, 文字列関数と演算子, バイナリ文字列関数と演算子, ビット文字列関数と演算子, 幾何関数と演算子, テキスト検索関数と演算子
		of a binary string (参照 binary strings, length)
	of a character string (参照 character string, length)


	length(tsvector), 文書の操作
	levenshtein, レーベンシュタイン(Levenshtein)
	levenshtein_less_equal, レーベンシュタイン(Levenshtein)
	lex, 必要条件
	lgamma, 算術関数と演算子
	libedit, 必要条件
		in psql, コマンドライン編集
	psqlでの, コマンドライン編集


	libperl, 必要条件
	libpq, libpq — C ライブラリ, パイプラインモード, パイプラインモード, 問い合わせ結果をチャンクとして取り出す, 問い合わせ結果をチャンクとして取り出す, 問い合わせ結果をチャンクとして取り出す, 問い合わせ結果をチャンクとして取り出す
		chunked mode, 問い合わせ結果をチャンクとして取り出す
	pipeline mode, パイプラインモード
	single-row mode, 問い合わせ結果をチャンクとして取り出す
	チャンクモード, 問い合わせ結果をチャンクとして取り出す
	パイプラインモード, パイプラインモード
	単一行モード, 問い合わせ結果をチャンクとして取り出す


	libpq-fe.h, libpq — C ライブラリ, 接続状態関数
	libpq-int.h, 接続状態関数
	libpython, 必要条件
	library initialization function, 動的ロード
	LIKE, LIKE
		とロケール, 動作


	LIKE_REGEX, 標準SQLおよびXQueryとの違い, SQL/JSON正規表現, SQL/JSON正規表現
		in SQL/JSON, SQL/JSON正規表現
	SQL/JSONにおける, SQL/JSON正規表現


	LIMIT, LIMITとOFFSET
	line, 直線, 幾何関数と演算子
	line segment, 線分
	linear regression, 集約関数
	Linux
		IPC configuration, 共有メモリとセマフォ
	IPC設定, 共有メモリとセマフォ
	shared library, 動的にロードされる関数のコンパイルとリンク
	の起動スクリプト, データベースサーバの起動
	共有ライブラリ, 動的にロードされる関数のコンパイルとリンク


	LISTEN, LISTEN
	listen_addresses configuration parameter, 接続設定
	listen_addresses設定パラメータ, 接続設定
	llvm-config, PostgreSQL™の機能, PostgreSQL™の機能
	ll_to_earth, cubeを基にした地表距離
	ln, 算術関数と演算子
	lo, lo — ラージオブジェクトを管理する
	LOAD, LOAD
	load balancing, 高可用性、負荷分散およびレプリケーション
	locale, ロケールのサポート
	localtime, 日付/時刻関数と演算子
	localtimestamp, 日付/時刻関数と演算子
	local_preload_libraries configuration parameter, 共有ライブラリのプリロード
	local_preload_libraries設定パラメータ, 共有ライブラリのプリロード
	lock, 明示的ロック, 勧告的ロック, ロックの表示
		advisory, 勧告的ロック
	monitoring, ロックの表示


	LOCK, テーブルレベルロック, LOCK
	lock_timeout configuration parameter, 文の動作
	lock_timeout設定パラメータ, 文の動作
	log, 算術関数と演算子
	log shipping, 高可用性、負荷分散およびレプリケーション
	log10, 算術関数と演算子
	Logging
		current_logfiles file and the pg_current_logfile
         function, セッション情報関数
	current_logfilesファイルとpg_current_logfile関数, セッション情報関数
	pg_current_logfile function, セッション情報関数
	pg_current_logfile関数, セッション情報関数


	logging_collector configuration parameter, どこにログを出力するか
	logging_collector設定パラメータ, どこにログを出力するか
	Logical Decoding, ロジカルデコーディング, ロジカルデコーディング
	logical_decoding_work_mem configuration parameter, メモリ
	logical_decoding_work_mem設定パラメータ, メモリ
	log_autovacuum_min_duration
		configuration parameter, なにをログに出力するか
	storage parameter, 格納パラメータ
	格納パラメータ, 格納パラメータ
	設定パラメータ, なにをログに出力するか


	log_btree_build_stats configuration parameter, 開発者向けオプション
	log_btree_build_stats設定パラメータ, 開発者向けオプション
	log_checkpoints configuration parameter, なにをログに出力するか
	log_checkpoints設定パラメータ, なにをログに出力するか
	log_connections configuration parameter, なにをログに出力するか
	log_connections設定パラメータ, なにをログに出力するか
	log_destination configuration parameter, どこにログを出力するか
	log_destination設定パラメータ, どこにログを出力するか
	log_directory configuration parameter, どこにログを出力するか
	log_directory設定パラメータ, どこにログを出力するか
	log_disconnections configuration parameter, なにをログに出力するか
	log_disconnections設定パラメータ, なにをログに出力するか
	log_duration configuration parameter, なにをログに出力するか
	log_duration設定パラメータ, なにをログに出力するか
	log_error_verbosity configuration parameter, なにをログに出力するか
	log_error_verbosity設定パラメータ, なにをログに出力するか
	log_executor_stats configuration parameter, 統計情報の監視
	log_executor_stats設定パラメータ, 統計情報の監視
	log_filename configuration parameter, どこにログを出力するか
	log_filename設定パラメータ, どこにログを出力するか
	log_file_mode configuration parameter, どこにログを出力するか
	log_file_mode設定パラメータ, どこにログを出力するか
	log_hostname configuration parameter, なにをログに出力するか
	log_hostname設定パラメータ, なにをログに出力するか
	log_line_prefix configuration parameter, なにをログに出力するか
	log_line_prefix設定パラメータ, なにをログに出力するか
	log_lock_failures configuration parameter, なにをログに出力するか
	log_lock_failures設定パラメータ, なにをログに出力するか
	log_lock_waits configuration parameter, なにをログに出力するか
	log_lock_waits設定パラメータ, なにをログに出力するか
	log_min_duration_sample configuration parameter, いつログを出力するか
	log_min_duration_sample設定パラメータ, いつログを出力するか
	log_min_duration_statement configuration parameter, いつログを出力するか
	log_min_duration_statement設定パラメータ, いつログを出力するか
	log_min_error_statement configuration parameter, いつログを出力するか
	log_min_error_statement設定パラメータ, いつログを出力するか
	log_min_messages configuration parameter, いつログを出力するか
	log_min_messages設定パラメータ, いつログを出力するか
	log_parameter_max_length configuration parameter, なにをログに出力するか
	log_parameter_max_length_on_error configuration parameter, なにをログに出力するか
	log_parameter_max_length_on_error設定パラメータ, なにをログに出力するか
	log_parameter_max_length設定パラメータ, なにをログに出力するか
	log_parser_stats configuration parameter, 統計情報の監視
	log_parser_stats設定パラメータ, 統計情報の監視
	log_planner_stats configuration parameter, 統計情報の監視
	log_planner_stats設定パラメータ, 統計情報の監視
	log_recovery_conflict_waits configuration parameter, なにをログに出力するか
	log_recovery_conflict_waits設定パラメータ, なにをログに出力するか
	log_replication_commands configuration parameter, なにをログに出力するか
	log_replication_commands設定パラメータ, なにをログに出力するか
	log_rotation_age configuration parameter, どこにログを出力するか
	log_rotation_age設定パラメータ, どこにログを出力するか
	log_rotation_size configuration parameter, どこにログを出力するか
	log_rotation_size設定パラメータ, どこにログを出力するか
	log_startup_progress_interval configuration parameter, いつログを出力するか
	log_startup_progress_interval設定パラメータ, いつログを出力するか
	log_statement configuration parameter, なにをログに出力するか
	log_statement_sample_rate configuration parameter, いつログを出力するか
	log_statement_sample_rate設定パラメータ, いつログを出力するか
	log_statement_stats configuration parameter, 統計情報の監視
	log_statement_stats設定パラメータ, 統計情報の監視
	log_statement設定パラメータ, なにをログに出力するか
	log_temp_files configuration parameter, なにをログに出力するか
	log_temp_files設定パラメータ, なにをログに出力するか
	log_timezone configuration parameter, なにをログに出力するか
	log_timezone設定パラメータ, なにをログに出力するか
	log_transaction_sample_rate configuration parameter, いつログを出力するか
	log_transaction_sample_rate設定パラメータ, いつログを出力するか
	log_truncate_on_rotation configuration parameter, どこにログを出力するか
	log_truncate_on_rotation設定パラメータ, どこにログを出力するか
	longitude, cubeを基にした地表距離
	looks_like_number
		in PL/Perl, PL/Perlのユーティリティ関数
	PL/Perlにおける, PL/Perlのユーティリティ関数


	loop, 単純なループ
		in PL/pgSQL, 単純なループ


	lower, 文字列関数と演算子, 範囲／多重範囲関数と演算子
		とロケール, 動作


	lower_inc, 範囲／多重範囲関数と演算子
	lower_inf, 範囲／多重範囲関数と演算子
	lo_close, ラージオブジェクト記述子を閉じる
	lo_compat_privileges configuration parameter, 以前のPostgreSQLバージョン
	lo_compat_privileges設定パラメータ, 以前のPostgreSQLバージョン
	lo_creat, ラージオブジェクトの作成, サーバ側の関数
	lo_create, ラージオブジェクトの作成
	lo_export, ラージオブジェクトのエクスポート, サーバ側の関数
	lo_from_bytea, サーバ側の関数
	lo_get, サーバ側の関数
	lo_import, ラージオブジェクトのインポート, サーバ側の関数
	lo_import_with_oid, ラージオブジェクトのインポート
	lo_lseek, ラージオブジェクトのシーク
	lo_lseek64, ラージオブジェクトのシーク
	lo_open, 既存のラージオブジェクトのオープン
	lo_put, サーバ側の関数
	lo_read, ラージオブジェクトからのデータの読み込み
	lo_tell, ラージオブジェクトのシーク位置の入手
	lo_tell64, ラージオブジェクトのシーク位置の入手
	lo_truncate, ラージオブジェクトを切り詰める
	lo_truncate64, ラージオブジェクトを切り詰める
	lo_unlink, ラージオブジェクトの削除, サーバ側の関数
	lo_write, ラージオブジェクトへのデータの書き込み
	lpad, 文字列関数と演算子
	lseg, 線分, 幾何関数と演算子
	LSN, WALの内部
	ltree, ltree — 階層ツリーを模擬したデータ型
	ltree2text, 演算子と関数
	ltrim, 文字列関数と演算子, バイナリ文字列関数と演算子


M
	MAC address (参照 macaddr)
	MAC address (EUI-64 format) (参照 macaddr)
	macaddr (data type), macaddr
	macaddr (データ型), macaddr
	macaddr8 (data type), macaddr8
	macaddr8 (データ型), macaddr8
	macaddr8_set7bit, ネットワークアドレス関数と演算子
	macOS, macOS, macOS
		installation on, macOS
	IPC configuration, 共有メモリとセマフォ
	IPC設定, 共有メモリとセマフォ
	shared library, 動的にロードされる関数のコンパイルとリンク
	上へのインストール, macOS
	共有ライブラリ, 動的にロードされる関数のコンパイルとリンク


	MACアドレス (参照 macaddr)
	MACアドレス (EUI-64 形式) (参照 macaddr)
	magic block, 動的ロード
	maintenance, 定常的なデータベース保守作業
	maintenance_io_concurrency configuration parameter, I/O
	maintenance_io_concurrency設定パラメータ, I/O
	maintenance_work_mem configuration parameter, メモリ
	maintenance_work_mem設定パラメータ, メモリ
	make, 必要条件
	makeaclitem, アクセス権限照会関数
	make_date, 日付/時刻関数と演算子
	make_interval, 日付/時刻関数と演算子
	make_time, 日付/時刻関数と演算子
	make_timestamp, 日付/時刻関数と演算子
	make_timestamptz, 日付/時刻関数と演算子
	make_valid, 関数と演算子
	MANPATH, 環境変数
	masklen, ネットワークアドレス関数と演算子
	materialized view, マテリアライズドビュー
		implementation through rules, マテリアライズドビュー


	materialized views, pg_matviews
	max, 集約関数
	max_active_replication_origins configuration parameter, サブスクライバー
	max_active_replication_origins設定パラメータ, サブスクライバー
	max_connections configuration parameter, 接続設定
	max_connections設定パラメータ, 接続設定
	max_files_per_process configuration parameter, カーネル資源使用
	max_files_per_process設定パラメータ, カーネル資源使用
	max_function_args configuration parameter, 設定済みのオプション
	max_function_args設定パラメータ, 設定済みのオプション
	max_identifier_length configuration parameter, 設定済みのオプション
	max_identifier_length設定パラメータ, 設定済みのオプション
	max_index_keys configuration parameter, 設定済みのオプション
	max_index_keys設定パラメータ, 設定済みのオプション
	max_locks_per_transaction configuration parameter, ロック管理
	max_locks_per_transaction設定パラメータ, ロック管理
	max_logical_replication_workers configuration parameter, サブスクライバー
	max_logical_replication_workers設定パラメータ, サブスクライバー
	max_notify_queue_pages configuration parameter, ディスク
	max_notify_queue_pages設定パラメータ, ディスク
	max_parallel_apply_workers_per_subscription configuration parameter, サブスクライバー
	max_parallel_apply_workers_per_subscription設定パラメータ, サブスクライバー
	max_parallel_maintenance_workers configuration parameter, ワーカープロセス
	max_parallel_maintenance_workers設定パラメータ, ワーカープロセス
	max_parallel_workers configuration parameter, ワーカープロセス
	max_parallel_workers_per_gather configuration parameter, ワーカープロセス
	max_parallel_workers_per_gather設定パラメータ, ワーカープロセス
	max_parallel_workers設定パラメータ, ワーカープロセス
	max_pred_locks_per_page configuration parameter, ロック管理
	max_pred_locks_per_page設定パラメータ, ロック管理
	max_pred_locks_per_relation configuration parameter, ロック管理
	max_pred_locks_per_relation設定パラメータ, ロック管理
	max_pred_locks_per_transaction configuration parameter, ロック管理
	max_pred_locks_per_transaction設定パラメータ, ロック管理
	max_prepared_transactions configuration parameter, メモリ
	max_prepared_transactions設定パラメータ, メモリ
	max_replication_slots configuration parameter, 送出サーバ群
	max_replication_slots設定パラメータ, 送出サーバ群
	max_slot_wal_keep_size configuration parameter, 送出サーバ群
	max_slot_wal_keep_size設定パラメータ, 送出サーバ群
	max_stack_depth configuration parameter, メモリ
	max_stack_depth設定パラメータ, メモリ
	max_standby_archive_delay configuration parameter, スタンバイサーバ
	max_standby_archive_delay設定パラメータ, スタンバイサーバ
	max_standby_streaming_delay configuration parameter, スタンバイサーバ
	max_standby_streaming_delay設定パラメータ, スタンバイサーバ
	max_sync_workers_per_subscription configuration parameter, サブスクライバー
	max_sync_workers_per_subscription設定パラメータ, サブスクライバー
	max_wal_senders configuration parameter, 送出サーバ群
	max_wal_senders設定パラメータ, 送出サーバ群
	max_wal_size configuration parameter, チェックポイント
	max_wal_size設定パラメータ, チェックポイント
	max_worker_processes configuration parameter, ワーカープロセス
	max_worker_processes設定パラメータ, ワーカープロセス
	md5, 文字列関数と演算子, バイナリ文字列関数と演算子
	MD5, パスワード認証
	md5_password_warnings configuration parameter, 認証
	md5_password_warnings設定パラメータ, 認証
	median, 集約式
		(参照 percentile)


	memory context
		in SPI, メモリ管理


	memory overcommit, Linuxのメモリオーバーコミット
	MERGE, 更新された行のデータを返す, MERGE
		RETURNING, 更新された行のデータを返す, マージサポート関数


	merge_action, マージサポート関数
	Meson, 必要条件
	metaphone, Metaphone
	min, 集約関数
	MinGW, MinGW, MinGW
		installation on, MinGW
	上へのインストール, MinGW


	min_dynamic_shared_memory configuration parameter, メモリ
	min_dynamic_shared_memory設定パラメータ, メモリ
	min_parallel_index_scan_size configuration parameter, プランナコスト定数
	min_parallel_index_scan_size設定パラメータ, プランナコスト定数
	min_parallel_table_scan_size configuration parameter, プランナコスト定数
	min_parallel_table_scan_size設定パラメータ, プランナコスト定数
	min_scale, 算術関数と演算子
	min_wal_size configuration parameter, チェックポイント
	min_wal_size設定パラメータ, チェックポイント
	mod, 算術関数と演算子
	mode
		statistical, 集約関数


	monitoring, データベース活動状況の監視
		database activity, データベース活動状況の監視


	MOVE, MOVE
	moving-aggregate mode, 移動集約モード
	multirange (function), 範囲／多重範囲関数と演算子
	multirange type, 範囲型
	Multiversion Concurrency Control, はじめに
	MultiXactId, マルチトランザクションと周回
	multixact_member_buffers configuration parameter, メモリ
	multixact_member_buffers設定パラメータ, メモリ
	multixact_offset_buffers configuration parameter, メモリ
	multixact_offset_buffers設定パラメータ, メモリ
	MVCC, はじめに
	mxid_age, トランザクションIDとスナップショット情報関数


N
	name, 識別子とキーワード
		qualified, スキーマの作成
	syntax of, 識別子とキーワード
	unqualified, スキーマ検索パス


	NaN (参照 not a number) (参照 非数)
	natural join, 結合テーブル
	negation, 論理演算子
	NetBSD
		IPC configuration, 共有メモリとセマフォ
	IPC設定, 共有メモリとセマフォ
	shared library, 動的にロードされる関数のコンパイルとリンク
	の起動スクリプト, データベースサーバの起動
	共有ライブラリ, 動的にロードされる関数のコンパイルとリンク


	netmask, ネットワークアドレス関数と演算子
	network, ネットワークアドレス型, ネットワークアドレス関数と演算子
		data types, ネットワークアドレス型


	nextval, シーケンス操作関数
	NFS, NFS
	nlevel, 演算子と関数
	non-durable, 永続性がない設定
	nonblocking connection, データベース接続制御関数, 非同期コマンドの処理
	normalize, 文字列関数と演算子
	normalized, 文字列関数と演算子
	normal_rand, normal_rand
	NOT (operator), 論理演算子
	not a number
		floating point, 浮動小数点データ型
	numeric (data type), 任意の精度を持つ数


	NOT IN, 副問い合わせ式, 行と配列の比較
	not-null constraint, 非NULL制約
	notation, 関数呼び出し
		functions, 関数呼び出し


	notice processing, 警告処理
		in libpq, 警告処理


	NOTIFY, 非同期通知, 非同期通知, NOTIFY
		in libpq, 非同期通知
	libpqにおける, 非同期通知


	notify_buffers configuration parameter, メモリ
	notify_buffers設定パラメータ, メモリ
	NOTNULL, 比較関数および演算子
	NOT（演算子）, 論理演算子
	now, 日付/時刻関数と演算子
	npoints, 幾何関数と演算子
	nth_value, ウィンドウ関数
	ntile, ウィンドウ関数
	null value
		with check constraints, 検査制約
	comparing, 比較関数および演算子
	in DISTINCT, DISTINCT
	in libpq, 問い合わせ結果の情報の取り出し
	with unique constraints, 一意性制約


	NULLIF, NULLIF
	NULL値
		検査制約, 検査制約
	DISTINCT内の, DISTINCT
	PL/Perlにおける, PL/Perl関数と引数
	PL/Pythonにおける, NullとNone
	一意性制約, 一意性制約
	デフォルト値, デフォルト値
	比較, 比較関数および演算子


	number
		constant, 数値定数


	numeric, 数値定数
	numeric (data type), 任意の精度を持つ数
	numeric（データ型）, 任意の精度を持つ数
	numnode, テキスト検索関数と演算子, 問い合わせを操作する
	num_nonnulls, 比較関数および演算子
	num_nulls, 比較関数および演算子
	num_os_semaphores configuration parameter, 設定済みのオプション
	num_os_semaphores設定パラメータ, 設定済みのオプション
	NVL, COALESCE


O
	OAuth Authorization/Authentication, OAuth認可／認証
	OAuth Validators, OAuth検証器モジュール
	oauth_validator_libraries configuration parameter, 認証
	oauth_validator_libraries設定パラメータ, 認証
	OAuth検証器, OAuth検証器モジュール
	OAuth認可／認証, OAuth認可／認証
	object identifier, オブジェクト識別子データ型
		data type, オブジェクト識別子データ型


	object-oriented database, 概念
	obj_description, コメント情報関数
	OCCURRENCES_REGEX, 標準SQLおよびXQueryとの違い
	octet_length, 文字列関数と演算子, バイナリ文字列関数と演算子, ビット文字列関数と演算子
	OFFSET, LIMITとOFFSET
	oid, オブジェクト識別子データ型
	OID
		libpqにおける, 他の結果情報の取り出し


	oid2name, oid2name
	ON CONFLICT, INSERT
	ONLY, FROM句
	OOM, Linuxのメモリオーバーコミット
	OpenBSD
		IPC configuration, 共有メモリとセマフォ
	IPC設定, 共有メモリとセマフォ
	shared library, 動的にロードされる関数のコンパイルとリンク
	の起動スクリプト, データベースサーバの起動
	共有ライブラリ, 動的にロードされる関数のコンパイルとリンク


	OpenSSL, PostgreSQL™の機能, PostgreSQL™の機能
		(参照 SSL)


	operator, 演算子, 演算子の優先順位, 関数と演算子, 論理演算子, 演算子, ユーザ定義の演算子
		invocation, 演算子の呼び出し
	logical, 論理演算子
	precedence, 演算子の優先順位
	syntax, 演算子
	type resolution in an invocation, 演算子
	user-defined, ユーザ定義の演算子


	operator class, 演算子クラスと演算子族
	operator family, 演算子クラスと演算子族
	optimization information, 関数最適化に関する情報, 演算子最適化に関する情報
		for functions, 関数最適化に関する情報
	for operators, 演算子最適化に関する情報


	OR (operator), 論理演算子
	Oracle, Oracle™ PL/SQLからの移植, Oracle™ PL/SQLからの移植
		PL/SQLからPL/pgSQLへの移植, Oracle™ PL/SQLからの移植
	porting from PL/SQL to PL/pgSQL, Oracle™ PL/SQLからの移植


	ORDER BY, テーブルへの問い合わせ, 行の並べ替え(ORDER BY)
		とロケール, 動作


	ordered-set aggregate, 集約式
		built-in, 集約関数


	ordering operator, システムの演算子クラスに対する依存性
	ordinality, 集合を返す関数
	OR（演算子）, 論理演算子
	outer join, 結合テーブル
	output function, ユーザ定義の型
	OVER clause, ウィンドウ関数呼び出し
	overcommit, Linuxのメモリオーバーコミット
	OVERLAPS, 日付/時刻関数と演算子
	overlay, 文字列関数と演算子, バイナリ文字列関数と演算子, ビット文字列関数と演算子
	overloading, 関数のオーバーロード
		functions, 関数のオーバーロード


	OVER句, ウィンドウ関数呼び出し
	owner, 権限


P
	pageinspect, pageinspect — データベースページの低レベルな調査
	pages_per_range storage parameter, インデックス格納パラメータ
	pages_per_range格納パラメータ, インデックス格納パラメータ
	page_checksum, 一般的な関数
	page_header, 一般的な関数
	palloc, コードの作成
	PAM, PostgreSQL™の機能, PostgreSQL™の機能, PAM認証
	parallel query, パラレルクエリ
	parallel_leader_participation configuration parameter, ワーカープロセス
	parallel_leader_participation設定パラメータ, ワーカープロセス
	parallel_setup_cost configuration parameter, プランナコスト定数
	parallel_setup_cost設定パラメータ, プランナコスト定数
	parallel_tuple_cost configuration parameter, プランナコスト定数
	parallel_tuple_cost設定パラメータ, プランナコスト定数
	parallel_workers storage parameter, 格納パラメータ
	parallel_workers格納パラメータ, 格納パラメータ
	parameter
		syntax, 位置パラメータ


	parse_ident, 文字列関数と演算子
	partition pruning, パーティション除去
	partitioned table, テーブルのパーティショニング
	partitioning, テーブルのパーティショニング
	password
		authentication, パスワード認証


	password file, パスワードファイル
	passwordcheck, passwordcheck — パスワードの強度を検査する
	passwordcheck.min_password_length configuration parameter, 設定パラメータ
	password_encryption configuration parameter, 認証
	password_encryption設定パラメータ, 認証
	path, 幾何関数と演算子
		for schemas, 文の動作


	PATH, 環境変数
	path (data type), 経路
	path（データ型）, 経路
	pattern matching, パターンマッチ
	patterns
		in psql and pg_dump, パターン


	pclose, 幾何関数と演算子
	peer, Peer認証
	percentile
		continuous, 集約関数
	discrete, 集約関数


	percent_rank, ウィンドウ関数
		hypothetical, 集約関数
	仮想の, 集約関数


	performance, 性能に関するヒント
	perl, 必要条件
	Perl, PL/Perl — Perl手続き言語
	permission (参照 privilege)
	pfree, コードの作成
	PGAPPNAME, 環境変数
	pgbench, pgbench
	PGcancel, キャンセル要求を送るための廃れた関数
	PGcancelConn, キャンセル要求の送信関数
	PGCHANNELBINDING, 環境変数
	PGCLIENTENCODING, 環境変数
	PGconn, データベース接続制御関数
	PGCONNECT_TIMEOUT, 環境変数
	pgcrypto, pgcrypto — 暗号関数
	pgcrypto.builtin_crypto_enabled configuration
      parameter, 設定パラメータ
	pgcrypto.builtin_crypto_enabled 設定パラメータ, 設定パラメータ
	PGDATA, データベースクラスタの作成
	PGDATABASE, 環境変数
	PGDATESTYLE, 環境変数
	PGEventProc, イベントコールバックプロシージャ
	PGGEQO, 環境変数
	PGGSSDELEGATION, 環境変数
	PGGSSENCMODE, 環境変数
	PGGSSLIB, 環境変数
	PGHOST, 環境変数
	PGHOSTADDR, 環境変数
	PGKRBSRVNAME, 環境変数
	PGLOADBALANCEHOSTS, 環境変数
	PGLOCALEDIR, 環境変数
	PGMAXPROTOCOLVERSION, 環境変数
	PGMINPROTOCOLVERSION, 環境変数
	PGOPTIONS, 環境変数
	PGPASSFILE, 環境変数
	PGPASSWORD, 環境変数
	PGPORT, 環境変数
	pgp_armor_headers, pgp_armor_headers
	pgp_key_id, pgp_key_id()
	pgp_pub_decrypt, pgp_pub_decrypt()
	pgp_pub_decrypt_bytea, pgp_pub_decrypt()
	pgp_pub_encrypt, pgp_pub_encrypt()
	pgp_pub_encrypt_bytea, pgp_pub_encrypt()
	pgp_sym_decrypt, pgp_sym_decrypt()
	pgp_sym_decrypt_bytea, pgp_sym_decrypt()
	pgp_sym_encrypt, pgp_sym_encrypt()
	pgp_sym_encrypt_bytea, pgp_sym_encrypt()
	PGREQUIREAUTH, 環境変数
	PGREQUIREPEER, 環境変数
	PGREQUIRESSL, 環境変数
	PGresult, 主要な関数
	pgrowlocks, pgrowlocks — テーブルの行ロックの情報を示す, 概要
	PGSERVICE, 環境変数
	PGSERVICEFILE, 環境変数
	PGSSLCERT, 環境変数
	PGSSLCERTMODE, 環境変数
	PGSSLCOMPRESSION, 環境変数
	PGSSLCRL, 環境変数
	PGSSLCRLDIR, 環境変数
	PGSSLKEY, 環境変数
	PGSSLMAXPROTOCOLVERSION, 環境変数
	PGSSLMINPROTOCOLVERSION, 環境変数
	PGSSLMODE, 環境変数
	PGSSLNEGOTIATION, 環境変数
	PGSSLROOTCERT, 環境変数
	PGSSLSNI, 環境変数
	pgstatginindex, 関数
	pgstathashindex, 関数
	pgstatindex, 関数
	pgstattuple, pgstattuple — タプルレベルの統計情報を入手する, 関数
	pgstattuple_approx, 関数
	PGSYSCONFDIR, 環境変数
	PGTARGETSESSIONATTRS, 環境変数
	PGTZ, 環境変数
	PGUSER, 環境変数
	pgxs, 拡張構築基盤
	pg_advisory_lock, 勧告的ロック用関数
	pg_advisory_lock_shared, 勧告的ロック用関数
	pg_advisory_unlock, 勧告的ロック用関数
	pg_advisory_unlock_all, 勧告的ロック用関数
	pg_advisory_unlock_shared, 勧告的ロック用関数
	pg_advisory_xact_lock, 勧告的ロック用関数
	pg_advisory_xact_lock_shared, 勧告的ロック用関数
	pg_aggregate, pg_aggregate
	pg_aios, pg_aios
	pg_am, pg_am
	pg_amcheck, pg_amcheck
	pg_amop, pg_amop
	pg_amproc, pg_amproc
	pg_archivecleanup, pg_archivecleanup
	pg_attrdef, pg_attrdef
	pg_attribute, pg_attribute
	pg_authid, pg_authid
	pg_auth_members, pg_auth_members
	pg_available_extensions, pg_available_extensions
	pg_available_extension_versions, pg_available_extension_versions
	pg_available_wal_summaries, WAL要約情報関数
	pg_backend_memory_contexts, pg_backend_memory_contexts
	pg_backend_pid, セッション情報関数
	pg_backup_start, バックアップ制御関数
	pg_backup_stop, バックアップ制御関数
	pg_basebackup, pg_basebackup
	pg_basetype, システムカタログ情報関数
	pg_blocking_pids, セッション情報関数
	pg_buffercache, pg_buffercache — PostgreSQL™のバッファキャッシュの状態を確認する
	pg_buffercache_evict, pg_buffercache — PostgreSQL™のバッファキャッシュの状態を確認する
	pg_buffercache_evict_all, pg_buffercache — PostgreSQL™のバッファキャッシュの状態を確認する
	pg_buffercache_evict_relation, pg_buffercache — PostgreSQL™のバッファキャッシュの状態を確認する
	pg_buffercache_numa, pg_buffercache — PostgreSQL™のバッファキャッシュの状態を確認する
	pg_buffercache_pages, pg_buffercache — PostgreSQL™のバッファキャッシュの状態を確認する
	pg_buffercache_summary, pg_buffercache — PostgreSQL™のバッファキャッシュの状態を確認する
	pg_buffercache_usage_counts, pg_buffercache — PostgreSQL™のバッファキャッシュの状態を確認する
	pg_cancel_backend, サーバシグナル送信関数
	pg_cast, pg_cast
	pg_char_to_encoding, システムカタログ情報関数
	pg_checksums, pg_checksums
	pg_class, pg_class
	pg_clear_attribute_stats, データベースオブジェクト管理関数
	pg_clear_relation_stats, データベースオブジェクト管理関数
	pg_client_encoding, 文字列関数と演算子
	pg_collation, pg_collation
	pg_collation_actual_version, データベースオブジェクト管理関数
	pg_collation_is_visible, スキーマ可視性問い合わせ関数
	PG_COLOR, いつ色が使われるか
	PG_COLORS, 色を設定する
	pg_column_compression, データベースオブジェクト管理関数
	pg_column_size, データベースオブジェクト管理関数
	pg_column_toast_chunk_id, データベースオブジェクト管理関数
	pg_combinebackup, pg_combinebackup
	pg_config, pg_config, pg_config
		ecpgでの, 埋め込みSQLプログラムの処理
	libpqにおける, libpqプログラムの構築
	ユーザ定義C関数, コードの作成


	pg_conf_load_time, セッション情報関数
	pg_constraint, pg_constraint
	pg_controldata, pg_controldata
	pg_control_checkpoint, コントロールデータ関数
	pg_control_init, コントロールデータ関数
	pg_control_recovery, コントロールデータ関数
	pg_control_system, コントロールデータ関数
	pg_conversion, pg_conversion
	pg_conversion_is_visible, スキーマ可視性問い合わせ関数
	pg_copy_logical_replication_slot, レプリケーション管理関数
	pg_copy_physical_replication_slot, レプリケーション管理関数
	pg_createsubscriber, pg_createsubscriber
	pg_create_logical_replication_slot, レプリケーション管理関数
	pg_create_physical_replication_slot, レプリケーション管理関数
	pg_create_restore_point, バックアップ制御関数
	pg_ctl, データベースクラスタの作成, データベースサーバの起動, pg_ctl
	pg_current_logfile, セッション情報関数
	pg_current_snapshot, トランザクションIDとスナップショット情報関数
	pg_current_wal_flush_lsn, バックアップ制御関数
	pg_current_wal_insert_lsn, バックアップ制御関数
	pg_current_wal_lsn, バックアップ制御関数
	pg_current_xact_id, トランザクションIDとスナップショット情報関数
	pg_current_xact_id_if_assigned, トランザクションIDとスナップショット情報関数
	pg_cursors, pg_cursors
	pg_database, テンプレートデータベース, pg_database
	pg_database_collation_actual_version, データベースオブジェクト管理関数
	pg_database_size, データベースオブジェクト管理関数
	pg_db_role_setting, pg_db_role_setting
	pg_ddl_command, 疑似データ型
	pg_default_acl, pg_default_acl
	pg_depend, pg_depend
	pg_describe_object, オブジェクトの情報とアドレス付関数
	pg_description, pg_description
	pg_drop_replication_slot, レプリケーション管理関数
	pg_dump, pg_dump
	pg_dumpall, pg_dumpall
		use during upgrade, pg_dumpallを介したデータのアップグレード
	アップグレード中の使用, pg_dumpallを介したデータのアップグレード


	pg_encoding_to_char, システムカタログ情報関数
	pg_enum, pg_enum
	pg_event_trigger, pg_event_trigger
	pg_event_trigger_ddl_commands, コマンド側での変更を捕らえる
	pg_event_trigger_dropped_objects, DDLコマンドで削除されたオブジェクトの処理
	pg_event_trigger_table_rewrite_oid, テーブル書き換えイベントの処理
	pg_event_trigger_table_rewrite_reason, テーブル書き換えイベントの処理
	pg_export_snapshot, スナップショット同期関数
	pg_extension, pg_extension
	pg_extension_config_dump, 拡張設定テーブル
	pg_filenode_relation, データベースオブジェクト管理関数
	pg_file_settings, pg_file_settings
	pg_foreign_data_wrapper, pg_foreign_data_wrapper
	pg_foreign_server, pg_foreign_server
	pg_foreign_table, pg_foreign_table
	pg_freespace, 関数
	pg_freespacemap, pg_freespacemap — 空き領域マップを検査する
	pg_function_is_visible, スキーマ可視性問い合わせ関数
	pg_get_acl, オブジェクトの情報とアドレス付関数
	pg_get_catalog_foreign_keys, システムカタログ情報関数
	pg_get_constraintdef, システムカタログ情報関数
	pg_get_expr, システムカタログ情報関数
	pg_get_functiondef, システムカタログ情報関数
	pg_get_function_arguments, システムカタログ情報関数
	pg_get_function_identity_arguments, システムカタログ情報関数
	pg_get_function_result, システムカタログ情報関数
	pg_get_indexdef, システムカタログ情報関数
	pg_get_keywords, システムカタログ情報関数
	pg_get_loaded_modules, セッション情報関数
	pg_get_multixact_members, トランザクションIDとスナップショット情報関数
	pg_get_object_address, オブジェクトの情報とアドレス付関数
	pg_get_partkeydef, システムカタログ情報関数
	pg_get_ruledef, システムカタログ情報関数
	pg_get_serial_sequence, システムカタログ情報関数
	pg_get_statisticsobjdef, システムカタログ情報関数
	pg_get_triggerdef, システムカタログ情報関数
	pg_get_userbyid, システムカタログ情報関数
	pg_get_viewdef, システムカタログ情報関数
	pg_get_wal_replay_pause_state, リカバリ制御関数
	pg_get_wal_resource_managers, リカバリ制御関数
	pg_get_wal_summarizer_state, WAL要約情報関数
	pg_group, pg_group
	pg_has_role, アクセス権限照会関数
	pg_hba.conf, pg_hba.confファイル
	pg_hba_file_rules, pg_hba_file_rules
	pg_ident.conf, ユーザ名マップ
	pg_identify_object, オブジェクトの情報とアドレス付関数
	pg_identify_object_as_address, オブジェクトの情報とアドレス付関数
	pg_ident_file_mappings, pg_ident_file_mappings
	pg_import_system_collations, データベースオブジェクト管理関数
	pg_index, pg_index
	pg_indexam_has_property, システムカタログ情報関数
	pg_indexes, pg_indexes
	pg_indexes_size, データベースオブジェクト管理関数
	pg_index_column_has_property, システムカタログ情報関数
	pg_index_has_property, システムカタログ情報関数
	pg_inherits, pg_inherits
	pg_init_privs, pg_init_privs
	pg_input_error_info, データ有効性検証関数
	pg_input_is_valid, データ有効性検証関数
	pg_isready, pg_isready
	pg_is_in_recovery, リカバリ制御関数
	pg_is_other_temp_schema, セッション情報関数
	pg_is_wal_replay_paused, リカバリ制御関数
	pg_jit_available, セッション情報関数
	pg_language, pg_language
	pg_largeobject, pg_largeobject
	pg_largeobject_metadata, pg_largeobject_metadata
	pg_last_committed_xact, コミット済みトランザクション情報関数
	pg_last_wal_receive_lsn, リカバリ制御関数
	pg_last_wal_replay_lsn, リカバリ制御関数
	pg_last_xact_replay_timestamp, リカバリ制御関数
	pg_listening_channels, セッション情報関数
	pg_locks, pg_locks
	pg_logicalinspect, pg_logicalinspect — ロジカルデコーディングコンポーネントの調査
	pg_logical_emit_message, レプリケーション管理関数
	pg_logical_slot_get_binary_changes, レプリケーション管理関数
	pg_logical_slot_get_changes, レプリケーション管理関数
	pg_logical_slot_peek_binary_changes, レプリケーション管理関数
	pg_logical_slot_peek_changes, レプリケーション管理関数
	pg_log_backend_memory_contexts, サーバシグナル送信関数
	pg_log_standby_snapshot, スナップショット同期関数
	pg_lsn, pg_lsn型
	pg_ls_archive_statusdir, 汎用ファイルアクセス関数
	pg_ls_dir, 汎用ファイルアクセス関数
	pg_ls_logdir, 汎用ファイルアクセス関数
	pg_ls_logicalmapdir, 汎用ファイルアクセス関数
	pg_ls_logicalsnapdir, 汎用ファイルアクセス関数
	pg_ls_replslotdir, 汎用ファイルアクセス関数
	pg_ls_summariesdir, 汎用ファイルアクセス関数
	pg_ls_tmpdir, 汎用ファイルアクセス関数
	pg_ls_waldir, 汎用ファイルアクセス関数
	pg_matviews, pg_matviews
	pg_mcv_list_items, MCVリストの検査
	PG_MODULE_MAGIC, 動的ロード
	pg_my_temp_schema, セッション情報関数
	pg_namespace, pg_namespace
	pg_notification_queue_usage, セッション情報関数
	pg_notify, pg_notify
	pg_numa_available, セッション情報関数
	pg_opclass, pg_opclass
	pg_opclass_is_visible, スキーマ可視性問い合わせ関数
	pg_operator, pg_operator
	pg_operator_is_visible, スキーマ可視性問い合わせ関数
	pg_opfamily, pg_opfamily
	pg_opfamily_is_visible, スキーマ可視性問い合わせ関数
	pg_options_to_table, システムカタログ情報関数
	pg_overexplain, pg_overexplain — EXPLAINで詳細をダンプする
	pg_parameter_acl, pg_parameter_acl
	pg_partitioned_table, pg_partitioned_table
	pg_partition_ancestors, データベースオブジェクト管理関数
	pg_partition_root, データベースオブジェクト管理関数
	pg_partition_tree, データベースオブジェクト管理関数
	pg_policies, pg_policies
	pg_policy, pg_policy
	pg_postmaster_start_time, セッション情報関数
	pg_prepared_statements, pg_prepared_statements
	pg_prepared_xacts, pg_prepared_xacts
	pg_prewarm, pg_prewarm — リレーションデータをバッファキャッシュにプリロードする
	pg_prewarm.autoprewarm configuration parameter, 設定パラメータ
	pg_prewarm.autoprewarm_interval configuration parameter, 設定パラメータ
	pg_prewarm.autoprewarm_interval設定パラメータ, 設定パラメータ
	pg_prewarm.autoprewarm設定パラメータ, 設定パラメータ
	pg_proc, pg_proc
	pg_promote, リカバリ制御関数
	pg_publication, pg_publication
	pg_publication_namespace, pg_publication_namespace
	pg_publication_rel, pg_publication_rel
	pg_publication_tables, pg_publication_tables
	pg_range, pg_range
	pg_read_binary_file, 汎用ファイルアクセス関数
	pg_read_file, 汎用ファイルアクセス関数
	pg_receivewal, pg_receivewal
	pg_receivexlog, pg_receivexlogの名前をpg_receivewalに変更 (参照 pg_receivewal)
	pg_recvlogical, pg_recvlogical
	pg_relation_filenode, データベースオブジェクト管理関数
	pg_relation_filepath, データベースオブジェクト管理関数
	pg_relation_size, データベースオブジェクト管理関数
	pg_reload_conf, サーバシグナル送信関数
	pg_relpages, 関数
	pg_replication_origin, pg_replication_origin
	pg_replication_origin_advance, レプリケーション管理関数
	pg_replication_origin_create, レプリケーション管理関数
	pg_replication_origin_drop, レプリケーション管理関数
	pg_replication_origin_oid, レプリケーション管理関数
	pg_replication_origin_progress, レプリケーション管理関数
	pg_replication_origin_session_is_setup, レプリケーション管理関数
	pg_replication_origin_session_progress, レプリケーション管理関数
	pg_replication_origin_session_reset, レプリケーション管理関数
	pg_replication_origin_session_setup, レプリケーション管理関数
	pg_replication_origin_status, pg_replication_origin_status
	pg_replication_origin_xact_reset, レプリケーション管理関数
	pg_replication_origin_xact_setup, レプリケーション管理関数
	pg_replication_slots, pg_replication_slots
	pg_replication_slot_advance, レプリケーション管理関数
	pg_resetwal, pg_resetwal
	pg_resetxlog, pg_resetxlogの名前をpg_resetwalに変更 (参照 pg_resetwal)
	pg_restore, pg_restore
	pg_restore_attribute_stats, データベースオブジェクト管理関数
	pg_restore_relation_stats, データベースオブジェクト管理関数
	pg_rewind, pg_rewind
	pg_rewrite, pg_rewrite
	pg_roles, pg_roles
	pg_rotate_logfile, サーバシグナル送信関数
	pg_rules, pg_rules
	pg_safe_snapshot_blocking_pids, セッション情報関数
	pg_seclabel, pg_seclabel
	pg_seclabels, pg_seclabels
	pg_sequence, pg_sequence
	pg_sequences, pg_sequences
	pg_service.conf, 接続サービスファイル
	pg_settings, pg_settings
	pg_settings_get_flags, システムカタログ情報関数
	pg_shadow, pg_shadow
	pg_shdepend, pg_shdepend
	pg_shdescription, pg_shdescription
	pg_shmem_allocations, pg_shmem_allocations
	pg_shmem_allocations_numa, pg_shmem_allocations_numa
	pg_shseclabel, pg_shseclabel
	pg_size_bytes, データベースオブジェクト管理関数
	pg_size_pretty, データベースオブジェクト管理関数
	pg_sleep, 遅延実行
	pg_sleep_for, 遅延実行
	pg_sleep_until, 遅延実行
	pg_snapshot_xip, トランザクションIDとスナップショット情報関数
	pg_snapshot_xmax, トランザクションIDとスナップショット情報関数
	pg_snapshot_xmin, トランザクションIDとスナップショット情報関数
	pg_split_walfile_name, バックアップ制御関数
	pg_statio_all_indexes, 統計情報の表示, pg_statio_all_indexes
	pg_statio_all_sequences, 統計情報の表示, pg_statio_all_sequences
	pg_statio_all_tables, 統計情報の表示, pg_statio_all_tables
	pg_statio_sys_indexes, 統計情報の表示
	pg_statio_sys_sequences, 統計情報の表示
	pg_statio_sys_tables, 統計情報の表示
	pg_statio_user_indexes, 統計情報の表示
	pg_statio_user_sequences, 統計情報の表示
	pg_statio_user_tables, 統計情報の表示
	pg_statistic, 単一列統計情報, pg_statistic
	pg_statistics_obj_is_visible, スキーマ可視性問い合わせ関数
	pg_statistic_ext, 拡張統計情報, pg_statistic_ext
	pg_statistic_ext_data, 拡張統計情報, pg_statistic_ext
	pg_stats, 単一列統計情報, pg_stats
	pg_stats_ext, pg_stats_ext
	pg_stats_ext_exprs, pg_stats_ext_exprs
	pg_stat_activity, 統計情報の表示, pg_stat_activity
	pg_stat_all_indexes, 統計情報の表示, pg_stat_all_indexes
	pg_stat_all_tables, 統計情報の表示, pg_stat_all_tables
	pg_stat_archiver, 統計情報の表示, pg_stat_archiver
	pg_stat_bgwriter, 統計情報の表示, pg_stat_bgwriter
	pg_stat_checkpointer, 統計情報の表示, pg_stat_checkpointer
	pg_stat_clear_snapshot, 統計情報関数
	pg_stat_database, 統計情報の表示, pg_stat_database
	pg_stat_database_conflicts, 統計情報の表示, pg_stat_database_conflicts
	pg_stat_file, 汎用ファイルアクセス関数
	pg_stat_get_activity, 統計情報関数
	pg_stat_get_backend_activity, 統計情報関数
	pg_stat_get_backend_activity_start, 統計情報関数
	pg_stat_get_backend_client_addr, 統計情報関数
	pg_stat_get_backend_client_port, 統計情報関数
	pg_stat_get_backend_dbid, 統計情報関数
	pg_stat_get_backend_idset, 統計情報関数
	pg_stat_get_backend_io, 統計情報関数
	pg_stat_get_backend_pid, 統計情報関数
	pg_stat_get_backend_start, 統計情報関数
	pg_stat_get_backend_subxact, 統計情報関数
	pg_stat_get_backend_userid, 統計情報関数
	pg_stat_get_backend_wait_event, 統計情報関数
	pg_stat_get_backend_wait_event_type, 統計情報関数
	pg_stat_get_backend_wal, 統計情報関数
	pg_stat_get_backend_xact_start, 統計情報関数
	pg_stat_get_snapshot_timestamp, 統計情報関数
	pg_stat_get_xact_blocks_fetched, 統計情報関数
	pg_stat_get_xact_blocks_hit, 統計情報関数
	pg_stat_gssapi, 統計情報の表示, pg_stat_gssapi
	pg_stat_io, 統計情報の表示, pg_stat_io
	pg_stat_progress_analyze, 統計情報の表示, ANALYZEの進捗状況のレポート
	pg_stat_progress_basebackup, 統計情報の表示, ベースバックアップの進捗状況のレポート
	pg_stat_progress_cluster, 統計情報の表示, CLUSTERの進捗状況のレポート
	pg_stat_progress_copy, 統計情報の表示, COPYの進捗状況のレポート
	pg_stat_progress_create_index, 統計情報の表示, CREATE INDEXの進捗状況のレポート
	pg_stat_progress_vacuum, 統計情報の表示, VACUUMの進捗状況のレポート
	pg_stat_recovery_prefetch, 統計情報の表示, pg_stat_recovery_prefetch
	pg_stat_replication, 統計情報の表示, pg_stat_replication
	pg_stat_replication_slots, 統計情報の表示, pg_stat_replication_slots
	pg_stat_reset, 統計情報関数
	pg_stat_reset_backend_stats, 統計情報関数
	pg_stat_reset_replication_slot, 統計情報関数
	pg_stat_reset_shared, 統計情報関数
	pg_stat_reset_single_function_counters, 統計情報関数
	pg_stat_reset_single_table_counters, 統計情報関数
	pg_stat_reset_slru, 統計情報関数
	pg_stat_reset_subscription_stats, 統計情報関数
	pg_stat_slru, 統計情報の表示, pg_stat_slru
	pg_stat_ssl, 統計情報の表示, pg_stat_ssl
	pg_stat_statements, pg_stat_statements — SQL文のプラン生成時と実行時の統計情報を記録する
		function, 関数
	関数, 関数


	pg_stat_statements.max configuration parameter, 設定パラメータ
	pg_stat_statements.max設定パラメータ, 設定パラメータ
	pg_stat_statements.save configuration parameter, 設定パラメータ
	pg_stat_statements.save設定パラメータ, 設定パラメータ
	pg_stat_statements.track configuration parameter, 設定パラメータ
	pg_stat_statements.track_planning configuration parameter, 設定パラメータ
	pg_stat_statements.track_planning設定パラメータ, 設定パラメータ
	pg_stat_statements.track_utility configuration parameter, 設定パラメータ
	pg_stat_statements.track_utility設定パラメータ, 設定パラメータ
	pg_stat_statements.track設定パラメータ, 設定パラメータ
	pg_stat_statements_info, pg_stat_statements_infoビュー
	pg_stat_statements_reset, 関数
	pg_stat_subscription, 統計情報の表示, pg_stat_subscription
	pg_stat_subscription_stats, 統計情報の表示, pg_stat_subscription_stats
	pg_stat_sys_indexes, 統計情報の表示
	pg_stat_sys_tables, 統計情報の表示
	pg_stat_user_functions, 統計情報の表示, pg_stat_user_functions
	pg_stat_user_indexes, 統計情報の表示
	pg_stat_user_tables, 統計情報の表示
	pg_stat_wal, 統計情報の表示, pg_stat_wal
	pg_stat_wal_receiver, 統計情報の表示, pg_stat_wal_receiver
	pg_stat_xact_all_tables, 統計情報の表示
	pg_stat_xact_sys_tables, 統計情報の表示
	pg_stat_xact_user_functions, 統計情報の表示
	pg_stat_xact_user_tables, 統計情報の表示
	pg_subscription, pg_subscription
	pg_subscription_rel, pg_subscription_rel
	pg_surgery, pg_surgery — リレーションデータに対して低レベルの手術を行う
	pg_switch_wal, バックアップ制御関数
	pg_sync_replication_slots, レプリケーション管理関数
	pg_tables, pg_tables
	pg_tablespace, pg_tablespace
	pg_tablespace_databases, システムカタログ情報関数
	pg_tablespace_location, システムカタログ情報関数
	pg_tablespace_size, データベースオブジェクト管理関数
	pg_table_is_visible, スキーマ可視性問い合わせ関数
	pg_table_size, データベースオブジェクト管理関数
	pg_temp, 文の動作
		関数の安全化, SECURITY DEFINER関数の安全な作成


	pg_terminate_backend, サーバシグナル送信関数
	pg_test_fsync, pg_test_fsync
	pg_test_timing, pg_test_timing
	pg_timezone_abbrevs, pg_timezone_abbrevs
	pg_timezone_names, pg_timezone_names
	pg_total_relation_size, データベースオブジェクト管理関数
	pg_transform, pg_transform
	pg_trgm, pg_trgm — トライグラム一致を使ったテキストの類似度をサポートする
	pg_trgm.similarity_threshold configuration parameter, GUCパラメータ
	pg_trgm.similarity_threshold設定パラメータ, GUCパラメータ
	pg_trgm.strict_word_similarity_threshold configuration parameter, GUCパラメータ
	
       pg_trgm.strict_word_similarity_threshold設定パラメータ
      , GUCパラメータ
	pg_trgm.word_similarity_threshold configuration parameter, GUCパラメータ
	
       pg_trgm.word_similarity_threshold設定パラメータ
      , GUCパラメータ
	pg_trigger, pg_trigger
	pg_trigger_depth, セッション情報関数
	pg_try_advisory_lock, 勧告的ロック用関数
	pg_try_advisory_lock_shared, 勧告的ロック用関数
	pg_try_advisory_xact_lock, 勧告的ロック用関数
	pg_try_advisory_xact_lock_shared, 勧告的ロック用関数
	pg_ts_config, pg_ts_config
	pg_ts_config_is_visible, スキーマ可視性問い合わせ関数
	pg_ts_config_map, pg_ts_config_map
	pg_ts_dict, pg_ts_dict
	pg_ts_dict_is_visible, スキーマ可視性問い合わせ関数
	pg_ts_parser, pg_ts_parser
	pg_ts_parser_is_visible, スキーマ可視性問い合わせ関数
	pg_ts_template, pg_ts_template
	pg_ts_template_is_visible, スキーマ可視性問い合わせ関数
	pg_type, pg_type
	pg_typeof, システムカタログ情報関数
	pg_type_is_visible, スキーマ可視性問い合わせ関数
	pg_upgrade, pg_upgrade
	pg_user, pg_user
	pg_user_mapping, pg_user_mapping
	pg_user_mappings, pg_user_mappings
	pg_verifybackup, pg_verifybackup
	pg_views, pg_views
	pg_visibility, pg_visibility — 可視性マップ情報とユーティリティ
	pg_visible_in_snapshot, トランザクションIDとスナップショット情報関数
	pg_wait_events, pg_wait_events
	pg_waldump, pg_waldump
	pg_walfile_name, バックアップ制御関数
	pg_walfile_name_offset, バックアップ制御関数
	pg_walinspect, pg_walinspect — 低レベルのWAL検査
	pg_walsummary, pg_walsummary
	pg_wal_lsn_diff, バックアップ制御関数
	pg_wal_replay_pause, リカバリ制御関数
	pg_wal_replay_resume, リカバリ制御関数
	pg_wal_summary_contents, WAL要約情報関数
	pg_xact_commit_timestamp, コミット済みトランザクション情報関数
	pg_xact_commit_timestamp_origin, コミット済みトランザクション情報関数
	pg_xact_status, トランザクションIDとスナップショット情報関数
	pg_xlogdump, pg_xlogdumpの名前をpg_waldumpに変更 (参照 pg_waldump)
	phraseto_tsquery, テキスト検索関数と演算子, 問い合わせのパース
	pi, 算術関数と演算子
	PIC, 動的にロードされる関数のコンパイルとリンク
	PID
		サーバプロセスのPIDの決定
		libpqにおける, 接続状態関数




	pipelining, パイプラインモード, パイプライン化
		in libpq, パイプラインモード
	protocol specification, パイプライン化


	PITR, バックアップとリストア
	PITR standby, 高可用性、負荷分散およびレプリケーション
	PITRスタンバイ, 高可用性、負荷分散およびレプリケーション
	pkg-config, 必要条件
		ecpgでの, 埋め込みSQLプログラムの処理
	libpqにおける, libpqプログラムの構築


	PL/Perl, PL/Perl — Perl手続き言語
	PL/PerlU, 信頼されたPL/Perlおよび信頼されないPL/Perl
	PL/pgSQL, PL/pgSQL — SQL手続き言語
	PL/Python, PL/Python — Python手続き言語
	PL/SQL (Oracle), Oracle™ PL/SQLからの移植, Oracle™ PL/SQLからの移植
		PL/pgSQLへの移植, Oracle™ PL/SQLからの移植
	porting to PL/pgSQL, Oracle™ PL/SQLからの移植


	PL/Tcl, PL/Tcl — Tcl手続き言語
	plainto_tsquery, テキスト検索関数と演算子, 問い合わせのパース
	plan_cache_mode configuration parameter, その他のプランナオプション
	plan_cache_mode設定パラメータ, その他のプランナオプション
	plperl.on_init configuration parameter, 設定
	plperl.on_init設定パラメータ, 設定
	plperl.on_plperlu_init configuration parameter, 設定
	plperl.on_plperlu_init設定パラメータ, 設定
	plperl.on_plperl_init configuration parameter, 設定
	plperl.on_plperl_init設定パラメータ, 設定
	plperl.use_strict configuration parameter, 設定
	plperl.use_strict設定パラメータ, 設定
	plpgsql.check_asserts configuration parameter, アサート検査
	plpgsql.check_asserts 設定パラメータ, アサート検査
	plpgsql.variable_conflict configuration parameter, 変数置換
	plpgsql.variable_conflict設定パラメータ, 変数置換
	pltcl.start_proc configuration parameter, PL/Tclの設定
	pltcl.start_proc設定パラメータ, PL/Tclの設定
	pltclu.start_proc configuration parameter, PL/Tclの設定
	pltclu.start_proc設定パラメータ, PL/Tclの設定
	point, 座標点, 幾何関数と演算子
	point-in-time recovery, バックアップとリストア
	policy, 行セキュリティポリシー
	polygon, 多角形(ポリゴン), 幾何関数と演算子
	polymorphic function, 多様型
	polymorphic type, 多様型
	popcount (参照 bit_count)
	popen, 幾何関数と演算子
	populate_record, hstoreの演算子と関数
	port, パラメータキーワード
	port configuration parameter, 接続設定
	portal
		DECLARE, DECLARE
	in PL/pgSQL, カーソルを開く


	port設定パラメータ, 接続設定
	position, 文字列関数と演算子, バイナリ文字列関数と演算子, ビット文字列関数と演算子
	POSITION_REGEX, 標準SQLおよびXQueryとの違い
	POSTGRES, バークレイ校POSTGRES™プロジェクト
	postgres, 構造的な基本事項, データベースサーバの起動, データベースの作成, postgres
	postgres user, PostgreSQL™ユーザアカウント
	Postgres95, Postgres95™
	postgresql.auto.conf, 設定ファイルによるパラメータ操作
	postgresql.conf, 設定ファイルによるパラメータ操作
	postgres_fdw, postgres_fdw — 外部のPostgreSQL™サーバに格納されたデータにアクセスする
	postgres_fdw.application_name configuration parameter, 設定パラメータ
	postgresユーザ, PostgreSQL™ユーザアカウント
	post_auth_delay configuration parameter, 開発者向けオプション
	post_auth_delay設定パラメータ, 開発者向けオプション
	power, 算術関数と演算子
	PQAUTHDATA_OAUTH_BEARER_TOKEN, フック型
	PQAUTHDATA_PROMPT_OAUTH_DEVICE, フック型
	PQbackendPID, 接続状態関数
	PQbinaryTuples, 問い合わせ結果の情報の取り出し
		with COPY, COPYコマンド関連関数


	PQcancel, キャンセル要求を送るための廃れた関数
	PQcancelBlocking, キャンセル要求の送信関数
	PQcancelCreate, キャンセル要求の送信関数
	PQcancelErrorMessage, キャンセル要求の送信関数
	PQcancelFinish, キャンセル要求の送信関数
	PQcancelPoll, キャンセル要求の送信関数
	PQcancelReset, キャンセル要求の送信関数
	PQcancelSocket, キャンセル要求の送信関数
	PQcancelStart, キャンセル要求の送信関数
	PQcancelStatus, キャンセル要求の送信関数
	PQchangePassword, 雑多な関数
	PQclear, 主要な関数
	PQclientEncoding, 制御関数
	PQclosePortal, 主要な関数
	PQclosePrepared, 主要な関数
	PQcmdStatus, 他の結果情報の取り出し
	PQcmdTuples, 他の結果情報の取り出し
	PQconndefaults, データベース接続制御関数
	PQconnectdb, データベース接続制御関数
	PQconnectdbParams, データベース接続制御関数
	PQconnectionNeedsPassword, 接続状態関数
	PQconnectionUsedGSSAPI, 接続状態関数
	PQconnectionUsedPassword, 接続状態関数
	PQconnectPoll, データベース接続制御関数
	PQconnectStart, データベース接続制御関数
	PQconnectStartParams, データベース接続制御関数
	PQconninfo, データベース接続制御関数
	PQconninfoFree, 雑多な関数
	PQconninfoParse, データベース接続制御関数
	PQconsumeInput, 非同期コマンドの処理
	PQcopyResult, 雑多な関数
	PQdb, 接続状態関数
	PQdescribePortal, 主要な関数
	PQdescribePrepared, 主要な関数
	PQencryptPassword, 雑多な関数
	PQencryptPasswordConn, 雑多な関数
	PQendcopy, 廃れたCOPY用関数
	PQenterPipelineMode, パイプラインモード関連関数
	PQerrorMessage, 接続状態関数
	PQescapeBytea, SQLコマンドに含めるための文字列のエスケープ処理
	PQescapeByteaConn, SQLコマンドに含めるための文字列のエスケープ処理
	PQescapeIdentifier, SQLコマンドに含めるための文字列のエスケープ処理
	PQescapeLiteral, SQLコマンドに含めるための文字列のエスケープ処理
	PQescapeString, SQLコマンドに含めるための文字列のエスケープ処理
	PQescapeStringConn, SQLコマンドに含めるための文字列のエスケープ処理
	PQexec, 主要な関数
	PQexecParams, 主要な関数
	PQexecPrepared, 主要な関数
	PQexitPipelineMode, パイプラインモード関連関数
	PQfformat, 問い合わせ結果の情報の取り出し
		with COPY, COPYコマンド関連関数


	PQfinish, データベース接続制御関数
	PQfireResultCreateEvents, 雑多な関数
	PQflush, 非同期コマンドの処理
	PQfmod, 問い合わせ結果の情報の取り出し
	PQfn, 近道インタフェース
	PQfname, 問い合わせ結果の情報の取り出し
	PQfnumber, 問い合わせ結果の情報の取り出し
	PQfreeCancel, キャンセル要求を送るための廃れた関数
	PQfreemem, 雑多な関数
	PQfsize, 問い合わせ結果の情報の取り出し
	PQftable, 問い合わせ結果の情報の取り出し
	PQftablecol, 問い合わせ結果の情報の取り出し
	PQftype, 問い合わせ結果の情報の取り出し
	PQfullProtocolVersion, 接続状態関数
	PQgetAuthDataHook, 認証データフック
	PQgetCancel, キャンセル要求を送るための廃れた関数
	PQgetCopyData, COPYデータ受信用関数
	PQgetCurrentTimeUSec, 雑多な関数
	PQgetisnull, 問い合わせ結果の情報の取り出し
	PQgetlength, 問い合わせ結果の情報の取り出し
	PQgetline, 廃れたCOPY用関数
	PQgetlineAsync, 廃れたCOPY用関数
	PQgetResult, 非同期コマンドの処理
	PQgetssl, 接続状態関数
	PQgetSSLKeyPassHook_OpenSSL, データベース接続制御関数
	PQgetvalue, 問い合わせ結果の情報の取り出し
	PQhost, 接続状態関数
	PQhostaddr, 接続状態関数
	PQinitOpenSSL, SSLライブラリの初期化
	PQinitSSL, SSLライブラリの初期化
	PQinstanceData, イベントサポート関数
	PQisBusy, 非同期コマンドの処理
	PQisnonblocking, 非同期コマンドの処理
	PQisthreadsafe, スレッド化プログラムの振舞い
	PQlibVersion, 雑多な関数
		(参照 PQserverVersion)


	PQmakeEmptyPGresult, 雑多な関数
	PQnfields, 問い合わせ結果の情報の取り出し
		with COPY, COPYコマンド関連関数


	PQnotifies, 非同期通知
	PQnparams, 問い合わせ結果の情報の取り出し
	PQntuples, 問い合わせ結果の情報の取り出し
	PQoidStatus, 他の結果情報の取り出し
	PQoidValue, 他の結果情報の取り出し
	PQoptions, 接続状態関数
	PQparameterStatus, 接続状態関数
	PQparamtype, 問い合わせ結果の情報の取り出し
	PQpass, 接続状態関数
	PQping, データベース接続制御関数
	PQpingParams, データベース接続制御関数
	PQpipelineStatus, パイプラインモード関連関数
	PQpipelineSync, パイプラインモード関連関数
	PQport, 接続状態関数
	PQprepare, 主要な関数
	PQprint, 問い合わせ結果の情報の取り出し
	PQprotocolVersion, 接続状態関数
	PQputCopyData, COPYデータ送信用関数
	PQputCopyEnd, COPYデータ送信用関数
	PQputline, 廃れたCOPY用関数
	PQputnbytes, 廃れたCOPY用関数
	PQregisterEventProc, イベントサポート関数
	PQrequestCancel, キャンセル要求を送るための廃れた関数
	PQreset, データベース接続制御関数
	PQresetPoll, データベース接続制御関数
	PQresetStart, データベース接続制御関数
	PQresStatus, 主要な関数
	PQresultAlloc, 雑多な関数
	PQresultErrorField, 主要な関数
	PQresultErrorMessage, 主要な関数
	PQresultInstanceData, イベントサポート関数
	PQresultMemorySize, 雑多な関数
	PQresultSetInstanceData, イベントサポート関数
	PQresultStatus, 主要な関数
	PQresultVerboseErrorMessage, 主要な関数
	PQsendClosePortal, 非同期コマンドの処理
	PQsendClosePrepared, 非同期コマンドの処理
	PQsendDescribePortal, 非同期コマンドの処理
	PQsendDescribePrepared, 非同期コマンドの処理
	PQsendFlushRequest, パイプラインモード関連関数
	PQsendPipelineSync, パイプラインモード関連関数
	PQsendPrepare, 非同期コマンドの処理
	PQsendQuery, 非同期コマンドの処理
	PQsendQueryParams, 非同期コマンドの処理
	PQsendQueryPrepared, 非同期コマンドの処理
	PQserverVersion, 接続状態関数
	PQsetAuthDataHook, 認証データフック
	PQsetChunkedRowsMode, 問い合わせ結果をチャンクとして取り出す
	PQsetClientEncoding, 制御関数
	PQsetdb, データベース接続制御関数
	PQsetdbLogin, データベース接続制御関数
	PQsetErrorContextVisibility, 制御関数
	PQsetErrorVerbosity, 制御関数
	PQsetInstanceData, イベントサポート関数
	PQsetnonblocking, 非同期コマンドの処理
	PQsetNoticeProcessor, 警告処理
	PQsetNoticeReceiver, 警告処理
	PQsetResultAttrs, 雑多な関数
	PQsetSingleRowMode, 問い合わせ結果をチャンクとして取り出す
	PQsetSSLKeyPassHook_OpenSSL, データベース接続制御関数
	PQsetTraceFlags, 制御関数
	PQsetvalue, 雑多な関数
	PQsocket, 接続状態関数
	PQsocketPoll, データベース接続制御関数
	PQsslAttribute, 接続状態関数
	PQsslAttributeNames, 接続状態関数
	PQsslInUse, 接続状態関数
	PQsslStruct, 接続状態関数
	PQstatus, 接続状態関数
	PQtrace, 制御関数
	PQtransactionStatus, 接続状態関数
	PQtty, 接続状態関数
	PQunescapeBytea, SQLコマンドに含めるための文字列のエスケープ処理
	PQuntrace, 制御関数
	PQuser, 接続状態関数
	predicate locking, シリアライザブル分離レベル
	PREPARE, PREPARE
	PREPARE TRANSACTION, PREPARE TRANSACTION
	prepared statements, DEALLOCATE, EXECUTE, EXPLAIN, PREPARE
		creating, PREPARE
	executing, EXECUTE
	removing, DEALLOCATE
	showing the query plan, EXPLAIN


	preparing a query
		in PL/pgSQL, 計画のキャッシュ


	pre_auth_delay configuration parameter, 開発者向けオプション
	pre_auth_delay設定パラメータ, 開発者向けオプション
	primary key, 主キー
	primary_conninfo configuration parameter, スタンバイサーバ
	primary_conninfo設定パラメータ, スタンバイサーバ
	primary_slot_name configuration parameter, スタンバイサーバ
	primary_slot_name設定パラメータ, スタンバイサーバ
	privilege, 権限, 権限, スキーマおよび権限, ルールと権限, ルールと権限
		default, 権限
	querying, アクセス権限照会関数
	with rules, ルールと権限
	for schemas, スキーマおよび権限
	with views, ルールと権限


	procedural language, 手続き言語, 手続き言語ハンドラの作成
		externally maintained, 手続き言語
	handler for, 手続き言語ハンドラの作成


	procedure, ユーザ定義プロシージャ
		user-defined, ユーザ定義プロシージャ


	procedures
		output parameter, 出力パラメータを持つSQLプロシージャ


	protocol, フロントエンド/バックエンドプロトコル
		frontend-backend, フロントエンド/バックエンドプロトコル


	ps, 標準的なUnixツール, 標準的なUnixツール
		to monitor activity, 標準的なUnixツール
	活動状況監視のための, 標準的なUnixツール


	psql, データベースへのアクセス, psql
	Python, PL/Python — Python手続き言語


Q
	qualified name, スキーマの作成
	query, テーブルへの問い合わせ, 問い合わせ
	query cancellation, 処理中の問い合わせのキャンセル
	query plan, EXPLAINの利用
	query tree, 問い合わせツリーとは
	querytree, テキスト検索関数と演算子, 問い合わせを操作する
	quotation marks
		and identifiers, 識別子とキーワード
	escaping, 文字列定数


	quote_all_identifiers configuration parameter, 以前のPostgreSQLバージョン
	quote_all_identifiers設定パラメータ, 以前のPostgreSQLバージョン
	quote_ident, 文字列関数と演算子
		in PL/Perl, PL/Perlのユーティリティ関数
	PL/Perlにおける, PL/Perlのユーティリティ関数
	PL/pgSQLでの使用, 動的コマンドの実行
	use in PL/pgSQL, 動的コマンドの実行


	quote_literal, 文字列関数と演算子
		in PL/Perl, PL/Perlのユーティリティ関数
	PL/Perlにおける, PL/Perlのユーティリティ関数
	PL/pgSQLでの使用, 動的コマンドの実行
	use in PL/pgSQL, 動的コマンドの実行


	quote_nullable, 文字列関数と演算子
		in PL/Perl, PL/Perlのユーティリティ関数
	PL/Perlにおける, PL/Perlのユーティリティ関数
	PL/pgSQLでの使用, 動的コマンドの実行
	use in PL/pgSQL, 動的コマンドの実行




R
	radians, 算術関数と演算子
	radius, 幾何関数と演算子
	RADIUS, RADIUS認証
	RAISE
		in PL/pgSQL, エラーとメッセージの報告
	PL/pgSQLにおける, エラーとメッセージの報告


	random, 算術関数と演算子
	random_normal, 算術関数と演算子
	random_page_cost configuration parameter, プランナコスト定数
	random_page_cost設定パラメータ, プランナコスト定数
	range type, 範囲型
		exclude, 範囲の制約
	indexes on, インデックス


	range_agg, 集約関数
	range_intersect_agg, 集約関数
	range_merge, 範囲／多重範囲関数と演算子
	rank, ウィンドウ関数
		hypothetical, 集約関数
	仮想の, 集約関数


	read committed, リードコミッティド分離レベル
	read-only transaction, 文の動作
		setting, SET TRANSACTION
	setting default, 文の動作


	readline, 必要条件
	Readline
		in psql, コマンドライン編集
	psqlでの, コマンドライン編集


	READ_REPLICATION_SLOT, ストリーミングレプリケーションプロトコル
	real, 浮動小数点データ型
	REASSIGN OWNED, REASSIGN OWNED
	record, 疑似データ型
	recovery.conf, recovery.confファイルをpostgresql.confに統合
	recovery.signal, アーカイブからのリカバリ
	recovery_end_command configuration parameter, アーカイブからのリカバリ
	recovery_end_command設定パラメータ, アーカイブからのリカバリ
	recovery_init_sync_method configuration parameter, エラー処理
	recovery_init_sync_method設定パラメータ, エラー処理
	recovery_min_apply_delay configuration parameter, スタンバイサーバ
	recovery_min_apply_delay設定パラメータ, スタンバイサーバ
	recovery_prefetch configuration parameter, リカバリ
	recovery_prefetch設定パラメータ, リカバリ
	recovery_target configuration parameter, リカバリターゲット
	recovery_target_action configuration parameter, リカバリターゲット
	recovery_target_action設定パラメータ, リカバリターゲット
	recovery_target_inclusive configuration parameter, リカバリターゲット
	recovery_target_inclusive設定パラメータ, リカバリターゲット
	recovery_target_lsn configuration parameter, リカバリターゲット
	recovery_target_lsn設定パラメータ, リカバリターゲット
	recovery_target_name configuration parameter, リカバリターゲット
	recovery_target_name設定パラメータ, リカバリターゲット
	recovery_target_time configuration parameter, リカバリターゲット
	recovery_target_timeline configuration parameter, リカバリターゲット
	recovery_target_timeline設定パラメータ, リカバリターゲット
	recovery_target_time設定パラメータ, リカバリターゲット
	recovery_target_xid configuration parameter, リカバリターゲット
	recovery_target_xid設定パラメータ, リカバリターゲット
	recovery_target設定パラメータ, リカバリターゲット
	rectangle, 矩形
	RECURSIVE, CREATE VIEW, CREATE VIEW
		in common table expressions, 再帰的問い合わせ
	in views, CREATE VIEW
	ビューにおける, CREATE VIEW
	共通テーブル式内の, 再帰的問い合わせ


	recursive_worktable_factor configuration parameter, その他のプランナオプション
	recursive_worktable_factor設定パラメータ, その他のプランナオプション
	referential integrity, 外部キー, 外部キー
	REFRESH MATERIALIZED VIEW, REFRESH MATERIALIZED VIEW
	regclass, オブジェクト識別子データ型
	regcollation, オブジェクト識別子データ型
	regconfig, オブジェクト識別子データ型
	regdictionary, オブジェクト識別子データ型
	regexp_count, 文字列関数と演算子, POSIX正規表現
	regexp_instr, 文字列関数と演算子, POSIX正規表現
	regexp_like, 文字列関数と演算子, POSIX正規表現
	regexp_match, 文字列関数と演算子, POSIX正規表現
	regexp_matches, 文字列関数と演算子, POSIX正規表現
	regexp_replace, 文字列関数と演算子, POSIX正規表現
	regexp_split_to_array, 文字列関数と演算子, POSIX正規表現
	regexp_split_to_table, 文字列関数と演算子, POSIX正規表現
	regexp_substr, 文字列関数と演算子, POSIX正規表現
	regnamespace, オブジェクト識別子データ型
	regoper, オブジェクト識別子データ型
	regoperator, オブジェクト識別子データ型
	regproc, オブジェクト識別子データ型
	regprocedure, オブジェクト識別子データ型
	regression intercept, 集約関数
	regression slope, 集約関数
	regression test, インストール手順, インストール手順
	regression tests, リグレッションテスト
	regrole, オブジェクト識別子データ型
	regr_avgx, 集約関数
	regr_avgy, 集約関数
	regr_count, 集約関数
	regr_intercept, 集約関数
	regr_r2, 集約関数
	regr_slope, 集約関数
	regr_sxx, 集約関数
	regr_sxy, 集約関数
	regr_syy, 集約関数
	regtype, オブジェクト識別子データ型
	regular expression, SIMILAR TO正規表現, POSIX正規表現
		(参照 pattern matching)


	reindex, 定常的なインデックスの再作成
	REINDEX, REINDEX
	reindexdb, reindexdb
	relation, 概念
	relational database, 概念
	RELEASE SAVEPOINT, RELEASE SAVEPOINT
	remove_temp_files_after_crash configuration parameter, 開発者向けオプション
	remove_temp_files_after_crash設定パラメータ, 開発者向けオプション
	repeat, 文字列関数と演算子
	repeatable read, リピータブルリード分離レベル
	replace, 文字列関数と演算子
	replication, 高可用性、負荷分散およびレプリケーション
	Replication Origins, レプリケーション進捗の追跡
	Replication Progress Tracking, レプリケーション進捗の追跡
	replication slot
		logical replication, レプリケーションスロット
	streaming replication, レプリケーションスロット


	reporting errors
		in PL/pgSQL, エラーとメッセージの報告


	reserved_connections configuration parameter, 接続設定
	reserved_connections設定パラメータ, 接続設定
	RESET, RESET
	restartpoint, WALの設定
	restart_after_crash configuration parameter, エラー処理
	restart_after_crash設定パラメータ, エラー処理
	restore_command configuration parameter, アーカイブからのリカバリ
	restore_command設定パラメータ, アーカイブからのリカバリ
	RESTRICT, 依存関係の追跡, 依存関係の追跡
		DROPの, 依存関係の追跡
	with DROP, 依存関係の追跡
	foreign key action, 外部キー
	外部キー動作, 外部キー


	restrict_nonsystem_relation_kind
		configuration parameter, 文の動作
	設定パラメータ, 文の動作


	retryable error, 直列化失敗の扱い
	RETURN NEXT
		in PL/pgSQL, RETURN NEXTおよびRETURN QUERY
	PL/pgSQLにおける, RETURN NEXTおよびRETURN QUERY


	RETURN QUERY
		in PL/pgSQL, RETURN NEXTおよびRETURN QUERY
	PL/pgSQLにおける, RETURN NEXTおよびRETURN QUERY


	RETURNING, 更新された行のデータを返す
	RETURNING INTO, 1行の結果を返すコマンドの実行, 1行の結果を返すコマンドの実行
		in PL/pgSQL, 1行の結果を返すコマンドの実行
	PL/pgSQLにおける, 1行の結果を返すコマンドの実行


	reverse, 文字列関数と演算子, バイナリ文字列関数と演算子
	REVOKE, 権限, REVOKE
	right, 文字列関数と演算子
	right join, 結合テーブル
	role, データベースロール, ロールのメンバ資格, 定義済みロール
		membership in, ロールのメンバ資格


	ROLLBACK, ROLLBACK
	rollback
		psql, 変数


	ROLLBACK PREPARED, ROLLBACK PREPARED
	ROLLBACK TO SAVEPOINT, ROLLBACK TO SAVEPOINT
	ROLLUP, GROUPING SETS、CUBE、ROLLUP
	round, 算術関数と演算子
	routine maintenance, 定常的なデータベース保守作業
	row, 概念, テーブルの基本
	ROW, 行コンストラクタ
	row estimation, 行数推定の例
		multivariate, 多変量統計の例
	planner, 行数推定の例


	row type, 複合型
		constructor, 行コンストラクタ


	row-level security, 行セキュリティポリシー
	row-wise comparison, 行と配列の比較
	row_number, ウィンドウ関数
	row_security configuration parameter, 文の動作
	row_security_active, アクセス権限照会関数
	row_security設定パラメータ, 文の動作
	row_to_json, JSONデータの処理と生成
	rpad, 文字列関数と演算子
	rtrim, 文字列関数と演算子, バイナリ文字列関数と演算子
	rule, ルールシステム, ビューとルールシステム, SELECTルールの動き, マテリアライズドビュー, INSERT、UPDATE、DELETEについてのルール, INSERT、UPDATE、DELETEについてのルール, INSERT、UPDATE、DELETEについてのルール, ルール対トリガ
		and materialized views, マテリアライズドビュー
	and views, ビューとルールシステム
	for DELETE, INSERT、UPDATE、DELETEについてのルール
	for INSERT, INSERT、UPDATE、DELETEについてのルール
	for SELECT, SELECTルールの動き
	compared with triggers, ルール対トリガ
	for UPDATE, INSERT、UPDATE、DELETEについてのルール




S
	SAVEPOINT, SAVEPOINT
	savepoints, RELEASE SAVEPOINT, ROLLBACK TO SAVEPOINT, SAVEPOINT
		defining, SAVEPOINT
	releasing, RELEASE SAVEPOINT
	rolling back, ROLLBACK TO SAVEPOINT


	scalar (参照 expression)
	scale, 算術関数と演算子
	schema, スキーマ, スキーマの作成, publicスキーマ, 概要
		creating, スキーマの作成
	current, スキーマ検索パス, セッション情報関数
	public, publicスキーマ
	removing, スキーマの作成


	SCRAM, パスワード認証
	scram_iterations configuration parameter, 認証
	scram_iterations設定パラメータ, 認証
	search path, スキーマ検索パス
		current, セッション情報関数
	object visibility, スキーマ可視性問い合わせ関数


	search_path configuration parameter, スキーマ検索パス, 文の動作
		use in securing functions, SECURITY DEFINER関数の安全な作成


	search_path設定パラメータ, スキーマ検索パス, 文の動作
		関数の安全化における使用, SECURITY DEFINER関数の安全な作成


	SECURITY LABEL, SECURITY LABEL
	sec_to_gc, cubeを基にした地表距離
	seg, seg — 線分または浮動小数点区間のためのデータ型
	segment_size configuration parameter, 設定済みのオプション
	segment_size設定パラメータ, 設定済みのオプション
	SELECT, テーブルへの問い合わせ, 問い合わせ, SELECT出力列, SELECT出力列, SELECT
		determination of result type, SELECT出力列
	select list, 選択リスト
	結果型の決定, SELECT出力列
	選択リスト, 選択リスト


	SELECT INTO, 1行の結果を返すコマンドの実行, 1行の結果を返すコマンドの実行, SELECT INTO
		in PL/pgSQL, 1行の結果を返すコマンドの実行
	PL/pgSQLにおける, 1行の結果を返すコマンドの実行


	semaphores, 共有メモリとセマフォ
	send_abort_for_crash configuration parameter, 開発者向けオプション
	send_abort_for_crash設定パラメータ, 開発者向けオプション
	send_abort_for_kill configuration parameter, 開発者向けオプション
	send_abort_for_kill設定パラメータ, 開発者向けオプション
	sepgsql, sepgsql — SELinuxベースでラベルベースの強制アクセス制御（MAC）セキュリティモジュール
	sepgsql.debug_audit configuration parameter, GUCパラメータ
	sepgsql.debug_audit設定パラメータ, GUCパラメータ
	sepgsql.permissive configuration parameter, GUCパラメータ
	sepgsql.permissive設定パラメータ, GUCパラメータ
	sequence, シーケンス操作関数
		and serial type, 連番型


	sequential scan, プランナメソッド設定
	seq_page_cost configuration parameter, プランナコスト定数
	seq_page_cost設定パラメータ, プランナコスト定数
	serial, 連番型
	serial2, 連番型
	serial4, 連番型
	serial8, 連番型
	serializable, シリアライザブル分離レベル
	Serializable Snapshot Isolation, はじめに
	serializable_buffers configuration parameter, メモリ
	serializable_buffers設定パラメータ, メモリ
	serialization anomaly, シリアライザブル分離レベル
	serialization failure, 直列化失敗の扱い
	server log, エラー報告とログ出力, ログファイルの保守
		log file maintenance, ログファイルの保守


	Server Name Indication, パラメータキーワード
	server spoofing, サーバのなりすまし防止
	server_encoding configuration parameter, 設定済みのオプション
	server_encoding設定パラメータ, 設定済みのオプション
	server_version configuration parameter, 設定済みのオプション
	server_version_num configuration parameter, 設定済みのオプション
	server_version_num設定パラメータ, 設定済みのオプション
	server_version設定パラメータ, 設定済みのオプション
	session_preload_libraries configuration parameter, 共有ライブラリのプリロード
	session_preload_libraries設定パラメータ, 共有ライブラリのプリロード
	session_replication_role configuration parameter, 文の動作
	session_replication_role設定パラメータ, 文の動作
	session_user, セッション情報関数
	SET, 構成設定関数, SET
	SET CONSTRAINTS, SET CONSTRAINTS
	set difference, 問い合わせの結合(UNION, INTERSECT, EXCEPT)
	set intersection, 問い合わせの結合(UNION, INTERSECT, EXCEPT)
	set operation, 問い合わせの結合(UNION, INTERSECT, EXCEPT)
	set returning functions, 集合を返す関数
		functions, 集合を返す関数


	SET ROLE, SET ROLE
	SET SESSION AUTHORIZATION, SET SESSION AUTHORIZATION
	SET TRANSACTION, SET TRANSACTION
	set union, 問い合わせの結合(UNION, INTERSECT, EXCEPT)
	SET XML OPTION, 文の動作
	setseed, 算術関数と演算子
	setval, シーケンス操作関数
	setweight, テキスト検索関数と演算子, 文書の操作
		setweight for specific lexeme(s), テキスト検索関数と演算子


	set_bit, バイナリ文字列関数と演算子, ビット文字列関数と演算子
	set_byte, バイナリ文字列関数と演算子
	set_config, 構成設定関数
	set_limit, 関数と演算子
	set_masklen, ネットワークアドレス関数と演算子
	sha224, バイナリ文字列関数と演算子
	sha256, バイナリ文字列関数と演算子
	sha384, バイナリ文字列関数と演算子
	sha512, バイナリ文字列関数と演算子
	shared library, 共有ライブラリ
	shared memory, 共有メモリとセマフォ
	shared_buffers configuration parameter, メモリ
	shared_buffers設定パラメータ, メモリ
	shared_memory_size configuration parameter, 設定済みのオプション
	shared_memory_size_in_huge_pages configuration parameter, 設定済みのオプション
	shared_memory_size_in_huge_pages設定パラメータ, 設定済みのオプション
	shared_memory_size設定パラメータ, 設定済みのオプション
	shared_memory_type configuration parameter, メモリ
	shared_memory_type設定パラメータ, メモリ
	shared_preload_libraries, 起動時の共有メモリの要求, 起動時のLWLocksの要求
	shared_preload_libraries configuration parameter, 共有ライブラリのプリロード
	shared_preload_libraries設定パラメータ, 共有ライブラリのプリロード
	shobj_description, コメント情報関数
	SHOW, 構成設定関数, SHOW, ストリーミングレプリケーションプロトコル
	show_limit, 関数と演算子
	show_trgm, 関数と演算子
	shutdown, サーバのシャットダウン
	SIGHUP, 設定ファイルによるパラメータ操作, pg_hba.confファイル, ユーザ名マップ
	SIGINT, サーバのシャットダウン
	sign, 算術関数と演算子
	signal
		backend processes, サーバシグナル送信関数


	significant digits, ロケールと書式設定
	SIGQUIT, サーバのシャットダウン
	SIGTERM, サーバのシャットダウン
	SIMILAR TO, SIMILAR TO正規表現
	similarity, 関数と演算子
	sin, 算術関数と演算子
	sind, 算術関数と演算子
	single-user mode, シングルユーザモード用のオプション
	sinh, 算術関数と演算子
	skeys, hstoreの演算子と関数
	sleep, 遅延実行
	slice, hstoreの演算子と関数
	sliced bread (参照 TOAST)
	slope, 幾何関数と演算子
	SLRU, pg_stat_slru
	smallint, 整数データ型
	smallserial, 連番型
	Solaris, Solaris, Solaris
		installation on, Solaris
	shared library, 動的にロードされる関数のコンパイルとリンク
	の起動スクリプト, データベースサーバの起動
	上へのインストール, Solaris
	共有ライブラリ, 動的にロードされる関数のコンパイルとリンク


	SOME, 集約関数, 副問い合わせ式, 行と配列の比較
	sort, intarrayの関数および演算子
	sorting, 行の並べ替え(ORDER BY)
	sort_asc, intarrayの関数および演算子
	sort_desc, intarrayの関数および演算子
	soundex, Soundex
	SP-GiST (参照 index) (参照 インデックス)
	SPI, サーバプログラミングインタフェース, spi — サーバプログラミングインタフェース機能/例, spi — サーバプログラミングインタフェース機能/例
		examples, spi — サーバプログラミングインタフェース機能/例
	例, spi — サーバプログラミングインタフェース機能/例


	spi_commit
		in PL/Perl, PL/Perlからのデータベースアクセス


	SPI_commit, SPI_commit
	SPI_commit_and_chain, SPI_commit
	SPI_connect, SPI_connect
	SPI_connect_ext, SPI_connect
	SPI_copytuple, SPI_copytuple
	spi_cursor_close
		in PL/Perl, PL/Perlからのデータベースアクセス
	PL/Perlにおける, PL/Perlからのデータベースアクセス


	SPI_cursor_close, SPI_cursor_close
	SPI_cursor_fetch, SPI_cursor_fetch
	SPI_cursor_find, SPI_cursor_find
	SPI_cursor_move, SPI_cursor_move
	SPI_cursor_open, SPI_cursor_open
	SPI_cursor_open_with_args, SPI_cursor_open_with_args
	SPI_cursor_open_with_paramlist, SPI_cursor_open_with_paramlist
	SPI_cursor_parse_open, SPI_cursor_parse_open
	SPI_exec, SPI_exec
	SPI_execp, SPI_execp
	SPI_execute, SPI_execute
	SPI_execute_extended, SPI_execute_extended
	SPI_execute_plan, SPI_execute_plan
	SPI_execute_plan_extended, SPI_execute_plan_extended
	SPI_execute_plan_with_paramlist, SPI_execute_plan_with_paramlist
	SPI_execute_with_args, SPI_execute_with_args
	spi_exec_prepared
		in PL/Perl, PL/Perlからのデータベースアクセス
	PL/Perlにおける, PL/Perlからのデータベースアクセス


	spi_exec_query
		in PL/Perl, PL/Perlからのデータベースアクセス
	PL/Perlにおける, PL/Perlからのデータベースアクセス


	spi_fetchrow
		in PL/Perl, PL/Perlからのデータベースアクセス
	PL/Perlにおける, PL/Perlからのデータベースアクセス


	SPI_finish, SPI_finish
	SPI_fname, SPI_fname
	SPI_fnumber, SPI_fnumber
	spi_freeplan
		in PL/Perl, PL/Perlからのデータベースアクセス
	PL/Perlにおける, PL/Perlからのデータベースアクセス


	SPI_freeplan, SPI_freeplan
	SPI_freetuple, SPI_freetuple
	SPI_freetuptable, SPI_freetuptable
	SPI_getargcount, SPI_getargcount
	SPI_getargtypeid, SPI_getargtypeid
	SPI_getbinval, SPI_getbinval
	SPI_getnspname, SPI_getnspname
	SPI_getrelname, SPI_getrelname
	SPI_gettype, SPI_gettype
	SPI_gettypeid, SPI_gettypeid
	SPI_getvalue, SPI_getvalue
	SPI_is_cursor_plan, SPI_is_cursor_plan
	SPI_keepplan, SPI_keepplan
	SPI_modifytuple, SPI_modifytuple
	SPI_palloc, SPI_palloc
	SPI_pfree, SPI_pfree
	spi_prepare
		in PL/Perl, PL/Perlからのデータベースアクセス
	PL/Perlにおける, PL/Perlからのデータベースアクセス


	SPI_prepare, SPI_prepare
	SPI_prepare_cursor, SPI_prepare_cursor
	SPI_prepare_extended, SPI_prepare_extended
	SPI_prepare_params, SPI_prepare_params
	spi_query
		in PL/Perl, PL/Perlからのデータベースアクセス
	PL/Perlにおける, PL/Perlからのデータベースアクセス


	spi_query_prepared
		in PL/Perl, PL/Perlからのデータベースアクセス
	PL/Perlにおける, PL/Perlからのデータベースアクセス


	SPI_register_relation, SPI_register_relation
	SPI_register_trigger_data, SPI_register_trigger_data
	SPI_repalloc, SPI_repalloc
	SPI_result_code_string, SPI_result_code_string
	SPI_returntuple, SPI_returntuple
	spi_rollback
		in PL/Perl, PL/Perlからのデータベースアクセス


	SPI_rollback, SPI_rollback
	SPI_rollback_and_chain, SPI_rollback
	SPI_saveplan, SPI_saveplan
	SPI_scroll_cursor_fetch, SPI_scroll_cursor_fetch
	SPI_scroll_cursor_move, SPI_scroll_cursor_move
	SPI_start_transaction, SPI_start_transaction
	SPI_unregister_relation, SPI_unregister_relation
	split_part, 文字列関数と演算子
	SQL/CLI, SQLへの準拠
	SQL/Foundation, SQLへの準拠
	SQL/Framework, SQLへの準拠
	SQL/JRT, SQLへの準拠
	SQL/JSON, JSON関数と演算子, JSON関数と演算子
		functions and expressions, JSON関数と演算子
	関数と式, JSON関数と演算子


	SQL/JSON path language, SQL/JSONパス言語
	SQL/JSONパス言語, SQL/JSONパス言語
	SQL/MDA, SQLへの準拠
	SQL/MED, SQLへの準拠
	SQL/OLB, SQLへの準拠
	SQL/PGQ, SQLへの準拠
	SQL/PSM, SQLへの準拠
	SQL/Schemata, SQLへの準拠
	SQL/XML, SQLへの準拠
		limits and conformance, XMLの制限とSQL/XMLへの適合
	制限と適合性, XMLの制限とSQL/XMLへの適合


	SQLの拡張, SQLの拡張
	SQL問い合わせのキャンセル, 処理中の問い合わせのキャンセル
	sqrt, 算術関数と演算子
	ssh, SSHトンネルを使った安全なTCP/IP接続
	SSI, はじめに
	SSL, SSLによる安全なTCP/IP接続, SSLサポート
		in libpq, 接続状態関数
	libpqでの, パラメータキーワード
	TLS, SSLによる安全なTCP/IP接続, SSLサポート


	ssl configuration parameter, SSL
	sslinfo, sslinfo — クライアントのSSL情報を取得する
	ssl_ca_file configuration parameter, SSL
	ssl_ca_file設定パラメータ, SSL
	ssl_cert_file configuration parameter, SSL
	ssl_cert_file設定パラメータ, SSL
	ssl_cipher, 提供される関数
	ssl_ciphers configuration parameter, SSL
	ssl_ciphers設定パラメータ, SSL
	ssl_client_cert_present, 提供される関数
	ssl_client_dn, 提供される関数
	ssl_client_dn_field, 提供される関数
	ssl_client_serial, 提供される関数
	ssl_crl_dir configuration parameter, SSL
	ssl_crl_dir設定パラメータ, SSL
	ssl_crl_file configuration parameter, SSL
	ssl_crl_file設定パラメータ, SSL
	ssl_dh_params_file configuration parameter, SSL
	ssl_dh_params_file設定パラメータ, SSL
	ssl_extension_info, 提供される関数
	ssl_groups configuration parameter, SSL
	ssl_groups設定パラメータ, SSL
	ssl_issuer_dn, 提供される関数
	ssl_issuer_field, 提供される関数
	ssl_is_used, 提供される関数
	ssl_key_file configuration parameter, SSL
	ssl_key_file設定パラメータ, SSL
	ssl_library configuration parameter, 設定済みのオプション
	ssl_library設定パラメータ, 設定済みのオプション
	ssl_max_protocol_version configuration parameter, SSL
	ssl_max_protocol_version設定パラメータ, SSL
	ssl_min_protocol_version configuration parameter, SSL
	ssl_min_protocol_version設定パラメータ, SSL
	ssl_passphrase_command configuration parameter, SSL
	ssl_passphrase_command_supports_reload configuration parameter, SSL
	ssl_passphrase_command_supports_reload設定パラメータ, SSL
	ssl_passphrase_command設定パラメータ, SSL
	ssl_prefer_server_ciphers configuration parameter, SSL
	ssl_prefer_server_ciphers設定パラメータ, SSL
	ssl_tls13_ciphers configuration parameter, SSL
	ssl_tls13_ciphers設定パラメータ, SSL
	ssl_version, 提供される関数
	ssl設定パラメータ, SSL
	SSPI, SSPI認証
	STABLE, 関数の変動性分類
	standard deviation, 集約関数
		population, 集約関数
	sample, 集約関数


	standard_conforming_strings configuration parameter, 以前のPostgreSQLバージョン
	standard_conforming_strings設定パラメータ, 以前のPostgreSQLバージョン
	standby server, 高可用性、負荷分散およびレプリケーション
	standby.signal, アーカイブからのリカバリ, スタンバイサーバの動作, スタンバイサーバの設定
		pg_basebackup --write-recovery-conf, オプション
	ホットスタンバイのための, 管理者のための概説


	standby_mode (参照 standby.signal)
	START TRANSACTION, START TRANSACTION
	starts_with, 文字列関数と演算子
	START_REPLICATION, ストリーミングレプリケーションプロトコル
	statement_timeout configuration parameter, 文の動作
	statement_timeout設定パラメータ, 文の動作
	statement_timestamp, 日付/時刻関数と演算子
	statistics, 集約関数, プランナで使用される統計情報, 拡張統計情報, プランナ用の統計情報の更新, 累積統計システム
		of the planner, プランナで使用される統計情報, 拡張統計情報, プランナ用の統計情報の更新


	stats_fetch_consistency configuration parameter, 累積的な問い合わせ及びインデックスの統計情報
	stats_fetch_consistency設定パラメータ, 累積的な問い合わせ及びインデックスの統計情報
	stddev, 集約関数
	stddev_pop, 集約関数
	stddev_samp, 集約関数
	STONITH, 高可用性、負荷分散およびレプリケーション
	storage parameters, 格納パラメータ
	Streaming Replication, 高可用性、負荷分散およびレプリケーション
	strict_word_similarity, 関数と演算子
	string (参照 character string)
	strings
		backslash quotes, 以前のPostgreSQLバージョン
	escape warning, 以前のPostgreSQLバージョン
	standard conforming, 以前のPostgreSQLバージョン


	string_agg, 集約関数
	string_to_array, 文字列関数と演算子
	string_to_table, 文字列関数と演算子
	strip, テキスト検索関数と演算子, 文書の操作
	strpos, 文字列関数と演算子
	subarray, intarrayの関数および演算子
	subltree, 演算子と関数
	subpath, 演算子と関数
	subplan, EXPLAINの基本
		hashed, EXPLAINの基本


	subquery, 集約関数, スカラ副問い合わせ, 副問い合わせ, 副問い合わせ式
	subscript, 添字
	substr, 文字列関数と演算子, バイナリ文字列関数と演算子
	substring, 文字列関数と演算子, バイナリ文字列関数と演算子, ビット文字列関数と演算子, SIMILAR TO正規表現, POSIX正規表現
	SUBSTRING_REGEX, 標準SQLおよびXQueryとの違い
	subtransactions
		in PL/Tcl, PL/Tclにおける明示的サブトランザクション


	subtransaction_buffers configuration parameter, メモリ
	subtransaction_buffers設定パラメータ, メモリ
	sum, 集約関数
	summarize_wal configuration parameter, WAL要約
	summarize_wal設定パラメータ, WAL要約
	superuser_reserved_connections configuration parameter, 接続設定
	superuser_reserved_connections設定パラメータ, 接続設定
	support functions
		in_range, B-Treeサポート関数


	suppress_redundant_updates_trigger, トリガ関数
	svals, hstoreの演算子と関数
	synchronized_standby_slots configuration parameter, 送出サーバ群
	synchronized_standby_slots設定パラメータ, 送出サーバ群
	synchronize_seqscans configuration parameter, 以前のPostgreSQLバージョン
	synchronize_seqscans設定パラメータ, 以前のPostgreSQLバージョン
	synchronous commit, 非同期コミット
	Synchronous Replication, 高可用性、負荷分散およびレプリケーション
	synchronous_commit configuration parameter, 諸設定
	synchronous_commit設定パラメータ, 諸設定
	synchronous_standby_names configuration parameter, プライマリサーバ
	synchronous_standby_names設定パラメータ, プライマリサーバ
	sync_replication_slots configuration parameter, スタンバイサーバ
	sync_replication_slots設定パラメータ, スタンバイサーバ
	syntax, SQLの構文
		SQL, SQLの構文


	syslog_facility configuration parameter, どこにログを出力するか
	syslog_facility設定パラメータ, どこにログを出力するか
	syslog_ident configuration parameter, どこにログを出力するか
	syslog_ident設定パラメータ, どこにログを出力するか
	syslog_sequence_numbers configuration parameter, どこにログを出力するか
	syslog_sequence_numbers設定パラメータ, どこにログを出力するか
	syslog_split_messages configuration parameter, どこにログを出力するか
	syslog_split_messages設定パラメータ, どこにログを出力するか
	system catalog, システムカタログスキーマ
		schema, システムカタログスキーマ


	systemd, PostgreSQL™の機能, PostgreSQL™の機能, データベースサーバの起動
		RemoveIPC, systemd RemoveIPC


	system_user, セッション情報関数


T
	table, 概念, テーブルの基本, テーブルの変更
		creating, テーブルの基本
	inheritance, 継承
	modifying, テーブルの変更
	partitioning, テーブルのパーティショニング
	removing, テーブルの基本
	renaming, テーブル名の変更


	Table Access Method, テーブルアクセスメソッドのインタフェース定義
	TABLE command, SELECT
	table expression, テーブル式
	table function, テーブル関数, xmltable
		XMLTABLE, xmltable


	table sampling method, テーブルサンプリングメソッドの書き方
	tableam
		Table Access Method, テーブルアクセスメソッドのインタフェース定義
	テーブルアクセスメソッド, テーブルアクセスメソッドのインタフェース定義


	tablefunc, tablefunc — テーブルを返す関数(crosstab等)
	tableoid, システム列
	TABLESAMPLE method, テーブルサンプリングメソッドの書き方
	TABLESAMPLEメソッド, テーブルサンプリングメソッドの書き方
	tablespace, テーブル空間
		default, 文の動作
	temporary, 文の動作


	table_am_handler, 疑似データ型
	TABLEコマンド, SELECT
	tan, 算術関数と演算子
	tand, 算術関数と演算子
	tanh, 算術関数と演算子
	Tcl, PL/Tcl — Tcl手続き言語
	tcn, tcn — テーブルの内容の変更を監視者に通知するトリガ関数
	tcp_keepalives_count configuration parameter, TCP設定
	tcp_keepalives_count設定パラメータ, TCP設定
	tcp_keepalives_idle configuration parameter, TCP設定
	tcp_keepalives_idle設定パラメータ, TCP設定
	tcp_keepalives_interval configuration parameter, TCP設定
	tcp_keepalives_interval設定パラメータ, TCP設定
	tcp_user_timeout configuration parameter, TCP設定
	tcp_user_timeout設定パラメータ, TCP設定
	template0, データベースの作成, テンプレートデータベース
	template1, データベースの作成, テンプレートデータベース
	temp_buffers configuration parameter, メモリ
	temp_buffers設定パラメータ, メモリ
	temp_file_limit configuration parameter, ディスク
	temp_file_limit設定パラメータ, ディスク
	temp_tablespaces configuration parameter, 文の動作
	temp_tablespaces設定パラメータ, 文の動作
	test, リグレッションテスト
	test_decoding, test_decoding — SQLに基づくWALロジカルデコーディングのためのテストモジュール/モジュール例
	text, 文字型, ネットワークアドレス関数と演算子
	text search, テキスト検索に関する型, テキスト検索に関する型, 全文検索, テキスト検索に好ましいインデックス種類
		data types, テキスト検索に関する型
	functions and operators, テキスト検索に関する型
	indexes, テキスト検索に好ましいインデックス種類


	text2ltree, 演算子と関数
	threads, スレッド化プログラムの振舞い
		with libpq, スレッド化プログラムの振舞い


	tid, オブジェクト識別子データ型
	time, 日付/時刻データ型, 時刻
		constants, 特別な値
	current, 現在の日付/時刻
	output format, 日付/時刻の出力
		(参照 formatting)


	出力書式, 日付/時刻の出力
		(参照 書式設定)


	定数, 特別な値


	time span, 日付/時刻データ型
	time with time zone, 日付/時刻データ型, 時刻
	time without time zone, 日付/時刻データ型, 時刻
	time zone, 時間帯, ロケールと書式設定, POSIX時間帯の指定
		conversion, AT TIME ZONEとAT LOCAL
	input abbreviations, 日付/時刻設定ファイル
	POSIX-style specification, POSIX時間帯の指定


	time zone data, 構築プロセスの詳細, 構築プロセスの詳細
	time zone names, ロケールと書式設定
	timelines, バックアップとリストア
	TIMELINE_HISTORY, ストリーミングレプリケーションプロトコル
	timeofday, 日付/時刻関数と演算子
	timeout
		client authentication, 認証
	deadlock, ロック管理
	クライアント認証, 認証


	timestamp, 日付/時刻データ型, タイムスタンプ
	timestamp with time zone, 日付/時刻データ型, タイムスタンプ
	timestamp without time zone, 日付/時刻データ型, タイムスタンプ
	timestamptz, 日付/時刻データ型
	TimeZone configuration parameter, ロケールと書式設定
	timezone_abbreviations configuration parameter, ロケールと書式設定
	timezone_abbreviations設定パラメータ, ロケールと書式設定
	TimeZone設定パラメータ, ロケールと書式設定
	TOAST, TOAST
		and user-defined types, TOASTの考慮
	per-column storage settings, 説明, パラメータ
	versus large objects, はじめに
	とユーザ定義型, TOASTの考慮
	列ごとの保管設定, 説明, パラメータ
	型ごとの保管設定, 説明
	対ラージオブジェクト, はじめに


	toast_tuple_target storage parameter, 格納パラメータ
	toast_tuple_target格納パラメータ, 格納パラメータ
	token, 字句の構造
	to_ascii, 文字列関数と演算子
	to_bin, 文字列関数と演算子
	to_char, データ型書式設定関数
		とロケール, 動作


	to_date, データ型書式設定関数
	to_hex, 文字列関数と演算子
	to_json, JSONデータの処理と生成
	to_jsonb, JSONデータの処理と生成
	to_number, データ型書式設定関数
	to_oct, 文字列関数と演算子
	to_regclass, システムカタログ情報関数
	to_regcollation, システムカタログ情報関数
	to_regnamespace, システムカタログ情報関数
	to_regoper, システムカタログ情報関数
	to_regoperator, システムカタログ情報関数
	to_regproc, システムカタログ情報関数
	to_regprocedure, システムカタログ情報関数
	to_regrole, システムカタログ情報関数
	to_regtype, システムカタログ情報関数
	to_regtypemod, システムカタログ情報関数
	to_timestamp, データ型書式設定関数, 日付/時刻関数と演算子
	to_tsquery, テキスト検索関数と演算子, 問い合わせのパース
	to_tsvector, テキスト検索関数と演算子, 文書のパース
	trace_locks configuration parameter, 開発者向けオプション
	trace_locks設定パラメータ, 開発者向けオプション
	trace_lock_oidmin configuration parameter, 開発者向けオプション
	trace_lock_oidmin設定パラメータ, 開発者向けオプション
	trace_lock_table configuration parameter, 開発者向けオプション
	trace_lock_table設定パラメータ, 開発者向けオプション
	trace_lwlocks configuration parameter, 開発者向けオプション
	trace_lwlocks設定パラメータ, 開発者向けオプション
	trace_notify configuration parameter, 開発者向けオプション
	trace_notify設定パラメータ, 開発者向けオプション
	trace_sort configuration parameter, 開発者向けオプション
	trace_sort設定パラメータ, 開発者向けオプション
	trace_userlocks configuration parameter, 開発者向けオプション
	trace_userlocks設定パラメータ, 開発者向けオプション
	track_activities configuration parameter, 累積的な問い合わせ及びインデックスの統計情報
	track_activities設定パラメータ, 累積的な問い合わせ及びインデックスの統計情報
	track_activity_query_size configuration parameter, 累積的な問い合わせ及びインデックスの統計情報
	track_activity_query_size設定パラメータ, 累積的な問い合わせ及びインデックスの統計情報
	track_commit_timestamp configuration parameter, 送出サーバ群
	track_commit_timestamp設定パラメータ, 送出サーバ群
	track_cost_delay_timing configuration parameter, 累積的な問い合わせ及びインデックスの統計情報
	track_cost_delay_timing設定パラメータ, 累積的な問い合わせ及びインデックスの統計情報
	track_counts configuration parameter, 累積的な問い合わせ及びインデックスの統計情報
	track_counts設定パラメータ, 累積的な問い合わせ及びインデックスの統計情報
	track_functions configuration parameter, 累積的な問い合わせ及びインデックスの統計情報
	track_functions設定パラメータ, 累積的な問い合わせ及びインデックスの統計情報
	track_io_timing configuration parameter, 累積的な問い合わせ及びインデックスの統計情報
	track_io_timing設定パラメータ, 累積的な問い合わせ及びインデックスの統計情報
	track_wal_io_timing configuration parameter, 累積的な問い合わせ及びインデックスの統計情報
	track_wal_io_timing設定パラメータ, 累積的な問い合わせ及びインデックスの統計情報
	transaction, トランザクション
	transaction ID, トランザクションIDの周回エラーの防止
		wraparound, トランザクションIDの周回エラーの防止


	transaction isolation, トランザクションの分離
	transaction isolation level, トランザクションの分離, 文の動作
		read committed, リードコミッティド分離レベル
	repeatable read, リピータブルリード分離レベル
	serializable, シリアライザブル分離レベル
	setting, SET TRANSACTION
	setting default, 文の動作


	transaction log (参照 WAL)
	transaction_buffers configuration parameter, メモリ
	transaction_buffers設定パラメータ, メモリ
	transaction_deferrable configuration parameter, 文の動作
	transaction_deferrable設定パラメータ, 文の動作
	transaction_isolation configuration parameter, 文の動作
	transaction_isolation設定パラメータ, 文の動作
	transaction_read_only configuration parameter, 文の動作
	transaction_read_only設定パラメータ, 文の動作
	transaction_timeout configuration parameter, 文の動作
	transaction_timeout設定パラメータ, 文の動作
	transaction_timestamp, 日付/時刻関数と演算子
	transform_null_equals configuration parameter, プラットフォームとクライアント互換性
	transform_null_equals設定パラメータ, プラットフォームとクライアント互換性
	transition tables, CREATE TRIGGER
		(参照 ephemeral named relation)
	implementation in PLs, SPI_register_trigger_data
	referencing from C trigger, Cによるトリガ関数の作成


	translate, 文字列関数と演算子
	TRANSLATE_REGEX, 標準SQLおよびXQueryとの違い
	transparent huge pages, メモリ
	trigger, 疑似データ型, トリガ, Cによるトリガ関数の作成, ルール対トリガ, トリガ関数, トリガ関数
		arguments for trigger functions, トリガ動作の概要
	constraint trigger, 説明
	for updating a derived tsvector column, 自動更新のためのトリガ
	in C, Cによるトリガ関数の作成
	in PL/pgSQL, トリガ関数
	in PL/Python, トリガ関数
	in PL/Tcl, PL/Tclのトリガ関数
	compared with rules, ルール対トリガ


	triggered_change_notification, tcn — テーブルの内容の変更を監視者に通知するトリガ関数
	trim, 文字列関数と演算子, バイナリ文字列関数と演算子
	trim_array, 配列関数と演算子
	trim_scale, 算術関数と演算子
	true, 論理値データ型
	trunc, 算術関数と演算子, ネットワークアドレス関数と演算子
	TRUNCATE, TRUNCATE
	trusted, 信頼されたPL/Perlおよび信頼されないPL/Perl
		PL/Perl, 信頼されたPL/Perlおよび信頼されないPL/Perl


	tsm_handler, 疑似データ型
	tsm_system_rows, tsm_system_rows — TABLESAMPLEに対するSYSTEM_ROWSサンプリングメソッド
	tsm_system_time, tsm_system_time — TABLESAMPLEに対するSYSTEM_TIMEサンプリングメソッド
	tsquery (data type), tsquery
	tsquery_phrase, テキスト検索関数と演算子, 問い合わせを操作する
	tsquery（データ型）, tsquery
	tsvector (data type), tsvector
	tsvector concatenation, 文書の操作
	tsvector_to_array, テキスト検索関数と演算子
	tsvector_update_trigger, トリガ関数
	tsvector_update_trigger_column, トリガ関数
	tsvectorの結合, 文書の操作
	tsvector（データ型）, tsvector
	ts_debug, テキスト検索関数と演算子, 設定のテスト
	ts_delete, テキスト検索関数と演算子
	ts_filter, テキスト検索関数と演算子
	ts_headline, テキスト検索関数と演算子, 結果の強調
	ts_lexize, テキスト検索関数と演算子, 辞書のテスト
	ts_parse, テキスト検索関数と演算子, パーサのテスト
	ts_rank, テキスト検索関数と演算子, 検索結果のランキング
	ts_rank_cd, テキスト検索関数と演算子, 検索結果のランキング
	ts_rewrite, テキスト検索関数と演算子, 問い合わせの書き換え
	ts_stat, テキスト検索関数と演算子, 文書の統計情報の収集
	ts_token_type, テキスト検索関数と演算子, パーサのテスト
	tuple_data_split, ヒープ関数
	txid_current, トランザクションIDとスナップショット情報関数
	txid_current_if_assigned, トランザクションIDとスナップショット情報関数
	txid_current_snapshot, トランザクションIDとスナップショット情報関数
	txid_snapshot_xip, トランザクションIDとスナップショット情報関数
	txid_snapshot_xmax, トランザクションIDとスナップショット情報関数
	txid_snapshot_xmin, トランザクションIDとスナップショット情報関数
	txid_status, トランザクションIDとスナップショット情報関数
	txid_visible_in_snapshot, トランザクションIDとスナップショット情報関数
	type (参照 data type)
	type cast, 型キャスト
	typedef
		in ECPG, typedef




U
	UESCAPE, 識別子とキーワード, Unicodeエスケープがある文字列定数
	unaccent, unaccent — 発音区分記号を取り除く全文検索用辞書, 関数
	Unicode escape, Unicodeエスケープがある文字列定数
		in identifiers, 識別子とキーワード
	in string constants, Unicodeエスケープがある文字列定数


	Unicode normalization, 文字列関数と演算子
	unicode_assigned, 文字列関数と演算子
	unicode_version, バージョン情報関数
	Unicodeエスケープ, Unicodeエスケープがある文字列定数
		文字列定数中, Unicodeエスケープがある文字列定数
	識別子中, 識別子とキーワード


	UNION, 問い合わせの結合(UNION, INTERSECT, EXCEPT), UNION、CASEおよび関連する構文, UNION、CASEおよび関連する構文
		determination of result type, UNION、CASEおよび関連する構文
	結果型の決定, UNION、CASEおよび関連する構文


	uniq, intarrayの関数および演算子
	unique constraint, 一意性制約
	unistr, 文字列関数と演算子
	unix_socket_directories configuration parameter, 接続設定
	unix_socket_directories設定パラメータ, 接続設定
	unix_socket_group configuration parameter, 接続設定
	unix_socket_group設定パラメータ, 接続設定
	unix_socket_permissions configuration parameter, 接続設定
	unix_socket_permissions設定パラメータ, 接続設定
	Unixドメインソケット, パラメータキーワード
	unknown, 疑似データ型
	UNLISTEN, UNLISTEN
	unnest, 配列関数と演算子
		for multirange, 範囲／多重範囲関数と演算子
	for tsvector, テキスト検索関数と演算子


	unqualified name, スキーマ検索パス
	updatable views, 更新可能ビュー
	UPDATE, 更新, データの更新, 更新された行のデータを返す, UPDATE
		RETURNING, 更新された行のデータを返す


	update_process_title configuration parameter, プロセスのタイトル
	update_process_title設定パラメータ, プロセスのタイトル
	updating, データの更新
	upgrading, PostgreSQL™クラスタのアップグレード処理
	UPLOAD_MANIFEST, ストリーミングレプリケーションプロトコル
	upper, 文字列関数と演算子, 範囲／多重範囲関数と演算子
		とロケール, 動作


	upper_inc, 範囲／多重範囲関数と演算子
	upper_inf, 範囲／多重範囲関数と演算子
	UPSERT, INSERT
	URI, 接続文字列
	user, セッション情報関数, データベースロール
		current, セッション情報関数


	user mapping, 外部データ
	User name maps, ユーザ名マップ
	user_catalog_table storage parameter, 格納パラメータ
	user_catalog_table格納パラメータ, 格納パラメータ
	UUID, UUID型, UUID関数, UUID型, PostgreSQL™の機能, PostgreSQL™の機能
		generating, UUID関数
	生成, UUID型


	uuid-ossp, uuid-ossp — UUID生成器
	uuidv4, UUID関数
	uuidv7, UUID関数
	uuid_extract_timestamp, UUID関数
	uuid_extract_version, UUID関数
	uuid_generate_v1, uuid-ossp関数
	uuid_generate_v1mc, uuid-ossp関数
	uuid_generate_v3, uuid-ossp関数


V
	vacuum, 定常的なバキューム作業
		configuration parameters, Vacuum作業
	設定パラメータ, Vacuum作業


	VACUUM, VACUUM
	vacuumdb, vacuumdb
	vacuumlo, vacuumlo
	vacuum_buffer_usage_limit configuration parameter, メモリ
	vacuum_buffer_usage_limit設定パラメータ, メモリ
	vacuum_cost_delay configuration parameter, コストに基づくVacuum遅延
	vacuum_cost_delay設定パラメータ, コストに基づくVacuum遅延
	vacuum_cost_limit configuration parameter, コストに基づくVacuum遅延
	vacuum_cost_limit設定パラメータ, コストに基づくVacuum遅延
	vacuum_cost_page_dirty configuration parameter, コストに基づくVacuum遅延
	vacuum_cost_page_dirty設定パラメータ, コストに基づくVacuum遅延
	vacuum_cost_page_hit configuration parameter, コストに基づくVacuum遅延
	vacuum_cost_page_hit設定パラメータ, コストに基づくVacuum遅延
	vacuum_cost_page_miss configuration parameter, コストに基づくVacuum遅延
	vacuum_cost_page_miss設定パラメータ, コストに基づくVacuum遅延
	vacuum_failsafe_age configuration parameter, 凍結処理
	vacuum_failsafe_age設定パラメータ, 凍結処理
	vacuum_freeze_min_age configuration parameter, 凍結処理
	vacuum_freeze_min_age設定パラメータ, 凍結処理
	vacuum_freeze_table_age configuration parameter, 凍結処理
	vacuum_freeze_table_age設定パラメータ, 凍結処理
	vacuum_index_cleanup storage parameter, 格納パラメータ
	vacuum_index_cleanup格納パラメータ, 格納パラメータ
	vacuum_max_eager_freeze_failure_rate
		configuration parameter, 凍結処理
	storage parameter, 格納パラメータ
	設定パラメータ, 凍結処理


	vacuum_multixact_failsafe_age configuration parameter, 凍結処理
	vacuum_multixact_failsafe_age設定パラメータ, 凍結処理
	vacuum_multixact_freeze_min_age configuration parameter, 凍結処理
	vacuum_multixact_freeze_min_age設定パラメータ, 凍結処理
	vacuum_multixact_freeze_table_age configuration parameter, 凍結処理
	vacuum_multixact_freeze_table_age設定パラメータ, 凍結処理
	vacuum_truncate
		configuration parameter, デフォルトの動作
	storage parameter, 格納パラメータ
	設定パラメータ, デフォルトの動作


	value expression, 評価式
	VALUES, VALUESリスト, UNION、CASEおよび関連する構文, UNION、CASEおよび関連する構文, VALUES
		determination of result type, UNION、CASEおよび関連する構文
	結果型の決定, UNION、CASEおよび関連する構文


	varchar, 文字型
	variadic function, 可変長引数を取るSQL関数
	variadic関数, 可変長引数を取るSQL関数
	variance, 集約関数
		population, 集約関数
	sample, 集約関数


	var_pop, 集約関数
	var_samp, 集約関数
	version, データベースへのアクセス, バージョン情報関数, PostgreSQL™クラスタのアップグレード処理
		compatibility, PostgreSQL™クラスタのアップグレード処理


	view, ビュー, ビューとルールシステム, マテリアライズドビュー, ビューとの協調
		implementation through rules, ビューとルールシステム
	materialized, マテリアライズドビュー
	updating, ビューとの協調


	Visibility Map, 可視性マップ
	Visual Studio, Visual Studio
		installation on, Visual Studio


	VM (参照 Visibility Map) (参照 可視性マップ)
	void, 疑似データ型
	VOLATILE, 関数の変動性分類
	volatility, 関数の変動性分類
		functions, 関数の変動性分類


	VPATH, インストール手順, 拡張構築基盤


W
	WAL, 信頼性と先行書き込みログ（WAL）
	wal_block_size configuration parameter, 設定済みのオプション
	wal_block_size設定パラメータ, 設定済みのオプション
	wal_buffers configuration parameter, 諸設定
	wal_buffers設定パラメータ, 諸設定
	wal_compression configuration parameter, 諸設定
	wal_compression設定パラメータ, 諸設定
	wal_consistency_checking configuration parameter, 開発者向けオプション
	wal_consistency_checking設定パラメータ, 開発者向けオプション
	wal_debug configuration parameter, 開発者向けオプション
	wal_debug設定パラメータ, 開発者向けオプション
	wal_decode_buffer_size configuration parameter, リカバリ
	wal_decode_buffer_size設定パラメータ, リカバリ
	wal_init_zero configuration parameter, 諸設定
	wal_init_zero設定パラメータ, 諸設定
	wal_keep_size configuration parameter, 送出サーバ群
	wal_keep_size設定パラメータ, 送出サーバ群
	wal_level configuration parameter, 諸設定
	wal_level設定パラメータ, 諸設定
	wal_log_hints configuration parameter, 諸設定
	wal_log_hints設定パラメータ, 諸設定
	wal_receiver_create_temp_slot configuration parameter, スタンバイサーバ
	wal_receiver_create_temp_slot設定パラメータ, スタンバイサーバ
	wal_receiver_status_interval configuration parameter, スタンバイサーバ
	wal_receiver_status_interval設定パラメータ, スタンバイサーバ
	wal_receiver_timeout configuration parameter, スタンバイサーバ
	wal_receiver_timeout設定パラメータ, スタンバイサーバ
	wal_recycle configuration parameter, 諸設定
	wal_recycle設定パラメータ, 諸設定
	wal_retrieve_retry_interval configuration parameter, スタンバイサーバ
	wal_retrieve_retry_interval設定パラメータ, スタンバイサーバ
	wal_segment_size configuration parameter, 設定済みのオプション
	wal_segment_size設定パラメータ, 設定済みのオプション
	wal_sender_timeout configuration parameter, 送出サーバ群
	wal_sender_timeout設定パラメータ, 送出サーバ群
	wal_skip_threshold configuration parameter, 諸設定
	wal_skip_threshold設定パラメータ, 諸設定
	wal_summary_keep_time configuration parameter, WAL要約
	wal_summary_keep_time設定パラメータ, WAL要約
	wal_sync_method configuration parameter, 諸設定
	wal_sync_method設定パラメータ, 諸設定
	wal_writer_delay configuration parameter, 諸設定
	wal_writer_delay設定パラメータ, 諸設定
	wal_writer_flush_after configuration parameter, 諸設定
	wal_writer_flush_after設定パラメータ, 諸設定
	warm standby, 高可用性、負荷分散およびレプリケーション
	websearch_to_tsquery, テキスト検索関数と演算子
	WHERE, WHERE句
	where to log, どこにログを出力するか
	WHILE
		in PL/pgSQL, WHILE
	PL/pgSQLにおける, WHILE


	width, 幾何関数と演算子
	width_bucket, 算術関数と演算子
	window function, ウィンドウ関数, ウィンドウ関数呼び出し, ウィンドウ関数処理, ウィンドウ関数
		built-in, ウィンドウ関数
	invocation, ウィンドウ関数呼び出し
	order of execution, ウィンドウ関数処理


	WITH, WITH問い合わせ（共通テーブル式）, WITH問い合わせ（共通テーブル式）, SELECT, SELECT
		in SELECT, WITH問い合わせ（共通テーブル式）, SELECT
	SELECTにおける, WITH問い合わせ（共通テーブル式）, SELECT


	WITH CHECK OPTION, CREATE VIEW
	WITHIN GROUP, 集約式
	witness server, 高可用性、負荷分散およびレプリケーション
	witnessサーバ, 高可用性、負荷分散およびレプリケーション
	word_similarity, 関数と演算子
	work_mem configuration parameter, メモリ
	work_mem設定パラメータ, メモリ
	wraparound
		of multixact IDs, マルチトランザクションと周回
	of transaction IDs, トランザクションIDの周回エラーの防止




X
	xid, オブジェクト識別子データ型
	xid8, オブジェクト識別子データ型
	xmax, システム列
	xmin, システム列
	XML, XML型
	XML export, XMLにテーブルをマップ
	XML Functions, XML関数
	XML option, XML値の作成, 文の動作
	xml2, xml2 — XPath問い合わせとXSLT機能
	xmlagg, xmlagg, 集約関数
	xmlbinary configuration parameter, 文の動作
	xmlbinary設定パラメータ, 文の動作
	xmlcomment, xmlcomment
	xmlconcat, xmlconcat
	xmlelement, xmlelement
	XMLEXISTS, XMLEXISTS
	xmlforest, xmlforest
	xmloption configuration parameter, 文の動作
	xmloption設定パラメータ, 文の動作
	xmlparse, XML値の作成
	xmlpi, xmlpi
	xmlroot, xmlroot
	xmlserialize, XML値の作成
	xmltable, xmltable
	xmltext, xmltext
	xml_is_well_formed, xml_is_well_formed
	xml_is_well_formed_content, xml_is_well_formed
	xml_is_well_formed_document, xml_is_well_formed
	XMLオプション, 文の動作
	XPath, xpath
	xpath_exists, xpath_exists
	xpath_table, xpath_table
	XQuery regular expressions, 標準SQLおよびXQueryとの違い
	XQuery正規表現, 標準SQLおよびXQueryとの違い
	xslt_process, xslt_process


Y
	yacc, 必要条件


Z
	zero_damaged_pages configuration parameter, 開発者向けオプション
	zero_damaged_pages設定パラメータ, 開発者向けオプション
	zlib, 必要条件, 機能の無効化, 機能の無効化




OEBPS/re27.html

名前

SPI_prepare_params — 文を準備する。まだ実行は行わない


概要

SPIPlanPtr SPI_prepare_params(const char * command,
                              ParserSetupHook parserSetup,
                              void * parserSetupArg,
                              int cursorOptions)



説明



SPI_prepare_paramsは指定したコマンドの準備済み文を作成し返します。
しかしそのコマンドを実行しません。
この関数はSPI_prepare_cursorと同じですが、呼び出し元が外部パラメータ参照の解析を制御するパーサフック関数を指定できる点が追加されています。
  



この関数はSPI_prepare_extendedのため現在では廃止予定です。
  


引数

		const char * command

		

コマンド文字列
     



		ParserSetupHook parserSetup

		

パーサフック設定関数
     



		void * parserSetupArg

		

parserSetupに渡される引数
     



		int cursorOptions

		

カーソルオプションの整数ビットマスク。
ゼロはデフォルトの動作を引き起こします
     







戻り値



SPI_prepare_paramsはSPI_prepareと同じ戻り値の規則を持ちます。
  





OEBPS/re44.html

名前

SPI_cursor_close — カーソルを閉じる


概要

void SPI_cursor_close(Portal portal)



説明



SPI_cursor_closeは事前に作成されたカーソルを閉じ、そのポータル用の領域を解放します。
  



トランザクションの終了時に全ての開いているカーソルが自動的に閉ざされます。
SPI_cursor_closeは、リソースの解放をより早めに行いたい場合にのみ呼び出す必要があります。
  


引数

		Portal portal

		

カーソルを持つポータル
     










OEBPS/re49.html

名前

SPI_register_trigger_data — 短命のトリガデータをSPIの問い合わせから利用可能にする


概要

int SPI_register_trigger_data(TriggerData *tdata)



説明



SPI_register_trigger_dataはトリガによって捕捉される任意の短命のリレーションを、現在のSPI接続を通して計画され、実行される問い合わせで利用可能にします。
現在のところ、これはREFERENCING OLD/NEW TABLE ASの句で定義されるAFTERトリガによって捕捉される遷移テーブルを意味します。
この関数は接続後にPLのトリガハンドラ関数から呼び出されるようにします。
  


引数

		TriggerData *tdata

		

トリガハンドラ関数にfcinfo->contextとして渡されるTriggerDataオブジェクト
     







戻り値



コマンドの実行に成功したときは、次の（負でない）値が返されます。

   

		SPI_OK_TD_REGISTER

		

捕捉されたトリガデータ（あれば）が登録された場合
      







  



エラーが発生したときは、以下の負の値の一つが返されます。

   

		SPI_ERROR_ARGUMENT

		

tdataがNULLの場合
      



		SPI_ERROR_UNCONNECTED

		

未接続のC関数から呼び出された場合
      



		SPI_ERROR_REL_DUPLICATE

		

トリガデータの遷移リレーションのどれかの名前が、この接続で既に登録されている場合
      







  





OEBPS/re24.html

名前

SPI_prepare — 文を準備する。文の実行はまだ行わない


概要

SPIPlanPtr SPI_prepare(const char * command, int nargs, Oid * argtypes)



説明



SPI_prepareは指定したコマンド用の準備済み文を作成し、それを返します。
しかし、そのコマンドは実行しません。
その準備済み文はSPI_execute_planを使って後で繰り返し実行できます。
  



同じ、あるいは類似のコマンドが繰り返し実行される場合、一度だけ解析を計画作成を行うことには一般に利点があります。
また、コマンドの実行計画を再利用することにはさらに利点があるかも知れません。
SPI_prepareはコマンド文字列を、解析結果をカプセル化した準備済み文に変換します。
実行の度に独自計画を生成するのが役に立たないと分かった場合には、準備済み文は実行計画をキャッシュする場所も提供します。
  



プリペアドコマンドは、通常のコマンド内の定数となる場所を（$1、$2などの）パラメータで記述することで一般化することができます。
そしてパラメータの実際の値は、SPI_execute_plan が呼び出される時に指定されます。
これにより、プリペアドコマンドは、パラメータがない場合に比べ、より広範な状況で使用できるようになります。
  



SPI_finishが文のために割り当てられたメモリを解放しますので、SPI_prepareで返される文は、そのC関数の現在の呼び出し内でのみ使用することができます。
しかし、関数SPI_keepplanやSPI_saveplanを使用して長期間文を保存することもできます。
  


引数

		const char * command

		

コマンド文字列
     



		int nargs

		

入力パラメータ（$1、$2など）の数
     



		Oid * argtypes

		

パラメータのデータ型のOIDを持つ配列へのポインタ
     







戻り値



SPI_prepareはSPIPlanへの非NULLのポインタを返します。
ここでSPIPlanは準備済み文を表すopaque構造体です。
エラーの場合、NULLが返され、SPI_executeで使用されるエラーコードと同じコードの1つがSPI_resultに設定されます。
しかし、commandがNULLの場合や、nargsが0未満の場合、nargsが0より大きくかつargtypesがNULLの場合は、SPI_ERROR_ARGUMENTに設定されます。
  


注釈



パラメータが定義されていなければ、SPI_execute_planが最初に使用された時に一般的な計画が作成され、以降の実行すべてでも利用されます。
パラメータがあれば、始めの何回かのSPI_execute_planの使用で、与えられたパラメータの値に固有の独自計画が作成されます。
同じ準備済み文が十分に使用された後、SPI_execute_planは一般的な計画を作成し、独自計画よりもそれほど高価でなければ、毎回再計画する代わりに一般的な計画を使い始めるようになります。
このデフォルトの動作が不適切であれば、SPI_prepare_cursorにCURSOR_OPT_GENERIC_PLANまたはCURSOR_OPT_CUSTOM_PLANフラグを設定することで、それぞれ一般的な計画か独自計画を強制的に利用するよう変更できます。
  



プリペアド文の主要な利点は、文の解析処理と計画作成処理の繰り返しを防止することですが、PostgreSQL™では、以前にそのプリペアド文を使用してから、文の中で使用されているデータベースオブジェクトが定義（DDL）の変更を受けた時は常に再解析処理と計画再作成処理を強制します。
また、一度使用してからsearch_pathの値が変わった場合も、文は新しいsearch_pathを使用して再解析されます。
（後者の振る舞いはPostgreSQL™ 9.3の時に追加されました。）
プリペアド文の動作についてはPREPARE(7)を参照してください。
  



この関数は接続済みのC関数からのみ呼び出してください。
  



SPIPlanPtrはspi.h内でopaque構造体型へのポインタとして宣言されています。
たいていの場合将来のバージョンのPostgreSQL™でそのコードが壊れてしまうため、この内容に直接アクセスすることは避けてください。
  



そのデータ構造はもはや実行計画を含むとは限りませんので、SPIPlanPtrという名前はいくらか歴史的なものです。
  





OEBPS/re28.html

名前

SPI_getargcount — 
SPI_prepareにより準備した文に必要とされる引数の数を返す
  


概要

int SPI_getargcount(SPIPlanPtr plan)



説明



SPI_getargcountは、SPI_prepareにより準備された文を実行する時に必要とされる引数の数を返します。
  


引数

		SPIPlanPtr plan

		

（SPI_prepareで返される）準備済み文
     







戻り値



planで想定される引数の数です。
planがNULLまたは無効な場合はSPI_resultにSPI_ERROR_ARGUMENTが設定され、-1が返されます。
  





OEBPS/re40.html

名前

SPI_cursor_fetch — カーソルから数行を取り出す


概要

void SPI_cursor_fetch(Portal portal, bool forward, long count)



説明



SPI_cursor_fetchはカーソルから数行を取り出します。
これは、FETCH SQLコマンドと部分的に等価です。
（詳細機能についてはSPI_scroll_cursor_fetchを参照してください。）
  


引数

		Portal portal

		

カーソルを持つポータル
     



		bool forward

		

前方方向の取り出しの場合、真。後方方向の場合は偽。
     



		long count

		

取り出す最大行数。
     







戻り値



成功時、SPI_processedとSPI_tuptableがSPI_execute同様に設定されます。
  


注釈



カーソルの計画が CURSOR_OPT_SCROLLオプションを付けて作成されなかった場合、後方方向の取り出しは失敗する可能性があります。
  





OEBPS/re45.html

名前

SPI_keepplan — 準備済み文を保持する


概要

int SPI_keepplan(SPIPlanPtr plan)



説明



SPI_keepplanは渡された（SPI_prepareで準備された）文をSPI_finishとトランザクションマネージャで解放されないメモリ内に保存します。
これは、現在のセッションにおける、その後のC関数の呼び出しで準備済み文を再利用できる機能を提供します。
  


引数

		SPIPlanPtr plan

		

保存する準備済み文
     







戻り値



成功時は0。
planがNULLまたは無効な場合はSPI_ERROR_ARGUMENT
  


注釈



渡された文はポインタの調整により永続的記憶領域に再配置されます（データコピーは不要です）。
後ほど削除したければ、SPI_freeplanを実行してください。
  





OEBPS/re37.html

名前

SPI_cursor_open_with_paramlist — パラメータを使ってカーソルを設定する


概要

Portal SPI_cursor_open_with_paramlist(const char *name,
                                      SPIPlanPtr plan,
                                      ParamListInfo params,
                                      bool read_only)



説明



SPI_cursor_open_with_paramlistはSPI_prepareで準備された文を実行するカーソル(内部的にはポータル)を設定します。
この関数はSPI_cursor_openと同じですが、問い合わせに渡されるパラメータ値に関する情報が別途存在することが異なります。
ParamListInfo表現は、すでに利用可能な形式で値を渡すために便利です。
またParamListInfoで指定されたフック関数経由での動的なパラメータ群の使用をサポートします。
  



渡されるパラメータデータはカーソルのポータルにコピーされます。
そのため、カーソルが存在している間にそのデータを解放することができます。
  


引数

		const char * name

		

ポータルの名前、あるいはシステムに名前を決定させる場合はNULL
     



		SPIPlanPtr plan

		

（SPI_prepareで返される）準備済み文
     



		ParamListInfo params

		

パラメータの型と値からなるデータ構造。
なければNULL。
     



		bool read_only

		
読み取りのみの実行の場合true
     







戻り値



カーソルを含むポータルへのポインタ。
戻り値の規約にはエラーを表すものがないことに注意してください。
エラーはすべてelog経由で報告されます。
  





OEBPS/re25.html

名前

SPI_prepare_cursor — 文を準備する。まだ実行は行わない


概要

SPIPlanPtr SPI_prepare_cursor(const char * command, int nargs,
                              Oid * argtypes, int cursorOptions)



説明



SPI_prepare_cursorは、プランナの「カーソルオプション」パラメータを指定できる点を除き、SPI_prepareと同じです。
これはDeclareCursorStmtのoptionsフィールド用にnodes/parsenodes.hで示された値を持つビットマスクです。
SPI_prepareでは常にカーソルオプションをゼロとして扱います。
  



この関数はSPI_prepare_extendedのため現在では廃止予定です。
  


引数

		const char * command

		

コマンド文字列
     



		int nargs

		

入力パラメータ（$1、$2など）の数
     



		Oid * argtypes

		

パラメータのデータ型のOIDを持つ配列へのポインタ
     



		int cursorOptions

		

カーソルオプションの整数ビットマスク。
ゼロはデフォルトの動作を引き起こします
     







戻り値



SPI_prepare_cursorはSPI_prepareと同じ戻り値の規則を持ちます。
  


注釈



cursorOptionsに指定できるビットには、CURSOR_OPT_SCROLL、CURSOR_OPT_NO_SCROLL、CURSOR_OPT_FAST_PLAN、CURSOR_OPT_GENERIC_PLAN、CURSOR_OPT_CUSTOM_PLANがあります。
特にCURSOR_OPT_HOLDは無視される点に注意してください。
  





OEBPS/re46.html

名前

SPI_saveplan — 準備済み文を保存する


概要

SPIPlanPtr SPI_saveplan(SPIPlanPtr plan)



説明



SPI_saveplanは渡された（SPI_prepareで準備された）文をSPI_finishとトランザクションマネージャで解放されないメモリ内にコピーします。
そして、コピーした文のポインタを返します。
これは、現在のセッションにおける、その後のC関数の呼び出しで準備済み文を再利用できる機能を提供します。
  


引数

		SPIPlanPtr plan

		

保存する準備済み文
     







戻り値



コピーした文へのポインタ。
失敗した場合はNULLです。
エラー時、SPI_resultは以下のように設定されます。

   

		SPI_ERROR_ARGUMENT

		

planがNULL、または無効な場合
      



		SPI_ERROR_UNCONNECTED

		

未接続のC関数から呼び出された場合
      







  


注釈



渡された元の文は解放されません。
ですので、SPI_finishを行うまでのメモリリークを防ぎたければSPI_freeplanを実行してください。
  



準備済み文のデータ構造を物理的にコピーする必要なく、ほとんど同じ結果をもたらしますので、たいていの場合、この関数よりもSPI_keepplanの方が好ましいです。
  





OEBPS/re41.html

名前

SPI_cursor_move — カーソルを移動する


概要

void SPI_cursor_move(Portal portal, bool forward, long count)



説明



SPI_cursor_moveはカーソル内で、数行をスキップします。
これはMOVE SQLコマンドと部分的に等価です。
（詳細機能についてはSPI_scroll_cursor_moveを参照してください。）
  


引数

		Portal portal

		

カーソルを持つポータル
     



		bool forward

		

前方方向の移動の場合、真。後方方向の場合は偽。
     



		long count

		

移動する最大行数。
     







注釈



カーソルの計画がCURSOR_OPT_SCROLLオプション付きで作成されなかった場合、後方方向への移動は失敗する可能性があります。
  





OEBPS/re309.html

名前

vacuumlo — PostgreSQL™データベースから孤児となったラージオブジェクトを削除する


概要

vacuumlo  [option...]  dbname... 



説明



vacuumloはPostgreSQL™データベースから「孤児になった」ラージオブジェクトをすべて削除する、単純なユーティリティです。
データベース内でoidまたはloデータ型列内にまったく現れないOIDを持つすべてのラージオブジェクト(LO)を「孤児になった」LOとみなします。
 



これを使用する場合にはまた、loモジュール内のlo_manageトリガに興味を持つかもしれません。
lo_manageは初期段階で孤児になったLOの生成を防止しようと試みます。
 



コマンドラインで指名された全てのデータベースに対して処理が行われます。
  


オプション



vacuumloは以下のコマンドライン引数を受け付けます。

  

		-l limit, --limit=limit

		

1トランザクションに付き、limit個（デフォルトは1000）より多くのラージオブジェクトを削除しません。
サーバは削除されるLO毎に一つのロックを取得するため、多数のLOの削除を1トランザクションで行う場合、max_locks_per_transactionを超える恐れがあります。
もし1トランザクションで全ての削除を行いたい場合は、このlimit値を0に指定してください。
     



		-n, --dry-run

		ラージオブジェクトの削除を行わず、単に何が行われるはずかを示します。



		-v, --verbose

		多くの進行メッセージを出力します。



		-V, --version

		

vacuumloのバージョンを表示し終了します。
     



		-?, --help

		

vacuumloのコマンドライン引数に関するヘルプを表示し終了します。
     







  



vacuumloは接続パラメータとして以下のコマンドライン引数も受け付けます。

  

		-h host, --host=host

		データベースサーバのホスト名です。



		-p port, --port=port

		データベースサーバのポート番号です。



		-U username, --username=username

		接続ユーザ名です。



		-w, --no-password

		

パスワードの入力を促しません。
サーバがパスワード認証を必要とし、かつ、.pgpassファイルなどの他の方法が利用できない場合、接続試行は失敗します。
バッチジョブやスクリプトなどパスワードを入力するユーザが存在しない場合にこのオプションは有用かもしれません。
     



		-W, --password

		

vacuumloは強制的にデータベースに接続する前にパスワード入力を促します。
     



サーバがパスワード認証を要求する場合vacuumloは自動的にパスワード入力を促しますので、これが重要になることはありません。
しかし、vacuumloは、サーバにパスワードが必要かどうかを判断するための接続試行を無駄に行います。
こうした余計な接続試行を防ぐために-Wの入力が有意となる場合もあります。
     







  


環境

		PGHOST, PGPORT, PGUSER

		

デフォルトの接続パラメータ。
     








このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数(「環境変数」参照)も使います。
  



環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  


注釈



vacuumloは下記の手法で動作します。
まずvacuumloは選択されたデータベース内のラージオブジェクトのOIDをすべて含む一時テーブルを構築します。
そしてデータベース内でoid型またはlo型を型として持つ全列をスキャンし、一時テーブルから一致する項目を削除します。
(注意:これらの名前の型のみが対象となります。特に、これらの型を伴ったドメインなどはスキャン対象にはなりませんので注意が必要です。)
一時テーブルに残った項目を孤児LOと識別します。
これらが削除されます。
  


作者


   Peter Mount <peter@retep.org.uk>
  





OEBPS/re308.html

名前

oid2name — OIDとPostgreSQL™データディレクトリ内のファイルノードを解決する


概要

oid2name  [option...]



説明



oid2nameは、管理者がPostgreSQLで使用されるファイル構造を確認することを補助するユーティリティプログラムです。
使用できるようになるためには、66章データベースの物理的な格納で説明されるデータベースファイル構造についての知識が必要です。
 

注記



「oid2name」という名前は歴史的なものであり、これを使用する場合のほとんどでは、本当はテーブルのファイルノード番号（これはデータベースディレクトリ内で可視なファイル名）が関係しますので、実際誤解されやすいものです。
テーブルのOIDとテーブルファイルノードの違いを確実に理解してください。
  




oid2nameは対象データベースに接続し、OID、ファイルノード、テーブル名情報を抽出します。
また、データベースOIDまたはテーブル空間OIDを示すようにさせることもできます。
  


オプション



oid2nameは以下のコマンドライン引数を受け付けます。

   

		-f filenode, --filenode=filenode

		filenodeというファイルノードを持つテーブルの情報を表示します。



		-i, --indexes

		一覧にインデックスおよびシーケンスを含めます。



		-o oid, --oid=oid

		oidというOIDを持つテーブルの情報を表示します。



		-q, --quiet

		ヘッダを省略します。（スクリプト処理に適しています）



		-s, --tablespaces

		テーブル空間OIDを表示します。



		-S, --system-objects

		システムオブジェクト（information_schema、pg_toast、pg_catalogスキーマ内に存在するもの）を含めます。
     



		-t tablename_pattern, --table=tablename_pattern

		tablename_patternに一致するテーブル（複数可）の情報を表示します。



		-V, --version

		

oid2nameのバージョンを表示し、終了します。
      



		-x, --extended

		
表示対象の各オブジェクトに関してさらに情報を表示します。テーブル空間名、スキーマ名、OID。
     



		-?, --help

		

oid2nameのコマンドライン引数の説明を表示し、終了します。
      







  



またoid2nameは以下の接続用のパラメータに関するコマンドライン引数を受け付けます。

   

		-d database, --dbname=database

		接続データベース。



		-h host, --host=host

		データベースサーバのホスト。



		-H host

		データベースサーバのホスト。このパラメータの使用はPostgreSQL™ 12以降で廃止予定です。



		-p port, --port=port

		データベースサーバのポート。



		-U username, --username=username

		接続ユーザ名。







  



特定のテーブルを表示するために、-o、-f、-tを使用して表示するテーブルを選択してください。
-oはOIDを、-fはファイルノードを、-tはテーブル名（実際はLIKEパターンです。ですのでfoo%などが使用できます）を引数として取ります。
これらのオプションを必要なだけ使用することができます。
一覧には、オプションのいずれかで一致したオブジェクトがすべて含まれます。
しかしこれらのオプションでは、-dで指定したデータベース内に存在するオブジェクトしか表示しないことに注意してください。
  



-o、-f、-tのいずれも指定せずに-dを指定した場合、-dで指定したデータベース上のすべてのテーブルを列挙します。
このモードでは、-Sおよび-iスイッチが何を列挙するかを制御します。
  



-dも指定しなかった場合、データベースOIDの一覧を示します。
他にも-sを指定してテーブル空間の一覧を得ることもできます。
  


環境

		PGHOST, PGPORT, PGUSER

		

デフォルトの接続パラメータ。
     








このユーティリティは、他のほとんどのPostgreSQL™ユーティリティと同様、libpqがサポートする環境変数(「環境変数」参照)も使います。
  



環境変数PG_COLORは診断メッセージで色を使うかどうかを指定します。
指定可能な値はalways、auto、neverです。
  


注釈



oid2nameは破損のないシステムカタログで実行中のデータベースサーバが必要です。
したがって、破滅的にデータベースが破損したような状況からの復旧には限定的にしか役に立ちません。
  


例


$ # とにかく、このデータベースサーバの中には何があるのだろう
$ oid2name
All databases:
    Oid  Database Name  Tablespace
----------------------------------
  17228       alvherre  pg_default
  17255     regression  pg_default
  17227      template0  pg_default
      1      template1  pg_default

$ oid2name -s
All tablespaces:
     Oid  Tablespace Name
-------------------------
    1663       pg_default
    1664        pg_global
  155151         fastdisk
  155152          bigdisk


$ # さて、データベースalvherreの中を見てみよう
$ cd $PGDATA/base/17228


$ # デフォルトテーブル空間のデータベースオブジェクトを大きさの順に上位10個取得
$ ls -lS * | head -10
-rw-------  1 alvherre alvherre 136536064 sep 14 09:51 155173
-rw-------  1 alvherre alvherre  17965056 sep 14 09:51 1155291
-rw-------  1 alvherre alvherre   1204224 sep 14 09:51 16717
-rw-------  1 alvherre alvherre    581632 sep  6 17:51 1255
-rw-------  1 alvherre alvherre    237568 sep 14 09:50 16674
-rw-------  1 alvherre alvherre    212992 sep 14 09:51 1249
-rw-------  1 alvherre alvherre    204800 sep 14 09:51 16684
-rw-------  1 alvherre alvherre    196608 sep 14 09:50 16700
-rw-------  1 alvherre alvherre    163840 sep 14 09:50 16699
-rw-------  1 alvherre alvherre    122880 sep  6 17:51 16751


$ # 155173は何のファイルだろう
$ oid2name -d alvherre -f 155173
From database "alvherre":
  Filenode  Table Name
----------------------
    155173    accounts


$ # 2つ以上のオブジェクトについて問い合わせることもできる
$ oid2name -d alvherre -f 155173 -f 1155291
From database "alvherre":
  Filenode     Table Name
-------------------------
    155173       accounts
   1155291  accounts_pkey


$ # オプションを複数指定することもできて、-xではより詳細を得ることができる
$ oid2name -d alvherre -t accounts -f 1155291 -x
From database "alvherre":
  Filenode     Table Name      Oid  Schema  Tablespace
------------------------------------------------------
    155173       accounts   155173  public  pg_default
   1155291  accounts_pkey  1155291  public  pg_default


$ # 各データベースオブジェクトのディスク容量を表示
$ du [0-9]* |
> while read SIZE FILENODE
> do
>   echo "$SIZE       `oid2name -q -d alvherre -i -f $FILENODE`"
> done
16            1155287  branches_pkey
16            1155289  tellers_pkey
17561            1155291  accounts_pkey
...


$ # 同上、ただし大きさの順
$ du [0-9]* | sort -rn | while read SIZE FN
> do
>   echo "$SIZE   `oid2name -q -d alvherre -f $FN`"
> done
133466             155173    accounts
17561            1155291  accounts_pkey
1177              16717  pg_proc_proname_args_nsp_index
...


$ # テーブル空間に何があるのか見たければ、pg_tblspcディレクトリを使う
$ cd $PGDATA/pg_tblspc
$ oid2name -s
All tablespaces:
     Oid  Tablespace Name
-------------------------
    1663       pg_default
    1664        pg_global
  155151         fastdisk
  155152          bigdisk


$ # テーブル空間"fastdisk"にはどのデータベースのオブジェクトがあるのだろうか
$ ls -d 155151/*
155151/17228/  155151/PG_VERSION


$ # おや、データベース17228がまた出てきた
$ oid2name
All databases:
    Oid  Database Name  Tablespace
----------------------------------
  17228       alvherre  pg_default
  17255     regression  pg_default
  17227      template0  pg_default
      1      template1  pg_default


$ # このデータベースがどのオブジェクトをこのテーブル空間に持っているのか見てみよう
$ cd 155151/17228
$ ls -l
total 0
-rw-------  1 postgres postgres 0 sep 13 23:20 155156


$ # 分かった、これはかなり小さなテーブルだ、、、でも何のテーブルだろう
$ oid2name -d alvherre -f 155156
From database "alvherre":
  Filenode  Table Name
----------------------
    155156         foo



作者


   B. Palmer <bpalmer@crimelabs.net>
  





OEBPS/re38.html

名前

SPI_cursor_parse_open — 問い合わせ文字列とパラメータを使ってカーソルを設定する


概要

Portal SPI_cursor_parse_open(const char *name,
                             const char *command,
                             const SPIParseOpenOptions * options)



説明



SPI_cursor_parse_openは特定の問い合わせ文字列を実行するカーソル（内部的にはポータル）を設定します。
これは、問い合わせ文字列内のパラメータ参照がParamListInfoを与えることで完全に取り扱われることを除いて、SPI_prepare_cursorに続けてSPI_cursor_open_with_paramlistを実行するのと似ています。
  



一度限りの問い合わせの実行に対しては、この関数はSPI_prepare_cursorに続いてSPI_cursor_open_with_paramlistを実行するよりも好ましいです。
同じコマンドが多くの異なるパラメータで実行されるのなら、再計画のコストとカスタム計画の利益に依存してどちらかの方法がより速いでしょう。
  



その問い合わせに対しては一度限りの計画が必ず使われますので、options->paramsオブジェクトは通常各パラメータにPARAM_FLAG_CONSTフラグをつけるべきです。
  



渡されてきたパラメータデータはカーソルのポータルにコピーされますので、カーソルが存在している間に解放できます。
  


引数

		const char * name

		

ポータルの名前、あるいはシステムに名前を決定させる場合はNULL
     



		const char * command

		

コマンド文字列
     



		const SPIParseOpenOptions * options

		

オプションの引数を含む構造体
     








呼び出し元は、必ずoptions構造体全体をゼロクリアしてから、設定したいフィールドを埋めるべきです。
構造体に将来追加されるフィールドは、ゼロであれば後方互換性があるように振る舞うよう定義されますので、これはコードの将来の互換性を確実にします。
現在利用可能なoptionsフィールドは以下の通りです。
  

		ParamListInfo params

		

問い合わせパラメータの型と値を含むデータ構造。なければNULL
     



		int cursorOptions

		

カーソルオプションの整数ビットマスク。ゼロの場合はデフォルトの動作
     



		bool read_only

		読み取りのみの実行の場合true







戻り値



カーソルを含んだポータルへのポインタ。
エラーを返す規約がないことに注意してください。
すべてのエラーはelogで報告されます。
  





OEBPS/re35.html

名前

SPI_cursor_open — SPI_prepareで作成された文を使用したカーソルを設定する


概要

Portal SPI_cursor_open(const char * name, SPIPlanPtr plan,
                       Datum * values, const char * nulls,
                       bool read_only)



説明



SPI_cursor_openは、SPI_prepareによって準備された文を実行するカーソル（内部的にはポータル）を設定します。
このパラメータはSPI_execute_planの対応するパラメータと同じ意味を持ちます。
  



文を直接実行するのではなくカーソルを使用することには2つの利点があります。
1つ目は、結果行を一度に少なく取り出し、多くの行を返す問い合わせでのメモリの過使用を防ぐことができる点です。
2つ目は、ポータルは現在のC関数の外部でも有効である点です（実際、現在のトランザクションの終端まで有効とすることができます）。
C関数の呼び出し元にポータルの名前を返すことで、結果として行セットを返す手段を提供します。
  



渡されるパラメータデータはカーソルのポータルにコピーされます。
そのため、カーソルが存在している間にそのデータを解放することができます。
  


引数

		const char * name

		

ポータルの名前、あるいはシステムに名前を決定させる場合はNULL
     



		SPIPlanPtr plan

		

（SPI_prepareで返される）準備済み文
     



		Datum * values

		

実パラメータ値の配列。
文の引数の数と同じ長さでなければなりません。
     



		const char * nulls

		

どのパラメータがNULLであるかを示す配列。
文の引数の数と同じ長さでなければなりません。
     



nullsがNULLの場合、SPI_cursor_openは全てのパラメータがNULLではないとみなします。
さもなければ、nulls配列の各項目は、対応するパラメータが非NULLならば' '、対応するパラメータがNULLならば'n'です。
（後者の場合、values内の対応する値は注意されません。）
nullsはテキスト文字列ではなく単なる配列であることに注意してください。
'\0'終端は必要ありません。
     



		bool read_only

		
読み取りのみの実行の場合true
     







戻り値



カーソルを含むポータルへのポインタ。
戻り値の規約にはエラーを表すものがないことに注意してください。
エラーはすべてelog経由で報告されます。
  





OEBPS/images/callouts/11.png





OEBPS/images/callouts/10.png





OEBPS/images/callouts/15.png





OEBPS/images/callouts/14.png





OEBPS/images/callouts/13.png





OEBPS/images/callouts/12.png





OEBPS/re32.html

名前

SPI_execute_plan_extended — SPI_prepareで準備された文を実行する


概要

int SPI_execute_plan_extended(SPIPlanPtr plan,
                              const SPIExecuteOptions * options)



説明



SPI_execute_plan_extendedはSPI_prepareもしくは類似の関数で準備された文を実行します。
この関数は、問い合わせに渡すパラメータ値に関する情報が異なる形で存在する点と追加の実行制御オプションを渡せる点を除いてSPI_execute_planと等価です。
  



問い合わせパラメータ値はParamListInfo構造体で表現されていますので、既にその形で利用可能な値を渡すには便利です。
ParamListInfoで指定されたフック関数経由で、動的なパラメータ群も使うことができます。
  



また、結果タプルを必ずSPI_tuptable構造体に蓄積する代わりに、エグゼキュータにより生成された時にタプルを呼び出し元が提供するDestReceiverオブジェクトに渡すことができます。
データがメモリに蓄積される代わりにその場で処理されるので、多数のタプルを生成する問い合わせに対して特に有用です。
  


引数

		SPIPlanPtr plan

		

（SPI_prepareで返される）準備済み文
     



		const SPIExecuteOptions * options

		

オプションの引数を含む構造体
     








呼び出し元は、必ずoptions構造体全体をゼロクリアしてから、設定したいフィールドを埋めるべきです。
構造体に将来追加されるフィールドは、ゼロであれば後方互換性があるように振る舞うよう定義されますので、これはコードの将来の互換性を確実にします。
現在利用可能なoptionsフィールドは以下の通りです。
  

		ParamListInfo params

		

問い合わせパラメータの型と値を含むデータ構造。なければNULL
     



		bool read_only

		読み取りのみの実行の場合true



		bool allow_nonatomic

		

trueでCALLとDO文の非原子的実行を許可します（ただし、SPI_OPT_NONATOMICフラグがSPI_connect_extに渡されていなければ、このフィールドは無視されます）
     



		bool must_return_tuples

		

trueであれば、問い合わせがタプルを返す種類のものでない場合にエラーを発生します(これはたまたま0個のタプルを返す場合を禁止しません)
     



		uint64 tcount

		

返される行の最大数、無制限の場合には0
     



		DestReceiver * dest

		

問い合わせが出すタプルを受け取るDestReceiverオブジェクト。
NULLなら、SPI_execute_planのように、結果タプルはSPI_tuptable構造体に蓄積されます。
     



		ResourceOwner owner

		

実行中、計画の参照カウントを保持するリソース所有者。
NULLならCurrentResourceOwnerが使われます。
SPIは保存されない計画の参照カウントを取得しませんので、保存されない計画に対しては無視されます。
     







戻り値



戻り値はSPI_execute_planと同じです。
  



options->destがNULLであれば、SPI_processedとSPI_tuptableはSPI_execute_planと同様に設定されます。
options->destがNULLでなければ、SPI_processedはゼロに設定され、SPI_tuptableはNULLに設定されます。
タプルの集計が必要なら、呼び出し元のDestReceiverオブジェクトが計算しなければなりません。
  





OEBPS/re29.html

名前

SPI_getargtypeid — 
SPI_prepareで準備された文で指定される引数のデータ型のOIDを返す
  


概要

Oid SPI_getargtypeid(SPIPlanPtr plan, int argIndex)



説明



SPI_getargtypeidは、SPI_prepareで準備された文におけるargIndex番目の引数の型を表すOIDを返します。
インデックス0は最初の引数を示します。
  


引数

		SPIPlanPtr plan

		

（SPI_prepareで返される）準備済み文
     



		int argIndex

		

0から始まる引数のインデックス
     







戻り値



指定したインデックスにおける引数の型OIDです。
planがNULLまたは無効、あるいはargIndexが0未満、planで宣言された引数の数以上の場合、SPI_resultにSPI_ERROR_ARGUMENTが設定され、InvalidOidが返されます。
  





OEBPS/re18.html

名前

SPI_connect, SPI_connect_ext — SPIマネージャにC関数を接続する


概要

int SPI_connect(void)


int SPI_connect_ext(int options)



説明



SPI_connectはC関数の呼び出しからSPIマネージャへの接続を開きます。
SPIを経由してコマンドを実行させる場合、この関数を呼び出さなければなりません。
SPIユーティリティ関数の中には、未接続のC関数から呼び出し可能なものがあります。
  



SPI_connect_extは同様に動作しますが、オプションフラグを渡せる引数を一つもちます。
今のところ以下のオプション値が使えます。
   

		SPI_OPT_NONATOMIC

		

SPI接続を非原子的になるように設定します。これはトランザクション制御呼び出し(SPI_commit、SPI_rollback)が可能であることを意味します。
このフラグなしで、これら関数を呼び出すと即座にエラーになります。
      







  



SPI_connect()はSPI_connect_ext(0)と同義です。
  


戻り値

		SPI_OK_CONNECT

		

成功した場合。
     








これらの関数がvoidではなくintを返すのは歴史的なものです。
すべての失敗状況はereportまたはelogで報告されます。
（PostgreSQL™ v10より前のバージョンでは、一部の失敗はSPI_ERROR_CONNECTの結果値で報告されましたが、すべての失敗に対してではありませんでした。）
  





OEBPS/re47.html

名前

SPI_register_relation — 短命の名前付きリレーションをSPIの問い合わせから名前で参照可能にする


概要

int SPI_register_relation(EphemeralNamedRelation enr)



説明



SPI_register_relationは短命の名前付きリレーションを、現在のSPI接続を通して計画され、実行される問い合わせに対して、関連情報と一緒に参照できるようにします。
  


引数

		EphemeralNamedRelation enr

		

短命の名前付きリレーションの登録エントリ
     







戻り値



コマンドの実行に成功したときは、次の（負でない）値が返されます。

   

		SPI_OK_REL_REGISTER

		

リレーションが名前で登録できた場合
      







  



エラーが発生したときは、以下の負の値の一つが返されます。

   

		SPI_ERROR_ARGUMENT

		

enrがNULLか、そのnameフィールドがNULLの場合
      



		SPI_ERROR_UNCONNECTED

		

未接続のC関数から呼び出された場合
      



		SPI_ERROR_REL_DUPLICATE

		

enrのnameフィールドで指定された名前が、現在の接続で既に登録済みの場合
      







  





OEBPS/re42.html

名前

SPI_scroll_cursor_fetch — カーソルから一部の行を取り出す


概要

void SPI_scroll_cursor_fetch(Portal portal, FetchDirection direction,
                             long count)



説明



SPI_scroll_cursor_fetchはカーソルから行の一部を取り出します。
これはSQLコマンドFETCHと等価です。
  


引数

		Portal portal

		

カーソルを含むポータル
     



		FetchDirection direction

		

FETCH_FORWARD、FETCH_BACKWARD、FETCH_ABSOLUTE、FETCH_RELATIVEのいずれか
     



		long count

		

FETCH_FORWARDまたはFETCH_BACKWARDでは取り出す行数。
FETCH_ABSOLUTEでは取り出す行の絶対番号。
FETCH_RELATIVEでは取り出す行の相対的番号。
     







戻り値



成功時、SPI_execute同様にSPI_processedとSPI_tuptableが設定されます。
  


注釈



directionパラメータおよびcountパラメータの解釈の詳細についてはSQL FETCH(7)コマンドを参照してください。
  



カーソルの計画がCURSOR_OPT_SCROLLオプション付きで作成されていない場合、FETCH_FORWARD以外の方向値は失敗する可能性があります。
  





OEBPS/re30.html

名前

SPI_is_cursor_plan — 
SPI_prepareで準備された文がSPI_cursor_openで使用できる場合にtrueを返す
  


概要

bool SPI_is_cursor_plan(SPIPlanPtr plan)



説明



SPI_prepareで準備済み文がSPI_cursor_openへの引数として渡すことができる場合、SPI_is_cursor_planはtrueを返します。
渡すことができない場合はfalseを返します。
この基準は、planが単一のコマンドであり、かつ、そのコマンドが呼び出し元にタプルを返すことです。
例えば、INTO句を含んでいないSELECTは可能です。
そして、RETURNING句を含む場合のみUPDATEも可能です。
  


引数

		SPIPlanPtr plan

		

（SPI_prepareで返される）準備済み文
     







戻り値



planがカーソルを生成することができるかどうかを示すtrueもしくはfalseです。
そしてSPI_resultをゼロに設定します。
解答を決定することができない場合（例えばplanがNULL、または無効な場合、もしくはSPI未接続時に呼び出された場合）はSPI_resultに適切なエラーコードが設定され、falseが返されます。
  





OEBPS/re19.html

名前

SPI_finish — C関数をSPIマネージャから切断する


概要

int SPI_finish(void)



説明



SPI_finishは既存のSPIマネージャへの接続を切断します。
C関数の現在の呼び出し期間内で必要なSPI操作が完了した後この関数を呼び出さなければなりません。
しかし、elog(ERROR)経由でトランザクションを中断させる場合は、この関数が何を行うかを気にする必要はありません。
その場合、SPIは自動的に自身を整理します。
  


戻り値

		SPI_OK_FINISH

		

適切に切断された場合。
     



		SPI_ERROR_UNCONNECTED

		

未接続のC関数から呼び出された場合
     










OEBPS/re26.html

名前

SPI_prepare_extended — 文を準備する。文の実行はまだ行わない


概要

SPIPlanPtr SPI_prepare_extended(const char * command,
                                const SPIPrepareOptions * options)



説明



SPI_prepare_extendedは指定したコマンド用の準備済み文を作成し、それを返します。しかし、そのコマンドは実行しません。
この関数は、呼び出し元が、問い合わせの解析や計画のその他の面だけでなく、外部のパラメータ参照の解析も制御するオプションを指定できる追加機能のあるSPI_prepareと等価です。
  


引数

		const char * command

		

コマンド文字列
     



		const SPIPrepareOptions * options

		

オプションの引数を含む構造体
     








呼び出し元は、必ずoptions構造体全体をゼロクリアしてから、設定したいフィールドを埋めるべきです。
構造体に将来追加されるフィールドは、ゼロであれば後方互換性があるように振る舞うよう定義されますので、これはコードの将来の互換性を確実にします。
現在利用可能なoptionsフィールドは以下の通りです。
  

		ParserSetupHook parserSetup

		

パーサフック設定関数
     



		void * parserSetupArg

		

parserSetupに渡される引数
     



		RawParseMode parseMode

		

raw解析のモード。
RAW_PARSE_DEFAULT(ゼロ)はデフォルトの振舞いになります
     



		int cursorOptions

		

カーソルオプションの整数ビットマスク。ゼロはデフォルトの振舞いになります
     







戻り値



SPI_prepare_extendedはSPI_prepareと同じ戻り値の規則を持ちます。
  





OEBPS/re23.html

名前

SPI_execute_with_args — 行外のパラメータを持つコマンドを実行する


概要

int SPI_execute_with_args(const char *command,
                          int nargs, Oid *argtypes,
                          Datum *values, const char *nulls,
                          bool read_only, long count)



説明



SPI_execute_with_argsは外部から供給されるパラメータへの参照を含むコマンドを実行します。
コマンドテキストはパラメータを$nとして参照し、呼び出しはこうしたシンボル毎にデータ型と値を指定します。
read_onlyとcountはSPI_executeと同じ解釈をします。
  



SPI_executeと比較して、このルーチンの主たる利点は、データ値を面倒な引用やエスケープを要せずコマンドに埋め込むことができることで、従ってSQLインジェクション攻撃の危険性を軽減します。
  



後にSPI_execute_planが続いたSPI_prepareでも同様の結果が得られますが、この関数を使用するときには、提供された特定のパラメータ値に対して問い合わせ計画が必ずカスタマイズされます。
１回限りの問い合わせ実行に対しては、この関数を選ぶべきです。
多くの異なったパラメータを持つ同一のコマンドを実行する場合、再計画のコストと独自計画による利益に依存して、どちらか一方の方法がより早くなります。
  


引数

		const char * command

		

コマンド文字列
     



		int nargs

		

入力パラメータ（$1、$2など）の数
     



		Oid * argtypes

		

パラメータのデータ型のOIDを含む、nargs長の配列
     



		Datum * values

		

実パラメータ値を含む、nargs長の配列
     



		const char * nulls

		

どのパラメータがnullかを記述する、nargs長の配列
     



nullsがNULLであれば、SPI_execute_with_argsはどのパラメータもnullでないと看做します。
さもなければ、nulls配列の各項目は、対応するパラメータが非NULLならば' '、対応するパラメータがNULLならば'n'です。
（後者の場合、values内の対応する値は注意されません。）
nullsはテキスト文字列ではなく単なる配列であることに注意してください。
'\0'終端は必要ありません。
     



		bool read_only

		
読み取りのみの実行の場合true
     



		long count

		

返される行の最大数。無制限なら0。
     







戻り値



戻り値はSPI_executeと同じです。
  



成功した場合SPI_processedとSPI_tuptableはSPI_executeと同様に設定されます。
  





OEBPS/re43.html

名前

SPI_scroll_cursor_move — カーソルを移動する


概要

void SPI_scroll_cursor_move(Portal portal, FetchDirection direction,
                            long count)



説明



SPI_scroll_cursor_moveはカーソル内の行の一部をスキップします。
これはSQLコマンドMOVEと等価です。
  


引数

		Portal portal

		

カーソルを含むポータル
     



		FetchDirection direction

		

FETCH_FORWARD、FETCH_BACKWARD、FETCH_ABSOLUTE、FETCH_RELATIVEのいずれか
     



		long count

		

FETCH_FORWARDまたはFETCH_BACKWARDでは移動する行数。
FETCH_ABSOLUTEでは移動する行の絶対番号。
FETCH_RELATIVEでは移動する行の相対的番号。
     







戻り値



成功時、SPI_execute同様にSPI_processedが設定されます。
この関数は行を返しませんので、SPI_tuptableはNULLに設定されます。
  


注釈



directionパラメータおよびcountパラメータの解釈の詳細についてはSQL FETCH(7)コマンドを参照してください。
  



カーソルの計画がCURSOR_OPT_SCROLLオプション付きで作成されていない場合、FETCH_FORWARD以外の方向値は失敗する可能性があります。
  





OEBPS/re33.html

名前

SPI_execute_plan_with_paramlist — SPI_prepareで準備された文を実行する


概要

int SPI_execute_plan_with_paramlist(SPIPlanPtr plan,
                                    ParamListInfo params,
                                    bool read_only,
                                    long count)



説明



SPI_execute_plan_with_paramlistはSPI_prepareで準備された文を実行します。
この関数はSPI_execute_planと同じですが、問い合わせに渡されるパラメータ値に関する情報が別途存在する点が異なります。
ParamListInfo表現は、すでに利用可能な形式で値を渡すために便利です。
またParamListInfoで指定されたフック関数経由での動的なパラメータ群の使用をサポートします。
  



この関数はSPI_execute_plan_extendedのため現在では廃止予定です。
  


引数

		SPIPlanPtr plan

		

（SPI_prepareで返される）準備済み文
     



		ParamListInfo params

		

パラメータの型と値からなるデータ構造。
なければNULL。
     



		bool read_only

		
読み取りのみの実行の場合true
     



		long count

		

返される行の最大数。無制限なら0。
     







戻り値



戻り値はSPI_execute_planと同じです。
  



成功時、SPI_processedとSPI_tuptableがSPI_execute_plan同様に設定されます。
  





OEBPS/re21.html

名前

SPI_exec — 読み書きコマンドを実行する


概要

int SPI_exec(const char * command, long count)



説明



SPI_execは、常にread_onlyパラメータをfalseとしたSPI_executeと同じです。
  


引数

		const char * command

		

実行するコマンドを含む文字列。
     



		long count

		

返される行の最大数。無制限なら0。
     







戻り値



SPI_executeを参照してください。
  





OEBPS/re36.html

名前

SPI_cursor_open_with_args — 問い合わせとパラメータを使ってカーソルを設定する


概要

Portal SPI_cursor_open_with_args(const char *name,
                                 const char *command,
                                 int nargs, Oid *argtypes,
                                 Datum *values, const char *nulls,
                                 bool read_only, int cursorOptions)



説明



SPI_cursor_open_with_argsは特定の問い合わせを実行するカーソル（内部的にはポータル）を設定します。
ほとんどのパラメータはSPI_prepare_cursorとSPI_cursor_openに対応するパラメータと同じ意味を持っています。
  



１回限りの問い合わせ実行に対しては、後にSPI_cursor_openが続いたSPI_prepare_cursorよりも、この関数を選ぶべきです。
多くの異なったパラメータを持つ同一のコマンドを実行する場合、再計画のコストと独自計画による利益に依存して、どちらか一方の方法がより早くなります。
  



渡されたパラメータデータはカーソルのポータルにコピーされますので、カーソルが存在している間は解放することができます。
  



この関数は、問い合わせパラメータを取り扱う、より新しいAPIを使って等価な機能を提供するSPI_cursor_parse_openのため現在では廃止予定です。
  


引数

		const char * name

		

ポータルの名前、またはシステムに名前を選択させるNULL
     



		const char * command

		

コマンド文字列
     



		int nargs

		

入力パラメータ（$1、$2など）の数
     



		Oid * argtypes

		

パラメータのデータ型のOIDを含む、nargs長の配列
     



		Datum * values

		

実パラメータ値を含む、nargs長の配列
     



		const char * nulls

		

どのパラメータがnullかを記述する、nargs長の配列
     



nullsがNULLであれば、SPI_cursor_open_with_argsはどのパラメータもnullでないとみなします。
さもなければ、nulls配列の各項目は、対応するパラメータが非NULLならば' '、対応するパラメータがNULLならば'n'です。
（後者の場合、values内の対応する値は注意されません。）
nullsはテキスト文字列ではなく単なる配列であることに注意してください。
'\0'終端は必要ありません。
     



		bool read_only

		
読み取りのみの実行の場合true
     



		int cursorOptions

		

カーソルオプションの整数ビットマスク。ゼロの場合はデフォルトの動作
     







戻り値



カーソルを含んだポータルへのポインタ。
エラーを返す規約がないことに注意してください。
すべてのエラーはelogで報告されます。
  





OEBPS/re39.html

名前

SPI_cursor_find — 既存のカーソルを名前で検索する


概要

Portal SPI_cursor_find(const char * name)



説明



SPI_cursor_findは既存のカーソルを名前で検索します。
これは主に、他の何らかの関数でテキストとして返されたカーソル名の名前解決の際に使用されます。
  


引数

		const char * name

		

ポータルの名前
     







戻り値



指定された名前のポータルへのポインタ。見つからない場合はNULLです。
  


注釈



この関数は、カーソルのようなプロパティを持たないPortalオブジェクトを返す可能性があることに注意してください。例えば、タプルを返さない場合があります。
Portalポインタを他のSPI関数に渡すだけであれば、そのような場合から身を守ることができますが、Portalを直接検査する場合には注意が必要です。
  





OEBPS/re22.html

名前

SPI_execute_extended — 行外のパラメータを持つコマンドを実行する


概要

int SPI_execute_extended(const char *command,
                         const SPIExecuteOptions * options)



説明



SPI_execute_extendedは外部から供給されるパラメータへの参照を含むコマンドを実行します。
コマンドテキストはパラメータを$nとして参照し、options->paramsオブジェクトは(供給されれば)こうしたシンボル毎にデータ型と値を提供します。
様々な実行オプションをoptions構造体にも指定できます。
  



その問い合わせに対しては一度限りの計画が必ず使われますので、options->paramsオブジェクトは通常各パラメータにPARAM_FLAG_CONSTフラグをつけるべきです。
  



options->destがNULLでなければ、結果タプルは、SPI_tuptableに蓄積される代わりに、エグゼキュータにより生成された時にそのオブジェクトに渡されます。
データがメモリに蓄積される代わりにその場で処理されるので、呼び出し元が提供するDestReceiverオブジェクトを使うことは、多数のタプルを生成する問い合わせに対して特に有用です。
  


引数

		const char * command

		

コマンド文字列
     



		const SPIExecuteOptions * options

		

オプションの引数を含む構造体
     








呼び出し元は、必ずoptions構造体全体をゼロクリアしてから、設定したいフィールドを埋めるべきです。
構造体に将来追加されるフィールドは、ゼロであれば後方互換性があるように振る舞うよう定義されますので、これはコードの将来の互換性を確実にします。
現在利用可能なoptionsフィールドは以下の通りです。
  

		ParamListInfo params

		

問い合わせパラメータの型と値を含むデータ構造。なければNULL
     



		bool read_only

		読み取りのみの実行の場合true



		bool allow_nonatomic

		

trueでCALLとDO文の非原子的実行を許可します（ただし、SPI_OPT_NONATOMICフラグがSPI_connect_extに渡されていなければ、このフィールドは無視されます）
     



		bool must_return_tuples

		

trueであれば、問い合わせがタプルを返す種類のものでない場合にエラーを発生します(これはたまたま0個のタプルを返す場合を禁止しません)
     



		uint64 tcount

		

返される行の最大数、無制限の場合には0
     



		DestReceiver * dest

		

問い合わせが出すタプルを受け取るDestReceiverオブジェクト。
NULLなら、SPI_executeのように、結果タプルはSPI_tuptable構造体に蓄積されます。
     



		ResourceOwner owner

		

このフィールドはSPI_execute_plan_extendedとの一貫性のために存在しますが、無視されます。SPI_execute_extendedが使う計画は決して保存されないからです。
     







戻り値



戻り値はSPI_executeと同じです。
  



options->destがNULLであれば、SPI_processedとSPI_tuptableはSPI_executeと同様に設定されます。
options->destがNULLでなければ、SPI_processedはゼロに設定され、SPI_tuptableはNULLに設定されます。
タプルの集計が必要なら、呼び出し元のDestReceiverオブジェクトが計算しなければなりません。
  





OEBPS/images/callouts/4.png





OEBPS/images/callouts/3.png





OEBPS/images/callouts/6.png





OEBPS/images/callouts/5.png





OEBPS/images/callouts/8.png





OEBPS/images/callouts/7.png





OEBPS/images/callouts/9.png





OEBPS/images/callouts/2.png





OEBPS/images/callouts/1.png





OEBPS/re34.html

名前

SPI_execp — 読み書きモードで文を実行する


概要

int SPI_execp(SPIPlanPtr plan, Datum * values, const char * nulls, long count)



説明



SPI_execpは、常にread_onlyパラメータをfalseとしたSPI_execute_planと同じです。
  


引数

		SPIPlanPtr plan

		

（SPI_prepareで返される）準備済み文
     



		Datum * values

		

実パラメータ値の配列。
文の引数の数と同じ長さでなければなりません。
     



		const char * nulls

		

どのパラメータがNULLであるかを示す配列。
文の引数の数と同じ長さでなければなりません。
     



nullsがNULLの場合、SPI_execpはすべてのパラメータがNULLではないとみなします。
さもなければ、nulls配列の各項目は、対応するパラメータが非NULLならば' '、対応するパラメータがNULLならば'n'です。
（後者の場合、values内の対応する値は注意されません。）
nullsはテキスト文字列ではなく単なる配列であることに注意してください。
'\0'終端は必要ありません。
     



		long count

		

返される行の最大数。無制限なら0。
     







戻り値



SPI_execute_planを参照してください。
  



成功時、SPI_execute同様にSPI_processedとSPI_tuptableが設定されます。
  





OEBPS/re20.html

名前

SPI_execute — コマンドを実行する


概要

int SPI_execute(const char * command, bool read_only, long count)



説明



SPI_executeは指定したSQLコマンドを、count行分実行します。
read_onlyがtrueの場合、そのコマンドは読み取りのみでなければなりませんが、多少のオーバーヘッドが削減されます。
  



この関数は接続済みのC関数からのみ呼び出し可能です。
  



countが0の場合、そのコマンドを、適用される全ての行に対して実行します。
countが0より多ければ、countを超えない数の行が取り出されます。
問い合わせにLIMIT句と追加するの同じように、countに達すれば、実行は止まります。
例えば、


SPI_execute("SELECT * FROM foo", true, 5);




は、テーブルから多くても5行しか取り出しません。
この制限はコマンドが実際に行を返した場合にのみ有効なことに注意して下さい。
例えば


SPI_execute("INSERT INTO foo SELECT * FROM bar", false, 5);




は、countパラメータを無視して、barからすべての行を挿入します。
しかし、


SPI_execute("INSERT INTO foo SELECT * FROM bar RETURNING *", false, 5);




は、5番目のRETURNINGの結果行を取り出した後に実行が止まりますので、多くても5行を挿入するだけです。
  



複数のコマンドを1つの文字列として渡すことができます。
SPI_executeは最後に実行したコマンドの結果を返します。
count制限は（最後の結果が返されただけだとしても）それぞれのコマンドに独立に適用されます。
この制限はルールによって生成される隠れたコマンドには適用されません。
  



read_onlyがfalseの場合、文字列内の各コマンドを実行する前にSPI_executeはコマンドカウンタを増分し、新しいスナップショットを作成します。
このスナップショットは、現在のトランザクション分離レベルがSERIALIZABLEまたはREPEATABLE READの場合は変更されません。
しかし、READ COMMITTEDモードでは、このスナップショットは更新され、他のセッションで新しくコミットされたトランザクションの結果を各コマンドから参照できます。
これは、そのコマンドがデータベースを変更する場合、一貫性の維持に重要です。
  



read_onlyがtrueの場合は、SPI_executeはスナップショットもコマンドカウンタも更新しません。
さらに、普通のSELECTコマンドのみをコマンド文字列内に記述することができます。
このコマンドは、その前後の問い合わせによって事前に確立済みのスナップショットを使用して実行されます。
この実行モードは読み書きモードよりもコマンドごとのオーバーヘッドが省略される分多少高速です。
また、これにより本当に安定（stable）な関数を構築することができます。
つまり、連続した実行は全て同じスナップショットを使用しますので、結果は変わることがないということです。
  



一般的に、SPIを使用する1つの関数内で読み取りのみコマンドと読み書きコマンドを混在させることは勧めません。
読み取りのみの問い合わせでは、読み書き問い合わせでなされたデータベースの更新結果を参照しないため、非常に混乱した動作に陥ることがあります。
  



（最後の）コマンドが実行した実際の行数は、SPI_processedグローバル変数に返されます。
関数の戻り値がSPI_OK_SELECT、SPI_OK_INSERT_RETURNING、SPI_OK_DELETE_RETURNING、SPI_OK_UPDATE_RETURNINGまたはSPI_OK_MERGE_RETURNINGの場合、SPITupleTable *SPI_tuptableグローバルポインタを使用して、結果の行にアクセスすることができます。
また、一部のユーティリティコマンド（EXPLAINなど）は行セットを返しますが、この場合もSPI_tuptableにはその結果が含まれます。
一部のユーティリティコマンド（COPY, CREATE TABLE AS）は行セットを返しません。
このためSPI_tuptableはNULLですが、SPI_processedの中で処理行数を返します。
  



SPITupleTable構造体は以下のように定義されています。


typedef struct SPITupleTable
{

    /* 公開メンバ */
    TupleDesc   tupdesc;        /* タプル記述子 */
    HeapTuple  *vals;           /* タプルの配列 */
    uint64      numvals;        /* 有効なタプルの数 */


    /* 非公開メンバ、外部呼び出し側のためのものではない */
    uint64      alloced;        /* vals配列に割り当てられた長さ */
    MemoryContext tuptabcxt;    /* 結果テーブルのメモリコンテキスト */
    slist_node  next;           /* 内部情報のためのリンク */
    SubTransactionId subid;     /* SPITupleTableが生成されたサブトランザクション */
} SPITupleTable;




フィールドtupdesc、vals、numvalsはSPIの呼び出し側で使えます。残りのフィールドは内部のものです。
valsは行へのポインタの配列です。
行数はnumvalsで与えられます（ちょっとした歴史的理由により、この数はSPI_processedでも返されます）。
tupdescは、行を扱うSPI関数に渡すことのできる行記述子です。
  



SPI_finishは、現在のC関数で割り当てられたSPITupleTableをすべて解放します。
SPI_freetuptableを呼び出して解放する場合、特定の結果テーブルを早めに解放することができます。
  


引数

		const char * command

		

実行するコマンドを含む文字列。
     



		bool read_only

		
読み取りのみの実行の場合true。
     



		long count

		

返される行の最大数。無制限なら0。
     







戻り値



コマンドの実行に成功した場合、以下のいずれかの（非負の）値が返されます。

   

		SPI_OK_SELECT

		

SELECT（SELECT INTOを除く）が実行された場合。
      



		SPI_OK_SELINTO

		

SELECT INTOが実行された場合。
      



		SPI_OK_INSERT

		

INSERTが実行された場合。
      



		SPI_OK_DELETE

		

DELETEが実行された場合。
      



		SPI_OK_UPDATE

		

UPDATEが実行された場合。
      



		SPI_OK_MERGE

		

MERGEが実行された場合。
      



		SPI_OK_INSERT_RETURNING

		

INSERT RETURNINGが実行された場合。
      



		SPI_OK_DELETE_RETURNING

		

DELETE RETURNINGが実行された場合。
      



		SPI_OK_UPDATE_RETURNING

		

UPDATE RETURNINGが実行された場合。
      



		SPI_OK_MERGE_RETURNING

		

MERGE RETURNINGが実行された場合。
      



		SPI_OK_UTILITY

		

ユーティリティコマンド（CREATE TABLEなど）が実行された場合。
      



		SPI_OK_REWRITTEN

		

ルールによって（例えば、UPDATEがINSERTになったような）あるコマンドが他の種類のコマンドに書き換えられた場合です。
      







  



エラーの場合、以下のいずれかの負の値が返されます。

   

		SPI_ERROR_ARGUMENT

		

commandがNULL、あるいはcountが0未満の場合。
      



		SPI_ERROR_COPY

		

COPY TO stdoutあるいはCOPY FROM stdinが試行された場合。
      



		SPI_ERROR_TRANSACTION

		

トランザクション操作を行うコマンド（BEGIN、COMMIT、ROLLBACK、SAVEPOINT、PREPARE TRANSACTION、COMMIT PREPARED、ROLLBACK PREPARED、およびこれらの亜種）が試行された場合。
      



		SPI_ERROR_OPUNKNOWN

		

コマンド種類が不明な場合（起きてはなりません）
      



		SPI_ERROR_UNCONNECTED

		

未接続のC関数から呼び出された場合
      







  


注釈



SPI問い合わせ実行関数はすべてSPI_processedとSPI_tuptableの両方を変更します（ポインタのみで、構造体の内容は変更しません）。
SPI_execや他の問い合わせ実行関数の結果テーブルを後の呼び出しでまたがってアクセスしたいのであれば、これら2つのグローバル変数を局所的なプロシージャ変数に保存してください。
  





OEBPS/re48.html

名前

SPI_unregister_relation — 短命の名前付きリレーションをSPIのレジストリから削除する


概要

int SPI_unregister_relation(const char * name)



説明



SPI_unregister_relationは短命の名前付きリレーションを現在の接続のレジストリから削除します。
  


引数

		const char * name

		

リレーションのレジストリエントリの名前
     







戻り値



コマンドの実行に成功したときは、次の（負でない）値が返されます。

   

		SPI_OK_REL_UNREGISTER

		

タプルストアがレジストリから削除された場合
      







  



エラーが発生したときは、以下の負の値の一つが返されます。

   

		SPI_ERROR_ARGUMENT

		

nameがNULLの場合
      



		SPI_ERROR_UNCONNECTED

		

未接続のC関数から呼び出された場合
      



		SPI_ERROR_REL_NOT_FOUND

		

nameが現在の接続のレジストリに見つからない場合
      







  





OEBPS/re31.html

名前

SPI_execute_plan — SPI_prepareで準備された文を実行する


概要

int SPI_execute_plan(SPIPlanPtr plan, Datum * values, const char * nulls,
                     bool read_only, long count)



説明



SPI_execute_planは、SPI_prepareもしくは類似の関数で準備された文を実行します。
read_onlyとcountはSPI_executeと同様の解釈がなされます。
  


引数

		SPIPlanPtr plan

		

（SPI_prepareで返される）準備済み文
     



		Datum * values

		

実パラメータ値の配列。
文の引数の数と同じ長さでなければなりません。
     



		const char * nulls

		

どのパラメータがNULLであるかを示す配列。
文の引数の数と同じ長さでなければなりません。
     



nullsがNULLの場合、SPI_execute_planはすべてのパラメータがNULLではないとみなします。
さもなければ、nulls配列の各項目は、対応するパラメータが非NULLならば' '、対応するパラメータがNULLならば'n'です。
（後者の場合、values内の対応する値は注意されません。）
nullsはテキスト文字列ではなく単なる配列であることに注意してください。
'\0'終端は必要ありません。
     



		bool read_only

		
読み取りのみの実行の場合true
     



		long count

		

返される行の最大数。無制限なら0。
     







戻り値



戻り値は、SPI_execute同様のものに加え、以下のエラー（負）の結果を取ることがあります。

   

		SPI_ERROR_ARGUMENT

		

planがNULLまたは無効、あるいは、countが0未満の場合
      



		SPI_ERROR_PARAM

		

valuesがNULL、かつ、planがパラメータ付きで準備された場合
      







  



成功時、SPI_processedとSPI_tuptableがSPI_execute同様に設定されます。
  





